
Chapter 10
The Dynamics of Unstable Waves

Kody J.H. Law and Q. Enam Hoq

10.1 Introduction

Discretized equations in which the evolution variable is continuous while the spatial
variables are confined to points on the lattice, have had a significant presence and
impact across multiple disciplines [1–6] (cf. Chap. 8 for a review on experiments
related to the DLNS equation). This should not be surprising considering that many
natural processes and phenomena exhibit discrete structure [7–11]. As particular ex-
amples, we see that in physics the discrete nonlinear Schrödinger equation was used
to model periodic optical structures [12], while in biology the Davydov equations
model energy transfer in proteins [13]. These diverse phenomena are testament to
the ubiquitousness of discrete regimes across diverse settings, and hence validate
the need to study them. The study of discretized equations can be traced at least
back to the work of Frenkel and Kontorova on crystal dislocations [14] and the
Fermi–Pasta–Ulam problem [15]. The literature has since grown significantly to
include novel and engaging ideas (e.g. [16–25]), and one of the points of interest is
the dynamical behavior of solutions [26–28].

In this section, we investigate the dynamics of unstable wave solutions to the
cubic discrete nonlinear Schrödinger (DNLS) in one, two, and three spatial dimen-
sions which were described in the previous chapters. While these earlier chapters
focused on the analysis of the existence and linear stability/instability of the relevant
solutions, the present section sheds light into typical dynamical evolution examples
to illustrate the outcome of the previously identified instabilities.

The equation of interest is

i u̇n = −ε�d un + g|un|2un (10.1)

where un is the complex lattice field with n being the vectorial lattice index, �d is the
standard d-dimensional discrete Laplacian extrapolated from a three-point stencil, ε
is the inter-site (IS) coupling, and g = −1 in Sect. 10.2 while g = 1 in Sect. 10.3.2.
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The overdot represents the derivative with respect to the evolution variable (which,
for example, could be z in the case of optical arrays, or t in BEC models). Also, we
write u = (un1, . . . , unNd ), to denote the complex lattice field of N sites in each of
d dimensions.

As before, we are interested in stationary solutions of the form

un = exp(i�t)vn (10.2)

for all n. It can easily be seen that Eq. (10.1) admits such solutions in the anticon-
tinuum (AC) limit (ε = 0) with the additional structure vn = eiθn for θn ∈ [0, 2π).
This leads to the persistence as well as stability criteria detailed in the previous
chapters (see also [29, 30] for further details). We look at solutions (from the previ-
ous chapters) for coupling values for which they have been predicted to be unstable.
There exist parameter values such that an unstable solution of each configuration
family eventually settles into a single site structure, and also that the time it takes
for the original structure to break up is dependent on the magnitude of the real part
of the linearization, the magnitude of the coupling between sites, and the initial
perturbation.

The organization will be as follows. Section 10.2 will be devoted to 1(+1)-
dimensional (10.2.1), 2(+1)-dimensional (10.2.2), and 3(+1)-dimensional (10.2.3)
solutions of the standard focusing DNLS (Eq.(10.1) with g = −1). In Sect. 10.3,
we discuss the more exotic settings of a grid with hexagonal geometry (10.3.1)
and then solutions in the case of a defocusing nonlinearity (g = +1) in 1(+1) and
2(+1) dimensions (10.3.2). All the dynamical evolutions confirm stability predic-
tions given theoretically and numerically in the preceding chapters, though some of
the dynamical behavior is interesting and not a priori predictable.

10.2 Standard Scenario

We begin by discussing the space–time evolution of unstable solutions of the stan-
dard focusing DNLS (Eq. (10.1) with g = −1).

10.2.1 1(+1)-Dimensional Solutions

In this first section we examine the evolution of {|un|2} (it is understood that the set
is taken over all indices n in the d-dimensional lattice, where here d = 1 and the
boldface is unnecessary, but we will use this notation throughout for consistency)
for four one-dimensional configurations (see Fig. 10.1). Each is placed in the bulk of
a lattice with 201 sites. Denoting a positive excited node by “+” and a negative one
by “−”, the configurations we consider are that of two in-phase (IP) adjacent nodes
(i)++, and the following with three adjacent nodes (ii)+++, (iii)++−, and (iv)
+−+. These can be found in Chap. 2. To expedite the onset of instability, in each
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Fig. 10.1 These panels exhibit the space–time evolution of the density field {|un(t)|2} of four
modes to the one-dimensional DNLS equation. The top left panel shows the (i) ++ configuration,
the top right is (ii) +++, the bottom left is (iii)++−, and the bottom right is (iv) +−+

case the coupling parameter is ε = 0.3, which is beyond the instability threshold
of each configuration. We present the intensity of the field {|un(t)|2}, where u =
us + ur , us being the lattice field with the respective stationary solution and ur is
a uniformly distributed random noise field in the interval (0, a). For the discrete
solitons (i)–(iv) above, The amplitude of the perturbation is taken to be (i) 10−8, (ii)
10−7, (iii) 10−5, and (iv) 10−3.

In all panels we clearly see a single surviving site that persists for long times.
We see that the two IP modes dissolve from their original forms via a short turbu-
lent stage into a (stable) single site structure. This is not surprising since, as was
discussed in Chapter 2, (adjacent) IP excitations are found to be unstable for any
ε 
= 0 due to a positive real eigenvalue. The structure + + − also has adjacent IP
excitations and is unstable, for any ε 
= 0, due to a positive eigenvalue, with also
a pair of bifurcating imaginary eigenvalues with negative Krein signature which
eventually collide with the continuous spectrum and become complex (see Chap. 2
and [29–32]). The presence of the out-of-phase (OP) site complicates the dynamics
pattern as seen in the lower left panel. The lower right panel shows the dynamics
for the OP mode, + − +, which is stable for small couplings, but has two pairs
of imaginary eigenvalues which (for larger coupling) become complex as a result
of two Hamiltonian–Hopf bifurcations. This last configuration is clearly the most
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robust of the four (ε = 0.3 for all configurations) since it is perturbed the most and
yet persists for the longest time before turbulence sets in.

10.2.2 2(+1)-Dimensional Solutions

The panels depicted in this section exhibit the dynamics for the field intensity {|un|2}
for several two-dimensional configurations found in Chap. 3. As before, the value
of the coupling is always beyond the threshold of instability and the configuration is
perturbed by a random noise. All the dynamical evolutions are performed in a 21×
21 grid. The dynamics in larger grid sizes (i.e., 31× 31) were examined in a few of
the cases and there was no qualitative difference found for the timescales considered
herein. Each exhibited the same outcome in that one site remained for long times.
A characteristic density isosurface Dk = {(n, t) | |un(t)|2 = k} is used here to
represent the space–time evolution of the fields. The coupling and perturbation in
each case were adjusted to exhibit complete destruction of the initial configuration
to a single site in a reasonable time span. The details are supplied below each figure.

As already detailed in Chap. 3, the first five-site configuration, the symmetric
vortices with L = 1,M = 2, and L = M = 2, as well as the asymmetric vortices
with L = 1,M = 2, and L = 3,M = 2 have purely real eigenvalues. All other
solutions break up due to oscillatory instability arising from Hamiltonian–Hopf bi-
furcations of the linearized problem when the pure imaginary eigenvalues collide
with the phonon band (or continuous spectrum). The dynamical evolutions depicted
in the following images qualitatively corroborate this earlier analysis. Figure 10.2
depicts the dynamical instability for the three-site configuration of Chap. 3. Next, we
depict an example of the five-site configuration (lower left panel, Fig. 10.3) which
exhibits complete breakdown from the initial state earlier than the other modes even
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Fig. 10.2 The left panel shows the dynamics in time of {|un|2} for the three-site configuration
from Chap. 3 (see Eq. (3.88)). Here ε = 0.4, the maximum of the perturbation is of amplitude
a = 10−4, and the isosurface is taken at k = 0.2. The right panel, which exhibits the maximum
of the amplitude of the field intensity for this configuration up to time t = 90, clearly shows that
the resulting single site has an oscillating amplitude (“breathes”). This can also be seen as the
undulations in the isosurface picture on the left. Similar diagnostics confirmed this for the other
cases
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Fig. 10.3 The two top panels show the dynamics for the first (top left panel) and second (top right
panel) four-site configurations of Eq. (3.89) in Chap. 3. The bottom two panels are the dynamics for
the first (bottom left panel) and second (bottom right panel) five-site configurations, respectively,
of the form of Eq. (3.90), Chap. 3. In each case ε = 0.4 and the perturbation is of amplitude
a = 10−4. The isosurface is taken as k = 0.2 for all figures except the one at the bottom right, for
which k = 0.4

though the coupling is the same and they have all been perturbed by noise with the
same amplitude. This illustrates the stronger instability from purely real eigenvalues.
We see a similar situation in Fig. 10.4 where the oscillatory instabilities manifest
themselves in the dynamics at later times. Of the configurations in Fig. 10.4, the
longest surviving one is the one with purely oscillatory instability (the symmetric
vortex with L = M = 1 (ii)). Note that this solution is perturbed by a random noise
with a = 10−4 while the amplitude of the perturbation in (iii) is a = 10−6. Still the
solution (ii) has greater longevity.

An interesting observation is that the number of sites that remain can depend
on the coupling strength and also on the magnitude of the perturbation. Take for
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Fig. 10.4 These panels show the dynamics for the (i) nine-site configuration (top left panel with
a = 10−2, k = 1.2), and the three symmetric vortices with (ii) L = M = 1 (top right panel with
a = 10−4, k = 0.2), (iii) L = 1 and M = 2 (bottom left panel with a = 10−6, k = 0.7), and (iv)
L = M = 2 (bottom right panel with a = 10−2, k = 0.7). In each case, ε = 0.6

example the second five-site configuration shown in the bottom right panel of
Fig. 10.3. In the figure shown, ε = 0.4, a = 10−4, and k = 0.4, and a single
site remains, while for a weaker perturbation (a = 10−5) two sites actually remain
for long times. However, for a larger coupling value of ε = 0.5 one site remains
for perturbations with amplitude as small as a = 10−8. Finally, in Fig. 10.5, we
depict the dynamical instabilities for the different vortex configurations discussed in
Chap. 3. Further study is needed to build on existing knowledge of discrete breathers
[32, 33], in order to explain this curious interplay between the various components,
and also to elucidate the underlying mechanisms responsible for these (as well as
other) observations.
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Fig. 10.5 These panels show the dynamics for the (i) symmetric vortex L = 3, M = 2 (top left
panel with ε = 0.6, a = 10−4, k = 1.2), (ii) asymmetric vortex with L = 1 M = 2 (top right
panel with ε = 0.6, a = 10−4, k = 0.9), (iii) asymmetric vortex with L = 3, M = 2 (bottom left
panel with ε = 0.5, a = 10−4, k = 0.7), and (iv) vortex cross of L = 2 (bottom right panel with
ε = 0.6, a = 10−2, k = 0.7). As before, these are from configurations laid out in Chap. 3

10.2.3 3(+1)-Dimensional Solutions

This section shows the dynamics of the field intensity, {|un|2}, for the three-
dimensional configurations, the (a) diamond (S±1 = {π/2, 3π/2}) [see Fig. 10.6],
(b) octupole (θ0 = π , s0 = 1, i.e., S1 = {π, 3π/2, 0, π/2}) [see Fig. 10.7], and (c)
double-cross (θ0 = π , s0 = 1, i.e., S1 = {π, 3π/2, 0, π/2}) [see Fig. 10.8]. All
three of these structures were shown previously (Chap. 4) to persist. For each, we
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Fig. 10.6 These panels show
four times in the evolution of
the three-dimensional
diamond structure. The
coupling is taken to be
ε = 0.3, the perturbation
amplitude is a = 10−2 and
and all iso-contours are taken
at Re(un) = ±0.75 and
Im(un) = ±0.75. The dark
gray and gray are real
iso-contours, while the light
and very light gray are the
imaginary contours
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show the evolution of the instability with characteristic density isosurfaces of the
three-dimensional field at four times beginning with t = 0.

As before, in each case a perturbation is applied at a value of the coupling well
past the threshold of instability. As with the lower dimensional configurations, the
coupling parameter and perturbation play a role in the evolution of the instability.
For appropriate values of each, a single site will remain at the end of the time frame
considered here. In the case of the octupole, it is seen that when we take ε = 0.3

Fig. 10.7 These panels show
four times in the evolution of
the octupole. The coupling is
ε = 0.3, the perturbation
amplitude is a = 10−2 and
and all iso-contours are taken
at Re(un) = ±0.75 and
Im(un) = ±0.75. The dark
gray and gray are real
iso-contours, while the light
and very light gray are the
imaginary contours
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Fig. 10.8 These panels show
four times in the evolution of
the double cross. The
coupling is ε = 0.4, the
perturbation amplitude is
a = 10−4 and and all
iso-contours are taken at
Re(un) = ±0.75 and
Im(un) = ±0.75. The dark
gray and gray are real
iso-contours, while the light
and very light gray are the
imaginary contours
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with a perturbation of amplitude a = 10−2, two sites remain as seen in Fig. 10.7,
while for ε = 0.6 with a perturbation of amplitude a = 10−4, a single site remains.
A similar phenomenon is observed for the double cross where for ε = 0.3 with a
perturbation of amplitude a = 10−2, two sites remain as seen in Fig. 10.8, while for
ε = 0.4 with a perturbation of amplitude a = 10−4, a single site remains.

In all cases, the grid size is 21× 21× 21. It should be noted that for the diamond
configuration, larger grid sizes (i.e., 25 × 25 × 25, 27× 27× 27) were examined,
with no qualitative change in behavior witnessed. In each case, the end result for a
given coupling and perturbation was always the same number of surviving sites.

10.3 Non-Standard Scenario

We will now consider a few more exotic settings. First, we look at the vortex solu-
tions with a six neighbor hexagonal geometry as seen in the end of Chap. 3. Then, we
will look at the same DNLS equation (10.1), except with a defocusing nonlinearity
(g = 1) in 1(+1) and 2(+1) dimensions from Chap. 5.

10.3.1 Hexagonal Lattice

In this section we consider the variation of Eq. (10.1) in which the terms �d un are
replaced by the non-standard extrapolation of the two-dimensional five-point stencil,
in which each site has four neighbors as in the previous section and following sub-
section, to the natural variation for the six-neighbor lattice,

∑
〈n′〉 un′ − 6un, where

〈n′〉 is the set of nearest neighbors to the node indexed by n.
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Fig. 10.9 Space–time evolution of {|un(t)|2}, where the lattice geometry is hexagonal, u = us(1+
maxn{|un,s (0)|2}ur ), ur is a uniform random variable in (−0.05, 0.05) random variable, and us is
a single charged vortex on the left (ε = 0.1) and a double charged vortex on the right (ε = 0.125).
The top panels are snapshots and the bottom are amplitudes of the individual excited sites. Note
the almost harmonic oscillations depicted in the inset of the bottom right

The vortex solutions in this geometry are displayed at the end of Chap. 3. The
single charged vortex is actually more unstable than the double charged one (the
eigenvalues bifurcating from the origin in the AC limit are real for the former and
imaginary for the latter). The dynamics of these solutions given in Fig. 10.9 confirm
this theoretical prediction. The single charged vortex (ε = 0.1) breaks up very
rapidly before z = 20 and subsequently degenerates into a lopsided dipole-type
configuration, while the double charged vortex (ε = 0.125) persists until well past
z = 200. Each configuration ultimately becomes a two-site breather for long dis-
tances, with one site being the initially unpopulated center site.

10.3.2 Defocusing Nonlinearity

We now study the dynamics of typical 1(+1)- and 2(+1)-dimensional solutions with
defocusing nonlinearity (g = +1 in Eq. (10.1)).

10.3.2.1 1(+1)-Dimensional Solutions

We begin by examining the dynamics of the unstable one-dimensional configura-
tions. Two one-dimensional dark soliton configurations with defocusing nonlinear-
ity are principally considered in this book; in both cases the absolute value squared
of the background is one and there is a π phase jump, which can either occur be-
tween two sites (IS) or between three sites (on-site, OS), where there exists a node
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with zero amplitude in the middle of the latter. As shown in Chap. 5, the OS dark
soliton is stable for small coupling, and subject only to oscillatory instability (as
the coupling increases) due to complex quartets of eigenvalues which emerge when
the null eigenvalues from the AC limit with negative Krein signature reaches the
continuous spectrum, at which point Hamiltonian–Hopf bifurcations occur . On the
other hand, the pair which bifurcates from the spectral plane origin (at the AC limit)
in the case of the IS configuration becomes real and therefore this configuration is
subject to a strong (exponential) instability.

Figure 10.10 shows the space–time evolution of the dark solitons which confirm
the theoretical and numerical predictions. The left panel shows the solution u =
us + ur where us is the IS dark soliton and ur is random noise field uniformly
distributed in the interval (−5, 5)× 10−4. Note even with such a mild perturbation
from the stationary state, this configuration disintegrates after t = 20. On the other
hand, in the right panel us is the OS configuration with ur uniformly distributed in
the interval (−5, 5)×10−2, and yet the original configuration persists until t = 500.
This not only confirms, but really highlights the accuracy of the theoretical stability
calculations from Chap. 5, Sect. 5.1.2.

10.3.2.2 2(+1)-Dimensional Solutions

Next, we will consider the two-dimensional configurations from Chap. 5, Sect. 5.2.
As in the one-dimensional case described above, the configurations us are perturbed
by a field ur randomly distributed in the interval (−5, 5)× 10−2. The same field ur

is added to each solution for consistency so they may be more easily compared (and
it is so large because the least stable among these configurations took a consider-
able time to degenerate even with this perturbation). We present the results of the
dynamical evolution of the two-site, four-site, and S = 1 vortices organized with
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Fig. 10.10 Dynamics of the inter-site (left) and on-site (right) dark soliton configurations are rep-
resented by space–time plots of the intensity of the field {|un(t)|2} as defined in the previous section
with ε = 0.1. These solutions correspond to those in Chap. 5, where the inter-site one is perturbed
by a random noise of only ±5 × 10−4, and is visibly distorted by t = 20, while the on-site
configuration is perturbed by a noise amplitude of ±5 × 10−2 and yet the original configuration
persists until t = 500
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the IS solutions in the left column, the OS solutions in the right column, and, for
the former two, the top are IP, and the bottom are OP. Again as in Sect. 10.2.2, we
choose density isosurfaces, Dk = {(n, t) | |un(t)|2 = k} as our visualization tool.
The magnitude of the density isosurface k is chosen as half the maximum of the
initial density field k = (1/2)|un(0)|2 in most cases, except when a smaller magni-
tude was necessary to visualize the relevant dynamics. All solutions degenerate into
a single site configuration for long times, although it is worth mentioning here that,
as in the focusing case, for smaller coupling values than those chosen here (but still
significantly far from the AC limit), even unstable solutions may only undulate and
not actually break up at all.

The two-site configurations are given in Fig. 10.11. Results confirm the stability
analysis in Chap. 5, Sect. 5.3.2. In particular, note that the mild instability of the ISIP

Fig. 10.11 Given above are the space–time evolutions of {|un|2} as given before where us are the
two-dimensional dipole configurations for defocusing nonlinearity. The top row is in-phase, the
bottom row is out-of-phase, the left column is inter-site, and the right column is on-site. These
solutions correspond to those found in Chap. 5, Sect. 5.2, for the coupling values (clockwise from
top left) ε = 0.116, 0.08, 0.116, and 0.08
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solution for ε = 0.116 given in the upper left panel takes a considerable amount
of time to break up the initial configuration as compared to the strong instability
of the ISOP for ε = 0.08 in the bottom left, which leads to degeneration almost
immediately into a single site upon evolution. In the right column we can see the fast
degeneration of the OSIP for ε = 0.08 as a manifestation of the strong instability on
the top row and the much slower degeneration of the OSOP for ε = 0.116 depicting
the oscillatory Hamiltonian–Hopf instability on the bottom.

Figure 10.12 depicts the quadrupole solutions, which again confirm the theoreti-
cal and numerical findings of Chap. 5, Sect. 5.3.3. The more stable ISIP (ε = 0.1)

Fig. 10.12 Same as Fig. 10.11, except for the relevant four-site configurations given in Chap. 5,
Sect. 5.3 and the coupling value is ε = 0.1 for all panels
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in the upper left panel and OSOP (ε = 0.1) in the lower right panel confirm the
predictions. So do the more unstable OSIP and ISOP (both for ε = 0.1) in the
top right and bottom left panels, respectively. For this coupling value, the ultimate
single site configuration of the ISOP is robust to perturbation (down to 10−8), as
was the second five-site configuration presented in Sect. 10.2.2. Again for a slightly
smaller coupling of ε = 0.08, a two-site configuration remains, which breathes up
to at least t = 900 (not shown), and again there is a larger perturbation which spoils
the breathing two-site structure for this coupling. Additionally, on investigating the
intermediate coupling value of ε = 0.9, one finds that the perturbation necessary
to break the two-site structure becomes smaller, suggesting that the necessary per-
turbation to eliminate the breather is inversely proportional to the coupling prior to
the lower bound of the region in coupling space for which a single site invariably
survives. Also, for ε = 0.05 the OSIP remains a breathing four-site structure even
for longer times despite the strong instability of the linearization and almost in-
stantaneous breathing behavior. This again supports the same hypothesis mentioned
above. Finally, Fig. 10.13 shows the single charge vortex solutions from Chap. 5,
Sect. 5.3.4. Both of these solutions are approximately equivalently unstable. Each
has both Hamiltonian–Hopf quartets and real pairs of eigenvalues.

Fig. 10.13 Dynamics of the two-dimensional charge 1, four-site gap vortices with defocusing non-
linearity. The inter-site version is on the left, while the on-site version is on the right and ε = 0.1
in both cases
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10.4 Conclusion and Future Challenges

We have numerically examined the dynamics of discrete solitons for the DNLS
equation in one, two, and three spatial dimensions with the standard focusing non-
linearity. We also investigated the more exotic hexagonal lattice and the case of
defocusing nonlinearity, the latter of which has been observed in the experimental
setting of nonlinear optics [34, 35]. It is found that the numerical dynamics aligns
itself with the theoretical predictions for linear stability established in the previous
chapters. It is noted that the dynamics within the timescales considered here depend
not only on the linear stability, but also sensitively on the coupling parameter and
(to a lesser degree) on the perturbation. For each case, there exists some coupling
and perturbation such that the eventual result is a single robust site (as displayed in
the images).

A major challenge for the future would be to devise and further develop a the-
oretical framework to understand [33] the instability process. The single site is an
attractive equilibrium of the system. Since it is stable and has low energy, it is no
surprise that an unstable system would tend to this state. But, it would be interesting
to attempt to develop some more precise theory relating these aspects of the nonlin-
ear evolution and perhaps elucidate general characteristics and features that may not
be visible from the numerics. It would also be of interest to examine more complex
systems, such as multicomponent and higher dimensional systems, and to determine
whether some general features persist.
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