
Chapter 16
Exceptional Discretizations of the NLS:
Exact Solutions and Conservation Laws

Sergey V. Dmitriev and Avinash Khare

16.1 Introduction

Discrete nonlinear equations that admit exact solutions are interesting from the
mathematical point of view and they also help us understand the properties of some
physically meaningful discrete nonlinear systems. Completely integrable discrete
equations, such as the Ablowitz–Ladik (AL) lattice [1, 2], constitute one class of
such equations. Recently, it has been realized by many researchers that noninte-
grable lattice equations can have subtle symmetries that allow for particular exact
solutions that propagate with particular velocities and interact with each other in-
elastically, in contrast to the AL solitons that propagate with arbitrary velocity and
collide elastically. For vanishing velocity, one can talk about translationally invariant
(TI) stationary solutions (i.e., stationary solutions with arbitrary shift along the lat-
tice). Nonintegrable lattice equations supporting exact moving and/or TI stationary
solutions are often called exceptional discrete (ED) models and a natural question
is how to identify such models. The problem is often viewed differently, namely,
one can look for exceptional solution (not model) parameters when a given lattice
equation is satisfied exactly. Exact stationary and moving solutions to nonintegrable
discrete nonlinear Schrödinger (DNLS) equations have been constructed and ana-
lyzed in a number of recent works [3–14].

In this contribution we first review the existing literature on the exact solutions
to the nonintegrable DNLS equations and closely related discrete Klein–Gordon
models. Then we report on some analytical and numerical results for the DNLS
equations with general cubic nonlinearity.

16.2 Review of Existing Works

The search for exact solutions to the nonintegrable DNLS systems has been carried
out in two main directions: the first one is the search for DNLS models supporting
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stationary TI solutions, while the second one is the search for exact moving solutions
to various DNLS equations. Let us summarize the results of those studies.

16.2.1 Stationary Translationally Invariant Solutions

The problem at hand can be rephrased as follows: the aim is to discretize the gener-
alized NLS equation of the form

iut + 1

2
uxx + G ′(|u|2)u = 0, (16.1)

in a way so that the resulting DNLS equation supports the TI stationary solutions.
Here G(ξ ) is a real function of its argument and G ′(ξ ) = dG/dξ . It is usually
assumed that the DNLS equation that one is looking for has the form

i
dun

dt
= −ε�2un − f (un−1, un, un+1), (16.2)

where �2un ≡ un−1−2un+un+1 is the discrete Laplacian, ε is the coupling constant,
the nonlinear function f in the continuum limit (ε →∞) reduces to G ′(|u|2)u and
possesses the property

f (aeiωt , beiωt , ceiωt ) = f (a, b, c)eiωt . (16.3)

Seeking stationary solutions of Eq. (16.1) in the form

u(x, t) = F(x)eiωt, (16.4)

we reduce it to an ordinary differential equation (ODE) for the real function F(x),

D(x) ≡ d2 F

dx2
− 2ωF + 2FG ′(F2) = 0 , (16.5)

and the problem of finding the ED NLS for (16.1) is effectively reduced to finding
the ED forms of the above ODE. Suppose that a discrete analog of Eq. (16.5) that
supports TI solutions (with arbitrary shift x0) is found in the form

D(Fn−1, Fn, Fn+1) = 0 , (16.6)

then the original problem of discretization of Eq. (16.1) can be solved by substituting
in Eq. (16.6), Fn with un or u�n in such a way so as to present it in the form of
Eq. (16.2), satisfying the property as given by Eq. (16.3). Usually there are many
possibilities to do so.

ED models supporting TI stationary solutions with arbitrary x0 differ from con-
ventional discrete models supporting only discrete sets of stationary solutions, lo-
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cated symmetrically with respect to the lattice, typically in the on-site and inter-
site configurations, one of them being stable and corresponding to an energy mini-
mum, while another one being unstable and corresponding to an energy maximum.
The energy difference between these two states defines the height of the so-called
Peierls–Nabarro potential (PN). TI stationary solutions do not experience this peri-
odic potential and can be shifted quasi-statically along the chain without any energy
loss. For the non-Hamiltonian models with path-dependent forces the discussion of
the PN energy relief is more complicated but in this case too, zero work is required
for quasi-static shift of a TI solution along the path corresponding to continuous
change of x0.

The problem of discretization of Eq. (16.5) in the form of Eq. (16.6) has been
addressed in different contexts, and will be discussed in the rest of this section.

16.2.1.1 Integrable Maps

From the theory of integrable maps [15–17] it is known that some of the second-
order difference equations of the form of Eq. (16.6) can be integrated, resulting in
the first-order difference equation of the form U (Fn−1, Fn, K ) = 0, where K is
the integration constant. Such second-order difference equations can be regarded
as exactly solvable because the solution Fn can now be found iteratively, starting
from any admissible initial value F0 and solving at each step the algebraic problem.
Continuous variation of the initial value F0 results in continuous shift x0 of the
corresponding stationary solution along the lattice.

Several years ago, an integrable map was shown to be directly related to the
second-order difference equations supporting the Jacobi elliptic function (JEF) so-
lutions [15]. In [16], for the nonlinear equation d2 F/dx2 + a F + bF3 = 0, the
discrete analog of the form Fn−1 − 2Fn + Fn+1 + a[c11 Fn + c12(Fn−1 + Fn+1)] +
b[c21 Fn−1 Fn Fn+1 + c22 F2

n (Fn−1 + Fn+1)] = 0 was studied and its two-point re-
duction was found to be of the QRT form [15]. This type of nonlinearity was later
studied in [18] and its two-point reduction was rediscovered in [19]. The QRT map
appears in many other studies of discrete models, for example, in [11, 20, 21]. Re-
cent results on the integrable maps of the non-QRT type can be found in [17].

One interesting implementation of the theory of integrable maps can be found in
[13] where the methodology of [22] was employed. In this work stationary solutions
to the DNLS equation with saturable nonlinearity have been analyzed through the
corresponding three-point map. It was found that for some selected values of model
parameters, the map generates on the plane (Fn, Fn+1) a set of points belonging
to a line, having topological dimension equal to one. This effective reduction of
dimensionality of the map means the possibility of its two-point reduction, resulting
in vanishing PN potential.

16.2.1.2 Exceptional Discrete Klein–Gordon Equations

Equation (16.5) can be viewed as the static version of the Klein–Gordon equation,
Ftt = Fxx − V ′(F), with the potential function



296 S.V. Dmitriev and A. Khare

V (F) = ωF2 − G
(
F2) . (16.7)

Thus, the ED Klein–Gordon equation can be used to write down the ED NLS models
(and vice versa).

The first successful attempt in deriving the ED Klein–Gordon equation was made
by Speight and Ward [23–25] using the Bogomol’nyi argument [26], and also by
Kevrekidis [27]. In both cases, the authors obtained the two-point reduction of the
corresponding three-point discrete models. While the Speight and Ward discretiza-
tion conserves the Hamiltonian, the Kevrekidis discretization conserves the classi-
cally defined momentum. These works have inspired many other investigations in
this direction [18, 19, 21, 28–36]. Later it was found that both the models can be
derived using the discretized first integral (DFI) approach [21, 29].

To illustrate the DFI approach, we write down the first integral of Eq. (16.5),

U (x) ≡ (F ′)2 − 2ωF2 + 2G
(
F2
)+ K = 0 , (16.8)

where K is the integration constant, and discretize it as

U (Fn−1, Fn, K ) ≡ (Fn − Fn−1)2

h2
− 2ωFn−1 Fn + 2G (Fn−1, Fn)+ K = 0 . (16.9)

It is assumed that, in the above equation, G(Fn−1, Fn) reduces to G(F2) in the con-
tinuum limit. On discretizing the left-hand side of the identity (1/2)dU/d F = D(x),
we obtain the discrete version of Eq. (16.5),

D(Fn−1, Fn, Fn+1) ≡ U (Fn, Fn+1)−U (Fn−1, Fn)

Fn+1 − Fn−1
= 0 . (16.10)

Clearly, solutions to the three-point problem D(Fn−1, Fn, Fn+1) = 0 can be found
from the two-point problem U (Fn−1, Fn, K ) = 0. We note that Eq. (16.10) was first
proposed in [27] and it was used in [3, 10] to derive ED for Eq. (16.1) conserving
norm or modified norm and momentum.

16.2.1.3 Jacobi Elliptic Function Solutions

Some DNLS equations (and discrete Klein–Gordon equations) with cubic nonlin-
earity support exact TI stationary [6, 7, 9, 28, 37, 38] and even moving [6, 7, 11]
solutions in terms of Jacobi elliptic functions (JEF). Special cases of these solu-
tions describe the TI stationary or moving bright and dark solitons having sech and
tanh profiles, respectively. Such solutions can be derived with the help of the JEF
identities reported in [39].

JEF solutions are important in their own right, and besides, they also help in
establishing the integrable nonlinearities of the QRT type [11]. It is worth pointing
out that, so far, no JEF solutions are known to the Kevrekidis ED model given by
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Eq. (16.10), thereby indicating that the integrable map to this model is perhaps of
the non-QRT type.

An inverse approach to the general problem of finding the kink or the pulse-
shaped traveling solutions to the lattice equations was developed by Flach and
coworkers [40]. They showed that for a given wave profile, it is possible to generate
the corresponding equations of motion. In this context, also see the earlier works
[41, 42]. A similar idea has also been used in other studies, see e.g., [43].

16.2.2 Exact Moving Solutions to DNLS

Exact moving solutions to the different variants of the DNLS, as was already men-
tioned, have been derived in terms of the JEF [6, 7, 11]. They have also been found,
for DNLS with generalized cubic and saturable nonlinearities, with the help of spe-
cially tuned numerical approaches [4, 5, 8, 14]. These works suggest that the moving
soliton solutions can be expected in models where, for different model parameters
(or/and soliton parameters), there is a transition between stable on-site and inter-site
configurations for stationary solitons. Contrary to the DNLS with saturable nonlin-
earity, the solitons in the classical DNLS do not show such transition and moving
solutions have not been found for this system [14].

In our recent work [11] on DNLS with general cubic nonlinearity, we have
derived not only moving JEF but also moving sine solutions (also given here in
Sect. 16.3). Exact, extended, sinusoidal solutions of the lattice equations have been
recently found by several authors [43–47]. It has been proposed that such solutions
can be used to construct approximate large-amplitude localized solutions by trun-
cating the sine solutions [44, 48].

16.3 Cubic Nonlinearity

Here we discuss Eq. (16.2) with the function f given by

f = α1|un|2un + α2|un|2 (un+1 + un−1)+ α3u2
n

(
u�n+1 + u�n−1

)

+ α4un
(|un+1|2 + |un−1|2

)+ α5un
(
u�n+1un−1 + u�n−1un+1

)

+ α6u�n
(
u2

n+1 + u2
n−1

)+ α7u�nun+1un−1 + α8
(|un+1|2un+1 + |un−1|2un−1

)

+ α9
(
u�n−1u2

n+1 + u�n+1u2
n−1

)+ α10
(|un+1|2un−1 + |un−1|2un+1

)

+ α11 (|un−1un| + |unun+1|) un + α12 (un+1|un+1un| + un−1|unun−1|)
+ α13 (un+1|un−1un| + un−1|unun+1|)
+ α14 (un+1|un−1un+1| + un−1|un−1un+1|) , (16.11)

where the real-valued parameters αi satisfy the continuity constraint
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α1 + α7 + 2 (α2 + α3 + α4 + α5 + α6 + α8

+ α9 + α10 + α11 + α12 + α13 + α14) = ±2 , (16.12)

with the upper (lower) sign corresponding to a focusing (defocusing) nonlinearity.
Note that Eq. (16.11) is the most general function with cubic nonlinearity which is
symmetric under un−1 ↔ un+1.

Particular cases of the nonlinearity (16.11) have been studied in a number of
works, many of them are listed in the introduction of [8]. Nonlocal cubic terms
coupling the nearest neighbor lattice points naturally appear in the DNLS models
approximating continuous NLS with periodic coefficients [49].

16.3.1 Conservation Laws

It is easily shown that DNLS Eqs. (16.2) and (16.11) with arbitrary α1, α4, α5, α6,

α11, α12, with α2 = α3 + α8, and α7 = α9 = α10 = α13 = α14 = 0, conserve the
norm

N =
∑

n

unu�n . (16.13)

On the other hand, for arbitrary α2, α14, with α1+α6 = α4, α5 = α6, α4+α5 = α7,
α8 + α9 = α10, α12 = α13 and α3 = α11 = 0, the model conserves the modified
norm

N1 =
∑

n

(
unu�n+1 + u�nun+1

)
. (16.14)

Instead, if only α7 is nonzero while all other αi = 0, then yet another type of modi-
fied norm, given by

N2 =
∑

n

(
unu�n+2 + u�nun+2

)
, (16.15)

is conserved.
Further, for arbitrary α2 and α3, with α4 + α6 = α1, α5 = α6, α5 + α7 = α4,

α9 + α10 = α8, and α11 = α12 = α13 = α14 = 0, Eqs. (16.2) and (16.11) conserve
the momentum operator

P1 = i
∑

n

(
un+1u�n − u�n+1un

)
. (16.16)

Instead, for arbitrary α5 and α7 while all other αi = 0, another type of momentum
operator, given by
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P2 = i
∑

n

(
un+2u�n − u�n+2un

)
, (16.17)

is conserved.
On the other hand, for arbitrary α1, α4, and α6, with 2α3 = 2α8 = α2, and

α5 = α7 = α9 = α10 = α11 = α12 = α13 = α14 = 0, Eq. (16.2) with f given by
Eq. (16.11) can be obtained from the Hamiltonian

H =
∑

n

[
|un − un+1|2 − α1

2
|un|4 − α6

2

[(
u�n
)2

u2
n+1 +

(
u�n+1

)2
u2

n

]

− α4|un|2|un+1|2 − α2

2

(|un|2 + |un+1|2
) (

u�n+1un + u�nun+1
)]
, (16.18)

by using the equation of motion

i u̇n = [un, H ]P B , (16.19)

where the Poisson bracket is defined by

[U, V ]P B =
∑

n

[
dU

dun

dV

du�n
− dU

du�n

dV

dun

]
. (16.20)

Thus in this model, the energy (H ) is conserved.
Finally, in case one considers a rather unconventional Poisson bracket given by

[U, V ]P B1 =
∑

n

[
dU

dun

dV

du�n
− dU

du�n

dV

dun

][
1+ (α2 − α3) |un|2

+α8
(|un+1|2 + |un−1|2

)+ α7un
(
u�n+1 + u�n−1

)+ α7u�n(un+1 + un−1)

]
, (16.21)

then the DNLS Eq. (16.2) with f given by Eq. (16.11) can be obtained from the
Hamiltonian

H1 =
∑

n

[|un − un+1|2 − β|un|2
]
, (16.22)

by using the equation of motion

i u̇n = [un, H1]P B1 , (16.23)

provided

α7 = 2α5 = 2α6 , α8 = α9 = α10 , α3 = (β − 2)α5 , α4 = (β − 2)α8 + α5 ,

α1 = (β − 2)(α2 − α3) , α11 = α12 = α13 = α14 = 0 . (16.24)

Thus the energy (H1) is conserved in this model.
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A few summarizing remarks are in order here:

1. In case only α2 is nonzero while all other αi = 0, we have the integrable AL
lattice with infinite number of conserved quantities. Among them are, e.g., N1,
P1, and H1 with β = 2, but not N , N2, P2, and H .

2. In the case of the conventional DNLS model (i.e., only α1 
= 0), N and H are
conserved.

3. The model with only α7 nonzero conserves N2 and P2.
4. N and P1 are conserved in case only α2 and α3 are nonzero and α2 = α3.
5. N1 and P1 are conserved in case α2 is arbitrary while α1 = α4 = α7, α8 = α10

while other αi = 0.
6. The model conserving H also conserves N .
7. The model conserving H1 also conserves N1 in case β = 2 and α8 = α9 =
α10 = 0.

16.3.2 Two-Point Maps for Stationary Solutions

With the ansatz un(t) = Fne−iωt , we obtain the following difference equation from
the DNLS Eqs. (16.2) and (16.11)

ε
[
Fn−1 − (2− ω/ε)Fn + Fn+1

]+ α1 F3
n + γ1 F2

n (Fn−1 + Fn+1)

+ γ2 Fn
(
F2

n−1 + F2
n+1

)+ γ3 Fn−1 Fn Fn+1

+ α8
(
F3

n−1 + F3
n+1

)+ γ4 Fn−1 Fn+1 (Fn−1 + Fn+1) = 0 , (16.25)

where, for convenience, we have introduced the following notation:

γ1 = α2 + α3 + α11, γ2 = α4 + α6 + α12,

γ3 = 2α5 + α7 + 2α13, γ4 = α9 + α10 + α14.
(16.26)

In the special case of

α8 = γ4 , α1 = γ2 = γ3 , 2α1 + γ1 + 2α8 = 1 , (16.27)

the first integral of the second-order difference Eq. (16.25) reduces to the two-point
map

U (Fn−1, Fn, K ) ≡ ε [(F2
n−1 + F2

n

)− (2− ω/ε)Fn−1 Fn
]

+ α1
(
F2

n−1 + F2
n

)
Fn−1 Fn + γ1 F2

n−1 F2
n + α8

(
F4

n−1 + F4
n

)+ K = 0 , (16.28)

where K is an integration constant. This is so because Eq. (16.25) can be rewritten
in the form
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U (Fn, Fn+1)−U (Fn−1, Fn)

Fn+1 − Fn−1
= 0 , (16.29)

and clearly, if U (Fn−1, Fn) = 0, then indeed Eq. (16.25) is satisfied.
On the other hand, in case only γ1 and γ3 are nonzero while α1 = α8 = γ2 =

γ4 = 0, then the two-point map is given by

W (Fn−1, Fn, K ) ≡ F2
n−1 + F2

n −
Y F2

n−1 F2
n

(2− ω/ε) − 2Z Fn−1 Fn − K Y

(2− ω/ε) = 0 ,

(16.30)
which is of the QRT form [15, 16]. Here K is an integration constant while

Z = (2− ω/ε)2 − Kγ 2
3

2(2− ω/ε)+ 2Kγ1γ3
, Y = 2γ1 Z + γ3 . (16.31)

This is because, in this case, Eq. (16.25) can be rewritten in the form

(2− ω/ε)
2Z (Fn+1 − Fn−1)

{
W (Fn, Fn+1)−W (Fn−1, Fn)

+ γ3

(2− ω/ε)
[
F2

n+1W (Fn−1, Fn)− F2
n−1W (Fn, Fn+1)

] } = 0, (16.32)

and clearly, if W (Fn−1, Fn, K ) = 0, then indeed Eq. (16.3.2) is satisfied. As ex-
pected, in the special case of γ3 = 0 so that only γ1 is nonzero, Eq. (16.3.2) reduces
to Eq. (16.29).

We want to emphasize that the two-point maps, Eqs. (16.28) and (16.30), allow
one to find exact solutions to Eq. (16.25) iteratively, starting from any admissible
value of F0 and solving at each step an algebraic problem. Thus, such solutions
define the exact TI stationary solutions to the DNLS Eq. (16.2) with the nonlinearity
function f given by Eq. (16.11).

It is worth pointing out here that some of the exact stationary TI and non-TI
solutions (specially the short period and the sine solutions) can also follow from
factorized two-point and reduced three-point maps. Several examples of such solu-
tions and their relation with short-period or aperiodic stationary solutions and even
with the sine solution can be found in [36]. Here we give two illustrative examples
of the TI solutions which follow from factorized two-point and reduced three-point
maps.

It is easy to check that Eq. (16.25) has the exact period-four solution

Fn = (..., a, b,−a,−b, ...) , (16.33)

provided

2γ2 = α1 + γ3 , (a2 + b2)α1 = 2ε − ω . (16.34)
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Parameter a in this solution can vary continuously resulting in the shift of the solu-
tion with respect to the lattice, which means that this is a TI solution. Now we note
that in case

α8 = γ4 = γ1 = 0 , α1 = γ2 = γ3 , 2α1 = 1 , K = 2(ω − 2ε) , (16.35)

then the map as given by Eq. (16.28) can be factorized as

U (Fn−1, Fn) = 1

2
(2ε + Fn−1 Fn)

(
2ω

ε
− 4+ F2

n−1 + F2
n

)
= 0 . (16.36)

Remarkably, the second factor of this two-point map satisfies the period-four solu-
tion (16.33) with the conditions (16.34). Note that the TI solution of Eq. (16.33) is
equivalent to the sine solution as given by Eq. (16.50) with β = π/2 and v = k = 0.

Our next example is for the model following from the Hamiltonian of Eq. (16.18).
In this case, Eq. (16.25) assumes the form

ε
[
Fn−1 − (2− ω/ε)Fn + Fn+1

]+ α1 F3
n + γ1 F2

n (Fn−1 + Fn+1)

+ γ2 Fn
(
F2

n−1 + F2
n+1

)+ γ1

3

(
F3

n−1 + F3
n+1

) = 0 . (16.37)

Remarkably, in case the following two-point equation holds

F2
n−1 +

4γ1

3α1
Fn−1 Fn + F2

n = B , (16.38)

then the (stationary) difference Eq. (16.37) can be rewritten as

(Bγ1 + 3ε) (Fn+1 + Fn−1)+ 3(ω − 2ε + Bα1)Fn = 0 , (16.39)

provided

γ2 = α1

2
+ 4γ 2

1

9α1
, B =

ω − 2ε − 4γ1ε

3α1

4γ 2
1

9α1
− α1

. (16.40)

One can now show that for the Hamiltonian model (16.18), the TI stationary sine
solutions of Eq. (16.50) with v = k = 0 and with v = 0, k = π also follow from
the two-point map (16.38) provided

cos(β) = − 2γ1

3α1
. (16.41)

Furthermore, in this case the three-point Eq. (16.39) is also automatically satisfied.
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16.3.3 Moving Pulse, Kink, and Sine Solutions

The DNLS model given by Eqs. (16.2) and (16.11) supports exact moving JEF so-
lutions, e.g., cn, dn, sn, in case

α1 = α8 = 0 . (16.42)

In the limit m = 1, where m is the JEF modulus, one obtains the hyperbolic, moving
pulse and kink solutions. For α11 = α12 = α13 = α14 = 0, JEF solutions were given
in [11] and below we give the hyperbolic and sine solutions including these terms.

In particular, the DNLS model given by Eqs. (16.2) and (16.11) supports the
moving pulse (bright soliton) solution,

un = A exp[−i (ωt − kn + δ)] sech[β(n − vt + δ1)] , (16.43)

provided the parameters satisfy

vβ = 2εs1S , ω = 2ε (1− c1C) ,

2ξ6C + ξ5 = 0 ,
[
S2 + (α3 − α2) A2] s1 = 0 ,

2ξ2C + ξ4 = 0 , A2 (ξ1C − ξ2 + ξ3/2) = εS2Cc1. (16.44)

Here δ and δ1 are arbitrary constants, A, ω, k, β, and v denote the amplitude, fre-
quency, wavenumber, inverse width, and velocity of the moving pulse, respectively,
and the following compact notation has been used to describe the relations between
the parameters of the exact moving solutions:

S = sinh(β) , C = cosh(β) , T = tanh(β) ,

s1 = sin(k) , s2 = sin(2k) , s3 = sin(3k) ,

c1 = cos(k) , c2 = cos(2k) , c3 = cos(3k) .

ξ1 = (α2 + α3)c1 + α11 , ξ2 = α4 + α6c2 + α12c1 ,

ξ3 = 2α5c2 + α7 + 2α13c1 , ξ4 = α9c3 + (α10 + α14)c1 ,

ξ5 = α9s3 − α10s1 + α14s1 , ξ6 = α6s2 + α12s1 . (16.45)

From the first expression in Eq. (16.44) it follows that the pulse velocity is zero
when k = 0 or π . In the former case we have the nonstaggered, stationary pulse
solution while in the latter case, we have the staggered, stationary pulse solution. In
particular, for v = k = 0, the pulse solution is given by

un = A exp[−i (ωt + δ)] sech[β(n + δ1)] , (16.46)

provided 2γ2C + γ4 = 0; A2(γ1C − γ2 + γ3/2) = εS2C; ω = 2ε(1− C).
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On the other hand, the exact moving kink solution to Eqs. (16.2) and (16.11)
given by

un = A exp[−i (ωt − kn + δ)] tanh[β(n − vt + δ1)] , (16.47)

exists provided

vβ = 2εs1T + 4A2ξ6T 3

(
1+ T 2

) , (ω − 2ε)

A2
= 2ξ1

S2
− 2ξ2

T 2
+ ξ3

T 2
,

2ξ6 + ξ5
(
1+ T 2) = 0 ,

εs1

A2
= − (α2 − α3)s1

T 2
− 2ξ6T 2

(
1+ T 2

) ,

2ξ2 + ξ4
(
1+ T 2) = 0,

εc1

A2
= − ξ1

T 2
+ ξ2(1+ 2T 2 − T 4)

T 2
(
1+ T 2

) − ξ3
(
1+ T 2

)

2T 2
.

(16.48)

For k = 0 we obtain the nonstaggered, stationary kink solution

un = A exp[−i (ωt + δ)] tanh[β(n + δ1)] , (16.49)

provided 2γ2 + γ4(1+ T 2) = 0; (ω − 2ε)/A2 = 2γ1/S2 − (2γ2 − γ3)/T 2; ε/A2 =
−γ1/T 2 − γ3(1+ T 2)/(2T 2)+ γ2(1+ 2T 2 − T 4)/[T 2(1+ T 2)].

Unlike the JEF and the hyperbolic solutions, the moving as well as the station-
ary trigonometric solutions of Eqs. (16.2) and (16.11) exist even when all αi are
nonzero. In particular, the moving sine solution given by

un = A exp[−i (ωt − kn + δ)] sin[β(n − vt + δ1)] , (16.50)

exists provided the following four relations are satisfied: vβ = −2ε sin(β)s1 −
2A2 sin3(β)(α8s1 − ξ5); (α2 − α3)s1 + 2ξ6 cos(β) − α8s1[4 sin2(β) − 3] + ξ5 = 0;
α1 + 2(ξ1 + ξ4) cos(β) + ξ3 + 2ξ2 cos(2β) + 2α8c1 cos(β)[1 − 4 sin2(β)] = 0;
ω − 2ε + 2εc1 cos(β) = A2 sin2(β)[−2ξ2 + ξ3 − 6α8c1 cos(β)+ 2ξ4 cos(β)].

16.3.4 Stationary TI Solutions

Small-amplitude vibrational spectra calculated for stationary solutions to DNLS sat-
isfying Eq. (16.3) always include a pair of zero-frequency eigenmodes reflecting
the invariance with respect to the phase shift. Stationary TI solutions possess two
additional zero-frequency modes in their linear spectra (the Goldstone translational
modes) [3, 9, 11, 29]. Stationary solutions can be set in slow motion with the use
of the TI eigenvectors whose amplitudes are proportional to propagation velocity
(see, e.g., [9]). The accuracy of such slowly moving solutions increases with the
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decrease in the amplitude of the Goldstone translational mode, i.e., it increases with
the decrease in propagation velocity.

Mobility of the bright and the dark solitons at small, as well as at finite veloci-
ties have been studied numerically, for the models supporting TI solutions, e.g., in
[3, 9, 11]. TI coherent structures are not trapped by the lattice [3] and they can be
accelerated by even a weak external field [33].

Properties of solitons in the DNLS with the nearest neighbor coupling in the
nonlinear term [as in Eq. (16.11)] differ considerably from the classical DNLS with
only α1 nonzero where there is only on-site nonlinear coupling. For example, the TI
dark solitons in case only α2 and α3 are nonzero do not survive the continuum limit,
while in the classical DNLS they do [9]. On the other hand, in the classical DNLS,
only highly localized on-site dark solitons are stable while the inter-site ones are
unstable at any degree of discreteness [50, 51]. In the DNLS with only α2 and α3

nonzero, TI dark solitons can be robust, movable, and they can survive collisions
with each other [9].

To illustrate the above-mentioned features of the stationary TI solutions, in
Fig. 16.1 we show slowly moving, highly localized (a) bright and (b) colliding
dark solitons (kink and antikink) in the nonintegrable lattices with ε = 1/4 and
(a) α2 = α3 = α11 = 1/3, with other αi = 0; (b) α2 = α3 = 1/2, with other
αi = 0. Space–time evolution of |un(t)|2 is shown and in both cases maximal |un|2
is nearly equal to 1. To boost the solitons we used the zero-frequency Goldstone
translational eigenmode with a small amplitude, which is proportional to the soliton
velocity [9].

– – –

(a) (b)

Fig. 16.1 Space-time evolution of |un(t)|2 showing (a) moving bright and (b) moving and colliding
dark solitons (kink and antikink) in nonintegrable lattices. To obtain the slowly moving solitons
we used the stationary TI bright and dark soliton solutions supported by the corresponding ED
models and boosted them applying the zero-frequency Goldstone translational eigenmode with a
small amplitude, which is proportional to the soliton velocity. Parameters are given in the text.
(After [9]; c© 2007 IOP.)
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16.3.5 Moving Bright Solitons

Properties of the moving bright solitons with the parameters satisfying (16.44) have
been discussed in [11], in case α11 = α12 = α13 = α14 = 0. Here we reproduce
some of the results of that work.

From (16.44) it follows that the moving bright soliton solution Eq. (16.43) exists,
for example, in case only α3, α5, α7 are nonzero. While the first two relations in
(16.44) are always valid [see Fig. 16.2 (a), (b) for the corresponding plots], the
other relations and the constraint (16.12) take the form

α3 = 1− 2α5s2
1

1− 2c1C
, α7 = 2 (1− α3 − α5) , A2 = c1S2C

1+ α3(c1C − 1)− 2α5s2
1

.

(16.51)
The number of constraints in this case is such that one has a free model parameter,
say α5, and pulse parameters k and β can change continuously within a certain
domain [see Fig. 16.2 (c)]. It turns out that in this case, while the nonstaggered
stationary pulse (k = 0) exists, the staggered stationary pulse (k = π) does not
exist.

On the other hand, in case only α2, α3, α5 are nonzero we have the following
constraints:

α3 = − α5c2

2c1C
, α2 = 1− α3 − α5, A2 = c1S2C

(α2 + α3) c1C + α5c2
. (16.52)

Fig. 16.2 (a) Velocity v, (b) frequency ω, and (c), (d) amplitude A of the pulse (bright soliton)
as functions of the wavenumber parameter k at ε = 1 for the inverse width of the pulse β =
1/2 (dashed lines) and β = 1 (solid lines). The functions in (a), (b) are defined by the first two
expressions in (16.44) and they do not depend on the model parameters αi . To plot the amplitude
A we set α5 = 1 and use (c) (16.51) and (d) (16.52). (After [11]; c© 2007 IOP.)
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The relation between pulse parameters and model parameters in this case is shown
in Fig. 16.2 (d). In this case one has both nonstaggered and staggered stationary
pulse solutions in case k = 0 and k = π , respectively.

In both cases, i.e., when Eqs. (16.51) and (16.52) are satisfied, it was found that
the stationary bright solitons are generically stable.

The robustness of moving pulse solutions, in both these cases, was checked by
observing the evolution of their velocity in a long-term numerical run for ε = 1.
For pulses with amplitudes A ∼ 1 and velocities v ∼ 0.1 and for various model pa-
rameters supporting the pulse, |αi | ∼ 1, we found that the pulse typically preserves
its velocity with a high accuracy. Two examples of such simulations, one for the
nonstaggered pulse and another one for the staggered pulse are given in Fig. 16.3
(a), (b) and (a’), (b’), respectively. In (a) and (a’) we show the pulse configuration
at t = 0 and in (b) and (b’) the pulse velocity as a function of time for two different
integration steps, τ = 5 × 10−3 (solid lines) and τ = 2.5 × 10−3 (dashed lines),
while a numerical scheme with the accuracy O(τ 4) is employed.

In Fig. 16.3 (a,b) and (a’,b’) we give the numerical results for the pulse solutions
given by Eqs. (16.51) and (16.52), respectively. The model characterized by Eq.
(16.51) has one free parameter and we set α5 = 1. For the pulse parameters we set
β = 1 and k = 0.102102. Then we find from the first two expressions in (16.44)
and from (16.51) the pulse velocity v = 0.239563, frequency ω = −1.07009,
amplitude A = 1.7087, and the dependent model parameters α3 = −0.473034 and
α7 = 0.946068. The model characterized by Eq. (16.52) has one free parameter and

Fig. 16.3 (a) Nonstaggered moving pulse at t = 0 and (a’) same for the staggered pulse. In (b)
and (b’) the long-term evolution of pulse velocity is shown for the corresponding pulses for the
integration steps of τ = 5×10−3 (solid line) and τ = 2.5×10−3 (dashed line). Numerical scheme
with an accuracy O(τ 4) is employed. In both models we find that the pulses preserve their velocity
with the accuracy increasing with the increase in the accuracy of numerical integration. Parameters
are given in the text. (After [11]; c© 2007 IOP.)
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we set a5 = 0.3. For the pulse parameters we set β = 1 and k = 3.09447. Then
we find from the first two expressions in (16.44) and from (16.52) the pulse velocity
v = 0.110719, frequencyω = 5.08274, amplitude A = 1.65172, and the dependent
model parameters α2 = 0.603116 and α3 = 0.0968843.

In both cases, one can notice the linear increase in the pulse velocity with time,
which is due to the numerical error, since the slope of the line decreases with the
decrease in τ . The presence of perturbation in the form of rounding errors and
integration scheme errors does not result in pulse instability within the numerical
run. The velocity increase rate for the staggered pulse in (b’) is larger than for the
nonstaggered one in (b). This can be easily understood because the frequency of the
staggered pulse is almost five times that of the nonstaggered one.

16.4 Conclusions and Future Challenges

In this contribution, we have given an overview of the recently reported exact sta-
tionary and moving solutions to nonintegrable discrete equations. Such solutions
appear to be ubiquitous and they play an important role in our understanding of
discrete nonlinear systems.

TI stationary solutions are potentially interesting for applications because they
are not trapped by the lattice or, in other words, the PN barrier for them is exactly
equal to zero. As a result, they can be accelerated by weak external fields. Such
solutions possess the Goldstone translational mode, and thus, they can be boosted
along this mode and can propagate at slow speed.

Exact moving solutions to discrete nonlinear equations are interesting in those
cases where soliton mobility is an important issue. Such solutions indicate the “win-
dows” in model and/or soliton parameters with enhanced mobility of solitons.

These studies open a number of new problems and research directions. Partic-
ularly, it would be interesting to look for the exact TI stationary or moving solu-
tions in discrete systems other than DNLS and discrete Klein–Gordon equation. It
would also be of interest to systematically examine the stability and other physical
properties of the exact solutions to nonintegrable lattices. Finally, generalizing such
approaches to higher dimensions and attempting to obtain analytical solutions in the
latter context would constitute another very timely direction for future work.
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056603 (2008) 296
35. Barashenkov, I.V., van Heerden, T.C.: Phys. Rev. E 77, 036601 (2008) 296
36. Khare, A., Dmitriev, S.V., Saxena, A.: Exact Static Solutions of a Generalized Discrete φ4

Model Including Short-Periodic Solutions (2007) arXiv:0710.1460. 296, 301
37. Khare, A., Saxena, A.: J. Math. Phys. 47, 092902 (2006) 296
38. Ross, K.A., Thompson, C.J.: Physica A 135, 551 (1986) 296
39. Khare, A., Lakshminarayan A., Sukhatme, U.P.: Pramana (J. Phys.) 62, 1201 (2004); math-

ph/0306028. 296
40. Flach, S., Zolotaryuk, Y., Kladko, K.: Phys. Rev. E 59, 6105 (1999) 297
41. Schmidt, V.H.: Phys. Rev. B 20, 4397 (1979) 297
42. Jensen, M.H., Bak, P., Popielewicz, A.: J. Phys. A 16, 4369 (1983) 297
43. Comte, J.C., Marquie, P., Remoissenet, M.: Phys. Rev. B 60, 7484 (1999) 297
44. Kosevich, Yu.A.: Phys. Rev. Lett. 71, 2058 (1993) 297
45. Chechin, G.M., Novikova, N.V., Abramenko, A.A.: Physica D 166, 208 (2002) 297
46. Rink, B.: Physica D 175, 31 (2003) 297
47. Shinohara, S.: J. Phys. Soc. Jpn. 71, 1802 (2002) 297
48. Kosevich, Yu.A., Khomeriki, R., Ruffo, S.: Europhys. Lett. 66, 21 (2004) 297



310 S.V. Dmitriev and A. Khare

49. Abdullaev, F.Kh., Bludov, Yu.V., Dmitriev, S.V., Kevrekidis, P.G., Konotop, V.V.: Phys. Rev.
E 77, 016604 (2008) 298

50. Fitrakis, E.P., Kevrekidis, P.G., Susanto, H., Frantzeskakis, D.J.: Phys. Rev. E 75, 066608
(2007) 305

51. Johansson, M., Kivshar, Yu.S.: Phys. Rev. Lett. 82, 85 (1999) 305


	16  Exceptional Discretizations of the NLS: Exact Solutions and Conservation Laws
	 Introduction
	 Review of Existing Works
	 Stationary Translationally Invariant Solutions
	 Exact Moving Solutions to DNLS

	 Cubic Nonlinearity
	 Conservation Laws
	 Two-Point Maps for Stationary Solutions
	 Moving Pulse, Kink, and Sine Solutions
	 Stationary TI Solutions
	 Moving Bright Solitons

	 Conclusions and Future Challenges
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




