
Chapter 14
Surface Waves and Boundary Effects
in DNLS Equations

Ying-Ji He and Boris A. Malomed

14.1 Introduction

Surface waves represent excitations which may propagate along interfaces between
different media. These waves occur in diverse areas of physics, chemistry, and bi-
ology, often displaying properties that find no counterparts in bulk media [1]. The
study of waves on the free surface of water and internal surfaces in stratified liquids
is a classical chapter of hydrodynamics. The investigation of surface modes in solid-
state physics was initiated by Tamm in 1932, who used the Kronig–Penney model
to predict specific electron modes (Tamm states) localized at the edge of the solid
[2]. This line of research was extended by Shockley in 1939 [3]. In linear optics,
Kossel had predicted the existence of localized states near the boundary between
homogeneous and layered media in 1966 [4], which were later observed in AlGaAs
multilayer structures [5, 6]. Such waves were also shown to exist at metal–dielectric
interfaces [7], as well as at interfaces between anisotropic materials [8]. In nonlinear
optics, surface waves, which include transverse electric (TE), transverse magnetic
(TM) and mixed polarization modes propagating at the interface between homoge-
neous dielectric media with different properties, were theoretically predicted in the
works [9, 10] (see also review [11]).

The formation of surface solitons of the gap type (with their propagation constant
falling in a bandgap of the linear spectrum generated by the respective linearized
system) was predicted too [12] and observed in experiments carried out in an optical
system described by such a model [13]. Surface solitons have also been predicted at
an interface between two different semi-infinite waveguide arrays [14], as well as at
boundaries of two-dimensional (2D) nonlinear lattices [14–18]. It has been shown
that surface solitons of the vectorial [19, 20] and vortical [21] types, as well as sur-
face kinks [22], can exist too. In addition to that, multicomponent (polychromatic)
surface modes have been predicted and experimentally observed [23–25].
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Closer to the main topic of the present book are discrete surface solitons. The
existence of such localized lattice modes was first analyzed in one-dimensional (1D)
arrays of nonlinear optical waveguides [26]. These states, predicted to exist at the
edge of a semi-infinite array, feature a power threshold necessary for their forma-
tion, similar to that encountered by nonlinear surface waves at interfaces between
continuous media [26, 27]. The formation and properties of discrete surface solitons
have been explored theoretically in detail [26–32], and these solitons were quickly
created in experiments performed in arrays of optical waveguides [33, 34]. Discrete
surface solitons have been predicted in a number of other settings, such as those
based on vectorial models [35, 36] and superlattices [37], as well as in a system
with the quadratic nonlinearity [38].

In higher dimensions, 2D discrete surface solitons have been reported in theo-
retical and experimental forms [17, 39]. Recently, the creation of discrete solitons
of a corner type, in a 2D array of optical waveguides confined by two orthogonal
surfaces that form the corner, was reported in the work [18]. Finally, spatiotemporal
discrete surface solitons have been predicted in the theoretical works [40, 41].

In this chapter, we present an outline of several basic theoretical and experimental
results obtained for discrete surface solitons which can be supported by boundaries
of various types. We first consider the simplest case of the surface solitons in 1D
Kerr media (those with the cubic nonlinearity), starting with the underlying theory
and then proceeding to the experimental realization. This will be further extended
into 2D and 3D settings.

14.2 Discrete Nonlinear Schrödinger Equations
for Surface Waves

14.2.1 The One-Dimensional Setting

In a semi-infinite nonlinear lattice (in the experiment, it represents a long ar-
ray of weakly coupled nonlinear optical waveguides, as schematically depicted
in Fig. 14.1), the normalized field amplitudes at lattice sites n ≥ 0 obey a dis-
crete nonlinear Schrödinger (DNLS) equation, which incorporates the boundary
condition at the surface [26],

Fig. 14.1 A typical scheme of a semi-infinite array of optical waveguides, buried into a bulk
medium, which gives rise to effectively one-dimensional quasi-discrete surface solitons. Reprinted
from [38] with permission
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i
d

dz
u0 + u1 + β|u0|2u0 = 0, (14.1)

i
d

dz
un + (un+1 + un−1)+ β|un|2un = 0. (14.2)

In the model of the array of optical waveguides, the evolution variable z is the
distance of the propagation of electromagnetic signals along the waveguides, and
β is the coefficient of the on-site nonlinearity, the self-focusing and self-defocusing
nonlinearities corresponding, respectively, to β > 0 and β < 0. Unless it is said
otherwise, we set β ≡ 1, by means of an obvious rescaling of the lattice field.
Equation (14.1) governs the evolution of the field at the edge of the array, which
corresponds to site n = 0, and Eq. (14.2) applies at every other site, with n ≥ 1. The
actual electric field in the optical wave is expressed in terms of scaled amplitudes
un as follows: En =

√
2Cλ0η0/(πn0n̂2)un , where C is the inter-site coupling coef-

ficient in physical units (in Eqs. (14.1) and (14.2), normalization C = 1 is adopted),
λ0 is the free-space wavelength, η0 is the free-space impedance, n̂2 the nonlinear
Kerr coefficient, and n0 the linear refractive index of the waveguides’ material.

14.2.2 The Two-Dimensional Setting

The model of the 2D semi-infinite array of optical waveguides with a horizontal
edge, whose plane is parallel to the direction of the propagation of light in individ-
ual waveguides, is based on the accordingly modified DNLS equation for the 2D
set of amplitudes um,n(z) of the electromagnetic waves in the guiding cores (see,
e.g., [18]):

i
d

dz
um,n+C(um+1,n+um−1,n+um,n+1+um,n−1−4um,n)+|um,n|2um,n = 0 (14.3)

for n ≥ 0 and all integer values of m. Unlike Eqs. (14.1) and (14.2), the constant ac-
counting for inter-site coupling, C , is not scaled here to be 1, as it will be used in an
explicit form below. Note that the corresponding coupling length in the waveguide
array, which may be estimated as zcoupling ∼ C−1/2 in terms of Eq. (14.3), usually
takes values on the order of a few millimeters, in physical units. At the surface row,
which corresponds to n = 0 in Eq. (14.3), one should set um,−1 ≡ 0, as there are no
waveguides at n < 0. Equation (14.3) admits the usual Hamiltonian representation,
and also conserves the total power (norm), P =∑∞m=−∞

∑∞
n=0 |um,n|2.

14.2.3 The Three-Dimensional Setting

The equations for the slow spatiotemporal evolution of the optical signal propagat-
ing in a 2D array of linearly coupled waveguides can be cast in the following form
[40, 41]:
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(
i

�

�z
− γ �2

�τ 2

)
um,n + (um+1,n + um−1,n + um,n+1 + um,n−1 − 4um,n)um,n

+ |um,n|2um,n = 0, (14.4)

where z is, as in Eq. (14.3), the propagation distance, while τ is the temporal variable
and, accordingly, γ is the coefficient of the temporal dispersion in each waveguiding
core. In the case of the corner configuration considered in the works [40, 41], um,n ≡
0 for m ≤ −1 and n ≤ −1.

A different type of the 3D model is possible in the case when a planar surface
borders a full 3D lattice. In that case, the basic dynamical model takes the following
form:

i
d

dz
ul,m,n + (ul+1,m,n + ul−1,m,n + ul,m+1,n + ul,m−1,n + ul,m,n+1 + ul,m,n−1

− 6ul,m,n)ul,m,n + |ul,m,n |2ul,m,n = 0, (14.5)

where the 3D discrete coordinates assume the following integer values: −∞ <

l,m < +∞, 0 ≤ n < +∞, and ul,m,n ≡ 0 for n < 0. This equation gives rise to 3D
discrete solitons of various types, and those among them which abut on the surface,
or are set at a distance from it corresponding to few lattice cells, may be considered
as three-dimensional surface solitons.

14.3 Theoretical Investigation of Discrete Surface Waves

14.3.1 Stable Discrete Surface Solitons in One Dimension

Here, we outline the first theoretical prediction of 1D discrete surface solitons at
the interface between an array of waveguides and a continuous medium, as in [26].
Stationary surface waves in the semi-infinite lattice system correspond to the sub-
stitution un = vn exp(i�z) in Eqs. (14.1) and (14.2), where � is the corresponding
propagation constant, and all amplitudes vn are assumed to be positive, which cor-
responds to an in-phase solution. In the system under consideration, solitons can
be found with values of the propagation constant falling into the semi-infinite gap,
� ≥ 2, where localized solutions are possible in principle.

The family of soliton solutions, found numerically by means of the relaxation
method, is presented in Fig. 14.2, in the form of the dependence of the respective
total power (alias norm), P = ∑+∞

n=−∞ |un|2, on the propagation constant �. In
particular, in the region of � > 3, the 1D surface solitons are strongly localized,
and may be approximated by a simple ansatz, un = A exp(−np + i�t), where the
amplitude is given by A2 = �/2+

√
�2/4− 1 ≈ �− 1/� and p = 2 ln A.

The dependence plotted in Fig. 14.2 demonstrates a minimum in the P(�) curve
at � = 2.998. This feature, in turn, implies that the discrete solitons exist only above
a certain power threshold, which, in the present case, is Pthr = 3.27. The situation
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Fig. 14.2 The total power
(norm) versus propagation
constant � for the family of
in-phase 1D discrete surface
solitons. Reprinted from [26]
with permission

is quite similar to that found earlier in continuum models for interfaces between
nonlinear dielectric media, where the well-known Vakhitov–Kolokolov (VK) sta-
bility criterion is applicable. According to it, a necessary (but, generally speaking,
not sufficient) condition for the stability of the soliton family is d P/d� > 0 (more
accurately, the VK criterion guarantees only the absence of growing eigenmodes of
infinitesimal perturbations around the solitons with a purely real growth rate, but it
cannot detect unstable eigenmodes corresponding to a complex growth rate).

The full stability of these solutions was also tested in direct simulations of
Eq. (14.3). Figure 14.3 demonstrates that the family of the 1D surface solitons is
split into stable and unstable subfamilies – in fact, in exact accordance with the VK
criterion.

Fig. 14.3 Examples of stable (a) and unstable (b) evolution of the 1D surface solitons for � = 3.2
and 2.92, respectively. Reprinted from [26] with permission
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14.3.2 Discrete Surface Solitons at an Interface Between
Self-Defocusing and Self-Focusing Lattice Media

A specific type of interface corresponds to that between two lattices, with the self-
focusing and defocusing nonlinearities, i.e., β > 0 and β < 0 in Eqs. (14.1) and
(14.2). Following [42], we will present here an example with βn = −0.9 for n < 0
and βn = 1.1 for n > 0. Discrete solitons are looked for in the same general form as
above, i.e., un = vn exp(i�t), where � is, as before, the propagation constant, and
the stationary lattice field vn obeys the following equation:

�vn − C!2vn − βn|vn|2vn = 0. (14.6)

In the anticontinuum (AC) limit, i.e., for C = 0, solutions to Eq. (14.6) can be
immediately constructed in the form of one or several “excited” sites carrying a
nonzero amplitude, vn = ±

√
�/βn (provided that �βn > 0), while at all other

sites the amplitude is zero. Carrying out subsequent numerical continuation of the
solution to C > 0, this approach makes it possible to generate various species of
discrete solitons, seeded at C = 0 by the respective “skeletons.”

In [42], a number of soliton families were constructed, starting, in the AC limit,
from the “skeletons” of the following types: a single excited site at n = 0; a pair
of in-phase or out-of-phase excited sites at n = 0 and 1; and a triplet consisting of
an excited site at n = 0 and ones with the opposite signs at n = 1, 2, and similar
patterns based on four- and five-site “skeletons.” Figure 14.4 displays two lowest
order solution branches found in this model, viz., those seeded by the single-site
configuration, and the dual-site one of the in-phase type.

Fig. 14.4 Top left and right panels display, for C = 0.1, examples of states near the interface
between self-focusing and defocusing lattices, which are engendered, respectively, by a single
excited site, or a pair of excited in-phase sites, in the anticontinuum limit (C = 0), as in [42].
Bottom: families of these solutions are presented through the dependence of their power on C . As
usual, the solid and dashed lines designate stable and unstable solutions, respectively. The vertical
line marks the examples shown in the top panels
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Fig. 14.5 Examples of hybrid (unstaggered–staggered) discrete solitons, attached to the interface
between lattice media with the self-focusing and defocusing nonlinearities. The solitons in panels
(a) and (b) are stable, while the one in (c) is unstable. Reprinted from [43] with permission

As stressed in [43], the interface of the same type as considered in this subsection,
i.e., between lattice media with self-focusing and self-defocusing on-site nonlin-
earities, may give rise to hybrid solitons. They look as unstaggered and staggered
states on the two sides of the interface, see examples in Fig. 14.5. Probably, similar
hybrid states can be found in 2D and 3D models including an interface between
self-focusing and self-defocusing nonlinearities.

14.3.3 Tamm Oscillations of Unstaggered and Staggered Solitons

Here we outline the theoretical prediction of Tamm oscillations of discrete solitons
created near the edge of a 1D lattice (of optical waveguides), following [31]. These
are oscillations of the position of a narrow soliton, due to the interplay of its repul-
sion from the lattice’s edge and Bragg reflection from the bulk of the lattice (see
below).

The analysis starts with the discrete equation for the propagation of light in the
array, cf. Eqs. (14.1) and (14.2):

i
d

dz
un + C(un+1 + un−1 − 2un)+ g|un|2un = 0, (14.7)

where C is, as above, the lattice-coupling constant, while g(|un|2) = β|un|2 and
g(|un|2) = β|un|2/(1+ |un|2) in cubic and saturable media, respectively, with non-
linearity coefficient β > 0 and β < 0 corresponding to the self-focusing and self-
defocusing signs of the nonlinearity. The boundary conditions added to Eq. (14.7)
are the same ones as considered above, see Eq. (14.1).

Stationary solutions to Eq. (14.7) are looked for in the usual (unstaggered) form,
un = vn exp(−i�t), in the case of the self-focusing, and in the staggered form,
with alternating signs of the stationary fields at adjacent sites of the lattice, in
the opposite case. The staggering substitution, un = vn(−1)n exp(i�z), makes the
self-defocusing nonlinearity equivalent to its self-focusing counterpart. Staggered
solitons, which may be found in various models with self-defocusing, may also be
regarded as gap solitons, as they exist at values of the propagation constant which
fall in one of finite bandgaps in the spectrum of the corresponding linearized model.
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On the contrary to that, the propagation constant of ordinary – unstaggered – solitons
belongs to the semi-infinite spectral gap.

Assuming that solitons generated by Eq. (14.7) are narrow (strongly localized),
one can construct analytical approximations for two different types of such solitons,
on-site-centered and inter-site-centered ones. The solutions of the former type have
the largest value of the field at the edge, n = 0, with the lattice field decaying as
vn ≈ αnv0 at n > 0. Inter-site-centered solitons feature the largest local amplitude
at n = 1, and decay as vn ≈ αn−1v1 for n > 1. In either case, the localization of the
soliton is determined by a small parameter, α = C/(�+ 2C).

In direct simulations of Eq. (14.7), these narrow solitons feature swinging mo-
tions, as shown in Fig. 14.6, which are the Tamm oscillations of the narrow solitons,
staggered and unstaggered ones. The oscillations are not quite persistent: in the
course of its motion in the lattice, the soliton gradually loses energy due to emis-
sion of linear waves (“lattice radiation,” alias “phonons”), which leads to gradual
damping of the oscillations. Eventually, the soliton comes to a halt at a position at
some distance from the surface (the distance may be as small as two lattice sites, see
further details in [31]).

Fig. 14.6 Examples of Tamm oscillations of several types of narrow discrete solitons created near
the edge of the lattice. The simulations were performed for typical values of parameters corre-
sponding to arrays of nonlinear optical waveguides in the following models: (a) self-defocusing
saturable, (b) self-defocusing cubic, (c) self-focusing saturable, and (d) self-focusing cubic. In
panels (a) and (b), the soliton is staggered (otherwise, it cannot exist in the defocusing medium),
while in (c) and (d) it is the usual unstaggered soliton. Reprinted from [31] with permission
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For the interpretation of the oscillations, it is relevant to notice that the edge of
the lattice (the surface) induces an effective repulsive potential acting on the narrow
discrete soliton. Stronger inter-site coupling results in the stronger surface-induced
potential, while enhanced nonlinearity suppresses it [31]. Then, Tamm oscillations
of the soliton may be understood as oscillations in the effective Peierls–Nabarro
(PN) potential, induced by the underlying lattice, under the action of the additional
repulsive potential. In other words, the oscillations are a result of the interplay of
the repulsion of the soliton from the lattice surface and Bragg reflection in the depth
of the lattice. The combination of the edge-induced and PN potentials gives rise to
a stable equilibrium position of the soliton at a finite distance from the edge, where
the soliton eventually gets trapped.

14.3.4 Discrete Surface Solitons in Two Dimensions

The aim of this subsection is to present an outline of the theoretical prediction of
2D discrete surface solitons at the interface between a 2D lattice of optical waveg-
uides and a substrate, following [39]. The model is based on Eq. (14.3), station-
ary solutions to which are looked for as um,n = exp(i�z)vm,n , with � scaled
to be 1, and the stationary lattice distribution obeying the respective equation,
(1− |vm,n |2)vm,n − C(vm,n+1 + vm,n−1 + vm+1,n + vm−1,n − 4vm,n) = 0.

In [39], it was shown that the interaction with the edge expands the stability
region for fundamental solitons, and induces a difference between dipoles (bound
states of two fundamental lattice solitons with opposite signs) oriented perpendicu-
lar and parallel to the surface. A notable finding is that the edge supports a species
of localized patterns which exists too but is always unstable in the uniform lattice,
namely, a horseshoe-shaped soliton. As shown in Fig. 14.7, the “skeleton” of the
horseshoe structure consists of three lattice sites.
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Fig. 14.7 (a) An example of the 2D surface soliton of the “horseshoe” type, as in [39]. The solid
curve in panel (b) displays the real part of a critical instability eigenvalue for the soliton family
of this type. For comparison, the dashed–dotted lines in (b) show the instability eigenvalues for
the horseshoe family in the uniform lattice (without the edge). The latter family is completely
(although weakly) unstable, due to a very small nonzero eigenvalue extending to C = 0, while the
horseshoes trapped at the edge of the lattice have a well-defined stability region – in the present
case, it is, approximately, C < 0.25
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Fig. 14.8 An example of a supersymmetric vortex cell. Panels (a) and (b) show, respectively, the
real and imaginary parts of the solution. In panel (c), the solid lines show instability eigenvalues
of these states, as in [39]. For comparison, dashed–dotted lines depict the same numerically found
characteristics for the supersymmetric vortex in the infinite lattice (the one without the edge)

The edge of the 2D lattice may also act in an opposite way, impeding the exis-
tence of localized solutions of other types. A relevant example of that is provided the
so-called supersymmetric lattice vortex, i.e., one with the intrinsic vorticity (S = 1)
equal to the size of the square (a set of four excited sites) which seeds the vortex at
C = 0 in the above-mentioned AC limit (i.e., for the lattice composed of uncoupled
sites), as shown in Fig. 14.8a, b. The configuration displayed in the figure is placed
at the minimum separation from the edge admitting its existence, which amounts
to two lattice sites. Numerically found stability eigenvalues for this structure are
presented in Fig. 14.8c.

The numerical analysis of 3D equation (14.5) reveals similar effects for several
species of discrete 3D solitons. In particular, three-site horseshoes are also com-
pletely unstable in the bulk 3D lattice, but are stabilized if they abut upon the lattice’s
surface. As for 3D vortex solitons, their properties strongly depend on the orienta-
tion with respect to the surface: the ones set parallel to the surface are essentially
stabilized by it, while localized vortices with the perpendicular orientation cannot
exist close to the surface.

14.3.5 Spatiotemporal Discrete Surface Solitons

The theoretical prediction of spatiotemporal discrete surface solitons at the inter-
face between a lattice of optical waveguides and a continuous medium was re-
ported in [40, 41], using the model based on Eq. (14.4). Stationary solutions for
a spatiotemporal soliton can be looked as um,n(z, τ ) = vm,n(τ ) exp(i�z), where
envelopes vm,n(τ ) describe the temporal shape of soliton-like pulses at lattice sites
(n,m). Several examples of the spatiotemporal solitons found in [40, 41] by means
of numerical methods in the lattice with the corner are shown in Fig. 14.9.

14.3.6 Finite Lattices and the Method of Images

In both 1D and 2D settings, some of the results outlined above can also be obtained
by means of the method of images. For instance, in the 1D case with the fixed (zero)
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Fig. 14.9 Top: Panels (a)–(c) display typical examples of spatiotemporal modes localized at the
lattice’s corner, at the edge, and in the center of the lattice. Bottom: Spatial cross sections of the
corresponding stable spatiotemporal solitons. Reprinted from [40, 41] with permission

boundary condition, i.e., un = 0 for n ≤ −1 (see Eqs. (14.1) and (14.2)), the solu-
tion is equivalent to that in an infinite lattice which is subject to the anti-symmetry
constraint, u−(n+2) ≡ −un, n = −1, 0,+1,+2, ... (which, obviously, includes con-
dition u−1 ≡ 0 ). This way of the extension of the semi-infinite lattice into the full
infinite one implies that a localized excitation created at a lattice site with number
m comes together with its image, of the opposite sign, placed at site −(m + 2), as
shown in Fig. 14.10. In [44], the image method was also elaborated in detail (but
chiefly within the framework of linear models) for 2D lattices, including corner- and
sector-shaped ones.

The same method may be applied to finite lattices, which are composed of a
finite number of sites between two edges. An example of such a configuration was
investigated in detail for discrete solitons in [45] – not in terms of the DNLS equa-
tion, but rather for solitons in the Ablowitz–Ladik (AL) model, which is based on
the following discrete equation, idun/dz = −(un+1 + un−1)(1 + |un|2). The infi-
nite AL lattice, as well as a finite one subject to periodic boundary conditions, are
integrable systems. Under the fixed boundary conditions (un ≡ 0 for n ≥ N + 1
and n ≤ −(N + 1), if the truncated lattice consists of 2N + 1 sites), the inte-
grability is lost. For this case, an effective potential accounting for the interaction
of a soliton (which is treated as a quasi-particle) with the edges was derived in

Fig. 14.10 (a) A semi-infinite
lattice with local excitation at
site m; (b) the equivalent
configuration,with the
negative image at site
−(m + 1), in the respective
infinite lattice. Reprinted
from [44] with permission
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[45], and it was demonstrated that this effective potential predicts oscillations of
the soliton in the finite AL lattice with a very good accuracy, if compared to direct
simulations.

Finally, it is worth mentioning that the stability and instability of solitons in 1D
and 2D DNLS lattices with an edge can be understood, in terms of the interaction
of the soliton with its image, as manifestations of the general results for the stability
and instability of bound states of two solitons with opposite or identical signs, that
were reported in the works [46, 47].

14.4 Experimental Results

14.4.1 Discrete Surface Solitons in One Dimension

The first experimental observations of discrete surface solitons at the edge of a lat-
tice of nonlinear optical waveguides were reported in [33, 34] (the material used to
build the corresponding setup was AlGaAs, which is known for a very large value
of the Kerr coefficient). The corresponding experimental configuration is shown in
Fig. 14.11a. Its parameters were close to those previously used to observe discrete
highly localized Kerr solitons in the bulk lattice (far from the edges). The array
contained 101 cores and was 1 cm long, while the coupling length, determined by
the linear interaction between adjacent cores, was estimated to be 2.2 mm. A set of
experiments and simulations dealing with the excitation of the channel (core) at the
edge of the array (n = 0) is depicted in Fig. 14.11.

14.4.2 Staggered Modes

The experimental observation of staggered discrete modes at the interface between
a waveguide array, built of a copper-doped LiNb crystal, and a continuous medium
was reported in [32]. The experimental sample contained 250 parallel waveguides.
The width and height of the single-mode channel waveguides were 4 and 2.5 μm,
respectively, while the distance between adjacent channels was 4.4 μm, the corre-
sponding coupling length being 1.1 mm.

Optical beams of equal power, overlapping under a small angle, were coupled
into the waveguide array, taking care to make the grating period of the resulting
interference pattern matching the period of the array (which is 8.4 μm, according to
what was said above). This input pattern had an elliptical shape whose height was
adjusted to match the depth of each waveguide (approximately 2.5 μm).

In this way, a staggered input pattern was created. It consisted of a central maxi-
mum and a small number of satellites with alternating signs. The sample was placed
so as to match the maximum of the staggered input and the first channel of the array.
The experimental results are plotted in Fig. 14.12.
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Fig. 14.11 Intensity patterns observed in the experiments and numerical simulations reported in
[33, 34] (reprinted with permission) at the output of the AlGaAs waveguide array, for three different
values of the power of the beam injected into channel n = 0. Left-hand side: experimental results
for (a) P = 450 W, (b) P = 1300 W, and (c) P = 2100 W. Right-hand side: results of the
numerical simulations for (d) P = 280 W, (e) P = 1260 W, and (f) P = 2200 W. The inset in
panel (a) displays the experimental setup

14.4.3 Discrete Surface Solitons in Two Dimensions

Experimental observations of 2D optical discrete surface solitons were reported in
[17] and [18]. Here, we summarize the results of the work [17], which used the
interface between a virtual (photoinduced) waveguide array, created in an SBN
photorefractive crystal, and a uniform medium.

The application of the positive bias voltage to a 10-mm-long sample of the crystal
induced sufficiently strong self-focusing nonlinearity in the medium, and thus made
it possible to create in-phase lattice surface solitons. Typical experimental results are
shown in Fig. 14.13, where panel (a) displays a part of the underlying lattice pattern.
The discrete diffraction in this case is stronger in the direction perpendicular to the
edge than in the direction parallel to it, as seen in Fig. 14.13b. For a sufficiently
high bias voltage, the self-action of the input beam provided for the formation of a
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Fig. 14.12 Output patterns
corresponding to the
staggered input excitation of
three channels, with intensity
ratio 1:0.5:0.1, as reported in
[32] (reprinted with
permission). The results are
shown for four different input
powers. Left column:
experimental results for (a)
discrete diffraction
(low-power linear regime),
(b) power P = 9 μW, (c)
P = 22.5 μW, and (d)
P = 225 μW. Right column:
results of respective
numerical simulations for (e)
the linear discrete diffraction,
(f) P = 10 μW, (g) P = 22
μW, and (h) P = 230 μW

discrete surface soliton, see Fig. 14.13c, d. On the other hand, if the intensity of the
beam was reduced by a factor of ≥ 8, it was not able to form a soliton, undergoing
strong discrete diffraction at the surface, as seen in Fig. 14.13h. In the same work
[17], 2D surface solitons were also observed at the corner of the 2D lattice, as shown
in Fig. 14.13e–g.

The application of the negative bias voltage turned the crystal into a self-
defocusing medium, which made it possible to create staggered 2D surface solitons,
which belong to the first bandgap of the respective lattice-induced linear spectrum.
With the appropriate defocusing nonlinearity, a surface gap soliton could be created,
using a single input beam.

The difference between the in-phase surface solitons (see Fig. 14.13i, j) and stag-
gered ones (Fig. 14.13k, l) may be clearly illustrated by the interference fringes,
which break and interleave in the latter case, as shown in Fig. 14.13l. The power
spectrum for the staggered solitons was also drastically different from that of the
in-phase surface solitons.

Typical results of numerical simulations of the model corresponding to the ex-
periment are presented in the right panels of Fig. 14.13, where the top one shows 3D
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Fig. 14.13 The formation of discrete 2D surface solitons at the lattice edge (a–d) and lattice corner
(e–g). Adapted from [17] with permission

plots of the 2D surface soliton at the lattice edge, corresponding to Fig. 14.13d, the
middle panel shows the predicted surface soliton at the lattice corner corresponding
to Fig. 14.13g, and the bottom panel presents the prediction for the surface gap soli-
ton corresponding to Fig. 14.13k. Small dips around the central peak in the bottom
figure indicate the staggered phase structure of the corresponding surface soliton.

14.5 Conclusions

In this chapter, basic theoretical and experimental results for discrete surface (and
corner) solitons in lattices with the cubic on-site nonlinearity were summarized, in
terms of 1D and 2D semi-infinite arrays of optical waveguides. Theoretical pre-
dictions for spatiotemporal corner solitons were presented too, as well as for 2D
surface solitons with a nontrivial intrinsic structure, such as localized discrete vor-
tices and “horseshoes.” Solitons of both the in-phase (unstaggered) and staggered
types have been considered (solitons of the staggered type, which are supported by
the self-defocusing nonlinearity, are also called gap solitons).

As predicted theoretically and demonstrated experimentally, these solitons
demonstrate various noteworthy phenomena such as power thresholds, Tamm os-
cillations (which are akin to Bloch oscillations), and the stabilization by the lattice
edge of localized structures (such as 2D and 3D “horseshoes”) which cannot be
stable in bulk lattices.

Theoretical and experimental studies of surface and corner solitons can be ex-
tended in various directions. In particular, the analysis of surface states in full 3D
models has started very recently. Dynamical 3D bulk lattices of the DNLS type (with
the cubic on-site nonlinearity) give rise to many species of stable discrete solitons
with specific arrangements and topological features, that have no counterparts in
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lower dimensions. These include octupoles, diagonal vortices, vortex “cubes” (stack
of two quasiplanar vortices) “diamonds” (formed by two mutually orthogonal vor-
tices) [48, 49], and discrete quasi-Skyrmions of a toroidal shape (that were found
together with 2D discrete patterns of the “baby-Skyrmion” type) [50]. An obvious
possibility is to investigate such 3D objects when they are placed on or close to the
edge of the 3D lattice.

Virtually unexplored surfaces remain of 2D and 3D lattices whose shape is dif-
ferent from the simplest square and cubic types (such as triangular and hexagonal
lattices in two dimensions). On the other hand, it may also be interesting to study
surface states in 2D and 3D models with the quadratic (rather than cubic) on-site
nonlinearity. Another challenging issue is a possibility to find 2D and, possibly, 3D
discrete solitons attached to the lattice’s surface that would feature mobility along
the surface.
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Lett. 93, 080403 (2004) 274
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