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Foreword

Adventures of nonlinear science were perhaps most notably seeded at the Los
Alamos National Laboratory (LANL) over half a century ago with the fundamental
questions of energy equipartition in nonlinear systems, as they were posed by Fermi,
Pasta, and Ulam. At the time, probably little could be imagined of the far-reaching
implications that the studies of nonlinear phenomena would have, continuing to
expand to this day. The Ginzburg–Landau theory of superconductivity and the order-
parameter descriptions of superfluidity, the “soliton revolution” through the works
of Zabusky and Kruskal on the KdV equation and the subsequent widespread ap-
plications of the nonlinear Schrödinger equation in optical fibers and Bose–Einstein
condensates, the developments of bifurcation theory and chaotic dynamics and their
widespread applications from climate and geophysics, to biological phenomena and
chemical kinetics are only a few of the multiple arenas in which nonlinear dynamics
have emerged as the appropriate description of important physical systems.

I well remember my own early days of nonlinear science appreciation, first at
Cornell University in the early 1970s and then at Los Alamos where we began
the Center for Nonlinear Studies (CNLS) in 1980. These were years marked by
interdisciplinary discovery and by the recognition that many nonlinear equations
have an inherent ability to exhibit both coherence and chaos – the beginnings of our
appreciation today of spatio-temporal complexity and the functional role that this
plays in multiple branches of science, technology, and engineering.

Among the many remarkable discoveries from combinations of analysis, simula-
tion, and experimentation, the soliton (and more generically solitary wave)-bearing
equations have a long and distinguished history. They connect rich histories of
exactly solvable systems discovered in mathematical, statistical and many-body
physics, and powerfully demonstrate the unity of nonlinear concepts across disci-
plines and scales – from biology to cosmology! The Nonlinear Schrödinger equation
is perhaps the most ubiquitous of these equations, deriving from the familiar ingre-
dients of wave dispersion and nonlinearity, resulting in coherent envelope profiles.

Panos Kevrekidis was a member of the family of nonlinear brothers at CNLS
and Los Alamos before moving to UMass. Interestingly, CNLS was where some of
the most important early steps were realized in the study of the theme of this book,
namely the discrete nonlinear Schödinger equation (DNLS), appearing, e.g., through
the discrete self-trapping equation. Subsequent theoretical proposals for the use
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viii Foreword

of the DNLS in optical waveguide arrays, and later in Bose–Einstein condensates
trapped in optical lattices, have significantly increased the impact of this model,
which, in parallel, was often proposed as an envelope model in numerous other
Hamiltonian nonlinear lattice settings (especially of the nonlinear Klein–Gordon
type). The experimental realization of such proposals in both the optical and the
atomic physics context has served to cement the relevance and importance of the
study of the research theme of Hamiltonian nonlinear dynamical lattices, and espe-
cially of the DNLS as one of its prototypical realizations.

In this context the present work constitutes an important contribution to the liter-
ature and study of such systems. Despite the two decades over which this research
subject has been evolving, this is the first book specifically dedicated to exploring
the main physical, mathematical, and numerical aspects of the DNLS. The exposi-
tion is authored by an expert in the field with additional timely contributions from
numerous highly active researchers. I expect this book to be an important contri-
bution to the archival DNLS literature and a valuable reference for both junior and
more senior researchers.

Los Alamos, NM Alan Bishop
July 2008



Preface

Over the past two decades, the breadth and depth of influence of nonlinear sci-
ence more generally, and of dispersive lattice systems such as the discrete nonlinear
Schrödinger (DNLS) equation more specifically, have grown tremendously. Start-
ing from the speculations on Davydov’s soliton in biophysics and nonlinear optical
couplers and proposals for waveguide arrays in the 1970s and 1980s, the studies of
the DNLS-type systems passed to a different realm in the 1990s through the experi-
mental realization of optical waveguide arrays and the observation of key theoretical
predictions including discrete solitons, diffraction, Peierls barriers, multipulse fea-
tures, and diffraction management. They reemerged in yet another entirely different
physical incarnation in Bose–Einstein condensates (BECs) in optical lattices in the
2000s, representing one of the most exciting aspects of nonlinear phenomena in this
novel state of matter. This was even more remarkable in view of the wide range of
attention that BECs garnered due to their realization being awarded the Nobel prize
in Physics in 2001 and their being intimately connected to superfluidity and the
Nobel Prize in Physics in 2003. In the meantime, additional related aspects arose in
some of the earlier settings, including but not limited to, for instance, the realization
of periodic media in photorefractive crystals.

I first came across DNLS-type equations during my time as a Ph.D. student, and
started working on them during my summer visits at the Center for Nonlinear Stud-
ies, at LANL, which has always been a guiding center for work around this theme
(even since its original inception!). After the end of my dissertation work, the DNLS
became an even stronger focal point, among other reasons due to the increasing vis-
ibility of the physical realizations of this deceptively simple-looking mathematical
model. Over the years, I have had the privilege to work with a wonderfully diverse,
and physically, as well as mathematically gifted set of collaborators from whom I
learnt a great deal about this topic; however, I have always been surprised by the
fact that despite the level of maturity that this field has arrived at, there has not been
a more comprehensive publication (i.e., a book) that focuses on this main theme at
the interface of nonlinear science, lattice systems, and wave phenomena. It is in that
spirit that I decided to dedicate my first sabbatical from UMass in an effort to sum
up some of the main axes of the phenomenology of this equation, at least as I view
it and as it has been distilled through my own research efforts on the subject over
the years; undoubtedly, this brings a considerable personal flavor. However, in an
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x Preface

effort to broaden the scope of the work, as well as to offer some of its most recent
developments, I decided to partition the book into two segments. The first part,
comprising the first seven chapters, consists of some of the principal and general
features of the DNLS system. The second part, consisting of chapters 8–22, is a set
of minireviews on more specialized, as well as often more recent topics, written by
a number of friends and collaborators, who kindly offered their expert help.

At this point, I would like to thank all the contributors to this volume for their
excellent coordination, and their important and informative contributions. I should
also express my gratitude to all my collaborators over the years on this theme of
work, for all of what they have taught me. Among them, I should especially mention
Ricardo Carretero-González for his invaluable editorial and consulting assistance
throughout this project. I should also thank the National Science Foundation for its
support through the CAREER program and the Alexander von Humboldt Founda-
tion for offering me the opportunity to work, as undistracted as possible, toward
the completion of this book, at the University of Heidelberg, through one of its
Research Fellowships. Lastly, but most importantly, I am grateful to Maria, and
our two daughters, Despina and Athena, for helping me, in more ways than I can
enumerate, to complete this project.

I hope that the result, despite its personal flavor and its strong parallels with
my own journey through this intriguing dynamical system, will offer the reader,
be they a novice, or a seasoned researcher in this field, a useful reference point
where many of the fundamental ideas are explored and references are given to more
specialized publications. Furthermore, I hope it will provide not only a perspective
of the mathematical tools and techniques, but also a view toward the numerical
computations/methods and importantly key connections to the physical realizations
of this class of models. As the cycle of this work is closing, and new ones are
opening up, perhaps it is relevant that I conclude this journey with one of my favorite
verses of Tennyson’s Ulysses:

“Tho’ much is taken, much abides; and though we are not now that strength
which in old days moved earth and heaven; that which we are, we are; one equal
temper of heroic hearts, made weak by time and fate, but strong in will to strive, to
seek, to find, and not to yield.”

Heidelberg, Germany Panayotis Kevrekidis
June 2008
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General Theory



Chapter 1
General Introduction and Derivation
of the DNLS Equation

1.1 General Introduction

The discrete nonlinear Schrödinger (DNLS) equation is, arguably, one of the most
fundamental nonlinear lattice dynamical models. On the one hand, this is due to its
being the prototypical discretization for its famous and integrable continuum sibling,
namely the nonlinear Schrödinger (NLS) equation [1, 8] which has a wide range
of applications; it is the relevant dispersive envelope wave model for describing the
electric field in optical fibers [13, 34], for the self-focusing and collapse of Langmuir
waves in plasma physics [5, 6], or for the description of freak waves (the so-called
rogue waves) in the ocean [7]. On the other hand, the DNLS is a model of particular
physical interest in its own right, with a diverse host of areas where it is of physical
interest; see, e.g., [38] for a relevant review. We mention a brief outline of these
areas below.

Perhaps the first set of experimental investigations that triggered an intense in-
terest in DNLS-type equations was in the area of nonlinear optics and, in particular,
in fabricated AlGaAs waveguide arrays [9]. In the latter setting, a multiplicity of
phenomena such as discrete diffraction, Peierls barriers (the energetic barrier that
a wave needs to overcome to move over a lattice – see details below), diffraction
management (the periodic alternation of the diffraction coefficient) [10, 11], and gap
solitons (structures localized due to nonlinearity in the gap of the underlying linear
spectrum) [12] among others [13] were experimentally observed. These phenomena,
in turn, triggered a tremendous increase also on the theoretical side of the number of
studies addressing such effectively discrete media; see, e.g., [14–17] for a number
of relevant reviews, as well as the very recent [18].

A related area where DNLS, although it is not the prototypical model, still it
yields accurate qualitative predictions both about the existence and about the sta-
bility of nonlinear localized modes is that of optically induced lattices in photore-
fractive media such as strontium barium niobate (SBN). Ever since the theoretical
inception of such a possibility in [19], and its experimental realization in [20–23],
there has been an explosive growth in the area of nonlinear waves and solitons
in such periodic, predominantly two-dimensional, lattices. An ever-growing array
of structures has been predicted and experimentally obtained in lattices induced
with a self-focusing nonlinearity, including (but not limited to) discrete dipole [24],

P.G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation, STMP 232, 3
3–9, DOI 10.1007/978-3-540-89199-4 1, c© Springer-Verlag Berlin Heidelberg 2009
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quadrupole [25], necklace [26], and other multipulse patterns (such as, e.g., soliton
stripes [27]), discrete vortices [28, 29], and rotary solitons [30, 31]. Such structures
have a definite potential to be used as carriers and conduits for data transmission and
processing, in the setting of all-optical communication schemes. A recent review of
this direction can be found in [32] (see also [33]).

Finally, yet another independent and completely different physical setting where
such considerations and structures are relevant is that of atomic physics, where
droplets of the most recently discovered state of matter, namely of Bose–Einstein
condensates (BECs) may be trapped in a periodic optical lattice (OL) potential pro-
duced by counter-propagating laser beams in one, two or even all three directions
[34]. The latter field has also experienced a huge growth over the past few years,
including the prediction and manifestation of modulational instabilities (i.e., the
instability of spatially uniform states toward spatially modulated ones) [17, 36], the
observation of gap solitons [37], Landau–Zener [38], and Bloch oscillations (for
matter waves subject to combined periodic and linear potentials) [39] among many
other salient features; reviews of the theoretical and experimental findings in this
area have also recently appeared in [40–42].

In addition to these areas more directly related to the DNLS or to NLS-type
equations more generally, the DNLS serves as an envelope model to other types of
lattices such as Klein–Gordon (i.e., nonlinear wave type) equations. These emerge
in a number of additional applications including the oscillations of nanomechani-
cal cantilever arrays [43], the denaturation and related phase transformations of the
DNA double strand [44], or even in simple electric circuits [45].

All of the above experimental motivations from atomic, optical, nonlinear, and
wave physics illustrate the relevance of acquiring a detailed understanding of a pro-
totypical mathematical model that emerges in one form or another in the settings,
namely the DNLS equation. On the other hand, more generally, this theme of in-
terplay between nonlinearity and periodicity (that are the fundamental features of
the DNLS equation, along with diffraction) is of more general and broad appeal.
Nonlinearity and periodicity have been observed to introduce fundamental changes
in the properties of the system. On the one hand, periodicity modifies the spectrum
of the underlying linear system resulting in the potential of existence of new co-
herent structures, which may not exist in a homogeneous nonlinear system. On the
other hand, nonlinearity renders accumulation and transmission of energy possible
in “linearly” forbidden frequency domains; this, in turn, results in field localization.
It is in such a prototypical setting combining these features in a Schrödinger equa-
tion context that we start our mathematical presentation, aiming at a derivation of
the DNLS equation, before we subsequently focus on its mathematical properties
and nonlinear wave solutions.

1.2 Prototypical Derivation of the DNLS

Our starting point for the derivation of the DNLS equation will be the continuum
nonlinear Schrödinger for the wave functionψ in the presence of a periodic potential
of the form
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i
�ψ

�t
= −�2ψ

�x2
+ V (x)ψ + σ |ψ|2ψ (1.1)

where σ = ±1 and V (x) is a periodic potential V (x + L) = V (x). This model is
of particular relevance to (cigar-shaped) BECs in the presence of an OL potential
as indicated above [40–42];1 the sign of σ determines the nature of the interatomic
interactions. The latter are attractive for negative σ , while they are repulsive for
positive σ . The former case corresponds to the so-called focusing nonlinearity, while
the latter to the so-called defocusing one. Note also that here we will give a one-
dimensional derivation, although similar concepts can, in principle, be generalized
to higher dimensions, as well.

We start by considering the linear eigenvalue problem associated with (1.1)

− d2ϕk,α

dx2
+ V (x)ϕk,α = Eα(k)ϕk,α (1.2)

where ϕk,α has Bloch–Floquet functions (BFs) ϕk,α = eikx uk,α(x), with uk,α (x)
periodic with period L; α labels the energy bands Eα(k). It is well known [47] that
Eα(k+2π/L) = Eα(k). The energy can therefore be represented as a Fourier series

Eα(k) =
∑

n

ω̂n,α eiknL , ω̂n,α = ω̂−n,α = ω̂∗nα (1.3)

where an asterisk stands for complex conjugation and

ω̂n,α = L

2π

∫ π/L

−π/L
Eα(k)e−iknL dk . (1.4)

The BFs constitute an orthogonal basis; however, instead of that basis, we will
use the Wannier function (WF) one. The WF centered around the position nL (n is
an integer) and corresponding to the band α is defined as

wα(x − nL) =
√

L

2π

∫ π/L

−π/L
ϕk,α(x)e−inkLdk. (1.5)

Conversely,

ϕk,α(x) =
√

L

2π

∞∑

n=−∞
wn,α(x)einkL . (1.6)

1 It should be noted that it does not escape us that more elaborate reduction models have been
proposed for the one-dimensional reduction of the original three-dimensional problem, e.g., in the
setting of BECs, see, e.g., [46]. Here, we will nevertheless focus on the simpler cubic case, which
is also the low-density limit of such models.
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The WFs also form a complete orthonormal (with respect to both n and α) set of
functions,

∫ ∞

−∞
w∗n,α(x)wn′ ,α′ (x) dx = δαα′ δnn′

∑

n,α

w∗n,α(x ′)wn,α(x) = δ(x − x ′)

which, by properly choosing the phase of the BFs in (1.5), can be made real and
exponentially decaying at infinity [47]. We therefore assume this choice: w∗n,α(x) =
wn,α(x). At the heart of the derivation of the DNLS equation lies the decomposition
of the solution of (1.1) in the basis of WFs (given the completeness of this basis)

ψ(x, t) =
∑

nα

cn,α(t)wn,α(x). (1.7)

This decomposition is then substituted in (1.1) yielding

i
dcn,α

dt
=
∑

n1

cn1,αω̂n−n1,α + σ
∑

α1,α2,α3

∑

n1,n2,n3

c∗n1,α1
cn2,α2 cn3,α3 W nn1n2n3

αα1α2α3
(1.8)

where

W nn1n2n3
αα1α2α3

=
∫ ∞

−∞
wn,αwn1,α1wn2,α2wn3,α3 dx (1.9)

are overlapping matrix elements. The expression W n1n2n3n4
α1α2α3α4

is symmetric with re-
spect to all permutations within the groups of indices (α, α1, α2, α3) and
(n, n1, n2, n3). Eq. (1.8) can be viewed as a vector form of the DNLS equation for
cn = col(cn1, cn2, ...) with non-nearest-neighbor interactions in its general form. A
key question then concerns the potential simplifications and the conditions under
which it can be reduced to single-component DNLS equation.

For sufficiently rapid decay of the Fourier coefficients in (1.3) and |ω̂1,α| �
|ω̂n,α|, n > 1 the non-nearest-neighbor coupling terms can be neglected in the
linear part of Eq. (1.8), leading to a dynamical model accounting solely for nearest-
neighbor interactions.

Secondly, since wn,α(x) is localized and centered around x = nL, one can as-
sume that in some cases among all the coefficients W nn1n2n3

αα1α2α3
those with n = n1 =

n2 = n3 are dominant and other terms can be neglected, since they are exponentially
weaker. Then, one arrives at the equation

i
dcn,α

dt
= ω̂0,αcn,α + ω̂1,α

(
cn−1,α + cn+1,α

)+ σ
∑

α1,α2,α3

W nnnn
αα1α2α3

c∗n,α1
cn,α2 cn,α3

which becomes the tight-binding DNLS model
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i
dcn,α

dt
= ω̂0,αcn,α + ω̂1,α

(
cn−1,α + cn+1,α

)+ σW nnnn
1111 |cn,α|2cn,α (1.10)

by restricting consideration only to the band α. One of the advantages of this deriva-
tion is that it shows directly how to generalize the single band approximation, both
in the direction of including additional bands when relevant (i.e., when the inter-
band coupling terms are comparable to the intra-band ones) and also toward that of
including additional neighbors within a band when ω̂n,α for n > 1 become sizeable
with respect to ω̂1,α . Both of these properties are determined by the linear properties
of the model, which yields ω̂n,α andwn,α(x) and the specific form of the nonlinearity
(which determines the particular form of the overlap coefficients to be compared
between bands and between sites).

A few words should be mentioned here about the history of the derivation of the
DNLS equation. The equation first appeared in connection to Davydov’s model in
biophysics in [48, 49], as well as in a more general form, namely as the so-called
discrete self-trapping (DST) equation

i u̇n = −ε
∑

k

mnkuk − |un|2un (1.11)

in [50]. The DST generalization degenerates into the DNLS equation for merely
nearest-neighbor couplings.

In the setting of nonlinear optics, it was first presented in [11], as stemming
from a coupled mode theory approach in the case of identical, regularly spaced
waveguides where the refractive index of the nonlinear material of the array in-
creases linearly with the intensity of the optical field. A related derivation appears
in the Introduction section of [8], where the starting point is the two-dimensional
Maxwell’s equation of the form

ψzz + ψxx + ( f (x)+ δ|ψ|2)ψ = 0. (1.12)

In this setting, z is the propagation direction (as is customarily the case for the
problems that we will consider in optics), f (x) represents the periodically varying
in x linear index of refraction, and the term proportional to the small parameter
δ (in that derivation) represents the so-called Kerr nonlinear effect, whereby the
refractive index is proportional to the intensity of light. The derivation then proceeds
along lines parallel to those illustrated above, but also considering a slow envelope
depending on Z = δz. A similar derivation can be performed even for a regular
cubic nonlinearity∝ ψ3, instead of |ψ|2ψ , with the additional assumption of the so-
called rotating wave approximation where only the terms proportional to a dominant
frequency are kept, see, e.g., [12].

In the context of BECs, the equation re-emerged through the important work of
[53] (see also the nearly concurrent work of [54]), where the dynamics in the pres-
ence of an OL was analyzed in the context of this equation. In the above exposition,
we followed the analysis of [5], where systematic details of the derivation were
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provided, as well as estimates of the various coefficients (such as ω̂ and W above)
were given for a prototypical periodic potential of the form V (x) = A cos(2x) (the
interested reader is referred to that work for more details). It should also be noted
that later works such as [56] also considered additional terms in the derivation and
obtained more complex models that will be discussed in the last chapter of this
volume. Similar results were also obtained in the optical context in the work of [57].
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Chapter 2
The One-Dimensional Case

We now focus on the analysis of the one-dimensional DNLS equation of the form

i u̇n = −ε (un+1 + un−1 − 2un)+ β|un|2un . (2.1)

(In the above form of Eq. (2.1), one of ε and β can be scaled out; e.g., β can be
scaled out up to a sign by u → u

√|β|) Note that in the next few chapters we
will be considering the focusing (attractive interaction in BEC) case of β < 0;
the defocusing nonlinearity of β > 0 will be treated in a separate chapter. Our
analysis in both this and in the following chapters will revolve around fundamental
and excited state solutions of the equation, their stability, and dynamics. Perhaps the
most fundamental among these is the single-pulse solitary wave that we now turn to.

2.1 Single-Pulse Solitary Waves

2.1.1 The Continuum Approach

2.1.1.1 General Properties of the Continuum Problem

We start by considering such pulses in the continuum limit. Given the opportu-
nity, we also present here an interlude with some fundamental features of the one-
dimensional continuum NLS equation of the general form

iut = −uxx − |u|2σu (2.2)

(where the subscript x, t denote partial derivatives with respect to the corresponding
variable). For more details, the interested reader is referred to [1].

Equation (2.2) is a Hamiltonian system, but with infinite degrees of freedom
(i.e., a “field theory”). As such, we expect that it will have a Lagrangian and a
Hamiltonian density. Indeed, the Lagrangian density for the model is

L = i

2

(
u�ut − uu�t

)− |ux |2 + 1

σ + 1
|u|2σ+2. (2.3)

P.G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation, STMP 232, 11
11–53, DOI 10.1007/978-3-540-89199-4 2, c© Springer-Verlag Berlin Heidelberg 2009
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Then, the corresponding partial differential equation (in particular, Eq. (2.2) in
this case) is derived as the Euler–Lagrange equation of the field theory [1] accord-
ing to

0 = δL

δu
= �L

�u
− �x

(
�L
�ux

)
− �t

(
�L
�ut

)
. (2.4)

where δL/δu symbolizes the Fréchet derivative [2] of the Lagrangian L = ∫ Ldx .
It can also be shown that if the action S = ∫ Ldt = ∫ Ldxdt is invariant under

a transformation x → x + δx , t → t + δt and u → u + δu, then the quantity

I =
∫

dx

[
�L
�ut

(utδt + uxδx − δu)+ C.C.− Lδt
]

(2.5)

is conserved. This is the celebrated Noether theorem. Its proof requires the use of
calculus of variations and we omit it here (the interested reader can find a detailed
derivation in Sect. 2.2 of [1]).

For the particular Hamiltonian system of interest here, we have the following
invariances (and corresponding conservation laws):

• if we use the transformation u → v = ueis where s is space and time inde-
pendent, then the equation for v is the same as the one for u. Hence there is a
phase degeneracy/invariance in the system. The generator of the corresponding
invariance is found as v ≈ u + δu, with δu = i su (the leading order expansion
of the above mentioned exponential phase factor). Hence, using δu = i su and
δx = δt = 0, we obtain that

P = ||u||2L2 =
∫
|u|2dx (2.6)

is conserved. This states that the (squared) L2 norm is conserved by the dynamics
of Eq. (2.2). This has a meaningful physical interpretation, e.g., in optics or BEC
since in the former it states that the power of the beam is conserved, while in the
latter it denotes the physically relevant conservation of the number of atoms in the
condensate. This invariance is often referred to as the phase or gauge invariance
of the NLS.

• Spatial translation x → x + δx also leaves Eq. (2.2) invariant. If we use δt =
δu = 0 in Eq. (2.5), we obtain the conservation of linear momentum (just as in
low-dimensional Hamiltonian systems of classical mechanics) of the form

M = i
∫ (

uu�x − u�ux
)

dx . (2.7)

Hence, translational invariance results in momentum conservation.
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• Finally, time translation t → t + δt also leaves the dynamical equation invari-
ant, hence using δx = δu = 0 in Eq. (2.5) results in the conservation of the
Hamiltonian (i.e., the energy) of the system

H =
∫ (
|ux |2 − 1

2σ + 2
|u|σ+1

)
dx . (2.8)

The integrand of Eq. (2.8) then represents the Hamiltonian density of the sys-
tem. One can then restate the problem in the Hamiltonian (as opposed to the
Lagrangian) formulation by means of Hamilton’s equations and/or using the
structure of the Poisson brackets, e.g.,

iut = δH

δu�
= {H, u}, (2.9)

where the standard Poisson bracket has been used.

These are general symmetries/invariances that are present for any value of σ . We
now turn to the specific, the so-called integrable case of σ = 1. The integrability
of this particular case means that apart from these three above defined integrals
of motion, there are infinitely many others. The unusual feature of such an inte-
grable nonlinear partial differential equation (PDE) is that once the initial data is
prescribed, we can solve the PDE for all times [3]. The nonlinear wave solutions
to such PDEs are often referred to as solitons, because they are solitary coherent
structures (i.e., nonlinear waves) which emerge unscathed from their interaction
with other such structures.

Here we focus on the standing wave solitons of the σ = 1 case, as the main
solution of the solitary pulse type. Our exposition will highlight the features of this
main “building block” of the NLS equation and will show how it is modified in the
presence of the non-integrable perturbation imposed by discreteness.

Such standing wave solutions can be straightforwardly obtained in an explicit
form

u = (2�)1/2sech(�1/2(x − ct − x0))e
i
(

c
2 x+(�− c2

4 )t
)

, (2.10)

where � is the frequency of the wave, x0 the initial position of its center, and c its
speed. Since, there is an additional Galilean invariance, that allows us to boost a
given solution to any given speed c, we will mostly focus on solutions with c = 0
hereafter. (Note, however, that discreteness does not preserve this invariance, hence
the issue of traveling becomes an especially delicate one in the discrete case, as
discussed in Part II.) These are often referred to as standing waves or occasionally as
breathers (because of their periodicity in time and exponential localization in space).

Naturally, once such solutions are identified, the immediate next question con-
cerns their stability. This can be identified at a first (but still particularly useful) step
by means of linear stability analysis. Using the ansatz
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u = ei�t (u0(x)+ ε(v + iw)) (2.11)

in Eq. (2.2), where u0(x) = (2�)1/2sech(�1/2(x − x0)), one obtains the linear sta-
bility equations by the O(ε) expansion. It can be easily seen that the O(1) equation
is, by construction, identically satisfied (it is the equation satisfied by the solitary
wave). The O(ε) equations read as follows:

vt = L−w =
(−�+ �− u2σ

0

)
w, (2.12)

wt = −L+v = −
(−�+ �− (2σ + 1)u2σ

0

)
v. (2.13)

In Eqs. (2.12) and (2.13), � denotes the second spatial derivative (per its natural
higher dimensional generalization, namely the Laplacian). Note that we give the
general form of the linear stability problem, even though for the time being we are
interested in the particular case of σ = 1. Separating space and time variables for
the solutions of the resulting equations (2.12) and (2.13) as v(x, t) = eλt ṽ(x) and
w(x, t) = eλtw̃(x), we obtain the eigenvalue problem in the form

λ2ṽ = −L−L+ṽ (2.14)

and similarly λ2w̃ = −L+L−w̃.
The invariances of the original equation are now mirrored in the zero eigenvalues

of the linearization problem of Eq. (2.14). In particular, it is easy to check that for
any solution of the form u = ei�t u0(x), the spatial derivative du0/dx corresponds to
an eigenvector with a pair of zero eigenvalues since L+du0/dx = 0. Similarly, the
phase invariance leads to another pair of zero eigenvalues since L−u0 = 0. Hence,
the linearization around the pulse-like soliton solutions of Eq. (2.10) will contain
four eigenvalues at λ = 0. The algebraic multiplicity of the eigenvalues at the origin
is four, but the geometric multiplicity is two. That is, each of the eigenvalues has an
eigenvector and a generalized eigenvector associated with it. For example, the phase
invariance has a generalized eigenvector v = �u0/�� [4, 5], satisfying L+v =
−u0. Similarly, there is a generalized eigenvector of translation proportional to
(x − x0)u0 [4].

Furthermore, the linearization problem of Eqs. (2.12) and (2.13) will contain
continuous spectrum. The latter consists of small amplitude, extended in space,
plane wave eigenfunctions of the form v + iw ∝ ei(kx−ωt) (see [4] for their precise
functional form). These satisfy the linear dispersion relation (upon substitution into
the above equations) of the form

ω2 = −λ2 = ± (�+ k2) . (2.15)

Hence, in this case, the spectral plane (λr , λi ) of the eigenvalues λ = λr + iλi of
the linearization around a soliton of the top panel of Fig. 2.1 will have a form such
as the one given in the bottom panel of Fig. 2.1.
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Fig. 2.1 The top panel shows
the continuum soliton of the
NLS equation for � = 1. The
bottom panel shows the
corresponding spectral plane
of eigenvalues (λr , λi ) in this
integrable case. Four
eigenvalues are at λ = 0 due
to the invariances (see text)
and the rest reside in the
continuous spectrum whose
band edge is at λ = ±�i
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2.1.1.2 From Continuum to Discrete

The most straightforward discretization of the NLS equation

i u̇n = −ε�2un + β|un|2σun, (2.16)

where ε = 1/h2, where h plays the role of the discrete lattice spacing and �2un =
un+1 + un−1 − 2un is the discrete Laplacian with unit spacing. The DNLS model is
also Hamiltonian with

HDN L S = −
∞∑

n=−∞

[
ε|un − un−1|2 + β

σ + 1
|un|2σ+2

]
(2.17)

and can be derived from HDN L S as

u̇n = {HDN L S, un}, (2.18)

using the Poisson brackets

{um, u�n} = iδm,n, {um, un} = {u�m, u�n} = 0. (2.19)

As we indicated above, the case of σ = 1 is integrable in the continuum limit.
In the discrete case, the above-mentioned DNLS is a non-integrable discretization
of the continuum model. On the other hand, however, there does exist an integrable
discretization, namely the so-called Ablowitz–Ladik (AL-NLS) discretization of the
NLS equation [6, 7]

i u̇n = −ε�2un + β
2

(un+1 + un−1)|un|2 (2.20)

with similar notation as used in Eq. (2.16). In the case of the AL-NLS, the Hamil-
tonian is of the form
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HAL-N L S = −
∞∑

n=−∞

[
ε|un − un−1|2 + 1

β
ln
(
1+ β|un|2

)]
. (2.21)

The AL-NLS equation is derived from HAL-N L S using the non-standard Poisson
brackets

{um, u�n} = iδm,n(1+ β|un|2), {um, un} = {u�m, u�n} = 0. (2.22)

Additionally to the Hamiltonian, both the DNLS and the AL-NLS equation con-
serve a quantity that is commonly referred to as the norm or power of the solution

PDN L S =
∞∑

n=−∞
|un|2, (2.23)

while for the AL-NLS equation it is

PAL-N L S =
∞∑

n=−∞

1

β
log
(
1+ β|un|2

)
. (2.24)

This conservation law, analogously to the corresponding conservation law for
the continuum NLS equation, mirrors the U(1) symmetry or gauge invariance of the
discrete model, i.e., its invariance with respect to an overall phase factor.

One of the fundamental differences between the DNLS and the AL-NLS model
is the existence of a momentum conservation law in the latter which is absent in the
former. In particular, the momentum

M = i
∞∑

n=−∞

(
u�n+1un − un+1u�n

)
(2.25)

is conserved in the case of the AL-NLS model; this, in turn, implies that its localized
solutions can be centered anywhere within the discrete lattice. In fact, in the AL-
NLS case, there exist exact soliton solutions which are of the form (for simplicity,
setting ε = −β/2 = 1)

un = sinh(γ )sech (γ (n − ξ )) exp (iδ(n − ξ )+ ρ) , (2.26)

where ξ̇ = 2 sinh(γ ) sin(δ)/γ and ρ̇ = −2+2 cos(δ) cosh(γ )+2δ sin(δ) sinh(γ )/γ
[8]. Then, the translational invariance is evident in the presence of an undetermined
integration constant in the ordinary differential equation (ODE) for the time evolu-
tion of the position of the soliton center ξ .

In the DNLS case, the absence of translational invariance no longer permits to
the solution to be arbitrarily centered anywhere along the lattice. Instead, there are
only two stationary solutions (modulo the integer shift invariance of the lattice),
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Fig. 2.2 The top panel shows the discrete on-site solitary wave (left) and inter-site solitary wave
(right) for ε = 1. The bottom panels show the corresponding linear stability eigenvalues, illus-
trating the linear stability of the former and linear instability of the latter (due to a real eigenvalue
pair). There is only a single pair of eigenvalues at the origin, due to the phase invariance; note also
the upper bound of the continuous spectrum (a feature absent in the continuum limit, where the
continuous spectrum extends to ±i∞)

one centered on a lattice site (on-site) and one centered between two adjacent lattice
sites (i.e., inter-site or bond-centered solution). These two solutions are shown in the
top panels of Fig. 2.2. Such localized modes were initially proposed in a different
dynamical lattice context in [9] and [10]; a relevant discussion of these modes in
DNLS can be found in [11].

A fundamental level of understanding of this feature (although partially heuristic)
can be obtained by using the continuum soliton solution of Eq. (2.10) as an ansatz
in the formula for the discrete energy of Eq. (2.17). This is a “collective coordinate”
type approach using as the relevant coordinate the position of the pulse center x0.
The resulting expression for the (discrete) Hamiltonian is given by

HDN L S = 16π2

h2

∞∑

m=1

m cos
( 2πmx0

h

)

sinh
(

mπ2√
�h

)
[
ε − �

3

(
1+ m2π2

�h2

)]
, (2.27)

where it should be kept in mind that ε = 1/h2. To derive the above expression
[12], terms independent of x0 have been neglected in the energy (cf. also with the
momentum invariant for the AL lattice and its relevant calculation in [13]), and the
Poisson summation formula [14] has been critically used, according to which

∞∑

n=−∞
f (βn) =

√
2π

β

∞∑

m=−∞
F

(
2mπ

β

)
, (2.28)
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where F is the Fourier transform of f ,

F(k) = 1√
2π

∫ ∞

−∞
f (x)eikxdx . (2.29)

The above calculation yields the so-called Peierls–Nabarro (PN) [15, 16] poten-
tial which is famous from the theory of crystal dislocations representing the energy
landscape that a dislocation faces in a crystal lattice. Of particular importance is the
so-called PN barrier, namely the energy barrier that needs to be overcome in order
for the coherent structure to travel a distance of one lattice site. In the present setting,
the PN barrier can be easily found from the above expression for HDN L S to be

HP N = 32π2

h2

∞∑

m=1

m(1− (−1)m)

sinh
(

mπ2√
�h

)
[
ε − �

3

(
1+ m2π2

�h2

)]
. (2.30)

(We will not attempt to evaluate this expression and compare it with numerical re-
sults for reasons that will be explained in Part II).

However, the expression of Eq. (2.30) bears an additional piece of information.
In the continuum limit of h → 0, the above examined energy is independent of
the position of the pulse center due to the translational invariance of the continuum
model, i.e., H (x0) is a constant function of x0. Therefore, in the case where the sym-
metry is broken (for h 
= 0), the height of the periodic energy barrier represents a
quantitative measure of “how much” the invariance is broken. This amount appears,
in Eq. (2.30), to be exponentially small in the relevant parameter which is the lattice
spacing h (note the dominant hyperbolic sine terms in the denominator proportional
to sinh(mπ2/

√
�h)). It is perhaps interesting to attempt to justify this exponential

smallness in a qualitative way as follows: if we try to expand the operator �2un by
means of a Taylor expansion, we obtain

�2un =
∞∑

j=1

2h2 j

(2 j )!

d2 j u

dx2 j
. (2.31)

However, to all algebraic orders in this power-law expansion of the discrete op-
erator, the right-hand side of Eq. (2.31) contains derivatives. However, derivatives
are translationally invariant objects. Hence, in order to be able to observe the break-
ing of the symmetry, one has to go beyond all algebraic orders in the power-law
expansion and hence has to become exponentially small in h, just as the energy
landscape of Eq. (2.27) suggests.

We are now in a position to discuss the linear stability problem at the discrete
level of the DNLS equation. Starting with the linear stability ansatz through the
discrete analog of Eq. (2.11) (where each term should be thought of as having a
subscript n indexing the lattice sites), we obtain the analog of the eigenvalue equa-
tions (2.12) and (2.13) for Eq. (2.1)
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λvn = L−wn = (−ε�2 + �− βu2
0,n)wn, (2.32)

λwn = −L+vn = −(−ε�2 + �− 3βu2
0,n)vn . (2.33)

In the lattice case, Eqs. (2.32) and (2.33) represent a matrix eigenvalue problem
for the eigenvalues λ and the eigenvectors (vn, wn)T that is subsequently solved
numerically.

A small remark should be added here about eigenvalue notation. In the physics
literature, it is quite common to use the eigenfrequency ω, while in the more math-
ematically oriented texts, λ = iω is used to denote eigenvalues. The two notations
will be used interchangeably, with the understanding that linear instability is implied
by non-zero imaginary part of ω or, equivalently, by the non-zero real part of λ.

The following features are generically observed in spectral plots analogous to the
ones shown in Fig. 2.2 but for different values of the coupling strength ε:

• The continuous spectrum of plane wave eigenfunctions ∼ exp(±i (qn − ωt)),
exists also in the discrete problem and satisfies the following dispersion relations:

ω = �+ 4ε sin2
(q

2

)
, (2.34)

ω = −�− 4ε sin2
(q

2

)
. (2.35)

As seen from Eqs. (2.34) and (2.35), this branch of the spectrum extends over the
interval ±[�,�+ 4ε] (along the imaginary axis of the spectral plane).

• In addition, as indicated above, the preservation of the U(1) invariance under
discretization leads to a pair of eigenvalues λ2 = 0.

• The translational invariance breaking is, as argued above, one of the key features
of the discrete problem in comparison to its continuum sibling. In the case of
a site-centered (linearly stable) solution, as shown in Fig. 2.2 and justified later
in this chapter, the bifurcation of the translational eigenvalues occurs along the
imaginary axis, leading to linear stability. On the contrary, in the case of the
bond-centered solutions, the breaking of the symmetry leads to bifurcation along
the real axis, rendering such inter-site-centered solutions linearly unstable.

• Finally, as was originally illustrated in [17] and subsequently expanded in [5],
as the lattice spacing increases (and the coupling strength ε = 1/h2 decreases),
there is also a pair of eigenmodes that bifurcates from the lower edge of the
continuous spectrum, becoming a point spectrum eigenvalue. This, so-called, in-
ternal mode bifurcation does not affect critically the stability of the fundamental
solution (at least, in the one-dimensional problem – in higher dimensions, as we
will see below in Chap. 3, Sect. 3.3.4, such bifurcations may affect the stability
critically), as will be quantified in what follows.

The above information yields the full spectral information in the case of a fun-
damental solution (single pulse) (we will see below how this picture is modified for
multipulse waveforms). In what follows, we attempt to quantify some of the features
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of the single-pulse linearization spectrum, namely the exponential bifurcation of the
translational eigenvalue and the exponential, as well as power-law bifurcation of the
internal mode from the band edge of the continuous spectrum.

We start by trying to capture the exponential bifurcation of the translational
eigenmode using a more rigorous method. Specifically, we will use the discrete
Evans function method developed in [18]. Here, we will outline the basic features
of the method (we refer the reader to the original work of [18] for more details).

The eigenvalue problem can also be written as a first-order system

Yn+1 = A(λ, n)Yn (2.36)

with λ = iω. Equation (2.36) has solutions, Y+ (Y−) that decay exponentially as
n → +∞ (n → −∞). Forming the wedge product of the two, we obtain an an-
alytic function, the so-called Evans function, whose zeros, by construction, pertain
to eigenvectors that span the subspace of intersection of the two spaces and hence
decay for n →±∞. Hence, if we define

E(λ) = Y+ ∧ Y−, (2.37)

the solutions of the linearization problem, λ, such that E(λ) = 0 form the point
spectrum of eigenvalues with localized eigenfunctions in the linearization problem.

In order to evaluate the Evans function for the DNLS problem, we can use its
analytic properties and Taylor expand it close to the origin of the spectral plane.
To do this for the DNLS equation, we consider it as a perturbation of the AL-NLS
equation. In the calculation below, for reasons of convenience, we will consider the
case of εh2 = −β/2 = 1 in Eq. (2.1); we will also denote the steady-state solution
by vn . Then, the steady-state problem can, upon setting rn = (vn − vn−1)/h, be
rewritten as

vn+1 =
(

1+ h2

1+ h2v2
n

(
�− 2v2

n

))
vn + hrn + ε h2v3

n

1+ h2v2
n

(
�− 2v2

n

)
, (2.38)

rn+1 = h

1+ h2v2
n

(
�− 2v2

n

)
vn + rn + ε hv3

n

1+ h2v2
n

(
�− 2v2

n

)
.

The above equation is written so that the limit of ε = h2 = 0, Eq. (2.38), is the
steady-state problem for the AL-NLS equation.

In the case of ε = 0, the exact (single soliton) solution of the AL-NLS equation
is given by

Qn(ξ ) =
√

� sinh(α)sech(α̃n + ξ ), (2.39)

where

cosh(α̃) = 1+ �h2

2
and sinh(α) = sinh(α̃)√

� h
.
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In that case, it is also true that the steady-state problem has an infinite number of
invariants · · · = In = In+1 = · · · = const. In is given by

In = h2v2
nv

2
n−1 + v2

n + v2
n−1 − 2μvnvn−1 (2.40)

with μ = 1+ �h2/2.
Hence, following Ablowitz and Herbst [19, 20], in the perturbed (DNLS) case of

ε 
= 0, the Melnikov function can be calculated as

εM(ξ, ε) =
∞∑

n=−∞
�n I (ξ, ε) =

∞∑

n=−∞

[
I (xn+1)− I (xn)

]
, (2.41)

where I is as defined above but in the ε 
= 0 case, it is no longer a constant. Equa-
tions (2.38) can be expressed in the form xn+1 = F(xn)+εG(xn). Using this notation
and Taylor expanding H (F(xn)+ εG(xn)), we obtain for M the expression

M(ξ, ε) =
∞∑

n=−∞
∇ I (xn+1)G(xn; ε). (2.42)

This allows us to evaluate the Melnikov function (see [18] for details), up to
corrections of O(e−2π2/α̃), as

M(ξ, h) = C(h)e−π
2/α̃ sin

(
2πξ

α̃

)
,

where

C(h) = 4π
h

α̃

(
2

45

π2

α̃2
+ 2

9

π4

α̃4
+ 8

45

π6

α̃6

)
≈ 2147.8

h6
. (2.43)

In the case of the AL-NLS equation, the “effective” (since ξ in Eq. (2.39)
can take any value) translational invariance ensures that the stable and unstable
manifolds of the homoclinic orbit intersect non-transversely. On the other hand,
in the non-integrable case of the DNLS and generically (for ε 
= 0) this non-
transversality will not persist. In fact, the splitting of the orbits (or effectively the
angle of intersection of the manifolds) is given by the Melnikov function. Hence,
in essence, the Melnikov function is a measure of the breaking of translational
invariance and is expected to be transcendentally small (as in our previous calcu-
lation). This exponentially small splitting is associated with the above discussed PN
barrier.

Having evaluated the Melnikov function, we can now proceed to the Taylor ex-
pansion of the Evans function of the DNLS equation, as a perturbation to the AL-
NLS problem. In particular, the Evans function E is a function of the eigenvalue λ
and the perturbation strength ε. Since for the AL-NLS equation E(λ = 0; ε = 0)
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= 0, we need to find the leading order derivatives with respect to ε and λ. As λ
is an eigenvalue of algebraic multiplicity four in the AL lattice, the first derivative
that will yield a non-zero contribution is �4

λE(0; 0), which will generically be con-
stant. The tools developed by Kapitula and co-workers [21–23] can then be used
to obtain this constant. Furthermore, the preservation of the phase invariance and
the bifurcation of merely the translational pair of eigenvalues in the DNLS case
implies that the leading order derivative with respect to ε of non-zero contribution
will be �ε�

2
λE(0; 0). However, due to its relation with the splitting of the orbits of the

perturbed problem, this derivative will generically be∼ �ξM(ξ ; ε), as can be shown
on general grounds (see, e.g., [18]). The Taylor expansion of the Evans function will
therefore read

E(λ; ε) = ελ2�ε�
2
λE(0; 0)+ λ4�4

λE(0; 0) (2.44)

and the calculation of the details specific to the DNLS equation yields

E(λ; h2) ∼ λ2(h2�ξM(ξ ; h2)+ 2Bλ2), (2.45)

where B is a constant. Substituting the expression for the Melnikov function, we
conclude that for the site-centered mode (that was numerically found to be stable
previously)

λ±s ∼ ±i

√
πh2C(h)

B1α̃
e−π

2/2α̃ , (2.46)

while for the inter-site-centered mode (that was previously found numerically to be
unstable due to a real eigenvalue pair)

λ±u ∼ ±
√
πh2C(h)

B1α̃
e−π

2/2α̃ . (2.47)

The results of Eqs. (2.46) and (2.47) confirm the validity of the numerical find-
ings. Furthermore, the Evans function method naturally demonstrates how the expo-
nentially small transversality effects of (translational invariance) symmetry breaking
are mirrored in the bifurcation of the translational eigenmodes away from the origin
of the spectral plane. The predictions of the Evans method are compared with the
results of the linear stability analysis in Fig. 2.3.

Having analyzed the bifurcation of the translational mode (note that for the inter-
site-centered solution, we will discuss a different limit later in this chapter), we
now turn our attention to the other interesting feature caused by discreteness as a
perturbation to the continuum problem. As was first observed for kinks in a modified
sine-Gordon potential [24] and later elaborated for kinks in nonlinear Klein–Gordon
lattices and for standing waves in DNLS lattices in [5, 17, 18, 25–27], localized
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Fig. 2.3 The Evans function prediction for the imaginary eigenvalue of the site-centered mode (top
panel) and for the real eigenvalue of the inter-site-centered mode (bottom panel). The theoretical
results given by Eqs. (2.46) and (2.47), respectively, capture the functional dependence but not the
exact prefactor. The result of Eqs. (2.46) and (2.47) without the corrected prefactor is shown by the
dashed line. The result with the corrected prefactor is the solid line and it is in excellent agreement
with the numerical results for the bifurcation of the corresponding translational eigenvalue given
by the circles. The prefactors need to be corrected since, as explained in [18], the Evans function
method captures the leading order functional dependence (on h) but higher order contributions to
the prefactor are not accounted for by this method. Reprinted from [18] with permission

eigenmodes may bifurcate from the bottom edge of the continuous spectrum (ωp =
±� for the DNLS equation) and subsequently be present in the gap between the
band edge and the origin of the spectral plane as a point spectrum eigenvalue.

This phenomenon was first tackled theoretically in the framework of intrinsic
localized modes (ILMs) in [17]. In this work, discreteness was considered as a
leading order power-law perturbation to the continuum problem, using the Taylor
expansion of Eq. (2.31):

iψt + ψxx + 2|ψ|2u + h2

12
ψxxxx = 0. (2.48)



24 2 The One-Dimensional Case

Considering the last term in Eq. (2.48) as a perturbation (of strength δ = h2/12)
and using leading order perturbation theory, a corrected solution can be obtained for
the perturbed problem ψ = exp(i t)(v0(x)+ δv1(x)), with

v1(x) = 1

2

(
x sinh(x)

cosh2(x)
− 7

cosh(x)
+ 8

cosh3(x)

)
. (2.49)

Then, the perturbed linearization problem of Eqs. (2.12) and (2.13) can be writ-
ten as

U ′′ +
(

6

cosh2 x
− 1

)
U + ωW + (�4

x + 12v0v1)δU = 0, (2.50)

W ′′ +
(

2

cosh2 x
− 1

)
W + ωU + (�4

x + 4v0v1)δW = 0. (2.51)

Assuming now the eigenvalue bifurcating from the bottom of the continuous
band edge to have a frequencyω = 1−δ2κ2 (where δ = h2/12 is the measure of the
perturbation), the authors of [17] project the new basis of continuous eigenfunctions
[U,W ]T onto the known old one [4]. Assuming that the eigenvalue bifurcating from
the band edge is given by the above expression, the integral equation resulting from
the projection, in the case of wave number k = 0 yields a solvability condition that
allows to determine κ as (in the case of the DNLS equation)

|κ | = sgn(δ)

4

∫
U (x, 0) f1(x)U (x, 0)+W (x, 0) f2(x)W (x, 0)dx, (2.52)

where f1,2 correspond to the perturbative operator prefactors of δU and δW in
Eqs. (2.50) and (2.51), respectively. This method yields κ = 4/3 in the case of
DNLS and hence

ω = 1− h4

81
. (2.53)

However, as can be seen from the above methodology, only the leading order
power-law correction is recovered in this way. One of the major disadvantages of
this result is that it does not distinguish between the bifurcation of the eigenvalue
pair (the “breathing” mode according to [5]), of the stable site-centered and the
unstable inter-site-centered wave. Such differences, obvious in Fig. 2.4, can only be
attributed to exponentially small differences between the two waves.

For this reason, in [18, 27], the Evans function methodology was developed in the
vicinity of the branch point ω = 1 (λ = i ). However, in this case both exponential
and power-law terms were present in the derivative of E with respect to the O(ε)
perturbation in Eqs. (2.38). Evaluation of the relevant partial derivatives and Taylor
expansion of E(λ; ε) near λ = i ; ε = 0, performed in detail in [18], yields
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Fig. 2.4 Bifurcation of the
eigenvalue λ of the breathing
mode of the stable and
unstable wave from the edge
of the continuous spectrum
(λ = i) as a function of the
lattice spacing h; the dashed
line shows the theory of [17],
the solid line the theory of
[18, 27], and the stars the
results of numerical
experiments on a 400-site
lattice with periodic boundary
conditions. In the bottom
panel, circles indicate results
on 200-site and plus symbols
on a 300-site lattice.
Reprinted from [18] with
permission
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E(γ, h) = 4h−1

[
γ − h3

9

{
1+ 9

4
C(h)e−π

2/α̃ cos

(
2πξ

α̃

)}]
, (2.54)

where

γ 2 = (1+ iλ)h2

(
1+ 1

4d2

)
. (2.55)

Setting E = 0, we obtain an expression for the eigenvalue bifurcation

λ(ξ ) = i

[
1− h4

81

{
1+ 9

2
C(h)e−π

2/α̃ cos

(
2πξ

α̃

)}]
. (2.56)

Since ξ can take the values nα̃ or (n + 1/2)α̃, we obtain different eigen-
value bifurcations for the site-centered and the inter-site-centered modes. C(h) =
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(256π)/(45)(π/α̃)7 ≈ 53979.2 h−7. It should be noted, however, that to leading
(power law) order this result is the same as the one of [17]. On the other hand, as
can be observed in the numerical results of Fig. 2.4, there is a significant difference
between the bifurcation of the stable and the unstable wave. In fact, the numerical
experiment shows that the maximal bifurcation for the former is≈ 0.155, while for
the latter it is only≈ 0.0019. Hence, the difference between the two waves, which is
discernible only at an exponentially small level of description, turns out to be impor-
tant. Equation (2.56) renders this distinction clear, as it suggests that for h > 0.45
the exponential effects become important. This distinction has also been observed in
nonlinear Klein–Gordon lattices. For instance, in the discrete sine-Gordon model,
the bifurcation of the edge or breathing mode of the unstable wave is completely
suppressed by the exponential contributions, while the bifurcation does take place
for the stable wave [25].

So far, we have clarified the questions pertaining to linear stability of the site-
centered and inter-site-centered modes. However, it is also important to know
whether information about linear stability can be generalized to nonlinear stabil-
ity of the relevant waves. This is often not possible, however, in the case of the
fundamental solutions and in the vicinity of the continuum limit h → 0, the work of
[28] can be used to obtain nonlinear stability conclusions. Suppose that the operator
L+, defined in Eq. (2.13) has only one eigenvalue λ ≤ 0, and suppose that the only
eigenvalue of L−, given in Eq. (2.12), that has the property λ ≤ 0 is exactly at
λ = 0. Furthermore, suppose that

d

dω
P > 0. (2.57)

Then it can be shown using the work of [28] that the wave is nonlinearly stable.
As h → 0+ the wave is approximately given by

√
ω sech(

√
ω x). Hence,

lim
h→0+

P =
∫ +∞

−∞

(√
ω sech(

√
ω x)

)2
dx = 2

√
ω

so that

lim
h→0+

d

dω
P > 0.

Hence, the condition of Eq. (2.57), is satisfied for small h.
It is clear that L−(vn) = 0 so that λ = 0 is an eigenvalue of L−. Since vn is

a positive solution, Sturm–Louiville theory states that λ = 0 is the minimal eigen-
value. At small h, the operator L+ is a perturbation of the corresponding operator for
the AL-NLS equation. For the AL-NLS equation the operator is such that �ξ vn is an
eigenfunction at λ = 0. Thus, by another application of Sturm–Liouville theory, one
has that there exists one negative eigenvalue which is of O(1). Upon perturbation,
both of the eigenvalues will move by an exponentially small amount. Hence, it is
enough to track the eigenvalue near zero in order to determine whether the first
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condition above is met. However, according to the theory of [28, 29], the wave is
linearly unstable if the operator L+ has two strictly negative eigenvalues. One can
conclude (by contradiction) that for the linearly unstable wave (inter-site-centered
solution) the zero eigenvalue of the AL-NLS equation must move to the left in the
case of the DNLS equation, while for the linearly stable wave (site-centered solu-
tion) the zero eigenvalue of the AL-NLS equation must move to the right. Thus,
we have shown that if h > 0 is sufficiently small, for the linearly stable on-site
wave, the first condition is also met and consequently the wave is also nonlinearly
stable.

2.1.2 The Anti-Continuum Approach

We now approach the same problem, namely the existence and stability of single
pulses in the DNLS equation from an entirely different perspective, that was orig-
inally proposed by MacKay and Aubry [30] and has been extensively used in the
literature since. This is the initially referred to as anti-integrable, and later more
appropriately termed the anti-continuum (AC) limit of ε = 0. In this limit, the sites
are uncoupled and it is straightforward to solve the ensuing ordinary differential
equations for un . The key question then becomes which ones of the possible com-
binations of the different un’s will persist, as soon as the coupling between the sites
is turned on (i.e., ε 
= 0). To present the relevant analysis, let us use Eq. (2.1) with
β = −1 (i.e., in the focusing case) and having made a transformation of the field
un → un exp(−2iεt), as is always possible due to the gauge invariance. Then (2.1)
acquires the form

i u̇n = −ε(un+1 + un−1)− |un|2un . (2.58)

As before, we look for standing waves of the form: un = exp(iμt)vn which, in
turn, satisfy the steady-state equation

(
μ− |vn|2

)
vn = ε (vn+1 + vn−1) . (2.59)

In the AC limit, it is easy to see that Eq. (2.59) is completely solvable vn =
0,±√μ exp(iθn), where θn is a free phase parameter for each site. However, as
indicated above, out of this huge freedom of phase selection for each site in the
uncoupled limit, the important consideration is how much of it remains as soon as
the cross-talking between sites is allowed. A simple way to address this question in
an explicit way in the one-dimensional case of Eq. (2.58) is to multiply Eq. (2.59)
by v�n and subtract the complex conjugate of the resulting equation, which in turn
leads to

v�nvn+1 − vnv
�
n+1 = const⇒ 2arg(vn+1) = 2arg(vn), (2.60)
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where we have used the fact that the constant should be equal to 0 since we are
considering solutions vanishing as n → ±∞. The scaling freedom of the equation
allows us to select μ = 1 without loss of generality. Then, this yields the important
conclusion that the only states that will persist for finite ε are ones containing se-
quences with combinations of vn = ±1 and 0. A systematic computational clas-
sification of the simplest ones among these sequences and of their bifurcations is
provided in [31]. It should be mentioned also in passing that although we consid-
ered here the focusing case of β = −1, the defocusing case of β = 1 can also
be addressed based on the same considerations and using the so-called staggering
transformation wn = (−1)nun (which converts the defocusing nonlinearity into a
focusing one).

Although we will use the above considerations later in this chapter, when consid-
ering the case of multipulses, in the present subsection, we focus on the single-pulse
case. It turns out that the single pulse exists in the DNLS “all the way” between
the continuum and the AC limit (a very rare feature, as can be inferred, e.g., from
Fig. 14 of [31]). In fact, there are two waveforms at the AC limit that will both
result to the continuum pulse as ε →∞ (h → 0). One of them is the configuration
with vn = δn,n0 , i.e., the single-site excitation. The other is the configuration with
vn = δn,n0 + δn,n0+1, i.e., a two-site, bond-centered, in-phase excitation. Since the
latter is a multisite structure, it will be examined in more detail later in this chapter
(where the general theory of multisite excitations will be developed). Incidentally,
these two are the only configurations that persist throughout the continuation from
the AC to the continuum limit.

We also briefly discuss the stability near the AC limit. Once again, the L+ and
L− operators emerge when linearizing around the standing wave solutions of Eqs.
(2.58) and (2.59) in the linearization problem of the form

(
1− 3v2

n

)
an − ε (an+1 + an−1) = L+an = −λbn, (2.61)

(
1− v2

n

)
bn − ε (bn+1 + bn−1) = L−bn = λan . (2.62)

It is perhaps relevant to note here that the eigenvalue problem has the general
symplectic form J Lw = λw where the J matrix has the standard symplectic struc-
ture (J 2 = −I ), i.e.,

J =
(

0 I

−I 0

)
(2.63)

and the operator L is defined as

L =
(

L+ 0

0 L−

)
. (2.64)
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In the case of the AC limit of ε = 0, the operators L− and L+ simplify enor-
mously, becoming simply multiplicative operators. It is then straightforward to solve
the ensuing eigenvalue problem for each site of the AC limit. Assume a sequence for
vn with N “excited” (i.e., 
= 0) sites; then, it is easy to see that for ε = 0 these sites
correspond to eigenvalues λL+ = −2 for L+ and to eigenvalues λL− = 0 for L−,
and they result in N eigenvalue pairs with λ2 = 0 for the full Hamiltonian problem.
On the other hand, all the remaining, infinitely many (non-excited) sites in the chain
with vn = 0 satisfy an = −λbn and bn = λan. This yields a pair of eigenvalues
λ2 = −1, i.e., λ = ±i (more generally for a frequency � of the solution, these will
be λ = ±i�), with infinite multiplicity.

In the case we are currently considering, namely that of a single-site excitation
that will eventually give rise to the single pulse of the continuum limit, there is only
a single pair of zero eigenvalues, corresponding to the excited site. There are also
infinitely many pairs, corresponding to the non-excited sites, at λ = ±i (or ±i�
more generally). As soon as ε becomes non-zero, the former zero eigenvalue pair
will have to remain at 0, because of the gauge (i.e., U(1)) invariance of the equation.
On the other hand, the infinitely many sites with identical eigenvalues will “expand”
in accordance with Eqs. (2.34) and (2.35). As ε is increased, the two eigenvalues of
the top panels of Figs. 2.3 and 2.4 will bifurcate from the bottom edge of the contin-
uous spectrum. One of these eigenvalues will approach the origin exponentially as
h → 0, while the other, upon a maximal excursion from the continuous spectrum’s
lower band edge, it will return to it as h → 0. This is the full spectral picture joining
the results of the continuum to those of the AC limit. While we have described
analytically both the h → 0 limit in the previous subsection, and the h →∞ limit
in this subsection, the intermediate region can only be quantified numerically, as is
done in Figs. 2.3 and 2.4, as well as in Fig. 2.5 in a more conclusive way, giving
information about all the point spectrum eigenvalues of the DNLS problem, as a
function of the lattice spacing h.

Fig. 2.5 The figure shows the
(non-zero) point spectrum
eigenvalues as a function of
the spacing h, as they are
numerically obtained (in a
400-site computation) for the
linearization around a single
pulse of the DNLS equation.
The solid line shows the
internal mode that bifurcates
from the bottom edge of the
continuous spectrum and
returns to it, while the dashed
line shows the translational
mode that exponentially
approaches λ2 = 0 as h → 0

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

h

λ i



30 2 The One-Dimensional Case

2.1.3 The Variational Approach

Another approach that yields quantitative semi-analytical information about the
single-pulse case even in the intermediate regime is the so-called variational ap-
proach (VA). In the case of the DNLS, this was originally developed in [32] and
was systematically tested recently in [33]. The VA (a detailed review of which
can be found in [34]) consists of selecting an a priori ansatz for the form of
the solution (in the case of the DNLS a typical, quantitatively tractable choice is
un = A exp(−a|n|)). It should be understood that this is a dramatic oversimplifi-
cation of the solution. It reduces the original infinite dimensional dynamical system
into a two-dimensional one, in the space of “adjustable parameters” A and a (rep-
resenting measures of the amplitude and the inverse width of the pulse solution,
respectively). This type of ansatz is not substituted in the steady-state (or dynami-
cal) equation, which it cannot, by default, satisfy, since it is typically impossible to
satisfy infinitely many equations with just two free parameters, unless, fortuitously,
our ansatz represents an exact solution. It is, instead, substituted in the Lagrangian
(either time-dependent, or when looking for steady states, time-independent). Sub-
sequent derivation of the Euler–Lagrange equations (i.e., extremization of the action
on the restricted subspace of the adjustable parameters) is performed in the expecta-
tion of obtaining a good fit to the corresponding infinite-dimensional extremization
problem. This is a reasonable expectation provided that the waveform remains close
to the ansatz, but may fail considerably when that is not the case. More importantly,
it is not a priori obvious when the method will fail, although recent efforts are
starting to aim toward systematically computing the relevant error and accordingly
improving the approximation, when needed [35].

As an example, we now give the steady-state version of the variational approx-
imation for a generalized DNLS problem in line with the original presentation of
[32]. Consider the steady-state problem for the discrete waveform vn

�vn = ε (vn+1 + vn−1 − 2vn)+ v2σ+1
n , (2.65)

which is the standing wave problem for a general power nonlinearity (as discussed
in the beginning of this chapter). The case of σ = 1 corresponds to our familiar
cubic DNLS. Equation (2.65) can be derived from the Lagrangian

L =
+∞∑

n=−∞

[
ε(vn+1 + vn−1)vn − (�+ 2ε)v2

n +
1

σ + 1
v2(σ+1)

n

]
. (2.66)

Substituting the above-mentioned simple exponential ansatz in the Lagrangian,
one can perform the summation explicitly, which yields the effective Lagrangian,

Leff = 2εP sech a − (�+ 2ε)P + Pσ+1

σ + 1

coth ((σ + 1)a)

cothσ+1 a
. (2.67)
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The (squared l2) norm of the ansatz, which appears in Eq. (2.67), is given by

P ≡
+∞∑

n=−∞
v2

n = A2 coth a. (2.68)

The Lagrangian (2.67) gives rise to the variational equations, �Leff/�P =
�Leff/�a = 0, which constitute the basis of the VA toward the computation of
stationary waveforms [34]. They predict relations between the norm, frequency, and
width of the fundamental pulses within the framework of the VA, namely

Pσ = 4ε coshσ a sinh2(σ + 1)a

sinhσ−1 a(sinh 2(σ + 1)a − sinh 2a)
, (2.69)

� = 2ε(sech a − 1)+ Pσ coth(σ + 1)a

cothσ+1 a
. (2.70)

These ensuing transcendental equations connect the power of the pulse solution
to its width (these are the two unknowns in these algebraic equations) and express
these features as a function of the system parameters (such as the frequency �, the
coupling strength ε, or the nonlinearity exponent σ ). The equations can be solved
with a standard computational mathematics package (i.e., such as the FindRoot
routine in Mathematica) and compared to direct numerical computations, as is done
in Fig. 2.6 (for � = σ = 1).

Figure 2.6 shows the continuum analog of the power of the pulse as a function of
the lattice spacing h (the continuum limit of this quantity for the model considered
herein can be easily seen to be 4, which is also confirmed by the relevant computa-
tions). It also shows the amplitude A of the discrete pulse as a function of the lattice
spacing (the continuum limit for this quantity is

√
2), as well as the inverse width a

as a function of h. One can easily note that for h > 0.8, the agreement between the
variational solution of the greatly simplified 2× 2 system of Eqs. (2.69) and (2.70)
is truly remarkable. On the other hand, however, one has no a priori way to explain
why the agreement starts becoming considerably worse for h < 0.8, other than
to say that the oversimplified ansatz does not accurately describe the continuum,
hyperbolic secant limit. However, a further quantification of the relevant statement
cannot be a priori made. A deeper understanding of this discrepancy can, however,
be partially obtained by considering the a→ 0 limit of the above equations (scaling
out ε from � and Pσ ), since we can see that Pσ ≈ (4 + 2σ + 2/σ )a2−σ , while
� ≈ (1 + 2/σ )a2, as a → 0. From these equations and Eq. (2.68), one can infer
the dependence of the amplitude A on a as A ≈ (4 + 2σ + 2/σ )1/(2σ )a1/σ . In the
case of σ = 1, this yields A ≈ √8a ≈ (2/

√
3)
√

2� = (2/
√

3)Acont , where Acont

denotes the amplitude of the continuum soliton. This indicates that in that limit the
VA fails in capturing the amplitude by a factor of 2/

√
3 ≈ 1.15. Nevertheless, the

VA is often a useful tool in acquiring some insight on the nature of the full solution



32 2 The One-Dimensional Case

Fig. 2.6 Results of the
variational approximation:
the top panel shows the
analog of the continuum
squared L2 norm as a
function of the lattice spacing
h. The solid line represents
the full numerical result,
while the dashed line shows
the result of the VA. The
bottom panel curves have the
same symbolism for the
amplitude A of the solution
(for which the fully
numerical and variational
results are again compared)
and for the inverse width a of
the pulse (for which only the
variational result is given). It
is worthwhile to note how
efficient the VA is in
capturing the full numerical
result for h > 0.8
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of the system and an understanding of its fundamental properties. Our argument
here is that it should be used with the appropriate caution; furthermore, it has been
our experience that it is a method that is considerably more likely to work with
fundamental solutions (given a reasonable ansatz) than with higher order excited
state solutions, whose (existence and stability) properties it is often unable to track.

Before closing this discussion about single-pulse solitary waves in this gener-
alized DNLS model, it is interesting to refer to a particular effect that this model
possesses for values of σ ranging between a lower and an upper critical one, namely
bistability [32]. In particular, within this range of values of σ , for a given ε, the
dependence of the l2 norm as a function of � is not monotonic as it would be
for σ = 1, but possesses a range of powers for which two stable solutions (with
d P/d� > 0 and an unstable solution (with d P/d� < 0) coexist; see Fig. 2.7. The
variational prediction captures this feature of the single-pulse state fairly accurately
as is shown in the figure. Equivalently, this phenomenon also arises for fixed �
as a function of the coupling ε. As a measure of the accuracy of the variational
prediction, we give in Fig. 2.8 the full numerical result and how it compares with
the semi-analytical prediction for the lower and upper critical σ for which bistability
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Fig. 2.7 The (squared l2)
norm of the fundamental
soliton family versus � for
σ = 1.5. Solid lines display
numerical results, while the
dashed curves correspond to
the predictions of the
variational approximation
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Fig. 2.8 Locations of the two
bifurcations that account for
the exponential
destabilization and
subsequent restabilization
(the top and bottom panels,
respectively) of the
fundamental solitons (subject
to the normalization � ≡ 1)
in the plane of (σ, ε). The line
and dots represent predictions
of the variational
approximation and numerical
results, respectively. The
restabilization corresponding
to the bottom panel does not
occur for σ ≥ 2
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occurs as concerns their dependence on the coupling ε (or equivalently for a fixed
σ , the lower and upper couplings between which the solution is unstable). It can be
seen that the variational analysis captures the general trends of the relevant behavior
but the partial inaccuracy of the relevant ansatz may not allow a good quantitative
comparison between the two. We should also add in passing that beyond σ = 2,
for dimension d = 1, equivalently to the case of σ = 1 for dimension d = 2, the
continuum version of the model is subject to catastrophic collapse-type instabilities.
This issue will be discussed, along with the discrete analog of such instabilities, in
more detail in the two-dimensional (cubic) setting in Chap. 3.

2.2 Multipulse Solitary Waves

2.2.1 Multipulses Near the Anti-Continuum Limit

We now turn to the consideration of multipulse solitary waves, which we are going
to examine chiefly starting from the AC limit of ε = 0. In particular, in the latter
case, instead of exciting a single site (which will result, as we saw above, in a single
pulse), we excite N sites in the general case. In that case, considerations similar
to the ones we presented above for the case of ε 
= 0 indicate that in the one-
dimensional setting, without loss of generality, we may concern ourselves only with
excitations of each site which are either un = 1 or −1 (for frequency μ = 1)
while the rest of the (non-excited) sites have un = 0. Then, it is straightforward to
see from the structure of the L+ and L− operators that for ε = 0 the N excited
sites correspond to eigenvalues λL+ = −2 for L+ and to eigenvalues λL− = 0 for
L−, and they result in N eigenvalue pairs with λ2 = 0 for the full Hamiltonian
problem. Hence, these eigenvalues are potential sources of instability, since for ε 
=
0, N−1 of those will become non-zero (there is only one symmetry, namely the U(1)
invariance, persisting for ε 
= 0, retaining one pair of eigenvalues at the origin). The
key question for stability purposes is to identify the location of these N − 1 small
eigenvalue pairs.

To address the location of these eigenvalues in the presence of the perturbation
induced by the inter-site coupling, one can manipulate Eqs. (2.61) and (2.62) into
the form

L−bn = −λ2L−1
+ bn ⇒ λ2 = − (bn,L−bn)

(bn,L−1
+ bn)

. (2.71)

Near the AC limit, the effect of L+ is a multiplicative one (by −2). Hence,

lim
ε→0

(bn,L−1
+ bn) = −1

2
⇒ λ2 = 2γ = 2(bn,L−bn). (2.72)
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Therefore the problem translates into the determination of the spectrum of L−.1

However, using the fact that the standing wave solution vn is an eigenfunction of
L− with λL− = 0 and the Sturm comparison theorem for difference operators [36],
one infers that if the number of sign changes in the solution at the AC limit is m
(i.e., the number of times that adjacent to a+1 is a−1 or next to a−1 is a+1), then
the number of negative eigenvalues n(L−) = m and therefore from Eq. (2.72), the
number of imaginary eigenvalue pairs of L is m, while that of real eigenvalue pairs
is consequently (N −1)−m. An immediate conclusion is that unless m = N −1, or
practically unless adjacent sites are out-of-phase with each other, the solution will
be immediately unstable for ε 
= 0. This eigenvalue count was presented in [37]
although its stability consequences had been observed in numerous earlier works
(see, e.g., [38] and references therein). It is also interesting to point out that a related
count was originally presented in [39], although purely as an instability condition
(rather than as a definitive count). In particular, it was recognized in that work that
n(L−) = m and that that in the vicinity of the continuum limit (rather than the
AC limit as here) each of the N pulses would have at least one negative eigenvalue
associated with them, hence n(L+) ≥ N . Then, an important criterion was used that
was originally developed in the work of Jones [29], namely that when |n(L+) −
n(L−)| > 1, then a real eigenvalue pair will exist in the linearization. Hence, in the
present case if m < N − 1, this criterion could be used to yield an instability, in
agreement with the result presented above (but established in the vicinity of the AC
limit).

An important additional realization both in the work of [37] and in that of [39]
was that the m negative eigenvalues of L−, corresponding to the m imaginary pairs
of the full linearization operator J L, have negative Krein signature. The Krein sig-
nature is a fundamental topological concept in the context of nonlinear Schrödinger
equations (and Hamiltonian systems more generally); the interested reader should
examine [40–45] for details and examples. These eigenvalues are often also men-
tioned in the physical literature as negative energy modes, see, e.g., [46–48]. For
our present considerations, it suffices to say that this signature is essentially the
signature of the energy surface and can be found to be equivalent to the sign of
(w, L−w). Hence, all of the m eigenvalue pairs bifurcating along the imaginary
axis in our present calculation will be negative Krein signature (or negative energy)
eigenvalues. The eigenvalues of negative Krein sign are well known to be struc-
turally unstable. This means that small perturbations of the vector field can eject
them off of the imaginary axis, leading to an unstable eigenvalue with a positive
real part. Moreover, if eigenvalues of opposite sign collide, then they will generically
form a complex conjugate pair after the collision, whereas if eigenvalues of the same
sign collide, then they will pass through each other.

1 It should be pointed out here that although Eq. (2.72) is particular to the cubic model, Eq. (2.71)
is not and can straightforwardly be applied to any nonlinearity that depends on the field and its
complex conjugate. The denominator of its right-hand side will in such cases typically provide a
constant prefactor, while the spectrum of L−, through considerations similar to those presented
here, will determine the fate of small eigenvalues.
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It is important to conclude from the above considerations that the only standing
wave configuration of the discrete problem (starting from the AC limit) that will
be structurally and nonlinearly stable is the single-site excitation. Not only did we
establish nonlinear stability for that configuration above (near the continuum limit),
but furthermore it is the only configuration (near the AC limit) that has neither a
real eigenvalue pair (in which case it would be directly unstable) or an imaginary
pair with negative Krein sign since m = 0 = N − 1. An additional remark worth
making here concerns the case of the second solution of the AC limit reported in the
previous section to eventually asymptote to the single-pulse configuration, namely
the two-site, in phase excitation. In that case, m = 0, while N = 2, hence one can
immediately see that for this waveform there will be N −1−m = 1 real eigenvalue
pair, as soon as ε 
= 0, indicating the instability of the relevant wave.

So far, we have used the above Eq. (2.72) in a qualitative way to obtain the rele-
vant eigenvalue counts. In what follows, we also show how to use this equation in a
quantitative manner, in order to obtain the dependence of the relevant eigenvalues on
the model parameters (and, hence, wherever relevant, quantify the growth rate of the
instability). To do so, we need to obtain a handle on the eigenvalues of the operator
L−. Considering the relevant eigenvalue problem L−φ = γφ, we can expand it in
the vicinity of the AC limit, according to

L− = L (0)
− + εL (1)

− + O(ε2), (2.73)

φn = φ(0)
n + εφ(1)

n + O(ε2), (2.74)

γ = εγ1 + O(ε2). (2.75)

In this expansion,

L (0)
− φn = (1− (v(0)

n )2)φn, (2.76)

L (1)
− φn = −(φn+1 + φn−1)− 2v(0)

n v
(1)
n φn, (2.77)

where v(0)
n and v(1)

n correspond to the expansion vn = v(0)
n +εv(1)

n of the solution in the
vicinity of the AC limit. The leading order correction v(1)

n will need to be computed
from Eq. (2.59). It is straightforward to apply the expansion of the solution to the
relevant equation (keeping in mind that μ = 1 and the phases θn of the excited sites
are 0, π , corresponding to ±1 field values). If we have the N excited sites adjacent
to each other, then it is straightforward to find the leading order correction as

v(1)
n = −

1

2
(cos(θn−1 − θn)+ cos(θn+1 − θn)) eiθn , 2 ≤ n ≤ N − 1, (2.78)

v
(1)
1 = −

1

2
cos(θ2 − θ1)eiθ1, v

(1)
N = −

1

2
cos(θN − θN−1)eiθN , (2.79)

v
(1)
0 = eiθ1 , v

(1)
N+1 = eiθN , (2.80)
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while all other elements of v(1)
n are zero. Similarly, one can find the leading order

corrections if the N adjacent sites are next nearest neighbor to each other (in that
case, the leading order correction to the excited sites will be v(2)

n ), or for more distant
initially excited sites (see [37] for such a calculation in the next-nearest-neighbor
case).

If we have N excited sites at the AC limit, the relevant zero eigenvalue of the
L− operator as indicated above will have a multiplicity of N at the AC limit of
ε = 0. The corresponding linearly independent eigenvectors fn can be conveniently
selected to be (0, . . . ,±1, . . . , 0) where the . . . indicate zeros and the±1 is located
at the kth excited site for the kth eigenvector. Then the zero-order eigenvector φ(0)

can be expressed as a linear combination of the fn’s according to φ(0) =∑N
k=1 ck fk ,

for appropriate choice of the coefficients ck .
Our aim in this exercise is to perturbatively compute γ1, the leading order correc-

tion to the zero eigenvalue of L−, so that through the appropriate substitution to Eq.
(2.72), we can obtain the corresponding eigenvalue of the original system. Through
the above expansions, we obtain

L(0)
− φ

(1)
n = γ1φ

(0)
n − L(1)

− φ
(0)
n . (2.81)

Projecting the system of Eq. (2.81) onto the kernel of L (0)
− eliminates the left-hand

side contribution, and yields a matrix eigenvalue problem with γ1 as its eigenvalue,
namely

M1c = γ1c, (2.82)

where c = (c1, . . . , cN ) and M1 is a tri-diagonal N × N matrix given by

(M1)m,n = ( fm, L (1)
− fn). (2.83)

Note that this matrix will only give non-trivial contributions if the excited sites
are adjacent to each other (otherwise the relevant contributions will be vanishing).
In the case of nearest-neighbor initially excited sites, based on the solution for v(1)

n
above, the relevant matrix elements will be

(M1)n,n = cos(θn+1 − θn)+ cos(θn−1 − θn), 1 < n < N,

(M1)n,n+1 = (M1)n+1,n = − cos(θn+1 − θn), 1 ≤ n < N,

(M1)1,1 = cos(θ2 − θ1),

(M1)N,N = cos(θN − θN−1). (2.84)

Equation (2.83) more generally (or e.g. the more specific Eq. (2.84) in the sim-
plest case of adjacent site excitations), in conjunction with Eq. (2.72) allows us
to obtain definitive estimates on the eigenvalues of the linearization for multisite
configurations which we can subsequently directly compare with numerical results.
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Fig. 2.9 The top row shows the solution profiles for the two-site in-phase mode (first panel) and
out-of-phase mode (third panel) and their corresponding spectral planes (λr , λi ) (second and fourth
panels). The bottom row shows the relevant eigenvalue pair bifurcating from the origin. In the left
panel it is becoming real for the in-phase mode (solid line: numerics, dashed line: theoretical
prediction λ = 2

√
ε). In the right panel, it becomes imaginary (solid line: numerics, dashed line:

theoretical prediction λ = 2
√
εi). It eventually collides with the band edge of the continuous

spectrum for ε > 0.146, giving rise to a complex eigenvalue quartet (its real part is shown in the
rightmost panel). Reprinted from [37] with permission

Such comparisons are illustrated in Fig. 2.9, for the case of two-site excitations.
Fig. 2.9 presents both the case where the two excited sites are in phase (this cor-
responds to the unstable version of the fundamental soliton), as well as that where
they are out of phase, which corresponds to the well-known example of the so-called
twisted mode (see, e.g., [49–52] and references therein). In this simplest multisite
case of two adjacent site excitations, the relevant matrix M1 becomes

M1 =
(

cos(θ1 − θ2) − cos(θ1 − θ2)

− cos(θ1 − θ2) cos(θ1 − θ2)

)
, (2.85)

whose straightforward calculation of eigenvalues leads to λ2 = 0 (as is expected
from the U(1) invariance, one eigenvalue pair should remain at zero) and λ2 =
2ε cos(θ1 − θ2). Note that this result is consonant with our qualitative theory above
since for same phase excitations (θ1 = θ2), the configuration is unstable, while
the opposite is true if θ1 = θ2 ± π . The top subplots of the figure show typical
mode profiles (first and third panel) and the spectral plane λ = λr + iλi of the
corresponding linear eigenvalue problem (second and fourth panel) for ε = 0.15.
The bottom subplots indicate the corresponding real (for the in-phase mode) and
imaginary (for the twisted anti-phase mode) eigenvalues from the theory (dashed
line) versus the full numerical result (solid line). We find the agreement between
the theory and the numerical computation to be excellent in the case of the in-phase
excitation. For the twisted out-of-phase excitation, the agreement is within the 5%-
error for ε < 0.0258. For larger values of ε, the difference between the theory and
numerics grows. The imaginary eigenvalues collide at ε ≈ 0.146 with the band
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edge of the continuous spectrum, such that the real part λr becomes non-zero for
ε > 0.146 (recall that these eigenvalues have negative Krein signature, hence, their
collision with eigenvalues of the band edge of the continuous spectrum or ones
bifurcating therefrom leads to complex quartets [40, 41] due to a Hamiltonian–Hopf
bifurcation [53]).

In the case N = 3, the discrete three-pulse solitons consist of the three modes as
follows:

(a) θ1 = θ2 = θ3 = 0,

(b) θ1 = θ2 = 0, θ3 = π,
(c) θ1 = 0, θ2 = π, θ3 = 0.

(2.86)

The eigenvalues of matrix M1 are given explicitly as γ1 = 0 and

γ2,3 = cos(θ2 − θ1)+ cos(θ3 − θ2)

±
√

cos2(θ2 − θ1)− cos(θ2 − θ1) cos(θ3 − θ2)+ cos2(θ3 − θ2).

The in-phase mode (a), which can be symbolically denoted + + + has two
real unstable eigenvalues λ ≈ √6ε and

√
2ε in the stability problem for small

ε > 0. The mode (b), symbolically represented as + + −, has one real unstable

eigenvalue pair λ ≈ ±
√

2
√

3ε and a simple pair of purely imaginary eigenval-

ues λ ≈ ±i
√

2
√

3ε with negative Krein signature. This pair may bifurcate to the
complex plane as a result of the Hamiltonian–Hopf bifurcation. Finally mode (c)
(+−+) has no unstable eigenvalues but two pairs of purely imaginary eigenvalues
λ ≈ ±i

√
6ε and λ ≈ ±i

√
2ε with negative Krein signature. The two pairs may

bifurcate to the complex plane as a result of the two successive Hamiltonian–Hopf
bifurcations.

Figure 2.10 summarizes the results for the three modes (a–c), given in (2.86), in
a presentation similar to that of Fig. 2.9. For the in-phase mode (a), two real positive
eigenvalues give rise to instability for any ε 
= 0. The error between theoretical
and numerical results is within 5% for ε < 0.15 for one real eigenvalue and for
ε < 0.0865 for the other eigenvalue. Similar results are observed for the mode (b),
where the real positive eigenvalue and a pair of imaginary eigenvalues with negative
Krein signature are generated for ε > 0. The imaginary eigenvalue collides with
the band edge of the continuous spectrum at ε ≈ 0.169, which results in a complex
eigenvalue quartet. Finally, in the case of the out-of-phase mode (c), two pairs of
imaginary eigenvalues with negative Krein signature exist for ε > 0 and lead to
the emergence of two complex quartets of eigenvalues. The first one occurs for
ε ≈ 0.108, while the second one occurs for much larger values of ε ≈ 0.223.

One can do a similar calculation for the case in which the excited sites are not
adjacent to each other, but are rather, e.g., one site apart. This is detailed in [37].
In that case, some of the logistic details change, most notably that we have to get
to the second-order correction ε2φ(2), since the leading order correction does not
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Fig. 2.10 Same as Fig. 2.9, but for the three-site branches+++ (left panels),++− (right panels),
and +−+ (bottom panels). Reprinted from [37] with permission

contribute to the excited sites. Furthermore, accordingly, the leading order in the ex-
pansion of the eigenvalue of L− should be γ = ε2γ2. Then, the relevant perturbation
equation becomes

L (0)
− φ

(2)
n = γ2φ

(0)
n − L (1)

− φ
(1)
n − L (2)

− φ
(0)
n . (2.87)

Subsequent projection to the kernel of L (0)
− yields an equation entirely analogous

to Eq. (2.82) with the only difference that γ1 and M1 are replaced by γ2 and M2,
with the latter being defined as per Eq. (2.84) but with the relevant angles being the
next-nearest-neighbor excited ones. It is then straightforward to extract the analo-
gous predictions as for the nearest-neighbor sites, but now the relevant eigenvalues,
while having the same prefactors, they will be ∝ ε, rather than to

√
ε. Note that

this feature can be appropriately generalized for excitations that are k sites apart.
These will “cross-talk” to each other at the kth order (and above), and the corre-
sponding eigenvalues bifurcating from the origin will be to leading order O(εk/2) (or
higher).

The corresponding numerical results are shown in Fig. 2.11 for two sites and
Fig. 2.12 for three sites, which are entirely analogous to Figs. 2.9 and 2.10, respec-
tively. In the in-phase, two-site case, the agreement with the theory is excellent for
ε < 0.2. For the twisted mode, we also have very good agreement for ε < 0.415;
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Fig. 2.11 A direct analog to Fig. 2.9, but now for the case of next-nearest-neighbor two-site exci-
tations. The resulting eigenvalues are (approximately) linear in ε in this case. Reprinted from [37]
with permission
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Fig. 2.12 A direct analog to Fig. 2.10, but now for the case of next-nearest-neighbor three-site
excitations. The resulting eigenvalues are (approximately) linear in ε in this case. Reprinted from
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the Hamiltonian–Hopf bifurcation occurs at ε ≈ 0.431 (in this case, the collision
occurs with an eigenvalue that has bifurcated from the band edge of the continuous
spectrum). Similarly, for the three-site excitations, we observe excellent agreement
in the examined range between the numerical results and the corresponding theo-
retical predictions. Here, the quartets emerge at ε ≈ 0.328 for the + + − mode,
while for + − +, there are two such bifurcations arising at ε ≈ 0.375 and 0.548,
respectively.

2.2.2 A Different Approach: Perturbed Hamiltonian Systems

We now take a detour to provide a different (and more general) approach to the
stability problem of the one-dimensional DNLS system, while discussing some
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recent general results for this class of systems developed in [54, 55, 57]. These
recent results were obtained on the basis of Lyapunov–Schmidt reductions, as well
as through the earlier, important functional analytic work of [28, 42].

Our starting point will be a perturbed system of the general form

du

dt
= J E ′(u), (2.88)

where J is the usual invertible skew-symmetric operator with bounded inverse and
E(u) = E0(u) + εE1(u), with 0 < ε << 1. Here E(u) represents the total energy
of the system. The underlying assumption is that the perturbation breaks some of
the symmetries of the unperturbed problem. The aim of these results is to relate the
spectrum (denoted henceforth by σ ) σ (E ′′(�)) to σ (J E ′′(�)), where � represents a
solution to the steady-state problem E ′(u) = 0. The operator E ′′(�) is self-adjoint;
hence, σ (E ′′(�)) ⊂ R. Since J E ′′(�) is the composition of a skew-symmetric op-
erator with a self-adjoint operator, if λ ∈ σ (J E ′′(�)), then −λ,±λ∗ ∈ σ (J E ′′(�)).
Thus, eigenvalues for J E ′′(�) come in quartets. Below one sees the manner in
which the negative directions for E ′′(�) influence the unstable spectrum of J E ′′(�).
It is of particular relevance to note that negative directions for E ′′(�) do not nec-
essarily lead to an exponential instability of the wave. A detailed discussion of the
proof of these results can be found in [55]. The more epigrammatic discussion of
these results below follows the work of [57].

2.2.2.1 The Unperturbed Problem

Let H be a Hilbert space with inner product 〈·, ·〉; also denote by G a finite-
dimensional Abelian connected Lie group with Lie algebra g, setting dim(g) = n.
We use eω:= exp(ω) to denote the exponential map from g to G. Let T be a
unitary representation of G on H , so that T ′(e) maps g into the space of closed
skew-symmetric operators. Denote Tω:=T ′(e)ω as the generator of the semigroup
T (eωt ), and note that Tω is linear in ω ∈ g. The group orbit Gu is defined by
Gu:={T (g)u : g ∈ G}. It is assumed that E is invariant under a group or-
bit, i.e., E(T (g)u) = E(u) for all g ∈ G and u ∈ H . Define the functional
Qω(u):= 1

2 〈J−1Tωu, u〉, and note that Q′′ω = J−1Tω is a symmetric linear operator.
Furthermore, Qω is invariant under a group orbit.

The Hamiltonian system of interest is given by

dv

dt
= J E ′(v).

We are interested in relative equilibria of this system, i.e., stationary solu-
tions which satisfy u(t) ∈ Gu(0) for all t . A relative equilibrium satisfies u(t) =
T (eωt )u(0) for some ω ∈ g. Changing variables via

v(t) = T (exp(ωt))u(t),
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leads to the system

du

dt
= J E ′0(u;ω), (2.89)

where

E ′0(u;ω):=E ′(u)− J−1Tωu.

We are therefore seeking critical points of the functional E0(u;ω):=E(u) −
Qω(u) for some ω ∈ g.

The steady-state equation is

E ′0(u;ω) = 0

and we assume that it has a smooth family �(ω) of solutions, where ω varies in g.
Furthermore, we assume that the isotropy subgroups {g ∈ G : T (g)�(ω) = �(ω)}
are discrete. This assumption implies that the group orbits G�(ω) have dimension
n for each fixed ω ∈ g. Since G is Abelian, for each fixed ω ∈ g the entire group
orbit T (g)�(ω) consists of relative equilibria with time evolution T (eωt ).

We denote the linearization operator around the wave by J E ′′0 . Fix a basis
{ω1, . . . , ωn} that satisfies the property that the set {Tω1�, . . . , Tωn �} is orthogonal.
One has that E ′′0 Tω j � = 0 for j = 1, . . . , n; see Section 2 of [55]. Since G is
Abelian, under the non-degeneracy condition that D0 is non-singular, where D0 is
defined in (2.91), it is known that the operator J E ′′0 will have a non-trivial kernel

J E ′′0 (�)Tωi � = 0, J E ′′0 (�)�ωi � = Tωi � (2.90)

for i = 1, . . . , n, with �ω:=�/�ω. Furthermore, this set is a basis for the kernel.
Note that solutions to the above linear system yield not only a basis for the tangent
space to the group orbit, but also a basis for the tangent space of the manifold of
relative equilibria. We will assume that the linear operator E ′′0 is Fredholm of index
zero. If one sets

Z = Span{Tω1 �, . . . , Tωn �},

then H = N ⊕ Z ⊕ P , where N is the finite-dimensional subspace

N = {u ∈ H : 〈u, E ′′0 u〉 < 0}

and P ⊂ H is a closed subspace such that

〈u, E ′′0 u〉 > δ〈u, u〉, u ∈ P

for some constant δ > 0.
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We set

H1 :={u ∈ H :
〈
u, E ′′0 �ωi �

〉 = 0, i = 1, . . . , n}.

It is shown in [58] that when solving the linear eigenvalue problem J E ′′0 (�)u =
λu, it is sufficient to consider only those u ∈ H1. This also follows from standard
solvability theory, as J−1Tωi � = E ′′0 �ωi � are solutions to the adjoint eigenvalue
problem at λ = 0 for i = 1, . . . , n. We now define the symmetric matrix D0 ∈
R

n×n by

(D0)i j =
〈
�ω j �, E ′′0 �ωi �

〉
. (2.91)

For a given self-adjoint operator A, we denote the number of negative eigenvalues
by n(A), while p(A) will be the number of positive eigenvalues, and z(A) the number
of zero eigenvalues.

The following was proved in [8]. Suppose that z(D0) = 0. The operator E ′′0
restricted to the space H1 has the negative index

n
(
E ′′0 |H1

) = n
(
E ′′0
)− n(D0).

If n(E ′′0 |H1) = 0, then the wave is a local minimizer for the energy E0(u), and is
therefore stable. The interpretation of this statement can be made as follows. Sup-
pose that the operator E ′′0 satisfies n(E ′′0 ) = k ≥ 1. One then has that the wave is not a
local minimizer for E0. However, there are conserved quantities associated with the
evolution equation, and it is possible that these quantities may “prohibit” accessing
some or all of the unstable eigendirections. The dim(g) conserved quantities are
given by

Qi (u) :=1

2
〈J−1Tωi u, u〉, i = 1, . . . , n.

The quantity n(D0) precisely determines the number of directions which are ren-
dered inaccessible by the conserved quantities. Hence, n(E ′′0 )−n(D0) determines the
number of unstable directions for the energy after the constraints have been taken
into account.

2.2.2.2 The Perturbed Problem

We now turn to the perturbed problem, where the energy is of the form E0(u) +
εE1(u), with 0 < ε � 1. It is assumed that the perturbation breaks 1 ≤ ks ≤ n of
the original symmetries, so that the perturbed system will have n − ks symmetries.
Furthermore, it is assumed that the problem is well-understood for ε = 0, as per the
above discussion. The existence question is settled by the work of [54], through the
following condition, based on Lyapunov–Schmidt reductions: a necessary condition
for persistence of the wave is
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〈E ′1(�(ω)), Tω j �〉 = 0, j = 1, . . . , n (2.92)

for some ω ∈ g. The condition is sufficient if z(M) = n − ks, where the symmetric
matrix M satisfies

Mi j :=〈Tωi �, E ′′1 (�(ω)) Tω j �〉.

Since the perturbation breaks ks symmetries, and the system is Hamiltonian, 2ks

eigenvalues will leave the origin. The following lemma, which tracks these small
eigenvalues, was proven in [55] via a Lyapunov–Schmidt reduction: the O(

√
ε)

eigenvalues and associated eigenfunctions for the perturbed problem are given by

λ = √ε λ1 + O(ε), u =
n∑

i=1

vi
(
Tωi �+

√
ε λ1�ωi �

)+ O(ε),

where λ1 is the eigenvalue and v is the associated eigenvector for the generalized
eigenvalue problem

(
D0λ

2
1 + M

)
v = 0.

It should be noted that the above eigenvalue problem will have 2(n − ks) zero
eigenvalues, due to the fact that this many symmetries are assumed to be preserved
under the perturbation.

If an eigenvalue has non-zero real part, the Krein signature is zero [46, 59]. The
Krein signature of a purely imaginary O(

√
ε) eigenvalue given above is

K = sign
(
vT Mv

) = sign(vT D0v), (2.93)

where v is the associated eigenvector [55]. It may also be possible for eigenvalues to
emerge out of the continuous spectrum, creating internal modes, as discussed above.
Since these eigenvalues will be of O(1), they will not be captured by the perturbation
expansion given in the above lemma. However, this is not problematic (at least in
models of the DNLS type) since any O(1) eigenvalues will be purely imaginary with
positive Krein sign, and hence for small ε do not contribute to an instability.

In the statement of the theorem below, the symmetric matrix Dε is defined by

(Dε)i j :=wT
i D0w j , (2.94)

where the set {w1, . . . ,wn−ks } is a basis for ker(M). The following is proved in [55]
regarding σ (J (E ′′0 + εE ′′1 )) for 0 < ε � 1.

Theorem 1. Suppose that the unperturbed wave is stable, i.e., n(E ′′0 ) = n(D0).
Let kr represent the number of real negative eigenvalues, 2kc the number of com-
plex eigenvalues with negative real part, and 2ki the number of purely imaginary
eigenvalues with negative Krein signature for the perturbed problem (counting mul-
tiplicity). Assume that z(Dε) = 0. Then
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kr + 2kc + 2ki = n(E ′′0 )+ n(M)− n(Dε). (2.95)

Furthermore, all of these eigenvalues are of O(
√
ε), and

ks ≥ kr ≥ |n(M)− (n(D0)− n(Dε))|.

Any eigenvalues arising from an edge bifurcation will be purely imaginary with
positive Krein signature.

The following remarks can be made about the count of eigenvalues:

1. The upper bound on kr arises from the facts that there are only 2ks eigenvalues
of O(

√
ε) and the system is Hamiltonian.

2. Since n(Dε) ≤ n(D0) = n(E ′′0 ), the perturbed wave cannot be a minimizer unless
n(M) = 0 and that n(Dε) = n(D0).

One possible interpretation of 1 is as follows. As previously mentioned, for the
unperturbed problem each unstable direction associated with E ′′0 is neutralized by
an invariance, which in turn are each generated by a symmetry. Now, Dε is the
representation of D0 when restricted to the symmetry group which persists upon the
perturbation. The quantity

n(E ′′0 )− n(Dε) = n(D0)− n(Dε)

then precisely details the number of unstable directions associated with E ′′0 which
are no longer neutralized by the invariances. The quantity n(M) is the number of
additional unstable directions generated by the symmetry-breaking perturbation E1.
The theorem essentially illustrates that the number of potentially unstable eigen-
value pairs in the system is obtained by keeping track of these eigendirections.

2.2.2.3 Case Example: DNLS from the Anti-Continuum Limit

One can consider the DNLS equation near the AC limit as such a perturbed problem.
In fact, one can do this even for a general interaction matrix between sites (that is
not restricted to nearest-neighbor interactions) as follows:

i u̇n + un − |un|2un = −ε
N∑

m=1

knmum . (2.96)

Then, one can label the unperturbed energy at the AC limit as

E0(u) =
∑

n

|un|2 − 1

2
|un|4, (2.97)

while the relevant perturbation will be of the form
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E1(u) = −ε
N∑

n,m=1

knm
(
u�num + unu�m

)
. (2.98)

At the AC limit, the solutions for the excited sites will be un = eiθn , where the θn

are free arbitrary phase parameters.
To determine the persistence of the waves, one has to evaluate the perturbed

energy at the unperturbed limit solution, in which case, we can straightforwardly
evaluate it to be

E1 = −
N∑

n,m=1

2knm cos(θn − θm). (2.99)

Based on the discussion of the previous subsection, the persistence conditions
then read �θn E1 = 0, which leads to an equivalent condition as Eq. (2.60) derived
previously, namely

∑

m 
=n

knm sin(θn − θm) = 0. (2.100)

One can subsequently based on the above theory evaluate the relevant matrices
D0 and Mi j that enter the stability calculation, in order to obtain information for the
relevant eigenvalues that will leave the origin of the spectral plane, upon deviation
from the AC limit of ε = 0. One can thus find that

D0 = −IN , (2.101)

Mi j = �2
θiθ j

E1. (2.102)

IN is the unit matrix of size N (the number of excited sites). Then the correction
λ1 to the eigenvalues will be obtained from the reduced eigenvalue problem (D0λ

2
1+

M)v = 0 which leads in our case to

(−INλ
2
1 + 2M1

)
v = 0, (2.103)

since M = 2M1, where M1 is defined by the Eq. (2.84) above (in the nearest-
neighbor case; in fact the result obtained here is also true for a more general inter-
action matrix). This confirms the validity of the direct calculation given above, but
also places these results in a broader context of perturbed Hamiltonian dynamics.

Before closing this subsection, we should also note that the eigenvalue count
given above confirms the closure relation of [55] (see also [60]), since n(E ′′0 ) =
N + m (where N is the number of excited sites and m the number of sign changes
between them), kr = N−m−1, kc = 0, and ki = m, with the imaginary eigenvalues
bearing negative Krein signature. A direct calculation shows that n(M) − n(Dε) =
−1 and therefore the relevant relation is satisfied.
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2.2.3 Multipulses Close to the Continuum Limit

We close the discussion of the one-dimensional problem by briefly considering the
case of multipulses in the vicinity of the continuum limit, following closely the
discussion of [39] (for this reason, we also use ε = 1/(2h2), with h → 0 and
β = −1 in Eq. (2.1)). In the quasi-continuum approximation, it can be obtained that
the interaction between two solitons is given by the potential energy

Uint (ξi − ξ2,�φ) = −8η3 exp(−η|ξ1 − ξ2|) cos(�φ). (2.104)

In this expression �ξ = ξ1 − ξ2 is the relative separation between the wave
centers and �φ is the relative phase which also plays an important role in their
interaction. In particular, note that the interaction is attractive for in-phase solitons,
while exactly the opposite (i.e., repulsion) is true for out-of-phase solitary waves.
Although this result can be derived using the perturbation technique of Karpman
and Solov’ev [61] or the variational approximation [34], here we present a different
and fairly direct approach of obtaining it, due to Manton [63] (who pioneered it
in Klein–Gordon-type equations). Here, we are following the relevant discussion
of [64].

In the case of the NLS equation, we have defined previously the mass (whose
role is played by the squared L2 norm, given by Eq. (2.6), while the momentum
is defined in Eq. (2.7) (although, in the present setting a factor of 1/2 would be
multiplying the right-hand side). Assuming then that we have a soliton centered at
ξ = 0 and one at ξ = �ξ , we can find the derivative of the momentum (the “force”)
evaluated between a � 0 and 0 � b � �ξ . (This brings in the assumption of
sufficiently large separation between the waves for this approach to work.) We thus
obtain

d M

dt
= 1

4

[
uu�xx + uxx u� − 2|ux |2

]b
a
. (2.105)

Note that if integrating between −∞ and∞, Eq. (2.105) would yield a vanish-
ing right-hand side, due to the total conservation of the momentum. However, in
the present setting, it yields a non-vanishing contribution to the solitary wave in
this interval (a non-vanishing force) due to the solitary wave outside of the inter-
val. Hence, we can use this approach to infer the force exerted from one soliton
to the other (and also their respective equations of motion). We use the standard
two-soliton decomposition, u = u(1) + u(2) where u(1) = ηsech(ηx) exp(iη2t/2),
u(2) = ηsech(η(x−�ξ )) exp(iη2t/2) exp(iφ) are the standing waves, and the relative
phase φ between them has been incorporated in u2. Then, one obtains

d M

dt
= 8η4 exp (−η�ξ ) , (2.106)

which results in the dynamical equation for the separation (using the mass of the
soliton; see also the details of the discussion of [64]) of the form
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�̈ξ = −8η3 exp (−η�ξ ) cosφ . (2.107)

The anti-derivative of the right-hand side of Eq. (2.106) yields the potential of
interaction between the solitary waves, coinciding with the result of Eq. (2.104).

In the continuum, this interaction does not allow for the formation of (stationary)
bound states between the solitary waves. However, in the realm of the lattice (near
the continuum limit), the idea of [39] was that each of the solitary waves will face
the energetic contributions of two distinct factors: on the one hand, there will be
the interaction with the second solitary wave. On the other hand, each of the waves
will be subject to the PN potential due to the existence of the lattice. The latter
energetic contribution has been described previously. An asymptotic lowest order
approximation of the relevant formula was used in [39] in the form

HP N(ξ ) ≈ −8π4

3h3
exp

(
−π

2

ηh

)
cos

(
2π

h
ξ

)
. (2.108)

Then, the full energy landscape can be described as

H ≈ HP N (ξ1)+ HP N (ξ2)+Uint (ξ1 − ξ2,�φ) (2.109)

and it is expected that the locations of the centers of the relevant solitary waves can
be obtained from extremization of the energy of Eq. (2.109).

While the expression of Eq. (2.109) gives a nice intuitive way to understand the
balance of interactions for multipulses in the lattice setting (see also the relevant
sketch of Fig. 2.13), for practical purposes, it is perhaps less useful. This is because
if h is small, the HP N terms are exponentially weak and hence are practically neg-
ligible in comparison to the interaction energy, while for h large so that these terms
are sizeable, the pulse deviates from its continuous form and the calculation of HP N

is less accurate based on the quasi-continuum expression. Hence, given the nature
of the approximations in the calculation, we do not attempt to test it quantitatively
herein, although we acknowledge its qualitative usefulness in elucidating the rele-
vant energy landscape (see also the relevant discussions in [65]).

It is interesting to compare/contrast this picture with the integrable analog of the
DNLS, namely the AL-NLS model, where the above-mentioned Manton calculation
can be carried through [66]. In the latter case, as discussed in the beginning of the
chapter, the conserved momentum is given by Eq. (2.25). As in the continuum case,
we now consider two solitons, one centered at 0 and one centered at s � 0, i.e.,
widely separated. We compute d M/dt by performing the summation over n not for
the infinite lattice (when the result would be zero due to the relevant conservation
law), but rather from n = L to n = N , with L � 0, and 0 � N � �ξ . The
idea behind this calculation is that, in fact, the force in this interval is not going to
be zero, but rather would be finite due to the soliton–soliton interaction. For a finite
interval encompassing only one soliton, the amount of momentum gain is finite, due
to the fact that the one soliton experiences the pull (or push) of the other soliton at
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Fig. 2.13 The energy landscape of Eq. (2.109), as it is given for the interaction of two identical
solitary waves with η = 1, for h = 2. The first wave is located at ξ1 = 0 and the contributions
to the energy landscape affecting the second solitary wave are shown as a function of its center
location ξ2.The top panel shows the case of attractive interaction for �φ = 0, while the bottom
panel shows the case of repulsive interaction for �φ = π

the boundary of the interval where we perform the calculation. Specifically, we can
evaluate

d M

dt
= −2

N∑

n=L

(|un+1|2 − |un|2
)

+
N∑

n=L

(
unu�n+2 + u�nun+2

) (
1+ |un+1|2

)

−
N∑

n=L

(
un−1u�n+1 + u�n−1un+1

) (
1+ |un|2

)
. (2.110)

However, observing the telescopic nature of the sums in the right-hand side of
Eq. (2.110), we infer that

d M

dt
= −2

(|uN+1|2 − |uL |2
)

+ (uN u�N+2 + u�N uN+2
) (

1+ |uN+1|2
)

− (uL−1u�L+1 + u�L−1uL+1
) (

1+ |uL |2
)
. (2.111)

As usual in Manton’s method, and based on intuitive physical arguments, the
main contribution in this asymptotic calculation stems from the boundary between
the two solitons. Hence, we drop the terms with subscript L and only consider the
contributions with subscript N in what follows.
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We then select a two-soliton ansatz

un = u(1)
n + u(2)

n (2.112)

with u(1)
n = sinh(γ )sech(γ n) exp(iσ ) and u(2)

n = sinh(γ )sech(γ (n − �ξ )) exp(iσ )
(i.e., two in-phase solitons). Since 0 � N � �ξ , we can use the asymptotic form
of the soliton tail at n = N , according to

u(1)
n = 2 sinh(γ ) exp(−γ N) exp(iσ ) , (2.113)

u(2)
n = 2 sinh(γ ) exp(γ (N − �ξ )) exp(iσ ) . (2.114)

Through direct substitution of Eq. (2.112) and the expressions in Eqs. (2.113)
and (2.114) into Eq. (2.111), we obtain that

d M

dt
≈ 32 sinh4(γ ) exp(−γ�ξ ) . (2.115)

Using Newton’s equation of motion for the solitons we obtain

Ps �̈ξ = −2
d M

dt
, (2.116)

where Ms is the mass (power) of the soliton; the factor “2” comes from the fact that
there is an equal and opposite pull (or push) on the second soliton, and hence their
relative distance decreases by twice the contribution of d M/dt to each of them; and
finally the “–” sign originates from the fact that a positive boundary contribution
to d M/dt decreases the soliton distance, while the opposite is true for a negative
d M/dt . In this case,

Ps =
∞∑

n=−∞
ln
(
1+ |ψn|2

) = 2γ. (2.117)

Thus, the equation for the s(t) becomes

�̈ξ = −32

γ
sinh4(γ ) exp(−γ�ξ ) , (2.118)

while the relevant effective soliton interaction potential (for a unit mass particle) is

V (�ξ ) = − 32

γ 2
sinh4(γ ) exp(−γ�ξ ) . (2.119)

If the solitons additionally possess a phase difference φ, the above calculations
gives a factor of cos(φ) in Eqs. (2.118) and (2.119). Relevant results illustrating the
attraction of in-phase and repulsion of out-of-phase solitons are shown in Fig. 2.14.
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Fig. 2.14 Example of an in-phase (left) and an out-of-phase (right) collision of two discrete bright
solitons of the AL-NLS model. The top panels show the distance s(t) ≡ �ξ numerically and
from the ODE of Eq. (2.118), while the bottom shows the space-time contour plot of the AL-NLS
evolution. The quality of the agreement of the ODE result with the full numerical computation
is such that the two lines of the top panels can not be distinguished. Reprinted from [66] with
permission

It should be pointed out that, as expected, the AL-NLS solitons do not face a PN
barrier when traveling through the lattice. For this reason, the only contribution to
their potential energy stems from the exponential tail–tail interactions, contrary to
what we saw is the case in the DNLS model. Finally, accounting for a factor of 1/2
in the equation (and also another such factor in the definition of the momentum),
as well as taking the limit of sinh(γ ) → γ , we can derive the continuum analog
(2.107) of Eq. (2.118).
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Chapter 3
The Two-Dimensional Case

3.1 General Notions

We now turn to the examination of the two-dimensional DNLS equation, and of the
type of excitations that can emerge in that context.

The dynamical equation can be written in the form

i u̇n,m + ε
(
un+1,m + un−1,m + un,m+1 + un,m−1 − 4un,m

)+ |un,m |2un,m = 0, (3.1)

where un,m represents the two-dimensional complex field. The corresponding Hamil-
tonian function of this Hamiltonian system can be expressed as

H =
∑

(n,m)∈Z2

ε|un+1,m − un,m|2 + ε|un,m+1 − un,m|2 − 1

2
|un,m|4. (3.2)

In addition to the time translational invariance inducing the conservation of the
Hamiltonian, this infinite dimensional dynamical system also has the U(1) invari-
ance, analogously to its one-dimensional sibling, hence it also preserves the squared
l2 norm or power P = ∑m,n |un,m|2. These are the two fundamental conservation
laws that are known for the discrete case. In the continuum analog of the model,
there exist additional conservation laws; a natural one among these corresponds to
the vector form of the momentum

M = i
∫ (

u∇u� − u�∇u
)

dxdy. (3.3)

A far less obvious invariance of the two-dimensional setting is the so-called
pseudo-conformal invariance which is particular to the two-dimensional case (the
so-called critical case for the cubic nonlinearity). If one defines l(t) = (t� − t)/t0,
then the transformation x′(t) = x(t)/ l(t), t ′ = ∫ t

0 ds/ l2(s) and u′(x′, t ′) =
lu(x, t) exp(ia|x|2/(4l2)), leaves the equation unchanged. In the above expressions,
a = −ldl/dt and x is used to denote the spatial vector. The corresponding con-
served quantity is

P.G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation, STMP 232, 55
55–98, DOI 10.1007/978-3-540-89199-4 3, c© Springer-Verlag Berlin Heidelberg 2009



56 3 The Two-Dimensional Case

C =
∫ (|xu + 2i t∇u|2 − 2t2|u|4) dx. (3.4)

It is important to note that neither of these last two conservation laws is preserved
in the discrete case. Furthermore, the continuum case is well known to lead to col-
lapse in its dynamical evolution; see a detailed analysis of the relevant phenomena
in [1].

In fact, the two-dimensional case is special as it is the “critical dimension”
beyond which collapse is occurring. The pseudo-conformal invariance allows the
rescaling of the amplitude and the width of the solution in a self-similar way, without
costing energy and in this way gives rise to the possibility of the solution to collapse
along this group orbit in finite time. In fact, if the power of the solution exceeds that
of the fundamental, single-humped radial solution of the equation (often referred to
as the Townes soliton [2]):

�R + R − R3 = 0, (3.5)

then the initial condition leads to self-focusing and collapse, while if it is lower
than that, it instead leads to dispersion. This collapse-type effect is of course no
longer possible in the discrete case, since the l2 conservation prevents any partic-
ular site from acquiring infinite amplitude (at best, the whole power of the initial
condition may be concentrated on a single site, in a phenomenon referred to as
quasi-collapse). Since the treatise of [1] addresses this issue in considerable detail
(see also references therein), we will not discuss it further here. Instead we will
focus on the stationary states of the discrete problem and their stability analysis.

As in the previous chapter, we will start by briefly discussing the single-pulse
case, and we will then turn to more complex multisite solutions such as multi-
pulse solitary waves and discrete vortices. The latter are a new feature of the two-
dimensional discrete system with no direct analog in the one-dimensional infinite
lattice case.

3.2 Single-Pulse Solitary Waves

The fundamental standing wave (un = ei�tvn) solution of the two-dimensional
discrete equation should be a single-humped solitary wave that asymptotes to the
Townes soliton [2] as the continuum limit is approached. Its stationary profile should
satisfy

�vn = ε�2vn + v3
n . (3.6)

In view of the scaling property of the equation (under �̃ = �/ε and the ũn =
un/
√
ε), ε (or �) can be scaled out, and we will consider the relevant problem of

Eq. (3.6) monoparametrically.
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In fact, we can consider this monoparametric problem at any dimension, if �2

represents the corresponding d-dimensional discrete Laplacian (whereby site n has
2d neighbors). To obtain a semi-analytical understanding of the properties of the
relevant ground state, we will analyze the problem of Eq. (2.65) starting with a vari-
ational approximation, which can be carried out at any dimension d . This approach
for the single-pulse solutions of interest can be obtained using

vn = Ae−a|n|l1 . (3.7)

Then the Lagrangian from which Eq. (3.6) can be derived, namely

Leff =
∑

n

⎛

⎝
∑

j

2εun+e j un − (�+ 2dε)u2
n +

1

2
u4

n

⎞

⎠ , (3.8)

(where e j is the unit vector along the j th direction) can be explicitly evaluated as

Leff = 2dεP secha − (�+ 2dε)P + P2

2d+1

coshd(2a) sinhd(a)

cosh3d (a)
, (3.9)

where the power P =∑n u2
n can be evaluated as

P = A2 cothd (a). (3.10)

From Eq. (3.9) and the extremization conditions of this effective Lagrangian:

�Leff

�P
= �Leff

�a
= 0, (3.11)

one can obtain the P = P(�) (in any dimension, and for different values of ε).
One can compare the results of Eq. (3.11) with direct numerical computations

identifying the ground state solutions of the DNLS equation (again, in any dimen-
sion). As relevant examples, we present in Fig. 3.1 the cases of d = 2 that we
focus on in this chapter, but also for comparison those of d = 1, 3. The power of
the solutions is given as a function of � (for ε = 1) in Fig. 3.1. One of the key
observations of the figure is the difference in the stationary state properties between
the case of d = 1 (so-called subcritical case) and the cases of d = 2 (critical)
and d = 3 (supercritical). In fact, as was originally demonstrated in the work of
[11], through scaling arguments, and was later proved more rigorously in [12] (see
also the recent discussion of [13]), for dimensions larger than the critical dimension
(which is given by dσ = 2 for nonlinearities |u|2σu), there is a power threshold
for the excitation of localized solitary waves. That is, contrary to what is the case
for one dimension such excitations where there is such a solution for any value of
the power, for higher dimensional problems, such a solution exists only for powers
P ≥ Pcr , where Pcr denotes the relevant threshold.
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Fig. 3.1 The plot shows the
one-, two-, and
three-dimensional results for
the power P of the stationary
solutions for different � in
Eq. (3.6). The solid lines
denote the full numerical
results, while the dashed ones
the results of the variational
approximation described in
the text
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Another important comment to make here concerns the accuracy of the varia-
tional approximation in characterizing the stationary solutions. We can see that in
the one- and two-dimensional settings, the VA is fairly accurate in capturing the
trends of the full numerical solution, however, in the three-dimensional context it
clearly misses in its quantitative description (although it does share some qualita-
tive trends with the actual solution). As an example, we note that in that case, the
minimum power occurs for � ≈ 1 in the numerical results, while it happens for
� ≈ 0.5234 in the variational approximation.

The existence of the power thresholds discussed above also bears important infor-
mation for the stability of the localized solutions of the discrete model. In particular,
as discussed in the previous chapter and as stems from the original work of [6–8]
and later from the work of [9, 10], the change of monotonicity of the P = P(�)
curve has an important consequence in the stability of the structure, in particular,
the single-humped solution is stable when d P/d� > 0, while it is unstable due to a
real eigenvalue pair when d P/d� < 0. Hence, as the continuum limit is approached
through decreasing � (or equivalently through increasing ε), the originally stable
discrete single-humped soliton has to become unstable, and this happens precisely
at the point where d P/d� = 0. This instability was observed in [14] and the rele-
vant criterion was originally proposed in the work of Vakhitov and Kolokolov and
therefore is often referred to as the VK criterion [12].

In Fig. 3.2, we show two examples of the relevant solution, as obtained numeri-
cally, one deeply in the discrete regime for � = 1.5 (linearly stable) and one very
close to the continuum regime for � = 0.05 (linearly unstable, since � < ε = 1).
The figure also shows the corresponding spectral planes (λr , λi ) of the relevant
linearization eigenvalues λ = λr + iλi , verifying the stability of the former and
instability of the latter (due to a real eigenvalue pair). Note how the latter solution
appears to approach its radially symmetric continuum limit (the Townes soliton of
[2]). It should also be pointed out in that regard that as � → 0 (see also the rele-
vant trend in Fig. 3.1), the squared l2 norm of the solution can be seen to approach
P ≈ 11.7 which is the well-known critical mass of the Townes solution [13].
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Fig. 3.2 The top left panel shows a contour plot of the fundamental solution of the two-dimensional
DNLS for � = 1.5, while the top right shows the same solution for � = 0.05 (when it approaches
its continuum profile). The former solution is stable as is shown in the bottom left panel illustrating
the spectral plane (λr , λi ) of its linearization eigenvalues λ = λr + iλi , while the latter solution is
unstable (having � < 1), as is shown in the bottom right panel

In closing, it would be interesting to highlight one important open problem aris-
ing in the computations of this fundamental solution for d = 2 and 3. In particular,
our numerical results indicate that for such solutions, the instability due to the sign
change of d P/d� occurs precisely at � = 1 (or, when ε is present in the equation,
when � = ε). Hence, a relevant mathematical question arises as to whether indeed
for dimensions d ≥ 2, one can more precisely quantify the location of the instability
and whether in particular it indeed occurs for � = ε more generally or not. This is
a conjecture that it would be worthwhile to settle.

One direction toward proving this conjecture is to try to derive properties based
on Eq. (3.6), connecting the power of the solution P , the frequency �, and the
coupling strength ε. Such a property can be obtained, e.g., by multiplying (3.6) by
un and summing over n, resulting in the identity

(2dε + �)P = 2εL + N, (3.12)

where L = ∑n

∑
j un+e j un and N = ∑n u4

n . Similarly, multiplying Eq. (3.6) by
�un/�� and summing over n, along with using Eq. (3.12), one can also derive the
identity

P = 1

2

d N

d�
. (3.13)
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Unfortunately, in addition to Eqs. (3.12) and (3.13), one needs one more equation
to eliminate both N and L and derive the dependence of P on ε and � that would
permit an explicit calculation of the relevant critical point d P/d� = 0.

3.3 Multipulses and Discrete Vortices

We now try to address the existence of more complex multisite structures, starting
from the AC limit of ε = 0 in Eq. (3.6). Note that similarly to our one-dimensional
exposition of the previous chapter, for notational simplicity, we set � = 1 in what
follows. Our discussion will closely follow [14].

3.3.1 Formulation of the Bifurcation Problem Near ε = 0

The relevant stationary equation of interest then reads

(
1− |vn,m |2

)
φn,m = ε

(
vn+1,m + vn−1,m + vn,m+1 + vn,m−1

)
. (3.14)

In the ε = 0, similarly to the one-dimensional case, the solutions of this equation
can be fully characterized

v(0)
n,m =

{
eiθn,m , (n,m) ∈ S,

0, (n,m) ∈ Z
2\S, (3.15)

where S is a finite set of nodes on the lattice and θn,m are parameters for these excited
sites. Since θ0 is arbitrary, we can set θn0,m0 = 0 for a particular node (n0,m0) ∈ S.
Using this convention, we can define two special types of localized modes, called
discrete solitons and vortices.

The localized solution of the difference equations (3.14) with ε > 0 is called a
discrete soliton when it has all real-valued amplitudes vn,m , ∀(n,m) ∈ S and at the
limit (3.15), θn,m = {0, π} for (n,m) ∈ S. On the other hand, if S is a simple closed
discrete contour on the plane and the localized solution has complex valued vn,m

that satisfies the limit (3.15) with θn,m ∈ [0, 2π], (n,m) ∈ S, then we call such a
solution a discrete vortex.

Discrete vortices can be partitioned into symmetric and asymmetric ones as fol-
lows. If S is a simple closed discrete contour on the plane, such that each node
(n,m) ∈ S has exactly two adjacent nodes in vertical or horizontal directions along
S. Let �θ j be the phase difference between two successive nodes in the contour S,
defined according to the enumeration j = 1, 2, . . . , dim(S), such that |�θ j | ≤ π . If
the phase differences �θ j are constant along S, the discrete vortex is called symmet-
ric. Otherwise, it is called asymmetric. The total number of 2π phase shifts across
the closed contour S is called the vortex charge. More specifically, we consider
discrete contours
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SM = {(1, 1), (2, 1), . . . , (M + 1, 1), (M + 1, 2), . . . , (M + 1,M + 1),

(M,M + 1), . . . , (1,M + 1), (1,M), . . . , (1, 2)} , (3.16)

containing 4M sites. Given the above definition, the contour SM for a fixed M could
support symmetric and asymmetric vortices with some charge L. Arguably, the
simplest vortex is the symmetric charge-one vortex cell (M = L = 1: θ1,1 = 0,
θ2,1 = π/2, θ2,2 = π , θ1,2 = 3π/2) [16, 29]. Although the main formalism below
is developed for any M ≥ 1, we obtain a complete set of results on persistence
and stability of discrete vortices only in the cases M = 1, 2, 3, which are of most
physical interest.

It then follows directly from the general method [17] that the discrete solitons
of the two-dimensional NLS lattice (3.14) can be continued for 0 < ε < ε0 for
some ε0 > 0. It is more complicated to find a configuration of θn,m for (n,m) ∈ S
that allows us to continue the discrete vortices for ε > 0. The continuation of the
discrete solitons and vortices is based on the Implicit Function Theorem and the
Lyapunov–Schmidt Reduction Theorem [18, 19].

We denote by O(0) a small neighborhood of ε = 0, such that O(0) = (−ε0, ε0)
for some ε0 > 0. Let N = dim(S) and T be the torus on [0, 2π]N , such that θn,m

for (n,m) ∈ S form a vector θ ∈ T . Let � = L2(Z2,C) be the Hilbert space
of square-summable complex-valued sequences {φn,m}(n,m)∈Z2 , equipped with the
standard inner product and l2 norm.

It can then be proved that there exists a unique (discrete soliton) solution of the
difference equations (3.14) in the domain ε ∈ O(0) with a real profile satisfying
limε→0 vn,m = v(0)

n,m , and v(0)
n,m is given by (3.15) with θn,m = {0, π}, (n,m) ∈ S. The

solution is analytic in ε in this neighborhood. This can be proved by considering
the equations for the stationary solution of Eq. (3.14) as the zeros of a vector valued
function fn,m . Then this mapping has a bounded and continuous Fréchet derivative

Ln,m =
(
1− 3v2

n,m

)− ε (s+1,0 + s−1,0 + s0,+1 + s0,−1
)
, (3.17)

where sn′,m′ is the shift operator, such that sn′,m′un,m = un+n′,m+m′ . The kernel of
Ln,m is empty for ε = 0. Therefore, for ε = 0, L(0)

n,m has a bounded inverse, which
implies by the implicit function theorem (see Appendix 1 in [19] and Chap. 2.2 in
[18]) that there is a continuous (in fact, analytic) in ε solution vn,m(ε) in our case.

Now for a general profile v(0)
n,m at the AC limit, the continuation of such a solution

for ε ∈ O(0) requires that some conditions, constituting a vector valued function
which we will denote by g(θ, ε), be satisfied. Moreover, the function g(θ, ε) is ana-
lytic in ε ∈ O(0) and g(θ, 0) = 0 for any θ . This can be shown for a general solution
vn,m , by considering the vector equations (3.14) and their complex conjugate (de-
note the vector valued function by f(v, v̄, ε)). Then, taking the Fréchet derivative of
f(v, v̄, ε) with respect to v and v̄, we compute the linearization operator H for the
difference Eq. (3.14):
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Hn,m =
(

1− 2|vn,m |2 −v2
n,m

−v̄2
n,m 1− 2|vn,m|2

)

−ε (s+1,0 + s−1,0 + s0,+1 + s0,−1
) ( 1 0

0 1

)
. (3.18)

Let H(0) = H(φ(0), 0). Note that dim ker(H(0)) = N . Moreover, eigenvectors of
ker(H(0)) re-normalize the parameters θn,m for (n,m) ∈ S in the limiting solution
(3.15). By the Lyapunov Reduction Theorem [19, Chap. 7.1], there exists a decom-
position � = ker(H(0))⊕ ω, such that g(θ, ε) is defined in terms of the projections
to ker(H(0)). Let {en,m}(n,m)∈S be a set of N linearly independent eigenvectors in the
kernel of H(0). It follows from the representation,

H(0)
n,m = −

(
1 e2iθn,m

e−2iθn,m 1

)
, (n,m) ∈ S (3.19)

that each eigenvector en,m in the set {en,m}(n,m)∈S has the only non-zero element
(eiθn,m ,−e−iθn,m )T at the (n,m)th position of (u,w) ∈ � × �. By projections of
the nonlinear equations to ker(H(0)), we derive an implicit representation for the
functions g(θ, ε):

(n,m) ∈ S : 2ign,m(θ, ε) = (1− |vn,m|2)
(
e−iθn,mvn,m − eiθn,m v̄n,m

)

− εe−iθn,m
(
vn+1,m + vn−1,m + vn,m+1 + vn,m−1

)

+ εeiθn,m
(
v̄n+1,m + v̄n−1,m + v̄n,m+1 + v̄n,m−1

)
, (3.20)

where the factor (2i ) is introduced for convenience. By setting vn,m = eiθn,mφn,m

for (n,m) ∈ S and renaming φn,m → vn,m we end up obtaining the solvability
conditions

(n,m) ∈ S : − 2ign,m(θ , ε) = εe−iθn,m
(
vn+1,m + vn−1,m + vn,m+1 + vn,m−1

)

− εeiθn,m
(
v̄n+1,m + v̄n−1,m + v̄n,m+1 + v̄n,m−1

)
. (3.21)

Note that these are the same conditions to leading order to the solvability con-
ditions directly inferred by Eq. (3.14), by multiplying the equation by v̄n,m and
subtracting the complex conjugate, namely

(n,m) ∈ S : − 2ign,m(θ, ε) = εv̄n,m
(
vn+1,m + vn−1,m + vn,m+1 + vn,m−1

)

− εvn,m
(
v̄n+1,m + v̄n−1,m + v̄n,m+1 + v̄n,m−1

)
. (3.22)

Note, also, that given the analyticity of these solvability conditions, they can be
Taylor expanded in ε, and so can the solution vn,m . Furthermore, in this reformulation
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of the problem for the angles θm,n (as a function of ε), the gauge or U(1) invariance
of the original problem can be translated into a shift of the angle θn,m → θn,m + θ0,
which yields a one parameter family of roots of g(θ, ε). This implies that the Ja-
cobian matrix (M1) jk = �g(1)

j /�θk of the first-order expansion g(1) will have a
non-empty kernel with an eigenvector p0 = (1, 1, . . . , 1) due to the gauge transfor-
mation. However, if we let X0 be the constrained subspace of C

N :

X0 = {u ∈ C
N : (p0,u) = 0}. (3.23)

and the matrix M1 is non-singular in the subspace X0, then there exists a unique
(modulo the shift) analytic continuation of the root of the bifurcation equations
for ε ∈ O(0) by the Implicit Function Theorem, applied to the nonlinear equation
g(θ, ε) = 0 [19, Appendix 1].

An important generalization of the above continuation is the following (regarding
conditions under which a solution family cannot be continued for ε ∈ O(0): let θ∗
be a (1 + d)-parameter solution of g(1)(θ ) = 0 and M1 have a zero eigenvalue of
multiplicity (1+d), where 1 ≤ d ≤ N −1. Let g(2)(θ∗) = · · · = g(K−1)(θ∗) = 0 but
g(K )(θ∗) 
= 0. The limiting solution (3.15) can be continued in the domain ε ∈ O(0)
only if g(K )(θ∗) is orthogonal to ker(M1). If g(K )(θ∗) /∈ Xd , where

Xd = {u ∈ X0 : (pl,u) = 0, l = 1, . . . , d}, (3.24)

then the solution can not be continued in ε ∈ O(0), according to Chap. 1.3 of [19].

3.3.2 Persistence of Discrete Solutions

We now consider discrete soliton and vortex solutions over the contours SM and
order the angles of which the contour consists as θ1, θ2, . . . , θN . Given the nature of
the considered (closed, square) contours, periodic boundary conditions are applied
(θ0 = θN , θ1 = θN+1). As per the definition above, a discrete vortex has the charge L
if the phase difference �θ j between two successive nodes changes by 2πL along the
discrete contour SM , where �θ j is defined within the fundamental branch |�θ j | ≤ π .
By gauge transformation, we can always set θ1 = 0 for convenience. We will also
choose θ2 = θ with 0 ≤ θ ≤ π for convenience, which corresponds to discrete
vortices with L ≥ 0 (the existence and stability of their negative charge counterparts
is the same).

To identify the leading order persistence conditions, we substitute the limiting
AC solution v(0)

n,m solution in the bifurcation equations to obtain g(1) in the form

g(1)
j (θ ) = sin

(
θ j − θ j+1

)+ sin
(
θ j − θ j−1

)
, 1 ≤ j ≤ N. (3.25)

The bifurcation equations g(1)(θ) = 0 are rewritten as a system of N nonlinear
equations for N parameters θ1,θ2,. . . ,θN as follows:
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sin(θ2 − θ1) = sin(θ3 − θ2) = · · · = sin(θN − θN−1) = sin(θ1 − θN ). (3.26)

These types of conditions also arose in the work of [20, 21]. We now attempt to
classify all solutions of the bifurcation equations.

If we let a j = cos(θ j+1 − θ j ) for 1 ≤ j ≤ N , such that θ1 = 0, θ2 = θ , and
θN+1 = 2πL, where N = 4M , 0 ≤ θ ≤ π and L is the vortex charge. All solutions
of the bifurcation equations (3.26) reduce to the following four families:

(i) discrete solitons with θ = {0, π} and

θ j = {0, π}, 3 ≤ j ≤ N, (3.27)

such that the set {a j}Nj=1 includes l coefficients a j = 1 and N − l coefficients
a j = −1, where 0 ≤ l ≤ N .

(ii) symmetric vortices of charge L with θ = πL/2M , where 1 ≤ L ≤ 2M − 1,
and

θ j = πL( j − 1)

2M
, 3 ≤ j ≤ N, (3.28)

such that all N coefficients are the same: a j = a = cos (πL/2M).
(iii) one-parameter families of asymmetric vortices of charge L = M with 0 <

θ < π and

θ j+1 − θ j =
{

θ

π − θ
}

mod(2π), 2 ≤ j ≤ N, (3.29)

such that the set {a j}Nj=1 includes 2M coefficients a j = cos θ and 2M coefficients
a j = − cos θ .

(iv) zero-parameter asymmetric vortices of charge L 
= M and

θ = θ∗ = π

2

(
n + 2L − 4M

n − 2M

)
, 1 ≤ n ≤ N − 1, n 
= 2M, (3.30)

such that the set {a j}Nj=1 includes n coefficients a j = cos θ∗ and N − n coefficients
a j = − cos θ∗ and the family (iv) does not reduce to any of the families (i)–(iii).

This can be seen because essentially there are only two roots of the sine func-
tion that permit simultaneously satisfying the bifurcation equations. These are the
choices of Eq. (3.29), leading, respectively, to either a j = cos(θ ) or to a j =
− cos(θ ). If we generically assume that there are totally n choices of the former
type and N − n ones of the latter type within the contour, then

θN+1 = nθ + (N − n)(π − θ ) = (2n − N)θ + (N − n)π = 2πL,
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where L is the integer charge of the discrete vortex. There are only two solutions of
the above equation. When θ is arbitrary parameter, we have n = N/2 = 2M and
L = M , which gives the one-parameter family (iii). When θ = θ∗ is fixed, we have

θ∗ = π

2

(
n + 2L − 4M

n − 2M

)
.

When n = N − 2L, we have the family (i) with N − 2L phases θ j = 0 and 2L
phases θ j = π . Since the charge is not assigned to discrete solitons, the parameter
L could be half-integer: L = (N − l)/2, where 0 ≤ l ≤ N . When n = 4M , we have
the family (ii) for any 1 ≤ L ≤ 2M−1. Other choices of n, which are irreducible to
the families (i)–(iii), produce the family (iv). Furthermore, it is worthwhile to note
that there are special cases where family (iii) reduces to families (ii) and (i); these
will be dubbed supersymmetric cases. In particular, when θ = 0 and π , the family
(iii) reduces to the family (i) with l = 2M . When θ = π/2, the family (iii) reduces
to the family (ii) with L = M . We shall call the corresponding solutions of family
(i) the supersymmetric soliton and of family (ii) the supersymmetric vortex.

One can make a simple combinatorial enumeration of the solutions of families
(i)–(iii). In the case of (i), there are N1 = 2N−1, since aside from the first site, all
others can be either 0 or π . There are also N2 = 2M − 1 solutions of family (ii),
and N3 solutions of family (iii), where

N3 = 2N−1 −
2M−1∑

k=0

N!

k!(N − k)!
. (3.31)

As special case examples that will be of relevance to our discussion below, we
mention the contours with M = 1 (four sites) and M = 2 (eight sites). In the first
case, there are eight solutions of type (i), one of type (ii), three solutions of type (iii),
and no solutions of the family (iv). The three one-parameter asymmetric solutions
are

(a) θ1 = 0, θ2 = θ, θ3 = π, θ4 = π + θ, (3.32)

(b) θ1 = 0, θ2 = θ, θ3 = 2θ, θ4 = π + θ, (3.33)

(c) θ1 = 0, θ2 = θ, θ3 = π, θ4 = 2π − θ. (3.34)

Similarly in the case with M = 2, there are 128 solutions of family (i), 3 solutions
of family (ii), 35 solutions of family (iii), and 14 of family (iv). The three symmetric
vortices have charge L = 1 (θ = π/4), L = 2 (θ = π/2), and L = 3 (θ = 3π/4).
The one-parameter asymmetric vortices include 35 combinations of 4 upper choices
and 4 lower choices in (3.29). Finally, the zero parameter asymmetric vortices in-
clude seven combinations of vortices with L = 1 for seven phase differences π/6
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and one phase difference 5π/6 and seven combinations of vortices with L = 3 for
one phase difference π/6 and seven phase differences 5π/6.

3.3.2.1 First-Order Reductions

The Jacobian M1 of the first-order bifurcation equations g(1)(θ) can be obtained
from Eq. (3.25) as

(M1)i, j =

⎧
⎪⎨

⎪⎩

cos(θ j+1 − θ j )+ cos(θ j−1 − θ j ), i = j,

− cos(θ j − θi ), i = j ± 1,

0, |i − j | ≥ 2,

(3.35)

subject to the periodic boundary conditions. It is interesting that this is the same
type of structure as we encountered in the one-dimensional configurations of the
previous chapter, and it is the one also encountered in the perturbation theory of
continuous multipulse solitons in coupled NLS equations [20].

If we let n0, z0, and p0 be the numbers of negative, zero, and positive terms of
a j = cos(θ j+1 − θ j ), 1 ≤ j ≤ N (therefore n0 + z0 + p0 = N), it is important
based on this information to infer how many eigenvalues of M1 are negative, zero,
or positive. Assuming z0 = 0 (note that this is not true in supersymmetric cases), it
turns out (see the appendix of [20] for a relevant proof by induction arguments) that
the eigenvalues are intimately connected with the quantity

A1 =
N∑

i=1

∏

j 
=i

a j =
(

N∏

i=1

ai

) (
N∑

i=1

1

ai

)
. (3.36)

In particular, as expected there exists a zero eigenvalue in M1 due to the gauge
invariance. Therefore, denoting the characteristic polynomial of M1 as D(λ), it is
clear that D(0) = 0. It is then important to evaluate D′(0) = −λ1λ2 . . . λN−1. A
key result in that regard is that for this matrix D′(0) = −N A1; therefore, an im-
mediate consequence is that if A1 
= 0, then the multiplicity of the zero eigenvalue
is z(M1) = 1. If A1 = 0, then z(M1) ≥ 2. Note also that from the above results
(comparing D′(0)) (−1)n(M1) = sign(A1), where n(M1) denotes the number of
negative eigenvalues of the matrix; this implies that n(M1) is even if A1 > 0 and
is odd if A1 < 0. Finally, if p(M1) will be used to denote the number of positive
eigenvalues, then as indicated in [20], there are two possible scenario (if A1 
= 0)
for the related eigenvalues: either n(M1) = n0 − 1, p(M1) = p0 or n(M1) = n0,
p(M1) = p0 − 1.

In some important special cases (for what follows), the eigenvalues of the
matrix can be computed analytically. More specifically,if all coefficients a j =
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cos(θ j+1 − θ j ), 1 ≤ j ≤ N are equal a j = a, then, the eigenvalues of the matrix
can be computed as

λn = 4a sin2 πn

N
, 1 ≤ n ≤ N. (3.37)

This is straightforward to see since the eigenfunction equation becomes

a
(
2x j − x j+1 − x j−1

) = λx j , x0 = xN , x1 = xN+1, (3.38)

which is solvable by the using the discrete Fourier modes x j = exp (i (2π jn/N))
for 1 ≤ j, n ≤ N , yielding the above eigenvalue expression.

On the other hand, if the elements of the matrix alternate in sign a j = (−1) ja,
1 ≤ j ≤ 4M , then the eigenvalue problem can be written as a system of two coupled
linear difference equations of the form

a
(
y j − y j−1

) = λx j , a
(
x j − x j+1

) = λy j , 1 ≤ j ≤ 2M, (3.39)

subject to the periodic boundary conditions: x1 = x2M+1 and y0 = y2M . Once again,
the discrete Fourier transform can be used according to x j = x0 exp (i (2π jn/2M))
and y j = y0 exp (i (2π jn/2M)) for 1 ≤ j, n ≤ 2M and this yields the eigenvalues

λn = −λn+2M = 2a sin
πn

2M
, 1 ≤ n ≤ 2M, (3.40)

such that n(M1) = 2M − 1, z(M1) = 2, and p(M1) = 2M − 1. These numbers do
not change if the set {a j}Nj=1 is obtained from the sign-alternating set {(−1) ja}Nj=1
by permutations (see [14] for a proof of the last statement).

The above results indicate that discrete solitons can be typically continued
uniquely for finite ε, since z(M1) = 1. This is with the notable exception of super-
symmetric solitons where the number of positive and negative a j ’s is equal. On the
other hand, for family (ii), all coefficients a j are the same: a j = a = cos (πL/2M),
1 ≤ j ≤ N . The above calculation for equal a j ’s yields the presence of a zero
eigenvalue λN ; the remaining (N − 1) eigenvalues are all positive for a > 0 (when
1 ≤ L ≤ M − 1), negative for a < 0 (when M + 1 ≤ L ≤ 2M − 1), and zero
for a = 0 (in the supersymmetric case of L = M). Therefore, states other than the
supersymmetric ones are also guaranteed to have a unique continuation also in the
case of discrete symmetric vortices. The first-order reductions are less informative
in the case of asymmetric discrete vortices of family (iii), whereby there are 2M
coefficients a j = cos θ and 2M coefficients a j = − cos θ , which are non-zero for
θ 
= π/2. The count of eigenvalues of the matrix M1 yields n(M1) = 2M − 1,
z(M1) = 2, and p(M1) = 2M − 1. Therefore in this case, the higher multiplicity
of the zero eigenvalue (related, at heart, with the additional freedom in the selection
of the angular parameter θ ) leads to an inconclusive result for such solutions. Lastly,
for family (iv), the fact that A1 
= 0, again preserves the zero eigenvalue multiplicity
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as z(M1) = 1, permitting a unique continuation of such zero parameter asymmetric
vortices.

3.3.2.2 Second-Order Reductions

To determine the fate of supersymmetric solitons and vortices, as well as that of
mono-parametric, asymmetric vortices, we now expand the bifurcation function
g(θ, ε) to second order. Starting with the first-order correction in the solution, we
have

(
1− 2|v(0)

n,m|2
)
v(1)

n,m − v(0)2
n,m v̄

(1)
n,m = v(0)

n+1,m + v(0)
n−1,m + v(0)

n,m+1 + v(0)
n,m−1. (3.41)

To solve this more complicated equation, we will distinguish the cases of the
different contours; we will consider, in particular, the contours with M = 1, M = 2,
and M ≥ 3.

In the case of M = 1, the inhomogeneous equation (3.41) has a solution of the
form

v(1)
n,m = −

1

2

[
cos
(
θ j−1 − θ j

)+ cos
(
θ j+1 − θ j

)]
eiθ j , (3.42)

for sites in the contour SM , while for their non-contour neighbors,

v(1)
n,m = eiθ j (3.43)

and every other site vanishes at this order. Substituting this first order correction
within the bifurcation equations to deduce g(2)(θ ), we find the form

g(2)
j (θ) = 1

2
sin
(
θ j+1 − θ j

) [
cos(θ j − θ j+1)+ cos

(
θ j+2 − θ j+1

)]
(3.44)

+ 1

2
sin
(
θ j−1 − θ j

) [
cos
(
θ j − θ j−1

)+ cos(θ j−2 − θ j−1)
]
, 1 ≤ j ≤ N.

One can then straightforwardly compute the vector g(2)(θ) for the asymmetric
solutions (3.32), (3.33), and (3.34):

(a) g2 =

⎛

⎜⎜⎝

0
0
0
0

⎞

⎟⎟⎠ , (b) g2 =

⎛

⎜⎜⎝

2
0
−2
0

⎞

⎟⎟⎠ sin θ cos θ, (c) g2 =

⎛

⎜⎜⎝

0
−2
0
2

⎞

⎟⎟⎠ sin θ cos θ.

The key observation, however, concerns the kernel of M1, which as illus-
trated above has a second element (in addition to the gauge invariance eigenvector
(1, 1, 1, 1)T ). This element is evaluated as
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(a) p1 =

⎛

⎜⎜⎝

0
1
0
1

⎞

⎟⎟⎠ , (b) p1 =

⎛

⎜⎜⎝

0
1
2
1

⎞

⎟⎟⎠ , (c) p1 =

⎛

⎜⎜⎝

0
1
0
−1

⎞

⎟⎟⎠ .

The Fredholm alternative (p1, g2) = 0 is satisfied for the solution (a) but fails for
the solutions (b) and (c), unless θ = {0, π/2, π}. Therefore, the important conclu-
sion from this exercise is that solutions (b) and (c) cannot be continued for ε 
= 0.

In the case of M = 2, the correction is the same as in the previous case, as given
by Eqs. (3.42) and (3.43), except for the central node (2, 2), where contributions
from its four neighboring sites yield

v
(1)
2,2 = eiθ2 + eiθ4 + eiθ6 + eiθ8 . (3.45)

This, in turn, modifies the entries of the bifurcation function according to

g(2)
j (θ)→ g(2)

j (θ)+sin(θ j−θ j−2)+sin(θ j−θ j+2)+sin(θ j−θ j+4), j = 2, 4, 6, 8.
(3.46)

In that case, there are 35 one-parameter asymmetric vortex solitons, each of
which has a corresponding second eigenvector p1 in the kernel of M1. For all but
one of these solutions (assuming that θ 
= {0, π/2, π}), the condition for continua-
tion of the solution, namely (p1, g2) = 0 fails, hence the solutions cannot exist. The
only solution that can be continued in this case is the one with alternating signs of
a j = cos(θ j+1 − θ j ).

Finally, in the case of M ≥ 3, the first-order corrections to the solution still obey
(3.42) and (3.43), except for the four corner nodes (2, 2),(M, 2),(M,M), and (2,M)
each of which have two neighbors which lead to

v(1)
n,m = eiθ j−1 + eiθ j+1, j = 1,M + 1, 2M + 1, 3M + 1. (3.47)

The correction term g(2)(θ ) is given by (3.45), except for the adjacent entries to
the four corner nodes on the contour SM : (1, 1), (1,M + 1), (M + 1,M + 1), and
(M + 1, 1), which are modified by

g(2)
j (θ)→ g(2)

j (θ)+ sin(θ j − θ j−2), j = 2,M + 2, 2M + 2, 3M + 2,

g(2)
j (θ)→ g(2)

j (θ)+ sin(θ j − θ j+2), j = M, 2M, 3M, 4M. (3.48)

For any M ≥ 3, there is a solution of family (iii), where g2 = 0, which is
characterized by the alternating signs of coefficients a j = cos(θ j+1 − θ j ) for 1 ≤
j ≤ N . In the case M = 3, all other solutions of family (iii) have (p1, g2) 
= 0 and
hence terminate at the second-order reductions.
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Generalizing the results of this section, we have that all asymmetric vortices of
family (iii), except for the sign-alternating set a j = cos(θ j+1− θ j) = (−1) j+1 cos θ ,
1 ≤ j ≤ N , cannot be continued to ε 
= 0 for M = 1, 2, 3. The only solution of this
type which can be continued has the explicit form

θ4 j−3 = 2π( j−1), θ4 j−2 = θ4 j−3+θ, θ4 j−1 = θ4 j−3+π, θ4 j = θ4 j−3+π+θ,
(3.49)

where 1 ≤ j ≤ M and 0 ≤ θ ≤ π . This solution includes two particular cases of
supersymmetric solitons of family (i) for θ = 0 and π and supersymmetric vortices
of family (ii) for θ = π/2. Continuation of the solution (3.49) must be considered
beyond the second-order reductions.

In the case of supersymmetric solitons, and considering the matrix M1+εM2, it
can be found that the second zero eigenvalue of M1 bifurcates off zero. As a result,
the supersymmetric solutions of family (i) can be uniquely continued to discrete
solitons.

On the other hand, we need to consider the Jacobian matrix M2 and its eigen-
values for discrete supersymmetric vortices of different charges (we consider the
cases M = 1, M = 2, and M ≥ 3). In the case of M = 1, the elements of M2 are
given by

(M2)i, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

+1, i = j,

−1

2
, i = j ± 2,

0, |i − j | 
= 0, 2

(3.50)

or explicitly

M2 =

⎛

⎜⎜⎜⎜⎝

1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1

⎞

⎟⎟⎟⎟⎠
. (3.51)

The matrix M2 has four eigenvalues: λ1 = λ2 = 2 and λ3 = λ4 = 0. The two
eigenvectors for the zero eigenvalue are p3 = (1, 0, 1, 0)T and p4 = (0, 1, 0, 1)T .
The eigenvector p4 corresponds to the derivative of the asymmetric vortex (3.32)
with respect to parameter θ , while the eigenvector p0 = p3 + p4 corresponds to the
shift due to gauge invariance.
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In the case of M = 2, the second-order Jacobian matrix is given by the form

M̃2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1

2
0 0 0 −1

2
0

0 0 0
1

2
0 −1 0

1

2
−1

2
0 1 0 −1

2
0 0 0

0
1

2
0 0 0

1

2
0 −1

0 0 −1

2
0 1 0 −1

2
0

0 −1 0
1

2
0 0 0

1

2
−1

2
0 0 0 −1

2
0 1 0

0
1

2
0 −1 0

1

2
0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.52)

The corresponding eigenvalue problem can be decoupled into two linear differ-
ence equations with constant coefficients, as follows:

2x j − x j+1 − x j−1 = 2λx j , j = 1, 2, 3, 4

−2y j+2 + y j+1 + y j−1 = 2λy j , j = 1, 2, 3, 4,

subject to the periodic boundary conditions for x j and y j ; this can again be solved
by discrete Fourier transform, yielding the eigenvalues λ1 = 1, λ2 = 2, λ3 = 1, and
λ4 = 0; λ5 = 1, λ6 = −2, λ7 = 1, and λ8 = 0 (the first four are obtained from the
first problem, while the latter four from the second problem). In this case also, there
are two eigenvectors with zero eigenvalue, namely p4 = (1, 0, 1, 0, 1, 0, 1, 0)T and
p8 = (0, 1, 0, 1, 0, 1, 0, 1)T , where the eigenvector p8 corresponds to the derivative
of the asymmetric vortex (3.49) with respect to parameter θ and the eigenvector
p0 = p4 + p8 corresponds to the shift due to gauge invariance.

Finally, in the case of M ≥ 3, the Jacobian matrix still resembles that of Eq.
(3.50), but now the additional entries stem from the four corner nodes of the con-
tours, namely (1, 1), (1,M + 1), (M + 1,M + 1), and (M + 1, 1). The second-order
Jacobian in this case reads

M̃2 =M2 + �M2, (3.53)

where �M2 is a rank-four non-positive matrix with the elements

(�M2)i, j =

⎧
⎪⎨

⎪⎩

−1, i = j = 2,M,M + 2, 2M, 2M + 2, 3M, 3M + 2, 4M,

+1, i = j − 2 = M, 2M, 3M, 4M,

+1, i = j + 2 = 2,M + 2, 2M + 2, 3M + 2

(3.54)
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and all other elements are zeros. The explicit form for the modified matrix M̃2 in
the case M = 3 is

M̃2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1

2
0 0 0 0 0 0 0 −1

2
0

0 0 0 −1

2
0 0 0 0 0 0 0

1

2
−1

2
0 0 0

1

2
0 0 0 0 0 0 0

0 −1

2
0 1 0 −1

2
0 0 0 0 0 0

0 0
1

2
0 0 0 −1

2
0 0 0 0 0

0 0 0 −1

2
0 0 0

1

2
0 0 0 0

0 0 0 0 −1

2
0 1 0 −1

2
0 0 0

0 0 0 0 0
1

2
0 0 0 −1

2
0 0

0 0 0 0 0 0 −1

2
0 0 0

1

2
0

0 0 0 0 0 0 0 −1

2
0 1 0 −1

2
−1

2
0 0 0 0 0 0 0

1

2
0 0 0

0
1

2
0 0 0 0 0 0 0 −1

2
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.55)

The computation of the eigenvalues of M̃2 again decouples into eigenvalue prob-
lems for two 6× 6 matrices and the resulting spectra can be computed as

λ1 = λ7 = −0.780776, λ2 = λ8 = −0.5, λ3 = λ9 = 0,

λ4 = λ10 = 0.5, λ5 = λ11 = 1.28078, λ6 = λ12 = 1.5.

Just as in the previous two cases, also in this case the matrix has exactly two zero
eigenvalues, one of which is related to the derivative of the asymmetric vortex and
one of which is related to the shift of the gauge invariance.

3.3.2.3 Higher Order Reductions

Since the family of solutions (3.49) survives up to second-order reductions, one
needs to consider higher order reductions in order to examine the potential per-
sistence or non-existence of such solutions. Intuitively speaking, the presence of
the arbitrary parameter θ in this family of asymmetric vortices appears not to be
supported by the symmetry of the corresponding discrete contour, or that of the
original dynamical equation. One therefore has to attempt to algorithmically expand
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the considerations of the above subsections to higher orders (as direct calculations
become extremely cumbersome), to address the issue. We do so as follows.

Let M be the index of the discrete contour SM and K be the truncation or-
der of the Lyapunov–Schmidt reduction. We construct a squared domain (n,m) ∈
D(M, K ) which includes N0 × N0 lattice nodes, where N0 = 2K + M + 1. Cor-
rections of the power series for a given configuration of θ in (3.49) solve the set of
inhomogeneous equations

H(0)

(
φ(k)

φ̄
(k)

)
=
(

f (k)

f̄ (k)

)
, 1 ≤ k ≤ K ,

where H(0) is given by (3.19) and f(k) represents the right-hand side terms, which
are defined recursively from the nonlinear Eq. (3.14). When φ(k) ∈ ω ⊂ �, we have
a unique solution of the inhomogeneous equations for any 1 ≤ k ≤ K :

φ(k)
n,m = −

1

2
f (k)
n,m, (n,m) ∈ SM , φ(k)

n,m = f (k)
n,m, (n,m) ∈ Z

2\SM ,

provided that

g(k)
n,m = −Im( f (k)

n,me−iθn,m ) = 0, (n,m) ∈ SM , 1 ≤ k ≤ K .

Now, if all g(k) = 0 for 1 ≤ k ≤ K − 1, but (p1, g(K )) 
= 0, where p1 is
the derivative vector of (3.49) with respect to parameter θ , then the family (3.49)
terminates at the K th order of the Lyapunov–Schmidt reduction.

Following this algorithm, one can find that for M = 1, when p1 = (0, 1, 0, 1)T ,
the vector g(k) is zero for k = 1, 2, 3, 4, 5 and non-zero for k = K = 6. Moreover,
(p1, g(6)) 
= 0 for any θ 
= {0, π/2, π}. Similarly, in the case M = 2, we have
also found that K = 6 and (p1, g(6)) 
= 0 for any θ 
= {0, π/2, π}. Therefore,
indeed, such solutions cannot be continued for the cases of M = 1 and 2. Finally,
for M = 3, one obtains similar conclusions through numerical computations; it
is therefore natural to conjecture that such a solution (asymmetric, one parameter
family) cannot be continued to finite ε, for any value of M .

Summarizing our conclusions for the persistence of the different classified fam-
ilies of discrete solitons and discrete symmetric and asymmetric vortices, we have
the following:

• discrete solitons of family (i) in (3.27)
• symmetric vortices of family (ii) in (3.28)
• asymmetric vortices of family (iii) in (3.29) cannot be continued to the domain
ε ∈ O(0) for M = 1, 2, 3.

• zero-parameter asymmetric vortices of family (iv) in (3.30)

It is now natural to turn to the examination of the stability of the relevant persist-
ing solutions.
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3.3.3 Stability of Discrete Solutions

To examine the spectral stability of discrete solitons and vortices, we use the lin-
earization

un,m(t) = ei(1−4ε)t
(
φn,m + an,meλt + b̄n,meλ̄t

)
, (n,m) ∈ Z

2, (3.56)

where λ ∈ C and (an,m, bn,m) ∈ C
2 are the eigenvalues and eigenfunctions, respec-

tively, satisfying

iλan,m =
(
1− 2|φn,m|2

)
an,m − φ2

n,mbn,m

−ε (an+1,m + an−1,m + an,m+1 + an,m−1
)
,

−iλbn,m = −φ̄2
n,man,m +

(
1− 2|φn,m|2

)
bn,m

−ε (bn+1,m + bn−1,m + bn,m+1 + bn,m−1
)
.

This stability problem can be rephrased as

iλψ = σHψ, (3.57)

whereψ = (an,m, bn,m)T (the T denotes transpose), H is defined by the linearization
operator (2.13), and σ consists of 2×2 blocks of Pauli matrices σ3 (σ3 is the diagonal
matrix with elements (1,−1) along the diagonal). In the eigenvalue problem of Eq.
(3.57), the presence of λwith non-zero real part illustrates the presence of instability.

The Taylor expansion of the matrix H will play a central role in our stability
considerations below and is as follows:

H = H(0) +
∞∑

k=1

εkH(k), (3.58)

where H(0) is defined in (3.19), while the first- and second-order corrections are
given by

H(1)
n,m = −2

⎛

⎝
φ̄(0)

n,mφ
(1)
n,m + φ(0)

n,m φ̄
(1)
n,m φ(0)

n,mφ
(1)
n,m

φ̄(0)
n,m φ̄

(1)
n,m φ̄(0)

n,mφ
(1)
n,m + φ(0)

n,m φ̄
(1)
n,m

⎞

⎠

− (s+1,0 + s−1,0 + s0,+1 + s0,−1
)
(

1 0

0 1

)

and

H(2)
n,m = −2

(
φ̄(0)

n,mφ
(2)
n,m + φ(0)

n,m φ̄
(2)
n,m φ(0)

n,mφ
(2)
n,m

φ̄(0)
n,m φ̄

(2)
n,m φ̄(0)

n,mφ
(2)
n,m + φ(0)

n,m φ̄
(2)
n,m

)
−
(

2|φ(1)
n,m |2 φ(1)2

n,m

φ̄(1)2
n,m 2|φ(1)

n,m |2

)
.
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It is important to consider again the starting point of ε = 0 and the eigenvalue
count at that AC limit. There, Hn,m ≡ H(0)

n,m has exactly N negative eigenvalues
γ = −2, N zero eigenvalues (these two sets will constitute the point spectrum of
the solution with N excited sites), as well as infinitely many positive eigenvalues
γ = 1 (these will become the continuous spectrum of the solution). In connection
to the full eigenvalue problem of the stability operator σH(0)

n,m , both the negative
and zero eigenvalues correspond to λ = 0, while the γ = 1 positive eigenvalues
correspond to λ = ±i . As before in the one-dimensional problem (cf. Eqs. (2.34)
and (2.35)), the latter part will develop a continuous spectral band λ = ±i [1 +
4ε(sin2(qn/2)+ sin2(qm/2))], extending in the interval±i [1, 1+ 8ε], which will be
bounded away from the origin and will not produce instabilities for small ε. On the
other hand, it is important to examine how the zero eigenvalues will move in the
presence of the coupling-induced perturbation.

Focusing now on the zero eigenvalues of the operator H in the eigenvalue prob-
lem Hϕ = γϕ, we can use the expansion

ϕ = ϕ(0) + εϕ(1) + ε2ϕ(2) + O
(
ε3
)
, γ = εγ1 + ε2γ2 + O(ε3), (3.59)

where ϕ(0) =∑N
j=1 c j e j and e j (θ ), j = 1, . . . , N are eigenvectors of the kernel of

H(0). These eigenvectors contain a single non-zero block i (eiθ j ,−e−iθ j )T at the j th
position, which corresponds to the node (n,m) on the contour SM and are orthogonal
according to

(ei (θ), e j (θ)) = 2δi, j , 1 ≤ i, j ≤ N. (3.60)

The corresponding generalized eigenvectors are ê j (θ ), j = 1, . . . , N , such that
each eigenvector ê j (θ ) contains the only non-zero block (eiθ j , e−iθ j )T at the j th
position. Direct computations show that

σH(0)ê j (θ ) = 2ie j (θ), 1 ≤ j ≤ N. (3.61)

Then, the first-order correction in the eigenvalue equation for the matrix H, ϕ(1),
satisfies the inhomogeneous equation

H(0)ϕ(1) +H(1)ϕ(0) = γ1ϕ
(0). (3.62)

Projection to the kernel of H(0) gives the eigenvalue problem for γ1:

1

2

N∑

i=1

(
e j ,H(1)ei

)
ci = γ1c j . (3.63)

If one represents the operator H as H = Hp + εHs , then H(1) = H(1)
p +Hs . On

the other hand, the bifurcation conditions to leading order can be represented as
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g(1)
j (θ) = 1

2

(
e j (θ ),Hsφ

(0)(θ )
)
.

A direct calculation then [14], of the left-hand side of Eq. (3.63) yields it to be
equal to cos(θ j−θ j+1)+cos(θ j−θ j−1), which is also equal to the Jacobian element
(M1)i j = �g(1)

i /�θ j . Hence for the N small eigenvalues of the eigenvalue problem
Hϕ = γϕ, we have

lim
ε→0

γ j

ε
= μ(1)

j , 1 ≤ j ≤ N, (3.64)

where μ(1)
j are the eigenvalues of (M1).

It is then relevant to connect the eigenvalues of the Jacobian M1 (and of the
matrix H) to those of the full stability problem σHψ = iλψ . The corresponding
statement will be of the form

lim
ε→0

λ2
j

ε
= 2μ(1)

j , 1 ≤ j ≤ N. (3.65)

This can be established by using the regular perturbation series

ψ = ψ (0) +√εψ (1) + εψ (2) + ε√εψ (3) + O(ε2), (3.66)

λ = √ελ1 + ελ2 + ε
√
ελ3 + O(ε2), (3.67)

where, due to the relations (3.60) and (3.61), we have

ψ (0) =
N∑

j=1

c j e j , ψ (1) = λ1

2

N∑

j=1

c j ê j , (3.68)

according to the kernel and generalized kernel of σH(0). The second-order correc-
tion term ψ (2) satisfies the inhomogeneous equation

H(0)ψ (2) +H(1)ψ (0) = iλ1σψ
(1) + iλ2σψ

(0). (3.69)

Projection to the kernel of H(0) gives the eigenvalue problem for λ1:

M1c = λ2
1

2
c, (3.70)

where c = (c1, c2, . . . , cN )T and the matrix M1 is the same as in the eigenvalue
problem (3.63). Relation (3.65) follows from (3.70).

Based on these results, we can quantify the number of eigenvalues of different
types in the first-order reductions for the different families of solutions (except for
the supersymmetric vortices that we will need to study at the second-order reduc-
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tions since M1 = 0. In particular, considering the quantity A1 defined in Eq. (3.36),
we have that for the family (i), it is A1 = (−1)N−l(2l − N), where l is the number
of +1’s in the configuration. In that case n(M1) = N − l − 1, z(M1) = 1 and
p(M1) = l for 0 ≤ l ≤ 2M − 1, while if 2M + 1 ≤ l ≤ 4M , there is one more
negative (N− l) and one less positive (l−1) eigenvalue. In the supersymmetric case
of l = 2M , n(M1) = 2M − 1, z(M1) = 2, and p(M1) = 2M − 1. This implies
that for the number of real eigenvalue pairs Nr , imaginary ones with negative Krein
signature N−i , and zero eigenvalues N0, in this case we have N−i = N − l − 1,
N0 = 1, and Nr = l for 0 ≤ l ≤ 2M − 1; N−i = N − l − 1, N0 = 2, and Nr = l − 1
for l = 2M; and N−i = N − l, N0 = 1, and Nr = l − 1 for 2M + 1 ≤ l ≤ N .

In the case of family (ii), the corresponding counts for M1 are n(M1) = 0,
z(M1) = 1, and p(M1) = N − 1 for 1 ≤ L ≤ M − 1 and n(M1) = N − 1,
z(M1) = 1, and p(M1) = 0 for M + 1 ≤ L ≤ 2M − 1, for discrete vortices
of charge L within the contour SM . This, in turn, implies that the full eigenvalue
problem will have N−i = 0, N0 = 1, and Nr = N − 1 for 1 ≤ L ≤ M − 1; N−i = 0,
N0 = N , and Nr = 0 for L = M; and N−i = N − 1, N0 = 1, and Nr = 0 for
M + 1 ≤ L ≤ 2M − 1.

Having eliminated the potential for the monoparametric asymmetric vortices of
family (iii), we lastly examine the zero parameter asymmetric vortices of family
(iv) in the realm of first-order reductions. We find there for cos θ∗ 
= 0, L 
= M and
1 ≤ n ≤ N − 1, n 
= 2M , that the parameter A1 = (−1)N−n(cos θ∗)N−1(2n − N),
such that z(M1) = 1 in all cases. For cos θ∗ > 0, n(M1) = N − n − 1 and
p(M1) = n for 1 ≤ n ≤ 2M − 1 and n(M1) = N − n and p(M1) = n − 1 for
2M + 1 ≤ n ≤ N − 1. In the opposite case of cos θ∗ < 0, we have n(M1) = n and
p(M1) = N −n−1 for 1 ≤ n ≤ 2M−1 and n(M1) = n−1 and p(M1) = N −n
for 2M + 1 ≤ n ≤ N − 1. These results lead to the full eigenvalue problem counts:
for cos θ∗ > 0, we have N−i = N −n−1, N0 = 1, and Nr = n for 1 ≤ n ≤ 2M−1
and N−i = N − n, N0 = 1, and Nr = n − 1 for 2M + 1 ≤ n ≤ N − 1; for
cos θ∗ < 0, we have N−i = n, N0 = 1, and Nr = N − n − 1 for 1 ≤ n ≤ 2M − 1
and N−i = n − 1, N0 = 1, and Nr = N − n for 2M + 1 ≤ n ≤ N − 1.

Despite the considerable wealth of information provided by the first-order re-
ductions, there are still features that need to be clarified at the second-order reduc-
tions. Among them are the second zero eigenvalue of supersymmetric solitons (that
should bifurcate away from the origin at a higher order), the potential splitting of
real eigenvalues of the first-order reductions in the complex plane for solutions of
family (ii), or the analysis of the stability of supersymmetric vortices with L = M
within family (ii).

3.3.3.1 Eigenvalue Splitting at Second-Order Reductions

In the case of family (i), for l = 2M (supersymmetric solitons) and a j 
= (−1) j a, as
indicated above the Jacobian has two zero eigenvalues with eigenvectors p0 and p1.
On the other hand, the matrix M1+ εM2 has only one zero eigenvalue with eigen-
vector p0 (due to the gauge invariance). Therefore, the second eigenvalues should
bifurcate away from zero at the second-order reduction. We can therefore expand
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the perturbation theory at the next order using c = p1 to derive

γ2 = (p1,M2p1)

(p1,p1)
.

One can therefore find at the second order that

λ2
2 = 2

(p1,M2p1)

(p1,p1)
= 2γ2.

It can therefore be concluded that the splitting of the additional zero eigenvalue in
the second-order reduction resembles that of the zero eigenvalues in the first-order
reductions. If γ2 > 0, then the eigenvalues ελ2 will be real, while if γ2 < 0, they
will be imaginary with negative Krein sign.

The next topic of interest that needs to be addressed at the level of second-order
reductions is the potential splitting of non-zero eigenvalues (of the first order). In
particular, if we use the explicit solutions for φ(1), required in H(1), it is possible to
compute the explicit solution of the inhomogeneous equation (3.69) for ψ (2) as

ψ (2) = λ2

2

N∑

j=1

c j ê j + 1

2

N∑

j=1

(sin(θ j+1 − θ j )c j+1 + sin(θ j−1 − θ j )c j−1)ê j

+
N∑

j=1

c j (S+ + S−) e j , (3.71)

where the operators S± shift elements of e j from the node (n,m) ∈ SM to the
adjacent nodes outside of SM . Then, for the third-order correction ψ (3), one has the
subsequent order inhomogeneous equation of the form

H(0)ψ (3) +H(1)ψ (1) = iλ1σψ
(2) + iλ2σψ

(1) + iλ3σψ
(0). (3.72)

To obtain an expression for the second-order correction λ2, we project the inho-
mogeneous problem (3.72) also to the kernel of H(0) (as before to obtain Eq. (3.70)),
which, in turn, leads to

M1c = λ2
1

2
c+√ε (λ1λ2c+ λ1L1c) , (3.73)

where the matrix L1 is defined by

(L1)i, j =
{

sin(θ j − θi ), i = j ± 1,
0, |i − j | 
= 1,

(3.74)

subject to the periodic boundary conditions. If we now label the eigenvalue of the
first-order Jacobian matrix M1 as μ(1)

j (with eigenvector c j ), then the two leading
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order expressions for the bifurcation of the eigenvalue from zero in Eq. (3.66) are
given by

λ1 = ±
√

2μ(1)
j , λ2 = − (c j ,L1c j )

(c j , c j )
. (3.75)

Now, given the skew-symmetric nature of the operator L1, we infer that the
second-order correction term λ2 is purely imaginary or zero. In the case of discrete
solitons of family (i), since sin(θ j+1−θ j ) = 0, the elements ofL1 (and hence λ2) will
be vanishing. On the other hand, in the case of symmetric vortices of family (ii) with
L 
= M , the matrix M1 has double eigenvalues, according to the roots of sin2 πn/N
in the explicit solution (3.37). In that case, all the coefficients a j = cos(θ j+1 − θ j )
and b j = sin(θ j+1 − θ j ), 1 ≤ j ≤ N will be the same: a j = a and b j = b. Then,
one can again compute both the first, as well as the second-order correction for the
eigenvalues explicitly as

λ1 = ±
√

8a sin
πn

N
, λ2 = −2ib sin

2πn

N
, 1 ≤ n ≤ N. (3.76)

This implies that all double roots of λ1 with n 
= N/2 and N split along the
imaginary axis in λ2. When a > 0, the splitting occurs in the transverse directions to
the real values of λ1. When a < 0, the splitting occurs in the longitudinal directions
to the imaginary values of λ1. The simple roots at n = N/2 and N are not affected,
since λ2 = 0 for n = N/2 and N . This implies, e.g., that for discrete vortices of
family (ii) with 1 ≤ L ≤ M − 1, their positive double roots will, in fact, split
and become into complex quartets, as we will see below for example in the case of
M = 2 and L = 1.

We now turn to the case of supersymmetric vortices (where the first-order re-
ductions are completely degenerate and yield no information) in order to use the
second-order reductions to address the splitting of their zero eigenvalues. We extend
the results of the regular perturbation series (3.59) and (3.66) to the case M1 = 0,
which occurs for supersymmetric vortices of family (ii) with charge L = M . More
specifically, when M1 = 0 (and hence γ1 = 0), then the first-order correction is
given by

ϕ(1) = 1

2

N∑

j=1

(c j+1 − c j−1)ê j +
N∑

j=1

c j (S+ + S−) e j , (3.77)

where the meaning of the operators S± is the same as in Eq. (3.71). Going to the
next order in perturbation theory, we obtain the inhomogeneous equation

H(0)ϕ(2) +H(1)ϕ(1) +H(2)ϕ(0) = γ2ϕ
(0). (3.78)

Hence, projecting to the kernel of H(0) gives the eigenvalue problem for γ2:
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1

2

(
e j ,H(1)ϕ(1)

)+ 1

2

N∑

i=1

(
e j ,H(2)ei

)
ci = γ2c j . (3.79)

Through direct computation, one can verify that the matrix on the left-hand side
of (3.79) is identical to the Jacobian matrix M2 (defined as (M2)i j = �g(2)

i /�θ j ).
Using our results from the Jacobian of the second-order reductions in the previous
section (for M = 1, 2, and 3), we have that n(M2) = 0, z(M2) = 2, and p(M2) =
2 for M = 1; n(M2) = 1, z(M2) = 2, and p(M2) = 5 for M = 2; and n(M2) = 4,
z(M2) = 2, and p(M2) = 6 for M = 3. We now need to connect the eigenvalues
of the Jacobian matrix M2 with those of the full eigenvalue problem λ, This is done
again by using the perturbation series but now in the form

ψ = ψ (0) + εψ (1) + ε2ψ (2) + O(ε3), λ = ελ1 + ε2λ2 + O(ε3), (3.80)

where

ψ (0) =
N∑

j=1

c j e j , ψ (1) = ϕ(1) + λ1

2

N∑

j=1

c j ê j , (3.81)

and ϕ(1) is given by (3.77). The second-order correction term ψ (2) is found from the
inhomogeneous equation

H(0)ψ (2) +H(1)ψ (1) +H(2)ψ (0) = iλ1σψ
(1) + iλ2σψ

(0). (3.82)

In this case, the projection of the inhomogeneous equation to the kernel of H(0)

gives the eigenvalue problem for λ1:

M2c = λ1L2c+ λ
2
1

2
c, (3.83)

where c = (c1, c2, . . . , cN )T , the matrix M2 is the same as in the eigenvalue prob-
lem (3.79), and the matrix L2 follows from the matrix L1 in the form (3.74) with
sin(θ j+1 − θ j ) = 1, or explicitly:

(L2)i, j =
⎧
⎨

⎩

+1, i = j − 1,
−1, i = j + 1,
0, |i − j | 
= 1,

(3.84)

subject to the periodic boundary conditions. Given that M2 is symmetric and L2

is skew-symmetric, the eigenvalues of the problem (3.83) arise in pairs (λ1,−λ1).
A direct comparison of the matrices M2 in (3.50) and L2 in (3.84), leads to the
conclusion M2 = −(1/2)L2

2. However, the Jacobian matrices M̃2 are modified in
the case M = 2 and M ≥ 3 by the rank-one and rank-four non-positive matrices
�M2. As a result, the eigenvalue problem (3.83) can be factorized as follows:
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1

2
(L2 + λ1)2 c = �M2c. (3.85)

One can now consider the reduced eigenvalue problem of Eq. (3.83) in the cases
of M = 1, 2, and 3. In the case of M = 1, the problem takes the form of the
following constant-coefficient difference equation:

− c j+2 + 2c j − c j−2 = λ2
1c j + 2λ1

(
c j+1 − c j−1

)
, 1 ≤ j ≤ 4M, (3.86)

subject to the periodic boundary conditions, which, as usual, can be tackled by the
discrete Fourier transform yielding

(
λ1 + 2i sin

πn

2M

)2
= 0, 1 ≤ n ≤ 4M. (3.87)

This implies that the eigenvalue problem will have two eigenvalue pairs with
λ1 = ±2i , and two more pairs of eigenvalues with λ1 = 0 (only one of which will
persist to higher order reductions).

On the other hand, in the case of M = 2, the problem of Eq. (3.83) can be
reduced to two constant-coefficient difference equations

−x j+1 + 2x j − x j−1 = λ2
1x j + 2λ1

(
y j − y j−1

)
, j = 1, 2, 3, 4,

y j+1 − 2y j+2 + y j−1 = λ2
1 y j + 2λ1

(
x j+1 − x j

)
, j = 1, 2, 3, 4,

where x j = c2 j−1 and y j = c2 j are subject to the periodic boundary conditions. In
this case, the characteristic equation has the explicit form

λ4
1 − 2λ2

1

(
1− (−1)n − 8 sin2 πn

4

)
+ 8 sin2 πn

4

(
1− (−1)n − 2 sin2 πn

4

)
= 0

for n = 1, 2, 3, 4, leading to four pairs of eigenvalues with λ1 = ±
√

2i , a single

pair with λ1 = ±
√√

80− 8 (which renders the configuration with L = M = 2

immediately unstable for ε 
= 0), a single pair with λ1 = ±i
√√

80+ 8 and finally
two pairs with λ1 = 0, only one of which will survive for higher order reductions.

Finally, in the case of M = 3, it is less straightforward to compute the eigen-
values explicitly via Fourier decomposition. For this reason, we instead obtain them
from a numerical linear algebra package as

λ1,2 = ±3.68497i, λ3,4 = λ5,6 = ±3.20804i, λ7,8 = ±2.25068i,

λ9,10 = λ11,12 = ±i, λ13,14 = λ15,16 = ±0.53991,

λ17,18,19,20 = ±0.634263± 0.282851i, λ21,22,23,24 = 0.

Therefore, in the case of the L = M = 3, we expect a double real eigen-
value pair and a complex eigenvalue quartet to immediately destabilize the relevant
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configuration (although additional potentially unstable eigendirections may exist,
since the algebraic multiplicity of the zero eigenvalue is larger than two).

It is interesting to slightly expand here on the reasons for the destabilization
of the L = M = 2 and L = M = 3 supersymmetric vortex solutions. More
specifically, the destabilization of the supersymmetric vortex with M = 2 occurs
due to the center node (2, 2), which couples its nearest-neighbors of the contour
S2 in the second-order reductions. This modifies the Jacobian matrix M̃2 (due to
the non-zero nature of the rank-one non-positive matrix �M2) in a way such as to
produce a simple negative eigenvalue, while none such exists for the non-negative
matrix M2. A similar feature arises in the destabilization of the L = M = 3 su-
persymmetric vortex, whereby the coupling of eight nodes of the contour S3 with
four interior corner points (2, 2), (2,M), (M,M), and (M, 2) induces the destabi-
lization. In the latter case, the rank-four non-positive matrix �M2 leads to four
negative eigenvalues in the Jacobian matrix M̃2 and to four unstable eigenvalues
in the reduced eigenvalue problem (3.85). It is interesting that this mathematical
quantification leads to an intuitive understanding of the origin of the instability and,
therefore, to insights as to how to avoid it. In particular, the latter can be achieved,
for instance, if a hole is drilled at the central node (2,2) of the M = 2 contour, or four
such holes at the sites (2, 2), (2,M), (M,M), and (M, 2) of the M = 3 contour, then
the matrix �M2 = 0; then, all the relevant eigenvalues of the Jacobian would be
positive leading to imaginary eigenvalues for the full eigenvalue problem, similarly
to the case of M = 1. We will test this type of insight numerically in what follows.

3.3.3.2 Eigenvalue Splitting at Higher Order Reductions

It is important to note that in all the above supersymmetric cases, there are additional
(to the ones stemming from the gauge invariance) zero eigenvalues at the level of
the second-order corrections, which need to be resolved at the level of higher order
reductions. In particular, we consider the splitting of the double zero eigenvalue of
M2 which corresponds to the eigenvectors p0 and p1, where p0 = (1, 1, . . . , 1, 1)T

and p1 = (0, 1, . . . , 0, 1)T . To this effect, we set c = (c1, . . . , cN ) = p1 + αp0,
where α is a parameter and generally assume that the splitting occurs at the K th
order of reductions. Then, the perturbation series (3.59) needs to be extended to that
order, leading to the following inhomogeneous equation:

H(0)ϕ(k) = −
k∑

m=1

H(m)ϕ(k−m), 1 ≤ k ≤ K − 1

and

H(0)ϕ(K ) = −
K∑

m=1

H(m)ϕ(K−m) + γKϕ
(0),

where the zeroth order ϕ(0) =∑N
j=1 c j e j , and γ = γK ε

K + O(εK+1) is the leading
order approximation for the smallest non-zero eigenvalue of H. From the projection
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formulas on to the kernel of H(0), then the equations for the correction γK and α can
be obtained.

This algorithmic procedure can be used for the supersymmetric vortices with
M = 1, leading to K = 6, α = −1/2, and γ6 = −16 (and, hence, to the conclusion
that the zero eigenvalue becomes a small negative eigenvalue for small ε 
= 0). A
similar conclusion is obtained for M = 2, where K = 6, α = −1/2, and γ6 = −8.
This allows us to develop the regular perturbation series for the eigenvalue problem
σHψ = iλψ starting with the zeroth order ψ (0) = ∑N

j=1 c j e j and c = p1 + αp0,
where α = −1/2. This leads in the case of M = 1 to the conclusion that λ1 =
λ2 = 0 but λ3 
= 0, such that λ2

3 = −32 = 2γ6; this results in a small imaginary
eigenvalue of the linear stability matrix with negative Krein signature. Similarly, for
the case of M = 2, we find that λ2

3 = −16 = 2γ6.
Based on the above results, we can summarize our stability conclusions as fol-

lows. We expect in the vicinity of ε ∈ O(0) to have stable solutions of the following
forms:

• discrete solitons,
• discrete symmetric vortices of family (ii) over contours SM with charge M +1 ≤

L ≤ 2M − 1,
• discrete supersymmetric vortices with L = M = 1.

We now turn to a numerical examination of the above findings.

3.3.4 Numerical Results

3.3.4.1 Discrete Solitons

Based on the above considerations, we can firstly construct any discrete soliton
configuration that we would like (comprising essentially of +1’s and −1’s on the
lattice) at the AC limit. We can subsequently continue the relevant configuration to
finite values of the coupling ε, by solving Eq. (3.6) and finally obtain the correspond-
ing linearization eigenvalues, by solving the linear stability problem σHψ = iλψ
numerically.

For the case of discrete solitons, we will only consider some illustrative cases
to highlight the comparison of theoretical and numerical results, although it should
be stressed that the same approach can essentially be used for any configuration of
interest. Any two-site configuration in the two-dimensional problem can be effec-
tively thought of as a quasi-one-dimensional one along the line of sight connecting
the two sites. Keep in mind, however, that this is genuinely true only when the sites
are connected by a lattice direction; when they are not, the relevant eigenvalues are
expected to be non-zero to leading order at εdmin /2 where dmin is the minimal distance
between the sites along the lattice directions. Hence, to consider genuinely non-
quasi-one-dimensional properties, we need to examine configurations with three or
more sites. As a prototypical three-site example, we will consider the following
configuration:
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⎛

⎝
1 0 −1
0 0 0
0 0 1

⎞

⎠ . (3.88)

We will also consider two prototypical four site configurations, namely

⎛

⎜⎝
1 0 −1

0 0 0

−1 0 1

⎞

⎟⎠ and

⎛

⎜⎝
1 −1 −1

0 1 0

0 0 0

⎞

⎟⎠ , (3.89)

as well as two five-site configurations

⎛

⎜⎝
1 0 1

0 −1 0

1 0 1

⎞

⎟⎠ and

⎛

⎜⎝
0 −1 1

0 1 0

1 −1 0

⎞

⎟⎠ . (3.90)

The above matrices yield the spatial form of the (real) field at the anti-continuum
limit, in the vicinity of the spatially excited sites. For completeness/comparison, we
also consider a configuration with many more sites such as the nine-site configura-
tion of the form

⎛
⎜⎝

1 −1 1

−1 1 −1

1 −1 1

⎞
⎟⎠ . (3.91)

For the three-site configuration, for bifurcation equation purposes, the structure
is similar to the three-site one-dimensional structures of Fig. 2.12 of the previous
chapter. Hence, the relevant Jacobian and eigenvalues in this case also will be λ =
±√2ε and ±√6ε (in addition to the zero eigenvalue of the phase invariance); see
the relevant discussion around Eq. (2.86).

For the four-site configurations of (3.89), as regards the first configuration, the
bifurcation equations for all four sites are g j = sin(θ j−θ j+1)+sin(θ j−θ j−1), where
θ j is the phase (0 or π depending on whether the AC limit is +1 or −1 for each
site) and θ j±1 is the phase of their closest two neighbors in the configuration. From
this, once again the first-order reduction Jacobian can be computed, leading to the
eigenvalues λ = ±2εi (a double eigenvalue pair) and λ = ±2

√
2εi (a single pair)

in addition to the zero eigenvalue of the phase invariance. For the second four-site
configuration of (3.89), the bifurcation equations are slightly more complicated in
that the site that has three neighbors has g2 = sin(θ2−θ1)+sin(θ2−θ3)+sin(θ2−θ4),
where θ2 is the phase of that site and θ1,3,4 those of its neighbors, while the rest of
the sites have g j = sin(θ j − θ2) for j = 1, 3, 4. From the corresponding Jacobian
one can extract the relevant eigenvalues to be λ = ±√2εi (a double eigenvalue)
and λ = ±√8εi (a single eigenvalue), as well as the zero eigenvalue pair.

For the first five-site configurations of (3.90), we have the bifurcation equation
g0 = 2 sin(θ0 − θ1) + 2 sin(θ0 − θ2) + 2 sin(θ0 − θ3) + 2 sin(θ0 − θ4), where we
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have labeled as θ0 the phase of the central site, while θ j , with j = 1, 2, 3, 4,
denote the phases of the four corner sites. We also have for the corner sites
g j = sin(θ j − θ j+1) + sin(θ j − θ j−1) + 2 sin(θ j − θ0) for j = 1, 2, 3, 4. In this
case, in addition to the zero eigenvalue, there is a real eigenvalue pair λ = ±2ε, an
eigenvalue of O(ε2) and an imaginary pair λ = ±√20εi . Hence, this configuration
is predicted to always be linearly unstable. Finally, for the second five-site configura-
tion, one can similarly write down the bifurcation equations and accordingly obtain
the eigenvalues: λ = ±0.874i

√
ε, ±1.6625i

√
ε, ±2.288i

√
ε, and ±2.69i

√
ε, as

well as the zero eigenvalue.
Finally, for the configuration with nine sites of (3.91), labeling θ0 the phase of

the central site of the contour, θ1,3,5,7 the phases of the four corners, and θ2,4,6,8

those of the four sites adjacent to the central one, we have the bifurcation equations
g j = sin(θ j − θ j+1)+ sin(θ j − θ j−1) for j = 1, 3, 5, 7, while g j = sin(θ j − θ j+1)+
sin(θ j − θ j−1) + sin(θ j − θ0) for j = 2, 4, 6, 8, and g0 =

∑4
k=1 sin(θ0 − θ2k).

From the corresponding Jacobian the first-order reduction for the eigenvalues yields
λ = ±√2εi (double), λ = ±2

√
εi (single), λ = ±√6εi (double), λ = ±√8εi

(double), and λ = ±√12εi (single), with the parenthesis denoting in each case the
multiplicity of the relevant eigenvalue.

The results for the three-site configuration of (3.88) are shown in Fig. 3.3. We
illustrate the configuration for two different values of the coupling (one stable and
one unstable, while the comparison of the theoretically predicted and numerically
obtained eigenvalues is shown in the bottom panel. It can be seen that the agreement
is very good between the two. The configuration is, in fact, found to be unstable for
ε > 0.295, when the larger of the two imaginary eigenvalues of negative Krein sign
collides with an eigenvalue bifurcating from the lower band edge of the continuous
spectrum, leading to an oscillatory instability through the generation of a quartet of
eigenvalues.

Figure 3.4 shows the two cases of (3.89) concerning four-site solutions. The top
left panel shows the first configuration which is linearly stable for small values of
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Fig. 3.3 The left two rows show the three-site solution of (3.88) for ε = 0.2 and 0.4 and the cor-
responding linear stability eigenvalues (the former case is stable, while the latter is unstable). The
right row shows the evolution of the imaginary (top) and real (bottom) eigenvalues as a function of
ε. The solid lines show the full numerical results, while the dashed lines indicate the corresponding
theoretical predictions
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Fig. 3.4 The four left panels concern the first solution of (3.89), while the four right panels concern
the second one. The top left panel in each case shows a typical solution profile (for ε = 0.4 in
the left rows, and for ε = 0.3 in the right rows), the bottom left the corresponding eigenvalues
in the spectral plane, while the top and bottom right in each case show the dependence on ε of
the imaginary and real parts of the relevant eigenvalues (again the solid lines correspond to the
numerical results, while dashed ones to theoretical approximations discussed above)

ε, with a double and a single imaginary eigenvalue pairs with negative Krein sign.
These eigenvalues eventually destabilize the solution upon collision with eigenval-
ues bifurcating from the band edge of the continuous spectrum. The relevant colli-
sions occur for ε = 0.262 and 0.396. The right panels show the second configuration
whose three imaginary negative Krein sign eigenvalues collide with the band edge
at ε = 0.076, 0.206, and 0.276 giving rise to three eigenvalue quartets.

The five-site configurations of (3.90) are, in turn, shown in Fig. 3.5. Note that
the first one of these configurations is immediately unstable, as soon as ε 
= 0, due
to a very accurately captured real eigenvalue pair λ = ±2ε. Additionally, there is
complex quartet emerging from the collision of the O(ε) imaginary eigenvalue of
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Fig. 3.5 Same as Fig. 3.4, but now for the five-site configurations of (3.90). The four left panels
correspond to the first configuration, while the right four panels to the second configuration. Note
the immediate instability of the former. The numerical solutions and their linear stability are for
ε = 0.4
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the configuration with the continuous spectrum at ε = 0.198. On the other hand, the
double pair of O(ε2) eigenvalues moves more slowly and does not collide with the
band edge for the parameter values considered. On the other hand, the second con-
figuration is stable for small ε, but becomes increasingly unstable as ε is increased
due to a sequence of four collisions with the band edge (or eigenvalues bifurcating
from the band edge) of the continuous spectrum occurring at ε = 0.081, 0.106,
0.195, and ε = 0.334.

Finally, the nine-site waveform of (3.91) is demonstrated in Fig. 3.6, along with
the dependence of its eigenvalues on ε. Once again as predicted by the theory, the
solution is found to be linearly stable with eight imaginary eigenvalue pairs (three of
which are double) for small ε. However, for ε > 0.054, a complex web of oscillatory
instabilities is initiated (which is also affected by finite size effects in the figure,
discussed in more detail in the chapter on dark solitons), rendering the solution
unstable thereafter.

Fig. 3.6 Same as Fig. 3.4, but
now for the nine-site
configurations of (3.91). The
left panels are for ε = 0.25.
Note that the solution is
stable for small ε, but the
negative Krein sign of the
imaginary eigenvalues leads
to a complex web of
oscillatory instabilities for
ε > 0.054
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3.3.4.2 Discrete Vortices

We now turn to the examination of discrete vortex solutions of families (ii) (both
symmetric and supersymmetric) and (iv) that were previously considered theoret-
ically in this chapter. The relevant features will be presented in a unified way for
these solutions in Figs. 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12. The top left panel will, in
each case, show the profile of the vortex solution for a specific value of ε by means
of contour plots of the real (top left), imaginary (top right), modulus (bottom left),
and phase (bottom right) two-dimensional profiles. The right panels will in each case
show the spectral plane of the linearization eigenvalues for the corresponding value
of ε. The bottom panel shows the dependence of small eigenvalues as a function of
ε, obtained via continuation methods from the AC limit of ε = 0. In these graphs,
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Fig. 3.7 The (supersymmetric) vortex cell with L = M = 1. The top left panel shows the profile
of the solution for ε = 0.6. The subplots show the real (top left), imaginary (top right), modulus
(bottom left) and phase (bottom right) fields. The top right panel shows the spectral plane (λr , λi )
of the linear eigenvalue problem (3.57). The bottom panel shows the small eigenvalues versus ε
(the top subplot shows the imaginary part, while the bottom shows the real part). The solid lines
show the numerical results, while the dashed lines show the results of the Lyapunov–Schmidt
reductions. Reprinted from [14] with permission

as before, the solid lines will denote theoretical results, while the dashed ones, the
result of the first-, second-, and higher order reductions presented above.

Figure 3.7 concerns the case of the supersymmetric vortex of charge L = 1 on
the contour SM with M = 1. In the second- and sixth-order reductions, the stability
spectrum of the vortex solution has a pair of imaginary eigenvalues λ ≈ ±i

√
32ε3

and two pairs of imaginary eigenvalues λ ≈ ±2εi . The latter pairs split along
the imaginary axis beyond the second-order reductions. The larger pair of nega-
tive Krein signature becomes subject to a Hamiltonian–Hopf bifurcation for larger
values of ε ≈ 0.38 upon collision with the continuous spectrum. The smaller pair
of positive Krein signature disappears in the continuous spectrum for ε > 0.66.
The smallest pair of imaginary eigenvalues has negative Krein signature and a
Hamiltonian–Hopf bifurcation occurs in the case for ε ≈ 0.92 due to collision with
another pair of positive Krein signature bifurcating from the continuous spectrum.
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Fig. 3.8 The symmetric vortex with L = 1 and M = 2 for ε = 0.1. Reprinted from [14] with
permission

Figure 3.8 presents results for the symmetric vortex of charge L = 1 on the
contour SM with M = 2. There are three double and one simple real unstable
eigenvalues in the first-order reductions, but all double eigenvalues split into the
complex plane in the second-order reductions. The asymptotic result of Eq. (3.76)
for eigenvalues λ ≈ √ελ1 + ελ2 with N = 8, a = cos(π/4) and b = sin(π/4) is
shown on Fig. 3.8 in very good agreement with numerical results.

Figure 3.9 shows results for the supersymmetric vortex with L = M = 2. The
non-zero eigenvalues of the second- and sixth-order reductions consist of a pair of

simple real eigenvalues λ ≈ ±ε
√√

80− 8, a pair of simple imaginary eigenvalues

λ ≈ ±iε
√√

80+ 8, a pair of simple imaginary eigenvalues λ ≈ ±4iε3, and a
pair of imaginary eigenvalues of algebraic multiplicity four at λ ≈ ±iε

√
2. The

bottom right panel of Fig. 3.9 shows the splitting of multiple imaginary eigenvalues
beyond the second-order reductions along the imaginary axis and also four subse-
quent oscillatory instabilities for larger values of ε (ε ≈ 0.23, 0.5, 0.5, and 1.45).
The other two pairs of purely imaginary eigenvalues collide with the band edge of
the continuous spectrum at ε ≈ 1.315 and 1.395 and disappear into the continuous
spectrum. Note, once again, the level of accuracy of our theoretical predictions in
comparison with the direct numerical results, especially for the cases of small ε
illustrated at the bottom left panel of Fig. 3.9. We will return to this structure below,
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Fig. 3.9 The supersymmetric vortex with L = M = 2 for ε = 0.1. The bottom right panel is an
extension of the bottom left panel to larger values of ε. Reprinted from [14] with permission

using it as a case example of the “mathematical intuition” that our reductions offer
on the origin of the observed dynamical instability and how this can be avoided in
such a case.

Figure 3.10 shows results for the symmetric vortex with L = 3 and M = 2.
The first-order reductions predict three pairs of double imaginary eigenvalues, a
pair of simple imaginary eigenvalues and a double zero eigenvalue. The double
eigenvalues split in the second-order reductions along the imaginary axis, given by
(3.76) with N = 8, a = cos(3π/4) and b = sin(3π/4). The seven pairs of imaginary
eigenvalues lead to a cascade of seven complex quartets of eigenvalues emerging
for larger values of ε due to their collisions with the continuous spectrum. The first
bifurcation when the symmetric vortex becomes unstable occurs for ε ≈ 0.096.
It is interesting to note in connection to this solution the sharp contrast between
this result (i.e., the fact that a solution with L = 3 may be stable, while the lower
charge L = 2 solution is always unstable over the same contour) and the continuum
NLS intuition; see, e.g., [22] for relevant analytical considerations and [23, 24] for
numerical results. The latter indicates that over this discrete contour higher charge
vortices are more prone to instability than the lower charge ones. On the contrary,
the stability of the discrete L = 3 structure was first observed in [25].

Zero parameter asymmetric vortices of family (iv) on the contour SM with M = 2
are shown in Fig. 3.11 for L = 1 and in Fig. 3.12 for L = 3. In the case of Fig. 3.11,
all the phase differences between adjacent sites in the contour are π/6, except for
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Fig. 3.10 The symmetric vortex with L = 3 and M = 2 for ε = 1. Reprinted from [14] with
permission

the last one which is 5π/6, completing a phase trip of 2π for a vortex of topo-
logical charge L = 1. Eigenvalues of the matrix M1 in the first-order reductions
can be computed numerically as follows: μ(1)

1 = −1.154, μ(1)
2 = 0, μ(1)

3 = 0.507,
μ

(1)
4 = 0.784, μ(1)

5 = 1.732, μ(1)
6 = 2.252, μ(1)

7 = 2.957, and μ(1)
8 = 3.314. As a

result, the corresponding eigenvalues λ ≈ ±
√

2μ(1)ε yield one pair of imaginary
eigenvalues and six pairs of real eigenvalues, in agreement with our numerical re-
sults. The bottom panel of Fig. 3.11 shows that two pairs of real eigenvalues collide
for ε ≈ 0.047 and 0.057 and lead to two quartets of eigenvalues.

In the case of Fig. 3.12, all the phase differences in the contour are 5π/6, except
for the last one which is π/6, resulting in a vortex of topological charge L = 3.
Eigenvalues of the matrix M1 are found numerically as follows: μ(1)

1 = −3.314,
μ

(1)
2 = −2.957, μ(1)

3 = −2.252, μ(1)
4 = −1.732, μ(1)

5 = −0.784, μ(1)
6 = −0.507,

μ
(1)
7 = 0, and μ(1)

8 = 1.154. Consequently, this solution has six pairs of imaginary
eigenvalues and one pair of real eigenvalues. The first Hamiltonian–Hopf bifurca-
tion in this case occurs for ε ≈ 0.086.

It is interesting to note in passing that this approach is equally well-suited to
address not just “isotropic” square lattices, where the x and y directions are equiva-
lent, but also even anisotropic such lattices, where for instance the coefficient of the
discrete Laplacian has a different prefactor (e.g., ε and εα, respectively) in the two
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permission

different directions. Although, we won’t analyze this possibility in more detail here,
the relevant details can be found by the interested reader in the work of [26].

3.3.4.3 Stabilization of Unstable Waves

One of the most remarkable features of the above developed technology for the
detection of the coherent structures and their linear stability in dynamical lattices of
the DNLS type is its “mathematical intuition” about the nature of the encountered
instabilities and how to potentially eliminate them.

As a case example of this type, we consider one of the most prototypical unstable
vortex configurations considered above, namely the vortex with L = M = 2. The
examination of the real eigenmode leading to the direct instability of the S = 2 vor-
tex (that has support over the central site that we denote by a double zero subscript
in what follows), as well as the apparent mediation of the instability by means of the
central site (see below), lead us to consider the possibility of having an “impurity” at
the central site, e.g., a strong localized potential such as a laser beam in BECs or an
inhomogeneity in a photorefractive crystal, enforcing φ0,0 = 0. More specifically,
what we observe mathematically is that the additional terms in the second order
reductions that appear to mediate the instability are the terms in the corresponding
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Fig. 3.12 The asymmetric vortex with L = 3 and M = 2 for ε = 0.1. Reprinted from [14] with
permission

reduction matrix M2 coupling the sites adjacent to (0, 0). If we therefore eliminate
this central site, disallowing the “communication” between its neighboring sites,
then the bifurcation function g2

j of the form

g2
j =

1

2
sin(θ j+1 − θ j )

[
cos(θ j − θ j+1)+ cos(θ j+2 − θ j+1)

]

+1

2
sin(θ j−1 − θ j )

[
cos(θ j − θ j−1)+ cos(θ j−2 − θ j−1)

]

+ [sin(θ j − θ j+2)+ sin(θ j − θ j+4)+ sin(θ j − θ j−2)
]

(δ j,2 + δ j,4 + δ j,6 + δ j,8)

(with 1 ≤ j ≤ 8 and where δ denotes the Kronecker symbol) lacks the last term,
since these are interactions “mediated” by the now inert site. The second-order Ja-
cobian is then much simpler and acquires the form (M2) j,k = 1 for j = k, −1/2
for j = k ± 2, and 0 for | j − k| 
= 0, 2. One can then repeat the calculation
of the corresponding eigenvalues, via the discrete Fourier transform, to obtain the
characteristic equation

(
λ1 + 2i sin(

jπ

4
)

)2

= 0, j = 1, . . . , 8. (3.92)
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This results into three eigenvalues of algebraic multiplicity four, namely λ = 0
and λ = ±εi√2/2. There are also two double eigenvalues λ = ±2εi . The crucial
observation, however, is that in this case, there are no real eigenvalues immediately
present as ε 
= 0 and hence the discrete vortex with S = 2 will be linearly stable, due
to the stabilizing effect of the impurity (or, to be more precise, due to the absence of
the instability mediated by the central site).

The stabilization of the relevant structure is clearly shown in Fig. 3.13. The figure
illustrates the principal relevant eigenvalues in the case of the inert central site in the
left panels, clearly demonstrating not only the validity of the theoretical reduction
results presented above, but most importantly the absence of any eigenvalues with
non-zero real part for small ε. Note that the instability only sets in due to a complex
quartet in this case for ε > 0.36, which indicates that under the present conditions
the stability range of the vortex of L = 2 is comparable to that of L = 1 (which is
stable for ε < 0.38). As a result, the right panel shows that for ε = 0.2, the same
structure with the same perturbation that would have clear instability dynamics for
the uniform chain, would no longer be subject to such an instability in the chain
with the inert central defect site. These results were first presented in [27].

Interestingly, this suggestion has motivated further studies on this topic such as
the work of [28], which suggested on a purely numerical basis the consideration of a
cross-like vortex of L = 2, such as the one illustrated in the left panels of Fig. 3.14.
Note that in this case, once again “reduced communication” is achieved between
the four sites previously cross-talking through the central node of the contour; how-
ever, instead of this being realized through the central site being inert, here, it is
achieved geometrically through increasing the distance between these sites (in the
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Fig. 3.13 From [27]: the left panels of the figure show the imaginary (top panels) and real (bottom
panels) parts of the eigenvalues initially at the origin of the spectral plane for the vortex with
L = M = 2, but with the central site inert. We can see that, contrary to the case where the central
site is present, the structure is linearly stable for small ε; note again the agreement between the
theoretical prediction of the reductions (dashed line) and the full numerics (solid line). This results
in a dynamical evolution shown in the right panels for ε = 0.2, where some of the main sites of the
configuration are shown in the presence (top panels) or absence (bottom panels) of the central site.
Note how the same configuration which is unstable in the top (for the same initial perturbation)
becomes stabilized in the bottom
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resulting rhombic pattern). In fact, we have studied this structure at the level of the
analytical reductions, finding from the relevant Jacobian of the bifurcation equations
that it should have a single eigenvalue pair λ = ±√8εi , a double eigenvalue pair
λ = ±2εi , as well as four pairs of eigenvalues of a higher order (not discussed in
detail here) which are also imaginary (see the right panel of Fig. 3.14). The relevant
theoretical predictions are compared to full numerical results for small ε in Fig. 3.14,
illustrating, once again, the usefulness of the method in providing quantitative infor-
mation about the stability (as well as the stabilization) of the various configurations.

3.3.4.4 Solitons and Vortices in Non-Square Lattices

The considerations presented above in the case of square lattices can be straightfor-
wardly generalized to different types of lattices (such as hexagonal or honeycomb
ones), where the number of nearest neighbors is different (six and three, respec-
tively) and hence we expect quantitative, and perhaps even qualitative changes in
the relevant phenomenology. As a concrete example of this type, we will consider
for definiteness the DNLS in a hexagonal geometry

i
dum,n

dz
= −ε

(
∑

<m′,n′>

um′,n′ − 6um,n

)
− |um,n|2um,n, (3.93)

where the summation is meant over the six nearest neighbors (denoted by 〈m ′, n′〉)
of the site (m, n). This type of setting was originally considered in [29], while
subsequent works such as [30] extended it also to Klein–Gordon lattices and the
examination of breather states therein.

In this context, selecting a simple hexagonal contour with a central inert site, it is
straightforward to construct a configuration with topological charge S over the con-
tour, provided that we select the AC limit solutions in the form u j = exp(iθ j) exp(i t)
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(normalizing, without loss of generality, the propagation constant to unity), where
θ j = 2π j S/6 and j = 1, . . . , 6 for the six sites constituting the relevant contour. It
is straightforward to see that this configuration yields non-trivial phase profiles for
S = 1 and 2, while for S = 3 it yields a “discrete hexapole” (i.e., not a genuine
S = 3 vortex structure, but instead a real configuration emulating that waveform in
the discrete setting), which can nonetheless also be considered within the analytical
framework provided below; also S = 0 corresponds to the case of an in-phase
structure, that we should expect to be unstable. It should also be noted that this
framework works not only for contours of “size” N = 6 as will be considered here,
but also for ones with N = 3 (in that case, e.g., the θ j = 2π j S/N with N = 3), as
in [30]. A brief discussion of the results in that context is given below. The results
below follow closely the presentation of [31].

We can straightforwardly adapt the calculations presented above to formulate the
persistence conditions for the configuration in the presence of finite coupling as:

g j ≡ sin(θ j − θ j+1)+ sin(θ j − θ j−1) = 0 (3.94)

for all j = 1, . . . , 6. Then one can also adapt the stability conditions obtained pre-
viously based on the Jacobian M jk = �g j/�θk and its eigenvalues γ j in connection
to the eigenvalues of the full linearization λ j =

√
2γ jε (to leading order). In the

present setting, the Jacobian matrix is given by the expression of (3.35), where the
factor a ≡ cos(θ j+1 − θ j ) = cos(πS/3) appears in all the elements of the matrix
(multiplied by 2 for the diagonal elements and by−1 for the off-diagonal ones). As
a result, the eigenvalue problem for the γ ’s is equivalent to

a(2xn − xn+1 − xn−1) = γ xn, (3.95)

which can be solved by discrete Fourier transform (i.e., using for the eigenvector
xn ∼ exp(iπ jn/3)), yielding γ j = 4a sin2(π j/6) and hence, finally,

λ j = ±
√

8ε cos

(
πS

3

)
sin2

(
π j

6

)
. (3.96)

More specifically, in the case of S = 1 this predicts that the fundamental vortex
solution will be unstable due to two double real eigenvalue pairs with λ = ±√ε and
λ = ±√3ε and a single real eigenvalue pair of λ = ±2

√
ε (one of the six eigenval-

ues of the Jacobian is zero due to the phase invariance of the equation), while on the
other hand, the S = 2 configuration will be stable because its eigenvalues will be
those of S = 1 multiplied by the complex unity (and hence will be all imaginary).
It is interesting to note in passing that for S = 0 and 3 the above theoretical predic-
tion encompasses the instability and stability, respectively, of a hexagonal discrete
soliton with in-phase and out-of-phase nearest-neighbor excitations.

Note that these results can be straightforwardly extended to the three-site contour
of the hexagonal lattice, in which case N = 3, and therefore the corresponding



3.3 Multipulses and Discrete Vortices 97

expression will become

λ j = ±
√

8ε cos

(
2πS

3

)
sin2

(
π j

3

)
. (3.97)

It is also interesting to point out that the results would not change to this leading
order for a six-site contour of a honeycomb lattice, since the (absent in that case)
inert central site of the hexagonal contour is not accounted for in the above leading
order calculation. Finally, it should be pointed out that the stability conclusions ob-
tained above should be expected to be reversed for ε < 0 (the defocusing case that
we will examine in more detail in Chap. 5). In particular, the in-phase solution will
be stable, while the out-of-phase hexapole will be unstable, and similarly the charge
S = 1 vortex will be the stable one, while the S = 2 vortex will be unstable.

We test these predictions in a prototypical case, namely for the S = 1 and 2
vortices in the six-site hexagonal lattice contour in Fig. 3.15. The four left panels of
the figure represent a typical example of an S = 1 vortex (for ε = 0.025, close to the
AC limit). The second row illustrates the eigenvalues of the associated linearization
of Eq. (3.93) around the vortex solution, revealing the presence of five unstable
eigenmodes (with non-zero real parts), in agreement with the theoretical prediction.
Interestingly, the double eigenvalues of the above theoretical prediction split into
complex quartets (a similar feature was observed in the case of S = 1 vortices on
eight-site square contours earlier in this chapter). Note the quality of the comparison
of the theoretical prediction of the modes’ growth rates with respect to the corre-
sponding numerical results for small ε. The right four panels of Fig. 3.15 represent
the case of S = 2 which, again in accordance with our theoretical prediction, is
indeed found to be linearly stable for small coupling (no eigenvalues with non-zero
real part). While in that case the double eigenvalues split, they still follow fairly
accurately the trends of the relevant theoretical predictions. These results illustrate
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that the techniques presented in this chapter are by no means restricted to square
lattices, but rather can be directly adapted to address more general lattices, as well
as potentially DNLS equations on graphs with different types of connectivities.
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Chapter 4
The Three-Dimensional Case

We now turn to the case of the fully three-dimensional dynamical lattices of the
DNLS type, described by the model of the form

i u̇n + ε�2un + |un|2un = 0, n ∈ Z
3, t ∈ R+, un ∈ C, (4.1)

where, now, �2un is the discrete three-dimensional Laplacian

�2un = un+e1 + un−e1 + un+e2 + un−e2 + un+e3 + un−e3 − 6un n ∈ Z
3,

with {e1, e2, e3} being standard unit vectors in Z
3. As usual, this is a Hamiltonian

infinite dimensional (in the infinite lattice) dynamical system preserving the Hamil-
tonian function

H = ε
(
‖un+e1 − un‖2

l2(Z3) + ‖un+e2 − un‖2
l2(Z3) + ‖un+e3 − un‖2

l2(Z3)

)
(4.2)

−1

2
‖un‖4

l4(Z3),

due to the time translation invariance. On the other hand, the l2-norm is also, as
usual, conserved by this dynamical model P(t) = ‖un(t)‖2

l2 (Z3) = P(0).
From the point of view of physical applications, the three-dimensional DNLS re-

mains relevant to understanding the superfluid dynamics of BECs in three-
dimensional optical lattices, which have been realized in a variety of experiments
[1–3] (although it cannot capture genuinely quantum phenomena within these lat-
tices which require a Bose–Hubbard-type model [4]). On the other hand, there exists
an additional possibility for the physical realization of such a system, offered by a
three-dimensional crystal built of microresonators [5].

Naturally, in this three-dimensional context, it is straightforward to “embed”
lower dimensional structures [7, 21]. A series of such examples is shown in Fig. 4.1.
In particular the top left panel shows a fundamental soliton solution; for this solu-
tion, as we saw in Fig. 3.1, we expect it to be stable for ε < �, while for ε > �,
as the continuum limit is approached, the solution becomes destabilized. In addition
to that solution, there exist multipulse solutions such as the dipole and quadrupole

P.G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation, STMP 232, 99
99–116, DOI 10.1007/978-3-540-89199-4 4, c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 4.1 The top row shows a typical case-example of the fundamental (single-site) solution (left
panel), a dipole solution consisting of two excited sites (middle panel), and a quadrupole solution
of four excited sites (right panel). The second row shows the real part (left panel) and the imaginary
part (right panel) of a discrete vortex with S = 1. The third row shows the real (left) and imaginary
(right) panels of a vortex with S = 3. In all the cases shown here from [21] and [7], the darker
surfaces indicate a large positive value of the contour, while the lighter ones a large negative value
thereof, illustrating the excited sites of the configuration

(top middle and top right panels in Fig. 4.1). These solutions are principally two-
dimensional along the relevant embedded plane and as a result the corresponding
Lyapunov–Schmidt equations, and linearization eigenvalues remain to leading order
the same as in the corresponding discussions of Chaps. 2 and 3, respectively. The
same, in fact, holds true for the vortices of topological charge S = 1 (second
row) and even of topological charge S = 3 (third row) which can both be stable
for sufficiently weak coupling, as in the corresponding two-dimensional case of
Chap. 3.

However, in addition to these lower dimensional structures, it is possible to con-
struct genuinely three-dimensional structures with no-direct analog in lower dimen-
sional settings. It is to the general theory of these structures that we now turn, subse-
quently followed by corresponding direct calculations and numerical comparisons
for some of the most fundamental among these structures, namely ones lying on
a cube, on an eight-site double cross, or on a six-site, diamond-like structure. Our
exposition will follow closely the detailed analysis of [8].

4.1 General Theory

As before, the DNLS can be written as a dynamical system of the form du/dt =
J∇H [u], where the operators (J,∇) are block-diagonal, being given at each node by
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Jn =
[

0 1

−1 0

]
, ∇n =

[
�Re(un )

�Im(un )

]
.

Our aim in the present chapter is to seek stationary (i.e., standing wave) solutions
to this problem of the form

un(t) = φnei(1−6ε)t . (4.3)

Then, the φn satisfies the corresponding steady-state equation of the form

(1− |φn|2)φn = ε�φn, � = �2 + 6, n ∈ Z
3. (4.4)

Once the stationary state φn has been obtained, it will be of interest to us to
identify its linear stability. This will be done by means of the linearization

un(t) = ei(1−6ε)t
(
φn + aneλt + b̄neλ̄t

)
, (4.5)

where λ is the eigenvalue parameter and the sequence {(an, bn)} solves the linear
eigenvalue problem for the difference operators

(
1− 2|φn|2

)
an − φ2

nbn − ε�an = iλan,

−φ̄2
nan +

(
1− 2|φn|2

)
bn − ε�bn = −iλbn. (4.6)

As in the previous chapters, the existence of eigenvalues λ, such that Re(λ) > 0
indicates the exponential instability of the corresponding waveform.

As in Chaps. 2 and 3, our starting point for the exploration of the existence and
stability problems will be the AC limit of ε = 0. Considering a bounded set of
nodes S, which are excited on the lattice and denoting its complement by S⊥, given
our selection of frequency � = 1 (again, without loss of generality), we have the
following solution at the AC limit

φ(0)
n =

{
eiθn , n ∈ S,

0, n ∈ S⊥. (4.7)

We consider the nonlinear vector field (whose zeros are the solutions of the sta-
tionary problem) in the form

Fn(φ, ε) =
[(

1− |φn|2
)
φn − ε�φn

(
1− |φn|2

)
φ̄n − ε�φ̄n

]
. (4.8)

The Jacobian DφF(φ, ε) of the nonlinear vector field F(φ, ε) at the solution φ for
any ε coincides with the linearized energy operator H, which defines the quadratic
form for the Lyapunov function �[u] = H [u]+ (1− 6ε)Q[u] in the form
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�[u] = �[φ]+ 1

2
(ψ,Hψ)+ O(‖ψ‖3),

where Reun = φn + an, Imun = bn, and the two-block of ψ is defined at the node
n as

ψn =
[

an

bn

]
.

The matrix operatorH on ψ is not block-diagonal due to the presence of the shift
operator �. We can still use a formal notation Hn for the “two-block” of H at the
node n in the form

Hn =
(

1− 2|φn|2 −φ2
n

−φ̄2
n 1− 2|φn|2

)
(4.9)

−ε (s+e1 + s−e1 + s+e2 + s−e2 + s+e3 + s−e3

)
(

1 0

0 1

)
,

where se j un = un+e j for j = 1, 2, 3. In this notation, the linear eigenvalue problem
can be rewritten in the form

σHψ = iλψ, (4.10)

where the corresponding two-block of σ is a diagonal matrix of (1,−1) at each
node.

If we now denote the relevant solution at the AC limit by φ(0) = φ(0)(θ ), then we
have that F(φ(0), 0) = 0 is satisfied and H(0) = DφF(φ(0), 0) is block-diagonal with

the two-block at the node n ∈ Z
3 given by

(H(0))n =
[

1 0

0 1

]
, n ∈ S⊥, (H(0))n =

[
−1 −e2iθn

−e−2iθn −1

]
, n ∈ S.

It is clear in this case, by means of explicit calculation, that H(0)en = 0 and
H(0)ên = −2ên, where the two-blocks of eigenvectors en and ên at the node k are
given by

(en)k = i

[
eiθn

−e−iθn

]
δk,n, (ên)k =

[
eiθn

e−iθn

]
δk,n

with δk,n being a standard Kronecker symbol. Therefore, Ker(H(0)) = Span({en}n∈S).
If we now denote by P : X �→ Ker(H(0)) be the orthogonal projection operator to
the N-dimensional kernel of H(0), then P is expressed by
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(Pf)n = 1

2i

(
e−iθn (f)n − eiθn (f̄)n

)
. n ∈ S. (4.11)

In this case, the decomposition of φ can be given as

φ = φ(0)(θ)+
∑

n∈S

αnen + ϕ, (4.12)

where ϕ ∈ Range(H(0)) and αn ∈ R for each n ∈ S. We note that

∀θ0 ∈ T : φ(0) (θ0)+
∑

n∈S

αnen = φ(0) (θ0 + α)+ O
(‖α‖2

Rn

)
. (4.13)

Since the values of θ in φ(0)(θ ) have not been defined yet, we can set αn = 0,
n ∈ S without loss of generality. The splitting equations in the Lyapunov–Schmidt
reduction algorithm are

PF(φ(0)(θ )+ ϕ, ε) = 0, (I − P)F(φ(0)(θ )+ ϕ, ε) = 0.

We note that (I − P)H(I − P) : Range(H(0)) �→ Range(H(0)) is analytic in
ε ∈ O(0) and invertible at ε = 0, while F(φ, ε) is analytic in ε ∈ O(0). By the
implicit function theorem for analytic vector fields, there exists a unique solution ϕ
analytic in ε ∈ O(0) and dependent on θ , such that ϕ ≡ ϕ(θ , ε) and ‖ϕ‖ = O(ε) as
ε→ 0. As a result, there exists the nonlinear vector field g, such that the Lyapunov–
Schmidt bifurcation equations are

g(θ, ε) = PF(φ(0)(θ)+ ϕ(θ, ε), ε) = 0. (4.14)

By the construction, the function g(θ, ε) is analytic in ε ∈ O(0) and g(θ, 0) = 0
for any θ . Therefore, g(θ, ε) can be represented for ε ∈ O(0) by the Taylor series

g(θ, ε) =
∞∑

k=1

εkg(k)(θ). (4.15)

In this case, the presence of the U(1) invariance leads to

∀α0 ∈ R : g(θ + α0p0, ε) = g(θ, ε), (4.16)

where p0 = (1, 1, ...., 1)T ∈ R
N . The Lyapunov–Schmidt decomposition can then

be summarized as follows.
The configuration φ(0)(θ) can be continued to the domain ε ∈ O(0) if and only if

there exists a root θ∗ of the vector field g(θ, ε). Moreover, if the root θ∗ is analytic in
ε ∈ O(0) and θ∗ = θ0 +O(ε), the solution φ of the difference equation is analytic
in ε ∈ O(0), such that
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φ = φ(0)(θ∗)+ ϕ(θ∗, ε) = φ(0)(θ0)+
∞∑

k=1

εkφ(k)(θ0). (4.17)

This suggests the following algorithm for testing the persistence of a configu-
ration at different orders in ε. We assume that the order κ is the leading order for
which g(κ)(θ) 
= 0 and the corresponding Jacobian is denoted by M(k) = Dθ g(k)(θ0)
for k ≥ κ . Then,

1. If Ker(M(κ)) = Span(p0) ⊂ R
N , then the configuration (4.7) is uniquely contin-

ued in ε ∈ O(0) modulo the gauge transformation (4.16).
2. Let Ker(M(κ)) = Span(p0,p1, ...,pdκ ) ⊂ R

N with 1 ≤ dκ ≤ N − 1 and P (κ) :
R

N �→ Ker(M(κ)) be the projection matrix. Then,

a) If g(κ+1)(θ0) /∈ Range(M(κ)), the configuration (4.7) does not persist for any
ε 
= 0.

b) If g(κ+1)(θ0) ∈ Range(M(κ)), the configuration (4.7) is continued to the next
order. Replace

M(κ) �→ P (κ)M(κ+1) P (κ),

P (κ) �→ P (κ+1) : R
N �→ Ker(P (κ)M(κ+1) P (κ)),

θ0 �→ θ0 − ε
(
M(κ)

)−1
g(κ+1)(θ0),

g(k+1) �→ g(k+2)

and then repeat the above two steps.

This algorithm allows us to determine (if it stops in a finite number of iterations),
whether a configuration continues in ε or whether it only exists at the very special
AC limit. Hereafter we will assume that the algorithm converges to an existing so-
lution after a finite number of iterations, and we will focus on the stability of the
resulting structure.

First, we consider the eigenvalue problem of the operator H. In particular, we
use the Taylor series expansion

H = H(0) +
∞∑

k=1

εkH(k) (4.18)

and focus on the truncated eigenvalue problem for the spectrum of H:

[
H(0) + εH(1) + · · · + εk−1H(k−1) + εkH(k) + O(εk+1)

]
ψ = μψ,

where μ is eigenvalue and ψ is the corresponding eigenvector.
We now assume that the above persistence algorithm produces multidimen-

sional kernels of matrices M(κ), M(κ+1), . . . , M(k−1), such that dim Ker M(k) <

dim KerM(k−1) for some κ ≤ k ≤ K , where κ and K are the starting and termina-
tion orders of the algorithm. The kernel of M (K ) is one-dimensional. We also let α
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be an element of Ker(M(κ)) ∩ Ker(M(κ+1)) ∩ . . . ∩ Ker(M(k−1)) ⊂ R
N , such that

α /∈ Ker(M(k)) for some κ ≤ k ≤ K . Then, α has (dk−1 + 1) arbitrary parameters,
where dκ−1 ≤ N − 1. By using the projection operator P in (4.11) and the relation
(4.13), we obtain that

α = P
(
∑

n∈S

αnen

)
,

(
∑

n∈S

αnen

)
= Dθφ

(0) (θ0)α,

where Dθφ
(0)(θ0) is the Jacobian matrix of the infinite-dimensional vector φ(0)(θ )

with respect to the N-dimensional vector θ . It is clear that

H(0)ψ (0) = 0, where ψ (0) =
∑

n∈S

αnen = Dθφ
(0)(θ0)α.

Furthermore, the partial (k − 1)th sum of the power series (4.17) yields the zero
of the nonlinear vector field (4.8) up to the order O(εk) and has (dk−1 + 1) arbitrary
parameters if θ0 is shifted in the direction of the vector α. The linear inhomogeneous
system

H(0)ψ (m) +H(1)ψ (m−1) + · · · +H(m)ψ (0) = 0

then has a particular solution in the form ψ (m) = Dθφ
(m)(θ0)α for m = 1, 2, ...,

k − 1. By extending the regular perturbation series for isolated zero eigenvalues
of H(0),

ψ = ψ (0) + εψ (1) + · · · + εkψ (k) +O
(
εk+1) , μ = μkε

k + O
(
εk+1) , (4.19)

we obtain the linear inhomogeneous equation

H(0)ψ (k) +H(1)ψ (k−1) + · · · +H(k)ψ (0) = μkψ
(0).

The projection operator P may now be applied recalling the definition (4.14);
this yields for the left-hand side of the linear equation

P
[
H(1) Dθφ

(k−1)(θ0)+ · · · +H(k) Dθφ
(0)(θ0)

]
α = Dθ g(k)(θ0)α =M(k)α,

where we have used that Pψ (0) = α. Therefore, μk is an eigenvalue of the Jacobian
matrix M(k) and α is the corresponding eigenvector. The equivalence between non-
zero small eigenvalues of H and non-zero eigenvalues of M can be summarized as
follows.

Let us assume that the above persistence algorithm converges at the K th order
and the solution φ persists for ε 
= 0. Then,

λ
=0(H) = λ
=0
(
P (m−1)M(m) P (m−1)) εm + O

(
εm+1) , m = κ, κ + 1, ..., K ,

where λ
=0(A) is a non-zero eigenvalue of operator A.
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The next step is then to consider eigenvalues of the spectral problem (3.57) trun-
cated at the kth-order approximation

[
H(0) + εH(1) + · · · + εk−1H(k−1) + εkH(k) + O

(
εk+1)]ψ = iλσψ .

Using the above obtained relations ên = −iσen and H(0)ên = −2ên for all n ∈ S,
it can be seen that the linear inhomogeneous equation

H(0)ϕ(0) = 2iσDθφ
(0) (θ0)α

has a solution

ϕ(0) =
∑

n∈S

αn ên = �(0) (θ0)α,

where �(0)(θ0) is the matrix extension of φ(0)(θ0), which consists of vector columns
ên, n ∈ S. Similarly, there exists a special solution of the inhomogeneous problem

H(0)ϕ(m) +H(1)ϕ(m−1) + · · · +H(m)ϕ(0) = 2iσDθφ
(m)(θ0)α, m = 1, 2, ..., k ′,

in the form ϕ(m) = �(m)(θ0)α, where k ′ = (k − 1)/2 if k is odd and k ′ = k/2− 1 if
k is even. By extending the regular perturbation series for isolated zero eigenvalue
of σH(0),

ψ = ψ (0) + εψ (1) + · · · + εk−1ψ (k−1) (4.20)

+1

2
λ
(
ϕ(0) + εϕ(1) + · + εk′ϕ(k′)

)
+ εkψ (k) + O

(
εk+1) ,

where ψ (m) = Dθφ
(m)(θ0)α for m = 0, 1, ..., k − 1, ϕ(m) = �(m)(θ0)α for m =

0, 1, .., k ′, and λ = εk/2λk/2+O(εk/2+1), we obtain a linear inhomogeneous problem
for ψ (k) at the order O(εk). When k is odd, the linear problem takes the form

H(0)ψ (k) +H(1)ψ (k−1) + · · · +H(k)ψ (0) = i

2
λ2

k/2σϕ
(0). (4.21)

On the other hand, when k is even, the linear problem reads

H(0)ψ (k) +H(1)ψ (k−1) + · · · +H(k)ψ (0)

+1

2
λk/2

(
H(1)ϕ(k′) + · · · +H(k′+1)ϕ(0)

)
= i

2
λ2

k/2σϕ
(0). (4.22)

We can then connect the small non-zero eigenvalues of the full spectral problem
of the operator σH and the reduced one, as follows.

Assume that we can identify a solution (at the K th order) φ persisting for
ε 
= 0. Let operator H have a small eigenvalue μ of multiplicity d , such that
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μ = εkμk +O(εk+1). Then, the eigenvalue problem (3.57) admits (2d) small eigen-
values λ, such that λ = εk/2λk/2 + O(εk/2+1), where non-zero values λk/2 are found
from the quadratic eigenvalue problems

odd k: M(k)α = 1

2
λ2

k/2α, (4.23)

even k: M(k)α + 1

2
λk/2L(k)α = 1

2
λ2

k/2α, (4.24)

where L(k) = P
[
H(1)�(k′)(θ0)+ · · · +H(k′+1)�(0)(θ0)

]
.

Based on the above, in order to identify the eigenvalues of the linearization
around a solution φ, we first compute M(k) = Dθ g(k)(θ0) for κ ≤ k ≤ K . For each
order k, where eigenvalues of M(k) are non-zero, we compute matrices L(k). We
then identify the roots λk/2 of the determinant equation for the quadratic eigenvalue
problems (4.23) and (4.24).

We now turn to specific examples where we can showcase this approach.

4.2 Discrete Solitons and Vortices

The three main types of waveforms that will be considered in this section are the
cube, the diamond and the double cross, an example of each of which can be found
in Fig. 4.2. We will focus on the fundamental (and more complex) vortex waveforms
on these contours, although naturally solitonic configurations with phases of 0 and π
can also be excited in these (see a relevant brief discussion at the end of the chapter).

Perhaps the most fundamental example that can be considered as a genuinely
three-dimensional building block is a cube consisting of the sites of two adjacent
planes: S = S0 ⊕ S1, where

Sl = {(0, 0, l), (1, 0, l), (1, 1, l), (0, 1, l)}, l = 0, 1, (4.25)

such that N = dim(S) = 8; see top left panel of Fig. 4.2 We will enumerate the
relevant angles of excitation at the AC limit as θl, j , with l = 0, 1 and j = 1, 2, 3, 4
for the eight excited sites of the cube configuration and we will focus on vortex
solutions (although, as indicated above, also octupole solutions are possible, among
others, in this contour). The bifurcation equations are then straightforward to ob-
tain as

g(1)
l, j = sin(θl, j+1−θl, j )+sin(θl, j−1−θl, j )+sin(θl+1, j−θl, j ), l = 0, 1, j = 1, 2, 3, 4,

(4.26)
where θ2, j = θ0, j . Roots of g(1)(θ ) occur for vortex configurations with

θ0, j = π( j − 1)

2
, θ1, j = θ0 + s0

π( j − 1)

2
, j = 1, 2, 3, 4, (4.27)
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Fig. 4.2 Prototypical examples of the stable three-dimensional configurations. The top left shows
a stable eight-site vortex cube, the top right a stable six-site diamond, while the bottom shows a
stable eight-site double vortex cross. See the text for the relevant distributions. Reprinted from [8]
with permission

where θ0 = {0, π/2, π, 3π/2} and s0 = {+1,−1}. Two out of the eight possible
vortex configurations of this “vortex cube” are redundant for s0 = −1 and θ0 = π
or 3π/2, as they can be obtained from the cases with θ0 = 0 and π/2, respectively,
by means of rotation of the whole structure through multiplication by i .

Detailed application of the above algorithms for persistence and stability [8]
illustrates that the only configurations that persist are the ones with θ0 = {0, π}
and s0 = {1,−1} (for which the algorithm converges at order K = 6). On the
other hand, solutions with θ0 = {π/2, 3π/2} and s0 = {1,−1} terminate at the
k = 1 order, and therefore cannot be continued to finite values of ε ∈ O(0). The
results for the persistence, the eigenvalues of H, as well as the eigenvalues of the
full linear stability problem (i.e., the eigenvalues of iσH) for this structure are given
in Table 4.1.

In summarizing the results of Table 4.1, we infer that the only vortex cube con-
figuration that may be stable is the one with θ0 = π and s0 = 1, while the other two
irreducible configurations, namely the ones with θ0 = 0 and s0 = ±1 have multiple
real eigenvalues in each case. We now examine how these analytical predictions
compare with full numerical computations.

Figure 4.3 presents the simple cube configuration with S1 = {0, π/2, π, 3π/2}.
This configuration should be unstable due to an eigenvalueλ ≈ 2ε1/2, of multiplicity
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Table 4.1 Vortex Cube Configurations: the first column shows the configuration, the next its per-
sistence (Per), the following ones the eigenvalues of H and then those of the full stability problem
(i.e., of iσH), and the last column determines whether the structure may be stable (St)

S1 Per O(ε) H O(ε2) H O(ε6) H O(ε1/2) iσH O(ε) iσH O(ε3) iσH St

{0, π
2
, π,

3π

2
} Y {2× 4} {2× 2} {−16} {±2× 4} {±2i × 2} {±4i

√
2} N

{0, 3π

2
, π,

π

2
} Y {−2× 2, {2× 2} {−16} {±2× 2, {±2× 2} {±4i

√
2} N

2× 2} ±2i × 2}
{π

2
, π,

3π

2
, 0} N

{π
2
, 0,

3π

2
, π} N

{π, 3π

2
, 0,

π

2
} Y {−2× 4} {2× 2} {−16} {±2i × 4} {±2i × 2} {±4i

√
2} Y

{3π
2
, 0,

π

2
, π} N

four. In the numerical computations, the pair of multiple real eigenvalue splits into
two identical pairs of real eigenvalues and a quartet of complex eigenvalues. Never-
theless, all four eigenvalues in the right half-plane have the same real part denoted by
the very thick solid line in the left panel of Fig. 4.3. The imaginary part of the quartet
of complex eigenvalues is denoted by dash–dotted line in the right panel of the
figure. While the real part of all four eigenvalues is of order O(ε1/2), the imaginary
part of complex eigenvalues arises at order O(ε) with a numerical approximation
λ ≈ 2ε1/2 ± 2iε. Additionally, there exists a pair of double imaginary eigenvalues
at O(ε) and a pair of simple imaginary eigenvalues at O(ε3). The latter pairs are
shown on the right panel of Fig. 4.3 by thin lines, since the pair of double imaginary
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Fig. 4.3 The real (left) and imaginary (right) parts of small eigenvalues of the linearized problem
of Eq. (4.6) associated with the vortex cube configuration with S1 = {0, π/2, π, 3π/2} versus ε.
Numerically computed eigenvalues are denoted by solid lines, while their counterparts from sym-
bolic computations are plotted by dashed lines. Multiple real or imaginary eigenvalues are denoted
by thick solid lines and their corresponding multiplicity is shown beside the relevant line, while
complex eigenvalues are denoted by thick dash–dotted lines. Reprinted from [8] with permission
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Fig. 4.4 Same as in Fig. 4.3, but for the simple cube vortex configuration with S1 = {0, 3π/2,
π, π/2}. Reprinted from [8] with permission

eigenvalues splits into two pairs of simple imaginary eigenvalues. It is clear from
these comparisons that the leading order predictions of Table 4.1 represent ad-
equately the pattern of unstable and neutrally stable eigenvalues of the relevant
configuration.

Figure 4.4 describes the vortex cube configuration with S1 = {0, 3π/2, π, π/2}.
This is also immediately unstable, due to a double pair of real eigenvalues at the
order O(ε1/2) and another double pair of real eigenvalues of O(ε). Both pairs split
for small values of ε but remain simple pairs of real eigenvalues for sufficiently small
values of ε. Then, a pair of the former and one of the latter collide for ε ≈ 0.175,
leading to a quartet of complex eigenvalues. Another double pair of imaginary
eigenvalues exists at O(ε1/2) and it splits into simple pairs of imaginary eigenvalues.
When these eigenvalues meet the continuous spectrum located at ±i [1, 1+ 6ε], the
pairs of imaginary eigenvalues generate additional quartets of complex eigenvalues
for ε > 0.113 and ε > 0.125. Finally, one more pair of imaginary eigenvalues exists
at the order O(ε3) and it remains small for 0 < ε < 0.2.

Fig. 4.5 Same as in Fig. 4.3,
but for the stable simple cube
vortex configuration with
S1 = {π, 3π/2, 0, π/2}.
Reprinted from [8] with
permission
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Lastly, as regards possible vortex cube configurations, Fig. 4.5 describes the spec-
trally stable (at least for small ε) case with S1 = {π, 3π/2, 0, π/2}. The quadruple
pair of imaginary eigenvalues at O(ε1/2) splits for small ε into a double pair and two
simple pairs of imaginary eigenvalues. All these pairs generate quartets of complex
eigenvalues upon collision with the continuous spectrum for ε > 0.1, ε > 0.125,
and ε > 0.174. Therefore, the vortex configuration becomes unstable for sufficiently
large ε. A double pair of imaginary eigenvalues at O(ε) splits for small ε into simple
pairs of imaginary eigenvalues. The additional pair of imaginary eigenvalues at the
order O(ε3) remains small for 0 < ε < 0.2.

We now turn to the vortex diamond configurations (see top right panel of
Fig. 4.2). One can straightforwardly again apply the results of our reductions to
obtain the relevant bifurcation conditions and eigenvalues, which are summarized
in Table 4.2, for the six irreducible configurations of this type that exist when there
is a quadrupole structure in the central plane, surrounded by two symmetric central
off-peak nodes. Describing the configuration more precisely in mathematical terms,
we can write S = S−1 ⊕ S0 ⊕ S1, where

S0 = {(−1, 0, 0), (0,−1, 0), (1, 0, 0), (0, 1, 0)}, S±1 = {(0, 0,±1)}, (4.28)

such that N = dim(S) = 6. The vortex diamonds can be expressed by

θ0, j = π( j − 1), j = 1, 2, 3, 4, θ±1,0 = θ±0 , (4.29)

where θ±0 = {0, π/2, π, 3π/2}. Six configurations with θ−0 > θ+0 are redundant
as they can be obtained from the corresponding configurations with θ−0 < θ+0 by
reflection: θ±0 �→ θ∓0 . Three other configurations with θ−0 = θ+0 = {π, 3π/2} and
θ−0 = π , θ+0 = 3π/2 can be obtained from the configurations θ−0 = θ+0 = {0, π/2}
and θ−0 = 0, θ+0 = π/2, respectively by multiplication of un by −1 and rotation of
the whole structure by 180◦. One more configuration with θ−0 = 0, θ+0 = 3π/2 can
be obtained from the configuration with θ−0 = 0, θ+0 = π/2 by complex conjugation.

Table 4.2 Same as Table 4.1 but for the vortex diamond configurations

S−1 S1 Per O(ε2) H O(ε4) H O(ε) iσH O(ε2) iσH St

0 0 Y {−12,−6, 2×2, 4} {±2×2,±2
√

2, N
±2i
√

3,±2i
√

6}
0

π

2
N

0 π Y {−2×2,−5 ±√41} 12 {±2i×2,±
√
−10 + 2

√
41, ±2

√
6 N

±i
√

10 + 2
√

41}
π

2

π

2
N

π

2
π N

π

2

3π

2
Y {−8,−2×3} −12 {±2i×3,±4i} ±2i

√
6 Y
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Therefore, we only consider the six irreducible vortex configurations. As can be
seen from the table [8], only three configurations persist for ε 
= 0, namely the ones
with (θ−0 , θ

+
0 ) = (0, 0), (0, π), and (π/2, 3π/2). Furthermore, among these only one

configuration with θ−0 = π/2 and θ+0 = 3π/2 is spectrally stable. Note that in this
case the bifurcation conditions are

g(1)
0, j = 2 sin(θ0, j − θ0, j+1)+ 2 sin(θ0, j − θ0, j−1)+ sin(θ0, j − θ0, j+2) (4.30)

+2 sin(θ0, j − θ1,0)+ 2 sin(θ0, j − θ−1,0)

for each of the four sites of the plane, while they are

g±1, j = sin(θ±1, j − θ∓1, j )+ 2
∑

j

sin(θ±1, j − θ0, j ). (4.31)

We now compare the analytical results with numerical computations for these
configurations.

The case of S−1 = 0 and S1 = 0 is shown in Fig. 4.6. The configuration is un-
stable due to a simple and a double pair of real eigenvalues, both of O(ε), captured
very accurately by our theoretical approximation. In addition, a complex quartet
emerges because of the collision of a pair of imaginary eigenvalues with the con-
tinuous spectrum for ε > 0.175. The second diamond configuration with S−1 = 0
and S1 = π is shown in Fig. 4.7; the latter is found to be unstable due to two simple
pairs of real eigenvalues, one at the order O(ε) and one at the order O(ε2). The
simple pair of imaginary eigenvalues becomes a quartet of complex eigenvalues
upon collision with the continuous spectrum for ε > 0.179. The double pair of
imaginary eigenvalues remains double for 0 < ε < 0.2. Lastly, the third diamond
vortex configuration with S−1 = π/2 and S1 = 3π/2, shown in Fig. 4.8, is spectrally
stable for 0 < ε < 0.2. We can again see that the theoretical prediction accurately
reflects the simple pair of imaginary eigenvalues at the order O(ε), the triple pair of
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Fig. 4.6 The real and imaginary parts of the pertinent eigenvalues of the diamond configuration
with S−1 = 0 and S1 = 0 as a function of ε. Reprinted from [8] with permission
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Fig. 4.7 Same as in Fig. 4.6, but for the diamond configuration with S−1 = 0 and S1 = π .
Reprinted from [8] with permission

imaginary eigenvalues (splitting into a double pair and a simple one) at the order
O(ε), and the simple pair of imaginary eigenvalues at the order O(ε2).

Finally, we turn to the case of the double vortex cross (see the bottom panel of
Fig. 4.2). This is a configuration that consists of two symmetric planes of aligned
vortex crosses separated by an empty plane. More precisely, we set S = S−1 ⊕ S1,
where

Sl = {(−1, 0, l), (0,−1, l), (1, 0, l), (0, 1, l)}, l = −1, 1, (4.32)

such that N = dim(S) = 8. By using the same convention as in (i), the double cross
vortex configurations are expressed by

θ−1, j = π( j − 1)

2
, θ1, j = θ0 + s0

π( j − 1)

2
, j = 1, 2, 3, 4, (4.33)

where θ0 = {0, π/2, π, 3π/2} and s0 = {+1,−1}. In this case as well, there are
only six irreducible representations and among them, three persist, while only one
(namely, the one with θ0 = π and s0 = 1) is spectrally stable. The analysis can

Fig. 4.8 Same as in Fig. 4.6,
but for the stable diamond
vortex configuration with
S−1 = π/2 and S1 = 3π/2.
Reprinted from [8] with
permission
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Table 4.3 Same as Table 4.1 but for the double cross vortex configurations

S1 Per O(ε2) H O(ε4) H O(ε) iσH O(ε2) iσH St

{0, π
2
, π,

3π

2
} Y {−2×2, 2×2} {−8, 28×2} {±2×2,±2i×2} {±4i,±2

√
14×2} N

{0, 3π

2
, π,

π

2
} Y {−4,−2×3, 2} {−8, 28} {±2,±2i×3,±2i

√
2} {±4i,±2

√
14} N

{π
2
, π,

3π

2
, 0} N

{π
2
, 0,

3π

2
, π} N

{π, 3π

2
, 0,

π

2
} Y {−4×2,−2×4} {−8} {±2i×4,±2i

√
2×2} {±4i} Y

{3π
2
, 0,

π

2
, π} N

proceed in a similar way as in the cases outlined above and its results are summa-
rized in Table 4.3.

The comparison of these findings with full numerical computations yields the
following. The double vortex cross with S1 = {0, π/2, π, 3π/2} is shown in
Fig. 4.9. The results are found to be consistent with the eigenvalue approxima-
tions. Note that both double pairs of real and imaginary eigenvalues at O(ε) split
for small ε into simple pairs of real and imaginary eigenvalues, while the double
pair of real eigenvalues at the order O(ε2) remains double for small ε. The case of
S1 = {0, 3π/2, π, π/2} is shown in Fig. 4.10. All the pairs are numerically found to
be simple in this case, including the triple pair of imaginary eigenvalues at the order
O(ε) which splits for small ε into three simple imaginary pairs. Finally, the case of
S1 = {π, 3π/2, 0, π/2} is the only spectrally stable one for ε < 0.2 and is shown
in Fig. 4.11. The double and quadruple pairs of imaginary eigenvalues at O(ε) split
for small ε into individual simple pairs of imaginary eigenvalues.

It should also be noted that in addition to the above-mentioned cases of the dis-
crete vortices, one can straightforwardly consider by means of the same methods the
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Fig. 4.9 Same as Fig. 4.3, but for the double cross vortex configuration with S1 = {0, π/2,
π, 3π/2}. Reprinted from [8] with permission
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Fig. 4.10 Same as Fig. 4.3, but for the double cross vortex configuration with S1 = {0, 3π/2,
π, π/2}. Reprinted from [8] with permission

stability of discrete solitons on similar (or other) three-dimensional contours. As a
prototypical example, we mention the discrete solitons that can be formed on a cube,
among which we consider the potentially stable octupole structure of Fig. 4.12. In
this case also the bifurcation equations will be given, as above, by

g(1)
l, j = sin(θl, j+1−θl, j )+sin(θl, j−1−θl, j )+sin(θl+1, j−θl, j ), l = 0, 1, j = 1, 2, 3, 4,

however, now the relevant angles will alternate between 0 and π . The octupole with
adjacent sites being out of phase with each other is, in fact, stable. Its leading order
eigenvalues can be found to be ±2

√
εi (a triple eigenvalue pair), ±√8εi (another

triple eigenvalue pair), and finally λ = ±√12εi , which is a single eigenvalue pair.
As before these findings tested against full numerical computations in Fig. 4.12 are
found to be in good agreement between theory and numerics. The configuration
is stable for small ε, but becomes unstable for ε > 0.051 (the largest eigenvalue
collides with the band edge of the continuous spectrum, producing an eigenvalue
quartet). Additional quartets emerge, e.g., for ε > 0.071, when the first triplet
of eigenvalue pairs collides with the band edge and the configuration becomes

Fig. 4.11 Same as Fig. 4.3,
but for the stable double cross
vortex configuration with
S1 = {π, 3π/2, 0, π/2}.
Reprinted from [8] with
permission
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Fig. 4.12 The figure shows the discrete solitary wave (octupole) with an eight-site out-of-phase
structure between nearest neighbors (left panel). This configuration is a stable one with seven
non-zero imaginary eigenvalue pairs (two triple and a single pair) quantified in the text (right
panel)

increasingly unstable thereafter. Other genuinely 3d configurations can be tackled
in a similar fashion.

Having, thus, completed our examination of fundamental structures in the focus-
ing, single component case, we now turn to the defocusing regime and highlight the
analogies and the differences between the two.
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Chapter 5
The Defocusing Case

In this chapter, we will turn to the defocusing version of the DNLS equation, setting
β = 1 in Eq. (2.1) of Chap. 2. Part of the reason for considering the latter setting
stems from recent experimental results both in the area of optical waveguide arrays
and also in the related area of optically induced lattices in photorefractive crystals.

More specifically, the work of [1] considered the anomalous diffraction regime
of AlGaAs waveguide arrays, which feature the Kerr-type cubic nonlinearity. In
that context, the formation of fundamental dark soliton discrete excitations was ob-
served. Experiments revealing the same type of structures have more recently taken
place in defocusing lithium niobate waveguide arrays, which exhibit a different type
of nonlinearity, namely a saturable, defocusing one due to the photovoltaic effect
[2]. The dark soliton is, arguably, the fundamental solution of the NLS equation of
(2.2) with the defocusing nonlinearity. In the stationary case (it can also be boosted
similarly to the bright soliton to a finite speed, but here we will be concerned with
stationary solutions) it assumes the form of a heteroclinic connection with

u(x, t) = exp(−i�t)
√

� tanh

[√
�

2
(x − x0)

]
(5.1)

for the cubic nonlinearity case. Naturally, we will seek to identify such a solution
in the discrete case in what follows. Note, by the way, that the propagation constant
here has the opposite sign in comparison to the focusing case.

However, on the other hand, the discrete case allows the potential for solutions
that cannot exist in the continuum limit. These solutions once again stem from the
AC limit in the form of localized excitations on a few sites. Perhaps the easiest way
to see this is by substituting un = exp(−i�t)vn and observing that the resulting
stationary state equation

(�− |vn|2)vn = −ε(vn+1 + vn−1) (5.2)

is identical to that of the focusing equation, upon the so-called staggering transfor-
mation vn = (−1)nwn. This very simple transformation will allow us on numerous
occasions to convert our knowledge of the focusing problem into an understanding

P.G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation, STMP 232, 117
117–141, DOI 10.1007/978-3-540-89199-4 5, c© Springer-Verlag Berlin Heidelberg 2009
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of the corresponding defocusing setting. However, note that this transformation does
not survive the continuum limit. Nevertheless, it indicates that single-site excitations
with vn =

√
�δnn0 , as well as multisite (multipulse) solutions vn =

∑
k ±
√

�δnk

can naturally arise in the vicinity of this limit. These bright solitary excitations of the
defocusing case are collectively termed gap solitons, because the alternating phase
structure at their tails, as ε 
= 0, indicates that they emanate from states with wave
number k = π , rather than k = 0, as regular bright solitons of the focusing case do.
Furthermore, the staggering transformation can be applied to the setting of the lin-
ear stability analysis, in the defocusing analog of Eqs. (2.61) and (2.62), converting
them, as well, to the focusing case. This has a very interesting implication for the gap
states. In particular, it is easy to note that if we excite the simplest multipulse state,
namely a two-site excitation, if the sites of the excitation are an odd number of sites
apart, then the staggering transformation will convert such an in-phase state of the
defocusing case into an out-of-phase (and hence linearly stable near the AC limit)
focusing state, and an out-of-phase gap state into an in-phase focusing state (hence
linearly unstable). On the other hand, if they are an even number of sites apart, then
the staggering transformation preserves the phase structure in the focusing case.
This implies that, say, nearest-neighbor in-phase solitons in the defocusing case
will be stable, while next-nearest-neighbors will not, and that out-of-phase nearest-
neighbor solitary waves will be unstable, while next-nearest-neighbor ones will be
stable. These predictions will be tested in the two-dimensional setting, in connection
with the very recent experimental work of [3].

We start our presentation of this chapter with the fundamental dark solitary wave
structures of the one-dimensional case, and then we turn to gap states and vortices
in the two-dimensional setting.

5.1 Dark Solitary Waves

The first works revealing the particularities and interesting instabilities of dark soli-
tary waves in the DNLS equation were those of [4] and [5]. Here, we will follow in
our presentation the recent work of [6].

5.1.1 Theoretical Analysis

There are two fundamental discrete dark soliton states, namely the on-site and the
inter-site dark soliton (similar to the corresponding single-pulse bright structures).
The former waveform will be at the AC limit as follows:

vn≤−1 =
√

�, (5.3)

vn=0 = 0, (5.4)

vn≥1 = −
√

�1, (5.5)
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while the latter type of dark soliton reads

vn≤0 =
√

�1, (5.6)

vn≥1 = −
√

�1. (5.7)

One can then examine the linear stability of these prototypical configurations, as
a starting point for the finite ε case. As before, this can be done through the linear
stability ansatz

un = exp(−i�t)
[
vn + δ

(
exp(λt)pn + exp(λ�t)qn

)]
. (5.8)

As before, the linear stability of the configuration will be determined by the na-
ture of the eigenvalues λ of the ensuing matrix eigenvalue problem for λ and its
corresponding eigenvector (pn, q�n)T . A configuration will be (neutrally) stable for
this Hamiltonian system if ∀λ, the real part λr of the eigenvalue (λ = λr + iλi ) is
such that λr = 0. The resulting matrix eigenvalue problem reads

iλ

(
pn

q�n

)
=
(

2|vn|2 − �− ε�2 v2
n

−(v2
n)� �− 2|vn|2 + ε�2

)(
pn

q�n

)
. (5.9)

In the case of the AC limit where the sites become uncoupled, the relevant sta-
bility matrix for all non-zero sites is identical and assumes the form

�1

(
1 1
−1 −1

)
. (5.10)

The matrix of Eq. (5.10) yields a pair of zero eigenvalues for each of these non-
zero sites. Hence, in an inter-site configuration at the AC limit, the linearization
would only result in (infinitely many) zero eigenvalues.

The only difference of an on-site configuration lies in the existence of the central
v0 = 0 site. This site produces a 2× 2 stability matrix of the form

�1

(−1 0
0 1

)
(5.11)

and, therefore, an eigenvalue pair λ = ±i�.
We now turn to the finite coupling case with ε 
= 0. We start by considering the

solution profile. The solutions will be deformed from their AC limit profile of Eqs.
(5.3), (5.4), (5.5), (5.6), and (5.7). To address this deformation, the solution can be
expanded into a power series

vn = v(0)
n + εv(1)

n + O(ε2). (5.12)
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The leading order correction can be straightforwardly computed by using the
expansion into the stationary state equation as

v(1)
n =

�2v
(0)
n

2�
(5.13)

for all excited sites. For the zeroth site of the on-site configuration, the symmetry
of the profile yields a zero correction (to all relevant orders). It is easy to see that
the correction of Eq. (5.13) only contributes to leading order to the sites with n ∈
{1,−1} for the on-site and to those with n ∈ {0, 1} for the inter-site configuration.
These corrections amount to

v
(1)
1 =

1

2
√

�
, (5.14)

v
(1)
−1 = −v(1)

1 (5.15)

for the on-site and to

v
(1)
1 =

1√
�
, (5.16)

v
(1)
0 = −v(1)

1 (5.17)

for the inter-site case.
We subsequently focus on the linear stability problem. The eigenvalues of the

latter will be of two types, namely the continuous spectrum that will emerge from
the background (and correspond to the finite coupling generalization of the zero
eigenvalues of the AC limit) and the point spectrum resulting from the vicinity of
the center of the dark soliton configuration.

The continuous spectrum corresponds to plane wave eigenfunctions of the form
{pn, qn} ∼ exp(ikn). These, in turn, result into a matrix eigenvalue problem

(
s1 �
−� −s1

)
, (5.18)

where s1 = � + 4ε sin2(k/2). This leads to a continuous eigenvalue spectrum de-
scribed by the dispersion relation

ω ≡ iλ = ±
√

s2
1 − �2, (5.19)

which is associated with the eigenvalue band iλ ∈ [−√16ε2 + 8ε�,
√

16ε2 + 8ε�].
On the other hand, the point spectrum eigenvalues will result from the central

part of the excitation. For the inter-site configuration, we consider a leading order
approximation only for the two sites (n = 0 and 1) participating in the dark soliton
(as they are the only ones modified to leading order in perturbation theory). Using
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the perturbative expansion of Eqs. (5.6) and (5.7) for the relevant part of the eigen-
value problem, we obtain the 4× 4 matrix

⎛

⎜⎜⎝

�− 2ε −ε �− 2ε 0
−ε �− 2ε 0 �− 2ε

−�+ 2ε 0 −�+ 2ε ε

0 −�+ 2ε ε −�+ 2ε

⎞

⎟⎟⎠ . (5.20)

This stability matrix leads to a pair of real eigenvalues

λ = ±
√

2ε�− 5ε2. (5.21)

As a result, the configuration will be immediately unstable, for ε 
= 0. This
prediction will be directly compared with the numerical results of the following
section.

One can use a similar argument for the on-site configuration by considering
the three central sites of the solitary structure and constructing a 6 × 6 matrix
whose eigenvalues can, in principle, be computed. However, the resulting expres-
sions are too cumbersome; hence, we study two alternative arguments that describe
very accurately the behavior of the relevant point spectrum eigenvalue originally at
λ = ±i�1, associated with the on-site dark solitary wave.

The first approach is a rigorous one and is based on the so-called Gerschgorin’s
theorem (see, e.g., [7]). Let us consider matrices A = [al j ] of order N and define the
radii rl =

∑N
j=1, j 
=l |al j | and denote the circles in the complex spectral plane Zl =

{z ∈ C : |z − all | < rl}. Then, Gerschgorin’s theorem states that the eigenvalues of
the matrix belong to these circles and, in fact, its refined version states that if m of
these circles form a connected set, S, disjoint from the remaining N−m circles, then
exactly m eigenvalues are contained in S. The above setting of the on-site solution
is an excellent testbed for the application of Gerschgorin’s theorem because the
sole eigenvalue discussed above is at ±i� in the AC limit (of zero radius for the
Gerschgorin circles), while all others are located at the origin. Hence, for small
ε � �, the (single) relevant point spectrum eigenvalue remains in the corresponding
Gerschgorin circle which can be easily computed. In fact, considering that only the
diagonal and super- and subdiagonal elements are present for a site with v0 = 0, the
Gerschgorin estimate for the relevant eigenvalue emerges immediately as

|iλ± (�− 2ε) | ≤ 2ε, (5.22)

which, in turn, necessitates that the relevant eigenvalue lies between �−4ε ≤ iλ ≤
�. This is a rigorous result based on the above theorem, which provides a linear (in
ε) bound on the growth of the relevant eigenvalue.

On the other hand, there is also an even more successful approach put forth in [5],
which, however, is to a certain degree an approximation. According to the latter, one
considers the eigenvalue equations for the eigenvectors pn and q�n . Considering the
anti-symmetry of the central site one may use the approximation of pn+1+pn−1 ≈ 0.
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Then, the eigenvalue equations (5.9) decouple and provide a relevant estimate for
this eigenvalue as

iλ = ± (�1 − 2ε) . (5.23)

This prediction will also be compared with our numerical results in the following
section. It is also worth noting here that this eigenvalue, moving toward the spectral
plane origin, will eventually collide with the (growing) band edge of the continuous
spectrum when the predictions of Eq. (5.23) and of the band edge of the continuous
spectrum coincide, which occurs for

εcr = 2
√

3− 3

6
�1 ≡ 0.07735�1. (5.24)

This collision, per the opposite Krein signature [8, 9] of the relevant eigenvalues,
will lead to a Hamiltonian–Hopf bifurcation and a quartet of eigenvalues, as was
originally observed in [5] (see also the numerical results below).

We now examine an alternative method to tackle the linear stability analysis of
these structures on the basis of a formal perturbative expansion, as proposed in [6].
In particular, we introduce the following linearization ansatz:

un = vn + δCn .

Substituting this into the equation of motion yields to O(δ)

i Ċn = −ε�2Cn + β1
(
2|vn|2Cn + v2

nC�
n

)− �1Cn . (5.25)

Decomposing Cn(t) = ηn + iξn and assuming that vn is real, Eq. (5.25) gives

(
η̇n

ξ̇n

)
=
(

0 L−(ε)
−L+(ε) 0

)(
ηn

ξn

)
= H

(
ηn

ξn

)
, (5.26)

where the operators L−(ε) and L+(ε) are defined as L−(ε) ≡ −ε�2 + v2
n − � and

L+(ε) ≡ −ε�2+ 3v2
n−�. The stability of vn is then determined by the eigenvalues

λ of H.
Since (5.26) is linear, we can eliminate one of the eigenvectors, for instance ξn ,

from which we obtain the following eigenvalue problem:

L−(ε)L+(ε)ηn = −λ2ηn = �ηn. (5.27)

As before, we expand the eigenvector ηn and the eigenvalue � as

ηn = η(0)
n + εη(1)

n +O(ε2), � = �(0) + ε�(1) +O(ε2).
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Substituting into Eq. (5.27) and identifying coefficients for consecutive powers
of ε yields

[
L−(0)L+(0)−�(0)

]
η(0)

n = 0, (5.28)
[
L−(0)L+(0)−�(0)] η(1)

n = f (5.29)

with

f = [(�2 − 2v(0)
n v

(1)
n )L+(0)+ L−(0)(�2 − 6v(0)

n v
(1)
n )+�(1)] η(0)

n . (5.30)

First, let us consider the order O(1) equation (5.28). One can do a simple anal-
ysis as above to show that there is one eigenvalue, i.e., �(0) = 0 for the inter-site
configuration and two eigenvalues �(0) = 0 and �(0) = �2 for the on-site one. The
zero eigenvalue has infinite multiplicity and is related to the continuous spectrum,
as discussed previously.

For the inter-site configuration, there is an eigenvalue bifurcating from the contin-
uous spectrum as soon as the coupling is turned on. Therefore, this zero eigenvalue is
the crucial eigenvalue for its stability. The normalized eigenvector of this eigenvalue
is η(0)

n = 1/
√

2, for n = 0, 1 and η(0)
n = 0 otherwise. For the on-site configuration,

the crucial eigenvalue for the stability is �(0) = �2
1 with the normalized eigenvector

η(0)
n = 1, for n = 0 and η(0)

n = 0 otherwise.
The dependence of the relevant eigenvalue on ε can be calculated from Eq. (5.29).

Due to the fact that the corresponding eigenvector is zero almost everywhere, we
only need to consider the site with non-zero component eigenvector, i.e., n = 0, 1
for the inter-site and n = 0 for the on-site.

It is simple to show that the solvability condition of Eq. (5.29) using, e.g., the
Fredholm alternative requires f = 0 from which one immediately obtains that
�(1) = −2� for the inter-site and �(1) = −4� for the inter-site.

Hence, the critical eigenvalue is

λ = ±
√

2�ε +O(ε2) (5.31)

for the inter-site configuration and

λ = ±i
√

�2 − 4�1ε +O(ε2) (5.32)

for the on-site one.
These two results agree with the leading order findings of our earlier analysis.

In particular, Eq. (5.31) can be immediately seen to agree with the leading order
prediction of Eq. (5.21). On the other hand, as regards Eq. (5.32), a Taylor expansion
to leading order yields λ = ±i (� − 2ε), again in agreement with the findings of
Eq. (5.23).

It is important to highlight here that at the qualitative level the staggering trans-
formation allows us to infer the stability of either on-site dark soliton or inter-site
dark soliton states, or even any kind of multiple hole (or multiple “domain walls”
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between the uniform stationary states ±1) such as the ones considered in [10]. In
particular for all the sites in the tail of the structure, either as vn → 1 or as vn →−1
or ±∞, the staggering transformation results into out of phase excitations in the
focusing regime, which per the analysis of Chap. 2 are associated with small imag-
inary eigenvalues (in this defocusing case with positive Krein signature). Then, the
key question is what happens at locations where there is a jump from ±1 to ∓1
(either through a number of zeros or directly). What the staggering transformation
illustrates (and which can be proved based on the Sturm theory arguments that we
gave for the focusing case in Chap. 2 is the following:

1. In-phase excitation separated by an odd number of sites gives rise to purely
imaginary eigenvalues.

2. In-phase excitation separated by an even number of sites gives rise to a real
eigenvalue (and, hence, instability).

3. Out-of-phase excitation separated by an odd number of sites gives rise to a real
eigenvalue (and, hence, instability).

4. Out-of-phase excitation separated by an even number of sites gives rise to purely
imaginary eigenvalues.

On the basis of the above principle, we can quantify the qualitative features of the
stability of not only any staggered state (as mentioned above), but also even of any
dark soliton state (it can be easily checked, for instance, that the above corollary of
our considerations in Chap. 2 and the staggering transformation, can immediately
explain the linear stability of the on-site dark soliton structure, while it can also
justify the instability of the corresponding inter-site structure).

A final comment should be made in passing here, regarding the very recent work
of [11]. Based on the recent interest in the excitation of more complex, potentially
multihole states [10], the work of [11] provided a systematic framework to address
the stability of such configurations. An example of this type is shown in the next
section. More specifically, the eigenvalue problem for the operator L− can be solved
(see the discussion in Chap. 2) in the form

Vnψn − ε (ψn+1 + ψn−1 − 2ψn) = γψn, Vn = V (0)
n +

∞∑

k=1

εk V (k)
n , (5.33)

where V (0)
n = (u(0)

n )2 − 1, V (1)
n = 2u(0)

n u(1)
n , V (2)

n = 2u(0)
n u(2)

n +
(
u(1)

n

)2
and so on,

due to analytic dependence of the solution un of the nonlinear stationary problem
on ε. For example, in the case of the inter-site-centered mode, the profile un , can be
expanded in a series in ε, with the leading order correction u(1)

n satisfying u(1)
0 = 1,

u(1)
1 = −1, and u(1)

n = 0 for all n ∈ Z\{0, 1}. The potential V = εV (1)+O(ε2) of the
discrete Schrödinger equation (5.33) is negative at the leading order and it traps a
unique negative eigenvalue with the symmetric eigenfunction ψn = ψ−n+1, n ∈ N.
Using the parametrization

γ = ε (2− eκ − e−κ
)

(5.34)
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and solving the eigenvalue problem for the eigenvectorψ1 = 1, ψn = Ce−κ(n−2) for
n ≥ 2, we obtain C = e−κ and eκ = 3 at the leading order of O(ε), which gives
γ = −(4/3)ε + O(ε2). Therefore, we conclude that the pair of real eigenvalues of
the stability problem is given by λ = ±√2γ = ±√8ε/3(1+ O(ε)). As we will see
in the next section this approach yields a more accurate prediction for the inter-site
dark soliton eigenvalue, than the above presented methods. Furthermore, as shown
in [11], this approach can be systematically used to give predictions for multihole
states in very good agreement with the numerical results.

We now turn to the numerical examination of the above results for the case of the
dark solitons.

5.1.2 Numerical Results

As usual, we consider the numerical solutions of interest starting from the AC limit
of ε = 0 (fixing � = 1). Figure 5.1 shows an on-site dark solitary wave (top left) and
its linear stability (bottom left), as well as an inter-site such solution (top right) and
its linear stability (bottom right), confirming the qualitative theoretical predictions
given above.
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Fig. 5.1 The top panel shows the discrete on-site dark solitary wave (left) and inter-site dark
solitary wave (right) for ε = 0.1. The bottom panels show the corresponding linear stability
eigenvalues, illustrating the weak oscillatory instability of the former (for ε > 0.076) and strong
exponential instability of the latter (due to a real eigenvalue pair). There is only a single pair of
eigenvalues at the origin, due to the phase invariance; in the continuum case there would be two
such pairs, an additional one arising from the unstable eigenmodes as translational invariance is
restored in that limit. Note also that the continuous spectrum has an upper bound. This upper
bound disappears in the continuum limit, where the continuous spectrum consists of the entire
imaginary axis
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Fig. 5.2 The figure shows stability results for the on-site dark soliton from [6]. The left panels show
the numerical dependence (circles) of the imaginary eigenvalue on ε, starting at i� (the maximal
imaginary eigenvalue) until the point of collision εcr with the upper band edge of the continuous
spectrum. The dashed line shows the theoretical predictions of Eq. (5.23). The right panel shows
the real part of the relevant eigenvalue, which is zero before – and, typically, non-zero after – the
relevant collision due to the ensuing Hamiltonian–Hopf bifurcation leading to the emergence of an
eigenvalue quartet

We now turn to a quantitative comparison of the stability results for the on-site
configurations in Fig. 5.2 and the inter-site configurations in Fig. 5.3. In the case
of the on-site configurations, the relevant imaginary eigenvalue (initially at i�, for
ε = 0) can be observed to move linearly (in a decreasing way) along the imaginary
axis as ε is increased, in accordance with the prediction by both the Gerschgorin
estimate, and also remarkably accurately (see the circles joined by the solid line in
Fig. 5.2) by the anti-symmetric approximation of (5.23). Eventually, this eigenvalue
collides with the band edge of the continuous spectrum at ε ≈ 0.077; this numer-
ical result also agrees very well with the theoretical predictions of 0.07735 from
Eq. (5.24), as was originally observed in [5] (see also [6] which tackles the case
of a saturable nonlinearity, relevant to the experimental work of [2] in a similar

Fig. 5.3 The figure shows by
means of a solid line the
result of numerical linear
stability analysis for the
dependence on ε of the real
eigenvalue of the inter-site
dark discrete soliton. The thin
dashed line shows the
prediction λ = √8ε/3 of
[11], while the thick dashed
line shows the curve
λ = √2ε of [6]. Reprinted
with permission from [11]
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way). Upon collision, a complex quartet of eigenvalues arises in the spectral plane.
This eigenvalue approaches the spectral plane origin of λ = 0, as the continuum
limit of ε → ∞ is approached. One of the important points highlighted in con-
nection with this eigenvalue in [5] was the nature of its dependence on the finite
domain size of the computations. The results presented herein are for N = 250
lattice sites and seem to illustrate the presence of restabilization windows where the
eigenvalue “sneaks into” the imaginary axis as ε grows. However, this feature is a
direct by-product of the finite computational size of the lattice, which results in a
quantization of the relevant wave numbers k and, as a result, to the presence of gaps
in the continuous spectral band of Eq. (5.19). While such features, highlighted, e.g.,
in Fig. 2 of [5] through computations for different domain sizes, would disappear
in the infinite lattice size limit, the reader should be cautioned that they may be
relevant to experimental situations such as the one of [2] where propagation over
250 channels was reported.

The relevant stability results for the inter-site dark solitary wave case are shown
in Fig. 5.3. The theoretical prediction of Eq. (5.21) is also illustrated by a thick
line and provides a fair approximation of the relevant real eigenvalue, especially
for small ε (i.e., for ε < 0.2). On the other hand, the more recent prediction of
λ = √8ε/3 of [11] appears to be more accurate for very small values of ε. It
should be noted here that the inter-site configuration, remains always unstable up
to the continuum limit; the corresponding eigenvalue asymptotically approaches the
spectral plane origin as ε →∞. Note that contrary to the complex quartet discussed
above this real eigenvalue is not significantly affected by the domain size.

Lastly, a more complex multihole configuration is illustrated in Fig. 5.4. The
three zero crossings, in the absence of an intermediate site of vanishing amplitude,
lead to three pairs of real eigenvalues in this case. These can be accurately evaluated
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Fig. 5.4 A typical example of a more complex, multihole configuration which can be thought
of as a bound state of multiple dark solitons. The top left panel shows a typical solution profile,
while the bottom left panel shows the corresponding stability indicating the presence of three real
eigenvalue pairs; the dependence of the latter on the coupling strength ε is shown on the right; the
solid line indicates the numerical result, while the dashed line is the theoretical prediction of [11].
Reprinted with permission from [11]
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for small values of ε via the techniques developed in [11], as can be observed from
the comparison with the corresponding numerical results in Fig. 5.4.

5.2 Vortex States on a Non-Zero Background

In two-dimensional settings, the prototypical nonlinear wave solution of the con-
tinuum NLS equation is the vortex [12]. A natural question then is whether vortex
states also persist for the DNLS model, a question that we now briefly address fol-
lowing the exposition of the recent work of [13].

To compute vortex solutions in the discrete setting, we implement a Newton
method and a continuation with respect to the coupling parameter ε. The path-
following can be initiated either near the continuum limit (for ε large) or at the
AC limit ε = 0, as in both cases one is able to construct a suitable initial guess for
the Newton method.

For relatively high ε, a suitable initial condition for a vortex with topological
charge S is obtained through a Padé approximation developed for the continuum
limit in [14]. We set φn,m = ρn,mei Sαn,m , where

ρn,m =
√

r2S
n,m(a1 + a2r2

n,m)

1+ b1r2
n,m + a2r2S+2

n,m
, rn,m =

√
n2 + m2 (5.35)

(a1 = 11/32, a2 = a1/12, b1 = 1/3, see [14]),

αn,m =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

arctan(m/n)+ 3π

2
for n ≥ 1,

arctan(m/n)+ π
2

for n ≤ −1,
π

2
(1− sign(m)) for n = 0.

Once a vortex is found for a given ε, the solution can be continued by increasing
or decreasing ε. Although this method was found to be efficient, it remains limited to
single vortex solutions having explicit continuum approximations. Moreover, when
the Newton method is applied to continue these solutions near ε = 0, the Jacobian
matrix becomes ill-conditioned (and non-invertible for ε = 0) and the iteration no
longer converges.

In [13] a different method was introduced with a wider applicability and for
which the above-mentioned singularity is removed. Considering a finite N × N
lattice with (n,m) ∈ 	 = {−M, . . . ,M}2 (N = 2M + 1), equipped with fixed-end
boundary conditions given below, we set un,m = Rn,m eiθn,m and note R = (Rn,m)n,m ,
θ = (θn,m)n,m . One obtains the equivalent problem

Rn,m (1− R2
n,m)+ ε f (R, θ )n,m = 0, (5.36)

ε g(R, θ )n,m = 0, (5.37)
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where f (R, θ ) = Re [ e−iθ �(R eiθ ) ] and g(R, θ ) = Im [ e−iθ �(R eiθ ) ] can be
rewritten

f (R, θ )n,m = Rn+1,m cos (θn+1,m − θn,m)+ Rn−1,m cos (θn,m − θn−1,m)− 4Rn,m

+ Rn,m+1 cos (θn,m+1 − θn,m)+ Rn,m−1 cos (θn,m − θn,m−1),

g(R, θ )n,m = Rn+1,m sin (θn+1,m − θn,m)− Rn−1,m sin (θn,m − θn−1,m)

+ Rn,m+1 sin (θn,m+1 − θn,m)− Rn,m−1 sin (θn,m − θn,m−1).

Now we divide equation (5.37) by ε (this eliminates the above-mentioned degen-
eracy at ε = 0) and consider Eq. (5.36) coupled to

g(R, θ )n,m = 0. (5.38)

System (5.36), (5.38) is supplemented by the boundary conditions

Rn,m = 1 for Max(|n|, |m|) = M, (5.39)

θn,m = θ∞n,m for Max(|n|, |m|) = M. (5.40)

The prescribed value θ∞n,m of the angles on the boundary will depend on the type
of vortex solution we look for, more precisely on the vortex distribution and their
topological charge S. In particular, we use the boundary conditions θ∞n,m = Sαn,m

for a single vortex with topological charge S centered at (n,m) = (0, 0).
In this way, vortices of topological charge S = 1, 2 (but also higher) can be

constructed [13]. Typical examples for S = 1 and 2 are shown in Fig. 5.5.
Figures 5.6 and 5.7 show, respectively, the real and imaginary parts of eigen-

frequencies (or equivalently the imaginary and real parts of the eigenvalues) per-
taining to the discrete vortices, thus detailing their linear stability properties. The
vortices with S = 1 and 2 are, respectively, stable for C < Ccr ≈ 0.0395 and
C < Ccr ≈ 0.0425. This instability, highlighted in the case of the S = 1 vortex in
Fig. 5.6 can be rationalized by analogy with the corresponding stability calculations
in the case of dark solitons [5]. In particular, the relevant linearization problem can
be written in the form

iλ

(
pn,m

q�n,m

)
=
(

2|φn,m|2 − 1− ε� φ2
n,m

−(φ2
n,m)� 1− 2|φn,m|2 + ε�

)(
pn,m

q�n,m

)
. (5.41)

However, by analogy to the corresponding one-dimensional problem, the sym-
metry of the configuration renders it a good approximation to write for the relevant
perturbations that �pn,m ≈ −4 pn,m (and similarly for q), by virtue of which it
can be extracted that the relevant eigenfrequency is iλ ≈ ±(1 − 4ε). On the other
hand, by analogy to the one-dimensional calculation, it is straightforward to com-
pute the dispersion relation characterizing the eigenfrequencies of the continuous
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Fig. 5.5 Vortex soliton with S = 1 and ε = 0.2. Left panel: density Profile; right panel: angular
dependence. The bottom panels show the same features but for an S = 2 vortex

spectrum (using {pn,m, qn,m} ∝ exp(i (knn + kmm))) as extending through the in-
terval λ ∈ i [−√64ε2 + 16ε,

√
64ε2 + 16ε]. Therefore, the collision of the point

spectrum eigenvalue with the band edge of the continuous spectrum yields a pre-
diction for the critical point of εcr ≈ (2

√
3 − 3)/12 ≈ 0.0387 in good agreement

with the corresponding numerical result above. At ε = εcr the system experiences
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Fig. 5.6 Imaginary part of the stability eigenvalues for S = 1. The panels show zooms of two
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a function of the coupling strength ε. This corresponds to the growth rate of the corresponding
instability. The different lines correspond to computations with an increasing number of nodes

a Hopf bifurcation. In consequence, for larger ε, there exists an eigenvalue quartet
{λ, λ∗,−λ,−λ∗}. As ε increases, a cascade of Hopf bifurcations takes place due
to the interaction of a localized mode with extended modes, as it was observed in
one-dimensional dark solitons [5]. This cascade implies the existence of stability
windows between inverse Hopf bifurcations and direct Hopf bifurcations. For S = 1
vortices, each one of the bifurcations takes place for decreasing |Re(λ)| when ε
grows, and, in consequence, the bifurcations cease at a given value of ε, as Re(λ)
of the localized mode is smaller than that of the lowest extended mode frequency
(however, in the infinite domain limit, this eventual restabilization would not take
place but for the limit of ε → ∞). This fact is illustrated in Fig. 5.6. When the
lattice size tends to infinity (N → ∞), the linear modes band extends for zero to
infinity and becomes dense; thus, these stabilization windows should be expected to
disappear at this limit. To illustrate this point, we have considered lattices of up to
201× 201 sites for the S = 1 and 2 vortices and have shown the growth rate of the
corresponding instabilities in Fig. 5.7. With the increase of lattice size N , we can
observe that the size of the windows decreases. The maximum growth rate (i.e., the
largest imaginary part of the stability eigenfrequencies) takes place at C ≈ 0.23 for
S = 1 and 2 with Re(λ) ≈ 0.0845 (0.0782) for S = 1 (S = 2).

5.3 Gap States

As we indicated in the previous sections, gap states of the defocusing model can be
addressed rather naturally in the context of the staggering transformation, in terms
of their qualitative properties of stability (in connection to the corresponding focus-
ing states studied in Chaps. 2, 3, and 4). Nevertheless, for reasons of completeness
and in order to illustrate and discuss the relevant patterns and their stability ranges,
we examine the case of such states in the two-dimensional setting following the
exposition of [15].
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Firstly, it should be noted that the Lyapunov–Schmidt methodology developed
in Chaps. 2, 3, and 4 is still applicable in the defocusing case; the only thing that
changes is that the bifurcation conditions should be defined near the AC limit as

− 2ign(θ, ε) ≡ −εe−iθn �2φn + εeiθn �2φ̄n = 0, (5.42)

i.e., with an additional − sign in comparison to their focusing counterpart. Then,
once again the corresponding Jacobian should be computed (for waveforms satis-
fying these conditions) as Mi j = �gi/�θ j and its eigenvalues γ are related to the
eigenvalues of the full problem, to leading order, according to λ = ±√2γ . We now
consider various configurations and study their detailed stability.

5.3.1 General Terminology

We start by giving some general terminology for the configurations to be exam-
ined. An IP (in-phase) designation will be used for two sites with 0 relative phase
difference, while OOP will be used for out-of-phase configurations with π phase
difference. Also, OS (on-site) will mean that the center of the configuration is
on an empty lattice site (between the excited ones), while IS (inter-site) will sig-
nify that the center is located between the excited lattice sites (and no empty site
exists between them). For all modes, in the figures below, we show their power
P = ∑ |un|2 as a function of the coupling ε, as well as the real and imaginary
parts of the key eigenvalues (the ones determining the stability of the configura-
tion). We consider, more specifically, dipole (two-site) configurations, quadrupole
(four-site) configurations, and complex-valued vortex waveforms. In all the cases,
we show typical examples of the mode profiles and stability for select values of the
coupling. Note that in this case the continuous spectrum band extends through the
interval λi ∈ ±[� − 8ε,�]. This latter trait affects directly the stability intervals
of the structures in comparison with their focusing counterparts as we will see also
below (since configurations may be stable for small ε, but not for larger values
thereof).

In each pair of the figures that follow, we show two types of configurations (one
in the left column and one in the right column). The first figure of each pair will
have five panels showing P as a function of ε, the principal real eigenvalues (second
panel), and imaginary eigenvalues (third panel). In these plots, the numerical results
are shown by the solid line, while the analytical results by the dashed line. The fourth
and fifth panels show typical examples of the relevant configuration and its linear
stability eigenvalues (shown through the spectral plane (λr , λi ) for the eigenvalues
λ = λr + iλi ).

An overview of the results encompassing the main findings reported below is
summarized in Table 5.1. The table summarizes the configurations considered, their
linear stability and the outcome of their dynamical evolution for appropriate initial
conditions in the instability regime. Note that if the solutions are unstable for all ε,
they are denoted as such, while if they are partially stable for a range of coupling
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Table 5.1 Summary of the stability results for all the configurations presented below. For partially
stable (near the anti-continuum limit) solutions their interval of stability (for � = 1) is given

Type On-site stability Inter-site stability

In-phase dipole Unstable ε < 0.064
Out-of-phase dipole ε < 0.092 Unstable
In-phase quadrupole Unstable ε < 0.047
Out-of-phase quadrupole ε < 0.08 Unstable
Vortex ε < 0.095 ε < 0.095

strengths, their interval of stability is explicitly mentioned. Details of our analytical
results and their connection/comparison with the numerical findings are discussed
in the rest of this section. It is also important to mention in passing that, based
on the predictions discussed below, very recent experiments in [3] and [16] have
illustrated the experimental realizability of gap multipole and gap vortex structures,
respectively, in photorefractive media with the saturable nonlinearity.

5.3.2 Dipole Configurations

5.3.2.1 Inter-Site, In-Phase Mode

Figure 5.8 summarizes our results for the two types of IP dipole solutions (i.e.,
initialized at the AC limit with two IP excited sites). The IS–IP mode of the left
panels is theoretically found to possess 1 imaginary eigenvalue pair (and, hence, is
stable for small C)

λ ≈ ±2
√
εi. (5.43)

The collision with the band edge of the continuous spectrum described above
causes the mode to become unstable for sufficiently large coupling strength; the
theoretically predicted instability threshold (obtained by equating the eigenvalue
of Eq. (5.43) with the lower edge of the phonon band located at � − 8ε) is ε =
0.0625, in close agreement with the numerically found one is ε ≈ 0.064. Additional
instability may ensue when the monotonicity of the P versus ε curve changes (we
have found this to be a general feature of the defocusing branches). The fourth and
fifth panels show the mode and its spectral plane for ε = 0.08 and 0.116.

5.3.2.2 On-Site, In-Phase Mode

The OS–IP mode of the right panels of Fig. 5.8 is always unstable due to a real pair,
theoretically found to be

λ ≈ ±2ε (5.44)
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Fig. 5.8 The first line of panels shows the power P versus coupling ε for the inter-site (IS),
in-phase (IP) mode (left) and on-site (OS), IP mode (right). The second lines show their max-
imal real eigenvalues and the third their first few imaginary eigenvalues. The solid lines il-
lustrate the numerical results, while the dashed lines the analytical ones. The fourth and fifth
panels show the contour plot of the mode profile (fourth row) and the corresponding spectral
plane of eigenvalues λ = λr + iλi (fifth panel); The left two panels are for the IS-IP mode for
ε = 0.08 and 0.116, respectively. The right panel shows the OS-IP mode for ε = 0.08. Reprinted
from [15]

for small ε. Note once again the remarkable accuracy of this theoretical prediction,
in comparison with the numerically obtained eigenvalue. The fourth and fifth right
panels of Fig. 5.8 show the mode and its stability for ε = 0.08.

5.3.2.3 Inter-Site, Out-of-phase Mode

Figure 5.9 illustrates the two OOP dipole modes. As before, the left panel corre-
sponds to the IS–OOP mode; this one is also immediately unstable (as one departs
from the anti-continuum limit), due to a real pair which is

λ ≈ 2
√
ε (5.45)
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Fig. 5.9 Similar to Fig. 5.8, but now for the inter-site, out-of-phase (IS–OOP) mode (left panels)
and for the on-site, out-of-phase mode (OS–OOP). The fourth and fifth rows of panels are for
ε = 0.08 and for ε = 0.116 in both cases. Reprinted from [15]

for small ε. The fourth and fifth panels of Fig. 5.9 show the relevant mode for ε =
0.08 and 0.116, showing its 1 and 2 unstable real eigenvalue pairs, respectively.

5.3.2.4 On-Site, Out-of-phase Mode

The right panels of the Fig. 5.9 show the OS–OOP mode. The stability analysis of
this waveform shows that it possesses an imaginary eigenvalue

λ ≈ 2εi. (5.46)

This leads to an instability upon collision (theoretically, this occurs for ε = 0.1,
numerically it arises for ε ≈ 0.092) with the lower edge (located at � − 8ε) of the
continuous band of phonon modes. The mode is shown for ε = 0.08 and 0.116 in
the right panels of Fig. 5.9.
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5.3.3 Quadrupole Configurations

5.3.3.1 Inter-Site, In-Phase Mode

Figure 5.10 shows the quadrupolar mode with four IP participating sites in the case
where it is centered between lattice sites (left panels). The structure is theoretically
predicted to have two imaginary (for small ε) eigenvalue pairs with

λ ≈ 2
√
εi (5.47)

and one imaginary pair with

λ ≈
√

8εi. (5.48)

As a result, this mode (shown in the fourth row panels of Fig. 5.10 for ε = 0.05
and 0.1) becomes unstable due to the collision of the above eigenvalues with the
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band edge of the continuous spectrum occurring theoretically for ε ≈ 0.0477, while
in the numerical computations it happens for ε ≈ 0.047.

5.3.3.2 On-Site, In-Phase Mode

The right panels of the Fig. 5.10 show the case of the OS–IP mode. The latter is
found to be always unstable due to a real eigenvalue pair of

λ ≈ ±4ε (5.49)

and a double, real eigenvalue pair of

λ±
√

12ε. (5.50)

This can also be clearly observed in the fourth and fifth rows of Fig. 5.10, show-
ing the mode and its stability for ε = 0.05.

5.3.3.3 Inter-Site, Out-of-Phase Mode

We next consider the case of the IS–OOP mode in Fig. 5.11. Our analytical results
for this mode show that for small values of ε, we should expect to find it to be
immediately unstable due to three real pairs of eigenvalues, namely a single one
with

λ ≈ ±
√

8ε (5.51)

and a double one with

λ ≈ ±2
√
ε. (5.52)

This expectation is once again confirmed by the numerical results of the left panel
of Fig. 5.11. The fourth and fifth rows show the mode and the spectral plane of its
linearization for the particular cases of ε = 0.08 and 0.116.

5.3.3.4 On-Site, Out-of-Phase Mode

We complete our consideration of the quadrupolar modes by examining the OS–
OOP mode, shown in the right panels of Fig. 5.11. Our theoretical analysis predicts
that this mode should have a double imaginary eigenvalue pair of

λ ≈ ±2εi (5.53)

and a single imaginary pair of

λ ≈ 4εi. (5.54)
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Fig. 5.11 Similar to Fig. 5.8 but for the quadrupole IS–OOP mode (left panels) and the quadrupole
OS–OOP mode (right panels). The fourth and fifth rows show the modes and their stability for
C = 0.08 and 0.116 in each case. Reprinted from [15]

Based on these predictions, we expect the mode to be stable for small ε (a result
confirmed by numerical computations); however, it becomes destabilized upon col-
lision of the larger one among these eigenvalues with the continuous spectral band.
This is numerically found to occur for ε ≈ 0.08, while it is theoretically predicted,
based on the above eigenvalue estimates, to take place for ε = 0.083. The mode’s
stability analysis is shown in the fourth and fifth rows of Fig. 5.11 for ε = 0.08 and
0.116.

5.3.4 Vortex Configuration

5.3.4.1 Inter-Site Vortices

Lastly, Fig. 5.12 shows similar features, but now for the IS (left panels) and OS
(right panels) vortex solutions, discussed in the two-dimensional context in Chap. 3.
The former has a theoretically predicted double pair of eigenvalues

λ ≈ ±2εi (5.55)
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Fig. 5.12 The same features as in Fig. 5.8 are shown here for the IS vortex of topological charge
S = 1 (left) and the OS vortex of S = 1 (right). In this case, both the real (fourth row) and
imaginary (fifth row) parts of the solution are shown (and their stability in the sixth row) for ε =
0.08 and 0.116. Reprinted from [15]

leading to an instability upon collision with the continuum band for ε ≥ 0.095
(ε ≥ 0.1 theoretically). Additionally, there is also an eigenvalue of higher order

λ ≈ ±4ε2i. (5.56)

which obviously depends more weakly on ε. The fourth and fifth rows of Fig. 5.12
show the real and the imaginary parts of the vortex configuration for ε = 0.08 and
0.116 and the sixth row shows the corresponding spectral planes for the correspond-
ing (one stable and one unstable) cases.

5.3.4.2 On-Site Vortices

The OS vortices are shown in the right panels of the Fig. 5.12. In this case, we the-
oretically find that the vortex, for small ε, should have a double pair of eigenvalues

λ ≈ 2εi (5.57)
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and a single, higher order pair of eigenvalues

λ ≈ ±
√

32ε3i. (5.58)

The first one among these, upon collision with the continuous spectrum, leads
to an instability, theoretically predicted to occur at ε = 0.1 and numerically found
to happen for ε ≈ 0.095. The OS mode (and its stability) is shown in the fourth to
sixth right panels of Fig. 5.12 for ε = 0.08 and 0.116.

5.3.5 General Principles Derived from Stability Considerations

A general conclusion that it is relevant to mention is that the stability intervals of
the defocusing structures are different from those of their focusing counterparts
(especially when they are stable close to the AC limit) because of the collisions
with the continuous spectrum band edge; the latter is at λ = � in the focusing
case, while it is at λ = � − 8ε (i.e., it is coupling dependent) in the defocusing
setting. Another similarly general note is an immediate inference on whether the
structures are stable or not; this can be made based on the knowledge of whether
their focusing counterparts are stable or not and the conversion from the former to
the latter through the staggering transformation un,m = (−1)n+mwn,m . For instance,
IP two-site configurations (both OS and IS) are known to be generically unstable in
the focusing regime (see Chap. 2); through the staggering transformation, OS–IP of
the focusing case remains OS–IP in the defocusing, while IS-IP of the focusing be-
comes IS–OOP in the defocusing. Hence, these two should be expected to be always
unstable, while the remaining two (OS–OOP in both focusing and defocusing and
IS–OOP of the focusing, which becomes IS–IP in the defocusing) should similarly
be expected to be linearly stable close to the AC limit. This is in accordance with
our numerical observations in all the relevant cases. Note that, interestingly enough,
for the vortex states the staggering transformation indicates that the stability is not
modified between the focusing and defocusing cases. This is because for an IS vor-
tex, it transforms an S = 1 state into an S = −1 state (which is equivalent to the
former, in terms of stability properties), while the OS vortex remains unchanged
by the transformation. However, as mentioned above, these considerations are not
sufficient to compute the instability thresholds for initially stable modes, among
other things. They do, nonetheless, provide a guiding principle for inferring the
near-AC limit stability of the defocusing staggered states, based on their focusing
counterparts, that we examined previously in this volume in Chaps. 2, 3, and 4.
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Chapter 6
Extended Solutions and Modulational Instability

In our considerations up to now, we have focused on localized solutions of the DNLS
equation. In this chapter, we consider a different, yet important, class of solutions
of the DNLS, namely the plane waves. Plane waves are spatially uniform (in the
modulus) solutions, characterized by a wave number of the spatial modulation of
their real and imaginary part, and an associated frequency (of temporal oscillation).
They exist both in the continuum and in the discrete form of the NLS equation and
one of the fundamental elements of their importance in this dispersive wave setting
is that they are unstable, under appropriate conditions, to modulations, through a
mechanism known as the modulational instability (MI). MI has a time-honored
history in a number of fields traditionally associated with the NLS equation such
as fluid dynamics [1, 2], nonlinear optics [3–5], and plasma physics [6, 7]. Despite
its 40 years of history, the MI is still today an active field of investigation in this
class of systems; for instance, it has been recently used in the dynamics of BECs
as a method to produce bright solitons [8] in attractive condensates or as a scheme
permitting the generation of Faraday waves in repulsive condensates [9].

Here, we will start by giving an explanation of the MI mechanism in the contin-
uum case, and will then move on to examine the same mechanism in the discrete
case, in order to illustrate the similarities but also the important differences between
the two. Finally, we will consider some recent applications of this mechanism to
BEC and nonlinear optics.

6.1 Continuum Modulational Instability

Starting with the continuum version of the NLS equation of the form

iut = −uxx + g|u|2u, (6.1)

it is straightforward to see that plane wave solutions of the form

u(x, t) = A exp[i (qx − ωt)] (6.2)

P.G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation, STMP 232, 143
143–152, DOI 10.1007/978-3-540-89199-4 6, c© Springer-Verlag Berlin Heidelberg 2009
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exist provided that the nonlinear “dispersion relation”

ω = q2 + g A2 (6.3)

is satisfied. It is then natural to examine the linear stability of these solutions by
virtue of the ansatz

u(x, t) = (A + δb(x, t)) exp[i ((qx − ωt)+ δψ(x, t))]. (6.4)

Deriving the leading order (O(δ)) equations for the evolution of the amplitude
perturbation b(x, t) and the phase perturbation ψ(x, t), we realize that the ensu-
ing linear PDEs can be solved by Fourier decomposition of the form b(x, t) =
b0 exp(i (Qx − �t)), and ψ(x, t) = ψ0 exp(i (Qx − �t)). The resulting homoge-
neous linear system for b0 and ψ0 yields the solvability condition (which is also the
modulational stability condition)

(−�+ 2q Q)2 = Q2(Q2 + 2g A2). (6.5)

The key observation now is that

• If g > 0, then the right-hand side of Eq. (6.5) is positive and hence � is real,
hence the perturbations will only lead to benign oscillations (i.e., the defocusing
continuum plane wave solutions are stable under modulational perturbations).

• On the other hand, if g < 0, then the right-hand side of Eq. (6.5) can become
negative, provided that the Q2 < Q2

cr = 2(−g)A2. Therefore, in this case, inde-
pendently of their amplitude, there will always exist (i.e., for any amplitude A or
equivalently negative nonlinearity strength g) wave numbers small enough such
that the plane wave will be unstable under such modulational perturbations.

This phenomenology is illustrated in Fig. 6.1. In the case shown, Qcr =
√

2.
In the top row, the original perturbation has Q = 1, while in the bottom row the
perturbation has Q = 2. In the latter, the small perturbation (of size ≈ 0.1) remains
bounded in the course of the evolution and the Fourier space evolution reveals the
presence of the originally excited wavenumber. On the contrary, in the top row,
the small amplitude perturbation is exponentially amplified (until it saturates due
to the presence of the nonlinearity). The amplification of the perturbation in real
space is accompanied by the formation of large amplitude structures (the solitary
waves or localized solutions that we have considered previously – hence, MI offers
a “bridge” between the robust localized waveforms, and the unstable extended ones
in the focusing NLS setting). On the other hand, in Fourier space, we clearly detect
that sidebands of the original wave number are excited, leading to the emergence of
harmonics of the original Q = 1.
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Fig. 6.1 From [10]: the result of an evolution of the focusing NLS equation for the case of ex-
citation of a plane wave with Q = 1 (top row; unstable) and Q = 2 (bottom row; stable). The
left panels in each case show the results of the evolution of the maximum squared modulus of the
solution under the presence of the small perturbation. The right panels show the Fourier spectrum
of the solution at a given time during the evolution (for a more detailed explanation, see text)

6.2 Discrete Modulational Instability

We now turn to the corresponding discrete case, where this type of analysis was
first carried out, to the best of our knowledge, already in [11] (see also the detailed
exposition of [12]). Writing the DNLS equation as

i u̇n = −ε (un+1 + un−1 − 2un)+ g|un|2un, (6.6)

we can again find a plane wave solution of the form un = A exp(i (kn−ωt)), which
in this case satisfies

ω = 4ε sin2

(
k

2

)
+ g A2. (6.7)

Subsequently following the same steps (i.e., using linear stability analysis and
decomposing the perturbation into Fourier modes), we obtain the modulational sta-
bility condition of the form
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(�− 2ε sin(k) sin(Q))2 = 8ε cos(k) sin2

(
Q

2

)[
2ε cos(k) sin2

(
Q

2

)
+ g A2

]
.

(6.8)
Firstly, it should be observed in connection to Eq. (6.6) that in the long wavelength

limit of k � 1 and Q � 1, the condition degenerates into the continuum limit
condition of Eq. (6.5). Despite this connection in the appropriate limit, Eq. (6.8)
contains elements of new physics that are fundamentally discrete; more specifically,
in this case MI arises for g cos(k) < 0 (which naturally for k � 1 results in the
purely focusing nonlinearity condition of the continuum limit). This signifies that
instability here can emerge even in the defocusing setting, provided that k > π/2
(if the relevant threshold condition making the bracket expression of the right-hand
side of Eq. (6.8) negative is satisfied).

This phenomenon is illustrated in Fig. 6.2 which displays a focusing case exam-
ple with k = π/3 in the left panel (the top panel shows the space–time evolution of
the plane wave, and the bottom panel shows the – normalized – space–time evolution
of the Fourier transform of the solution’s amplitude). On the other hand, the right
panel shows a defocusing case example with k = 2π/3. It can clearly be seen that
both cases become unstable, in accordance with the theoretical analysis. In fact, it
is interesting to point out that wave numbers in the vicinity of π/2 are among the
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Fig. 6.2 Evolution of plane waves of k = π/3 for g = −1 (left panels) and of k = 2π/3 for
g = 1 (right panels). The top panel show the spatiotemporal evolution of the squared modulus of
the solution, while the bottom panels show the spatiotemporal evolution of the (normalized to its
maximum value) Fourier transform of the squared modulus of the solution. Note in both cases the
emergence of the modulational instability for t < 40, which leads to the formation of filamentary
structures and the excitation of different wave numbers in Fourier space
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ones to become destabilized first. Clearly, the result of the instability is to induce
the emergence of filamentary structures of solitary wave type.

As a generalization of the DNLS model, and as a preamble to the following
chapter, we also consider here the case of the two-component DNLS model of the
form

i
�u1n

�t
= −ε1

(
u1,n+1 + u1,n−1 − 2u1,n

)+ (g11|u1,n|2 + g12|u2,n|2
)

u1,n + cu2,n,

i
�u2,n

�t
= −ε2

(
u2,n+1 + u2,n−1 − 2u2,n

)+ (g12|u1,n|2 + g22|u2,n|2
)

u2,n + cu1,n .

(6.9)

This is a model that is relevant both to the optics in the case of propagation of
two different polarizations or of two different wavelengths within a waveguide array
[13, 14], as well as in BECs in the case of other multicomponent BECs of different
species (or even of different hyperfine states of the same species); see, e.g., the re-
cent exposition of [15] and references therein. More details on the physical relevance
of the model will be given in the next chapter.

We now follow the discussion of MI in this setting given in [16]. Starting first
with the case where c 
= 0, we can again consider plane waves of the form

u jn = A j exp
[
i (q jn − ω j t)

]
, j = 1, 2, (6.10)

where the linear coupling imposes q1 = q2 ≡ q and ω1 = ω2 ≡ ω. The resulting
dispersion relations are

ωA1 = −2ε1 (cos q − 1) A1 +
(
g11 A2

1 + g12 A2
2

)
A1 + cA2,

ωA2 = −2ε2 (cos q − 1) A2 +
(
g12 A2

1 + g22 A2
2

)
A2 + cA1. (6.11)

The solution of these algebraic equations yields the possible amplitudes of the
plane waves as a function of their wave number and frequency.

Now, to examine the stability of the uniform solutions by imposing

u jn(x, t) = [A j + B jn(x, t)
]

exp[i (qn − ωt)] (6.12)

into the original equations to obtain a system of two coupled linearized equations for
the perturbations B j (x, t). As before, we use a Fourier decomposition of the form

B jn = α j cos(Qn −�t)+ iβ j sin(Qn −�t), (6.13)

where Q and � are the wave number and frequency of perturbation. This leads
to a set of four homogeneous equations for α1, β1, α2, and β2. The latter, have a
nontrivial solution if Q and � satisfy the dispersion relation
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[
(�− 2ε1 sin Q sin q)2 −

(
2ε1r + c

A2

A1

)(
2ε1r + c

A2

A1
− 2g11 A2

1

)]

×
[

(�− 2ε2 sin Q sin q)2 −
(

2ε2r + c
A1

A2

)(
2ε2r + c

A1

A2
− 2g22 A2

2

)]

−2c(2g12 A1 A2 + c)(�− 2ε1 sin Q sin q)(�− 2ε2 sin Q sin q)

−c2

(
2ε1r + c

A2

A1
− 2g11 A2

1

)(
2ε2r + c

A1

A2
− 2g22 A2

2

)

−(2g12 A1 A2 + c)2

[(
2ε1r + c

A2

A1

)(
2ε2r + c

A1

A2

)
− c2

]
= 0, (6.14)

where, for simplicity of notation, we define r ≡ cos q(cos Q − 1).
In the absence of coupling, e.g., for c = g12 = 0, we obtain the same expression

as in the one-component problem, i.e., Eq. (6.8) above.
Focusing for definiteness on the more tractable case of ε1 = ε2 ≡ ε, we can

rewrite the above equation as

(�− 2ε sin Q sin q)4 − (K1 + K2 + K3)(�− 2ε sin Q sin q)2 + K1 K2 − K4 = 0,
(6.15)

where

K1 =
(

2εr + c
A2

A1

)(
2dr + c

A2

A1
− 2g11 A2

1

)
,

K2 =
(

2εr + c
A1

A2

)(
2εr + c

A1

A2
− 2g22 A2

2

)
,

K3 = 2c(2g12 A1 A2 + c),

K4 = c2

(
2εr + c

A2

A1
− 2g11 A2

1

)(
2εr + c

A1

A2
− 2g22 A2

2

)

+(2g12 A1 A2 + c)2

[(
2εr + c

A2

A1

)(
2εr + c

A1

A2

)
− c2

]
. (6.16)

As before, to avoid MI, both solutions for (�− 2ε sin Q sin q)2
1,2 should be posi-

tive. Taking into account the bi-quadratic nature of the equation, it is concluded that
the spatially homogeneous solution is unstable if either the sum � = K1+ K2+ K3

or the product 
 = K1 K2 − K4 of the solutions is negative:

K1 + K2 + K3 < 0, (6.17)

K1 K2 − K4 < 0. (6.18)

To illustrate the results, we can proceed to fix the value of the perturbation wave
number, investigating the parameter region in which it would give rise to the MI.
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Fig. 6.3 The left panels of the figure show, for g12 = 0, the cases of c = 0 (top panel; unstable
for π/2 < q < 2.0945), c = 0.25 (middle panel; unstable for 1.4455 < q < 2.0945), and
c = 0.5 (bottom panel; unstable for 1.318 < q < 2.0945). The solid line shows the sum � and
the dashed line the product 
 of the solutions of the bi-quadratic equation. The instability takes
place in intervals of the wave number q of the unperturbed plane-wave solution where either � or

 (or both) are negative. The right panels show the same features but fixing c = 0.25 and varying
g12. The figure shows the cases of g12 = 2/3 (top panel; unstable for 1.4455 < q < 2.556),
g12 = 1 (middle panel; unstable for π/2 < q < π), and g12 = 2 (bottom panel; unstable for
0.8955 < q < 1.4455 and π/2 < q < π). Reprinted from [16] with permission

This is shown in Fig. 6.3 in which we fix Q = π and g11 = g22 = A1 = A2 =
d1 = ε = 1 and vary c and g12 (the coefficients of the linear and nonlinear coupling,
respectively), to examine their effect on the stability interval. For these values of the
parameters the modulationally unstable region is π/2 < q < 2π/3 = 2.0945. It can
be inferred from the figure that c may widen the MI interval by decreasing its lower
edge. On the other hand, g12 has a more complex effect: while making the instability
interval larger by increasing its upper edge (until it reaches π), it may also open MI
bands within the initially modulationally stable region.

Similar calculations can be performed in the case with purely nonlinear coupling.
Although in the latter case, c = 0 and the expressions are simplified in that regard,
on the other hand, it is now possible to have, in principle, q1 
= q2, and ω1 
= ω2

which complicates the logistics of the relevant calculation (although the approach
is the same). If we let ε1 = ε2 = ε and q1 = q2 = q , then the relevant condition
becomes

(�− 2ε sin Q sin q)4 − 2K5(�− 2ε sin Q sin q)2 + K6 = 0, (6.19)

where

K5 = 2εr
(
2εr − (g11 A2

1 + g22 A2
2)
)
,

K6 = (2εr )2
(
(2εr )2 − 2(g11 A2

1 + g22 A2
2)2εr + 4A2

1 A2
2(g11g22 − g2

12)
)
.

(6.20)

In this case, the MI conditions become
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K5 < 0 or K6 < 0.

The latter can be rewritten, respectively, as

− 1

2
(g11 A2

1 + g22 A2
2) < 2ε cos(q) sin2

(
Q

2

)
< 0, (6.21)

K− < −4ε cos(q) sin2

(
Q

2

)
< K+ (6.22)

with K± ≡ g11 A2
1 + g22 A2

2 ±
√

(g11 A2
1 + g22 A2

2)2 − 4A2
1 A2

2(g11g22 − g2
12). From

the formulas, as well as graphically from Fig. 6.4, we can observe that in this case
as well, the coupling between the two components tends to augment the band of
the modulationally unstable wave numbers with respect to the single-component
case. Similarly to the one-component case, both for the linear and for the nonlinear
coupling between the components, the dynamical manifestation of MI leads to fila-
mentation and the formation of localized structures in both components, as is shown
in [25].

Fig. 6.4 The figure shows the
threshold wave numbers q for
MI as a function of g12 in the
case of purely nonlinear
coupling and for
A = ε = g11 = g22 = 1.
Reprinted from [16] with
permission
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6.3 Some Case Examples

Finally, we briefly touch upon some case examples of recent applications of the
modulational instability of the DNLS equation in BEC and optics.

In the work of [17, 18], an effective interpretation of the modulational instability
was devised in the form of a dynamical superfluid to insulator transition for a BEC
trapped in both a magnetic trap and an optical lattice. What was realized in these
works was that if the (parabolic) magnetic trap holding the condensate (see e.g., the
right panel of Fig. 6.5) is displaced, then the ground state of the system (which is
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Fig. 6.5 Reprinted from [17, 18]: the top left shows the discrete quasi-momentum for two sub-
critical (40 and 80) and one supercritical (90 sites) evolution; the latter is clearly unstable. The
top right shows the discrete model (top row) and the continuum model with a periodic potential
(bottom row) for a modulationally stable (left) and a modulationally unstable (right) case. The
bottom plot is taken from the experimental work of the Florence group, showing coherent motion
in the case of filled circles and pinned motion in the case of empty circles. The solid line separating
the two corresponds to the theoretical prediction of [17, 18]

the effective analog of a plane wave for the defocusing dynamics of a 87Rb BEC)
will acquire a quasi-momentum. If this quasi-momentum (which is associated with
the wave number of the state) becomes larger than π/2, then in accordance with the
modulational instability criterion of Eq. (6.8), the system shall become unstable, and
the instability will give rise to localization. Obviously, the more that the parabolic
trap is initially displaced, the higher the initial potential energy of the state, hence
the larger the kinetic energy that it will acquire. Hence, there will be a critical dis-
placement, which was evaluated in [17, 18] as ξcr =

√
2ε/� (where � was the

parabolic trap frequency), beyond which, the induced momentum will exceed the
MI threshold and will therefore induce a transition from a “superfluid” to an “insu-
lator.” This is illustrated in the top row of Fig. 6.5, which features in the left panel
different initial displacements and the corresponding quasi-momentum evolution;
the right panel shows both the discrete (top) and the continuum with a periodic
potential (bottom) behavior of the model, for subcritical and supercritical cases. In
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the bottom plot, the theoretical prediction (solid line) is compared to experiments
illustrating phase coherence (filled circles), or lack thereof (open circles). Clearly,
the theoretical prediction is in good agreement with the experimental observations.

On the other hand, more recently, in the work of [26], an optical waveguide
array manifestation of the discrete modulational instability was illustrated. The latter
experiment was in the setting of a focusing Kerr nonlinearity. As a result here, the
instability should arise for sufficiently small wave numbers (and sufficiently high
optical power), as predicted by Eq. (6.8) and experimentally observed in [19]; for
a relevant example in the case of high-input power, see Fig. 3 of [19]. In the figure
one can observe clear filamentation of the optical output intensity distribution for
small wave numbers (a direct consequence of MI), while for high values of the
wave number, this phenomenon is absent.
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Chapter 7
Multicomponent DNLS Equations

One of the most interesting extensions of the DNLS equation is in the study of multi-
component versions of the model. Such models are relevant both in nonlinear optics,
e.g., when propagating multiple frequencies or polarizations of light; prototypical
examples of these types have been discussed, e.g., in [1, 2] from the theoretical
point of view and in [3] from the experimental point of view (see also references
therein). On the other hand, similar models are quite relevant to two-component [4]
or even one-component BECs [5] in the presence of optical lattice potentials. The
coupling between the different components can be linear or nonlinear (or both) [1].
In this chapter, we show some case examples of interesting dynamics that can arise
in the linear coupling case (symmetry breaking), as well as ones that can arise in the
nonlinear coupling case (dynamical instabilities).

7.1 Linearly Coupled

In the context of optics, systems of linearly coupled DNLS equations are relevant
to various applications: linear coupling may occur among two polarization modes
inside each waveguide of a waveguide array, being induced by a twist of the core
(for linear polarizations), or by the birefringence (for circular polarizations). Linear
coupling between two modes also takes place in arrays of dual-core waveguides [1].
On the other hand, in BECs, the linear coupling may be imposed by an external
microwave or radio frequency field, which can drive Rabi [6, 7] or Josephson [8, 9]
oscillations between populations of two different states.

In both optical and atomic media, the basic linearly coupled DNLS model takes
the following form:

⎧
⎨

⎩
iUt = K ε�2U + K V + |U |2 U,

i Vt = K ε�2V + K U + |V |2 V ,
(7.1)

where U = U (x, t) and V = V (x, t) are wave functions of the two species in
BEC, or electric field envelopes of the two coupled modes in optics (x is realized

P.G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation, STMP 232, 153
153–171, DOI 10.1007/978-3-540-89199-4 7, c© Springer-Verlag Berlin Heidelberg 2009
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as a discrete vectorial coordinate), K is the strength of the linear coupling between
fields U and V , and ε determines the couplings between adjacent sites of the lattice.
For convenience, the full lattice-coupling constant is defined as K ε (this will allow
us to scale out K from the analysis presented below).

Following the analysis of [10], we seek stationary solutions to the equations in
the form

⎧
⎨

⎩
U (x, t) = √K u (x) exp[−i K (μ− 2Dε) t],

V (x, t) = √K v (x) exp[−i K (μ− 2Dε) t],
(7.2)

where u(x) and v(x) are real-valued functions, and μ is an appropriately shifted
chemical potential. Then the steady-state equations become

⎧
⎨

⎩
μun = ε�1un + vn + u3

n,

μvn = ε�1vn + un + v3
n,

(7.3)

with �1wn ≡ wn+1+wn−1. In the two-dimensional case, the stationary equations are

⎧
⎨

⎩
μun,m = ε�2un,m + vn,m + u3

n,m,

μvn,m = ε�2vn,m + un,m + v3
n,m,

(7.4)

where �2wn,m ≡ wn+1,m + wn−1,m +wn,m+1 + wn,m−1.
In [10], both symmetric (with u = v) and symmetry-broken (with u 
= v) states

were constructed as solutions of Eqs. (7.3) and (7.4). Since we are interested here
in the properties of the fundamental single-site states, we will use as a reasonably
accurate method to obtain an analytical handle on the waveforms the variational
approximation (comparing it with the full numerical results). We start by noting
that Eqs. (7.3) and (7.4) can be derived from the following Lagrangians:

L1D =
∞∑

n=−∞

[
−μ

2

(
u2

n + v2
n

)+ 1

4

(
u4

n + v4
n

)+ unvn + ε (un+1un + vn+1vn)

]
,(7.5)

L2D =
∞∑

m,n=−∞

[
−μ

2

(
u2

n,m + v2
n,m

)+ 1

4

(
u4

n,m + v4
n,m

)+ un,mvn,m

+ ε(un+1,mun,m + un,m+1un,m + vn+1,mvn,m + vn,m+1vn,m)

]
. (7.6)

Then, the discrete soliton ansätze, {un, vn} = {A, B}e−λ|n| and {un,m, vn,m} =
{A, B}e−λ|n|e−λ|m|, with free constants A, B , and λ > 0, are used in the one- and
two-dimensional cases, respectively, as in our earlier analysis in Chaps. 2 and 3.
It should be noted in comparison to the standard one-component ansatz that by
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introducing different amplitudes A and B , we admit a possibility of asymmetric
solitons, within the framework of the variational approximation.

The resulting expressions for the effective Lagrangians are

L1D =
[

AB − μ
2

(
A2 + B2)] coth λ+ 1

4

(
A4 + B4) coth (2λ)

+ε (A2 + B2
)

cosechλ,

L2D =
[

AB − μ
2

(
A2 + B2)] coth2 λ+ 1

4

(
A4 + B4) coth2 2λ

+2ε
(

A2 + B2
)

(cosechλ) cothλ.

Then, deriving the static version of the Euler–Lagrange equations �L1D,2D/

� (λ, A, B) = 0 yields

μ

2

(
A2 + B2) cosech2λ− 1

2

(
A4 + B4) cosech22λ

−ABcosech2λ− ε (A2 + B2
)

cosechλ coth λ = 0,

−μA cothλ+ A3 coth 2λ+ B coth λ+ 2εAcosechλ = 0,

−μB coth λ+ B3 coth 2λ+ A cothλ+ 2εBcosechλ = 0

for the one-dimensional case, and

μ
(
A2 + B2

)
coth λcosech2λ− (A4 + B4

)
coth 2λcosech22λ

−2AB coth λcosech2λ− 2ε
(
A2 + B2) (cosechλ coth2 λ+ cosech3λ

) = 0,

−μA coth2 λ+ A3 coth2 2λ+ B coth2 λ+ 4εAcosechλ coth λ = 0,

−μB coth2 λ+ B3 coth2 2λ+ A coth2 λ+ 4εBcosechλ coth λ = 0

for the two-dimensional fundamental waves.
An interesting observation consists of the analytically tractable AC limit of

ε = 0. For the symmetric branch, we then have un = vn = 0 or un = vn =
√
μ− 1,

while for the asymmetric branch, a system of algebraic equations has to be solved
μun = vn + u3

n, μ + 1 = u2
n + unvn + v2

n . The solution is shown in Fig. 7.1,
which displays the symmetry-breaking bifurcation in the AC limit, by means of a
plot of the asymmetry measure, r ≡ (E1 − E2)/(E1 + E2), versus half the total
norm, E = (E1 + E2)/2, where {E1, E2} =

∑
n

{
u2

n, v
2
n

}
are the norms of the two

components of the solution. It is particularly interesting to point out that in the case
of ε = 0, the observed pitchfork bifurcation is supercritical (cf. with the finite ε
case below).
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Fig. 7.1 From [10]: the
bifurcation diagram for the
discrete solitons in the
anti-continuum limit, ε = 0;
r and E are the asymmetry
parameter and the half of the
total squared norm,
respectively. The solid and
dashed lines represent stable
and unstable solutions,
respectively
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These results can be compared with those of direct numerical continuation of
the corresponding branches from the AC limit. In [10] the relevant branches were
obtained and their numerical linear stability was also examined using the perturbed
solution ansatz

{
U (x, t) = e−iμt

[
u(x)+ a(x) eλt + b∗(x) eλ

∗t
]
,

V (x, t) = e−iμt
[
v(x)+ c(x) eλt + d∗(x) eλ

∗t] (7.7)

in Eqs. (7.1) and solving the resulting linearized equations for the perturbation
eigenmodes a, b, c, d and the eigenvalues λ associated with them.

Typical results for particular values of ε are shown in Figs. 7.2 and 7.3, for
the one- and two-dimensional cases, respectively. In both cases, it is remarkable
to observe that the relevant bifurcation is observed to be subcritical (instead of
supercritical as in the AC limit) pitchfork due to the collision of the fundamental

Fig. 7.2 From [10]: the
bifurcation diagram is shown
for ε = 1.6 in the
one-dimensional model. The
dash–dotted line indicates
solutions found through the
variational approximation,
while solid and dashed lines
show, respectively,
numerically found stable and
unstable steady-state
solutions
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Fig. 7.3 From [10]: the left panel shows the bifurcation diagram in the two-dimensional model
for ε = 0.25, in the same way (i.e., with the same meaning of the different curves) as the one-
dimensional diagram is shown in Fig. 7.2. The right panel displays the dependence of the solution’s
squared norm, E , upon the chemical potential, μ, for the symmetric solutions. Unlike the one-
dimensional case, there are now two different symmetric solutions, resulting in both stable (solid
line) and unstable (dashed lines) solutions for norms below the value at which the symmetric and
asymmetric solution branches intersect

symmetric branch with two unstable asymmetric branches. The latter ones emerge
through a saddle node bifurcation also generating a stable asymmetric branch. In-
terestingly, between the two critical points, both the symmetric branch and the outer
asymmetric one are stable, hence there exists a region of bistability. We also observe
that, in these typical comparisons, the results obtained from the variational approx-
imation are quite close to the fully numerical results. This is more so in the one-
dimensional case than in the two-dimensional case, since, as we have seen before
(e.g., in Chap. 3), since the inaccuracy of the variational ansatz tends to accumulate
the error in higher dimensions.

Typical examples of the existence and stability results obtained numerically, and
how the former compare with the variational predictions are shown in Fig. 7.4 for the
one-dimensional case and in Figs. 7.5 and 7.6 for the two-dimensional case. We note
that in general the VA provides a fairly accurate description of the profile, although
in some cases, it may yield slower decay rates (and slightly different amplitudes)
than the full numerical results. It should also be reminded to the reader that in the
two-dimensional case, as discussed in Chap. 3, there are typically two (symmetric)
solutions corresponding to the same norm, namely a stable and an unstable one, as
is shown, e.g., in Fig. 7.6 (see also the right panel of Fig. 7.3).

There are a couple of physically relevant observations to be made here. On the
one hand, a conclusion following from the comparison of Figs. 7.1 and 7.2 is that
the bifurcation found in the AC limit (see Fig. 7.1) is supercritical, unlike the weakly
subcritical one in Fig. 7.2. This indicates that the character of the pitchfork bifur-
cation should change from subcritical to supercritical with the increase of discrete-
ness, i.e., decrease of ε, which, in turn, should eliminate the unstable asymmetric
branches. In accordance with this expectation, it was found in [10] that the unsta-
ble asymmetric solutions exist only for ε > 0.35, in the one-dimensional case.
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Fig. 7.4 From [10]: plots of solutions belonging to different branches in Fig. 7.2, at E = 3.4.
The top row figures show the solution profiles found by means of the numerical (UN , VN ) and
variational (“analytical”, UA, VA) methods. The bottom row plots illustrate the linear stability
eigenvalues for the numerical solution. The first column presents a stable stationary asymmetric
solution belonging to the outer (upper) branch in Fig. 7.2, the second column is an unstable asym-
metric solution, and the last column shows a stable solution of the symmetric family

On the other hand, in the two-dimensional case, the bifurcation diagram has no
continuum analog due to the occurrence of collapse, contrary to what is the case in
one-dimension. In the two-dimensional case also, due to the existence of a minimum
norm threshold below which the symmetric branch does not exist, as discussed in
Chap. 3 [11–14], it is possible that the asymmetric solution (as in Fig. 7.3) will exist
for powers below the symmetric solution’s excitation threshold. This will enable the
system to access lower norm states than in its one-component incarnation. Finally,
it should be pointed out that the bistability arising from Figs. 7.2 and 7.3 above has
been used in [10] to successfully “steer” the unstable asymmetric solitons dynami-
cally toward either the stable symmetric or the stable asymmetric branch, depending
on the type of the original “kick” (i.e., perturbation) to the unstable solution.

7.2 Nonlinearly Coupled

In the context of nonlinearly coupled DNLS equations, numerous studies have been
present at the theoretical level discussing the properties of solitary waves, both in
one dimension [15–17], and in two-dimensions [1, 15, 18–20], as well as even in
three dimensions [21]. However, experimental results in this system materialized, to
the best of our knowledge, only very recently in [3] (see also the longer exposition
of [22]). These experimental realizations resulted in further theoretical work ad-
dressing various aspects of nonlinearly coupled multicomponent models including
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Fig. 7.5 From [10]: cross section plots of the asymmetric solutions belonging to different branches
in Fig. 7.3, at E = 1.435. The top row figures show the solutions found by means of the numer-
ical (UN , VN ) and variational (“analytical,” UA, VA) methods, and the bottom row plots display
linear stability eigenvalues for the numerical solution. The first and second columns represent,
respectively, stable and unstable solutions belonging to the asymmetric branches of the bifurcation
diagram, respectively

switching and instability-induced amplification, modulational instability, PN bar-
riers, and stability of localized modes among others [2, 23–25]. Here, we restrict
ourselves to the study of the fundamental modes of the system in one dimension
and a small sampler of the interesting possibilities that arise in higher dimensions
(including multivortex structures, etc.). We refer the interested reader to the above
literature for further details.

7.2.1 One Dimension

The theoretical model put forth in [3] to analyze the experimental results was of the
form

i ȧn = −an − ε (an+1 + an−1)− (|an|2 + A|bn|2
)

an − Bb2
na�n, (7.8)

i ḃn = bn − ε (bn+1 + bn−1)− (|bn|2 + A|an|2
)

bn − Ba2
nb�n. (7.9)
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Fig. 7.6 Same as Fig. 7.5 for two symmetric solutions found at E = 1.435

In the experimental context, an and bn are the appropriately normalized, slowly
varying, complex field envelopes for the transverse electric (TE) and transverse
magnetic (TM) polarized waves, respectively. The constants A and B are respec-
tively associated with the cross-phase modulation (XPM) and four-wave mixing
(FWM) and were evaluated in the experiments of [3] to be approximately equal to
A � 1 and B � 1/2. It is interesting to note that in this case, due to the FWM term,
only the total power (instead of the individual powers of each component, as would
be the case if B = 0)

P =
∑

n

(|an|2 + |bn|2
)

(7.10)

is conserved and based on the analysis of [3], it is connected to the dimen-
sional power Pd (measured in watts) through Pd � 56.4P . While in the anal-
ysis of [2], which we will follow here, the dimensionless coupling ε was con-
sidered a free parameter, in the experimental results reported in [3], it was ε ≈
0.921.

Seeking stationary solutions in the form an = ãneiqz and bn = b̃neiqz and subse-
quently dropping the tildes, results in the following stationary equations:
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(q − 1)an − ε (an+1 + an−1)− (|an|2 + A|bn|2
)

an − Bb2
na�n = 0, (7.11)

(q + 1)bn − ε (bn+1 + bn−1)− (|bn|2 + A|an|2
)

bn − Ba2
nb�n = 0. (7.12)

The dimensionless propagation constant q is then an additional (to the dimen-
sionless coupling ε) free parameter and it is in the (ε, q) two-parameter plane that
the results presented herein are given.

The linear stability of a given stationary solution (a0
n, b0

n) of the stationary equa-
tions (7.11) and (7.12) can be obtained through the usual perturbation ansatz

an = a0
n + δ

(
cne−iωz + dneiω�z

)
, (7.13)

bn = b0
n + δ

(
fne−iωz + gneiω�z

)
. (7.14)

Then the matrix eigenvalue problem yielding the eigenfrequency ω reads

ω

⎛

⎜⎜⎜⎝

cn

d�n
fn

g�n

⎞

⎟⎟⎟⎠ = L ·

⎛

⎜⎜⎜⎝

cn

d�n
fn

g�n

⎞

⎟⎟⎟⎠ ,

where

L =

⎛
⎜⎜⎜⎝

L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44

⎞
⎟⎟⎟⎠ .

The N × N (where N is the size of the lattice) blocks of the linearization matrix
are given by

L11 = (q − 1)− ε (�2 + 2)− 2
∣∣a0

n

∣∣2 − A
∣∣b0

n

∣∣2 , (7.15)

L12 = −
(
a0

n

)2 − B
(
b0

n

)2
, (7.16)

L13 = −Aa0
n

(
b0

n

)� − 2B
(
a0

n

)�
b0

n, (7.17)

L14 = −Aa0
nb0

n, (7.18)

L21 = −L�12, (7.19)

L22 = −L11, (7.20)

L23 = −L�14, (7.21)

L24 = −L�13, (7.22)
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L31 = L�13, (7.23)

L32 = L14, (7.24)

L33 = (q + 1)− ε (�2 + 2)− 2
∣∣b0

n

∣∣2 − A
∣∣a0

n

∣∣2 , (7.25)

L34 = −
(
b0

n

)2 − B
(
a0

n

)2
, (7.26)

L41 = −L�14, (7.27)

L42 = −L13, (7.28)

L43 = −L�34, (7.29)

L44 = −L33. (7.30)

In the above, we use the shorthand notation (�2+2)zn = zn+1+ zn−1. In [2], this
eigenvalue problem was solved fully in the AC limit of ε = 0 for the fundamental
branches and subsequent numerical continuation was used to determine the stability
of the branches for finite values of ε.

We first examine the AC limit of individual sites whose complex fields we de-
compose as an = rneiθn and bn = sneiφn , obtaining from Eqs. (7.11) and (7.12)

(q − 1)− (r2
n + As2

n

)− Bs2
n e2i(φn−θn) = 0, (7.31)

(q + 1)− (s2
n + Ar2

n

)− Br2
n e−2i(φn−θn) = 0. (7.32)

From these equations, we obtain

θn − φn = k
π

2
(7.33)

with k ∈ Z . The simplest possible solutions are the ones that involve only one of
the two branches and were hence termed TE and TM modes, respectively, in [26].
The TE solution of Eqs. (7.31) and (7.32) has the form (in the present limit)

rn = ±
√

q − 1, sn = 0 (7.34)

and exists only for q > 1. On the other hand, the TM mode features

rn = 0, sn = ±
√

q + 1 (7.35)

and is only present for q > −1.
In addition to these, there are two possible mixed mode solutions allowed by

Eq. (7.33). The first one (e2i(θn−φn ) = 1) was characterized as a linearly polarized
(LP) branch in [3], involving in-phase contributions from both the TE and TM com-
ponents. In this case, the linear system of Eqs. (7.31) and (7.32) has the general
solution



7.2 Nonlinearly Coupled 163

rn = ±
√

(A + B)(q + 1)− (q − 1)

(A + B)2 − 1
, (7.36)

sn = ±
√

(A + B)(q − 1)− (q + 1)

(A + B)2 − 1
. (7.37)

If (A + B)2 > 1 (as was the case in the experiment of [3]), this branch only
exists for (A + B)(q + 1) > (q − 1) and (A + B)(q − 1) > (q + 1) (the sign of
the two above inequalities should be reversed for existence conditions in the case
of (A + B)2 < 1). Among the two conditions, in the present setting, the second
one is the most “stringent” for the case A = 2B = 1, which yields the constraint
q ≥ 5 (while the first condition requires for the same parameters q ≥ −5). Finally,
the second mixed mode possibility with e2i(θn−φn ) = −1 represents the so-called
elliptically polarized mode (EP) with amplitudes

rn = ±
√

(A − B)(q + 1)− (q − 1)

(A − B)2 − 1
, (7.38)

sn = ±
√

(A − B)(q − 1)− (q + 1)

(A − B)2 − 1
. (7.39)

If (A − B)2 < 1 (as is experimentally the case), the EP branch will exist if
q − 1 ≥ (A− B)(q + 1) and q + 1 ≥ (A− B)(q − 1) (once again the signs should
be reversed if (A − B)2 > 1). Here, the first condition is more constraining than
the second, imposing for A = 2B = 1 that q ≥ 3 (while the second condition only
requires q ≥ −3).

We now turn to the analysis of the stability of the various single-site branches
(TE, TM, LP, and EP) that can be constructed at the AC limit with one excited site,
while all others are inert. It is straightforward to see [2] from direct inspection of the
stability matrix that the inert sites yield a pair of eigenfrequencies at ±(q − 1), as
well as one at ±(q + 1). On the other hand, the excited site will yield a non-trivial
4×4 block in the stability matrix. One pair of the eigenvalues of that block will be at
ω = 0 due to the gauge invariance of the solution, associated with the conservation
of the total power P . The other pair in the case of the TE mode will be

ωT E = ±
√

(q + 1)2 + (A2 − B2)(q − 1)2 − 2A(q2 − 1). (7.40)

Examining our model for the experimental case of A = 1, B = 1/2, and q > 0,
we find that this eigenfrequency is real for q < 5, while it is imaginary for q > 5
(hence implying the presence of an instability, due to the corresponding eigenvalue
λ = iω becoming real). The mode is stable, on the other hand, for 1 < q < 5.
Similar considerations for the TM mode yield
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ωT M = ±
√

(q − 1)2 + (A2 − B2)(q + 1)2 − 2A(q2 − 1), (7.41)

leading to stability for −1 < q < 3, and instability for q > 3. Finally, for the LP
and EP modes, following [2], we only give the results for A ≈ 2B ≈ 1 as

ωL P = ±2
√

2

5

√
q2 − 25 (7.42)

and

ωE P ± 2
√

2

3

√
q2 − 9, (7.43)

suggesting stability for q ≥ 5 and q ≥ 3, respectively.
Based on the above observations, one can reconstruct the full picture at the AC

limit (and, to be specific, for A ≈ 2B ≈ 1, although it is possible to do for any
value of A and of B). In particular, the TE branch exists for q ≥ 1 and is stable for
1 ≤ q ≤ 5. For q > 5, the branch is destabilized as a new branch emerges, namely
the LP branch, through a pitchfork bifurcation; note that the TM component of this
branch, per Eq. (7.37) is exactly zero at q = 5, hence it directly bifurcates from the
TE branch. The two branches of this supercritical pitchfork correspond to the two
signs of sn in Eq. (7.37). The bifurcating branch “inherits” the stability of the TE
branch for all larger values of q , while the latter branch remains unstable thereafter.
Similarly, the TM branch exists for q ≥ −1 and is stable in the interval−1 ≤ q ≤ 3.
However, at q = 3, a new branch (in fact, a pair thereof) bifurcates with non-
zero rn , beyond the bifurcation point, as in Eq. (7.38). This is accompanied by the
destabilization of the TM branch (due to a real eigenvalue) and the apparent stability
of the ensuing EP branch for all values of q > 3.

In the presence of finite coupling, it is firstly important to determine the nature of
the continuous spectrum, by using an ∼ ei(kn−ωz) and bn ∼ ei(kn−ωz) . The resulting
dispersion relations then read

ω = (q − 1)− 2ε cos(k), (7.44)

ω = (q + 1)− 2ε cos(k). (7.45)

Hence the continuous spectrum extends through the frequency intervals [q−1−
2ε, q − 1 + 2ε] and [q + 1 − 2ε, q + 1 + 2ε] (and their opposites), which for
ε = 0 degenerate to the isolated points q − 1 and q + 1 (obtained previously).
Also, importantly, for q − 1 < 2ε (equivalently for ε > (q − 1)/2), the continuous
spectrum branch will be crossing the origin, leading to the collision of the eigen-
values with their mirror symmetric opposites, that will, in turn, lead to instabilities.
For this reason, we need only consider couplings in the interval ε ∈ [0, (q − 1)/2].
Using the above pieces of information and two-parameter numerical continuation
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Fig. 7.7 TE branch from [2]:
the panel shows the two
parameter bifurcation
diagram of the coupling ε as
a function of q. All the
relevant existence and
stability regimes have been
accordingly labeled
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in [2], the numerical bifurcation diagrams of the different single-site branches were
constructed, which we reproduce below.

The continuation of the TE branch is detailed in Fig. 7.7. For this branch, so-
lutions cannot be obtained for ε > (q − 1)/2, i.e., the branch terminates at that
point with its amplitude tending to zero at this point. Within its region of existence,
the branch has a domain of stability and one of instability. The point of separation
between the two in the AC limit, studied previously, was the critical point of q = 5.
For ε 
= 0, the separatrix curve is shown in Fig. 7.7 and can be well approximated
numerically by the curve εc

T E ≈ (4
√

2/5)
√

q − 5. Hence for q ≤ 5, the solution is
stable for all values of ε in its range of existence (0 < ε < (q − 1)/2), while for
q ≥ 5, the solution is only stable for εc

T E < ε < (q − 1)/2 and unstable (due to a
real eigenvalue pair) for 0 < ε < εc

T E .
The TM branch is somewhat more complicated than the TE one. Firstly, it does

not disappear beyond the critical ε = (q−1)/2; however, it does become unstable as
predicted previously, hence we will, once again, restrict ourselves to this parameter
range. Also, similarly to the TE branch case, there is an εc

T M below which the branch
is always unstable, whereas for ε > εc

T M , the branch may be stable. At the AC limit,
the critical point for the instability is q = 3, as discussed previously; for q > 3,
the critical point is obtained numerically in Fig. 7.8. It can be well approximated
numerically (close to q = 3) by εc

T M ≈ (9/10)
√

q − 3.
However, within the range of potential stability (0 ≤ ε ≤ (q−1)/2 for q ≤ 3, and

εc
T M ≤ ε ≤ (q−1)/2 for q ≥ 3), we observe an additional large region of instability

in the two-parameter bifurcation diagram of Fig. 7.8, due to a complex quartet of
eigenvalues. This instability appears to stem from the point with (q, ε) = (2.2, 0)
in the AC limit, and to linearly expand its range as ε increases. At q = 2.2 in
the AC limit, the point spectrum eigenfrequency of Eq. (7.41) “collides” with the
continuous spectrum point of concentration, corresponding to ω = q − 1. However,
this eigenvalue is associated with a negative Krein signature, i.e., opposite to that
of the continuous band at ω = q − 1 (see Chap. 2 for a detailed discussion of the
Krein signature). The resulting collision therefore leads to the formation of a quartet
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Fig. 7.8 Similarly to Fig. 7.7,
the bifurcation diagram
shows the two-parameter
plane of stability of the TM
branch
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of eigenvalues emerging in the complex plane and, in turn, implying the instability
of the TM configuration. As ε grows, the continuous spectrum band grows linearly
in ε, hence the corresponding interval of q’s, where this instability is present also
grows at the same rate. Along the same vein, it is worth pointing out that the line of
this instability threshold and that of ε = (q − 1)/2 are parallel.

The LP branch has in-phase contributions of the TE and TM modes and exists
for q > 5. It emerges through a supercritical pitchfork as q is varied for fixed ε.
Since this branch stems from the TE one, it only arises for 0 < ε < εc

T E and q > 5
and it is stable throughout its interval of existence, which is exactly the interval of
Fig. 7.7 where the TE branch is found to be unstable.

Finally, the EP branch is shown in Fig. 7.9 and its description is somewhat anal-
ogous to that of the LP one. In particular, for fixed q close to (and larger than) 3
and varying ε, the branch exists and is stable for 0 < ε < εc

T M , since it emerges
from the TM branch through a supercritical pitchfork (as q is increased). Inter-
estingly, for q > 3.62, this phenomenology appears to change and an expanding

Fig. 7.9 The panel shows the
two-parameter diagram for
the EP mode from [2]. The
region for q > 3 and
0 < ε < εc

T M , where this
modes exists is separated by
the dashed line into a stable
and an unstable regime. For
comparison the extension of
the regions of
stability/instability of the TM
mode from Fig. 7.8 are also
included
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(for increasing q) interval of oscillatory instability within the range of existence of
the EP branch appears to arise. Returning to the AC limit, we note that the EP branch
has a point spectrum eigenfrequency given by Eq. (7.43) with a negative Krein sig-
nature which upon collision with the continuous spectrum band of eigenfrequencies
leads to instability. Setting the frequency of Eq. (7.43) equal to q − 1, we obtain
that this collision occurs at q = 9. For lower values of q , this “collision” will occur
for a finite (non-zero) interval of values of ε, which is the source of the oscillatory
instability of the EP mode shown by the dashed line in Fig. 7.9.

7.2.2 Higher Dimensions

In addition to the one-dimensional incarnation of the above nonlinearly coupled
mode, a number of studies have considered ground states [1] or excited states
[19, 20] in two-dimensional DNLS lattices and even three-dimensional examples
thereof [21]. Here we give some representative examples of these results and refer
the interested reader to the corresponding references for more details.

In particular, in two-dimensional settings, among the most interesting solutions
that it is possible to construct are the vortex pairs that were considered in [19].
Such pairs can have the form of the so-called double-charge configuration (S, S),
where S is the topological charge of the structure, or the so-called hidden charge
configuration (S,−S), where the pair denotes the vorticity of each of the com-
ponents. It was shown even in the continuum analog of NLS-type models that
these distinct possibilities have different stability windows in terms of the model
parameters [27, 28]. In particular, in the setting of [19], a so-called vortex cross
configuration of charge S = 1 was considered as the single-component building
block consisting of a vortex on the four sites: (−1, 0), (1, 0), (0, 1), and (0,−1).
In fact, such a vortex cross inspired by a prototypical configuration of the form
un,m ∝ exp(iφ) = cos(φ)+ i sin(φ) was the original motivation in [29] for suggest-
ing the existence of a discrete vortex in the context of the two-dimensional DNLS
model. For this discrete vortex cross, the technique of the Lyapunov–Schmidt reduc-
tions as developed in Chap. 3 yields two pairs of imaginary eigenvalues λ = ±2iε,
while a higher order calculation yields for the remaining pair of nonzero eigenvalues
(since the fourth pair is at the origin due to the U(1) invariance) the approximation
λ = ±4iε2. The comparison of these predictions with the full numerical results is
shown in Fig. 7.10, indicating good agreement with the analytical predictions for
coupling strengths up to ε ≈ 0.1. The instability of this mode arises for ε ≈ 0.395.

Subsequently, the case of coupled vortices of the double charge and of the hidden
charge variety were examined in the model

[
i

d

dt
+ C�2 +

( |φm,n|2 β|ψm,n|2

β|φm,n|2 |ψm,n|2

)](
φm,n

ψm,n

)
= 0, (7.46)

where β is used to denote the strength of the XPM (and equal SPMs [self-phase
modulations] are assumed). In that setting, it was found by appropriately extending
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Fig. 7.10 Eigenvalues of the
scalar vortex cross versus ε
from [19]. The top panel
shows the imaginary part of
the relevant eigenvalues,
while the bottom panel shows
the real part. The solid lines
display the numerical results,
while the dashed ones
correspond to the asymptotic
approximations given in the
text
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the LS technique to the multicomponent setting (see [19] for details) that it is possi-
ble to compute the relevant eigenvalues as a function of β. Two leading order pairs of
these eigenvalues preserve the form of the one-component problem (λ = ±2iε), but
then there exists a pair which is intrinsically dependent on β at the leading order,
namely λ = ±2iε

√
(1− β)/(1+ β) (which is shared by both double and hidden

charge configurations). More importantly, at the next order, the eigenvalues of the
(1, 1) configuration differ from those of the (1,−1) configuration. In particular, for
the former we have a pair λ = ±4iε2 and one which is λ = ±4i |(1−β)/(1+β)|ε2,
while for the latter there is a double pair λ = ±4i

√
(1− β)/(1+ β)ε2. Interest-

ingly, these differences in eigenvalues are evident also in the numerical results il-
lustrated in Fig. 7.11; note, in particular, the marked differences between the (1, 1)
and (1,−1) eigenvalues, and the good agreement of both with the corresponding
theoretical result for small ε < 0.1. Along the same vein, it should be pointed
out that the double charge branch (1, 1) becomes unstable for ε > 0.395, while
the (1,−1) branch becomes unstable only for ε > 0.495, i.e., has a wider stabil-
ity interval. We have found this to be generally true for the cases with β < 1.
On the other hand, for values of β > 1, both branches are always unstable (i.e.,
∀ε). Lastly, the most delicate case is that of β = 1, whereby there is an addi-
tional homotopic symmetry between the two components, as both the transforma-
tions φn,m = cos(δ)�n,m and ψ = sin(δ)�n,m (pertaining to the (1, 1) solution for
δ = π/4) and φn,m = cos(δ)�n,m and ψ = sin(δ)�∗n,m (pertaining to the (1,−1)
solution for δ = π/4), yield a one-component equation (and δ is a free parameter).
Hence, these cases need to be treated specially, as was done in [19], with the, perhaps
somewhat unexpected, result that this special case leads to stability for small ε in
the (1, 1) case, while it results in immediate instability for the (1,−1) case due to a
double real eigenvalue pair λ = ±2

√
3ε2 (note the marked difference between this

special case and the cases with β < 1).
In addition to these solutions associated with S = 1, it is also possible to obtain

similar results for the different vortex pairs of S = 3, in the form of both double
charge (3, 3) and hidden charge (3,−3) vortices, as is illustrated in Fig. 7.12 for
ε = 0.25 and β = 2/3. In this particular case, for both types of configuration,
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Fig. 7.11 From [19]: the contour plots of the top two rows show the amplitude and phase (left and
right panels, respectively) of the two components (top and bottom, respectively) for a (1, 1) (left
four subplots) and a (1,−1) (right four subplots) vortex configuration, in the case of β = 2/3, and
ε = 0.1. The bottom two rows show for the case of β = 2/3 the eigenvalues of the vector vortex
cross as a function of ε. Left: (1, 1). Right: (1,−1). The solid lines show the numerical results,
while the dashed lines show the asymptotic approximations. Bold curves correspond to double
eigenvalues
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Fig. 7.12 The left panels show the case of a double charge with S = 3 (i.e., a (3, 3) two-component
vortex, similarly to the top two rows of Fig. 7.11 above). The right panels illustrate the hidden
charge case of a (3,−3) two-component vortex. Both are for ε = 0.25 and β = 2/3
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Fig. 7.13 A complex of two-component orthogonal vortices with S = 1 from [21] in the two-
component three-dimensional system is shown for ε = 0.01 and β = 0.5. The top panels corre-
spond to the first component, while the bottom ones to the second component; the left panels show
the respective real parts, while the right ones the corresponding imaginary parts

the instability occurs for ε ≥ 0.1; however, again the differences in the relevant
eigenvalues and instability growth rates are evident. For instance, for ε = 0.4, the
growth rate of the most unstable eigenvalue for the (3, 3) configuration is 0.3077,
while for the (3,−3) one it is 0.2097.

Finally, as an interesting example of a possibility that arises in such multicom-
ponent systems in three spatial dimensions, we illustrate the result of Fig. 7.13,
whereby a stable vortex complex has been constructed in which one component
has a vortex in the (l,m) plane, while the other has a vortex in the (m, n) plane
(perpendicular to the first one). Such configurations were indicated in [21] as being
stable for sufficiently small ε, again in the case where β < 1 (while they should be
expected to be unstable for β > 1).
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Chapter 8
Experimental Results Related
to DNLS Equations

Mason A. Porter

8.1 Introduction

Discrete nonlinear Schrödinger (DNLS) equations can be used to model numer-
ous phenomena in atomic, molecular, and optical physics. The general feature of
these various settings that leads to the relevance of DNLS models is a competition
between nonlinearity, dispersion, and spatial discreteness (which can be periodic,
quasiperiodic, or random). In three dimensions (3D), the DNLS with cubic nonlin-
earity is written in normalized form as

i u̇l,m,n = −ε�ul,m,n ± |ul,m,n |2ul,m,n + Vl,m,n (t)ul,m,n , (8.1)

where � is the discrete Laplacian, ε is a coupling constant, ul,m,n is the value of the
field at site (l,m, n), and Vl,m,n(t) is the value of the external potential at that site.
In Eq. (8.1), a + sign represents the defocusing case and a − sign represents the
focusing one. Both of these situations have been discussed extensively throughout
this book.

The study of DNLS equations dates back to theoretical work on biophysics in the
early 1970s [1]. In the late 1980s, this early research motivated extensive analysis of
such equations for the purpose of modeling the dynamics of pulses in optical waveg-
uide arrays [2]. One decade later, experiments using fabricated aluminum gallium
arsenide (AlGaAs) waveguide arrays [3] stimulated a huge amount of subsequent re-
search, including experimental investigations of phenomena such as discrete diffrac-
tion, Peierls barriers, diffraction management [4, 5], gap solitons [6], and more
[7]. As was first suggested theoretically in [8] and realized experimentally in [9–
12], DNLS equations also accurately predict the existence and stability properties
of nonlinear localized waves in optically induced lattices in photorefractive media
such as strontium barium niobate (SBN). Because of this success, research in this

M.A. Porter (B)
Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of
Oxford, Oxford, England, UK
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P.G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation, STMP 232, 175
175–189, DOI 10.1007/978-3-540-89199-4 8, c© Springer-Verlag Berlin Heidelberg 2009
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arena has exploded; structures such as dipoles [13], quadrupoles [14], multiphase
patterns (including soliton necklaces and stripes) [15, 16], discrete vortices [17, 18],
and rotary solitons [19] have now been theoretically predicted and experimentally
obtained in lattices induced with a self-focusing nonlinearity. As discussed in [20]
(and references therein), self-defocusing realizations have also been obtained. These
allow the construction of dipole-like gap solitons, etc.

DNLS equations have also been prominent in investigations of Bose–Einstein
condensates (BECs) in optical lattice (OL) potentials, which can be produced by
counterpropagating laser beams along one, two, or three directions [21]. This field
has also experienced enormous growth in the last 10 years; major experimental
results that have been studied using DNLS equations include modulational (“dy-
namical”) instabilities [22, 23], gap soliton dynamics [24], Bloch oscillations and
Landau–Zener tunneling [25], and the production of period-doubled solutions [26].

8.2 Optics

For many decades, optics has provided one of the traditional testbeds for investiga-
tions of nonlinear wave propagation [27]. For example, the (continuous) nonlinear
Schrödinger (NLS) equation provides a dispersive envelope wave model for describ-
ing the electric field in optical fibers. In the presence of a spatially discrete external
potential (such as a periodic potential), one can often reduce the continuous NLS to
the discrete NLS. In this section, we will consider some appropriate situations that
arise in optical waveguide arrays and photorefractive crystals. Many of these optical
phenomena have direct analogs in both solid state and atomic physics [28].

8.2.1 Optical Waveguide Arrays

An optical waveguide is a physical structure that guides electromagnetic waves in
the optical spectrum. Early proposals in nonlinear optics suggested that light beams
can trap themselves by creating their own waveguide through the nonlinear Kerr
effect [29]. Waveguides confine the diffraction, allowing spatial solitons to exist. In
the late 1990s, Eisenberg et al. showed experimentally that a similar phenomenon
(namely, discrete spatial solitons) can occur in a coupled array of identical waveg-
uides [3]. One injects low-intensity light into one waveguide (or a small number of
neighboring ones); this causes an ever increasing number of waveguides to couple
as it propagates, analogously to what occurs in continuous media. If the light has
high intensity, the Kerr effect changes the refractive index of the input waveguides,
effectively decoupling them from the rest of the array. That is, certain light distribu-
tions propagate with a fixed spatial profile in a limited number of waveguides; see
Figs. 8.1 and 8.2.

The standard theoretical approach used to derive a DNLS equation in the con-
text of one-dimensional (1D) waveguide arrays is to decompose the total field
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Fig. 8.2 Experimental observation of a soliton (bottom panel) at the output facet of a waveguide
array. The peak powers are 70 W (top), 320 W (center), and 500 W (bottom). Reprinted from Fig. 3
with permission from [3]. Copyright 1998 by the American Physical Society

(describing the envelope amplitude) into a sum of weakly coupled fundamental
modes that are excited in each individual waveguide [2, 30]. If one supposes that
each waveguide is only coupled to its nearest neighbors, this approach amounts to
the tight-binding approximation of solid-state physics. For lossless waveguides with
a Kerr (cubic) nonlinearity, one obtains the DNLS

i
d En

dz
+βEn+ c(En+1+ En−1)+λ|En|2 En+μ(|En+1|2+|En−1|2)En = 0 , (8.2)

where En is the mode amplitude of the nth waveguide, z is the propagation direction,
β is the field propagation constant of each waveguide, c is a coupling coefficient, and
λ and μ are positive constants that, respectively, determine the strengths of the self-
phase and cross-phase modulations experienced by each waveguide. The quantity
λ is proportional to the optical angular frequency and Kerr nonlinearity coefficient,
and is inversely proportional to the effective area of the waveguide modes [30]. In
most situations, the self-phase modulation dominates the cross-phase modulation
(which arises from the nonlinear overlap of adjacent modes), so that μ � λ. This
allows one to set μ = 0 and yields the model that Davydov employed for α-spiral
protein molecules [1]. The transformation En(z) = �n(z) exp[i (2c + β)z] and a
rescaling then gives a 1D version of Eq. (8.1).

The impact of [3] was immediate and powerful, as numerous subsequent exper-
iments reported very interesting phenomena. For example, this setting provided the
first experimental demonstration of the Peierls–Nabarro (PN) potential in a macro-
scopic system [4], thereby explaining the strong localization observed for high-
intensity light in the original experiments [3]. That is, the PN potential describes the
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energy barrier between the (stable) solitons that are centered on a waveguide and
propagate along the waveguide direction and the (unstable) ones that are centered
symmetrically between two waveguides and tend to shift away from the waveguide
direction. Eisenberg et al. [5] have also exploited diffraction management (which
is analogous to the dispersion management ubiquitously employed in the study of
temporal solitons [31]) to produce structures with designed (reduced, canceled, or
reversed) diffraction properties. The ability to engineer the diffraction properties
has paved the way for new possibilities (not accessible in bulk media) for con-
trolling light flow. For example, using two-dimensional (2D) waveguide networks,
discrete solitons can travel along essentially arbitrarily curves and be routed to any
destination [32]. This may prove extremely helpful in the construction of photonic
switching architectures.

A waveguide array with linearly increasing effective refractive index, which
can be induced using electro- or thermo-optical effects, has also been used to
demonstrate Bloch oscillations (periodic recurrences) in which the initial distribu-
tion is recovered after one oscillation period [33]. A single-waveguide excitation
spreads over the entire array before refocusing into the initial guide. More recently,
Morandotti et al. investigated the interactions of discrete solitons with structural
defects produced by modifying the spacing of one pair of waveguides in an oth-
erwise uniform array [34]. This can be used to adjust the PN potential. It has also
been demonstrated experimentally that even a binary array is sufficient to generate
discrete gap solitons, which can then be steered via inter-band momentum exchange
[35]. From a nonlinear dynamics perspective, an especially exciting result is the ex-
perimental observation of discrete modulational instabilities [36]. Using an AlGaAs
waveguide array with a self-focusing Kerr nonlinearity, Meier et al. found that such
an instability occurs when the initial spatial Bloch momentum vector is within the
normal diffraction region of the Brillouin zone. (It is absent even at very high-power
levels in the anomalous diffraction regime.) More recent experimental observations
include discrete spatial gap [37] and dark [38] solitons in photovoltaic lithium nio-
bate (LiNbO3) waveguide arrays, evidence for the spontaneous formation of discrete
X waves in AlGaAs waveguide arrays [39], and an analog of Anderson localization
(which occurs in solid-state physics when an electron in a crystal becomes immobile
in a disordered lattice) [40].

8.2.2 Photorefractive Crystals

Photorefractive crystals can be used to construct 2D periodic lattices via plane wave
interference by employing a technique known as optical induction. This method,
which was developed theoretically in [8] and subsequently demonstrated experi-
mentally for 1D discrete solitons in [10] and bright 2D solitons in [9], has become a
very important playground for investigations of nonlinear waves in optics [41]. One
obtains a periodic lattice in real time through the interference of two or more plane
waves in a photosensitive material (see Fig. 8.3). One then launches a probe beam,
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Fig. 8.3 (Right) Diagram of experimental setup for the creation of a photorefractive crystal lattice
with electro-optic anisotropy. (Left) Typical observation of the lattice at the terminal face of the
crystal. Each waveguide has a diameter of about 7 �m and is about 11 �m away from its nearest
neighbors. Reprinted with permission from Fig. 1 in [9]. Copyright 2003 by the Nature Publishing
Group

which experiences discrete diffraction (the optical equivalent of quantum tunnelling
in a periodic potential) and can form a discrete soliton provided the nonlinearity
is sufficiently large. The model for photorefractive crystals is a continuous NLS
equation with saturable nonlinearity [9],

iUz +Uxx +Uyy − E0

1+ Il + |U |2 U = 0 , (8.3)

where z is the propagation distance, (x, y) are transverse coordinates, U is the
slowly varying amplitude of the probe beam (normalized by the dark irradiance
of the crystal), and E0 is the applied dc field, and Il is a lattice intensity function.
For a square lattice, Il = I0 sin2{(x + y)/

√
2} sin2{(x − y)/

√
2}, where I0 is the lat-

tice’s peak intensity. DNLS equations have been enormously insightful in providing
corroborations between theoretical predictions and experimental observations (see,
in particular, the investigations of discrete vortices in [17, 18, 42]), although they
do not provide a prototypical model in this setting the way they do with waveguide
arrays.

For optical induction to work, it is essential that the interfering waves are un-
affected by the nonlinearity (to ensure that the “waveguides” are as uniform as
possible) but that the probe (soliton-forming) beam experiences a significant non-
linearity. This can be achieved by using a photorefractive material with a strong
electro-optic anisotropy. In such materials, coherent rays interfere with each other
and form a spatially varying pattern of illumination (because the local index of re-
fraction is modified, via the electro-optic effect, by spatial variations of the light
intensity). This causes ordinary polarized plane waves to propagate almost linearly
(i.e., with practically no diffraction) and extraordinary polarized waves to propagate
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in a highly nonlinear fashion. The material of choice in the initial experiments of [9]
was the (extremely anisotropic) SBN:75 crystal.

The theoretical prediction and subsequent experimental demonstration of 2D
discrete optical solitons has led to the construction and analysis of entirely new
families of discrete solitons [8, 9]. As has been discussed throughout this book,
the extra dimension allows much more intricate nonlinear dynamics to occur than
is possible in the 1D waveguides discussed above. Early experiments demonstrated
novel self-trapping effects such as the excitation of odd and even nonlinear localized
states [11]. They also showed that photorefractive crystals can be used to produce
index gratings that are more controllable than those in fabricated waveguide arrays.

Various researchers have since exploited the flexibility of photorefractive crystals
to create interesting, robust 2D structures that have the potential to be used as carri-
ers and/or conduits for data transmission and processing in the setting of all-optical
communication schemes (see [41, 42] and references therein). In the future, 1D ar-
rays in 2D environments might be used for multidimensional waveguide junctions,
which has the potential to yield discrete soliton routing and network applications.
For example, Martin et al. observed soliton-induced dislocations and deformations
in photonic lattices created by partially incoherent light [12]. By exploiting the
photorefractive nonlinearity’s anisotropy, they were able to create optical struc-
tures analogous to polarons1 from solid-state physics [43] . An ever-larger array of
structures has been predicted and experimentally obtained in lattices induced with
a self-focusing nonlinearity. For example, Yang et al. demonstrated discrete dipole
(two-hump) [13] and quadrupole (four-hump) solitons [14] both experimentally and
theoretically. They also showed that both dipole and quadrupole solitons are stable
in a large region of parameter space when their humps are out of phase with each
other. (The stable quadrupole solitons were square-shaped; adjacent humps had a
phase difference of π , so that diagonal humps had the same phase.) Structures that
have been observed in experiments in the self-defocusing case include dipole-like
gap solitons [20] and gap-soliton vortices [44].

More complicated soliton structures have also been observed experimentally.
For example, appropriately launching a high-order vortex beam (with, say, topo-
logical charge m = 4) into a photonic lattice can produce a stationary necklace
of solitons [15]. Stripes of bright [16] and gap [45] solitons have also been cre-
ated [16], providing an interesting connection with several other pattern-forming
systems [46]. Another very fruitful area has been the construction of both off-site
and on-site discrete vortices [17, 18, 42]. Recent experimental observations in this
direction have included self-trapping and charge-flipping of double-charged optical
vortices (which lead to the formation of rotating quasivortex solitons) [47]. Dis-
crete rotary solitons [19] and discrete random-phase solitons [48] have also been
observed. In fact, the results of [48] are reminiscent of the Fermi–Pasta–Ulam (FPU)

1 A polaron is a quasiparticle composed of a conducting electron and an induced polarization field
that moves with the electron.
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Fig. 8.4 Experimental image
of the decagonal
field-intensity pattern in an
optically induced nonlinear
photonic quasicrystal.
Adapted with permission
from Fig. 1 in [50]. Copyright
2006 by the Nature
Publishing Group

numerical experiments [49], as an initially homogeneous distribution in momentum
space evolved into a steady-state multihumped soliton power spectrum.

The investigation of photorefractive crystals continues to produce experimental
breakthroughs, offering ever more connections to solid-state physics. One particu-
larly exciting experiment was the observation of dispersive shock waves [51]. An-
other fascinating result was the observation of an analog of Anderson localization
in disordered 2D photonic lattices [52]. In this context, the transverse localization
of light is caused by random fluctuations. Wave, defect, and phason dynamics (in-
cluding discrete diffraction and discrete solitons) have recently been investigated
experimentally in optically induced nonlinear photonic quasicrystals [50, 53] (see
Fig. 8.4), whose theoretical investigation provides one of the outstanding challenges
for DNLS models.

8.3 Bose–Einstein Condensation

At sufficiently low temperature, bosonic particles in a dilute 3D gas occupy the
same quantum (ground) state, forming a BEC [54–57]. Seventy years after they
were first predicted theoretically, dilute (i.e., weakly interacting) BECs were finally
observed experimentally in 1995 in vapors of rubidium and sodium [58, 59]. In
these experiments, atoms were loaded into magnetic traps and evaporatively cooled
to temperatures well below a microkelvin. To record the properties of the BEC, the
confining trap was then switched off, and the expanding gas was optically imaged
[55]. A sharp peak in the velocity distribution was observed below a critical temper-
ature Tc, indicating that condensation had occurred.

If the temperature is well below Tc, then considering only two-body, mean-field
interactions, the BEC dynamics is modeled using the 3D Gross–Pitaevskii (GP)
equation (i.e., the continuous cubic NLS equation),
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i��t =
(
−�

2∇2

2m
+ g0|�|2 + V(r)

)
� , (8.4)

where � = �(r, t) is the condensate wave function (order parameter) normalized to
the number of atoms, V(r) is the external potential, and the effective self-interaction
parameter is g̃ = [4π�

2a/m][1+O(ζ 2)], where a is the two-body scattering length
and ζ ≡

√
|�|2|a|3 is the dilute gas parameter [55, 60, 61]. The cubic nonlinearity

arises from the nearly perfect contact (delta function) interaction between particles.
In a quasi-1D (“cigar-shaped”) BEC, the transverse dimensions are about equal

to the healing length, and the longitudinal dimension is much larger than the trans-
verse ones. One can then average (8.4) in the transverse plane to obtain the 1D GP
equation [55, 62],

i�ut = −
[

�
2

2m

]
uxx + g|u|2u + V (x)u , (8.5)

where u, g, and V are, respectively, the rescaled 1D wave function, interaction pa-
rameter, and external trapping potential. The interatomic interactions in BECs are
determined by the sign of g: they are repulsive (producing a defocusing nonlinearity)
when g > 0 and attractive (producing a focusing nonlinearity) when g < 0.

BECs can be loaded into OL potentials (or superlattices, which are small-scale
lattices subjected to a large-scale modulation), which are created experimentally
as interference patterns of laser beams. Consider two identical laser beams with
parallel polarization and equal peak intensities, and counterpropagate them as in
Fig. 8.5a so that their cross sections overlap completely. The two beams create an
interference pattern with period d = λL/2 (half of the optical wavelength) equal
to the distance between consecutive maxima of the resulting light intensity. The
potential experienced by atoms in the BEC is then [21]

V (x) = V0 cos2
(πx

d

)
, (8.6)

where V0 is the lattice depth. See [21] for numerous additional details.

Fig. 8.5 Diagram of the creation of a 1D optical lattice potential using (a) counterpropagating
laser beams and (b) beams intersecting at an angle θ inducing a spacing d = λL cos(θ/2)/2. The
quantities kL and k′L denote the wave vectors of the beams. The lattice period is given by the
distance d between consecutive maxima of light intensity in the interference pattern. Reprinted
with permission from Fig. 1 in [21]. Copyright 2006 by the American Physical Society
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BECs were first successfully placed in OLs in 1998 [25], and numerous labs
worldwide now have the capability to do so. Experimental and theoretical inves-
tigations of BECs in OLs (and related potentials) have developed into one of the
most important subdisciplines of BEC investigations [21, 54, 63]. We focus here on
results that can be modeled using a DNLS framework; see the reviews [21, 64] for
discussions of and references to many other outstanding experiments. The first big
experimental result was the observation of Bloch oscillations in a repulsive BEC
by Anderson and Kasevich [25]. They used a trapping potential with both an OL
and a linear (gravitational) component to create a sloping periodic (“washboard”)
potential. When the slope was small, wave packets remained confined in a single
band and oscillated coherently at the Bloch frequency. This effect is closely related
to the ac Josephson effect in superconducting electronic systems. For larger slopes,
wave packets were able to escape their original band and transition to higher states.
Trombettoni and Smerzi analyzed the results of these experiments using a DNLS
equation that they derived from the GP equation with the appropriate (OL plus
gravitational) potential using the tight-binding approximation valid for moderate
amplitude potentials in which Bloch waves are strongly localized in potential wells
[65]. In this paper, they also showed that discrete breathers (specifically, bright gap
solitons) can exist in BECs with repulsive potentials (i.e., defocusing nonlinearities).

Other fundamental experimental work on BECs in OLs has concerned super-
fluid properties. In 2001, Burger et al. treated this setting as a homogeneous su-
perfluid with density-dependent critical velocity [66]. Cataliotti et al. then built on
this research to examine a classical transition between superfluid and Mott insulator
behavior in BECs loaded into an OL superimposed on a harmonic potential [23].
(The better-known quantum transition was first shown in [67].) The BEC exhibits
coherent oscillations in the “superfluid” regime and localization in the harmonic
trap in the “insulator” regime, in which each site has many atoms of its own and
is effectively its own BEC. The transition from superfluidity to the insulating state
occurs when the condensate wave packet’s initial displacement is larger than some
critical value or, equivalently, when the velocity of its center of mass is larger than
a critical velocity that depends on the tunneling rate between adjacent OL sites.
These experiments confirmed the predictions of [22], which used a DNLS approach
to predict the onset of this superfluid–insulator transition via a discrete modulational
(“dynamical”) instability and to derive an analytical expression for the critical ve-
locity at which it occurs.

Subsequent theoretical work with DNLS equations predicted that modulational
instabilities could lead to “period-doubled” solutions in which the BEC wave func-
tion’s periodicity is twice that of the underlying OL [68]. (Period-doubled wave
functions were simultaneously constructed using a GP approach [69].) The modula-
tional instability mechanism was exploited experimentally the next year to construct
these solutions by parametrically exciting a BEC via periodic translations (shaking)
of the OL potential [26]. Parametric excitation of BECs promises to lead to many
more interesting insights in the future.

By balancing the spatial periodicity of the OL with the nonlinearity in the DNLS,
one can also construct intrinsic localized modes (discrete breathers) known as bright
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gap solitons, which resemble those supported by Bragg gratings in nonlinear optical
systems. In BECs, such breathers have been predicted in two situations:

1. The small amplitude limit in which the value of chemical potential is close to
forbidden zones (“gaps”) of the underlying linear Schrödinger equation with a
periodic potential [70].

2. In the tight-binding approximation, for which the continuous NLS equation with
a periodic potential can be reduced to the DNLS equation [22]. (As mentioned
earlier, this corresponds to the standard manifestation of the DNLS in waveguide
arrays.)

Recent experiments [24] have confirmed the first prediction (see Fig. 8.6).
Another important development was the experimental construction of 2D and

3D OLs [21], which as in optical systems leads to much more intricate nonlinear
localized structures. One can obtain higher dimensional OL potentials by using ad-
ditional pairs of laser beams. The simplest way to do this is to have pairs of counter-
propagating laser beams along each of two or three mutually orthogonal axes. The
interference pattern obtained with this many laser beams depends sensitively on
their polarizations, relative phases, and orientations. This allows experimentalists to
construct a large variety of OL geometries in 2D and 3D. In 2001, Greiner et al.
showed that BECs can be efficiently transferred into 2D lattice potentials by adia-
batically increasing the depth of the lattice [71, 72]. They confined atoms to an array
of narrow potential tubes, each of which was filled with a 1D quantum gas. Around
the same time, Burger et al. confined quasi-2D BECs into the lattice sites of a 1D
OL potential [73]. By adding more laser beams and/or controlling their polarizations
and relative phases, experimentalists can in principle create even more complicated
potentials (such as quasiperiodic or Kagomé lattices) [74]. Very recently, there has
been also been a great deal of theoretical and experimental interest in rotating optical
lattices [75], which can likely be modeled using an appropriate DNLS framework to
study interesting vortex dynamics. Such experiments and (more generally) investi-
gations of BECs with effective fields obtained by this and other [76] means promise
to yield considerable insights into quantum hall physics.

Fig. 8.6 Experimental
demonstration of a bright gap
soliton (the shading shows
the atomic density). A small,
stable peak forms after about
25 ms. Reprinted with
permission from Fig. 1
in [24]. Copyright 2004 by
the American Physical
Society
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In addition to the fascinating insights into basic physics discussed above, two
other major consequences of investigations of BECs in OLs and related potentials
have been to bring quantum computation one (small) step closer to reality and
to help bridge the gap between condensed matter physics and atomic/molecular
physics. One of the key proposed systems for constructing a quantum computer is
a BEC in optical lattice and related potentials [77, 78]. This was the motivation for
the experimental implementation of optical superlattice potentials [79] and its 2D
egg-carton descendent, which consists of an optical lattice potential in one cardinal
direction and a double-well potential in another [80]. This has led very recently to
the experimental realization of a two-qubit quantum gate [81]. The second front has
been advanced experimentally in the OL context by investigations of Fermi con-
densates in OL potentials [82, 83], Bose–Fermi mixtures in OL potentials [84], and
more. Finally, in parallel with the recent insights in optics discussed above, Ander-
son localization has been observed recently both for a BEC placed in a 1D waveg-
uide with controlled disorder [85] and for a BEC in a 1D quasiperiodic OL [86].

8.4 Summary and Outlook

In this review, I have discussed applications in nonlinear optics and Bose–Einstein
condensation in which DNLS equations have been used to explain fundamental
and striking experimental results. In optics, DNLS equations provide a prototypical
model for the dynamics of discrete solitons in waveguide arrays. The same is true
for BECs in optical lattice (and related) potentials. DNLS equations have also been
used successfully to predict robust experimental features in photorefractive crystals,
although they do not provide a prototypical model in this setting.

DNLS equations arise in a number of other contexts as envelope models for
several types of nonlinear lattice equations (such as ones of Klein–Gordon type).
Related experiments have revealed the existence of intrinsic localized modes in
these systems [87]. Relevant settings include quasi-1D antiferromagnets [88], mi-
cromechanical oscillator arrays [87], and electric transmission lines [89].

DNLS equations have also been used in a variety of other settings to make
interesting predictions that have not yet been verified experimentally. For exam-
ple, in composite metamaterials, Shadrivov et al. have analyzed the modulational
instability of different nonlinear states and demonstrated that nonlinear metamate-
rials support the propagation of domain walls (kinks) that connect regions of posi-
tive and negative magnetization [90]. Very recently, dissipative discrete breathers
were constructed in a model of rf superconducting quantum interference device
(SQUID) arrays [91]. (Similar discrete breathers have also recently been studied
theoretically in both 1D and 2D in the setting of metamaterials [92].) This model
is reminiscent of a DNLS with dissipation, except that the nonlinearity was si-
nusoidal rather than cubic. A bit farther afield, 1D chains of granular materials
(sometimes called “phononic crystals”) have been given increasing attention from
both experimentalists and theorists in recent years [93, 94]. When given an initial
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pre-compression, they can exhibit optical modes that are expected to be describable
as gap solitons in a nonlinear lattice model reminiscent of FPU chains.

In conclusion, DNLS equations and related models have been incredibly suc-
cessful in the description of numerous experiments in nonlinear optics and Bose–
Einstein condensation. They also show considerable promise in a number of other
settings, and related nonlinear lattice models are also pervasive in a huge number of
applications. To borrow a phrase from the defunct rock band Timbuk3, the future’s
so bright that we’ve got to wear shades.
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71. Greiner, M., Bloch, I., Mandel, O., Hänsch, T.W., Esslinger, T.: Appl. Phys. B 73, 769 (2001) 185
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Chapter 9
Numerical Methods for DNLS

Kody J.H. Law and Panayotis G. Kevrekidis

9.1 Introduction

In this section, we briefly discuss the numerical methods that have been used ex-
tensively throughout this book to obtain the numerical solutions discussed herein,
as well as to analyze their linear stability and to propagate them in time (e.g., to
examine their dynamical instability, or to confirm their numerical stability).

Our tool of preference, regarding the numerical identification of solutions con-
sists of the so-called Newton–Raphson (or simply Newton) method. We choose the
Newton method because of its quadratic convergence, upon the provision of a suit-
ably good initial guess [1]. It should be clearly indicated here that different groups
use different methods to obtain stationary solutions. For instance, methods based
on rewriting the standing wave problems of interest in Fourier space and applying
Petviashvili’s iteration scheme have been proposed [2, 3] and shown to converge for
nonlinear Schrödinger-type problems under suitable conditions [4]. Also, methods
based on imaginary time integration have been proposed and suitably accelerated
[5]; finally, also methods based on constraint minimization of appropriate (e.g., en-
ergy) functionals have been developed [6]. However, for the standing wave discrete
nonlinear Schrödinger (DNLS) problem, given the existence of the anti-continuum
limit of zero coupling, and its analytical tractability (which provides an excellent
initial guess and a starting point for parametric continuations), the Newton method
posed on the lattice works extremely efficiently. Note that although the Newton
method will be presented herein in a simple parametric continuation format, with
respect to the coupling parameter ε, it is straightforward to combine it also with
pseudo-arclength ideas such as the ones discussed in [7], in order to be able to
continue the solution past fold points (and to detect relevant saddle-node bifur-
cations). Although for one-dimensional problems (and even for two-dimensional
discrete problems), it is straightforward to use the direct Newton algorithm with
full matrices and then perform the linear stability analysis with full eigensolvers,
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in three dimensions (or e.g., in two-dimensional multicomponent systems), the rel-
evant computations become rather intensive. To bypass this problem, we offer a
possibility to perform the Newton method (and the subsequent eigenvalue computa-
tions) using sparse iterative solvers and sparse matrix eigensolvers that considerably
accelerate the computation, based on the work of Kelley [8].

As concerns the direct numerical integration of the DNLS model, our tool of
choice for the time stepping herein will be the fourth-order Runge–Kutta method [1].
Although both lower order methods (such as the efficient split-step Fourier method
[9]), as well as higher order methods (including even the eighth-order Runge–Kutta
method [10]) have been presented and used in the literature, our use of the fourth-
order method, we feel, represents a good balance between a relatively high-order
local truncation error (accuracy) and stability properties that allow a relatively high
value of the time step (dt = 10−3 or higher for most cases of interest here) without
violating stability conditions.

All of the above methods (existence, linear stability and direct integration) will
be presented by means of Matlab [11] scripts in what follows. The scripts will be
vectorized to the extent possible to allow for efficient numerical computation and
will also be set up to provide “on the fly” visualization of the relevant parametric
continuations (for our bifurcation calculations) and the time-stepping evolution (for
our direct integrations). The codes presented below can be found at the website [12].

9.2 Numerical Computations Using Full Matrices

We start with a numerical implementation of the one-dimensional Newton algorithm.
We recall that the algorithm assumes the simple form xm+1 = xm − f (xm)/ f ′(xm)
for approximating the solution xs such that f (xs) = 0 (m here denotes the algorithm
iteration index). The N-dimensional vector generalization for a lattice of N sites in
our one-dimensional problem reads

J · (xm+1 − xm
) = −F(xm), (9.1)

where J is the Jacobian of the (vector of) N equations F with respect to the (vector
of) N unknowns x, i.e., Ji j = �Fi/�x j . We are writing Eq. (9.1) as indicated above
for a reason, namely to highlight that it is far less expensive to perform the Newton
algorithm iteration step as a solution of a linear system (for the vector xm+1), rather
than through the inversion of the Jacobian. The vector x in the computations below
consists of the lattice field variables un , satisfying the vector of equations

Fn = ε�2un + u3
n − un = 0, (9.2)

where we have taken advantage of the real nature of the one-dimensional solutions
(although the algorithm can be straightforwardly generalized to complex solutions
as needed in higher dimensions). Once the solutions of Eq. (9.2) are identified to
a prescribed accuracy (set below to 10−8), linear stability analysis is performed
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around the solution as is explained in Chap. 2. The code detailing these bifurcation
computations, along with relevant commenting of each step is given below.

clear; format long;
% number of sites;
n=100;
% initial coupling; typically at AC-limit eps=0;
eps=0;
% propagation constant; typically set to 1.
l=1;
% field initialization
u1=zeros(1,n);
u1(n/2)=sqrt(l);
u1(n/2+1)=sqrt(l);
% iteration index
it=1;
% lattice index
x=linspace(1,n,n)-n/2;
% continuation in coupling epsilon
while (eps<0.101)
u=zeros(1,n);
while (norm(u-u1)>1e-08)
u=u1;
% evaluation of second difference with free boundaries
sd2=diff(u,2); sd1=u1(2)-u1(1); sdn=u1(n-1)-u1(n);
sd=[sd1,sd2,sdn];
% equation that we are trying to solve
f=-l*u+eps*sd+(u1.ˆ2).*u1;
% auxiliary vectors in Jacobian
ee = eps*ones(1,n);
ee0=ee; ee0(1)=ee(1)/2; ee0(n)=ee(n)/2;
ee1=(-2*ee0-l*ones(1,n)+3*(u1.ˆ2));
%tridiagonal Jacobian
jj1 = spdiags([ee’ ee1’ ee’], -1:1, n, n);
% Newton correction step
cor=( jj1 \ f’ )’; u1=u-cor;
% convergence indicator: should converge quadratically
norm(cor)
end;
% auxiliary vector for stability
ee1=(-2*ee0-l*ones(1,n)+2*abs(u1.ˆ2));
% construction of stability matrix
jj2=spdiags([ee’ ee1’ ee’], -1:1, n, n);
jj3=diag(u1.ˆ2);
jj4=[ jj2, jj3;
-conj(jj3) -conj(jj2)];
% eigenvalues d and eigenvectors v of stability matrix
[v,d]=eig(full(jj4));
d1=diag(d);
% store solution and stability
u store(:,it)=u;
d store(:,it)=d1;
e store(it)=eps;
% visualize the continuation profiles and stability on the fly
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subplot(2,1,1)
plot(x,u,’-o’)
drawnow;
subplot(2,1,2)
plot(imag(d1),real(d1),’o’)
drawnow;
% increment indices and epsilon
it=it+1;
eps=eps+0.001;
end;
% save the profiles and other data

save(’sol eps 1d.mat’,’u store’,’d store’,’e store’)

A prototypical result of the continuation of the above code has been given below
(the code addresses the unstable case with two excited sites – the inter-site mode)
using the command

imagesc(0.001*linspace(0,100,101),linspace(1,100,100)-50,u store)

to spatially visualize the branch for different values of ε. Also the dominant sta-
bility eigenvalues of this unstable branch are shown (more specifically, λ2) via the
commands

d2=sort(real(d store.ˆ2));

plot(e store,d2(1,:),e store,d4(3,:),’b--’,e store,d4(5,:),’b-.’)

The plots for the solution continuation and its stability are depicted in Fig. 9.1.
We now turn to the numerical integration of one of the unstable solutions of the
above branch (namely, of the solution for ε = 0.1) that we saved at the end of the
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Fig. 9.1 The top panel shows the result of continuation as a function of ε of the solution profile
(shown in contour plot). The bottom panel shows the result of the linear stability analysis, indicat-
ing the instability of this inter-site mode, through the presence of a negative squared eigenfrequency
(solid line). The dashed pair of eigenvalues at the origin is due to the phase invariance, while the
dash–dotted pair at 1 (due to the choice of propagation constant � = 1) indicates the lower edge
of the continuous spectrum
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previous bifurcation code. As indicated above, we use the fourth-order Runge–Kutta
method whose four steps and subsequent integration step, we now remind, for the
solution of the vector of ordinary differential equations x′ = f(t, x) with initial
condition x(t0) = x0:

k(1) = dt f
(
tm, xm

)
, (9.3)

k(2) = dt f
(

tm + dt

2
, xm + dt

2
k(1)

)
, (9.4)

k(3) = dt f
(

tm + dt

2
, xm + dt

2
k(2)

)
, (9.5)

k(4) = dt f
(
tm + dt, xm + dt k(3)

)
, (9.6)

xm+1 = xm + 1

6

(
k(1) + 2k(2) + 2k(3) + k(4)

)
. (9.7)

The commented version of the Matlab script that implements this algorithm for the
DNLS equation is given below.

% parameters
n=100; eps=0.1;
% load solutions from Newton
load sol eps 1d.mat
u num=10
u=u store(:,u num)’+1e-04*rand(1,n);
x=real(u); y=imag(u);
% spatial lattice index
sp=linspace(1,n,n)-n/2;
% iteration indices and time step
it=1;
dt=0.001;
it1=1;
it2=1;
% integration up to t=100
while ((it-1)*dt<100)
% computation of second differences and 1st RK integration step
d2y=diff(y,2); ad1y=(y(2)-y(1)); ad3y=(y(n-1)-y(n));
d2x=diff(x,2); ad1x=(x(2)-x(1)); ad3x=(x(n-1)-x(n));
p1=[ad1y,d2y,ad3y]; p2=[ad1x,d2x,ad3x];
k1x=dt*(-eps*p1-y.*(x.ˆ2+y.ˆ2));
k1y=dt*(eps*p2+x.*(x.ˆ2+y.ˆ2));
a=x+k1x/2;
b=y+k1y/2;
% computation of second differences and 2nd RK integration step
d2y=diff(b,2); ad1y=(b(2)-b(1)); ad3y=(b(n-1)-b(n));
d2x=diff(a,2); ad1x=(a(2)-a(1)); ad3x=(a(n-1)-a(n));
p1=[ad1y,d2y,ad3y]; p2=[ad1x,d2x,ad3x];
k2x=dt*(-eps*p1-b.*(a.ˆ2+b.ˆ2));
k2y=dt*(eps*p2+a.*(a.ˆ2+b.ˆ2));
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a=x+k2x/2;
b=y+k2y/2;
% computation of second differences and 3rd RK integration step
d2y=diff(b,2); ad1y=(b(2)-b(1)); ad3y=(b(n-1)-b(n));
d2x=diff(a,2); ad1x=(a(2)-a(1)); ad3x=(a(n-1)-a(n));
p1=[ad1y,d2y,ad3y]; p2=[ad1x,d2x,ad3x];
k3x=dt*(-eps*p1-b.*(a.ˆ2+b.ˆ2));
k3y=dt*(eps*p2+a.*(a.ˆ2+b.ˆ2));
a=x+k3x;
b=y+k3y;
% computation of second differences and 4th RK integration step
d2y=diff(b,2); ad1y=(b(2)-b(1)); ad3y=(b(n-1)-b(n));
d2x=diff(a,2); ad1x=(a(2)-a(1)); ad3x=(a(n-1)-a(n));
p1=[ad1y,d2y,ad3y]; p2=[ad1x,d2x,ad3x];
k4x=dt*(-eps*p1-b.*(a.ˆ2+b.ˆ2));
k4y=dt*(eps*p2+a.*(a.ˆ2+b.ˆ2));
% completion of integration from t -> t+dt
x1=x+(k1x+2*k2x+2*k3x+k4x)/6;
y1=y+(k1y+2*k2y+2*k3y+k4y)/6;
% square modulus profile
uu=x1.ˆ2+y1.ˆ2;
% evaluate energy and (lˆ2 norm)ˆ2 & visualize the solution every
few steps
if (mod(it,100)==0)
% time counter
tim(it1)=(it-1)*dt;
% square lˆ2 norm; should be conserved
l2(it1)=sum(uu);
% energy calculation; energy should also be conserved
% although to lower accuracy than l2
gr=[diff(x1,1),0]; gr1=[diff(y1,1),0];
ener(it1)=sum(eps*(gr.ˆ2+gr1.ˆ2)-uu.ˆ2/2);
% plot the solution and its energy and l2 norm
subplot(2,1,1)
plot(sp,uu,’-’)
drawnow
subplot(2,1,2)
plot(tim,l2,tim,ener,’--’)
drawnow
if (mod(it,1000)==0)
u store(:,it2)=x1+sqrt(-1)*y1;
it2=it2+1;
end;
it1=it1+1;
end;
it=it+1;
x=x1;
y=y1;

end;

The result of the integration for the unstable evolution of the solution is shown
in Fig. 9.2 (note that in the initial condition the exact solution was perturbed by
a random uniformly distributed noise field of amplitude 10−4 in order to seed the
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Fig. 9.2 The top panel shows the result of the direct integration of the unstable inter-site-centered
solution for ε = 0.1, with the instability being seeded by a random (uniformly distributed) pertur-
bation of amplitude 10−4. The space–time contour plot of the solution shows how it results into
a breathing mode oscillating between the initial condition and a single-site-centered mode. The
bottom panel of the figure shows the deviation from the energy H (solid line) and the squared l2

norm P (dashed line) conservation. The average energy during the simulation is ≈ −1.007, while
the mean of the squared l2 norm is ≈ 2.199. In both cases, we can see that the deviations from this
conservation law are of O(10−13)

instability). It can be seen how the two-site solution transforms itself into a breath-
ing mode oscillating between a two-site and a single-site solution. On the other
hand, the bottom panel of the figure shows the deviation from the relevant (for the
DNLS) conservation laws of the energy and the squared l2 norm. Both of these
deviations are of O(10−13) as can be seen in the panel while the means of these
quantities are of O(1) for the presented simulation. This confirms the good preser-
vation by the proposed scheme of the important conservation laws of the underly-
ing physical model. The above panels are created in Matlab through the use of the
commands:

subplot(2,1,1)
imagesc(linspace(1,100,100),sp,abs(u store.ˆ2))
subplot(2,1,2)

plot(tim,l2-mean(l2),’--’,tim,ener-mean(ener))

Extending the above type of numerical considerations to higher dimensions is
conceptually straightforward, although both computationally tedious and obviously
far more numerically intensive. We briefly indicate how the above considerations
would generalize in two-dimensions (three-dimensional generalizations would nat-
urally extend along the same vein); however, we focus in the next section on how to
render these computations more efficient in higher dimensional settings by means
of the use of sparse matrix computations and iterative linear solvers.

In the two-dimensional case, the Newton iteration has to extend over a grid of
N × N points, hence the relevant vectors have N2 elements (more generally Nd

for d-dimensional computations). The key realization concerning the performance
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of operations such as those of Eq. (9.1) with such vectors stemming from higher
dimensional grids is that not all points should be treated on the same footing. Taking
perhaps the simplest case of vanishing Dirichlet boundary conditions at the edges
of our two-dimensional domain, it should be appreciated that while the “inner”
(N − 2) × (N − 2) nodes of the domain are “regular” points possessing all 4 of
their neighbors, there exist an additional 4 × (N − 2) “edge” points with only 3
neighbors, while the 4 corner points only have 2 neighbors. That is to say, these
points should be treated separately regarding both the equation they satisfy and
the nature of their corresponding Jacobian elements. Upon this realization, one
can treat the two-dimensional grid as a one-dimensional vector whose elements
(1, 1), . . . , (1, N) become elements 1, . . . , N , elements (2, 1), . . . , (2, N) becomes
N + 1, . . . , 2N , and so on. Then, when constructing the full Jacobian, one should
test whether the vector index i running from 1 to N2 lies at the corners (1, N ,
N2 − N + 1 and N2), or at the edges 1 < i < N , N2 − N + 1 < i < N2,
mod(i, N) = 1 or mod(i, N) = 0). This testing can be constructed through appropri-
ate if statements, or equivalently by more clever vector manipulations particularly
well suited for Matlab. If none of the above happens, then one has all four neighbors
(which for the element i are i + 1, i − 1, i + N , and i − N in the quasi-one-
dimensional vector implementation of the grid). Using these considerations one can
construct the corresponding Jacobian and perform the same bifurcation computa-
tions as above.

As regards the two-dimensional Runge–Kutta simulations, things are in fact a bit
simpler, as no Jacobian evaluations are needed. Then assuming that the field (and its
second differences) are vanishing at the boundaries, which is a reasonable assump-
tion, for the vast majority of the configurations considered in this book, we can
construct the second difference operators in a simple vectorized manner as follows:

e=zeros(n,1);
Dxmm = diff([e’;x;e’],2,1);
Dxnn = diff([e,x,e],2,2);
Dymm = diff([e’;y;e’],2,1);

Dynn = diff([e,y,e],2,2);

Using those second differences along the two lattice directions, it is straightfor-
ward to again perform the steps used to obtain the intermediate integration vectors
k( j ) j = 1, . . . , 4, e.g., as follows:

k1x=dt*(-eps*(Dymm+Dynn)-y.*(x.ˆ2+y.ˆ2));
k1y=dt*(eps*(Dxmm+Dxnn)+x.*(x.ˆ2+y.ˆ2));

Modulo this small modification, the one-dimensional Runge–Kutta realization
given above can be essentially immediately transferred into a two-dimensional inte-
grator, upon suitable provision N×N vector initial conditions x0, y0. The same type
of considerations can be immediately extended to three-dimensional computations
with Dxmm, Dxnn, Dxll computed similarly using the diff command.
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9.3 Numerical Computations Using Sparse
Matrices/Iterative Solvers

We discuss two among the many methods for efficiently computing the solution
of the Newton fixed point in two dimensions using finite difference derivatives. The
more straightforward method is to utilize the sparse banded structure of the Jacobian
and the efficiency of the Matlab command “backslash,” which will automatically
recognize the banded structure and use a banded solver. If memory is not the main
consideration, this method is faster. However, one can save a fraction of the memory
at the cost of a slightly slower computation utilizing a Newton–Krylov GMRES
scheme as implemented by the Matlab script nsoli [8]. The memory is minimized
by using an Arnoldi iterative algorithm to solve the linear system at each iteration
of the Newton method and approximating the Jacobian only in the direction of the
Krylov subspace. We note that beyond the standard case outlined here this has far-
reaching benefits, particularly when the explicit form of the Jacobian is unknown, or
when employing a pseudo-arclength method, for instance, which spoils the banded
structure of the Jacobian.

First, we will outline the analogous two-dimensional standard Newton solver
(without the tedium of if statements) utilizing the structure and sparsity of the
Jacobian.

clear; format long;
% number of sites;
n=100;
% initial coupling; typically at AC-limit eps=0;
eps=0;
% propagation constant; typically set to 1.
l=1;
% field initialization
u1t=zeros(n,n);
u1t(n/2,n/2)=sqrt(l);
u1t(n/2+1,n/2)=sqrt(l);
% reshape the field into a column vector with real and
% imaginary parts separated for solving
u1=[reshape(real(u1t),n*n,1);reshape(imag(u1t),n*n,1)];
% iteration index
it=1;
% lattice indices as vectors
x=linspace(1,n,n)-n/2;
y=linspace(1,n,n)-n/2;
% lattice indices as matrices
[X,Y]=meshgrid(x,y);
% continuation in coupling epsilon
eps=0;
% define increment
inc = .001;
while (eps<0.101)
eps=eps+inc;
u=zeros(2*n*n,1);
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% BEGIN - see alternative method below
%
while (norm(u-u1)>1e-08)
u=u1;
% fill in the real and imaginary parts of the original 2d field
uur = u(1:n*n);
ur = reshape(uur,n,n);
uui = u(n*n+1:2*n*n);
ui = reshape(uui,n,n);
% evaluation of second difference with zero fixed boundaries
e=zeros(n,1);
Durmm = diff([e’;ur;e’],2,1);
Durnn = diff([e,ur,e],2,2);
Duimm = diff([e’;ui;e’],2,1);
Duinn = diff([e,ui,e],2,2);
Dur = Durmm + Durnn;
Dui = Duimm + Duinn;
% Other boundary conditions can be implemented similarly,
% for instance use the following for free boundaries
% diff([ur(1,:);ur;ur(n,:)],2,1); ... etc.
% equation that we are trying to solve (vectorized)
f=[reshape(-l*ur+eps*Dur+(ur.ˆ2+ui.ˆ2).*ur,n*n,1); ...

reshape(-l*ui+eps*Dui+(ur.ˆ2+ui.ˆ2).*ui,n*n,1)];
% auxiliary vectors for linear part of the Jacobian
ee = eps*ones(n,1);
ee0 = ee; ee0(1) = ee(1)/2; ee0(n) = ee(n)/2;
ee1 = -2*ee0;
% tridiagonal linear component for 1d
jj1 = spdiags([ee ee1 ee], -1:1, n, n);
% quick conversion of the 1d n × n tridiagonal
% into the 2d n2 × n2 quintidiagonal via the Kronecker product.
% [ note that the linear component of the Jacobian only needs to
% be constructed once at the beginning of the code, but is left
% here for clarity. ]
jj22 = kron(speye(n),jj1) + kron(jj1,speye(n))-l*speye(n*n,n*n);
% nonlinear component of the Jacobian
n1 = sparse(n*n,n*n);
n2 = sparse(n*n,n*n);
n3 = sparse(n*n,n*n);
n1 = spdiags(uui.ˆ2 + 3*uur.ˆ2,0,n1);
n2 = spdiags(uur.ˆ2 + 3*uui.ˆ2,0,n2);
n3 = spdiags(2*uur.*uui,0,n3);
nn = [n1 n3;n3 n2];
clear n1 n2 n3
% completion of the Jacobian
jj2 = nn + [ jj22, sparse(n*n,n*n);sparse(n*n,n*n), jj22];
clear nn
% Newton correction step
cor = jj2 \ f ;
clear jj2
u1 = u-cor;
% convergence indicator: should converge quadratically
norm(cor)
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end;
% END - see alternative method below
%
% convert back into a complex valued vector
uu1 = u1(1:n*n)+sqrt(-1)*u1(n*n+1:2*n*n);
% and it’s 2d representation
uu2 = reshape(uu1,n,n);
% construct nonlinear part of stability matrix
n1 = sparse(n*n,n*n);
n2 = sparse(n*n,n*n);
n1 = spdiags(uu1.ˆ2,0,n1);
n2 = spdiags(2*abs(uu1).ˆ2,0,n2);
jj2 = jj22 + n2;
jj3=[ jj2, n1;
-conj(n1) -conj(jj2)];
% smallest magnitude (’SM’) 100 eigenvalues d and
% eigenvectors v of stability matrix
% (utilizing a shift in order to improve stability of the
% algorithm)
d1=eigs(jj3+sqrt(-1)*3*speye(2*n*n),100,’SM’)-sqrt(-1)*3;
% store solution and stability
u store(:,it)=uu1;
d store(:,it)=d1;
e store(it)=eps;
% visualize the continuation profiles and stability on the fly
subplot(2,2,1)
imagesc(x,y,abs(uu2).ˆ2)
drawnow;
subplot(2,2,2)
imagesc(x,y,angle(uu2))
drawnow;
subplot(2,2,3)
imagesc(x,y,imag(uu2))
drawnow;
subplot(2,2,4)
plot(imag(d1),real(d1),’o’)
drawnow;
% increment indices and epsilon
it=it+1;
eps=eps+0.001;
end;
% save the data
save(’sol eps 2d.mat’,’u store’,’d store’,e store’);

We should make a few comments here about the code given above. We have
illustrated in the existence portion (the Newton method) and the stability section
the respective formulations of the complex-valued problem in terms of the real and
imaginary components of the field and the field and its complex conjugate (rotation
of the former), respectively. The formulations can be interchanged, and it is unneces-
sary to represent both components in the existence section for real-valued solutions
(as with one-dimensional solutions) or equivalently purely imaginary ones, while it
is always necessary in the linearization problem because we must consider complex
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valued perturbations even of real solutions. There are many alternative options in
eigs other than “SM,” which the interested readers should perhaps explore. On the
other hand, the latter is particularly efficient here because the relevant eigenvalues
bifurcate from the origin in the anticontinuum limit. The reader should be aware,
however, that eigs uses an Arnoldi iterative method to calculate the eigenvalues
and the (unshifted) linearization system is singular due to phase invariance. There-
fore, some care has to be taken, by a shift or otherwise.

Now, we briefly outline the alternative method using the Matlab script nsoli
[8] for the existence portion of the above routine. The reader should note that in
addition to the benefits mentioned above, it may be attractive as a black box since it
slims down the code. Consult the help file or [8] for more details about it.

% setup the parameters for nsoli
max iter=200;
max iter linear=100;
etamax=0.9;
lmeth=1;
restart limit=20;
sol parms=[max iter,max iter linear,etamax,lmeth,restart limit];
error flag=0;
tolerance=1e-8*[1,1]
% solve with nsoli the equation F(u )
[u1,iter hist,error flag]=nsoli(u1,@(u )F(u ,eps,n,l),
tolerance,sol parms);
if error flag==0
else
disp(’there was an error’)
iter hist
break
end
% Now define the function F as a new script F.m in the
% same directory. (Functions cannot be defined within scripts,
% but can be defined within functions, so if the whole code is
% made into a function, then this routine can be embedded.)
function f = F(u,eps,n,l)
ur = reshape(u(1:n*n),n,n);
ui = reshape(u(n*n+1:2*n*n),n,n);
% evaluation of second difference with zero fixed boundaries
e=zeros(n,1);
Durmm = diff([e’;ur;e’],2,1);
Durnn = diff([e,ur,e],2,2);
Duimm = diff([e’;ui;e’],2,1);
Duinn = diff([e,ui,e],2,2);
Dur = Durmm + Durnn;
Dui = Duimm + Duinn;
% equation that we are trying to solve (vectorized)
f(1:n*n)=reshape(-l*ur+eps*Dur+(ur.ˆ2+ui.ˆ2).*ur,n*n,1);

f(n*n+1:2*n*n)=reshape(-l*ui+eps*Dui+(ur.ˆ2+ui.ˆ2).*ui,n*n,1);
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9.4 Conclusions

In this section, we have presented an overview of numerical methods used in order
to perform both bifurcation, as well as time-stepping computations with the discrete
nonlinear Schrödinger equation. We have partitioned our presentation into roughly
two broad classes of such methods, namely the ones that use full matrices and direct
linear solvers, and ones that use sparse matrices and iterative linear solvers. Our
tool of choice for bifurcation calculations has been the Newton method, especially
due to the existence of the so-called anti-continuum limit, whereby configurations
of interest can be constructed in an explicit form and subsequently continued via
either parametric or pseudo-arclength continuation techniques. On the other hand,
for the direct dynamical evolution aspects of the problem, we advocated that the use
of Runge–Kutta methods affords us the possibility to use relatively large time steps,
while at the same time preserving to a satisfactory degree the conservation laws
(such as energy and l2 norm) associated with the underlying Hamiltonian system.
The codes given above can be found at the website [12].
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Chapter 10
The Dynamics of Unstable Waves

Kody J.H. Law and Q. Enam Hoq

10.1 Introduction

Discretized equations in which the evolution variable is continuous while the spatial
variables are confined to points on the lattice, have had a significant presence and
impact across multiple disciplines [1–6] (cf. Chap. 8 for a review on experiments
related to the DLNS equation). This should not be surprising considering that many
natural processes and phenomena exhibit discrete structure [7–11]. As particular ex-
amples, we see that in physics the discrete nonlinear Schrödinger equation was used
to model periodic optical structures [12], while in biology the Davydov equations
model energy transfer in proteins [13]. These diverse phenomena are testament to
the ubiquitousness of discrete regimes across diverse settings, and hence validate
the need to study them. The study of discretized equations can be traced at least
back to the work of Frenkel and Kontorova on crystal dislocations [14] and the
Fermi–Pasta–Ulam problem [15]. The literature has since grown significantly to
include novel and engaging ideas (e.g. [16–25]), and one of the points of interest is
the dynamical behavior of solutions [26–28].

In this section, we investigate the dynamics of unstable wave solutions to the
cubic discrete nonlinear Schrödinger (DNLS) in one, two, and three spatial dimen-
sions which were described in the previous chapters. While these earlier chapters
focused on the analysis of the existence and linear stability/instability of the relevant
solutions, the present section sheds light into typical dynamical evolution examples
to illustrate the outcome of the previously identified instabilities.

The equation of interest is

i u̇n = −ε�d un + g|un|2un (10.1)

where un is the complex lattice field with n being the vectorial lattice index, �d is the
standard d-dimensional discrete Laplacian extrapolated from a three-point stencil, ε
is the inter-site (IS) coupling, and g = −1 in Sect. 10.2 while g = 1 in Sect. 10.3.2.
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P.G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation, STMP 232, 205
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The overdot represents the derivative with respect to the evolution variable (which,
for example, could be z in the case of optical arrays, or t in BEC models). Also, we
write u = (un1, . . . , unNd ), to denote the complex lattice field of N sites in each of
d dimensions.

As before, we are interested in stationary solutions of the form

un = exp(i�t)vn (10.2)

for all n. It can easily be seen that Eq. (10.1) admits such solutions in the anticon-
tinuum (AC) limit (ε = 0) with the additional structure vn = eiθn for θn ∈ [0, 2π).
This leads to the persistence as well as stability criteria detailed in the previous
chapters (see also [29, 30] for further details). We look at solutions (from the previ-
ous chapters) for coupling values for which they have been predicted to be unstable.
There exist parameter values such that an unstable solution of each configuration
family eventually settles into a single site structure, and also that the time it takes
for the original structure to break up is dependent on the magnitude of the real part
of the linearization, the magnitude of the coupling between sites, and the initial
perturbation.

The organization will be as follows. Section 10.2 will be devoted to 1(+1)-
dimensional (10.2.1), 2(+1)-dimensional (10.2.2), and 3(+1)-dimensional (10.2.3)
solutions of the standard focusing DNLS (Eq.(10.1) with g = −1). In Sect. 10.3,
we discuss the more exotic settings of a grid with hexagonal geometry (10.3.1)
and then solutions in the case of a defocusing nonlinearity (g = +1) in 1(+1) and
2(+1) dimensions (10.3.2). All the dynamical evolutions confirm stability predic-
tions given theoretically and numerically in the preceding chapters, though some of
the dynamical behavior is interesting and not a priori predictable.

10.2 Standard Scenario

We begin by discussing the space–time evolution of unstable solutions of the stan-
dard focusing DNLS (Eq. (10.1) with g = −1).

10.2.1 1(+1)-Dimensional Solutions

In this first section we examine the evolution of {|un|2} (it is understood that the set
is taken over all indices n in the d-dimensional lattice, where here d = 1 and the
boldface is unnecessary, but we will use this notation throughout for consistency)
for four one-dimensional configurations (see Fig. 10.1). Each is placed in the bulk of
a lattice with 201 sites. Denoting a positive excited node by “+” and a negative one
by “−”, the configurations we consider are that of two in-phase (IP) adjacent nodes
(i)++, and the following with three adjacent nodes (ii)+++, (iii)++−, and (iv)
+−+. These can be found in Chap. 2. To expedite the onset of instability, in each
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Fig. 10.1 These panels exhibit the space–time evolution of the density field {|un(t)|2} of four
modes to the one-dimensional DNLS equation. The top left panel shows the (i) ++ configuration,
the top right is (ii) +++, the bottom left is (iii)++−, and the bottom right is (iv) +−+

case the coupling parameter is ε = 0.3, which is beyond the instability threshold
of each configuration. We present the intensity of the field {|un(t)|2}, where u =
us + ur , us being the lattice field with the respective stationary solution and ur is
a uniformly distributed random noise field in the interval (0, a). For the discrete
solitons (i)–(iv) above, The amplitude of the perturbation is taken to be (i) 10−8, (ii)
10−7, (iii) 10−5, and (iv) 10−3.

In all panels we clearly see a single surviving site that persists for long times.
We see that the two IP modes dissolve from their original forms via a short turbu-
lent stage into a (stable) single site structure. This is not surprising since, as was
discussed in Chapter 2, (adjacent) IP excitations are found to be unstable for any
ε 
= 0 due to a positive real eigenvalue. The structure + + − also has adjacent IP
excitations and is unstable, for any ε 
= 0, due to a positive eigenvalue, with also
a pair of bifurcating imaginary eigenvalues with negative Krein signature which
eventually collide with the continuous spectrum and become complex (see Chap. 2
and [29–32]). The presence of the out-of-phase (OP) site complicates the dynamics
pattern as seen in the lower left panel. The lower right panel shows the dynamics
for the OP mode, + − +, which is stable for small couplings, but has two pairs
of imaginary eigenvalues which (for larger coupling) become complex as a result
of two Hamiltonian–Hopf bifurcations. This last configuration is clearly the most
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robust of the four (ε = 0.3 for all configurations) since it is perturbed the most and
yet persists for the longest time before turbulence sets in.

10.2.2 2(+1)-Dimensional Solutions

The panels depicted in this section exhibit the dynamics for the field intensity {|un|2}
for several two-dimensional configurations found in Chap. 3. As before, the value
of the coupling is always beyond the threshold of instability and the configuration is
perturbed by a random noise. All the dynamical evolutions are performed in a 21×
21 grid. The dynamics in larger grid sizes (i.e., 31× 31) were examined in a few of
the cases and there was no qualitative difference found for the timescales considered
herein. Each exhibited the same outcome in that one site remained for long times.
A characteristic density isosurface Dk = {(n, t) | |un(t)|2 = k} is used here to
represent the space–time evolution of the fields. The coupling and perturbation in
each case were adjusted to exhibit complete destruction of the initial configuration
to a single site in a reasonable time span. The details are supplied below each figure.

As already detailed in Chap. 3, the first five-site configuration, the symmetric
vortices with L = 1,M = 2, and L = M = 2, as well as the asymmetric vortices
with L = 1,M = 2, and L = 3,M = 2 have purely real eigenvalues. All other
solutions break up due to oscillatory instability arising from Hamiltonian–Hopf bi-
furcations of the linearized problem when the pure imaginary eigenvalues collide
with the phonon band (or continuous spectrum). The dynamical evolutions depicted
in the following images qualitatively corroborate this earlier analysis. Figure 10.2
depicts the dynamical instability for the three-site configuration of Chap. 3. Next, we
depict an example of the five-site configuration (lower left panel, Fig. 10.3) which
exhibits complete breakdown from the initial state earlier than the other modes even

30 60 90
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t

M
ax

(|
u|

2
)

Fig. 10.2 The left panel shows the dynamics in time of {|un|2} for the three-site configuration
from Chap. 3 (see Eq. (3.88)). Here ε = 0.4, the maximum of the perturbation is of amplitude
a = 10−4, and the isosurface is taken at k = 0.2. The right panel, which exhibits the maximum
of the amplitude of the field intensity for this configuration up to time t = 90, clearly shows that
the resulting single site has an oscillating amplitude (“breathes”). This can also be seen as the
undulations in the isosurface picture on the left. Similar diagnostics confirmed this for the other
cases



10 The Dynamics of Unstable Waves 209

Fig. 10.3 The two top panels show the dynamics for the first (top left panel) and second (top right
panel) four-site configurations of Eq. (3.89) in Chap. 3. The bottom two panels are the dynamics for
the first (bottom left panel) and second (bottom right panel) five-site configurations, respectively,
of the form of Eq. (3.90), Chap. 3. In each case ε = 0.4 and the perturbation is of amplitude
a = 10−4. The isosurface is taken as k = 0.2 for all figures except the one at the bottom right, for
which k = 0.4

though the coupling is the same and they have all been perturbed by noise with the
same amplitude. This illustrates the stronger instability from purely real eigenvalues.
We see a similar situation in Fig. 10.4 where the oscillatory instabilities manifest
themselves in the dynamics at later times. Of the configurations in Fig. 10.4, the
longest surviving one is the one with purely oscillatory instability (the symmetric
vortex with L = M = 1 (ii)). Note that this solution is perturbed by a random noise
with a = 10−4 while the amplitude of the perturbation in (iii) is a = 10−6. Still the
solution (ii) has greater longevity.

An interesting observation is that the number of sites that remain can depend
on the coupling strength and also on the magnitude of the perturbation. Take for
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Fig. 10.4 These panels show the dynamics for the (i) nine-site configuration (top left panel with
a = 10−2, k = 1.2), and the three symmetric vortices with (ii) L = M = 1 (top right panel with
a = 10−4, k = 0.2), (iii) L = 1 and M = 2 (bottom left panel with a = 10−6, k = 0.7), and (iv)
L = M = 2 (bottom right panel with a = 10−2, k = 0.7). In each case, ε = 0.6

example the second five-site configuration shown in the bottom right panel of
Fig. 10.3. In the figure shown, ε = 0.4, a = 10−4, and k = 0.4, and a single
site remains, while for a weaker perturbation (a = 10−5) two sites actually remain
for long times. However, for a larger coupling value of ε = 0.5 one site remains
for perturbations with amplitude as small as a = 10−8. Finally, in Fig. 10.5, we
depict the dynamical instabilities for the different vortex configurations discussed in
Chap. 3. Further study is needed to build on existing knowledge of discrete breathers
[32, 33], in order to explain this curious interplay between the various components,
and also to elucidate the underlying mechanisms responsible for these (as well as
other) observations.
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Fig. 10.5 These panels show the dynamics for the (i) symmetric vortex L = 3, M = 2 (top left
panel with ε = 0.6, a = 10−4, k = 1.2), (ii) asymmetric vortex with L = 1 M = 2 (top right
panel with ε = 0.6, a = 10−4, k = 0.9), (iii) asymmetric vortex with L = 3, M = 2 (bottom left
panel with ε = 0.5, a = 10−4, k = 0.7), and (iv) vortex cross of L = 2 (bottom right panel with
ε = 0.6, a = 10−2, k = 0.7). As before, these are from configurations laid out in Chap. 3

10.2.3 3(+1)-Dimensional Solutions

This section shows the dynamics of the field intensity, {|un|2}, for the three-
dimensional configurations, the (a) diamond (S±1 = {π/2, 3π/2}) [see Fig. 10.6],
(b) octupole (θ0 = π , s0 = 1, i.e., S1 = {π, 3π/2, 0, π/2}) [see Fig. 10.7], and (c)
double-cross (θ0 = π , s0 = 1, i.e., S1 = {π, 3π/2, 0, π/2}) [see Fig. 10.8]. All
three of these structures were shown previously (Chap. 4) to persist. For each, we
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Fig. 10.6 These panels show
four times in the evolution of
the three-dimensional
diamond structure. The
coupling is taken to be
ε = 0.3, the perturbation
amplitude is a = 10−2 and
and all iso-contours are taken
at Re(un) = ±0.75 and
Im(un) = ±0.75. The dark
gray and gray are real
iso-contours, while the light
and very light gray are the
imaginary contours
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show the evolution of the instability with characteristic density isosurfaces of the
three-dimensional field at four times beginning with t = 0.

As before, in each case a perturbation is applied at a value of the coupling well
past the threshold of instability. As with the lower dimensional configurations, the
coupling parameter and perturbation play a role in the evolution of the instability.
For appropriate values of each, a single site will remain at the end of the time frame
considered here. In the case of the octupole, it is seen that when we take ε = 0.3

Fig. 10.7 These panels show
four times in the evolution of
the octupole. The coupling is
ε = 0.3, the perturbation
amplitude is a = 10−2 and
and all iso-contours are taken
at Re(un) = ±0.75 and
Im(un) = ±0.75. The dark
gray and gray are real
iso-contours, while the light
and very light gray are the
imaginary contours
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Fig. 10.8 These panels show
four times in the evolution of
the double cross. The
coupling is ε = 0.4, the
perturbation amplitude is
a = 10−4 and and all
iso-contours are taken at
Re(un) = ±0.75 and
Im(un) = ±0.75. The dark
gray and gray are real
iso-contours, while the light
and very light gray are the
imaginary contours
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with a perturbation of amplitude a = 10−2, two sites remain as seen in Fig. 10.7,
while for ε = 0.6 with a perturbation of amplitude a = 10−4, a single site remains.
A similar phenomenon is observed for the double cross where for ε = 0.3 with a
perturbation of amplitude a = 10−2, two sites remain as seen in Fig. 10.8, while for
ε = 0.4 with a perturbation of amplitude a = 10−4, a single site remains.

In all cases, the grid size is 21× 21× 21. It should be noted that for the diamond
configuration, larger grid sizes (i.e., 25 × 25 × 25, 27× 27× 27) were examined,
with no qualitative change in behavior witnessed. In each case, the end result for a
given coupling and perturbation was always the same number of surviving sites.

10.3 Non-Standard Scenario

We will now consider a few more exotic settings. First, we look at the vortex solu-
tions with a six neighbor hexagonal geometry as seen in the end of Chap. 3. Then, we
will look at the same DNLS equation (10.1), except with a defocusing nonlinearity
(g = 1) in 1(+1) and 2(+1) dimensions from Chap. 5.

10.3.1 Hexagonal Lattice

In this section we consider the variation of Eq. (10.1) in which the terms �d un are
replaced by the non-standard extrapolation of the two-dimensional five-point stencil,
in which each site has four neighbors as in the previous section and following sub-
section, to the natural variation for the six-neighbor lattice,

∑
〈n′〉 un′ − 6un, where

〈n′〉 is the set of nearest neighbors to the node indexed by n.
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Fig. 10.9 Space–time evolution of {|un(t)|2}, where the lattice geometry is hexagonal, u = us(1+
maxn{|un,s (0)|2}ur ), ur is a uniform random variable in (−0.05, 0.05) random variable, and us is
a single charged vortex on the left (ε = 0.1) and a double charged vortex on the right (ε = 0.125).
The top panels are snapshots and the bottom are amplitudes of the individual excited sites. Note
the almost harmonic oscillations depicted in the inset of the bottom right

The vortex solutions in this geometry are displayed at the end of Chap. 3. The
single charged vortex is actually more unstable than the double charged one (the
eigenvalues bifurcating from the origin in the AC limit are real for the former and
imaginary for the latter). The dynamics of these solutions given in Fig. 10.9 confirm
this theoretical prediction. The single charged vortex (ε = 0.1) breaks up very
rapidly before z = 20 and subsequently degenerates into a lopsided dipole-type
configuration, while the double charged vortex (ε = 0.125) persists until well past
z = 200. Each configuration ultimately becomes a two-site breather for long dis-
tances, with one site being the initially unpopulated center site.

10.3.2 Defocusing Nonlinearity

We now study the dynamics of typical 1(+1)- and 2(+1)-dimensional solutions with
defocusing nonlinearity (g = +1 in Eq. (10.1)).

10.3.2.1 1(+1)-Dimensional Solutions

We begin by examining the dynamics of the unstable one-dimensional configura-
tions. Two one-dimensional dark soliton configurations with defocusing nonlinear-
ity are principally considered in this book; in both cases the absolute value squared
of the background is one and there is a π phase jump, which can either occur be-
tween two sites (IS) or between three sites (on-site, OS), where there exists a node
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with zero amplitude in the middle of the latter. As shown in Chap. 5, the OS dark
soliton is stable for small coupling, and subject only to oscillatory instability (as
the coupling increases) due to complex quartets of eigenvalues which emerge when
the null eigenvalues from the AC limit with negative Krein signature reaches the
continuous spectrum, at which point Hamiltonian–Hopf bifurcations occur . On the
other hand, the pair which bifurcates from the spectral plane origin (at the AC limit)
in the case of the IS configuration becomes real and therefore this configuration is
subject to a strong (exponential) instability.

Figure 10.10 shows the space–time evolution of the dark solitons which confirm
the theoretical and numerical predictions. The left panel shows the solution u =
us + ur where us is the IS dark soliton and ur is random noise field uniformly
distributed in the interval (−5, 5)× 10−4. Note even with such a mild perturbation
from the stationary state, this configuration disintegrates after t = 20. On the other
hand, in the right panel us is the OS configuration with ur uniformly distributed in
the interval (−5, 5)×10−2, and yet the original configuration persists until t = 500.
This not only confirms, but really highlights the accuracy of the theoretical stability
calculations from Chap. 5, Sect. 5.1.2.

10.3.2.2 2(+1)-Dimensional Solutions

Next, we will consider the two-dimensional configurations from Chap. 5, Sect. 5.2.
As in the one-dimensional case described above, the configurations us are perturbed
by a field ur randomly distributed in the interval (−5, 5)× 10−2. The same field ur

is added to each solution for consistency so they may be more easily compared (and
it is so large because the least stable among these configurations took a consider-
able time to degenerate even with this perturbation). We present the results of the
dynamical evolution of the two-site, four-site, and S = 1 vortices organized with
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Fig. 10.10 Dynamics of the inter-site (left) and on-site (right) dark soliton configurations are rep-
resented by space–time plots of the intensity of the field {|un(t)|2} as defined in the previous section
with ε = 0.1. These solutions correspond to those in Chap. 5, where the inter-site one is perturbed
by a random noise of only ±5 × 10−4, and is visibly distorted by t = 20, while the on-site
configuration is perturbed by a noise amplitude of ±5 × 10−2 and yet the original configuration
persists until t = 500
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the IS solutions in the left column, the OS solutions in the right column, and, for
the former two, the top are IP, and the bottom are OP. Again as in Sect. 10.2.2, we
choose density isosurfaces, Dk = {(n, t) | |un(t)|2 = k} as our visualization tool.
The magnitude of the density isosurface k is chosen as half the maximum of the
initial density field k = (1/2)|un(0)|2 in most cases, except when a smaller magni-
tude was necessary to visualize the relevant dynamics. All solutions degenerate into
a single site configuration for long times, although it is worth mentioning here that,
as in the focusing case, for smaller coupling values than those chosen here (but still
significantly far from the AC limit), even unstable solutions may only undulate and
not actually break up at all.

The two-site configurations are given in Fig. 10.11. Results confirm the stability
analysis in Chap. 5, Sect. 5.3.2. In particular, note that the mild instability of the ISIP

Fig. 10.11 Given above are the space–time evolutions of {|un|2} as given before where us are the
two-dimensional dipole configurations for defocusing nonlinearity. The top row is in-phase, the
bottom row is out-of-phase, the left column is inter-site, and the right column is on-site. These
solutions correspond to those found in Chap. 5, Sect. 5.2, for the coupling values (clockwise from
top left) ε = 0.116, 0.08, 0.116, and 0.08
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solution for ε = 0.116 given in the upper left panel takes a considerable amount
of time to break up the initial configuration as compared to the strong instability
of the ISOP for ε = 0.08 in the bottom left, which leads to degeneration almost
immediately into a single site upon evolution. In the right column we can see the fast
degeneration of the OSIP for ε = 0.08 as a manifestation of the strong instability on
the top row and the much slower degeneration of the OSOP for ε = 0.116 depicting
the oscillatory Hamiltonian–Hopf instability on the bottom.

Figure 10.12 depicts the quadrupole solutions, which again confirm the theoreti-
cal and numerical findings of Chap. 5, Sect. 5.3.3. The more stable ISIP (ε = 0.1)

Fig. 10.12 Same as Fig. 10.11, except for the relevant four-site configurations given in Chap. 5,
Sect. 5.3 and the coupling value is ε = 0.1 for all panels
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in the upper left panel and OSOP (ε = 0.1) in the lower right panel confirm the
predictions. So do the more unstable OSIP and ISOP (both for ε = 0.1) in the
top right and bottom left panels, respectively. For this coupling value, the ultimate
single site configuration of the ISOP is robust to perturbation (down to 10−8), as
was the second five-site configuration presented in Sect. 10.2.2. Again for a slightly
smaller coupling of ε = 0.08, a two-site configuration remains, which breathes up
to at least t = 900 (not shown), and again there is a larger perturbation which spoils
the breathing two-site structure for this coupling. Additionally, on investigating the
intermediate coupling value of ε = 0.9, one finds that the perturbation necessary
to break the two-site structure becomes smaller, suggesting that the necessary per-
turbation to eliminate the breather is inversely proportional to the coupling prior to
the lower bound of the region in coupling space for which a single site invariably
survives. Also, for ε = 0.05 the OSIP remains a breathing four-site structure even
for longer times despite the strong instability of the linearization and almost in-
stantaneous breathing behavior. This again supports the same hypothesis mentioned
above. Finally, Fig. 10.13 shows the single charge vortex solutions from Chap. 5,
Sect. 5.3.4. Both of these solutions are approximately equivalently unstable. Each
has both Hamiltonian–Hopf quartets and real pairs of eigenvalues.

Fig. 10.13 Dynamics of the two-dimensional charge 1, four-site gap vortices with defocusing non-
linearity. The inter-site version is on the left, while the on-site version is on the right and ε = 0.1
in both cases
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10.4 Conclusion and Future Challenges

We have numerically examined the dynamics of discrete solitons for the DNLS
equation in one, two, and three spatial dimensions with the standard focusing non-
linearity. We also investigated the more exotic hexagonal lattice and the case of
defocusing nonlinearity, the latter of which has been observed in the experimental
setting of nonlinear optics [34, 35]. It is found that the numerical dynamics aligns
itself with the theoretical predictions for linear stability established in the previous
chapters. It is noted that the dynamics within the timescales considered here depend
not only on the linear stability, but also sensitively on the coupling parameter and
(to a lesser degree) on the perturbation. For each case, there exists some coupling
and perturbation such that the eventual result is a single robust site (as displayed in
the images).

A major challenge for the future would be to devise and further develop a the-
oretical framework to understand [33] the instability process. The single site is an
attractive equilibrium of the system. Since it is stable and has low energy, it is no
surprise that an unstable system would tend to this state. But, it would be interesting
to attempt to develop some more precise theory relating these aspects of the nonlin-
ear evolution and perhaps elucidate general characteristics and features that may not
be visible from the numerics. It would also be of interest to examine more complex
systems, such as multicomponent and higher dimensional systems, and to determine
whether some general features persist.
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Chapter 11
A Map Approach to Stationary Solutions
of the DNLS Equation

Ricardo Carretero-González

11.1 Introduction

In this chapter we discuss the well-established map approach for obtaining station-
ary solutions to the one-dimensional (1D) discrete nonlinear Schrödinger (DNLS)
equation. The method relies on casting the ensuing stationary problem in the form
of a recurrence relationship that can in turn be cast into a two-dimensional (2D) map
[1–5]. Within this description, any orbit for this 2D map will correspond to a steady
state solution of the original DNLS equation.

The map approach is extremely useful in finding localized solutions such as
bright and dark solitons. As we will see in what follows, this method allows for
a global understanding of the types of solutions that are present in the system and
their respective bifurcations.

This chapter is structured as follows. In Sect. 11.2 we introduce the map approach
to describe steady states for general 1D nonlinear lattices with nearest-neighbor cou-
pling. In Sect. 11.3 we present some of the basic properties of the 2D map generated
by the 1D DNLS lattice and how these properties, in turn, translate into properties
for the steady-state solutions to the DNLS. We also give an exhaustive account
of the possible orbits that can be generated using the map approach. Specifically,
we describe in detail the families of extended steady-state solutions (homogeneous,
periodic, quasi-periodic, and spatially chaotic) as well as spatially localized steady
states (bright and dark solitons and multibreather solutions). In Sect. 11.4 we study
the limiting cases of small and large couplings. We briefly describe the bifurcation
process that is responsible for the mutual annihilation of localized solutions through
a series of bifurcations. For a more detailed account of the bifurcation scenaria for
the DNLS using the map approach, see [3].
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of Mathematics and Statistics, San Diego State University, San Diego CA, 92182-7720, USA
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P.G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation, STMP 232, 221
221–233, DOI 10.1007/978-3-540-89199-4 11, c© Springer-Verlag Berlin Heidelberg 2009
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11.2 The 2D Map Approach for 1D Nonlinear Lattices

The 2D map approach that we present can be used in general for any 1D nonlinear
lattice as long as the coupling between lattice sites is restricted to nearest neighbors.
The most common form of such coupling scheme is the discrete Laplacian �un =
un−1− 2un + un+1. In order to describe the map approach in its more general form,
let us consider a generic nonlinear lattice of the form

u̇n = G(un−1, un, un+1)+ F(un), (11.1)

where G is the nearest-neighbor coupling function and F corresponds to the on-site
nonlinearity. The case of the DNLS with the standard cubic nonlinearity is obtained
by choosing G = (ε/ i )� (� will be used to denote the discrete Laplacian) and
F(u) = (β/ i )|u|2u, where ε ≥ 0 is the coupling constant and β = ±1 corresponds
to defocusing and focusing nonlinearities, respectively. For the map approach to
be directly applicable we need to rewrite the steady-state solution of Eq. (11.1) as
a recurrence relationship. Therefore, the only requirement for the map approach to
work in the general case of the system (11.1) is that the coupling function needs to
be invertible with respect to un+1 such that G(un−1, un, un+1) = G0 can be explic-
itly rewritten as un+1 = G−1(un−1, un,G0). In particular, this is the case for any
coupling function defined as a linear combination of nearest neighbors (which is
the case of the discrete Laplacian). For the sake of definitiveness, let us concentrate
on the DNLS with cubic nonlinearity but keeping in mind that the technique can
be applied in more general scenaria (for example, in [4] and [6] unstaggered and
staggered solutions of the cubic-quintic DNLS are studied in detail).

Let us then start with the 1D DNLS with cubic on-site nonlinear term

i u̇n = −ε�un + β|un|2un . (11.2)

It can be shown [7] that any steady-state solution of Eq. (11.2) must be obtained
by separating space and time as un = exp(i�t)vn , where � is the frequency of the
solution, which yields the steady-state equation for the real amplitudes vn :

�vn = ε(vn−1 − 2vn + vn+1)− βv3
n . (11.3)

It is worth noting at this point that in the 1D case the stationary state is deter-
mined, without loss of generality, by the real amplitude vn . In higher dimensions,
for topologically charged solutions such as discrete vortices and supervortices in
2D [8–12], discrete diamonds and vortices in 3D [13, 14], and discrete skyrmion-
type solutions [15], it is necessary to consider a complex steady-state amplitude vn .
Nonetheless, it is crucial to stress that the 2D map approach is only applicable for
1D lattices since the steady-state problem for higher dimensional dynamical lattices
cannot be reduced to a recurrence relationship as it is the case (see below) for the
1D lattice.
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The steady-state equation described by Eq. (11.3) can now be rewritten as the
recurrence relationship

vn+1 = R(vn, vn−1) ≡ 1

ε

[
(�+ 2ε)vn − εvn−1 + βv3

n

]
, (11.4)

which in turn can be cast as the 2D map

(
vn+1

wn+1

)
= M

(
vn

wn

)
, M :

{
vn+1 = R(vn, wn)

wn+1 = vn
, (11.5)

where the second equation defines the intermediate variable wn ≡ vn−1. It is im-
portant to stress that, by construction, any orbit of the 2D map (11.5) will corre-
spond to a steady-state solution of the DNLS (11.2). In particular, any given ini-
tial condition P0 = (v0, w0)T for the 2D map will generate the orbit described
by the doubly infinite sequence of points (. . . , P−2, P−1, P0, P1, P2, . . . ) where
Pn+1 = M(Pn) and negative subindexes correspond to backward iterates of the 2D
map [Pn−1 = M−1(Pn)]. This 2D orbit will in turn correspond to the steady state
{. . . , w−2, w−1, w0, w1, w2, . . . }, where wn = [Mn(P0)]y is the y-coordinate (pro-
jection) of the nth iterate of P0 through M . Alternatively, one could also obtain the
steady state as {vn}∞n=−∞, where vn = [Mn+1(P0)]x is the x-coordinate (projection)
of the (n + 1)th iterate of P0.

It is also important to mention that the 2D map approach, although helpful in
describing/finding steady-state solutions of the associated nonlinear lattice, does
not give any information about the stability of the steady states themselves. This
is a consequence of separating time from the steady state where one loses all the
temporal information (including stability properties). Nonetheless, the 2D map ap-
proach does indicate the genericity or parametric/structural stability of certain types
of orbits. Specifically, if the type of steady state that is been considered corresponds
to a 2D map orbit (including fixed points, periodic orbits, and quasi-periodic orbits)
that is isolated (i.e., away in physical and parameter space) from a bifurcation point,
then this orbit will still exist in the presence of, small, generic parametric and exter-
nal perturbations. This genericity property might be useful in realistic applications
where the presence of (a) small errors in the determination of the parameters of the
system and (b) external noise is ubiquitous. Note, however, that if the steady state is
unstable to start with, the parametric perturbation will not modify its existence but
it will remain unstable.

11.3 Orbit Properties and Diversity in the DNLS

Now that we have established the equivalence between a steady state of the DNLS
(11.2) and orbits of the 2D map (11.5), let us discuss the different types of orbits
that can be generated using the 2D map approach, their bifurcations and some of
their basic properties.
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11.3.1 Symmetries and Properties of the Cubic DNLS Steady States

All symmetries and properties inherent to the 2D map (11.5) generate respective
symmetries and properties for the steady-state solutions to the DNLS. In particu-
lar, for the cubic DNLS (cf. Eq. (11.4)), we have the following symmetries and
properties:

(a) The inverse map M−1: M−1(vn, wn)T = (vn−1, wn−1)T is identical to M after
exchanging v ↔ w. Therefore any forward orbit of the 2D map will have a
symmetric backward orbit that is symmetric with respect to the identity line.

(b) Exchanging vn → (−1)nvn andwn → (−1)nwn transforms the 2D map M onto
(−1)n M with �→ −�− 4ε and β → −β. This corresponds to the so-called
staggering transformation where every solution to the focusing (β = −1) cubic
DNLS has a corresponding solution to the defocusing (β = +1) cubic DNLS
with adjacent sites alternating signs (and after a rescaling of the frequency).

(c) The 2D map is area preserving and, as a consequence, the steady-state solutions
to the DNLS have the following properties. (i) Linear centers of the 2D map
are also nonlinear centers and thus there will be periodic and quasi-periodic
orbits around (linearly) neutrally stable fixed points. These 2D map orbits cor-
respond, respectively, to spatially periodic and quasi-periodic steady state solu-
tions to the DNLS (see below). (ii) Saddle fixed points of the 2D map will have
stable and unstable manifold with the same exponential rates of convergence.
Thus, localized steady state solutions of the DNLS will have symmetric tails at
n→±∞.

11.3.2 Homogeneous, Periodic, Modulated, and Spatially Chaotic
Steady States

In this section we concentrate on describing steady states that are spatially extended
(i.e., not localized in space). These correspond to (a) fixed points, (b) periodic orbits,
(c) quasi-periodic orbits, and (d) chaotic orbits of the 2D map M .

11.3.2.1 Homogeneous Steady States

The most straightforward orbit that can be described by the 2D map approach
is a fixed point. Suppose that P∗ = (v∗, w∗)T is a fixed point of M , namely
M(P∗) = P∗. This trivial orbit generates the homogeneous steady solution vn = v∗.
Note that, by construction, all fixed points of M must satisfy v∗ = w∗. For the DNLS
case under consideration, the 2D map fixed point equation (� + βv2)v = 0 has
three fixed points v∗ = {0,±√−�/β}, that in turn correspond to the two spatially
homogeneous solutions un(t) = 0 and un(t) = √−�/β exp(i�t).
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11.3.2.2 Periodic Steady States

Let us now consider a periodic orbit of the 2D map. Suppose that {P0, P1, ..., Pp−1}
is a period-p orbit of M (i.e., M(Pp−1) = P0). This periodic orbit for M will gener-
ate a spatially periodic steady-state solution for the DNLS, where vn = [Pn mod(p)]y .
A particular case of this spatially periodic steady state stems from period-2 orbits
{T0, T1}. There are at most three such period-2 solutions depending on the (ε,�, β)-
parameter values. One of these solutions has the form T0 = −T1 = (+a,−a)T

where a = √−(�+ 4ε)/β. This symmetric period-2 orbit is a consequence of the
symmetry of the 2D map under consideration where the transformations v ↔ −v
andw↔−w leave the equations invariant. This symmetric period-2 orbit generates
an oscillatory steady-state profile of the form vn = (...,−a,+a,−a,+a, ...). In
general a period-p orbit of the 2D map generates an spatially periodic steady state
with spatial wavelength (period) of p.

11.3.2.3 Quasi-Periodic Steady States

An interesting steady-state solution is generated when one considers quasi-periodic
solutions of the 2D map. For example, the origin is a nonlinear center for −4ε <
� < 0 in both the focusing and defocusing case. Around this center point the
2D map exhibits an infinite family of quasi-periodic solutions rotating about the
origin (cf. Fig. 11.1). These 2D map orbits correspond to steady-state modulated
waves about the fixed point (in this case the origin) for the DNLS. An example of
such an orbit is depicted in Fig. 11.1. In the left panel of the figure we depict with
circles the quasi-periodic orbit around the origin, while in the right panel we depict
(also with circles) its corresponding steady-state solution to the DNLS. The spatial
periodicity of these modulated waves is approximately determined by the argument
of the eigenvalues of the Jacobian at the fixed point.
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Fig. 11.1 Periodic, quasi-periodic and chaotic orbits of the 2D map (left). The right panel depicts
the corresponding steady-state solutions to the DNLS. Circles (squares) correspond to a quasi-
periodic (chaotic) orbit. Parameter values correspond to: � = −0.1, β = −1, and ε = 1
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11.3.2.4 Spatially Chaotic Steady States

As a last example of a non-localized steady state let us consider the next level of
complexity for a 2D orbit: a chaotic orbit. Chaotic orbits will be a common occur-
rence in nonlinear maps. For the case under consideration, the 2D map induced by
the DNLS becomes chaotic close to the separatrix between higher periodic orbits. In
Fig. 11.1 we depict such a chaotic region around the separatrix of a pair of period-7
orbits (see outer orbits). Such a chaotic orbit naturally generates a steady-state solu-
tion (see squares in the right panel) that resembles a period-7 orbit that is chaotically
modulated. It is important to mention that, typically, these chaotic orbits exhibit
“stickiness” close to the separatrix (see [16] and references therein for more details
on chaotic transport) and thus will stay close to a periodic orbit for some time.
However, the chaotic orbit is eventually expelled (both in forward and backward
time) and therefore the steady state becomes unbounded at n → ±∞. See [17] for
a discussion of the relationship between these chaotic orbits and the transmission
properties in nonlinear Schrödinger-type lattices.

11.3.3 Spatially Localized Solutions: Solitons and Multibreathers

Undoubtedly, the most interesting steady-state solutions are generated by homo-
clinic and heteroclinic orbits of the 2D map. These orbits correspond, respectively,
to bright and dark solitons of the DNLS.

11.3.3.1 Homoclinic Orbits

Let us concentrate our attention on homoclinic orbits emanating from the origin.
A homoclinic orbit corresponds to an orbit that connects, in forward and backward
time, a fixed point with itself. In turn, this corresponds to a non-trivial steady-state
solution that decays to the fixed point for n → ±∞. This is the so-called bright
soliton solution. A sufficient condition for the existence of a homoclinic orbit for
a 2D map is that the stable (W s ) and unstable (W u) manifolds of the fixed point
intersect. Thus, a necessary condition for the existence of these manifolds is that
the fixed point must be a saddle. This latter condition, in turn, translates into a
necessary (but not sufficient) condition on the parameters of the system. For ex-
ample, in the � < 0 case, one needs a coupling constants ε < −�/4 to ensure
the origin is a saddle point (for � > 0 the origin is always a saddle point). It is
important to stress that the existence of a saddle does not guarantee the existence of
a homoclinic connection since the stable and unstable manifolds might not intersect
at all. It is possible to formally establish the existence of homoclinic orbits of nearly
integrable 2D maps through the Mel’nikov approach [18]. This method has been
successfully applied to the single DNLS chain [1] as well as to systems of coupled
DNLS equations [19] by means of a higher dimensional Mel’nikov approach [20].
Another approach to establish the existence of the homoclinic orbit is to expand
them in a power series using a center manifold reduction [1, 7, 21, 22]. This has the
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advantage that one is able to extract an approximation for the homoclinic orbits and
thus be able to approximate their bifurcations [23]. See [21] for a comprehensive
list of different techniques to approximate the homoclinic connections arising from
the DNLS system.

Any intersection between the stable and unstable manifolds (a so-called homo-
clinic point) will generate a localized steady-state solution for the DNLS. Generi-
cally, the stable and unstable manifolds cross transversally giving rise to a so-called
homoclinic tangle (see left panel of Fig. 11.2 for a typical example). The transver-
sality of the intersection of the manifolds establishes the parametric stability for
the existence of homoclinic points and thus localized solutions. This property is
extremely important for applications since it guarantees that, despite inaccuracies
in the model parameters and external perturbations, localized solutions will still
survive. This, for example, allows for approximate dynamical reductions to the in-
teractions of continuous chains of bright solitons to be able to perform localized
oscillations [24]. Two examples of soliton solutions generated by a homoclinic point
of the focusing (β = −1) 2D map are depicted in Fig. 11.2 and they correspond to
bond-centered (circles) and site-centered (squares) solutions. These two families
are generated by the odd and even crossing of the stable and unstable manifolds
starting at the points labeled by the points Q0 and P0 in the left panel. In general,
the 2D map approach not only establishes the existence of bright soliton solutions
(as well as dark soliton solutions, see below) but also determines their decay rate.
Specifically, the eigenvalues λ± (λ− < 1 < λ+) for the saddle fixed point support-
ing the homoclinic orbit (the origin in the case under consideration) determine the
exponential decay λ|n|− = λ

−|n|
+ for n → ±∞ (λ− = λ−1

+ is a consequence of the
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Fig. 11.2 Homoclinic connection of the 2D map (left). Stable and unstable manifolds are depicted
by solid and dashed lines, respectively. The right panel depicts the corresponding bright soliton
steady-state solutions to the DNLS. Circles (squares) correspond to a bond (site) centered bright
soliton solution generated by the initial condition depicted in the left panel by P0 (Q0). Parameter
values correspond to: � = 0.75, β = −1, and ε = 1
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Fig. 11.3 Homoclinic and heteroclinic connections of the 2D map (left). Stable and unstable mani-
folds are depicted by solid and dashed lines, respectively. The right panel depicts the corresponding
dark soliton (squares) and staggered bright soliton (circles) steady state solutions to the DNLS
generated by the initial conditions depicted in the left panel by Q0 and P0, respectively. Parameter
values correspond to: � = −4.5, β = 1, and ε = 1

properties described in Sect. 11.3.1). In our case the eigenvalues at the origin are
given by 2ελ± = �+ 2ε ±

√
�(�+ 4ε).

The staggering transformation generated by the symmetry described in
Sect. 11.3.1.(b) establishes the existence of a staggered companion to the above
described bright soliton. In Fig. 11.3 we depict with circles such a staggered bright
soliton emanating from the initial condition labeled with P0 in the left panel. The de-
caying properties for the staggered bright soliton are the same as for its unstaggered
sibling.

11.3.3.2 Heteroclinic Orbits

Instead of considering connections involving a single fixed point, consider the sta-
ble manifold W s (x∗1 ) emanating from the fixed point x∗1 and the unstable manifold
W u(x∗2 ) emanating from the fixed point x∗2 (x∗1 
= x∗2 ). If these manifolds intersect
then it is possible to induce an orbit that connects, in forward time, x∗1 with, in
backward time, x∗2 . This is a so-called heteroclinic connection and it corresponds
to a steady state that connects to distinct homogeneous steady states (x∗1 and x∗2 ),
namely a dark soliton (or front).

Two examples of dark solitons generated by heteroclinic orbits of the 2D map
are depicted in Figs. 11.4 and 11.3. Figure 11.4 depicts a dark soliton in the focus-
ing case which has staggered tails, while Fig. 11.3 depicts (see orbit depicted with
squares emanating from the initial condition labeled by Q0) a standard dark soliton
for the defocusing case.

The decaying properties for the tails of the dark soliton can be obtained, as in
the case of the bright soliton, by the appropriate eigenvalues of the fixed points
supporting the solution.
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Fig. 11.4 Heteroclinic connection of the 2D map (left). Stable and unstable manifolds are depicted
by solid and dashed lines, respectively. The right panel depicts the corresponding staggered dark
soliton steady-state solution to the DNLS generated by the initial condition depicted in the left
panel by P0. Parameter values correspond to: � = 3, β = −1, and ε = 1

11.3.3.3 Multibreathers

By following higher order intersections of the homoclinic connections it is pos-
sible to construct localized solutions with more than one localized hump [2, 3].
These solutions are usually referred to as multibreathers. In Fig. 11.5 we depict
three examples of bright multibreathers for the same parameters but starting at dif-
ferent intersections on the homoclinic tangle. For a detailed classification of these
multibreather solutions see [2] and [3]. Naturally, multibreather solutions are also
possible in the defocusing case in the form of dark multisolitons (several contiguous
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Fig. 11.5 Higher order homoclinic connections corresponding to multibreather solutions. The
three multibreather solutions correspond to: (a) symmetric two-hump multibreather generated by
the initial condition P0 (see circles), (b) asymmetric two-hump multibreather generated by the ini-
tial condition Q0 (see squares), and (c) three-hump multibreather generated by the initial condition
R0 (see triangles). Parameter values correspond to: � = 0.75, β = −1, and ε = 1
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troughs asymptotic to the constant homogeneous steady-state background) [25, 26].
It is worth mentioning that all the multibreather structures described herein are
genuinely discrete solutions and are not related to the multisoliton solutions of the
continuous nonlinear Schrödinger equation that can be generated from the single
soliton solution by using the inverse scattering theory [27].

11.4 Bifurcations: The Road from the Anti-Continuous
to the Continuous Limit

One of the most appealing aspects of the map approach to study steady states of
nonlinear lattices is not only the elucidation of the extremely rich variety of struc-
tures that can be described but, perhaps more importantly, its usefulness in fully
characterizing their bifurcations. The idea is to start at the so-called anti-continuous
[28] (uncoupled) limit, ε = 0, where any solution vn ∈ {0,±

√−�/β} is valid. It
is known that all possible solutions for ε = 0 can be continued to finite coupling
ε∗ > 0 [28]. In fact, several works have been devoted to finding bounds for ε∗

(threshold for coupling below which any solution can be found) and they range
from ε∗ > 1/(10+ 4

√
2) ≈ 0.0639 to ε∗ > (3

√
3 − 1)/52 = 0.0807 [3, 7, 29]. In

terms of the 2D map description, the existence of any solution vn ∈ {0,±
√−�/β}

is a consequence of the fractal structure of the homoclinic tangle for small coupling.
In fact, for small ε the homoclinic tangles tend to accumulate close to the basic nine
points (x, y) with x, y ∈ {0,±√−�/β} allowing orbits consisting of any combi-
nation of states vn ≈ {0,±

√−�/β} to be possible [3]. This effect can be clearly
seen in panel (a) of Fig. 11.6 that corresponds to a very weak coupling ε = 0.05
that is below the critical coupling ε∗ and thus any orbit connecting any possible
combination of neighboring basic points is valid.

As the coupling parameter ε is increased from the anti-continuous limit, solutions
start to dissappear through mutual collisions in saddle node and pitchfork bifurca-
tions. A detailed description of this scenario pertaining to the DNLS can be found
in [3]. This work was in turn inspired by a similar analysis performed on the Hénon
map [30]. In both [30] and [3] it is conjectured (the so-called no-bubbles-conjecture)

vn

w
n

(a)

vn

(b)

vn

(c)

vn

(d)

vn

(e)

Fig. 11.6 Homoclinic tangle progression as the coupling parameter is increased from the anti-
continuous limit toward the continuous limit. The coupling for each panel corresponds, from left
to right, to ε = 0.05, 0.2, 0.6, 1, and 1.5. In panel (a) the nine black circles correspond to the areas
of the 2D map points giving rise to any possible combination vn ≈ {0,±

√−�/β} close to the
anti-continuous limit. The other parameter values correspond to: � = 0.75 and β = −1
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that, as the coupling ε grows, only annihilation of solutions (through saddle node
and pitchfork bifurcations) occurs and that no new solutions emerge. In Fig. 11.6
we show the progression of the homoclinic tangle of the origin as the coupling
parameter is increased from the anti-continuous limit toward the continuous limit.
As it is clearly suggested by the figure, the amount of crossings between the different
stable/unstable manifolds is greatly reduced as ε is increased. The disappearance of
these crossings is accounted by a series of saddle node and pitchfork bifurcations –
the saddle node being the most common one. By following the number of different
possible homoclinic connections as the coupling is increased one would obtain a
Devil (fractal) staircase [31–33] as it is evidenced in Fig. 14 of [3].

In the limit ε → ∞ (the continuous limit), the homoclinic tangle of the ori-
gin gets thinner and asymptotically tends towards a simple homoclinic connection
where the stable and unstable manifolds coincide exactly and correspond to a simple
loop as it can be observed from panel (e) of Fig. 11.6. In this continuous limit both,
the bond-centered and the site-centered solutions, coalesce into the bright soliton
solution to the standard continuum nonlinear Schrödinger equation.

11.5 Summary and Future Challenges

In this chapter we presented a review of the so-called map approach whereby the
steady-state problem for general nonlinear dynamical lattices, with nearest-neighbor
coupling, can be cast as a second-order recurrence equation that, in turn, generates
a 2D map. Within this framework, any orbit of this 2D map generates a corre-
sponding steady-state solution for the nonlinear lattice. Concentrating on the 2D
map generated by the DNLS equation, we first described some generic properties of
the steady solutions that are straightforward consequences of the underlying sym-
metries of the 2D map. Then, we comprehensively studied the diversity of DNLS
steady-state solutions that can be generated using this map approach. We partition
the possible solutions into spatially extended and localized steady states. Spatially
extended states correspond to homogeneous, periodic, modulated, and spatially
chaotic steady states of the DNLS and are generated, respectively, by fixed points,
periodic orbits, quasi-periodic orbits, and chaotic orbits of the 2D map. The more
interesting case of spatially localized steady states is generated by homoclinic or
heteroclinic connections of the 2D map that in turn generate, respectively, bright
and dark soliton steady-state solutions of the DNLS. We also elaborated on the
staggered (oscillating) and multibreather variants thereof. We also briefly described
the bifurcation road whereby the extremely rich diversity of solutions generated at
the anti-continuum limit (zero coupling) is reduced through a series of saddle node
and pitchfork bifurcations to a single solution (the standard bright or dark soliton)
at the continuum limit.

Some future challenges related to the map approach would include the corrobo-
ration of the the so-called no-bubbles-conjecture, originally put forward by Sterling
et al. for the Hénon map [30] and then re-stated for the DNLS 2D map by Alfimov
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et al. [3], whereby it is noted that as the coupling parameter is increased only
annihilation of solutions occurs (through saddle node and pitchfork bifurcations)
and thus no “birth” of new solutions may occur. Another topic that has not yet
been fully explored is the use of the Mel’nikov approach for higher dimensional
maps [20, 34–36] for more complex coupling schemes. In particular, this higher
dimensional Mel’nikov approach has been successfully applied to a 1D nonlinear
double Ablowitz–Ladik chain [37, 38] (see also Sect. 2.1 in Chap. 2) in [39]. It
would be interesting to explore this higher dimensional approach in 1D lattices
with higher order neighboring couplings (i.e., not only nearest neighbors) that will
naturally generate higher order recurrence relationships between successive lattice
sites and therefore higher dimensional maps. Finally, the direct application of the
map approach for higher dimensional lattices is not possible because the recurrence
relationship equivalent to Eq. (11.4) would involve two and three indices for the
2D and 3D cases, respectively. Nonetheless, it should be in principle possible to
treat, for example, a 2D lattice chain as an infinite array of 1D coupled chains and
apply the higher dimensional Mel’nikov approach mentioned above for the double
Ablowitz–Ladik chain [39]. However, such a scheme is anticipated to be extremely
cumbersome and involve complicated numerical methods to evaluate the Mel’nikov
approach in high dimensions.
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Chapter 12
Formation of Localized Modes in DNLS

Panayotis G. Kevrekidis

12.1 Introduction

For the most part in this volume, we have analyzed solitary wave coherent structures
that constitute the prototypical nonlinear wave solutions of the ubiquitous discrete
nonlinear Schrödinger (DNLS) model. A natural question, however, that arises is
how do these structures emerge from general initial data. One possible answer to
that question stems from the modulational instability mechanism that we addressed
in some detail in both focusing and defocusing DNLS equations in Chap. 6. Another
possibility that we will address in this section is the formation of such nonlinear ex-
citations from localized initial data. In fact, the latter approach was experimentally
pioneered in [1], where an injected beam of light was introduced into one waveguide
of a waveguide array. It was observed that when the beam had low intensity, then it
dispersed through quasi-linear propagation. This is natural in our cubic nonlinearity
setting, as for sufficiently small amplitudes the nonlinear term becomes irrelevant.
On the other hand, in the same work, experiments with high intensity of the input
beam led to the first example of formation of discrete solitary waves in waveguide
arrays. A very similar “crossover” from linear to nonlinear behavior was observed
also in arrays of waveguides with the defocusing nonlinearity [2]. The common
feature of both works is that they used the DNLS equation as the supporting model
to illustrate this behavior at a theoretical/numerical level. However, this crossover
phenomenon is certainly not purely discrete in nature. Even the integrable con-
tinuum NLS equation possesses this feature. More specifically, it is well-known
that, e.g., in the case of a square barrier of initial conditions of amplitude V0 and
width L, the product V0 L determines the nature of the resulting soliton, and if it is
sufficiently small the initial condition disperses without the formation of a solitonic
structure [3]. It should also be noted that the existence of the threshold is not a
purely one-dimensional feature either. For instance, experiments on the formation
of solitary waves in two-dimensional photorefractive crystals show that low intensi-
ties lead to diffraction, whereas higher intensities induce localization [4–6]. Similar
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phenomena were observed even in the formation of higher order excited structures
such as vortices (as can be inferred by carefully inspecting the results of [7, 8]).

An interesting question, examined recently in the work of [9] which we will fol-
low herein, concerns the identification of the above-mentioned crossover between
linear and nonlinear behavior. In the work of [9], this was addressed in, arguably, the
simplest context of a localized initial condition (which was nevertheless to experi-
ments such as the ones reported in [1, 2]), namely a Kronecker-δ initial condition
parametrized by its amplitude for the DNLS equation. For earlier work on the same
general theme, see also [10, 11]. It was thus found that there exists a well-defined
value of the initial state amplitude such that initial states with higher amplitude al-
ways give rise to localized modes. The condition may be determined by comparing
the energy of the initial state with the energy of the localized excitations that the
model supports. This sufficient, but not necessary, condition for the formation of
localized solitary waves provides an intuitively and physically appealing interpreta-
tion of the dynamics that is in very good agreement with our numerical observations.
It is interesting to compare/contrast this dynamics with the corresponding one of the
continuum NLS model and also the discrete integrable Ablowitz–Ladik (AL)-NLS
model (such a comparison is presented below). In addition to the one-dimensional
DNLS lattice, we also consider the two-dimensional case where the role of both
energy and beam power (mathematically the squared l2-norm) become apparent.
We should note here that our tool of choice for visualizing the “relaxational pro-
cess” (albeit in a Hamiltonian system) of the initial condition will be energy–power
diagrams. Such diagrams have proven very helpful in visualizing the dynamics of
initial conditions in a diverse host of nonlinear wave equations. In particular, they
have been used in the nonlinear homogeneous systems such as birefringent media
and nonlinear couplers as is discussed in Chaps. 7 and 8 of [12], as well as for
general nonlinearities in continuum dispersive wave equations in [13], while they
have been used to examine the migration of localized excitations in DNLS equations
in [14].

We start this discussion by presenting the theory of the integrable continuum and
discrete models. We then examine how the DNLS differs from the former models
in its one-dimensional version, how the relevant results generalize in higher dimen-
sions and lastly pose some interesting questions for future study. As indicated above,
our exposition chiefly follows that of [9], although some interesting new results and
associated questions are posed in the last part of the relevant discussion.

12.2 Threshold Conditions for the Integrable NLS Models

12.2.1 The Continuum NLS Model

For the focusing NLS equation [3]

iut = −1

2
uxx − |u|2u (12.1)



12 Formation of Localized Modes in DNLS 237

with squared barrier initial data

u(x, 0) =
{

V0 if − L ≤ x ≤ L,

0 otherwise
(12.2)

(the inverse of) the transmission coefficient, S11(E), which is the first entry of the
scattering matrix, is given by

S11(E) = ν(E) cos(2ν(E)L)− i E sin(2ν(E)L) (12.3)

with ν(E) =
√

E2 + V 2
0 where E is the spectral parameter and V0 the amplitude of

the barrier. It is well-known that the number of zeros of this coefficient represents
the number of solitons produced by the square barrier initial condition [3]. It can be
proved that the roots of this equation are purely imaginary. (This initial condition
satisfies the single-lobe conditions of Klaus–Shaw potentials, from which it follows
that the eigenvalues are purely imaginary [15]). Let us define η ≥ 0 and use E = iη.
Then, Eq. (12.3) becomes

√
1− η2 cos

(
2V0

√
1− η2 L

)
+ η sin

(
2V0

√
1− η2 L

)
= 0. (12.4)

We can verify that Eq. (12.4) does not have any roots (i.e., leads to no solitons in
Eq. (12.1)) if

V0 <
π

2
. (12.5)

Furthermore, the condition to generate n solitons, i.e., so that Eq. (12.4) has n
roots is

(2n − 1)
π

2
< 2V0 L < (2n + 1)

π

2
(12.6)

and the corresponding count of eigenvalues is given by

2

π
V0 L − 1

2
< n <

2

π
V0 L + 1

2
. (12.7)

The limit V0 → ∞ together with L → 0 can be reached if we impose 2V0L =
const. In this instance, the number of eigenvalues stays the same.

12.2.2 The Ablowitz–Ladik Model

We now turn to the integrable discretization of Eq. (12.1) and examine its dynamics.
For the AL-NLS of the form
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i u̇n = −1

2
(un+1 + un−1 − 2un)− 1

2
|un|2 (un+1 + un−1) , (12.8)

there exists a Lax pair of linear operators

Ln = Z + Mn, (12.9)

Bn =
(

z − z−1

2

)2

D + 1

2

(
Z Mn − Z−1 Mn−1

)− 1

2
DMn Mn−1 (12.10)

with the definitions for the matrices

Z =
(

z 0

0 z−1

)
, D =

(
−1 0

0 1

)
, and Mn =

(
0 Un

−U �
n 0

)
, (12.11)

where z is the spectral parameter and Un = Un(t) is a solution of the equation.
These two operators (12.9) and (12.10) define the system of differential–difference
equations

�n+1 = Ln�n, (12.12)

i
d

dτ
�n = Bn�n (12.13)

for a complex matrix function �n , of which the compatibility condition

i
d

dτ
�n+1 = i

(
d

dτ
�m

)∣∣∣∣
m=n+1

is the AL-NLS model. Un = Un(t) is referred to as the potential of the AL-NLS
eigenvalue problem.

For Un decaying rapidly at ±∞, and for n→ ±∞, from Eq. (12.12) we have

�n+1 ∼ Z�n .

We normalize this type of solutions as follows: let �n denote the solution of
Eq. (12.12) such that

�n ∼ Z n as n→+∞,

and let �n be the solution of Eq. (12.12) such that

�n ∼ Z n as n→−∞.

�n and �n are known as the Jost functions. Each of these forms a system of linearly
independent solutions of the AL eigenvalue problem (12.12). These sets of solutions
are interrelated by the scattering matrix S(z),
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�n = �n S(z). (12.14)

The first column of this equation is given by

(�1)n = S11(z)(�1)n + S21(z)(�2)n, (12.15)

where (�1)n denotes the first column of �n . Similar definitions apply to (�1)n and
(�2)n. Since �n ∼ Z n as n→−∞, then

(�1)n ∼ zn

(
1
0

)
.

To obtain decay, (�1)n → 0 when n→−∞, we require

|z| > 1. (12.16)

On the other hand,

�n = ((�1)n , (�2)n) ∼
(

zn 0

0 z−n

)
as n→∞.

Therefore, if |z| > 1 then (�1)n → ∞ and (�2)n → 0, as n → ∞. Now, from
Eq. (12.15) it follows that (�1)n →∞ as n→∞, unless S11(z) = 0.

We therefore seek solutions z1, z2, . . . , zN of the equation

S11(zk) = 0, k = 1, 2, . . . , N, (12.17)

such that |zk | > 1. Then,

(�1)n(zk) = S21(zk)(�2)n(zk), k = 1, 2, . . . , N.

From this, it follows that (�1)n(zk) decays at ±∞:

(�1)n(zk)→ 0 as n→±∞.

It is then said that (�1)n(zk) is an eigenfunction (k = 1, 2, . . . , N), with corre-
sponding eigenvalue zk .

In the case of Un(t = 0) = U0δn,n0 , the Jost function is

�n = Z n−1(Z + M0)�0, for n ≥ 1 (12.18)

with

M0 =
(

0 U0

−U0 0

)
. (12.19)
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Furthermore, �n = Z n for n ≥ 1 and �0 is the identity matrix: �0 = I . Hence,
Eq. (12.18) reads

�n = �n Z−1(Z + M0), for n ≥ 1.

Its comparison with Eq. (12.14) leads to a scattering matrix

S(z) = Z−1(Z + M0).

We thus obtain that the transmission coefficient

S11(z) = 1,

which never vanishes. This means that the one-site potential (i.e., a single-site ini-
tial condition) does not admit solitonic solutions, independent of the amplitude U0

of initial excitation. This theoretical result has also been confirmed by numerical
simulations for different values of U0, always leading to dispersion of the solution.

We should note in passing that the problem of few-site initial conditions in the
AL-NLS problem has been recently considered in [16]. There, it was found that
the lowest number of sites needed in order to create a soliton is, in fact, two, in
which case, there is a threshold initial amplitude above which a single soliton will
be generated. The same conclusion is valid for a three-site initial condition, while
for four or more sites, the dynamical behavior can become more complex. For more
details, we refer the interested reader to [16].

12.3 Threshold Conditions for the Non-Integrable DNLS Model

We now turn to the DNLS

i u̇n = −ε�2un − |un|2σun, (12.20)

where we rescale ε = 1, through t → εt and un → un/
√
ε. For completeness, we

recall the Hamiltonian

H =
∑

n

|un+1 − un|2 − 1

σ + 1
|un|2σ+2, (12.21)

which will be relevant in our considerations below, being one of the two main
conserved quantities of the DNLS (the other one being the squared l2 norm P =∑

n |un|2).
In examining the role of localized initial conditions in the formation of solitary

waves, we start with, arguably, the simplest possibility, namely a “compactum” of
mass un = Aδn,0. The question of interest concerns what is the critical value of
A that is necessary for this single-site initial condition to excite a localized mode.
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Fig. 12.1 Subcritical case (top left), critical (top right), and supercritical (bottom) initial single-site
excitations on the lattice. In all cases, the initial condition is un = Aδn,0, with A = 1 in the left,
2 in the middle, and 2.5 in the right panels. In each case the top panel shows the space–time
contour plot of the evolution. The bottom panel shows the dynamical evolution of |un |2 for sites
n = 0, 1, 2 (solid, dashed, and dash–dotted lines, respectively). For the first case the inset shows
the same evolution in a log–log plot and a t−1 decay for comparison. This indicates that the damped
oscillation of the field modulus has an envelope of t−1/2. Reprinted from [9] with permission

That such a threshold definitely exists is illustrated in Fig. 12.1. The case of the top
left panel is subcritical, leading to the discrete dispersion of the initial datum. This
follows the well-known t−1/2 amplitude decay which is implied by the solution of
the (infinite lattice) problem in the absence of the nonlinearity

un(t) = Ai n Jn(2t), (12.22)

where Jn is a Bessel function of order n. The bottom panel, on the other hand,
shows a nonlinearity-dominated regime with the rapid formation of a solitary wave
strongly localized around n = 0. In the intermediate case of the top right panel, the
system exhibits a long oscillatory transient reminiscent of a separatrix between the
basins of attraction of the two different regimes.

It was argued in [9] that this separatrix can be identified through the examination
of the stationary (localized) states of the model. As we saw in Chap. 2, such standing
wave solutions of the form un = exp(i�t)vn, can be found for arbitrary frequency �
(and arbitrary power P in one spatial dimension). On the other hand, the single-site
initial condition has an energy of
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Fig. 12.2 The lower solid line shows the energy H versus the power P of the discrete solitary wave
solutions. The upper solid line shows the energy versus power of the initial condition, obtained
from Eq. (12.23) and Pss = A2. The horizontal line denotes H = 0 and its intersection with
the initial condition curve defines the single-site, initial amplitude A∗. The dynamical evolution of
three different supercritical initial states with A = 2.1, A = 2.3, and A = 2.5 is shown by dashed
lines. Reprinted from [9] with permission

Hss = 2A2 − 1

σ + 1
A2σ+2, (12.23)

where the subscript denotes single site. Figure 12.2 summarizes succinctly the
power dependence of the energy for these two cases for σ = 1. Both the energy
of the stationary solutions as a function of their power and the single-site energy
as a function of single-site power (Pss = A2), are shown. Note that the two curves
Hss(Pss ) and H (P) do not intersect (except at the trivial point H = P = 0) since
for ε 
= 0 single-site states are not stationary ones.

The examination of the energy–power diagram of Fig. 12.2 provides information
on the existence of a sufficient condition for the formation of a localized mode and
on the dynamics of the single-site initial condition. Figure 12.2 shows that localized
solutions exist for arbitrarily small values of the input power P and that the energy
of the localized states is negative. This implies that the crucial quantity to determine
the fate of the process is the energy H and not the power P . The role of the power
will become more evident in the two-dimensional setting. Moreover, if the system
starts at a given point on the curve defined by Hss = 2Pss − Pσ+1

ss /(σ + 1), due
to conservation of total H and total P , it can only end up in a stationary state in
the quadrant H < Hss and P < Pss . That is to say, some of the initial energy
and power are typically “shed off” in the form of radiation (i.e., converted to other
degrees of freedom which is the only way that “effective dissipation” can arise in a
purely Hamiltonian system), so that the initial condition can “relax” to the pertinent
final configuration. As mentioned above, a localized solution with the same power as
that of the initial condition exists for arbitrary A. However, emergence of a localized
mode occurs only for those initial conditions whose core energy (i.e., the energy of
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a region around the initially excited state) is negative, after the profile is “reshaped”
by radiating away both energy and power.

Therefore, if Hss < 0, then the compactum of initial data will always yield a lo-
calized excitation: this inequality provides the sufficient condition for the excitation
of solitary waves. The condition on the energy, in turn, provides a condition on the
single-site amplitude that leads to the formation of solitary waves, namely solitary
waves always form if A > A∗ with

A∗ = [2 (σ + 1)]
1

2σ . (12.24)

For the case of σ = 1 considered in Figs. 12.1 and 12.2, this amplitude value is
A∗ = 2 in agreement with our numerical observations of Fig. 12.1 and the earlier
numerical results of [10]. Whether an initial state with Hss > 0 yields a localized
state depends on the explicit system dynamics, corroborating the observation that
the previous energetic condition is a sufficient, but not necessary, condition.

It is relevant to make a few important observations here. Firstly, we note the
significant differences between the non-integrable discrete model and both of its
integrable (continuum and discrete) counterparts. In the (singular) continuum limit,
it is possible to excite a single soliton or a multisoliton depending on the barrier
height and width. On the other hand, in the integrable discretization, a single-site
excitation never leads to solitary wave formation, contrary to what is the case here
where either none or one solitary wave may arise, depending on the amplitude of
the initial one-site excitation.

Focusing on the DNLS model, we observe that even though a localized solution
with the same power as that of the initial condition exists for arbitrary A, formation
of a localized mode will always occur only for A > A∗. Secondly, the answer that
the formation always occurs for A > A∗ generates two interconnected questions:
what is the threshold for the formation of the localized mode, and given an initial
A > A∗, which one among the monoparametric family of solutions will the dy-
namics of the model select as the end state of the system? (It should be noted in
connection to the latter question that single-site initial conditions have always been
found in our numerical simulations to give rise to at most a single-site-centered
solution, i.e., multisoliton states cannot be produced by this process, contrary to
what is the case, e.g., in the continuum NLS equation.) Some examples of this dy-
namical process are illustrated in Fig. 12.2, where the energy and power of a few
sites (typically 20–40) around the originally excited one are measured as a function
of time and are parametrically plotted in the H–P plane. As it should, the rele-
vant curve starts from the Hss–Pss curve, and asymptotically approaches, as a result
of the dynamical evolution, the H –P curve of the stationary states of the system.
However, the relaxation process happens neither at fixed energy, nor at fixed power.
Instead, it proceeds through a more complex, dynamically selected pathway of loss
of both H and P to relax eventually to one of the relevant stationary states. This is
shown for three different values of supercritical amplitude in Fig. 12.2 (A = 2.1,
2.3, and 2.5). We have noted (numerically) that the loss of energy and power, at least
in the initial stages of the evolution happens at roughly the same rate, resulting in
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d H/d P ≈ const. However, the later stages of relaxation are more complex and no
longer preserve this constant slope. Therefore, the formation of a localized mode is
neither equi-energetic, nor does it occur at fixed power; similar features have been
previously observed in the continuum version of the system in [13].

In the H–P space, the dynamics of the system can be qualitatively understood
by considering the frequencies � associated with the instantaneous H , P values
along the system trajectories. At each instantaneous energy H a frequency �H may
be defined as the frequency of a single-site stationary state with energy H . Such
a frequency is unique as the stationary state energy is a monotonically decreasing
function of the frequency [17]. Similarly, a frequency �P may be uniquely asso-
ciated with the instantaneous power P , i.e., �P is the frequency of a stationary
state with power P . Note, however, that the stationary state power is a monotoni-
cally increasing function of �. At the final stationary state where the system relaxes
�H = �P = −d H/d P . Hence, the system trajectories are such that �H increases
(consequently the energy decreases) and �P decreases (the power decreases). The
final stationary state is reached when the two frequencies become equal, the point
where they meet depending on their rate of change along the trajectory, i.e., on their
corresponding “speeds” along the trajectory. Nevertheless, the precise mechanism
of selection of the particular end state (i.e., of the particular “equilibrium �”) that
a given initial state will result in remains a formidable outstanding question that
would be especially interesting to address in the future. This is perhaps one of the
fundamental remaining open questions in connection to the DNLS equation (see
also the relevant discussion at the end of this special section).

Turning now to the two-dimensional DNLS equation of (12.20) with �2un,m =
(un+1,m + un−1,m + un,m+1 + un,m−1 − 4un,m), with an the initial condition un,m =
Aδn,0δm,0, we note that similar considerations apply. In particular, in this case the
Hss–Pss curve is given by

Hss = 4Pss − Pσ+1
ss

σ + 1
. (12.25)

In d dimensions the first term would be 2d Pss . While the standing wave branch
of solutions is also well known [18] (see also Chap. 3), we recall that there are
some important differences from the one-dimensional case. Firstly, a stable and an
unstable branch of solutions exists; in the wedge-like curve indicating the standing
waves, only the lower energy branch is stable. Furthermore, the maximal energy of
the solutions is no longer H = 0, but finite and positive. Finally, solutions no longer
exist for arbitrarily low powers, but they may only exist above a certain power (often
referred to as the excitation threshold [19–21]). We can now appreciate the impact of
these additional features in Fig. 12.3. Comparing Hss with H0 we find two solutions:
one with A ≈ 0.7 and one with A ≈ 2.73. However, for the lower one there are no
standing wave excitations with the corresponding power (this illustrates the role
of the power in the higher dimensional problem). Hence, the relevant amplitude
that determines the sufficient condition in the two-dimensional case is the latter.
The figure presents the dynamical pathway for three supercritical values of A =
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Fig. 12.3 Similarly to Fig. 12.2, we show the H–P diagram for the solution branch (wedge-like
solid line), the Hss–Pss graph of the initial conditions (upper solid line) and the trajectories of
three supercritical cases in H–P space for A = 2.75, 2.9, and 3.1 (dashed lines). The horizontal
line represents the maximal energy for which solutions are found to exist, namely H0 ≈ 1.85.
Reprinted from [9] with permission

2.75, 2.9, and 3.1. Once again, the dynamics commences on the Hss–Pss curve,
as it should, eventually relaxing on the stable standing wave curve. As before, the
initial dynamics follows a roughly constant d H/d P , but the relaxation becomes
more complex at later phases of the evolution.

12.4 Conclusions and Future Challenges

The work of [9], as well as the earlier work of [10, 11] illustrated systematically (as
was summarized above) the existence of a sharp crossover between the linear and
nonlinear dynamics of the DNLS lattice. This crossover has been observed experi-
mentally for both focusing [1] (as considered here) and defocusing nonlinearity [2].
Since the latter can be transformed into the former under the so-called staggering
transformation un = (−1)nwn , where wn is the field in the defocusing case, the
solitary waves of the defocusing problem discussed in [2] will be “staggered” (i.e.,
of alternating phase between neighboring sites), yet the phenomenology discussed
above will persist. The crossover was quantified on the basis of an energetic com-
parison of the initial state energy with the branch of corresponding stable localized
solutions “available” in the model. A sufficient, but not necessary, condition for
the excitation of a localized mode based on the initial state, single-site amplitude
was discussed and tested in numerical simulations. Similar findings were obtained
in the two-dimensional analog of the problem: a crossover behavior dictated by
the energy was found, but the crossover was also affected by the power and its
excitation thresholds. Furthermore, these results were fundamentally different from
the case of the continuum version of the model, where depending on the strength of
the excitation, also multisolitons can be obtained and from the integrable discrete
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AL-NLS model where due to the nature of the nonlinearity, no single-site excitation
can produce a solitary wave, independent of its excitation amplitude.

Clearly, however, there exists a number of important open questions arising in the
context of the formation of solitary waves from different localized initial conditions.
One of the foremost among them concerns how the dynamics “selects” among the
available steady-state excitations with energy and power below that of the initial
condition the one to which the dynamical evolution leads. According to our results,
this evolution is neither equi-energetic, nor power-preserving, hence it would be an
extremely interesting question from the point of view of understanding this Hamil-
tonian “relaxation to equilibrium” to identify the leading physical principle which
dictates it.

A related important question concerns the stationary states that result from the
excitation of multiple sites on the lattice. That is an interesting question which may
exhibit sensitive dependence on the initial conditions and for which the stability
issues examined in the earlier chapters (Chaps. 2 , 3, and 4) may play a critical
role. As a related example, we present two prototypical cases of two-site excitations
in the one-dimensional DNLS in Fig. 12.4. In the top left panel, the two central
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Fig. 12.4 The top left and top right panels are as in Fig. 12.1, but for two-site excitations with
A = 2 in both sites (left) and A = 2 and 1.99 in the two sites (right). The bottom panel shows
these two dynamical trajectories as dashed lines in the energy–power diagram featuring the initial
condition of two excited sites (thick solid line): the two-site steady-state branch (intermediate solid
line) and the single-site steady-state branch (thin solid line)
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sites are both excited with amplitudes A = 2, while in the top right panel the right
site has A = 1.99 (instead of A = 2 as the left). It can be readily observed that
the dynamical evolution of the two states is dramatically different. In the weakly
asymmetric initial excitation, this asymmetry seeds the instability of the inter-site
state, and instead of permitting the initial condition to relax to an inter-site mode, it
forces it to eventually relax to a single-site mode (contrary to what is the case in the
left panel). The bottom panel illustrates that although both initial conditions are very
close to being on the two site, equal excitation curve (and very close to each other in
the energy–power space), they lead to significantly different dynamical evolutions.
Thus, it seems that predicting the resulting stationary state for general initial data on
multiple sites may be a very difficult, if not generically intractable, task.
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Chapter 13
Few-Lattice-Site Systems of Discrete
Self-Trapping Equations

Hadi Susanto

13.1 Introduction

In this section, we will review work on few-lattice-site systems of the so-called
discrete self-trapping (DST) equations where we will discuss the integrability of
few-lattice-site DST systems, the presence of chaos in nonintegrable ones, their
applications as well as experimental observations of the systems.

The DST equation which is a generalization of the discrete nonlinear Schrödinger
(DNLS) equation was introduced by Eilbeck, Lomdahl, and Scott in [1]. The equa-
tion takes the form

i
d

dt
A+ 	D

(|A|2)A+ εMA = 0, (13.1)

where A = col(A1,A2, . . . ,An) is a complex n-component vector and D is an n×n
matrix denoting the nonlinearity, given by

D
(|A|2) ≡ diag

(|A1|2, |A2|2, . . . , |An|2
)
. (13.2)

The parameter vector 	 = (γ1, γ2, . . . , γn) denotes the strength of the nonlinear-
ity. The matrix M = [m jk] is a real symmetric matrix (m jk = mkj ) representing the
linear dispersive interactions between the j th and kth site with the constant strength
ε. When the n × n matrix M is taken explicitly as the tridiagonal matrix

M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0 1
1 0 1 0 . . . 0

. . .
. . .

. . .
. . .

. . .
. . .

0 . . . 0 1 0 1
1 0 . . . 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (13.3)
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the DST equation is then nothing else but the 1D DNLS equation1 with a periodic
boundary condition (see also, e.g., [2] for a brief review of the DNLS over the last
two decades). The higher dimensional DNLS equation2 can also be written in the
general form (13.1) with a properly defined matrix M .

The DST equation (13.1) can be derived from the conservation of the Hamilto-
nian/energy

H = −
n∑

j=1

(
γ j

2
|A j |4 + ε

∑

k

m jk A∗j Ak

)
(13.4)

with the canonical variables q j = A j and p j = i A∗j . Equation (13.1) also conserves
the norm

N =
∑

j

|A j |2. (13.5)

Historically, one of the original motivations of the formulation of the DST equa-
tion (13.1) was to investigate the self-trapping of vibrational energy in molecular
crystals and proteins [1, 3]. The term “self-trapping” itself, which is also called self-
localization, refers to an inhibition of the energy dispersion of a coupled nonlinear
oscillators system. The concept was introduced long ago in a note by Landau [4] on
the motion of a (localized) electron in a crystal lattice.

As one can consider a general choice of matrix M representing longer range cou-
plings or different topologies of the lattice, it is also possible to extend the definition
of matrix D. In this case, one will obtain a generalized DST system. As a particular
instance, for the same coupling matrix M (13.3), choosing

D(|A|2) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 |A1|2 0 . . . 0 |A1|2
|A2|2 0 |A2|2 0 . . . 0

. . .
. . .

. . .
. . .

. . .
. . .

0 . . . 0 |An−1|2 0 |An−1|2
|An|2 0 . . . 0 |An|2 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13.6)

yields the integrable Ablowitz–Ladik (AL) model on the periodic domain.
Looking at the DST equation (13.1) as a model of the nonlinear dynamics of

molecules, including small polyatomic ones such as water, ammonia, methane,
acetylene, and benzene [5], it is then suggestive to consider the DST system for
small n, i.e., few-lattice-site systems of DST equations. The case of n = 1, 2, 3,
and 4 has been originally studied in detail in [1] which describes the molecular

1 See Chap. 2 of this book.
2 See Chaps. 3 and 4 of this book.
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stretching vibrations in water (n = 2), ammonia (n = 3), and methane (n = 4)
[1, 5]. Theoretically, the study of few-lattice-site systems is of interest by itself as is
shown later on that the finite size of the system can bring up nontrivial properties,
such as an instability to a (stable in the infinite system) coherent structure [6] and a
nonstandard type of bifurcation in the study of modulational instabilities of a small
size system [7].

13.2 Integrability

When n = 1, the DST equation (monomer) becomes an uncoupled nonlinear
oscillator

i
d

dt
A1 + γ1|A1|2 A1 = 0,

which is integrable and can be solved analytically. It is straightforward to see that
the solution is

A1 = 0, ±A1(0)eiγ1 A1(0)2t (13.7)

with the norm N = 0, A1(0)2, respectively.
When n = 2 (dimer), the DST

i
d

dt
A1 + γ1|A1|2 A1 + εA2 = 0,

i
d

dt
A2 + γ2|A2|2 A2 + εA1 = 0

(13.8)

is also exactly integrable. It is so by the Liouville–Arnold theorem (or Liouville–
Mineur–Arnold theorem) [8, 9], since the degree of freedom is equal to the number
of conserved quantities, i.e., H (13.4) and N (13.5).

The dimer (13.8) is the simplest few-lattice-site DST system where one can ob-
serve the notion of a self-trapping transition, i.e., a transition from a self-trapped
state to a non-self-trapped (oscillating) one. To study it, let us consider the system
with a uniform nonlinearity strength γ1 = γ2 = γ , which is scaled to γ = 1, subject
to the completely localized initial condition

A1(0) = 1, A2(0) = 0. (13.9)

The dimer (13.8) is then solved numerically for several values of the coupling
constant ε.

When ε is small enough, it is natural to expect that the dynamics of A1(t) and
A2(t) will resemble the case of the integrable monomer Eq. (13.7). It is indeed the
case as is presented in the top left panel of Fig. 13.1 for ε = 0.1. By defining the



252 H. Susanto

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

t

|A1|
2

|A2|
2

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

t

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

t

|A
1
|2

|A
2
|2

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

t

|A
1
|2

|A
2
|2

t
2t

1

|A1|
2

|A2|
2

Fig. 13.1 The dynamics of the initial condition (13.9), governed by the DST dimer Eq. (13.8), for
several values of the coupling constant ε. See the text for the details

so-called site-occupation probability difference p = |A1|2 − |A2|2, it can be seen
that even though p is oscillating, it is sign definite. This is the state we refer to as a
self-trapped state.

For a slightly larger value of ε, e.g., ε = 0.24, the dynamics of the initial condi-
tion (13.9) still belongs to a self-trapped state, as is plotted in the top right panel of
Fig. 13.1. It is clearly indicated that the oscillation period increases as a function of
the coupling ε.

If ε is increased further, there is a critical value of the coupling constant εcr above
which the dynamics belongs to a different state. An example is ε = 0.6 > εcr, de-
picted in the bottom left panel of Fig. 13.1. It can be deduced that the site-occupation
probability difference p is no longer sign definite, which corresponds to a non-self-
trapped state and is usually referred to as a Josephson oscillation or a Josephson
tunneling state.

Regarding the dynamics of |A j |2, j = 1, 2, Kenkre and Campbell [10] inter-
estingly showed that p satisfies a φ4 equation. This then implies that the general
solutions of (13.8) can be written explicitly in terms of the Jacobi elliptic functions.
Later, it was also shown [11, 12] that by writing q̇ = γ p, then q will satisfy the
sine-Gordon equation. Using the analytical results in [10], the above self-trapping
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transition can be clearly observed as one varies ε, e.g., that at the critical coupling
εcr the oscillation period becomes infinite.

Later on, Khomeriki et al. [13, 14] demonstrated that the dynamics of |A j |2 can
be controlled through varying the coupling constant for a short time period, such
that Josephson oscillations and self-trapped states coexist. The bottom right panel of
Fig. 13.1 depicts an example of this. In the panel, the coupling constant is generally
set to ε = 0.24. Yet, the state can be made to change from initially self-trapping to
oscillating by instantaneously setting ε = 1 at the point indicated as t1 for a time
period �t = 0.1. The Josephson oscillation state has also been made to change to a
self-trapped one by setting ε = 0 at t2 for the same period of time.

Besides the DST dimer Eq. (13.8), several generalizations of integrable dimers
have been derived and studied as well. An example is the dimer studied by Scott and
Christiansen [15]:

i
d

dt
A1 + γ |A1|2σ A1 + εA2 = 0,

i
d

dt
A2 + γ |A2|2σ A2 + εA1 = 0,

(13.10)

where σ is a non-negative integer. The system is integrable as it conserves the same
norm (13.5) and the Hamiltonian

H = −γ
σ

[|A1|2+2σ + |A2|2+2σ ]− ε(A∗1 A2 + A1 A∗2).

Jørgensen et al. [16] showed that when the coupling constant ε is allowed to be
complex-valued, the dimer

i
d

dt
A1 + γ1|A1|2 A1 + εA2 = 0,

i
d

dt
A2 + γ2|A2|2 A2 ± ε∗A1 = 0

(13.11)

is integrable.
Another notable dimer is the one derived by Jørgensen et al. [16]:

i
d

dt
A1 + γ |A1|2 A2 + β1|A2|2 A2 + ε1 A2 + iαA1 = 0,

i
d

dt
A2 + γ |A2|2 A1 + β2|A1|2 A1 + ε2 A1 − iαA2 = 0,

(13.12)

in which the general system possesses blow-up solutions that can also be written in
terms of the Jacobi elliptic functions [16–18].

When n = 3 (trimer), the DST is not integrable, as well as the case of n ≥ 4.
Nonetheless, Hennig [19, 20] is able to obtain a generalized integrable trimer using
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SU(3) notation, where SU(3) is the group of 3× 3 unitary matrices with unit deter-
minant. It is a system of eight real first-order ordinary differential equations.

For a general value of n, one integrable system is the well-known AL equation.
The reader is also referred to [21] for another two integrable DSTs formulated in
terms of Lie–Poisson algebra derived by Christiansen et al. [21], where one of the
models is a Toda lattice-like system.

13.3 Chaos

Since the DST equation is not integrable when n > 2, it is then expected that the
equation will admit Hamiltonian chaos. It is indeed the case as is demonstrated in
the first study [1]. The Lyapunov exponent of the DST trimer was calculated and an-
alyzed numerically in [22] confirming the presence of chaos in the system. Another
numerical study on trimers in which the third oscillator is a linear one also shows
the presence of chaotic regimes for some well-defined values of the nonlinearity
and linear coupling parameters [23]. Calculations using a Melnikov method were
also presented by Hennig et al. [24], where they showed analytically the presence
of homoclinic chaos in the trimer. The idea was to use the integrable DST dimer as
the underlying unperturbed system and to treat the additional oscillator as a small
perturbation.

A similar idea as [24] was also used to show the presence of chaotic dynamics in
the case of n = 4, where now the polymer is assumed to consist of two integrable
dimers connected by a perturbative coupling [25]. A numerical computation enabled
by the presence of Arnold diffusion was also presented to show the presence of
chaos in the general n = 4 case [26].

The simplest equations describing two coupled quadratic nonlinear (χ (2)) sys-
tems (n = 2), each of which consists of a fundamental mode resonantly interacting
with its second harmonic forming a four degrees of freedom system, have been stud-
ied in [27]. A gradual transition from a self-trapping solution to chaotic dynamics
when going away from the near integrable limit n = 1 has been discussed as well
[27].

Chaos can also be made to exist in an integrable model by perturbing it. Using the
SU(2) representation, a study of the analytical structure of a harmonically perturbed
nonlinear dimer has been done by Hennig [28]. The study shows that in this case,
even though the unperturbed system is integrable, chaos is also observed and proven
analytically.

13.4 Applications and Experimental Observations

As was already mentioned that one application of the DST equation was to describe
experimental observations of anomalous amide resonances in molecular crystals
and proteins, the DST (DNLS) equation also has applications in the study of the
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propagation of the complex electromagnetic field envelope in the waveguide arrays
[29, 30] and the dynamics of bosons cooled to temperatures very near to absolute
zero that are confined in external potentials [31].

In the context of Bose–Einstein physics [31, 32], the DST dimer has been pro-
posed to model the tunneling between two zero-temperature Bose-Einstein conden-
sates (BECs) confined in a double-well magnetic trap [33]. Using the so-called Wan-
nier function-based expansion [34], the infinite-dimensional double-well potential
problem [35] can be asymptotically reduced to the DST dimer [33, 36]. All the
dynamics of the integrable system which have been solved analytically by Kenkre
and Campbell [10] find their new interpretation in this context, including the so-
called “macroscopic quantum self-trapping” [33, 36] which is nothing else but the
self-trapped states observed in [1]. Following the theoretical prediction, successful
experiments have been performed confirming the presence of periodic oscillations
and self-trapping in the system [37, 38].

Buonsante et al. [39] have also considered trimers where chaotic solutions of the
systems are now studied in the context of BECs and argued that they may corre-
spond to macroscopic effects that can be viable to experiments. Pando and Doedel
[40, 41] extended the study of few-site DST systems modeling BECs to the case of
n = 3, 5, 7 with periodic boundary conditions in the presence of a single on-site
defect. In the case of the trimer, it is found that 1/ f noise is a robust phenomenon
taking place as a result of intermittency [41]. In the case of n = 5 and 7, another
robust effect, where chaotic synchronization of symbolic information arises in the
Hamiltonian system, is then observed [40]. Related to this multisite DST system,
successful experiments on BECs trapped by an optical lattice, that using again
Wannier function expansion can be modeled by such DST equations, have been
conducted and reported in the seminal paper [42].

In the context of waveguide arrays [29], the study of the DST dimer has actually
been done a couple of years before the work [1] by Jensen in his seminal paper
[43]. The dimer is used to model the coherent interaction of two optical waveguides
placed in close proximity. Jensen also observed the exchange of power between the
waveguides which is nothing else but the periodic solutions of Kenkre and Campbell
[10]. An experimental observation has been reported as well in this context in which
it is shown that in a double-trap potential system, there is a spontaneous symmetry
breaking [44], i.e., the ground state of the system becomes asymmetric beyond a
critical power N (cf. Eq. (13.5)).

A numerical study on a DST trimer to model a three-waveguide nonlinear di-
rectional coupler also has been conducted by Finlayson and Stegeman [45]. In the
paper, they reported that transitions from quasi-periodic to chaotic behavior and
back take place as the power N is varied.

A similar trimer as the one studied by [24] has been considered as well in the
context of an optical coupler configuration consisting of two nonlinear waveguides
coupled to a linear one [46, 47]. In relation to its physical context, it is shown that
this type of coupler system can act as an optical switching device with switch-
ing properties superior to that of conventional two and three all nonlinear coupler
configurations.
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Experimental observations for the case of systems with a three-well potential
have been performed in strontium barium niobate crystals [48]. Corroborated by an
analytical study using the Lyapunov–Schmidt reduction method, it is shown that the
presence of a third well causes all bifurcations of static solutions to be of saddle
node type [48].

Recently, a few-lattice-site n = 5 DST system modeling waveguide arrays, i.e.,
a nonlinear trimer equation coupled to linear waveguides at the boundaries, was
also studied by Khomeriki and Leon [49]. They showed that by controlling the
intensity of light along the linear waveguides, the middle one can be sensitive to
perturbations. The observation then demonstrates that such a system can be utilized
as a weak signal detector [49].

13.5 Conclusions

To conclude, we have briefly reviewed the study of few-lattice-site systems of DST
equations. It has to be admitted that the present review is far from covering and
summarizing all the work that has been done on the subject. As an example, the
study of quantum versions of DST equations [3] is totally omitted in this section.
Nonetheless, it is expected that this review will give an idea that even in rather
simple small-size systems, a lot of interesting problems and nontrivial properties
can be observed and possibly technologically exploited. This then indicates that it
is of interest to further study few-lattice-site systems of DST equations. One pos-
sible direction would be understanding further connections between few-site and
many-site systems. As recently showed numerically by Buonsante et al. [7], even
investigating the ground states of the system already reveals interesting behaviors,
such as coexistence of a single-pulse and a uniform solution in a finite range of
the coupling constant when n < 6 and the disappearance of the single-pulse mode
beyond a critical parametric threshold.
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Chapter 14
Surface Waves and Boundary Effects
in DNLS Equations

Ying-Ji He and Boris A. Malomed

14.1 Introduction

Surface waves represent excitations which may propagate along interfaces between
different media. These waves occur in diverse areas of physics, chemistry, and bi-
ology, often displaying properties that find no counterparts in bulk media [1]. The
study of waves on the free surface of water and internal surfaces in stratified liquids
is a classical chapter of hydrodynamics. The investigation of surface modes in solid-
state physics was initiated by Tamm in 1932, who used the Kronig–Penney model
to predict specific electron modes (Tamm states) localized at the edge of the solid
[2]. This line of research was extended by Shockley in 1939 [3]. In linear optics,
Kossel had predicted the existence of localized states near the boundary between
homogeneous and layered media in 1966 [4], which were later observed in AlGaAs
multilayer structures [5, 6]. Such waves were also shown to exist at metal–dielectric
interfaces [7], as well as at interfaces between anisotropic materials [8]. In nonlinear
optics, surface waves, which include transverse electric (TE), transverse magnetic
(TM) and mixed polarization modes propagating at the interface between homoge-
neous dielectric media with different properties, were theoretically predicted in the
works [9, 10] (see also review [11]).

The formation of surface solitons of the gap type (with their propagation constant
falling in a bandgap of the linear spectrum generated by the respective linearized
system) was predicted too [12] and observed in experiments carried out in an optical
system described by such a model [13]. Surface solitons have also been predicted at
an interface between two different semi-infinite waveguide arrays [14], as well as at
boundaries of two-dimensional (2D) nonlinear lattices [14–18]. It has been shown
that surface solitons of the vectorial [19, 20] and vortical [21] types, as well as sur-
face kinks [22], can exist too. In addition to that, multicomponent (polychromatic)
surface modes have been predicted and experimentally observed [23–25].
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Closer to the main topic of the present book are discrete surface solitons. The
existence of such localized lattice modes was first analyzed in one-dimensional (1D)
arrays of nonlinear optical waveguides [26]. These states, predicted to exist at the
edge of a semi-infinite array, feature a power threshold necessary for their forma-
tion, similar to that encountered by nonlinear surface waves at interfaces between
continuous media [26, 27]. The formation and properties of discrete surface solitons
have been explored theoretically in detail [26–32], and these solitons were quickly
created in experiments performed in arrays of optical waveguides [33, 34]. Discrete
surface solitons have been predicted in a number of other settings, such as those
based on vectorial models [35, 36] and superlattices [37], as well as in a system
with the quadratic nonlinearity [38].

In higher dimensions, 2D discrete surface solitons have been reported in theo-
retical and experimental forms [17, 39]. Recently, the creation of discrete solitons
of a corner type, in a 2D array of optical waveguides confined by two orthogonal
surfaces that form the corner, was reported in the work [18]. Finally, spatiotemporal
discrete surface solitons have been predicted in the theoretical works [40, 41].

In this chapter, we present an outline of several basic theoretical and experimental
results obtained for discrete surface solitons which can be supported by boundaries
of various types. We first consider the simplest case of the surface solitons in 1D
Kerr media (those with the cubic nonlinearity), starting with the underlying theory
and then proceeding to the experimental realization. This will be further extended
into 2D and 3D settings.

14.2 Discrete Nonlinear Schrödinger Equations
for Surface Waves

14.2.1 The One-Dimensional Setting

In a semi-infinite nonlinear lattice (in the experiment, it represents a long ar-
ray of weakly coupled nonlinear optical waveguides, as schematically depicted
in Fig. 14.1), the normalized field amplitudes at lattice sites n ≥ 0 obey a dis-
crete nonlinear Schrödinger (DNLS) equation, which incorporates the boundary
condition at the surface [26],

Fig. 14.1 A typical scheme of a semi-infinite array of optical waveguides, buried into a bulk
medium, which gives rise to effectively one-dimensional quasi-discrete surface solitons. Reprinted
from [38] with permission
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i
d

dz
u0 + u1 + β|u0|2u0 = 0, (14.1)

i
d

dz
un + (un+1 + un−1)+ β|un|2un = 0. (14.2)

In the model of the array of optical waveguides, the evolution variable z is the
distance of the propagation of electromagnetic signals along the waveguides, and
β is the coefficient of the on-site nonlinearity, the self-focusing and self-defocusing
nonlinearities corresponding, respectively, to β > 0 and β < 0. Unless it is said
otherwise, we set β ≡ 1, by means of an obvious rescaling of the lattice field.
Equation (14.1) governs the evolution of the field at the edge of the array, which
corresponds to site n = 0, and Eq. (14.2) applies at every other site, with n ≥ 1. The
actual electric field in the optical wave is expressed in terms of scaled amplitudes
un as follows: En =

√
2Cλ0η0/(πn0n̂2)un , where C is the inter-site coupling coef-

ficient in physical units (in Eqs. (14.1) and (14.2), normalization C = 1 is adopted),
λ0 is the free-space wavelength, η0 is the free-space impedance, n̂2 the nonlinear
Kerr coefficient, and n0 the linear refractive index of the waveguides’ material.

14.2.2 The Two-Dimensional Setting

The model of the 2D semi-infinite array of optical waveguides with a horizontal
edge, whose plane is parallel to the direction of the propagation of light in individ-
ual waveguides, is based on the accordingly modified DNLS equation for the 2D
set of amplitudes um,n(z) of the electromagnetic waves in the guiding cores (see,
e.g., [18]):

i
d

dz
um,n+C(um+1,n+um−1,n+um,n+1+um,n−1−4um,n)+|um,n|2um,n = 0 (14.3)

for n ≥ 0 and all integer values of m. Unlike Eqs. (14.1) and (14.2), the constant ac-
counting for inter-site coupling, C , is not scaled here to be 1, as it will be used in an
explicit form below. Note that the corresponding coupling length in the waveguide
array, which may be estimated as zcoupling ∼ C−1/2 in terms of Eq. (14.3), usually
takes values on the order of a few millimeters, in physical units. At the surface row,
which corresponds to n = 0 in Eq. (14.3), one should set um,−1 ≡ 0, as there are no
waveguides at n < 0. Equation (14.3) admits the usual Hamiltonian representation,
and also conserves the total power (norm), P =∑∞m=−∞

∑∞
n=0 |um,n|2.

14.2.3 The Three-Dimensional Setting

The equations for the slow spatiotemporal evolution of the optical signal propagat-
ing in a 2D array of linearly coupled waveguides can be cast in the following form
[40, 41]:
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(
i

�

�z
− γ �2

�τ 2

)
um,n + (um+1,n + um−1,n + um,n+1 + um,n−1 − 4um,n)um,n

+ |um,n|2um,n = 0, (14.4)

where z is, as in Eq. (14.3), the propagation distance, while τ is the temporal variable
and, accordingly, γ is the coefficient of the temporal dispersion in each waveguiding
core. In the case of the corner configuration considered in the works [40, 41], um,n ≡
0 for m ≤ −1 and n ≤ −1.

A different type of the 3D model is possible in the case when a planar surface
borders a full 3D lattice. In that case, the basic dynamical model takes the following
form:

i
d

dz
ul,m,n + (ul+1,m,n + ul−1,m,n + ul,m+1,n + ul,m−1,n + ul,m,n+1 + ul,m,n−1

− 6ul,m,n)ul,m,n + |ul,m,n |2ul,m,n = 0, (14.5)

where the 3D discrete coordinates assume the following integer values: −∞ <

l,m < +∞, 0 ≤ n < +∞, and ul,m,n ≡ 0 for n < 0. This equation gives rise to 3D
discrete solitons of various types, and those among them which abut on the surface,
or are set at a distance from it corresponding to few lattice cells, may be considered
as three-dimensional surface solitons.

14.3 Theoretical Investigation of Discrete Surface Waves

14.3.1 Stable Discrete Surface Solitons in One Dimension

Here, we outline the first theoretical prediction of 1D discrete surface solitons at
the interface between an array of waveguides and a continuous medium, as in [26].
Stationary surface waves in the semi-infinite lattice system correspond to the sub-
stitution un = vn exp(i�z) in Eqs. (14.1) and (14.2), where � is the corresponding
propagation constant, and all amplitudes vn are assumed to be positive, which cor-
responds to an in-phase solution. In the system under consideration, solitons can
be found with values of the propagation constant falling into the semi-infinite gap,
� ≥ 2, where localized solutions are possible in principle.

The family of soliton solutions, found numerically by means of the relaxation
method, is presented in Fig. 14.2, in the form of the dependence of the respective
total power (alias norm), P = ∑+∞

n=−∞ |un|2, on the propagation constant �. In
particular, in the region of � > 3, the 1D surface solitons are strongly localized,
and may be approximated by a simple ansatz, un = A exp(−np + i�t), where the
amplitude is given by A2 = �/2+

√
�2/4− 1 ≈ �− 1/� and p = 2 ln A.

The dependence plotted in Fig. 14.2 demonstrates a minimum in the P(�) curve
at � = 2.998. This feature, in turn, implies that the discrete solitons exist only above
a certain power threshold, which, in the present case, is Pthr = 3.27. The situation
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Fig. 14.2 The total power
(norm) versus propagation
constant � for the family of
in-phase 1D discrete surface
solitons. Reprinted from [26]
with permission

is quite similar to that found earlier in continuum models for interfaces between
nonlinear dielectric media, where the well-known Vakhitov–Kolokolov (VK) sta-
bility criterion is applicable. According to it, a necessary (but, generally speaking,
not sufficient) condition for the stability of the soliton family is d P/d� > 0 (more
accurately, the VK criterion guarantees only the absence of growing eigenmodes of
infinitesimal perturbations around the solitons with a purely real growth rate, but it
cannot detect unstable eigenmodes corresponding to a complex growth rate).

The full stability of these solutions was also tested in direct simulations of
Eq. (14.3). Figure 14.3 demonstrates that the family of the 1D surface solitons is
split into stable and unstable subfamilies – in fact, in exact accordance with the VK
criterion.

Fig. 14.3 Examples of stable (a) and unstable (b) evolution of the 1D surface solitons for � = 3.2
and 2.92, respectively. Reprinted from [26] with permission
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14.3.2 Discrete Surface Solitons at an Interface Between
Self-Defocusing and Self-Focusing Lattice Media

A specific type of interface corresponds to that between two lattices, with the self-
focusing and defocusing nonlinearities, i.e., β > 0 and β < 0 in Eqs. (14.1) and
(14.2). Following [42], we will present here an example with βn = −0.9 for n < 0
and βn = 1.1 for n > 0. Discrete solitons are looked for in the same general form as
above, i.e., un = vn exp(i�t), where � is, as before, the propagation constant, and
the stationary lattice field vn obeys the following equation:

�vn − C!2vn − βn|vn|2vn = 0. (14.6)

In the anticontinuum (AC) limit, i.e., for C = 0, solutions to Eq. (14.6) can be
immediately constructed in the form of one or several “excited” sites carrying a
nonzero amplitude, vn = ±

√
�/βn (provided that �βn > 0), while at all other

sites the amplitude is zero. Carrying out subsequent numerical continuation of the
solution to C > 0, this approach makes it possible to generate various species of
discrete solitons, seeded at C = 0 by the respective “skeletons.”

In [42], a number of soliton families were constructed, starting, in the AC limit,
from the “skeletons” of the following types: a single excited site at n = 0; a pair
of in-phase or out-of-phase excited sites at n = 0 and 1; and a triplet consisting of
an excited site at n = 0 and ones with the opposite signs at n = 1, 2, and similar
patterns based on four- and five-site “skeletons.” Figure 14.4 displays two lowest
order solution branches found in this model, viz., those seeded by the single-site
configuration, and the dual-site one of the in-phase type.

Fig. 14.4 Top left and right panels display, for C = 0.1, examples of states near the interface
between self-focusing and defocusing lattices, which are engendered, respectively, by a single
excited site, or a pair of excited in-phase sites, in the anticontinuum limit (C = 0), as in [42].
Bottom: families of these solutions are presented through the dependence of their power on C . As
usual, the solid and dashed lines designate stable and unstable solutions, respectively. The vertical
line marks the examples shown in the top panels
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Fig. 14.5 Examples of hybrid (unstaggered–staggered) discrete solitons, attached to the interface
between lattice media with the self-focusing and defocusing nonlinearities. The solitons in panels
(a) and (b) are stable, while the one in (c) is unstable. Reprinted from [43] with permission

As stressed in [43], the interface of the same type as considered in this subsection,
i.e., between lattice media with self-focusing and self-defocusing on-site nonlin-
earities, may give rise to hybrid solitons. They look as unstaggered and staggered
states on the two sides of the interface, see examples in Fig. 14.5. Probably, similar
hybrid states can be found in 2D and 3D models including an interface between
self-focusing and self-defocusing nonlinearities.

14.3.3 Tamm Oscillations of Unstaggered and Staggered Solitons

Here we outline the theoretical prediction of Tamm oscillations of discrete solitons
created near the edge of a 1D lattice (of optical waveguides), following [31]. These
are oscillations of the position of a narrow soliton, due to the interplay of its repul-
sion from the lattice’s edge and Bragg reflection from the bulk of the lattice (see
below).

The analysis starts with the discrete equation for the propagation of light in the
array, cf. Eqs. (14.1) and (14.2):

i
d

dz
un + C(un+1 + un−1 − 2un)+ g|un|2un = 0, (14.7)

where C is, as above, the lattice-coupling constant, while g(|un|2) = β|un|2 and
g(|un|2) = β|un|2/(1+ |un|2) in cubic and saturable media, respectively, with non-
linearity coefficient β > 0 and β < 0 corresponding to the self-focusing and self-
defocusing signs of the nonlinearity. The boundary conditions added to Eq. (14.7)
are the same ones as considered above, see Eq. (14.1).

Stationary solutions to Eq. (14.7) are looked for in the usual (unstaggered) form,
un = vn exp(−i�t), in the case of the self-focusing, and in the staggered form,
with alternating signs of the stationary fields at adjacent sites of the lattice, in
the opposite case. The staggering substitution, un = vn(−1)n exp(i�z), makes the
self-defocusing nonlinearity equivalent to its self-focusing counterpart. Staggered
solitons, which may be found in various models with self-defocusing, may also be
regarded as gap solitons, as they exist at values of the propagation constant which
fall in one of finite bandgaps in the spectrum of the corresponding linearized model.
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On the contrary to that, the propagation constant of ordinary – unstaggered – solitons
belongs to the semi-infinite spectral gap.

Assuming that solitons generated by Eq. (14.7) are narrow (strongly localized),
one can construct analytical approximations for two different types of such solitons,
on-site-centered and inter-site-centered ones. The solutions of the former type have
the largest value of the field at the edge, n = 0, with the lattice field decaying as
vn ≈ αnv0 at n > 0. Inter-site-centered solitons feature the largest local amplitude
at n = 1, and decay as vn ≈ αn−1v1 for n > 1. In either case, the localization of the
soliton is determined by a small parameter, α = C/(�+ 2C).

In direct simulations of Eq. (14.7), these narrow solitons feature swinging mo-
tions, as shown in Fig. 14.6, which are the Tamm oscillations of the narrow solitons,
staggered and unstaggered ones. The oscillations are not quite persistent: in the
course of its motion in the lattice, the soliton gradually loses energy due to emis-
sion of linear waves (“lattice radiation,” alias “phonons”), which leads to gradual
damping of the oscillations. Eventually, the soliton comes to a halt at a position at
some distance from the surface (the distance may be as small as two lattice sites, see
further details in [31]).

Fig. 14.6 Examples of Tamm oscillations of several types of narrow discrete solitons created near
the edge of the lattice. The simulations were performed for typical values of parameters corre-
sponding to arrays of nonlinear optical waveguides in the following models: (a) self-defocusing
saturable, (b) self-defocusing cubic, (c) self-focusing saturable, and (d) self-focusing cubic. In
panels (a) and (b), the soliton is staggered (otherwise, it cannot exist in the defocusing medium),
while in (c) and (d) it is the usual unstaggered soliton. Reprinted from [31] with permission
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For the interpretation of the oscillations, it is relevant to notice that the edge of
the lattice (the surface) induces an effective repulsive potential acting on the narrow
discrete soliton. Stronger inter-site coupling results in the stronger surface-induced
potential, while enhanced nonlinearity suppresses it [31]. Then, Tamm oscillations
of the soliton may be understood as oscillations in the effective Peierls–Nabarro
(PN) potential, induced by the underlying lattice, under the action of the additional
repulsive potential. In other words, the oscillations are a result of the interplay of
the repulsion of the soliton from the lattice surface and Bragg reflection in the depth
of the lattice. The combination of the edge-induced and PN potentials gives rise to
a stable equilibrium position of the soliton at a finite distance from the edge, where
the soliton eventually gets trapped.

14.3.4 Discrete Surface Solitons in Two Dimensions

The aim of this subsection is to present an outline of the theoretical prediction of
2D discrete surface solitons at the interface between a 2D lattice of optical waveg-
uides and a substrate, following [39]. The model is based on Eq. (14.3), station-
ary solutions to which are looked for as um,n = exp(i�z)vm,n , with � scaled
to be 1, and the stationary lattice distribution obeying the respective equation,
(1− |vm,n |2)vm,n − C(vm,n+1 + vm,n−1 + vm+1,n + vm−1,n − 4vm,n) = 0.

In [39], it was shown that the interaction with the edge expands the stability
region for fundamental solitons, and induces a difference between dipoles (bound
states of two fundamental lattice solitons with opposite signs) oriented perpendicu-
lar and parallel to the surface. A notable finding is that the edge supports a species
of localized patterns which exists too but is always unstable in the uniform lattice,
namely, a horseshoe-shaped soliton. As shown in Fig. 14.7, the “skeleton” of the
horseshoe structure consists of three lattice sites.
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Fig. 14.7 (a) An example of the 2D surface soliton of the “horseshoe” type, as in [39]. The solid
curve in panel (b) displays the real part of a critical instability eigenvalue for the soliton family
of this type. For comparison, the dashed–dotted lines in (b) show the instability eigenvalues for
the horseshoe family in the uniform lattice (without the edge). The latter family is completely
(although weakly) unstable, due to a very small nonzero eigenvalue extending to C = 0, while the
horseshoes trapped at the edge of the lattice have a well-defined stability region – in the present
case, it is, approximately, C < 0.25
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Fig. 14.8 An example of a supersymmetric vortex cell. Panels (a) and (b) show, respectively, the
real and imaginary parts of the solution. In panel (c), the solid lines show instability eigenvalues
of these states, as in [39]. For comparison, dashed–dotted lines depict the same numerically found
characteristics for the supersymmetric vortex in the infinite lattice (the one without the edge)

The edge of the 2D lattice may also act in an opposite way, impeding the exis-
tence of localized solutions of other types. A relevant example of that is provided the
so-called supersymmetric lattice vortex, i.e., one with the intrinsic vorticity (S = 1)
equal to the size of the square (a set of four excited sites) which seeds the vortex at
C = 0 in the above-mentioned AC limit (i.e., for the lattice composed of uncoupled
sites), as shown in Fig. 14.8a, b. The configuration displayed in the figure is placed
at the minimum separation from the edge admitting its existence, which amounts
to two lattice sites. Numerically found stability eigenvalues for this structure are
presented in Fig. 14.8c.

The numerical analysis of 3D equation (14.5) reveals similar effects for several
species of discrete 3D solitons. In particular, three-site horseshoes are also com-
pletely unstable in the bulk 3D lattice, but are stabilized if they abut upon the lattice’s
surface. As for 3D vortex solitons, their properties strongly depend on the orienta-
tion with respect to the surface: the ones set parallel to the surface are essentially
stabilized by it, while localized vortices with the perpendicular orientation cannot
exist close to the surface.

14.3.5 Spatiotemporal Discrete Surface Solitons

The theoretical prediction of spatiotemporal discrete surface solitons at the inter-
face between a lattice of optical waveguides and a continuous medium was re-
ported in [40, 41], using the model based on Eq. (14.4). Stationary solutions for
a spatiotemporal soliton can be looked as um,n(z, τ ) = vm,n(τ ) exp(i�z), where
envelopes vm,n(τ ) describe the temporal shape of soliton-like pulses at lattice sites
(n,m). Several examples of the spatiotemporal solitons found in [40, 41] by means
of numerical methods in the lattice with the corner are shown in Fig. 14.9.

14.3.6 Finite Lattices and the Method of Images

In both 1D and 2D settings, some of the results outlined above can also be obtained
by means of the method of images. For instance, in the 1D case with the fixed (zero)
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Fig. 14.9 Top: Panels (a)–(c) display typical examples of spatiotemporal modes localized at the
lattice’s corner, at the edge, and in the center of the lattice. Bottom: Spatial cross sections of the
corresponding stable spatiotemporal solitons. Reprinted from [40, 41] with permission

boundary condition, i.e., un = 0 for n ≤ −1 (see Eqs. (14.1) and (14.2)), the solu-
tion is equivalent to that in an infinite lattice which is subject to the anti-symmetry
constraint, u−(n+2) ≡ −un, n = −1, 0,+1,+2, ... (which, obviously, includes con-
dition u−1 ≡ 0 ). This way of the extension of the semi-infinite lattice into the full
infinite one implies that a localized excitation created at a lattice site with number
m comes together with its image, of the opposite sign, placed at site −(m + 2), as
shown in Fig. 14.10. In [44], the image method was also elaborated in detail (but
chiefly within the framework of linear models) for 2D lattices, including corner- and
sector-shaped ones.

The same method may be applied to finite lattices, which are composed of a
finite number of sites between two edges. An example of such a configuration was
investigated in detail for discrete solitons in [45] – not in terms of the DNLS equa-
tion, but rather for solitons in the Ablowitz–Ladik (AL) model, which is based on
the following discrete equation, idun/dz = −(un+1 + un−1)(1 + |un|2). The infi-
nite AL lattice, as well as a finite one subject to periodic boundary conditions, are
integrable systems. Under the fixed boundary conditions (un ≡ 0 for n ≥ N + 1
and n ≤ −(N + 1), if the truncated lattice consists of 2N + 1 sites), the inte-
grability is lost. For this case, an effective potential accounting for the interaction
of a soliton (which is treated as a quasi-particle) with the edges was derived in

Fig. 14.10 (a) A semi-infinite
lattice with local excitation at
site m; (b) the equivalent
configuration,with the
negative image at site
−(m + 1), in the respective
infinite lattice. Reprinted
from [44] with permission
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[45], and it was demonstrated that this effective potential predicts oscillations of
the soliton in the finite AL lattice with a very good accuracy, if compared to direct
simulations.

Finally, it is worth mentioning that the stability and instability of solitons in 1D
and 2D DNLS lattices with an edge can be understood, in terms of the interaction
of the soliton with its image, as manifestations of the general results for the stability
and instability of bound states of two solitons with opposite or identical signs, that
were reported in the works [46, 47].

14.4 Experimental Results

14.4.1 Discrete Surface Solitons in One Dimension

The first experimental observations of discrete surface solitons at the edge of a lat-
tice of nonlinear optical waveguides were reported in [33, 34] (the material used to
build the corresponding setup was AlGaAs, which is known for a very large value
of the Kerr coefficient). The corresponding experimental configuration is shown in
Fig. 14.11a. Its parameters were close to those previously used to observe discrete
highly localized Kerr solitons in the bulk lattice (far from the edges). The array
contained 101 cores and was 1 cm long, while the coupling length, determined by
the linear interaction between adjacent cores, was estimated to be 2.2 mm. A set of
experiments and simulations dealing with the excitation of the channel (core) at the
edge of the array (n = 0) is depicted in Fig. 14.11.

14.4.2 Staggered Modes

The experimental observation of staggered discrete modes at the interface between
a waveguide array, built of a copper-doped LiNb crystal, and a continuous medium
was reported in [32]. The experimental sample contained 250 parallel waveguides.
The width and height of the single-mode channel waveguides were 4 and 2.5 μm,
respectively, while the distance between adjacent channels was 4.4 μm, the corre-
sponding coupling length being 1.1 mm.

Optical beams of equal power, overlapping under a small angle, were coupled
into the waveguide array, taking care to make the grating period of the resulting
interference pattern matching the period of the array (which is 8.4 μm, according to
what was said above). This input pattern had an elliptical shape whose height was
adjusted to match the depth of each waveguide (approximately 2.5 μm).

In this way, a staggered input pattern was created. It consisted of a central maxi-
mum and a small number of satellites with alternating signs. The sample was placed
so as to match the maximum of the staggered input and the first channel of the array.
The experimental results are plotted in Fig. 14.12.
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Fig. 14.11 Intensity patterns observed in the experiments and numerical simulations reported in
[33, 34] (reprinted with permission) at the output of the AlGaAs waveguide array, for three different
values of the power of the beam injected into channel n = 0. Left-hand side: experimental results
for (a) P = 450 W, (b) P = 1300 W, and (c) P = 2100 W. Right-hand side: results of the
numerical simulations for (d) P = 280 W, (e) P = 1260 W, and (f) P = 2200 W. The inset in
panel (a) displays the experimental setup

14.4.3 Discrete Surface Solitons in Two Dimensions

Experimental observations of 2D optical discrete surface solitons were reported in
[17] and [18]. Here, we summarize the results of the work [17], which used the
interface between a virtual (photoinduced) waveguide array, created in an SBN
photorefractive crystal, and a uniform medium.

The application of the positive bias voltage to a 10-mm-long sample of the crystal
induced sufficiently strong self-focusing nonlinearity in the medium, and thus made
it possible to create in-phase lattice surface solitons. Typical experimental results are
shown in Fig. 14.13, where panel (a) displays a part of the underlying lattice pattern.
The discrete diffraction in this case is stronger in the direction perpendicular to the
edge than in the direction parallel to it, as seen in Fig. 14.13b. For a sufficiently
high bias voltage, the self-action of the input beam provided for the formation of a
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Fig. 14.12 Output patterns
corresponding to the
staggered input excitation of
three channels, with intensity
ratio 1:0.5:0.1, as reported in
[32] (reprinted with
permission). The results are
shown for four different input
powers. Left column:
experimental results for (a)
discrete diffraction
(low-power linear regime),
(b) power P = 9 μW, (c)
P = 22.5 μW, and (d)
P = 225 μW. Right column:
results of respective
numerical simulations for (e)
the linear discrete diffraction,
(f) P = 10 μW, (g) P = 22
μW, and (h) P = 230 μW

discrete surface soliton, see Fig. 14.13c, d. On the other hand, if the intensity of the
beam was reduced by a factor of ≥ 8, it was not able to form a soliton, undergoing
strong discrete diffraction at the surface, as seen in Fig. 14.13h. In the same work
[17], 2D surface solitons were also observed at the corner of the 2D lattice, as shown
in Fig. 14.13e–g.

The application of the negative bias voltage turned the crystal into a self-
defocusing medium, which made it possible to create staggered 2D surface solitons,
which belong to the first bandgap of the respective lattice-induced linear spectrum.
With the appropriate defocusing nonlinearity, a surface gap soliton could be created,
using a single input beam.

The difference between the in-phase surface solitons (see Fig. 14.13i, j) and stag-
gered ones (Fig. 14.13k, l) may be clearly illustrated by the interference fringes,
which break and interleave in the latter case, as shown in Fig. 14.13l. The power
spectrum for the staggered solitons was also drastically different from that of the
in-phase surface solitons.

Typical results of numerical simulations of the model corresponding to the ex-
periment are presented in the right panels of Fig. 14.13, where the top one shows 3D
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Fig. 14.13 The formation of discrete 2D surface solitons at the lattice edge (a–d) and lattice corner
(e–g). Adapted from [17] with permission

plots of the 2D surface soliton at the lattice edge, corresponding to Fig. 14.13d, the
middle panel shows the predicted surface soliton at the lattice corner corresponding
to Fig. 14.13g, and the bottom panel presents the prediction for the surface gap soli-
ton corresponding to Fig. 14.13k. Small dips around the central peak in the bottom
figure indicate the staggered phase structure of the corresponding surface soliton.

14.5 Conclusions

In this chapter, basic theoretical and experimental results for discrete surface (and
corner) solitons in lattices with the cubic on-site nonlinearity were summarized, in
terms of 1D and 2D semi-infinite arrays of optical waveguides. Theoretical pre-
dictions for spatiotemporal corner solitons were presented too, as well as for 2D
surface solitons with a nontrivial intrinsic structure, such as localized discrete vor-
tices and “horseshoes.” Solitons of both the in-phase (unstaggered) and staggered
types have been considered (solitons of the staggered type, which are supported by
the self-defocusing nonlinearity, are also called gap solitons).

As predicted theoretically and demonstrated experimentally, these solitons
demonstrate various noteworthy phenomena such as power thresholds, Tamm os-
cillations (which are akin to Bloch oscillations), and the stabilization by the lattice
edge of localized structures (such as 2D and 3D “horseshoes”) which cannot be
stable in bulk lattices.

Theoretical and experimental studies of surface and corner solitons can be ex-
tended in various directions. In particular, the analysis of surface states in full 3D
models has started very recently. Dynamical 3D bulk lattices of the DNLS type (with
the cubic on-site nonlinearity) give rise to many species of stable discrete solitons
with specific arrangements and topological features, that have no counterparts in



274 Y.-J. He and B.A. Malomed

lower dimensions. These include octupoles, diagonal vortices, vortex “cubes” (stack
of two quasiplanar vortices) “diamonds” (formed by two mutually orthogonal vor-
tices) [48, 49], and discrete quasi-Skyrmions of a toroidal shape (that were found
together with 2D discrete patterns of the “baby-Skyrmion” type) [50]. An obvious
possibility is to investigate such 3D objects when they are placed on or close to the
edge of the 3D lattice.

Virtually unexplored surfaces remain of 2D and 3D lattices whose shape is dif-
ferent from the simplest square and cubic types (such as triangular and hexagonal
lattices in two dimensions). On the other hand, it may also be interesting to study
surface states in 2D and 3D models with the quadratic (rather than cubic) on-site
nonlinearity. Another challenging issue is a possibility to find 2D and, possibly, 3D
discrete solitons attached to the lattice’s surface that would feature mobility along
the surface.
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Chapter 15
Discrete Nonlinear Schrödinger Equations
with Time-Dependent Coefficients (Management
of Lattice Solitons)

Jesús Cuevas and Boris A. Malomed

15.1 Introduction

The general topic of the book into which this chapter is incorporated is the discrete
nonlinear Schrödinger (DNLS) equation as a fundamental model of nonlinear lattice
dynamics. The DNLS equation helps to study many generic features of noninte-
grable dynamics in discrete media [1]. Besides being a profoundly important model
in its own right, this equation has very important direct physical realizations, in
terms of arrays of nonlinear optical waveguides (as was predicted long ago [2] and
demonstrated in detail more recently, see [3, 4] and references therein), and arrays of
droplets in Bose–Einstein condensates (BECs) trapped in a very deep optical lattice
(OL), see details in the original works [5–10] and the review [11].

In all these contexts, discrete solitons are fundamental localized excitations sup-
ported by the DNLS equation. As explained in great detail in the rest of the book,
the dynamics of standing solitons, which are pinned by the underlying lattice, is
understood quite well, by means of numerical methods and analytical approxima-
tions (the most general approximation is based on the variational method [12, 13]).
A more complex issue is posed by moving discrete solitons [14–17]. While, strictly
speaking, exact solutions for moving solitons cannot exist in nonintegrable lattice
models because of the radiation loss, which accompanies their motion across the lat-
tice, direct simulations indicate that a soliton may move freely if its norm (“mass”)
does not exceed a certain critical value [17]. In the quasi-continuum approximation,
the moving soliton may be considered, in the lowest (adiabatic) approximation, as
a classical mechanical particle which moves across the effective Peierls–Nabarro
(PN) potential induced by the lattice [18–21]. In this limit, the radiation loss is
a very weak nonadiabatic effect, which attests to the deviation of the true soliton
dynamics from that of the point-like particle.

In the case of the DNLS equation describing arrays of nearly isolated droplets
of a BEC trapped in a deep OL, an interesting possibility is to apply the Feshbach
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resonance management (FRM) to this system, as was first proposed and studied for
immobile discrete solitons in [22], and later elaborated in detail, for moving soli-
tons, in [23]. The FRM may be induced by an external low-frequency ac magnetic
field, which periodically (in time) changes the sign of the nonlinearity by dint of the
FRM, i.e., formation of quasi-bound states in collisions between atoms [24]. For the
effectively one-dimensional BEC in the absence of the OL, the concept of the FRM
was elaborated in (1D) [25], see also the book [26].

The objective of the chapter is to summarize basic results for the quiescent and
moving 1D DNLS solitons subjected to the time-periodic management, following,
chiefly, the lines of works [22] and [23]. For the quiescent solitons, most significant
findings are FRM-induced resonances in them, and stability limits for the solitons
which are affected by the resonant mechanisms. In particular, resonances with an
external time-periodic modulation may stimulate self-splitting of the solitons. For
the moving solitons, an essential conclusion is that the FRM may strongly facilitate
their mobility, which is an essentially novel dynamical effect in discrete media.

The DNLS equation which includes the FRM mechanism can be cast in the fol-
lowing form:

i u̇n + C (un+1 + un−1 − 2un)+ g(t)|un|2un = 0, (15.1)

where un(t) denotes the BEC wave function at the lattice sites, C is the strength of
the linear coupling between adjacent sites of the lattice, and the real time-dependent
nonlinear coefficient is

g(t) = gdc + gac sin(ωt) (15.2)

with the time-dependent term accounting for the FRM (−g is proportional to the
scattering length of atomic collisions, whose magnitude and sign may be directly
altered by the FRM). In what follows below, we fix, by means of obvious rescaling,
C ≡ 1. We also note that gdc may always be chosen positive, as it can be transformed
by means of the so-called staggering transformation, un(t) ≡ (−1)ne−4it ũn(t).
Equation (15.1) with the time-dependent nonlinear coefficient has a single dynami-
cal invariant, the norm (which is proportional to the number of atoms in the BEC),

N =
+∞∑

n=−∞
|un|2. (15.3)

The chapter is divided into two major parts that deal with quiescent and mobile
discrete solitons (the latter one also briefly considers collisions between the moving
solitons). Each part contains sections which present analytical and numerical re-
sults. In either case, the analytical approach is based on using a particular ansatz for
the shape of the soliton, while numerical results are produced by systematic direct
simulations of Eq. (15.1) with appropriate initial conditions.
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15.2 Quiescent Solitons Under the Action of the “Management”

15.2.1 Semi-Analytical Approximation

In this section, we put Eqs. (15.1) and (15.2) in a slightly different form, namely,

i u̇n + 1

2
(un+1 + un−1 − 2un)+ a(t) |un|2 un = 0, a(t) = 1+ a1 sin (ωt) , (15.4)

where, as said above, we fix C = 1, and the dc part of a(t) is also set equal to 1
by means of an additional rescaling. A (semi-)analytical approximation for soliton
solutions to Eq. (15.4) is based on the fact that it can be derived from the Lagrangian,

L = 1

2

∞∑

n=−∞

[
i
(
u∗nu̇n − unu̇∗n

)− |un+1 − un|2 + a(t)|un|4
]

(15.5)

(∗ stands for the complex conjugate). Then, the variational approximation (VA) [13]
represents the solitons by the following ansatz, following [12]:

un(t) = A exp(iφ + ib|n| − α|n|), (15.6)

where A, φ, b, and α are real functions of time. Substituting this ansatz in the La-
grangian (15.5), it is easy to perform the summations explicitly and thus arrive at
the corresponding effective Lagrangian (an inessential term, proportional to φ̇, is
dropped here):

L

N = −
1

sinh (2α)

db

dt
+ cos b

coshα
+ 1

4
Na(t)

sinhα

cosh3 α
cosh (2α) , (15.7)

where N = A2 cothα is the norm of the ansatz (recall the norm is the dynamical
invariant, calculated as per Eq. (15.3)). The variational equations for the soliton’s
chirp b and inverse width α, derived from Lagrangian (15.7) are

db

dt
= 2 (cos b)

sinh3 α

cosh (2α)
− 1

2
Na(t)

(
tanh2 α

) 2 cosh (2α)− 1

cosh (2α)
, (15.8)

dα

dt
= − (sin b) (sinhα) tanh (2α) (15.9)

(the amplitude A was eliminated here in favor of α, due to the conservation of
N ). First, in the absence of the FRM, i.e., for a(t) = const ≡ 1 (see Eq. (15.4))
Eqs. (15.8) and (15.9) give rise to a stationary solution (fixed point, FP), with
bFP = 0 and αFP defined by equation sinh (αFP) = N

[
1+ 3 tanh2 (αFP)

]
/4 [12].

The VA-predicted stationary soliton is quite close to its counterpart found from a
numerical solution of Eq. (15.4) with a(t) ≡ 1 [22]. Furthermore, linearization of
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Eqs. (15.8) and (15.9) around the FP yields a squared frequency of intrinsic oscilla-
tions for a slightly perturbed soliton,

ω2
0 =

sinh3(αFP) cosh2(αFP)

cosh3(2αFP)

{
4 sinh(αFP)[cosh(2αFP)+ 2]

− N
cosh4(αFP)

[
5 cosh2(2αFP)− 2 cosh(2αFP)− 1

]}
(15.10)

(this expression can be shown to be always positive). Comparison of this prediction
of the VA with numerically found frequencies of small oscillations of the perturbed
soliton demonstrates good agreement too [22].

In the presence of the FRM, a1 
= 0, strong (resonant) response of the system
is expected when the modulation frequency ω is close to eigenfrequency given
by Eq. (15.10). Moreover, the dynamics may become chaotic, via the resonance-
overlapping mechanism [27], if the modulation amplitude a1 exceeds some thresh-
old value. This was observed indeed in numerical simulations of Eqs. (15.8) and
(15.9), as illustrated in Fig. 15.1 by a typical example of the Poincaré map [27] in
the chaotic regime. The figure shows discrete trajectories initiated by two sets of the

initial conditions, namely,
(

b(1)
0 , α

(1)
0

)
= (0, 0.789), that correspond to the stationary

discrete soliton with amplitude A = 1 (cf. ansatz (15.6)) in the unperturbed system

(a1 = 0), and a different set,
(

b(2)
0 , α

(2)
0

)
= (0.13, 0.74). The respective modulation

frequency,ω, is close to the eigenfrequency of small oscillations ω0, as predicted by
Eq. (15.10). For the former initial condition, the point in space (b, α) is chaotically
moving away from the unperturbed FP. However, the chaotic evolution is a transient
feature, as the discrete trajectory takes an asymptotic form with α(t) → 0, which
implies decay (indefinite broadening) of the soliton. The second set of the initial
conditions eventually leads to a stable periodic solution (in terms of the Poincaré
map, it is represented by a new FP, which is found in a vicinity of the unperturbed
one). The latter results predicts the existence of quasi-stationary discrete solitons
under the action of the FRM.

Fig. 15.1 Example of the
chaotic Poincaré map
generated by Eqs. (15.8) and
(15.9) with a1 = 0.02766,
ω = 0.481, and W = 1.5202.
Reprinted from [22] with
permission
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Another analytically tractable case is one for the high-frequency modulation. It
is then possible to perform averaging of Eq. (15.4) (without resorting to the VA).
The eventual result is an effective DNLS equation for the slowly varying part of the
lattice field, qn(t) [22]:

i q̇n + 1

2
(qn+1 + qn−1 − 2qn)+ |qn|2qn

= (a2
1/8ω

2) [3|qn|4 (qn+1 + qn−1)+ 2|qn|2q2
n

(
q∗n+1 + q∗n−1

)

+ |qn+1|4qn+1 + |qn−1|4qn−1 − 2|qn+1|2
(
2|qn|2qn+1 + q2

n q∗n+1

)

− 2|qn−1|2
(
2|qn|2qn−1 + q2

n q∗n−1

) ]
. (15.11)

Equation (15.11) is the DNLS equation with a small inter-site quintic perturba-
tion (a2

1/8ω
2 is a small perturbation parameter).

15.2.2 Direct Simulations

Systematic direct simulations of Eq. (15.4) demonstrate that the VA correctly pre-
dicts only an initial stage of the dynamics [22]. Emission of linear waves (lattice
phonons) by the soliton, which is ignored by the VA, gives rise to an effective
dissipation, that makes the resonance frequency different from the value predicted
by Eq. (15.10). Actually, the soliton decouples from the resonance, as ω0 depends
on the norm N , and the radiation loss results in a gradual decrease of the norm.
Nevertheless, the general predictions of the VA turn out to be correct for a1 � 0.05:
under the action of the management, oscillations of the soliton’s parameters are
regular for very small a1, and become chaotic at larger a1.

Typical examples of the soliton dynamics under the action of stronger manage-
ment, with a1 ≥ 0.1 (and ω = 0.5) are displayed in Fig. 15.2. A noteworthy obser-
vation, which could not be predicted by the single-soliton ansatz, is splitting of the
pulse, which is observed, at a1 = 0.2, in Fig. 15.2, while at other values of a1, both
smaller and larger than 0.2, the soliton remains centered around n = 0. Note that
the splitting is similar to that revealed by direct simulations of the continuum NLS
equation with a term accounting for periodic modulation of the linear dispersion
(dispersion management), which was reported in [28]. A similar phenomenon was
also observed in a discrete model with the finite-difference dispersion term subject
to periodic modulation [29].

Results of the systematic numerical study of the evolution of solitons in Eq. (15.4)
are summarized in Fig. 15.3 (for a1 � 0.2, the pulse may split into several moving
splinters). The diagram shows that the actual critical value of management ampli-
tude a1, past which the soliton develops the instability (via the splitting) is much
higher than the prediction of the chaotic dynamics threshold by the VA (which also
eventually leads to the decay of the soliton, as the chaotic transient is followed by
the asymptotic stage of the evolution with α(t) → 0, see above). Thus, the VA
based on Eqs. (15.8) and (15.9) underestimates the effective stability of the discrete
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Fig. 15.2 Evolution of a discrete soliton with initial amplitude A = 1 in Eq. (15.4) with ω = 0.5
and different values of the management amplitude, a1. Reprinted from [22] with permission

solitons. This conclusion is explained by the fact that the radiation loss, that was
ignored by the variational ansatz, plays a stabilizing role for the discrete solitons.

It is worth mentioning that the existence of a finite critical value of the modula-
tion amplitude, past which the splitting occurs, and the fact that the actual stability
area for solitons is larger than predicted by the VA are qualitatively similar to fea-
tures found in the above-mentioned dispersion-management model based on the
continuum NLS equation [28].

0.1

0.2

0.3

0.4

0.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
ω

a 1

Fig. 15.3 The diagram of dynamical regimes in the plane of the FRM parameters, (ω, a1), as
produced by systematic simulations of Eq. (15.4) with a0 = 1 and initial soliton’s amplitude
A = 1. Open and solid squares correspond to stable and splitting solitons, respectively. The solid
line is the chaos-onset threshold predicted by the numerical solution of the variational equations
(15.8) and (15.9). Reprinted from [22] with permission
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15.3 Supporting Moving Solitons by Means
of the “Management”

15.3.1 Analytical Approximation

In this part, we switch to the notation adopted in Eqs. (15.1) and (15.2), but again
with C ≡ 1. The continuum limit (i.e., the ordinary NLS equation) suggests the
following ansatz for a moving soliton [30]:

u(n, t) = A exp

[
−b (n − ξ (t))2 + iφ(t)+

(
i

2

)
ξ̇n − i

4

∫ (
ξ̇ (t)
)2

dt

]
, (15.12)

where A, b, ξ (t), and φ are, respectively, the amplitude, squared inverse width, cen-
tral coordinate, and phase of the soliton. Accordingly, ξ̇ is the soliton’s velocity, ξ̇ /2
simultaneously being the wave number of the wave field which carries the moving
soliton. Note the difference of this ansatz, which emulates the VA for the solitons
in the continuum NLS equation [30], from the above-mentioned ansatz (15.6), that
was adopted for the essentially discrete model. In the framework of the continuum
NLS equation, the VA for the ordinary solitons yields

φ̇ = 3b, A2 = 4
√

2b

g
(15.13)

(assuming that g = const > 0), where b is treated as an arbitrary positive constant,
i.e., intrinsic parameter of the soliton family.

Then, the ansatz (15.12) with zero velocity, ξ̇ = 0, may be substituted in the
Hamiltonian corresponding to the DNLS equation (15.1),

H =
+∞∑

n=−∞

[
2|un|2 −

(
u∗nun+1 + unu∗n+1

)− g

2
|un|4

]
. (15.14)

In this way, an effective potential of the soliton-lattice interaction is obtained
in the form of a Fourier series, H (ξ ) = ∑∞

m=0 Hm cos (2πmξ ). In the case of
a broad soliton, for which ansatz (15.12) is relevant, it is sufficient to keep only
the lowest harmonic (m = 1) in this expression, which yields the respective PN
(Peierls–Nabarro) potential, UPN. A straightforward calculation, using the Poisson
summation formula, yields [23]

UPN(ξ ) = 1

2

√
π

b
A2 exp

(
−π

2

4b

){
4
√

2 exp

(
−π

2

4b

)

(
1+ e−b/2)− g A2

√
π

b

}
cos (2πξ ) . (15.15)
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If the relation between b and A2, taken as for solitons in the continuum NLS
equation, i.e., as per Eq. (15.13), is substituted into Eq. (15.15), the coefficient in
front of cos (2πξ ), i.e., the amplitude of the PN potential, never vanishes. However,
it may vanish if (15.12) is considered not as a soliton, but just as a pulse with in-
dependent amplitude and width, A and 1/

√
b; then, the PN potential in Eq. (15.15)

may vanish, under the following condition:

1+ exp

(−b

2

)
=
(

g A2

4

)√
π

2b
exp

(
π2

4b

)
. (15.16)

The vanishing of the PN potential implies a possibility of unhindered motion of
the soliton across the lattice.

For a broad soliton (small b), the PN potential barrier is exponentially small,
hence, the soliton’s kinetic energy may be much larger than the height of the po-
tential barrier. Therefore, the velocity of the soliton moving through the potential
(15.15) with period L = 1 contains a constant (dc) part and a small ac correction
to it, with frequency 2πξ̇0/L ≡ 2πξ̇0 [31]: ξ̇ (t) ≈ ξ̇0 + ξ̇1 cos

(
2πξ̇0t

)
, ξ̇2

1 � ξ̇2
0 .

Substituting this into condition (15.16), one can expand its left-hand side by using

exp

(−b

2

)
cos

(
ξ̇

2

)
≈ exp

(−b

2

)[
cos

(
ξ̇0

2

)
− ξ̇1

2
sin

(
ξ̇0

2

)
cos
(
2πξ̇0t

)]
.

(15.17)

Next, inserting the variable nonlinearity coefficient (15.2) into the right-hand side
of Eq. (15.16), and equating the resulting expression to that (15.17), one concludes
that gdc and gac may be chosen so as to secure condition (15.16) to hold, provided
that the average soliton’s velocity takes the resonant value, ξ̇0 = ω/2π . More gen-
erally, due to anharmonic effects, one may expect the existence of a spectrum of the
resonant velocities,

ξ̇0 = (cres)
(M)
N ≡ Mω

2πN
(15.18)

with integers M and N .
Actually, an ac drive can support stable progressive motion of solitons at res-

onant velocities (15.18) (assuming that the spatial period is L = 1), even in the
presence of dissipation, in a broad class of systems. This effect was first predicted
for discrete systems (of the Toda lattice and Frenkel–Kontorova types) in [32–35],
and demonstrated experimentally in an LC electric transmission line [36]. Later,
the same effect was predicted [37] and demonstrated experimentally [38] in long
Josephson junctions with a spatially periodic inhomogeneity. However, a qualitative
difference of the situation considered here is that we are now dealing with nontopo-
logical solitons, while the above-mentioned examples involved kinks, i.e., discrete
or continuum solitons whose topological charge directly couples to the driving field.
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15.3.2 Numerical Results

Numerical simulations of Eq. (15.1) (with C = 1) were performed in [23], setting
gdc = 1 by means of the same rescaling which was used in the studies of the qui-
escent solitons. First, stationary solitons were found as solutions to the DNLS with
gac = 0, in the form of u(0)

n (t) = vn exp(−iω0t). Then, the FRM with gac > 0
was switched on, and, simultaneously, the soliton was set in motion by giving it a
kick, i.e., multiplying un by exp (iqn). Generic results in the plane of the ac-drive’s
parameters, (ω, gac), can be adequately represented by fixing ω0 = −1 and consid-
ering three values of the kick, q = 0.25, 0.5, and 1.

If gac = 0, the kicked soliton does not start progressive motion if the thrust is
relatively weak, q � 0.7. It remains pinned to the lattice, oscillating around an
equilibrium position, which may be explained by the fact that the kinetic energy
imparted to the soliton is smaller than the height of the PN potential barrier. Several
types of dynamics can be observed with gac > 0, depending on the modulation
frequency ω and kick strength q . First, the soliton may remain pinned (generally,
not at the initial position, but within a few sites from it, i.e., the soliton passes a
short distance and comes to a halt, as shown in Fig. 15.4a). The next generic regime
is that of irregular motion, as illustrated in Fig. 15.4b. A characteristic feature of that
regime is that the soliton randomly changes the direction of motion several times,
and the velocity remains very small in comparison with regimes of persistent mo-
tion, see below. The soliton’s central coordinate, the evolution of which is presented
in Fig. 15.4, is defined as X = ∑n n|un|2/N , with the norm N calculated as per
Eq. (15.3).

Under the action of strong modulation, the soliton can sometimes split into two
pulses moving in opposite directions, see Fig. 15.5. This outcome is similar to that
found for quiescent solitons, cf. Fig. 15.2b, although the splitting of the kicked soli-
ton is strongly asymmetric (unlike the nearly symmetric splitting of the quiescent
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Fig. 15.4 The soliton’s central position as a function of time, for typical cases in which the soliton
remains pinned (a), at gac = 0.03, or develops an irregular motion (b), at gac = 0.065. In both
cases, ω = 1 and q = 0.5. Reprinted from [23] with permission
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Fig. 15.5 An example of asymmetric splitting of the kicked soliton, for q = 0.5. The FRM param-
eters are gac = 0.196, ω = 0.5. Reprinted from [23] with permission

solitons). The heavier splinter may move both forward and backward, relative to the
initial kick.

In the case of moderately strong modulation, the moving soliton does not split.
Numerical results demonstrate that, in some cases, it gradually decays into radiation,
while in other cases it is completely stable, keeping all its norm, after an initial
transient stage of the evolution, see examples in Figs. 15.6 and 15.7. To distinguish
between the unstable and stable regimes, a particular criterion was adopted [23]. It
categorizes as stable solitons those moving ones which keep ≥ 70% of the initial
norm in the course of indefinitely long evolution. For this purpose, very long evolu-
tion was implemented by allowing the soliton to circulate in the DNLS lattice with
periodic boundary conditions.

Note that the soliton adjusting itself to the stable motion mode typically sheds off
�20% of its initial norm. Although this conspicuous amount of the lattice radiation
stays in the system with the periodic boundary conditions, it does not give rise to
any appreciable perturbation of the established motion of the soliton. In fact, the
latter observation provides for an additional essential evidence to the robustness of
the moving soliton.
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Fig. 15.6 Generic examples of the progressive motion of a decaying soliton in the straight
(forward) direction (a), for gac = 0.206, ω = 0.5, and in the reverse (backward) direction (b),
for gac = 0.170, ω = 1. In both cases, the solitons were set in motion by the application of the
kick with q = 0.5. Reprinted from [23] with permission
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Fig. 15.7 Generic examples of the motion of propagating solitons in the straight direction (a),
for gac = 0.132, and in the reverse direction (b), for gac = 0.122. In both cases, the modulation
frequency is ω = 1, and the kick is q = 0.5. Reprinted from [23] with permission

It is noteworthy too that, as seen in Figs. 15.6b and 15.7b, in both unstable and
stable regimes the persistent motion of the soliton is possible in both the straight and
reverse directions, relative to the initial thrust. In the latter case, the soliton starts
the motion straight ahead, but very quickly bounces back. The difference from the
regime of the irregular motion (cf. Fig. 15.4b) is that the direction of motion reverses
only once, and the eventual velocity does not fall to very small values.

It is pertinent to compare the average velocity c̄ of the persistent motion with the
prediction given by Eq. (15.18). For example, in the cases displayed in Fig. 15.7a,
b, the velocities found from the numerical data are c̄a ≈ 0.246 and c̄b ≈ −0.155,
respectively. For ω = 1, which is the corresponding modulation frequency, these
values fit well to those predicted by Eq. (15.18) in the cases of, respectively,
the second-order and fundamental resonance: c̄b/ (cres)

(1)
1 ≈ 0.974, c̄a/ (cres)

(2)
3 ≈

1.029.
Lastly, results of systematic simulations of Eq. (15.1), which were performed,

as said above, for the initial discrete soliton taken as a solution of the stationary
version of the equation (for gac = 0 and gdc = 1 in Eq. (15.2)) with ω = −1,
and for three values of the kick, q = 0.25, 0.5, and 1, are collected in Fig. 15.8 in
the form of maps in the plane of the modulation parameters, gac and ω. The maps
outline regions of the different dynamical regimes described above, as well as the
distinction between regions of the straight and reverse progressive motion.

The examination of the maps shows that the increase of thrust q significantly
affects the map, although quantitatively, rather than qualitatively. At all values of
q , the irregular dynamics is, generally, changed by the stable progressive motion
(straight or reverse) with the increase of the modulation amplitude and/or decrease
of the frequency, which is quite natural. Further increase of the FRM strength, which
implies the action of a strong perturbation, may lead to an instability, which indeed
happens, in the form of onset of the gradual decay of the moving solitons. Finally,
strong instability sets in, manifesting itself in the splitting of the soliton.

The reversal of the direction of the soliton’s motion tends to happen parallel to
the transition from stable moving solitons to decaying ones. For this reason, in most
cases (but not always, see Fig. 15.7b) backward-moving solitons are decaying ones.
Finally, a somewhat counterintuitive conclusion is that the increase of the initial
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Fig. 15.8 Maps in the left column show areas in the plane of the FRM frequency and amplitude
(ω, gac) which give rise to the following dynamical regimes. White areas: the soliton remains
pinned; bright gray: irregular motion; gray: splitting; dark gray: regular motion with decay; black:
stable motion. The maps in the right column additionally show the difference between the straight
and reverse directions of the regular motion (marked by dark gray and black), relative to the direc-
tion of the initial thrust. Regular-motion regimes for both decaying and stable solitons are included
in the right-hand panels. Top row: q = 0.25; middle row: q = 0.5; bottom row: q = 1. Reprinted
from [23] with permission

thrust leads to overall stabilization of the soliton, making the decay and splitting
zones smaller.

Collisions between solitons moving with opposite velocities (generated by thrusts
±q applied to two far separated quiescent solitons) were studied too, using the
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Fig. 15.9 Two generic outcomes of collisions between identical solitons moving in opposite di-
rections, in the lattice with periodic boundary conditions. The parameters are gac = 0.132, ω = 1,
q = 0.5 (a) and gac = 0.122, ω = 1, q = 0.5 (b). Note the presence of multiple collisions in panel
(b). Reprinted from [23] with permission

lattice with periodic boundary conditions (which allow repeated collisions). Two
different types of the interaction can be identified, see typical examples in Fig. 15.9.
In the case shown in Fig. 15.9a, the solitons bounce back from each other almost
elastically. Afterward, one of them spontaneously reverses the direction of motion,
due to its interaction with the lattice. Eventually, a pair of virtually noninteracting
solitons traveling indefinitely long in the same direction is observed.

In the other case, shown in Fig. 15.9b, the solitons also bounce after the first
collision; however, in this case the collision is inelastic, resulting in transfer of mass
from one soliton to the other. Repeated collisions (due to the periodicity of the lat-
tice) lead to additional such transfer, and the weaker soliton disappears eventually. In
contrast to what is known about collisions between moving solitons in the ordinary
DNLS equation (with constant coefficients) [17], merger of colliding solitons into a
single standing one was not observed under the action of the management (FRM).

15.4 Conclusion and Future Challenges

The use of the nonlinearity management may provide for a powerful tool for the
control of the dynamics of standing and moving discrete solitons. In the present
chapter, these possibilities were outlined for the 1D settings. The action of a similar
“management” on two-dimensional (2D) discrete fundamental and vortex solitons,
which, in terms of the BEC, may also be readily implemented by means of the FRM,
has not been investigated as yet.

The stability limits of 2D solitons, against periodic modulation of the strength
of the potential, in the continuum Gross–Pitaevskii equation have been recently
studied. The considered model includes the self-attractive cubic nonlinearity and
a quasi-1D [39] or full 2D [40] OL potential. In fact, the respective solitons may be
considered as quasi-discrete ones; accordingly, in terms of discrete equation (15.1),
this “lattice management” corresponds to making the lattice coupling constant a
periodic function of time, C = C(t).
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As concerns the application of the nonlinearity management to 2D lattice soli-
tons, challenging issues are a possibility of the generation of moving 2D lattice
solitons, as well as the control of vortex solitons and bound states of fundamental
solitons by means of this technique. These applications may pertain to both isotropic
and anisotropic lattices.

A similar management technique may be applied to waveguide arrays or pho-
tonic crystals made of photorefractive materials. These systems can be described by
DNLS equations with a saturable nonlinearity.
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Chapter 16
Exceptional Discretizations of the NLS:
Exact Solutions and Conservation Laws

Sergey V. Dmitriev and Avinash Khare

16.1 Introduction

Discrete nonlinear equations that admit exact solutions are interesting from the
mathematical point of view and they also help us understand the properties of some
physically meaningful discrete nonlinear systems. Completely integrable discrete
equations, such as the Ablowitz–Ladik (AL) lattice [1, 2], constitute one class of
such equations. Recently, it has been realized by many researchers that noninte-
grable lattice equations can have subtle symmetries that allow for particular exact
solutions that propagate with particular velocities and interact with each other in-
elastically, in contrast to the AL solitons that propagate with arbitrary velocity and
collide elastically. For vanishing velocity, one can talk about translationally invariant
(TI) stationary solutions (i.e., stationary solutions with arbitrary shift along the lat-
tice). Nonintegrable lattice equations supporting exact moving and/or TI stationary
solutions are often called exceptional discrete (ED) models and a natural question
is how to identify such models. The problem is often viewed differently, namely,
one can look for exceptional solution (not model) parameters when a given lattice
equation is satisfied exactly. Exact stationary and moving solutions to nonintegrable
discrete nonlinear Schrödinger (DNLS) equations have been constructed and ana-
lyzed in a number of recent works [3–14].

In this contribution we first review the existing literature on the exact solutions
to the nonintegrable DNLS equations and closely related discrete Klein–Gordon
models. Then we report on some analytical and numerical results for the DNLS
equations with general cubic nonlinearity.

16.2 Review of Existing Works

The search for exact solutions to the nonintegrable DNLS systems has been carried
out in two main directions: the first one is the search for DNLS models supporting

S.V. Dmitriev (B)
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stationary TI solutions, while the second one is the search for exact moving solutions
to various DNLS equations. Let us summarize the results of those studies.

16.2.1 Stationary Translationally Invariant Solutions

The problem at hand can be rephrased as follows: the aim is to discretize the gener-
alized NLS equation of the form

iut + 1

2
uxx + G ′(|u|2)u = 0, (16.1)

in a way so that the resulting DNLS equation supports the TI stationary solutions.
Here G(ξ ) is a real function of its argument and G ′(ξ ) = dG/dξ . It is usually
assumed that the DNLS equation that one is looking for has the form

i
dun

dt
= −ε�2un − f (un−1, un, un+1), (16.2)

where �2un ≡ un−1−2un+un+1 is the discrete Laplacian, ε is the coupling constant,
the nonlinear function f in the continuum limit (ε →∞) reduces to G ′(|u|2)u and
possesses the property

f (aeiωt , beiωt , ceiωt ) = f (a, b, c)eiωt . (16.3)

Seeking stationary solutions of Eq. (16.1) in the form

u(x, t) = F(x)eiωt, (16.4)

we reduce it to an ordinary differential equation (ODE) for the real function F(x),

D(x) ≡ d2 F

dx2
− 2ωF + 2FG ′(F2) = 0 , (16.5)

and the problem of finding the ED NLS for (16.1) is effectively reduced to finding
the ED forms of the above ODE. Suppose that a discrete analog of Eq. (16.5) that
supports TI solutions (with arbitrary shift x0) is found in the form

D(Fn−1, Fn, Fn+1) = 0 , (16.6)

then the original problem of discretization of Eq. (16.1) can be solved by substituting
in Eq. (16.6), Fn with un or u�n in such a way so as to present it in the form of
Eq. (16.2), satisfying the property as given by Eq. (16.3). Usually there are many
possibilities to do so.

ED models supporting TI stationary solutions with arbitrary x0 differ from con-
ventional discrete models supporting only discrete sets of stationary solutions, lo-
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cated symmetrically with respect to the lattice, typically in the on-site and inter-
site configurations, one of them being stable and corresponding to an energy mini-
mum, while another one being unstable and corresponding to an energy maximum.
The energy difference between these two states defines the height of the so-called
Peierls–Nabarro potential (PN). TI stationary solutions do not experience this peri-
odic potential and can be shifted quasi-statically along the chain without any energy
loss. For the non-Hamiltonian models with path-dependent forces the discussion of
the PN energy relief is more complicated but in this case too, zero work is required
for quasi-static shift of a TI solution along the path corresponding to continuous
change of x0.

The problem of discretization of Eq. (16.5) in the form of Eq. (16.6) has been
addressed in different contexts, and will be discussed in the rest of this section.

16.2.1.1 Integrable Maps

From the theory of integrable maps [15–17] it is known that some of the second-
order difference equations of the form of Eq. (16.6) can be integrated, resulting in
the first-order difference equation of the form U (Fn−1, Fn, K ) = 0, where K is
the integration constant. Such second-order difference equations can be regarded
as exactly solvable because the solution Fn can now be found iteratively, starting
from any admissible initial value F0 and solving at each step the algebraic problem.
Continuous variation of the initial value F0 results in continuous shift x0 of the
corresponding stationary solution along the lattice.

Several years ago, an integrable map was shown to be directly related to the
second-order difference equations supporting the Jacobi elliptic function (JEF) so-
lutions [15]. In [16], for the nonlinear equation d2 F/dx2 + a F + bF3 = 0, the
discrete analog of the form Fn−1 − 2Fn + Fn+1 + a[c11 Fn + c12(Fn−1 + Fn+1)] +
b[c21 Fn−1 Fn Fn+1 + c22 F2

n (Fn−1 + Fn+1)] = 0 was studied and its two-point re-
duction was found to be of the QRT form [15]. This type of nonlinearity was later
studied in [18] and its two-point reduction was rediscovered in [19]. The QRT map
appears in many other studies of discrete models, for example, in [11, 20, 21]. Re-
cent results on the integrable maps of the non-QRT type can be found in [17].

One interesting implementation of the theory of integrable maps can be found in
[13] where the methodology of [22] was employed. In this work stationary solutions
to the DNLS equation with saturable nonlinearity have been analyzed through the
corresponding three-point map. It was found that for some selected values of model
parameters, the map generates on the plane (Fn, Fn+1) a set of points belonging
to a line, having topological dimension equal to one. This effective reduction of
dimensionality of the map means the possibility of its two-point reduction, resulting
in vanishing PN potential.

16.2.1.2 Exceptional Discrete Klein–Gordon Equations

Equation (16.5) can be viewed as the static version of the Klein–Gordon equation,
Ftt = Fxx − V ′(F), with the potential function
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V (F) = ωF2 − G
(
F2) . (16.7)

Thus, the ED Klein–Gordon equation can be used to write down the ED NLS models
(and vice versa).

The first successful attempt in deriving the ED Klein–Gordon equation was made
by Speight and Ward [23–25] using the Bogomol’nyi argument [26], and also by
Kevrekidis [27]. In both cases, the authors obtained the two-point reduction of the
corresponding three-point discrete models. While the Speight and Ward discretiza-
tion conserves the Hamiltonian, the Kevrekidis discretization conserves the classi-
cally defined momentum. These works have inspired many other investigations in
this direction [18, 19, 21, 28–36]. Later it was found that both the models can be
derived using the discretized first integral (DFI) approach [21, 29].

To illustrate the DFI approach, we write down the first integral of Eq. (16.5),

U (x) ≡ (F ′)2 − 2ωF2 + 2G
(
F2
)+ K = 0 , (16.8)

where K is the integration constant, and discretize it as

U (Fn−1, Fn, K ) ≡ (Fn − Fn−1)2

h2
− 2ωFn−1 Fn + 2G (Fn−1, Fn)+ K = 0 . (16.9)

It is assumed that, in the above equation, G(Fn−1, Fn) reduces to G(F2) in the con-
tinuum limit. On discretizing the left-hand side of the identity (1/2)dU/d F = D(x),
we obtain the discrete version of Eq. (16.5),

D(Fn−1, Fn, Fn+1) ≡ U (Fn, Fn+1)−U (Fn−1, Fn)

Fn+1 − Fn−1
= 0 . (16.10)

Clearly, solutions to the three-point problem D(Fn−1, Fn, Fn+1) = 0 can be found
from the two-point problem U (Fn−1, Fn, K ) = 0. We note that Eq. (16.10) was first
proposed in [27] and it was used in [3, 10] to derive ED for Eq. (16.1) conserving
norm or modified norm and momentum.

16.2.1.3 Jacobi Elliptic Function Solutions

Some DNLS equations (and discrete Klein–Gordon equations) with cubic nonlin-
earity support exact TI stationary [6, 7, 9, 28, 37, 38] and even moving [6, 7, 11]
solutions in terms of Jacobi elliptic functions (JEF). Special cases of these solu-
tions describe the TI stationary or moving bright and dark solitons having sech and
tanh profiles, respectively. Such solutions can be derived with the help of the JEF
identities reported in [39].

JEF solutions are important in their own right, and besides, they also help in
establishing the integrable nonlinearities of the QRT type [11]. It is worth pointing
out that, so far, no JEF solutions are known to the Kevrekidis ED model given by
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Eq. (16.10), thereby indicating that the integrable map to this model is perhaps of
the non-QRT type.

An inverse approach to the general problem of finding the kink or the pulse-
shaped traveling solutions to the lattice equations was developed by Flach and
coworkers [40]. They showed that for a given wave profile, it is possible to generate
the corresponding equations of motion. In this context, also see the earlier works
[41, 42]. A similar idea has also been used in other studies, see e.g., [43].

16.2.2 Exact Moving Solutions to DNLS

Exact moving solutions to the different variants of the DNLS, as was already men-
tioned, have been derived in terms of the JEF [6, 7, 11]. They have also been found,
for DNLS with generalized cubic and saturable nonlinearities, with the help of spe-
cially tuned numerical approaches [4, 5, 8, 14]. These works suggest that the moving
soliton solutions can be expected in models where, for different model parameters
(or/and soliton parameters), there is a transition between stable on-site and inter-site
configurations for stationary solitons. Contrary to the DNLS with saturable nonlin-
earity, the solitons in the classical DNLS do not show such transition and moving
solutions have not been found for this system [14].

In our recent work [11] on DNLS with general cubic nonlinearity, we have
derived not only moving JEF but also moving sine solutions (also given here in
Sect. 16.3). Exact, extended, sinusoidal solutions of the lattice equations have been
recently found by several authors [43–47]. It has been proposed that such solutions
can be used to construct approximate large-amplitude localized solutions by trun-
cating the sine solutions [44, 48].

16.3 Cubic Nonlinearity

Here we discuss Eq. (16.2) with the function f given by

f = α1|un|2un + α2|un|2 (un+1 + un−1)+ α3u2
n

(
u�n+1 + u�n−1

)

+ α4un
(|un+1|2 + |un−1|2

)+ α5un
(
u�n+1un−1 + u�n−1un+1

)

+ α6u�n
(
u2

n+1 + u2
n−1

)+ α7u�nun+1un−1 + α8
(|un+1|2un+1 + |un−1|2un−1

)

+ α9
(
u�n−1u2

n+1 + u�n+1u2
n−1

)+ α10
(|un+1|2un−1 + |un−1|2un+1

)

+ α11 (|un−1un| + |unun+1|) un + α12 (un+1|un+1un| + un−1|unun−1|)
+ α13 (un+1|un−1un| + un−1|unun+1|)
+ α14 (un+1|un−1un+1| + un−1|un−1un+1|) , (16.11)

where the real-valued parameters αi satisfy the continuity constraint
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α1 + α7 + 2 (α2 + α3 + α4 + α5 + α6 + α8

+ α9 + α10 + α11 + α12 + α13 + α14) = ±2 , (16.12)

with the upper (lower) sign corresponding to a focusing (defocusing) nonlinearity.
Note that Eq. (16.11) is the most general function with cubic nonlinearity which is
symmetric under un−1 ↔ un+1.

Particular cases of the nonlinearity (16.11) have been studied in a number of
works, many of them are listed in the introduction of [8]. Nonlocal cubic terms
coupling the nearest neighbor lattice points naturally appear in the DNLS models
approximating continuous NLS with periodic coefficients [49].

16.3.1 Conservation Laws

It is easily shown that DNLS Eqs. (16.2) and (16.11) with arbitrary α1, α4, α5, α6,

α11, α12, with α2 = α3 + α8, and α7 = α9 = α10 = α13 = α14 = 0, conserve the
norm

N =
∑

n

unu�n . (16.13)

On the other hand, for arbitrary α2, α14, with α1+α6 = α4, α5 = α6, α4+α5 = α7,
α8 + α9 = α10, α12 = α13 and α3 = α11 = 0, the model conserves the modified
norm

N1 =
∑

n

(
unu�n+1 + u�nun+1

)
. (16.14)

Instead, if only α7 is nonzero while all other αi = 0, then yet another type of modi-
fied norm, given by

N2 =
∑

n

(
unu�n+2 + u�nun+2

)
, (16.15)

is conserved.
Further, for arbitrary α2 and α3, with α4 + α6 = α1, α5 = α6, α5 + α7 = α4,

α9 + α10 = α8, and α11 = α12 = α13 = α14 = 0, Eqs. (16.2) and (16.11) conserve
the momentum operator

P1 = i
∑

n

(
un+1u�n − u�n+1un

)
. (16.16)

Instead, for arbitrary α5 and α7 while all other αi = 0, another type of momentum
operator, given by
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P2 = i
∑

n

(
un+2u�n − u�n+2un

)
, (16.17)

is conserved.
On the other hand, for arbitrary α1, α4, and α6, with 2α3 = 2α8 = α2, and

α5 = α7 = α9 = α10 = α11 = α12 = α13 = α14 = 0, Eq. (16.2) with f given by
Eq. (16.11) can be obtained from the Hamiltonian

H =
∑

n

[
|un − un+1|2 − α1

2
|un|4 − α6

2

[(
u�n
)2

u2
n+1 +

(
u�n+1

)2
u2

n

]

− α4|un|2|un+1|2 − α2

2

(|un|2 + |un+1|2
) (

u�n+1un + u�nun+1
)]
, (16.18)

by using the equation of motion

i u̇n = [un, H ]P B , (16.19)

where the Poisson bracket is defined by

[U, V ]P B =
∑

n

[
dU

dun

dV

du�n
− dU

du�n

dV

dun

]
. (16.20)

Thus in this model, the energy (H ) is conserved.
Finally, in case one considers a rather unconventional Poisson bracket given by

[U, V ]P B1 =
∑

n

[
dU

dun

dV

du�n
− dU

du�n

dV

dun

][
1+ (α2 − α3) |un|2

+α8
(|un+1|2 + |un−1|2

)+ α7un
(
u�n+1 + u�n−1

)+ α7u�n(un+1 + un−1)

]
, (16.21)

then the DNLS Eq. (16.2) with f given by Eq. (16.11) can be obtained from the
Hamiltonian

H1 =
∑

n

[|un − un+1|2 − β|un|2
]
, (16.22)

by using the equation of motion

i u̇n = [un, H1]P B1 , (16.23)

provided

α7 = 2α5 = 2α6 , α8 = α9 = α10 , α3 = (β − 2)α5 , α4 = (β − 2)α8 + α5 ,

α1 = (β − 2)(α2 − α3) , α11 = α12 = α13 = α14 = 0 . (16.24)

Thus the energy (H1) is conserved in this model.
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A few summarizing remarks are in order here:

1. In case only α2 is nonzero while all other αi = 0, we have the integrable AL
lattice with infinite number of conserved quantities. Among them are, e.g., N1,
P1, and H1 with β = 2, but not N , N2, P2, and H .

2. In the case of the conventional DNLS model (i.e., only α1 
= 0), N and H are
conserved.

3. The model with only α7 nonzero conserves N2 and P2.
4. N and P1 are conserved in case only α2 and α3 are nonzero and α2 = α3.
5. N1 and P1 are conserved in case α2 is arbitrary while α1 = α4 = α7, α8 = α10

while other αi = 0.
6. The model conserving H also conserves N .
7. The model conserving H1 also conserves N1 in case β = 2 and α8 = α9 =
α10 = 0.

16.3.2 Two-Point Maps for Stationary Solutions

With the ansatz un(t) = Fne−iωt , we obtain the following difference equation from
the DNLS Eqs. (16.2) and (16.11)

ε
[
Fn−1 − (2− ω/ε)Fn + Fn+1

]+ α1 F3
n + γ1 F2

n (Fn−1 + Fn+1)

+ γ2 Fn
(
F2

n−1 + F2
n+1

)+ γ3 Fn−1 Fn Fn+1

+ α8
(
F3

n−1 + F3
n+1

)+ γ4 Fn−1 Fn+1 (Fn−1 + Fn+1) = 0 , (16.25)

where, for convenience, we have introduced the following notation:

γ1 = α2 + α3 + α11, γ2 = α4 + α6 + α12,

γ3 = 2α5 + α7 + 2α13, γ4 = α9 + α10 + α14.
(16.26)

In the special case of

α8 = γ4 , α1 = γ2 = γ3 , 2α1 + γ1 + 2α8 = 1 , (16.27)

the first integral of the second-order difference Eq. (16.25) reduces to the two-point
map

U (Fn−1, Fn, K ) ≡ ε [(F2
n−1 + F2

n

)− (2− ω/ε)Fn−1 Fn
]

+ α1
(
F2

n−1 + F2
n

)
Fn−1 Fn + γ1 F2

n−1 F2
n + α8

(
F4

n−1 + F4
n

)+ K = 0 , (16.28)

where K is an integration constant. This is so because Eq. (16.25) can be rewritten
in the form
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U (Fn, Fn+1)−U (Fn−1, Fn)

Fn+1 − Fn−1
= 0 , (16.29)

and clearly, if U (Fn−1, Fn) = 0, then indeed Eq. (16.25) is satisfied.
On the other hand, in case only γ1 and γ3 are nonzero while α1 = α8 = γ2 =

γ4 = 0, then the two-point map is given by

W (Fn−1, Fn, K ) ≡ F2
n−1 + F2

n −
Y F2

n−1 F2
n

(2− ω/ε) − 2Z Fn−1 Fn − K Y

(2− ω/ε) = 0 ,

(16.30)
which is of the QRT form [15, 16]. Here K is an integration constant while

Z = (2− ω/ε)2 − Kγ 2
3

2(2− ω/ε)+ 2Kγ1γ3
, Y = 2γ1 Z + γ3 . (16.31)

This is because, in this case, Eq. (16.25) can be rewritten in the form

(2− ω/ε)
2Z (Fn+1 − Fn−1)

{
W (Fn, Fn+1)−W (Fn−1, Fn)

+ γ3

(2− ω/ε)
[
F2

n+1W (Fn−1, Fn)− F2
n−1W (Fn, Fn+1)

] } = 0, (16.32)

and clearly, if W (Fn−1, Fn, K ) = 0, then indeed Eq. (16.3.2) is satisfied. As ex-
pected, in the special case of γ3 = 0 so that only γ1 is nonzero, Eq. (16.3.2) reduces
to Eq. (16.29).

We want to emphasize that the two-point maps, Eqs. (16.28) and (16.30), allow
one to find exact solutions to Eq. (16.25) iteratively, starting from any admissible
value of F0 and solving at each step an algebraic problem. Thus, such solutions
define the exact TI stationary solutions to the DNLS Eq. (16.2) with the nonlinearity
function f given by Eq. (16.11).

It is worth pointing out here that some of the exact stationary TI and non-TI
solutions (specially the short period and the sine solutions) can also follow from
factorized two-point and reduced three-point maps. Several examples of such solu-
tions and their relation with short-period or aperiodic stationary solutions and even
with the sine solution can be found in [36]. Here we give two illustrative examples
of the TI solutions which follow from factorized two-point and reduced three-point
maps.

It is easy to check that Eq. (16.25) has the exact period-four solution

Fn = (..., a, b,−a,−b, ...) , (16.33)

provided

2γ2 = α1 + γ3 , (a2 + b2)α1 = 2ε − ω . (16.34)
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Parameter a in this solution can vary continuously resulting in the shift of the solu-
tion with respect to the lattice, which means that this is a TI solution. Now we note
that in case

α8 = γ4 = γ1 = 0 , α1 = γ2 = γ3 , 2α1 = 1 , K = 2(ω − 2ε) , (16.35)

then the map as given by Eq. (16.28) can be factorized as

U (Fn−1, Fn) = 1

2
(2ε + Fn−1 Fn)

(
2ω

ε
− 4+ F2

n−1 + F2
n

)
= 0 . (16.36)

Remarkably, the second factor of this two-point map satisfies the period-four solu-
tion (16.33) with the conditions (16.34). Note that the TI solution of Eq. (16.33) is
equivalent to the sine solution as given by Eq. (16.50) with β = π/2 and v = k = 0.

Our next example is for the model following from the Hamiltonian of Eq. (16.18).
In this case, Eq. (16.25) assumes the form

ε
[
Fn−1 − (2− ω/ε)Fn + Fn+1

]+ α1 F3
n + γ1 F2

n (Fn−1 + Fn+1)

+ γ2 Fn
(
F2

n−1 + F2
n+1

)+ γ1

3

(
F3

n−1 + F3
n+1

) = 0 . (16.37)

Remarkably, in case the following two-point equation holds

F2
n−1 +

4γ1

3α1
Fn−1 Fn + F2

n = B , (16.38)

then the (stationary) difference Eq. (16.37) can be rewritten as

(Bγ1 + 3ε) (Fn+1 + Fn−1)+ 3(ω − 2ε + Bα1)Fn = 0 , (16.39)

provided

γ2 = α1

2
+ 4γ 2

1

9α1
, B =

ω − 2ε − 4γ1ε

3α1

4γ 2
1

9α1
− α1

. (16.40)

One can now show that for the Hamiltonian model (16.18), the TI stationary sine
solutions of Eq. (16.50) with v = k = 0 and with v = 0, k = π also follow from
the two-point map (16.38) provided

cos(β) = − 2γ1

3α1
. (16.41)

Furthermore, in this case the three-point Eq. (16.39) is also automatically satisfied.
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16.3.3 Moving Pulse, Kink, and Sine Solutions

The DNLS model given by Eqs. (16.2) and (16.11) supports exact moving JEF so-
lutions, e.g., cn, dn, sn, in case

α1 = α8 = 0 . (16.42)

In the limit m = 1, where m is the JEF modulus, one obtains the hyperbolic, moving
pulse and kink solutions. For α11 = α12 = α13 = α14 = 0, JEF solutions were given
in [11] and below we give the hyperbolic and sine solutions including these terms.

In particular, the DNLS model given by Eqs. (16.2) and (16.11) supports the
moving pulse (bright soliton) solution,

un = A exp[−i (ωt − kn + δ)] sech[β(n − vt + δ1)] , (16.43)

provided the parameters satisfy

vβ = 2εs1S , ω = 2ε (1− c1C) ,

2ξ6C + ξ5 = 0 ,
[
S2 + (α3 − α2) A2] s1 = 0 ,

2ξ2C + ξ4 = 0 , A2 (ξ1C − ξ2 + ξ3/2) = εS2Cc1. (16.44)

Here δ and δ1 are arbitrary constants, A, ω, k, β, and v denote the amplitude, fre-
quency, wavenumber, inverse width, and velocity of the moving pulse, respectively,
and the following compact notation has been used to describe the relations between
the parameters of the exact moving solutions:

S = sinh(β) , C = cosh(β) , T = tanh(β) ,

s1 = sin(k) , s2 = sin(2k) , s3 = sin(3k) ,

c1 = cos(k) , c2 = cos(2k) , c3 = cos(3k) .

ξ1 = (α2 + α3)c1 + α11 , ξ2 = α4 + α6c2 + α12c1 ,

ξ3 = 2α5c2 + α7 + 2α13c1 , ξ4 = α9c3 + (α10 + α14)c1 ,

ξ5 = α9s3 − α10s1 + α14s1 , ξ6 = α6s2 + α12s1 . (16.45)

From the first expression in Eq. (16.44) it follows that the pulse velocity is zero
when k = 0 or π . In the former case we have the nonstaggered, stationary pulse
solution while in the latter case, we have the staggered, stationary pulse solution. In
particular, for v = k = 0, the pulse solution is given by

un = A exp[−i (ωt + δ)] sech[β(n + δ1)] , (16.46)

provided 2γ2C + γ4 = 0; A2(γ1C − γ2 + γ3/2) = εS2C; ω = 2ε(1− C).
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On the other hand, the exact moving kink solution to Eqs. (16.2) and (16.11)
given by

un = A exp[−i (ωt − kn + δ)] tanh[β(n − vt + δ1)] , (16.47)

exists provided

vβ = 2εs1T + 4A2ξ6T 3

(
1+ T 2

) , (ω − 2ε)

A2
= 2ξ1

S2
− 2ξ2

T 2
+ ξ3

T 2
,

2ξ6 + ξ5
(
1+ T 2) = 0 ,

εs1

A2
= − (α2 − α3)s1

T 2
− 2ξ6T 2

(
1+ T 2

) ,

2ξ2 + ξ4
(
1+ T 2) = 0,

εc1

A2
= − ξ1

T 2
+ ξ2(1+ 2T 2 − T 4)

T 2
(
1+ T 2

) − ξ3
(
1+ T 2

)

2T 2
.

(16.48)

For k = 0 we obtain the nonstaggered, stationary kink solution

un = A exp[−i (ωt + δ)] tanh[β(n + δ1)] , (16.49)

provided 2γ2 + γ4(1+ T 2) = 0; (ω − 2ε)/A2 = 2γ1/S2 − (2γ2 − γ3)/T 2; ε/A2 =
−γ1/T 2 − γ3(1+ T 2)/(2T 2)+ γ2(1+ 2T 2 − T 4)/[T 2(1+ T 2)].

Unlike the JEF and the hyperbolic solutions, the moving as well as the station-
ary trigonometric solutions of Eqs. (16.2) and (16.11) exist even when all αi are
nonzero. In particular, the moving sine solution given by

un = A exp[−i (ωt − kn + δ)] sin[β(n − vt + δ1)] , (16.50)

exists provided the following four relations are satisfied: vβ = −2ε sin(β)s1 −
2A2 sin3(β)(α8s1 − ξ5); (α2 − α3)s1 + 2ξ6 cos(β) − α8s1[4 sin2(β) − 3] + ξ5 = 0;
α1 + 2(ξ1 + ξ4) cos(β) + ξ3 + 2ξ2 cos(2β) + 2α8c1 cos(β)[1 − 4 sin2(β)] = 0;
ω − 2ε + 2εc1 cos(β) = A2 sin2(β)[−2ξ2 + ξ3 − 6α8c1 cos(β)+ 2ξ4 cos(β)].

16.3.4 Stationary TI Solutions

Small-amplitude vibrational spectra calculated for stationary solutions to DNLS sat-
isfying Eq. (16.3) always include a pair of zero-frequency eigenmodes reflecting
the invariance with respect to the phase shift. Stationary TI solutions possess two
additional zero-frequency modes in their linear spectra (the Goldstone translational
modes) [3, 9, 11, 29]. Stationary solutions can be set in slow motion with the use
of the TI eigenvectors whose amplitudes are proportional to propagation velocity
(see, e.g., [9]). The accuracy of such slowly moving solutions increases with the



16 Exceptional Discretizations of the NLS: Exact Solutions and Conservation Laws 305

decrease in the amplitude of the Goldstone translational mode, i.e., it increases with
the decrease in propagation velocity.

Mobility of the bright and the dark solitons at small, as well as at finite veloci-
ties have been studied numerically, for the models supporting TI solutions, e.g., in
[3, 9, 11]. TI coherent structures are not trapped by the lattice [3] and they can be
accelerated by even a weak external field [33].

Properties of solitons in the DNLS with the nearest neighbor coupling in the
nonlinear term [as in Eq. (16.11)] differ considerably from the classical DNLS with
only α1 nonzero where there is only on-site nonlinear coupling. For example, the TI
dark solitons in case only α2 and α3 are nonzero do not survive the continuum limit,
while in the classical DNLS they do [9]. On the other hand, in the classical DNLS,
only highly localized on-site dark solitons are stable while the inter-site ones are
unstable at any degree of discreteness [50, 51]. In the DNLS with only α2 and α3

nonzero, TI dark solitons can be robust, movable, and they can survive collisions
with each other [9].

To illustrate the above-mentioned features of the stationary TI solutions, in
Fig. 16.1 we show slowly moving, highly localized (a) bright and (b) colliding
dark solitons (kink and antikink) in the nonintegrable lattices with ε = 1/4 and
(a) α2 = α3 = α11 = 1/3, with other αi = 0; (b) α2 = α3 = 1/2, with other
αi = 0. Space–time evolution of |un(t)|2 is shown and in both cases maximal |un|2
is nearly equal to 1. To boost the solitons we used the zero-frequency Goldstone
translational eigenmode with a small amplitude, which is proportional to the soliton
velocity [9].

– – –

(a) (b)

Fig. 16.1 Space-time evolution of |un(t)|2 showing (a) moving bright and (b) moving and colliding
dark solitons (kink and antikink) in nonintegrable lattices. To obtain the slowly moving solitons
we used the stationary TI bright and dark soliton solutions supported by the corresponding ED
models and boosted them applying the zero-frequency Goldstone translational eigenmode with a
small amplitude, which is proportional to the soliton velocity. Parameters are given in the text.
(After [9]; c© 2007 IOP.)
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16.3.5 Moving Bright Solitons

Properties of the moving bright solitons with the parameters satisfying (16.44) have
been discussed in [11], in case α11 = α12 = α13 = α14 = 0. Here we reproduce
some of the results of that work.

From (16.44) it follows that the moving bright soliton solution Eq. (16.43) exists,
for example, in case only α3, α5, α7 are nonzero. While the first two relations in
(16.44) are always valid [see Fig. 16.2 (a), (b) for the corresponding plots], the
other relations and the constraint (16.12) take the form

α3 = 1− 2α5s2
1

1− 2c1C
, α7 = 2 (1− α3 − α5) , A2 = c1S2C

1+ α3(c1C − 1)− 2α5s2
1

.

(16.51)
The number of constraints in this case is such that one has a free model parameter,
say α5, and pulse parameters k and β can change continuously within a certain
domain [see Fig. 16.2 (c)]. It turns out that in this case, while the nonstaggered
stationary pulse (k = 0) exists, the staggered stationary pulse (k = π) does not
exist.

On the other hand, in case only α2, α3, α5 are nonzero we have the following
constraints:

α3 = − α5c2

2c1C
, α2 = 1− α3 − α5, A2 = c1S2C

(α2 + α3) c1C + α5c2
. (16.52)

Fig. 16.2 (a) Velocity v, (b) frequency ω, and (c), (d) amplitude A of the pulse (bright soliton)
as functions of the wavenumber parameter k at ε = 1 for the inverse width of the pulse β =
1/2 (dashed lines) and β = 1 (solid lines). The functions in (a), (b) are defined by the first two
expressions in (16.44) and they do not depend on the model parameters αi . To plot the amplitude
A we set α5 = 1 and use (c) (16.51) and (d) (16.52). (After [11]; c© 2007 IOP.)
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The relation between pulse parameters and model parameters in this case is shown
in Fig. 16.2 (d). In this case one has both nonstaggered and staggered stationary
pulse solutions in case k = 0 and k = π , respectively.

In both cases, i.e., when Eqs. (16.51) and (16.52) are satisfied, it was found that
the stationary bright solitons are generically stable.

The robustness of moving pulse solutions, in both these cases, was checked by
observing the evolution of their velocity in a long-term numerical run for ε = 1.
For pulses with amplitudes A ∼ 1 and velocities v ∼ 0.1 and for various model pa-
rameters supporting the pulse, |αi | ∼ 1, we found that the pulse typically preserves
its velocity with a high accuracy. Two examples of such simulations, one for the
nonstaggered pulse and another one for the staggered pulse are given in Fig. 16.3
(a), (b) and (a’), (b’), respectively. In (a) and (a’) we show the pulse configuration
at t = 0 and in (b) and (b’) the pulse velocity as a function of time for two different
integration steps, τ = 5 × 10−3 (solid lines) and τ = 2.5 × 10−3 (dashed lines),
while a numerical scheme with the accuracy O(τ 4) is employed.

In Fig. 16.3 (a,b) and (a’,b’) we give the numerical results for the pulse solutions
given by Eqs. (16.51) and (16.52), respectively. The model characterized by Eq.
(16.51) has one free parameter and we set α5 = 1. For the pulse parameters we set
β = 1 and k = 0.102102. Then we find from the first two expressions in (16.44)
and from (16.51) the pulse velocity v = 0.239563, frequency ω = −1.07009,
amplitude A = 1.7087, and the dependent model parameters α3 = −0.473034 and
α7 = 0.946068. The model characterized by Eq. (16.52) has one free parameter and

Fig. 16.3 (a) Nonstaggered moving pulse at t = 0 and (a’) same for the staggered pulse. In (b)
and (b’) the long-term evolution of pulse velocity is shown for the corresponding pulses for the
integration steps of τ = 5×10−3 (solid line) and τ = 2.5×10−3 (dashed line). Numerical scheme
with an accuracy O(τ 4) is employed. In both models we find that the pulses preserve their velocity
with the accuracy increasing with the increase in the accuracy of numerical integration. Parameters
are given in the text. (After [11]; c© 2007 IOP.)
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we set a5 = 0.3. For the pulse parameters we set β = 1 and k = 3.09447. Then
we find from the first two expressions in (16.44) and from (16.52) the pulse velocity
v = 0.110719, frequencyω = 5.08274, amplitude A = 1.65172, and the dependent
model parameters α2 = 0.603116 and α3 = 0.0968843.

In both cases, one can notice the linear increase in the pulse velocity with time,
which is due to the numerical error, since the slope of the line decreases with the
decrease in τ . The presence of perturbation in the form of rounding errors and
integration scheme errors does not result in pulse instability within the numerical
run. The velocity increase rate for the staggered pulse in (b’) is larger than for the
nonstaggered one in (b). This can be easily understood because the frequency of the
staggered pulse is almost five times that of the nonstaggered one.

16.4 Conclusions and Future Challenges

In this contribution, we have given an overview of the recently reported exact sta-
tionary and moving solutions to nonintegrable discrete equations. Such solutions
appear to be ubiquitous and they play an important role in our understanding of
discrete nonlinear systems.

TI stationary solutions are potentially interesting for applications because they
are not trapped by the lattice or, in other words, the PN barrier for them is exactly
equal to zero. As a result, they can be accelerated by weak external fields. Such
solutions possess the Goldstone translational mode, and thus, they can be boosted
along this mode and can propagate at slow speed.

Exact moving solutions to discrete nonlinear equations are interesting in those
cases where soliton mobility is an important issue. Such solutions indicate the “win-
dows” in model and/or soliton parameters with enhanced mobility of solitons.

These studies open a number of new problems and research directions. Partic-
ularly, it would be interesting to look for the exact TI stationary or moving solu-
tions in discrete systems other than DNLS and discrete Klein–Gordon equation. It
would also be of interest to systematically examine the stability and other physical
properties of the exact solutions to nonintegrable lattices. Finally, generalizing such
approaches to higher dimensions and attempting to obtain analytical solutions in the
latter context would constitute another very timely direction for future work.
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Chapter 17
Solitary Wave Collisions

Sergey V. Dmitriev and Dimitri J. Frantzeskakis

17.1 Introduction and Setup

The well-known (see, e.g., [1] and references therein) elastic nature of the interac-
tion among solitons in the completely integrable one-dimensional (1D) nonlinear
Schrödinger (NLS) equation or in the completely integrable Ablowitz–Ladik (AL)
lattice [2, 3] generally ceases to exist when perturbations come into play. This is
due to the fact that, generally, perturbations are destroying the complete integra-
bility and as a result many different effects in soliton interactions come into play.
More specifically, in perturbed continuous (or discrete) NLS equations the outcome
of the the collision process (i.e., the soliton trajectories and soliton characteristics)
depends on the phase difference between two colliding solitons, emission of contin-
uum radiation during soliton collisions, as well as the excitation of solitons’ internal
modes.

Here, we will discuss soliton collisions in the discrete NLS equation in the usual
form,

i u̇n = −C�2un − |un|2un . (17.1)

We will firstly discuss the case of weak discreteness, C � 1, which is a nearly inte-
grable case: in the limit C →∞, Eq. (17.1) becomes the integrable 1D continuous
NLS equation i�tu = −(1/2)�2

xu − |u|2u, while the effect of a weak discreteness
may be partially accounted for by the perturbation term proportional to �4

xu. The
effect of such a weak discreteness on soliton collisions has been studied in Refs.
[4, 5]. Then the case of strong discreteness, C ∼ 1, will be discussed following
the results reported in [6] for Eq. (17.1), and also the results reported in [7] for the
following model:

i u̇n = −C�2un − δ|un|2un − 1− δ
2
|un|2(un+1 + un−1)+ ε|un|4un, (17.2)
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where δ, ε are two different perturbation parameters, providing tunable degree of
nonintegrability. In particular, for δ = ε = 0, Eq. (17.2) is reduced to the AL lattice
[2, 3], which is integrable even in the case of strong discreteness. On the other hand,
for ε = 0, Eq. (17.2) is reduced to the so-called Salerno model [8]. For ε = 0 and
δ = 1, Eq. (17.2) reduces to Eq. (17.1). Equation (17.2) has two integrals of motion,
namely it conserves a modified norm and energy (Hamiltonian) [7]. For δ = ε = 0
it supports the exact AL soliton solution [2, 3]

un(t) =
√

2C sinhμ
exp[ik(n − x)+ iα]

cosh[μ(n − x)]
, x = x0 + 2Ct

μ
sinhμ sin k ,

α = α0 + 2Ct

[
cos k coshμ+ k

μ
sinhμ sin k − 1

]
, (17.3)

where the parameters x0 and α0 are the initial coordinate and phase of the soliton,
respectively, while the soliton’s inverse width μ and the parameter k define the soli-
ton’s amplitude A and velocity V through the equations:

A =
√

2C sinhμ , V =
√

2C

μ
sinhμ sin k . (17.4)

Finally, we review the results reported in the literature for the collisions of soli-
tons in some physically relevant settings where discrete NLS equations are key
models. These settings include optical waveguide arrays (in the optics context),
and Bose–Einstein condensates (BECs) confined in optical lattices (in the atomic
physics context).

17.2 Collisions in the Weakly Discrete NLS Equation

Examples of two-soliton collisions in the weakly discrete Eq. (17.1) (for C = 15)
are presented in Fig. 17.1. Initial conditions were set employing the exact two-
soliton solution to the integrable NLS equation [9, 10]. The out-of-phase collision in
(a) and the in-phase collision in (b) are practically elastic, but they are very different
in the sense that in (a) solitons repel each other and their cores do not merge at
the collision point while in (b) the situation is opposite. The collision in (b) cor-
responds to the separatrix two-soliton solution to the integrable NLS equation [5].
Near-separatrix (nearly in-phase) collisions are strongly inelastic, as exemplified in
(c), where the solitons emerge from the collision with different amplitudes and ve-
locities. In (d), solitons’ amplitudes after collision, Ãi , are presented as the functions
of the initial phase difference �α0. Note the extreme sensitivity of the collision out-
come to the initial phase difference �α0 for the near-separatrix collisions (�α0 ≈ 0).
Of particular importance is the fact that in the inelastic near-separatrix collisions in
the regime of weak discreteness the energy given to the soliton’s internal modes
and to the radiation is negligible in comparison to the energy exchange between the
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Fig. 17.1 Collisions in the weakly discrete NLS equation Eq. (17.1) at C = 15. Upper panels in
(a)–(c) show |u(x, t)|2, while bottom panels show the regions with Re[u(x, t)] > 0.3 in order to
reveal the difference in the relative initial phase �α0 of solitons: in (a), (b), and (c), �α0 = −π, 0,
and 0.1, respectively. (d) Soliton amplitudes after collision Ãi as functions of �α0. The parameters
of the solitons before the collision are A1 = A2 = 0.98, V1 = −V2 = 0.05. (e) Comparison of the
real parts for two different exact two-soliton solutions to the NLS equation at the collision point.
Imaginary parts are similarly close. The first solution (dots) has A1 = A2 = 1, V1 = −V2 = 0.01,
while the second one (circles) has A1 = 1.1, A2 = 0.9, V1 = 0.0909, V2 = −0.1111. These two
solutions have the same norm and momentum and �α0 = 0. (After Ref. [5]; c© 2002 APS.)

solitons [4]. This is the main feature of the so-called radiationless energy exchange
(REE) effect in soliton collisions [11]. The REE in near-separatrix collisions can
be understood by the fact that the profiles of two different two-soliton solutions to
integrable NLS equation can be very close to each other at the collision point. An
example is given in (e) by comparing the real parts of solutions with A1 = A2 = 1,
V1 = −V2 = 0.01 (dots) and A1 = 1.1, A2 = 0.9, V1 = 0.0909, V2 = −0.1111
(circles). These two solutions have the same norm and momentum and �α0 = 0.
Their imaginary parts are similarly close. The presence of even weak perturbation
can easily transform such close solutions one into another without violation of the
conservation laws remaining in the weakly perturbed system.

For sufficiently small collision velocity, the REE effect can result in the fractal
soliton scattering in the weakly discrete NLS equation [4, 5]. Fractal soliton scatter-
ing in the weakly perturbed NLS equation was explained qualitatively in the frame
of a very simple model [4] and for the generalized NLS equation in the context
of a more elaborate collective variable approach [12, 13], based on the method of
Karpman and Solov’ev [14].

In Fig. 17.2a the solitons’ velocities after collision, Ṽi , are shown as functions
of the initial phase difference �α0 for Eq. (17.1) at C = 25. Initial velocities and
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Fig. 17.2 Fractal soliton scattering in the weakly discrete NLS equation (17.1) at C = 25. (a)
Soliton velocities after collision, Ṽi , as functions of initial phase difference �α0. (b) Blowup of the
region in (a) in the vicinity of �α0 = 0. (c) Lifetime of the two-soliton bound states as function
of �α0. (d), (e) Examples of two-soliton bound states with different lifetime L . Regions of the x, t
plane with |un |2 > 0.3 are shown. The corresponding values of the initial phase difference �α0

are indicated in (c). Initial soliton velocities are V1 = −V2 = 0.012 and initial amplitudes are
A1 = A2 = 1

amplitudes are V1 = −V2 = 0.012 and A1 = A2 = 1, respectively. The collisions
are inelastic in the vicinity of �α0 = 0 where the solitons’ velocities after collision
differ considerably from their initial velocities. Blowup of the narrow region in the
vicinity of �α0 = 0 presented in (b) reveals a complex behavior of Ṽi (�α0). Smooth
regions of these functions are separated by apparently chaotic regions. However, any
chaotic region being expanded reveals the property of self-similarity at different
scales (not shown in Fig. 17.2 but can be found in [4, 5]). The fractal soliton scatter-
ing can be explained through the following two facts: (i) in a weakly discrete system,
the solitons attract each other with a weak force and (ii) the REE between colliding
solitons is possible. As it is clearly seen from Fig. 17.2b, the chaotic regions appear
where Ṽi in smooth regions become zero. In these regions, the solitons after collision
gain very small velocities so that they cannot overcome their mutual attraction and
collide again. In the second collision, due to the momentum exchange, the solitons
can acquire an amount of energy sufficient to escape each other, but there exists a
finite probability to gain the energy below the escape limit. In the latter case, the
solitons will collide for a third time, and so on. Physically, the multiple collisions
of solitons can be regarded as the two-soliton bound state with certain lifetime L
(two examples are given in Fig. 17.2d, e). The probability P of the bound state with
the lifetime L was estimated to be P ∼ L−3 and this rate of decreasing of P with
increase in L does not depend on the parameters of the colliding solitons [4].

Importantly, the REE effect in near-separatrix collisions has been predicted from
the analysis of the two-soliton solution to the unperturbed integrable NLS equation
[5] and thus, the precise form of the perturbation is not really important for the
appearance of this effect. Moreover, it has been demonstrated that in the systems
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with more than one perturbation term, the collisions can be nearly elastic even in
the vicinity of �α0 = 0 when the effects of different perturbations cancel each
other [5, 7].

17.3 Collisions in the Strongly Discrete NLS Equation

Let us now consider the strongly discrete NLS Eq. (17.1) with the coupling constant
C now assumed to be a parameter of order O(1). In such a case, soliton collisions
may in principle be studied by means of a variational approximation (VA), as the
ones used in various works (see, e.g., [15, 16]) to study discrete soliton solutions of
the discrete nonlinear Schrödinger (DNLS) equation. However, in the case of soliton
collisions under consideration, a direct application of VA may produce equations
for the soliton parameters that could be very difficult to be expressed in an explicit
form and, thus, to be treated analytically or numerically. A simple variant of VA
was adopted in [6], where the variational ansatz was considered to be a combina-
tion of two discrete spikes, which was subsequently substituted into the continuous
NLS equation, with the Lagrangian

∫ +∞
−∞

[
i (u∗u̇ − uu̇∗)− |ux |2 + |u|4

]
dx . Using

this discreteness motivated ansatz in the continuum Lagrangian of the model, the
resulting variational equations predicted that the collision of two solitons with large
velocities leads to bounce, while the collision with small velocities gives rise to
merger of the solitons.

The above result can be confirmed by means of systematic simulations. Here,
following the analysis of [6], we use an initial condition for the DNLS equation
(17.1) suggested by the AL model (see Eq. (17.3)), namely,

u0 = B sech
[
W−1(n − x1)

]
exp

[
ia(n − x1)+

(
i

2

)
�φ

]

+B sech
[
W−1(n − x2)

]
exp

[
−ia(n − x2)−

(
i

2

)
�φ

]
. (17.5)

It is clear that Eq. (17.5) is a superposition of two far separated pulses with common
amplitude B and width W , initial phase difference �φ, and initial positions at x1,2.
The parameter a denotes the soliton wave number and, in fact, determines the initial
soliton speed. Fixing the soliton width as, e.g., W = 1, and using a as a main con-
trol parameter, it is possible to study outcomes of the collision for several different
values of the amplitude B , including B = sinh(1/W ) ≈ 1.1752 (corresponding to
the AL soliton), B = 1 (corresponding to the continuum NLS limit), and another
smaller value, B = 1/ sinh(1/W ) ≈ 0.851. Although these values are not very
different, the results obtained for them may differ dramatically, and they adequately
represent the possible outcomes of the collision. Moreover, using the initial condi-
tion Eq. (17.5), it is also possible to study on-site (OS) and inter-site (IS) collisions
(with the central point located, respectively, OS or at a midpoint between sites),
varying the initial positions x1 and x2.
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Fig. 17.3 The on-site collision, with x1,2 = ±30, for various values of the parameter a in the
case of B = 0.851. The intervals of merger with spontaneous symmetry breaking are separated by
regions of quasi-elastic collisions. In all the cases displayed herein C = 0.5

Figure 17.3 depicts several collision and merger scenarios that we now explain
in some detail. Let us first consider the case of OS collisions, with x1,2 = ±30,
and initial soliton amplitude B = 1.175 and 1 (below we will also consider that the
solitons have the same phase, i.e., �φ = 0). In the former case (B = 1.175), the
solitons cannot collide for a < 0.550 (as in this case these “taller” solitons encounter
a higher Peierls–Nabarro [PN] barrier), they move freely and collide merging to a
single pulse for 0.550 < a < 2.175 (with multiple collisions, if a is close to the
upper border of this interval), and they collide quasi-elastically for a > 2.175. In
the latter case (B = 1), and for 0 < a < 0.7755, the colliding solitons merge into
a single pulse, while for a > 0.7756, the solitons undergo a quasi-elastic collision
(as they separate after the collision). It is worth noting that these basic features of
this phenomenology (for B = 1) are correctly predicted by the aforementioned
VA devised in [6]. Nevertheless, some more peculiar characteristics can also be
identified, since in the interval 0 < a < 0.7755, there exist two subintervals, namely
0 < a < 0.711, where the solitons fuse into one after a single collision, and 0.711 <
a < 0.7755, where the fusion takes place after multiple collisions. Finally, in the
case of the smaller initial amplitude, B = 0.851, a new feature is found in intervals
a < 0.203 and 0.281 < a < 0.3. There, the solitons merge after multiple collisions,
which is accompanied by strong symmetry breaking (SB): the resulting pulse moves
to the left or to the right, at a well-defined value of the velocity, as is shown in
Fig. 17.4. Between these intervals, i.e., at 0.203 < a < 0.281, as well as in the case
a > 0.3, the collisions are quasi-elastic.
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Fig. 17.4 Left panel: The inter-site collision, with x1 = −31, x2 = 30, for a = 0.062 and B = 1.
Both trajectories of the colliding solitons (top) and their eventual profiles in terms of |u|2 ≡ |un |2
(bottom) are shown, with the latter picture illustrating the symmetry breaking. Right panel: The
quarter-site collision (x1 = −29.5, x2 = 30) for a = 0.7 and B = 1.175. Shown are the soliton
trajectories and the formation of an “M”-shaped merger (see inset). In all the cases displayed herein
C = 0.5

It should be noted that the SB mechanism and the collision-induced momentum
generation (recall that the lattice momentum is not conserved) were analyzed in [6].
As discussed in that work, the SB may be deterministic or spontaneous. The former
one is accounted for by the location of the collision point relative to the lattice,
and/or the phase shift between the solitons, while the momentum generated during
the collision due to the phase shift was found to depend on the solitons’ velocities.
As far as spontaneous SB is concerned, the modulational instability of a quasi-flat
plateau temporarily formed in the course of the collision was suggested as a possible
explanation.

On the other hand, in the case of IS collisions (e.g., with x1 = −31 and x2 = 30),
we expect a significant change in the phenomenology, as in this case the collision
point is at a local maximum of the PN potential, while in the OS case it was at a local
minimum. This important difference results in a strong reduction of the scale of the
initial velocity (determining the different outcomes of the IS collisions), roughly
by an order of magnitude, as compared to the OS case. Apart this reduction, most
features of the phenomenology discussed above for the OS collisions can also be
found in the case of IS collisions. Nevertheless, in the case of IS collisions with
the intermediate value of the amplitude B = 1, and for 0.062 < a < 0.075, lead
to spontaneous SB, with mutual reflection (rather than merger) of the solitons after
multiple collisions, see left panel of Fig. 17.4 (note that the collision results in a
merger for a < 0.061 and 0.075 < a < 0.089, while it is quasi-elastic for a >

0.089). Such a multiple-bounce window in the DNLS system, resembles a similar
effect that was found for φ4 kinks in [17, 18], but with an important difference
that in the kink-bearing models, spontaneous SB is impossible. Finally, it should
be mentioned that quarter-site collisions (corresponding, e.g., to x1 = −29.5 and
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x2 = 30) lead also to qualitatively similar results: for the smaller amplitude value
of B = 0.851 the collision results in the separation of solitons upon a single bounce
with SB for all values of a, while for the larger amplitude value of B = 1.175 there
exist windows of no collision (for 0 < a < 0.5), formation of a static bound state, in
the form of “M” (for 0.5 < a < 0.9, see right panel of Fig. 17.4) and quasi-elastic
collision with SB (for a > 0.9).

17.4 Strongly Discrete Nearly Integrable Case

Here, following [7], we discuss the weakly perturbed integrable AL system Eq.
(17.2), in the regime of high discreteness setting C = 0.78 and small values for
the perturbation parameters, δ and ε. In the simulations, initial conditions were set
according to the exact AL soliton solution in Eq. (17.3).

In Fig. 17.5 the soliton amplitudes after collision, Ãi , are shown as functions of
the initial phase difference �α0 for different coordinates of the collision point, xc,
with respect to the lattice: (a) xc = 0 (OS collision), (b) xc = 0.25, (c) xc = 0.5 (IS
collision), and (d) xc = 0.75. It is readily seen that the collisions are inelastic only
in the vicinity of �α0 = 0, the situation typical for the weakly perturbed integrable
systems. However, in contrast to the result presented in Fig. 17.1d for the weak
discreteness, in the highly discrete case, as it was already described in Sect. 17.3, the
collision outcome becomes extremely sensitive to the location of the collision point
with respect to the lattice. For example, collisions of in-phase solitons (�α0 = 0)
are practically elastic for xc = 0 and xc = 0.5, while they are strongly inelastic

Fig. 17.5 Soliton amplitudes after collision, Ãi , as the functions of the initial phase difference
�α0 for different coordinates of the collision point xc with respect to the lattice: (a) xc = 0 (on-site
collision), (b) xc = 0.25, (c) xc = 0.5 (inter-site collision), and (d) xc = 0.75. The soliton
parameters before the collision are μ1 = μ2 = 0.75, k1 = −k2 = 0.1. The model parameters are
δ = 0.04, ε = 0, and C = 0.78
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for xc = 0.25 and xc = 0.75. For any xc, in the vicinity of �α0 = 0, the collision
outcome is extremely sensitive to small variations in �α0, which is typical for the
near-separatrix collisions.

We emphasize again that in the weakly perturbed integrable system, also in the
case of strong discreteness, the dominant inelasticity effect is the REE between col-
liding solitons, while the radiation losses and the excitation of the soliton’s internal
modes are marginal even for the near-separatrix collisions with �α0 ≈ 0 [7].

The model Eq. (17.2) contains the perturbation parameters δ and ε (determining
the strength of the cubic and quintic perturbation terms, respectively). In Fig. 17.6
we show the maximal degree of inelasticity of the collision as a function of δ at
ε = 0 (a) and ε at δ = 0 (b). The ordinate is the maximal (over xc and �α0)
soliton amplitude after collision, Ãmax. The discreteness parameter is C = 0.78.
The soliton velocities and amplitudes before the collision are V1 = −V2 = 0.137
and A1 = A2 = 1.05, respectively.

The results presented in Fig. 17.6 reveal the asymmetry in the net inelasticity ef-
fect for positive and negative values of the perturbation parameters δ and ε. In (a) the
asymmetry appears for |δ| > 0.02 and in (b) for |ε| > 0.0025 and it is negligible for
smaller values of perturbation parameters. This asymmetry can be explained through
the influence of the soliton’s internal modes that exist, as it is well-known, only if the
perturbation parameter has the “right” sign [19]. To confirm this, we calculate the
spectrum of small amplitude vibrations of the lattice containing a stationary soliton
with frequency ω = 2C(coshμ − 1) (for the chosen parameters ω = 0.4). The
spectrum includes the phonon band � = ±[4C sin2(Q/

√
8C) + ω], where Q and

� are the phonon wave number and frequency, respectively, and it may include the
frequencies of soliton’s internal modes. The results are presented in Fig. 17.7. In (a)
and (b) we show the bifurcation of the internal mode frequency,ωIM, from the upper
edge of the phonon spectrum, �max, while in (c) and (d) from the lower edge of the
spectrum, �min. Particularly, we plot

√
ωIM −�max as a function of δ at ε = 0 (a),

and ε at δ = 0 (b), and also we plot
√

�min − ωIM as a function of δ at ε = 0 (c)
and ε at δ = 0 (d). Recall that C = 0.78.

Fig. 17.6 Maximal (over xc and �α0) soliton amplitude after collision as a function of (a) δ at
ε = 0 and (b) ε at δ = 0. The discreteness parameter is C = 0.78. The soliton velocities before
the collision are V1 = −V2 = 0.137 and the amplitudes before the collision are A1 = A2 = 1.05
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Fig. 17.7 Bifurcation of the soliton’s internal mode frequency ωIM from (a, b) the upper edge of
the phonon spectrum, �max, and (c, d) from the lower edge of the phonon spectrum, �min. In (a, c)
ε = 0, while in (b, d) δ = 0. In all cases the stationary soliton has frequency ω = 0.4 and the
discreteness parameter is C = 0.78

The numerical results show that the solitons emerge from the collision bearing
internal modes with frequencies corresponding to the lower edge of the spectrum
and, thus, it can be concluded that these modes can influence the collision outcome
but not the modes bifurcating from the upper edge.

Coming back to the asymmetry of the inelasticity of collisions with respect to the
change of the sign of perturbation parameter (see Fig. 17.6), it can now be concluded
that the net inelasticity effect is higher when the soliton’s internal modes come into
play. More precisely, at ε = 0 the collisions are more inelastic for δ > 0 when
the internal mode below the phonon band exists. Similarly, for δ = 0 collisions are
more inelastic for ε < 0, for the same reason.

We note in passing that a change of the sign of perturbation parameters switches
the stable OS and IS configurations as indicated in Fig. 17.7a, b.

17.5 Role of Soliton’s Internal Modes

As mentioned above, the REE is the dominant effect in soliton collisions in the
weakly perturbed NLS or AL systems. However, if the perturbation is not small,
the REE effect is mixed with radiation and possibly with excitation of the soliton’s
internal modes. In Sect. 17.4 we have already discussed the role of the soliton’s
internal modes and here we further elaborate on their role in the inelastic soliton
collisions.

Particularly, we will now investigate if the energy exchange between the soliton’s
internal and translational modes is possible in the perturbed NLS equation. Such
energy exchange plays an important role in the collisions among φ4 kinks result-
ing in several nontrivial effects such as separation after multiple-bounce collisions
[17, 18, 20–23]. In order to eliminate the influence of the location of the collision
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Fig. 17.8 (a) Bifurcation of the soliton’s internal mode frequency ωIM from the lower edge of the
phonon spectrum as the function of perturbation parameter ε at δ = 1, C = 50 for the stationary
soliton with frequency ω = 0.6. An internal mode exists only for ε < 0. Panels (b) and (c) show
the amplitudes of solitons as a function of time for moderately perturbed systems with ε = −0.15
and 0.15, respectively. Solitons having initial amplitudes A1 = A2 ≈ 1 and velocities V1 = −V2 =
0.05 collide at t ≈ 60 and they emerge from the collision with different amplitudes. Moreover, in
(b), high-amplitude internal modes with very long lifetime are excited, while in (c), they are not.
Initial phase difference in both cases is �α0 = 0.12

point with respect to the lattice we set in Eq. (17.2) C = 50 (extremely weak dis-
creteness) and take δ = 1, so that the cubic perturbation is absent and the only
perturbation remains to be the quintic term with coefficient ε.

In Fig. 17.8a we show the bifurcation of the soliton’s internal mode frequency
ωIM from the lower edge of the phonon spectrum �min = ω (where ω = 0.6 is the
soliton’s frequency) as a function of ε. The internal mode exists only for ε < 0.
The panels (b) and (c) of the same figure show the amplitudes of the solitons as
a function of time for ε = −0.15 and 0.15, respectively. Solitons having initial
amplitudes A1 = A2 ≈ 1 and velocities V1 = −V2 = 0.05 collide at t ≈ 60. The
initial phase difference is �α0 = 0.12.

Figure 17.8 clearly illustrates that in the case of ε < 0, when the internal mode
exists, the collision is more inelastic than in the case of ε > 0. In addition to this,
in the case of ε < 0 the solitons emerge from the collision bearing high-amplitude
internal modes with very long lifetime, while in (c) such modes are not excited.

Now we focus on the case of ε = −0.15 and study the symmetric in-phase
solitons (�α0 = 0) with different velocity V for solitons with initial amplitudes
A1 = A2 = 1. Relevant results are shown in Fig. 17.9. In (a) we plot the velocity
of the solitons after collision, Ṽ , as a function of V . For the collision velocity V >

V ∗ ≈ 0.42, the solitons separate after the collision while for V < V ∗ they merge.
An example of collision with merger for the collision velocity V = 0.4 is given in
(c) where only the particles with |un|2 > 0.2 are shown. No separation “windows”
in the region V < V ∗, typical for the kink collisions in φ4 model, are found. In (b),
for the velocities V < V ∗ we plot the maximal separation Smax of two solitons after
the first collision as a function of V . If the energy exchange between the soliton’s
internal and translational modes took place, one would see the maxima of Smax at the
resonant collision velocities, but nothing like that is observed. It should be pointed
out that the high-amplitude internal modes are excited during the collision, similar
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Fig. 17.9 Role of internal modes studied by colliding the symmetric in-phase solitons (�α0 = 0)
with velocity V in the moderately perturbed NLS equation Eq. (17.2) with C = 50 (extremely
weak discreteness), ε = −0.15, δ = 1. The initial soliton amplitudes are A1 = A2 = 1. (a) The
velocity of solitons after collision, Ṽ , is shown as a function of V . (b) The maximal separation
Smax of two solitons after the first collision is given as a function of V . (c) Example of collision for
the collision velocity V = 0.4. Shown are the particles with |un |2 > 0.2

to that shown in Fig. 17.8b but, in contrast to the φ4 case, they do not significantly
affect the translational motion of the solitons.

Another important note is the following: in the simulations presented in Fig. 17.9
we have excluded the REE effect by setting �α0 = 0. For nonzero �α0, in the vicin-
ity of �α0 = 0, the REE effect would completely change the collision outcome, and
particularly, the soliton separation after multi-bounce collisions could be observed.

17.6 Solitary Wave Collisions in Physically Relevant Settings

In this section, we will discuss some physically relevant settings where solitary wave
collisions in weakly discrete or discrete systems have been investigated. These in-
clude optical waveguide arrays in the nonlinear optics context, and BECs confined
in periodic potentials, so-called optical lattices, in the atomic physics context.

First, in the context of nonlinear optics, in [24] (see also related work in [25]), the
interaction of two solitary waves was studied experimentally in arrays of AlGaAs
coupled optical waveguides. In this case, the relevant mathematical model is the
discrete cubic NLS equation discussed above. The focus in this experimental work
was on the case of the interaction of solitons with zero initial velocities (in terms
of the nomenclature of the present work), and a result coinciding with our findings
was that, in the limit of the zero collision velocity, two solitons with the zero phase
difference always merge into one.

Soliton mobility [26] and collisions [27–29] were studied theoretically in the
framework of a discrete NLS equation with a saturable nonlinearity. In particular,
the nonlinear term in the DNLS equation was taken to be of the form
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−βun/(1 + In), (here In ∼ |un|2 is the normalized light peak intensity and β =
const.). This type of the discrete NLS equation is also called Vinetskii–Kukhtarev
model (VK) [30], which is particularly relevant to waveguide arrays created in pho-
torefractive crystals. The latter have attracted much attention (see, e.g., the reviews
[31, 32]) as they offer real-time control of the waveguide array, as well as strong
and tunable nonlinearity [33]. Note that for low-norm solutions the VK model is
reduced to the cubic discrete NLS equation.

In [27] it was found that, similarly to the results of Sect. 17.2, low-norm solitons
with small velocities merge and remain pinned, creating a breathing state, while
for high enough velocities, the solitons are reflected. However, high-norm moving
solutions are also allowed in the VK model [26, 29] (contrary to the cubic DNLS
case, due to the potential vanishing of the PN barrier relevant to the VK case). When
high-norm (power) solutions collide the effect of, so-called, breather creation can
be observed [27, 29], consisting of a partial trapping of the energy of the incoming
solitons, together with the reflection of the initial solitons. Note that this effect was
previously found in the continuum counterpart of the model [34].

Symmetric collisions of two discrete breathers in the VK model were also inves-
tigated in [28]. The strong correlation of the collision properties and the parameters
of colliding breathers (power, velocity, and phase difference), lattice parameters and
position of the collision point was related to the internal structure of the colliding
breathers and energy exchange with the phonon background. Several types of col-
lision were observed in wide parameter space: elastic (quasi-elastic) OS (IS) colli-
sion, breather creation, fusion of colliding breathers, and creation of two asymmetric
breathers (after IS collision).

Soliton collisions were also studied in the context of BECs trapped in a periodic
potential created by the interference of optical beams, the so-called optical lattice
[35]. In this case, the pertinent model describing the evolution of the BEC wave
function is the continuous NLS (with a periodic external potential) equation or the
discrete NLS equation, for a weak or strong (as compared to the system’s chemical
potential) optical lattice strength, respectively [36]. In the former case, collisions of
the pertinent, so-called lattice solitons have been studied in various works (see, e.g.,
[37, 38]), while the transition from the continuous to discrete regime was studied
in [39]. In this work, the outcome of the collision between two gap solitons was
shown to serve as a measure of the discreteness imposed on the BEC by the opti-
cal lattice. Moreover, in [40], soliton collisions were studied in the framework of
a strongly discrete NLS equation with a periodically time-modulated nonlinearity
coefficient. This model describes a BEC confined in a strong optical lattice, whose
interatomic interactions (effectively described by the nonlinear term in the NLS
model) are controlled by time-periodic external fields, according to the so-called
Feshbach resonance management technique [41]. Such a time-dependent variation
of the nonlinearity was shown to assist the discrete soliton motion, and a study of
soliton collisions revealed that there exist two different types of the interaction: elas-
tic bounce, or bounce with mass transfer from one soliton to the other. It is relevant
to note that, in contrast to the results of Sect. 17.3 (where the DNLS equation had
constant coefficients), in the model analyzed in [40] a merger of colliding solitons
into a standing one was not observed.
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17.7 Conclusions

The above discussion of the effects observed in solitary wave collisions in 1D DNLS
equation in the regimes of weak and strong discreteness for nearly integrable and
nonintegrable cases can be summarized as follows.

For nearly integrable systems, i.e., for the integrable NLS equation perturbed by
weak discreteness and for the weakly perturbed AL chain at any degree of discrete-
ness, the inelasticity of collisions is solely due to the radiationless energy exchange
between solitons with relatively small amount of radiation and almost no excitation
of the soliton’s internal modes. This is so because the radiationless energy exchange
grows proportionally to the perturbation parameter [5, 11] while the radiation and
excitation of the internal modes are the second-order effects [19].

The radiationless energy exchange happens in the vicinity of multisoliton sep-
aratrix solutions to the corresponding integrable equations [5]. Typical features of
near-separatrix collisions in nearly integrable systems are as follows:

– Collisions are inelastic in a narrow window of parameters of colliding solitons
while outside this window they are practically elastic. Examples are presented in
Fig. 17.1d for the weakly discrete NLS equation and in Fig. 17.5 for the weakly
perturbed AL lattice at high discreteness. Collisions are inelastic only for nearly
in-phase (near separatrix) collisions with �α0 ∼ 0 [5].

– Near-separatrix collisions are naturally extremely sensitive to small variations in
the collision phase �α0 and, for highly discrete systems, to the location of the
collision point with respect to the lattice (see Figs. 17.1d and 17.5).

– The fact that the inelasticity of soliton collisions for weakly perturbed systems in-
creases linearly with the perturbation parameter is illustrated by Fig. 17.6. Panel
(a) suggests that in the case ε = 0, the radiationless energy exchange effect is
dominant within |δ| < 0.02, while from panel (b), for δ = 0, it is dominant for
|ε| < 0.0025. For larger values of perturbation parameters, the soliton’s internal
modes start to affect the result of collision and the net inelasticity effect becomes
asymmetric for positive and negative values of perturbation parameters.

– The radiationless energy exchange effect in near-separatrix collisions has been
predicted from the analysis of the two-soliton solution to the unperturbed inte-
grable NLS equation [5] and thus the actual type of perturbation is not important
for the appearance of this effect. It has been also demonstrated that in the systems
with more than one perturbation term, the collisions can be nearly elastic even in
the vicinity of �α0 = 0 when the effects of different perturbations cancel each
other [5, 7].

– The inelasticity of collision increases with decrease in collision velocity. This
feature is again related to the near-separatrix nature of the collision. Fast solitons
spend a shorter time in the vicinity of separatrix during the collision and their
properties are less affected than that of slow solitons.

– The radiationless energy exchange can be responsible for the fractal soliton scat-
tering [4] if they collide with sufficiently small velocities, which is illustrated by
the results presented in Fig. 17.2.
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– The radiationless energy exchange effect is possible only if the number of pa-
rameters of the colliding solitons exceeds the number of conservation laws in
the weakly perturbed system [42]. For example, in the weakly discrete Frenkel–
Kontorova model, the conservation of energy (exact) and momentum (approxi-
mate) sets two constraints on the soliton parameters and, as a result, the two-kink
collisions are practically elastic. A three-kink collision has one free parameter
and radiationless energy exchange becomes possible [43]. Solitons in the NLS
equation and AL chain have two parameters so that the two-soliton collisions
are described by four parameters. If in the weakly perturbed NLS equation or
AL lattice, the number of exact and approximate conservation laws is less than
four (typically this is so) then the radiationless energy exchange is possible in
two-soliton collisions.

– In the moderately or strongly perturbed systems the soliton collisions become
even more complicated because in addition to the radiationless energy exchange
the excitation of the soliton’s internal modes and radiation become important and
the net inelasticity effect is an admixture of these three effects.

Particularly, for the strongly discrete, nonintegrable case, the merger of col-
liding solitons can be observed in certain range of collision velocities (see the
results shown in Figs. 17.3 and 17.4). Another interesting effect of strong nonin-
tegrability is the symmetry breaking effect described in Sect. 17.3. In the case of
high discreteness, the collision outcome in a nonintegrable system is extremely
sensitive to location of the collision point with respect to the lattice.

– When the soliton internal modes come into play, the radiationless energy
exchange effect becomes more pronounced (compare panels (b) and (c) of
Fig. 17.8). The soliton internal modes result in the asymmetry of the net in-
elasticity effect with respect to the change of sign of perturbation parameter,
see Fig. 17.6. In Sect. 17.5 we have analyzed the influence of high-amplitude
soliton’s internal modes on the collision outcome for the NLS equation with
moderate quintic perturbation in the absence of the radiationless energy exchange
effect. We found that, in spite of the fact that the high-amplitude internal modes
are excited during the collision, they do not significantly affect the translational
motion of the solitons. This behavior contrasts that observed for the colliding φ4

kinks
[17, 18, 20–23].

17.8 Future Challenges

Before closing, we would like to mention various interesting open problems that, in
our opinion, deserve to be studied in more detail.

(i) In many physically relevant cases, 2D and 3D models describe realistic situa-
tions better than 1D models, but the solitary wave collisions in higher dimen-
sions have been studied much less than in the 1D case.
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(ii) Collisions between discrete vector solitons have not been studied in detail. In
fact, although this issue was studied theoretically for waveguide arrays with
the Kerr-type nonlinearity [44] (relevant experiments were reported in [45]),
the case of vector soliton collisions in coupled discrete Vinetskii-Kukhtarev
models has not been considered so far. This is an interesting direction, since
relevant experimental [2] and theoretical [46] results have already appeared re-
cently. Moreover, as per our previous remark, discrete vector soliton collisions
in higher dimensional settings have not been studied in detail yet. Such studies
would be particularly relevant in the context of multicomponent and spinor
BECs [36].

(iii) The interplay between various mechanisms controlling the inelasticity of soli-
ton collisions (e.g., radiationless energy exchange, internal modes, and radia-
tion) is not fully understood yet even in 1D settings.

(iv) For nearly integrable models, the collision outcome depends on the number of
exact and approximate conservation laws remaining in the system. However,
so far, a detailed study on how a perturbation affects the conservation laws of
an integrable equation is still missing.

(v) Some results presented here are not fully understood and certainly deserve a
more careful consideration. For example, as concerns the findings of Sect. 17.5,
it is worth noting the following. Contrary to what is observed in kink collisions
in the φ4 model, soliton collisions in continuum NLS equation with quintic
perturbation do not reveal a noticeable interaction between the soliton’s trans-
lational and internal modes. This observation should be better understood and
explained.
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34. Królikowski, W., Luther-Davies, B., Denz, C.: IEEE J. Quantum Electron. 39, 3 (2003) 323
35. Morsch, O., Oberthaler, M.K.: Rev. Mod. Phys. 78, 179 (2006) 323
36. Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-González, R. (eds.): Emergent Nonlinear Phe-
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Chapter 18
Related Models

Boris A. Malomed

18.1 Models Beyond the Standard One

18.1.1 Introduction

The model which plays the central role in this book is the discrete nonlinear
Schrödinger (DNLS) equation, in one or two or even three dimensions (1D, 2D, and
3D, respectively). In fact, the DNLS equation is a paradigmatic model of nonlinear
lattice dynamics, which provides for the framework allowing the study of basic
effects in this area. In addition to that, the 1D and 2D DNLS equations find a direct
physical realization as models of arrays of linearly coupled optical waveguides with
the intrinsic Kerr nonlinearity, as first predicted in [1]. Later, 1D discrete solitons
were created in the experiment performed in a 1D array built as a set of parallel
semiconductor waveguides mounted on a common substrate [2]. More recently, 2D
arrays were fabricated as a bundle of parallel waveguides written in a bulk sample
of silica glass [3]. The creation of 2D discrete solitons in this setting was reported
[4]. Moreover, 2D solitons were reported even in a disordered bundle built by means
of this technology [5].

Another direct implementation of the DNLS equation is in the form of a model
of a Bose–Einstein condensate (BEC) trapped in a very strong (deep) optical lattice
(OL). The fact that the deep lattice splits the condensate into a set of weakly cou-
pled droplets makes it possible to replace the respective Gross–Pitaevskii equation
(GPE), with the cubic term accounting for collisions between atoms, by the discrete
equation with the on-site cubic nonlinearity, see original works [6–10] and a review
of the topic in [11]. This realization of the DNLS equation is relevant (unlike the
situation in optics) in the 3D case as well. In a similar way, the 1D, 2D, and 3D
versions of the DNLS equation may be used as models of crystals of the respective
dimension, formed by microcavities which trap polaritons [12, 13].
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In addition to the standard DNLS equation, more general models of dynami-
cal lattices are important to various applications, and are interesting in their own
right, as specific examples of nonlinear dynamical systems. This chapter offers an
overview of such generalized models. The emphasis in the presentation is made on
basic theoretical results, obtained in them for 1D and 2D discrete solitons.

18.1.2 Anisotropic Inter-Site Couplings

The simplest nontrivial deviation from the standard DNLS model is provided by the
2D (or, generally speaking, 3D) discrete equation with anisotropic linear couplings
between lattice sites [14]. The 2D version of the model is based on the following
generalized DNLS equation:

i u̇n,m = −C�̃un,m − |un,m|2un,m, (18.1)

where un,m(t) is the complex 2D lattice field with integers n and m representing the
lattice coordinates, the overdot stands for its time derivative (in the case of optical
waveguides, the evolution variable is not time, but rather the distance along the
waveguides), the on-site nonlinearity is assumed self-focusing, C > 0 is the lattice-
coupling constant, and the anisotropic 2D lattice Laplacian is defined as follows:

�̃un,m = α
(
un+1,m + un−1,m

)+ un,m+1

+un,m−1 − 2(1+ α)un,m,
(18.2)

with positive coefficient α accounting for the degree of the anisotropy. Physical
realizations of such a generalized model in terms of 2D arrays of linearly coupled
optical waveguides or deep BEC-trapping OLs are straightforward.

Irrespective of the anisotropy, Eq. (18.1) conserves a fundamental dynamical in-
variant – the norm of the lattice field (alias power, which is an appropriate name for
it in the model of arrays of optical waveguides):

N =
∑

n,m

∣∣um,n

∣∣2 . (18.3)

In fact, the norm defined in the same or similar way plays a crucial role in the
analysis of all other models considered in this chapter.

18.1.3 Noncubic On-site Nonlinearities

A more conspicuous departure from the standard DNLS model is realized through
the replacement of the simplest cubic (Kerr) on-site nonlinearity by more sophisti-
cated forms of the nonlinear response. In particular, a lattice model with saturable
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nonlinear terms was introduced back in 1975 by Vinetskii and Kukhtarev [15]. Sta-
ble 1D bright solitons in this model were reported recently in [16–18] (2D discrete
solitons in a model with the saturable nonlinearity were studied too [19]). Exper-
imentally, lattice solitons supported by the saturable self-defocusing nonlinearity
were created in an array of optical waveguides in a photovoltaic medium [20].

A simpler but, in some aspects, more interesting non-Kerr nonlinearity is repre-
sented by a combination of competing self-focusing cubic and self-defocusing quin-
tic terms, which corresponds to the experimentally observed form of the nonlinear
dielectric response in some optical materials [21–23] (earlier studies of bright soli-
tons in the DNLS equation were dealing with on-site nonlinear terms of an arbitrary
power, but without the competition between self-focusing and defocusing [24–26]).
In the 1D continuum NLS equation with the cubic-quintic (CQ) nonlinearity, a fam-
ily of exact stable soliton solutions is well known [27–30]. An intermediate step
between that model and its discrete counterpart is a continuum equation combining
the CQ nonlinearity and a periodic potential of the Kronig–Penney type, i.e., a peri-
odic chain of rectangular potential wells. Numerous stable families of solitons were
explored in both 1D [31–33] and 2D [34] versions of the latter equation (the 2D
model, which features a “checkerboard” 2D potential, supports both fundamental
and vortical solitons). The limit case of the Kronig–Penney potential composed of
very deep and narrow potential wells amounts to the replacement of the continuum
equation by its DNLS counterpart, whose 1D form is [35, 36]

i u̇n + C (un+1 + un−1 − 2un)+ (2|un|2 − |un|4
)

un = 0, (18.4)

cf. Eq. (18.1). It is relevant to mention that, in addition to bright-soliton solutions
to Eq. (18.4) that are considered below, stable dark solitons in the same model were
studied too [37].

A more radical change of the on-site nonlinearity corresponds to lattice models
of the second-harmonic generation, where the nonlinearity is quadratic (χ (2)), and
two lattice fields are involved, representing the fundamental-frequency and second-
harmonics (FF and SH) components. Originally, such a model was introduced to
describe Fermi-resonance interface modes in multilayered systems based on organic
crystals [38, 39]. The interest in χ (2) lattices was boosted by the experimental re-
alization of discrete χ (2) solitons in nonlinear optics [40]. A variety of topics have
been studied in this context, including the formation of 1D and 2D solitons [41–43],
modulational instability (which was demonstrated experimentally) [44], χ (2) pho-
tonic crystals [45], cavity solitons [46, 47], and multicolor localized modes [48].

A noteworthy result is the prediction of the (anisotropic) mobility of 2D solitons
in the χ (2) lattice [49], which is described by the following system of equations for
the FF and SH lattice fields, ψm,n(t) and φm,n(t):

i ψ̇m,n = −
(
C1�ψm,n + ψ�m,nφm,n

)
, (18.5)

i φ̇m,n = −(1/2)
(
C2�φm,n + ψ2

m,n + kφm,n
)
, (18.6)
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where the asterisk stands for the complex conjugation, � is the isotropic discrete
Laplacian defined by Eq. (18.2) with α = 1, real coefficients C1 and C2 are the
FF and SH lattice-coupling constants, and k is a real mismatch parameter. The
prediction of the soliton mobility in the framework of Eqs. (18.5) and (18.6) is
noteworthy, as all 2D discrete solitons (unlike their 1D counterparts) are immobile
in the DNLS lattice with the cubic (χ (3)) on-site nonlinearity. In the simulations,
an initial quiescent 2D soliton was set in motion by the application of a kick to it,
i.e., multiplying its FF and SH components by exp

[
i
(
S/C1,2

)
(m cos θ + n sin θ )

]
,

where S and θ are the size and direction of the kick. The diagram of the resulting
dynamical regimes is shown in Fig. 18.1, along with a similar diagram for solitons
in the 1D version of the model (the “localization” region in Fig. 18.1 implies that
the kicked soliton remains pinned). A noteworthy feature of the diagram for the 2D
model is the dependence of the border between different types of the dynamical
behavior on the direction of the kick, i.e., the dynamical anisotropy of the model.
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Fig. 18.1 Typical examples of diagrams in the plane of the coupling strength, C = C1 = C2, and
kick size, S, showing outcomes of attempts to set quiescent solitons in motion in the 1D (a) and
2D (b) χ (2) lattices (with mismatch k = 0.25), as per [49]. In the 2D case, triangles and rectangles
present the results for two directions of the kick, θ = 20◦ and θ = 45◦, respectively

18.1.4 Nonlocal Coupling

Another extension of the DNLS equation deals with the character of the inter-site
coupling: while in the standard model it is strictly linear and local (involving only
nearest neighbors), various extensions can make it both nonlocal (where nonlocal
herein will be assumed to mean that nonnearest neighbors are involved) and nonlin-
ear. As concerns the nonlocality, the simplest possibility is to include the interaction
with second-nearest neighbors (alias higher order discrete diffraction), which may
be a natural additional ingredient in the above-mentioned physical realizations of
the DNLS equation, in terms of arrays of optical waveguides and BEC trapped in
deep OL potentials. The accordingly modified 1D version of the DNLS equation
is [50]
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i u̇n + C (un+1 + un−1 − 2un)+ |un|2 un

+μ (un+2 + un−2 − 2un)+ iκ (un+2 − un−2) = 0 ,
(18.7)

where μ and κ are real and imaginary parts of the constant accounting for the lin-
ear coupling between next-nearest neighbors (NNN). While the ordinary coupling
constant, C , is always defined as a real one, the NNN constant may be complex
– for instance, because of a phase shift between fields in the respective array of
optical waveguides. In [50] it was found that the addition of the NNN coupling
may destabilize the usual on-site-centered solitons, if the imaginary part, κ , is large
enough (in that case, the stationary soliton transforms itself into a persistent lo-
calized breather). Lattice models with more general long-range linear couplings
were studied too. In particular, it was found that, if the strength of the nonlocal
coupling in the 1D model decays with the distance between the sites, |m − n|,
as |m − n|−s , the family of on-site-centered discrete solitons features a region of
bistability (which is absent in the standard DNLS equation), provided that power
s is smaller than a critical value (in particular, s = 3, which corresponds to
the dipole–dipole interactions, admits the bistability of on-site-centered solitons)
[51, 52]. It may be relevant to mention that a very specific form of the 1D DNLS
equation, with the linear coupling decaying as exp (− |m − n|) (the nonlocal linear
interaction between lattice sites which depends on the distance between them as
exp (−α |m − n|), with α > 0, is usually called the Kac–Baker potential coupling),
and a logarithmic form of the on-site nonlinearity, admits exact solutions in the
form of on-site peakons, i.e., solutions of the type of un ∼ exp (−|n|) [53]. Effects
of competition between local and long-range couplings in a 2D lattice model were
studied in [54], where it was demonstrated that, if the strength of the nonlocal cou-
pling and/or its range are large enough, the respective soliton-existence threshold
[minimum value of norm (18.3) necessary for the creation of 2D discrete solitons]
vanishes.

18.1.5 The Competition Between On-site and Inter-site
Nonlinearities (The Salerno Model)

A famous example of the 1D discrete system with the nonlinear (cubic) coupling
between nearest neighbors (and without the on-site nonlinearity) is the Ablowitz–
Ladik (AL) model, which is integrable by means of the inverse scattering transform
and, accordingly, admits a large number of exact solutions, such as moving dis-
crete solitons [55]. Because the nonintegrable DNLS equation and the integrable
AL equation (in the 1D case) converge to a common continuum limit, in the form of
the ordinary nonlinear Schrödinger (NLS) equation, a combined model can be natu-
rally introduced, which includes the cubic terms of both types (on-site and inter-site
ones). Known as the Salerno model (SM) [56, 57], this combined system is based,
in the 2D case, on the following discrete equation:
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i u̇n,m = −C
[(

un+1,m + un−1,m
)+ α (un,m+1 + un,m−1

)]

×
(

1+ μ ∣∣un,m

∣∣2
)
− 2ν

∣∣un,m

∣∣2 un,m, (18.8)

where real coefficients μ and ν account for the inter-site and on-site nonlinearities
of the AL and DNLS types, respectively. As before, C stands here for the strength of
the coupling between adjacent lattice sites, while α accounts for possible anisotropy
of the 2D lattice, with α = 1 and α = 0 corresponding, respectively, to the isotropic
2D lattice and its 1D counterpart. Accordingly, the variation of α from 0 to 1 makes
it possible to observe the dimensionality crossover, from 1D to 2D.

It has been demonstrated, chiefly by means of numerical methods, that the 1D
version of Eq. (18.8) gives rise to static [58] and (sometimes) moving [59–62]
solitons for any value of the DNLS coefficient, ν, and positive values of its AL
counterpart, μ (collisions between moving 1D solitons were studied too). Static 2D
solitons in the SM were also found, under the same condition, μ > 0 [63–65].
Negative values of ν can be made positive by means of the standard staggering
transformation, un,m → (−1)nun,m , and then one may fix ν ≡ +1 by means of
rescaling, un,m → un,m/

√
ν (if ν 
= 0). However, the sign of AL coefficient μ

cannot be altered. In particular, the pure AL model (ν = 0) with μ < 0 supports no
bright solitons.

Actually, the SM with μ < 0 is a system with competing nonlinearities. It gives
rise to soliton dynamics which is very different from that in the ordinary SM, with
μ > 0. For the 1D and 2D geometries, the SM with μ < 0 was introduced, respec-
tively, in [66, 67].

It is relevant to mention that, while the SM was originally proposed as a dynam-
ical model in a rather abstract context, it has recently found direct physical real-
ization, as a limit form of the GPE for the BEC of atoms with magnetic moments,
trapped in a deep OL [68]. In that case, the evolution variable in Eq. (18.8) is time,
the on-site nonlinearity accounts (as usual) for collisions between atoms, while the
inter-site nonlinear terms take into account the dipole–dipole interactions, which
are repulsive (μ < 0) if the external magnetic field aligns the atomic moments
perpendicular to the lattice. The moments may also be polarized parallel to the lat-
tice. In the 1D setting, this will give rise to the attractive inter-site interactions, with
μ > 0, while in the 2D case such in-plane polarization corresponds to a complex
anisotropic interaction, attractive along the direction of the moments and repulsive
perpendicular to it. In the continuum 2D GPE with the same type of the anisotropic
dipole–dipole interaction and repulsive local nonlinearity, a specific type of stable
2D solitons was predicted [69].

18.1.6 Semidiscrete Systems

A specific class of multicomponent systems includes a discrete component coupled
to a continuum one. The simplest semidiscrete models of this type were elaborated,
in the framework of the χ (2) nonlinearity, in [70]. The general setting supporting
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Fig. 18.2 A schematic of the
optical setting which gives
rise to the semidiscrete
models with the χ (2)

nonlinearity. Reprinted from
[70] with permission

such a system is shown in Fig. 18.2. It includes a periodic array of waveguides, with
spacing x0, mounted on top of (or buried into) the slab waveguide. Both the array
and the slab are assumed to be made of the same χ (2) material. The description of
this setting amounts to a system including a set of ordinary differential equations
for the evolution of amplitudes of the optical fields in the discrete array, coupled to
a partial differential equation for the propagation in the slab.

In fact, two distinct models may describe this semidiscrete system: type A in-
cludes a discrete FF component in the waveguide array, φn , coupled to a continuum
SH component in the slab waveguide, �(η), where η is the transverse coordinate in
the slab. Conversely, the type-B model combines a continuum FF component in the
slab, �(η), and discrete SH components in the array, ψn . The respective systems of
equations take the following form for type A (cf. Eqs. (18.5) and (18.6)):

i
dφn

dζ
+ � (φn−1 + φn+1)+ φ∗n �(ζ, n) = 0, (18.9)

i
��

�ζ
+ 1

2

�2�

�η2
+ β�+ 1

2

∑

n

φ2
nδ(η − n) = 0. (18.10)

The model of type B is based on a different system:

i
��

�ζ
+ 1

2

�2�

�η2
+�∗

∑

n

ψnδ(η − n) = 0, (18.11)

i
dψn

dζ
+ βψn + � (ψn−1 + ψn+1)+ 1

2
�2(ζ, n) = 0. (18.12)

Here, ζ stands for the propagation distance, β is the effective mismatch [similar to k
in Eq. (18.6)], δ(η) is the ordinary Dirac delta function, and constant � accounts for
the coupling between adjacent waveguides in the array. It is sufficient to consider
the case of � = 1, which adequately represents the generic situation [70].

Basic types of mixed discrete-continuum solitons generated by models A and B,
and their stability features will be presented in Section 5. It will be demonstrated that
the stability of these solitons may be drastically different from that of their ordinary
counterparts, both discrete and continuum ones.
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18.2 The Anisotropic Two-Dimensional Lattice

18.2.1 Outline of Analytical and Numerical Methods

The presentation in this section follows [14]. Stationary solutions to Eq. (18.1) with
anisotropic discrete Laplacian (18.2) are sought for in the usual form, un,m(z) =
Un,m exp(i�z), with real propagation constant �. This substitution leads to the sta-

tionary finite-difference equation, �Un,m = C�̃Un,m −
∣∣Un,m

∣∣2 Un,m . To develop a
quasi-analytical variational approximation (VA) for 2D fundamental solitons, which
correspond to real localized stationary solutions, one may use the fact that the sta-
tionary equation for real function Un,m can be derived from the Lagrangian,

L =∑n,m

[
Un,m+1Un,m + αUn+1,mUn,m−

((�/2C)− 1− α) U 2
n,m + (1/4C) U 4

n,m

]
.

(18.13)

For constructing solutions in the numerical form, a universal starting point is the
anticontinuum (AC) limit corresponding to C = 0, i.e., an uncoupled lattice [71].
In the AC limit, all configurations are constructed as appropriate combinations of
independent on-site states, which have either Un,m =

√
� with � > 0 (an obvious

solution valid for C = 0) at a few excited sites or Un,m ≡ 0 in the rest of the lattice.
For C > 0, solution families are obtained by means of a numerical continuation in
C . Then, the stability of the stationary solutions is analyzed numerically by lineariz-
ing Eq. (18.1) for small perturbations added to the solutions, i.e., taking

un,m =
[
u(0)

n,m + δ ·
(
an,meλt + bn,meλ

∗t)] ei�t , (18.14)

where an,m and bn,m represent infinitesimal eigenmodes of the perturbations, and λ
is the respective eigenvalue (instability growth rate), which may be complex. Per-
turbations corresponding to purely real eigenvalues λ in Eq. (18.14) can be analyzed
by means of the Vakhitov–Kolokolov (VK) criterion [72, 73]: the respective stability
condition for a single-pulse soliton family characterized by the dependence N(�),
where N is the norm defined by Eq. (18.3), reduces to inequality d N/d� > 0.

The semi-analytical and numerical methods outlined above were applied, in dif-
ferent works, to all the models considered in this chapter. Basic results obtained for
the anisotropic DNLS model are recapitulated in the rest of this section.

18.2.2 Fundamental Solitons and Vortices
in the Anisotropic Model

Practically speaking, the only analytically tractable ansatz for the application of the
VA to fundamental solitons in discrete systems is based on the following expression
[26, 74]:
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Un,m = A exp (−a|n| − b|m|) , (18.15)

with positive parameters a and b that determine the widths of the soliton in the
two directions on the lattice, and arbitrary amplitude A. The ansatz can be made
slightly more general, still keeping it in a tractable form, by allowing the field at the
central point, U0,0, to be an independent variational parameter, different from A [35].
The substitution of ansatz (18.15) in Eq. (18.13) makes it possible to calculate the
corresponding effective Lagrangian and derive the respective variational equations,
�L/�N = �L/�a = �L/�b = 0. In the case of a strongly anisotropic soliton, which
is broad in one direction and narrow in the other, which corresponds to a � 1 and
b � 1, the analysis yields the following relations between inverse widths a, b and
norm N , and the soliton’s propagation constant, �: a = √�/ (3αC), sinh (b/2) =√

�/C, N2 = (4/3)Cα�. The application of the VA criterion to this solution family
demonstrates that it may be stable, as it obviously satisfies condition d N/d� > 0.

Figure 18.3 displays results obtained from numerical solution of the variational
equations in the general case, together with direct numerical solutions for funda-
mental solitons. It also presents numerical results for the stability of the solitons,
obtained through the computation of eigenvalues for perturbation modes. In par-
ticular, the figure demonstrates that the VA provides a good fit to the numerical
solutions, and the stability border is exactly predicted by the VK criterion.

Further results of the numerical analysis are summarized in Fig. 18.4(a), which
shows, as a function of anisotropy parameter α, the critical value of the coupling
constant, εcr. It is defined so that the fundamental solitons with � = 1 are stable for
C ≤ εcr and unstable for C > εcr. It is worthy to note that this dependence is well
approximated by an empirical relation, εcr = 1/

√
α.

A family of vortex solitons (shaped as “vortex crosses”, i.e., with zero field at the
central site), with topological charge S = 1, was also investigated in the framework
of the anisotropic model. The stability diagram for them is displayed in Fig. 18.4(b).
As concerns another species of vortex solitons, in the form of “squares,” i.e., without
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Fig. 18.3 The norm of fundamental solitons vs. propagation constant � for fixed coupling constant,
C = 1, at several values of the anisotropy parameters: α = 1.5, 1.25, 1, 0.75, from top to bottom.
Bold solid and dashed lines represent stable and unstable numerical solutions, while the thin lines
are obtained by means of the VA. Reprinted from [14] with permission
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fundamental solitons with � ≡ 1, vs. anisotropy parameter α, in the 2D DNLS model. The dashed
line represents the empirical approximation, εcr = 1/
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α. (b) The same stability border for vortex-

cross solitons with topological charge S = 1. Reprinted from [14] with permission

the empty site at the center, an interesting result is that they are strongly destabilized
even by a weak deviation from the isotropy, see further details in [14].

18.3 Solitons Supported by the Cubic-Quintic
On-site Nonlinearity

In this section, the presentation follows [35, 36]. In the latter work, stationary so-
lutions to Eq. (18.4) were looked for as un(z) = Uneikn−iμz , where Un is a real
stationary lattice field which obeys equation

μUn + C
(
Un+1eik +Un−1e−ik − 2Un

)+ 2U 3
n −U 5

n = 0, (18.16)

where −μ is the propagation constant (the same as � in the previous section), and
k = 0 or k = π refer to unstaggered and staggered configurations, respectively.
Two different types of both unstaggered or staggered soliton solutions can be found
from Eq. (18.16): on-site- and inter-site-centered ones. Within the framework of the
VA, the on-site soliton is approximated by the 1D version of ansatz (18.15), while
the 1D ansatz for inter-site solitons is

Un,m = A exp (a/2− a |n − 1/2|) , (18.17)

with a > 0, where it is implied that the lattice field attains its maximum values, A,
at points n = 0 and 1, with the formal center of the soliton placed between them.

Global stability diagrams for fundamental unstaggered and staggered solitons in
the parameter plane of (μ,C) are displayed in Figs. 18.5 and 18.6. A noteworthy
peculiarity of the family of the unstaggered solitons, which occurs at C < 0.15, is
the coexistence of two different species of the fundamental modes, with different
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Fig. 18.5 Stability diagrams for fundamental unstaggered discrete solitons of the on-site-centered
(a) and inter-site-centered (b) types, in the 1D model with the CQ on-site nonlinearity. Black and
white areas depict stability and instability regions, respectively. The instability is accounted for by
real eigenvalues. Reprinted from [36] with permission
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Fig. 18.6 The same as in Fig. 18.5, but for fundamental staggered solitons of the on-site (a) and
inter-site (b) types. The regions of the stability, exponential instability (which is accounted for by
real eigenvalues), and oscillatory instability (determined by complex eigenvalues) are depicted by
gray, black, and white areas, respectively. Staggered solitons do not exist to the right of the white
lines in both panels. Reprinted from [36] with permission

norms and different amplitudes, at a given value of μ. Both species of the on-site-
centered unstaggered solitons are stable in the most part of the parameter plane,
while the inter-site mode with a smaller amplitude is unstable. At C > 0.15, stability
exchange between the on-site and inter-site solitons with equal norms takes place
with the variation of μ.

In addition to the two species of fundamental unstaggered solitons whose sta-
bility is summarized in Fig. 18.5, many other species of unstaggered solitons, both
symmetric and asymmetric ones, were found at small values of coupling constant C .
Some of them are stable, as demonstrated by examples displayed in Fig. 18.7. With
the increase of C , the number of branches of soliton solutions gradually decreases
via a chain of bifurcations, so that the single exact stable soliton solution [27–30]
survives in the continuum limit corresponding to C → ∞. As shown in [35, 36],
basic species of the unstaggered and staggered solitons (of both on-site- and inter-
site-centered types) can be very accurately described by the VA based on ansätze
(18.15) and (18.17).

Nonlinear dynamical effects in the 1D discrete CQ model, such as the long-time
evolution of various kinds of unstable solitons, and mobility of stable ones, were also
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Fig. 18.7 Examples of stable evolution of perturbed on-site-centered (a,b,d) and inter-site-
centered (c) solitons in the CQ model, found at C = 0.1 for μ = −0.6. Reprinted from [35]
with permission

studied in detail in [35, 36]. Most typically, unstable solitons rearrange themselves
into localized breathers, although on-site-centered staggered solitons may be subject
to strong instability, which completely destroys them. The application of a kick to
stable unstaggered solitons reveals their robust mobility, while all staggered solitons
investigated in [36] were found to be immobile.

18.4 Solitons in the Salerno Model with Competing Inter-site
and On-site Nonlinearities

18.4.1 The 1D Model

The presentation in this section, for the 1D and 2D versions of the SM (Salerno
model) based on Eq. (18.8), with ν = 1 and μ < 0, follows [66, 67], respec-
tively. A necessary ingredient of the analysis of the 1D model is the continuum
approximation. To introduce it, one can set u(x, t) ≡ e2it �(x, t), and expand
�n±1 ≈ � ± �x + (1/2)�xx , where � is treated as a function of the continuous
coordinate x , which coincides with n when it takes integer values. The accordingly
derived continuum counterpart of the 1D version of Eq. (18.8) (with ν ≡ 1 and
μ < 0, as said above) is
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i�t = −2 (1− |μ|) |�|2 �−
(

1− |μ| |�|2
)

�xx . (18.18)

Further, soliton solutions to Eq. (18.18) are sought as � = e−iωt U (x). Straight-
forward analysis demonstrates that such solutions exist for |μ| < 1, in a finite fre-
quency band, 0 < � ≡ μω/ (1− |μ|) ≤ 1. The soliton’s amplitude, A ≡ U (x = 0),
is smaller than 1/

√|μ| for 0 < � < 1. At the edge of the band, � = 1 (i.e., at point
ω = 1− |μ|−1), an exact solution can be found, in the form of a peakon,

Upeakon =
(

1/
√
|μ|
)

exp
(
−
√

(1/|μ|)− 1|x |
)
, (18.19)

whose amplitude attains the maximum possible value, Amax = 1/
√|μ|, and the

norm is π2/[6
√|μ|(1− |μ|)]. The existence of the peakon is a specific feature of

the SM in the case of competing nonlinearities.
Numerical analysis of the stationary 1D version of the discrete equation (18.8)

demonstrates that, similarly to its continuum counterpart, it has a family of regular
soliton solutions, bordered by a discrete peakon. The boundary value,μ = μp(ω), at
which the discrete peakon is found for given frequency, is roughly approximated by
the prediction of the continuum limit, μp ≈ 1/ (1− ω). However, unlike the contin-
uum equation (18.18), the discrete model gives rise to another family of soliton solu-
tions, which are found beyond the peakon limit (i.e., at |μ| > ∣∣μp(ω)

∣∣), in the form
of cuspons. There are no counterparts to cuspons among solutions of continuum
equation (18.18). Moreover, discrete cuspons can be found even at |μ| > 1, where
the continuum limit does not admit any soliton solutions. A characteristic feature of
the cuspon is that it is more strongly localized at the center than in the exponentially
decaying tails. Examples of all the three species of the discrete solitons mentioned
above are displayed in Fig. 18.8.

Fig. 18.8 Generic examples
of three different types of
discrete solitons, for
ω = −2.091, in the 1D
Salerno model with
competing nonlinearities, are
shown on the logarithmic
scale: a regular soliton at
μ = −0.3, a peakon at
μ = −0.956, and a cuspon at
μ = −2.64 (note that, in the
latter case, |μ| exceeds 1).
Reprinted from [66] with
permission
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Fig. 18.9 The norm of the
discrete solitons, in the 1D
Salerno model with
competing nonlinearities, vs.
the soliton’s frequency, for
μ = −0.884. Except for the
explicitly marked unstable
portion, the family is stable,
including the entire cuspon
subfamily, located to the right
of the peakon. Reprinted
from [66] with permission

11

9

7

5

3

2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4

N
or

m
Exact Peakon

solution

Unstable
region

μ = −0.884

ωb| |

The stability analysis for the discrete solitons in the SM with competing nonlin-
earities was performed through numerical computation of the respective eigenval-
ues, within the framework of the linearization of Eq. (18.8), and verified by direct
simulations of the full equation. It was found that for the most part the soliton family
is stable, except for a small portion, as shown in Fig. 18.9. In direct simulations,
unstable solitons transform themselves into persistent localized breathers.

It is worthy to note that, as observed in Fig. 18.9, the stability and instability of
regular discrete solitons precisely obeys the VK criterion, which, in the present case,
takes the form of d N/dω < 0. On the other hand, the entire cuspon family is stable
contrary to the VK condition (i.e., the criterion is valid for the regular solitons, but
it does not apply to the cuspons).

Bound states of two discrete solitons were also investigated in this model, by
means of the numerical continuation in μ, starting with the known bound states
in the standard 1D DNLS equation, which corresponds to μ = 0 [66]. The
DNLS equation supports two different types of two-soliton bound states, in-phase
and π-out-of-phase ones, which are represented, respectively, by symmetric and
antisymmetric configurations, only the latter ones being stable [75, 76]. Bound
states of both types can also be found in the SM with the competing nonlinearities,
for different values of separation d between centers of the two solitons, see Fig.
18.10. A remarkable feature of this model is the stability exchange between the
in-phase and out-of-phase bound states: with the increase of −μ, precisely at point
μ = μp(ω), where peakons exist for given soliton’s frequencyω, the antisymmetric
bound state loses its stability, while the symmetric one becomes stable. The char-
acter of the stability exchange implies that stable antisymmetric bound states are
formed, at |μ| < ∣∣μp(ω)

∣∣, by regular solitons, while stable symmetric complexes
are built of two cuspons, at |μ| > ∣∣μp(ω)

∣∣. Another notable feature of this effect is
that, although the instability of unstable bound states is, naturally, weaker for larger
d , the stability-exchange point does not depend on the separation between bound
solitons.
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Fig. 18.10 The 1D Salerno model with the competing nonlinearities: Profiles of in-phase (top)
and π-out-of-phase (bottom) bound states of two peakons, with different distances d between their
centers, at ω = −3.086 and μ = μp(ω) = −0.645. The profiles are shown on the logarithmic
scale, cf. Fig. 18.8. These two configurations are taken exactly at the point of the stability exchange
between the in-phase and out-of-phase bound states, i.e., both are neutrally stable. Reprinted from
[66] with permission

18.4.2 The 2D Model

In a rescaled form, the continuum limit of 2D equation (18.8) is (cf. Eq. (18.18))

i�t +
(

1+ μ |�|2
) (

�xx +�yy
)+ 2 [(1+ α)μ+ 1] |�|2� = 0. (18.20)

Recall that, while α accounts for the anisotropy of the inter-site coupling in Eq.
(18.8), the continuum limit is always tantamount to the isotropic equation. Similarly
to its 1D counterpart, Eq. (18.20) gives rise to a family of regular axially symmetric
solitons, in the form of � = e−iωt U (r ), where r2 ≡ x2 + y2, with the amplitude
bounded by F(r = 0) ≤ |μ|−1/2, and the limiting case of F(r = 0) = |μ|−1/2

corresponding to a radial peakon. However, the 2D peakon solution and the value
of ω corresponding to it (for given μ < 0) cannot be found in an exact form, unlike
the 1D version of the model. It is also relevant to notice that, in both cases of positive
and negative μ, the nonlinear dispersive term in Eq. (18.20), μ |�|2 (�xx +�yy

)
,

prevents the onset of collapse in this equation.
As shown in Fig. (18.11), numerical solution of the stationary version of the

2D discrete equation (18.8) demonstrates the existence of the same two generic
species of solitons which were found in the 1D counterpart of the model, i.e., reg-
ular discrete solitons and cuspons, which are separated by the peakon mode. The
asymmetric variant of the model, with α 
= 1, gives rise to an additional generic
type of solutions, in the form of semicuspons, which feature the cuspon shape in
one direction, and a regular shape in the other.
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Fig. 18.11 Profiles of two discrete solitons found in the 2D isotropic (ε = 1) Salerno model with
competing nonlinearities: (a) a regular soliton close to the peakon, at μ = −0.2; (b) a cuspon, at
μ = −0.88. Reprinted from [67] with permission

The stability of the 2D discrete solitons was analyzed through the computation of
the respective eigenvalues, which was verified by direct simulations of Eq. (18.8).
Similar to the situation outlined above for the 1D version of the model, a small
part of the family of regular 2D solitons was found to be unstable, while all the 2D
cuspons are stable. The unstable solitons spontaneously transform themselves into
persistent localized breathers. Another similarity to the 1D model can be observed
through the comparison of the actual stability of the 2D solitons to the prediction
of the VK criterion for them: the regular states exactly comply with the criterion,
while the cuspons are stable contrary to it.

Also similar to what was found in the 1D model are fundamental properties
of bound states of 2D fundamental solitons: out-of-phase and in-phase two-soliton
complexes exchange their stability with the increase of −μ (recall that, in the usual
2D DNLS model, which corresponds to μ = 0, only out-of-phase, alias antisym-
metric, two-soliton bound states are stable [77]). As well as in the 1D version of
the model, values of parameters at the stability-exchange point do not depend on
the separation between the bound solitons (nor on the orientation of the bound state
relative to the underlying 2D lattice). A new peculiarity, in comparison with the 1D
model, is the fact that, exactly when they switch their stability, both the symmetric
and antisymmetric bound states are built not of peakons, but of two cuspons.

A natural generalization of the 2D fundamental solitons are discrete vortices,
which are well-known solutions in the ordinary 2D DNLS model [78]. A vortex is
characterized by the phase circulation around its center, �θ , that must be a multiple
of 2π , hence the vortex state may be labeled by the integer vorticity (topological
charge) S ≡ �θ/(2π). As mentioned above (in the context of the anisotropic version
of the 2D DNLS model), two distinct types of lattice vortices can exist, on-site- and
off-site-centered ones, alias vortex crosses and vortex squares. Examples of these
two species of the vortex solitons found in the SM with competing nonlinearities
(μ < 0) are plotted in Fig. 18.12. In [67], vortex solitons in the SM were investigated
for both μ < 0 and μ > 0.

The stability of both types of the vortices (crosses and squares) was identified
through the computation of the full set of relevant eigenvalues for small pertur-
bations, and verified in direct simulations. Stability regions for static vortices in
parameter plane (μ,ω) exist, but they are narrow for the cross-shaped vortices, and
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Fig. 18.12 Examples of
discrete vortices with S = 1
in the isotropic (ε = 1) 2D
Salerno model with the
competing on-site and
inter-site nonlinearities.
Profiles of the real part of the
“square”- and “cross”-shaped
vortices are shown in the top
and bottom panels,
respectively. Both modes
pertain to μ = −0.4 and
C = 1. Reprinted from [67]
with permission
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very narrow for the square-shaped ones. As in the usual 2D DNLS model [78],
the destabilization of vortices occurs through the Hamiltonian Hopf bifurcation
(i.e., through a quartet of complex eigenvalues). In the ordinary SM, with μ > 0
(i.e., with noncompeting nonlinearities), unstable vortex solitons follow the same
instability-development pattern as in the 2D DNLS equation [78], evolving into
on-site-centered fundamental discrete solitons (ones with S = 0). However, an
essentially novel finding is that unstable cross-shaped vortices in the model with
μ < 0 rearrange into very robust localized vortical breathers, which means that
the topologically distinct vortex pattern does not disappear under the action of the
instability but merely develops irregular modulations of its local amplitudes.

A similar instability-development pattern, which leads, in the model with μ < 0,
to the formation of robust vortical breathers, is demonstrated by unstable square-
shaped vortices. A noteworthy peculiarity of the latter case is that the respective
vortical breathers feature at least two distinct frequencies of intrinsic vibrations.
One of them accounts for periodic transfer of the norm between four corners of the
square vortex, following a path that can be schematically depicted by (n0,m0) →
(n0,m0 + 1) → (n0 + 1,m0 + 1) → (n0 + 1,m0) → (n0,m0). In addition to
that, the amount of the norm circulating between the sites periodically varies in
time, thus giving rise to the second frequency. Generally, in comparison with the
vortical breathers generated by the unstable cross-shaped vortices, those emerging
from unstable vortex squares feature much more regular internal dynamics.

Lastly, bound states of two cross-shaped vortices were also investigated in
[67]. When −μ increases, a destabilizing bifurcation occurs in the equal-vorticity
bound state, precisely at the same value of μ at which the instability of the
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corresponding out-of-phase bound state of two fundamental 2D solitons was found,
as explained above.

18.5 One-Dimensional Solitons in the Semidiscrete System
with the χ (2) Nonlinearity

The semidiscrete models based on Eqs. (18.9) and (18.10), or (18.11) and (18.12)
(recall these systems were defined as ones of types A and B, respectively), give
rise to new specific families of composite solitons, as shown in work [70]. These
solutions are sought for, respectively, in the following form:

φn(ζ ) = eiλζ φ̄n,�(η, ζ ) = e2iλζ �̄(η); (18.21)

ψn(ζ ) = e2iλζ ψ̄n,�(η, ζ ) = eiλζ �̄(η), (18.22)

where λ is the wavenumber. Similar to the ordinary discrete solitons, the compos-
ite ones can be odd or even: the odd modes are centered at a site of the discrete
waveguide, whereas even solitons are inter-site-centered. Typical examples of odd
and even composite solitons are displayed for both cases, A and B, in the left panels
of Fig. 18.13.

The stability of the composite solitons can be analyzed by means of the VK crite-
rion, in the form of d P/dλ > 0, where the total power, which includes contributions
from both continuous and discrete components of the system, is

Fig. 18.13 Left: Profiles of composite solitons in the semidiscrete χ (2) model. Top and bottom
panels correspond to the solitons of types A and B, respectively, whereas left and right subpanels
display odd and even solitons. Vertical lines designate the location of discrete waveguides. The
mismatch is β = 0, and the soliton wavenumber is λ = 3 and λ = 1.5, in cases A and B,
respectively. Right: The total power P of the families of composite solitons vs. wavenumber λ.
Reprinted from [70] with permission
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P(λ) = 2
∫ +∞

−∞
| {�,�} |2dη +

∑

n

| {φn, ψn} |2, (18.23)

in cases A and B, respectively. Curves P(λ) for the four basic soliton families are
displayed in the right panels of Fig. 18.13. Predictions of the VK criterion were
completely corroborated by accurate computation of the respective stability eigen-
values.

As seen in the right panels of Fig. 18.13, the solitons exist (as might be expected)
above the band of linear waves of the discrete subsystem, i.e., for λ > 2 in case A,
and λ > 1 + β/2 in case B. Both odd and even solitons are stable in most of their
existence domain. The latter result is significant, as even (inter-site-centered) soli-
tons are never stable in the ordinary DNLS model. Further, a noteworthy property
of the A-type solitons is that they exist up to P = 0, while the solitons of type B
feature a cutoff in terms of P . In direct simulations, unstable composite solitons of
the B-type decay into linear waves.

Twisted modes, built as antisymmetric bound states of two on-site-centered soli-
tons, were also studied in [70]. It was found that the semidiscrete twisted states are
stable in nearly the entire domain where they exist, on the contrary to continuous
χ (2) media, where twisted solitons exist too but are always unstable [79].

18.6 Conclusion and Perspectives

The discrete and semi-discrete models surveyed in this chapter feature a great va-
riety of species of soliton states, and many different patterns of their dynamical
behavior (especially, as concerns the stability). In most cases, their properties are
notably different from those of the standard DNLS model.

A number of possibilities and problems which are suggested by these and allied
models remain to be explored. First, none of them has been studied, as yet, in the
3D geometry. As concerns the model with the CQ on-site nonlinearity in 2D, some
preliminary results were reported in [35]. As Fig. 18.14 illustrates, at sufficiently
small values of the inter-site coupling constant (C), the model admits a large variety
of coexisting stable and unstable discrete solitons. However, a systematic analysis
of static (unstaggered and staggered) and mobile solitons in the 2D CQ model still
has to be completed. The studies of this model may include the consideration of
semi-staggered solitons, i.e., ones subjected to the staggering transformation only
in one direction (similarly arranged semi-gap solitons were investigated in a BEC
model based on the 2D GPE [80]).

It is known that a consistent derivation of the effective 1D dynamical equation
for BEC trapped in a tight cigar-shaped confining potential leads to the nonpolyno-
mial NLS equation [81–83]. If the cigar-shaped trap is combined with a deep OL
potential acting in the axial direction, this gives rise to the DNLS equation with the
nonpolynomial on-site nonlinearity,
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Fig. 18.14 A set of coexisting discrete solitons produced by the 2D version of Eqs. (18.4) and
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and unstable, respectively. Reprinted from [35] with permission

i
d fn

dt
= −C ( fn+1 + fn−1 − 2 fn)+ 1− (3/2)g| fn|2√

1− g| fn|2
fn , (18.24)

where constant g > 0 or g < 0 accounts for the attractive or repulsive interactions
between atoms in the condensate. A unique feature of Eq. (18.24) is that, in the case
of g > 0, this 1D discrete equation may give rise to collapse, when local density
| fn |2 at any site attains the critical value, 1/g. Soliton families supported by this new
model were investigated very recently [84], and there remains to derive and explore
a similar 2D discrete equation with a (different) nonpolynomial on-site nonlinearity,
which would also serve as relevant BEC model.

As concerns 2D models with competing on-site and inter-site nonlinearity, a chal-
lenging problem is to construct fundamental solitons and vortices (if any) in the most
interesting anisotropic version of such a model that would feature an attractive cubic
inter-site coupling in one direction on the lattice, and a repulsive coupling in the
other direction, while the on-site nonlinearity may be either repulsive or attractive.
This configuration naturally corresponds to the dipolar BEC with atomic moments
polarized in-plane [69].

Lastly, as concerns semidiscrete models for composite solitons, a natural exten-
sion of the χ (2) model considered above is a two-component system with the χ (3)

nonlinearity that may describe an optical setting like the one shown above in Fig.
18.2, but made of a material with the ordinary χ (3) (Kerr) nonlinearity. The respec-
tive system of equations for two optical fields, which corresponding to mutually
orthogonal polarizations, can be derived in the following form:

i
dφn

dζ
+ βdφn + φn−1 + φn+1 + φn|φn|2 + κdφn|�(ζ, η = n)|2 = 0, (18.25)
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i
��

�ζ
+ βc�+ 1

2

�2�

�η2
+�|�|2 + κc�

∑

n

|φn|2δ(η − n) = 0, (18.26)

where βd and βc are propagation constants, and coefficients κd and κc account for
the nonlinear coupling between the fields. This model gives rise to its specific fam-
ilies of composite solitons [85]. It remains to extend this system, as well as its χ (2)

counterparts, based on Eqs. (18.9) and (18.10) or (18.11) and (18.12), into the 2D
geometry.
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84. Maluckov, A., Hadžievski, L., Malomed, B.A., Salasnich, L.: Phys. Rev. A 78, 013616 (2008) 348
85. Panoiu, N.-C., Malomed, B.A., Osgood, R.M.: Phys. Rev. A 78, 013801 (2008) 349



Chapter 19
DNLS with Impurities

Jesús Cuevas and Faustino Palmero

19.1 Introduction

The past few years have witnessed an explosion of interest in discrete models and
intrinsic localized modes (discrete breathers or solitons) that has been summarized
in a number of recent reviews [1–3]. This growth has been motivated by numerous
applications of nonlinear dynamical lattice models in areas as broad and diverse
as the nonlinear optics of waveguide arrays [4], the dynamics of Bose–Einstein
condensates in periodic potentials [5, 6], micro-mechanical models of cantilever
arrays [7], or even simple models of the complex dynamics of the DNA double
strand [8]. Arguably, the most prototypical model among the ones that emerge in
these settings is the discrete nonlinear Schrödinger (DNLS) equation, the main topic
of this book.

While DNLS combines two important features of many physical lattice systems,
namely nonlinearity and periodicity, yet another element which is often physically
relevant and rather ubiquitous is disorder. Localized impurities are well known in a
variety of settings to introduce not only interesting wave-scattering phenomena [9],
but also to create the possibility for the excitation of impurity modes, which are spa-
tially localized oscillatory states at the impurity sites [10, 11]. Physical applications
of such phenomena arise, e.g., in superconductors [12, 13], in the dynamics of the
electron–phonon interactions [14, 15], in the propagation of light in dielectric super-
lattices with embedded defect layers [16] or in defect modes arising in photonic
crystals [17, 18].

In the context of the DNLS, there has been a number of interesting studies in
connection to the interplay of the localized modes with impurities. Some of the
initial works were either at a quasicontinuum limit (where a variational approx-
imation could also be implemented to examine this interplay) [19] or at a more
discrete level but with an impurity in the coupling [20] (see also in the latter setting
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the more recent studies of a waveguide bend [21, 22] and the boundary defect
case of [23]). More recently the experimental investigations of [24, 25] motivated
the examinations of linear and nonlinear defects in a DNLS context [26–28].

The aim of this chapter is to summarize the properties of the DNLS equation
in the presence of a linear impurity, as shown previously in [29]. Our first aim
is to present the full bifurcation diagram of the stationary localized modes in the
presence of the impurity and how it is drastically modified in comparison to the
case of the homogeneous lattice. The relevant bifurcations are quantified whenever
possible even analytically, in good agreement with our full numerical computations.
A second aim is to show the outcome of the interaction of an incoming solitary wave
with the linear impurity.

The DNLS equation with the defect can be written as

i u̇n + γ |un|2un + ε(un+1 + un−1)+ αnun = 0, (n = 1 . . . N) (19.1)

where αn allows for the existence of local, linear inhomogeneities. Hereafter, we
consider a single point defect, thus αn = αδn,0, that can be positive (attractive im-
purity) or negative (repulsive impurity). In general, the presence of an on-site defect
would affect the nearest-neighbor coupling, and Eq. (19.1) should be modified to
take this effect into account, as in [30]. This inhomogeneity in the coupling, how-
ever, can be avoided using different techniques, for example, in nonlinear waveguide
arrays, changing slightly the separation between the defect waveguide and its nearest
neighbors, as in the case of [31]. We will assume here that the coupling parameter ε
is independent of the site and positive.

Note that the defocusing case can be reduced, under the staggering transforma-
tion un → (−1)nun , to the previous one with opposite sign of the impurity α. Also,
under the transformation un → une2iεt , Eq. (19.1) can be written in the standard
form

i u̇n + |un|2un + C�un + αnun = 0, (19.2)

In what follows, we use the form given by Eq. (19.1).

19.2 Stationary Solutions

In this part, we look for stationary solutions with frequency �, un(t) = ei�tvn , and
the stationary analog of Eq. (19.1) then reads

− �un + ε(un+1 + un−1)+ u3
n + αnun = 0. (19.3)
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19.2.1 Linear Modes

Some of the properties of solitons are related to the characteristics of linear localized
modes. These modes arise when an inhomogeneity appears and can be obtained
from the linearized form (around the trivial solution un = 0,∀ n) of Eq. (19.3). In
this case, and considering an inhomogeneity located at the first site of the chain and
with periodic boundary conditions, the problem reduces to solving the eigenvalue
problem

⎡
⎢⎢⎢⎢⎢⎢⎣

α ε 0 . . ε
ε 0 ε 0 . 0
0 ε 0 ε . .
. . . . . .

. . . ε 0 ε
ε . . . ε 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

v0

v1

.

.

vN−2

vN−1

⎤
⎥⎥⎥⎥⎥⎥⎦
= �

⎡
⎢⎢⎢⎢⎢⎢⎣

v0

v1

.

.

vN−2

vN−1

⎤
⎥⎥⎥⎥⎥⎥⎦
, (19.4)

that is, a particular case of the eigenvalue problem studied in [32]. There it was
shown that, if α 
= 0, the solution corresponds to N − 1 extended modes and an
impurity-localized mode. Also, if N becomes large, the frequencies of extended
modes are densely distributed in the interval � ∈ [−2ε, 2ε] and the localized mode
can be approximated by

vn = snv0

[( α
2ε
+ β

)−n
+ sN

( α
2ε
+ β

)n−N
]
, � = 2sεβ, β ≡

√
α2

4ε2
+ 1

(19.5)

with s = sign(α) and v0 an arbitrary constant. Note that for α > 0 (α < 0) the
localized mode has an in-phase (staggered) pattern. In Fig. 19.1 we depict the linear

−2 −1 0 1 2
−3

−2

−1

0

1

2

3

α

Λ

−10 0 10

−0.4

−0.2

0

0.2

0.4

0.6

n

v n

α = −1

−10 0 10

0

0.2

0.4

0.6

n

α = 1

(a) (b)

Fig. 19.1 (a) Linear modes spectrum as function of impurity parameter α. Periodic boundary
conditions are considered. (b) Examples of the profiles of the impurity modes. The impurity is
located at n = 0. (left) Profile for α = −1; (right) profile for α = 1. In all cases N = 200 and
ε = 1. Reprinted from [29] with permission
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mode spectrum as a function of the inhomogeneity parameter α and examples of the
profiles of the ensuing localized modes.

19.2.2 Bifurcations

In order to explore the existence and stability of the nonlinear stationary states de-
scribed by Eq. (19.3), we have used the well-known technique based on the concept
of continuation from the anticontinuum (AC) limit using a Newton–Raphson algo-
rithm. Also, a standard linear stability analysis of these stationary states has been
performed.

In the homogeneous lattice case of α = 0, fundamental stationary modes are
well known to exist and be centered either on a lattice site or between two adjacent
lattice sites. The site-centered solitary waves are always stable, while the inter-site-
centered ones are always unstable [33].

In order to study the effects of the inhomogeneity on the existence and properties
of localized modes, we have performed a continuation from the homogeneous lattice
case of α = 0. We found that if α increases (α > 0, attractive impurity case), the
amplitude of the stable on-site mode decreases, while if α decreases (α < 0, repul-
sive impurity case), in general, the stable on-site soliton localized at the impurity
merges with the unstable inter-site-centered one localized between the impurity and
its neighboring site (beyond some critical value of |α|) and the resulting state be-
comes unstable. Notice that, at heart, the latter effect is a pitchfork bifurcation as
the on-site mode collides with both the inter-site mode centered to its right and the
one centered to its left.

In Fig. 19.2 we show a typical bifurcation scenario where, for fixed values of
� and ε, we depict the mode power P corresponding to different on-site and inter-
site localized modes as a function of impurity parameter α. If we denote as n0 the
site of the impurity, when α > 0 increases, we found that the unstable inter-site
soliton localized at n = 0.5 disappears in a saddle-node bifurcation with the stable
on-site soliton localized at n = 1. Also, if we continue this stable mode, when
α decreases, and for a given value α = αc < 0, it also disappears together with
the unstable mode localized at n = 1.5 through a saddle-node bifurcation. If we
increase again the impurity parameter, this unstable mode localized at n = 1.5 bi-
furcates with the stable site mode localized at n = 2 for a critical value of parameter
α = α′c > 0 through a saddle-node bifurcation again, and it could be possible to
continue this bifurcation pattern until a site k, where the value of site k increases
with the value of ε and � parameters. This scenario is similar to the one found
in previous studies with different kinds of impurities [21, 27] and appears to be
quite general. It should be noted that when the coupling parameter increases, more
bifurcations take place, in a narrower interval of power P and impurity parameter α
values.

Some of the particularly interesting experimentally tractable suggestions that this
bifurcation picture brings forward are the following:
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Fig. 19.2 Bifurcation diagram of stable (solid line) and unstable (dashed line) nonlinear modes.
Shown is the power P as a function of the impurity parameter α. In all cases N = 100 and � = 2.5.
The branch designation is as follows: (A) Unstable soliton centered at the impurity (n = 0), (B)
stable on-site soliton centered at n = 0, (C) Unstable inter-site soliton centered at n = 0.5, (D)
stable on-site soliton at n = 1, (E) unstable inter-site soliton at n = 1.5, (F) stable on-site soliton at
n = 2, (G) unstable inter-site soliton at n = 2.5, and (H) stable on-site soliton at n = 3. The stable
on-site mode located at the impurity, in the homogeneous case (α = 0), disappears for a coupling
value of ε � 1.25 due to resonances with the phonon band. Reprinted from [29] with permission

• A localized mode centered at the impurity may be impossible for sufficiently
large attractive impurities (because the amplitude of the mode may decrease to
zero), while it may be impossible to observe also in the defocusing case due to
the instability induced by the pitchfork bifurcation with its neighboring inter-site
configurations.

• A localized on-site mode centered at the neighborhood of the impurity should
not be possible to localize for sufficiently large impurity strength both in the
attractive and in the repulsive impurity case.

19.2.3 Invariant Manifold Approximation

This subsection shows a more detailed study of the bifurcation between the on-site
nonlinear mode centered at the impurity and its inter-site and one-site neighbor.
From the discussion of the previous section we can determine for a given value of the
coupling parameter ε, the corresponding critical value of impurity parameter α =
αc. Note that this bifurcation takes place only if α is negative (repulsive impurity). In
case of α positive (attractive impurity), the inter-site solution disappears in a saddle-
node bifurcation with the on-site wave centered at the site next to the impurity at
α = α′c. In these cases, via an analysis of invariant manifolds of the DNLS map, and
following the method developed in Sect. 4.1.4 of [34], some approximate analytical
expressions corresponding to this bifurcation point can be obtained. This method is
sketched below.



358 J. Cuevas and F. Palmero

The difference equation (19.3), for α = 0, can be recast as a 2D real map by
defining yn = vn and xn = vn−1 [35]:

{
xn+1 = yn

yn+1 = (�yn − y3
n )/ε − xn.

(19.6)

For � > 2, the origin xn = yn = 0 is hyperbolic and a saddle point.
Consequently, there exists a 1D stable (W s(0)) and a 1D unstable (W u(0)) manifolds
emanating from the origin in two directions given by y = λ±x , with

λ± = �±√�2 − 4ε2

2ε
. (19.7)

These manifolds intersect in general transversally, yielding the existence of an
infinity of homoclinic orbits. Each of their intersections corresponds to a localized
solution. Fundamental solitons (i.e., on-site and inter-site solitons) correspond to the
primary intersection points, i.e., those emanating from the first homoclinic wind-
ings. Each intersection point defines an initial condition (x0, y0), that is (v−1, v0),
and the rest of the points composing the soliton are determined by application of
the map (19.6) and its inverse. Figure 19.3 shows an example of the first windings
of the manifolds. Intersections corresponding to fundamental solitons are labeled
as follows: (1) is the on-site soliton centered at n = 0, (2) is the inter-site soliton
centered at n = 0.5, and (3) is the on-site soliton centered at n = 1.

The effect of the inhomogeneity is introduced as a linear transformation of the
unstable manifold A(α)W u(0) with A(α) given by

A(α) =
[

1 0

−α/C 1

]
. (19.8)

When α > 0, the unstable manifold moves downwards, changing the intersec-
tions between the transformed unstable manifold and the stable manifold to points
1′, 2′, and 3′ (see Fig. 19.3). For α = αc, both manifolds become tangent. Thus, for
α > α′c intersections 3′ and 2′ are lost, that is, for α = α′c the breathers centered
at n = 1 and n = 0.5 experience a tangent bifurcation. On the contrary, if α < 0,
intersections 1′ and 2′ are lost when |α| > |αc|, leading to a bifurcation between the
breathers centered at n = 0.5 and n = 0.

A method for estimating αc(�) and α′c(�) is based on a simple approximation of
W u(0). Let us consider a cubic approximation W u

app of the local unstable manifold of
Fig. 19.3, parametrized by y = λ x − c2 x3, with λ ≡ λ+. The coefficient c depends
on � and C and need not be specified in what follows (a value of c suitable when λ
is large is computed in [36]). We have

y = λ0x − c2 x3 (19.9)
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Fig. 19.3 First winding of the
homoclinic tangle of the map
(19.6). The dashed line
corresponds to the linear
transformed unstable
manifold when α = 0. Labels
1, 2, 3 (1′, 2′, 3′) correspond
to fundamental solitons for
α = 0 (α 
= 0). Reprinted
from [29] with permission
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the local stable manifold using the curve W s
app parametrized by

x = λ y − c2 y3. (19.10)

The curves A(α)W u
app and W s

app become tangent at (x, y) when in addition

(
λ− 3c2 x2

)
(λ0 − 3c2 y2) = 1. (19.11)

In order to compute αc and α′c as a function of �, or, equivalently, the corre-
sponding value of λ0 as a function of λ, one has to solve the nonlinear system (19.9),
(19.10) and (19.11) with respect to x , y, λ0, which yields a solution depending on λ.
Instead of using λ it is practical to parametrize the solutions by t = y/x . This yields

x = 1

c
√

2

(
t + 1

t3

)1/2

, y = t

c
√

2

(
t + 1

t3

)1/2

; λ0 = 3

2
t+ 1

2t3
, λ = 3

2t
+1

2
t3.

Since λ+ λ−1 = �/ε it follows that

t4 − 2λt + 3 = 0, (19.12)

α = ε

2

(
t − 1

t

)3

. (19.13)

As this system of equations has two real positive solutions, given a value of �,
one can approximate αc and α′c by the values of α given by Eqs. (19.12)–(19.13).
Despite the fact that it gives precise numerical results in a certain parameter range,
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the approximation (19.12)–(19.13) is not always valid. Indeed, the parameter regime
� < 5ε/2 is not described within this approximation (see [36]).

Figure 19.4 shows the comparison between the exact numerical and the approx-
imate analytical results. For a fixed value of the coupling parameter ε, the critical
value of the frequency increases with |α|.

19.3 Interaction of a Moving Soliton with a Single Impurity

Early studies of the DNLS had shown that discrete solitary waves in the DNLS can
propagate along the lattice with a relatively small loss of energy [37], and more
recent work suggests that such (almost freely) propagating solutions might exist, at
least for some range of control parameters [38–40]; nevertheless, genuinely travel-
ing single-hump solitary wave solutions are not present in the DNLS, but only in
variants of that model such as the ones with saturable nonlinearity [41–43].

In this section we deal with the interaction of propagating (with only weak ra-
diative losses) localized modes with the impurity. Thus, we consider a nonlinear
localized mode, far enough from the impurity, of frequency �, and perturb it by
adding a thrust q to a stationary breather vn [44], so that

un(t = 0) = vneiqn . (19.14)

This is similar in spirit to the examination of [26], although we presently examine
both attractive and repulsive impurities. In what follows, � = 2.5 and ε = 1;
a similar scenario emerges for other values of �.

In general, if q is large enough, the soliton moves with a small loss of radiation.
We have calculated, as a function of parameters q and α, the power and energy that
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remain trapped by the impurity, or get reflected and transmitted along the chain, and
determined the corresponding coefficients of trapping, reflection, and transmission,
defined as the corresponding fraction of power (energy). Figure 19.5 summarizes
the relevant numerical results.

We can essentially distinguish four fundamental regimes:

(a) Trapping. If parameters q and α are small enough, and the impurity is attrac-
tive, nearly all the energy remains trapped at the impurity, and only a small
fraction of energy is lost by means of phonon radiation. An example of this
phenomenon is shown in Fig. 19.6 (left). In this case, the central power (power
around the impurity) before the collision is nearly zero. When the localized
mode reaches the impurity, the former loses power as phonon radiation and
remains trapped. The analysis of the Fourier spectrum of this trapped breather,
carried out after the initial decay and at an early stage of the evolution, shows
a frequency close to the initial soliton frequency, as shown in Fig. 19.6 (right).
We have observed that, in general, this frequency is slightly smaller than that of
the incident soliton, and, in consequence, it has even smaller energy (in absolute
value) and power than the corresponding nonlinear mode with the frequency of
incident soliton. In this particular case, corresponding to q = 0.3 and α = 0.2,
the initial incident wave (after perturbation) has power P = 2.61 and energy
E = −5.40 and the stationary mode, trapped at the impurity, with the same
frequency, has P = 2.17 and E = −4.73. Thus, the incident breather can
activate this nonlinear mode, and nearly all energy and norm remain trapped.

(b) Trapping and reflection. If the impurity is attractive, but strong enough, some
fraction of energy remains trapped by the impurity, but a considerable amount of
it is reflected. The reflected excitation remains localized. This case is similar to
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and time t (left panel) and Fourier power spectrum of the trapped soliton calculated soon after the
collision (right panel). The parameters are α = 0.2, q = 0.3, � = 2.5, ε = 1 and the impurity is
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the previous one, but now the incident traveling structure has enough energy and
norm to excite a stationary mode centered at the impurity, remaining localized
and giving rise to a reflected pulse. A typical case is shown in Fig. 19.7 that
corresponds to q = 0.6 and α = 1.0. The incident wave has power and energy
P = 2.61 and E = −4.79, and the stationary nonlinear mode centered at
the impurity, with the same frequency, P = 0.76 and E = −1.79. When the
incident breather reaches the impurity, it excites the nonlinear mode, and, after
losing some power, part of it remains localized, and another part is reflected.
Also, in our numerical simulations, we have detected, as in the previous case,
that the frequency of the remaining trapped mode is slightly lower than that
of the incident breather, so it has even smaller power than the corresponding
nonlinear mode with the frequency of incident soliton.
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Fig. 19.7 Trapping and reflection: Contour plot corresponding to the power of soliton P as a func-
tion of site n and time t (left panel) and Fourier power spectrum of the trapped soliton calculated
soon after the collision (right panel). The parameters are α = 1.0, q = 0.6, � = 2.5, ε = 1, and
the impurity is located at n = 0. Reprinted from [29] with permission
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In general, we have found that a necessary condition to trap energy and power
by the impurity is the existence of a nonlinear localized mode centered at the im-
purity, with similar frequency, and energy (in absolute value) and power smaller
than that of the corresponding incident soliton.

(c) Reflection with no trapping. Here, we have to distinguish two cases. If the impu-
rity is repulsive, and q small enough, neither trapping nor transmission occurs.
Instead, all energy is reflected, and the traveling nonlinear excitation remains
localized. In this case, as shown in Fig. 19.8 (left), the incident wave has no
energy and power to excite the localized mode. In a typical case, i.e., � = 2.5,
q = 0.6, and α = −0.5, the incident soliton has energy and power E = −4.79
and P = 2.61, and the nonlinear localized mode on the impurity with the same
frequency E = −8.038 and P = 3.77. No trapping phenomenon occurs, and
the pulse is reflected.
On the other hand, if the impurity is attractive and strong enough, i.e., q = 0.7,
� = 2.5, and α = 2.0, the frequency of the soliton is smaller than the one
corresponding to the linear impurity mode (�L � 2.82), and all the energy is
reflected. This is in accordance with the necessity of a nonlinear localized mode
at the impurity site in order for the trapping to occur.

(d) Transmission with no trapping. If |α| is small enough, and q high enough, trans-
mission with no trapping occurs, as shown in Fig. 19.8 (right). There exists a
critical value of q = qc > 0 such that, if q > qc, the incident soliton crosses
through the impurity. The value of qc grows with |α|. In the case where q < qc,
if α < 0, reflection with no trapping occurs, while if α > 0, trapping with no
reflection phenomenon takes place.

Our results related to trapping, reflection, and transmission phenomena are in
agreement with some results recently obtained, using a different approach, in a
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Fig. 19.8 Reflection with no trapping (left panel) corresponding to parameters α = −0.5, q = 0.6
and � = 2.5, and transmission with no trapping (right panel) corresponding to parameters α = 0.1,
q = 0.7, and � = 2.5. In both cases we represent a contour plot corresponding to the power of the
soliton P as function of site n and time t , ε = 1 and the impurity is located at n = 0. Reprinted
from [29] with permission
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similar system [26]. In this work, where approximate discrete moving solitons with
fixed amplitude are generated using a continuous approximation, the authors study
the trapping process by a linear and a nonlinear attractive impurity. In the former
framework, trapping can be explained by means of resonances with the linear lo-
calized mode. In our case, where nonlinear effects become stronger, the phenomena
are related to resonances with a nonlinear localized mode.

Finally, a very interesting phenomenon occurs when the parameter α is repulsive
and small enough (in absolute value). In this case, the solitary wave can be reflected
or transmitted depending on its velocity. Also, when it is reflected, our numerical
tests show that its velocity is similar to its incident velocity. Thus, if we consider
the soliton as a “quasiparticle,” the effect of the impurity is similar to the effect of a
potential barrier. To determine this potential barrier for a given value of parameter
α, we have used a method similar to the one described by [45]. We have considered
different values of the thrust parameter q corresponding to the reflection regime, and
determine, for each value, the turning point, X(q). Thus the energy of the barrier for
this value of q is defined as the difference between the energy of the moving soliton
and the stationary state of the same frequency far from the impurity. It can be written
as V (q) = C sin(q/2)|P(q/2)|, with P(q) = i

∑
n(ψ∗nψn+1 − ψ∗nψn−1) being the

lattice momentum, as defined in [46]. Results are shown in Fig. 19.9, which exhibits,
as expected, an irregular shape, whose origin lies in the nonuniform behavior of the
translational velocity due to the discreteness of the system.

On the other hand, if the parameter α is small enough, and positive (attractive),
the solitary wave faces a potential “well” and can be trapped if its translational
energy is small or, if the translational energy is high enough, it may be transmitted,
losing energy that remains trapped by the impurity, and decreasing its velocity.

To sum up, we have examined in detail for both impurity cases (attractive and
repulsive) the interaction of the impurity with a moving localized mode initiated
away from it. The principal regimes that we have identified as a function of the

n

t

−20 −10 0 10 20
70

80

90

100

110

120

130

−2 −1 0 1 2
0.2

0.4

0.6

0.8

1

X

V
(X

)

Fig. 19.9 Contour plot of the phenomenon of reflection of a soliton corresponding to thrust pa-
rameter q = 0.6 (left panel). Potential barrier calculated as described in the text (right panel). In
both cases α = −0.2, ε = 1, � = 2.5, and the impurity is located at n = 0. Reprinted from [29]
with permission
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impurity strength (and sign) and initial speed are trapping, partial trapping and par-
tial reflection, pure reflection and pure transmission. In general, if the impurity is
repulsive, and the speed small enough, the wave is always reflected. If the impurity
strength (in absolute value) is small enough and the speed is high enough, then
transmission can take place. On the other hand, if the impurity is attractive, trapping
can occur, and if the speed is high enough two different effects are observed: for
small values of α, transmission takes place and for high values of α, the trapping
is accompanied by a partial reflection (for intermediate values of α, the trapping
is pure). If the impurity is attractive and sufficiently strong, the frequency of the
soliton is smaller than the one corresponding to the linear localized impurity mode
and the wave is reflected.

The above-described scenario is slightly different to that shown in [26], where
small-amplitude solitons are considered. Contrary to the high-amplitude solitons
considered in [29] where the trapping was shown to be originated by the excitation
of a nonlinear localized mode centered at the impurity site, in [26], the trapping is
due to excitations of linear localized modes, as the frequency of small-amplitude
solitons are close to the phonon band. Thus, the scenario observed for attractive
impurities is the following: for small impurity strength, the soliton is transmitted;
above a critical value of α, the soliton is trapped partially, with the reflected fraction
increasing with the impurity strength.

19.4 Comparison with Other Related Models

The findings herein, while presented for a linear impurity, are representative of other
models including DNLS lattices with nonlinear impurities and Klein–Gordon (KG)
lattices. We briefly expose hereafter the main similarities and differences between
them.

19.4.1 Nonlinear Impurities

Stationary solitons with a quintic nonlinear impurity were considered in [27]:

i u̇n + |un|2un + ε(un+1 + un−1 − 2un)+ αδn,0|un|4un = 0. (19.15)

In that work, only attractive impurities were considered. The bifurcation diagram
of solitons close to the impurity site is similar to the one found for linear impurities
(see Fig. 19.2). By means of a variational approximation the value of the impurity
strength at which the branches corresponding to solitons centered at n = 0 and
n = 0.5 merge. The dependence of this critical value with the frequency is

αc(�) = −16π4ε3

�4
exp

(
−π2

√
ε

�

)
. (19.16)
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This dependence was approximated in the linear impurity case by means of an
invariant manifold approximation (see Sect. 19.2.3).

The interaction of small-amplitude moving solitons with nonlinear impurities
has been briefly considered in [26], where, contrary to (19.15), a nonlinear cubic
impurity was considered:

i u̇n + (1+ αδn,0)|un|2un + ε(un+1 + un−1) = 0. (19.17)

The observed scenario for attractive impurities was the following: for small α,
the soliton is transmitted and, above a threshold value, the soliton is trapped without
reflection. If the impurity is increased, the soliton is totally reflected, and, surpris-
ingly, for relatively high values of α, the soliton is trapped again.

19.4.2 Comparison with Klein–Gordon Breathers

The interaction of moving localized in KG chains (called discrete breathers) with
a point inhomogeneity in the substrate potential was considered in [47, 48]. The
model equation is given by

ün + V ′n(un)+ C(2un − un+1 − un−1) = 0 (19.18)

with V (un) = (1 + αδn,0)(exp(−un) − 1)2/2 being the Morse substrate potential
(for different potentials or kinds of impurities, the reader is referred to [49]). In this
setting, for α > 0 (α < 0) the impurity is repulsive (attractive) contrary to the
DNLS case shown throughout this chapter.

The observed regimes for KG breathers are qualitatively equivalent to those of
DNLS solitons. An important analogy in both settings is the necessary condition
for the trapping; i.e., the energy of the moving localized mode must be higher (in
absolute value) than that of the stationary localized mode centered at the impurity
(with the same frequency of the moving soliton/breather). This result for KG lattices
was established in [47, 48, 50].

It is worth mentioning the study performed in [34] where many existence con-
ditions are established for stationary KG breathers in inhomogeneous lattices based
on a center manifold approach. The latter work also predicted and illustrated gap
breathers, that is breathers whose frequency lies in the gap left in the phonon band
by the linear localized mode when departing from it. These structures, however, do
not exist in DNLS lattices.

19.5 Summary and Future Challenges

In this chapter, the existence and stability of discrete solitons close to a local in-
homogeneity in a 1D DNLS lattice have been studied. A systematic study of the
interaction of a moving discrete soliton with that local inhomogeneity has been
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performed. Finally, a brief comparison of these results with other related settings,
such as DNLS lattices with nonlinear impurities or KG lattices, was given.

Further development of this direction of research could include the considera-
tion of saturable nonlinearities which can describe nonlinear waveguides made of
photorefractive materials. This kind of nonlinearity may enhance the mobility of
solitary waves in isotropic 2D lattices [51], whereas moving solitons only can take
place in anisotropic 2D lattices for cubic lattices [52]. A similar study to that shown
in this section could be done in both settings. Another interesting direction could
be the inclusion of two or more local inhomogeneities and the examination of the
interplay between them.
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Chapter 20
Statistical Mechanics of DNLS

Panayotis G. Kevrekidis

20.1 Introduction

In this section, we focus our attention on the long-time asymptotics of the system,
aiming to understand the dynamics from the viewpoint of statistical mechanics.
The study of the thermalization of the lattice for T ≥ 0 was performed analyt-
ically as well as numerically in [1]. In that work, a regime in phase space was
identified wherein regular statistical mechanics considerations apply, and hence,
thermalization was observed numerically and explored analytically using regular,
grand-canonical, Gibbsian equilibrium measures. However, the nonlinear dynamics
of the problem renders permissible the realization of regimes of phase space which
would formally correspond to “negative temperatures” in the sense of statistical
mechanics. The novel feature of these states was found to be that the energy sponta-
neously localizes in certain lattice sites forming breather-like excitations. Returning
to statistical mechanics, such realizations are not possible (since the Hamiltonian is
unbounded, as is seen by a simple scaling argument similar to the continuum case
studied in [2]) unless the grand-canonical Gibbsian measure is refined to correct for
the unboundedness. This correction was argued in [1] to produce a discontinuity in
the partition function signaling a phase transition which was identified numerically
by the appearance of the intrinsic localized modes (ILMs).

In our presentation below, we first elaborate on the semianalytical calculations
of [1]. We then present direct numerical simulation results, supporting the theoreti-
cally analyzed scenario. We conclude our discussion with a number of more recent
results, including a generalization of the considerations to higher dimensions and/or
nonlinearity exponents, as well as other classes of related nonlinear lattices.
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P.G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation, STMP 232, 369
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20.2 Theoretical Results

To present the analysis of [1], it is convenient to use a slightly modified (yet equiv-
alent, up to rescaling and gauge transformations) form of the DNLS

i u̇n + (un+1 + un−1)+ ν|un|2un = 0. (20.1)

In order to study the statistical mechanics of the system, we calculate the clas-
sical grand-canonical partition function Z . Using the canonical transformation
un =

√
An exp(iφn), the Hamiltonian expressed as

H =
∑

n

[(
u∗nun+1 + unu∗n+1

)+ ν
2
|un|4

]
(20.2)

becomes

H =
∑

n

2
√

An An+1 cos(φn − φn+1)+ ν
2

∑

n

A2
n . (20.3)

The partition function in this setting can be expressed as

Z =
∫ ∞

0

∫ 2π

0

∏

n

dφnd An exp[−β(H + μP)] , (20.4)

where the multiplier μ is analogous to the chemical potential introduced to ensure
conservation of the squared l2 norm P =∑n |un|2. Straightforward integration over
the phase variable φn yields

Z = (2π)N
∫ ∞

0

∏

n

d An I0(2β
√

An An+1)×

exp

[
−β
∑

n

(ν
4

(A2
n + A2

n+1)+ μ
2

(An + An+1)
)]
. (20.5)

This integral can be evaluated exactly in the thermodynamic limit of a large system
(N →∞) using the eigenfunctions and eigenvalues of the transfer integral operator
[3, 4],

∫ ∞

0
d An κ(An, An+1) y(An) = λ y(An+1), (20.6)

where the kernel κ is

κ(x, z) = I0
(
2β
√

xz
)

exp
[
−β

(ν
4

(
x2 + z2)+ μ

2
(x + z)

)]
. (20.7)
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Similar calculations were performed for the statistical mechanics of the φ4 field
[3, 4], and for models of DNA denaturation [5]. The partition function can, thus, be
obtained as Z � (2πλ0)N , as N → ∞ where λ0 is the largest eigenvalue of the
operator. From this expression the usual thermodynamic quantities such as the free
energy, F , or specific heat can be calculated. More importantly, for our purposes, the
averaged energy density, h = 〈H 〉/N , and the average excitation norm, a = 〈P〉/N ,
can be found as

a = − 1

βλ0

�λ0

�μ
, h = − 1

λ0

�λ0

�β
− μa. (20.8)

The average excitation norm a can also be calculated as

a = (1/Z)
∫ ∞

0

∏

n

d An An exp [−β (H + μP)] , (20.9)

where the integral again can be calculated using the transfer integral technique
[3, 4] and yields a = ∫∞

0 y2
0 (A)A d A, where y0 is the normalized eigenfunc-

tion corresponding to the largest eigenvalue λ0 of the kernel κ (Eq. (20.5)). This
shows that p(A) = y2

0 (A) is the probability distribution function (PDF) for the
amplitudes A. Subsequently, λ0, y0 were obtained numerically in [1]. However,
two limits (β → ∞ and β → 0) can also be explored analytically. In particular,
the minimum of the Hamiltonian is realized by a plane wave, un =

√
a exp imπ ,

whose energy density is h = −2a + νa2/2. This relation defines the zero temper-
ature (or the β = ∞) line. For the high temperature limit, β � 1, the modified
Bessel function in the transfer operator can be approximated to leading order, by
unity which, in turn, reduces the remaining eigenvalue problem to the approximate
solution,

y0(A) = 1√
λ0

exp

[
−β

4

(
νA2 + 2μA

)]
. (20.10)

Using this approximation and enforcing the constraint βμ = γ (where γ remains
finite as we take the limits β → 0 and μ → ∞), one can obtain h = ν/γ 2 and
a = 1/γ . Thus, we get h = νa2 at β = 0.

Figure 20.1 depicts (with thick lines) the two parabolas in (a, h)-space corre-
sponding to the T = 0 and T = ∞ limits. Within this region all considerations
of statistical mechanics in the grand-canonical ensemble are applicable and there is
a one-to-one correspondence between (a, h) and (β,μ). Thus, within this range of
parameter space the system thermalizes in accordance with the Gibbsian formalism.
However, the region of the parameter space that is experimentally (numerically)
accessible is actually wider since it is possible to initialize the lattice at any energy
density h and norm density a above the T = 0 line in an infinite system.

A statistical treatment of the remaining domain of parameter space was ac-
complished in [1] by introducing formally negative temperatures. However, the
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Fig. 20.1 From [1]: parameter space (a, h), where the shaded area is inaccessible. The thick lines
represent, respectively, the β = ∞ and β = 0 cases and thus bound the Gibbsian regime. The

dashed line represents the h = 2a+ ν
2

a2 curve along which the reported numerical simulations are

performed (pointed by the symbols). The dotted line shows the locus of points where the chemical
potential vanishes

partition function (20.4) is clearly not suited for that purpose since the constraint
expressed in the grand-canonical form fails to bound the Hamiltonian of Eq. (20.2)
from above. In all the alternative approaches of the study of negative temper-
atures a finite system of size N was thus considered. As suggested in [2] the
grand-canonical ensemble can be realized using the modified partition function
Z ′(β,μ′) = ∫ exp(−β(H+μ′P2))

∏
n dundu∗n, but this introduces long-range cou-

pling and μ′ will have to be of order 1/N . Now β can be negative since H + μ′P2

can be seen to be bounded from above when μ′ < −ν/2N . The important con-
sequence of this explicit modification of the measure is a jump discontinuity in the
partition function, associated with a phase transition. More explicitly, if one starts in
a positive T , thermalizable (in the Gibbsian sense) state in phase space with h > 0,
and continuously varies the norm, then one will, inevitably, encounter the β = 0
parabola. Hence, in order to proceed in a continuous way, a discontinuity has to be
assigned to the chemical potential. This discontinuity will destroy the analyticity
of the partition function as the transition line is crossed, and will indicate a phase
transformation according to standard statistical mechanics.

In order to characterize the dynamics of both phases (above and below the β = 0
line) and to verify that the system relaxes to a thermalized state, numerical exper-
iments were performed in [1]. The parameters (a, h) were restricted to the dashed
line of Fig. 20.1, choosing an appropriate perturbed phonon as initial condition. The
modulational instability of the latter [6] naturally gives rise to localized states. For
these initial conditions, the important question is whether relaxation to equilibrium
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Fig. 20.2 From [1]: probability distribution of A = |ψ |2 for three cases under (and on) the transi-
tion line. The solid lines show the results of simulations and the symbols are given by the transfer
operator. Curves are vertically shifted to facilitate visualization

is really achieved and whether different qualitative behavior is indeed observed on
the two sides of the β = 0 line.

Figure 20.2 shows three typical examples of what can be observed when the
energy-norm density point lies below the β = 0 line (the symbols refer to Fig. 20.1).
Since the initial condition is modulationally unstable, the energy density forms small
localized excitations but their lifetime is not very long and, rapidly, a stationary
distribution of the amplitudes An is reached (Fig. 20.2). Hence an equilibrium state
is reached as predicted by means of the transfer-operator method.

The scenario is found to be very different when the energy and norm densities
are above the β = 0 line. A rapid creation of ILMs due to the modulational in-
stability is again observed and is accompanied by thermalization of the rest of the
lattice. Once created however, these localized excitations remained mostly pinned
and because the internal frequency increased with amplitude their coupling with the
small-amplitude radiation was very small. This introduces a new time scale in the
thermalization process necessitating symplectic integration for as long as 106− 107

time units in order to reach a stationary PDF. This was also qualitatively justified by
the effective long-range interactions, introduced in the modified partition function,
which produce stronger memory effects as one observes regimes in phase space
which are further away from the transition line.

Typical distribution functions of the amplitudes are shown in Fig. 20.3. The pres-
ence of high-amplitude excitations is directly seen here. The positive curvature of
the PDF at small amplitudes clearly indicates that the system evolves in a regime of
negative temperature and the appearance of the phase transformation is signaled in
the dynamics by the appearance of the strongly localized, persistent in the long-time
asymptotics, ILMs.
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Fig. 20.3 From [1]: distribution of A = |ψ |2 for parameters (h, a) above the transition line (trian-
gles and stars as in Fig. 20.1.)

20.3 Recent Results

More recently, the statistical understanding of the formation of localized states and
of the asymptotic dynamics of the DNLS equation has been addressed in the works
of [7, 8].

The analysis of the former paper presented a complementary viewpoint to that of
[1] which attempted for the first time to address the thermodynamics of the states
within the localization regime. Assuming small-amplitude initial conditions, [7] ar-
gued that the phase space of the system can be divided roughly into two weakly
interacting domains, one of which corresponds to the low-amplitude fluctuations
(linear or phonon modes), while the other consists of the large-amplitude, localized
mode nonlinear excitations. A remarkable feature of that work is that based on a
simple partition of the energy H = H< + H> and of the norm P = P< + P>, into
these two broadly (and also somewhat loosely) defined fractions, one smaller than
a critical threshold (denoted by <) and one larger than a critical threshold (denoted
by >); it allows to compute thermodynamic quantities such as the entropy in this
localization regime. In particular, one of the key results of [7] is that for a partition
of K sites with large-amplitude excitations and N − K sites with small-amplitude
ones, it derives an expression for the total entropy (upon computing S<, S>, and
a permutation entropy due to the different potential location of the K and N − K
sites). This expression reads

S = N ln�+ P2
>

2E>
ln	, (20.11)

where � = (4P2
< − E2

<)/(4A<(N − K )) and 	 = 2P<N/P>E<, while K =
P2
>/(2E>). While some somewhat artificial assumptions are needed to arrive at
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the result of Eq. (20.11) [such as the existence of a cutoff amplitude radius R in
phase space], nevertheless, the result provides a transparent physical understand-
ing of the localization process. The contributions to the entropy stem from the
fluctuations [first term in Eq. (20.11)] and from the high-amplitude peaks (sec-
ond term in the equation). However, typically the contribution of the latter in the
entropy is negligible, while they can absorb high amounts of energy. The under-
lying premise is that the system seeks to maximize its entropy by allocating the
ideal amount of energy H< to the fluctuations. Starting from an initial energy H<,
this energy is decreased in favor of localized peaks (which contribute very little
to the entropy). The entropy would then be maximized if eventually a single peak
was formed, absorbing a very large fraction of the energy while consuming very
few particles. Nevertheless, practically, this regime is not reached “experimentally”
(i.e., in the simulations). This is because of the inherent discreteness of the sys-
tem which leads to a pinning effect of large-amplitude excitations which cannot
move (and, hence, cannot eventually merge into a single one) within the lattice.
Secondly, the growth of the individual peaks, as argued in [7], stops when the
entropy gain due to energy transfer to the peaks is balanced by the entropy loss
due to transfer of power. While placing the considerations of [7] in a more rig-
orous setting is a task that remains open for future considerations, this concep-
tual framework offers considerable potential for understanding the (in this case
argued to be infinite, rather than negative, temperature) thermal equilibrium state
of coexisting large-amplitude localized excitations and small-amplitude background
fluctuations.

On the other hand, the work of [8] extended the considerations of the earlier work
of [1] to the generalized DNLS model of the form

i u̇n + (un+1 + un−1)+ |un|2σun = 0. (20.12)

Our analytical considerations presented above are directly applicable in this case as
well, yielding a partition function

Z = (2π)N
∫ ∞

0

∏

n

d An I0(2β
√

An An+1)× (20.13)

exp

[
−β
∑

n

An
(
μ+ Aσn /(σ + 1)

)
]
. (20.14)

This can be again directly evaluated in the high-temperature limit, where the modi-
fied Bessel function is approximated as I0 ≈ 1, as

Z = (2π)N 1

(βμ)N

(
1− β	(σ + 1)

(βμ)σ+1

)
, (20.15)

with 	 denoting the 	 function. As a result, in this case,
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a = 1

βμ
− 	(σ + 1)

μ(βμ)σ+1
(20.16)

h = 	(σ + 1)

(βμ)σ+1
(20.17)

and the relation between the energy density h and the norm density a is generalized
from the σ = 1 limit as

h = 	(σ + 1)aσ+1, (20.18)

encompassing the parabolic dependence of that limit as a special case. It was once
again confirmed in the setting of [8] that crossing this limit of β = 0 results in
the formation of the large-amplitude, persistent few-site excitations. Another inter-
esting observation made in [8] is that in this limit of β = 0, the coupling terms
are inactive, hence, if additional dimension(s) are added to the problem, these do
not affect the nature of the critical curve of Eq. (20.18). In that sense, the role of
the dimensionality is different than the role of σ [with the latter being evident in
Eq. (20.18]. This is to be contradistincted with the situation regarding the excitation
thresholds or the thresholds for collapse, as discussed in Sect. III.2, whereby the
dimensionality d and the exponent σ play an equivalent role, since it is when their
product exceeds a critical value (in particular for dσ ≥ 2) that such phenomena
arise.

Finally, in the work of [8], the connection of these DNLS considerations with
the generally more complicated Klein–Gordon (KG) models was discussed. Much
of the above-mentioned phenomenology, as argued in [7], is critically particu-
lar to NLS-type models, due to the presence of the second conserved quantity,
namely of the l2 norm; this feature is absent in the KG lattices, where typically
only the Hamiltonian is conserved. [8] formalizes the connection of DNLS with
the KG lattices, by using the approximation of the latter via the former through
a Fourier expansion whose coefficients satisfy the DNLS up to controllable cor-
rections. Within this approximation, they connect the conserved quantity of the
KG model to the ones of the DNLS model approximately reconstructing the rel-
evant transition (to formation of localized states) criterion discussed above. How-
ever, in the KG setting this only provides a guideline for the breather forma-
tion process, as the conservation of the norm is no longer a true but merely an
approximate conservation law. This is observed in the dynamical simulations of
[8], where although as the amplitude remains small throughout the lattice the
process is well described by the DNLS formulation, when the breathers of the
KG problem grow, they violate the validity of the DNLS approximation and of
the norm conservation; thus, a description of the asymptotic state and of the
thermodynamics of such lattices requires further elucidation that necessitates a
different approach. This is another interesting and important problem for future
studies.
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Chapter 21
Traveling Solitary Waves in DNLS Equations

Alan R. Champneys, Vassilis M. Rothos and Thomas R.O. Melvin

21.1 Introduction

The existence of localized traveling waves (sometimes called “moving discrete
breathers” or “discrete solitons”) in discrete nonlinear Schrödinger (DNLS) lattices
has shown itself to be a delicate question of fundamental scientific interest (see
e.g [1]). This interest is largely due to the experimental realization of solitons in
discrete media, such as waveguide arrays [2] optically induced photorefractive crys-
tals [3] and Bose–Einstein condensates coupled to an optical lattice trap [4]; see
Chapter 8 for more details. The prototypical equation that emerges to explain the
experimental observations is the DNLS model of the form

i u̇n(t) = un+1(t)− 2un(t)+ un−1(t)

h2
+ F(un+1(t), un(t), un−1(t)), (21.1)

where the integer n ∈ Z labels a 1D array of lattice sites, with spacing h. Alterna-
tively h2 can be thought of as representing the inverse coupling strength between
adjacent sites. The nonlinear term F can take a number of different forms:

DNLS equation

FDNLS = |un|2un,

Ablowitz–Ladik (AL) model [5]

FAL = |un|2(un+1 + un−1),

Salerno model [6]

FS = 2(1− α)FDNLS + αFAL,

A.R. Champneys (B)
Department of Engineering Mathematics, University of Bristol, UK
e-mail: a.r.champneys@bristol.ac.uk

P.G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation, STMP 232, 379
379–399, DOI 10.1007/978-3-540-89199-4 21, c© Springer-Verlag Berlin Heidelberg 2009
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cubic-quintic DNLS

F3−5 = (|un|2 + α|un|4)un,

saturable DNLS

Fsat = un

1+ |un|2 ,

generalized cubic DNLS equation

Fg3 = α1|un|2un + α2|un|2(un+1 + un−1)+ α3u2
n(ūn+1 + ūn−1)

×α4(|un+1|2 + |un−1|2)un + α5(ūn+1un−1 + un+1ūn−1)un

+ α6(u2
n+1 + u2

n−1)ūn + α7un+1un−1ūn

+ α8(|un+1|2un+1 + |un−1|2un−1)+ α9(u2
n+1ūn−1 + u2

n−1ūn+1)

+ α10(|un+1|2un−1 + |un−1|2un+1), (21.2)

where ¯(·) is used to represent complex conjugation. Note that when α1 = 2(1− α2),
α2 ∈ R, and α j = 0 for 3 ≤ j ≤ 10, the nonlinear function Fg3 reduces to the
Salerno nonlinearity FS .

Stationary localized solutions to (21.1) of the form u(n, t) = e−iωt U (n) abound
in such models under quite general hypotheses on the function F , and indeed one
can pass to the continuum limit h → 0, x = nh and find the corresponding solutions
to continuum NLS equations of the form

i u̇ = uxx + f (|u|2)u, (21.3)

for appropriate nonlinear functions f . The continuum model (21.3) possesses
Galilean invariance and so localized solutions can be found that move with a range
of different wavespeeds v, including arbitrarily low speeds v → 0. However, the
corresponding discrete problem (21.1) is such that each stationary localized mode
has its maximum intensity centered on either a lattice site or halfway between two
sites. These site-centered and off-site-centered modes typically have different en-
ergies, leading to a so-called Peierls–Nabarro (PN) energy barrier that, in general,
prevents localized excitations moving with small wavespeeds without shedding ra-
diation. But could localized waves exist at finite wavespeeds?

One negative result in this direction by Gómez–Gardeñes et al. [7] for the Salerno
nonlinearity FS shows that starting from the AL limit α = 1 where the equation
is completely integrable, traveling localized waves acquire nonvanishing tails as
soon as parameters deviate from the integrable limit. Hence exponentially local-
ized fundamental (single humped) localized traveling waves cannot be constructed.
While these results settled a long-standing controversy, see e.g. [8–11], they are also
somewhat unsatisfactory since they do not give conditions under which moving
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discrete breathers might exist for generic, nonintegrable lattices. In fact, follow-
ing [12], we shall show below that there are truly localized traveling waves in the
Salerno model that do not shed radiation, which can be found in continuation from
the AL soliton only by including enough parameters.

Mathematically, the shedding of radiation is due to a large number of resonances
in the spectrum of the linear operator around the localized mode when one moves to
a traveling frame with small wavespeed. To minimize the number of these radiation
modes it is necessary to look for solutions that travel with a finite wavespeed [13],
that is, in an appropriate region of parameter space where the minimum wavespeed
is bounded away from zero. However, posing DNLS equations in a traveling frame
gives rise to differential advance-delay equations which are notoriously hard to
analyze. Progress in this area has been made by developing a Mel’nikov method
around existing solution families [14] or by using a pseudo-spectral method to
transform the advance-delay equation into a large system of algebraic equations
[9, 15]. Alternatively, looking for small-amplitude (but nonzero wavespeed) solu-
tions bifurcating from the rest state involves a beyond-all-order computation of the
so-called Stokes constants [16] which measure the splitting of the stable and un-
stable manifolds [17]. All these methods are reviewed more carefully in Sect. 21.2
below.

The rest of this chapter is outlined as follows: Section 21.2 contains a mathe-
matical formulation of the central problem under investigation. After introduction
of a careful parametrization of possible localized traveling waves, Sect. 21.2.1 goes
on to show how to pose the resulting advance-delay equation as a spatial dynami-
cal system. Study of the linear part of this system leads to an argument that finite
wavespeeds are required in order to find truly localized traveling waves in a persis-
tent way. Sections 21.2.2 and 21.2.3 then show how to apply center-manifold and
normal-form techniques to this dynamical system near a special zero-dispersion
point. This leads in Sects. 21.2.4 and 21.2.5 to a brief discussion of more techni-
cal results based on Mel’nikov methods near the zero-point and Stokes constant
elsewhere in parameter space. The section ends with a brief discussion of how
pseudospectral methods can be used to transform the advance-delay equation into
a large system of algebraic equations suitable for a numerical path-following in-
vestigation. Section 21.3 reviews results from the literature that were obtained us-
ing the array of mathematical methods introduced in Sect. 21.2. The results are
presented for three particular nonlinearities; saturable Fsat, Salerno FS , and the
generalized cubic Fg3. Finally, Sect. 21.4 draws conclusions and points to open
questions.

21.2 Mathematical Formulation

We address here the existence of traveling wave solutions to (21.1) in which we set
h = 1 without loss of generality, subsuming this parameter into the form of F . That
is, we seek solutions in the form
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un(t) = φ(z)e−iβn−iωt , z = n − vt, (21.4)

where ω, v, and β are real-valued parameters, while z ∈ R, φ ∈ C, and
lim|z|→∞ φ(z) = 0. Only two parameters (ω and v) are truly independent, since
the term e−iβn can be included in the definition of φ(z). A number of methods can
be used to normalize the parameter β uniquely. For example, one can require [1]
that the exponential decay of φ(z) be real-valued: lim|z|→∞ eκ |z|φ(z) = φ∞, where
κ ∈ R and φ∞ ∈ C. The tail analysis of the traveling wave solutions (21.4) shows
that parameters β and κ are uniquely defined in terms of ω and v. In particular, as
we shall see, the traveling wave solutions (21.4) are exponentially decaying, if they
exist, only if ω and v lie inside the region K represented by the white region in
Fig. 21.2 below.

21.2.1 Spatial Dynamics Formulation

Let 	 = l2(Z; C ) denote the Hilbert space of all square-summable bi-infinite
complex-valued sequences; for any u, v ∈ 	 and λ ∈ C we denote by λu, u, |u|, uv
and u + v the sequences (λun)n∈Z, (un)n∈Z, (|un|)n∈Z, (unvn)n∈Z, and (un + vn)n∈Z,
respectively. As usual, the norm of u ∈ 	 is represented by ‖u‖.

The ansatz (21.4) for traveling wave solutions reduces the discrete NLS equation
(21.1) to a differential advance-delay equation of the form:

− ivφ′(z) = φ+e−iβ + φ−eiβ − (2+ ω)φ + ε2 F
(
φ, φ+e−iβ, φ−eiβ

)
, (21.5)

where φ±(z) = φ(z ± 1) and we have rescaled the equation so that a parameter ε2

appears in front of the nonlinearity.
First, consider the linear properties of the Eq. (21.5). The dispersion curve

ω = ω(k) = −vk + 2 (cos(β − k)− 1) (21.6)

is shown on Fig. 21.1 for (a) v = 0 and (b) v = 0.5, when β = 0. The wave
spectrum resides on the segment ω ∈ [−4, 0] in the case v = 0 and on the line
ω ∈ R in the case v 
= 0. As a result, traveling wave solutions with v 
= 0 must have
resonances with the wave spectrum.

Bifurcation of small-amplitude traveling wave solutions may occur from quadra-
tic points of the dispersion relation ω = ω(k), when the double root k = 0 for
the Fourier mode splits into two imaginary values k = ±iκ for the exponentially
decaying tails. In parameter space (ω, v), this could imply that the bifurcation occurs
at points for which κ = 0 into the parameter region, K, say, represented by κ > 0.
From (21.6) we find that there is a one-to-one mapping between (ω, v) and (κ, β) in
such a parameter region:

ω = 2 cosβ cosh κ − 2, v = 2 sinβ sinh κ

κ
. (21.7)
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If other roots k = kn are present for the same values of ω and v, this bifurcation
becomes complicated by the fact that the resonant Fourier modes with k = kn coex-
ist with the tail solution as |z| → ∞. Such modes would represent small-amplitude
radiation modes or phonons which would typically lead to the collapse of any lo-
calized solutions. The region K is given by the exterior of the gray wedge-shaped
region in Fig. 21.2. The region where additional Fourier modes exist within K is
given by the dark shaded region. Note that the set of points at which small-amplitude
bifurcation might occur is thus the boundary of the gray wedge (corresponding to
κ = 0) which can be parametrized by β lying between the two depicted values β0

and β1.
For general points κ = 0, a normal form can be derived that governs the small

amplitude behavior. However, one finds that this normal form is integrable to all
powers of ε, such that persistence or nonpersistence of traveling wave solutions can

Fig. 21.2 The bifurcation
curve κ = 0 is represented in
the (ω, v)-plane for ε = 1 as
the boundary of the gray
wedge-shaped region.
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differential advance-delay
equation (21.5) may bifurcate
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only be studied by analyzing exponentially small in ε, beyond-all-orders correction
terms. However, for the special point pK: (ω, v) = (2, 2), which corresponds to
β = π/2, the persistence problem can be studied at third order in ε, by deriving
a (generically) nonintegrable polynomial normal form that can be analyzed using
regular asymptotics, as we shall show in Sect. 21.2.2 below. Before doing so, it is
helpful to introduce a bit more notation.

Instead of treating the system (21.5) directly, following Pelinovsky and Rothos
[18] we shall adopt a “spatial dynamics” point of view by rewriting (21.5) as an
(infinite–dimensional) evolution problem in the spatial coordinate z. For this pur-
pose we introduce the new coordinate p ∈ [−1, 1] and the vector u = u(z, p) =
(u1, u2, u3, u4)T defined by u1 = φ(z), u2 = φ(z + p), u3 = φ̄(z), u4 = φ̄(z + p),
which we assume to lie within the Banach space

D =
{

u ∈ C
4, u ∈ C1(R, [−1, 1]) : u2(z, 0) = u1(z), u4(z, 0) = u3(z)

}
.

We use the notation δ±1 to represent the difference operators δ±1u(z, p) = u(z,±1).
Within this formulation, the differential advance-delay equation (21.5) can be writ-
ten in vector form as

− ivJ du
dz
= Lu+ ε2M(u), (21.8)

where J = diag(1, 1,−1,−1),

L =

⎛

⎜⎜⎜⎜⎜⎜⎝

−(2+ ω) e−iβδ+1 + eiβδ−1 0 0

0 −iv
�

� p
0 0

0 0 −(2+ ω) eiβδ+1 + e−iβδ−1

0 0 0 iv
�

� p

⎞

⎟⎟⎟⎟⎟⎟⎠
, (21.9)

is the linear operator that maps D into H =
{

F ∈ C
4, F ∈ C0(R, [−1, 1])

}
contin-

uously, where δ±1u(z, p) = u(z,±1), and the nonlinear operator

M = (F(u1, e−iβδ+1u2, eiβδ−1u2), 0, F̄(u3, eiβδ+1u4, e−iβδ−1u4), 0)T .

In this spatial dynamics context, we can look at the dispersion relation in a dif-
ferent way. Roots of the dispersion relation

D(p; κ, β) ≡ cosβ(cosh p − cosh κ)+ i sin β

(
sinh p − sinh κ

κ
p

)
= 0,

correspond to eigenvalues of the linearized dynamical system. Using the theory
of embedded solitons [19] a condition to find isolated branches of truly localized
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solutions inside K is that there should only be one pair of pure imaginary eigen-
values; see Fig. 21.3. This leads to exactly the white region in Fig. 21.2, because
we can interpret the multiple roots of the dispersion curves as where the number of
pairs of imaginary eigenvalues of the spatial dynamical system increases.

21.2.2 Center Manifold Reduction

The technique of analyzing small-amplitude bifurcation of localized solutions near
the special point pK is to use a reduction of the infinite-dimensional dynamical
system (21.8) to a low-dimensional system. The technique is similar to how one
analyzes bifurcations in finite dimensions, where one considers the problem reduced
to the center manifold that is tangent to the central eigenspace (that is, the gener-
alized eigenspace containing all eigenvalues with zero real part). At pK, the center
eigenspace of the system (21.8) includes only the zero eigenvalue λ = 0, but this
has algebraic multiplicity six and geometric multiplicity two. The two eigenvectors
of the kernel of L are u0 = (1, 1, 0, 0)T ,w0 = (0, 0, 1, 1)T and the four eigen-
vectors of the generalized kerL are u1 = (0, p, 0, 0)T ,w1 = (0, 0, 0, p)T ,u2 =
1
2 (0, p2, 0, 0)T ,w2 = 1

2 (0, 0, 0, p2)T . Near pK, it is natural to rescale parameters so
that

ω = 2+ ε2�, v = 2+ ε2V . (21.10)

With this rescaling, the nonlinear problem (21.8) takes the explicit form
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− 2iJ du
dz
= L0u+ ε2N (u), (21.11)

where the operator L0 = L(pK, β = π/2) and the perturbation vector N (u) is given
explicitly as N =M(pK, β = π/2)+M1 where

M1 = (−�u1 + i V u′1, i V (�zu2 − �pu2),−�u3 − i V u′3,−i V (�zu4 − �pu4) )T .

To form a reduced problem on the center manifold, we apply the decomposition

u(z) = uc(z)+ ε2uh(z), (21.12)

where

uc(z) = A(z)u0 + B(z)u1 + C(z)u2 + Ā(z)w0 + B̄(z)w1 + C̄(z)w2

is the projection onto the center eigenspace and uh(z) is the projection onto the space
spanned by the rest of the spectrum of the operator L0:

− 2iJ duh

dz
− L0uh = Fh ≡ 1

ε2

[
2iJ duc

dz
+ L0uc

]
+N (uc + ε2uh). (21.13)

Here, the function Fh can be assumed to act on a certain function space of vectors
u that decay exponentially quickly as |z| → ∞. Within this function space it can
be shown that there exists a continuous map Aε such that uh = Aεuc, see [18] for
details. That is, there is a one-to-one correspondence between localized solutions uc

in the center manifold and solutions to the full system. The reduced system on the
center manifold can then be written in the form [18]

d

dz

(
x
x̄

)
= Lc

(
x
x̄

)
+ ε2

(
R(x)

R̄(x)

)
+ O

(
ε2‖g‖ + ε2‖uh‖

)
, (21.14)

where x = (A, B,C)T ∈ C
3, the vector function R : C

3 �→ C
3 is given by

R(x) = 3i

(
1

20
, 0,−1

)T

(g(A, B,C)−�A + i V B) (21.15)

and

gDNLS = |A|2 A, gAL = −2i |A|2B, gsat = A/(1+ |A|2) (21.16)

and the linear operator Lc corresponds to the central part of the operator L0 spanned
by the 6D generalized eigenspace of the zero eigenvalue.



21 Traveling Solitary Waves in DNLS Equations 387

21.2.3 Normal Form Equations Near the Zero-Dispersion Point

Equation (21.14) for the center manifold reduction can be further reduced by using
near-identity transformations of the form

x = ξ + ε2�(ξ ), (21.17)

where �: C
3 �→ C

3 contains strictly nonlinear terms that are designed to remove
the nonresonant terms in the center manifold equations. The resulting normal form
equations take the form

d

dz

(
ξ

ξ̄

)
= Lc

(
ξ

ξ̄

)
+ ε2

(
P(ξ )

P̄(ξ )

)
, (21.18)

where the nonlinear vector function P : C
3 �→ C

3 contains only the essential reso-
nant terms. That is,

DP(ξ )L∗cξ = L∗c P(ξ ), (21.19)

where L∗c is the adjoint operator and D is the Jacobian derivative. Introducing ξ =
(a, b, c)T , the normal-form so obtained can be written in the form [18]

da

dz
= b + iaP1

(|a|2, I, J, ε2) , (21.20)

db

dz
= ibP2

(|a|2, I, J, ε2)+Q1(a, b, c), (21.21)

dc

dz
= icP3(|a|2, I, J, ε2)+Q2(a, b, c), (21.22)

where I = ab̄− āb, J = ac̄− āc and P1,P2,P3,Q1,Q2 are polynomial functions
of their arguments.

Now, a key observation made in [18] is that the analysis of solutions to (21.20),
(21.22) and (21.22) is greatly simplified by introducing a further transformation of
variables and parameters in order to write the system as a single third-order equation
for a complex scalar �. Specifically, one obtains an equation of the form

i

3ε2
�′′′ − i V �′ +�� = h(�,�′,�′′,�′′′)+ O(4), (21.23)

where h contains pure cubic terms and O(4) represents terms that are fourth-order
or higher in � or its derivatives. Now, the third-order differential equation (21.23)
is equivalent to the traveling-wave equation for the so-called third-order nonlinear
Schrödinger equation that has been studied by a number of authors, e.g., [20, 21]. In
particular, there is a localized embedded soliton solution of this equation provided
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certain conditions on the nonlinear term h are satisfied, most importantly that there
should be a zero coefficient of the term |�|2�.

To determine whether localized solutions bifurcate for a particular lattice equa-
tion (21.1), one therefore has to carry out the center manifold reduction and near-
identity (21.17) to compute the specific coefficients of the nonlinear terms in h.
Specifically, in [18] it was found for the DNLS and AL equations that

hDNLS = |�|2�+ 1

140

(
6|�|2�′′ − 2�2�̄′′ + (�′)2 �̄− 3|�′|2�

)
, (21.24)

hAL = −2i |�|2�′ + i

100

(
4��′′�̄′−2��′�̄′′−2�′�′′�̄+|�|2�′′′−�2�̄′′′

)
. (21.25)

This therefore proves the existence of a continuous (two-parameter) family of
single-humped traveling wave solutions in the third-order derivative NLS equation,
when it is derived from the integrable AL nonlinearity FAL . Whereas there are no
single-humped solutions in the third-order derivative NLS equation when it is de-
rived from the usual cubic DNLS nonlinearity FDN L S with pure on-site interactions.

More generally, for the generalized cubic nonlinearity Fg3 Pelinovsky [22] de-
rived the condition

α1 + 2α4 − 2α5 − 2α6 + α7 = 0. (21.26)

on the parametersαi in order for the |�|2� term to vanish in the normal form nonlin-
earity h. Under this constraint then, it can be proved rigorously that the generalized
DNLS equation supports a branch of single-humped traveling waves that bifurcates
into K from the special point pK.

21.2.4 Mel’nikov Calculations for Generalized Cubic DNLS

Furthermore, if (21.26) holds, α2 + 2α8 − 2α9 
= 0 and

either α3 − α8 − α9 + α10 = 0 or α2 + 3α3 − α8 − 5α9 + 3α10 = 0, (21.27)

the relevant third-order ordinary differential equation (21.23) can be shown to re-
duce to the integrable Hirota or Sasa–Satsuma equations respectively (see [22])
which admit two-parameter families of traveling solutions in (κ, β). Note that the
Hirota family includes the AL case where α2 = 1 and αi = 0 for all i 
= 1. In
all these cases, one has therefore localized solutions throughout an open parameter
region within K. But these integrable cases are somewhat special, because, since
the center manifold for parameter values within K is 2D, then one should gener-
ically expect localized solutions, if they occur at all, to exist along curves in the
(κ, β)-plane.
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A starting point to find such curves is the observation in [22] that if

(α2, α3) ∈ R
2, with α2 > α3, and α j = 0, for j = 1 and j = 4 . . .10,

(21.28)
then the explicit solution

�(Z ) = sinh κ√
α2 − α3

sech (κZ ) (21.29)

solves the differential advance-delay Eq. (21.5) exactly for κ > 0 and β = π/2. A
natural question to ask then is the persistence of this explicit solution as one adds
nonlinear terms that break the constraint (21.28). Pelinovsky et al. [14] studied this
question using Mel’nikov theory. That is, one computes the splitting distance be-
tween the stable and unstable manifolds of the origin as one adds the additional non-
linear terms as perturbations. Intuitively, provided the constraint (21.28) is satisfied,
then one should expect that a curve in the (κ, β)-plane persists. The key to Mel’nikov
theory is to study the linearized variational equations evaluated around the explicit
solution. The splitting distance is then projected onto the space of bounded solutions
of these variational equations.

Without going into the details here, a study of the form of the variational equa-
tions shows that there are two cases. If α1 = 0 and α4 = α6 and α7 = 2α5 [which we
note automatically satisfies the constraint (21.26)], then a localized solution contin-
ues to exist exactly along the straight line β = π/2. If these additional constraints
are not met, the curve of parameter values along which a localized solution exists
shifts to a local neighborhood of this line.

The linear variational equations around the exact solution are also precisely what
is required to understand the temporal stability of the localized solutions when
launched as initial conditions to the initial-value problem. Approximate arguments
in [14] indicate that localized modes should be stable, just as the corresponding
solitons are to the third-order NLS equation [19].

21.2.5 Beyond-All-Orders Asymptotic Computation

It is also possible for solutions to bifurcate from κ = 0 for β 
= π/2. In this case
it can be shown that the normal form one can derive describes the bifurcation of a
saddle-center equilibrium from a pure center in a reversible system. This problem
has been studied by many authors, see for example, the book [23] and it is well
known that the integrable normal form does not provide the leading-order expres-
sion to the Mel’nikov integral. In general, solutions that persist into κ > 0 for some
β-value 
= π/2 have nonvanishing tails that are exponentially small in κ . Thus, the
question of the persistence of the localized solution to the normal form becomes a
question that can only be answered by considering the beyond-all-orders terms in
the normal form expansion.
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The technique of beyond-all-orders asymptotic expansions for problems of this
type was developed by Tovbis et al. [16] and first applied to DNLS equations by
Oxtoby and Barashenkov [17]. One seeks a solution as a regular series solution to
(21.5), in which the radiation tail appears only beyond all orders of the asymptotic
expansion in powers of κ . By analyzing the outer expansion near a singularity in
the complex z plane and by rescaling dependent and independent variables with a
blow-up technique [16], the amplitude of the radiation tail can be measured at the
leading-order approximation. This in turn leads to a recurrence relation to determine
the splitting between the stable and unstable manifolds of the saddle-center point.
This splitting is known as a Stokes constant, and a zero of this constant implies the
true persistence of a single-humped localized solution.

21.2.6 Numerical Continuation Using Pseudospectral Methods

Localized solutions to the advance-delay equation (21.5) can easily be sought nu-
merically using a pseudospectral method originally proposed by Eilbeck et al.
[9, 15]; see also [24, 25] for similar results for discrete sine-Gordon lattices. The
pseudospectral method is tantamount to making a truncated Fourier series expan-
sion of solutions φ(z) to (21.5) on a long finite interval [−L/2, L/2]. A particular
choice of expansion terms can be made that exploits the underlying symmetry of
the localized solutions we seek, namely by choosing even real functions and odd
imaginary functions

φ(z) =
N∑

j=1

a j cos

(
π j z

L

)
+ ib j sin

(
π j z

L

)
, (21.30)

where a j , b j ∈ R are the coefficients of the Fourier series. Substituting the expan-
sion (21.30) in (21.5) at the series of collocation points

zi = Li

2(N + 1)
, i = 1, . . . , 2N

gives a system of 2N nonlinear algebraic equations for the unknown coefficients
a j , b j , which can be solved using globally convergent root-finding methods (for
example, the Powell hybrid method [26]). Once a solution is found, this can be con-
tinued in a single parameter using a numerical path-following scheme built around
Newton’s method, for example, the code AUTO [27].

The solutions found using the pseudospectral approximation will generally be
weakly nonlocal solitary waves that exhibit nonzero oscillatory tails. To find waves
with zero tails we need to add an extra condition – a signed measure of the amplitude
of the tail – and seek zeros of this function. Given the symmetry assumed by the
expansion (21.30), a good choice of such a tail function is
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� = Im

(
φ

(
L

2

))
, (21.31)

which measures the amplitude of the imaginary part of the tail of a solution of
period L. To see why this is a good choice, it is helpful to regard the numerical
solutions to (21.5) as being made up of two parts: an exponentially localized core
and a nonvanishing oscillatory background. At a sufficient distance from the center
of the soliton the core part will be zero due to its exponential localization. Because
of the way φ(z) has been approximated in (21.30), we know that the real part of φ(z)
is odd around z = L/2 and the imaginary part is even. Moreover, within parameter
region K, where there is only one phonon branch, a small amplitude tail will be
purely sinusoidal. Therefore (21.31) is a pure measure of the amplitude of the tail.

Figure 21.4 shows results from Melvin et al. [28] on computation of various
branches of solutions to (21.5) for the saturable nonlinearity Fsat with varying dis-
creteness parameter

ε = 1/
√
ε,

while keeping other parameters fixed. Note that zeros of � are indeed found to
be values at which the tail vanishes to numerical accuracy. Moreover, since � is
a signed measure of the tail amplitude, we can note a topological distinction be-
tween branches of the nonzero tail solutions that do contain a zero (they are u- or n-
shaped in the figure) compared with those that do contain a zero (they are s-shaped).
Hence we can assert with confidence that we have found true zeros. Moreover, since
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Fig. 21.4 Reprinted from [28] with permission. (a) Continuation of weakly localized solutions
(with nonzero oscillatory tails) to (21.5) for the saturable nonlinearity Fsat against ε = 1/

√
ε for

v = 0.7, ω = −0.5 and L = 60 showing three zeros of � at ε ≈ 0.76, 1.02, 1.36. The shaded
region represents the spectral band where any embedded solitons would be of co-dimension 2.
(b, c) Continuation of branch with second zero of � at ε ≈ 1.02. for c = 0.7,� = 0.5, L = 60.
(b) Re(φ), (c) Im(φ)
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solution branches that contain truly localized solutions cross the � axis transversely,
the condition � = 0 can be added to the list of algebraic equations and another pa-
rameter freed. In so doing, we can use path-following to trace branches of localized
solutions in two parameters, for example, in the (ω, v)-plane.

21.3 Applications

21.3.1 Saturable DNLS

Melvin et al. [13, 28] considered localized modes in the DNLS model (21.1) with
the saturable nonlinearity Fsat by continuation of zeros of � defined in (21.31).
Figure 21.5 shows several solution branches. Note that the numerics becomes un-
reliable in Fig. 21.5 at the upper end of the branch labeled I, because it terminates
by reaching the small-amplitude limit. Here, beyond-all-orders asymptotics applies
and the function � in Fig. 21.4 becomes remarkably flat, so that zeros cannot be
detected accurately. However this is precisely the realm where bifurcation can be
predicted by zeros of the Stokes constant. Such an isolated zero in this model was
found by Oxtoby and Barashenkov [17].

Note the open circles for zero wavespeed in Fig. 21.5. These correspond to where
a generalized PN barrier [13] between the on-site and off-site stationary solutions
precisely vanishes. It has been conjectured that these would be “transparent points”
where localized traveling waves form. However, the computations show that this
is not the case. Each branch in some sense “points” to one of these transparent
points, but it terminates when it hits the “multi-phonon band” where there are extra
branches of linear waves. Numerically, in this region we find that all approximately
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Fig. 21.5 Reprinted from [28] with permission. (a) Continuation of the three solitary wave
branches found in Fig. 21.4 with varying � = 1 − ω/2 and v for fixed ε = 1, and four other
branches. Open circles for v = 0 correspond to points where the generalized PN barrier van-
ishes (see text for details.) (b) Amplitude of solutions φ(z = 0) along these seven continuation
branches
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Fig. 21.6 Reprinted from
[28] with permission.
Interaction of two soliton
solutions with ε = 1 and
� = 1− ω/2 = 0.5. The
branch I soliton is initially
centered on site n = 300 with
v = 1.00926 and the branch
II soliton is centered on site
n = 400 with v = 0.67725

localized solutions to the advance-delay equation (21.5) generate nonzero oscilla-
tory or quasi-periodic tails. In some sense, then these multiphonon bands form an
alternative to the PN barrier that prevents any low wavespeed localized waves.

Spectral computations in [28] suggest that the localized waves presented in
Fig. 21.4 are temporally stable. These results are backed up by simulation results. If
one provides a strong perturbation then radiation is shed for a finite time, as the wave
relaxes to a new solution on the same branch, with a different internal frequency ω
and speed v. Small internal oscillations of the core of the soliton may remain for
long times, but radiation does not appear to be continuously shed and the resulting
localized wave persists for a long time. The results of Fig. 21.6 show that these
coherent structures can even survive collision with one another.

21.3.2 Generalized Cubic DNLS

The Mel’nikov analysis for the generalized cubic nonlinearity Fg3 as mentioned in
Sect. 21.2.4 was backed up by using the pseudospectral continuation method by
Pelinovsky et al. [14]. The results are reproduced here in Figs. 21.7 and 21.8. The
coefficients αi were chosen to satisfy

α1 = 2α4 = 2α5 = 2α6, α7 = α9 = 0, α10 = α8, (21.32)

subject to the normalization

α2 + α3 + 4α6 + 2α8 = 1.

The conditions (21.32) were shown in [22, 29] to lead to a precise vanishing of
the PN barrier. That is, stationary solutions exist that are translational invariant,
or alternatively a continuous family of waves exists that interpolates between the
site-centered and the off-site-centered localized modes. Nevertheless, as we have
already argued, localized waves with infinitesimal speed cannot occur due to the
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the localized solution. Reprinted from [14] with permission
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Fig. 21.8 Persistence of solutions for (α3, α8) = (−1, 1) as κ is varied on the (β, κ)-plane
(left) and on the (v, ω)-plane (right). Different curves correspond to different values of α6 =
0.5, 0.25, 0,−0.5,−1,−1.5,−2 from left to right on the left panel and from top to bottom on
the right panel. The shaded area in the right panel indicates the boundary of the existence domain
at κ = 0 and β ∈ [0, π]. Reprinted from [14] with permission

multiphonon bands. Instead, given the constraint (21.26) we get a regular bifurcation
of small-amplitude localized waves from the point pK at wavespeed v = 2.

The results of the numerical continuation for varying β and κ are shown in
Figs. 21.7 and 21.8, for different groups of the parameters αi . In the former figure,
we see that the solitary traveling waves persist precisely along the curve β = π/2,
whereas in the latter they persist along a curve for which β varies. This is precisely
as predicted by the theory outlined in Sect. 21.2.4.
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computed via calculation of (a) the Stokes constant K (α; β) (κ = 0) and (b) the radiation
tail amplitude � (κ = 0.5). A number of points where localized waves exist are found, at
β ≈ 2.182, 2.237, 2.308, and 2.48 using the Stokes constant method and at β ≈ 1.834, 2.34
from measuring the radiation tail amplitude (indicated by dots)

21.3.3 The Salerno Model

In [12], Melvin et al. considered a combination of Stokes constant computation
and numerical continuation to explore the existence of localized solitary waves in
the Salerno model (21.1) with F = FS as the three parameters, α, β, and κ vary.
Figure 21.9 shows the correspondence between zeros of the Stokes constant K (α;β),
where there are four distinct zeros for κ = 0, and zeros of the numerical tail co-
efficient �, where there are two zeros for κ = 0.5, in the case α = 0.65. The
discrepancy in the number of zeros between the Stokes constant calculations and
the pseudospectral computations is due to the fact that some of zeros of K (α;β)
move to the domain β > β1 ≈ 13π/14 for nonzero values of κ and hence do not
generate bifurcations of nontrivial zeros of �.

We would expect the zeros of � to approach the zeros of K (α;β) as κ is reduced
toward zero. However, as we have already noted, continuation into the beyond-all-
orders limit κ → 0 is problematic. It is a much easier task to compute curves � = 0
for a fixed nonzero value of κ in the (α, β)-plane, the results of which are depicted
as dashed curves in the left panel of Fig. 21.10. All curves for finite κ have a fold
point at the maximum value of α for some value of β < π/2, which approaches the
point (α, β) = (1, π/2) as κ → 0. For β less than this fold point the solutions split
into multiple-humped solutions as shown in panel (b). Also plotted as solid lines in
the figure are lines corresponding to four zeros of the Stokes constant K (α;β) which
can each be seen to approach the point (α, β) = (1, π/2). In results not shown here,
the dashed curves corresponding to zeros of � are found to approach these solid
lines for β > π/2 as κ becomes smaller.

These numerical results can be summarized in the topological sketch in Fig. 21.11.
When κ = 0, only the single-humped solutions for β > π/2 and α > 0.5 exist,
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Fig. 21.11 (a) Existence sketch of the first four “sheets” of solutions in (κ, 1 − α, β)-parameter
space. (b)–(i) Profiles of solutions from different sheets showing single-humped solutions (b)–(e)
for the upper surfaces and multihump solutions (f)–(i) on the lower surface. Shadings on plots
(b)–(i) match the solution sheet they originate from as shown in Fig. 21.10

corresponding to the upper parts of each solution sheet, but as soon as κ is nonzero,
extra branches of multihumped solutions for β < π/2 form, corresponding to the
lower parts of the sheets. For κ > 0, the fold point joining these two branches
moves in the negative α direction in the (α, β)-plane, such that the only place the
sheet of solutions approaches the point of the integrable AL model (α = 1) is at the
co-dimension-three point κ = 0, β = π/2. Behind the sheet of solutions shown,
in the negative α direction, a number of other solution sheets exist, and one might
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conjecture that there are indeed infinitely many such sheets. Further numerical inte-
gration results presented in [12] suggest that the single-humped solutions are stable
as solutions to the initial-value problem, whereas perturbed multi-humped solutions
continuously shed radiation and decay.

21.4 Conclusion

In this chapter we have illustrated that localized waves in 1D DNLS lattices can-
not in general move without shedding radiation. However, for finite wavespeeds
one might expect to find one-parameter families of these waves, such that isolated
values of the internal frequency ω are selected for each wavespeed v. It seems
though that certain extra ingredients are required. First, the wavespeed should be
sufficiently high that we are in the “embedded soliton” parameter region where there
is only one branch of the linear dispersion relation. Second, it seems necessary to
have some kind of competing nonlinearity. It would seem that, despite previous
suggestive numerical results [9], there are no truly localized traveling waves for
the pure DNLS equation nonlinearity FDNLS. But the saturable nonlinearity Fsat

when expanded as a Taylor series has a competition between cubic, quintic, septic,
etc., terms, and this leads to the large (possibly infinite) number of branches of
localized waves, the first seven of which are reported in Fig. 21.5. The vanishing
of a generalized PN barrier seems to act as an indication of the existence of such
branches, although they cannot actually exist for small wavespeeds due to the dif-
ferent “barrier” caused by the presence of infinitely many phonon bands in the limit
v→ 0. Preliminary computations suggest that there is just one such vanishing point
and consequent localized branch for the case of a mere cubic-quintic nonlinearity
F3−5.

We have also shown how it is sometimes possible to use local bifurcation theory
to predict small-amplitude persistence of the localized waves, for nonzero velocity,
but only close to the special point pK. Furthermore we require special relations to
hold between the parameters in the nonlinear terms, such as for the AL lattice with
F = FAL and for the more general cubic nonlinearity Fg3 under the constraint
(21.26). Otherwise, to find small-amplitude traveling waves requires beyond-all-
orders asymptotic analysis.

A particular difficulty that is not present for the continuous NLS equations when
trying to find localized traveling waves is that moving to a traveling frame results in
an advance-delay equation, which has an infinite-dimensional spectrum and cannot
be solved as an initial-value problem. Nevertheless, pseudospectral methods are well
suited to the numerical detection and continuation of the parameter values at which
the localized waves exist.

There are many open questions that remain. First, largely speaking, we have not
dealt with the issue of stability of the localized traveling waves computed. Neverthe-
less, in several results reviewed here there is strong numerical evidence to suggest
the orbital stability of at least single-humped versions of these waves. A rigorous
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theory of stability remains to be developed. Second, it would be interesting to see
whether these localized traveling waves are experimentally realizable (perhaps in
one of the experimental realizations of DNLS equations reviewed in Chapter 8).
Also, whether truly localized traveling breathers can occur in FPU-type lattices (see,
e.g., [30]) is a much more challenging question than that addressed here. In such
lattices, the envelope of the excitation sits on a temporally periodic state that is not
a result of the trivial rotational symmetry as it is for DNLS-type lattices. Finally,
a huge challenge is to seek analog of localized traveling states in more general
lattices perhaps in two or three spatial dimensions and with different coupling
topologies.
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Chapter 22
Decay and Strichartz Estimates for DNLS

Atanas Stefanov

22.1 Introduction

In the study of the continuous Schrödinger equation

i�tu(t, x) = �u + F(t, x), (t, x) ∈ R1 ×Rd , (22.1)

one deals with a time-evolution problem, which does not improve smoothness with
time. This simple but very fundamental observation (in sharp contrast with the better
behaved parabolic evolution) has necessitated radically different approaches to the
standard questions of local and global well-posedness, persistence of smoothness,
stability of localized structures, etc. Indeed, tackling these questions took some time,
and in fact the first rigorous mathematical results did not appear until the late 1970s.
Let us explain some of the ingredients that were crucial for understanding these
issues. First, for F = 0 in (22.1), we have the representation

u(t, x) = eit�u0 := 1

(4π i t)d/2

∫

Rd

ei|x−y|2/(4t)u0(y)dy.

From that, we immediately get ‖u(t, ·)‖L∞x ≤ (4π t)−d/2‖u0‖L1
x
. That is, the L∞

norm of the solution decays at the rate of t−d/2. Since we have conservation of
charge ‖u(t, ·)‖L2 = ‖u0‖L2 , it follows that the Schrödinger evolution “spreads” the
conserved energy around as time goes by.1 In a surprisingly easy way,2 one can show
that the L1 → L∞ decay and the L2 conservation imply the so-called Strichartz
estimates. Before we state them precisely, we introduce the mixed Lebesgue spaces
with norm

A. Stefanov (B)
The University of Kansas, Lawrence, KS, USA
e-mail: stefanov@math.ku.edu

1 This is sometimes expressed as “the uncertainty of the system increases as time goes by.”
2 But this was not realized until the seminal work of Ginibre and Velo [1]. The work of
Strichartz was about estimating the Fourier restriction operator to cones and paraboloid, which
after dualization argument implies the Strichartz estimates for q = r only, see Theorem 1.

P.G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation, STMP 232, 401
401–412, DOI 10.1007/978-3-540-89199-4 22, c© Springer-Verlag Berlin Heidelberg 2009
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‖ f ‖Lq
t Lr

x
:=
(∫ ∞

0

(∫

Rd
| f (t, x)|rdx

)q/r

dt

)1/q

.

The following theorem has been proved by many people in different situations, but
the main names that stand out are those of Strichartz [2], Ginibre-Velo [1], and
Keel-Tao [3].

Theorem 1. Let both (q, r ) and (q̃, r̃ ) be Strichartz pairs, that is, q, r ≥ 2, 2/q +
d/r = d/2, and (q, r, d) 
= (2,∞, 2). Then

‖eit� f ‖Lq
t Lr

x
≤ C‖ f ‖L2 (22.2)

∥∥∥∥
∫

e−it� F(t, ·)dt

∥∥∥∥
L2

≤ C‖F‖
Lq′

t Lr′
x
. (22.3)

∥∥∥∥
∫ t

0
ei(t−s)� F(s, ·)ds

∥∥∥∥
L2

≤ C‖F‖
Lq̃′

t Lr̃′
x
,

where we use the notation q ′ = q/(q − 1). Equivalently, for the solution of (22.1),

‖u‖Lq Lr ≤ C
(
‖u(0)‖L2 + ‖F‖

Lq̃′
t Lr̃′

x

)
.

Moreover the range of the exponents in (22.2) and (22.3) is sharp.

Theorem 1 was instrumental in understanding the local and global behavior of con-
tinuous nonlinear Schrödinger equations and systems. In essence, the approach is
to show existence of a (local) solution by a contraction argument in Lq Lr -type-
spaces, as in Theorem 1. This argument works well to produce global solutions,
if their initial data are small (in an appropriate sense). Global solutions for large
data can then be obtained (whenever they exist) either by means of conservation
laws or by some more sophisticated methods (“I-method,” Bourgain and Fourier
splitting methods, etc.), which also rely to a significant degree on the Strichartz
estimates. For a thorough treatment of these issues, see the excellent book of
Tao [4].

We would like to point out to some other, more recent developments, which
use the same circle of ideas. In the study of asymptotic stability of solitons for
continuous NLS, one linearizes around the special solution and considers matrix
Schrödinger equations in the form

i�tv + Hv = F(t, v), (22.4)

where v = (v, v̄), F(t, v) is at least quadratic in v,

H =
(−�+ V W

−W �− V

)
,
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and V ,W are exponentially decaying and smooth potentials. On the spectral side,
one has the typical absolutely continuous (hereafter denoted as a.c.) spectrum, which
spans a finite co-dimension space. The remaining dimensions represent a nontrivial
eigenspace (and possibly resonances) at zero mode and at least another point in the
pure point spectrum. The study of small solutions3 clearly necessitates an analog
of Theorem 1 for the free generators away from eigenvalues,4 namely eit H Pa.c.. It
has been shown in [5] that under suitable decay and smoothness assumptions on
V ,W , one has Strichartz estimates as in Theorem 1. On the other hand, we should
point out that the lack of a clear spectral picture for H as well as the high number
of degrees of freedom,5 especially in the cases d = 2, 3, leaves many fascinating
natural questions and conjectures unresolved.

22.2 Decay and Strichartz Estimates for the Discrete Schrödinger
and Klein–Gordon Equation

The author of this section and the author of the main part of the book have initiated
a program in [6] to extend these results to the case of the DNLS. In this section,
we will present these results as well as some applications. Introduce the discrete
Laplacian

�d u(k) =
d∑

j=1

[u(k + e j )+ u(k − e j )− 2u(k)].

Theorem 2. (Theorem 3, [6]) For the free discrete Schrödinger equation i�t u(t) +
�d u = 0, one has the decay estimate

‖u(t)‖l∞ ≤ C < t >−d/3 ‖u(0)‖l1 . (22.5)

As a consequence, for the inhomogeneous equation iu′n(t)+�dun+Fn(t) = 0, there
are the Strichartz estimates

‖u(t)‖Lq lr ≤ C
(‖u(0)‖l2 + ‖F(t)‖Lq̃′ lr̃′

)
, (22.6)

where q, r ≥ 2, 1/q + d/(3r ) ≤ d/6 and (q, r, d) 
= (2,∞, 3). Both the decay
estimate (22.5) and the Strichartz estimates (22.6) are sharp.

Remark. Note that the decay rate t−d/3 (and consequently the Strichartz estimates)
is strictly smaller than the usual t−d/2 decay that one has for the continuous analog.

3 In this context, v is a variable which stands for the deviation of the solution from a suitable
modification of the soliton and hence orbital/asymptotic stability (22.4) requires one to control the
growth of v or ‖v‖ → 0.
4 and resonances in some cases.
5 i.e., high-dimensional eigenspaces.
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Let us explain why we get this rate of decay t−d/3. For the solution of the free
equation, there is the formula

un(t) =
∑

m∈Zd

um(0)
∫

[0,1]d
e−4it

∑d
j=1 sin2(πk j )e2π i(m−n)·k dk. (22.7)

Thus

‖eit�d‖l1→l∞ = sup
m,n∈Zd

∣∣∣∣
∫

[0,1]d

e−4it
∑d

j=1 sin2(πk j )e2π i(m−n)·kdk

∣∣∣∣

and hence, noting that the integration over [0, 1]d splits in d integrals over [0, 1],
and after elementary change of variables, it remains to show

sup
s∈R1

∣∣∣∣
∫ 1

0
e−it(sin2(x)−sx)dx

∣∣∣∣ ≤ C min(1, |t|−1/3). (22.8)

The estimate now follows from the Vander Corput lemma, since the phase function
for s = 1 is ϕ(x) = sin2(x) − x and one can check that ϕ′(π/4) = ϕ′′(π/4) = 0,
hence the estimate (22.8). In [6], there is a rigorous proof that this is sharp as well
as numerical evidence, which shows that this rate is indeed the best possible.

For the Klein–Gordon model �2
t u(t) − �d u + u + F(t) = 0, we have a similar

result, which has the unfortunate restriction to one-space dimension.6

Theorem 3. (Theorem 5, [6]) For the solutions of the 1D homogeneous discrete
Klein–Gordon equation one has the decay estimates

‖u(t)‖l∞ ≤ C < t >−1/3 (‖u(0)‖l1 + ‖ut (0)‖l1 ). (22.9)

For the solutions of the inhomogeneous equation, one has the Strichartz estimates
with (q, r ) ≥ 2, 1/q + 1/(3r ) ≤ 1/6. That is

‖u(t)‖Lq lr ≤ C(‖u(0)‖l2 + ‖F(t)‖Lq̃′ lr̃′ ).

As in the Schrödinger case, the 1D case is sharp both in the decay and in the
Strichartz estimates statements.

Remark. One could still obtain a decay rate in the form ‖u(t)‖l∞ ≤ Ct−1/3 for
the solutions of the Klein–Gordon equation in Zd , but this is clearly far from the
conjectured optimal decay of t−d/3.

In the next few sections, we will present some immediate corollaries of these
theorems.

6 This is due to the fact that the Vander Corput lemma, which is used to estimate the oscillatory
integrals that arise is not quite sharp in dimensions d ≥ 2. On the other hand, for DNLS, due to
the nature of the dispersion relation, one can eventually reduce to d 1D oscillatory integrals.
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22.2.1 A Spectral Result for Discrete Schrödinger Operators

In the continuous case, it is well known that the Schrödinger operator H = −�+V
may (and in general does) support eigenvalues if V is not nonnegative everywhere.
For small potential V , this question is more subtle and its answer depends on the
dimension. Namely, for d = 1, 2, even very small potentials may support eigen-
values7 [7], while in d ≥ 3, this is not the case, as it may be seen from the CLR
inequalities

|σp.p.(−�+ V )| ≤ Cd

∫

Rd
|V−(x)|d/2dx .

Here V− = min(V (x), 0) is the negative part of the potential.
For the discrete Schrödinger operators, there are partial results in this direction

in the case of d = 1, 2, namely that weak coupling always generates eigenvalues.
This is in [8] for the case d = 1 and in [9] for d = 2. In [6], we have proved that
similar to the continuous case, in high dimensions small potentials do not generate
eigenvalues.

Theorem 4. (Theorem 4, [6]) Let d ≥ 4 and H u(n) = −�d u(n)+ V (n)u(n). Then
there exists ε > 0, so that whenever ‖V ‖ld/3(Zd ) ≤ ε, the eigenvalue problem

− �d un + Vnun = λun (22.10)

has no solution u ∈ l2(Zd ) for any λ.

The proof of Theorem 4 is simple, so we include it to illustrate the power of Theorem
2. Note that this proof just fails (by the failure of the Strichartz estimates at the
endpoint q = 2, r = ∞, d = 3) to give the case of d = 3, which seems to be open
at the moment of this writing.

Proof. It is clear that u is an eigenstate for (22.10) corresponding to an eigenvalue
λ if and only if {eitλun} is a solution to iu′n(t)+ (−�d + Vn)un = 0 with initial data
{un}. Assume that a solution to (22.10) exists. Apply the Strichartz estimates in a
time interval (0, T ) with q = q̃ = 2, r = r̃ = 2d/(d − 3). We get

‖u‖L2(0,T )l2d/(d−3) ≤ C‖u‖l2 + C‖V u‖L2(0,T )l2d/(d+3) ≤
≤ C‖u‖l2 + C‖V ‖ld/3‖u‖L2(0,T )l2d/(d−3) ≤
≤ C‖u‖l2 + Cε‖u‖L2(0,T )l2d/(d−3) .

If we assume ε : Cε < 1/2, we deduce from the last inequality that

‖u(t)‖L2(0,T )l2d/(d−3) ≤ 2C‖u‖l2

7 In fact, eigenvalues exist whenever
∫

V dx ≤ 0.
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for every T > 0. This is a contradiction, since un(t) = eitλun and therefore
‖u(t)‖L2(0,∞)l2d/(d−3) =∞.

22.2.2 Application to Excitation Thresholds

Consider now the DNLS

i�tu + �d u ± |u|2σu = 0 (22.11)

M. Weinstein [10] has proved that for σ ≥ 2/d , one has an energy excitation
threshold for (22.11), i.e., that there exists ε = ε(d), so that every standing wave
solution {ei�tφn} must satisfy ‖φ‖l2 ≥ ε. In the same paper, he has also conjectured
that for sufficiently small solutions, one has limt→∞ ‖u(t)‖l p = 0 for all p ≤ ∞.
M. Weinstein has also shown in the same paper the complementary statement that
if σ < 2/d , then there are arbitrarily small standing wave solutions, in particular
solutions with ‖u(t)‖l p = const 
= 0. In [6], we verify this conjecture in dimensions
d = 1, 2. We have

Theorem 5. (Theorem 7, [6]) Let σ > 2/d and d = 1, 2. There exists an ε = ε(d),
so that whenever ‖u(0)‖l(8+2d)/(d+7) ≤ ε, one has for all p : 2 ≤ p ≤ (8+2d)/(d+1),

‖u(t)‖l p ≤ Ct−d(p−2)/(3p)‖u(0)‖p′. (22.12)

which is the generic rate of decay for the free solutions. Note limt→∞ ‖u(t)‖l p = 0
for any p > 2, for small data. Also, no standing wave solutions are possible under
the smallness assumptions outlined above.

We also establish the Weinstein conjecture for the 1D discrete Klein–Gordon
equation

�tt u − �1u + u ± |u|2σu = 0. (22.13)

Theorem 6. (Theorem 9, [6]) Let σ > 2. There exists an ε, so that whenever
‖u(0)‖l5/4 ≤ ε, ‖�t u(0)‖l5/4 ≤ ε, one has for all p : 2 ≤ p ≤ 5,

‖u(t)‖l p ≤ Ct−(p−2)/(3p)‖u(0)‖p′ . (22.14)

In particular, there are no small standing wave solutions to the discrete Klein–
Gordon equation (22.13).
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22.3 Decay and Strichartz Estimates for the Discrete Schrödinger
Equation Perturbed by a Potential

In [11], the authors have considered, among other things, the question for the time
decay of eit H Pa.c.(H ), where H = −�1 + V , where V is a potential supported at
finitely many sites. A decay estimate in the form

‖eit H Pa.c.(H )‖l2
σ→l2−σ ≤ Ct−3/2 (22.15)

was established under the assumption σ > 7/2. This was achieved by means of an
explicit formula for the free resolvent8 and then using it to establish the limiting
absorption principle and subsequently a Puiseux expansion at the spectral edges. In
a very recent follow up to this paper [12], a similar result was established in two
spatial dimensions. In it, the authors had to rely on estimates for the free resolvent9

rather than on an exact formula, which makes the analysis much harder.
It is clear however that in the applications (especially when one linearizes around

solitons), one must consider (decaying) potentials with infinite supports. In [13],
D. Pelinovsky and A. Stefanov have addressed this case, but only for the 1D discrete
Schrödinger equation. Let us present a quick summary of the results and the methods
in this chapter.

We first show the limiting absorption principle for potentials with infinite sup-
ports. More precisely,

Theorem 7. Fix σ > 1/2 and assume that V ∈ l1
2σ . The resolvent R(λ) = (−� +

V − λ)−1, defined for λ ∈ C \ [0, 4] as a bounded operator on l2, satisfies

sup
ε↓0
‖(−�+ V − ω ± ε)−1‖l2

σ→l2−σ <∞. (22.16)

for any fixed ω ∈ (0, 4). As a consequence, there exist R±(ω) = limε↓0 R(ω± iε) in
the norm of B(l2

σ , l
2
−σ ).

The other technical tool is obtaining a Puiseux expansion at the spectral edges,
which however requires that H = −�1 + V does not support a resonance at zero.
This looks somewhat different in each situation, so we give a precise technical
definition.

Definition 1. V ∈ l1
1 is called a generic potential if no solution ψ0 of equation

(−�+ V )ψ0 = 0 exists in l2
−σ for 1/2 < σ ≤ 3/2.

As one expects, such a condition is generically satisfied with respect to V . Also,
this condition guarantees a nice Taylor expansion (up to order one) for the resolvent
RV (w) as w ∼ 0.

8 which unfortunately only holds in one spatial dimension.
9 which features a hyperbolic point inside the a.c. spectrum, which one has to control separately.
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Theorem 8. (Theorem 3, [13]) Fix σ > 5/2 and assume that V ∈ l1
s for all s <

2σ − 1 and that H = −�1 + V does not support resonance at zero. Then, there
exists a constant C depending on V , so that

∥∥eit H Pa.c.(H )
∥∥

l2
σ→l2−σ

≤ Ct−3/2. (22.17)

If one is interested in the boundedness of eit H Pa.c.(H ) on l1 → l∞ (which is
a key element of any asymptotic analysis for the DNLS and which has not been
addressed in [11] and [12]), one needs to study the detailed behavior of the Jost
solutions for the potential V .

Theorem 9. (Theorem 4, [13]) Fix σ > 5/2 and assume that V ∈ l∞s for s < 2σ−1
and that V is generic in the sense of Definition 1. Then, there exists a constant C
depending on V , so that

∥∥eit H Pa.c.(H )
∥∥

l1→l∞ ≤ Ct−1/3 (22.18)

Remark. In both Theorems 5 and 9, it is possible to obtain a slightly worst decay
rate without the nonzero resonance assumption, as it has been done in the continuous
case.

The idea of the proof of Theorem 9 is as follows: We split the spectral projection
Pa.c.(H ) in a portion close to the spectral edges (ω = 0, 4) and away from it. For a
smooth cutoff χ0, supported close to θ = 0, 4, the piece eit H Pa.c.χ0(H ) is given by
the formula

[eit H Pa.c.χ0(H )u]n = i

π

∑

m

um

∫ π

−π
eit(2−2 cos θ )χ0(θ )

ψ+m (θ )ψ−n (θ ) sin θ

W (θ )
dθ,

where ψ±m are the Jost solutions and W (θ ) is the Wronskian.10 This is estimated by
the following lemma, which gives the needed bound for the kernel of this operator.

Lemma 1. Assume V ∈ l1
2 and W (0) 
= 0. Then, there exists C > 0 such that

sup
n<m

∣∣∣∣
∫ π

−π
eit(2−2 cos θ )χ0(θ )

ψ+m (θ )ψ−n (θ ) sin θ

W (θ )
dθ

∣∣∣∣ ≤ Ct−1/2 (22.19)

Note that the actual decay

‖eit H Pa.c.χ0(H )‖l1→l∞ ≤ Ct−1/2.

matches the continuous case.

10 The nonresonance condition basically amounts to W (0) 
= 0.
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The proof of Lemma 1 proceeds via a regularity estimate11 for f ±n : ψ±n = e∓n f ±n .
Namely, we establish that if V ∈ l1

2 , then for some small θ0 (and where we have
chosen suppχ0 ⊂ (0, θ0))

sup
θ :∈[−θ0,θ0]

(‖�θ f +(θ )‖l∞([0,∞)) + ‖�θ f +(θ )‖l∞([0,∞))
)
<∞.

This is enough to perform an integration by parts argument (Vander Corput lemma),
which implies (22.19).

For the piece eit H Pa.c.(1− χ0)(H ), we have

Lemma 2. Fix σ > 5/2 and assume that V ∈ l1
s for all s < 2σ − 1. Then, there

exists C > 0 such that
∥∥∥∥
∫ π

−π
eit(2−2 cos θ )χ(θ ) ImR(2− 2 cos θ ) sin θ dθ

∥∥∥∥
l1→l∞

≤ Ct−1/3 (22.20)

for any t > 0.

The proof of Lemma 2 goes through the Born series representation

eit H Pa.c.(1− χ0)(H ) =
∫ π

−π
eit(2−2 cos θ )(1− χ0(θ )) ImR(2 − 2 cos θ ) sin θ dθ =

=
∫ π

−π
eit(2−2 cos θ )(1− χ0(θ )) ImR0(2− 2 cos θ ) sin θ dθ +

+
∫ π

−π
eit(2−2 cos θ )(1− χ0(θ )) ImR0(2− 2 cos θ )V R0(2− 2 cos θ ) sin θ dθ +

+
∫ π

−π
eit(2−2 cos θ )(1− χ0(θ )) ImR0(2− 2 cos θ )GV (θ )R0(2− 2 cos θ ) sin θ dθ,

where GV (θ ) := V RV (2 − 2 cos θ )V . The first and the second expressions above
are explicit12 via the explicit representation of R0(ω). Hence, these are estimated
easily via the Vander Corput lemma. For the third integral, notice that the perturbed
resolvent appears only sandwiched between two copies of V and so, we apply the
limited absorption bounds for good estimates of Gm(θ ). In fact, to apply the Vander
Corput machinery, we need and show the following estimate

sup
θ∈[−π,π ]

∑

m

|Gm(θ )| +
∣∣∣∣

d

dθ
Gm(θ )

∣∣∣∣ ≤ C‖V ‖2
l2
σ
‖ f ‖l1 .

11 Note that in the case V = 0, fn ≡ 1.
12 In fact the first integral represents the free discrete Schrödinger equation, which was addressed
in [6].
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22.3.1 Spectral Theoretic Results for 1D Schrödinger Operators

By the limiting absorption principle (Theorem 7), one deduces immediately that
σ (−�1+V ) does not have a singular component and by the Weyl’s theorem consists
of absolutely continuous part σa.c.(−�1+V ) = σa.c.(−�1) = [0, 4] and (potentially
infinite) number of eigenvalues, which are outside [0, 4]. By the results of Killip and
Simon,13 [8], if V 
= 0, there is always a portion of the spectrum which lies outside
[0, 4]. That is σp.p.(−�1 + V ) 
= ∅. However

Theorem 10. (Lemma 1, [13]) Fix σ > 5/2 and assume that V ∈ l1
s all s < 2σ − 1

and that V is generic in the sense of Definition 1. Then, the discrete spectrum
of H is finite-dimensional and located in the two segments (ωmin, 0) ∪ (4, ωmax),
where

ωmin = min
n∈Z
{0, Vn}, ωmax = max

n∈Z
{4, 4+ Vn}

The proof uses essentially the analyticity of the perturbed resolvent, which is a con-
sequence of the theory built to address the decay estimates.

22.4 Challenges and Open Problems

There are several natural and outstanding problems, related to the material pre-
sented in the previous sections. We will try to organize them in the order of ap-
pearance, although it is possible that some of these problems are related in some
fashion.

22.4.1 Does Weak Coupling Allow Eigenvalues in Three
Dimensions?

In relation to Theorem 4, we have the question of existence of eigenvalues in the
regime of weak coupling in d = 3. As we have already mentioned, the continuous
case has been resolved completely. Following this analogy, we can form the follow-
ing conjecture

Conjecture 1. Show that weak coupling in 3D does not generate eigenvalues. That
is, for sufficiently small potentials V , the associated Schrödinger operator H =
−�+ V : l2(Z3)→ l2(Z3) does not have point spectrum.

13 This is stated for Jacobi matrices but translates into this statement for discrete Schrödinger
operators of the form −�1 + V .



22 Decay and Strichartz Estimates for DNLS 411

22.4.2 CLR-Type Bounds for Discrete Schrödinger Operators
and Related Issues

A related, more subtle question is whether one can bound the number of eigenvalues
by some quantity depending on the potential (for example, CLR-type bounds). This
is typically impossible whenever weak coupling generates eigenvalues, but even in
1D, it seems to be an open question whether for arbitrarily small potential one can
generate arbitrarily large number of eigenvalues. We will tentatively conjecture that
this is possible.

Conjecture 2. Show that for each ε > 0, there exists a finitely supported potential
V ε : supn |V ε

n | < ε, so that |σp.p.(−�1 + V ε)| > ε−1.

This is even more relevant for high dimensions d ≥ 4 (and in the case d = 3, if
the weak-coupling conjecture above is true), where we know that the natural obsta-
cle to such bounds is not present. In such cases, it may be possible to obtain some
variant of the CLR bounds on the number of eigenvalues of H = −�d + V , for
d ≥ 3. Thus, we state a tentative

Conjecture 3. Show CLR-type bounds for the number of eigenvalues of H =
−�d + V in d ≥ 3.

22.4.3 Show Analogs of Theorems 8, 9, 10 in Higher Dimensions

This is self-explanatory, but the goal is to extend the spectral and decay results of
the 1D dynamics [13] to multidimensions, as the relevant applications (which are
naturally posed in high dimensions) require.

We should also mention that in reality one will need to show more general
statements of the type of Theorems 8, 9, 10 for the matrix-valued non-self adjoint
Hamiltonians (whose continuous analogs were discussed in Sect. 22.1)

H =
(−�d + V W

−W �d − V

)
.

This will have to be done parallel to a spectral theoretic study of these operators,
because it seems that even the most basic questions regarding the spectrum of such
operators H (even in the case of special H arising from linearization around soli-
tons) remain rather unclear. The discussion in this Sect. 22.4.3 is really a program
that is currently under active investigation by the authors Kevrekidis and Pelinovsky
to address the question for asymptotic stability of special solutions.

22.4.4 Asymptotic Stability and Nucleation

In analogy with the continuous case, one seems to need the ingredients of the previ-
ous section (plus some hard analysis to analyze the modulation equations) to prove
the asymptotic stability of solitons. We state the relevant
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Conjecture 4. Show asymptotic stability of all orbitally stable solitons for the fo-
cusing 1D DNLS.

A related problem of slightly different nature is the solitary wave formation pro-
cess, where one seeks to understand the asymptotic behavior of the DNLS evolution
with initial data of the form Aδn,0 (or more ambitiously with multiple initially ex-
cited sites). As is shown numerically in [14], such a solution relaxes to a discrete
soliton φ�, where � = �(A). Notice that this only happens if |A| is above some
threshold value; below that, the solution tends asymptotically to zero. As of now,
the relation between A and � remains elusive, but besides that, the issues that still
need to be addressed are a rigorous proof that this actually happens as well as the
actual rate of convergence at which u A approaches φ�.

Conjecture 5. Show that there is a member of the discrete soliton family φ� such
that for A larger than the threshold value in some relevant norm ‖u A(t) − φ�‖ ≤
t−1/3.
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