
Chapter 17
Solitary Wave Collisions

Sergey V. Dmitriev and Dimitri J. Frantzeskakis

17.1 Introduction and Setup

The well-known (see, e.g., [1] and references therein) elastic nature of the interac-
tion among solitons in the completely integrable one-dimensional (1D) nonlinear
Schrödinger (NLS) equation or in the completely integrable Ablowitz–Ladik (AL)
lattice [2, 3] generally ceases to exist when perturbations come into play. This is
due to the fact that, generally, perturbations are destroying the complete integra-
bility and as a result many different effects in soliton interactions come into play.
More specifically, in perturbed continuous (or discrete) NLS equations the outcome
of the the collision process (i.e., the soliton trajectories and soliton characteristics)
depends on the phase difference between two colliding solitons, emission of contin-
uum radiation during soliton collisions, as well as the excitation of solitons’ internal
modes.

Here, we will discuss soliton collisions in the discrete NLS equation in the usual
form,

i u̇n = −C�2un − |un|2un . (17.1)

We will firstly discuss the case of weak discreteness, C � 1, which is a nearly inte-
grable case: in the limit C →∞, Eq. (17.1) becomes the integrable 1D continuous
NLS equation i�tu = −(1/2)�2

xu − |u|2u, while the effect of a weak discreteness
may be partially accounted for by the perturbation term proportional to �4

xu. The
effect of such a weak discreteness on soliton collisions has been studied in Refs.
[4, 5]. Then the case of strong discreteness, C ∼ 1, will be discussed following
the results reported in [6] for Eq. (17.1), and also the results reported in [7] for the
following model:

i u̇n = −C�2un − δ|un|2un − 1− δ
2
|un|2(un+1 + un−1)+ ε|un|4un, (17.2)
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where δ, ε are two different perturbation parameters, providing tunable degree of
nonintegrability. In particular, for δ = ε = 0, Eq. (17.2) is reduced to the AL lattice
[2, 3], which is integrable even in the case of strong discreteness. On the other hand,
for ε = 0, Eq. (17.2) is reduced to the so-called Salerno model [8]. For ε = 0 and
δ = 1, Eq. (17.2) reduces to Eq. (17.1). Equation (17.2) has two integrals of motion,
namely it conserves a modified norm and energy (Hamiltonian) [7]. For δ = ε = 0
it supports the exact AL soliton solution [2, 3]

un(t) =
√

2C sinhμ
exp[ik(n − x)+ iα]

cosh[μ(n − x)]
, x = x0 + 2Ct

μ
sinhμ sin k ,

α = α0 + 2Ct

[
cos k coshμ+ k

μ
sinhμ sin k − 1

]
, (17.3)

where the parameters x0 and α0 are the initial coordinate and phase of the soliton,
respectively, while the soliton’s inverse width μ and the parameter k define the soli-
ton’s amplitude A and velocity V through the equations:

A =
√

2C sinhμ , V =
√

2C

μ
sinhμ sin k . (17.4)

Finally, we review the results reported in the literature for the collisions of soli-
tons in some physically relevant settings where discrete NLS equations are key
models. These settings include optical waveguide arrays (in the optics context),
and Bose–Einstein condensates (BECs) confined in optical lattices (in the atomic
physics context).

17.2 Collisions in the Weakly Discrete NLS Equation

Examples of two-soliton collisions in the weakly discrete Eq. (17.1) (for C = 15)
are presented in Fig. 17.1. Initial conditions were set employing the exact two-
soliton solution to the integrable NLS equation [9, 10]. The out-of-phase collision in
(a) and the in-phase collision in (b) are practically elastic, but they are very different
in the sense that in (a) solitons repel each other and their cores do not merge at
the collision point while in (b) the situation is opposite. The collision in (b) cor-
responds to the separatrix two-soliton solution to the integrable NLS equation [5].
Near-separatrix (nearly in-phase) collisions are strongly inelastic, as exemplified in
(c), where the solitons emerge from the collision with different amplitudes and ve-
locities. In (d), solitons’ amplitudes after collision, Ãi , are presented as the functions
of the initial phase difference �α0. Note the extreme sensitivity of the collision out-
come to the initial phase difference �α0 for the near-separatrix collisions (�α0 ≈ 0).
Of particular importance is the fact that in the inelastic near-separatrix collisions in
the regime of weak discreteness the energy given to the soliton’s internal modes
and to the radiation is negligible in comparison to the energy exchange between the
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Fig. 17.1 Collisions in the weakly discrete NLS equation Eq. (17.1) at C = 15. Upper panels in
(a)–(c) show |u(x, t)|2, while bottom panels show the regions with Re[u(x, t)] > 0.3 in order to
reveal the difference in the relative initial phase �α0 of solitons: in (a), (b), and (c), �α0 = −π, 0,
and 0.1, respectively. (d) Soliton amplitudes after collision Ãi as functions of �α0. The parameters
of the solitons before the collision are A1 = A2 = 0.98, V1 = −V2 = 0.05. (e) Comparison of the
real parts for two different exact two-soliton solutions to the NLS equation at the collision point.
Imaginary parts are similarly close. The first solution (dots) has A1 = A2 = 1, V1 = −V2 = 0.01,
while the second one (circles) has A1 = 1.1, A2 = 0.9, V1 = 0.0909, V2 = −0.1111. These two
solutions have the same norm and momentum and �α0 = 0. (After Ref. [5]; c© 2002 APS.)

solitons [4]. This is the main feature of the so-called radiationless energy exchange
(REE) effect in soliton collisions [11]. The REE in near-separatrix collisions can
be understood by the fact that the profiles of two different two-soliton solutions to
integrable NLS equation can be very close to each other at the collision point. An
example is given in (e) by comparing the real parts of solutions with A1 = A2 = 1,
V1 = −V2 = 0.01 (dots) and A1 = 1.1, A2 = 0.9, V1 = 0.0909, V2 = −0.1111
(circles). These two solutions have the same norm and momentum and �α0 = 0.
Their imaginary parts are similarly close. The presence of even weak perturbation
can easily transform such close solutions one into another without violation of the
conservation laws remaining in the weakly perturbed system.

For sufficiently small collision velocity, the REE effect can result in the fractal
soliton scattering in the weakly discrete NLS equation [4, 5]. Fractal soliton scatter-
ing in the weakly perturbed NLS equation was explained qualitatively in the frame
of a very simple model [4] and for the generalized NLS equation in the context
of a more elaborate collective variable approach [12, 13], based on the method of
Karpman and Solov’ev [14].

In Fig. 17.2a the solitons’ velocities after collision, Ṽi , are shown as functions
of the initial phase difference �α0 for Eq. (17.1) at C = 25. Initial velocities and
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Fig. 17.2 Fractal soliton scattering in the weakly discrete NLS equation (17.1) at C = 25. (a)
Soliton velocities after collision, Ṽi , as functions of initial phase difference �α0. (b) Blowup of the
region in (a) in the vicinity of �α0 = 0. (c) Lifetime of the two-soliton bound states as function
of �α0. (d), (e) Examples of two-soliton bound states with different lifetime L . Regions of the x, t
plane with |un |2 > 0.3 are shown. The corresponding values of the initial phase difference �α0

are indicated in (c). Initial soliton velocities are V1 = −V2 = 0.012 and initial amplitudes are
A1 = A2 = 1

amplitudes are V1 = −V2 = 0.012 and A1 = A2 = 1, respectively. The collisions
are inelastic in the vicinity of �α0 = 0 where the solitons’ velocities after collision
differ considerably from their initial velocities. Blowup of the narrow region in the
vicinity of �α0 = 0 presented in (b) reveals a complex behavior of Ṽi (�α0). Smooth
regions of these functions are separated by apparently chaotic regions. However, any
chaotic region being expanded reveals the property of self-similarity at different
scales (not shown in Fig. 17.2 but can be found in [4, 5]). The fractal soliton scatter-
ing can be explained through the following two facts: (i) in a weakly discrete system,
the solitons attract each other with a weak force and (ii) the REE between colliding
solitons is possible. As it is clearly seen from Fig. 17.2b, the chaotic regions appear
where Ṽi in smooth regions become zero. In these regions, the solitons after collision
gain very small velocities so that they cannot overcome their mutual attraction and
collide again. In the second collision, due to the momentum exchange, the solitons
can acquire an amount of energy sufficient to escape each other, but there exists a
finite probability to gain the energy below the escape limit. In the latter case, the
solitons will collide for a third time, and so on. Physically, the multiple collisions
of solitons can be regarded as the two-soliton bound state with certain lifetime L
(two examples are given in Fig. 17.2d, e). The probability P of the bound state with
the lifetime L was estimated to be P ∼ L−3 and this rate of decreasing of P with
increase in L does not depend on the parameters of the colliding solitons [4].

Importantly, the REE effect in near-separatrix collisions has been predicted from
the analysis of the two-soliton solution to the unperturbed integrable NLS equation
[5] and thus, the precise form of the perturbation is not really important for the
appearance of this effect. Moreover, it has been demonstrated that in the systems
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with more than one perturbation term, the collisions can be nearly elastic even in
the vicinity of �α0 = 0 when the effects of different perturbations cancel each
other [5, 7].

17.3 Collisions in the Strongly Discrete NLS Equation

Let us now consider the strongly discrete NLS Eq. (17.1) with the coupling constant
C now assumed to be a parameter of order O(1). In such a case, soliton collisions
may in principle be studied by means of a variational approximation (VA), as the
ones used in various works (see, e.g., [15, 16]) to study discrete soliton solutions of
the discrete nonlinear Schrödinger (DNLS) equation. However, in the case of soliton
collisions under consideration, a direct application of VA may produce equations
for the soliton parameters that could be very difficult to be expressed in an explicit
form and, thus, to be treated analytically or numerically. A simple variant of VA
was adopted in [6], where the variational ansatz was considered to be a combina-
tion of two discrete spikes, which was subsequently substituted into the continuous
NLS equation, with the Lagrangian

∫ +∞
−∞

[
i (u∗u̇ − uu̇∗)− |ux |2 + |u|4

]
dx . Using

this discreteness motivated ansatz in the continuum Lagrangian of the model, the
resulting variational equations predicted that the collision of two solitons with large
velocities leads to bounce, while the collision with small velocities gives rise to
merger of the solitons.

The above result can be confirmed by means of systematic simulations. Here,
following the analysis of [6], we use an initial condition for the DNLS equation
(17.1) suggested by the AL model (see Eq. (17.3)), namely,

u0 = B sech
[
W−1(n − x1)

]
exp

[
ia(n − x1)+

(
i

2

)
�φ

]

+B sech
[
W−1(n − x2)

]
exp

[
−ia(n − x2)−

(
i

2

)
�φ

]
. (17.5)

It is clear that Eq. (17.5) is a superposition of two far separated pulses with common
amplitude B and width W , initial phase difference �φ, and initial positions at x1,2.
The parameter a denotes the soliton wave number and, in fact, determines the initial
soliton speed. Fixing the soliton width as, e.g., W = 1, and using a as a main con-
trol parameter, it is possible to study outcomes of the collision for several different
values of the amplitude B , including B = sinh(1/W ) ≈ 1.1752 (corresponding to
the AL soliton), B = 1 (corresponding to the continuum NLS limit), and another
smaller value, B = 1/ sinh(1/W ) ≈ 0.851. Although these values are not very
different, the results obtained for them may differ dramatically, and they adequately
represent the possible outcomes of the collision. Moreover, using the initial condi-
tion Eq. (17.5), it is also possible to study on-site (OS) and inter-site (IS) collisions
(with the central point located, respectively, OS or at a midpoint between sites),
varying the initial positions x1 and x2.
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Fig. 17.3 The on-site collision, with x1,2 = ±30, for various values of the parameter a in the
case of B = 0.851. The intervals of merger with spontaneous symmetry breaking are separated by
regions of quasi-elastic collisions. In all the cases displayed herein C = 0.5

Figure 17.3 depicts several collision and merger scenarios that we now explain
in some detail. Let us first consider the case of OS collisions, with x1,2 = ±30,
and initial soliton amplitude B = 1.175 and 1 (below we will also consider that the
solitons have the same phase, i.e., �φ = 0). In the former case (B = 1.175), the
solitons cannot collide for a < 0.550 (as in this case these “taller” solitons encounter
a higher Peierls–Nabarro [PN] barrier), they move freely and collide merging to a
single pulse for 0.550 < a < 2.175 (with multiple collisions, if a is close to the
upper border of this interval), and they collide quasi-elastically for a > 2.175. In
the latter case (B = 1), and for 0 < a < 0.7755, the colliding solitons merge into
a single pulse, while for a > 0.7756, the solitons undergo a quasi-elastic collision
(as they separate after the collision). It is worth noting that these basic features of
this phenomenology (for B = 1) are correctly predicted by the aforementioned
VA devised in [6]. Nevertheless, some more peculiar characteristics can also be
identified, since in the interval 0 < a < 0.7755, there exist two subintervals, namely
0 < a < 0.711, where the solitons fuse into one after a single collision, and 0.711 <
a < 0.7755, where the fusion takes place after multiple collisions. Finally, in the
case of the smaller initial amplitude, B = 0.851, a new feature is found in intervals
a < 0.203 and 0.281 < a < 0.3. There, the solitons merge after multiple collisions,
which is accompanied by strong symmetry breaking (SB): the resulting pulse moves
to the left or to the right, at a well-defined value of the velocity, as is shown in
Fig. 17.4. Between these intervals, i.e., at 0.203 < a < 0.281, as well as in the case
a > 0.3, the collisions are quasi-elastic.
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Fig. 17.4 Left panel: The inter-site collision, with x1 = −31, x2 = 30, for a = 0.062 and B = 1.
Both trajectories of the colliding solitons (top) and their eventual profiles in terms of |u|2 ≡ |un |2
(bottom) are shown, with the latter picture illustrating the symmetry breaking. Right panel: The
quarter-site collision (x1 = −29.5, x2 = 30) for a = 0.7 and B = 1.175. Shown are the soliton
trajectories and the formation of an “M”-shaped merger (see inset). In all the cases displayed herein
C = 0.5

It should be noted that the SB mechanism and the collision-induced momentum
generation (recall that the lattice momentum is not conserved) were analyzed in [6].
As discussed in that work, the SB may be deterministic or spontaneous. The former
one is accounted for by the location of the collision point relative to the lattice,
and/or the phase shift between the solitons, while the momentum generated during
the collision due to the phase shift was found to depend on the solitons’ velocities.
As far as spontaneous SB is concerned, the modulational instability of a quasi-flat
plateau temporarily formed in the course of the collision was suggested as a possible
explanation.

On the other hand, in the case of IS collisions (e.g., with x1 = −31 and x2 = 30),
we expect a significant change in the phenomenology, as in this case the collision
point is at a local maximum of the PN potential, while in the OS case it was at a local
minimum. This important difference results in a strong reduction of the scale of the
initial velocity (determining the different outcomes of the IS collisions), roughly
by an order of magnitude, as compared to the OS case. Apart this reduction, most
features of the phenomenology discussed above for the OS collisions can also be
found in the case of IS collisions. Nevertheless, in the case of IS collisions with
the intermediate value of the amplitude B = 1, and for 0.062 < a < 0.075, lead
to spontaneous SB, with mutual reflection (rather than merger) of the solitons after
multiple collisions, see left panel of Fig. 17.4 (note that the collision results in a
merger for a < 0.061 and 0.075 < a < 0.089, while it is quasi-elastic for a >

0.089). Such a multiple-bounce window in the DNLS system, resembles a similar
effect that was found for φ4 kinks in [17, 18], but with an important difference
that in the kink-bearing models, spontaneous SB is impossible. Finally, it should
be mentioned that quarter-site collisions (corresponding, e.g., to x1 = −29.5 and
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x2 = 30) lead also to qualitatively similar results: for the smaller amplitude value
of B = 0.851 the collision results in the separation of solitons upon a single bounce
with SB for all values of a, while for the larger amplitude value of B = 1.175 there
exist windows of no collision (for 0 < a < 0.5), formation of a static bound state, in
the form of “M” (for 0.5 < a < 0.9, see right panel of Fig. 17.4) and quasi-elastic
collision with SB (for a > 0.9).

17.4 Strongly Discrete Nearly Integrable Case

Here, following [7], we discuss the weakly perturbed integrable AL system Eq.
(17.2), in the regime of high discreteness setting C = 0.78 and small values for
the perturbation parameters, δ and ε. In the simulations, initial conditions were set
according to the exact AL soliton solution in Eq. (17.3).

In Fig. 17.5 the soliton amplitudes after collision, Ãi , are shown as functions of
the initial phase difference �α0 for different coordinates of the collision point, xc,
with respect to the lattice: (a) xc = 0 (OS collision), (b) xc = 0.25, (c) xc = 0.5 (IS
collision), and (d) xc = 0.75. It is readily seen that the collisions are inelastic only
in the vicinity of �α0 = 0, the situation typical for the weakly perturbed integrable
systems. However, in contrast to the result presented in Fig. 17.1d for the weak
discreteness, in the highly discrete case, as it was already described in Sect. 17.3, the
collision outcome becomes extremely sensitive to the location of the collision point
with respect to the lattice. For example, collisions of in-phase solitons (�α0 = 0)
are practically elastic for xc = 0 and xc = 0.5, while they are strongly inelastic

Fig. 17.5 Soliton amplitudes after collision, Ãi , as the functions of the initial phase difference
�α0 for different coordinates of the collision point xc with respect to the lattice: (a) xc = 0 (on-site
collision), (b) xc = 0.25, (c) xc = 0.5 (inter-site collision), and (d) xc = 0.75. The soliton
parameters before the collision are μ1 = μ2 = 0.75, k1 = −k2 = 0.1. The model parameters are
δ = 0.04, ε = 0, and C = 0.78
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for xc = 0.25 and xc = 0.75. For any xc, in the vicinity of �α0 = 0, the collision
outcome is extremely sensitive to small variations in �α0, which is typical for the
near-separatrix collisions.

We emphasize again that in the weakly perturbed integrable system, also in the
case of strong discreteness, the dominant inelasticity effect is the REE between col-
liding solitons, while the radiation losses and the excitation of the soliton’s internal
modes are marginal even for the near-separatrix collisions with �α0 ≈ 0 [7].

The model Eq. (17.2) contains the perturbation parameters δ and ε (determining
the strength of the cubic and quintic perturbation terms, respectively). In Fig. 17.6
we show the maximal degree of inelasticity of the collision as a function of δ at
ε = 0 (a) and ε at δ = 0 (b). The ordinate is the maximal (over xc and �α0)
soliton amplitude after collision, Ãmax. The discreteness parameter is C = 0.78.
The soliton velocities and amplitudes before the collision are V1 = −V2 = 0.137
and A1 = A2 = 1.05, respectively.

The results presented in Fig. 17.6 reveal the asymmetry in the net inelasticity ef-
fect for positive and negative values of the perturbation parameters δ and ε. In (a) the
asymmetry appears for |δ| > 0.02 and in (b) for |ε| > 0.0025 and it is negligible for
smaller values of perturbation parameters. This asymmetry can be explained through
the influence of the soliton’s internal modes that exist, as it is well-known, only if the
perturbation parameter has the “right” sign [19]. To confirm this, we calculate the
spectrum of small amplitude vibrations of the lattice containing a stationary soliton
with frequency ω = 2C(coshμ − 1) (for the chosen parameters ω = 0.4). The
spectrum includes the phonon band � = ±[4C sin2(Q/

√
8C) + ω], where Q and

� are the phonon wave number and frequency, respectively, and it may include the
frequencies of soliton’s internal modes. The results are presented in Fig. 17.7. In (a)
and (b) we show the bifurcation of the internal mode frequency,ωIM, from the upper
edge of the phonon spectrum, �max, while in (c) and (d) from the lower edge of the
spectrum, �min. Particularly, we plot

√
ωIM −�max as a function of δ at ε = 0 (a),

and ε at δ = 0 (b), and also we plot
√

�min − ωIM as a function of δ at ε = 0 (c)
and ε at δ = 0 (d). Recall that C = 0.78.

Fig. 17.6 Maximal (over xc and �α0) soliton amplitude after collision as a function of (a) δ at
ε = 0 and (b) ε at δ = 0. The discreteness parameter is C = 0.78. The soliton velocities before
the collision are V1 = −V2 = 0.137 and the amplitudes before the collision are A1 = A2 = 1.05
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Fig. 17.7 Bifurcation of the soliton’s internal mode frequency ωIM from (a, b) the upper edge of
the phonon spectrum, �max, and (c, d) from the lower edge of the phonon spectrum, �min. In (a, c)
ε = 0, while in (b, d) δ = 0. In all cases the stationary soliton has frequency ω = 0.4 and the
discreteness parameter is C = 0.78

The numerical results show that the solitons emerge from the collision bearing
internal modes with frequencies corresponding to the lower edge of the spectrum
and, thus, it can be concluded that these modes can influence the collision outcome
but not the modes bifurcating from the upper edge.

Coming back to the asymmetry of the inelasticity of collisions with respect to the
change of the sign of perturbation parameter (see Fig. 17.6), it can now be concluded
that the net inelasticity effect is higher when the soliton’s internal modes come into
play. More precisely, at ε = 0 the collisions are more inelastic for δ > 0 when
the internal mode below the phonon band exists. Similarly, for δ = 0 collisions are
more inelastic for ε < 0, for the same reason.

We note in passing that a change of the sign of perturbation parameters switches
the stable OS and IS configurations as indicated in Fig. 17.7a, b.

17.5 Role of Soliton’s Internal Modes

As mentioned above, the REE is the dominant effect in soliton collisions in the
weakly perturbed NLS or AL systems. However, if the perturbation is not small,
the REE effect is mixed with radiation and possibly with excitation of the soliton’s
internal modes. In Sect. 17.4 we have already discussed the role of the soliton’s
internal modes and here we further elaborate on their role in the inelastic soliton
collisions.

Particularly, we will now investigate if the energy exchange between the soliton’s
internal and translational modes is possible in the perturbed NLS equation. Such
energy exchange plays an important role in the collisions among φ4 kinks result-
ing in several nontrivial effects such as separation after multiple-bounce collisions
[17, 18, 20–23]. In order to eliminate the influence of the location of the collision
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Fig. 17.8 (a) Bifurcation of the soliton’s internal mode frequency ωIM from the lower edge of the
phonon spectrum as the function of perturbation parameter ε at δ = 1, C = 50 for the stationary
soliton with frequency ω = 0.6. An internal mode exists only for ε < 0. Panels (b) and (c) show
the amplitudes of solitons as a function of time for moderately perturbed systems with ε = −0.15
and 0.15, respectively. Solitons having initial amplitudes A1 = A2 ≈ 1 and velocities V1 = −V2 =
0.05 collide at t ≈ 60 and they emerge from the collision with different amplitudes. Moreover, in
(b), high-amplitude internal modes with very long lifetime are excited, while in (c), they are not.
Initial phase difference in both cases is �α0 = 0.12

point with respect to the lattice we set in Eq. (17.2) C = 50 (extremely weak dis-
creteness) and take δ = 1, so that the cubic perturbation is absent and the only
perturbation remains to be the quintic term with coefficient ε.

In Fig. 17.8a we show the bifurcation of the soliton’s internal mode frequency
ωIM from the lower edge of the phonon spectrum �min = ω (where ω = 0.6 is the
soliton’s frequency) as a function of ε. The internal mode exists only for ε < 0.
The panels (b) and (c) of the same figure show the amplitudes of the solitons as
a function of time for ε = −0.15 and 0.15, respectively. Solitons having initial
amplitudes A1 = A2 ≈ 1 and velocities V1 = −V2 = 0.05 collide at t ≈ 60. The
initial phase difference is �α0 = 0.12.

Figure 17.8 clearly illustrates that in the case of ε < 0, when the internal mode
exists, the collision is more inelastic than in the case of ε > 0. In addition to this,
in the case of ε < 0 the solitons emerge from the collision bearing high-amplitude
internal modes with very long lifetime, while in (c) such modes are not excited.

Now we focus on the case of ε = −0.15 and study the symmetric in-phase
solitons (�α0 = 0) with different velocity V for solitons with initial amplitudes
A1 = A2 = 1. Relevant results are shown in Fig. 17.9. In (a) we plot the velocity
of the solitons after collision, Ṽ , as a function of V . For the collision velocity V >

V ∗ ≈ 0.42, the solitons separate after the collision while for V < V ∗ they merge.
An example of collision with merger for the collision velocity V = 0.4 is given in
(c) where only the particles with |un|2 > 0.2 are shown. No separation “windows”
in the region V < V ∗, typical for the kink collisions in φ4 model, are found. In (b),
for the velocities V < V ∗ we plot the maximal separation Smax of two solitons after
the first collision as a function of V . If the energy exchange between the soliton’s
internal and translational modes took place, one would see the maxima of Smax at the
resonant collision velocities, but nothing like that is observed. It should be pointed
out that the high-amplitude internal modes are excited during the collision, similar
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Fig. 17.9 Role of internal modes studied by colliding the symmetric in-phase solitons (�α0 = 0)
with velocity V in the moderately perturbed NLS equation Eq. (17.2) with C = 50 (extremely
weak discreteness), ε = −0.15, δ = 1. The initial soliton amplitudes are A1 = A2 = 1. (a) The
velocity of solitons after collision, Ṽ , is shown as a function of V . (b) The maximal separation
Smax of two solitons after the first collision is given as a function of V . (c) Example of collision for
the collision velocity V = 0.4. Shown are the particles with |un |2 > 0.2

to that shown in Fig. 17.8b but, in contrast to the φ4 case, they do not significantly
affect the translational motion of the solitons.

Another important note is the following: in the simulations presented in Fig. 17.9
we have excluded the REE effect by setting �α0 = 0. For nonzero �α0, in the vicin-
ity of �α0 = 0, the REE effect would completely change the collision outcome, and
particularly, the soliton separation after multi-bounce collisions could be observed.

17.6 Solitary Wave Collisions in Physically Relevant Settings

In this section, we will discuss some physically relevant settings where solitary wave
collisions in weakly discrete or discrete systems have been investigated. These in-
clude optical waveguide arrays in the nonlinear optics context, and BECs confined
in periodic potentials, so-called optical lattices, in the atomic physics context.

First, in the context of nonlinear optics, in [24] (see also related work in [25]), the
interaction of two solitary waves was studied experimentally in arrays of AlGaAs
coupled optical waveguides. In this case, the relevant mathematical model is the
discrete cubic NLS equation discussed above. The focus in this experimental work
was on the case of the interaction of solitons with zero initial velocities (in terms
of the nomenclature of the present work), and a result coinciding with our findings
was that, in the limit of the zero collision velocity, two solitons with the zero phase
difference always merge into one.

Soliton mobility [26] and collisions [27–29] were studied theoretically in the
framework of a discrete NLS equation with a saturable nonlinearity. In particular,
the nonlinear term in the DNLS equation was taken to be of the form
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−βun/(1 + In), (here In ∼ |un|2 is the normalized light peak intensity and β =
const.). This type of the discrete NLS equation is also called Vinetskii–Kukhtarev
model (VK) [30], which is particularly relevant to waveguide arrays created in pho-
torefractive crystals. The latter have attracted much attention (see, e.g., the reviews
[31, 32]) as they offer real-time control of the waveguide array, as well as strong
and tunable nonlinearity [33]. Note that for low-norm solutions the VK model is
reduced to the cubic discrete NLS equation.

In [27] it was found that, similarly to the results of Sect. 17.2, low-norm solitons
with small velocities merge and remain pinned, creating a breathing state, while
for high enough velocities, the solitons are reflected. However, high-norm moving
solutions are also allowed in the VK model [26, 29] (contrary to the cubic DNLS
case, due to the potential vanishing of the PN barrier relevant to the VK case). When
high-norm (power) solutions collide the effect of, so-called, breather creation can
be observed [27, 29], consisting of a partial trapping of the energy of the incoming
solitons, together with the reflection of the initial solitons. Note that this effect was
previously found in the continuum counterpart of the model [34].

Symmetric collisions of two discrete breathers in the VK model were also inves-
tigated in [28]. The strong correlation of the collision properties and the parameters
of colliding breathers (power, velocity, and phase difference), lattice parameters and
position of the collision point was related to the internal structure of the colliding
breathers and energy exchange with the phonon background. Several types of col-
lision were observed in wide parameter space: elastic (quasi-elastic) OS (IS) colli-
sion, breather creation, fusion of colliding breathers, and creation of two asymmetric
breathers (after IS collision).

Soliton collisions were also studied in the context of BECs trapped in a periodic
potential created by the interference of optical beams, the so-called optical lattice
[35]. In this case, the pertinent model describing the evolution of the BEC wave
function is the continuous NLS (with a periodic external potential) equation or the
discrete NLS equation, for a weak or strong (as compared to the system’s chemical
potential) optical lattice strength, respectively [36]. In the former case, collisions of
the pertinent, so-called lattice solitons have been studied in various works (see, e.g.,
[37, 38]), while the transition from the continuous to discrete regime was studied
in [39]. In this work, the outcome of the collision between two gap solitons was
shown to serve as a measure of the discreteness imposed on the BEC by the opti-
cal lattice. Moreover, in [40], soliton collisions were studied in the framework of
a strongly discrete NLS equation with a periodically time-modulated nonlinearity
coefficient. This model describes a BEC confined in a strong optical lattice, whose
interatomic interactions (effectively described by the nonlinear term in the NLS
model) are controlled by time-periodic external fields, according to the so-called
Feshbach resonance management technique [41]. Such a time-dependent variation
of the nonlinearity was shown to assist the discrete soliton motion, and a study of
soliton collisions revealed that there exist two different types of the interaction: elas-
tic bounce, or bounce with mass transfer from one soliton to the other. It is relevant
to note that, in contrast to the results of Sect. 17.3 (where the DNLS equation had
constant coefficients), in the model analyzed in [40] a merger of colliding solitons
into a standing one was not observed.



324 S.V. Dmitriev and D.J. Frantzeskakis

17.7 Conclusions

The above discussion of the effects observed in solitary wave collisions in 1D DNLS
equation in the regimes of weak and strong discreteness for nearly integrable and
nonintegrable cases can be summarized as follows.

For nearly integrable systems, i.e., for the integrable NLS equation perturbed by
weak discreteness and for the weakly perturbed AL chain at any degree of discrete-
ness, the inelasticity of collisions is solely due to the radiationless energy exchange
between solitons with relatively small amount of radiation and almost no excitation
of the soliton’s internal modes. This is so because the radiationless energy exchange
grows proportionally to the perturbation parameter [5, 11] while the radiation and
excitation of the internal modes are the second-order effects [19].

The radiationless energy exchange happens in the vicinity of multisoliton sep-
aratrix solutions to the corresponding integrable equations [5]. Typical features of
near-separatrix collisions in nearly integrable systems are as follows:

– Collisions are inelastic in a narrow window of parameters of colliding solitons
while outside this window they are practically elastic. Examples are presented in
Fig. 17.1d for the weakly discrete NLS equation and in Fig. 17.5 for the weakly
perturbed AL lattice at high discreteness. Collisions are inelastic only for nearly
in-phase (near separatrix) collisions with �α0 ∼ 0 [5].

– Near-separatrix collisions are naturally extremely sensitive to small variations in
the collision phase �α0 and, for highly discrete systems, to the location of the
collision point with respect to the lattice (see Figs. 17.1d and 17.5).

– The fact that the inelasticity of soliton collisions for weakly perturbed systems in-
creases linearly with the perturbation parameter is illustrated by Fig. 17.6. Panel
(a) suggests that in the case ε = 0, the radiationless energy exchange effect is
dominant within |δ| < 0.02, while from panel (b), for δ = 0, it is dominant for
|ε| < 0.0025. For larger values of perturbation parameters, the soliton’s internal
modes start to affect the result of collision and the net inelasticity effect becomes
asymmetric for positive and negative values of perturbation parameters.

– The radiationless energy exchange effect in near-separatrix collisions has been
predicted from the analysis of the two-soliton solution to the unperturbed inte-
grable NLS equation [5] and thus the actual type of perturbation is not important
for the appearance of this effect. It has been also demonstrated that in the systems
with more than one perturbation term, the collisions can be nearly elastic even in
the vicinity of �α0 = 0 when the effects of different perturbations cancel each
other [5, 7].

– The inelasticity of collision increases with decrease in collision velocity. This
feature is again related to the near-separatrix nature of the collision. Fast solitons
spend a shorter time in the vicinity of separatrix during the collision and their
properties are less affected than that of slow solitons.

– The radiationless energy exchange can be responsible for the fractal soliton scat-
tering [4] if they collide with sufficiently small velocities, which is illustrated by
the results presented in Fig. 17.2.
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– The radiationless energy exchange effect is possible only if the number of pa-
rameters of the colliding solitons exceeds the number of conservation laws in
the weakly perturbed system [42]. For example, in the weakly discrete Frenkel–
Kontorova model, the conservation of energy (exact) and momentum (approxi-
mate) sets two constraints on the soliton parameters and, as a result, the two-kink
collisions are practically elastic. A three-kink collision has one free parameter
and radiationless energy exchange becomes possible [43]. Solitons in the NLS
equation and AL chain have two parameters so that the two-soliton collisions
are described by four parameters. If in the weakly perturbed NLS equation or
AL lattice, the number of exact and approximate conservation laws is less than
four (typically this is so) then the radiationless energy exchange is possible in
two-soliton collisions.

– In the moderately or strongly perturbed systems the soliton collisions become
even more complicated because in addition to the radiationless energy exchange
the excitation of the soliton’s internal modes and radiation become important and
the net inelasticity effect is an admixture of these three effects.

Particularly, for the strongly discrete, nonintegrable case, the merger of col-
liding solitons can be observed in certain range of collision velocities (see the
results shown in Figs. 17.3 and 17.4). Another interesting effect of strong nonin-
tegrability is the symmetry breaking effect described in Sect. 17.3. In the case of
high discreteness, the collision outcome in a nonintegrable system is extremely
sensitive to location of the collision point with respect to the lattice.

– When the soliton internal modes come into play, the radiationless energy
exchange effect becomes more pronounced (compare panels (b) and (c) of
Fig. 17.8). The soliton internal modes result in the asymmetry of the net in-
elasticity effect with respect to the change of sign of perturbation parameter,
see Fig. 17.6. In Sect. 17.5 we have analyzed the influence of high-amplitude
soliton’s internal modes on the collision outcome for the NLS equation with
moderate quintic perturbation in the absence of the radiationless energy exchange
effect. We found that, in spite of the fact that the high-amplitude internal modes
are excited during the collision, they do not significantly affect the translational
motion of the solitons. This behavior contrasts that observed for the colliding φ4

kinks
[17, 18, 20–23].

17.8 Future Challenges

Before closing, we would like to mention various interesting open problems that, in
our opinion, deserve to be studied in more detail.

(i) In many physically relevant cases, 2D and 3D models describe realistic situa-
tions better than 1D models, but the solitary wave collisions in higher dimen-
sions have been studied much less than in the 1D case.
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(ii) Collisions between discrete vector solitons have not been studied in detail. In
fact, although this issue was studied theoretically for waveguide arrays with
the Kerr-type nonlinearity [44] (relevant experiments were reported in [45]),
the case of vector soliton collisions in coupled discrete Vinetskii-Kukhtarev
models has not been considered so far. This is an interesting direction, since
relevant experimental [2] and theoretical [46] results have already appeared re-
cently. Moreover, as per our previous remark, discrete vector soliton collisions
in higher dimensional settings have not been studied in detail yet. Such studies
would be particularly relevant in the context of multicomponent and spinor
BECs [36].

(iii) The interplay between various mechanisms controlling the inelasticity of soli-
ton collisions (e.g., radiationless energy exchange, internal modes, and radia-
tion) is not fully understood yet even in 1D settings.

(iv) For nearly integrable models, the collision outcome depends on the number of
exact and approximate conservation laws remaining in the system. However,
so far, a detailed study on how a perturbation affects the conservation laws of
an integrable equation is still missing.

(v) Some results presented here are not fully understood and certainly deserve a
more careful consideration. For example, as concerns the findings of Sect. 17.5,
it is worth noting the following. Contrary to what is observed in kink collisions
in the φ4 model, soliton collisions in continuum NLS equation with quintic
perturbation do not reveal a noticeable interaction between the soliton’s trans-
lational and internal modes. This observation should be better understood and
explained.
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