
Chapter 20
Statistical Mechanics of DNLS

Panayotis G. Kevrekidis

20.1 Introduction

In this section, we focus our attention on the long-time asymptotics of the system,
aiming to understand the dynamics from the viewpoint of statistical mechanics.
The study of the thermalization of the lattice for T ≥ 0 was performed analyt-
ically as well as numerically in [1]. In that work, a regime in phase space was
identified wherein regular statistical mechanics considerations apply, and hence,
thermalization was observed numerically and explored analytically using regular,
grand-canonical, Gibbsian equilibrium measures. However, the nonlinear dynamics
of the problem renders permissible the realization of regimes of phase space which
would formally correspond to “negative temperatures” in the sense of statistical
mechanics. The novel feature of these states was found to be that the energy sponta-
neously localizes in certain lattice sites forming breather-like excitations. Returning
to statistical mechanics, such realizations are not possible (since the Hamiltonian is
unbounded, as is seen by a simple scaling argument similar to the continuum case
studied in [2]) unless the grand-canonical Gibbsian measure is refined to correct for
the unboundedness. This correction was argued in [1] to produce a discontinuity in
the partition function signaling a phase transition which was identified numerically
by the appearance of the intrinsic localized modes (ILMs).

In our presentation below, we first elaborate on the semianalytical calculations
of [1]. We then present direct numerical simulation results, supporting the theoreti-
cally analyzed scenario. We conclude our discussion with a number of more recent
results, including a generalization of the considerations to higher dimensions and/or
nonlinearity exponents, as well as other classes of related nonlinear lattices.
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20.2 Theoretical Results

To present the analysis of [1], it is convenient to use a slightly modified (yet equiv-
alent, up to rescaling and gauge transformations) form of the DNLS

i u̇n + (un+1 + un−1)+ ν|un|2un = 0. (20.1)

In order to study the statistical mechanics of the system, we calculate the clas-
sical grand-canonical partition function Z . Using the canonical transformation
un =

√
An exp(iφn), the Hamiltonian expressed as

H =
∑

n

[(
u∗nun+1 + unu∗n+1

)+ ν
2
|un|4

]
(20.2)

becomes

H =
∑

n

2
√

An An+1 cos(φn − φn+1)+ ν
2

∑

n

A2
n . (20.3)

The partition function in this setting can be expressed as

Z =
∫ ∞

0

∫ 2π

0

∏

n

dφnd An exp[−β(H + μP)] , (20.4)

where the multiplier μ is analogous to the chemical potential introduced to ensure
conservation of the squared l2 norm P =∑n |un|2. Straightforward integration over
the phase variable φn yields

Z = (2π)N
∫ ∞

0

∏

n

d An I0(2β
√

An An+1)×

exp

[
−β
∑

n

(ν
4

(A2
n + A2

n+1)+ μ
2

(An + An+1)
)]
. (20.5)

This integral can be evaluated exactly in the thermodynamic limit of a large system
(N →∞) using the eigenfunctions and eigenvalues of the transfer integral operator
[3, 4],

∫ ∞

0
d An κ(An, An+1) y(An) = λ y(An+1), (20.6)

where the kernel κ is

κ(x, z) = I0
(
2β
√

xz
)

exp
[
−β

(ν
4

(
x2 + z2)+ μ

2
(x + z)

)]
. (20.7)
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Similar calculations were performed for the statistical mechanics of the φ4 field
[3, 4], and for models of DNA denaturation [5]. The partition function can, thus, be
obtained as Z � (2πλ0)N , as N → ∞ where λ0 is the largest eigenvalue of the
operator. From this expression the usual thermodynamic quantities such as the free
energy, F , or specific heat can be calculated. More importantly, for our purposes, the
averaged energy density, h = 〈H 〉/N , and the average excitation norm, a = 〈P〉/N ,
can be found as

a = − 1

βλ0

�λ0

�μ
, h = − 1

λ0

�λ0

�β
− μa. (20.8)

The average excitation norm a can also be calculated as

a = (1/Z)
∫ ∞

0

∏

n

d An An exp [−β (H + μP)] , (20.9)

where the integral again can be calculated using the transfer integral technique
[3, 4] and yields a = ∫∞

0 y2
0 (A)A d A, where y0 is the normalized eigenfunc-

tion corresponding to the largest eigenvalue λ0 of the kernel κ (Eq. (20.5)). This
shows that p(A) = y2

0 (A) is the probability distribution function (PDF) for the
amplitudes A. Subsequently, λ0, y0 were obtained numerically in [1]. However,
two limits (β → ∞ and β → 0) can also be explored analytically. In particular,
the minimum of the Hamiltonian is realized by a plane wave, un =

√
a exp imπ ,

whose energy density is h = −2a + νa2/2. This relation defines the zero temper-
ature (or the β = ∞) line. For the high temperature limit, β � 1, the modified
Bessel function in the transfer operator can be approximated to leading order, by
unity which, in turn, reduces the remaining eigenvalue problem to the approximate
solution,

y0(A) = 1√
λ0

exp

[
−β

4

(
νA2 + 2μA

)]
. (20.10)

Using this approximation and enforcing the constraint βμ = γ (where γ remains
finite as we take the limits β → 0 and μ → ∞), one can obtain h = ν/γ 2 and
a = 1/γ . Thus, we get h = νa2 at β = 0.

Figure 20.1 depicts (with thick lines) the two parabolas in (a, h)-space corre-
sponding to the T = 0 and T = ∞ limits. Within this region all considerations
of statistical mechanics in the grand-canonical ensemble are applicable and there is
a one-to-one correspondence between (a, h) and (β,μ). Thus, within this range of
parameter space the system thermalizes in accordance with the Gibbsian formalism.
However, the region of the parameter space that is experimentally (numerically)
accessible is actually wider since it is possible to initialize the lattice at any energy
density h and norm density a above the T = 0 line in an infinite system.

A statistical treatment of the remaining domain of parameter space was ac-
complished in [1] by introducing formally negative temperatures. However, the
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Fig. 20.1 From [1]: parameter space (a, h), where the shaded area is inaccessible. The thick lines
represent, respectively, the β = ∞ and β = 0 cases and thus bound the Gibbsian regime. The

dashed line represents the h = 2a+ ν
2

a2 curve along which the reported numerical simulations are

performed (pointed by the symbols). The dotted line shows the locus of points where the chemical
potential vanishes

partition function (20.4) is clearly not suited for that purpose since the constraint
expressed in the grand-canonical form fails to bound the Hamiltonian of Eq. (20.2)
from above. In all the alternative approaches of the study of negative temper-
atures a finite system of size N was thus considered. As suggested in [2] the
grand-canonical ensemble can be realized using the modified partition function
Z ′(β,μ′) = ∫ exp(−β(H+μ′P2))

∏
n dundu∗n, but this introduces long-range cou-

pling and μ′ will have to be of order 1/N . Now β can be negative since H + μ′P2

can be seen to be bounded from above when μ′ < −ν/2N . The important con-
sequence of this explicit modification of the measure is a jump discontinuity in the
partition function, associated with a phase transition. More explicitly, if one starts in
a positive T , thermalizable (in the Gibbsian sense) state in phase space with h > 0,
and continuously varies the norm, then one will, inevitably, encounter the β = 0
parabola. Hence, in order to proceed in a continuous way, a discontinuity has to be
assigned to the chemical potential. This discontinuity will destroy the analyticity
of the partition function as the transition line is crossed, and will indicate a phase
transformation according to standard statistical mechanics.

In order to characterize the dynamics of both phases (above and below the β = 0
line) and to verify that the system relaxes to a thermalized state, numerical exper-
iments were performed in [1]. The parameters (a, h) were restricted to the dashed
line of Fig. 20.1, choosing an appropriate perturbed phonon as initial condition. The
modulational instability of the latter [6] naturally gives rise to localized states. For
these initial conditions, the important question is whether relaxation to equilibrium
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Fig. 20.2 From [1]: probability distribution of A = |ψ |2 for three cases under (and on) the transi-
tion line. The solid lines show the results of simulations and the symbols are given by the transfer
operator. Curves are vertically shifted to facilitate visualization

is really achieved and whether different qualitative behavior is indeed observed on
the two sides of the β = 0 line.

Figure 20.2 shows three typical examples of what can be observed when the
energy-norm density point lies below the β = 0 line (the symbols refer to Fig. 20.1).
Since the initial condition is modulationally unstable, the energy density forms small
localized excitations but their lifetime is not very long and, rapidly, a stationary
distribution of the amplitudes An is reached (Fig. 20.2). Hence an equilibrium state
is reached as predicted by means of the transfer-operator method.

The scenario is found to be very different when the energy and norm densities
are above the β = 0 line. A rapid creation of ILMs due to the modulational in-
stability is again observed and is accompanied by thermalization of the rest of the
lattice. Once created however, these localized excitations remained mostly pinned
and because the internal frequency increased with amplitude their coupling with the
small-amplitude radiation was very small. This introduces a new time scale in the
thermalization process necessitating symplectic integration for as long as 106− 107

time units in order to reach a stationary PDF. This was also qualitatively justified by
the effective long-range interactions, introduced in the modified partition function,
which produce stronger memory effects as one observes regimes in phase space
which are further away from the transition line.

Typical distribution functions of the amplitudes are shown in Fig. 20.3. The pres-
ence of high-amplitude excitations is directly seen here. The positive curvature of
the PDF at small amplitudes clearly indicates that the system evolves in a regime of
negative temperature and the appearance of the phase transformation is signaled in
the dynamics by the appearance of the strongly localized, persistent in the long-time
asymptotics, ILMs.
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Fig. 20.3 From [1]: distribution of A = |ψ |2 for parameters (h, a) above the transition line (trian-
gles and stars as in Fig. 20.1.)

20.3 Recent Results

More recently, the statistical understanding of the formation of localized states and
of the asymptotic dynamics of the DNLS equation has been addressed in the works
of [7, 8].

The analysis of the former paper presented a complementary viewpoint to that of
[1] which attempted for the first time to address the thermodynamics of the states
within the localization regime. Assuming small-amplitude initial conditions, [7] ar-
gued that the phase space of the system can be divided roughly into two weakly
interacting domains, one of which corresponds to the low-amplitude fluctuations
(linear or phonon modes), while the other consists of the large-amplitude, localized
mode nonlinear excitations. A remarkable feature of that work is that based on a
simple partition of the energy H = H< + H> and of the norm P = P< + P>, into
these two broadly (and also somewhat loosely) defined fractions, one smaller than
a critical threshold (denoted by <) and one larger than a critical threshold (denoted
by >); it allows to compute thermodynamic quantities such as the entropy in this
localization regime. In particular, one of the key results of [7] is that for a partition
of K sites with large-amplitude excitations and N − K sites with small-amplitude
ones, it derives an expression for the total entropy (upon computing S<, S>, and
a permutation entropy due to the different potential location of the K and N − K
sites). This expression reads

S = N ln�+ P2
>

2E>
ln	, (20.11)

where � = (4P2
< − E2

<)/(4A<(N − K )) and 	 = 2P<N/P>E<, while K =
P2
>/(2E>). While some somewhat artificial assumptions are needed to arrive at
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the result of Eq. (20.11) [such as the existence of a cutoff amplitude radius R in
phase space], nevertheless, the result provides a transparent physical understand-
ing of the localization process. The contributions to the entropy stem from the
fluctuations [first term in Eq. (20.11)] and from the high-amplitude peaks (sec-
ond term in the equation). However, typically the contribution of the latter in the
entropy is negligible, while they can absorb high amounts of energy. The under-
lying premise is that the system seeks to maximize its entropy by allocating the
ideal amount of energy H< to the fluctuations. Starting from an initial energy H<,
this energy is decreased in favor of localized peaks (which contribute very little
to the entropy). The entropy would then be maximized if eventually a single peak
was formed, absorbing a very large fraction of the energy while consuming very
few particles. Nevertheless, practically, this regime is not reached “experimentally”
(i.e., in the simulations). This is because of the inherent discreteness of the sys-
tem which leads to a pinning effect of large-amplitude excitations which cannot
move (and, hence, cannot eventually merge into a single one) within the lattice.
Secondly, the growth of the individual peaks, as argued in [7], stops when the
entropy gain due to energy transfer to the peaks is balanced by the entropy loss
due to transfer of power. While placing the considerations of [7] in a more rig-
orous setting is a task that remains open for future considerations, this concep-
tual framework offers considerable potential for understanding the (in this case
argued to be infinite, rather than negative, temperature) thermal equilibrium state
of coexisting large-amplitude localized excitations and small-amplitude background
fluctuations.

On the other hand, the work of [8] extended the considerations of the earlier work
of [1] to the generalized DNLS model of the form

i u̇n + (un+1 + un−1)+ |un|2σun = 0. (20.12)

Our analytical considerations presented above are directly applicable in this case as
well, yielding a partition function

Z = (2π)N
∫ ∞

0

∏

n

d An I0(2β
√

An An+1)× (20.13)

exp

[
−β
∑

n

An
(
μ+ Aσn /(σ + 1)

)
]
. (20.14)

This can be again directly evaluated in the high-temperature limit, where the modi-
fied Bessel function is approximated as I0 ≈ 1, as

Z = (2π)N 1

(βμ)N

(
1− β	(σ + 1)

(βμ)σ+1

)
, (20.15)

with 	 denoting the 	 function. As a result, in this case,
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a = 1

βμ
− 	(σ + 1)

μ(βμ)σ+1
(20.16)

h = 	(σ + 1)

(βμ)σ+1
(20.17)

and the relation between the energy density h and the norm density a is generalized
from the σ = 1 limit as

h = 	(σ + 1)aσ+1, (20.18)

encompassing the parabolic dependence of that limit as a special case. It was once
again confirmed in the setting of [8] that crossing this limit of β = 0 results in
the formation of the large-amplitude, persistent few-site excitations. Another inter-
esting observation made in [8] is that in this limit of β = 0, the coupling terms
are inactive, hence, if additional dimension(s) are added to the problem, these do
not affect the nature of the critical curve of Eq. (20.18). In that sense, the role of
the dimensionality is different than the role of σ [with the latter being evident in
Eq. (20.18]. This is to be contradistincted with the situation regarding the excitation
thresholds or the thresholds for collapse, as discussed in Sect. III.2, whereby the
dimensionality d and the exponent σ play an equivalent role, since it is when their
product exceeds a critical value (in particular for dσ ≥ 2) that such phenomena
arise.

Finally, in the work of [8], the connection of these DNLS considerations with
the generally more complicated Klein–Gordon (KG) models was discussed. Much
of the above-mentioned phenomenology, as argued in [7], is critically particu-
lar to NLS-type models, due to the presence of the second conserved quantity,
namely of the l2 norm; this feature is absent in the KG lattices, where typically
only the Hamiltonian is conserved. [8] formalizes the connection of DNLS with
the KG lattices, by using the approximation of the latter via the former through
a Fourier expansion whose coefficients satisfy the DNLS up to controllable cor-
rections. Within this approximation, they connect the conserved quantity of the
KG model to the ones of the DNLS model approximately reconstructing the rel-
evant transition (to formation of localized states) criterion discussed above. How-
ever, in the KG setting this only provides a guideline for the breather forma-
tion process, as the conservation of the norm is no longer a true but merely an
approximate conservation law. This is observed in the dynamical simulations of
[8], where although as the amplitude remains small throughout the lattice the
process is well described by the DNLS formulation, when the breathers of the
KG problem grow, they violate the validity of the DNLS approximation and of
the norm conservation; thus, a description of the asymptotic state and of the
thermodynamics of such lattices requires further elucidation that necessitates a
different approach. This is another interesting and important problem for future
studies.
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