
Chapter 3
The Two-Dimensional Case

3.1 General Notions

We now turn to the examination of the two-dimensional DNLS equation, and of the
type of excitations that can emerge in that context.

The dynamical equation can be written in the form

i u̇n,m + ε
(
un+1,m + un−1,m + un,m+1 + un,m−1 − 4un,m

)+ |un,m |2un,m = 0, (3.1)

where un,m represents the two-dimensional complex field. The corresponding Hamil-
tonian function of this Hamiltonian system can be expressed as

H =
∑

(n,m)∈Z2

ε|un+1,m − un,m|2 + ε|un,m+1 − un,m|2 − 1

2
|un,m|4. (3.2)

In addition to the time translational invariance inducing the conservation of the
Hamiltonian, this infinite dimensional dynamical system also has the U(1) invari-
ance, analogously to its one-dimensional sibling, hence it also preserves the squared
l2 norm or power P = ∑m,n |un,m|2. These are the two fundamental conservation
laws that are known for the discrete case. In the continuum analog of the model,
there exist additional conservation laws; a natural one among these corresponds to
the vector form of the momentum

M = i
∫ (

u∇u� − u�∇u
)

dxdy. (3.3)

A far less obvious invariance of the two-dimensional setting is the so-called
pseudo-conformal invariance which is particular to the two-dimensional case (the
so-called critical case for the cubic nonlinearity). If one defines l(t) = (t� − t)/t0,
then the transformation x′(t) = x(t)/ l(t), t ′ = ∫ t

0 ds/ l2(s) and u′(x′, t ′) =
lu(x, t) exp(ia|x|2/(4l2)), leaves the equation unchanged. In the above expressions,
a = −ldl/dt and x is used to denote the spatial vector. The corresponding con-
served quantity is
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C =
∫ (|xu + 2i t∇u|2 − 2t2|u|4) dx. (3.4)

It is important to note that neither of these last two conservation laws is preserved
in the discrete case. Furthermore, the continuum case is well known to lead to col-
lapse in its dynamical evolution; see a detailed analysis of the relevant phenomena
in [1].

In fact, the two-dimensional case is special as it is the “critical dimension”
beyond which collapse is occurring. The pseudo-conformal invariance allows the
rescaling of the amplitude and the width of the solution in a self-similar way, without
costing energy and in this way gives rise to the possibility of the solution to collapse
along this group orbit in finite time. In fact, if the power of the solution exceeds that
of the fundamental, single-humped radial solution of the equation (often referred to
as the Townes soliton [2]):

�R + R − R3 = 0, (3.5)

then the initial condition leads to self-focusing and collapse, while if it is lower
than that, it instead leads to dispersion. This collapse-type effect is of course no
longer possible in the discrete case, since the l2 conservation prevents any partic-
ular site from acquiring infinite amplitude (at best, the whole power of the initial
condition may be concentrated on a single site, in a phenomenon referred to as
quasi-collapse). Since the treatise of [1] addresses this issue in considerable detail
(see also references therein), we will not discuss it further here. Instead we will
focus on the stationary states of the discrete problem and their stability analysis.

As in the previous chapter, we will start by briefly discussing the single-pulse
case, and we will then turn to more complex multisite solutions such as multi-
pulse solitary waves and discrete vortices. The latter are a new feature of the two-
dimensional discrete system with no direct analog in the one-dimensional infinite
lattice case.

3.2 Single-Pulse Solitary Waves

The fundamental standing wave (un = ei�tvn) solution of the two-dimensional
discrete equation should be a single-humped solitary wave that asymptotes to the
Townes soliton [2] as the continuum limit is approached. Its stationary profile should
satisfy

�vn = ε�2vn + v3
n . (3.6)

In view of the scaling property of the equation (under �̃ = �/ε and the ũn =
un/
√
ε), ε (or �) can be scaled out, and we will consider the relevant problem of

Eq. (3.6) monoparametrically.
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In fact, we can consider this monoparametric problem at any dimension, if �2

represents the corresponding d-dimensional discrete Laplacian (whereby site n has
2d neighbors). To obtain a semi-analytical understanding of the properties of the
relevant ground state, we will analyze the problem of Eq. (2.65) starting with a vari-
ational approximation, which can be carried out at any dimension d . This approach
for the single-pulse solutions of interest can be obtained using

vn = Ae−a|n|l1 . (3.7)

Then the Lagrangian from which Eq. (3.6) can be derived, namely

Leff =
∑

n

⎛

⎝
∑

j

2εun+e j un − (�+ 2dε)u2
n +

1

2
u4

n

⎞

⎠ , (3.8)

(where e j is the unit vector along the j th direction) can be explicitly evaluated as

Leff = 2dεP secha − (�+ 2dε)P + P2

2d+1

coshd(2a) sinhd(a)

cosh3d (a)
, (3.9)

where the power P =∑n u2
n can be evaluated as

P = A2 cothd (a). (3.10)

From Eq. (3.9) and the extremization conditions of this effective Lagrangian:

�Leff

�P
= �Leff

�a
= 0, (3.11)

one can obtain the P = P(�) (in any dimension, and for different values of ε).
One can compare the results of Eq. (3.11) with direct numerical computations

identifying the ground state solutions of the DNLS equation (again, in any dimen-
sion). As relevant examples, we present in Fig. 3.1 the cases of d = 2 that we
focus on in this chapter, but also for comparison those of d = 1, 3. The power of
the solutions is given as a function of � (for ε = 1) in Fig. 3.1. One of the key
observations of the figure is the difference in the stationary state properties between
the case of d = 1 (so-called subcritical case) and the cases of d = 2 (critical)
and d = 3 (supercritical). In fact, as was originally demonstrated in the work of
[11], through scaling arguments, and was later proved more rigorously in [12] (see
also the recent discussion of [13]), for dimensions larger than the critical dimension
(which is given by dσ = 2 for nonlinearities |u|2σu), there is a power threshold
for the excitation of localized solitary waves. That is, contrary to what is the case
for one dimension such excitations where there is such a solution for any value of
the power, for higher dimensional problems, such a solution exists only for powers
P ≥ Pcr , where Pcr denotes the relevant threshold.
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Fig. 3.1 The plot shows the
one-, two-, and
three-dimensional results for
the power P of the stationary
solutions for different � in
Eq. (3.6). The solid lines
denote the full numerical
results, while the dashed ones
the results of the variational
approximation described in
the text
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Another important comment to make here concerns the accuracy of the varia-
tional approximation in characterizing the stationary solutions. We can see that in
the one- and two-dimensional settings, the VA is fairly accurate in capturing the
trends of the full numerical solution, however, in the three-dimensional context it
clearly misses in its quantitative description (although it does share some qualita-
tive trends with the actual solution). As an example, we note that in that case, the
minimum power occurs for � ≈ 1 in the numerical results, while it happens for
� ≈ 0.5234 in the variational approximation.

The existence of the power thresholds discussed above also bears important infor-
mation for the stability of the localized solutions of the discrete model. In particular,
as discussed in the previous chapter and as stems from the original work of [6–8]
and later from the work of [9, 10], the change of monotonicity of the P = P(�)
curve has an important consequence in the stability of the structure, in particular,
the single-humped solution is stable when d P/d� > 0, while it is unstable due to a
real eigenvalue pair when d P/d� < 0. Hence, as the continuum limit is approached
through decreasing � (or equivalently through increasing ε), the originally stable
discrete single-humped soliton has to become unstable, and this happens precisely
at the point where d P/d� = 0. This instability was observed in [14] and the rele-
vant criterion was originally proposed in the work of Vakhitov and Kolokolov and
therefore is often referred to as the VK criterion [12].

In Fig. 3.2, we show two examples of the relevant solution, as obtained numeri-
cally, one deeply in the discrete regime for � = 1.5 (linearly stable) and one very
close to the continuum regime for � = 0.05 (linearly unstable, since � < ε = 1).
The figure also shows the corresponding spectral planes (λr , λi ) of the relevant
linearization eigenvalues λ = λr + iλi , verifying the stability of the former and
instability of the latter (due to a real eigenvalue pair). Note how the latter solution
appears to approach its radially symmetric continuum limit (the Townes soliton of
[2]). It should also be pointed out in that regard that as � → 0 (see also the rele-
vant trend in Fig. 3.1), the squared l2 norm of the solution can be seen to approach
P ≈ 11.7 which is the well-known critical mass of the Townes solution [13].
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Fig. 3.2 The top left panel shows a contour plot of the fundamental solution of the two-dimensional
DNLS for � = 1.5, while the top right shows the same solution for � = 0.05 (when it approaches
its continuum profile). The former solution is stable as is shown in the bottom left panel illustrating
the spectral plane (λr , λi ) of its linearization eigenvalues λ = λr + iλi , while the latter solution is
unstable (having � < 1), as is shown in the bottom right panel

In closing, it would be interesting to highlight one important open problem aris-
ing in the computations of this fundamental solution for d = 2 and 3. In particular,
our numerical results indicate that for such solutions, the instability due to the sign
change of d P/d� occurs precisely at � = 1 (or, when ε is present in the equation,
when � = ε). Hence, a relevant mathematical question arises as to whether indeed
for dimensions d ≥ 2, one can more precisely quantify the location of the instability
and whether in particular it indeed occurs for � = ε more generally or not. This is
a conjecture that it would be worthwhile to settle.

One direction toward proving this conjecture is to try to derive properties based
on Eq. (3.6), connecting the power of the solution P , the frequency �, and the
coupling strength ε. Such a property can be obtained, e.g., by multiplying (3.6) by
un and summing over n, resulting in the identity

(2dε + �)P = 2εL + N, (3.12)

where L = ∑n

∑
j un+e j un and N = ∑n u4

n . Similarly, multiplying Eq. (3.6) by
�un/�� and summing over n, along with using Eq. (3.12), one can also derive the
identity

P = 1

2

d N

d�
. (3.13)
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Unfortunately, in addition to Eqs. (3.12) and (3.13), one needs one more equation
to eliminate both N and L and derive the dependence of P on ε and � that would
permit an explicit calculation of the relevant critical point d P/d� = 0.

3.3 Multipulses and Discrete Vortices

We now try to address the existence of more complex multisite structures, starting
from the AC limit of ε = 0 in Eq. (3.6). Note that similarly to our one-dimensional
exposition of the previous chapter, for notational simplicity, we set � = 1 in what
follows. Our discussion will closely follow [14].

3.3.1 Formulation of the Bifurcation Problem Near ε = 0

The relevant stationary equation of interest then reads

(
1− |vn,m |2

)
φn,m = ε

(
vn+1,m + vn−1,m + vn,m+1 + vn,m−1

)
. (3.14)

In the ε = 0, similarly to the one-dimensional case, the solutions of this equation
can be fully characterized

v(0)
n,m =

{
eiθn,m , (n,m) ∈ S,

0, (n,m) ∈ Z
2\S, (3.15)

where S is a finite set of nodes on the lattice and θn,m are parameters for these excited
sites. Since θ0 is arbitrary, we can set θn0,m0 = 0 for a particular node (n0,m0) ∈ S.
Using this convention, we can define two special types of localized modes, called
discrete solitons and vortices.

The localized solution of the difference equations (3.14) with ε > 0 is called a
discrete soliton when it has all real-valued amplitudes vn,m , ∀(n,m) ∈ S and at the
limit (3.15), θn,m = {0, π} for (n,m) ∈ S. On the other hand, if S is a simple closed
discrete contour on the plane and the localized solution has complex valued vn,m

that satisfies the limit (3.15) with θn,m ∈ [0, 2π], (n,m) ∈ S, then we call such a
solution a discrete vortex.

Discrete vortices can be partitioned into symmetric and asymmetric ones as fol-
lows. If S is a simple closed discrete contour on the plane, such that each node
(n,m) ∈ S has exactly two adjacent nodes in vertical or horizontal directions along
S. Let �θ j be the phase difference between two successive nodes in the contour S,
defined according to the enumeration j = 1, 2, . . . , dim(S), such that |�θ j | ≤ π . If
the phase differences �θ j are constant along S, the discrete vortex is called symmet-
ric. Otherwise, it is called asymmetric. The total number of 2π phase shifts across
the closed contour S is called the vortex charge. More specifically, we consider
discrete contours
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SM = {(1, 1), (2, 1), . . . , (M + 1, 1), (M + 1, 2), . . . , (M + 1,M + 1),

(M,M + 1), . . . , (1,M + 1), (1,M), . . . , (1, 2)} , (3.16)

containing 4M sites. Given the above definition, the contour SM for a fixed M could
support symmetric and asymmetric vortices with some charge L. Arguably, the
simplest vortex is the symmetric charge-one vortex cell (M = L = 1: θ1,1 = 0,
θ2,1 = π/2, θ2,2 = π , θ1,2 = 3π/2) [16, 29]. Although the main formalism below
is developed for any M ≥ 1, we obtain a complete set of results on persistence
and stability of discrete vortices only in the cases M = 1, 2, 3, which are of most
physical interest.

It then follows directly from the general method [17] that the discrete solitons
of the two-dimensional NLS lattice (3.14) can be continued for 0 < ε < ε0 for
some ε0 > 0. It is more complicated to find a configuration of θn,m for (n,m) ∈ S
that allows us to continue the discrete vortices for ε > 0. The continuation of the
discrete solitons and vortices is based on the Implicit Function Theorem and the
Lyapunov–Schmidt Reduction Theorem [18, 19].

We denote by O(0) a small neighborhood of ε = 0, such that O(0) = (−ε0, ε0)
for some ε0 > 0. Let N = dim(S) and T be the torus on [0, 2π]N , such that θn,m

for (n,m) ∈ S form a vector θ ∈ T . Let � = L2(Z2,C) be the Hilbert space
of square-summable complex-valued sequences {φn,m}(n,m)∈Z2 , equipped with the
standard inner product and l2 norm.

It can then be proved that there exists a unique (discrete soliton) solution of the
difference equations (3.14) in the domain ε ∈ O(0) with a real profile satisfying
limε→0 vn,m = v(0)

n,m , and v(0)
n,m is given by (3.15) with θn,m = {0, π}, (n,m) ∈ S. The

solution is analytic in ε in this neighborhood. This can be proved by considering
the equations for the stationary solution of Eq. (3.14) as the zeros of a vector valued
function fn,m . Then this mapping has a bounded and continuous Fréchet derivative

Ln,m =
(
1− 3v2

n,m

)− ε (s+1,0 + s−1,0 + s0,+1 + s0,−1
)
, (3.17)

where sn′,m′ is the shift operator, such that sn′,m′un,m = un+n′,m+m′ . The kernel of
Ln,m is empty for ε = 0. Therefore, for ε = 0, L(0)

n,m has a bounded inverse, which
implies by the implicit function theorem (see Appendix 1 in [19] and Chap. 2.2 in
[18]) that there is a continuous (in fact, analytic) in ε solution vn,m(ε) in our case.

Now for a general profile v(0)
n,m at the AC limit, the continuation of such a solution

for ε ∈ O(0) requires that some conditions, constituting a vector valued function
which we will denote by g(θ, ε), be satisfied. Moreover, the function g(θ, ε) is ana-
lytic in ε ∈ O(0) and g(θ, 0) = 0 for any θ . This can be shown for a general solution
vn,m , by considering the vector equations (3.14) and their complex conjugate (de-
note the vector valued function by f(v, v̄, ε)). Then, taking the Fréchet derivative of
f(v, v̄, ε) with respect to v and v̄, we compute the linearization operator H for the
difference Eq. (3.14):



62 3 The Two-Dimensional Case

Hn,m =
(

1− 2|vn,m |2 −v2
n,m

−v̄2
n,m 1− 2|vn,m|2

)

−ε (s+1,0 + s−1,0 + s0,+1 + s0,−1
) ( 1 0

0 1

)
. (3.18)

Let H(0) = H(φ(0), 0). Note that dim ker(H(0)) = N . Moreover, eigenvectors of
ker(H(0)) re-normalize the parameters θn,m for (n,m) ∈ S in the limiting solution
(3.15). By the Lyapunov Reduction Theorem [19, Chap. 7.1], there exists a decom-
position � = ker(H(0))⊕ ω, such that g(θ, ε) is defined in terms of the projections
to ker(H(0)). Let {en,m}(n,m)∈S be a set of N linearly independent eigenvectors in the
kernel of H(0). It follows from the representation,

H(0)
n,m = −

(
1 e2iθn,m

e−2iθn,m 1

)
, (n,m) ∈ S (3.19)

that each eigenvector en,m in the set {en,m}(n,m)∈S has the only non-zero element
(eiθn,m ,−e−iθn,m )T at the (n,m)th position of (u,w) ∈ � × �. By projections of
the nonlinear equations to ker(H(0)), we derive an implicit representation for the
functions g(θ, ε):

(n,m) ∈ S : 2ign,m(θ, ε) = (1− |vn,m|2)
(
e−iθn,mvn,m − eiθn,m v̄n,m

)

− εe−iθn,m
(
vn+1,m + vn−1,m + vn,m+1 + vn,m−1

)

+ εeiθn,m
(
v̄n+1,m + v̄n−1,m + v̄n,m+1 + v̄n,m−1

)
, (3.20)

where the factor (2i ) is introduced for convenience. By setting vn,m = eiθn,mφn,m

for (n,m) ∈ S and renaming φn,m → vn,m we end up obtaining the solvability
conditions

(n,m) ∈ S : − 2ign,m(θ , ε) = εe−iθn,m
(
vn+1,m + vn−1,m + vn,m+1 + vn,m−1

)

− εeiθn,m
(
v̄n+1,m + v̄n−1,m + v̄n,m+1 + v̄n,m−1

)
. (3.21)

Note that these are the same conditions to leading order to the solvability con-
ditions directly inferred by Eq. (3.14), by multiplying the equation by v̄n,m and
subtracting the complex conjugate, namely

(n,m) ∈ S : − 2ign,m(θ, ε) = εv̄n,m
(
vn+1,m + vn−1,m + vn,m+1 + vn,m−1

)

− εvn,m
(
v̄n+1,m + v̄n−1,m + v̄n,m+1 + v̄n,m−1

)
. (3.22)

Note, also, that given the analyticity of these solvability conditions, they can be
Taylor expanded in ε, and so can the solution vn,m . Furthermore, in this reformulation
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of the problem for the angles θm,n (as a function of ε), the gauge or U(1) invariance
of the original problem can be translated into a shift of the angle θn,m → θn,m + θ0,
which yields a one parameter family of roots of g(θ, ε). This implies that the Ja-
cobian matrix (M1) jk = �g(1)

j /�θk of the first-order expansion g(1) will have a
non-empty kernel with an eigenvector p0 = (1, 1, . . . , 1) due to the gauge transfor-
mation. However, if we let X0 be the constrained subspace of C

N :

X0 = {u ∈ C
N : (p0,u) = 0}. (3.23)

and the matrix M1 is non-singular in the subspace X0, then there exists a unique
(modulo the shift) analytic continuation of the root of the bifurcation equations
for ε ∈ O(0) by the Implicit Function Theorem, applied to the nonlinear equation
g(θ, ε) = 0 [19, Appendix 1].

An important generalization of the above continuation is the following (regarding
conditions under which a solution family cannot be continued for ε ∈ O(0): let θ∗
be a (1 + d)-parameter solution of g(1)(θ ) = 0 and M1 have a zero eigenvalue of
multiplicity (1+d), where 1 ≤ d ≤ N −1. Let g(2)(θ∗) = · · · = g(K−1)(θ∗) = 0 but
g(K )(θ∗) 
= 0. The limiting solution (3.15) can be continued in the domain ε ∈ O(0)
only if g(K )(θ∗) is orthogonal to ker(M1). If g(K )(θ∗) /∈ Xd , where

Xd = {u ∈ X0 : (pl,u) = 0, l = 1, . . . , d}, (3.24)

then the solution can not be continued in ε ∈ O(0), according to Chap. 1.3 of [19].

3.3.2 Persistence of Discrete Solutions

We now consider discrete soliton and vortex solutions over the contours SM and
order the angles of which the contour consists as θ1, θ2, . . . , θN . Given the nature of
the considered (closed, square) contours, periodic boundary conditions are applied
(θ0 = θN , θ1 = θN+1). As per the definition above, a discrete vortex has the charge L
if the phase difference �θ j between two successive nodes changes by 2πL along the
discrete contour SM , where �θ j is defined within the fundamental branch |�θ j | ≤ π .
By gauge transformation, we can always set θ1 = 0 for convenience. We will also
choose θ2 = θ with 0 ≤ θ ≤ π for convenience, which corresponds to discrete
vortices with L ≥ 0 (the existence and stability of their negative charge counterparts
is the same).

To identify the leading order persistence conditions, we substitute the limiting
AC solution v(0)

n,m solution in the bifurcation equations to obtain g(1) in the form

g(1)
j (θ ) = sin

(
θ j − θ j+1

)+ sin
(
θ j − θ j−1

)
, 1 ≤ j ≤ N. (3.25)

The bifurcation equations g(1)(θ) = 0 are rewritten as a system of N nonlinear
equations for N parameters θ1,θ2,. . . ,θN as follows:
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sin(θ2 − θ1) = sin(θ3 − θ2) = · · · = sin(θN − θN−1) = sin(θ1 − θN ). (3.26)

These types of conditions also arose in the work of [20, 21]. We now attempt to
classify all solutions of the bifurcation equations.

If we let a j = cos(θ j+1 − θ j ) for 1 ≤ j ≤ N , such that θ1 = 0, θ2 = θ , and
θN+1 = 2πL, where N = 4M , 0 ≤ θ ≤ π and L is the vortex charge. All solutions
of the bifurcation equations (3.26) reduce to the following four families:

(i) discrete solitons with θ = {0, π} and

θ j = {0, π}, 3 ≤ j ≤ N, (3.27)

such that the set {a j}Nj=1 includes l coefficients a j = 1 and N − l coefficients
a j = −1, where 0 ≤ l ≤ N .

(ii) symmetric vortices of charge L with θ = πL/2M , where 1 ≤ L ≤ 2M − 1,
and

θ j = πL( j − 1)

2M
, 3 ≤ j ≤ N, (3.28)

such that all N coefficients are the same: a j = a = cos (πL/2M).
(iii) one-parameter families of asymmetric vortices of charge L = M with 0 <

θ < π and

θ j+1 − θ j =
{

θ

π − θ
}

mod(2π), 2 ≤ j ≤ N, (3.29)

such that the set {a j}Nj=1 includes 2M coefficients a j = cos θ and 2M coefficients
a j = − cos θ .

(iv) zero-parameter asymmetric vortices of charge L 
= M and

θ = θ∗ = π

2

(
n + 2L − 4M

n − 2M

)
, 1 ≤ n ≤ N − 1, n 
= 2M, (3.30)

such that the set {a j}Nj=1 includes n coefficients a j = cos θ∗ and N − n coefficients
a j = − cos θ∗ and the family (iv) does not reduce to any of the families (i)–(iii).

This can be seen because essentially there are only two roots of the sine func-
tion that permit simultaneously satisfying the bifurcation equations. These are the
choices of Eq. (3.29), leading, respectively, to either a j = cos(θ ) or to a j =
− cos(θ ). If we generically assume that there are totally n choices of the former
type and N − n ones of the latter type within the contour, then

θN+1 = nθ + (N − n)(π − θ ) = (2n − N)θ + (N − n)π = 2πL,
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where L is the integer charge of the discrete vortex. There are only two solutions of
the above equation. When θ is arbitrary parameter, we have n = N/2 = 2M and
L = M , which gives the one-parameter family (iii). When θ = θ∗ is fixed, we have

θ∗ = π

2

(
n + 2L − 4M

n − 2M

)
.

When n = N − 2L, we have the family (i) with N − 2L phases θ j = 0 and 2L
phases θ j = π . Since the charge is not assigned to discrete solitons, the parameter
L could be half-integer: L = (N − l)/2, where 0 ≤ l ≤ N . When n = 4M , we have
the family (ii) for any 1 ≤ L ≤ 2M−1. Other choices of n, which are irreducible to
the families (i)–(iii), produce the family (iv). Furthermore, it is worthwhile to note
that there are special cases where family (iii) reduces to families (ii) and (i); these
will be dubbed supersymmetric cases. In particular, when θ = 0 and π , the family
(iii) reduces to the family (i) with l = 2M . When θ = π/2, the family (iii) reduces
to the family (ii) with L = M . We shall call the corresponding solutions of family
(i) the supersymmetric soliton and of family (ii) the supersymmetric vortex.

One can make a simple combinatorial enumeration of the solutions of families
(i)–(iii). In the case of (i), there are N1 = 2N−1, since aside from the first site, all
others can be either 0 or π . There are also N2 = 2M − 1 solutions of family (ii),
and N3 solutions of family (iii), where

N3 = 2N−1 −
2M−1∑

k=0

N!

k!(N − k)!
. (3.31)

As special case examples that will be of relevance to our discussion below, we
mention the contours with M = 1 (four sites) and M = 2 (eight sites). In the first
case, there are eight solutions of type (i), one of type (ii), three solutions of type (iii),
and no solutions of the family (iv). The three one-parameter asymmetric solutions
are

(a) θ1 = 0, θ2 = θ, θ3 = π, θ4 = π + θ, (3.32)

(b) θ1 = 0, θ2 = θ, θ3 = 2θ, θ4 = π + θ, (3.33)

(c) θ1 = 0, θ2 = θ, θ3 = π, θ4 = 2π − θ. (3.34)

Similarly in the case with M = 2, there are 128 solutions of family (i), 3 solutions
of family (ii), 35 solutions of family (iii), and 14 of family (iv). The three symmetric
vortices have charge L = 1 (θ = π/4), L = 2 (θ = π/2), and L = 3 (θ = 3π/4).
The one-parameter asymmetric vortices include 35 combinations of 4 upper choices
and 4 lower choices in (3.29). Finally, the zero parameter asymmetric vortices in-
clude seven combinations of vortices with L = 1 for seven phase differences π/6
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and one phase difference 5π/6 and seven combinations of vortices with L = 3 for
one phase difference π/6 and seven phase differences 5π/6.

3.3.2.1 First-Order Reductions

The Jacobian M1 of the first-order bifurcation equations g(1)(θ) can be obtained
from Eq. (3.25) as

(M1)i, j =

⎧
⎪⎨

⎪⎩

cos(θ j+1 − θ j )+ cos(θ j−1 − θ j ), i = j,

− cos(θ j − θi ), i = j ± 1,

0, |i − j | ≥ 2,

(3.35)

subject to the periodic boundary conditions. It is interesting that this is the same
type of structure as we encountered in the one-dimensional configurations of the
previous chapter, and it is the one also encountered in the perturbation theory of
continuous multipulse solitons in coupled NLS equations [20].

If we let n0, z0, and p0 be the numbers of negative, zero, and positive terms of
a j = cos(θ j+1 − θ j ), 1 ≤ j ≤ N (therefore n0 + z0 + p0 = N), it is important
based on this information to infer how many eigenvalues of M1 are negative, zero,
or positive. Assuming z0 = 0 (note that this is not true in supersymmetric cases), it
turns out (see the appendix of [20] for a relevant proof by induction arguments) that
the eigenvalues are intimately connected with the quantity

A1 =
N∑

i=1

∏

j 
=i

a j =
(

N∏

i=1

ai

) (
N∑

i=1

1

ai

)
. (3.36)

In particular, as expected there exists a zero eigenvalue in M1 due to the gauge
invariance. Therefore, denoting the characteristic polynomial of M1 as D(λ), it is
clear that D(0) = 0. It is then important to evaluate D′(0) = −λ1λ2 . . . λN−1. A
key result in that regard is that for this matrix D′(0) = −N A1; therefore, an im-
mediate consequence is that if A1 
= 0, then the multiplicity of the zero eigenvalue
is z(M1) = 1. If A1 = 0, then z(M1) ≥ 2. Note also that from the above results
(comparing D′(0)) (−1)n(M1) = sign(A1), where n(M1) denotes the number of
negative eigenvalues of the matrix; this implies that n(M1) is even if A1 > 0 and
is odd if A1 < 0. Finally, if p(M1) will be used to denote the number of positive
eigenvalues, then as indicated in [20], there are two possible scenario (if A1 
= 0)
for the related eigenvalues: either n(M1) = n0 − 1, p(M1) = p0 or n(M1) = n0,
p(M1) = p0 − 1.

In some important special cases (for what follows), the eigenvalues of the
matrix can be computed analytically. More specifically,if all coefficients a j =
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cos(θ j+1 − θ j ), 1 ≤ j ≤ N are equal a j = a, then, the eigenvalues of the matrix
can be computed as

λn = 4a sin2 πn

N
, 1 ≤ n ≤ N. (3.37)

This is straightforward to see since the eigenfunction equation becomes

a
(
2x j − x j+1 − x j−1

) = λx j , x0 = xN , x1 = xN+1, (3.38)

which is solvable by the using the discrete Fourier modes x j = exp (i (2π jn/N))
for 1 ≤ j, n ≤ N , yielding the above eigenvalue expression.

On the other hand, if the elements of the matrix alternate in sign a j = (−1) ja,
1 ≤ j ≤ 4M , then the eigenvalue problem can be written as a system of two coupled
linear difference equations of the form

a
(
y j − y j−1

) = λx j , a
(
x j − x j+1

) = λy j , 1 ≤ j ≤ 2M, (3.39)

subject to the periodic boundary conditions: x1 = x2M+1 and y0 = y2M . Once again,
the discrete Fourier transform can be used according to x j = x0 exp (i (2π jn/2M))
and y j = y0 exp (i (2π jn/2M)) for 1 ≤ j, n ≤ 2M and this yields the eigenvalues

λn = −λn+2M = 2a sin
πn

2M
, 1 ≤ n ≤ 2M, (3.40)

such that n(M1) = 2M − 1, z(M1) = 2, and p(M1) = 2M − 1. These numbers do
not change if the set {a j}Nj=1 is obtained from the sign-alternating set {(−1) ja}Nj=1
by permutations (see [14] for a proof of the last statement).

The above results indicate that discrete solitons can be typically continued
uniquely for finite ε, since z(M1) = 1. This is with the notable exception of super-
symmetric solitons where the number of positive and negative a j ’s is equal. On the
other hand, for family (ii), all coefficients a j are the same: a j = a = cos (πL/2M),
1 ≤ j ≤ N . The above calculation for equal a j ’s yields the presence of a zero
eigenvalue λN ; the remaining (N − 1) eigenvalues are all positive for a > 0 (when
1 ≤ L ≤ M − 1), negative for a < 0 (when M + 1 ≤ L ≤ 2M − 1), and zero
for a = 0 (in the supersymmetric case of L = M). Therefore, states other than the
supersymmetric ones are also guaranteed to have a unique continuation also in the
case of discrete symmetric vortices. The first-order reductions are less informative
in the case of asymmetric discrete vortices of family (iii), whereby there are 2M
coefficients a j = cos θ and 2M coefficients a j = − cos θ , which are non-zero for
θ 
= π/2. The count of eigenvalues of the matrix M1 yields n(M1) = 2M − 1,
z(M1) = 2, and p(M1) = 2M − 1. Therefore in this case, the higher multiplicity
of the zero eigenvalue (related, at heart, with the additional freedom in the selection
of the angular parameter θ ) leads to an inconclusive result for such solutions. Lastly,
for family (iv), the fact that A1 
= 0, again preserves the zero eigenvalue multiplicity
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as z(M1) = 1, permitting a unique continuation of such zero parameter asymmetric
vortices.

3.3.2.2 Second-Order Reductions

To determine the fate of supersymmetric solitons and vortices, as well as that of
mono-parametric, asymmetric vortices, we now expand the bifurcation function
g(θ, ε) to second order. Starting with the first-order correction in the solution, we
have

(
1− 2|v(0)

n,m|2
)
v(1)

n,m − v(0)2
n,m v̄

(1)
n,m = v(0)

n+1,m + v(0)
n−1,m + v(0)

n,m+1 + v(0)
n,m−1. (3.41)

To solve this more complicated equation, we will distinguish the cases of the
different contours; we will consider, in particular, the contours with M = 1, M = 2,
and M ≥ 3.

In the case of M = 1, the inhomogeneous equation (3.41) has a solution of the
form

v(1)
n,m = −

1

2

[
cos
(
θ j−1 − θ j

)+ cos
(
θ j+1 − θ j

)]
eiθ j , (3.42)

for sites in the contour SM , while for their non-contour neighbors,

v(1)
n,m = eiθ j (3.43)

and every other site vanishes at this order. Substituting this first order correction
within the bifurcation equations to deduce g(2)(θ ), we find the form

g(2)
j (θ) = 1

2
sin
(
θ j+1 − θ j

) [
cos(θ j − θ j+1)+ cos

(
θ j+2 − θ j+1

)]
(3.44)

+ 1

2
sin
(
θ j−1 − θ j

) [
cos
(
θ j − θ j−1

)+ cos(θ j−2 − θ j−1)
]
, 1 ≤ j ≤ N.

One can then straightforwardly compute the vector g(2)(θ) for the asymmetric
solutions (3.32), (3.33), and (3.34):

(a) g2 =

⎛

⎜⎜⎝

0
0
0
0

⎞

⎟⎟⎠ , (b) g2 =

⎛

⎜⎜⎝

2
0
−2
0

⎞

⎟⎟⎠ sin θ cos θ, (c) g2 =

⎛

⎜⎜⎝

0
−2
0
2

⎞

⎟⎟⎠ sin θ cos θ.

The key observation, however, concerns the kernel of M1, which as illus-
trated above has a second element (in addition to the gauge invariance eigenvector
(1, 1, 1, 1)T ). This element is evaluated as
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(a) p1 =

⎛

⎜⎜⎝

0
1
0
1

⎞

⎟⎟⎠ , (b) p1 =

⎛

⎜⎜⎝

0
1
2
1

⎞

⎟⎟⎠ , (c) p1 =

⎛

⎜⎜⎝

0
1
0
−1

⎞

⎟⎟⎠ .

The Fredholm alternative (p1, g2) = 0 is satisfied for the solution (a) but fails for
the solutions (b) and (c), unless θ = {0, π/2, π}. Therefore, the important conclu-
sion from this exercise is that solutions (b) and (c) cannot be continued for ε 
= 0.

In the case of M = 2, the correction is the same as in the previous case, as given
by Eqs. (3.42) and (3.43), except for the central node (2, 2), where contributions
from its four neighboring sites yield

v
(1)
2,2 = eiθ2 + eiθ4 + eiθ6 + eiθ8 . (3.45)

This, in turn, modifies the entries of the bifurcation function according to

g(2)
j (θ)→ g(2)

j (θ)+sin(θ j−θ j−2)+sin(θ j−θ j+2)+sin(θ j−θ j+4), j = 2, 4, 6, 8.
(3.46)

In that case, there are 35 one-parameter asymmetric vortex solitons, each of
which has a corresponding second eigenvector p1 in the kernel of M1. For all but
one of these solutions (assuming that θ 
= {0, π/2, π}), the condition for continua-
tion of the solution, namely (p1, g2) = 0 fails, hence the solutions cannot exist. The
only solution that can be continued in this case is the one with alternating signs of
a j = cos(θ j+1 − θ j ).

Finally, in the case of M ≥ 3, the first-order corrections to the solution still obey
(3.42) and (3.43), except for the four corner nodes (2, 2),(M, 2),(M,M), and (2,M)
each of which have two neighbors which lead to

v(1)
n,m = eiθ j−1 + eiθ j+1, j = 1,M + 1, 2M + 1, 3M + 1. (3.47)

The correction term g(2)(θ ) is given by (3.45), except for the adjacent entries to
the four corner nodes on the contour SM : (1, 1), (1,M + 1), (M + 1,M + 1), and
(M + 1, 1), which are modified by

g(2)
j (θ)→ g(2)

j (θ)+ sin(θ j − θ j−2), j = 2,M + 2, 2M + 2, 3M + 2,

g(2)
j (θ)→ g(2)

j (θ)+ sin(θ j − θ j+2), j = M, 2M, 3M, 4M. (3.48)

For any M ≥ 3, there is a solution of family (iii), where g2 = 0, which is
characterized by the alternating signs of coefficients a j = cos(θ j+1 − θ j ) for 1 ≤
j ≤ N . In the case M = 3, all other solutions of family (iii) have (p1, g2) 
= 0 and
hence terminate at the second-order reductions.
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Generalizing the results of this section, we have that all asymmetric vortices of
family (iii), except for the sign-alternating set a j = cos(θ j+1− θ j) = (−1) j+1 cos θ ,
1 ≤ j ≤ N , cannot be continued to ε 
= 0 for M = 1, 2, 3. The only solution of this
type which can be continued has the explicit form

θ4 j−3 = 2π( j−1), θ4 j−2 = θ4 j−3+θ, θ4 j−1 = θ4 j−3+π, θ4 j = θ4 j−3+π+θ,
(3.49)

where 1 ≤ j ≤ M and 0 ≤ θ ≤ π . This solution includes two particular cases of
supersymmetric solitons of family (i) for θ = 0 and π and supersymmetric vortices
of family (ii) for θ = π/2. Continuation of the solution (3.49) must be considered
beyond the second-order reductions.

In the case of supersymmetric solitons, and considering the matrix M1+εM2, it
can be found that the second zero eigenvalue of M1 bifurcates off zero. As a result,
the supersymmetric solutions of family (i) can be uniquely continued to discrete
solitons.

On the other hand, we need to consider the Jacobian matrix M2 and its eigen-
values for discrete supersymmetric vortices of different charges (we consider the
cases M = 1, M = 2, and M ≥ 3). In the case of M = 1, the elements of M2 are
given by

(M2)i, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

+1, i = j,

−1

2
, i = j ± 2,

0, |i − j | 
= 0, 2

(3.50)

or explicitly

M2 =

⎛

⎜⎜⎜⎜⎝

1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1

⎞

⎟⎟⎟⎟⎠
. (3.51)

The matrix M2 has four eigenvalues: λ1 = λ2 = 2 and λ3 = λ4 = 0. The two
eigenvectors for the zero eigenvalue are p3 = (1, 0, 1, 0)T and p4 = (0, 1, 0, 1)T .
The eigenvector p4 corresponds to the derivative of the asymmetric vortex (3.32)
with respect to parameter θ , while the eigenvector p0 = p3 + p4 corresponds to the
shift due to gauge invariance.
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In the case of M = 2, the second-order Jacobian matrix is given by the form

M̃2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1

2
0 0 0 −1

2
0

0 0 0
1

2
0 −1 0

1

2
−1

2
0 1 0 −1

2
0 0 0

0
1

2
0 0 0

1

2
0 −1

0 0 −1

2
0 1 0 −1

2
0

0 −1 0
1

2
0 0 0

1

2
−1

2
0 0 0 −1

2
0 1 0

0
1

2
0 −1 0

1

2
0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.52)

The corresponding eigenvalue problem can be decoupled into two linear differ-
ence equations with constant coefficients, as follows:

2x j − x j+1 − x j−1 = 2λx j , j = 1, 2, 3, 4

−2y j+2 + y j+1 + y j−1 = 2λy j , j = 1, 2, 3, 4,

subject to the periodic boundary conditions for x j and y j ; this can again be solved
by discrete Fourier transform, yielding the eigenvalues λ1 = 1, λ2 = 2, λ3 = 1, and
λ4 = 0; λ5 = 1, λ6 = −2, λ7 = 1, and λ8 = 0 (the first four are obtained from the
first problem, while the latter four from the second problem). In this case also, there
are two eigenvectors with zero eigenvalue, namely p4 = (1, 0, 1, 0, 1, 0, 1, 0)T and
p8 = (0, 1, 0, 1, 0, 1, 0, 1)T , where the eigenvector p8 corresponds to the derivative
of the asymmetric vortex (3.49) with respect to parameter θ and the eigenvector
p0 = p4 + p8 corresponds to the shift due to gauge invariance.

Finally, in the case of M ≥ 3, the Jacobian matrix still resembles that of Eq.
(3.50), but now the additional entries stem from the four corner nodes of the con-
tours, namely (1, 1), (1,M + 1), (M + 1,M + 1), and (M + 1, 1). The second-order
Jacobian in this case reads

M̃2 =M2 + �M2, (3.53)

where �M2 is a rank-four non-positive matrix with the elements

(�M2)i, j =

⎧
⎪⎨

⎪⎩

−1, i = j = 2,M,M + 2, 2M, 2M + 2, 3M, 3M + 2, 4M,

+1, i = j − 2 = M, 2M, 3M, 4M,

+1, i = j + 2 = 2,M + 2, 2M + 2, 3M + 2

(3.54)
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and all other elements are zeros. The explicit form for the modified matrix M̃2 in
the case M = 3 is

M̃2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1

2
0 0 0 0 0 0 0 −1

2
0

0 0 0 −1

2
0 0 0 0 0 0 0

1

2
−1

2
0 0 0

1

2
0 0 0 0 0 0 0

0 −1

2
0 1 0 −1

2
0 0 0 0 0 0

0 0
1

2
0 0 0 −1

2
0 0 0 0 0

0 0 0 −1

2
0 0 0

1

2
0 0 0 0

0 0 0 0 −1

2
0 1 0 −1

2
0 0 0

0 0 0 0 0
1

2
0 0 0 −1

2
0 0

0 0 0 0 0 0 −1

2
0 0 0

1

2
0

0 0 0 0 0 0 0 −1

2
0 1 0 −1

2
−1

2
0 0 0 0 0 0 0

1

2
0 0 0

0
1

2
0 0 0 0 0 0 0 −1

2
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.55)

The computation of the eigenvalues of M̃2 again decouples into eigenvalue prob-
lems for two 6× 6 matrices and the resulting spectra can be computed as

λ1 = λ7 = −0.780776, λ2 = λ8 = −0.5, λ3 = λ9 = 0,

λ4 = λ10 = 0.5, λ5 = λ11 = 1.28078, λ6 = λ12 = 1.5.

Just as in the previous two cases, also in this case the matrix has exactly two zero
eigenvalues, one of which is related to the derivative of the asymmetric vortex and
one of which is related to the shift of the gauge invariance.

3.3.2.3 Higher Order Reductions

Since the family of solutions (3.49) survives up to second-order reductions, one
needs to consider higher order reductions in order to examine the potential per-
sistence or non-existence of such solutions. Intuitively speaking, the presence of
the arbitrary parameter θ in this family of asymmetric vortices appears not to be
supported by the symmetry of the corresponding discrete contour, or that of the
original dynamical equation. One therefore has to attempt to algorithmically expand



3.3 Multipulses and Discrete Vortices 73

the considerations of the above subsections to higher orders (as direct calculations
become extremely cumbersome), to address the issue. We do so as follows.

Let M be the index of the discrete contour SM and K be the truncation or-
der of the Lyapunov–Schmidt reduction. We construct a squared domain (n,m) ∈
D(M, K ) which includes N0 × N0 lattice nodes, where N0 = 2K + M + 1. Cor-
rections of the power series for a given configuration of θ in (3.49) solve the set of
inhomogeneous equations

H(0)

(
φ(k)

φ̄
(k)

)
=
(

f (k)

f̄ (k)

)
, 1 ≤ k ≤ K ,

where H(0) is given by (3.19) and f(k) represents the right-hand side terms, which
are defined recursively from the nonlinear Eq. (3.14). When φ(k) ∈ ω ⊂ �, we have
a unique solution of the inhomogeneous equations for any 1 ≤ k ≤ K :

φ(k)
n,m = −

1

2
f (k)
n,m, (n,m) ∈ SM , φ(k)

n,m = f (k)
n,m, (n,m) ∈ Z

2\SM ,

provided that

g(k)
n,m = −Im( f (k)

n,me−iθn,m ) = 0, (n,m) ∈ SM , 1 ≤ k ≤ K .

Now, if all g(k) = 0 for 1 ≤ k ≤ K − 1, but (p1, g(K )) 
= 0, where p1 is
the derivative vector of (3.49) with respect to parameter θ , then the family (3.49)
terminates at the K th order of the Lyapunov–Schmidt reduction.

Following this algorithm, one can find that for M = 1, when p1 = (0, 1, 0, 1)T ,
the vector g(k) is zero for k = 1, 2, 3, 4, 5 and non-zero for k = K = 6. Moreover,
(p1, g(6)) 
= 0 for any θ 
= {0, π/2, π}. Similarly, in the case M = 2, we have
also found that K = 6 and (p1, g(6)) 
= 0 for any θ 
= {0, π/2, π}. Therefore,
indeed, such solutions cannot be continued for the cases of M = 1 and 2. Finally,
for M = 3, one obtains similar conclusions through numerical computations; it
is therefore natural to conjecture that such a solution (asymmetric, one parameter
family) cannot be continued to finite ε, for any value of M .

Summarizing our conclusions for the persistence of the different classified fam-
ilies of discrete solitons and discrete symmetric and asymmetric vortices, we have
the following:

• discrete solitons of family (i) in (3.27)
• symmetric vortices of family (ii) in (3.28)
• asymmetric vortices of family (iii) in (3.29) cannot be continued to the domain
ε ∈ O(0) for M = 1, 2, 3.

• zero-parameter asymmetric vortices of family (iv) in (3.30)

It is now natural to turn to the examination of the stability of the relevant persist-
ing solutions.
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3.3.3 Stability of Discrete Solutions

To examine the spectral stability of discrete solitons and vortices, we use the lin-
earization

un,m(t) = ei(1−4ε)t
(
φn,m + an,meλt + b̄n,meλ̄t

)
, (n,m) ∈ Z

2, (3.56)

where λ ∈ C and (an,m, bn,m) ∈ C
2 are the eigenvalues and eigenfunctions, respec-

tively, satisfying

iλan,m =
(
1− 2|φn,m|2

)
an,m − φ2

n,mbn,m

−ε (an+1,m + an−1,m + an,m+1 + an,m−1
)
,

−iλbn,m = −φ̄2
n,man,m +

(
1− 2|φn,m|2

)
bn,m

−ε (bn+1,m + bn−1,m + bn,m+1 + bn,m−1
)
.

This stability problem can be rephrased as

iλψ = σHψ, (3.57)

whereψ = (an,m, bn,m)T (the T denotes transpose), H is defined by the linearization
operator (2.13), and σ consists of 2×2 blocks of Pauli matrices σ3 (σ3 is the diagonal
matrix with elements (1,−1) along the diagonal). In the eigenvalue problem of Eq.
(3.57), the presence of λwith non-zero real part illustrates the presence of instability.

The Taylor expansion of the matrix H will play a central role in our stability
considerations below and is as follows:

H = H(0) +
∞∑

k=1

εkH(k), (3.58)

where H(0) is defined in (3.19), while the first- and second-order corrections are
given by

H(1)
n,m = −2

⎛

⎝
φ̄(0)

n,mφ
(1)
n,m + φ(0)

n,m φ̄
(1)
n,m φ(0)

n,mφ
(1)
n,m

φ̄(0)
n,m φ̄

(1)
n,m φ̄(0)

n,mφ
(1)
n,m + φ(0)

n,m φ̄
(1)
n,m

⎞

⎠

− (s+1,0 + s−1,0 + s0,+1 + s0,−1
)
(

1 0

0 1

)

and

H(2)
n,m = −2

(
φ̄(0)

n,mφ
(2)
n,m + φ(0)

n,m φ̄
(2)
n,m φ(0)

n,mφ
(2)
n,m

φ̄(0)
n,m φ̄

(2)
n,m φ̄(0)

n,mφ
(2)
n,m + φ(0)

n,m φ̄
(2)
n,m

)
−
(

2|φ(1)
n,m |2 φ(1)2

n,m

φ̄(1)2
n,m 2|φ(1)

n,m |2

)
.
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It is important to consider again the starting point of ε = 0 and the eigenvalue
count at that AC limit. There, Hn,m ≡ H(0)

n,m has exactly N negative eigenvalues
γ = −2, N zero eigenvalues (these two sets will constitute the point spectrum of
the solution with N excited sites), as well as infinitely many positive eigenvalues
γ = 1 (these will become the continuous spectrum of the solution). In connection
to the full eigenvalue problem of the stability operator σH(0)

n,m , both the negative
and zero eigenvalues correspond to λ = 0, while the γ = 1 positive eigenvalues
correspond to λ = ±i . As before in the one-dimensional problem (cf. Eqs. (2.34)
and (2.35)), the latter part will develop a continuous spectral band λ = ±i [1 +
4ε(sin2(qn/2)+ sin2(qm/2))], extending in the interval±i [1, 1+ 8ε], which will be
bounded away from the origin and will not produce instabilities for small ε. On the
other hand, it is important to examine how the zero eigenvalues will move in the
presence of the coupling-induced perturbation.

Focusing now on the zero eigenvalues of the operator H in the eigenvalue prob-
lem Hϕ = γϕ, we can use the expansion

ϕ = ϕ(0) + εϕ(1) + ε2ϕ(2) + O
(
ε3
)
, γ = εγ1 + ε2γ2 + O(ε3), (3.59)

where ϕ(0) =∑N
j=1 c j e j and e j (θ ), j = 1, . . . , N are eigenvectors of the kernel of

H(0). These eigenvectors contain a single non-zero block i (eiθ j ,−e−iθ j )T at the j th
position, which corresponds to the node (n,m) on the contour SM and are orthogonal
according to

(ei (θ), e j (θ)) = 2δi, j , 1 ≤ i, j ≤ N. (3.60)

The corresponding generalized eigenvectors are ê j (θ ), j = 1, . . . , N , such that
each eigenvector ê j (θ ) contains the only non-zero block (eiθ j , e−iθ j )T at the j th
position. Direct computations show that

σH(0)ê j (θ ) = 2ie j (θ), 1 ≤ j ≤ N. (3.61)

Then, the first-order correction in the eigenvalue equation for the matrix H, ϕ(1),
satisfies the inhomogeneous equation

H(0)ϕ(1) +H(1)ϕ(0) = γ1ϕ
(0). (3.62)

Projection to the kernel of H(0) gives the eigenvalue problem for γ1:

1

2

N∑

i=1

(
e j ,H(1)ei

)
ci = γ1c j . (3.63)

If one represents the operator H as H = Hp + εHs , then H(1) = H(1)
p +Hs . On

the other hand, the bifurcation conditions to leading order can be represented as
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g(1)
j (θ) = 1

2

(
e j (θ ),Hsφ

(0)(θ )
)
.

A direct calculation then [14], of the left-hand side of Eq. (3.63) yields it to be
equal to cos(θ j−θ j+1)+cos(θ j−θ j−1), which is also equal to the Jacobian element
(M1)i j = �g(1)

i /�θ j . Hence for the N small eigenvalues of the eigenvalue problem
Hϕ = γϕ, we have

lim
ε→0

γ j

ε
= μ(1)

j , 1 ≤ j ≤ N, (3.64)

where μ(1)
j are the eigenvalues of (M1).

It is then relevant to connect the eigenvalues of the Jacobian M1 (and of the
matrix H) to those of the full stability problem σHψ = iλψ . The corresponding
statement will be of the form

lim
ε→0

λ2
j

ε
= 2μ(1)

j , 1 ≤ j ≤ N. (3.65)

This can be established by using the regular perturbation series

ψ = ψ (0) +√εψ (1) + εψ (2) + ε√εψ (3) + O(ε2), (3.66)

λ = √ελ1 + ελ2 + ε
√
ελ3 + O(ε2), (3.67)

where, due to the relations (3.60) and (3.61), we have

ψ (0) =
N∑

j=1

c j e j , ψ (1) = λ1

2

N∑

j=1

c j ê j , (3.68)

according to the kernel and generalized kernel of σH(0). The second-order correc-
tion term ψ (2) satisfies the inhomogeneous equation

H(0)ψ (2) +H(1)ψ (0) = iλ1σψ
(1) + iλ2σψ

(0). (3.69)

Projection to the kernel of H(0) gives the eigenvalue problem for λ1:

M1c = λ2
1

2
c, (3.70)

where c = (c1, c2, . . . , cN )T and the matrix M1 is the same as in the eigenvalue
problem (3.63). Relation (3.65) follows from (3.70).

Based on these results, we can quantify the number of eigenvalues of different
types in the first-order reductions for the different families of solutions (except for
the supersymmetric vortices that we will need to study at the second-order reduc-
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tions since M1 = 0. In particular, considering the quantity A1 defined in Eq. (3.36),
we have that for the family (i), it is A1 = (−1)N−l(2l − N), where l is the number
of +1’s in the configuration. In that case n(M1) = N − l − 1, z(M1) = 1 and
p(M1) = l for 0 ≤ l ≤ 2M − 1, while if 2M + 1 ≤ l ≤ 4M , there is one more
negative (N− l) and one less positive (l−1) eigenvalue. In the supersymmetric case
of l = 2M , n(M1) = 2M − 1, z(M1) = 2, and p(M1) = 2M − 1. This implies
that for the number of real eigenvalue pairs Nr , imaginary ones with negative Krein
signature N−i , and zero eigenvalues N0, in this case we have N−i = N − l − 1,
N0 = 1, and Nr = l for 0 ≤ l ≤ 2M − 1; N−i = N − l − 1, N0 = 2, and Nr = l − 1
for l = 2M; and N−i = N − l, N0 = 1, and Nr = l − 1 for 2M + 1 ≤ l ≤ N .

In the case of family (ii), the corresponding counts for M1 are n(M1) = 0,
z(M1) = 1, and p(M1) = N − 1 for 1 ≤ L ≤ M − 1 and n(M1) = N − 1,
z(M1) = 1, and p(M1) = 0 for M + 1 ≤ L ≤ 2M − 1, for discrete vortices
of charge L within the contour SM . This, in turn, implies that the full eigenvalue
problem will have N−i = 0, N0 = 1, and Nr = N − 1 for 1 ≤ L ≤ M − 1; N−i = 0,
N0 = N , and Nr = 0 for L = M; and N−i = N − 1, N0 = 1, and Nr = 0 for
M + 1 ≤ L ≤ 2M − 1.

Having eliminated the potential for the monoparametric asymmetric vortices of
family (iii), we lastly examine the zero parameter asymmetric vortices of family
(iv) in the realm of first-order reductions. We find there for cos θ∗ 
= 0, L 
= M and
1 ≤ n ≤ N − 1, n 
= 2M , that the parameter A1 = (−1)N−n(cos θ∗)N−1(2n − N),
such that z(M1) = 1 in all cases. For cos θ∗ > 0, n(M1) = N − n − 1 and
p(M1) = n for 1 ≤ n ≤ 2M − 1 and n(M1) = N − n and p(M1) = n − 1 for
2M + 1 ≤ n ≤ N − 1. In the opposite case of cos θ∗ < 0, we have n(M1) = n and
p(M1) = N −n−1 for 1 ≤ n ≤ 2M−1 and n(M1) = n−1 and p(M1) = N −n
for 2M + 1 ≤ n ≤ N − 1. These results lead to the full eigenvalue problem counts:
for cos θ∗ > 0, we have N−i = N −n−1, N0 = 1, and Nr = n for 1 ≤ n ≤ 2M−1
and N−i = N − n, N0 = 1, and Nr = n − 1 for 2M + 1 ≤ n ≤ N − 1; for
cos θ∗ < 0, we have N−i = n, N0 = 1, and Nr = N − n − 1 for 1 ≤ n ≤ 2M − 1
and N−i = n − 1, N0 = 1, and Nr = N − n for 2M + 1 ≤ n ≤ N − 1.

Despite the considerable wealth of information provided by the first-order re-
ductions, there are still features that need to be clarified at the second-order reduc-
tions. Among them are the second zero eigenvalue of supersymmetric solitons (that
should bifurcate away from the origin at a higher order), the potential splitting of
real eigenvalues of the first-order reductions in the complex plane for solutions of
family (ii), or the analysis of the stability of supersymmetric vortices with L = M
within family (ii).

3.3.3.1 Eigenvalue Splitting at Second-Order Reductions

In the case of family (i), for l = 2M (supersymmetric solitons) and a j 
= (−1) j a, as
indicated above the Jacobian has two zero eigenvalues with eigenvectors p0 and p1.
On the other hand, the matrix M1+ εM2 has only one zero eigenvalue with eigen-
vector p0 (due to the gauge invariance). Therefore, the second eigenvalues should
bifurcate away from zero at the second-order reduction. We can therefore expand
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the perturbation theory at the next order using c = p1 to derive

γ2 = (p1,M2p1)

(p1,p1)
.

One can therefore find at the second order that

λ2
2 = 2

(p1,M2p1)

(p1,p1)
= 2γ2.

It can therefore be concluded that the splitting of the additional zero eigenvalue in
the second-order reduction resembles that of the zero eigenvalues in the first-order
reductions. If γ2 > 0, then the eigenvalues ελ2 will be real, while if γ2 < 0, they
will be imaginary with negative Krein sign.

The next topic of interest that needs to be addressed at the level of second-order
reductions is the potential splitting of non-zero eigenvalues (of the first order). In
particular, if we use the explicit solutions for φ(1), required in H(1), it is possible to
compute the explicit solution of the inhomogeneous equation (3.69) for ψ (2) as

ψ (2) = λ2

2

N∑

j=1

c j ê j + 1

2

N∑

j=1

(sin(θ j+1 − θ j )c j+1 + sin(θ j−1 − θ j )c j−1)ê j

+
N∑

j=1

c j (S+ + S−) e j , (3.71)

where the operators S± shift elements of e j from the node (n,m) ∈ SM to the
adjacent nodes outside of SM . Then, for the third-order correction ψ (3), one has the
subsequent order inhomogeneous equation of the form

H(0)ψ (3) +H(1)ψ (1) = iλ1σψ
(2) + iλ2σψ

(1) + iλ3σψ
(0). (3.72)

To obtain an expression for the second-order correction λ2, we project the inho-
mogeneous problem (3.72) also to the kernel of H(0) (as before to obtain Eq. (3.70)),
which, in turn, leads to

M1c = λ2
1

2
c+√ε (λ1λ2c+ λ1L1c) , (3.73)

where the matrix L1 is defined by

(L1)i, j =
{

sin(θ j − θi ), i = j ± 1,
0, |i − j | 
= 1,

(3.74)

subject to the periodic boundary conditions. If we now label the eigenvalue of the
first-order Jacobian matrix M1 as μ(1)

j (with eigenvector c j ), then the two leading
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order expressions for the bifurcation of the eigenvalue from zero in Eq. (3.66) are
given by

λ1 = ±
√

2μ(1)
j , λ2 = − (c j ,L1c j )

(c j , c j )
. (3.75)

Now, given the skew-symmetric nature of the operator L1, we infer that the
second-order correction term λ2 is purely imaginary or zero. In the case of discrete
solitons of family (i), since sin(θ j+1−θ j ) = 0, the elements ofL1 (and hence λ2) will
be vanishing. On the other hand, in the case of symmetric vortices of family (ii) with
L 
= M , the matrix M1 has double eigenvalues, according to the roots of sin2 πn/N
in the explicit solution (3.37). In that case, all the coefficients a j = cos(θ j+1 − θ j )
and b j = sin(θ j+1 − θ j ), 1 ≤ j ≤ N will be the same: a j = a and b j = b. Then,
one can again compute both the first, as well as the second-order correction for the
eigenvalues explicitly as

λ1 = ±
√

8a sin
πn

N
, λ2 = −2ib sin

2πn

N
, 1 ≤ n ≤ N. (3.76)

This implies that all double roots of λ1 with n 
= N/2 and N split along the
imaginary axis in λ2. When a > 0, the splitting occurs in the transverse directions to
the real values of λ1. When a < 0, the splitting occurs in the longitudinal directions
to the imaginary values of λ1. The simple roots at n = N/2 and N are not affected,
since λ2 = 0 for n = N/2 and N . This implies, e.g., that for discrete vortices of
family (ii) with 1 ≤ L ≤ M − 1, their positive double roots will, in fact, split
and become into complex quartets, as we will see below for example in the case of
M = 2 and L = 1.

We now turn to the case of supersymmetric vortices (where the first-order re-
ductions are completely degenerate and yield no information) in order to use the
second-order reductions to address the splitting of their zero eigenvalues. We extend
the results of the regular perturbation series (3.59) and (3.66) to the case M1 = 0,
which occurs for supersymmetric vortices of family (ii) with charge L = M . More
specifically, when M1 = 0 (and hence γ1 = 0), then the first-order correction is
given by

ϕ(1) = 1

2

N∑

j=1

(c j+1 − c j−1)ê j +
N∑

j=1

c j (S+ + S−) e j , (3.77)

where the meaning of the operators S± is the same as in Eq. (3.71). Going to the
next order in perturbation theory, we obtain the inhomogeneous equation

H(0)ϕ(2) +H(1)ϕ(1) +H(2)ϕ(0) = γ2ϕ
(0). (3.78)

Hence, projecting to the kernel of H(0) gives the eigenvalue problem for γ2:
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1

2

(
e j ,H(1)ϕ(1)

)+ 1

2

N∑

i=1

(
e j ,H(2)ei

)
ci = γ2c j . (3.79)

Through direct computation, one can verify that the matrix on the left-hand side
of (3.79) is identical to the Jacobian matrix M2 (defined as (M2)i j = �g(2)

i /�θ j ).
Using our results from the Jacobian of the second-order reductions in the previous
section (for M = 1, 2, and 3), we have that n(M2) = 0, z(M2) = 2, and p(M2) =
2 for M = 1; n(M2) = 1, z(M2) = 2, and p(M2) = 5 for M = 2; and n(M2) = 4,
z(M2) = 2, and p(M2) = 6 for M = 3. We now need to connect the eigenvalues
of the Jacobian matrix M2 with those of the full eigenvalue problem λ, This is done
again by using the perturbation series but now in the form

ψ = ψ (0) + εψ (1) + ε2ψ (2) + O(ε3), λ = ελ1 + ε2λ2 + O(ε3), (3.80)

where

ψ (0) =
N∑

j=1

c j e j , ψ (1) = ϕ(1) + λ1

2

N∑

j=1

c j ê j , (3.81)

and ϕ(1) is given by (3.77). The second-order correction term ψ (2) is found from the
inhomogeneous equation

H(0)ψ (2) +H(1)ψ (1) +H(2)ψ (0) = iλ1σψ
(1) + iλ2σψ

(0). (3.82)

In this case, the projection of the inhomogeneous equation to the kernel of H(0)

gives the eigenvalue problem for λ1:

M2c = λ1L2c+ λ
2
1

2
c, (3.83)

where c = (c1, c2, . . . , cN )T , the matrix M2 is the same as in the eigenvalue prob-
lem (3.79), and the matrix L2 follows from the matrix L1 in the form (3.74) with
sin(θ j+1 − θ j ) = 1, or explicitly:

(L2)i, j =
⎧
⎨

⎩

+1, i = j − 1,
−1, i = j + 1,
0, |i − j | 
= 1,

(3.84)

subject to the periodic boundary conditions. Given that M2 is symmetric and L2

is skew-symmetric, the eigenvalues of the problem (3.83) arise in pairs (λ1,−λ1).
A direct comparison of the matrices M2 in (3.50) and L2 in (3.84), leads to the
conclusion M2 = −(1/2)L2

2. However, the Jacobian matrices M̃2 are modified in
the case M = 2 and M ≥ 3 by the rank-one and rank-four non-positive matrices
�M2. As a result, the eigenvalue problem (3.83) can be factorized as follows:
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1

2
(L2 + λ1)2 c = �M2c. (3.85)

One can now consider the reduced eigenvalue problem of Eq. (3.83) in the cases
of M = 1, 2, and 3. In the case of M = 1, the problem takes the form of the
following constant-coefficient difference equation:

− c j+2 + 2c j − c j−2 = λ2
1c j + 2λ1

(
c j+1 − c j−1

)
, 1 ≤ j ≤ 4M, (3.86)

subject to the periodic boundary conditions, which, as usual, can be tackled by the
discrete Fourier transform yielding

(
λ1 + 2i sin

πn

2M

)2
= 0, 1 ≤ n ≤ 4M. (3.87)

This implies that the eigenvalue problem will have two eigenvalue pairs with
λ1 = ±2i , and two more pairs of eigenvalues with λ1 = 0 (only one of which will
persist to higher order reductions).

On the other hand, in the case of M = 2, the problem of Eq. (3.83) can be
reduced to two constant-coefficient difference equations

−x j+1 + 2x j − x j−1 = λ2
1x j + 2λ1

(
y j − y j−1

)
, j = 1, 2, 3, 4,

y j+1 − 2y j+2 + y j−1 = λ2
1 y j + 2λ1

(
x j+1 − x j

)
, j = 1, 2, 3, 4,

where x j = c2 j−1 and y j = c2 j are subject to the periodic boundary conditions. In
this case, the characteristic equation has the explicit form

λ4
1 − 2λ2

1

(
1− (−1)n − 8 sin2 πn

4

)
+ 8 sin2 πn

4

(
1− (−1)n − 2 sin2 πn

4

)
= 0

for n = 1, 2, 3, 4, leading to four pairs of eigenvalues with λ1 = ±
√

2i , a single

pair with λ1 = ±
√√

80− 8 (which renders the configuration with L = M = 2

immediately unstable for ε 
= 0), a single pair with λ1 = ±i
√√

80+ 8 and finally
two pairs with λ1 = 0, only one of which will survive for higher order reductions.

Finally, in the case of M = 3, it is less straightforward to compute the eigen-
values explicitly via Fourier decomposition. For this reason, we instead obtain them
from a numerical linear algebra package as

λ1,2 = ±3.68497i, λ3,4 = λ5,6 = ±3.20804i, λ7,8 = ±2.25068i,

λ9,10 = λ11,12 = ±i, λ13,14 = λ15,16 = ±0.53991,

λ17,18,19,20 = ±0.634263± 0.282851i, λ21,22,23,24 = 0.

Therefore, in the case of the L = M = 3, we expect a double real eigen-
value pair and a complex eigenvalue quartet to immediately destabilize the relevant
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configuration (although additional potentially unstable eigendirections may exist,
since the algebraic multiplicity of the zero eigenvalue is larger than two).

It is interesting to slightly expand here on the reasons for the destabilization
of the L = M = 2 and L = M = 3 supersymmetric vortex solutions. More
specifically, the destabilization of the supersymmetric vortex with M = 2 occurs
due to the center node (2, 2), which couples its nearest-neighbors of the contour
S2 in the second-order reductions. This modifies the Jacobian matrix M̃2 (due to
the non-zero nature of the rank-one non-positive matrix �M2) in a way such as to
produce a simple negative eigenvalue, while none such exists for the non-negative
matrix M2. A similar feature arises in the destabilization of the L = M = 3 su-
persymmetric vortex, whereby the coupling of eight nodes of the contour S3 with
four interior corner points (2, 2), (2,M), (M,M), and (M, 2) induces the destabi-
lization. In the latter case, the rank-four non-positive matrix �M2 leads to four
negative eigenvalues in the Jacobian matrix M̃2 and to four unstable eigenvalues
in the reduced eigenvalue problem (3.85). It is interesting that this mathematical
quantification leads to an intuitive understanding of the origin of the instability and,
therefore, to insights as to how to avoid it. In particular, the latter can be achieved,
for instance, if a hole is drilled at the central node (2,2) of the M = 2 contour, or four
such holes at the sites (2, 2), (2,M), (M,M), and (M, 2) of the M = 3 contour, then
the matrix �M2 = 0; then, all the relevant eigenvalues of the Jacobian would be
positive leading to imaginary eigenvalues for the full eigenvalue problem, similarly
to the case of M = 1. We will test this type of insight numerically in what follows.

3.3.3.2 Eigenvalue Splitting at Higher Order Reductions

It is important to note that in all the above supersymmetric cases, there are additional
(to the ones stemming from the gauge invariance) zero eigenvalues at the level of
the second-order corrections, which need to be resolved at the level of higher order
reductions. In particular, we consider the splitting of the double zero eigenvalue of
M2 which corresponds to the eigenvectors p0 and p1, where p0 = (1, 1, . . . , 1, 1)T

and p1 = (0, 1, . . . , 0, 1)T . To this effect, we set c = (c1, . . . , cN ) = p1 + αp0,
where α is a parameter and generally assume that the splitting occurs at the K th
order of reductions. Then, the perturbation series (3.59) needs to be extended to that
order, leading to the following inhomogeneous equation:

H(0)ϕ(k) = −
k∑

m=1

H(m)ϕ(k−m), 1 ≤ k ≤ K − 1

and

H(0)ϕ(K ) = −
K∑

m=1

H(m)ϕ(K−m) + γKϕ
(0),

where the zeroth order ϕ(0) =∑N
j=1 c j e j , and γ = γK ε

K + O(εK+1) is the leading
order approximation for the smallest non-zero eigenvalue of H. From the projection
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formulas on to the kernel of H(0), then the equations for the correction γK and α can
be obtained.

This algorithmic procedure can be used for the supersymmetric vortices with
M = 1, leading to K = 6, α = −1/2, and γ6 = −16 (and, hence, to the conclusion
that the zero eigenvalue becomes a small negative eigenvalue for small ε 
= 0). A
similar conclusion is obtained for M = 2, where K = 6, α = −1/2, and γ6 = −8.
This allows us to develop the regular perturbation series for the eigenvalue problem
σHψ = iλψ starting with the zeroth order ψ (0) = ∑N

j=1 c j e j and c = p1 + αp0,
where α = −1/2. This leads in the case of M = 1 to the conclusion that λ1 =
λ2 = 0 but λ3 
= 0, such that λ2

3 = −32 = 2γ6; this results in a small imaginary
eigenvalue of the linear stability matrix with negative Krein signature. Similarly, for
the case of M = 2, we find that λ2

3 = −16 = 2γ6.
Based on the above results, we can summarize our stability conclusions as fol-

lows. We expect in the vicinity of ε ∈ O(0) to have stable solutions of the following
forms:

• discrete solitons,
• discrete symmetric vortices of family (ii) over contours SM with charge M +1 ≤

L ≤ 2M − 1,
• discrete supersymmetric vortices with L = M = 1.

We now turn to a numerical examination of the above findings.

3.3.4 Numerical Results

3.3.4.1 Discrete Solitons

Based on the above considerations, we can firstly construct any discrete soliton
configuration that we would like (comprising essentially of +1’s and −1’s on the
lattice) at the AC limit. We can subsequently continue the relevant configuration to
finite values of the coupling ε, by solving Eq. (3.6) and finally obtain the correspond-
ing linearization eigenvalues, by solving the linear stability problem σHψ = iλψ
numerically.

For the case of discrete solitons, we will only consider some illustrative cases
to highlight the comparison of theoretical and numerical results, although it should
be stressed that the same approach can essentially be used for any configuration of
interest. Any two-site configuration in the two-dimensional problem can be effec-
tively thought of as a quasi-one-dimensional one along the line of sight connecting
the two sites. Keep in mind, however, that this is genuinely true only when the sites
are connected by a lattice direction; when they are not, the relevant eigenvalues are
expected to be non-zero to leading order at εdmin /2 where dmin is the minimal distance
between the sites along the lattice directions. Hence, to consider genuinely non-
quasi-one-dimensional properties, we need to examine configurations with three or
more sites. As a prototypical three-site example, we will consider the following
configuration:
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⎛

⎝
1 0 −1
0 0 0
0 0 1

⎞

⎠ . (3.88)

We will also consider two prototypical four site configurations, namely

⎛

⎜⎝
1 0 −1

0 0 0

−1 0 1

⎞

⎟⎠ and

⎛

⎜⎝
1 −1 −1

0 1 0

0 0 0

⎞

⎟⎠ , (3.89)

as well as two five-site configurations

⎛

⎜⎝
1 0 1

0 −1 0

1 0 1

⎞

⎟⎠ and

⎛

⎜⎝
0 −1 1

0 1 0

1 −1 0

⎞

⎟⎠ . (3.90)

The above matrices yield the spatial form of the (real) field at the anti-continuum
limit, in the vicinity of the spatially excited sites. For completeness/comparison, we
also consider a configuration with many more sites such as the nine-site configura-
tion of the form

⎛
⎜⎝

1 −1 1

−1 1 −1

1 −1 1

⎞
⎟⎠ . (3.91)

For the three-site configuration, for bifurcation equation purposes, the structure
is similar to the three-site one-dimensional structures of Fig. 2.12 of the previous
chapter. Hence, the relevant Jacobian and eigenvalues in this case also will be λ =
±√2ε and ±√6ε (in addition to the zero eigenvalue of the phase invariance); see
the relevant discussion around Eq. (2.86).

For the four-site configurations of (3.89), as regards the first configuration, the
bifurcation equations for all four sites are g j = sin(θ j−θ j+1)+sin(θ j−θ j−1), where
θ j is the phase (0 or π depending on whether the AC limit is +1 or −1 for each
site) and θ j±1 is the phase of their closest two neighbors in the configuration. From
this, once again the first-order reduction Jacobian can be computed, leading to the
eigenvalues λ = ±2εi (a double eigenvalue pair) and λ = ±2

√
2εi (a single pair)

in addition to the zero eigenvalue of the phase invariance. For the second four-site
configuration of (3.89), the bifurcation equations are slightly more complicated in
that the site that has three neighbors has g2 = sin(θ2−θ1)+sin(θ2−θ3)+sin(θ2−θ4),
where θ2 is the phase of that site and θ1,3,4 those of its neighbors, while the rest of
the sites have g j = sin(θ j − θ2) for j = 1, 3, 4. From the corresponding Jacobian
one can extract the relevant eigenvalues to be λ = ±√2εi (a double eigenvalue)
and λ = ±√8εi (a single eigenvalue), as well as the zero eigenvalue pair.

For the first five-site configurations of (3.90), we have the bifurcation equation
g0 = 2 sin(θ0 − θ1) + 2 sin(θ0 − θ2) + 2 sin(θ0 − θ3) + 2 sin(θ0 − θ4), where we
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have labeled as θ0 the phase of the central site, while θ j , with j = 1, 2, 3, 4,
denote the phases of the four corner sites. We also have for the corner sites
g j = sin(θ j − θ j+1) + sin(θ j − θ j−1) + 2 sin(θ j − θ0) for j = 1, 2, 3, 4. In this
case, in addition to the zero eigenvalue, there is a real eigenvalue pair λ = ±2ε, an
eigenvalue of O(ε2) and an imaginary pair λ = ±√20εi . Hence, this configuration
is predicted to always be linearly unstable. Finally, for the second five-site configura-
tion, one can similarly write down the bifurcation equations and accordingly obtain
the eigenvalues: λ = ±0.874i

√
ε, ±1.6625i

√
ε, ±2.288i

√
ε, and ±2.69i

√
ε, as

well as the zero eigenvalue.
Finally, for the configuration with nine sites of (3.91), labeling θ0 the phase of

the central site of the contour, θ1,3,5,7 the phases of the four corners, and θ2,4,6,8

those of the four sites adjacent to the central one, we have the bifurcation equations
g j = sin(θ j − θ j+1)+ sin(θ j − θ j−1) for j = 1, 3, 5, 7, while g j = sin(θ j − θ j+1)+
sin(θ j − θ j−1) + sin(θ j − θ0) for j = 2, 4, 6, 8, and g0 =

∑4
k=1 sin(θ0 − θ2k).

From the corresponding Jacobian the first-order reduction for the eigenvalues yields
λ = ±√2εi (double), λ = ±2

√
εi (single), λ = ±√6εi (double), λ = ±√8εi

(double), and λ = ±√12εi (single), with the parenthesis denoting in each case the
multiplicity of the relevant eigenvalue.

The results for the three-site configuration of (3.88) are shown in Fig. 3.3. We
illustrate the configuration for two different values of the coupling (one stable and
one unstable, while the comparison of the theoretically predicted and numerically
obtained eigenvalues is shown in the bottom panel. It can be seen that the agreement
is very good between the two. The configuration is, in fact, found to be unstable for
ε > 0.295, when the larger of the two imaginary eigenvalues of negative Krein sign
collides with an eigenvalue bifurcating from the lower band edge of the continuous
spectrum, leading to an oscillatory instability through the generation of a quartet of
eigenvalues.

Figure 3.4 shows the two cases of (3.89) concerning four-site solutions. The top
left panel shows the first configuration which is linearly stable for small values of
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Fig. 3.3 The left two rows show the three-site solution of (3.88) for ε = 0.2 and 0.4 and the cor-
responding linear stability eigenvalues (the former case is stable, while the latter is unstable). The
right row shows the evolution of the imaginary (top) and real (bottom) eigenvalues as a function of
ε. The solid lines show the full numerical results, while the dashed lines indicate the corresponding
theoretical predictions
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Fig. 3.4 The four left panels concern the first solution of (3.89), while the four right panels concern
the second one. The top left panel in each case shows a typical solution profile (for ε = 0.4 in
the left rows, and for ε = 0.3 in the right rows), the bottom left the corresponding eigenvalues
in the spectral plane, while the top and bottom right in each case show the dependence on ε of
the imaginary and real parts of the relevant eigenvalues (again the solid lines correspond to the
numerical results, while dashed ones to theoretical approximations discussed above)

ε, with a double and a single imaginary eigenvalue pairs with negative Krein sign.
These eigenvalues eventually destabilize the solution upon collision with eigenval-
ues bifurcating from the band edge of the continuous spectrum. The relevant colli-
sions occur for ε = 0.262 and 0.396. The right panels show the second configuration
whose three imaginary negative Krein sign eigenvalues collide with the band edge
at ε = 0.076, 0.206, and 0.276 giving rise to three eigenvalue quartets.

The five-site configurations of (3.90) are, in turn, shown in Fig. 3.5. Note that
the first one of these configurations is immediately unstable, as soon as ε 
= 0, due
to a very accurately captured real eigenvalue pair λ = ±2ε. Additionally, there is
complex quartet emerging from the collision of the O(ε) imaginary eigenvalue of
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Fig. 3.5 Same as Fig. 3.4, but now for the five-site configurations of (3.90). The four left panels
correspond to the first configuration, while the right four panels to the second configuration. Note
the immediate instability of the former. The numerical solutions and their linear stability are for
ε = 0.4
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the configuration with the continuous spectrum at ε = 0.198. On the other hand, the
double pair of O(ε2) eigenvalues moves more slowly and does not collide with the
band edge for the parameter values considered. On the other hand, the second con-
figuration is stable for small ε, but becomes increasingly unstable as ε is increased
due to a sequence of four collisions with the band edge (or eigenvalues bifurcating
from the band edge) of the continuous spectrum occurring at ε = 0.081, 0.106,
0.195, and ε = 0.334.

Finally, the nine-site waveform of (3.91) is demonstrated in Fig. 3.6, along with
the dependence of its eigenvalues on ε. Once again as predicted by the theory, the
solution is found to be linearly stable with eight imaginary eigenvalue pairs (three of
which are double) for small ε. However, for ε > 0.054, a complex web of oscillatory
instabilities is initiated (which is also affected by finite size effects in the figure,
discussed in more detail in the chapter on dark solitons), rendering the solution
unstable thereafter.

Fig. 3.6 Same as Fig. 3.4, but
now for the nine-site
configurations of (3.91). The
left panels are for ε = 0.25.
Note that the solution is
stable for small ε, but the
negative Krein sign of the
imaginary eigenvalues leads
to a complex web of
oscillatory instabilities for
ε > 0.054
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3.3.4.2 Discrete Vortices

We now turn to the examination of discrete vortex solutions of families (ii) (both
symmetric and supersymmetric) and (iv) that were previously considered theoret-
ically in this chapter. The relevant features will be presented in a unified way for
these solutions in Figs. 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12. The top left panel will, in
each case, show the profile of the vortex solution for a specific value of ε by means
of contour plots of the real (top left), imaginary (top right), modulus (bottom left),
and phase (bottom right) two-dimensional profiles. The right panels will in each case
show the spectral plane of the linearization eigenvalues for the corresponding value
of ε. The bottom panel shows the dependence of small eigenvalues as a function of
ε, obtained via continuation methods from the AC limit of ε = 0. In these graphs,
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Fig. 3.7 The (supersymmetric) vortex cell with L = M = 1. The top left panel shows the profile
of the solution for ε = 0.6. The subplots show the real (top left), imaginary (top right), modulus
(bottom left) and phase (bottom right) fields. The top right panel shows the spectral plane (λr , λi )
of the linear eigenvalue problem (3.57). The bottom panel shows the small eigenvalues versus ε
(the top subplot shows the imaginary part, while the bottom shows the real part). The solid lines
show the numerical results, while the dashed lines show the results of the Lyapunov–Schmidt
reductions. Reprinted from [14] with permission

as before, the solid lines will denote theoretical results, while the dashed ones, the
result of the first-, second-, and higher order reductions presented above.

Figure 3.7 concerns the case of the supersymmetric vortex of charge L = 1 on
the contour SM with M = 1. In the second- and sixth-order reductions, the stability
spectrum of the vortex solution has a pair of imaginary eigenvalues λ ≈ ±i

√
32ε3

and two pairs of imaginary eigenvalues λ ≈ ±2εi . The latter pairs split along
the imaginary axis beyond the second-order reductions. The larger pair of nega-
tive Krein signature becomes subject to a Hamiltonian–Hopf bifurcation for larger
values of ε ≈ 0.38 upon collision with the continuous spectrum. The smaller pair
of positive Krein signature disappears in the continuous spectrum for ε > 0.66.
The smallest pair of imaginary eigenvalues has negative Krein signature and a
Hamiltonian–Hopf bifurcation occurs in the case for ε ≈ 0.92 due to collision with
another pair of positive Krein signature bifurcating from the continuous spectrum.
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Fig. 3.8 The symmetric vortex with L = 1 and M = 2 for ε = 0.1. Reprinted from [14] with
permission

Figure 3.8 presents results for the symmetric vortex of charge L = 1 on the
contour SM with M = 2. There are three double and one simple real unstable
eigenvalues in the first-order reductions, but all double eigenvalues split into the
complex plane in the second-order reductions. The asymptotic result of Eq. (3.76)
for eigenvalues λ ≈ √ελ1 + ελ2 with N = 8, a = cos(π/4) and b = sin(π/4) is
shown on Fig. 3.8 in very good agreement with numerical results.

Figure 3.9 shows results for the supersymmetric vortex with L = M = 2. The
non-zero eigenvalues of the second- and sixth-order reductions consist of a pair of

simple real eigenvalues λ ≈ ±ε
√√

80− 8, a pair of simple imaginary eigenvalues

λ ≈ ±iε
√√

80+ 8, a pair of simple imaginary eigenvalues λ ≈ ±4iε3, and a
pair of imaginary eigenvalues of algebraic multiplicity four at λ ≈ ±iε

√
2. The

bottom right panel of Fig. 3.9 shows the splitting of multiple imaginary eigenvalues
beyond the second-order reductions along the imaginary axis and also four subse-
quent oscillatory instabilities for larger values of ε (ε ≈ 0.23, 0.5, 0.5, and 1.45).
The other two pairs of purely imaginary eigenvalues collide with the band edge of
the continuous spectrum at ε ≈ 1.315 and 1.395 and disappear into the continuous
spectrum. Note, once again, the level of accuracy of our theoretical predictions in
comparison with the direct numerical results, especially for the cases of small ε
illustrated at the bottom left panel of Fig. 3.9. We will return to this structure below,
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Fig. 3.9 The supersymmetric vortex with L = M = 2 for ε = 0.1. The bottom right panel is an
extension of the bottom left panel to larger values of ε. Reprinted from [14] with permission

using it as a case example of the “mathematical intuition” that our reductions offer
on the origin of the observed dynamical instability and how this can be avoided in
such a case.

Figure 3.10 shows results for the symmetric vortex with L = 3 and M = 2.
The first-order reductions predict three pairs of double imaginary eigenvalues, a
pair of simple imaginary eigenvalues and a double zero eigenvalue. The double
eigenvalues split in the second-order reductions along the imaginary axis, given by
(3.76) with N = 8, a = cos(3π/4) and b = sin(3π/4). The seven pairs of imaginary
eigenvalues lead to a cascade of seven complex quartets of eigenvalues emerging
for larger values of ε due to their collisions with the continuous spectrum. The first
bifurcation when the symmetric vortex becomes unstable occurs for ε ≈ 0.096.
It is interesting to note in connection to this solution the sharp contrast between
this result (i.e., the fact that a solution with L = 3 may be stable, while the lower
charge L = 2 solution is always unstable over the same contour) and the continuum
NLS intuition; see, e.g., [22] for relevant analytical considerations and [23, 24] for
numerical results. The latter indicates that over this discrete contour higher charge
vortices are more prone to instability than the lower charge ones. On the contrary,
the stability of the discrete L = 3 structure was first observed in [25].

Zero parameter asymmetric vortices of family (iv) on the contour SM with M = 2
are shown in Fig. 3.11 for L = 1 and in Fig. 3.12 for L = 3. In the case of Fig. 3.11,
all the phase differences between adjacent sites in the contour are π/6, except for
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Fig. 3.10 The symmetric vortex with L = 3 and M = 2 for ε = 1. Reprinted from [14] with
permission

the last one which is 5π/6, completing a phase trip of 2π for a vortex of topo-
logical charge L = 1. Eigenvalues of the matrix M1 in the first-order reductions
can be computed numerically as follows: μ(1)

1 = −1.154, μ(1)
2 = 0, μ(1)

3 = 0.507,
μ

(1)
4 = 0.784, μ(1)

5 = 1.732, μ(1)
6 = 2.252, μ(1)

7 = 2.957, and μ(1)
8 = 3.314. As a

result, the corresponding eigenvalues λ ≈ ±
√

2μ(1)ε yield one pair of imaginary
eigenvalues and six pairs of real eigenvalues, in agreement with our numerical re-
sults. The bottom panel of Fig. 3.11 shows that two pairs of real eigenvalues collide
for ε ≈ 0.047 and 0.057 and lead to two quartets of eigenvalues.

In the case of Fig. 3.12, all the phase differences in the contour are 5π/6, except
for the last one which is π/6, resulting in a vortex of topological charge L = 3.
Eigenvalues of the matrix M1 are found numerically as follows: μ(1)

1 = −3.314,
μ

(1)
2 = −2.957, μ(1)

3 = −2.252, μ(1)
4 = −1.732, μ(1)

5 = −0.784, μ(1)
6 = −0.507,

μ
(1)
7 = 0, and μ(1)

8 = 1.154. Consequently, this solution has six pairs of imaginary
eigenvalues and one pair of real eigenvalues. The first Hamiltonian–Hopf bifurca-
tion in this case occurs for ε ≈ 0.086.

It is interesting to note in passing that this approach is equally well-suited to
address not just “isotropic” square lattices, where the x and y directions are equiva-
lent, but also even anisotropic such lattices, where for instance the coefficient of the
discrete Laplacian has a different prefactor (e.g., ε and εα, respectively) in the two



92 3 The Two-Dimensional Case

−1

−0.6

−0.2

0.2

n

m

−2 0 2

−2

0

2
−1

−0.5

0

0.5

1

n
−2 0 2

−2

0

2

0

0.4

0.8

m

n
−2 0 2

−2

0

2 −2
−1
0
1
2
3

n
−2 0 2

−2

0

2

−0.8 −0.4 0 0.4 0.8
−2

−1

0

1

2

λ i

λr

λ r
λ i

0 0.05 0.1
0

0.2

0.4

0.6

0 0.05 0.1
0

0.2

0.4

0.6

0.8

Fig. 3.11 The asymmetric vortex with L = 1 and M = 2 for ε = 0.1. Reprinted from [14] with
permission

different directions. Although, we won’t analyze this possibility in more detail here,
the relevant details can be found by the interested reader in the work of [26].

3.3.4.3 Stabilization of Unstable Waves

One of the most remarkable features of the above developed technology for the
detection of the coherent structures and their linear stability in dynamical lattices of
the DNLS type is its “mathematical intuition” about the nature of the encountered
instabilities and how to potentially eliminate them.

As a case example of this type, we consider one of the most prototypical unstable
vortex configurations considered above, namely the vortex with L = M = 2. The
examination of the real eigenmode leading to the direct instability of the S = 2 vor-
tex (that has support over the central site that we denote by a double zero subscript
in what follows), as well as the apparent mediation of the instability by means of the
central site (see below), lead us to consider the possibility of having an “impurity” at
the central site, e.g., a strong localized potential such as a laser beam in BECs or an
inhomogeneity in a photorefractive crystal, enforcing φ0,0 = 0. More specifically,
what we observe mathematically is that the additional terms in the second order
reductions that appear to mediate the instability are the terms in the corresponding
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Fig. 3.12 The asymmetric vortex with L = 3 and M = 2 for ε = 0.1. Reprinted from [14] with
permission

reduction matrix M2 coupling the sites adjacent to (0, 0). If we therefore eliminate
this central site, disallowing the “communication” between its neighboring sites,
then the bifurcation function g2

j of the form

g2
j =

1

2
sin(θ j+1 − θ j )

[
cos(θ j − θ j+1)+ cos(θ j+2 − θ j+1)

]

+1

2
sin(θ j−1 − θ j )

[
cos(θ j − θ j−1)+ cos(θ j−2 − θ j−1)

]

+ [sin(θ j − θ j+2)+ sin(θ j − θ j+4)+ sin(θ j − θ j−2)
]

(δ j,2 + δ j,4 + δ j,6 + δ j,8)

(with 1 ≤ j ≤ 8 and where δ denotes the Kronecker symbol) lacks the last term,
since these are interactions “mediated” by the now inert site. The second-order Ja-
cobian is then much simpler and acquires the form (M2) j,k = 1 for j = k, −1/2
for j = k ± 2, and 0 for | j − k| 
= 0, 2. One can then repeat the calculation
of the corresponding eigenvalues, via the discrete Fourier transform, to obtain the
characteristic equation

(
λ1 + 2i sin(

jπ

4
)

)2

= 0, j = 1, . . . , 8. (3.92)
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This results into three eigenvalues of algebraic multiplicity four, namely λ = 0
and λ = ±εi√2/2. There are also two double eigenvalues λ = ±2εi . The crucial
observation, however, is that in this case, there are no real eigenvalues immediately
present as ε 
= 0 and hence the discrete vortex with S = 2 will be linearly stable, due
to the stabilizing effect of the impurity (or, to be more precise, due to the absence of
the instability mediated by the central site).

The stabilization of the relevant structure is clearly shown in Fig. 3.13. The figure
illustrates the principal relevant eigenvalues in the case of the inert central site in the
left panels, clearly demonstrating not only the validity of the theoretical reduction
results presented above, but most importantly the absence of any eigenvalues with
non-zero real part for small ε. Note that the instability only sets in due to a complex
quartet in this case for ε > 0.36, which indicates that under the present conditions
the stability range of the vortex of L = 2 is comparable to that of L = 1 (which is
stable for ε < 0.38). As a result, the right panel shows that for ε = 0.2, the same
structure with the same perturbation that would have clear instability dynamics for
the uniform chain, would no longer be subject to such an instability in the chain
with the inert central defect site. These results were first presented in [27].

Interestingly, this suggestion has motivated further studies on this topic such as
the work of [28], which suggested on a purely numerical basis the consideration of a
cross-like vortex of L = 2, such as the one illustrated in the left panels of Fig. 3.14.
Note that in this case, once again “reduced communication” is achieved between
the four sites previously cross-talking through the central node of the contour; how-
ever, instead of this being realized through the central site being inert, here, it is
achieved geometrically through increasing the distance between these sites (in the
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Fig. 3.13 From [27]: the left panels of the figure show the imaginary (top panels) and real (bottom
panels) parts of the eigenvalues initially at the origin of the spectral plane for the vortex with
L = M = 2, but with the central site inert. We can see that, contrary to the case where the central
site is present, the structure is linearly stable for small ε; note again the agreement between the
theoretical prediction of the reductions (dashed line) and the full numerics (solid line). This results
in a dynamical evolution shown in the right panels for ε = 0.2, where some of the main sites of the
configuration are shown in the presence (top panels) or absence (bottom panels) of the central site.
Note how the same configuration which is unstable in the top (for the same initial perturbation)
becomes stabilized in the bottom
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Fig. 3.14 The left panels show a typical example of the vortex cross of L = 2 which is stable for
small ε according to the right panel illustrating the relevant eigenvalues close to λ = 0 (which
are all imaginary). Note once again the agreement between the result of the analytical reductions
(dashed lines) and the numerical findings (solid lines)

resulting rhombic pattern). In fact, we have studied this structure at the level of the
analytical reductions, finding from the relevant Jacobian of the bifurcation equations
that it should have a single eigenvalue pair λ = ±√8εi , a double eigenvalue pair
λ = ±2εi , as well as four pairs of eigenvalues of a higher order (not discussed in
detail here) which are also imaginary (see the right panel of Fig. 3.14). The relevant
theoretical predictions are compared to full numerical results for small ε in Fig. 3.14,
illustrating, once again, the usefulness of the method in providing quantitative infor-
mation about the stability (as well as the stabilization) of the various configurations.

3.3.4.4 Solitons and Vortices in Non-Square Lattices

The considerations presented above in the case of square lattices can be straightfor-
wardly generalized to different types of lattices (such as hexagonal or honeycomb
ones), where the number of nearest neighbors is different (six and three, respec-
tively) and hence we expect quantitative, and perhaps even qualitative changes in
the relevant phenomenology. As a concrete example of this type, we will consider
for definiteness the DNLS in a hexagonal geometry

i
dum,n

dz
= −ε

(
∑

<m′,n′>

um′,n′ − 6um,n

)
− |um,n|2um,n, (3.93)

where the summation is meant over the six nearest neighbors (denoted by 〈m ′, n′〉)
of the site (m, n). This type of setting was originally considered in [29], while
subsequent works such as [30] extended it also to Klein–Gordon lattices and the
examination of breather states therein.

In this context, selecting a simple hexagonal contour with a central inert site, it is
straightforward to construct a configuration with topological charge S over the con-
tour, provided that we select the AC limit solutions in the form u j = exp(iθ j) exp(i t)
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(normalizing, without loss of generality, the propagation constant to unity), where
θ j = 2π j S/6 and j = 1, . . . , 6 for the six sites constituting the relevant contour. It
is straightforward to see that this configuration yields non-trivial phase profiles for
S = 1 and 2, while for S = 3 it yields a “discrete hexapole” (i.e., not a genuine
S = 3 vortex structure, but instead a real configuration emulating that waveform in
the discrete setting), which can nonetheless also be considered within the analytical
framework provided below; also S = 0 corresponds to the case of an in-phase
structure, that we should expect to be unstable. It should also be noted that this
framework works not only for contours of “size” N = 6 as will be considered here,
but also for ones with N = 3 (in that case, e.g., the θ j = 2π j S/N with N = 3), as
in [30]. A brief discussion of the results in that context is given below. The results
below follow closely the presentation of [31].

We can straightforwardly adapt the calculations presented above to formulate the
persistence conditions for the configuration in the presence of finite coupling as:

g j ≡ sin(θ j − θ j+1)+ sin(θ j − θ j−1) = 0 (3.94)

for all j = 1, . . . , 6. Then one can also adapt the stability conditions obtained pre-
viously based on the Jacobian M jk = �g j/�θk and its eigenvalues γ j in connection
to the eigenvalues of the full linearization λ j =

√
2γ jε (to leading order). In the

present setting, the Jacobian matrix is given by the expression of (3.35), where the
factor a ≡ cos(θ j+1 − θ j ) = cos(πS/3) appears in all the elements of the matrix
(multiplied by 2 for the diagonal elements and by−1 for the off-diagonal ones). As
a result, the eigenvalue problem for the γ ’s is equivalent to

a(2xn − xn+1 − xn−1) = γ xn, (3.95)

which can be solved by discrete Fourier transform (i.e., using for the eigenvector
xn ∼ exp(iπ jn/3)), yielding γ j = 4a sin2(π j/6) and hence, finally,

λ j = ±
√

8ε cos

(
πS

3

)
sin2

(
π j

6

)
. (3.96)

More specifically, in the case of S = 1 this predicts that the fundamental vortex
solution will be unstable due to two double real eigenvalue pairs with λ = ±√ε and
λ = ±√3ε and a single real eigenvalue pair of λ = ±2

√
ε (one of the six eigenval-

ues of the Jacobian is zero due to the phase invariance of the equation), while on the
other hand, the S = 2 configuration will be stable because its eigenvalues will be
those of S = 1 multiplied by the complex unity (and hence will be all imaginary).
It is interesting to note in passing that for S = 0 and 3 the above theoretical predic-
tion encompasses the instability and stability, respectively, of a hexagonal discrete
soliton with in-phase and out-of-phase nearest-neighbor excitations.

Note that these results can be straightforwardly extended to the three-site contour
of the hexagonal lattice, in which case N = 3, and therefore the corresponding
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expression will become

λ j = ±
√

8ε cos

(
2πS

3

)
sin2

(
π j

3

)
. (3.97)

It is also interesting to point out that the results would not change to this leading
order for a six-site contour of a honeycomb lattice, since the (absent in that case)
inert central site of the hexagonal contour is not accounted for in the above leading
order calculation. Finally, it should be pointed out that the stability conclusions ob-
tained above should be expected to be reversed for ε < 0 (the defocusing case that
we will examine in more detail in Chap. 5). In particular, the in-phase solution will
be stable, while the out-of-phase hexapole will be unstable, and similarly the charge
S = 1 vortex will be the stable one, while the S = 2 vortex will be unstable.

We test these predictions in a prototypical case, namely for the S = 1 and 2
vortices in the six-site hexagonal lattice contour in Fig. 3.15. The four left panels of
the figure represent a typical example of an S = 1 vortex (for ε = 0.025, close to the
AC limit). The second row illustrates the eigenvalues of the associated linearization
of Eq. (3.93) around the vortex solution, revealing the presence of five unstable
eigenmodes (with non-zero real parts), in agreement with the theoretical prediction.
Interestingly, the double eigenvalues of the above theoretical prediction split into
complex quartets (a similar feature was observed in the case of S = 1 vortices on
eight-site square contours earlier in this chapter). Note the quality of the comparison
of the theoretical prediction of the modes’ growth rates with respect to the corre-
sponding numerical results for small ε. The right four panels of Fig. 3.15 represent
the case of S = 2 which, again in accordance with our theoretical prediction, is
indeed found to be linearly stable for small coupling (no eigenvalues with non-zero
real part). While in that case the double eigenvalues split, they still follow fairly
accurately the trends of the relevant theoretical predictions. These results illustrate
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Fig. 3.15 Amplitude and phase of the S = 1 vortex (left panels) and S = 2 vortex (right panels),
for ε = 0.025. The corresponding spectral planes (λr , λi ) of the linearization eigenvalues λ =
λr + iλi are shown in the corresponding bottom left panels. The respective bottom right panels
show the eigenvalues bifurcating from the spectral plane origin as numerically obtained (solid) and
theoretically predicted from Eq. (3.96) (dashed)
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that the techniques presented in this chapter are by no means restricted to square
lattices, but rather can be directly adapted to address more general lattices, as well
as potentially DNLS equations on graphs with different types of connectivities.

References

1. Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation. Springer-Verlag, New York
(1999) 56

2. Chiao, R.Y., Garmire, E., Townes, C.H.: Phys. Rev. Lett. 13, 479 (1964) 56, 58
3. Flach, S., Kladko, K., MacKay, R.S.: Phys. Rev. Lett. 78, 1207 (1997)
4. Weinstein, M.I.: Nonlinearity 12, 673 (1999)
5. Kastner, M.: Phys. Rev. Lett. 93, 150601 (2004)
6. Grillakis, M.: Commun. Pure Appl. Math. 43, 299 (1990) 58
7. Grillakis, M.: Commun. Pure Appl. Math. 41, 745 (1988) 58
8. Grillakis, M., Shatah, J., Strauss, W.: J. Func. Anal. 94, 308 (1990) 58
9. Kapitula, T., Kevrekidis, P.G., Sandstede, B.: Physica D 195, 263 (2004) 58

10. Kapitula, T., Kevrekidis, P.G., Sandstede, B.: Physica D 201, 199 (2005) 58
11. Kevrekidis, P.G., Rasmussen, K.Ø., Bishop, A.R.: Phys. Rev. E 61, 2006 (2000) 57
12. Vakhitov, M.G., Kolokolov, A.A.: Radiophys. Quantum Electron. 16, 783 (1973) 57, 58
13. Fibich, G., Gaeta, A.L.: Opt. Lett. 25, 335 (2000) 57, 58
14. Pelinovsky, D.E., Kevrekidis, P.G., Frantzeskakis, D.J.: Physica D 212, 20 (2005) 58, 60, 67, 76, 88, 89, 90
15. Malomed, B.A., Kevrekidis, P.G.: Phys. Rev. E 64, 026601 (2001)
16. Yang, J., Musslimani, Z.: Opt. Lett. 28 2094–2096, (2003) 61
17. MacKay, R.S., Aubry, S.: Nonlinearity 7, 1623 (1994) 61
18. Chow, S.N., Hale, J.K.: Methods of Bifurcation Theory. Springer-Verlag, Heidelberg (1982) 61
19. Golubitsky, M., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory. vol. 1,

Springer-Verlag, New York (1985) 61, 62, 63
20. Kapitula, T., Kevrekidis, P.G., J. Phys. A 37, 7509 (2004) 64, 66
21. Alexander, T.J., Sukhorukov, A.A., Kivshar, Yu.S.: Phys. Rev. Lett. 93, 063901 (2004) 64
22. Pego, R.L., Warchall, H.: J. Nonlin. Sci. 12, 347 (2002) 90
23. Carr, L.D., Clark, C.W.: Phys. Rev. A 74, 043613 (2006) 90
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