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Preface 

 
The Research Network GDR 2501 deals with Ultrasonic wave propagation in non-
homogeneous media for Non Destructive Testing applications. This group gathers 
researchers of various backgrounds in applied mathematics as well as in 
experimental physics. Founded in January 2002 as a CNRS unit, it became Anglo-
French in January 2006. Now, it consists of 32 departments or laboratories evenly 
distributed between France and UK. Different research institutions and industrial 
departments support the network: CEA, EDF, EADS, Dassault Aviation, Renault, 
ONERA, LCPC, INRIA from the French side,  EPSRC and English companies 
through RCNDE from the British side. 
 
The fifth meeting of the GDR was held in Anglet, France, from June 2nd to June 
6th 2008. Forty oral presentations and ten posters made at the meeting have been 
devoted to the following research topics: 
 
• bonding,  
• propagation in composites,  
• guided waves,  
• contact or damage non-linearities in acoustics,  
• inverse problems and imaging,  
• structural noise.  
 
The program offered a wide-ranging view of the present state of the art in the 
research for Non Destructive Testing and Non Destructive Evaluation applications. 
Four keynote lectures have been chosen either precisely in the field of the GDR:  
 
− Ultrasonic arrays: the post processing approach, by Professor Bruce Drinkwater,  
− Reverse time migration technique coupling with  finite element methods, by 

Dr Hélène Barucq,  
  

or in the near fields of interest:  
 
− Acoustic cloaking theory, by Professor Andrew  Norris,  
− On the use of (static) digital image correlation  for identifying material hetero-

geneities and non linear behaviors,  by Professor Stéphane Roux.  
 



This volume gives a comprehensive account of the presentations made at the 
conference. The sequence of papers follows the meeting schedule, which has been 
intentionally arranged to mingle talks on the theory and on various applications. It 
reflects a strong link between different aspects of the research scope of the 
conference. With a view to foster interaction and cohesion between the theoretical 
and applied communities, each paper has been reviewed in real-time during the 
conference by two participants, one theoretician and one experimentalist or 
engineer. 
   
The organizers and the 85 participants have been pleased to observe that the 
conference has provided an excellent opportunity for exchanging ideas and 
developing collaborations. It was also beneficial for the PhD student participants 
who could gain an overview of the cutting-edge research in the field.  
 
The editors would like to stress the fact that this volume could not have been 
published had not Beatrice Desoudin been so efficient in her work. All the 
material organization of the meeting has rested on her shoulders and she also has 
found time to help in the compilation of articles presented herein.  
 
The next meeting will be held in the Lake District in UK. We hope for the same 
success as at the present one, and we are looking forward to reaching a next step 
in active co-operation within the GDR 2501, the network of British and French 
Laboratories.  
  
 
Marseille/Talence, October 2008 Alain Leger, Marc Deschamps 
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The WKB method applied to the reflection- 

transmission by a depth-varying random 

distribution of cylinders in a fluid slab-like 

region 
 

 

J.M. Conoir, S. Robert, A. El Mouhtadi and F. Luppé
1
 

 
 

 

 

 

 

Abstract This paper deals with multiple scattering by a random arrangement of 

parallel circular elastic cylinders immersed in a fluid. The cylinders are 

distributed in a region called « slab » that is located between two parallel planes 

orthogonal to a given x-direction. The disorder inside the slab is not uniform 

but depends on the x-variable. The goal is to calculate the reflection and 

transmission coefficients by this space-varying slab. The spatial variations of 

the random distribution are assumed smooth enough in order to use the WKB 

(Wentzel-Kramers-Brillouin) method. For this method, a crucial point is the 

knowledge of the boundary conditions at the interfaces between the 

homogeneous fluid and the space-varying slab. These boundary conditions are 

shown to be the usual continuity of pressure and normal displacement. The 

relation between pressure and normal displacement is given by Euler’s equation 

and the introduction of an effective mass density.  

 

 

1  Introduction: results for the uniform slab 
 

 Multiple scattering by random arrangements of scatterers is a topic with an     

extensive literature. See, for  example, the  recent  book  by   Martin [1].  A 

typical problem is the following. The space is filled with a homogeneous 

compressible fluid of density r  and sound speed c , and a fluid slab-like region,  
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contains many randomly spaced scatterers. In the following, the 

scatterers are elastic parallel circular cylinders.  As their  axes  are  normal to the x 

direction, the problem is a two-dimensional one (cf. Fig. 1). As a time harmonic 

plane wave with wavenumber k c= w  (w  is the angular frequency) is incident 

upon the slab (cf. Fig. 1), what are the reflected and transmitted waves? The 

acoustic fields cannot be computed exactly for a large number of cylinders. This is 

the reason why another problem is solved. The slab is replaced by a homogeneous 

effective medium in which coherent plane waves propagate. After Twersky [2], 

coherent plane waves can be interpreted as the average of the exact fields 

calculated for a great number of random configurations of the scatterers. They are 

characterised by a complex wave number 
eff
K  usually called effective wave 

number. The earliest modern work on such a problem is due to Foldy [3] and a 

large number of papers have been published yet [4-7]. Most of them are mainly 

focused on the effective wave number calculation, while few of them actually deal 

with the reflected and transmitted fields [8-12]. This point is important to notice 

because it is not obvious to relate the reflection and transmission coefficients of 

the slab, 
slab
R  and 

slab
T , to the effective wave number. Nonetheless, it has been 

shown in Refs. [8-12] that 

 

 

 

 

 

 

 

Fig. 1   Geometry of the slab. 
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where 
12
R  is the specular reflection coefficient at the first interface of the slab, 

12T  ( 21T ) is the transmission coefficient at the interfaces between the 

homogeneous fluid, labelled 1, (slab, labelled 2) and the slab, labelled 2, 

(homogeneous fluid, labelled 1), and 
21
R  the specular reflection coefficient 

inside the slab (cf. Fig.2). Eqs. (1.1,1.2) correspond to Eq. (21) in Ref. [8], to 

Eqs. (74,75) in Ref. [10], to Eqs. (12,13) in Ref [11], and to Eqs. (42,46) in Ref. 

[9], with ′− = = =12 21R R Q Q  and = − 2

12 21 1T T Q . Of course, the analytic 

expression of Q  depends on the theory used: Q  is defined in Ref. [8,10,11] for 

y  

x  
î-  

î  

0x =  x d=  s
x  

1ik xe  

2

0 x d, ≤ ≤
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Twersky’s or Waterman & Truell’s theory (cf. Eq. (3.12), Eq.(76), Eq. (17) 

respectively), and in Ref. [9] for Fikioris & Waterman’s one (cf. Eq. (4.12)). 

The physical meaning of Eqs. (1.1,1.2) is clear. First, the slab looks like a fluid 

plate in which waves propagate with wave number
eff
K . Second, the slab can 

be considered as an usual Fabry-Perrot interferometer. 

If the concentration of scatterers is low enough, it is possible with a bit of luck 

never to encounter a cylinder while walking through the boundaries of the slab. 

In this case, the impedance ratio between the homogeneous fluid and the slab is 

close to 1, so that ≈21 0R  and ≈ ≈12 21 1T T . It follows that slabT  can be 

approximated by 

 
effiK d

slabT e≈                                                  (1.3) 

so that 

1
Im( )eff slabK Log T

d
≈ −  .                                     (1.4) 

 

This last relation has indeed been successfully used, at low concentration, in 

order to evaluate the attenuation of the coherent waves that propagate through 

the slab from experimental transmission data [13,14]. 

 

 

 

 

 

 

 

 

 

 
Fig. 2   Reflection and transmission by the uniform slab. 

 

Contrary to previous studies, this paper deals with the reflected and transmitted 

waves by a slab in which the concentration and/or the size of the scatterers, 

rather than uniform, depends on the x-space variable. The goal is the 

generalisation of Eqs. (1.1,1.2) to such a space-varying slab. In the method we 

use, the spatial variations of the random distribution are assumed smooth 

enough for the relevancy of the WKB method [15]. For this method, a crucial 

point is the knowledge of the boundary conditions at the interfaces between the 

fluid and the slab. The continuity of pressure is naturally respected but that of 

the normal displacement is checked after introduction of an effective mass 

density for the uniform slab, that allows the derivation of the displacement 

expression from that of pressure. 

The effective mass density of a uniform slab is defined in section 2. The Foldy-

Twersky’s integral equations that govern the average acoustic pressure fields 

are shown in section 3. Section 4 presents the WKB method for a slab of 

1

12

ik xR e-  

1 ( )

12 21

effiK d ik x d
T e T e

-
 

21T  

Fluid 1 

12T  

Fluid 2 Fluid 1 

1( ) ik x

inc ey =r  

The WKB method applied to the refection-transmission 3



 

smooth spatial variations. Section 5 shows numerical results before to 

conclude. 

 

 

2 Effective mass density of a uniform slab 
 

In linear acoustics, Euler's relation relates the time harmonic acoustic 

displacement 
f
u  in a fluid medium to the time harmonic pressure p  : 

2

1

f

p= −
ρ ωfu ∇∇∇∇  ,                                              (2.1) 

 

with 
f

ρ  the mass density of the fluid. This is the reason why the mass density 

is needed in order to write the continuity of normal displacement at the 

interface between two different fluids. While the mass density 
f

 of a 

homogeneous fluid is a known characteristic of the fluid, that of a uniform slab 

has yet to be defined. In order to do so, let consider the 
12
R  specular refection 

coefficient at the interface between two fluids, labelled 1 and 2 respectively; its 

expression is given by [15] 

 

2 1 1 2

12

2 1 1 2

k k
R

k k

−
=

+

ρ ρ
ρ ρ

                                               (2.2) 

 

with k1, k2 the wavenumbers in fluids 1 and 2, and 
1 2
,ρ ρ  the mass densities of 

the fluids. If fluid 2 contains a uniform distribution of scatterers, this specular 

reflection is obtained from Eq. (1.1) by letting the depth d of the slab tend to 

infinity:
12

lim
slab

d
R R Q

→+∞
= = −  (the imaginary part of the effective wavenumber 

eff
K  being positive). As k2 is to be replaced with Keff  in Eq.(2.2) and ρ2 with 

ρeff, it follows straightaway that 

1

1

1

1

eff

eff

K Q

k Q

−
ρ = ρ

+
 .                                           (2.3) 

 

Consequently, the mass density of a homogeneous fluid with a uniform 

distribution of scatterers is complex and depends on frequency, as 
eff
K  and Q  

do. 

 

 

3 Foldy-Twersky’s integral equations 
 

The method developed to calculate the reflection and transmission coefficients 

of a space-varying slab is based on a set of coupled integral equations derived 

by Twersky [8].  As the incident wave and the geometry of the varying slab are 

4

ρ
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supposed to be independent of the y-co-ordinate, parameters and acoustic fields 

only depend on the x-co-ordinate. According to Twersky, the average acoustic 

field ψ  can be split into two fields, 
+

y  associated to the propagation in the 

î  direction and 
-

y  associated to the propagation in the opposite direction î  

 

+ -
y = y + y                                                    (3.1) 

 

which are solutions of the set of coupled integral equations  

 

[ ] 11 1

0

( ) ( ) ( ) ( ) ( ) ( )s

x

ik xik x ik x

s s s s s sx e e T x x R x x e n x dx
−

+ + −= + +∫ψ ψ ψ           (3.2-a) 

[ ] 11( ) ( ) ( ) ( ) ( ) ( )s

d

ik xik x

s s s s s s

x

x e R x x T x x e n x dx
+−

− + −ψ = ψ + ψ∫                (3.2-b) 

with 

1

2
( )sT x

k
=      and          

1

2
( )sR x

k
=            (3.3) 

 

In Eq. (3.2), 
1

exp( )ik x  is the spatial dependence of the incident harmonic 

pressure wave and ( )
S s

n x dx  the average number of scatterers in the 
s

dx  small 

region around 
S
x .  and  are the forward and backward 

scattering amplitudes associated to the scattering of a plane wave by a cylinder 

located at 
S
x  (cf. Fig. 1). They can be expressed as modal sums, cf. [16], and 

calculated numerically. It must be noted here that  and 

depend on the x-co-ordinate because they depend on the radius (size) ( )a x  of 

the cylinders 

 

 

4 The WKB method applied to the smooth-varying slab 
 

The variations of ( )n x , ( )R x , and ( )T x  are supposed smooth, and  

 

( ) ( )n x n x′ � , ( ) ( )R x R x′ �  and ( ) ( )T x T x′ � .                      (4.1) 

 

In other words, both the concentration and size of the cylinders are slow 

varying parameters. When derived, Eqs. (3.2) become 

 

[ ]1( ) ( ) ( ) ( ) ( ) ( ) ( )x ik n x T x x n x R x x+ + −′ = + +ψ ψ ψ                     (4.2-a) 

[ ]1( ) ( ) ( ) ( ) ( ) ( ) ( )x ik n x T x x n x R x x− − +′ = − + −ψ ψ ψ  .                 (4.2-b) 
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( , ; )sf xîî ( ; )sf x .       î î  ,

( ; )sf x  ,̂i î ( ; )sf xî î,

( ; )f xî î, ( ; )f x  ,̂i î

−

−

−

−



 

Taking into account the assumptions in Eq. (4.1), the derivation of Eqs. (4.2) 

leads to 
2

( ) ( ) ( ) 0effx K x x± ±′′ + ≅ψ ψ                                           (4.3) 

with 

[ ]22 2 2

1( ) ( ) ( ) ( ) ( )effK x n x R x ik n x T x= − +                               (4.4) 

 

where ( )R x  and ( )T x  are defined in Eq. (3.3). According to Eqs. (3.3), Eq. 

(4.4) is clearly Waterman & Truell’one [4] for a concentration and a size of the 

cylinders depending on the x-co-ordinate. After Eq. (4.1), it follows that 

 

( ) ( )eff effK x K x′ �  ,                                             (4.5) 

 

which is the reason why the WKB method can be used.  The WKB solution of 

Eqs. (4.3) is well known [15] 

 

0 0

( ) ( )

( ) / ( ) / ( )

x x

eff s s eff s si K x dx i K x dx

eff effx A e K x B e K xψ
−

± ± ±

∫ ∫
= +                 (4.6) 

 

with ±A  and ±B  the unknown constants. The only way to determine them is to 

use the boundary conditions at 0x =  and x d= . In order to do so, the 

following notations are introduced 

 

0
( 0)n x n= =        and       ( )

d
n x d n= =                                (4.7) 

(0)
( 0)

eff eff
K x K= =        and      

( )
( )

d

eff eff
K x d K= =                          (4.8) 

0

1
( )

d

eff eff s s
K K x dx

d
=                                             (4.9) 

with effK  the average effective wave number of the varying slab.  Continuity 

of pressure reads 

 

(0) (0) 1 slabR+ −+ = +ψ ψ        and       ( ) ( ) slabd d T+ −+ =ψ ψ                  (4.10) 

with 

(0) slabR− =ψ        and       ( ) slabd T+ =ψ  .                             (4.11) 

 

It follows that 

  (0) 1+ =ψ        and       ( ) 0d− =ψ  .                                  (4.12) 

 

Inserting Eqs. (4.6) into Eqs. (4.12) gives 

 

(0)

effA B K+ ++ =      and     0eff effi K d i K d
A e B e

-

- -
+ =            (4.13) 
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Two equations do not allow to calculate the four parameters ±A  and ±B . Two 

others are required. As expected, these ones must be the continuity of normal 

displacements. But the question is how to write them? In the following, the 

effective mass density is supposed to be dependent on the x-co-ordinate. It is 

introduced as a generalisation of that of references [8,10,11]. Then, the 

continuity of normal displacement is written and the reflection and transmission 

coefficients of the space-varying slab are calculated. Finally, as they look like 

the usual reflection and transmission coefficients of a fluid plate, we validate a 

posteriori the continuity of normal displacements and the way the effective 

mass density is defined. Continuity of normal displacement gives 

 

(0)

1

1 1
(0) (0) (0) (0)inc R

eff
x x x x

+ − ∂∂ ∂ ∂  
+ = +  ∂ ∂ ∂ ∂   

ψψ ψ ψ
ρρ

                (4.14-a) 

( )

1

1 1
( ) ( ) ( )T

d

eff

d d d
x x x

+ −∂ ∂ ∂   
+ =   ∂ ∂ ∂   

ψ ψ ψ
ρρ

 ,                      (4.14-b) 

 

where 
(0)

( 0)
eff eff

x= =r r  and 
( )

( )
d

eff eff
x d= =r r  are the effective mass 

densities at the beginning and at the end of the slow-varying slab. Starting from 

the Twersky’s formalism, the x-dependence of the effective mass density is 

quite naturally the generalization of Eq. (2.3)  

1

1

( ) 1 ( )
( )

1 ( )

eff

eff

K x Q x
x

k Q x

−
=

+
ρ ρ                                   (4.15) 

with (cf. Eqs. (3.3, 4.4)) 

1( ) ( ) ( ( ))
( )

( ) ( )

effn x T x i k K x
Q x

n x R x

+ -
=  .                           (4.16) 

 

Of course, the function ( )Q x  is formally the same that of references [8,10,11] 

with , , ,
eff

n R T K  depending on the x-co-ordinate. The impedance ratios 

 
(0)

1 0

0 (0)

01

1

1

eff

eff

k Q

QK

−
= =

+

ρ
τ

ρ
       and       

( )

1

( )

1

1

1

d

eff d

d d

deff

k Q

QK

−
= =

+

ρ
τ

ρ
 ,               (4.17) 

 

are also introduced, with 
0

( 0)Q x Q= =  and ( )
d

Q x d Q= = .  

In the field of the WKB approximation, k1 is assumed to be large, and, as 

effK  is of the same order as k1, one has 

 

0 0

( ) ( )

( ( )) ( )

x x

eff s s eff s si K x dx i K x dx

eff effe K x i K x e
x

± ±∫ ∫∂
≅ ±

∂
.                 (4.18) 
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As a consequence, once Eq. (4.6) introduced in Eqs. (4.14), and Eq. (4.18) 

taken into account, one gets 

 

 ( ) ( ) ( )(0)

0 0 0 01 1 2 2 1effQ A Q B A Q B K Q+ + − −+ − + + − = −  ,              (4.19-a) 

( ) ( )2 2 1 1 0eff eff eff effi K d i K d i K d i K d

d d d
Q A e B e Q A e Q B e

− −

+ + − −− + + − + =  .  (4.19-

b) 

 

Once the solution of the set of linear equations Eqs. (4.13,4.19) obtained, the 

reflection and transmission coefficients can be calculated from Eqs. (4.6,4.11), 

it comes 
2 2

0 0 0

2 2

0 0 0

( 1)(1 ) ( 1)(1 )

1 ( 1)(1 ) ( 1)(1 )

eff eff

eff eff

i K d i K d

d d d

slab i K d i K d

d d d

Q Q e e
R

Q Q e e

− + − + + + −
= =

− + + + − −

τ τ τ τ

τ τ τ τ
       (4.20-a) 

(0)

0

2( )

0

(0)

0

2( )

0 0

(1 )(1 )

1

4
.

( 1)(1 ) ( 1)(1 )

eff

eff

eff

eff

i K d
eff d

slab i K dd

eff d

i K d

eff

i K dd

eff d d

K Q Q e
T

K Q Q e

K e

K e

τ

τ τ τ τ

+ −
=

−

=
+ + + − −

                          (4.20-b) 

 

In the case where the features of the slab are the same at the beginning and at 

the end, i.e. 
0d

n n= , 
( ) (0)d

eff eff
K K= , 

( ) (0)d

eff eff
=r r   and 

0d
Q Q= , Eqs. (4.20) 

comes down to 
2 22 2

0 0 0 0

2 22 2 2

0 0 0

( 1) (1 )

1 (1 ) (1 )

eff eff

eff eff

i K d i K d

slab i K d i K d

Q Q e e
R

Q e e

− + − + −
= =

− + − −

τ τ

τ τ
               (4.21-a) 

2

0 0

2 22 2 2

0 0 0

(1 ) 4

1 (1 ) (1 )

eff eff

eff eff

i K d i K d

slab i K d i K d

Q e e
T

Q e e

−
= =

− + − −

τ

τ τ
 .                (4.21-b) 

 

These expressions are formally identical to those given in Ref. [8-11] for a 

uniform slab. The difference lies in the introduction of effK  instead of 
eff
K , 

as the latter is not a constant. The varying slab is thus equivalent to a uniform 

slab characterized by the impedance ratio 
0

t  at the interfaces and by the 

average effective wave number effK  that describes the propagation of the 

average coherent wave.  

Let consider now the reflection-refraction coefficients at the two interfaces of 

the slab (the homogeneous fluids [ ]0x  and [ ]x d  are labelled 0 and d, the 

varying slab is labelled 1) 
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 0

01 10

0

1

1
R R

−
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+

τ
τ

, 0

01

0

2

1
T =

+

τ
τ

  and  10

0

2

1
T =

+τ
                  (4.22-a)  

1 1

1

1

d

d d

d

R R
−

= − =
+

τ
τ

, 1

2

1

d

d

d

T =
+

τ
τ

  and  1

2

1
d

d

T =
+τ

 .               (4.22-b) 

 

The reflection and transmission coefficients in Eqs. (4.20) can be written as 

 
2

01 1 10
01 2

10 11

eff

eff

i K d

d
slab i K d

d

T R T e
R R

R R e
= +

−
                                 (4.23-a) 

  01 1

2

10 11

eff

eff

i K d

d
slab i K d

d

T T e
T

R R e
=

−
 .                                    (4.23-b) 

 

The varying slab can still be considered as an interferometer. As discussed in 

the introduction, the impedance ratios 
0

 and 
d

 are close to unity at low 

concentration, so that 
01 1

0
d

R R≅ ≅  and 
01 1

1
d

T T≅ ≅  (cf. Eqs (4.22)), and (cf. 

Eqs (4.23-b)) 

effi K d

slabT e≅  .                                              (4.24) 

 

This means that transmission experiments can bring no information on ( )
eff
K x , 

but only on its average effK . Two different varying-slabs, with 

(1) (2)
( ) ( )

eff eff
K x K x≠ , can give rise to the same average transmitted field, provided 

that 
(1) (2)

eff effK K= . It seems thus rather hopeless to try and identify the profile 

( ( ), ( ), ( ))n x R x T x of a varying-slab with the help of a theory based on coherent 

wave propagation. 

 

 

5 Numerical results 
 

Computations are performed for a space-varying slab characterised by  

 
2 2

( 2)

max
0

( )
0

x dn e x d
n x

otherwise

− − ≤ ≤
= 


σ

     with     

2

2 max

min

log
2

nd

n

  =   
   

σ  ,   

(5.1) 

 

and a(x)=1 mm the radius of all cylinders. In Eq.(5.1), 4 2

max
10 /n m= and 

min max
/ 3n n=  are respectively the maximum and minimum numbers of steel 

cylinders per unit surface. Eq.(5.1) describes a truncated Gaussian function for 

which 
max

( 2)n d n= and 
min

(0) ( )n n d n= = . The thickness of the slab is 
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d=0.1m. As the size of the cylinders is constant all over the slab, so are the 

forward and backward scattering amplitudes . Steel is characterised by 

its density 
s
r =7916 kg/m

3
, the velocity of the longitudinal waves 

L
c =6000 

m/s, and that of the shear waves 
T
c =3100 m/s. The cylinders are immersed in 

water, characterized by its density 
1
r =1000 kg/m

3
 and the velocity of sound 

1
c =1470 m/s. 

 

Fig. 3  Modulus of the reflection of the space varying slab for 
1

0 2k a≤ ≤ . 

 

 

 

Fig. 4  Modulus of the transmission coefficient of the space varying slab.  Arrows 

indicate the resonance frequencies of the steel cylinders.  

 

 

First, it can be observed in Figs. 3 and 4 that the reflection is small compared to 

the transmission and vanishes with the increase of the frequency. Second, it has 

been checked that the two first terms of Eq. (4.24-a) approximate very well 

slab
R . So, the reflection is only due to the specular reflection at the first 
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interface and to the wave which propagate back after one reflection on the 

second interface. This explains the oscillations observed on the reflection due 

to interferences between the two waves. Same way, 
slab
T  is very well 

approximated by the first term of Eq. (4.24-b). Consequently, the transmission 

through the slab is merely reduced to a direct transmission.  

In order to get shorter computation times, consider now a uniform slab, 

characterized only by the average number of cylinders: 

n =  .                                           (5.2) 

 

Is that new-defined slab equivalent to the space-varying one? The coherent 

waves in that slab propagate with a wavenumber effK  given by Eq.(5.3) [4] 

 

,                         (5.3) 

 

and its mass density is supposed to be 

 

1

1

1

1

eff

eff

K Q

k Q

−
≅

+
ρ ρ                                               (5.4) 

with  

1
( )

eff
T i k K

Q
R

+ -
@  , 

1

2 n
T

k
≅  and 

1

2 n
R

k
≅  .   

(5.5) 
 

Fig. 5  Modulus of the reflection coefficient of the space varying slab. Lower curve: 

exact value. Upper curve: Approximate value corresponding to Eq. (5.3). 
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Its transmission and reflection coefficients can be calculated therefrom. The 

modulus of the transmission coefficient obtained is pretty much the same than 

that plotted in Fig. 4, but Fig.5 shows that the reflection coefficient is larger 

than that of the original space-varying slab. The average effective wave number 

effK  is well approximated from Eq. (5.3), which is the reason why the 

oscillations of the two reflection coefficients are practically in phase. 

Consequently, it is the effective mass density 
eff

ρ  given by Eq. (5.4) that is not 

correct. As shown by the WKB method, it is the effective masse densities 
(0)

eff
r  

and 
( )d

eff
r  at the beginning and at the end of the varying slab which must be 

taken into account. In our case, 
eff

ρ  given by Eq. (5.4) overestimates the 

effective masse density 
(0) ( )d

eff eff
=r r . 

 

Summary 

 
It has been shown that the use of the WKB method is relevant for the study of 

the propagation of coherent waves through a smooth space-varying slab. Once 

the effective mass density is defined correctly, it has been shown that the 

boundary conditions at the interface between a homogeneous fluid and an 

effective medium are fulfilled. These are the continuity of pressure and of 

normal displacement. 
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Abstract In the case of multi-pass welds, the material is very difficult to describe 

due to its anisotropic and heterogeneous properties. Anisotropy results from the 

metal solidification and is correlated with the grain orientation. A precise 

description of the material is one of the key points to obtain reliable results with 

wave propagation codes. A first advance is the model MINA which predicts the 

grain orientations in multi-pass 316-L steel welds. For flat position welding, good 

predictions of the grains orientations were obtained using 2D modelling. In case of 

welding in position the resulting grain structure may be 3D oriented. We indicate 

how the MINA model can be improved for 3D description. A second advance is a 

good quantification of the attenuation. Precise measurements are obtained using 

plane waves angular spectrum method together with the computation of the 

transmission coefficients for triclinic material. With these two first advances, the 

third one is now possible: developing an inverse method to obtain the material 

description through ultrasonic measurements at different positions.  
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1 Introduction 
 

Austenitic steel multi-pass welds exhibit a heterogeneous and anisotropic structure 

that causes difficulties in the ultrasonic testing (UT) understanding. Increasing the 

material knowledge has been an international large and long term research field. 

Some years ago works aiming at giving a precise description of the material 

provided significant progresses [1].This paper acquaints firstly with a synthesis of 

several research works aiming at modelling UT inspection in multipass welds. In 

all these previous works the UT modelling is considered as 2D case. In a second 

part the question of a 3D representation of the material resulting from the welding 

in position arises. New modelling ideas are presented to improve 2D MINA model 

towards a 3D material description. Modelling is done with the final goal to use 

inverse methodology in UT testing. The paper syntheses other milestones obtained 

along this way: attenuation measurements and results with inverse methodology. 

2 The context: UT modelling for welds inspection 
 

The main specificity of the weld material is its oriented grain structure which has 

to be described as an anisotropic and heterogeneous material. The description of 

the grain structure regularly progresses from simplified and symmetrical structures 

to more realistic descriptions. Ogilvy [2] proposes to calculate the central ray in a 

grain structure described by mathematical functions. Schmitz et al [3] use the ray 

tracing code 3D-Ray-SAFT with an empirical grain structure described by 

orientation vectors with three coordinates. The EFIT (Element Finite Integration 

Technique) code is used by Halkjaer et al [4] with Ogilvy's grain structure. 

Langerberg et al [5] also simulate a simplified symmetrical structure. Spies [6] 

uses a Gaussian beam approach to calculate the transducer field and to ensure 

faster modelling. The author simulates the heterogeneity by splitting up the weld 

into several layers of transverse isotropic material [7]. X. Zhao et al [8] also use a 

ray tracing approach to determine optimal configuration for flaw detection. 

Corresponding material descriptions do not always reach the complexity of the 

heterogeneous structure resulting from manual arc welding. The structure of the 

real material is non symmetrical and UT modelling may exhibit strong differences 

[9]. Our modelling approach couples MINA model and ATHENA code [10].  

Heterogeneous and anisotropic structure is defined by introducing a mesh 

containing the grain orientations calculated by MINA model (cf. § 3). This permits 

to define the appropriate coordinate systems of the elasticity constants at any point 

of the weld. A result of the coupling between ATHENA and MINA is presented 

on figure 1. The UT testing is modelled using a 60° longitudinal wave at 2.25 

MHz. The corresponding echodynamic curves are calculated using ATHENA 

results in transmission at the bottom of the weld. In the right part of this figure the 

result of the coupling MINA-ATHENA is compared with an ATHENA modelling 
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using the “real” grain structure. This real grain structure is obtained by image 

analysis of the macrographs [11]. 

Fig. 1 Example of results from coupling ATHENA and MINA codes. 

3 MINA model parameters for flat welding 
 

planned to describe the material resulting from flat position arc welding with 

shielded electrode at a functional scale for UT modeling. It predicts the result of 

the grain growth [12]. Three physical phenomena are involved: the epitaxial 

growth, the influence of temperature gradient, and the competition between the 

grains (selective growth). Epitaxial growth implies that the melt metal takes in 

each point the crystallographic orientations of the underlying pass. The grain may 

turn during the growth but the crystallographic orientation is kept. When the 

temperature gradient changes of direction, grains have a propensity to align 

themselves with the gradient direction. In the case of multi-pass welding, 

temperature gradient direction changes within the welding pass and also from one 

pass to the other. A competition between grains exists as they preferentially grow 

if their longitudinal axis is close to the direction of the temperature gradient.  

The challenge of creating a model reproducing the result of these phenomena has 

been successfully won with MINA model. The difficulty was to use only 

knowledge reported in the welding notebook and, in order to complete this 

knowledge, to find representative parameters of the variation in the deposit of 

passes. Macrographs analysis was widely used to build the model. The model is 

dedicated to predict material resulting from flat welding. In that case the grain 

structure is reputed to be 2D. A complete description of the model can be found in 

[12]. Main MINA model parameters are recalled here in order to introduce how 

MINA model may be improved for welding in position. A pass is represented by a 

parabolic shape. Pass heights are calculated proportionally to the diameters of the 
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electrodes. A partial remelting is created when a new pass is laid. The two most 

important parameters are the lateral and the vertical remelting rates, respectively 

noted RL and RV. Two angles are used to imitate the operator’s tilt of the 

electrode. In fact the operator has to modify the way he deposes a pass along the 

welded joint. This causes an incline of the welding pool. In Figure 2a, weld pool 

shape and incline of the pass are sketched on a macrograh. Two cases are 

considered. When a pass leans on the chamfer the angle of rotation θB reproduces 

the influence of the weld geometric chamfer. This angle is considered to be the 

same for the two sides of the weld due to its symmetry. When a pass leans on a 

previous pass, the temperature gradient is rotated by an angle noted θC.  For 

example in the case where a pass leans to its left and its right on other passes, the 

angle θC equals to zero. All angles are automatically calculated in relation to the 

location of each pass written in the welding notebook. 

With these four parameters (RL, RV, θB, θC) the grain orientation in a mesh is 

calculated using an algorithm which reproduces the three physical phenomena 

previously mentioned. The temperature gradient direction is deduced from the 

parabolic weld pool description [12]. MINA model output is a matrix whose 

elements represent the local orientation of the grains resulting from the complete 

solidification process due to the remelting of passes (see figure 2). The matrix 

elements are calculated pass after pass in the order written down in the book.  

 

θ
B

θ
C

   

Figure 2. (left to right) Macrographs, resulting grain structure, differences map in the case of an  

horizontal-vertical weld 

4 Improving MINA for welding in position 
 

Welding in position corresponds to several standardized positions: the overhead 

position, the vertical position (vertical up or vertical down), or the horizontal-

vertical position. For this study specific welds have been made with the same base 

material and the same electrodes. Macrographs were achieved in two 

perpendicular planes in order to study 3D effects on grain solidification. The 

conclusions give us clear indications to improve MINA model towards a more 
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general model: new parameters are then proposed to be able to reproduce grain 

structure for welds in position. The figure 2 represents one of the new 

macrographs used for this study. Figure 2b presents resulting grain structure with 

a mesh-size of 2x2 mm². It could be compared with the corresponding macrograph 

in Figure 3b. Figure 2c shows the map of orientation differences. Differences are 

presented with level lines where grain orientations are gathered by about ten 

degrees. The real grain orientations are measured by an image analysis system. In 

comparison with previous studies for flat welding position, the resulting of grain 

structure for horizontal-vertical welding is truly very different. A strong non-

symmetrical grain structure can be observed. In figure 2 the differences are 

localized on the left side of the weld. This demonstrates that the MINA model 

parameter θB which aims at representing the incline of the weld pass on the 

chamfer could no more be used in the same way as for flat welding (symmetrical 

behavior). We propose to introduce another parameter called θD to take into 

account this significant difference.  

 
 

a.  

 

b.  

Figure 3. Macrographs of grain structure for horizontal-vertical weld (TV and SV’ cuts) 

New knowledge is also obtained by considering macrographs in the SV or SV’ 

plane (cf. figure 3b). SV’ plane corresponds to a cut along the main grain 

orientation. These macrographs were done to study disorientations in the welding 

direction. For flat welding position, no disorientation is observed. A slight 

disorientation, about 5°, could be observed for welding in overhead position and 

in horizontal-vertical position. A major one is observed in the case of vertical 

position welding, it is about 20° to 25°. In figure 3b the grains disorientations 

were underlined by additional lines following biggest grains. For further studies 

we propose to introduce a new parameter called  corresponding to these φ
disorientations. This parameter should be used to improve the MINA model, but it 

supposes at first that a fully 3D material is also needed in propagation code.  

Another parametric study was done in this work to analyse modelling behaviour 

when welding in position is considered. The shape of a pass is a very important 

aspect in the MINA approach as it determines the temperature gradient. The ratio 

of the width (w) and the height (h) of passes could be an interesting descriptive 
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parameter to compare passes shape. This ratio w/h is measured on macrographs 

and could be automatically calculated by MINA. The MINA model gives very 

satisfactory w/h ratios, with a average difference of  10% with measured ratios on 

macrographs. The exception is the vertical welding position for which modelled 

and measured ratios are more different, about 20%. This difference may result 

from a higher difficulty to estimate with accuracy the remelting parameters on 

macrographs. If remelting parameters are correct, a modification of the weld pool 

could be suggested. A large previous experience with macrographs for flat 

position welding allows assessing that grain structure behaviour is similar if 

welding conditions keep the same. It enables to conclude that the MINA model 

could be used with few adaptations for most of the welding positions. In the case 

of vertical welding, more important differences are observed between the real 

grain structure and the modelled one. The shape of the weld pool should be 

modified. For this welding position it would be useful to verify the conclusions on 

another weld. The most important conclusion for this welding position is the 3D 

aspect of the grain structure. If this property is not taken into account in 

modelling, misunderstanding of the UT testing can rapidly occurs. In case of finite 

element modelling, only 3D codes would correctly predict beam deviation. 

5 Attenuation measurements 
 

The second advance which is required for wave propagation codes is a good 

quantification of the attenuation. The coupling of the MINA-ATHENA codes 

demonstrated good results when comparing measured and predicted amplitudes at 

the bottom of the weld (UT in transmission) [10]. Differences are observed when 

considering the amplitudes. The origin of these differences is the real attenuation, 

not reproduced with the finite element modelling. The attenuation can reach 0,3 

dB/mm for such grain structures [13]. The origin of the attenuation in welded 

materials is for the most part caused by scattering effect on the columnar grains. 

The value of this attenuation depends on the size, shape and orientation of the 

grains. An experimental set up is designed in order to study the ultrasonic 

attenuation as a function of the grain orientation [14]. A measurement in 

transmission is used in a water tank. The emitter is a 1/2" in diameter wideband 

transducer of 2.25 MHz central frequency, and the receiver is a hydrophone.  

The welded samples were cut in a flat position and shielded metal arc welding 

mock-up. The samples are considered macroscopically homogeneous and 

orthotropic. The real orientations that are obtained are 0°, 10°, 35°, 45°, 60°, 80° 

and 85° relatively to the normal to the samples surface. Samples are placed in the 

farfield of the emitter. The beam decomposition into plane waves angular 

spectrum is used to correct the effects of beam divergence [15]. With this 

approach, deviations and mode conversions could be taken into account. The 

hydrophone scans a plane z=zo parallel to the emitter surface and acquires a signal 

s(t,x,y,zo) at each point (x,y). The angular frequency spectrum S(x,y,ωo,zo) is 
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calculated for each signal by Fourier-transform. For an angular frequency ωo, a 

2D spatial Fourier-transform gives the so called plane waves angular spectrum 

U(kx,ky,ωo,zo) in the k-space domain. Firstly the incident field is mapped without 

any sample. The hydrophone moves in the plane containing the front face of the 

sample (zo=0). Then the sample is inserted and the transmitted field is mapped in 

a second plane in the proximity of the sample's back face (zo>d). For the angular 

frequency ωo corresponding to a frequency of 2.25MHz, the plane waves angular 

spectra U(kx,ky,ωo,zo=0) = Uinc and U(kx,ky,wo,zo=d= ) = Uε tra are calculated. A 

“semi-theoretical” transmitted plane waves angular spectrum U'tra is obtained by 

multiplying experimental Uinc with the transmission coefficients calculated in the 

k-space domain.  

Transmission coefficients computation was solved in the orthotropic case [15] and 

was then extended to the monoclinic case. In fact the elastic description of an 

orthotropic material disorientated according to an axis of the fixed coordinate 

system becomes monoclinic. So, except for samples with 0° and 90° grain 

orientation that present an orthotropic description, all other samples are described 

as monoclinic materials. For some samples a deviation in two directions is 

observed (sample 10°). It confirms the result of the first study where little 

deviation in plane SV are observed (§ 4). If these two deviations are considered, 

the material exhibits triclinic elastic properties for the ultrasonic beam. 

Transmitted coefficients have to be calculated for this case. The attenuation for 

each direction of propagation (kx,ky) is calculated by comparing simulated 

transmitted beam and real one. The attenuation is expressed as the ratio between 

the experimental transmitted energy and the theoretical transmitted energy. 
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Figure 4. Experimental results of attenuation 

Experimental results in figure 4 are in good agreement with theoretical 

calculations using Ahmed’s modelling [16]. The double correction of beam 

deviation is used to obtain a good transmitted energy. This double correction 

reveals to be important for the 0° sample as a grain deviation in SV plane of about 
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5° was observed. With this correction a global monotonic increase of the 

attenuation is observed. Without this correction the attenuation value at 0° would 

be equal to 0,18 dB/mm. This result confirms once more that it is valuable to 

describe precisely the material. Slight 3D disorientations may give significant 

variations in the UT modelling. In part 4, it was observed that such order of 3D 

disorientations is possible for welding in position.  

6 Inverse methodoly  
 

The inverse problems are nowadays regularly encountered in the field of 

ultrasonic nondestructive testing [17]. The principle consists in comparing data 

obtained from experimental measurements with those obtained from a 

mathematical model known as the direct model. Results depend on the parameters 

assigned to the model (parameters of interest p). In this study the direct model 

corresponds to the coupling of MINA and ATHENA. The parameters of interest 

(input data) are the remelting and pass inclination parameters p = (RL, RV, θB, θC). 

The output data is the full transmitted echodynamic curve at the bottom of the 

weld. The echodynamic curve corresponds to the maximum wave amplitude 

measured by a receiver scanning the bottom of the weld. In the interest of 

sensitivity, five transmitter positions are used so that the ultrasonic beam crosses 

most of the weld. The dissemblance criterion used to quantify the comparison is 

the estimator in the least squares sense. 

Current ATHENA code does not yet take the attenuation into account. As a 

consequence, the amplitudes of the echodynamic curves simulated by ATHENA 

and those of the experimental curves can notably differ. Inversion of experimental 

data is not possible at this time. To overcome this difficulty experimental data are 

obtained by simulation using MINA and ATHENA. The main advantage is that 

the inversion can be done without the errors inherent in experimental 

measurements. All the parameters are completely known. The sensitivity of the 

cost function J and the presence of local minima can be studied in that case. This 

process is a useful first step before inversion with real data to demonstrate that a 

model is sufficiently well established to be inversible. Figure 5 shows an example 

of the evolution of the estimated parameters. 

The genetic algorithm GA-Toolbox from MATLAB® is used. The main algorithm 

parameters are therefore the population size (N), the number of bits used to code 

parameters (Preci), the crossover rate (0<PcCros<1) and the replacement rate 

(0<Ggap<1). The tournament selection and the double point crossover are used. 

The search domain must be well-defined. These limits have been determined for 

each parameter experimentally from macrographs. This gives a realistic precision 

of the parameters.The inversion solution is found in commonly 16 generations, for 

a computation time of 4 hours on a Pentium IV @2.4 GHz [17]. The estimated 

parameters RL = 0.471, RV = 0.263, θB = 18.18° and θC = 12.25° are 

independent from the initialisation and are very close to the solution. 
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θθθθC = 12.25°  (12°)
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RV = 0.263   (0.26)

 

Figure 5. Inverse Methodology Results 

The demonstration is done that inversion of this kind of direct problem is now 

possible.   

 

7 Conclusion 
 

Several advances in the field of ultrasonic modelling are presented. They are 

related to the ultrasonic testing of austenitic stainless steel welds which were 

reputed to be very difficult to be qualified by ultrasound. Advances were 

conducted with the intention to model the complete ultrasonic beam propagation 

in multi-pass welds. The foundation of all these advances is to be able to have a 

good material description for wave propagation. The MINA model allows a solid 

foundation regarding this objective. In this paper new elements are brought to 

enlarge the range of application of the MINA model. Another important element 

for the material description is a good evaluation of the attenuation, a solution for 

accurate measurement is presented and results are in good agreement with 

modelling. The direct model is settled using MINA and ATHENA. The inverse 

crime is solved; as a result it demonstrates the soundness of this coupling.  

Further prospects are planned. The first one is related to an inversion which takes 

into account experimental data. Future works are planned with the new ATHENA 

code taking attenuation into account. A second immediate prospect is to use this 

inversion method to verify the sequencing order of the passes. The order of passes 

is used in the MINA model to calculate the value of θB and θC parameters. 

Several modelling results demonstrated that there is a great influence of this 

sequencing order in the final resulting grain structure. Ultrasonic testing of 

complex welds may now be studied using this direct model as [19]. 
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Imaging of defects within austenitic steel welds 

using an ultrasonic array 

G. D. Connolly, M. J. S. Lowe, S. I. Rokhlin, and J. A. G. Temple 

 
 
 
 
 

Abstract   The use of ultrasonic arrays has increased dramatically within recent 

years due to their ability to perform multiple types of inspection and due to the 

fact that phased arrays allow the immediate production of images of the structure 

through post-processing of received signals. These arrays offer great potential to 

the inspection of austenitic steel welds in safety-critical applications, where it is 

important to be able to detect and size any crack-like defects that may occur 

during service or may have occurred during welding. This paper outlines the 

procedure behind the generation of images of simple planar defects within a 

previously developed weld model. Particular attention will be given to the 

principles of the modelling of elastic wave propagation through anisotropic and 

inhomogeneous media. Images of simulated defects within the structure 

produced from two inspection setups will be shown. 

 
1 Introduction 

 
Austenitic steels are favoured for use in engineering applications within the 
petro-chemical and nuclear industries, particularly for the fabrication of piping 
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and pressure vessels. They have demonstrated high strength and toughness as 
compared to typical carbon steels and have the advantage that post-welding heat 
treatment need not be applied due to the high resistance to brittle fracture. These 
components will usually see cyclic and heavy loading, and as such, any crack-
like defects that have been formed during the welding process may propagate 
during service. It is important to be able to monitor the location, shape and size 
of these defects to evaluate the condition of the weld, since failure would result 
in both physical damage of the plant with safety implications, and economic 
damage whilst repair or replacement is under way. 

A reliable method of ultrasonic inspection is sought to remove the need for 
radiography and its high associated cost. In recent years, the use of ultrasonic 
arrays has increased due to their flexibility, rapidity and ease of inspection when 
compared to single element transducers. Some researchers have taken advantage 
of the superior imaging performance of the ultrasonic array to generate images of 
internal defects [1], including those within scattering and inhomogeneous 
materials [2]. However, since the 1970s [3], it has been known that there are 
limitations in the capabilities of inspection of austenitic steels due to scattering 
and beam-steering. Studies of micrographs of welds have revealed that the grains 
tend to develop curved shapes, elongated in the direction of maximum heat flow, 
thus resulting in the formation of an anisotropic inhomogeneous material. Fig. 1 
shows a typical weld microstructure. 

It is also difficult to generalise the microstructure of the weld, since it is a 
function of the metallurgical composition of the parent metal and the weld metal, 
the welding temperature and orientation of the weld during formation. Many 
researchers have proposed weld models to account for material inhomogeneity. 
These models open possibilities for the improved understanding of wave 
behaviour within, for instance, austenitic steel V-welds through propagation of 
simulated rays. A concise introduction to this problem is found in Halmshaw [4]. 

 
 
 
 
 

 
 

Fig. 1 Typical weld microstructure, showing 
both weld pass boundaries and grain 
boundaries. Image taken from [5]. 
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This paper will take a similar approach based on a weld model proposed by 
Ogilvy [6]. Rays will be traced through the model, will interact with point or 
crack-like defects and simulated signals will be generated using common post-
processing imaging techniques. The next section will present an introduction to 
the behaviour of bulk waves in both isotropic and anisotropic media, focusing on 
how fundamental wave properties would be determined from material data. The 
factors that would decide how waves interact with interfaces are then presented, 
followed by a brief treatment of the computation of delay laws and of several 
basic imaging algorithms. Finally, examples of typical simulated images will be 
shown using two different algorithms. 
 

2 Theory of elastic wave propagation 
 

In this section, a brief description of the nature of elastic waves is given. 
Excellent detailed treatments may be found in chapter 2 of Harker [7] or chapters 
4-5 of Cheeke [8]. In an unbounded elastic solid, the propagation of waves 
causes particles of the medium to become displaced linearly from their resting 
positions in a periodic fashion. The phase of the wave is a property that describes 
where along the displacement cycle is a particular point of this medium. Lines 
that join points of constant phase describe wavefronts and the velocity at which 
these wavefronts propagate shall be called c, the magnitude of which shall be 
known as the phase velocity cP. 

The idea of a group velocity may have first been proposed by Russel [9], who 
spoke of the velocity of a group of waves (which will be called the group 
velocity cG) as distinct from the velocity “of the individual waves of which it is 
composed”. A relationship between the group velocity, the wavevector (the 
vector that points in the direction of wave propagation and whose magnitude is 
the wavenumber) k, and the angular frequency ω in elastic waves in terms of c 
was specified by Lord Rayleigh: 

 
 

dk

dc
kccG +=           (1) 

 
Most widely known propagating elastic waves in elastic solids are classed as 

either longitudinal or transverse. In a plane longitudinal wave, the particles are 
given a displacement parallel to the direction of propagation of the phase 
velocity and in a transverse wave the particles are displaced perpendicularly. 
Surface waves are not considered in this paper. A third type of wave that is 
relevant to the calculations is the evanescent wave, which may be generated at 
interfaces. Where such a wave is present, the periodic motion of the particles of 
the medium will be elliptical rather than linear. The polarisation vector p then 
becomes complex, where the imaginary components represent the phase shift 
between the motions along the principal axes of the vector. 
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Here a method of determining wave properties given only the phase vector is 
summarised. Using the implied summation convention, we will begin with the 
Christoffel equation 

 
( ) 02 =Γ− kikikP pc δρ     (2) 

 
where ρ is the density and Γ=Cijklnjnk, called the Green-Christoffel acoustic 
tensor, n being a vector describing the direction cosines of the wavevector. If we 
apply the eigensystem method to (2), we find that the eigenvalues λ and 
eigenvectors ν are, for given direction cosines of the wavevector 

 
2
Paa cρλ = ; 

aa p=ν  (3) 

 
where a represents the index of a particular wave. The group velocity cG can be 
determined from: 

 

kjlijklG ppkCc
ρ
1

=   (4) 

 
The prediction of properties of waves reflected and refracted from an 

interface is fundamental to this study. Only well-bonded solid-solid interfaces 
are dealt with in this paper. Further reading upon this approach may be found in, 
for instance, chapter 9 of Auld [10]. 

In a system of three spatial dimensions, three waves will be reflected and 
three will be transmitted. Here the approach used by Rokhlin et al. [11] is 
followed, where a sextic equation is constructed whose solutions yield the 
component of the phase vector normal to the interface. Since all phase velocity 
vectors lie in a single plane perpendicular to the interface, the other two 
components are already known. Complex conjugate pairs produced from this 
equation indicate the presence of evanescent waves. Once the unit phase vectors 
are found, the methods described earlier are used to compute the polarisation 
vector, the phase vector and the phase and group velocities. 

At this point, the remaining unknown quantities are the amplitudes and 
phases relative to the incident wave. To find these, we consider six boundary 
conditions to enforce continuity of displacement and stress at the interface, 
which are rearranged to form a matrix. If we assume that there is only one 
incident wave striking the interface, we may write 
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where superscript a is the wave index and superscript i indicates a property of the 
incoming wave, the interface is the 12 plane and all waves lie in the 13 plane. 
The system of above equations can be represented in matrix form, where the 
unknown values Aa form a vector ξ, such that 

 

f = Fξ           (7) 
 

where f and F represent the terms in (5) and (6), respectively. The matrix is 
inverted to solve for ξ, and thus we obtain the reflection and transmission 
coefficients. 

 
3 Modelling the weld 

 
To represent the weld microstructure, we have used a simplified weld model, 
proposed by Ogilvy [12]. This model describes a region of continuously varying 
orientation of elastic constants. The orientation θ of the crystal z-axis relative to 
the global y-axis is given by the expression: 
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where x and y are coordinates in a system whose origin is at the bottom of the 
weld centreline (not necessarily a line of symmetry), T and n are parameters 
associated with the formation of the orientation structure, D is the distance from 
the weld centreline to the bottom corner, and α the angle that the boundary 
between the weld and the surrounding material makes with the centreline. These 
parameters are shown in fig. 2. The orientations produced from this formula will 
take the form illustrated in fig. 3. This paper uses a transversely isotropic weld 
material whose elastic constants are given by Roberts [13], such that all 
anisotropy is confined to the xy plane. Scattering effects are ignored by the 
model. 

To propagate a ray, we define a starting position and a phase vector. The 
methods outlined in section 2 are used to find its group velocity that will 
determine its travel course and speed. The ray will continue along its path until it 
reaches a boundary or the edge of the model, whereupon it is arrested and treated 
as an incident ray to a single interface as described in section 2, and the 
appropriate choice of reflected or transmitted rays completes the ray evolution 
process. However, when the ray passes through an inhomogeneous material, a 
nonphysical boundary must be applied after each time step to account for the 
variation in local material properties. These boundaries are oriented such that 
they trace a line connecting points of constant orientation of elastic constants at 
the location of the arrested ray.  
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Fig. 2 Parameters associated with the grain 
structure in material l; T is a constant 
proportional to the grain tangent at the 

boundary and n is a constant proportional to 
the sharpness at which the orientations 

change with x position. The other side may 
take different parameters. 

 
 

Fig. 3 Orientations of the elastic constants in 
the weld region as modelled by the ray 

tracing function. 

 

 
Alternative simulations have been carried out using the finite element (FE) 

software package ABAQUS [14] to validate the predictions of ray interaction at 
a single boundary. The verification methods have been briefly described in [15]. 
Close agreement of ray properties with the theory has been observed across a 
variety of cases, including at a boundary between an isotropic material and an 
anisotropic material, and between two anisotropic materials of the same elastic 
constants but different orientation. 
 

4 Computation of imaging delay laws 
 

The imaging space is divided into a grid of horizontal and vertical lines. At each 
intersection is a node, and the following process is applied to each node in turn. 
According to conventional imaging procedure, delay laws are used to focus the 
received signals on each node and the image is constructed from the discrete 
intensities. Computation of these laws essentially requires the repeated solution 
of the path taking, in our case, a local minimum amount of time for a ray to 
travel from one point to another; this route is known as the Fermat path. 

To select the ray that hits the target, a trial-and-error approach is used, similar 
to that proposed in section 3.11 of Červený [16], and is illustrated in fig. 4. A 
target line is constructed within the structure, perpendicularly to the vector 
joining the ray source to the ray target. Rays propagate from the source and will 
terminate somewhere along the target line. The distance along this target line 
between the ray intercept and the target is used to select the phase angle at which 
the next ray is launched. For example, in fig. 4, the first ray terminates above the 
ray target and the second ray terminates below. Linear interpolation will be used 
to select a phase angle in between the angles of a pair of the closest two attempts 
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that were either side of the target. This is repeated until the ray locates the target 
point within a particular margin of error. 

 
When each required ray is found, we record four important properties: 
 

1. The change in ray energy due to interaction with physical boundaries (HB): 
the weld boundary and the backwall. These may be calculated from the 
theory in section 2. 

2.  The change in ray energy due to divergence (HD). Two rays are propagated at 
a small angle (in the order of a few minutes of arc) to either side of the 
Fermat ray for a length of time given by HT. The final positions of these two 
rays, along with the final position of the central Fermat ray, are used to define 
an arc; the length of which will be called lD. The change in energy is then 
given by the following expression: 

 

Dl

d0θ             (9) 

 
where θ is the angular spread and d0 is a short reference distance, usually in 
the order of a micrometre, from the starting position of the ray. 

 
The product of HB and HD yields the total energy change, a value that we shall 
call HE. 
 
3. The time taken for the ray to reach the target; let us call this quantity HT. 
4.  The change in phase (HP) due to interaction with physical boundaries, given 

by theory in section 2. 
 

 
 

 
 

Fig. 4 Trial-and-error method applied to the 
problem of joining the ray source to the ray 

target via a Fermat path. 
 

 
 

Fig. 5 Different ray paths to the target, phase 
angle anticlockwise: a transverse direct 

wave, reflection off the backwall with no 
mode conversion, reflection off the backwall 
with mode conversion. Half-skip inspection 

requires reflection of only the outgoing wave 
and full-skip inspection requires reflection of 

both the outgoing and the returning wave. 
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Fig. 6 Properties of a ray starting at the tip of the marker as a function of ray termination position, 

showing (a) original ray-tracing diagram from the transducer element at (x,y) = (42,58)mm, (b) time 
delay or time of flight in seconds, (c) logarithmic plot of the energy fraction due to ray divergence, 
(d) logarithmic plot of the energy fraction due to boundary interaction, (e) logarithmic plot of the 

total energy fraction and (f) overall coverage fraction for all the elements in the transducer array e.g. 
0.5 means that half of the elements in the entire array can access that position. Quantities are given 

by the shade indicated in the scale to the right of the diagram; for (b) to (e), the white areas at the top 
left are entirely inaccessible to the relevant transducer element and for (c) to (e), the scale is 

logarithmic and relative to a reference value of 1.0 at the origin of the ray. All diagrams are for a 
longitudinal ray that does not convert mode upon reflection. The reflected area is shown in the 

negative y region for convenience. 
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Fig. 7 Properties of a ray starting at the tip of the marker as a function of ray termination position. 
The significance of the letters within parentheses is as for fig. 6. All diagrams correspond to an SH 

ray without reflection. 

 
The method that produces delay laws is also used to generate artificial signal 

data, and can also be applied with or without reflection from the backwall. If a 
reflection is required, then an option is given to change the wave mode upon 
reflection. It is in this manner that delay laws and signal data for half-skip and 
full-skip inspection types (see fig. 5) can be computed. 

In figs 6 and 7, a 16-element simulated transducer array is situated such that 
its ends are at (x,y) = (28,58) and (58,58). Examples of the graphical 
representation of the variation of four of the properties listed above across the 
weld model are shown in figs 6 (P ray reflecting from backwall) and 7 (SH ray 
without reflection) as a function of ray target position. In (a) to (e) of both these 
figures, the ray has originated from the eighth transducer element from the left, 
at (x,y) = (42,58)mm. 

In fig. 6, data points below the line at x = 0mm correspond to those rays that 
have been reflected at the backwall. The anomalies at the bottom-left are due to 
the temporal discretisation of the algorithm and the sparsity of rays (see 
particularly fig. 6(a)). In addition, fig. 6(f) shows that this region is difficult to 
access and fig. 6(e) indicates that the energy concentration is low in this area, 
thus any defect located here would be extremely difficult to detect. 
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5 Imaging algorithms 
 

An active imaging system consists of an array of transducers, acting both as 
receivers and transmitters, to access an area of material. One or more of the 
transducers, acting as a transmitter, emits a pulse, whose reflections are received 
by various combinations of transducer elements acting as receivers. The 
Synthetic Aperture Focusing Technique (SAFT) processes a series of time traces 
that are sent and received by the same element in the array. Another method 
known as the Total Focusing Method (TFM) requires the recording of all 
possible transmitter and receiver combinations. The former method compromises 
completeness of data acquisition for a more rapid computation process; SAFT 
requires n summations where n is the number of elements in the array. In 
contrast, TFM requires ½n(n-1) summations. 

All calculations here are performed in the frequency domain. A toneburst 
modified by a Hanning window is applied to simulate reflected signals, whose 
function T(k), in its discrete form, is given by: 
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for 1≤k≤nk, where nk is the number of time samples and nc is the number of 
cycles. This toneburst is transformed to a function of frequency: 
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for 1≤k≤nf, where nf is the number of frequency samples and fc is the centre 
frequency. In practice, delay laws are computed in two stages: once for the 
journey towards the defect and once for the journey away from the defect. In this 
model, we assume perfect reflectivity at the defect, no change in phase for an SH 
wave and a change of π for SV and P waves. 
From this point let us assign the superscripts + and - to denote rays travelling 
towards and away from a defect, and the superscripts s and d to denote signal 
data and delay law data, respectively. Signal data are shifted in time by a factor 
ФT, in phase by ФP and are modulated in energy by ФE. If these data were 
generated according to the methods of section 4, then the factors would be 
defined thus:  
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The amplitude of the image intensity I at a particular point is a function of these 
factors, given by: 
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where tx indicates the transmitting element and rx the receiving element and (14) 
is the broadband variant of (13), operating over the full range of frequencies 
according to the function F(k). 

 
6 Simulated images 

 
In this section, we will use materials defined in tables I and II for the weld and 
the parent sections respectively. The weld will also take the parameters defined 
in table III. A simulated array of 32 elements is positioned 27mm from the 
centerline of the symmetrical weld, where the elemental separation is 1.0mm. 
Directivity of individual elements is ignored by this model. 

Figs 8 and 9 show imaging examples of a crack-like defect, modelled as a 
series of 24 point defects in accordance with the Huygens principle. In fig. 8, a 
simulated inspection is carried out using direct SH waves with both the SAFT 
and TFM imaging algorithms at a frequency of 1.5MHz. The crack is 8.6mm 
long and is located on the far weld boundary. 

We see that the energy has localised on both ends of the crack, and that in 
cases (b) and (d), where the correct delay laws have been used, we are able to 
accurately locate and size the defect. Delay laws pertaining to a weld composed 
of the material described in table III were used to produce the images of cases (a) 
and (c). In these images, the peaks are not aligned with either end of the crack 
and so the defect will be mislocated and possibly missized, due to the erroneous 
assumption of weld isotropy. In all images, responses from the bottom end of the 
crack are rather weak since it falls within a partial blind area (also see fig. 7(f)). 

In fig. 9, a full-skip inspection is employed on a crack 8.0mm in length 
situated along the centerline of the weld. The transverse waves are emitted by the 
array, mode convert to longitudinal upon reflection from the backwall. The 
return path is the reverse of the outgoing path. We see again that attempts to 
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apply homogeneous isotropic delay laws to the simulated signal data will result 
in mislocation of the defect within an inhomogeneous weld but use of the 
inhomogeneous delays show a substantial improvement in location. In both figs, 
it is also seen that SAFT images show tighter concentration of energy about the 
crack tips but TFM shows better rejection of unwanted image features.  

Fig. 8 Imaging of a crack using direct SH inspection. A typical simulated SAFT image and the weld 
geometry and the crack location are shown, along with: (a) SAFT image using incorrect delay laws 

(i.e. assuming weld isotropy), (b) SAFT image using correct delay laws, (c) TFM image using 
incorrect delay laws and (d) TFM image using correct delay laws. 

Fig. 9 Imaging of a crack using full-skip TLLT inspection. A typical simulated SAFT image and the 
weld geometry and the crack location are shown, along with: (a) SAFT image using incorrect delay 
laws, (b) SAFT image using correct delay laws, (c) TFM image using incorrect delay laws and (d) 

TFM image using correct delay laws. 
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Table I Elastic constants for the transversely 
isotropic stainless steela. Voigt notation 

applies 
 

C11 = C22 = 249.0 
C12 = C21 = 124.0 
C13 = C31 = C23 = C32 = 133 
C33 = 205 
C44 = C55 = 125 
C66 = 62.5 
 

aUnits ×109Nm-2, with ρ = 7.85×103kgm-3 
 

Table III Parameters for the weld material 
 
α = arctan(0.4) 
D = 1.8mm 
n = 1.0 
T = 1.0 
 

Table II Elastic constants for isotropic mild 
steelb. Voigt notation applies 

 
C11 = C22 = C33 = 282.7 
C12 = C21 = C23 = C32 = 122.2 
C44 = C55 = C66 = 80.7 
 

bUnits ×109Nm-2, constants computed using 
E = 2.10×1011Nm-2, ν = 0.30, with ρ = 
7.90×103kgm-3 

 
 
 
 
 
 
 
 
 
 

 

7 Conclusion and discussion 
 

This paper has presented an overview of ray-tracing principles through strongly 
inhomogeneous and complex anisotropic materials. A technique to compute 
delay laws applicable to a simulated transducer array has been proposed and 
implemented. This software tool is able to predict the Fermat path to reach a 
particular point, the energy carried by the ray, and the coverage of a weld region 
for a given array location. Examples of such plots have been shown, to include 
ray reflection from the backwall. Images using the SAFT and the TFM 
techniques have been produced by focusing simulated broadband signals to 
locate simple crack-like defects, where responses have been detected from both 
ends of the crack. 

The importance of using delay laws corresponding to the correct material and 
using laws that represent the inhomogeneous properties of the weld has been 
underlined. It has been demonstrated that mislocation may occur if the 
inhomogeneity and the anisotropy are ignored. 

There is much scope for extension of this model. It is possible to include 
directivity of array elements, such that sent and received signals are given a 
particular weighting as a function of the wavevector. The potential to make fuller 
use of the information listed in section 4 should be explored. The results shown 
here have paved the way for the possible application of another weighting of 
received signals to compensate for poor transducer coverage in certain areas. 
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Materials and mechanical aspects of bonded 

joints 

 M.E.R. Shanahan 

 

  

 

 

Abstract The use of adhesive bonding in transport is, to some extent, limited due 

to insufficiently reliable NDT techniques. We discuss various advantages and 

disadvantages of adhesive structures and highlight where NDT, and particularly 

acoustics, could alleviate the present, common, suspicion of glued structures. 

1 Introduction  

Bonded joints are becoming widespread in industrial applications, particularly in 

transport, for a variety of reasons. In general, bonded overlap joints present 

reduced stress concentrations when compared with their bolted, riveted, or 

otherwise mechanically assembled counterparts. In addition, adhesive structures 

are lighter, and in particular, specific mechanical properties are increased (e.g. 

E/ρ, or σr/ρ, where E, σr, and ρ are respectively Young’s modulus, failure stress 

and density). Bonded joints are generally intrinsically fluid- tight, at least on a 

short time scale (over a longer time scale, diffusion of the surrounding medium 

may occur: see below), and adhesives may be used to bond different and/or thin 

materials. A schematic example of the reduced stress concentration behaviour is 

given in Figure 1, in which a bolted joint is compared to an adhesive joint. 

 

Composite materials combine advantages of relative lightness, high strength and 

rigidity, and may be rendered anisotropic, when required, with different rigidities 

in different directions. As a result, there is a significant increase in quantities of 

ca. 25% composites by weight, and therefore considerably more by volume!). 

composites used in aircraft structures (e.g. the Airbus A380 is purported to contain 



 

 

Figure 1: Schematic comparison of stress concentrations in bolted (on left) and 

bonded joints.  σ represents tensile stress in substrate 1, and τ , shear stress in the 

adhesive layer. 

  

However, it is very difficult to use classical assembly techniques when using 

composites materials, especially those employing an organic matrix, since the 

materials to be joined must be drilled. This is often not easy to do, and in addition, 

drilling disrupts the continuity of long fibre composites, which in turn adversely 

affects the performance of the material. Thus, in addition to the advantages of 

adhesive bonding already enumerated, its use is virtually essential in the 

construction of composite assemblies. 

 

2 NDT and Adhesive Bonds 

 

Despite several advantages manifest with bonded joints, certain problems remain. 

Since adhesives are generally polymeric materials, typically with a glass transition 

temperature, Tg, in the range of 120 to 180°C, high temperature service conditions 

are precluded. Modern structural adhesives (e.g. polyimides) may have a Tg of ca. 

300°C and withstand short periods at 600°C, but this is still not “hot”, compared 

to the temperatures that metals and ceramics can take. Ageing in deleterious 

fluids, particularly water and aviation fuel, can lead to medium or long-term 

degradation. Bonding is generally an irreversible process, which may hinder repair 

work. However, perhaps the most important problem is the poor coherence 

between the physically observed strength of bonded joints and non-destructive 

testing (NDT) predictions.  
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2.1 Strength versus Contact 

 



In fact, NDT was probably first used to probe the reliability of adhesive 

assemblies during the 1
st
 World War, when aircraft were often string and cloth 

attached to a wooden frame, which was glued by an organic adhesive made of 

casein, or milk protein. If an aeronautical engineer did the rounds in a hangar only 

to detect a strong whiff of camembert cheese, he would have a good idea that 

some of his adhesive bonding was losing its strength due to humidity! (an early 

form of “glue-sniffing”?) This was, of course, also a technique requiring no direct 

contact! However, many more modern, advanced techniques are now being 

developed including ultrasonics, acoustic emission, radiography, thermography, 

NMR spectroscopy, eddy-current testing, holography, electronic speckle pattern 

interferometry (ESPI). 

 

One aim of research in our laboratory is to improve the coherence between 

measured, mechanical performance and NDT observations, thus developing 

acoustic techniques to be a reliable test of physical strength of a bonded joint, and 

not just a check on good contact between adhesive and adherend. Contiguity of 

substrate and adhesive phases is a necessary but insufficient condition for good 

adhesion, and assuring contact alone is not always a good gauge of potential bond 

strength. A typical example of such a situation is shown schematically in Figure 2. 

 

 
 

 

Figure 2: Sketch of (above) lap-joint with good contact, but which is weak due to 

oil film between adhesive and upper substrate (black line). Below are two lap-

joints of similar strength because, although the lower one contains a hole, this is in 

a zone of low stress, τ . 
 

Figure 2 represents three lap-joints of substrates (darker shading) bonded with an 

adhesive (lighter). However, in the top lap-joint, a thin layer of oil (black line) is 

present between the adhesive and the substrate. As a result, contact is good (even 

if not strictly between adhesive and substrate), especially given the high 

propensity of oils to spread on high energy solids [1], but clearly strength is 
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considerably reduced by the presence of a contaminant. Many classic forms of 

NDT will detect such good contact, but not the poor strength.  

The central joint in Figure 2 should have a shear stress, τ, distribution within the 

adhesive layer something like that shown. Many analyses have been made (dating 

back to 1938!), e.g. [2-6], but all show the same essential features demonstrated 

here, viz. high shear stresses at (actually, near) the ends of the overlap, but lower 

loading near the joint centre. (In fact, despite its experimental facility and ubiquity 

in industrial uses, the lap-joint is complex from the point of view of stress 

analysis; see e.g. [7]) As a consequence, the central part is lightly stressed. The 

joint at the bottom of Figure 2, which contains a void due to, say, the inclusion of 

an air bubble during manufacture, will have a similar strength to the intact joint! 

The presence of a hole has little effect on overall strength. Thus, contact and 

strength must not be confused. 

 

2.2 Diffusion, Effects on Strength and Detection   

 

Whilst discussing lap-joints, NDT should prove useful for providing information 

about water ingress into a structure ageing in a humid environment. Figure 3 is a 

sketch of a lap-joint and of modifications to stress distribution subsequent to water 

diffusion and resulting plasticisation of the adhesive near the joint ends. As 

pointed out above, although adhesive joints are fluid-tight initially, polymeric 

materials are prone to liquid diffusion and absorption, e.g. [8-10]. Consider the 

(2D) lap-joint in Figure 3 which has been exposed to a liquid environment. 

Assuming the substrates to be impermeable, liquid will seep into the joint from 

both exposed adhesive ends, generally following kinetics governed by Fickian, 

e.g. [11-13] or Langmuirian, e.g. [14-16] diffusion. As may be expected with this 

geometry, there will be a gradient of water content, decreasing from saturation at 

the exposed joint ends towards a minimum in the middle where the transit time is 

maximal. Of course, if exposure time is sufficient, then a homogeneous saturation 

is obtained. However, it is the kinetics that is of most interest in bond ageing. 

Despite a gradual decrease in liquid concentration towards the centre, 

schematically, we represent the joint as consisting of a “dry” section towards the 

centre and “wet” sections at the two extremities, as shown. As indicated in Figure 

2, a homogeneous adhesive layer will have peak shear stresses near the ends, 

when under load. This is related to the elastic shear modulus of the adhesive. After 

the absorption of liquid, the modulus greatly decreases due to plasticisation, 

leading to lower load-bearing capacity. A significant result of this is that the 

effective overlap of the joint, corresponding to the “dry” part, is reduced. The 

extremities bear little load and so the new, shorter, “dry” adhesive joint takes the 

essential of the load and thus the new peak shear stresses migrate towards the joint 

centre and, more importantly, increase in magnitude. This is thus an unusual case 

in which (partial) plasticisation can actually lead to higher, rather than lower, 

stress concentrations! This is a domain in which acoustic techniques of NDT could 

be of great utility. Since the diffusion of water (or other liquids) leads to variations 
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in adhesive modulus, presumably ultrasonics techniques could be readily 

developed to follow absorption and therefore joint associated degradation.  

 
 

Figure 3: Liquid ingress into a lap-joint and consequent modification of stress 

distribution. 

 

3. ESPI in Adhesion Research 

 

3.1 The “Wedge” Adhesion Test  

 

A good method for evaluating the fracture strength of structural bonding 

applications is the so-called “wedge-test”, sometimes known as the “Boeing 

wedge test”, due to early use of a form of the technique by the aircraft company. 

The principle is to bond two rectangular plates (sheets), or adherends, along their 

length and width, b, leaving however one extremity free of adhesive (by a 

separator or anti-stick coating) in order to be able to insert a wedge of thickness ∆ 

between them, over a short length of their overlap.  

 

This is shown in Figure 4, for the asymmetrical case where the lower solid is 

much more rigid than the upper. The distance between the wedge and the 

separation, or crack front, is denoted a. Wedge insertion leads to bending of one 

(in the case shown) or both adherends down stream of the separation front. We 

consider the case of one bent adherend below. 
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Figure 4: Schematic representation of asymmetric wedge test. Lower adherend is 

considered rigid, whilst bent upper adherend supplies strain energy for crack 

propagation. 

 

Associated with the bending is strain energy, U: 
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where M and R are local bending moment and radius of curvature, and E and I are 

Young’s modulus and moment of inertia of the beam section. The latter is given 

by bh
3
/12, where h is beam thickness. The expression for U is obtained from 

simple beam theory. The strain energy release rate, G (Jm
-2

), is simply given by: 
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and at bond failure, G equals the fracture, or adhesion energy, Gc, leading to: 
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where in this elementary treatment no attention is paid to failure mode (essentially 

mode I). Crack length a, is a function of time, t, and Gc is a function of crack 

growth rate. 
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Note that Gc is independent of b! However, examination of fractured joints show a 

curved crack front [17, 18], concave towards the intact joint, and so the effect 

cannot be attributed to effects of diffusion! 

 

3.2 Application of ESPI  

 

observed by (amongst other techniques) Electronic Speckle Pattern Interferometry 

(ESPI). This technique is related to holography [19] and is particularly sensitive to 

 

 
 

Figure 5: Sketch of anticlastic effect. R is principal radius of curvature produced 

by beam bending. ρ is the associated anticlastic bending, and the combination 

leads to a curved crack front. 

 

rough solid, a second speckle image is obtained, and it is the interference of the 

two diffraction patterns that is processed to give a speckle picture of the relative 

displacements in the optical field. 

 

The technique was applied to asymmetric wedge tests, the more flexible adherend 

corresponding to the rough optical surface [17]. Indeed, it was observed that the 

principal curvature of the flexed beam was associated with an orthogonal reverse 

curvature due to anticlastic bending. This, in turn, led to a curved crack front. 

Figure 5 [20] demonstrates the basic mechanics, assuming no adhesion strength. 

In fact, effects of adhesion strength moderate crack front curvature. 
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The solution: this simple analysis neglects anticlastic curvature. This was 

optically rough surface and the impinging light is diffracted to give a speckle  

small displacements. In subjective speckle, a coherent light beam is shone onto an 

distribution. After very slight movement of the rough solid, a second speckle image� 



 

The interest of this anticlastic bending effect is not purely academic. As shown in 

Equation (3) above, the fracture energy depends on a 
– 4

. As such, any error on a is 

magnified fourfold in Gc. Since, in general, crack lengths tend to be measured on 

the sides of a wedge test, and crack fronts are concave, values of fracture energy 

can be easily overestimated. 

The above is an application of ESPI as non-destructive testing, but it is clear that 

other techniques of NDT, such as ultrasonics could equally well be developed for 

this type of application. 

4. Conclusion 

 

In this short review, we have considered a few problems in adhesive bonding that 

have so far proved difficult to resolve, basically because the process is largely 

irreversible. However, progress is being made towards “de-bondable adhesives”. 

The combination of irreversibility and the difficulty to find out what is occurring 

at the interface/interphase hinders the use of structural adhesives in several 

industrial fields, up to present. Despite the manifest advantages of bonding, 

particularly in the aerospace industry (joining different materials, stress 

concentration reduction, weight loss, etc.), the difficulty to predict strength 

without actually breaking the joint is a considerable drawback. The same is true of 

welding, but this process seems to be more widely accepted industrially, at 

present. This problem exists for freshly made structures, but is exacerbated by 

ageing. Ingress of water or other liquids, such as aviation fuels and solvents, 

generally leads to reduced strength but, again, it is difficult to monitor this 

reduction and whether or not it is acceptable, by present methods, without actually 

breaking the assembly. Contact between adhesive and substrate is readily verified, 

but actual mechanical strength is another story. We “adhesionists” hope that useful 

collaboration with “acousticians” will develop, both to improve the reliability of 

NDT in bonded systems, but also because there is some very interesting science in 

adhesive joints, and acoustics techniques should prove very powerful for a better 

understanding of this aspect.  

References 

1. Starov, V.M., Zhdanov, S.A., Kosvintsev, S.R., Sobolev, V.D., Velarde, 

M.G.: Adv. Coll. Interf. Sci. 104, 123 (2003)   

2. Volkersen, O.: Fuftfahrtforsch. 15, 41 (1938) 

3. Goland, M., Reissner, E.: J.Appl.Mech.,Trans.ASME  66, A17 (1944) 

4. Adams, R.D. , Peppiatt, N.A.: J.Strain Anal. 8, 134 (1973) 

5. Renton, W.J., Vinson, J.R. : J. Adhesion 7, 175 (1975) 

6. Adams, R.D. , Mallick, V.: J.Adhesion  38,199 (1992) 

M.E.R. Shanahan 46



7. Adams, R.D., Comyn, J., Wake, W.C.: Structural Adhesive Joints in 

Engineering, 2nd Ed., ch.2. Chapman & Hall, London (1997) 

8. Gledhill, R.A., Kinloch, A.J.: J.Adhesion  6, 315 (1974) 

9. 

10. De Nève, B., Shanahan, M.E.R. : Polymer  34, 5099 (1993) 

11. Crank, J: Mathematics of Diffusion, 1st Ed., Oxford University Press (1956) 

12. Brewis, D.M., Comyn, J., Tegg J.L.: Polymer 21, 134 (1980) 

13   Peyser, P., Bascom, W.D.: J. Mater. Sci. 16, 75 (1981) 

14   Carter, H.G.,  Kibler, K.G. : J. Compos. Mat. 12, 118 (1978) 

15   Bonniau, P., Bunsell, A.R.: J. Compos. Mat. 15, 272 (1981) 

16   Popineau, S., Rondeau-Mouro, C., Sulpice-Gaillet, C., Shanahan, M.E.R. : 

Polymer 46,10733 (2005) 

17. Popineau, S., Gautier, B., Slangen, P., Shanahan, M.E.R. : J. Adhesion 80 

(12), 1173 (2004) 

18. Qi  J., Dillard D.A.: J. Adhesion 79, 559 (2003) 

19. Goodman, J.W. In : Dainty, J.C. (ed.) Laser Speckle and Related Phenomena, 

p.9. Springer-Verlag, Berlin (1984) 

20.  Popineau, S : PhD Thesis, Ecole des Mines de Paris (2005) 

 

Materials and mechanical aspects of bonded joints 47

Carfagna, C., Apicella, A., Nicolais, L. : J.Appl. Polym. Sci. 27, 105 (1982) 



The causal differential scattering approach to
calculating the effective properties of random
composite materials with a particle size
distribution

A. Young and A. J. Mulholland and R.L. O’Leary

Abstract An implementation of the Causal Differential Method (CDM) for mod-
elling the effective properties of a random two-phase composite material is pre-
sented. Such materials are commonly used as ultrasonic transducer matching layers
or backing layers. The method is extended to incorporate a particle size distribution
in the inclusion phase. Numerical issues regarding the implementation and con-
vergence of the method are discussed. It is found that, for a given frequency of
excitation, the calculated velocity for the composite has a distribution whose vari-
ance increases as the volume fraction of inclusions increases. The model predictions
would suggest that to reliably and repeatedly manufacture these composites, with a
desired mechanical impedance, a low volume fraction of inclusions should be used.

1 Introduction

The transmission and detection of ultrasonic energy forms the basis for imaging and

ical therapy and diagnosis, underwater sonar, non-destructive testing, structural
condition monitoring, industrial processing and control, and materials characteri-
sation [4]. The requirement for efficient generation and detection over a desired
frequency band is paramount and very often the limiting component of the entire
system relates to the front end transducer design [7]. These devices normally consist
of an active piezoelectric layer sandwiched between a backing material for damping
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non-destructive testing systems in a broad range of applications such as biomed-



and bandwidth control and some form of matching layer for interfacing to the me-
chanical load medium. Piezoelectric ceramics are mechanically stiff and do not in-
terface well to media with low mechanical impedance such as water and air. Match-
ing layers are therefore used to bridge this large impedance mismatch [5]. In many
cases however these matching layers have to be manufactured by mixing two differ-
ent materials in order to achieve the desired effective mechanical impedance [8]. A
large variability in these effective properties can often be found for a given base and
inclusion material, and volume fraction of inclusions. This is thought to be due to
the random agglomeration of the inclusion particles to form percolation paths in the
base material. This paper investigates this experimentally observed phenomenon by
using the Causal Differential Method [3] with the addition of a particle size distri-
bution to mimic the particle aggregation process. The model can be configured to
assess the longitudinal and shear wave properties of the composite. This will allow
for full characterisation of the material’s elastic character. Such data is routinely em-
ployed in advanced two and three dimensional finite element analysis of these types
of composite materials within transducer structures and as such a complete descrip-
tion of the elastic character is required. For example, matching layers are typically
designed to a specific acoustic impedance in order to match the transducer to some
load. However, in a transducer array configuration the matching layer is capable of
supporting guided waves which will compromise the beam directivity and degrade
imaging performance. Hence it is desirable to implement a methodology that will
facilitate a more complete characterisation of these materials.

In the next section therefore, the model equations for a shear wave travelling in a
two-dimensional plane containing randomly dispersed disc-like inclusions are pre-
sented. A dimensional rescaling is introduced to alleviate the numerical instabilities
inherent to the model. A discussion on the convergence of the method and the effect
that the properties of the two constituent materials have on the model’s output is
then given. Finally, the effect that the particle size distribution has on the variance
of the model’s output is presented.

2 The Causal Differential Method

By adding inclusions into a homogeneous material, the acoustic properties of the
original material are modified by those of the inclusions [6]. In the regime where the
particle size is commensurate with the wavelength of the insonifying wave there are
a range of scattering theory methods for calculating the speed of propagation of the
ultrasound wave [1]. The differential (or incremental) methods start by calculating
the effective properties of a composite material containing a very small volume frac-
tion of isolated particles (single particle scattering). The effective properties of this
material are then used as the base material when adding another small volume frac-
tion of inclusions. In this way the desired volume fraction of inclusions is obtained
in a step by step manner and the final effective material properties are given by the
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final iteration. One such approach is the Causal Differential Method (CDM) [3].



The method considers the single scattering effect of adding small amounts of the
inclusion, ∆φ , into a homogeneous matrix. By homogenising this new matrix, and
repeating the process, the prescribed volume fraction of the inclusion, φ , can be met.
The predictions therefore lie between those given by a single-scattering approach
and those given by a multiple-scattering method. The initial inclusion volume frac-
tion is set at φ0 = ∆φ with ρ0 (and µ0) set at the density (and shear modulus) of the
pure base material. A subscript I will be used to denote the corresponding properties
of the inclusion material. The volume fraction is updated using

φn+1 = φn +∆φ n = 0,1,2, . . . ,N −1, (1)

where N is the number of steps in the iteration given by

N =
φ

∆φ
. (2)

The homogenised properties are then given by [2]

ρn+1 = ρn(1−φn)+ρI φn, (3)

and

µn+1 =
µI(1+φn)+ µn(1−φn)

µI(1−φn)+ µn(1+φn)
µn. (4)

The attenuation is calculated at each step using the additive law associated with
acoustic attenuation given below by

αn+1(ω) = αn(ω)+∆φ
γex

n (ω)

2πa2 , (5)

where πa2 is the area of the inclusion. The extinction cross-section γ ex
n can be shown

to simplify to the scattering cross-section of a single disc. This is given by the so-
lution to the diffraction of elastic simple harmonic waves by an elastic embedded
cylinder [3]. The incident wave is given by

uin
z = ei(knx−ωt), (6)

and the scattered wave by

usc
z =

∞

∑
m=0

AmH(1)
m (knr)cos(mθ )e−iωt , (7)

where H(1)
m is a Hankel function of the first kind of the mth order and the wave

number kn of the current homogenised ‘base’ material is given by

kn =
ω

cn(ω)
+ iαn(ω). (8)
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The extinction cross-section γ ex
n is a function of ω ,ρn,ρI ,µn,µI and a and is given

by

γex
n = 2

(
2 |A0|

2 +
∞

∑
m=1

|Am|
2
)

(kn)
−1, (9)

with

Am = −imεm

(
µIkIJm(akn)J′m(akI)

−µnknJ′m(akn)Jm(akI)

)

/

(
µIkIH

(1)
m (akn)J′m(akI)

−µnknH(1)′

m (akn)Jm(akI)

)
(10)

where

εm =

{
1 m = 0
2 m ≥ 1 , (11)

and Jm(z),J′m(z),H(1)
m (z) and H(1)′

m (z) denote the the mth order Bessel and Hankel
functions of the first kind and their derivatives with respect to z, respectively, and
the wave number in the inclusion material kI is given by

kI = ω
√

ρI

µI
. (12)

The phase velocity ignoring attenuation is given by

vn =

√
µn

ρn
. (13)

This value is then used to calculate the model’s phase velocity adjusted for attenua-
tion given by the Kramers-Kronig relationship

cn+1(ω) = vn+1
(

1+ 2ω2
π vn+1−

∫ ∞
0

αn+1(Ω)

Ω 2(Ω 2−ω2)
dΩ
)−1

. (14)

where the slash in the integral sign denotes Cauchy’s principal value.
The algorithm is initialised by setting values for µI ,ρI ,µ0,ρ0,a,∆φ ,φ , setting

α0 = 0, setting c0 = v0 using equation (13), and by setting kI using equation (12).
The algorithm steadily updates the volume fraction using equation (1) until the de-
sired volume fraction is achieved. At each step kn is calculated using equation (8),
Am from equation (10), γex

n from equation (9), αn+1 from equation (5), vn+1 from
equations (4), (3) and (13), and finally cn+1 from equation (14). The number of
steps N is given by equation (2) and so the phase velocity is given by

c(ω) = vN

(
1+

2ω2

π
vN−

∫ ∞

0

αN(Ω)

Ω 2(Ω 2 −ω2)
dΩ
)−1

. (15)
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3 Numerical Implementation

Four implementation issues present themselves:

• the inaccuracies and numerical instabilities associated with the very large and
very small parameter values

• the singularity in the integrand of equation (14) and the associated Cauchy prin-
cipal value

• the infinite integral in equation (14)
• the infinite summation in equation (9)

To improve the accuracy and efficiency of the computations a re-scaling of the
dimensions was implemented. This allowed the program to compute with numbers
of O(1) instead of the extremely large and small values that exist. The fundamental
units of mass (M), length (L) and time (T) were scaled by M̂ = γM, L̂ = βL and
T̂ = δT with the scaling factors chosen to make each of the parameters as close as
possible to O(1). For the particular example considered here this was achieved by
setting γ = 106, β = 103 and δ = 106 (see Table 1).

Parameter Dimensions Scaling
µ ML−1T−2 γβ−1δ−2

ρ ML−3 γβ−3

a L β
ω T−1 δ−1

c,v LT−1 β δ−1

k L−1 β−1

γ L β
α L−1 β−1

Table 1 Dimensional Analysis of the Model Parameters

In equation (15) the integrand has a singularity at Ω = ω and Cauchy’s principal
value takes the finite limit of the integral as Ω tends towards this singular point.
This was numerically implemented by introducing a neighbourhood ∆ω around this
singularity. Additionally, a finite (but large) parameter ω u was introduced to replace
the infinite upper limit in this integral. A series of numerical experiments were then
conducted to determine appropriate values for ∆ω and ω u that ensured reasonable
convergence. A balance between the accuracy of the result with the computational
time is then desired. A further numerical issue arose in the calculation of γ ex

n in
equation (9) since the upper limit in the summation is infinite. This was replaced
by a finite sum to M terms. In order to apply the model there are therefore four
implementation parameters that need to be set: M,∆φ ,∆ω and ω u. Convergence
was assessed by considering the summed difference in the phase velocity over a
suitable angular frequency range defined as

The causal differential scattering approach 53



F(M,∆φ ,∆ω ,ωu) = ∑
i

∣∣c j+1(ωi)− c j(ωi)
∣∣2 , (16)

where j represents the jth value of the particular parameter being examined. For
this analysis three of the parameters were fixed, and the decay in F examined
whilst the fourth parameter was varied. When varying ω u, the phase velocity
had a range ω ∈

[
1.7×103,2.5×105] Hz with the remaining numerical param-

eters fixed at M = 3,∆φ = 4.625× 10−2 (N = 4) and ∆ω = 15 Hz. The physi-
cal parameters were chosen similar to those in [3]: φ = 0.185,µI = 0.1GPa,µ0 =
0.0155GPa,ρI = 1× 103 Kgm−3,ρ0 = 1.075× 103 Kgm−3 and a = 2.3 mm. The
results were compared for (ωu) j = {0.2,0.8,1.7,10,18}×105 Hz respectively. The
results showed that F converged to a reasonable level for ω u ≥ 0.8× 105 Hz with
a linear relation between the computational time and (ω u) j . This procedure was
repeated in order to determine the effect of increasing M. All parameters were iden-
tical with the exception of fixing ωu = 0.8× 105 Hz and running the model with
(M) j = {1,3,5,7,10,15,20}. Again F converged as M increased, a linear increase

M ≥ 5. A similar analysis was conducted for ∆ω however, unlike ω u and M, there
was no linear relationship between the computational time and ∆ω . The effect of
increasing N (decreasing ∆φ ) was analysed over different volume fractions φ for the
same angular frequency range with M = 9 and ωu as above. The volume fractions
considered were φ j = {0,0.25,0.5,0.75,1} with N j

In this section the model was applied to a material commonly used to produce trans-
ducer matching layers and backing blocks (epoxy resin and tungsten particles). The
appropriate data are summarised in Table 2.

Material µ (G Pa) ρ (Kgm−3)
Epoxy 1.48 1140
Tungsten 161.2 19300

Table 2 Physical properties of epoxy and tungsten

The effect that the various physical parameters of the two constituents have on
the model’s prediction of the phase velocity was then examined. For example, it
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observed that there was a linear increase in the computational time as  N  increased,

4 Analysis of Relationships of Physical Properties in Model

as expected. There was also evidence of a linear increase in the computational time
as the angular frequency increased. Additionally, the phase velocity tended to a

∆φ was chosen then the method limit as N increased and if too large a value for 
became unstable.

in computational time was observed and reasonable convergence was observed for

= {2,4,6 . . . 18,20}. It was, ,



was found that the phase velocity increased as the square root of the effective shear
modulus and as the square root of the effective density. The radius of the inclusions
has a marked influence on the final phase velocity. The typical mean particle size
used for the tungsten inclusions was 4− 6µm with a range of other commercially
available mean particle sizes being a = {1,10,25,100,250} µm.

500 kHz

1 MHz

1.5 MHz

...
5 MHz

0.00005 0.00010 0.00015 0.00020 0.00025

1500

2000

2500

3000

3500

PSfrag replacements
a

c

Fig. 1 Phase velocity c(ms−1) versus particle size a(m) for frequencies 500 kHz to 5 MHz, with
inclusion volume fraction φ = 0.3. The velocity profiles move upwards monotonically as the fre-
quency increases.

Figure 1 shows that the velocity changes as the particle size increases and that it
does so in a nonlinear fashion. In addition, at these values of the particle size, this
velocity depends on the frequency of the ultrasound wave. In this region the particle
size is commensurate with the wavelength of the ultrasound wave. As the frequency
increases the velocity profile increases monotonically until once again the velocity
curves converge for very high frequencies.

5 Comparison between the theoretical predictions and
experimental measurements

In order to carry out an experimental validation of this model a number of sam-
ples of epoxy resin, filled with tungsten particles, were prepared and their acous-
tic properties measured by a through transmission method [9]. The epoxy resin,
CY1303/HY1300, was supplied by Huntsman, Cambridge, UK and the tungsten
particles with a mean particle size of 5 µm were supplied by Ultimate Metals,
Chingford, UK. The epoxy resin was mixed by hand in accordance with the manu-
facturer’s instructions and degassed in a vacuum chamber to remove any entrained
air bubbles. The epoxy and tungsten, in the required volume ratio, were placed in a
pestle and mortar and the mixture carefully ground together. For each sample suf-
ficient material was prepared in excess to produce a sample with the dimensions
49mm diameter with a 10mm thickness. Once thoroughly mixed the material were
transferred to a mould with a close fitting lid. The mould was designed to allow the
excess material to escape prior to sealing the mould, once sealed the tungsten-epoxy
composite was allowed to cure for 18 hours at room temperature prior to being re-
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moved from the mould. Once removed from the mould the major faces were then
machined to ensure parallelism for the measurement of acoustic properties.

In samples with low volume fraction, in the current context φ ≤ 0.4, the density
of the tungsten particles will mean that settlement will occur during the cure cycle.
To limit the settlement, the cylindrical mould is mounted axially into a rotation
fixture and rotated about the axis during the cure cycle. In the case of samples where
φ ≥ 0.4, the tungsten-epoxy composite must be cured under pressure in order to
obtain a uniform fully cured composite. To apply pressure to the curing material
a reusable cylindrical mould manufactured from PTFE was used, a simple plunger
mechanism was incorporated into the mould design such that the material could be
compressed using a hydraulic press attached to the plunger. For each sample having
a volume fraction greater than 0.4, the mould was subject to 1000 psi pressure during
the cure cycle.

The acoustic velocities were measured using a through transmission time of flight
method. Since the samples were acoustically matched to water, oil having a velocity
of 680 m/s was employed as the coupling medium in order to refract a shear wave
into the sample. Figure 2 shows the measured acoustic velocities and these compare
well with those obtained using the theoretical approach detailed in Section 2.
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Fig. 2 Phase velocity c (ms−1) versus the volume fraction of the tungsten inclusions φ at frequency
500 KHz. The model results (full line) are compared with experimentally measured values (filled
squares), with a particle size of 5 µm.

6 A Particle Size Distribution

In a practical situation it is impossible to add inclusions of identical size. In fact,
most commercially available materials follow a normal distribution with a specified
mean particle size. It is also of interest to investigate the root cause for the ex-
perimentally observed variations in the measured mechanical impedance of epoxy-
tungsten samples at a fixed volume fraction of inclusions. The CDM algorithm was
adapted by replacing the fixed particle size at each step with a random value drawn
from a normal distribution of known mean and standard deviation. The phase ve-
locity was plotted as a function of the final volume fraction of inclusions with the
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physical parameters set at those for epoxy and tungsten (see Table 2), with ā = 5µm,
and the implementation parameters set as M = 9,∆φ = 0.05 and ∆ω = 0.8×103 Hz.
The process was conducted for a standard deviation of σ1 = 0.1ā to determine the
effect that a spread of particle sizes in a sample of tungsten powder would have. The
algorithm was run several times and the variation in the results was then compared
with those from a fixed particle size simulation.

Fig. 3 Phase velocity c(ms−1) versus inclusion volume fraction φ at frequency f = 1 MHz for
random particle size selection from a normal distribution with ā = 5µm and a 10% standard de-
viation. The shaded regions denote the variance in the model’s output lying above and below the
fixed particle size simulation.

Figures 3 shows an increase in the difference between the maximum and the
minimum values from the phase velocity for constant particle size as the volume
fraction increases.

An alternative view can be taken of these results by fixing the volume fraction
(φ = 0.2 and ∆φ = 0.04) and calculating the phase velocity as the frequency of the
insonifying wave is varied.

PSfrag

Fig. 4 Phase velocity c(ms−1) versus frequency f (Hz) at an inclusion volume fraction of φ = 0.2,
for a random particle size selection from a normal distribution with ā = 5µm and a 10%standard
deviation. The shaded regions denote the variance in the model’s output lying above and below the
fixed particle size simulation.

As the frequency increases, the variance in phase velocity due to the random par-
ticle size increases, highlighting the fact that the higher the frequency the more the
variations in particle size affect the velocity. In order to produce a composite for a
transducer matching layer, capable of working over a broad-bandwidth, it is impor-
tant to have a sample of inclusions with as low a variance as possible in a size regime
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that is outwith the effects of scattering. This will allow a greater predictability of the
phase velocity, and as a result be able to produce a desired composite material with
greater control.

7 Conclusion

Ultrasonic transducer designs typically consist of an active piezoelectric layer sand-
wiched between a backing material for damping and bandwidth control and some
form of matching layer for interfacing to the mechanical load medium. These ma-
terials are very often manufactured by mixing two different materials in order to
achieve a desired mechanical impedance. A large variability in these effective prop-
erties can often be found for a given base and inclusion material, and a fixed volume
fraction of inclusions. This is thought to be due to the random agglomeration of the
inclusion particles to form percolation paths in the base material. In this paper an
implementation of the Causal Differential Method (CDM) has been presented and,
by incorporating a particle size distribution in the inclusion phase, the root cause of
this variability in the effective composite properties is examined. Numerical issues
regarding the implementation and convergence of the method were also discussed.
Reasonable convergence and computational times for the method were found as
functions of the implementation parameters in the model. A dimensional rescaling
was also introduced to alleviate the numerical instabilities inherent to the model.
It was found that, for a given frequency of excitation, the calculated velocity for
the composite has a distribution whose variance increases as the volume fraction
of inclusions increases. This would suggest that to reliably and repeatedly manu-
facture composites with a desired mechanical impedance, a low volume fraction of
inclusions should be used.
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Abstract   The CIVA software platform is developed at CEA-LIST and partners 

in the aim of simulating non-destructive evaluation. Most of the developed models 

are based on semi-analytical methods since they aren’t heavy on computation 

time. The ultrasonic simulation tools in CIVA allow to fully predict a real ultra-

sonic inspection in a various range of applications which requires the computation 

of the beam propagated, as well as its interaction with flaws. The purpose of this 

communication is to describe the methods used to model the beam to flaw interac-

tion. Three kinds of models for the scattering of ultrasound by flaws have been in-

tegrated in CIVA: approached analytical solutions, exact analytical solutions and 

numerical modelling methods. Numerous experimental validations of all the de-

veloped models are provided including comparisons between different simulation 

methods. Perspectives of new developments are finally emphasized. 

 

1 Introduction: CIVA simulation approach 
 

Simulation codes developed at CEA [1] and gathered in the expertise software 

platform CIVA aim at providing cost-effective tools to predict the results of in-

spection techniques carried out in realistic configurations, in order to conceive or 

to optimize inspection characteristics’, probes, as well as to qualify inspection 

procedures or to allow interpretation of results.  

Such tools have been continuously extended through the development of simu-

lation models, from the early nineties, to account for realistic testing configura-

tions in terms of probes (monolithic, phased arrays…), flaws and arbitrary com-

ponent shapes (canonical shapes, parametrically defined or 2D/3D Computer 

Aided Design i.e. CAD defined). 
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The beam propagation model is based upon a semi-analytical method which 

calculates the impulse response of the probe inside the component, assuming indi-

vidual source points distributed over the radiating surface of the probe. Each ele-

mentary source point contribution of the probe toward the computation point is 

therefore evaluated using a so-called pencil method applied to elastodynamics [2]. 

This model allows to compute the ultrasonic field in the component for wedge 

coupled or immersed probes of arbitrary shapes, for monolithic or phased-array 

transducers. Firstly developed for homogeneous and isotropic materials, it has 

been extended to deal with anisotropic and heterogeneous cases [3]. 

The CIVA tools are also dedicated to the prediction of flaw responses. We re-

port here the main general assumptions applied to deal with the application of the 

semi-analytical models used: 

1. A separation of variables is operated on the radiated field which has been 

computed in CIVA. Indeed the ultrasonic field radiated by the transducer is ap-

proached by the product of a spatial function ( , , )q x y z  describing the amplitude 

distribution in the beam and a time-dependent function describing the wave 

propagation ( )0 t tΦ − ∆ . We assume that the wave fronts in the beam are locally 

plane in the vicinity of the flaw. In the case of plane fronts, a separation of vari-

ables can be operated so that the incident field at point M can be expressed as:  

( , ) ( , , ) ( )0M t q x y z t tΦ = Φ − ∆   (1) 

in which ( , , )x y z  are the cartesian coordinates of the point M of the flaw and 

t∆  the time of flight from the probe to point M. The functions ( , , )q x y z , t∆  and 

( )0 tΦ  are model inputs extracted from the CIVA field calculation. 

2. The flaw scattering model is based upon various approximations depending 

on the inspection technique and the nature of flaw (void, solid inclusion). These 

approximations will be detailed in part 2. 

3. Finally, the signal received by the probe is obtained by summing up all the 

scattered contributions. The amplitude of one contribution is proportional to the 

probe sensitivity at the location of the source. The model assumes the transmis-

sion-reception reciprocity for the transducers so that this sensibility is directly de-

duced from the transmitted field computation. 

The aim of this article is to give an overview of all the methods used in CIVA 

to solve the scattering problem. First, we will focus on analytical methods since 

Part 2 will be dedicated to approached analytical solutions and then exact analyti-

cal solutions are studied in Part 3. In addition to analytical methods, an hybrid 

method coupling numerical and semi-analytical models which is integrated in 

CIVA is detailed in Part 4. 

 

 

M. Darmon, N. Leymarie, S. Chatillon and S. Mahaut62



 

 

2 Approached analytical solutions 
 

To deal with the wave scattering, the different classical approximations are ap-

plied [4] depending of the scatterer. In the case of specimen boundaries, calibra-

tion reflectors (side drilled hole, flat bottom hole, etc…) or large voids, the high 

frequency Kirchhoff approximation is used. In the case of cracks, the Kirchhoff 

approximation or GTD (Geometrical Theory of Diffraction) can be used depend-

ing on the considered echo mechanism (tip diffraction; specular reflection). At 

last, to predict the response of solid inclusions a slightly modified form of the low-

frequency Born approximation has been proposed and implemented. 

2.1 Kirchhoff approximation 

The application of Kirchhoff approximation, used to simulate most inspection 

techniques, assumes that the flaw is a scattering surface discretized as a set of 

elementary surfaces, for which one calculates the interaction of the incident field 

(L or T mode) with the flaw (reflection with or without mode conversions). 

Kirchhoff approximation considers an incident plane wave on a stress-free 

crack or a void and is characterized by the following hypotheses: 

- on the shadow crack face: the total displacement vanishes. 

- the insonified face is replaced by an infinite plane free surface: the total dis-

placement is there the sum of the incident field and the reflected fields.  
Then the scattered field is expressed by means of Green Theorem in terms of 

jumps of displacement across the surface of the flaw. Finally, the scattered field at 

an observation point is obtained as a spherical wave associated to a directivity co-

efficient depending on the incident and scattered directions [5]. 

 

 
figure 1: Inspection of a complex (multi-facetted) flaw with a contact SW45. 
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The application of Kirchhoff approximation is commonly used in NDT model-

ling since it is an efficient way to model specular effects (corner echo or specular 

reflection). The Kirchhoff model integrated in CIVA is able to predict the re-

sponses of planar flaws (rectangular or CAD contour) or multi-facetted defects 

and also “void” flaws, as volumetric flaws (side drilled holes). The figure 1 con-

cerns an example of experimental validation dealing with the inspection of a com-

plex (multi-facetted) flaw. A multi-facetted flaw is made of several parts (seg-

ments) which can be extruded in the perpendicular direction to form a “2.5D” 

CAD flaw, or extruded with a more complex polyline to form a 3D multi-facetted 

flaw. The figure (a True B-Scan) shows the comparison between simulation and 

experiment for such a flaw, inspected with a 45° shear waves probe. One can ob-

serve the corner echo, diffraction echo, as well as a “local” specular echo resulting 

from the complex shape of the flaw, both for experimental and simulated image. 

The amplitude of these echoes are reported, with respect to a side drilled hole used 

as a reference, which exhibits a good agreement between simulation and experi-

ments, in terms of flaw response and overall amplitudes. 

Nevertheless Kirchhoff model owns several limitations. Indeed, since it is an 

high frequency approximation, experimental validations have shown that it is 

valid when the flaw height is in the same order or more than the wave length. 

Moreover the Kirchhoff approximation is less accurate for angles of observation 

away from the specular direction. We have to be aware that the Kirchhoff ap-

proximation gives rise to quantitative errors in predicting diffraction echoes from 

edges and that, besides it can’t be used to model diffraction echoes in a TOFDT 

(Time of Flight Diffraction Technique) configuration (see Figure 2). 

2.2 Geometrical theory of diffraction 

Kirchhoff approximation lies in the fact that the field scattered by a crack is 

approached by the reflected field and consequently is not perfectly adapted to de-

scribe diffraction phenomena (for instance due to flaw edges). In that goal, the 

Geometrical Theory of Diffraction (GTD) is an alternative model which relies on 

ray theory (analogy with geometrical optics) [6]. 

Two different strategies have been investigated in CIVA concerning the calcu-

lation of the GTD coefficients: a so-called “projected 2D” option, which is based 

onto the projection of the incoming and scattered wave vectors over the plane 

which is perpendicular to the flaw edge, and a “pure” 3D GTD code, using devel-

opments carried out by Larissa Fradkin and co-workers at London South Bank 

University [7]. The complete modelling of the flaw response therefore lies upon 

the contour meshing of the flaw, the computation of the incident field over this 

mesh, and the estimation of the GTD coefficient according to local curvature of 

the edge. 

GTD is not valid for specular reflection (corner echo), forward transmission 

and near a critical angle or a caustics (intersection of scattered rays). It’s also a 
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high frequency approximation: the distance between two different flaw edges is 

supposed to be around or more than the wave length. 

GTD is notably used to predict TOFD (Time Of Flight Diffraction) inspection 

performance in realistic configurations. TOFD (Figure 2) is an inspection tech-

nique, which relies on an arrangement of two probes of opposite beam directions. 

The simulation can account for arbitrarily oriented flaws (tilt, skew…) and realis-

tic flaws (CAD contour planar flaws. The application of the TOFD technique over 

a planar component containing a tilted mid-wall notch is shown on Figure 2. The 

maximal amplitudes obtained in edge scattering simulation with the Kirchhoff and 

projected 2D GTD models are compared for various flaw tilts (a°a a1aa°).α  We 

can observe that Kirchhoff approximation can’t be applied in the shadow area 

bounded by the flaw plane so that no simulated results are given for about 

a°a a4a° and 14a°a a1aa°. GTD coefficients leads to a divergα α ence around the 

specular reflection ( s9a°) and consequently GTD models can’t be used for tilts α
corresponding to about 75°a a1a5°. The Kirchhoff and GTD models provide α
similar results when these two methods are both valid. This comparison suggests 

that Kirchhoff and GTD models correspond to complementary approaches. In or-

der to deal with all configurations, the development of a generic model for the 

scattering from cracks derived from the two previous approximations could be a 

perspective of future work. 
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figure 2: Comparison of simulated amplitudes obtained with both Kirchhoff and projected 2D 

GTD models in the case of the TOFD inspection of a tilted mid-wall notch (3 MHz frequency, 

3a° L-waves). 

2.3 Born approximation  

The Born approximation applied to elastodynamics [a] has been shown to be ef-

fective to model weak scattering from solid inclusions. This low frequency (kaa1) 

model consists in approximating fields inside the scatterer by the incident fields. 

This assumes small variations of the structural parameters between the host me-
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dium and the inclusion (density and elastic stiffness tensor). This approach has 

been modified in order to improve its accuracy domain. The modification leads to 

describe the wave propagation in the flaw by taking into account both density and 

wave velocity differences between the host medium and the inclusion [9]. 

The model is available for canonical shapes: spheres; cylinders and ellipsoids 

along the transmitted focal axis (L or T). The attenuation inside the inclusion can 

be taken into account (direct modes). The limitations of this Born modified model 

are the following: 

- Low contrast for density and velocities between the host medium and the 

inclusion medium. 

- The flaws are supposed to be small with respect to the wavelength. 

Strongly laminated stainless steel products containing natural alumina inclu-

sions have been investigated in the aim of validation of the model. The sample ac-

quisitions were performed at 5a MHz. The results presented on Figure 3 a) con-

cern an alignment of inclusions detected by ultrasonics and by X-rays 

measurements. The figure shows the superimposition of the ultrasonic C-scan and 

the corresponding X-rays view. From X-rays view have been deduced the sizes of 

inclusions assumed to be ellipsoidal which have been inputted in the model. We 

can see on Figure above b) and c) the good agreement between the simulated and 

experimental C-scan; the amplitude discrepancy being less than 1 dB. These ex-

cellent results have to be confirmed by additional measurements on other defects. 
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figure 3: a) Superimposed experimental C-Scan and X radiography   b) experimental C-Scan   c) 

simulated C-Scan. 

3 Exact analytical solutions 
 

The semi-analytical Kirchhoff approximation, in a wide range of situations, leads 

to satisfactory quantitative predictions with a low computation time. Nonetheless, 

this model may cause some discrepancies in the prediction of small flaws re-

sponses, since it is an high frequency approximation. Particularly, experimental 

validations carried out in a pulse-echo configuration on small side drilled holes 

highlighted some differences between Kirchhoff simulation and measure for shear 

waves. These discrepancies could be explained by the theoretical principle of 

Kirchhoff approximation: it takes into account specular reflection on a cavity but 
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not the creeping waves. These waves (called Franz waves [1a]) propagate around 

the cavity circumference and may have a significant influence especially at low 

frequency or for small defect radii. They are the analogues on curved surfaces of 

Stoneley waves (surface waves excited by grazing incidence) on flat surfaces. The 

creeping waves differ from Stoneley waves in two respects: they are attenuated 

because energy is radiated tangentially away from the cylinder; they are many 

circumferential modes n of different speeds but the damping increases with n. 

Therefore, the development of the exact analytical model for the scattering 

from a cavity has been integrated in CIVA for the moment for the cylindrical ge-

ometry. This model will be available in the next version of CIVA. 

This exact model relies on the separation of variables (SOV) method [11]. We 

consider a plane wave propagating along x direction and incident on a cylindrical 

cavity embedded in an elastic isotropic solid. Only a 2D configuration can be 

treated: the incident and scattered waves vectors are included in the plane normal 

to the cylinder axis z
r

. The observation point of the scattered field is defined in a 

cylindrical coordinate system ( , ,r zθ ) whose origin is the flaw centre and where 

θ  is the angle between the incident and scattered wave vectors. 

The SOV method enables to obtain series developments of the scattered waves. 

Terms of these series expressed here for the scalar velocity potentials (respectively 

longitudinal and transverse) are products of Hankel and complex exponential 

functions of separate variables ( ),r θ : 

(1)
( ).cos( ).

0

diff i t
A H k r n en n Ln

ω
ϕ θ

∞ −
= ∑

=
                                            (2) 

(1)
( ).sin( ).

0

diff i t
B H k r n en n Tn

ω
ψ θ

∞ −
= ∑

=
                                             (3) 

Then the expression of boundary conditions allows to determinate the series 

coefficients nA  and nB  : the surface tractions on the cavity are set to zero. Under 

a far field hypothesis, the Hankel functions associated to the scattered waves can 

finally be approached by cylindrical waves. Finally, the application of Huygens’ 

Principle enables us to replace each cylindrical scattered wave by a collection of 

spherical waves, which makes possible the use of the reciprocity theorem (men-

tioned in Part 1) for the echo synthesis. The developed SOV model in CIVA is de-

veloped for a cylinder for the moment and valid without flaw disorientation. 
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Figure 4: Inspection of a 1mm diameter side drilled hole (SDH) with a SW45° contact transducer 

at 5MHz (ka s 5). 

An example of experimental validation is presented in the figure 5 below: it 

deals with control at 5MHz of a 1mm diameter side drilled hole (SDH) with a 

SW45° contact transducer. The corner echo measured on a slot is taken as the am-

plitude reference. Are given in the figure comparisons of both maximum ampli-

tudes and A-Scans corresponding to echoes obtained with several 2D simulations 

(Kirchhoff, exact SOV and finite element method FEM detailed in Part 4) and 

with measure. Kirchhoff model is unable to predict the creeping circumferential 

wave (chronologically the second and less intense observed echo) and leads to 

discrepancy compared to measurement because the creeping wave affects the 

maximum amplitude of the first echo (specular reflection on the cylinder). SOV 

and FEM give rise to a good agreement in amplitude with experience and SOV is 

the model which predicts better the relative amplitude of the creeping wave. 

 

4 Numerical modelling methods 
 

The choice of a semi-analytical approximation, in a wide range of situations, pro-

vides quantitative predictions with a low computation time. However, these ap-

proximations may fail at predicting results in some complex configurations (par-

ticularly when defects of complex geometry are considered). In numerical 

schemes, the numerical resolution of the wave propagation equation could be 

quantitatively well defined ensuring the accuracy of the model. However, numeri-

cal schemes are computer intensive (computation time, memory). 

To combine the advantages of both methods while minimizing their inconven-

iences, a hybrid model has been developed. The pencil method used for beam cal-

culations in CIVA is applied to deal with most of the propagation, while intricate 

phenomena located in a small region surrounding the defects are computed nu-
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merically by the FEM code ATHENA developed by EDF [12]. To synthesize the 

echo-response from the defect, an integral formulation extending Auld’s reciproc-

ity principle has been derived coupling computed results from both codes [13]. 

Indeed, Auld establishes a relationship between two typical NDT configura-

tions. The first one, called state 1, involves a component without defect, whereas 

the second one, called state 2, takes the flaws into account (see Fig. 5). The ex-

tracted signal is computed from an integral over the surface S of a volume contain-

ing all flaws, using particle velocity and stress tensor quantities. The idea is that 

CIVA and ATHENA will be devoted to the computation of state 1 (without de-

fects) and state 2 (with defects), respectively. 

For practical reasons, the region in which the FEM computation is done must 

be as small as possible to avoid intensive computation. Then, state 2 is only con-

sidered inside the surface S surrounding the defect, called FEM box. This box is a 

rectangle for 2D computation and a parallelepiped for 3D computation. 

The coupling computation is composed of 3 steps. (1) First, on the face of the 

box first crossed by the incident beam, the incident field is computed using the 

pencil method. (2) This field is then used as an input into ATHENA computation. 

The boundary conditions applied on the faces of the box are absorbing conditions 

(Perfectly Matched Layer), so no artificial reflection comes back from these faces. 

During a limited number of time steps, the calculation is done by modelling both 

the complex propagation and the interaction with defects. (3) Finally, the field cor-

responding to state 1 is computed using the pencil method in terms of impulse re-

sponses, for particle velocities and stresses. The coupling integral can then be cal-

culated giving the signal due to the presence of defects contained in the box. 
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figure 5: Definition of state 1 and state 2 used for Auld’s reciprocity principle. 
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figure 6: B-scan images provided experimentally (at left) and from computing (at right) for a 

45°-SW control of a surface-breaking crack with a branched geometry. 

An experimental validation dealing with the inspection of a surface-breaking 

crack with a branched geometry is given in Figure 7 below. The experimental im-

age (true B-Scan) presents multiple echoes due to the complex shape of the defect. 

At the base of the crack, the classical corner echo is generated but another one is 

observed on the top of the crack coming from reflections between 2 contiguous 

faces. A specular echo after a backwall reflection is observed arising from one 

branching of the crack. At last, 3 echoes with lower amplitudes are distinguished. 

Two of them are located on the tips of the crack and correspond to diffraction 

echoes. The other should be due to a surface wave propagating on the crack 

boundary. By comparing simulated result with the experimental one, all of these 

phenomena are recovered. The relative amplitudes between echoes are in general 

well evaluated except for the surface wave. Once more, this example demonstrates 

the ability of the coupling model to simulate complex beam/defect interactions, 

notably the wave interaction between faces of a same crack. 

 

5 Conclusion 
 

Ultrasonic simulation tools gathered in the CIVA software have been briefly pre-

sented. Those models, based on semi-analytical formulations kernels and numeri-

cal integration to deal with generic applications, include beam modelling and 

field-to-flaw interactions. The response of the flaw is calculated using specific al-

gorithms, depending on the type of the flaw and of the inspection technique, 

which is an efficient and rather classical way to proceed. The Kirchhoff approxi-

mation stands for “void” flaws, as volumetric flaws (side drilled holes SDHs) and 

planar or multifaceted cracks, which assumes that the wave does not propagate 

into the defect. For planar or multifaceted cracks, the edges diffraction are simu-

lated thanks to GTD (Geometrical Theory of Diffraction), either in pulse echo or 

TOFDT inspection. A modified version of Born approximation is used to deal 

with solid inclusions. In addition to these approached analytical solutions, an exact 

analytical solution can be used to improve the simulation response of small SDHs 

and a hybrid method coupling semi-analytical beam model and finite elements in-

teraction model has been developed to simulate defects in complex configurations. 

Perspectives of new developments have to be quoted: for instance, the need of 

a generic model for cracks valid for all configurations, the interaction of a flaw 

with either a Rayleigh surface wave, either an head or creeping wave [14], or a 

guided wave, the use of 3D FEM computation... 

At last, we point out the plat-form approach adopted in CIVA which allows, in 

the framework of collaborative projects, the connection of modelling and data 

processing tools developed by other R&D laboratories. 
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Finite element computation of leaky modes in
stratified waveguides

A. S. Bonnet-Ben Dhia, B. Goursaud, C. Hazard and A. Prieto

Abstract Using guided waves can greatly facilitate the inspection of large structures
such as pipes or plates. One can wonder if it remains possible for waveguides which
are embedded in an elastic matrix. For NDT, guided modes could be replaced by
the so-called ”leaky modes”: these modes are attenuated in the axial direction while
they increase exponentially in the transverse ones. We are interested here in the
finite element computation of leaky modes. The difficulty comes precisely from
this exponential behaviour, which prevents us from simply truncating the infinite
medium. This is the reason why we use Perfectly Matched layers (PMLs) in order to
bound the domain of calculation. We checked this approach in the simple case of SH
waves in a stratified waveguide, where the analytic dispersion relation is available.
Numerical experiments show that the main parameter is the distance between the
PML and the guide. Finally, we illustrate in this simple case a numerical application
using leaky modes: the Green function of the embedded waveguide is given by
modal expansion.

1 Introduction

Using ultrasonic guided waves for the non-destructive testing of elastic waveguides
like pipelines, rails or aircraft plate-like parts is becoming quite popular. Com-
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pared to classical inspection techniques, guided waves provide a way to control
non-accessible parts of the waveguide and allow an efficient evaluation of large
structures.

In several applications, the elastic waveguide is embedded in water or in another
elastic medium (concrete, ground...): it is for instance the case of concrete reinforc-
ing tendons. A main consequence is that the modes of the elastic waveguide become
leaky, the leakage resulting from radiations in the outside medium. Let us mention
that leaky modes have been already extensively studied in electromagnetism since
the 50’s (see for example Vassalo [9]).

An accurate determination of leaky modes (and the corresponding damping)
arises to be a necessary preliminary step for who wants to use these modes for non-
destructive evaluation of the embedded waveguide. Unfortunately, the computation
of leaky modes is far from straightforward. The difficulty comes from a unusual
behavior of these modes : indeed, leaky waves which are exponentially decreas-
ing in the longitudinal direction of the guide are also exponentially growing in the
transverse directions.

A classical approach for a numerical determination of elastic modes relies on a
finite element discretization of the eigenvalue problem set in the transverse section
(the so-called SAFE method, see Hayashi et al [7]). For a waveguide embedded in
an infinite medium, this cannot be performed directly since the transverse section is
unbounded. This feature needs a particular care: for instance, a rough truncation of
this transverse section with a free surface condition on the artificial boundary will
produce a high concentration of modes due to the reflections on the artificial bound-
ary but will not allow to determine the discrete spectrum of leaky modes. A solution
has been proposed by Castaing and Lowe [4] which consists in surrounding the do-
main of interest by a viscoelastic layer; as mentioned by the authors, an alternative
approach is to use the now popular Perfectly Matched Layers (PMLs).

The object of the present paper is precisely to investigate the potentiality of PMLs
for computing leaky modes of an embedded waveguide. In order to get a quantitative
evaluation of the method, we have chosen a very simple configuration for which an
analytical expression of the dispersion relations, with and without PMLs, is avail-
able (see Zhu and Lu [10]). We consider the propagation of SH waves in a stratified
waveguide (a steel plate embedded in concrete for example) which leads to a one-
dimensional modal problem.

The outline of the paper is the following. In section 2, the modes of the em-
bedded waveguide are described, including leaky modes, and compared to those of
the isolated waveguide. Section 3 is devoted to the computation of leaky modes us-
ing PMLs. A particular attention is devoted to the influence of the parameters of the
PMLs on the accuracy of the results. The main conclusion is that the absorbing layer
should be placed as close as possible to the waveguide to avoid spectral pollution.
Finally, we show in section 4 that some phenomena can be simulated very efficiently
using leaky modes: for instance, an accurate expression of the Green function of the
embedded waveguide is derived by using a small number of leaky modes.
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2 From guided modes to leaky modes

2.1 Propagation of SH waves in a stratified medium

The considered domain of propagation is R×(a,b) where x∈R defines the longitu-
dinal direction, and y ∈ (a,b) is the transverse coordinate, where a and b can either
be finite or infinite. We deal with time-harmonic SH waves, for a fixed circular fre-
quency ω , which are solutions to

∂
∂y

(

µ
∂u
∂y

)

+
∂
∂x

(

µ
∂u
∂x

)

+ ω2ρu = 0 in R× (a,b), (1)

where u = u(x,y) is the component of the displacement in the z direction, which is
orthogonal to the considered planar domain, and where µ = µ(y), the shear mod-
ulus, and ρ = ρ(y), the density, are functions of the transverse coordinate y. We
denote by C(y) =

√

µ(y)/ρ(y) the speed of shear waves, and Cmin = infy∈(a,b)C(y).
These functions may be discontinuous at some points in (a,b) : in (1), it is implicitly
understood that both u and µ ∂u/∂y are continuous at these points.

In addition to this equation, a free boundary condition is imposed whenever a or
b is finite:

if c ∈ {a,b} is finite,
∂u
∂y

(x,c) = 0,∀x ∈ R. (2)

The modes of the medium are solutions to the above equations for which the
spatial variables x and y are separated, that is, of the form:

u(x,y) = φ(y)eiβ x,

where β ∈C is the longitudinal wavenumber. This leads to a one-dimensional eigen-
value problem: we have to find λ = −β 2 ∈ C and a non-vanishing function φ such
that

−1
µ

{

d
dy

(

µ
dφ
dy

)

+ ω2ρ φ
}

= λ φ in (a,b), (3)

dφ
dy

(c) = 0 if c ∈ {a,b} is finite. (4)

In the two following paragraphs, we recall some general results (which essen-
tially follow from spectral theory of selfadjoint operators) about the solutions to this
eigenvalue problem in two particular situations. In the first one, we consider the case
when the domain is bounded in the transverse direction, so that the stratified medium
plays the role of a waveguide. In the second case, this waveguide is embedded in
a homogeneous infinite medium. To illustrate these general results, we then show
some numerical results in both situations when the waveguide is homogeneous.
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2.2 Modes of an isolated waveguide

First assume that (a,b) is a bounded interval. In this case, the solutions to prob-
lem (3)–(4) occur for a discrete set of eigenvalues which consists in a real sequence
{λn}n∈N contained in the interval [−ω2/C2

min,+∞), with limn→∞ λn = +∞. The cor-
responding modes φn are guided in the sense that their transverse energy is finite,
which can be written in the form

∫ b

a
µ(y) |φn(y)|

2dy < ∞. (5)

We can distinguish between two kinds of modes:

• A finite number of propagative modes associated with negative eigenvalues λn,
or equivalently, real longitudinal wavenumbers βn: these modes have a sinusoidal
behavior in the longitudinal direction.

• An infinite number of non propagative modes associated with positive eigenval-
ues λn, or equivalently, imaginary βn: these modes have an exponential behavior
along x. When considering only one of both directions x → ±∞, the exponen-
tially decreasing mode is called evanescent.

2.3 Modes of an embedded waveguide

Suppose now that the previous waveguide is embedded in a homogeneous infinite
matrix. In other words, a or b (or both of them) is infinite, and outside a bounded
interval contained in (a,b), the physical characteristics of the medium are constant:

µ(y) = µ∞, ρ(y) = ρ∞ and C(y) = C∞ =

√

µ∞

ρ∞
,

so that in the matrix, Eq. (3) simplifies as

−φ ′′ −
ω2

C2
∞

φ = λ φ . (6)

Although this situation could be considered as a (possibly slight) perturbation of
the previous one, the structure of the solutions to the eigenvalue problem (3)–(4) is
radically modified.

• On one hand, a finite number of guided propagative modes may occur. They
correspond to real negative eigenvalues λn which are necessarily contained in
the interval [−ω2/C2

min,−ω2/C2
∞). Note that this interval is empty if Cmin = C2

∞:
there is no such modes if the speed is greater in the guide than in the matrix. The
modes associated with these possible eigenvalues are called guided, because as
for the isolated waveguide, their transverse energy remains finite, in the sense
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of (5) (indeed, Eq. (6) admits exponentially decreasing solutions, of the form
A exp(−

√

−ω2/C2
∞ −λ |y|)). These modes have again a sinusoidal longitudinal

behavior.
• On the other hand, a continuum of radiation modes always occurs. For every λ in

the interval [−ω2/C2
∞,+∞), one can find a bounded non-zero solution to (3)–(4),

which is no more guided ((5) is no more satisfied) since the solutions to (6) are
linear combinations of exp(±i

√

ω2/C2
∞ + λ |y|). As for the isolated waveguide,

in the longitudinal direction, the modes can either be propagative (if λ < 0), or
non propagative (if λ > 0).

In addition to these two categories, one can find other modes, called leaky modes,
which are not, strictly speaking, spectral objects, since they result from a more in-
volved process of analytic continuation. Indeed, these modes appear for complex
values of λ when searching for solutions to (3)–(4) which are outgoing in the sense
that they are proportional to exp(i

√

ω2/C2
∞ + λ |y|) in the matrix (instead of a linear

combination of outgoing and incoming waves as for the radiation modes). When this
behavior is decreasing as |y| → ∞, we get the above mentioned guided modes. But
if we allow an exponentially increasing behavior, we find the discrete set of leaky
modes, for which λ ∈ C. The computation of these leaky modes is the object of the
present paper.

2.4 A simple example

The simplest situation is the homogeneous waveguide: µ(y) = µ0, ρ(y) = ρ0, and
C(y) = C0 =

√

µ0/ρ0, for y ∈ (0,h). We set a = 0 and b = h for the isolated guide,
b = ∞ for the embedded guide. The geometry of both the isolated guide and the
embedded guide are summarized on Fig. 1.

y x

z
vacuum

vacuum

h
steel plate

µ0,ρ0

y x

z
vacuum

µ∞,ρ∞

steel plate

matrix of concrete

h
µ0,ρ0

Fig. 1 Geometry of the isolated waveguide (left) and of the embedded waveguide (right).
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• For the isolated waveguide, the solution of the eigenvalue problem (3)-(4) is very
simple and the eigenvalues are given by:

λn = −
ω2

C2
0

+
n2π2

h2 ,n ∈ N.

• For the embedded waveguide, both guided and leaky modes verify the following
dispersion relation:

iµ∞

√

ω2

C2
∞

+ λ = −µ0

√

ω2

C2
0

+ λ tan

(
√

ω2

C2
0

+ λ h

)

. (7)

For numerical applications, we use the following parameters: ρ0 = 7.932g/cm3,
ρ∞ = 2.3g/cm3, C0 = 3.260km/s, C∞ = 2.6375km/s. The height h of the waveguide
is 5mm. The frequency is fixed at 1 MHz. This corresponds to steel plate in an
infinite matrix of concrete. Note that, in this case, there is no guided mode for the
embedded waveguide, since C0 > C∞.

Fig. 2 shows the spectral values and the longitudinal wavenumbers of the isolated
guide and of the embedded guide. There are four propagative modes for the isolated
guide (for wich λ < 0 or equivalently β ∈ R). The matrix perturbs these modes by
essentially introducing a slight imaginary part to the longitudinal wavenumbers. The
consequence is the creation of a damping in the longitudinal direction, but also, as
explained in the previous paragraph, a growing behavior in the transverse direction.
Fig. 3 illustrates both effects on a propagative mode. For the non propagative modes,
the impact of the matrix is mainly the introduction of a small real part. This does
not change fundamentally the behavior of these modes in the longitudinal direction.
But, like in the previous situation, they are exponentially growing in the transverse
direction.
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Fig. 2 Spectral values λ (left) and longitudinal wavenumbers β (right) of the isolated and embed-
ded guides.
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Fig. 3 Real part of a propagative mode of the isolated guide (left) and corresponding leaky mode
of the embedded guide (right).

3 Finite element computation of leaky modes

With the aim of computing the leaky modes in complex configurations where the
dispersion relation is unknown in a closed form, we need to introduce a numeri-
cal method which will discretize the system of equations of the model and will be
accurate for computing the solution of eigenvalue problems stated in unbounded do-
mains. In fact, the main drawback that arises in this kind of computations is related
to the unbounded domain where wave propagation problems are stated.

There are different computational techniques to treat this problem numerically:
absorbing boundary conditions (see, for instance, Givoli and Neta [6]), damping
layers (see Castaing and Lowe [4]) or Perfectly Matched Layers (see Bérenger [2]),
among others. In the last years, the Perfectly Matched Layer (PML) technique has
become a standard efficient tool to numerical simulation of problems stated in un-
bounded domains in a wide range of problems. For instance, it has been applied
to acoustic wave propagation at rest, in elasticity (see Collino and Tsogka [5]) or
wave propagation under an uniform flow in ducts (see Bécache et al [1]). Moreover,
the PML technique have demonstrated a high accuracy in standard finite element
implementations (see Bermúdez et al [3]).

Let us describe briefly which is the basic procedure for introducing the PML
technique in the problem stated in an embedded waveguide. Since the domain where
the matrix of concrete is situated is unbounded in the transversal direction, we need
to truncate it at a finite distance of the steel plate, and then we surround the physical
domain of interest by an absorbing PML. In spite of the unbounded domain has been
truncated, the original solution inside the physical domain of interest remains with
minor perturbations, since the solution inside the PML “matches perfectly” with the
physical solution in the sense that there does not exist spurious reflections on the
interface between the PML and the physical domain.
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3.1 Coupled physical-PML model

Let us recall roughly the description of the system of equations which govern the
coupled physical-PML problem for an embedded waveguide. In the sequel, the PML
is placed in the interval (d,e) of the transversal direction of the waveguide.

One of the most extended ideas to understand the PML technique uses the com-
plex stretching of variable. Basically, given a complex constant, α ∈ C, if we intro-
duce a complex change of variable

y ∈ (d,e) → ỹ = d +
y−d

α
∈ C (8)

then the equation governing the propagation inside the PML is given by the original
equation (3) written formally in the new complex coordinates ỹ as follows:

−
1
µ

{

d
dỹ

(

µ
dφ̃
dỹ

)

+ ω2ρφ̃
}

−λ φ̃ =

−
1
µ

{

α
d
dy

(

µα
dφ̃
dy

)

+ ω2ρφ̃
}

−λ φ̃ = 0 in (d,e). (9)

This equation must be completed with the boundary condition dφ̃/dy = 0 at point
y = e.

However, through the rest of the paper, we extend the definition of the complex
change of variable (8) to the whole computational domain (a,d), where α is a non
null complex function defined by

α(y) =

{

1 if y ∈ (a,d),

e−iθ if y ∈ (d,e).
(10)

In this case, since ỹ = y in (a,d), (9) is equivalent to (3) in (a,d), and hence, the
PML equation (9) can be used as the governing equation of the displacement field in
both the physical and PML domains. Let us remark that since α is discontinuous at
y = d, implicitly it is assumed that φ̃ and µαdφ̃/dy are continuous at the interface
point between the physical and PML domain, y = d.

We are not going to detail such choice for the absorbing function of the PML.
However, notice that due to the independency of the absorbing layer α with respect
to the eigenvalue λ , the coupled physical-PML remains a linear eigenvalue problem
with respect to λ .

Following standard arguments for deriving a variational formulation of the cou-
pled physical-PML problem, if we multiply (9) by the complex function 1/α and
by the conjugate of a virtual displacement field ϕ , and integrate by parts in (0,e),
then we obtain the following variational problem:
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Find φ̃ and λ such that

∫ e

0

(

µα
dφ̃
dy

dϕ̄
dy

−
ω2ρ

α
φ̃ϕ̄
)

dy−λ
∫ e

0

µ
α

φ̃ϕ̄ dy = 0, (11)

for all virtual displacement ϕ .
Finally, a discretization procedure is used by applying a standard finite element

method. Piecewise linear polynomials are used to implement a Lagrange finite ele-
ment on an one-dimensional uniform grid with N +1 nodes. It yields to the matricial
problem

Ahφ̃h −λ Bhφ̃ h = 0,

where φ̃h is the nodal-value vector associated to φ̃ , i.e., φ̃ h = (φ̃h(x0), . . . , φ̃h(xN))t .
If we denote by ξh, j(y) the canonical finite element basis associated to the j-th node,
Ah and Bh are tridiagonal matrices defined by the expressions

(Ah)i j =
∫ e

0

(

µα
dξh,i

dy

dξh, j

dy
−

ω2ρ
α

ξh,iξh, j

)

dy,

(Bh)i j =

∫ e

0

µ
α

ξh,iξh, j dy.

Notice that, as a consequence of the introduction of the PML in the model, the
matrices associated to the finite dimensional eigenvalue problem become complex-
symmetric and, in particular, Bh is not hermitian.

3.2 Transformation of the spectrum by the PML technique

One of the differences between the spectrum of the original problem and the coupled
physical-PML problem consists in the position of the continuum of radiation modes.
Before introducing the PML in the model, the continuum of radiation modes was
lying in the real axis, more precisely, they were in the interval [−ω2/C2

∞,+∞).
However, the inclusion of PMLs in the problem introduces a modification in

the position of the continuum of the oscillating modes, which arise in the nega-
tive imaginary half-space. More precisely, due to the complex stretching of vari-
able, all the possible solutions of the original problem which are proportional to
exp(i

√

ω2/C2
∞ + λy), become proportional to

exp

(

i

√

ω2

C2
∞

+ λ
y
α

)

in the PML domain, i.e., they are damped (exponentially) inside the PML. In fact,
since we have defined α = e−iθ in the PML domain, for any λ ∈ C such that
arg(

√

ω2/C2
∞ + λ) ∈ (−θ ,0], the solutions which are bounded or exponential in-

creasing functions in the unbounded domain become exponential decreasing inside
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the PML domain. In the case arg(
√

ω2/C2
∞ + λ) = −θ , the behavior in the PML

remains oscillating.
Due to the effect of the complex change of variable, in spite of the leaky modes

are exponential increasing in the physical domain, the PML technique allows to
compute them since they become exponentially decreasing in the PML domain.
Moreover, only the leaky modes which are exponential decreasing inside the PML,
i.e., which satisfy arg(

√

ω2/C2
∞ + λ) ∈ (argα,0), are recovered in the numerical

simulations.

−ω2

C2
0

−ω2

C2∞

Im(λ )

Re(λ )

guided modes radiation modes

−ω2

C2
0

−ω2

C2∞

Im(λ )

Re(λ )

radiation modes

2argα

guided modes

leaky modes

Fig. 4 Computed spectrum for the original unbounded problem (left) and for the coupled physical-
PML problem (right).

The introduction of the PML in the problem can be interpreted as a rotation of the
spectrum in the λ -complex plane: the continuum of the radiation modes are modi-
fied by a rotation, whose center is −ω2/C2

∞ and angle is −2θ . Moreover, following
the same interpretation, this rotation allows to discover part of the leaky modes hid-
den in the original problem (see Fig. 4).

For the theoretical point of view, if the thickness of the PML is large enough,
then the value of the leaky modes are independent of the parameters of the PML
(i.e. independent of the absorbing function α or the position of the layer). In the
sequel, since we focus our attention on all the leaky modes with positive real part
and negative imaginary part, we will consider α = e−iθ with π/4 < θ ≤ π/2.

3.3 An unusual requirement for the position of the PML

There are a wide range of works about the PML technique, the most of them used
PMLs to compute the scattering field generated in a source problem. However, few
works deal with an eigenvalue problem. At the first glance, the adequate configura-
tion of the PML parameters for the eigenvalue problem can be considered similar
to those used in the source problem, i.e., take the PML position far from the source
and the PML thickness large enough to avoid spurious reflections that come from
the truncated artificial boundary.
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However, at the contrary of the intuition for the source problem, the optimal PML
parameters are far from those fixed in the source problem. For the computation of
leaky modes, the PML thickness must remain large enough to obtain an accurate
eigenfunction without spurious reflections. But the PML position must be as close
as it is possible to the interface between the matrix and the steel waveguide (see Kim
and Pasciak [8]). This unusual requirement for the position of the PML is related
to the exponential growth of the leaky modes in the physical domain and the non-
hermitian character of the matrices involved in discretized eigenvalue problem.

Let us show an example where two different configurations have been used. We
have considered the same physical parameters used in section 2.4 and the geometry
is defined by a = 0mm and h = 5mm. In all the numerical simulations, the grid size
has been kept constant and equal to 0.1mm.

On one hand, we have solved numerically the eigenvalue problem with some ade-
quate PML parameters, d = 6mm, e = 16mm, and θ = π/3. The numerical spectrum
is shown on the left-hand side of Fig. 5. One can see on the plot a discretization of
the continuum of radiation modes and four leaky modes. We have obtained an accu-
rate result for the leaky modes, close to the exact eigenvalues of the problem which
verify the dispersion relation.

On the other hand, we have used a set of parameters: d = 20mm, e = 30mm, and
again θ = π/3, analogously to those used in a source problem. We have obtained
a perturbed result for the leaky modes and for the radiation modes. In addition,
spurious modes, which are mixed with the leaky modes, have arisen in the spectrum.
Notice that they are difficult to discard in the numerical simulations (see plot on the
right-hand side of Fig. 5).
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Fig. 5 Computed spectrum for a non-adequate settling (right) and an adequate one (left).
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4 An application : an efficient evaluation of the Green function

We have seen how the guided modes of an isolated plate are transformed into leaky
modes when the guide becomes embedded in an infinite matrix. We have also seen
that the PML allows to compute these modes easily. As an application, we will use
the modes in order to evaluate efficiently the Green function.

4.1 Modal representation of the Green function

We denote by G = Gx0,y0 the Green function whose point source is (x0,y0). It verifies
the equation:

∂
∂y

(

µ
∂G
∂y

)

+
∂
∂x

(

µ
∂G
∂x

)

−ω2ρG = δx0 δy0 in R× (a,b) (12)

with the free boundary condition whenever a or b is finite (Eq. (2)).
For the isolated waveguide, it is well known that the Green function admits the

decomposition:

G(x,y) = ∑
n

en(y0)

2iβncn
en(y)exp(iβn|x− x0|), (13)

with cn =
∫ b

a µe2
n and en the guided modes.

We would like to extend this representation for the embedded guide, using leaky
modes instead of guided modes. Indeed, we have seen that each guided mode of the
isolated guide is close to a leaky mode of the embedded guide. To achieve this aim,
we use the expression of the leaky modes found in the previous section in the domain
of calculation (a,d)∪(d,e), (d,e) being the PML. However, the orthogonal relation
that holds for the isolated guide:

∫ b
a µemen = 0 if m 6= n is changed for the embedded

guide by:
∫ e

a µ/α emen = 0 if m 6= n. Hence, we replace the previous definition of cn

by cn =
∫ e

a µ/α(en)
2 and Eq. (2) gives the decomposition of the Green function for

the embedded guide.

4.2 Numerical results of the decompostion

We use all the parameters described in section 2.4. Numerically, we have to truncate
the series in Eq. (13). In the example of a steel plate in a matrix of concrete, there
are four propagative modes. We choose to use all these modes and the first non
propagative mode (β with the smallest imaginary part) in the decomposition of the
Green function. Thus, these five leaky modes calculated, the decomposition (13)
allows to represent the Green function very rapidly.
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We place the point source at x0 = 0,y0 = 0. So as to compare the results, we
also calculate the Green function of the embedded guide with a two-dimensional
Finite Element method. Results are shown on Fig. 6. One can see that the difference
between the modal representation with only five leaky modes and the solution with
Finite Elements, which is numerically slower, is tight and concentrated above the
point source. This error is less than 5% except above the point source. The modal
representation is hence very efficient and accurate off the vertical of the point source.

Fig. 6 Real part of the decomposition of the Green function with 5 leaky modes (top), real part
of the Finite Element representation of the Green function (middle) and error between the two
representations (bottom).
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1. E. Bécache, A.-S. Bonnet-Ben Dhia, and G. Legendre, Perfectly matched layers for time-
harmonic acoustics in the presence of a uniform flow. SIAM J. Numer. Anal., 44(3), pp. 1191-
1217, 2006.
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Ultrasonic bulk wave propagation in 

concentrated heterogeneous slurries. 

R E Challis, A K Holmes and V Pinfield1 

 

Abstract Many products in many sectors of industry exist in colloidal form and 

there is a requirement to measure the dispersed phase particle size distribution 

(PSD) non-invasively for the purposes of product and process quality assurance. 

Ultrasonic compression wave attenuation is sensitive to, inter alia, PSD, and could 

be applied on-line in a process plant. The ultrasonic method is based on adaptively 

fitting models of wave propagation to measured data. These models break down at 

high colloidal solids loading.  This paper discusses the physical phenomena 

behind this failing and identifies a requirement for new formulations of local 

colloidal viscosity in the vicinity of suspended colloidal particles. Ultrasonic 

attenuation when calculated on the basis of a number of different viscosity models 

is compared to measured data and the model failings are thus illustrated. Empirical 

studies are presented which show possible forms of the viscosity - particle 

concentration - frequency relationship. 

 

1 Introduction 

 
Colloidal materials consist of small particles suspended in a liquid continuum, the 

size of the particles ranging from a few nm to 100s of microns. A colloid can exist 

in monodisperse form, in which all of the particles are the same size, or in 

polydisperse form in which there is a particle size distribution (PSD). If the 
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particles are liquid droplets the mixture is termed an emulsion, and if the particles 

are solid the mixture is termed a slurry. A vast range of products either exist in 

colloidal form or will have passed through the colloidal state during manufacture – 

examples are food, pharmaceuticals, cosmetics, paints and pigments, fuels and 

lubricants, grinding and polishing materials, and hazardous nuclear waste. 

Colloidal mixtures are not unconditionally stable and can change their state with 

time, temperature, light or other radiation, or with mechanical disturbance such as 

stirring, pumping, or vibration. There are many ways in which a colloid can 

change its state: particles can ‘ripen’ or undergo diminution by the exchange of 

material with the solution that forms the continuous phase; crystallisation is one 

but not the only process in this category. Particles can aggregate into floccules 

(flocs) which may themselves be either stable or unstable. In many products 

colloidal instability may be designed-in, and a good example here is emulsion 

paint which is required to remain stable and semi-solid when on a brush or on its 

destination surface, but is required to flow as a liquid during brushing – in 

response to a small input of mechanical energy. The growth of colloidal particles, 

by whatever process, can bring them to a size at which gravitational effects begin 

to dominate over Brownian phenomena and surface forces, and this leads to 

separation of the disperse phase from the continuous phase; common examples 

here are old milk and old paint. More generally, the functionality and fitness-for-

purpose of a colloidal mixture depends strongly on the PSD. This leads to a 

requirement to measure PSD as the principal means to guarantee function, and 

such measurements may be required during manufacture, on the finished product, 

or in the context of longer term shelf-life studies. This latter is particularly 

important in the case of agrochemicals and pharmaceuticals in which uneven 

concentrations of bio-active ingredients are to be avoided for safety reasons. 

 

There are many ways in which PSD and other aspects of colloidal structure can 

be assessed. These include visible and IR microscopy, SAXS, WAXS, SANS, 

NMR, ESR, electrical impedance, optical scattering and ultrasound, see [1]. Many 

of these techniques are only suited to a laboratory, as distinct from a process, 

environment, and many only apply to relatively dilute mixtures. Ultrasound has 

the potential to be used as the basis for PSD estimation in all operating 

environments but it, too, suffers from limitations when the concentration of 

particles is high. The problem is particularly acute in the case of slurries but less 

so for emulsions. This paper will give an outline of the basic technique for PSD 

estimation using ultrasound, the physics that underlies the method, and how the 

theory breaks down at high solids loading. Some experimental results will be 

presented which both illustrate these effects and pose new challenges for 

theoretical developments. 
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2  The Estimation of PSD Using Ultrasound 
 

The basis of all ultrasonic PSD estimations is a theoretical model which predicts 

compression wave attenuation as a function of frequency with particle size(s) as 

input parameters. The model output is compared with measured attenuation, and 

the difference between the simulated and measured attenuation is identified as a 

mean squares error across the frequency range. The model prediction is then 

adapted by varying the input PSD in a manner that minimises this error. At the 

point where the error is minimised the particle sizes input to the model are taken 

as the true values which were required to be measured. The mathematical 

formulation to the propagation model is core to the technique. 

 

An important consideration for the success of the method is the way in which 

the PSD is input to the propagation model. It would be attractive to input particle 

sizes in a completely free format, in the form of a histogram of fractional volume 

versus particle size, for example. However, such an approach leads to many 

degrees of freedom in the adaptation procedure, whilst typical ultrasonic 

attenuation spectra are relatively featureless and can be approximated by a 

polynomial of order three or less. Scott et al [2, 3] have investigated this problem 

for a mineral slurry and have shown that the majority of particle sizes are ignored 

by the model inversion procedure - only two or three size classes were needed to 

determine the ultrasonic attenuation. It is thus necessary to model the PSD with an 

analytic function with the minimum number of parameters. There are many 

possibilities here but the most common is the log-normal distribution in which the 

number of particles in the size range r to r + dr in a mixture containing N particles 

is 

 

drrNpdN )(= ,     (1) 

where 
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and µ is the logarithmic mean and σ is the logarithmic deviation. The PSD is 

then expressed as the volume fraction φ(r) of particles in the range r to r + dr. For 

input to the wave propagation model this distribution is then sampled to extract 

between three and around eleven discrete particle sizes arranged logarithmically 

and symmetrically about the central size µ. 
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3  Wave Propagation Models 
 

Theoretical treatments of the interactions between acoustic waves with obstacles 

suspended in a continuum have a very long history – extending back to the work 

of Rayleigh in the 19
th

 century, and for a comprehensive review the reader is 

referred to [1]. For the purposes of particle sizing the most commonly used model 

is the scattering formulation due to Epstein and Carhart [4] and Allegra and 

Hawley [5], now known as the ECAH model. For the examination of solid-in-

liquid suspensions, slurries, it may also be possible to use coupled phase theories 

such as Harker and Temple [6] and Evans and Attenborough [7]. Both classes of 

model yield a complex  compression wavenumber 

)(
)(

ωα
ω
ω

β i
c

−= ,                                              (3) 

where c(ω) is the phase speed and α(ω) is the attenuation coefficient, both as 

functions of frequency ω. The ECAH model is a spherical wave formulation 

which leads to the following expression for β 
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Here kc is the wavenumber for the continuous phase, typically water. φj is the 

volume concentration of particles of radius Rj, and the partial coefficients Anj 

represent various diffraction effects that contribute to the wavenumber for 

particles of the jth size. A0j incorporates the effects of material substitution, the 

difference in compressibility between the phases of the mixture, and heat transfer 

between the phases; they dominate in the solution for emulsions and low density 

polymer colloids. A2j incorporate resonances in the particles and are not significant 

at the frequencies generally used for particle sizing, typically less that 60 MHz. A1j 
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dominate in the case of slurries and incorporate losses from the wave due to 

viscous drag between the particles and the continuous phase. 

 

In the ECAH formulation the viscous loss mechanism is described by a non-

propagating transverse (shear) wave emanating away from the suspended particle 

with bipole symmetry and a wavelength   

 

λv = 2π(2η/ρω)
1/2     

(5) 

Here η is the viscosity of the continuous phase and ρ is the density. The 

equation applies to the dilute limit in which λv is very much less than the distance 

between the particles, Fig. 1. Now the shear wavelength at 10 MHz in water is 

1060 nm and if we consider a suspension of particles of 400 nm diameter and 

assume simple cubic packing this wavelength corresponds to the mean inter-

particle distance for a particle concentration of only 2.8% v/v. 

 

 

 

 

 

 

 

 

 

Fig. 1. Diagramatic representation of two suspended particles both diffracting non-propagating 

shear waves. As the particles come closer together the waves will interact. 

This is the concentration limit above which the ECAH model begins to fail and 

predicts attenuations greater than those actually measured. Thus the ECAH model 

in its present form cannot be used for PSD estimation in realistic industrial slurries 

which can have solids concentrations up to, typically, 40% v/v. In order to develop 

the model for higher concentrations it will be necessary to research new theory for 

the effective viscosity in the vicinity of the suspended particles. 

 

An alternative and useful model on which to base studies of the effects of 

viscosity on wave propagation in slurries is the coupled phase treatment of Harker 

and Temple [6]. With a little reworking their expression for complex wavenumber 

becomes  
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and 

fs βφφββ )1(* −+= .     (9) 

The subscripts f and s refer to fluid (continuous phase) and solid (dispersed 

phase) respectively. γ is the drag coefficient which in its simplest form reduces to 

the Stokes force on N particles in a unit volume 
 

ηπγ R6=             (10) 

 

In principle, this expression can be extended to include more complex 

expressions for the effective viscosity ηeff  through the use of a hydrodynamic 

correction factor Q 

 

ηη Q
eff
=           (11) 

We have used this expression with various forms for Q to benchmark the 

predictions of the ECAH coupled phase models against experimental data. 

 

4  Viscosity Models 
 

There is a vast literature associated with the viscosity of particulate suspensions 

which includes both formal theoretical approaches and empirical studies – indeed, 

there are so many different approaches that it is difficult to find a unifying theme. 

In the current study we have so far considered a small but nevertheless 

representative group of formulations. The simplest is due to Einstein [8], in which 

 

)1( φηη keff += ,      (12) 
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Where k is 2.5 for rigid spheres. The more complex models considered were: 

Vand [9-11], in which 

 

......349.75.21 2 +++= φφQ     (13) 

Hasimoto [12], in which 

22/1 329.0791.11

1

φφφ −+−
=Q ,    (14) 

Kuwabara [13], in which 

22/1 595

5

φφφ −+−
=Q  ,     (15) 

and Happel [14], in which 

.
2332

2
23/53/1

3/5

3
4

φφφ
φ

−+−
+

=Q     (16) 

We have also included the complex correction factor implied in Harker and 

Temple’s paper [6] in which 
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and the effective hydrodynamic correction factor is 
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6 0ηπ
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f=       (19) 
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Due to limitations of space, we do not detail the physics underlying these 

models here – they have been reviewed by us in [1]. 

 

5  Experiments 
 

The ultrasonic spectrometer instrument used to measure attenuation was built in-

house some years ago [15]. The test colloid was monodisperse and consisted of 30 

nm diameter silica spheres (Ludox) in an aqueous continuous phase. The 

suspension had a maximum concentration of approximately 35% solids v/v, and 

this was successively diluted to provide 12 samples with concentrations in the 

range 1% and 35% v/v. The attenuation spectrum was measured for all 12 samples 

in the frequency range up to 50 MHz and the attenuation value at 30 MHz was 

identified for comparison with the model predictions for various concentrations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Measured attenuation (Npm
-1

) at 30 MHz versus concentration (volume fraction) for the 

30 nm diameter silica suspensions (dots) compared to the predictions of the ECAH model (top) 

and the coupled phase model (bottom), with various viscosity functions included through the 

hydrodynamic correction factor Q. 
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The values of the attenuation at 30 MHz expected from the ECAH (Eq. 4) and 

coupled phase models (Eq. 6) with various hydrodynamic correction factors Q, 

based on Eqs. 11-17, were calculated as functions of volume concentration φ. The 

experimental data is compared to these calculations on Fig. 2 from which it will be 

seen that only the Happel model matches the experimental data but only up to a 

low concentration limit. All of the other models predict significantly different 

attenuations across the concentration range. It will be clear from these results that 

there is a requirement for new theoretical formulations for viscosity in the context 

of wave propagation in slurries. 

 

Whilst the viscosity models cited above are functions of  φ alone, we have 

explored the possibility that they may also be functions of frequency due, for 

example, to a dependence on shearing rate. For both the coupled phase and the 

ECAH models we have fitted viscosity functions in a least squared error sense to 

get the best match to experimental data – within error bounds of better than 1%. In 

the fitting procedure we have allowed the viscosity to be a complex function 

(
IR

iηηη += ) so as to include physical phenomena such as induced mass, at 

least notionally. The resulting viscosity functions are shown on Fig. 3, and the 

corresponding attenuations are shown on Fig 4. It will be clear from Fig. 4 that 

fitting of empirical functions to represent viscosity results in excellent agreement 

between measured and modelled attenuation data. For the ECAH model the best 

fits were obtained when the real part of the viscosity took the value for water 

(approximately 0.9 x 10
-3

 Pas) and a small negative imaginary component was 

added (value up to 6 x 10
-6

 Pas). 

  

The implications of this are difficult to assess on the basis of current 

knowledge, but most probably have their origin in phenomena such as induced 

mass. This imaginary component was a fairly uniform function of frequency over 

the range up to 40 MHz. In contrast, for the coupled phase model good fits were 

obtained when the viscosity was wholly real and a function of both volume 

concentration and frequency. The ‘required’ viscosity showed a maximum value 

somewhere close to the middle of the concentration range, between 15% and 20% 

v/v. The fall-off at higher concentrations is to be expected, given the over-

prediction in that range on Fig. 2. We note also that the fitted viscosity is a rising 

function of frequency up to around 30 MHz, above which the frequency 

dependence is negligible. 
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Fig. 3. Real viscosity versus volume concentration for the silica suspension – results from fitting 

to the ECAH model (top) and the coupled phase model (bottom). 

 

6  Discussion and Conclusions 
 

Ultrasonic compression wave attenuation, when measured as a function of 

frequency, can be used as the basis for techniques to measure PSD in slurries. It is 

known that the method works well for low solids loadings but tends to fail at 

higher concentrations – due to the shortcomings of the theoretical propagation 

models that are used in the analysis. It is believed that the origin of this failure can 

be found in the formulation of viscosity functions that are part of the models. This 

failure can be thought of as originating in overlaps between non-propagating 

viscosity waves diffracted from adjacent particles. The implication of this is that 

concepts of viscosity require further consideration in the context of wave 

propagation. Most literature on the subject of viscosity has as its basis problems in 

rheology in the context of chemical engineering. These approaches do not 

necessarily match the requirements for theoretical treatments of wave propagation 
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in slurries. It is likely that new research will arrive at formulations for viscosity 

that are functions of both concentration and frequency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Measured attenuation (dots) compared to the coupled phase (hydrodynamic) and ECAH 

models after fitting of empirical viscosity functions. 

They will be further complicated by the requirement to include a wide range of 

particle sizes in the propagation medium – a problem that has not yet been solved 

satisfactorily in the context of rheology. It is also likely that any new viscosity 

functions will have imaginary parts in order to account for implicit dynamic 

phenomena apart from friction alone. We have also found that the empirical 

viscosity functions required to simulate wave attenuation data are different for the 

scattering (ECAH) and coupled phase approaches. This clearly unsatisfactory 

situation will require further understanding and resolution. We conclude that the 

mathematical formulation for viscosity in the context of wave propagation in 

slurries represents an exciting challenge for theoreticians, experimentalists, and 

ultimately, the designers of process instruments. 
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Dynamics of elastic bodies connected by a thin
adhesive layer

C. Licht, F. Lebon and A. Léger

Abstract We study a problem of wave propagation in a structure made of two tridi-
mensional elastic bodies connected by a thin adhesive layer. We recall that, after
several heuristic models, the bonding problem, which basically amounts to study
how does the thin layer can be replaced by a simpler model without thickness, has
been carried out in the case of equilibrium problems. The present work deals with
the dynamical problem. We obtain that the problem of elastodynamics with a thin
adhesive layer can be approximated, with a convergence result, by another problem
in which the layer is changed into a mechanical constraint, which is precisely the
same as the one of the equilibrium case.

1 Introduction

We study the effect of a thin adhesive layer in a problem of elastodynamics. We
recall that the problem of the modelling of bonded solids goes back to ancient stud-
ies in the field of physics and acoustics (see e.g. [12, 6]) and has essentially given
rheological models consisting in changing the layer of the adhesive into an areal
distribution of springs. This kind of models was used in many fields of wave prop-
agation analyses such as for instance seismology [5]. But it was observed that the
range of applicability of these rheological models has not been clearly established
and lots of studies tried to back up the models either by comparisons with exper-
iments or, up to very recently, by comparison with finite elements calculations in
which a mesh of a thin layer was used to take the behavior of the adhesive into ac-
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count [14].

The purpose of the present work is to make a contribution to the way of modelling
a system made of two elastic bodies connected by an adhesive joint, and in partic-
ular to give a mathematical justification of rheological models. We shall get that
the models given by the physicists years ago can be justified rigorously, which will
settle the problem of the range of applicability of a given model, but we shall also
get that these models may fail in some physical situations.

Let us now outline the main steps of the paper.
A first section recalls the problem of justifying the effect of a thin adhesive layer in
equilibrium problems. This section only stands for a motivation since the equilib-
rium case has now widely been treated. The main idea of the justication deals with
taking the thinness of the adhesive layer into account by an asymptotic analysis.
We state the problem for a given thickness of the layer and we look for a limit, this
means that we look at the changes of the problem or at the behavior of its solution,
as the layer is thinner and thinner. Among different methods using tools of asymp-
totic analyses, we recall very briefly the basic notions of variational convergence.
The next sections of the paper concerns the dynamical problem. The classical state-
ment of the elastodynamical problem is transformed into a first order problem for
the pair (displacement, velocity) which gives the form of a so-called semi-group de-
pending on the set of the mechanical parameters of the problem. Then the last parts

which will be given, towards a limit which gives the convenient model.

2 The equilibrium problem

The mechanical analysis of soft thin adhesive bonded joints between two de-
formable bodies involves problems with several parameters. At least two of them
are essential: the thickness of the joint, which is small with respect to those of the
deformable bodies and the stiffness of the joint, which is usually lower than that of
the bodies. In previous studies (see e.g. [2, 4, 7, 8, 11]), the bonding of two three-
dimensional solids by an adhesive layer, within linear elasticity, small strains or
finite strains, or viscoelasticity, has been handled by performing asymptotic analy-
ses, i.e. by assuming that the thickness and the stiffness of the layer tend to zero.

Within this approach, the layer is replaced by a mechanical constraint. The layer
no longer exists from the geometrical point of view, but is replaced by a jump con-
dition taking the asymptotic behaviour of the parameters into account. When the
adhesive is linearly elastic, the limit problem involves a transmission condition link-
ing the stress vector to the jump of the displacement which occurs at the interface
σ .n = K[u]. The structure of this interface law is similar in this case to that of the
original constitutive equation, but the strain tensor is replaced by the symmetrized
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show that, as the parameters tend to zero, this semi-group converges, in a sense



tensorial product of the displacement jump by the unit normal vector. The coeffi-
cients of the tensor K keeps the memory of the stiffness parameters of the original
material. For example, for two-dimensional domains made of isotropic elastic ma-
terial, the stiffness K is a diagonal tensor which can be shared into normal and
tangential parts:

KN
s→0

λ +2µ
ε

, KT = lim
s→0

µ
ε

.

ε is the thickness of the adhesive, λ and µ are the Lamé coefficients of the adhesive,
and parameter s stands for the triplet (λ ,µ ,ε) . This result can be proved rigorously
using variational convergence arguments [10]. Variational convergence is a notion
of convergence of sequences of functions introduced during the 70’s (see e.g. [3]).
Let F s be an energy functional and let us be a minimum of this functional (i.e. an
equilibrium state in equilibrium problems). The idea of the variational convergence
is to define the ”lowest” notion of convergence of F s to some functional F when s
tends to zero, which implies the convergence of both the minima and the minimizers
of F s to those of F .

In the case of the thin layer, the sequence {F s} corresponds to the total energy in
the adherents and in the adhesive. The variational limit is a sum of the total energy
of the adherents together with an areal energy on a surface S which is the geometri-
cal limit of the part of the domain made of the adhesive as its tickness tends to zero.
The latter areal energy is given by:

∫

S

1
2

K[u]2ds.

The rigorous proof of this result is obtained using a regularization operator Rε which
gives a good approximation of the solution us in the adhesive. For example, if the
adhesive layer of thickness ε lies along a plane orthogonal to the third direction, the
regularization can be taken as:

Rε u(.,x3) =
1
2

{

u(.,
ε
2
)+u(.,−

ε
2
)+min(1,

|x3|

ε
)(u(.,

ε
2
)−u(.,−

ε
2
))

}

.

We now just recall the results in the form of the set of possible behaviors of the
rheological model which can be used to replace the thin layer and to understand the
equilibrium of the system adherent-adhesive under external loads. This is given in
Table 1. It is worth seeing that some cases give exactly a rheological behavior with
the explicit stiffness of the springs in the normal and tangential direction, but some
other cases do not.
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= lim



µ/ε→ 0 σN = 0,
σT = 0.

σN = λ̄ [uN ] ,
σT = 0.

[uN ] = 0,
σT = 0.

µ/ε →µ̄ σN = 2µ̄ [uN ] ,
σT = µ̄ [uT ] .

σN = (λ̄ +2µ̄) [uN ] ,
σT = µ̄ [uT ] .

[uN ] = 0,
σT = µ̄ [uT ].

µ/ε →∞ [uN ] = 0,
[uT ] = 0.

[uN ] = 0,
[uT ] = 0.

[uN ] = 0,
[uT ] = 0.

λ /ε →0 λ /ε →λ̄ λ /ε →∞

Table 1 Transmission conditions

3 Statement of the dynamical problem

Let Ω be a tridimensional domain with a Lipschitz continuous boundary having
an intersection with the plane {x3 = 0} of non zero measure denote by S. Let this
domain be divided into Ω ε := {x ∈ Ω , |x3| > ε} and Bε := {x ∈ Ω , |x3| < ε}. The
parts Ω ε will be referred to as the bodies, and the layer Bε as the adhesive. The
equations of the dynamics are the following:

(Ps)











































γ
∂ 2us

∂ t2 −divσs = f in Ω× [0,T]

σs =

{

ae(us) in Ωε × [0,T]
λ tr(e(us))Id+2µe(us) in Bε × [0,T]

σsn = g on Γ1, us = 0 on Γ0,

us(x,0) = u0
s (x), v0

s =
∂us(x,0)

∂ t
∀x ∈ Ω.

(1)

(λ ,µ) in Bε and a in Ω ε are the elasticity coefficients which are assumed to satisfy:
i) a ∈ IL∞ (

Ω ;L in(S3)
)

; ∃α > 0 such that a(x)ξ .ξ ≥ α|ξ |2
S3 a. e. in Ω ∀ξ ∈ S

3,
L (S3) denotes the space of linear operators from the set S

3 of symmetrical 3× 3
matrixes onto itself;
ii) λ and µ are positive real numbers which will tend to zero.
The voluminal mass γ is such that:
i) ∃ρ̄ ∈ IL∞(Ω) such that ρ̄(x) ≥ ρm > 0 a. e. in Ω
ii) γ(x) = ρ̄(x) a. e. in Ω ε , γ(x) = ρ a. e. in Bε , where ρ is a positive real number
assumed to have a limit ρL ≥ 0.
us is the displacement field, vs the velocity field, σs the stress field and n the outer
normal, ( f ,g) are the given external loads for which we assume that ∃ε0 such that
supp(g)∩Bε 6= /0
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The index s means that this problem depends on a quadruplet of parameters s :=
(λ ,µ ,ε,ρ). It is well known that for smooth enough data f and g, this problem
possesses a single solution us.
We now aim at studying the behavior of problem (Ps) as the parameter s tends to
zero. This is more easily carried out if we first put problem (Ps) in the form of an
evolution equation in a convenient function space which will be the set of admissible
states of finite energy.

4 Changing the formulation of the problem

In order to study problem (Ps) we first introduce the classical function space (see
e.g. [1]) IH1

Γ0
(Ω)3 =

{

u ∈ IH1(Ω)3;u = 0 on Γ0
}

and the following notations so that
we shall go on with simple formula:

for φ ,ψ ∈ IH1
Γ0

(Ω)3,

as(φ ,ψ) =
∫

Ω ε
ae(φ).e(ψ)dx +

∫

Bε
λ tr(e(φ))tr(e(ψ))+2µe(φ)e(ψ)dx.

(2)

We then make the following regularity assumption on the surface loads:

Assumption H1

g ∈ lC2,1([0,T ]; IL2(Ω)3).

Assumption H1 implies

∃! ue
s ∈ lC0,1([0,T]; IH1

Γ0
(Ω)3); as(u

e
s ,φ) =

∫

Γ1

gφds, ∀φ ∈ IH1
Γ0

(Ω)3).

The phase space is then IHs =
{

U = (u,v) ∈ IH1
Γ0

(Ω)3 × IL2(Ω)3
}

endowed with

the hilbertian norm and scalar product:

|U|2IHs
= |(u,v)|2IHs

:= as(u,u)+
∫

Ω
γvvdx; (U,U′) = as(u,u′)+

∫

Ω
γvv′dx.

Let us now define in IHs an unbounded operator As with a domain D(As) as:



























D(As) =

{U = (u,v) ∈ IHs;v ∈ IH1
Γ0

(Ω)3) and ∃! w ∈ IL2(Ω)3 such that

∫

Ω
γw.φdx + as(u,φ) = 0, ∀φ ∈ IH1

Γ0
(Ω)3}

AsU = As(u,v) = (v,w),

(3)

in such a way that, if
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Ur
s = (ur

s,v
r
s) := (us −ue

s ,vs −ve
s) and Fs = (0,

f
γ
−

dve
s

dt
),

then problem (Ps) is formally equivalent to the evolution equation in IHs:

dUr
s

dt
= AsU

r
s +Fs, Ur

s(0) = (u0
s −ue(0),v0

s − v̇e(0)). (4)

Theorem 1. Let assumption H1 be satisfied and assume f ∈ lC0,1([0,T ]; IL2(Ω)3)
and U s ∈ D(As), then problem (Ps) possesses a unique solution in lC1([0,T ]; IHs)∩
lC0([0,T ];D(As)).

Due to Stone’s theorem, the proof of theorem 1 just requires to show that oper-
ator As is skew-adjoint. First, from the definition of operator As we have ∀ U =
(u,v) ∈ D(As), (AsU,U)IHs

=
∫

Ω γw.vdx + as(u,v) = 0. Secondly, given an

arbitrary Φ = (Φ1,Φ2) in IHs, it is clear that for U such that U−AsU = Φ we have:

u ∈ IH1
Γ0

(Ω)3,
∫

Ω
γ(u,Φ1 −Φ2)φdx + as(u,φ) = 0 ∀φ ∈ IH1

Γ0
(Ω)3. (5)

The existence and uniqueness of u follows from Lax-Milgram lemma, and then:

U := (u,u−Φ1) ∈ D(As), U−AsU = Φ. (6)

5 The asymptotic behavior as the parameters tend to zero

We shall now make use of Trotter’s theory about the convergence of semi-groups of
operators acting on variable Hilbert spaces. Let us first recall a brief definition of a
semigroup. The notion of semi-groups follows from that of groups by removing the
requirement of a symmetrical element. In the case of sets of operators this notion can
be understood by the following example which can be seen as a basic introduction
to the flows in the theory of ordinary differential equations. Let us assume that an
ordinary differential equation of the following form is given:

du
dt

= Tu,

the latter being associated with some initial data u(0) and T being some operator
whose domain and properties will be given explicitly in the particular case we shall
deal with. The solution is then formally ut := gtu(0) and satisfies:
i) for any positive real numbers t1 and t2, gt1+t2 = gt1 .gt2 ,
ii) g(0) = I.
The set {gt} for 0 < t < ∞ is called a one parameter semi-group generated by T.

Let us now come back to problem (Ps) and to its transformation into equa-
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tion (4). Assume that the elasticity coefficients are such that the ratio λ/ε and
µ/ε have finite limits as the thichness tends to zero: λ/ε −→ λ̄ ∈ (0,+∞) and
µ/ε −→ µ̄ ∈ (0,+∞). This can be seen as a nondegeneracy assumption, but the
cases λ̄ , µ̄ ∈ {0,+∞} could be more or less studied in the same way.

Let IH1
Γ0

(Ω\S)3 =
{

u ∈ IH1(Ω\S)3; u = 0 on Γ0
}

. For any u ∈ IH1
Γ0

(Ω\S)3 let us

now define two functions u+ and u− as elements of IH1(Ω±) which are the re-
strictions of functions u to Ω± = {x ∈ Ω ; ±x3 > 0}. In this way we can de-
fine a jump [u] ∈ IL2(S) as the difference between the traces on S of u+ and u−.
Let n be the third axis of the frame of IR3 that is the normal vector to S ori-
ented from Ω− to Ω+, and for any vector ξ of IR3 let us denote ξN = ξ .n and
ξ ⊗s η = 1

2 (ξ ⊗η +η ⊗ξ ); ξ ,η ∈ IR3.
We can now define a continuous IH1

Γ0
(Ω\S)3−elliptical bilinear form on IH1

Γ0
(Ω\S)3

as:

for φ ,ψ ∈ IH1
Γ0

(Ω)3,

a(φ ,ψ) =
∫

Ω\S
ae(φ).e(ψ)dx +

∫

S
λ̄ [φ ]N [ψ]N +2µ̄[φ ]⊗s n.[ψ]⊗s ndx̂,

(7)

where x̂ denotes (x1,x2) if x is (x1,x2,x3).
The space IH of finite energy states in which the problem governing the asymptotic
behavior of us will be formulated is then:

IH =
{

U = (u,v) ∈ IH1
Γ0

(Ω\S)3 × IL2(Ω)3} (8)

endowed with the following norm and scalar product:

|U|2IH = |(u,v)|2IH := a(u,u)+
∫

Ω
ρ̄|v|2dx; (U,U′)IH = a(u,u′)+

∫

Ω
ρ̄v.v′dx.

Since the space IH of states of finite energy is different from the natural phase space
IHs, we introduce a family of linear operators from IH to IHs, Ps ∈L (IH, IHs), which
aim at ”comparing” an element of IH with an element of IHs:

U = (u,v) ∈ IH −→ PsU = (us,vs) ∈ IHs,

us(x) = Rε u(x) := 1
2

{

u(x̂,x3)+u(x̂,−x3) + min( |x3|
ε ,1)(u(x̂,x3)−u(x̂,−x3))

}

,

vs(x) = v(x) if x ∈ Ωε , vs(x) = v(x).
(

ρ̄(x)
ρ

)1/2
if x ∈ Bε .

(9)
It is fundamental to observe that:

i) ∃ C > 0, |PsU|IHs
≤ C|U|IH, ∀U ∈ IH, ∀s 6= 0,

ii) lims→0 |PsU|IHs
= |U|IH.

(10)

In the same way, for s 6= 0, it is clear that:
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∃! ue ∈ lC0,1([0,T]; IH1
Γ0

(Ω\S)3); such that as(u
e,φ) =

∫

Γ1

gφds, ∀φ ∈ IH1
Γ0

(Ω\S)3),

and we define the operator A as:



























D(A) =

{U = (u,v) ∈ IH;v ∈ IH1
Γ0

(Ω\S)3) and ∃! w ∈ IL2(Ω)3 such that

∫

Ω
ρ̄w.φdx + a(u,φ) = 0, ∀φ ∈ IH1

Γ0
(Ω\S)3}

AU = A(u,v) = (u,v),
(11)

Let us now introduce F = (0,
f
ρ̄
−

due

dt
) and consider the following evolution equa-

tion in IH:
dUr

dt
= AUr +F, Ur(0) = Ur

0. (12)

In the same way as for operator As, it is clear that operator A is skew-adjoint in IH,
so that we have:

Theorem 2. Let assumption H1 be satisfied and assume f ∈ lC0,1([0,T ]; IL2(Ω)3)
and U r

0 ∈ D(A), then equation (12) possesses a unique solution in lC1([0,T ]; IH)∩
lC0([0,T ];D(A)).

It is easily shown that u := ur +ue satisfies formally the following problem (P)

(P)



























































ρ̄
∂ 2u
∂ t2 −divσ = f in Ω\S× [0,T]

σs = ae(u) in Ω\S× [0,T]
σn = g on Γ1, us = 0 on Γ0,

{

u(x,0) = ur
0(x)+ue(x,0) = uO(x),

∂tu(x,0) = vr
0(x)+∂tue(x,0) := vO(x)

∀x ∈ Ω

and
[σn] = 0, σn+λ [u]nn+2µ [u]⊗s n = 0 on S.

(13)

It remains to show that us converges to u when s −→ 0. Let us recall the following
result which has been established in the static case [10].

Proposition 1. If s−→ 0, then ue
s −→ ue in IL2(Ω)3 , us −→ u in IH1(Ω η)3, ∀ η > 0,

as ue
s ,u

e
s) −→ a(ue,ue) and ue

s |x3=ε −ue
s |x3=−ε −→ [ue] in IL2(S).

This gives the convergence of Ue
s towards Ue. The convergence of Ur

s towards Ur

will be given by Trotter’s theory of approximation of semi-groups which roughly
says that ”if the stationary problems are converging, then the dynamical problems
will also converge”. More precisely (see [13])
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Theorem 3. Assume operators As and A are anti-adjoint in the Hilbert spaces IHs

and IH and satisfy (9) and (10). Assume in addition:
i) lims→0 |Ps(I−A)−1 f − (I−As)

−1
Ps f |IHs

= 0 ∀ f ∈ IH,

ii) lims→0 |PsU0 −U0
s |IHs

, ,

iii) lims→0
∫ T

0 |PsFs(t)−Fs(t)|IHs
dt = 0,

If Us and U are respectively the solutions to equations
dUs

dt
= AsUs +Fs, Us(0) =

U0
s and

dU
dt

= AU+F , U(0) = U0,

then lims→0 Sup
{

|PsU(t)−Us(t)|IHs
, t ∈ [0,T]

}

= 0.

This abstract result allows us to establish:

Theorem 4. Let assumption H1 be satisfied and assume f ∈ lC0,1([0,T ]; IL2(Ω)3).
Assume in addition that

lims→0 |PsU0 −U0
s |IHs

= 0, U0 −Ue(0) ∈ D(A), U0
s −Ue

s(0) ∈ D(As)

(conpatibility/convergence assumption),
(14)

then the solutions Ur
s and Ur of problems (4) and (12) satisfy:

lims→0 Sup
{

|PsUr(t)−Ur
s(t)|IHs

, t ∈ [0,T]
}

= 0.

Remark 1. This Trotter’s convergence (that is lims→0 |PsU0 −U0
s |IHs

= 0) is very
natural and seems well suited from a mechanical point of view since it deals with
a gap of energy, but it may be reassuring to compare this convergence with more
usual points of view. This is the purpose of the next proposition.

Proposition 2. i) if lims→0 |PsU−Us|IHs
, then us −→ u in IL2(Ω)3 and us −→ u in

IH1(Ω η)3, ∀ η > 0,
ii) if as(us,us)−→ a(u,u) and as(Rε u,us)−→ a(u,u) then lims→0 as(Rε u−us,Rε u−
us) = 0.
Proof:
The assumption of point i) implies that as[us,us) is bounded, so that the result is
established in [9] or [10].
Point ii) follows immediately from the already noticed fact that as(Rε u,Rε u) −→
a(u,u).

We can now prove theorem 4.
The proof simply consists in showing that assumptions i), ii) and iii) of Trotter’s
theorem are satisfied.
Points ii) and iii) are immediate consequences of assumption H1 together with
propositions 1 and 2.

Remark 2. There exists many initial data satisfying (14):

U0
s −Ue

s(0) := (I−λA)−1
Ps(I−λA)(U0 −Ue(0)) ∀λ ∈ IR\{0},
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since one has Trotter’s convergence of the resolvants of operators A and As.

Let’s now focuss on point i). Let U = (u,v) and Us = (us,vs) satisfying respectively
U−AU = Φ and Us −AsUs = PsΦ. From equations (5) and (6) we have:











us ∈ IH1
Γ0

(Ω)3,
∫

Ω
γus.φdx+ as(us,φ) =

∫

Ω
γ(Φ1

s +Φ2
s )φdx ∀φ ∈ IH1

Γ0
(Ω)3.

vs = us −Φ1
s ,

(15)











u ∈ IH1
Γ0

(Ω)3,
∫

Ω
γu.φdx+ a(u,φ) =

∫

Ω
γ(Φ1 +Φ2)φdx ∀φ ∈ IH1

Γ0
(Ω)3.

v = u−Φ1.

(16)

This means that u and us are solutions to a perturbation of equilibrium bonding prob-
lems, so that we only have to establish the convergence of the equilibrium problems,
which has been carried out in [10]. Using the same tools we get that conditions ii)
of proposition 2 are satisfied, which in turn establishes point i) of Trotter’s theorem.

6 Concluding remarks

Starting from the physical problem (Ps) of the wave propagation in two linearly
elastic solids connected by a layer of thickness ε we have obtained a limit problem
(P) when the parameter s tends to zero, i.e. when the thickness ε of the layer tends
to zero together with assumptions on the voluminal mass and on the elasticity coef-
ficients. The mathematical meaning of this convergence result is that the dynamical
behavior of two solids connected by a thin soft layer is asymptotically equivalent to
the one of two solids connected by the following mechanical constraint:

σn = λ̄ [u]nId +2µ̄[u]⊗s n = 0 with λ̄ , µ̄ = lim(λ ,µ)/ε (17)

The main worth seeing point is that condition (17) is the stationary condition which
is obtained at the limit of the equilibrium bonding problem, which has been recalled
in the first section. This has been explicitely carried out here in the case when the
limits λ̄ and µ̄ are finite and different from zero. The remaining cases λ̄ , µ̄ ∈ {0,∞}
could be handled with very slight changes so that it is not useful to write down this
cases again here. Only the case where the voluminal mass ρ tends to infinity may be
more difficult but this case is probably less interesting from a physical point of view.

Now it seems interesting to close this paper by some comments on the mechani-
cal meaning of the result. According to the different cases of the limit behavior of
the parameters, the set of results is given in Table 1. Let us describe the result in
some particular cases.
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• The case where λ/ε −→ λ̄ and µ/ε −→ µ̄ corresponds to the physical situation
where the thickness of the layer is small with respect to the diameter of the whole
domain and the stiffness of the layer is also small, ”at the same order” with
respect to the one of both other parts of domain. This could be seen as the generic
case. The meaning of the result is that the thin layer will behave as a line of
springs both in the normal and in the tangential directions. In a numerical model,
say by a finite element method, the thin layer could be replaced by a set of linear
elastic relations between the opposite nodes, with stiffnesses given by the limit
problem.

• But when the thickness and the stiffness of the layer are both small but in such
a way that the ratio of the thickness of the layer with respect to the diameter of
the whole domain is much smaller than the ratio of the stiffnesses, the result is
very different. This situation will correspond to the case where λ/ε −→ ∞ and
µ/ε −→ ∞ and the body will globally behave as two half bodies perfectly stuck.

• On the contrary if the physical problem is such that the thickness and the stiffness
of the layer and both small but in such a way that the ratio of the thickness of
the layer with respect to the diameter of the whole domain is much larger than
the ratio of the stiffnesses then the body will behave as two completely separated
parts.

• In intermediate cases which will for instance be modelized by the fact that
λ/ε −→ (∞ or λ̄ ) and µ/ε −→ 0, we may get a rigid or an elastic connection
between the two parts in the normal direction but a free sliding in the tangential
direction.

Now it remains to put the above results in correlation with previous analyses of
bonded solids, and in particular with the occurence of guided waves along the thin
layer. As a first step, this guided waves analysis could be performed in the case of
two half spaces connected by an infinite layer. Another point is that, from a physical
point of view, bonding layers usually involve viscoelastic properties. Viscoelasticity
in thin layers has already been taken into account in equilibrium problems, so that it
can probably be introduced in the previous analysis in some cases. But the kind of
viscoelastic behaviors encountered in physics seems to be precisely those for which
important difficulties remain.
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Acoustic wave attenuation in a rough-walled 

waveguide filled with a dissipative fluid 

T. Valier-Brasier, C. Potel, M. Bruneau, C. Depollier1 

 

Abstract   The aim of this work is to analyze the behaviour of the acoustic 

pressure field in fluid-filled waveguides having small irregularities on the walls. In 

a previous publication [J. Sound Vib. (2008), doi 10.1016/j.jsv.2007.12.001], an 

analytic solution was presented for a non dissipative fluid. This solution 

emphasizes the acoustic coupling of modes which are the solution of the Neumann 

boundary problem in the regularly shaped waveguide which encloses the real 

waveguide. The model makes use of the integral formulation with an appropriate 

Green function which illustrates two mechanisms of energy exchange between 

modes, namely bulk coupling and surface coupling, the first one depending on the 

depth of the roughness and the second one depending in addition on the local 

slope. It provides interpretation of the attenuation phenomena of the propagating 

modes due to the irregularities. In the work presented here, a model in which 

viscosity and heat conduction of the fluid are considered allows us to take into 

account the dissipative phenomena (which take place in the boundary layers) in 

order to interpret better the attenuation phenomena. 

1 Introduction 

The study of waveguides having small irregularities on the walls has an industrial 

interest in terms of ultrasonic non destructive testing: improvement of the wetting 

of the glue between two bonded structures [1, 3], corrosion, etc. 
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The irregularities are considered to be secondary sources which redistribute the 

energy of the acoustic incident field by scattering. In a previous publication [4], an 

analytic solution was presented for a non dissipative fluid. This solution 

emphasizes the acoustic coupling of modes which are the solution of the Neumann 

boundary problem in the regularly shaped waveguide which encloses the real 

waveguide. The model makes use of the integral formulation with an appropriate 

Green function which illustrates two mechanisms of energy exchange between 

modes, namely bulk coupling and surface coupling, the first one depending on the 

depth of the roughness and the second one depending in addition on the local 

slope. 

The aim of the present study is to account for the dissipative phenomena which 

take place in the thermo-viscous boundary layers in order to interpret better the 

attenuation phenomena. These thermo-viscous effects are introduced through 

appropriate mixed boundary conditions. 

2 The fundamental problem 

The considered waveguide is limited by two parallel rigid walls having small 

irregularities, the dimensions of which are small in comparison with the 

transversal dimension of the waveguide. The fluid plate with rigid, regularly 

shaped surfaces 0=z  and δ=z , which encloses the real waveguide, is 

characterized by its thickness δ , the inner plate surrounded by the real waveguide 

is characterized by its thickness d  (see Fig .1). The depth of the small shape 

deviations are respectively denoted ( )yxh ,1  and ( )yxh ,2  at 11 hz =  and 

22 hz −= δ . 

 

O

z

y
x

δ
d

1n

2n

h 1

h 2

z 1

z 2

 

Fig. 1: Geometry of the fluid-filled waveguide 

The fluid is characterized by its density 0ρ , the adiabatic speed of sound 0c , its 

shear viscosity coefficient 0µ , its thermal conductivity coefficient 0λ , its specific 
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heat ratio γ , and its heat capacity at constant pressure per unit mass PC  (see 

Appendix for numerical values). 

The motion is supposed harmonic with ω  the angular frequency (the time 

dependence being ( )tiωexp ). 

3 Boundary conditions 

In the situations that we are interested in here, the viscous and thermal effects on 

the acoustic fields are predominant inside the so-called "viscous and thermal 

boundary layers". 

As the thickness of these boundary layers is much smaller than the thicknesses of 

the fluid plates considered ( d  or δ ), the localisation of these viscous and thermal 

"equivalent wall acoustic admittance" 
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where 0k  is the adiabatic wavenumber, defined by 00 ck ω=  [5]. 

This equivalent wall admittance accounts for the dissipative and reactive 

properties on the acoustic field, of the energy exchanges between the acoustic 

field itself, and both the vortical and the entropic (thermal) fields which are 

created on the rigid walls and which exist inside the boundary layer only (there are 

diffusion processes). 

Outside the boundary layers, the entropic and vortical fields vanish; the only field 

of interest is therefore the acoustic field which behaves near the walls as if the 

admittance of the wall would be the equivalent admittance given by Eq. (1). 

As far as resonances near cut off frequencies are concerned, taking into account 

these dissipative effects will limit the amplitudes of the modes generated by the 

source and created by scattering on the roughness. 

The boundary conditions satisfied by the acoustic field on the perturbed surface of 

the waveguide are given by mixed boundary conditions which involve the 

equivalent admittance given above [Eq. (1)]. Denoting 1n  and 2n  the local unit 

vectors normal to the real surface of the waveguide at the points 11 hz =  and 

22 hz −= δ  and pointing outside the fluid, the normal derivatives take the 

classical form 
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phenomena at the immediate vicinity of the rigid walls leads to introduction of an 
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Thus, the normal derivative of the acoustic pressure field p̂  on the boundaries can 

be written in the form 

 ( ) ( ) ( )[ ] 2,1,ˆ1
1

ˆ 1 =∂−−∂∂+∂∂=∂ + qphh
N

p z
q

yqyxqx
q

n q
(4) 

Therefore, combining conditions (1) and (4) permit to write the mixed boundary 

conditions as follows: 
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or ( ) ( ) ( ) ( ) ,2,1,,,,,,ˆ,,,,ˆ ==∀=∂ qzzyxzyxpzyxOzyxp qz  (6) 

where O  is an operator defined by 
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which involves both the thermo-viscous effects and the slope of the profile. 
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4 Eigenfunctions of outward waveguide 

In order to highlight the mechanisms of coupling between modes, the acoustic 

pressure p̂  is expressed as an expansion on the (normalised and orthogonal) 

eigenfunctions mψ̂ , ∈m   

 ( ) ( ) ( ),ˆ,ˆ,,ˆ zyxAzyxp m

m

m ψ∑=  (8) 

where the eigenfunctions mψ̂  are solutions to the (1-D transverse) eigenvalue 

problem, including the mixed boundary conditions, namely  

 

( ) ( ) [ ]

( )

( )












==




 +∂

==




 −∂

∈=+∂

.,0ˆˆ

,0,0ˆˆ

,,0,0ˆˆ

0

0

22

δψ

ψ

δψχ

zzYik

zzYik

zz

mz

mz

mmzz

 (9) 

The eigenvalues mχ̂  are given by 

 













=+≈

=≈

,0
ˆ2

ˆ

,0,
ˆ2

ˆ

0

0
0

if
k

Yik
k

mif
Yik

m
mm δ

χ

δ
χ

 (10) 

δπmkm =  being the eigenvalues for the problem with Neumann condition at the 

boundaries, and the eigenfunctions mψ̂  take the form [6] 
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5 Modal formulation 

The acoustic pressure field is governed by the set of equations, including the 

propagation equation and the boundary conditions, which is written as 
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where f̂  represents the bulk source factor. 

Expanding the pressure field p̂  on the eigenfunctions mψ̂  given by Eq. (11), the 

expression of this problem takes the following form, with the help of the 

orthogonal properties of the eigenfunctions, 
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where the source term takes the form 
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and where the coupling factors are given by 
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coupling and the "boundary" or "local" modal coupling [4]. The term mbµ
ˆ , is 

related to the coupling of modes throughout the section of the guide (arising from 

the non orthogonality of the modes in the perturbed lateral dimensions of the 

guide due to the depth of the surface perturbation), while the operator mµγ̂ , is 

related to the coupling through the slope and the depth of the surface perturbation 

itself. The behaviour of the acoustic pressure field is determined by these two 

mechanisms when propagating along the axis of the waveguide, the continuously 

distributed modes coupling along the distributed slight geometrical perturbation 

being accounted for in using a method relying on integral formulation. 

6 Small perturbation method 

The coefficients mÂ  are determined using methods relying on integral 

formulation and modal analysis, and using the appropriate Green function mG  [5].  

When the waveguide is infinite and bounded by surfaces with one dimensional 

corrugations (two-dimensional problem [ ]21, zzz∈  and [ [+∞∈ ,0 ) the 

appropriate one-dimensional Green's function corresponding to a point source 

located at a point in the waveguide is given by 
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Using an iterative method to express the amplitude of each mode mÂ , which 

assumes that the coupling functions in the right hand side of Eq. (14) are small 
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written as follows: 
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where 
][ˆ N

mA  denotes the N
th

-order perturbation expansion for mÂ , )0(ˆ
mA  the zero 

order approximation, 
)1(ˆ

mA  the first order correction term, and so on. The zero 

order approximation takes the form 
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where mQ̂  is the strength of a monochromatic source which is assumed to be 

flush-mounted at 0=x , related to the m -th mode. In fact, it represents the energy 

transfer between the external source and the eigenmode m. 

The first-order perturbation expansion )1(ˆ
mA  is then given by 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )∑

∑

∑


⌡

⌠






 −−


⌡

⌠
+


⌡

⌠
−=

∞+

∞−

∞+

∞−

+∞

∞−

µ
µµ

µ
µµ

µ
µµ

µ

γ

.'d'ˆ'ˆ';ˆˆ

'd'ˆ';ˆ

'd'ˆ'ˆ';ˆ

)0(22

)0()1(

xxAxbxxGkk

xxbxxGQ

xxAxxxGxA

mmxx

mm

mmm

m

 (22) 

7 Results 

This section aims at providing results illustrating the inter-modal model using 

periodically one dimensional corrugated surfaces (two-dimensional problem). The 

particular case chose here is that of a periodically sawtooth profile (see Fig. 2, 

spatial period denoted Λ ) assumed to be of infinite extent. 
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Fig. 2: Periodically sawtooth profile (height of the teeth denoted h) 

When the roughness is periodic, the phonon relations [4, 7] which involve the 

wavenumbers of the modes and the spatial period Λ  of the roughness, allow to 

know for all the frequencies the mode coupling (see Fig. 3). 

Fig. 3: Dispersion curves and curves from the phonon relations 

The intersection of the dispersion curve of a mode m and the phonon curve of a 

mode µ shows the frequency for which the coupling between both modes m and µ 

is strongest. The green point represents the intersection of the dispersion curve of 

the mode 1=m  and the phonon curve of the mode 0=µ  and the blue point 

represents the intersection of the dispersion curve of the mode 1=m  and the 

phonon curve of the mode 2=µ .  

The acoustic source is assumed to create only the mode 1=m  (incoming wave), 

at the forcing frequency f . Four modes are considered in the solution: for the 

chosen frequency ( 47.10 =cdf  with 5.2=Λd ), the first three modes 

( 2,1,0=µ ) are propagative and the last one ( 3=µ ) is evanescent. The chosen 

frequency is in the vicinity of the value given by a phonon relation, thus both a 

strong coupling between the mode 1=m  created by the source and the coupled 
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modes 0=µ  and 2=µ , and a quite strong "self-coupling" of the mode 1=m  

occur, as can be seen on Figs 4-a, b and c, which present the modulus of the 

normalised amplitudes of the modes 0, 1 and 2 as a function of the dimensionless 

parameter xk 0  (evanescent mode 3=µ  is not represented: its amplitude 

vanishes because its coupling with the other modes is very weak). 

The decreasing of the amplitude of the mode 1=m  generated by the source (see 

Fig. 4-b) when the abscissa of the observation point ( xk 0 ) corresponds to a loss 

of energy of the mode generated by the source, through energy transfers between 

modes. This decrease has an approximate exponential shape, with an attenuation 

factor equal to approximately the same order of magnitude as that experimentally 

found in solid media for roughness profile (shot blasted glass plate) [8-10].  

8 Conclusion 

A method for calculating the modal behaviour of a fluid plate with rough walls, 

when the dissipative (thermo-viscous) effects are accounted for, has been 

presented. The major result, in comparison with the previous one [4], is that the 

effects of the viscous and thermal phenomena, which are predominant inside the 

thermo-viscous boundary layers, are quite small in comparison with the effect of 

the modal coupling due to the wall roughness, in the situations considered here.  

Owing to the large range of sizes and shapes of the roughnesses that can be 

modelled, the method appears to be quite general for describing the modal 

coupling and the modal attenuation for the propagative modes. Therefore, this 

method can be directly used for several applications concerning fluid-filled wave 

guides. It also paves the way for modelling the effects of the wall roughness on the 

Lamb modes in homogeneous solid plates (having in mind applications in the 

domain of non destructing testing).  
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Fig. 4: Modulus of the normalized amplitude of the pressure variation (3rd order) for a 

sawtooth profile (see Fig. 3). -a) ( ) 0
1

]3[
0

ˆ
mAxA =µ  for the mode 0=µ , -b) ( ) 0

1
]3[

1
ˆ

mm AxA =  

of the mode 1=m  (the only mode generated by the source), -c) ( ) 0
1

]3[ˆ
mAxA  for the mode 

2=µ , when 47.10 =cdf  with 5.2=Λd . The heights of the teeth are such as 

005.0/
~

== dhζ  ; the interface dx =3  is smooth. The red lower and blue higher curves 

correspond respectively to a dissipative and a non dissipative fluid. 

Appendix: characteristics of the dissipative fluid 

The fluid is characterized by its density 0ρ , the adiabatic speed of sound 0c , its 

shear viscosity coefficient 0µ , its thermal conductivity coefficient 0λ , its specific 

heat ratio γ , and its heat capacity at constant pressure per unit mass PC . The 

numerical values used above are those of the air at standart conditions: 
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Some advances towards a better understanding 

of wave propagation in civil engineering multi-

wire strands 

L. Laguerre1 and F. Treyssede2 

 

Abstract   Steel members of civil engineering structures undergo degradations 

mainly due to corrosion and mechanical fatigue. In this context, non-destructive 

inspection techniques using mechanical guided waves have potential to monitor 

these structures. Even if wave propagation is not yet fully understood in these 

structures, useful results can be derived for inspection methodology by using wave 

modeling in cylindrical waveguide, embedded or not. However, further improve-

ment can be expected from the development of wave propagation simulation tools 

for real-life structures. Indeed, several difficulties arise in the understanding of 

guided ultrasonic waves in such structures, partly due to the helical geometry and 

the inter-wire coupling effects. Moreover, these structures are pre-stressed and can 

be free or embedded in solid material. This paper shows some recent research re-

sults at LCPC. A first part deals with experimental results on the guided wave 

propagation in a commonly used steel member, the seven wire strand (i.e one 

straight single cylindrical wire surrounded by six helical wires). The second part 

aims at numerically investigating the propagation of elastic waves in free helical 

waveguides. A numerical method is chosen based on a semi-analytical finite ele-

ment technique that relies on a specific non-orthogonal curvilinear coordinate sys-

tem. This system is shown to be translationally invariant along the helix centerline 

so that a spatial Fourier transform can be explicitly performed along the axis to re-
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duce the problem to two dimensions. The method can thus readily be used for the 

analysis of helical structures by considering the special case of no curvature. Re-

sults for single straight and helical wires are first computed. A dispersion analysis 

for a seven wire strand with simplified contact conditions is then performed. 

1 Introduction 

Multi-wire strands are commonly used as structural members in the field of civil 

engineering, in bridges constructions (suspended, cable-stayed and prestressed 

ones) as well as in geotechnics for retaining walls applications. These civil engi-

neering structures suffer from ageing and degradation due to corrosion and fatigue 

of structural steel members. Guided ultrasonic waves are potentially attractive 

tools for non destructive assessment of their integrity. They generally combine the 

ability to inspect, in a single measurement, the whole width of the structure over 

an appreciable length along the guiding direction. Moreover, they provide a mean 

to access hidden parts of the structure, such as sections of strand partially or to-

tally grouted in grease or cement. Guided wave non-destructive methodologies of 

inspection using magnetostrictive or piezoelectric devices are generally proposed, 

depending on the desired applications. 

The goal of this paper is to show some recent advances performed at LCPC deal-

ing with the development of a numerical model for the guided wave propagation 

in a free seven-wire strand. This common strand configuration is composed of a 

straight cylindrical wire of 5.4 mm in diameter surrounded by six helical wires of 

5.22 mm in diameter. These works come within the scope of developing tools to 

provide a better insight in the interpretation of guided wave propagation in such 

complicated waveguides for further optimised inspection strategy. 

The simplest and classical way to approach the wave propagation in the seven-

wire strand is to use the approximation of the infinite cylinder. In particular, ex-

perimental studies have been performed in the literature for both a cylindrical bar 

and a seven wire strand, trying to find analogies between both behaviours that 

could be interpreted from Pochhammer-Chree solutions, for the bare waveguide 

case (Kwun et al. 1998, Laguerre et al. 2002, 2003, Lanza di Scalea et al. 2003 

and Rizzo and Lanza di Scalea 2004) or the embedded one (Pavlakovic et al. 

1999, 2001 and Beard et al. 2003). Even if the non-destructive inspection strategy 

of a seven-wire strand with guided ultrasonic waves has gained from this ap-

proach, the authors point out the limits of Pochhammer-Chree solution for the ac-

curate interpretation of experimental data for the seven wire strand. The theoreti-

cal understanding of guided ultrasonic waves in multi-wire strands is still 

challenging because of the complexity of this structure, i.e. the helical geometry of 
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peripheral wires surrounding the straight inner wire, the inter-wire coupling and 

contact effects, and the presence of applied loads. 

In order to deal with complex geometry, some of the most popular and efficient 

numerical techniques are based on finite element (FE) methods. The so-called 

semi-analytical finite element (SAFE) method is a first approach that has been 

used to study uniform waveguides of arbitrary cross-section – see for instance, 

(Gavric 1995, Hayashi et al. 2003, Damljanovic and Weaver 2004). (Demma et al. 

2005) and (Finnveden and Fraggstedt 2008) investigated toroidal waveguides. 

(Onipede and Dong 1996) extended SAFE methods to study uniformly pretwisted 

waveguides along a straight axis. 

A second approach is based on the theory of wave propagation in periodic struc-

tures from Floquet’s principle. A review on the topic can be found in Mead 1996. 

Based on a general theory presented by Mead 1973, some periodic FE approaches 

and procedures have then been developed – see for instance (Gry and Gontier 

1997, Mace et al. 2005). 

For modelling a single helical wire, which is a uniform waveguide, both SAFE or 

periodic FE approaches can be applied. (Treyssede 2007) has proposed a numeri-

cal procedure based on a periodic FE approach combined with a specific helical 

mapping in order to arbitrarily reduce the periodic cell length. (Treyssede 2008) 

has also recently developed a SAFE method extended to helical waveguides. The 

weak variational formulation is written in terms of a non-orthogonal curvilinear 

coordinate system that is translationally invariant along the helix centreline, so 

that a Fourier transform can be explicitly performed. In this paper, it is shown how 

this SAFE method can also be readily used to study some more general helical 

structures, made of both straight and helical wires such as multi-wire strands. 

The first part of this paper is devoted to show, from experimental data, the analogy 

and discrepancies existing between the guided ultrasonic wave propagation into a 

cylindrical bar and the seven-wire strand in the low frequency regime. This is 

done through spectrogram analyses of time history signals generated and detected 

using a longitudinally polarized non-contact magnetostrictive device. 

In the second part, one proposes a numerical method allowing the study of elastic 

guided waves inside helical multi-wire strands. Inter-wire coupling effects are in-

cluded in the analysis through simplified contact conditions. Prestress and em-

bedment are not considered. 

2 Experimental results 

Magnetostrictive transducers were used herein for the generation and detection of 

guided ultrasonic waves into steel cylindrical bars and seven-wire strands. The 

major advantage of non-contact electromagnetic magnetic transducers (EMAT) 

such as magnetostrictive transducer is in the greater transduction efficiency at low 

bias fields contrary to Lorentz force based EMATS. Conversely, magnetostrictive 
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EMATS are rather low-frequency transducers (typically <500kHz). These trans-

ducers uses the property of ferromagnetic materials to mechanically strain under a 

variation of their magnetic state (magnetostrictive Joule’s effect). The magnetic 

excitation is though produced by a dynamic electrical current feeding a driving 

coil. This in turn generated the mechanical wave. The mechanical wave while 

propagating produces magnetic field variation (magnetostrictive Villari’s effet) 

that can be detected using and inducting coil. Bias magnetic fields are superim-

posed at the generation and detection to linearize and enhance the transduction. 

The selected bias field longitudinal orientation makes the generation and detection 

predominantly sensitive to longitudinal guided waves. 

In this study, various through-transmissions experimentations were performed for 

free cylindrical bars and a free seven-wire strand or under applied tensile loads. 

Time excitation is a gaussian-shaped low radiofrequency burst of bandwidth f∆  

centered at 0f , and such that 10 =∆ ff  at -20 dB. Detected guided ultrasonic 

time waveforms are then studied using a short time Fourier transform (STFT). Ac-

cording to the positioning of transducers (the transmitter and detector locations are 

at 4L  from the left-end side of the specimen and 2L  respectively, with L  the 

specimen length, see for instance Laguerre et al. 2003), the first wave arrival is the 

incident wave propagating to the right, the second arrival is the incident wave 

propagating to the left after one reflection, and the third one is the incident wave 

propagating to the right after one reflection (and so on for the next arrivals). Ac-

cording to their intrinsic dispersive behaviours in this frequency range, the 

wavepacket arrivals (Fig. 1) can be identified from Pochhammer-Chree theory as 

the first and second longitudinal modes L(0,1) and L(0,2) respectively. Similar 

measurements performed in the same frequency range for a lower diameter show 

that the waveguide behaviour is limited to the fundamental L(0,1) longitudinal 

mode, in its weak dispersive region as a consequence of the frequency-to-diameter 

conservation.  

Fig. 1 Fourier spectrograms of magnetostrictive time history signals for (a) a steel cylindrical bar 

of 6-m length and 15.5mm in diameter, and (b) a single central cylindrical wire of 4-m and 5.22 

mm in diameter excited at f0 =150 kHz and 130 kHz respectively. 
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These expected above-mentioned results are only quoted here to point out the dis-

crepancies existing between a cylindrical bar and a free seven-wire strand. The 

Fourier spectrograms associated to the free seven-wire strand are shown in Fig. 2. 

In the low-frequency region (lower than 50 kHz), the pulse propagates without 

significant dispersion, at the bar celerity, while the higher frequency trends cannot 

be explained at all by the Pochhammer-Chree theory, neither by considering a bar 

of the same diameter as the strand nor by considering a bar of the same diameter 

as the single central wire. One of the major differences between the cylinder and 

the strand arises mainly from a frequency band from 60 to 80 kHz, electrically ex-

cited, but which disappears from the Fourier spectrogram for all wave arrivals. 

 

Fig. 2 Fourier spectrograms of magnetostrictive time-history signals for a free seven-wire strand 

of 10-m length and 15.9 mm in diameter excited at f0=130kHz. 

This phenomenon which was first observed by (Kwun et al. 1998) who called it 

“missing notch-frequency” seems to exhibit a similar pattern as the one of a cut-

off frequency. It was confirmed later by (Laguerre et al. 2003, Rizzo and Lanza di 

Scalea 2004) but still remains unexplained. The “missing notch-frequency” re-

veals the influence of the seven-wire geometrical structure on the guided wave 

propagation. Indeed, the origin of this missing notch-frequency can solely be un-

derstood, as will be shown in Sect. 3.3, by considering the whole assembling of 

helical wires around the central cylindrical straight with inter-wire coupling condi-

tions. So this missing notch-frequency phenomenon will be retrieved from the 

seven-wire strand theoretical propagation model derived in the following section. 

Moreover, the influence of prestress and inter-wire contacts on the wave propaga-

tion is confirmed by the results obtained for a seven wire strand under different 

tensile loading strengths varying from 2% (5.8kN) to 60% (141kN) of the break-

ing load. The non-contact magnetostrictive transducers are particularly well-suited 

for this loaded strand experimental arrangement since they allow to work on the 

first wave arrival whose propagation path did not interact with the clamped ends, 

by positioning them between the anchorages. The Fourier spectrograms Fig. 3 
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clearly show the modification in the missing notch frequency with load, i.e. an in-

crease in the loading strength leads to the increase in the missing notch frequency 

(from 60-to-80 kHz at 2% to 80-to-100 kHz at 60% of the breaking load). This 

demonstrates the influence of prestress and inter-wire contact conditions on 

guided wave propagation in a seven-wire strand. 

 

 

Fig. 3 Fourier spectrograms of magnetostrictive time-history signals for a seven-wire strand of 

10-m length and 15.9 mm in diameter excited at f0=130kHz at different tensile load strengths. 

3 Numerical model 

3.1 The SAFE method 

One assumes a linearly elastic material, small strains and displacements and a time 

harmonic dependence. There is no external force. The 3D variational formulation 

governing elastodynamics is given by: 

0
2 =− ∫∫
ΩΩ

dVdV
TT
uuCεε ρδωδ      (3.1) 

for any kinematically admissible trial displacement field uδ . εδ  denotes the vir-

tual strain vector [ ]T231312332211 222 δεδεδεδεδεδε . The superscript T  

denotes the matrix transpose. Subscripts 3,2,1=i  are the respective components 

in the considered coordinate system, denoted ( )syx ,,  – which might be different 

from the Cartesian coordinate system denoted ( )ZYX ,, . C  is the matrix of mate-
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rial properties. ρ  is the material density and Ω  is the structural volume. In the 

remainder of this paper, s will denote the waveguide axis (not necessarily 

straight). 

The strain-displacement relation can be written as follows: 

( )uLLε ssxy ∂∂+=       (3.2) 

where xyL  is the operator containing all terms that do not contain derivatives with 

respect to the axis s. Now we further assume a ikse  dependence, k being the axial 

wavenumber. The problem is hence reduced from three to two dimensions (from 

the volume Ω  to the cross-section S of the waveguide). Then, the FE discretisa-

tion of Eq.(3.1) finally leads to the following eigenvalue problem: 

( ){ } 0uKKKMK =+−+− 3

2

22

2

1 kik Tω     (3.3) 

with the following elementary matrices:  
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where eN  is a matrix containing nodal interpolating functions of the element. The 

solution of Eq. (3) yields the propagation modes. At fixed real k, the eigenproblem 

Eq. (3.3) is linear for finding 2ω . This simpler approach is useful only if interest 

is restricted to propagating modes in undamped systems. Given ω  and finding k, 

the eigenproblem is quadratic. It can be recast into a generalized linear eigensys-

tem written for [ ]Tkuu  in order to be solved by standard numerical solvers – see 

(Tisseur and Meerbergen 2001) for instance. 

3.2 Helical coordinate system 

In the previous section, we have assumed a ikse  dependence. This is equivalent to 

perform a spatial Fourier analysis in the s direction. This dependence indeed im-

plies the following assumptions: 

- the cross-section of the waveguide does not vary along s (condition 1); 

- the material properties do not vary along s (condition 2, which is as-

sumed to be satisfied throughout this work); 

- the ( )syx ,,  coordinate system is so that s does not appear explicitly in 

the coefficients of the equilibrium equations (condition 3) 

Verifying this last condition (condition 3) is somewhat more technical than the 

first two. 

First, the helix centerline curve must be described by the following position vector 

in the Cartesian orthonormal basis: 

Some advances towards a better understanding of wave propagation 129



( ) ZYX s
l

L
s

l
Rs

l
Rs eeeR +








+








=

ππ 2
sin

2
cos    (3.5) 

where 
222

4 RLl π+= . R and L are respectively the radius of the centreline in 

the ( )YX ,  Cartesian plane and the helix step along the Z axis. The unit tangent, 

normal and binormal vectors to the centreline are respectively obtained from 

dsdRT =  and the Serret-Frenet formulae, NT κ=dsd  and TBN κτ −=dsd . 

Both curvature 224 lRπκ =  and tortuosity 22 lLπτ =  are constant. For clarity, 

Fig.4 exhibits one helix step and its Serret-Frenet basis. 

 

Fig. 4. Helix step and its Serret-Frenet basis with ( )yx,  the helical cross-section coordinates. 

Now, a new coordinate system is constructed from the orthonormal basis 

( )TBN ,,  as follows: 

( ) ( ) ( ) ( )sysxssyx BNRX ++=,,      (3.6) 

yielding the covariant basis ( ) ( )syx ∂∂∂∂∂∂= XXXggg ,,,, 321  (non-

orthogonal). It could be checked that the metric tensor, defined by ( ) jiij ggg ⋅= , 

does not depend on the third curvilinear coordinate s. One consequence is that the 

coefficients of the partial differential equilibrium equations are not dependent 

upon s either (condition 3 is satisfied). 

In Eqs. (3.3) and (3.4), covariant components have been chosen for ε  while com-

ponents with respect to ( )TBN ,,  have been preferred for u . Also, the compo-

nents of C  should be understood as contravariant. Assuming an isotropic mate-

rial, C  can be obtained from the following tensor expression: 
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( )( ) ( ) ( )jkiljlikklijijkl gggg
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gg
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+

+
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ννν

ν
12211

  (3.7) 

where ijg  is the contravariant metric tensor, ν  and E denotes Poisson coefficient 

and Young modulus – for more details, see (Treyssede 2008). 

Now, consider a single helical wire of circular cross-section. The cross-section 

obviously does not change along the helical axis s (condition 1 is fulfilled) so that 

the proposed approach is valid. The analysis of a straight wire can also be readily 

performed, the cylinder corresponding to the special case 0== τκ . 

However, a question arises about the choice of the invariant coordinate system to 

be used when considering helical structures made of both straight and helical 

wires. Of course, the choice 0== τκ  (resp. 0,0 ≠≠ τκ ) cannot be applied be-

cause condition 1 would not be satisfied for helical (resp. straight) wires. 

The adequate system is indeed given by 0=κ , Lπτ 2=  (R=0), corresponding to 

a rotating coordinate system around the Z axis ( Zs ≡ ). With this system, a central 

straight wire (cylinder) has an invariant circular cross-section along Z (“a rotating 

circle remains a circle”). Furthermore, the cross-sections of peripheral helical 

wires do not change either along Z (but their shape in the ( )yx,  plane is not circu-

lar any more). 

3.3 Numerical results 

The material is assumed to be isotropic, with no material damping. For a steel 

wire, a typical value of 0.30 will be chosen for the Poisson coefficient. We con-

sider waveguides with a circular cross-section of radius a. The adimensionalized 

angular frequency is given by scaω , with cs the shear velocity. Six-node trian-

gles meshes will be used. FE computations are held at fixed real wavenumbers k. 

As a preliminary result, one single wire is first considered. Both cylindrical 

( 0== τκ ) and helical geometries ( 0,0 ≠≠ τκ ) are analysed. For the helical 

waveguide, a small lay angle of ( ) °== − 5.72tan 1 LRπφ  with aR 2=  has been 

chosen (typical values for civil engineering seven wire strands). Figure 5 exhibits 

the dispersion curves for both cases. Few differences are observed. For the helical 

waveguide, flexural modes do not occur in pairs of equal wavenumbers, while 

wavenumbers of compressional and torsional modes remain nearly unchanged 

(Treyssede 2007). It could be checked that the rotating system )2,0( Lπτκ ==  

yields some physically equivalent results, thus demonstrating its adequacy (not 

shown in this paper for conciseness). 

The wave modes propagating inside a typical seven-wire strand are now studied. 

Stick contact conditions are assumed for simplicity (no slip, no separation and no 

friction are considered). a denotes the central wire radius (a=2.7mm). Peripheral 
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wires radii are chosen as 0.97a, with the same lay angle as before. The coordinate 

system to be used is )0668.0,0( == aa τκ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Plot of frequency versus wavenumber. Black: helical, gray: cylindrical waveguides 

The FE mesh, corresponding to a ( )YX ,  plane cut, is given in Fig. 6. 

 

Fig. 6 ( )YX ,  plane cross-section FE mesh used for the seven-wire strand ( °= 5.7φ ) 

Figure 7 exhibits the energy velocity curves for the adimensional frequency range 

[0;2]. Single wire curves are also given for comparison (for both central and pe-

ripheral wires). Due to a strong inter-wire coupling, a far more complex behaviour 

is observed for the seven wire strand. The most striking phenomenon is a seem-

ingly cut-off of the fastest mode (compressional-like L(0,1) mode) around 

4.0=scaω , corresponding to about 75kHz, which is in agreement with experi-

ments where a mean frequency of 70 kHz is deduced from the spectrogram (and 

associated to group velocities). In fact, this apparent cut-off is due to some strong 

bifurcations occurring near 0.4 as clearly shown by Fig.8.  
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The upper curve of Fig.7 is composed of two distinct branches, describing the be-

haviour of two distinct wave modes.  

Fig. 7 Plot of energy velocity (a) single wire (black: peripheral, gray: central, (b) seven-wire 

strand ( °= 5.7φ ) 

Fig. 8 Plot of frequency vs wavenumber for the seven-wire strand. Circle: bifurcation zone 

Finally, Fig. 9 shows modeshapes computed for 03.0=scaω  and 0.38 (left 

branch), 52.0=scaω  and 0.81 (right branch). 

Fig. 9 Modeshapes computed for: 03.0=scaω , 0.38,  0.52, 081 (symbols of Fig. 7) 
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4. Conclusions 

Elastic wave propagation inside helical wires has been analysed through a SAFE 

method based on a translationally invariant helical coordinate system. The special 

case of no curvature yields an adequate coordinate system to be used for the 

analysis of helical structures made of a straight core and peripheral helical wires. 

Dispersion inside a typical 6+1 strand has been investigated by assuming stick 

contact conditions. A far more complex behaviour than for single wires has been 

observed. However, it is worth noting, that the fastest compressional-like mode of 

the seven-wire strand dispersion behaviour looks like the L(0,1) one for a single 

wire, excepted in a frequency region typically around 75kHz where an apparent 

band-cut zone is observed. This intrinsic seven-wire strand low-frequency disper-

sion behaviour agrees well the experimental results obtained with encircling longi-

tudinally-polarized magnetostrictive transducers on a seven-wire strand. Thus, the 

proposed seven-wire propagation model allows a novel interpretation, through the 

strong bifurcation between two distinct modes, of the missing notch frequency ex-

perimentally observed here and in the literature. Future works will be devoted to 

the numerical modelling of the loading effect. 
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A numerical method for the simulation of NDT
experiments in an elastic waveguide

V. Baronian, A. S. Bonnet-Ben Dhia, A. Lhémery and E. Lunéville

Abstract This work concerns the numerical simulation of a non destructive testing
experiment in an elastic waveguide. The transient wave which is produced by the
transducer is represented, in the frequency domain, as a superposition of modes. As
a consequence of Auld’s reciprocity principle, the echo measured by the receiver
can be expressed by a formula combining the modal amplitudes and the scattering
matrix of the defect. An original and efficient finite element formulation has been
developed for the computation of this matrix, which applies to arbitrary flaws: the
unknowns are the displacement field in a small portion of the waveguide containing
the defect and the normal component of the normal stresses on the artificial bound-
aries. Numerical results are presented in the two-dimensional case.

1 Introduction

The ability to inspect large structures from a single probe position makes inspection
by elastic guided waves a very attractive solution for many industrial applications
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[4] (aircraft parts, rails, pipes. . . ). However, guided waves are dispersive and multi-
modal by nature [11]; as a consequence, interpreting experimental data, conceiving
optimal testing configurations are more than often difficult tasks. This calls for the
development of efficient and comprehensive simulation tools. The simulation of
a complete inspection by guided waves requires specific models to describe the
radiation and reception of guided waves by a transducer, their propagation in the
waveguide and their interaction with a hypothetical flaw.

In order to develop such a simulation tool, a theoretical formulation has been
proposed co-authored by one of the present authors [6] allowing these phenomena
to be computed separately. The formulation, in the frequency domain, results from
Auld’s reciprocity principle [1] written by using modal descriptions of the wave in
the safe part of the waveguide and the scattering matrix of the defect. Actually, two
formulations were derived (readers interested in their detailed derivation are referred
to [6]): a first one deals with inspection configurations where a single transducer is
used to both radiate guided waves and receive them, the other with configurations
where two separate transducers are used for radiation and reception (cf. Fig. 1). In

transducer in
the T/R mode

reflecte
d

defect

incident

transmitter

receiver

guide #1
guide #2

transmitted

incident

Fig. 1 Two configurations to deal with. Left: scattering by an arbitrary defect in a guide of arbitray
section in the pulse-echo mode. Right: scattering by the complex junction of two different guides
in the T/R mode.

Ref. [6], the method has been applied to general waveguides (with arbitrary cross
section) but only for particular defects, i.e. a crack normal to the guide axis. The
semi-analytical finite element (SAFE) method (see [5] for example for a description
of this method) was used to predict the modal solution over the frequency spectrum
of interest (standard Fourier synthesis is made to consider time-dependent wave-
forms). Using similar discretization of the guide section, other systems of equations
were derived to compute the amplitude of modes radiated by a given transmitter, the
sensitivity of a receiver to the various modes and the scattering matrix of the crack.

The object of the present work is to extend the previous method to flaws of more
complex shape and in an arbitrary position in the guide. The difficulty concerns the
computation of the scattering matrix of the defect. The method should be flexible
and provide with a good accuracy the coefficients linking reflected or transmitted
modes to the incident modes. An original finite element formulation has been pro-
posed in [3]; transparent boundary conditions based on modal expansions are used
on each side of the defect. This leads to zones of numerical computation which can
be of very small extent, all the smaller since the number of evanescent modes taken
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into account is large. The method can also be used for guides inhomogeneities like
local variations of the guide thickness, junction of two guides etc...

The paper is organized as follows. First, some results concerning guided modes
are briefly recalled. The main point is the biorthogonality relation which is exten-
sively used in the sequel. Then the overall modal formulation based on Auld’s reci-
procity principle [6] is described. The new model for computing the scattering of
guided waves by an arbitrary scatterer is presented in section 4. Examples are given
to demonstrate the efficiency of this method to limit to a minimum the size of the FE
computation zone. Finally, an illustration of interest for NDT applications is shown
in section 5.

2 Guided modes of the elastic waveguide

2.1 The elastodynamic system

We consider an isotropic elastic waveguide of section S in xS = (x1,x2) plane (S is a
bounded domain of R

2) and of axis x3 with a stress-free boundary. The density ρ and
Lamé’s coefficients λ and µ may depend on xS. The propagation in Ω (Ω = S×R)
is modeled by the following classical equations (ω > 0 denotes the pulsation and
u = (u1,u2,u3)

T the displacement field):
{

−divσ(u)−ω2ρu = 0 in Ω ,
σ(u)ν = 0 on ∂Ω ,

(1)

where σ(u), the stress tensor, is related to the strain tensor ε(u) = 1/2(∇u+∇T u)
by Hooke’s law and ν denotes the outward unitary normal to ∂Ω .
Because of the cylindrical geometry of the waveguide it is convenient to introduce
new notations. So we denote by uS, tS, σS and εS the transverse part of the dis-
placement field u, of the normal stress σ(u)e3, of the stress tensor and of the strain
tensor:

uS =

(

u1

u2

)

, tS =

(

σ31

σ32

)

, σS =

(

σ11 σ12

σ21 σ22

)

and εS =

(

ε11 ε12

ε21 ε22

)

.

Finally we set t3 = −σ33, and we define the two hybrid vectors

X =

(

tS
u3

)

and Y =

(

uS
t3

)

. (2)

Then it is possible to write the elastodynamic system as an evolution problem (with
respect to the coordinate x3 of the waveguide) on X and Y (which extends to the
general 3D case the formulation of [9, 10]):

∂
∂x3

(

X
Y

)

=

(

0 F
G 0

)(

X
Y

)

(3)
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where the operators F and G are defined by

FY =

(

−divSσS(Y)−ω2ρuS

−α divS uS −
α
λ

t3

)

and GX =





tS

µ
−∇Su3

divStS +ω2ρu3



 (4)

with ∇S and divS the surfacic gradient and divergence operators, and

σS(Y) = (δ divSuS −α t3)Id +2µεS(uS) (5)

with δ =
2λ µ

λ +2µ
and α =

λ
λ +2µ

.

The boundary condition can be written equivalently in terms of two uncoupled
boundary conditions on X and Y:

σ(u)ν = 0 on ∂Ω ⇐⇒

{

σS(Y)nS = 0
tSnS = X1n1 +X2n2 = 0

on ∂S (6)

Operators F and G are defined in a more precise mathematical setting in [3] (as
unbounded operators in L2 with domains D(F) and D(G) taking into account the
boundary conditions): they are proved to be selfadjoint, which will be useful in the
sequel.

2.2 Elastic modes and biorthogonality

The modes are the solutions of (1) of the form: u(xS)eiβx3 ,β ∈ C, or equivalently,
the solutions of (3) of the form:

(

X(xS)
Y(xS)

)

eiβx3 , β ∈ C.

This leads to solve the following eigenvalue problem,

iβ
(

X
Y

)

=

(

0 F
G 0

)(

X
Y

)

(7)

with X ∈ D(F) and Y ∈ D(G).
Let us point out that spectral problem (7) is not selfadjoint although F and G

are. However, using the selfadjointness of F and G, we can derive a biorthogonality

relation between two eigensolutions (β ,X,Y) and
(

β̃ , X̃, Ỹ
)

:

(

FGX|Ỹ
)

S =
(

X|GFỸ
)

S ⇔ (β̃ 2 −β 2)
(

X|Ỹ
)

S = 0 (8)

This relation implies that the eigensolution (β ,X,Y) is “orthogonal” to any other

mode
(

β̃ , X̃, Ỹ
)

, except if β̃ = ±β .

V. Baronian, A.S. Bonnet-Ben Dhia, A. Lhémery and E. Lunéville140



We assume in the following that the pulsation ω is such that the group velocity
of propagative modes does not vanish. As a consequence, for a propagative mode
(β ,X,Y), the following identity:

dβ
dω

(X|Y) = iω
∫

S
ρ (|uS|

2 + |u3|
2)dS.

proves that (X|Y) does not vanish.
Then we can split the modes in two families corresponding respectively to the

rightgoing and leftgoing modes:

• An evanescent mode is rightgoing (resp. leftgoing) if ℑmβ > 0 (resp. ℑmβ < 0).
• A propagative mode is rightgoing (resp. leftgoing) if its group velocity ∂ω/∂β

is positive (resp. negative).

Let us denote by (βn,Xn,Yn) for n∈N the eigenelements corresponding to right-
going modes (so that (β−n,X−n,Y−n) = (−βn,−Xn,Yn), for n ∈N, is the family of
leftgoing modes) (according to Auld’s labeling convention [2]). Then after a suitable
normalization:

(Xn|Ym)S = δnm. (9)

By setting
∫

S
f gdS = ( f ,g)S, this can be written:

(tn
S,u

m
S )S +(un

3, t
m
3 )S = δnm. (10)

3 A reciprocity formula for ultrasonic inspection in a waveguide

We assume that ultrasonic fields u (displacement) and σ (stress) at coordinates
(xS,x3) and at a given frequency ω in a safe waveguide can be expressed as a linear
combination of the eigenmodes. Then the overall problem of radiation, propaga-
tion, scattering by a defect and reception of guided waves can be handled using
reciprocity relations. In 1979, Auld introduced a formulation [1] that relates the dif-
ference between the electrical signal received by a transducer in absence (state 1)
and in presence of a flaw (state 2) to the elastodynamic field taken in both states inte-
grated on a surface surrounding a flaw. A similar approach can be applied to guided
waves. For the sake of simplification, we assume in what follows a pulse-echo con-
figuration with stress free boundary conditions on the guiding surface (Figure 2).

Auld’s formula writes:

δΓ =
−iω
4P

∫

SF

(u(1) ·σ(2) −u(2) ·σ(1))ν dS (11)

where
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state 1: flaw absent

SF

state 2: flaw present

SF

Fig. 2 Definition of states 1 and 2 in the formulation of Auld’s reciprocity theorem applied to pulse
echo configuration.

• δΓ is the difference between the electrical transmission coefficient of the trans-
ducer in state 2 and in state 1. This coefficient is defined as the ratio of the ampli-
tude of the electromagnetic wave transmitted into the coaxial line in reception to
the amplitude of the electromagnetic wave incident in the coaxial line in emission

• u(j) and σ( j) = σ(u(j)) are the particle displacement and stress fields in state j in
response to an incident electrical signal carrying power P in the coaxial line of
the transducer.

• ν is the unit vector normal to the boundary SF surrounding the flaw.

In state 1, that is, in the absence of the defect, the field radiated by the transducer is
decomposed over the modal solutions with amplitude coefficients denoted by Ar

n:

u(1) = ∑
n∈N

Ar
nun(xS)e

iβnx±3 on Σ± (12)

where x±3 are the axial coordinates of the left ( -) and right ( +) boundaries, assuming
that the transducer is located at x3 = 0.

In state 2, the incident field is decomposed over the modal solutions with ampli-
tude coefficients denoted by Ae

n. To take into account the defect, we introduce the
scattering coefficients which are defined as follows:

• Rmn is the amplitude of the reflected mode m on Σ− for an incident mode n of
unit amplitude on Σ−.

• Tmn is the amplitude of the transmitted mode m taken on Σ+ for an incident mode
n of unit amplitude on Σ−.

On Σ−, the field writes as a superposition of incident and reflected contributions; on
Σ+, it writes as the expression of transmitted contributions:

u(2) = ∑
n∈N

Ae
nun(xS)e

iβnx−3 + ∑
n∈N

∑
m∈N

Ae
nRmnu−m(xS)e

iβnx−3 on Σ−

u(2) = ∑
n∈N

∑
m∈N

Ae
nTmnum(xS)e

iβnx−3 on Σ+
(13)

Introducing Eqs. (12) and (13) in (11), most of the terms vanish due to the bi-
orthogonality of eigenmodes. Indeed:
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∫

Σ±
(unσ(um)−σ(un)um) ·ν dS = (Xn|Ym)S − (Xm|Yn)S

so that using (9):

1
2

∫

Σ±
(unσ(um)−umσ(un)) ·ν dS = δn,−m for n ∈ N and m ∈ Z. (14)

This leads finally to the following formula:

δΓ =
−iω

P ∑
n∈N

∑
m∈N

Ar
nAe

mRnmei(βn+βm)x−3 (15)

The various terms can be calculated independently and then combined in (15) to get
the received electrical signal in the presence of the flaw. A similar derivation can
be made to get a formula equivalent to (15) for configurations where two separate
transducers are used. The formula for this case writes

δΓ =
−iω

P ∑
n∈N

∑
m∈N

Ar
nAe

mTnmeiβmx−3 eiβn(L−x+
3 ) (16)

where the transmitter is located at x3 = 0 and the receiver at x3 = L.
Since these formulations were derived assuming a time harmonic excitation, stan-

dard Fourier synthesis can be further applied to predict time-dependent waveforms
typical of those measured in practice.

4 A finite element formulation for the scattering matrix of the
defect

4.1 Description of the method

Let us now present a numerical method which allows to compute the scattering
matrix of the defect, or more precisely with the previous notations the matrices Rnm

and Tnm. To fix ideas, we consider without loss of generality the case of a crack
Γ ⊂ Ω , with Γ ⊂ {x−3 < x3 < x+

3 }. Our purpose is the computation of the wave
diffracted by the crack, when the incident wave is supposed to be any rightgoing
mode uinc(x) = um(xS)eiβm(x3−x−3 ). The total displacement field u then satisfies:

{

−divσ(u)−ω2ρu = 0 in Ω\Γ ,
σ(u)ν = 0 on ∂Ω ∪∂Γ ,

(17)

where the diffracted wave defined as udif = u− uinc has to be a superposition of
outgoing modes:

udif = ∑
n∈N

A±
n u±n(xS)e

±iβn(x3−x±3 )
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respectively for x3 ≥ x+
3 and x3 ≤ x−3 . Let us emphasize that the amplitudes A±

n
(which are a unknown and will be obtained as a result of the computation) are di-
rectly related to the scattering matrices since:

A+
n = Tnm and A−

n = Rnm.

We aim to build a variational formulation for the displacement field in the computa-
tional domain ΩB = S×{x−3 < x3 < x+

3 } and the difficulty is to exhibit transparent
conditions on the artificial boundaries Σ± = S×{x3 = x±3 }. The idea is to intro-
duce additional unknowns t3, defined on Σ± (remember that t3 = −σ33). Then the
amplitudes of the scattered field A±

n are given as functions of u and t3 by using the
biorthogonality relation (9):

A±
n =

(

t±n
S ,uS

)

Σ± +
(

u±n
3 , t3

)

Σ± .

Next the transverse components of the normal stess on the artificial boundaries can
be recovered by the following formula:

tS|Σ± = ∑
n∈N

A±
n t±n

S .

Finally the complete normal stress (tS, t3) on Σ± can be introduced in a classical
manner in the variational formulation for the displacement field.

As we have introduced an additional unknown, we add an additional equation
which expresses the compatibility between the longitudinal component of the dis-
placement u3 given by the finite element representation and its modal representation
(on the artificial boundaries):

u3|Σ± = ∑
n∈N

A±
n u±n

3 .

In practice, the series expansions are truncated, keeping at least all propagative
modes.

4.2 Numerical validation

The method has been implemented in the 2D case using the code MELINA [7]. All
the numerical results concern a steel plate for which the velocities of longitudinal
and transversal waves are given by cL = 5960ms−1 and cT = 3260ms−1. We use P2
Lagrange finite elements for both unknowns u and t3.

For the validation, we considered the case of a vertical planar crack of length
10 mm in a steel plate of thickness 20 mm. The computations are made for a fre-
quency f = 0.25 MHz. At this frequency, it can be shown that exactly 6 Lamb
modes can propagate in the plate: the three symmetric S0, S1 and S2 and the three
skew-symmetric A0, A1 and A2 modes. As an illustration we show in figure 4.2 the
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modulus of the reflection coefficients Rnn for 1 ≤ n ≤ 6 versus the distance between
the artificial boundaries and the crack. The dashed (resp. continuous) lines corre-
spond to the case where 41 (resp. 6) modes are used in the modal expansions of
the artificial boundary conditions. As expected, the values obtained with 41 modes
(dashed lines) are independent of the position of the artificial boundaries, which
confirm the efficiency of the transparent boundary conditions. Accurate results can
also be obtained by using only propagative modes if the artificial boundaries are no
too close to the defect.

Fig. 3 Validation of the method for a vertical crack

5 Time synthesis

Combining the reciprocity formulas established in section 3 and the finite element
approach presented in the previous section, we are now able to simulate a non de-
structive testing experiment for an arbitrary flaw. We consider as an example the
following configuration: a steel plate of height 20 mm and length 500 mm including
an oblique crack (45 ˚ ) located at 250 mm of the edges of the plate. A normal stress
t3(xS, t) is imposed by the transducer at one extremity of the plate, uniform in space
and time modulated:

t3(xS, t) = e−(t−tc)2/2θ sin(ωct)

where the central frequency fc = ωc/2π is equal to 0.85 MHz and the frequency
bandwidth is [0.81,0.88] (with tc = 70.5 µs and θ = 216). Our aim is to simulate
the signal measured by the receiver located at the other extremity.

In practice, the frequency bandwidth is sampled (∆ f = 1000 Hz). For each fre-
quency:

1. The modes of the plate are computed (SAFE method).
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2. The amplitude coefficients Ae
n = Ar

n are determined (following [6]).
3. The transmission matrix T is computed by the above finite element method (in

the computational domain represented in figure 5).

The third step is the most expensive part of the computations, but it is independent
of the NDT configuration (location and spatial behavior of the transducers). The

Fig. 4 The oblique crack and the finite element domain

received time signal is finally recomposed by using expression (16) and applying a
Fast Fourier Transform. Let us emphasize one of the advantages of this approach:

Fig. 5 Time signal at the receiver: total field (left) and main modal contributions (right)

compared to full time domain simulations, the time response of each modal contri-
bution is available. In the present example, the main contributions are due to modes
S4 and S5 (see figure 5).

Summary

A numerical method has been developed for simulating NDT experiments based on
elastic guided waves. This method relies on a modal formulation [6] to deal with
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the radiation by an ultrasonic transducer, the guided propagation, the scattering by
a defect and the reception by the same transducer (pulse-echo configurations) or an-
other one (transmission configurations), each stage being computed separately. The
modal formalism is particularly interesting to easily interpret typical complicated
waveforms observed in experiments; furthermore, number of interesting new results
can be obtained by means of simple post-processing, thus limiting computational
efforts in multi-parametric studies. In practice, eigenmodes are computed by means
of the Semi-Analytical Finite Element method for numerical efficiency.

The main novelty described in the present paper is the possibility to compute in
the smallest possible zone the scattering of an incident field by an arbitrary defect
or generally speaking a non-uniformity of the guide. For this, a new Finite Element
scheme has been developed combining exact transparent boundary conditions and
the account of the modal decomposition of an arbitrary field thanks to biorthogo-
nality relations: the higher the number of evanescent modes accounted for in the
computation, the smaller the discrete FE computation zone surrounding the guide
non-uniformity. These developments result in a versatile and numerically efficient
method that can address complicated configurations typical of those encountered
in practice. At present, the numerical tool developed is used to deal with various
configurations of interest for NDT applications.
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Finite elements for a beam system with
nonlinear contact under periodic excitation

H. Hazim, B. Rousselet

Abstract Solar arrays are structures which are connected to satellites; during launch,
they are in a folded position and submitted to high vibrations. In order to save mass,
the flexibility of the panels is not negligible and they may strike each other; this may
damage the structure. To prevent this, rubber snubbers are mounted at well chosen
points of the structure; a prestress is applied to the snubber; but it is quite difficult to
check the amount of prestress and the snubber may act only on one side; they will
be modeled as one sided springs (see figure 2).
In this article, some analysis for responses (displacements) in both time and fre-
quency domains for a clamped-clamped Euler-Bernoulli beam model with a spring
are presented. This spring can be unilateral or bilateral fixed at a point. The mount-
ing (beam +spring) is fixed on a rigid support which has a sinusoidal motion of
constant frequency.
The system is also studied in the frequency domain by sweeping frequencies be-
tween two fixed values, in order to save the maximum of displacements correspond-
ing to each frequency. Numerical results are compared with exact solutions in par-
ticular cases which already exist in the literature.
On the other hand, a numerical and theoretical investigation of nonlinear normal
mode (NNM) can be a new method to describe nonlinear behaviors, this work is in
progress.
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Fig. 1 At left: solar arrays from folded to final position, at right: picture for the satellite AMC12
from Thales Alenia Space company

1 Introduction

1.1 Previous Works

In articles [BFN], [FWW], [FL] et [VHCKF], proposed by Thales Alenia Space re-
search team, the dynamic of a beam sytem with a nonlinear contact force, under a
periodic excitation given as an imposed acceleration form is studied both numeri-
cally and experimentally. When sweeping frequencies in an interval which contains
eigen frequencies of the beam, resonance phenomena appear as well as new fre-
quencies caused by the unilateral contact.
Finite element method in space domain is used, followed by numerical integration
of the ordinary differential systems using specific software like ’STRDYN’ of the
finite element package DIANA.
The frequency sweeping is done in different ways, one of these way is such as the
frequency f changes as a function of the time t according to : f (t) = f02st/60 where
s is the sweep rate in octaves/min and f0 is the start frequency of the sweep. Results
prove differences between sweep-down and sweep-up around eigen frequencies of
the system where solutions are unstable.
At each value of the time t, computation is done and the maximum of displacement
and acceleration are saved.
Finally, comparison is made in time and frequency domains, between linear and
nonlinear cases.
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Fig. 2 left: Simplified Mechanical Model, right: folded solar arrays with snubbers

1.2 Present Work

This work is part of the phd work of the author under the guidance of B. Rousselet
with the support of Thales Alenia Space, France.
Some analysis for responses (displacements) in both time and frequency domain
for a clamped-clamped Euler-Bernoulli beam model with a linear spring are pre-
sented, the spring can be unilateral or bilateral fixed at a point. The mounting (beam
+spring) is fixed on a rigid support which has a sinusoidal motion of constant fre-
quency.
The system is also studied in the frequency domain by sweeping frequencies be-
tween two fixed values, such as saving the maximum of displacements correspond-
ing to each frequency.

Numerical results are compared with exact solutions in particular cases which
already exist in the literature.
On the other hand, a numerical and theoretical investigation of nonlinear normal
mode (NNM) can be a new method to distinguish linear from nonlinear cases.

2 Simplified Mechanical Model

The study of the total dynamic behavior of solar arrays in a folded position with
snubbers are so complicated, that to simplify, a solar array is modeled by a clamped-
clamped Bernoulli beam with one-sided linear spring. This system is fixed on a
shaker which has a vibratory motion d(t) see figure (2).

The motion of this beam system is modeled by the following PDEs with bound-
ary conditions : u(0, t) = u(L, t) = d(t) and ∂xu(0, t) = ∂xu(L, t) = 0:
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Bilateral spring: ρSü(x, t)+EIu(iv)(x, t) = kr(d(t)−u(x0, t))δx0 (1)

Unilateral spring: ρSü(x, t)+EIu(iv)(x, t) = kr(d(t)−u(x0, t))+ δx0 (2)

u+ is the function defined by u+ = u+|u|
2 L= 0.485 m beam length.

kr = spring stiffness. d(t) =− a
(2π f )2 sin(2π f t) is the shaker motion.

ρ = 2700 kg/m3 beam density. S = 7,5.10−4 m2 cross sectional area.
E = 7.1010 N/m2 Young’s modulus. I = 1,41.10−8 m4 second moment of area.
This data are taken from [FWW]. The classical Hermite cubic finite element approx-
imation is used here to find an approximate solution for equations (1) and (2), we
find then two ordinary differential systems in the form :

Mq̈+Kq = kr(d(t)−qx0)
−→ex0 (3)

Mq̈+Kq = kr(d(t)−qx0)+
−→ex0 (4)

M et K are respectively the mass and the stiffness assembled matrices, q is the vec-
tor of degree of freedom of the beam, qi = (ui,∂xui), i = 1,2, ...,n. To each node are
associated two degrees of freedom, the displacement and its derivative.

To integrate numerically systems (3) and (4), we use the Scilab routines ”ODE’s”
followed by the FFT (Fast Fourier Transformation) to find frequencies of solu-
tions, there is no special treatment for ”ODE” routine to deal with the local non-
differentiable nonlinearity (d(t)−u(x0, t))+.

3 Numerical Results

3.1 Highlights on the linearized system and the nonlinear effects

There are two linear cases, the first one when there is no spring attached to the
beam, and the second case is such as a linear spring is always attached to the beam
( bilateral spring ). The system becomes nonlinear when the spring becomes one-
sided when the prestress is not well tuned. The nonlinearity has a special form, it is
locally not differentiable but it is lipchitz.
Without spring, the motion has the following linear system of equation :

Mq̈+Kq = 0 (5)

The eigen frequencies of the motion are easily calculated by computing the gener-
alized eigen values of M and K, this calculus can be done using software like Scilab
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[S]. We are interested by the first three eigen frequencies of the system, we note
that the precision depends on the number of the finite elements used for the mod-
eling of the system. We verify that ten finite elements give a good approximation
for the first three eigen frequencies and their values are respectively :334.21622Hz,
921.48815Hz and 1807.7966Hz. As known, the eigen-frequencies of a Bernoulli
beam could be calculated using this formula:

fi = 1
2π

√
µ4

i
EI

Ml4 , µi i = 1,2,3, ...n are given in [G]. µ1 = 4.73, µ2 = 7.853 and
µ3 = 10.996 give f1 = 334.19889Hz, f2 = 921.19996Hz and f3 = 1806.1432Hz.
The nonlinearity on the system modifies the motion by adding new frequencies,
subharmonics and superharmonics, besides the eigen frequencies. When the system
is under periodic excitation, new frequencies appear also, there are many combina-
tions of the excitation frequency with the system frequencies. These new frequencies
appears in FFT of the system and also in the sweep test. There are many ways to
calculate these frequencies, harmonic balance method and nonlinear normal mode
(MNN) and asymptotic expansions methods ([JB]) .

3.2 One Node Finite Element Model Without Periodic Excitation

In this case, the beam is modeled by two finite elements without periodic excitation.
Equations of displacement and its derivative are independent here because of the
structure of the mass and stiffness matrices:

M =
(

0.3647893 0
0 0.0005500

)
and K =

(
1661090 0

0 32560.825

)
.

To find eigen frequencies of the system in the linear case (system without contact),
we juste have to calculate the generalized eigen values of M and K.
The motion is divided into two phases: the first one when the beam touches the
spring and another one when the beam does not touch the spring. The spring mass is
negligible beside the beam mass, the equations of displacement of these two phases
are respectively :

M(1,1)ü+(K(1,1)+ kr)u = 0

M(1,1)ü+K(1,1)u = 0

The boundary conditions are :u(0, t) = u(L, t) = 0 and ∂xu(0, t) = ∂xu(L, t) = 0.
The period of the solution will be the sum of the half period of the first phase and
the second phase :

T =
π√

K11(1,1)
M11(1,1)

+
π√

K11(1,1)+kr
M11(1,1)

the numerical value of the motion frequency 1
T is 384.74186Hz this is in agreement

with the numerical calculus. In figure (3), The Fast Fourier Transformation shows
frequencies of the system, the first peak correspond to the analytical value. The
motion in the phase plane shows a periodic conservative solution.
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Fig. 3 Left: FFT of the displacement of the second node with unilateral spring contact with initial
conditions u(x,0) = 0.4, u̇(x,0) = 0. Right: solution in the phase space.

3.3 One Node Finite Element Model, Beam Under Periodic
Excitation

The beam is modeled by two finite elements under periodic prescribed displacement
d(t). The spring is always fixed in the middle of the beam on a node, it can be uni-
lateral or bilateral.

Figure (4) shows the displacement of the second node (in the middle) of the beam
with bilateral and unilateral spring, the period of the motion changes with unilateral
spring. Figure (5) shows frequencies of the beam with bilateral and unilateral cases;
In the bilateral case, there are two frequencies, the eigen frequency (430 Hz) and
the frequency of the shaker (500 Hz); In the unilateral case, there are the system
frequency, the shaker frequency and many other superharmonics and subharmonics
frequencies due to the contact.

3.4 Ten Finite Elements

In this section, the beam is modeled with ten finite elements, this approximation is
quite good if we are interested by the first two eigen frequencies of the system.
The spring is always fixed in the middle of the beam on a node, and can be unilateral
or bilateral, the whole system is fixed on a shaker which has periodic prescribed
displacement d(t), we compare the linear with the nonlinear case for the same value
of parameters.
Figure (6) shows the displacement in the time domain for bilateral and unilateral
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case and their corresponding frequencies using FFT. In the linear case (bilateral
spring), the first and the third eigen frequencies are shown, the shaker frequency
also(500 Hz); The middle of the beam is node of the second mode. In the nonlinear
case (unilateral spring), frequencies corresponding to the first and the third eigen
frequencies of the linear case and also the shaker frequency are shown; Many other
superharmonics, subharmonics and combination with the shaker frequency appear
also due to the non linear contact.

4 Frequency Sweep Excitation

Frequency sweep excitation is usually used in the experiments to check the dynamic
behavior of mechanical systems. As mentioned before, the beam is under periodic
excitation given as a displacement form
d(t) =− a

(2π f )2 sin(2π f t), that means that the beam is under an effort (acceleration)

d̈(t) = asin(2π f t), a in m/s2 is the amplitude of the acceleration and f in Hz is the
frequency of excitation.

We are just interested by a sweep-up test, for a initial given frequency f0 and a
fixed value of a. We compute the solution of differential systems, then we save the
maximum of the acceleration and the displacement. In a second time, we add a fixed
value to f0, the frequency step d f . We compute again for f0 + d f and we save the
same quantities for this iteration, the initial conditions are fixed on zero again. We
continue our test to reach a fixed frequency f1 chosen such as to cover the first and
the second eigen frequency of the system.

Finally, we plot the maximum saved in each sweep test, then we compare linear
with nonlinear cases, we study also the effect of the amplitude a and the frequency
step on the system.

We remark that obtained curves are similar to curves of FFT , it is an another
method to find frequencies for mechanical systems.

4.1 Two Finite Elements

The beam is modeled by two finite elements, the spring is fixed in the middle, the
Bernoulli beam is clamped in its both extremities, we just have a free node of two
degrees of freedom, the first is the displacement, the second is the derivative of the
displacement. The eigen frequency of the linearized system in this case is around
339Hz, the sweep-up begin from 100Hz to 1000Hz, the frequency step d f = 5Hz
and the amplitude of excitation a = 50m/s2.

In each iteration, the integration time is t f = 0.1s, the initial conditions are al-
ways fixed at 0 : q(x,0) = q̇(x,0) = 0, kr = 106N/m.
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In figure (7), the peak in the bilateral case corresponds to the eigen frequency of
the system, its abscissa is 430Hz. In the unilateral case, the peak corresponds to the
eigen frequency too, its abscissa is 384Hz. Other peaks appear; they are due to the
unilateral contact. These results conform well with the FFT in figure (5).

4.2 Ten finite elements

The beam is modeled by ten finite elements, the spring always in the middle, the
other parameters are the same defined in section 4.1.
In figure (8), the peak in the bilateral case corresponds to the first eigen frequency
of the system, the second eigen frequency does not appear because the imposed
displacement is not enough to excite it (d(t) = − a

(2π f )2 sin(2π f t) very small when
f become so high). Peaks in the unilateral case show the system frequencies corre-
sponding to the eigen frequency of the linear system and other frequencies due to the
contact. These results conform with the FFT in figure (6) in the interval [100,1000]
Hz.

Fig. 4 Displacement of the second node with bilateral and unilateral spring contact under peri-
odic excitation of 500 Hz (Two finite element model)
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Fig. 5 FFT of the displacement of the second node with bilateral and unilateral spring contact
under periodic excitation of 500 Hz (Two finite element model)

Fig. 6 Displacement and their FFT of the sixth node with bilateral and unilateral spring contact
under periodic excitation of 500 Hz (Ten finite element model)
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Fig. 7 Maximum of absolute value of the displacement for both bilateral and unilateral spring,
two finite element model, kr = 106N/m, a = 50m/s2, t f = 0.1s (Sweep-up test)

Fig. 8 Maximum of absolute value of the displacement of all nodes(log scale) for both bilateral
and unilateral spring, ten finite element model kr = 106, t f = 0.1s, a = 50m/s2 (sweep-up test)

5 Conclusion

We have presented some preliminary numerical results to compare the vibrations of
a beam equipped with a bilateral or a unilateral spring. Asymptotic expansions using
some results of S. Junca ([JB]) are in project and compared with numerical results
in order to asses the quality of both approaches. In particular accurate computations
of non linear normal modes (see [DPS]) will be considered.
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Nonlinear acoustic fast and slow dynamics of 

damaged composite materials: correlation with 

acoustic emission 
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3
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Abstract   Slow and fast dynamics in the elastic response of damaged materials to 

external excitations show evidence of an anomalous hysteretic elastic behavior. 

Experimental observations may be used to detect and eventually characterize 

damage existing in structural components. Here we analyze the evolution of 

nonlinear dynamic behavior of a polymer-based composite (SMC) and concrete. 

More particularly, nonlinear slow dynamics parameters have been found to be 

very sensitive to damage evolution for both materials. Besides, acoustic emission 

monitoring is used to calculate the elastic energy released by SMC during a grad-

ual increasing damage procedure. Interesting logarithm-like evolution of the fol-

lowed nonlinear parameters as a function of the calculated energy is found. A 

classification of the calculated acoustic emission signal is proposed to understand 

the contribution of the different damage mechanisms to the evolution of the 

nonlinear behavior of SMC. 
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1 Introduction 

Heterogeneous materials (concrete, rocks, composites, etc.) are the place of 

creation and propagation of microcracks even at stress levels well below their rup-

ture strength. The characterization of damage in these materials by linear acousti-

cal methods, based on the measurement of ultrasonic waves’ velocities and/or 

attenuation, does not generally give the expected sensitivity to damage in particu-

 

 

strain energy in powers of strain, where the expansion coefficients designate the 

second and third order elastic constants [4]. The interaction of an ultrasonic wave 

with strain (stress), also called acoustoelastic effect, leads to the effective elastic 

constants, which are revealed to be very sensitive to damage [4]. Nonlinear effects 

can also be observed through the distortion of an ultrasonic sine wave when 

propagating in a medium. In that case, higher harmonics (multiples of the initial 

frequency) are created with the following specific relations as function of the mi-

cro-strain ε : the amplitudes of the second and third harmonics scale as ε 
2
 and ε 

3
, 

respectively. As the acoustoelastic and harmonic approaches are strongly depend-

ent on the ultrasonic path and hence mainly used to detect and characterize local 

damages, resonance method is more suitable for both global as well as local dam-

age characterization. In that case, classical nonlinearity predicts that the resonance 

frequency of the fundamental resonance mode (Young’s mode) changes as 

ε 
2
. Predictions of classical elastic theory (Landau theory) are well respected in 

many materials (intact and damaged materials: metals, rocks, concrete, compos-

ites, etc.) as long as the involved strains remain small (order of  ~ 10
-7
 and lower, 

depending on materials). However, at higher strains classical nonlinear elasticity 

predictions do not correspond to experimental observations. Indeed, in that case 

the resonance frequency shift and the second harmonic amplitude depend linearly 

on the stain, and the third harmonic displays quadratic strain dependence [1]. 

Different theoretical approaches attempting to understand the origin of these 

“non-classical” observations have been proposed  However, despite these 

theoretical attempts, the non-classical fascinating observations made on materials 

of different constituents and structures are still poorly understood in terms of their 

 

tion we present results using Nonlinear Resonance Spectroscopy (NRS) approach 

to characterize damage in concrete and polymer-based composite SMC (Sheet 

Molding Compound). Materials are characterized at intact and damaged states. 

Besides, damage was monitored using Acoustic Emission system.  A classifica-

tion of the calculated acoustic emission signal is proposed to understand the con-

tribution of the different damage mechanisms to the evolution of the nonlinear 

behavior of SMC. 
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 Classical nonlinear theory for atomic elasticity uses the expansion of the elastic

lar during the first loading stages, where weak damage is involved. As such, acous-
tical nonlinear methods appear like an interesting alternative capable to detect
diffused or localized damage through the application of very weak strains [1-7].

[6  9].-

[10]. In this contribu-underlying causes and the conditions under which they occur



2 Materials and experimental device 

Samples as well as the experimental device are presented in figure 1. The gain-

phase analyzer generates a continuous sinusoidal excitation whose frequency is 

swept through a frequency range encompassing one of the resonant frequencies of 

concrete bars and SMC plates. This signal is amplified at 52 dB using a power 

amplifier tailored for frequency range of 10 kHz to 200 MHz. Vibrations of SMC 

are generated and detected through two PZT ceramics bonded with epoxy at both 

SMC extremities. For concrete samples vibrations are detected using a Polytech 

laser vibrometer.  

Fig. 1. (a) Experimental device used for nonlinear damage characterization of concrete bars 

and SMC plates: the use of a coupler and a spectrum analyzer allowed a good characterization of 

nonlinear threshold; (b) sixth flexural resonance mode identified with simulations using 

Abaqus
TM

 ; (c) sixth flexural resonance mode identified with the help of c-scan imaging system 

(f = 16685Hz) 

A reliable nonlinear characterization is highly dependent on the linearity of the 

experimental device i.e. no electronic nonlinearity is generated. To make this pos-

sible, we used a reference material (intact aluminium bar), whose nonlinear prop-

erties are of the atomic order, on which we applied the same excitations needed to 

characterize concrete and SMC at resonance. The aluminium sample was excited 

around its fundamental Young’s mode with a PZT bonded on one of its extremi-

ties. On the other extremity we registered its resonance response using a laser vi-

brometer. For an accuracy corresponding to 0.1Hz, the response has proved to be 

linear until an excitation corresponding to ε =10
-5

 beyond which a frequency shift 

is registered due to the influence of the electronic chain on the measurements. This 

threshold corresponds to the electronic nonlinear limit of the experimental device 

and will consequently not be encompassed. 
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3 Nonlinear characterization of concrete  

For the rod-shaped concrete samples, frequency is swept through the first lon-

gitudinal resonance mode of the specimen and the amplitude of the output strain 

(or the root mean square output velocity) is recorded in stationary conditions. This 

resonance characterization was made at intact and damaged states, where damage 

is created using quasi-static compression tests. As discussed in several theoretical 

cal (hysteretic) elasticity is given by the downward shift of the specimen reso-

to be a linear function of the driving amplitude. Such phenomenon, known as fast 

dynamics, has been analysed in Fig. 2. First, resonance curves for different vibra-

tion velocities are reported for an intact concrete specimen. As known, depending 

on manufacturing processes, concrete is in fact slightly hysteretic already in the 

intact case, as confirmed by the downward shift observed in the reported plot. The 

sensitivity of fast dynamics to the damaged state of the specimen is analysed in the 

same Fig. 2 using the same excitation levels. Here we can see that the resonance 

frequency shift for the damaged concrete sample is much higher than the one cor-

responding to the intact state. Indeed, when we plot the resonance frequency shift 

∆f/f vs. the output amplitude A (i.e. the amplitude of the resonance curve in corre-

spondence of the resonance frequency) we find a slope at the damaged state 400 

times higher than in the intact state.  

Fig. 2. Resonance curves at different excitation amplitudes (fast dynamics) for intact (left) 

and damaged (right) concrete samples.  

A second set of results is reported here to evidentiate sensitivity of slow dy-

namics to the presence of damage. In a slow dynamic experiment, the speci-

men is probed at constant driving amplitude, after a large excitation (condi-

tioning) has been applied. As well known, after perturbation, the specimen is 

temporarily softened, which means its resonance frequency is shifted to lower 

values. Nevertheless, by tracking the resonance frequency at successive times, 

it can be shown that it slowly recovers to its value before conditioning. Ex-
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and experimental papers [2, 3, 9, 10], the first signature of the presence of nonclassi-

nance frequency with increasing driving amplitude. This shift has been shown

 



periments performed on a wide variety of materials have pointed out that re-

covery is logarithmic with time. Slow dynamics in concrete is illustrated in 

Fig. 3, where resonance frequencies at successive times are reported for the 

concrete sample mentioned above at intact and damaged states. Here, we can 

see that for the same conditioning, frequency relaxation time is more important 

at the damaged state. Furthermore, the frequency drop due to conditioning is 

also more important at the damaged state, showing the sensitivity of this ap-

proach to the presence of damage. The same characterization method (fast and 

slow dynamics) is applied in the next section on a gradually damaged polymer-

based composite.  

Fig. 3.  Resonance frequency relaxation when probed with a weak drive amplitude vs. time 

of both intact (left) and damaged (right) concrete samples submitted to the same condition-

ing.  

4.   Damage characterization of instrumented SMC plates 

4.1 What resonance mode to chose: identification and sensitivity 

to damage  

For the rod-shaped concrete samples we have used the first longitudinal reso-

nance mode in the intact and damaged states where the amplitude of the output 

strain (or the root mean square output velocity) is recorded in stationary condi-

tions. However, sometimes damage areas are not well excited by fundamental 

modes on one hand, and experimental devices are not able to generate these modes 

due to their frequency limitations, on the other hand. Indeed, in the case of the 

instrumented SMC plates it was experimentally not possible to follow the first 

resonance flexural mode since the amplifier does a poor job below 10 kHz. In that 
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 Intact  

Damaged 



 

case, we had to explore higher resonance modes, identify each of them using 

simulations and/or an experimental imaging procedure, and study their sensitivity 

to an increasing damage. Resonance modes determination was performed using a 

Finite Element Modeling (FEM) with the help of ABAQUS
TM

, which allowed us 

to identify the eigenmodes of the instrumented SMC plates. The model was fed 

with the mechanical properties of both SMC sample and PZT sensors shown in 

table 1. Simulations were compared to C-Scan images made with the help of a 

laser interferometer when SMC was excited at each of its different resonance fre-

quencies. Agreement between simulations and experiments could be observed in 

Fig. 1.  

Table 1. Mechanical properties of the materials used as input for the FEM modal analysis 

 

Material Density 

(kg/m3) 

Stiffness tensor components (GPa) 

  C11 C12 C22 C13 C23 C33 C66 C55 C44 

SMC 1926 21.3 7.1 21.3 6.5 6.5 16.2 7.1 4.3 4.3 

PZT 7650 121.0 75.4 121.0 75.2 75.2 111.0 21.1 22.6 22.6 

 

The choice of the most suitable vibrating mode to characterize damage is a 

modes are affected by damage, we have induced a localised damage by increasing 

the flexural displacement from 0mm to 3mm using a step of 0.5mm. At each dam-

age step, we have followed the changes in resonance frequency and amplitude and 

have drawn the curve shown in figure -a, which is normalized with respect to the 

sixth flexural vibrating mode of the SMC. This curve represents frequency varia-

tions for the aforementioned damage states while coding the amplitude of reso-

nance curves in a grey scale going from white for the highest amplitudes to black 

for the weakest ones. We notice that the flexural vibrating mode is not the only 

one that is affected by damage. Indeed, with the help of figure -b, which is a con-

tinuation of figure -a, we can confirm that the frequency shift and the decrease of 

the amplitude affect other vibrating modes as well, though differently. This proves 

that exploring other resonance modes of different orders is an interesting issue that 

may give more information about the induced damage. However, one should be 

aware about the fact that experimentally we are limited by attenuation whose ef-

fect increases with damage and makes the access to higher order resonance modes 

difficult and sometimes impossible. 
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crucial point that deserves a particular attention [4, 5]. To know the way the excited

4

4
4



identified flexural mode; (b) Amplitude and frequency variations for higher vibrating modes 

normalized for the same flexural mode  

4.2 Damage quantification and characterization using Acoustic 

Emission (AE) 

SMC specimens (100x20x3 mm3) were gradually damaged with three points 

using a flexural machine (Instron with 5 kN cell). Simultaneously, elastic waves 

generated by the created micro-cracks were recorded using AE system (MIS-

TRAS-2001). Acoustic emission (AE) could be used to identify the different dam-

age mechanisms in SMC using an analysis of the recorded ultrasonic waves [10]. 

A classification of AE hits based on their corresponding amplitudes shows the 

ever, the amplitude-based classification is not sufficient to separate and identify 

the different mechanisms existing in SMC: another classification procedure is 

needed. Indeed, the detected AE signals are characterized by different characteris-

tics such as amplitude, duration, energy, rise time and counts. These parameters 

are used to build patterns. In the considered feature space, the patterns can be di-

vided into clusters by using multivariable data analysis based on similarity meas-

urements. In this work, unsupervised pattern recognition analyses (Fuzzy Cmeans 

Clustering) associated with a principal component analysis are used for the classi-

fication of the monitored AE events [ ]. A cluster analysis of AE data is made 

where the resulting clusters are correlated to damage mechanisms existing in 

SMC. Identified mechanisms for SMC are [ ]: matrix cracking, interfacial 

debonding and fiber failure (Fig. ).  
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Fig. 4. (a) Amplitude and frequency variations around the flexural mode normalised for the 

bending tests [4, 5]. Four damage steps going from 0.4 mm to 1.6 mm were realised

possibility to separate the different damage mechanisms as shown in Fig. . How-5

12

12
6



 

  

Fig. .  Amplitude-based classification of AE hits : appearance of groups called here A, C 

and B which correspond to the three main damage mechanisms : matrix micro-cracking, fi-

bre/matrix debonding and fibres cracking respectively.   

 

Fig. .  (Right) Signals of the three main damage mechanisms. Form top to bottom: fibres 

cracking, fibre/matrix debonding and matrix micro-cracking. (Left) Damage mechanisms created 

in SMC. 

 

Furthermore, the proposed clustering method allows to monitor the evolution of 
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5

damaging, which corresponds to the three identified damage types is shown in   
the different mechanisms in time. Cumulated Number of hits of hits during SMC 

Fig. 7 for the four damaged stages (noted d1  to d 4 , where d4  corresponds to the �

6

 



 
 

Fig. . Cumulated Number of hits of the three damage mechanisms (matrix cracking, interfa-

cial debonding, fiber failure) in the SMC composite material under static three-point bending 

test. The four damaged stages are noted d1 to d4 

5 Nonlinear Acoustic  Slow Dynamics : Correlation with 

Acoustic Emission 

To make a reliable “SNLD / AE” correlation for damage characterization, we 

need to check the irreversibility of phenomena at the origin of AE hits, commonly 

called Kaiser Effect (KE). If KE exists, little or no acoustic emission will be re-

corded before any previous maximum stress level is achieved. Furthermore, the 

presence of KE in a material allows to verify if it has been damaged between two 

consecutive loads. For SMC damaged with three points bending tests, the exis-

tence of KE was verified. In that case, all changes observed in HNL behaviour of 

SMC are due to the gradual damage. Therefore, the cumulated energy content of 

AE hits represents well the elastic energy of the different events that happen in 

SMC.  

As detailed above, in these measurements we were mainly interested in follow-

ing SMC relaxation in time. Qualitatively, SMC relaxation behaves the same way 

for undamaged and damaged states due to its highly heterogeneous structure, with 
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appearance of a macrocrack on the surface). Fig. 7 allows to see that no fiber 
failure is detected during the first damage stage. In addition, energy differences
can be readily appreciated, where fiber failure (when exists) is ten times more 
important than matrix cracking.

7

 



 

a logarithm-like recovery as found in SNLD experiments on several other materi-

als [1-3]. Furthermore, the increase of damage makes relaxation time longer for 

the same conditioning. Quantitatively, relaxation time goes from 108% to 250% in 

comparison with the intact state. Without AE classification we can only follow 

variations of relaxation time as function of the cumulated energy of all damages 

intuitive and basic statement: A perfect material (intact) submitted to a condition-

ing would have an instantaneous relaxation (t  0). However, if the same cond→ i-

tioning is applied to a highly damaged material, the relaxation time would be very 

important (t  i). Furthermore, SMC relaxation time seems to change as the →
logarithm of the elastic energy.    

   

  

. Cumulated energy of the three damage mechanisms (matrix cracking, interfacial 

debonding, fiber failure) in the SMC composite material under static three-point bending test. 

The four damaged stages are noted d1 to d4. 

 

When the different mechanisms at the origin of AE hits are well separated, it is 

possible to know how SMC relaxation time depends on the cumulated energy 

dependence on the elastic energy for all damage mechanisms as for the aforemen-

tioned global response. However, the main characteristic of Fig. .b is that it helps 

to appreciate the slowness of relaxation for each mechanism. Indeed, we could see 

that the matrix cracking relaxation is much slower compared to fibers failure. This 

is mainly due to the fact that glass fibres are less viscoelastic than the polymer 

matrix. These two viscoelastic limits give intermediate relaxation to the interfacial 

debonding. These original results validate our AE classification method and offer 

new possibilities to investigate HNL behaviour of numerous materials of academic 

as well as industrial interests. 
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8Fig. 

freed by every damage mechanism (Fig. .b). The latter shows the same logarithm 8

8

created in SMC as shown in Fig. .a. The latter seems to confirm the following 8
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Asymptotic expansions of vibrations
with small unilateral contact

S. Junca and B. Rousselet

Abstract We study some spring mass models for a structure having a small
unilateral contact with a small parameter ε. We valid an asymptotic ex-
pansion with the method of strained coordinates with new tools to handle
such defects, including a non negligible cumulative effect over a long time:
Tε ∼ ε−1 as usual; or, for a new critical case, we can only expect: Tε ∼ ε−1/2.

1 Introduction

For spring mass models, the presence of a small piecewise linear rigidity can
model a small defect which implies unilateral reactions of the structure. For
nondestructive testing we study a such singular nonlinear effect for large
time by asymptotic expansion of the vibrations. New features and compar-
isons with classical cases of smooth perturbations are given, for instance for
the Duffing equations: ü + u + εu3 = 0. Indeed, piecewise non linearity is
singular, lipschitz but not differentiable. We give some new results to vali-
date such asymptotic expansions. Furthermore, these tools are also valid for
a more general piecewise non linearity.
For short time, a linearization procedure is enough to compute a good ap-
proximation. But for large time, nonlinear cumulative effects drastically alter
the nature of the solution. We will consider the classical method of strained
coordinates to compute asymptotic expansions. The idea goes further back to
Stokes, who in 1847 calculated periodic solutions for a weakly nonlinear wave

Stéphane Junca
Université de Nice, IUFM, 89 avenue George V, 06046 Nice, France
e-mail: junca@unice.fr

Bernard Rousselet
Université de Nice, Parc Valrose, 06108 Nice, France
e-mail: br@unice.fr



propagation problem. Subsequent authors have generally referred to this as
the method of Poincaré or the Lindstedt’s method. It is a simple and efficient
method which gives us approximate nonlinear normal modes with 1 or more
degrees of freedom.
In section 2 we present the method on an explicit case with lipschitz force.
We focus on an equation with one degree of freedom with expansions valid
for time of order ε−1 or, more surprisingly, ε−1/2. Section 3 contains a tool
to expand (u + εv)+ and some accurate estimate for the remainder. This is a
new key point to validate the method of strained coordinates with unilateral
contact. In Section 4, we extend previous results for systems with N degrees
of freedom, first, with the same accuracy for approximate nonlinear normal
modes, second, with less accuracy with all modes. Section 5 is an appendix
containing some technical proofs and results.

2 One degree of freedom

2.1 Explicit pulsation

We replace in the Duffing equation u3 by the piecewise linear term u+ =
max(0, u).

ü + ω2
0u + εu+ = 0, (1)

where ω0 a positive constant. This case has got a conserved energy E: Ė = 0,

Fig. 1 Two springs, one on the right with an unilateral contact.

where 2E = u̇2 + ω2
0u

2 + ε(u+)2. Therefore, the level sets of E(u, u̇) will be
made of two half ellipses. Indeed, for u < 0 the level set is an half ellipse,
and for u > 0 is another half ellipse. Any solution u(t) is confined to a closed
level curve of E(u, u̇) and is necessarily a periodic functions of t.
More precisely, a non trivial solution (E > 0) is on the half ellipse: u̇2+ω2

0u =
2E, in the phase plane during the time TC = π/ω0, and on the half ellipse
u̇2 + (ω2

0 + ε)u = 2E during the time TE = π/
√

ω2
0 + ε. The period P (ε) is
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then
P (ε) = (1 +

(

1 + ε/ω2
0

)−1/2
)π/ω0, and the exact pulsation is:

ω(ε) = 2ω0(1 +
(

1 + ε/ω2
0

)−1/2
)−1 = ω0 +

ε

(4ω0)
−

ε2

(8ω3
0)

+ O(ε3). (2)

Let us compare with the pulsation for Duffing equation which depends on
the amplitude a0 of the solution: ωD(ε) = ω0 + 3

8ω2

0

a2
0ε −

15
256ω4

0

a4
0ε

2 + O(ε3).

2.2 The method of strained coordinates

Now, we compute, with the method of strained coordinates, ωε, an approx-
imation of the exact pulsation ω(ε). We expose completely this case to use
the same method further when we will not have such explicit pulsation.
Let us define the new time s = ωεt and the following notations:

ωε = ω0 + εω1 + ε2ω2, ω2
ε = α0 + εα1 + ε2α2 + O(ε3) (3)

α0 = ω2
0 , α1 = 2ω0ω1, α2 = ω2

1 + 2ω0ω2. (4)

The unknowns are ω1, ω2 or α1, α2. Replacing the solution of (1) by the
following anzatz with the following initial data to simplify the exposition:

uε(t) = vε(ωεt) + ε2rε(ωεt),

vε(s) = v0(s) + εv1(s), where s = ωεt,

uε(0) = a0 > 0, u̇ε(0) = 0,

then, we obtain initial data and next differential equations for v0, v1, rε:

v0(0) = a0 v̇0(0) = 0, 0 = v1(0) = v̇′1(0), 0 = rε(0) = ṙε(0).

We use the natural expansion: (u + εv)+ = u+ + εH(u)v + · · · , where H is
the Heaviside function, equal to 1 if u > 0 and else 0, (see Lemma 3.1 below).

v̈0 + v0 = 0, (5)

−α0(v̈1 + v1) = (v0)+ + α1v̈0, (6)

−α0(r̈ε + rε) = H(v0)v1 + α2v̈0 + α1v̈1 + Rε(s). (7)

We now compute, α1, v1 and then α2. We have v0(s) = a0 cos(s). A key
point in the method of strained coordinates is to keep bounded v1 and rε

for large time by a choice of α1 for u1 and α2 for rε. For this purpose,
we avoid resonant or secular term in the right-hand-side of equations (6),

(7). Let us first focus on α1. Notice that, u+ =
u

2
+

|u|

2
. | cos(s)| has no term
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with frequencies ±1, since there are only even frequencies. Thus −α0((v0)+−
α1v0) = a0 cos(s)(1/2− α1) + a0| cos(s)|/2 has no secular term if and only if
α1 = 1/2, ω1 = 1/(4ω0). Now, v1 satisfies:

−ω2
0(v̈1 + v1) = |v0|/2, v1(0) = 0, v̇1(0) = 0.

To remove secular term in the equation (7) we have to obtain the Fourier
expansion for H(v0) and v1. Some computations give us:

| cos(s)| =
2

π
−

4

π

+∞
∑

k=1

(−1)k

4k2 − 1
cos(2ks),

v1(s) =
−a0

ω2
0

(

1

π
−

2

π

+∞
∑

k=1

(−1)k

(4k2 − 1)2
cos(2ks)

)

,

H(v0) =
1

2
+

2

π

+∞
∑

k=1

(−1)j

2j + 1
cos((2j + 1)s)

To remove secular term of order one in (7), it suffices to take α2 such that:

0 =

∫ 2π

0

[H(v0(s))v1(s) + α2v̈0(s) + α1v̈1(s)] � v0ds. (8)

For Duffing equation, see [6, 7, 8], the source term involve only few complex
exponentials and the calculus of α2 is explicit. For general smooth source
term, Fourier coefficients decay very fast. Here, we have an infinite set of fre-
quencies for v1 and H(v0), with only a small algebraic rate of decay for Fourier
coefficients. So, numerical computations need to compute more Fourier co-
efficients. For our first simple example, we can compute explicitly α2. Af-
ter lengthy and tedious computations involving numerical series, we obtain
α2 = −3(4ω0)

−2, thus ω2 = −(2ω0)
−3 as we have yet obtained in (2). More

generally, we have:

Proposition 2.1. Let uε be the solution of (1) with uε(0) = a0 + εa1,
u̇ε(0) = 0, then, there exists γ > 0, such that, for all t < Tε = γε−1:

uε(t) = v0(ωεt) + εv1(ωεt) + O(ε2), ωε = ω0 + εω1 + ε2ω2,

where v0(s) = a0 cos(s), v̈1 + v1 = − |v0|
2ω2

0

, v1(0) = a1, v̇1(0) = 0.

ω1 = 1/4ω0 and ω2 is given by α2 thanks equations (8), (3).

Remarks:
a new critical case: we give another simple example, with an asymptotic ex-
pansion only valid for time of order 1√

ε
. Consider, the solution uε of:

ü + u + ε(u − 1)+ = 0, uε(0) = 1 + ε, u̇ε(0) = 0. (9)
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The method of strained coordinates gives us the following approximation
for uε(t): vε(t) = (1 + ε) cos(t) for t ≤ Tε. This system has got an energy:
2Eε = u̇2 + u2 + ε[(u − 1)+]2. Since, 1 is the maximum of v0(t) = cos(t), a
new phenomenon appears, during each period, uε > 1 for interval of time of
order

√
ε instead of ε, and then Tε is smaller and of order 1√

ε
. To explain

this new phenomenon, we give precise estimates of the remainder when we
expand (v0 + εv1 + ε2rε)+ in the next section.

Nonlinear dependence of pulsation with respect to the amplitude : Previ-
ous examples have pulsation independent of the amplitude. It is not always
the case, as we can see on following case. Let b be a real number and consider,
the solution uε of:

ü + u + ε(u − b)+ = 0, uε(0) = a0 > |b|, u̇ε(0) = 0. (10)

At the first order, the method of strained coordinates gives us following equa-
tions:

v̈0 + v0 = 0, −α0(v̈1 + v1) = (v0 − b)+ + α1v̈0 + O(ε).

Then v0(s) = a0 cos(s) and α1 satisfies following equation:

α1 =
1

π

∫ 2π

0

(a0 cos(s) − b)+ cos(s)ds =
a0

2π
(2β + sin (2β) − 4b sin (β)) ,

β = β(b, a0) = arccos

(

b

a0

)

∈ [0, π].

Notice the nonlinear dependence of ω1 = α1/2 with respect to b and a0.
Furthermore, at the first order, and for time of the order ε−1, we have: uε(t) =
a0 cos((1 + εα1/2)t) + O(ε).

3 Expansion of (u + εv)+

We give some useful lemmas to make asymptotic expansions and to esti-
mate precisely the remainder for the basic piecewise linear map u → u+ =
max(0, u).

Lemma 3.1. [Asymptotic expansion for (u + εv)+ ] Let be T > 0,
M > 0, u, v two real valued functions defined on I = [0, T ], Jε = {t ∈
I, |u(t)| ≤ εM}, µε(T ) the measure of the set Jε and H is the Heaviside step
function, then

(u + εv)+ = (u)+ + εH(u)v + εχε(u, v), with H(u) =

{

1 if u > 0
0 else

,
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where χε(u, v) is a non negative piecewise linear function and 1-Lipschitz
with respect to v, which satisfies for all ε, If |v(t)| ≤ M for any t ∈ I,:

|χε(u, v)| ≤ |v| ≤ M,

∫ T

0

|χε(u(t), v(t))| dt ≤ Mµε(T ). (11)

The point in inequality (11) is the remainder εχε is only of order ε in L∞

but of order εµε in L1. In general, µε is not better than a constant, take for
instance u ≡ 0. Fortunately, it is proved below that µε is often of order ε,
and for some critical cases of order

√
ε.

Proof : Equality (11) defines χε and can be rewritten as follow:

χε(u, v) =
(u + εv)+ − u+ − εH(u)v

ε
. (12)

So, χε is non negative since u → u+ is a convex function. We also easily
see that the map (u, v) → χε(u, v) is piecewise linear, continuous except
on the line u = 0 where χε has a jump −v. This jump comes from the
Heaviside step function. An explicit computations gives us the simple and

useful formula: 0 ≤ εχε(u, v) =

{

|u + εv| if |u + εv| < |εv|
0 else

.We then have

immediately 0 ≤ χε(u, v) ≤ |v|. Let u be fixed, then v → χε(u, v) is one
Lipschitz with respect to v. Furthermore, the support of χε is included in Jε,
which concludes the proof. �

Now, we investigate the size of µε(T ) with notations of Lemma 3.1.

Lemma 3.2 (Order of µε(T )). Let u be a smooth periodic function. If u
has only simple roots on I = [0, T ], then , for some positive C: µε(T ) ≤ CεT.
More generally, if u has also double roots then µε(T ) ≤ C

√
εT.

Notice that any non zero solution of any linear homogeneous second order
ordinary differential equation has always simple zeros.
Proof : First assume u only has simple roots on a period [0, P ], and let
Z = {t0 ∈ [0, P ], u(t0) = 0}. A well known result state that Z is a discret
set since u has only simple roots. Thus Z is a finite subset of [0, P ]: Z =
{t1, t2, · · · , tN}. We can choose an open neighborhood Vj of each tj such that
u is a diffeomorphism on Vj with derivative |u̇| > |u̇(tj)|/2. On the compact
set K = [0, P ] − ∪Vj , u never vanishes, then min

t∈K
|u(t)| = ε0 > 0. Thus, we

have for all εM < ε0, the length of Jε in Vj is |Vj∩Jε| ≤
4εM

|u̇(tj)|
. µε is additive:

µε(P + t) = µε(P ) + µε(t) which give the linear growth of µε(T ) = O(εT )
for the case with simple roots.
For the general case, on each small neighborhood of tj : Vj , we have with a
Taylor expansion, |u(tj + s)| ≥ dj |s|

l, with 1 ≤ l ≤ 2, dj > 0, so, |Vj ∩ Jε| ≤

2(εM/dj)
1/l, then µε(P ) = O(

√
ε),which is enough to conclude the proof.

�
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4 N degrees of freedom

MÜ + KU + ε(AU − B)+ = 0, where [(AU − B)k]+ =





N
∑

j=1

akjuj − bk





+

,

M is the diagonal mass matrix with positive term on the diagonal, K is the
stiffness matrix which is symmetric definite positive. For the term ε(AU −
B)+, modeling small defect, it is possible to add many of such terms. For
a such system, endowed with a natural energy for the linearized part, we
control the ε-Lipschitz last term, and the solutions remain bounded for all
time. Without loosing generality, with a change of variables, we deal with
following diagonalized system for the linear part, keeping the same notation,
except for the positive diagonal matrix Λ:

Ü + Λ2U + ε(AU − B)+ = 0, (13)

4.1 Nonlinear normal mode, second order

approximation

For the system (13) with an initial condition on an eigenmode of the linearized
system: uε

1(0) = a0 + εa1, u̇ε
1(0) = 0 and, for k 6= 1: uε

k(0) = 0, u̇ε
k(0) = 0.

Using the same time s = ωεt for each component and following notations:

ωε = ω0 + εω1 + ε2ω2, ω0 = λ1, (ωε)
2 = α0 + εα1 + ε2α2 + O(ε3),

uε
j(t) = vε

j (s), vε
j (s) = v0

j + εv1
j + ε2rε

j , j = 1, · · · , N.

Replacing, this anzatz in the System (13) we have in variable s:

(ωε)
2v̈ε

k + λ2
kvε

k = −ε





N
∑

j=1

akjv
ε
j (s) − bk





+

,

Lkv0
k = α0v̈

0
k + λ2

kv0
k = 0, −Lkv1

k =





N
∑

j=1

akjv
0
j − bk





+

+ α1v̈
0
k = S1

k,

−Lkrε
k = H





N
∑

j=1

akjv
0
j − bk









N
∑

j=1

akjv
1
j



+ α2v̈
0
k + α1v̈

1
k + ε · · · = S2

k + ε · · ·

Equations for v0
k, for all k 6= 1, with zero initial data give us v0

k = 0. In
equation for v1

1 , we remove the secular term for the right hand side. If b1 = 0

we have ω1 =
a11

4λ1
. Then, for k 6= 1, we can compute v1

k since: α0v̈
1
k +

λ2
kv1

k = −
(

ak1v
0
1 − bk

)

+
. v1

k is a 2π-periodic bounded function since λk 6= λ1.
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Simplifying equation for rε
1 we can compute numerically α2 and then ω2 as

in the Propoposition 2.1. Then we check, for all k 6= 1 that rε
k stay bounded

for large time since there is no resonance of order one. We have obtained
following results with previous notations:

Theorem 4.1. The following expansion of the nonlinear normal mode is
valid on (0, Tε), under assumption λ1 6= λk for all k 6= 1:

uε
1(t) = v0

1(ωεt) + εv1
1(ωεt) + O(ε2), uε

k(t) = 0 + εv1
k(ωεt) + O(ε2),

where v0
1(s) = a0 cos(s), and ω1, v1

1, v1
k, ω2 are given by following equations,

in the sense that we compute successively α1, ω1, v1
1 , v1

k, α2, ω2:

0 =

∫ 2π

0

S1
1 � v0

1ds, where S1
1 = (a11v

0
1 − b1)+ + α1v̈0

1 ,

−L1v
1
1 =

(

a11v
0
1 − b1

)

+
+ α1v̈

0
1 = S1

1 , v1
1(0) = a1, v̇1

1(0) = 0,

−Lkv1
k =

(

ak1v
0
1 − bk

)

+
= S1

k, v1
k(0) = 0, v̇1

k(0) = 0, for k 6= 1,

0 =

∫ 2π

0

S2
1 � v0

1ds where S2
1 = H(a11v

0
1 − b1)





N
∑

j=1

a1jv
1
j



+ α2v̈0
1 + α1v̈

0
1 .

Furthermore, if (aj1v
0
1 − bj) has got only simple roots for all j = 1, · · · , N ,

then T ε is of order ε−1, else T ε is of order ε−1/2.

4.2 First order asymptotic expansion

The method of strained coordinates is used for each normal component, with
general initial data uε

k(0) = ak, u̇ε
k(0) = 0 and, with following anzatz:

λε
k = λ0

k + ελ1
k, λ0

k = λk, uε
k(t) = vε

k(sk) where sk = λε
kt, vε

k(s) = v0
k + εrε

k.

Replacing, this anzatz in the system (13) we have:

(λε
k)2v̈ε

k(sk) + λ2
kvk(sk) = −ε





N
∑

j=1

akjv
ε
j

(

λε
j

λε
k

sk

)

− bk





+

,

Lkv0
k = (λ0

k)2v̈0
k(sk) + λ2

kv0
k(sk) = 0,

−Lkrε
k(sk) =





N
∑

j=1

akjv
0
j

(

λ0
j

λ0
k

sk

)

− bk





+

+ 2λkλ1
k v̈0

k + ε(· · · ) ≡ S1
k + ε(· · · ).

If bk = 0, we identify the secular term with the Lemma 5.4 since S+ =
S/2 + |S|/2. Then, we remove the resonant term in the source term for the

remainder rε
k, which gives us λ1

k =
akk

4λk
. If bk 6= 0, we compute λ1

k numerically.
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Noting that, replacing vε
j (sj) by v0

j

(

λ0

j

λ0

k

sk

)

implies a secular term of order

εt. Since the map S → S+ is one-Lipschitz, the error goes to the right-hand
side of equation (14). Furthermore, rε

k = rε
k(s1, · · · , sN ), and the method of

strained coordinates is not valid to get u1
k and λ2

k. Nevertheless, we obtain:

Theorem 4.2. If λ1, · · · , λN are Z independent, then, for all k, for t < Tε ∼
ε−1:

uε
k(t) = v0

k (λε
k t) + O(ε) where λε

k = λk + ελ1
k,

where v0
k(s) = ak cos(s), and λ1

k is defined by the equation:

0 =

∫ 2π

0









N
∑

j=1

akjv
0
j

(

λ0
j

λ0
k

sk

)

− bk





+

+ 2λkλ1

k
v̈0

k



 � v0
kds

Furthermore, if bk = 0 we have: λ1
k =

akk

4λk
.

5 Appendix: technical proofs

We briefly give some results used before. Complete proofs are avaible in [4].
The following Lemma is useful to prove an expansion for large time. There
is a similar version for system.

Lemma 5.3. [Bounds for large time ] Let wε be a solution of

wε” + wε = Sε(s) + fε(s) + εgε(s, wε), w′
ε(0) = 0, w′

ε(0) = 0. (14)

If source terms satisfy the following conditions with M > 0 :

1. Sε are periodic functions orthogonal to e±it, and |Sε(t)| ≤ M

2. |fε| ≤ M and for all T ,

∫ T

0

|fε(s)|ds ≤ CεT or C
√

εT ,

3. there exists R > 0 such that: MR = sup
ε∈(0,1),s>0,R>u2

|gε(s, u)| < ∞,

then, wε is uniformly bounded in L∞ (0, Tε), where Tε =
γ

ε
or

γ
√

ε
and γ > 0.

For system we have to work with linear combination of periodic functions
with different periods and nonlinear function of such sum. So we work with
the adherence in L∞(R, R) of span{eiλt, λ ∈ R}, namely the set of almost
periodic functions C0

ap(R, R), see [1]. We first give an useful Lemma about
the spectrum of |w| for u ∈ C0

ap(R, R). Let us recall definitions for the Fourier
coefficient of u associated to frequency λ: cλ[u] and its spectrum: Sp[u],
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cλ[u] = lim
T→+∞

1

T

∫ T

0

u(t)e−iλtdt, Sp[u] = {λ ∈ R, cλ[u] 6= 0}.

Lemma 5.4. [About spectrum of |u| ] If u ∈ C0
ap(R, R), u has got a

finite spectrum: Sp[u] ⊂ {±λ1, · · · ,±λN}, (λ1, · · · , λN ) are Z-independent,
0 /∈ Sp[u], then λk /∈ Sp[ |u| ] for all k.
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Propagation of compressional elastic waves
through a 1-D medium with contact
nonlinearities

B. Lombard, and J. Piraux

Abstract Propagation of monochromatic elastic waves across cracks is investigated
in 1D, both theoretically and numerically. Cracks are modeled by nonlinear jump
conditions. The mean dilatation of a single crack and the generation of harmonics
are estimated by a perturbation analysis, and computed by the harmonic balance
method. With a periodic and finite network of cracks, direct numerical simulations
are performed and compared with Bloch-Floquet’s analysis.

1 Introduction

Failure processes resulting in a crack generally produce rough crack faces. Once
crack opening has taken place, and the crack faces have undergone slight relative
sliding displacement, the crack will never completely close again due to the non-
conforming surfaces in partial contact. A complicated interaction between crack
faces is expected, depending strongly on the magnitudes of the tractions transmitted
across the rough surfaces in contact [9].

The interaction of ultrasonic waves with cracks has been investigated by many
authors, assuming that the wavelength is much larger than a characteristic length of
the roughness of the contacting surfaces. Linear slip-displacement models of crack-
face interaction have been widely used [12, 10]. However, a non-physical penetra-
tion of contacting surfaces may occur in linear models. Moreover, laboratory ex-
periments have shown that methods of non-destructive evaluation based on linear
models may fail to detect partially closed cracks [13].

Here, we study wave propagation with a nonlinear model of contact proposed in
[1, 2]. A monochromatic compressional wave propagates normally to a plane flaw
surface, leading to a 1D problem detailed in section 2. Analysis of scattered fields
is performed in section 3. With a single crack, the generation of harmonics and the

B. Lombard and J. Piraux
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mean dilatation of the crack are addressed analytically and numerically. Propagation
through periodic networks of contact nonlinearities is studied by Bloch-Floquet’s
analysis [8] and simulations. Numerical experiments are proposed in section 4. Con-
clusions are drawn and future perspectives are suggested in section 5.

2 Problem statement

2.1 Configuration

Ω0

T

RI

u+

u
−

α

Ω1

pp

ξ ξ

p

0

p

x

Fig. 1 Elastic media Ω0 and Ω1 separated by vacuum, with rough contact surfaces. Static (left)
and dynamic (right) case, with incident (I), reflected (R) and transmitted (T) waves.

We consider a single crack with rough faces separating two media Ω0 and Ω1

linearly elastic and isotropic, with density ρ and elastic speed of the compres-
sional waves c. These parameters are piecewise constant and may be discontinuous
around the crack: (ρ0, c0) if x ∈ Ω0, (ρ1, c1) if x ∈ Ω1. The media are subject to
a constant static stress p. At rest, the distance between planes of average height is
ξ0(p) > 0 (figure 1, left). An incident monochromatic wave, emitted by a ponctual
stress source at x = xs in Ω0, gives rise to reflected (in Ω0) and transmitted (in Ω1)
compressional waves. These perturbations in Ω0 and Ω1 are described by the 1D
elastodynamic equations

ρ
∂ v
∂ t

=
∂ σ
∂ x

,
∂ σ
∂ t

= ρ c2 ∂ v
∂ x

+2ρ0 c2
0 v0 δ (x− xs) sinωt, (1)

where v0 is the amplitude of the incident elastic velocity, and ω = 2π f is the angular
frequency of the source. The elastic velocity v = ∂ u

∂ t , the elastic displacement u, and
the elastic stress perturbation σ around p, are averaged fields per unit area in crack’s
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plane. The dynamic stresses induced by the elastic waves affect the thickness ξ (t)
of the crack (figure 1, right). The constraint

ξ = ξ0 +[u] ≥ ξ0 −δ > 0 (2)

must be satisfied, where [u] = u+ − u− is the difference between the elastic dis-
placements on the two sides of the crack, and δ (p) > 0 is the maximum allowable
closure [2]. We also assume that the wavelengths are much larger than ξ , neglecting
the propagation time through the crack, and replacing it by a zero-thickness inter-
face at x = α: [u] = [u(α, t)] = u(α+, t)−u(α−, t).

2.2 Contact law

σ

0

α(  , t)−

K

Y=[u]Y−δ

Kδ

Fig. 2 Nonlinear relation between stress and slip displacement.

Cracks are classically modeled by linear jump conditions [12] with stiffness K:

[σ(α, t)] = 0, [u(α, t)] =
1
K

σ(α±, t). (3)

If K → +∞, welded conditions are recovered. Conditions (3) violate (2) under large
compression loadings: σ(α±, t) < −K δ ⇒ ξ < ξ0 − δ . Hence, the linear regime
induced by (3) is realistic only with very small perturbations. With larger ones,
nonlinear jump conditions are required.

Compression loading increases the number and the surface of contacting faces.
Consequently, a smaller stress is needed to open than to close a crack of a given
displacement; an infinite stress is even required to close the crack faces completely.
This behavior can be modeled by the global jump conditions proposed in [1, 2]
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[σ(α, t)] = 0, [u(α, t)] =
1
K

σ(α±, t)

1−σ(α±, t)/(K δ )
, (4)

satisfying (2) and implying σ(α±, t) < K δ . The second relation in (4) is sketched
in figure 2. The straight line with a slope K tangential to the hyperbola at the origin
amounts to the linear jump conditions (3); as deduced from (4), the linear regime is
valid only if |σ(α±, t)|≪K δ . A second limit-case not investigated here is obtained
if δ → 0 and K bounded: the hyperbola tends towards the nondifferentiable graph
of the unilateral contact, denoted by bold straight segments in figure 2.

3 Analysis of scattered fields

3.1 Single crack

Analytical approach. The scattered fields can be expressed in terms of Y (t) =
[u(α, t)]. Following [11, 4] gives the nonlinear ordinary differential equation (ODE)

dY
d t

+β
Y

1+Y/δ
= 2v0 sinω t, (5)

satisfied by Y , with β = K((ρ0 c0)
−1 +(ρ1 c1)

−1). Inspection of (5) and dimensional
analysis show that Y is δ times a function of v0

β δ , ω
β and ω t. To solve (5), we assume

|Y |/δ < 1, which leads to the series

dY
d t

+β
∞

∑
n=0

(−1)n

δ n Y n+1 = 2v0 sinω t. (6)

An approximate solution of (6) is sought by a perturbation approximation (PA) [3]

Y (t) =
∞

∑
n=0

Yn(t) =
∞

∑
n=0

1
δ n yn(t). (7)

Nothing ensures that (7) converges: |Y |/δ < 1 is always satisfied when Y < 0, but
it is true when Y > 0 only if v0

β δ is sufficiently small. Plugging (7) into (6) and
identifying the terms with identical power of δ leads to an infinite series

d y0

d t
+β y0 = 2v0 sinω t,

d y1

d t
+β y1 = β y2

0,

d y2

d t
+β y2 = β y0

(

2y1 − y2
0

)

,

(8)
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and so on. There is no influence of the truncation order N on the accuracy of the
solution Yn with n < N. The recursive and linear ODE are much simpler to solve
than the nonlinear ODE (5), even if computing Yn with n ≥ 2 is cumbersome. This
computation has been automatized with computer algebra tools. Since the number of
terms in Yn is roughly 22n+1, very high orders are currently out of reach. Computing
Yn up to N = 8 takes 20 mn on a Pentium 3 GHz. We detail the case N = 1. Setting
ϕ0 = arctan ω

β , the zero-th order periodic solution of (7)-(8) is

Y0(t) = 2
v0

β
1

√

1+(ω/β )2
sin(ω t −ϕ0). (9)

Setting ϕ1 = arctan β
2ω , the first-order periodic solution of (7)-(8) is

Y1(t) = 2
v2

0

β 2 δ
1

1+(ω/β )2



1−
1

√

1+(2ω/β )2
sin(2ω t −2ϕ0 +ϕ1)



 . (10)

Two properties are deduced from (10). First, the mean value of Y1 is non-null

Y 1 = 2
v2

0

β 2 δ
1

1+(ω/β )2 > 0. (11)

More generally, the mean value Y 2n+1 of Y2n+1 is proportional to δ
(

v0
β δ

)2n+2
, and

Y 2n = 0. The mean thickness of the crack ξ deduced from (2) satisfies ξ = ξ0 +Y >
ξ0, with Y = ∑Y n. The dilatation predicted here is similar to the DC signal measured
by [6] with glass-piezoceramic interface. The second property deduced from (10)
concerns the term with angular frequency 2ω . Its importance is quantified by the
ratio of amplitudes between sinusoidal terms in (10) and (9)

γ2 =
v0

β δ
1

√

1+(ω/β )2
√

1+(2ω/β )2
. (12)

Consequently, nonlinear effects increase with v0
β δ and decrease with ω

β .

Numerical approach. To compute the scattered fields with high accuracy and
no limitation about the range of validity, one implements the numerical harmonic
balance method (HBM). The periodic elastic displacements are written (k0 = ω/c0,
k1 = ω/c1)
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uI(x, t) =
v0

ω
{cos(ω t − k0 x)−1} ,

uR(x, t) = Ra
0 +

∞

∑
n=1

{

Ra
n sinn(ω t + k0 x)+Rb

n cosn(ω t + k0 x)
}

,

uT (x, t) = T a
0 +

∞

∑
n=1

{

T a
n sinn(ω t − k1 x)+T b

n cosn(ω t − k1 x)
}

.

(13)

The elastic stresses are deduced from (13). Fields are truncated at N and injected
in (4). The truncation implies that Ra,b

n and T a,b
n depend on N. The terms with iden-

tical trigonometric arguments are put together, and the terms with a trigonometric
argument greater than N ω t are removed. The first condition (4) implies 2N linear
equations, without Ra

0 and T a
0 . The second condition (4) implies 2N + 1 nonlinear

equations, including T a
0 −Ra

0 +v0/ω . Finally, we get a (4N +1)× (4N +1) nonlin-
ear system with first-order or second-order polynomial entries

F(X) = 0, X =
(

Y , Ra
1, T a

1 , Rb
1, T b

1 , ..., Rb
N , T b

N

)T
, Y = T a

0 −Ra
0 +

v0

ω
.

(14)
To solve (14), three cases may be considered:

• linear regime, for all N: (14) becomes a linear system whose solution is easy to
compute analytically. In this limit-case, Y = 0 and Ra,b

n = T a,b
n = 0 if n ≥ 2;

• nonlinear case, N = 1: (14) can be solved analytically. A detailed study shows
that the solution may not be unique: if v0 is lower than a critical value ṽ0, there
exists only one real root; if v0 > ṽ0, there are three real roots. Moreover, Y > 0;
an approximation of this jump recovers the value Y 1 deduced from the PA (11);

• nonlinear case, N > 1: (14) is solved numerically by the Newton-Raphson
method. The determination of F and of its jacobian J has been automatized with
computer algebra tools: computing F and J with N = 100 roughly takes 1 second
on a Pentium 3 GHz. The root of (14) may be not unique, like with N = 1 and
v0 > ṽ0. The initialization must therefore be done carefully, e.g. using the exact
values of the first 5 components of X at N = 1, and setting the other components
to zero. This simple initialization works up to v0 ≈ ṽ0. With stronger nonlineari-
ties, this approach is coupled with a basic continuation.

3.2 Network of cracks

Analytical approach. A Bloch-Floquet’s analysis [8] is applied to an infinite and
periodic network in linear regime. With constant parameters, the dispersion relation
is

cos k̂h = coskh−
ρ cω
2K

sinkh, (15)

where k̂ is the effective wavenumber and h is the spacing between cracks. If
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−

∣

∣

∣

∣

1−θ
1+θ

∣

∣

∣

∣

≤ coskh ≤

∣

∣

∣

∣

1−θ
1+θ

∣

∣

∣

∣

, θ =
(ρ cω

2K

)2
, (16)

the waves are not attenuated. Otherwise, the waves are evanescent with decay

ℑm k̂ = −
1
h

cosh−1
(

coskh−
ρ cω
2K

sinkh
)

. (17)

Numerical approach. The analysis is much harder in nonlinear regime, since suc-
cessive harmonics generated across cracks may not belong to the same pass-band
structure. Consequently, nonlinear regime as well as non-periodic configurations are
investigated by direct numerical simulations (DNS). A fourth-order ADER scheme
solves (1) in the time domain. The jump conditions (4) are enforced numerically
by an interface method [7]. With high nonlinearities, space-time mesh refinement
is implemented around the cracks to discretize correctly the stiff fronts. Obviously,
this approach also works with a single crack, hence it will be used to get reference
solutions in each experiment.

4 Numerical experiments

A crack at α = 0.5 m in aluminium is studied: ρ0 = ρ1 = 2600 kg/m3, c0 = c1 =
6400 m/s, K = 1013 Pa/m, δ = 310−7 m. Three amplitudes v0 are considered: 0.01
m/s, 0.13 m/s, and 0.6 m/s. The source is at xs = 0.25 m, and f = 100 kHz.

First, the elastic stress transmitted across the crack is shown in figure 3. In the
left column, σT computed by HBM (◦) is compared with the DNS (-). In the right
column, the normalized harmonics Γi (i = 1, ..., 5) are shown. The amplitude v0 =
0.01 m/s (a-b) is too small to mobilize the nonlinearity of the crack, and N = 2
harmonics are sufficient. We measure Γ2 = 0.017, to compare with γ2 = 0.016: the
approximation (12) is good. With v0 = 0.13 m/s (c-d), N = 10 harmonics are used,
and Γ2 = 0.24 is measured, to compare with γ2 = 0.25. Lastly, with v0 = 0.6 m/s, N =
50 harmonics are required (e). We measure Γ2 = 0.60, to compare with γ2 = 1.02:
the approximation (12) becomes poor. In the three cases and as deduced from the
PA (section 3.1), the nonlinearity increases with v0. At a given v0, the Γi’s decrease
strictly with i.

Second, the influence of v0 on the jump Y is illustrated in figure 4. The left
column shows snapshots of u computed by DNS. The jump between mean values
of u yields Y . In the right column, the time history of Y (t) = [u(α, t)] is computed
by fourth-order Runge-Kutta integration of (5) (-) and by PA (◦). At small t, PA
differs from RK 4 because it does not compute transients. With v0 = 0.01 m/s, Y =
5.4210−11 m/s (to compare with the approximation Y 1 = 5.02610−11 m/s) is not
visible (a), and N = 2 in the PA (b). With v0 = 0.13 m/s, Y = 5.8410−8 m/s is
measured (c), to compare with Y 1 = 5.6010−8 m/s, and N = 6 is required (d). In
that case, the maximum value of Y (t) is roughly 0.99δ : with greater values of v0,
then max |Y |/δ > 1, and the PA may not converge. It is what happens with v0 = 0.6
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Fig. 3 Transmitted stress, with v0 = 0.01 m/s (a-b), v0 = 0.13 m/s (c-d), v0 = 0.6 m/s (e-f). Left
column: values of σT on a period; right column: normalized harmonics Γi (i = 1, ..., 5).
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Fig. 4 Left column: snapshots of u around α (the dotted horizontal lines denote the mean value
of u, on both sides of α). Right column: time history of Y = [u(α, t)] (the horizontal dotted lines
denote ±δ ). (a-b): v0 = 0.01 m/s, (c-d): v0 = 0.13 m/s, (e-f): v0 = 0.6 m/s.
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Fig. 5 Parametric studies in terms of v0: Y (a), normalized harmonics Γi (i = 2, ..., 5) (b).

m/s: only RK 4 is shown (f), and Y = 9.8210−7 m/s is measured, to be compared
with Y 1 = 1.0210−7 m/s.

Parametric studies performed by the HBM (N = 50) are proposed in figure 5.
A log-log scale shows that Y is very close to the line with slope 2 deduced from
(11), even at high v0 (a). The amplitude of Γi increases strictly with v0, and Γ2 tends
towards γ2 at small v0 (b).

Lastly, propagation across a periodic and finite network of cracks is simulated
in figure 6. Two spacings are considered: h = 1.7210−2 m and h = 5.1710−2 m.
In linear regime and with an infinite network, the Bloch-Floquet’s analysis predicts
respectively a pass-band and a stop-band behavior, observed with small amplitudes
(a-b). The attenuation measured in (a) is in good agreement with the theoretical
attenuation (17). With higher amplitudes (c to f), the behaviors are maintained.

5 Conclusion

The main results of this work are as follows:

1. with one crack, two phenomena are induced by the nonlinearity: mean dilatation
of the crack, generation of harmonics, that both increase with v0

β δ and β
ω ;

2. with many cracks, simulations show that properties of infinite linear networks
are valid in nonlinear regime with finite networks much greater than wavelength.

Three directions are distinguished for further investigation:

1. investigation of shear effects, coupled or not with compressional efforts [1, 9];
2. analysis of the periodic solution of (5), to prove Y > 0 and ∂ Y/∂ v0

β δ > 0;
3. effective properties of a random linear and nonlinear networks [5].
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Fig. 6 Snapshots of σ , with v0 = 0.01 m/s (a-b), v0 = 0.13 m/s (c-d), v0 = 0.6 m/s (e-f). The single
vertical dashed line on the left denotes the source. The vertical solid lines denote the cracks.
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Abstract A single-sided, air-coupled ultrasonic NDT system based on the gen-

eration and reception of the A0 Lamb mode is used for detecting defects in plates. 
Transmitting and receiving transducers, being oriented at the appropriate coinci-
dence angle for the generation and detection of the mode, are scanned along a line 
from one side to the other over the surface of the sample, passing the area with the 
defect. This contact-less NDT system is modelled in three dimensions with a Fi-
nite Element -based method. The air-coupled transmitter is modelled by the nor-
mal pressure that it locally applies on the surface of the plate, and the air-coupled 
receiver by integrating normal displacements over a finite area of appropriate po-
sition on the surface of the plate. In this way, beam spreading of both incident and 
scattered fields is considered. Numerical predictions have successfully been com-
pared with experimental data for a through-thickness hole in an Aluminium plate 
and also for an impact damage in a composite sample.  

1 Introduction 

Lamb modes are widely used in non-destructive testing (NDT) for detecting in-
visible flaws in plate-like structures [1-4], as they can explore the entire thickness 
of the plate while propagating along large distances with reasonable attenuation. 

                                                      
   



Generally speaking, there are two different ways to perform ultrasonic testing, i.e. 
direct or indirect techniques depending on the type of transducers used for the 
generation and detection of the ultrasonic waves. Air-coupled ultrasonic transduc-
ers, known as one of the typical indirect non-contact techniques, are very conven-
ient to perform rapid non-destructive inspections compared with directly coupled 
transducers or with laser technique [4-7].  

In this paper, the inspection is based on the scattering of a single incident 
Lamb wave by a defect in a plate. The first-order antisymmetric Lamb mode A0 is 
chosen as the incident mode for its high coupling level at the solid-air interfaces, 
thus making easy its generation/detection using air-coupled elements. Two cases 
are investigated: the diffraction by either a through-thickness hole in an Alumin-
ium plate or by an impact damage in a glass-polyster composite plate. The fre-
quency of the excitation producing the incident mode is chosen equal to 250 kHz, 
which is close to the centre frequency of the air-coupled transducers used in the 
study. This frequency is below and above the cut-off frequency of A1 for the Alu-
minium and composite cases, respectively. Both experiments and numerical simu-
lations are made with one transmitting and one receiving transducers, which are 
oriented at appropriate coincidence angles for the generation and detection of the 
A0 mode. These elements are moved together along a line from one side of the 
sample to the other, passing the area with the defect, for scanning the samples. 
Changes in the amplitudes of the mode detected by the receiver are monitored and 
plotted versus the positions as an indicator of the damage. In the experiments, the 
amplitudes are picked-up at the appropriate frequency in the frequency spectrum 
of each measured temporal waveform. In the numerical predictions, 3D models [8, 
9] are used because they offer better representation of real phenomena than 2D 
models [10]. Indeed, they allow ultrasonic beam angular aperture, scattering in all 
directions around the defect as well as complicated shapes of defects to be fully 
simulated [11]. The model is based on the Finite Element method using a com-
mercially available code [12] and solving the equations of dynamic equilibrium in 
the frequency domain. Different techniques are used to reduce the numbers of de-
grees of freedom, which usually are huge in 3D models. One is an improved defi-
nition of absorbing regions (AR), such regions being known to suppress unwanted 
reflections coming from the edges of the meshed domain [13]. Another consists in 
simply applying standard symmetrical or anti-symmetrical boundary conditions 
when possible. Finally, similar to what has been done in Ref. [6] to avoid model-
ling the air domain supposed to be surrounding the plate samples, two elliptic-
shaped zones are modelled at one surface of the plate to simulate the excitation 
produced by an air-coupled transmitter and the detection by an air-coupled re-
ceiver. 
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2 Experiments  

A Samples  

The tested Aluminium plate used in this study is 4 mm thick and square with 
700 mm long sides. It has a 5 mm in diameter through-thickness hole machined in 
its centre. The composite plate is 4.5 mm thick, 460 mm long and 325 mm wide. It 
is made of unidirectional glass fibres impregnated in a polyester matrix, which 
makes the sample quite transparent. This plate has an impact damage in its centre 
(Fig. 2b), which has not a circular but elliptical shape running parallel to the plate 
surfaces, due to the strong anisotropy of the material. Through the thickness, this 
damage has a conical shape due to the shock wave effect produced by the impact. 
Visually, this region seems to be made of cracks and delaminated structures with a 
decaying concentration from the centre to the edges.  

The mechanical properties of these two materials are measured using an im-
mersion, ultrasonic and through-transmission technique described in [14]. 
Namely, stiffness moduli, Cij, defined in the coordinate axis shown in Fig. 1, are 
measured and supplied in Table 1.  

x1
O

x3

x2

 

Fig. 1. Composite plate sample with coordinate-system defining the viscoelastic moduli. 

Real elastic moduli are obtained for the Aluminium, while complex viscoelas-
tic moduli are measured for the composite material: Cij = C'ij+iC''ij = C'ij(1+i2.8%), 
where the real part represents the material stiffness, and the imaginary part its vis-
coelasticity. For the composite plate, seven complex moduli have been identified 
using the immersion technique, while C44 and C23 were deduced from the hexago-
nal symmetry of this unidirectional fibre medium. 

 

Table 1 Measured thickness (h in mm), density (ρρρρ) and viscoelastic moduli (in GPa) for Alu-

minium and glass-polyster plates. 

Material h r C11 C22 C33 C44 C55 C66 C12 C13 C23 

Aluminium 4 2.78 112 112 112 27 27 27 58 58 58 

Glass-polyster 4.5 1.8 40.3 14.1 15.9 3.9 3.9 3.9 6.3 6.3 2.2 
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B Experimental set-up 

Fig. 2 Photos of (a) experimental set-up (b)impact damage of composite plate. 

Fig. 3 Lamb waves dispersion curves and operating points for the A0 mode for (a)Aluminium 

plate (b)along fibres of glass-polyster plate. 
 
Two air-coupled transducers, with 50 kHz to 400 kHz frequency bandwidth, 

down to -15 dB, are used for generating and detecting guided modes. As shown in 
Fig. 2a, the distance between the transducers is fixed during each scanning, while 
these are oriented at opposite angles. These angles are deduced from the phase ve-
locity dispersion curves presented in Fig. 3, using the Snell-Descartes’ law [15]. 
These curves are predicted using the mechanical properties shown in Table 1 as 
input data to a guided wave propagation model described in Ref. [17]. During the 
whole scanning, both emitter and receiver are moved together from one side of the 
sample to the other, passing the area with the defect. Both plates are large enough 
to avoid receiving reflections from the edges, so only signals corresponding to 
waves directly scattered from the defects are selected in the time domain. Changes 
in the amplitudes of the detected signals are monitored and plotted versus the posi-
tions as an indicator of the damage. For further comparison with the simulations, 
these amplitudes are picked-up at the appropriate frequency (250 kHz) in the fre-
quency spectrum of each measured temporal waveform. 
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3  3D model for anisotropic materials 

A commercially available numerical analysis package [12] based on the Finite 
Element (FE) method is used to simulate the dynamic responses of viscoelastic, 
anisotropic plates. Two external routines are also developed. One is for simulating 
the pressure field produced by the ultrasonic air-coupled transmitter, used in turn 
as the excitation to the FE meshed plate. The other one is for simulating the re-
sponse of the ultrasonic air-coupled receiver supposed to be placed over the sur-
face of the plate. In fact, the purpose is to model as well as possible the experi-
mental conditions shown in Fig. 2a.  

A  FE model for propagation and scattering in plates 

The equation of dynamic equilibrium for orthotropic viscoelastic material 
(nine complex moduli) is written and solved in the Fourier domain according to 
previous developments made for 2D problems: 

Cikjl
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u j
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2
ui = 0, i =1,2,3

 (1) 

where ui  are the displacement components of the displacement vector u , with 

i =1,2, 3 1

tion of propagation, x2 being the normal to the plate and x3 being along the plate 

1

lar frequency. The above partial differential equation (PDE), Eq. (1), must be writ-

ten in the following form imposed by the commercial software used in the study: 

∇ ⋅ (c∇u) − au = 0 , 
(2) 

where c is a 3*3 matrix composed of nine sub-matrices such that 
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and normal to x , as shown in Fig. 1. ρ  is the material density and ω  is the angu-

j,k,l=1

 representing the direction of the coordinate axis, x  being the main direc-
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and a is a 3*3 matrix given by
a =

−ρω 2 0 0

0 −ρω 2 0

0 0 −ρω 2
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When modelling the propagation in the frequency domain, absorbing regions 

(AR) must be used all around the plate to avoid unwanted reflections that would 

exist due to the permanent established regime. The definition of these 3D AR is 

based on that previously established for 2D AR made from gradual increase of 

damping properties, as explained in Ref. [16]. However, they include some recent 

improvements that allow the size of the AR to be reduced from about 3λMAX  to 

1λMAX , where λMAX  is the maximum wavelength for all modes existing in the 

plate at the frequency of investigation. This new definition is given below: 
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(3) 

where Cij = ′ C ij + I * ′ ′ C ij
 represents the material properties in the domain of propaga-

tion (DP), i.e. the domain of interest for the generation, propagation, diffraction 

and detection. r represents the distance away from the interface separating the DP 

and the AR, and A is a coefficient that may be adjusted to minimize the acoustic 

impedance mismatch between the domain of propagation and the AR.  

Localised defects of finite size and of various 3D shapes are modelled by lo-

cally varying the mechanical properties of the material. For instance, to model a 

cylindrical through-thickness hole in the plate, a function of space with values 

very close to zero in the domain of the defect and equal to 1 elsewhere is defined 

and used to multiply the density and mechanical stiffness of the material. In this 

way, the properties of the domain are unchanged except in the cylindrical domain 

where they tend towards those of an empty cavity. This makes very easy changing 

the location, shape and dimensions of the defect, which may be very convenient 

for parametric studies or for further solving of inverse problems. It has been 

checked that if the mesh is correctly defined in the region of strongly varied prop-

erties, then this approach supplies simulated results very close to those obtained if 

the hole is modelled by removing from the mesh the cylindrical domain, as more 
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classically done. This technique will also be used to model the impact damage as 

B  Transducers modelling 

periments are considered by modelling the ultrasonic fields that they send on or 

rounding the plate-transducers system is not modelled in order to reduce the num-
ber of degrees of freedom of the FE model, so vacuum is considered all around the 
plate, which may be an acceptable approximation if one considers that the acoustic 
impedance of the air is negligible in comparison to that of the solid plates. Spe-
cific routines are developed to properly model the ultrasonic beams supposed to be 
travelling from the transmitter to the plate and from the plate to the receiver. 

The acoustic pressure produced at the top surface of the plate by the finite-size 
transmitter inclined at the appropriate angle is simulated and used as the input ex-
citation applied to the plate. This excitation is considered to be produced by a col-
limated beam radiated by a circular air-coupled transducer placed above the plate 

and inclined at an optimized incident angle θ chosen for selecting the A0 guided 
mode of the plate. Dispersion curves (Fig. 3) are used together with the Snell-
Descartes Law [15] to set this angle. Due to this angle, the length of the propaga-
tion path from various points of the transducer surface to positions on the top of 
the plate change, thus producing changes in phase between the various rays form-
ing the collimated incident beam in the air. This effect is taken into account in the 
model by using the wave-number in the air and the different lengths of propaga-
tion paths in the air, as in Ref. [6], in which this was done in 2D. As a result for 
this actual 3D model, the contour of the projected incident circular beam has an el-
liptical shape. A Gaussian window is used to define the pressure distribution on 
the surface of the transducer. The resulting simulated excitation applied on top of 
the plate is shown in Fig. 4b. This excitation is applied via the boundary condi-
tions as a normal stress locally applied on one surface of the plate. 

Fig. 4 (a) Schematic of simulation model, (b) Example of simulated excitation on top of plate. 
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explained in section 4 . 

In the model, both the air-coupled transmitter and the receiver used in the ex-
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receive from the plate, respectively, as illustrated in Fig. 4a. The air domain sur-
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Normal displacements are monitored at the surface of the plate in a localized 
region supposed to be in the field of view of the receiver. Since this element is in-
clined at an angle opposite to that of the transmitter, for detecting the A0 mode 
propagating along the plate, the monitoring region on the plate has an elliptical 
shape too. Normal displacements monitored over this region are shifted in phase 
to take into account the differences in path of propagation in the air to the receiver 
(as those existing between the transmitter and the plate) and then integrated over 
the surface of the receiver. A Gaussian window is also used to model the distribu-
tion of the sensitivity over the receiver’s surface. This process is also similar to 
that proposed in Ref. [6], but in 3D this time. 

Besides, for investigating the propagation of the anti-symmetry mode A0, and 
its scattering by defects being symmetric with respect to the mid-plane of the plate 
(cases of the hole in the Aluminium sample and of the impact damage in the com-
posite sample), anti-symmetry boundary conditions are applied at the middle plane 
to divide the size of the model by two. In this way, only the top half-plates need to 
be simulated, and a two-sided excitation of the A0 mode is simulated while one-
sided excitation is produced in the experiments. However, since all predicted or 
measured scattered amplitudes are normalized so that they have the same maxi-
mum value, the double or single side excitation has no importance.  

4 Results 

Measurements and numerical simulations of changes in the amplitudes of the 
A0 mode generated-detected using air-coupled transducers, at a frequency equal to 
250 kHz, are presented both for the Aluminium and the composite plates. Both 
transducers are moved together over the samples from one extreme position to an-
other, these being -50 mm and +50 mm away from the defect. The scanning step is 
equal to 2.5 mm and along direction x3 as shown in Fig. 4a. Both measured and 
predicted amplitudes of signals delivered by the receiver, at 250 kHz, are plotted 
versus the x3 position to produce the ultrasonic image of the plate including the 
defect. 

A Scanning through-thickness hole in Aluminium plate 

The incident and receiving angles for A0 in this 4mm thick Aluminium plate 
are equal to ±8.3˚. The distance, de, from the hole centre to the line the emitter is 
moved along, is set equal to 40mm. The distance, dr, from the hole centre to the 
line the receiver is moved along, is set equal either to 40 mm and 60 mm, respec-
tively. These positioning parameters are shown in Fig. 4a. These configurations 
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lead to two sets of measurements and predictions presented in Fig. 5. In this case, 
no normalization was needed. 

Fig. 5 Results of scanning Aluminium plate for the hole, changing the position of the receiver 

(a)minimum distance equal to 40mm (b) minimum distance equal to 60mm; (����) measure-

ments and (����) numerical predictions  

Fig. 6 FE predictions of scattered v displacements on top of Aluminium  plate for various val-

ues of distance D shown in Fig. 4a, (a) D=0 mm , (b)D=-10 mm and (c) D=-35 mm. 
There is a clear peak of amplitudes obtained both in the measurements and 

predictions when both transducers are well aligned with the centre of the hole in 
the Aluminium plate, probably due to straight propagating paths on each side of 
the hole with constructive interference past the hole. Then, the amplitudes de-
crease significantly as the transducers get misaligned with the hole, probably due 
to a strong scattering effect producing normal displacements distribution with a 
shadow where the receiver is. When slightly increasing the misalignment between 
the transducers and the hole, the amplitude increases to a value very close to that 
at perfect alignment. Then, as the transducers are further moved away from the de-
fect, the amplitudes oscillate around an average value close to 90% of the maxima 
reached during previous positions. Obviously the predicted curves are perfectly 
symmetric with respect to the position of perfect alignment. This is not exactly the 
case for the measurements due to various experimental noises. Comparing the 
graphs obtained for both distances dr between the hole and receiver, it is observed 
that the first one (Fig. 5a), corresponding to the shorter distance dr, has globally 
bigger amplitudes and more pronounced lateral oscillations. These are likely to be 
due to the angular beam aperture of the guided A0 mode travelling both directly 
from the transmitter to the receiver and also being scattered by the hole, and to the 
interferences between these two parts that are alternatively constructive or destruc-
tive depending on the position on the surface of the plate, and also on the distance 
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between the transducers lines and the hole. Snapshots of the normal displacements 
predicted with the FE model are presented in Fig. 6. These help understanding the 
scattering phenomena and analysing scanning curves as those presented in Fig. 5. 

B Scanning impact damage in composite plate 

To simulate the impact damage of the composite plate, the material stiffness is 
decreased according to a spatial function defined to represent the distribution of 
cracks and delaminated structures supposed to be existing through the thickness of 
the sample, in the region below the impact point. Since the glass-polyester consti-
tuting this sample is slightly transparent, then it is possible to roughly evaluate the 
geometry of the damage. This defect has a nearly-3mm-in-diameter cylindrical 
zone in the middle running all through the thickness of the plate, which seems to 
correspond to very high level of damaging. In the model, the material stiffness is 
decreased by 90% in this region. Around this cylinder, damages are distributed in 
ellipsoidal-shaped zones running parallel to the plate surfaces, and having differ-
ent sizes depending on their position through the plate thickness. The ellipsoid 
shape is due to the strong anisotropy of the material in the plane of the plate, and 
the varying size through the thickness is usually due to the shock wave produced 
by the impact, which creates defects of larger sizes as it propagates through the 
medium with a given angular aperture, and defects of smaller sizes as it gets 
damped after a certain penetration depth. Ellipses close to the plate surfaces seem 
to have the same size together, and to be roughly half size that located close to the 
mid-plane of the sample. A function of space with variables x1, x2 and x3 is created 
to represent this particular distribution, and then used to locally multiply the mate-
rial stiffness by a factor equal to 10% in the region of the central cylinder of very 
high damaging, and to 50% all around this central cylinder to the edges of the 
damage. Moreover, a large delamination located at the mid-plane of the sample 
was modelled to represent all the cracks and delaminated structures by setting this 
factor very close to 0% within a 0.5 mm thick (in fact 0.25 mm with antisymmetry 
conditions) ellipse of 30 mm long and 18 mm wide (

The parameters de and dr defined in previous section and shown in Fig. 4a, that 
indicate the positions of the transmitter and receiver, are equal to 20 mm and 
35 mm, respectively. The air-coupled transducers are oriented at angles equal to 
±15.2˚, and positioned so that the A0 mode is generated-detected in the direction 
parallel to the glass fibres. The obtained scanning image is shown in Fig. 7. The 
experimental results are in good agreement with the numerical predictions, espe-
cially the width and relative depth of the U-shaped part of the curve that indicates 
the defect. It is noticeable that the peak down in the centre of the U-shaped part of 
the curve is much less pronounced than that for the Aluminium plate. This may 
come from the extent of the damage, which is larger than the diameter of the hole 
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in the Aluminium sample, thus preventing direct propagation paths at the sides of 
the defect, which have been identified in previous section as causing the strong 
peak in the middle of the U-shaped curve (Fig. 5). Moreover, the gradually chang-
ing stiffness within the damage may cause some attenuation of the incoming ultra-
sounds. However there are some differences between the measured and simulated 
results when the distance between the line running from transmitter to receiver and 
the defect, i.e. D defined in Fig. 4a, is ether close to -40 mm or greater than 
25 mm. The non-uniformity in the measured curve out of the impact damage area 
is likely to be indicating some invisible defects inside the plate, which are not con-
sidered in the model.  

Fig. 7 Results of  scanning composite plate with an impact damage; (����) measurements and 

(����) numerical predictions normalized to the maximum experimental amplitude. 

5 Conclusions 

A three-dimensional FE-based model has been developed to simulate the 
propagation of ultrasonic guided beams along plates made of anisotropic, viscoe-
lastic materials, and their scattering by defects of complex shape. Specific inter-
faces have been developed to model in 3D circular air-coupled transducers used in 
alternate experiments as a transmitter and a receiver to generate and detect the A0 
Lamb wave, and to scan samples with defects. Ultrasonic C-scan curves have been 
measured and predicted for an isotropic Aluminium plate with a through-thickness 
hole in the centre, and for a glass-polyester composite plate with an impact dam-
age. Numerical predictions are in good agreement with the measured data, espe-
cially concerning the positions and magnitudes of changes in the signals delivered 
by the receiver. Plots of predicted normal displacement snapshots allow under-
standing some 3D wave scattering phenomena, and explaining the shapes of the 
measured C-scan curves. In this study, the importance of considering 3D effects in 
the FE models has been demonstrated. Works in progress are focussing on using 
this numerical tool for modelling several permanently attached transducers alter-
natively working as transmitters or receivers, for SHM applications. 
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The reverse time migration technique coupled
with finite element methods

C. Baldassari, H. Barucq, H. Calandra, B. Denel, J. Diaz

Abstract The Reverse Time Migration (RTM) is a technique for imaging the sub-
surface based on successive solutions of the full wave equation which must be com-
puted by fast numerical methods to perform well in three-dimensional domains. In
this framework, we propose to solve the full wave equation by the Interior Penalty
Discontinuous Galerkin method (IPDG). We analyse the performances of IPDG by
comparing it to classical spectral element method and we show that IPDG is more
adapted to the RTM. We present 2D migration results to illustrate the ability of the
new method to recover the location of the interfaces of stratified media.

1 Introduction

Seismic imaging is based on the seismic reflection method which produces an image
of the subsurface from reflected waves recordings by using a tomography process
and seismic migration is the industrial standard to improve the quality of the images.
The migration process consists in replacing the recorded wavefields at their actual
place by using various mathematical and numerical methods. Among them, the Kir-
chhoff migration algorithm is the most popular. It is based on ray tracing and pro-
vides an intuitive representation of wave propagation. One of its significant com-
putational advantage is to be quite efficient for target-oriented migration in which
only a subset of the whole image cube is imaged. The computational cost of Kirch-
hoff migration is then reduced in proportion to the reduction in image size. Howe-
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ver, since Kirchhoff methods are based on a high-frequency ray approximation of
the wave equation, they are not accurate for imaging complex geological structures
where multipathing occurs. Migration methods based on the numerical propagation
of the recorded wavefield (the so-called wavefield-continuation methods) can over-
come some of the limitations of Kirchhoff migration methods. There exist different
wavefield-continuation methods which differ in particular from the numerical me-
thod applied for computing the propagated fields but each of them follows the same
schedule, according to the pioneering idea of Claerbout [2, 3]: numerical propaga-
tion of the source function (propagation) and of the recorded wavefields (retropro-
pagation) and next, construction of the image by applying an imaging condition.
Thus, the relation between data and the produced image is indirect, as compared to
the Kirchhoff imaging method which involves multi-convolutional operators whose
kernels lead to a direct insight into the relation between the recorded data and the
migrated image. The retropropagation step can be realized accouting for the time
reversibility of the wave equation and the resulting algorithm is currently called Re-
verse Time Migration (RTM). During the propagation and retropropagation steps,
seismograms are generated and are correlated through a scalar product whose value
is attributed to the respective subsurface location, according to the fact that a reflec-
tion is associated to a strong correlation coefficient which corresponds to the case
where a down-going wave field is generated by the source and an up-going wave
field propagates towards the receivers at the same time. This procedure is valid un-
der the assumption that only first-order reflections are present in the seismograms
and justifies both the direct wave and head waves are muted in the records before
feeding them into the reverse modeling. The wave equation can be solved by consi-
dering one-way propagators which provides a fast numerical solution. However the
full-wave RTM method does not have the angle limitation of one-way propagators
and can be used to image complex structures where turning waves are involved. Du-
ring a long time, the full-wave RTM was considered as a too much expensive tool
and there was not really an interest to image very complex media. Today, since the
hydrocarbons resources have decrease dramatically, it is necessary to image more
and more heterogeneous regions and broken grounds. Besides, the impressive im-
provement of scientific computing relaunches the RTM as an efficient method for
seismic imaging. It is nevertheless obvious that an efficient RTM is based on a good
compromise between accuracy and computational cost. One of the most accurate
numerical solution of the wave equation involves finite element methods but the
resulting seismic imaging procedure thus requires a very large amount of compu-
tational power, especially as far as the memory storage is concerned. Even if finite
element methods lead to the solution of huge systems with several millions of de-
grees of freedom, they are considered as the most accurate discretization methods
since they use meshes adapted to the topography of the domain and the boundary
conditions are naturally taken into account in the variational formulation. Among
the different finite element families, the spectral element method (SEM)[4, 5, 6, 9]
is very interesting because it is compatible with the use of a Gauss Lobatto quadra-
ture rule which leads to a diagonal mass matrix and does not hamper the order of
convergence of the finite element method. However, this method requires to mesh
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the domain with quadrangles in 2D ou hexaedra in 3D that are difficult to compute
and not always suitable to complex topographies. Recently, Grote et al. [8] applied
the Interior Penalty Discontinuous Galerkin (IPDG) [7] method to the wave equa-
tion. This new approach is based on meshes made of triangles in 2D or tetrahedra in
3D, which implies the topography of the computational domain is discretized accu-
rately. Furthermore, the mass matrix is block-diagonal without any approximation
of its entries by a quadrature rule which means the discretization scheme is quasi-
explicit. The convergence order is then preserved as for the spectral element method.
Moreover this method seems to be well-adapted for the handling of polynomial ve-
locities inside each element. In this work, we intend to show the effects of coupling
the full-wave RTM with the IPDG finite element method. Most of the papers dea-
ling with full-wave RTM consider finite difference which are not efficient enough to
consider general complex propagation media. The most popular finite elements for
seismic imaging are the spectral elements which provide an accurate approximation
of the solution to the wave equation in complex media and to the best of our know-
ledge, the IPDG method has never been applied to the RTM. The paper is organized
as follows: section 2 deals with the general setting of the IPDG method, section 3
is devoted to the analysis of performance of the IPDG approach and a comparison
with the SEM in 1D and the last section illustrates how the IPDG method performs
well for RTM in 2D.

2 Interior Penalty Discontinuous Galerkin method

In this section we recall the formulation proposed by Grote, Schneebeli and Scht-
zau [8].

2.1 General setting

We consider the problem of acoustic waves propagation:
1

µ(x)
∂ 2u
∂ t2 −∇.

(
1

ρ(x)
∇u

)
= f in I×Ω

1√
µ(x)

∂u
∂ t

+
1√
ρ(x)

∇u ·n = 0 on ∂Ω

(1)

where I = ]0,T [ is a bounded time interval and Ω is a bounded domain of IR2. The
condition imposed on ∂Ω is a first order absorbing boundary condition. The vector
n is the unitary outward normal to Ω , ρ is the density of the medium, µ is the
compressibility modulus and c =

√
µ/ρ is the propagation velocity of the waves in

Ω . The initial conditions are supposed to be zero.
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In the following, Th is a partition of Ω composed of triangles K such that
Ω =

⋃
K∈Th

K. We denote by hK the diameter of the element K and by h = minK∈Th hK ;

Ei is an internal edge defined by two elements K+ et K− (i.e Ei = ∂K+∩∂K−); n±
are the outward normal vectors to K±; v± are the traces of a function v on K±; Ei is
the set of internal edges; Ee is an edge lying on the boundary ∂Ω ; Ee is the set of all
the edges lying on ∂Ω .

We also define the jump and the mean-value of a function v on an internal edge
Ei by: [[ v ]] = v+n+ +v−n− and {{v}} :=

(
v+ + v−

)
/2 and we define similarly

the jump and the mean-value of a vectorial function q by:
[[q]] := q+ ·n+ +q− ·n− and {{ q }} :=

(
q+ +q−

)
/2 on Ei.

2.2 The approximate problem

We seek an approximation of u(t, .), solution to (1) in the finite element space:

V h
l :=

{
v ∈ L2 (Ω) : v|K ∈ Pl (K) ∀K ∈Th

}
, (2)

where Pl (K) is the set of polynomials on K whose total degree is less or equal to l.
Then we consider the semi-discretized problem, arising from a variational for-

mulation of (1):
Find uh : I×V h

l → IR such that:(
1
µ

∂ 2uh

∂ t2 ,vh

)
+bh

(
∂uh

∂ t
,vh

)
+ah (uh,vh) = ( f ,vh) ∀vh ∈V h

l , t ∈ I (3)

with zero initial conditions.
The bilinear form bh on V h

l ×V h
l is given by:

bh (uh,vh) := ∑
Ee∈Ee

∫
Ee

1
√

µρ
uhvh dE (4)

and the bilinear form ah on V h
l ×V h

l is given by:

ah (uh,vh) := ∑
K∈Th

∫
K

1
ρ

∇uh ·∇vh dx− ∑
Ei∈Ei

∫
Ei

[[ uh ]] · {{ 1
ρ

∇vh }}dE

− ∑
Ei∈Ei

∫
Ei

[[ vh ]] · {{ 1
ρ

∇uh }}dE + ∑
Ei∈Ei

∫
Ei

γ[[ uh ]] · [[ vh ]]dE.

The three last terms correspond to the jumps and the fluxes of uh through the edges
of the elements. They obviously vanish when uh and vh belong to H1

0 (Ω). In this
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case, problem (3) is the one we would have obtained with classical finite elements.
The function γ , which penalizes the jump of uh and vh through the edges of Th is
the so-called interior penalty function. It is defined on each edge E ∈ Ei by: γ|E :=
α cmaxh−1

min where α is a positive parameter independent of the mesh, cmax and hmin
are defined by:

cmax = max
(
c|K+ ,c|K−

)
, on E ∈ Ei and hmin = min(hK ,hK′) , on E ∈ Ei.

Let us recall that, in order to ensure the coercivity of ah, we need α >
1
2

l (l +1)
(see [7]).

As for a classical finite element method, we consider a basis (vk)1≤k≤N of V h
l ,

where N is the dimension of V h
l , to obtain the linear system:

M
d2Uh

dt2 +B
dUh

dt
+K Uh = Fh (5)

where

• Uh is the vector whose components are the coefficients of uh in the basis (vk);

• the matrix M is the mass matrix, whose entries are defined by Mi j = ∑
K∈Th

∫
K

1
µ

viv j.

This matrix is block-diagonal;
• the coefficients of matrix B are defined by Bi j = bh(vi,v j). Most of them vanish,

but the ones associated to degrees of freedom lying on the boundary ∂Ω . This
matrix is also block-diagonal.

• the matrix K is the stiffness matrix, whose coefficients are defined by Ki j =
ah(vi,v j)

• Fh is the source vector defined by Fi = ∑
K∈Th

∫
K

f vi.

Let us recall that the approximate solution converges to the exact one with an
order l +1 [8].

For the time discretization we use a classical second order centered scheme:

M
Un+1

h −2Un
h +Un−1

h
∆ t2 +B

Un+1
h −Un−1

h
2∆ t

=−K Un
h +Fh (6)

This scheme is semi-explicit, since M and B are block-diagonal.

3 Performance analysis

In this section, we compare the accuracy of the IPDG method to the one of the
SEM. We present here the results we obtained for the one-dimensional case. The 2D
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comparison is in progress but the first experiments we performed seem to confirm
the 1D results.

We simulate the propagation of a sinusoid on a 9m axis discretized by a regular
grid of space step dx during 60s. The period of the sinusoid is 9/8s, and the medium
velocity is c = 1m/s. Morevoer, in order to avoid any spurious phenomena due to the
discretization of the boundary conditions, we impose periodic boundary conditions.
In Tab. 1, we present the L2(Ω × [0, t]) error (err) for various space steps and orders
of approximation. Actually, the space step does not really indicate the cost of the
methods which depends essentially on the size of matrix K and the number of
multiplications by U . The size of K is directly given by the number of degrees
of freedom (N) and the number of multiplications (or iterations) is related to the
time-step (dt) which is constrained by the so-called CFL (Courant-Friedriech-Levy)
relation : the higher this time step, the less the number of iterations.

Order 2 Order 3 Order 4
IPDG SEM IPDG SEM IPDG SEM

N=180
dx=0.100
dt=0.0404
err=11.0781

N=181
dx=0.0500
dt=0.0495
err=0.0676

N=180
dx=0.1500
dt=0.0347
err=1.2187

N=181
dx=0.100
dt=0.0400
err=1.5961

N=180
dx=0.200
dt=0.0307
err=0.4865

N=180
dx=0.1500
dt=0.0348
err=0.6263

N=360
dx=0.0500
dt=0.0202
err=2.9120

N=361
dx=0.0250
dt=0.0247
err=0.0169

N=360
dx=0.0750
dt=0.0174
err=0.3040

N=361
dx=0.0500
dt=0.0200
err=0.4018

N=360
dx=0.100
dt=0.0153
err=0.1215

N=360
dx=0.0750
dt=0.0174
err=0.1565

N=720
dx=0.0250
dt=0.0101
err=0.7325

N=721
dx=0.0125
dt=0.0124
err=0.0042

N=720
dx=0.0375
dt=0.0087
err=0.0760

N=721
dx=0.0250
dt=0.0100
err=0.1007

N=720
dx=0.0500
dt=0.0077
err=0.0304

N=720
dx=0.0375
dt=0.0087
err=0.0391

N=1440
dx=0.0125
dt=0.00677
err=0.204

N=1441
dx=0.00625
dt=0.00625
err=0.00105

N=1440
dx=0.0187
dt=0.0043
err=0.0190

N=1441
dx=0.0125
dt=0.0050
err=0.0252

N=1440
dx=0.0250
dt=0.0038
err=0.0076

N=1440
dx=0.0187
dt=0.0044
err=0.0098

Table 1 Comparison between IPDG and SEM.

Let us first remark that all the methods converge with the expected order. For the
second order case, the SEM is much more accurate than IPDG for a given number of
degrees of freedom and the number of required iterations is lower. For higher order
the IPDG is more accurate than the spectral element method, while the number of
iterations is quite the same for both approaches.

We have repeated the same experiments on irregular meshes and we have obtai-
ned similar results [1].

As a conclusion, the IPDG method and the SEM present equivalent performances
for high-order accuracy. The first results we obtained in 2D seem to confirm this
conclusion [1]. The choice of the IPDG method for the RTM is then justified by the
fact that, it can be applied on meshes made of triangles or tetraedra which are easier
to handle.

C. Baldassari, H. Barucq, H. Calandra, B. Denel, and J. Diaz212



4 Application to depth imaging

In this section, we intend to show some 2D migration results involving the IPDG
method. For the first numerical experiment, the velocity model is very simple and
we only want to verify the capability of the IPDG method to accurately represent
a two-layered medium. For the second experiment, the velocity model consists of
four layers with a step-shaped interface. For both experiments we consider the fourth
order IPDG method.

4.1 Two-layered medium

We consider a two-layered medium of size 800m×800m. The velocity in the upper
layer 800m×400m is c1 = 1500m/s. The velocity in the bottom layer 800m×400m
is c2 = 3000m/s (cf. Fig.1). We use ponctual sources in space at point (25∗ j,0), j =
1, ...,31, the time sources are first derivatives of a Gaussian with a central frequency
20Hz. Moreover, we impose an absorbing boundary condition on the whole boun-
dary in such a way that the top of the model does not produce reflections into the
propagation domain.

Fig. 1 Two-layered medium Fig. 2 Seismogram obtained for the two-
layered medium with the source at x=400m

Figure 2 represents the seismogram obtained when the source is located in the
middle of the surface. The vertical axis represents the time (in seconds) whereas the
horizontal axis represents the position of the receivers in the x-direction (in meters).
From this seismogram we can deduce the arrival times of the waves. We can then
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validate our results by checking that the travel time source/interface/receiver for a
velocity c1 corresponds to the time indicated by the seismogram. We note spurious
reflections due to the absorbing boundaries whose modelling is not very accurate.

On Fig. 3 we present the final image obtained by the RTM method. It is construc-
ted by summing all the partial images obtained for each shooting point. We can ob-
serve that we recover the interface at depth 400m. On both sides of the figure, the
interface is not perfectly straight. This is due to the absence of shooting points at the
two extremities of the free surface x=0 and x=800m.

Fig. 3 Final image of the two-layered medium

4.2 Four-layered medium

We consider a four-layered medium of size 2000m×1200m as shown in Fig.4. The
velocity in the upper layer of size 2000m×300m is c1 = 4500m/s. The second and
third layers with respective velocities c2 = 1500m/s and c3 = 3000m/s are separa-
ted by a step-shaped boundary. The bottom of the step is located at 700m depth and
the top at 500m. At last, in the layer 2000m×300m, c4 = 6000m/s. We use ponctual
sources in space at point (25 ∗ j,0), j = 1, ...,79, the time sources are first deriva-
tives of a Gaussian with central frequency 20Hz. Moreover, we impose absorbing
boundary conditions on the whole boundary as in the previous case.
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Fig. 4 Four-layered medium

On Fig. 5 we depict the final image obtained by the RTM method on a mesh with
approximatively 12 points per wavelength on the second layer. The three interfaces
are well localized at their actual depth.

Fig. 5 Final image of the four-layered medium
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5 Conclusion

The results we have present are very promising but further improvements have still
to be done. First of all, we intend to tackle the optimization of the computatio-
nal costs by addressing the issue of adapting both the space steps and the order of
convergence in the various layers of the domain. Concerning the time discretization
we shall use a local time-stepping strategy to avoid the numerical dispersion. Then,
we also aim at studying more accurate absorbing boundary conditions to avoid spu-
rious reflections at the boundary of the domain. After all these improvements we
shall compare the RTM-results obtained by the IPDG to the ones obtained by SEM
and finite difference schemes and finally, we shall extend our code to 3D problems.
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Modelling of corner echo ultrasonic inspection
with bulk and creeping waves

Guillaume Huet, Michel Darmon, Alain Lhémery and Steve Mahaut

Abstract The creeping wave is a well-known phenomenon in seismology and in
non-destructive evaluation. This wave which is generated at the interface between
two media radiates during its propagation as a head wave. The amplitude of creep-
ing wave is usually small compared to the compressional and shear waves. How-
ever, in some configurations, especially near critical angle (at backwall reflection,
for instance), its contribution to the echo response may be significant. Such a case
is discussed in this communication, both theoretically and experimentally. Compu-
tation of echo response of this wave, based on ray theory has been developed. The
resulting model combined with bulk wave modelling is compared to experimental
measurements.

1 Context

In some configurations, contribution of creeping wave to the echo response may be
significant. This point is highlighted by an experimental validation of corner echo
prediction. In this study a stainless steel component composed of two different bot-
tom slopes of 0◦ and 10◦ is considered. For each slope, the specimen contains a 10
mm height by 20 mm length rectangular backwall breaking flaw. The pulse-echo
response of these defects is measured by a 45◦ refracted SV-wave planar contact
transducer of 2 MHz center frequency. Simulation of the interaction between inci-
dent wave and flaw is performed with Civa software [1]. In this simulation, wave
interactions with the flaw are only considered for bulk waves. To make a compari-
son between experimental and simulation results, they are normalized with the max-
imum amplitude of response obtained with a side drilled hole.

CEA, LIST, Laboratoire de Simulation et de Modélisation, F-91191 Gif-sur-Yvette, France.
e-mail: guillaume.huet@cea.fr; michel.darmon@cea.fr



The figure 1 presents geometry of the problem and the ray path of SV-mode
corner echo for 0◦ slope configuration.

Fig. 1 Geometry of problem
and ray path for the 0◦ slope.

The figure 2 gives the measured (a), computed (b) B-scans, and measured (black
line) and computed (dashed grey line) spatial distributions (c) of the corner echo for
the 0◦ slope configuration. We observe for this configuration a good agreement for
the both in amplitude and in spatial distribution corner echo.

Fig. 2 Measured (a) and calculated (b) B-scans, and measured (black line) and computed (dashed
grey line) spatial distributions (c), of the corner echo SV-mode reflection according to the 0◦ slope
bottom of the specimen.

The figure 3 presents the measured (a), computed (b), and measured (black line)
and computed (dashed grey line) spatial distributions (c) of the corner echo for the
10◦ slope configuration (see figure 4). We see important differences of amplitude
between these two results. The simulation describes only interactions of bulk waves
with the flaw. Then for this configuration it is necessary to take into account other
types of interactions for a description of corner echo response.

It can be noticed that for 10◦ slope bottom configuration, incident 45◦ SV wave
impacts the backwall with 35◦ angle which is close to the critical angle (32.8◦).
Hence, a creeping wave appears along the bottom of specimen. The contributions
related to interactions of this wave with the flaw are not taken into account in the
simulation. Then this may explain differences observed between experimental and
simulated results. A time of flight analysis based on geometrical ray has highlighted
two potential interactions between a creeping wave and the flaw to explain these
differences. Geometrical paths of these contributions are presented in figure 4.
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Fig. 3 Measured (a) and calculated (b) B-scans, and measured (black line) and computed (dashed
grey line) spatial distributions, of the corner echo SV-mode reflection according to the 10◦ slope
bottom of the specimen.

Fig. 4 Geometrical paths of creeping wave interaction with flaw: (a) reflection on flaw bottom, (b)
diffraction on flaw bottom.

The first interaction (a) corresponds to the reflection of the creeping wave on the
flaw bottom. After reflection, the creeping wave propagates along interface in the
opposite direction and radiates a head wave in the specimen. The second one (b) is
diffraction of the creeping wave on the flaw bottom. The diffraction phenomenon
implies important dispersion of energy during propagation. Then this second inter-
action is likely to have a low amplitude contribution in the corner echo response. In
this paper only the first interaction is treated and a method to calculate its contribu-
tion is presented in next part.

2 Modelling of head wave contribution

Modeling of the head wave contribution radiated by reflected creeping wave on the
flaw bottom is presented. This problem is based on the configuration presented in
figure 4 (a). To calculate this contribution the transducer’s surface is discretized as
a collection of source points. For each point source, elementary contributions of the
head wave are calculated applying ray theory. Before giving the method to calculate
the head wave contribution, classical results of ray theory are introduced.
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2.1 Geometrical path and amplitude of head wave

The ray path of the head wave is presented here in the simplest case of two semi-
infinite homogeneous media. We consider propagation in the first medium with lon-
gitudinal and shear wave velocities noted respectively VL and VS. We assume that a
point source of a spherical shear wave lies at point M0 and we consider the ray which
impacts the interface at point A0 with critical angle θ ∗ defined by θ ∗ = asin(VS/VL)
(see figure 5).

Fig. 5 Geometrical path of
head wave from point source
M0 to point receiver M.

Critical incidence implies that the longitudinal reflected wave in the first medium
propagates along the interface with velocity VL. During its propagation, according
to Huygens’ principle, points of the interface reached by this wave become centers
of disturbances propagating back into the first medium with velocity VS. All con-
tributions radiated from interface with direction corresponding to angle θ ∗ produce
the head wave front. In the following, amplitude related to the contribution radiated
from point A of the interface to point M is introduced.

This classical result is presented here for the case of elastic waves in an homoge-
neous, perfectly elastic and isotropic medium [2]. It is important to note that it is not
valid in the close neighbourhood of coupling zone between head wave and reflected
bulk wave [2,3]. In such cases, it is necessary to use another method. We consider
displacement vector u at point A0 emanating from a point source M0 represented at
figure 5:

u(A0,ω) =
eiω(t−R0/VS)

R0
nS, (1)

where nS is the direction of polarization of shear wave and R0 is the distance be-
tween point A0 and the source. The displacement of the head wave at point M is
given by:

u(M,ω) =− 1
iω

eiω(t−τ(M))VL
R∗SLR∗LStan(θ ∗)

r1/2l3/2 nS(M). (2)

The distances r and l are represented in figure 5. The vector nS(M) gives di-
rection of shear head wave polarization. The coefficients R∗SL and R∗LS are re-
spectively reflection coefficient from shear wave to longitudinal wave and from
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longi-tudinal wave to shear wave at critical angle θ ∗. Time of flight is given by
τ(M) = M0A0/VS +A0A/VL +AM/VS.

The previous result corresponds to a harmonic source. The temporal dependence
of displacement due to a source of spectrum S(ω) is obtained by applying the inverse
Fourier transform:

U(M, t) =
1

2π

∫
∞

−∞

S(ω)u(M,ω)dω. (3)

Results of ray theory presented here are now applied to calculate contribution of
the head wave in the echo response.

2.2 Calculation of displacement amplitude

In this part a method to calculate the displacement amplitude of the head wave radi-
ated by the creeping wave after its reflection on the flaw is presented. We consider
a planar contact transducer with incident angle θW . We assume that this transducer
radiates in the component shear wave beam with incidence on backwall close to the
critical angle.

To calculate the head wave contribution, the surface of the transducer is dis-
cretized as a collection of point sources. For each point source, elementary contri-
butions of the head wave are calculated and finally summed to obtain the complete
contribution. In order to apply ray theory, elementary contributions of the head wave
are calculated through the path which is incident on backwall at critical angle θ ∗.
We call this path critical path and its related ray has an incident angle in the wedge
noted θ ∗W (figure 6). In the general case, this angle is different from the real incident
angle θW . This point implies a shift between times of flight of the different head
wave paths. At emission, maximum shift is given by:

∆ t = d sin(θW −θ
∗
W )/VW , (4)

with VW the velocity in the wedge and d the length of the probe. The time ∆ t de-
scribes the non correlation of the incident plane with the critical phase plane of the
head wave.

Now the head wave elementary contribution due to a point source S of the surface
transducer is calculated. At point M0 on the critical path, the displacement due to
the source is given by Rayleigh-Sommerfeld integral [4]:

uS(M0,ω) =−TW→C
1

VW

v0(t− τ)
2πL

∆SemnS, (5)

with ∆Sem the surface which surrounds the point source, v0 the particular velocity
normal to probe surface, TW→C the coefficient of transmission from wedge to com-
ponent and L the spreading function which describes amplitude divergence of the
spherical wave on a plane interface.

Modelling of corner  echo  ultrasonic inspection with  bulk and creeping waves 221



Fig. 6 Discretization of the
surface transducer as a collec-
tion of point source. The ray
corresponding to elementary
contribution of head wave is
chosen to be critical on back-
wall component and has an
incident angle in wedge noted
θ ∗W .

Propagation of the head wave in the component from point M0 is presented. The
ray we consider has been chosen to impact the backwall at the critical angle. Then at
point A0 of backwall (figure 7) a creeping wave is generated. This wave propagates
along the interface, reflects on flaw, and goes back along interface in the opposite
sense. To take into account interaction with the flaw, the amplitude of creeping wave
has to be multiplied by a coefficient noted RF . During its propagation, the reflected
creeping wave radiates from any point of the interface head wave in component. All
these points must be taken into account for the final contribution. To illustrate the
case of partial contribution, radiation from point A is chosen. According to sym-
metry of the problem before and after reflection, the path M0A0FAM is analogous
to path M0A0AM presented in the previous part. Then we can apply expression 2
with consideration of incident wave displacement at point M0 (expression 5) and
consideration of the reflection on the flaw. Finally, the amplitude of the head wave
received on the probe at point R is:

uS(R,ω) =−TC→W RF TW→C
v0(t− τ)

2πVW

1
iω

R∗SLR∗LSVL tan(θ ∗)
r1/2l3/2 ∆Sem∆SrenW . (6)

TC→W is coefficient of transmission from component to wedge at point C, ∆Sre is
the surface which surrounds receiver point and nW is direction of polari-zation of
the wave propagating in the wedge. Expressions of distances r and l are:

r = (SC0 +RC)sin(θW )+(C0A0 +CA)sin(θ ∗)+ l and l = A0F +AF, (7)

and time of flight is given by:

τ = (SC0 +RC)/VW +(C0A0 +CA)/VT +(A0F +AF)/VL (8)

Total contribution is obtained by summation of all partial contributions. It corre-
sponds to summation of the displacements given at expression 6 for all source points
and all reception points.

Two points have to be developed to evaluate expression 6. The first point con-
cerns ray theory formalism of the head wave which has to be modified in the inter-
ference zone. The second point is related to the evaluation of the reflection coeffi-
cient on the flaw, as no theoretical formulation exists for a creeping wave.
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2.3 Amplitude of head wave in the critical region

In the previous part we have investigated only a non-interfering pure head wave.
However in some cases this wave may interfere with another one. The question
whether any given waves interfere or not depends on their travel times and phase
shifts, and on the length of the pulse of the incident wave. There is, however, a
region called the critical region in which the head wave will always interfere with a
reflected bulk wave. This region begins with emergence of a critical ray presented
in figure 8. For this particular ray, at observation point P1, the reflected wave and
the head wave are not distinguished. The critical region ends at point P2 where the
difference of time of flight of the reflected wave and the head wave are equal to the
duration of the pulse.

In the critical region the formula for the head wave amplitude given by ray theory
is not quite exact. The most exact formula to describe interference of reflected and
head waves are obtained under an uniform asymptotics form [2,5,6]. The problem
with this expression is that contribution of reflected and head waves can’t be disso-
ciated. Then this method is not applicable to the model used in the Civa inspection
simulation [1] where all contributions are evaluated separately.

The region, in which the formulae for the individual waves is imprecise is usually
smaller than the region of interference of the waves. Only in very narrow regions
close to the critical ray, ray formulae are quite inapplicable. In this case, the distance
l defined in figure 8 tends to zero, implying an infinite value of head wave amplitude
(expression 2). To avoid this divergence, when distance l tends to zero, a maximum

Fig. 7 Geometrical path
of head wave radiated by
creeping wave after reflection
on flaw bottom.

Fig. 8 Representation of the
critical region in which the
reflected wave and the head
wave interfere.
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value is imposed. This value noted lmax is the solution of coupling condition equation
which verifies:

τBW − τHW (lmax) = δτ, (9)

where δτ is the duration of the signal. The effect of this process on head wave am-
plitude is presented in figure 9. We see that initial head wave amplitude calculated
with ray theory (solid line) diverges in the critical region. On the contrary, calcu-
lation of head wave amplitude with the introduction of the maximum value lmax
(dashed line) gives in the critical region amplitudes which are in the same order of
amplitudes calculated in the non critical region.

Fig. 9 Initial (solid line) and
modified (dashed line) ampli-
tude of head wave calculated
with ray theory versus dis-
tance l.

2.4 Reflection coefficient of creeping wave on flaw

This part details the determination of the reflection coefficient of the creeping wave
on the flaw used in expression 6. Interaction of an incident wave on a wedge has
been studied for different incident waves as a Rayleigh wave [7] or plane and cylin-
drical waves [8]. Nevertheless it seems that no study on creeping wave interaction
has been made. Then a result based on the Kirchhoff approximation which is com-
monly used to model specular effects (corner echo or specular reflection) is used
[9, 10]. The Kirchhoff approximation applies to the case of an incident plane wave
on a stress-free flaw. The result of the scattered field at an observation point is a
spherical wave associated to a directivity coefficient depending on the incident and
scattered directions. This result, adapted to the case of a diffracted plane wave can
be presented as follows: for a given incident wave of amplitude uinc impacting an
interface with an incident angle β , the diffracted wave is plane with direction of
angle θ and its amplitude is:

ure f l = uinc B(β ,θ)
i

, (10)

where B(β ,θ) is the Chapman coefficient which depends on directivity. To use this
result for a creeping wave, we assume that the creeping wave is a plane wave. The
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incident wave is the creeping wave propagating along the interface. The diffracted
wave is the creeping wave that propagates along the interface in the opposite sense.
Then relation between angles β and θ is: θ =−β .

2.5 Results

Modelling of the head wave contribution is now applied to simulate the echo re-
sponse corresponding to the configuration with a 10◦ slope bottom component pre-
sented in the first part. To the initial simulation which models only the interactions
of bulk wave with flaw is added the contribution of the head wave radiated by the
reflected creeping wave on the flaw bottom. The B-scan and the spatial distribution
obtained with simulation is presented and compared to experiment in figure 10.

Fig. 10 Measured (a) and calculated with add of head wave (b) B-scans of corner echo, and spatial
distribuiton of corner echo (c) obtained with experiment (black line), finite element calculation
(dotted grey line), Civa calculation (dashed grey line) and Civa calculation with add of head wave
(grey line), according to the 10 degrees slope bottom of the specimen.

We can see comparing figures (a) and (b) a good agreement between experi-
mental and calculated B-scans. On figure (c) is shown first the initial calculation
(dashed grey line) which models only bulk wave interactions. We observe then that
the amplitude calculated with the inclusion of the head wave (grey line) improves
modeling compared to experimental results (black line). On this figure the result
obtained with an hybrid method [11] coupling semi-analytical beam model and fi-
nite elements interaction model is presented (dotted grey line). We notice that it also
provides a good prediction of experimental results.

3 Conclusion

In most cases, dominant contributions to corner echo response result from the in-
teractions of bulk waves with a flaw. But, in some configurations, consideration of
these waves is not sufficient and it is necessary to take into account other contribu-
tions.

Modelling of corner  echo  ultrasonic inspection with  bulk and creeping waves 225



In the problem considered in this paper, one contribution implying interaction of
creeping wave with flaw is dominant in echo response. This contribution is due to the
reflection on the flaw bottom of the creeping wave which then radiates a head wave
in the component. A method to model it, is presented. It is based on discretization
of the transducer’s surface as a collection of source points. For each point source,
an elementary contribution is calculated using ray theory. In the model a specific
treatment of the head wave amplitude in the critical region and of the reflection
coefficient of the creeping wave on the flaw bottom is developed.

The modelling of the head wave is added to the initial simulation which described
the interaction of bulk waves with the flaw. Simulated results obtained in the config-
uration under consideration are in good agreement with experiment. The inclusion
of the head wave contribution in the simulation improves modelling of the corner
echo response.

The integration in Civa software of the model presented in this paper is in
progress. Other interactions with the flaw have to be investigated to complete the
description of the corner echo. For example, the head wave reflection on the flaw
may have, in other configurations, an important effect on corner echo amplitude.
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Attenuation of Lamb waves in the vicinity of a 

forbidden band in a phononic crystal 
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Abstract   When a Lamb wave propagates on a plate engraved by a periodic 

grating, it may exhibit attenuation. This attenuation is related to a coupling of this 

incident mode with other propagating modes. As the propagation takes place in a 

periodic medium, the dispersion curves of the modes are of interest because they 

exhibit pass bands and stop bands related to the geometry of the waveguide. The 

goal of this work is to quantitatively establish the relation between the value of the 

attenuation of the propagating waves and the width of the forbidden bands 

appearing inside the Brillouin zone. This study is performed by using a finite 

element method (ATILA
®
 code). 

1 Introduction 

Guided ultrasonic waves in plates (Lamb waves) are very sensitive to the surface 

state. If the surface is slightly rough, the amplitude of the propagating waves is 

attenuated. The particular case of periodic rough surface is quite different. For 

certain frequencies the incident wave gives rise to converted backward modes. In 

a previous paper [1] Morvan et al. show that the conversion/reflection 

phenomenon is a consequence related to the opening of forbidden frequency 

bands. A forbidden band corresponds to the interaction of one (at the limit of BZ) 

or two given modes (inside the BZ) and does not affect the other propagating 

modes [2-4]. 
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What are the parameters involved in the coupling of Lamb waves ? Is it 

possible to establish more clearly than previously a link between the characteristic 

of the mini-stop-band (forbidden band inside the BZ) and the attenuation of the 

waves ? Thus, the goal of this paper is to establish a bridge between mesoscopic 

aspects (attenuation of Lamb waves) and the band structure (mini-stop-band).  

With a view to giving an answer to the previous questions, the case of an 

aluminium plate with a one dimensional sinusoidal grating is studied. Firstly, the 

dispersion curves in the first Brillouin zone is presented. Secondly, the relation 

between a mini-stop-band and the attenuation is exhibited. Finally, the influence 

of the depth of the grooves on the attenuation is considered. 

2 Dispersion curves in the first Brillouin zone 

2.1 Dispersion relation and first Brillouin zone 

In this part, an infinite plate with a one-dimensional periodic corrugation is 

considered. The waveguide is considered as a repetition along the (Ox) direction 

of one elementary pattern. 

 

Because the waveguide is supposed to be infinite and periodic in the (Ox) 

direction, the study is restricted to only one unit cell [5; 6]. Bloch-Floquet relation 

is written and defines boundary conditions between adjacent cells. Then the 

wavenumber k is deduced and vibration frequencies ω are determined for 

propagating waves leading to dispersion curves ω(k). The solutions of the 

dispersion relation are 2π Λ  periodic with respect to the wavenumber k : 

( )(k) k 2ω ω π= + Λ  ,  where Λ is the spatial period of the grating. This property 

implies that the study can be limited to wavenumber values in the first Brillouin 

zone. This zone is defined in a wavenumber range -π/Λ ≤ k ≤ π/Λ. 

 

Therefore the study of an infinite periodic waveguide can be reduced to a study 

of one unit cell. 

2.2  Dispersion curves for a sinusoidal grating 

A modal analysis is performed with a finite element method (ATILA® code [7]). 

In order to consider only one spatial periodicity, the numerical study deals with 
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the case of a sinusoidal grating with a spatial periodicity Λ [8]. This periodicity 

must be in the same range of values as the wavelength of the Lamb wave λLamb 

excited, which is about 20 mm length. In addition, with a view to being in 

accordance with the hypothesis of small perturbations of the surface, the depth of 

the grooves must be much smaller than the thickness of the plate, which is 5 mm 

thick. Then, the computed sinusoidal grating has a periodicity of 7 mm and is 200 

µm depth. The plate is made of aluminium (ρ = 2700 kg/m
3
, cL = 6432 m/s, cT = 

3136m/s). 

Only one unit cell is meshed and then the Bloch-Floquet theorem is fulfilled on 

each boundary of the pattern at x = 0 and x = Λ (Figure 1). 
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Fig. 1 Elementary periodic cell. 

The dispersion curves are plotted by varying the wavenumber in a half 

Brillouin zone [0 ; π/Λ], and then the other half zone [-π/Λ ; 0] is plotted 

symmetrically. In Figure 2 the dispersion curves for the sinusoidal grating are 

plotted in the Brillouin zone. The periodicity of the guide implies that the Lamb 

waves dispersion curves fold back for k = ±π/Λ and k = 0.  

 

Fig. 2 Detail of the dispersion curves in the first Brillouin zone for a sinusoidal grating. 

Attenuation of Lamb waves 229

0 100 200 300 400

wavenumber (m-1)

fr
eq

ue
nc

y
(k

H
z)

A0

S0

A1

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400

wavenumber (m-1)

fr
eq

ue
nc

y
(k

H
z)

A0

S0

A1

0

50

100

150

200

250

300

350

400

450

 



 

These dispersion curves clearly exhibit gaps also called forbidden bands. Two 

different kinds of gaps are noticed : the stop-bands at the limit of the Brillouin 

zone, and the “mini-stop-bands” inside the Brillouin zone [9]. 

Mini-stop-bands are due to the opening of gaps at the crossing of two Lamb 

mode dispersion curves. This leads to anti-crossing behavior of the dispersion 

curves. This case corresponds to mode coupling. Indeed, near the edge of the stop-

band, the group velocity vanishes and allows a possible conversion between two 

different modes. For the sinusoidal grating, in Figure 2, a mini-stop-band appears 

at crossing between the S0 and A0 dispersion curves near 239 kHz. Then a 

coupling between the A0 and S0 modes occurs. This means that if a S0 Lamb 

wave is propagating in such a grating, it would give rise to a retropropagating A0 

mode, and vice versa. 

 

In the following, this band gap will be studied from an energy point of view. 

3 Mini-stop-band and attenuation 

3.1 Description of the plate studied  

In order to study more precisely this mini-stop-band S0/A0 frequency by 

frequency, several harmonic analysis are performed using the modelling of a finite 

length waveguide. The structure is divided into three main different zones : the 

central zone, which is 270 mm length and 5 mm thick, contains the corrugated part 

which is limited to 20 periods of sinusoidal grooves and flat surfaces before and 

after the grating (Figure 3). However, this finite structure leads to reflections at its 

ends. To avoid stationary waves between the grating and the extremities of the 

mesh, the two other zones are composed by perfectly matched layers (PML). They 

are designed to act as sponge layers for a maximum incident wavelength λmax = 

33.9 mm and to allow less than 1 % reflection [10]. 

The excitation consisting in a non null displacement along the (Ox) direction is 

imposed on the central node and give rise to a S0 wave. 

 

Fig. 3 The geometry of plate – schema for 10 grooves, the depth of the grooves has been 

volontary increased for a better reading. 
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3.2 Normal displacements and energy coefficients 

By performing harmonic analysis at several frequencies between 160 kHz (λS0 = 

33.9 mm) and 400 kHz (λS0 = 12 mm), normal displacements are collected under 

the plate before and after the grating. As expected (cf. Figure 2), a converted A0 

mode is reflected and a part of the incident S0 mode is transmitted. From these 

results, the energy reflection and transmission coefficients are computed. Details 

on the computation of the energy transported by each propagating waves is given 

in the following.  

As it is well known [11], the energy transported by a wave along the (Ox) 

direction is identified to the value ɸ of the flux of the Poynting vector through a 1 

m thick cross section along the (Oz) direction of the plate (Figure 4). 

12

0
2

h

h

Pdzdyφ
−

= ∫ ∫  with 
*1

2
j jiP v T

 
= ℜ − 

 
 

Fig. 4 The flux of the Poynting vector through a cross section of the plate. 

where P is the temporal average of  the flux of the Poynting vector along the (Ox) 

direction, vj
*
 are the components of the particular conjugate velocity and Tji are the 

components of the stress tensor. ℜ denotes the real part of the expression. 

In order to access to the energy of the modes, two steps are needed. Firstly, on 

a theoretical point of view for a plate without corrugation, a coefficient ζ is 

defined for each mode as the ratio between the normal displacements of the 

surface of the plate and the energy carried by the wave [12] : 
theory

Z theorysurface
Uζ φ= . Secondly, from the values of the normal displacements 

of the propagating Lamb waves obtained by the finite element method and using 

the ζ coefficient, the values of the energies of the incident wave ɸinc, the 

transmitted wave ɸtrans and the reflected/converted wave ɸconv can be estimated : 

( )
2

FEM

FEM Z surface
Uφ ζ= . 

The conversion coefficient in the A0 mode is defined by 
0 0

0

A S

A conv incR φ φ= . In 

the same way, the transmission coefficient in the S0 mode is denoted by 
0 0

0

S S

S trans inc
T φ φ= . Figure 5.a reproduces a zoom of the dispersion curves and in 
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parallel with Figure 5.b, the curves of TS0 and RA0 for the sinusoidal grating are 

plotted. 

Fig. 5 a) Dispersion curves in the first Brillouin zone for the sinusoidal grating. 

b) Curves of the reflection and transmission coefficients. 

These curves exhibit two different kinds of extrema at the same frequency f = 

239 kHz. In fact, at this frequency, the TS0 curve presents a minimum as the RA0 

one presents a maximum. So, there is a coupling between the S0 mode and the A0 

mode in the gap. Thus, there is an energy transfer between the two modes. 

Moreover, the maximum of conversion occurs at the same frequency as the 

minimum of transmission which is the central frequency of the gap fgap. 

Fig. 6 Assessment of the conservation of the energy of the A0 and S0 modes. 

In Figure 6, the assessment of the conservation of the energy is checked with an 

error lower than 1 %. Between f = 314 kHz and f = 321 kHz, one observes an 

uneven zone which corresponds to the A1 mode cut-off frequency. This fact is 

explained by a coupling between the A0 and A1 mode near 330 kHz (see Figure 
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5.a). In the vicinity of the cut-off frequency, large wavelengths could disturb the 

performances of the PML. 

3.3 Influence of the limited size of the grating 

The dispersion curves are obtained by modal analysis for an infinite structure 

whereas the TS0 and RA0 curves are the results of harmonic analysis for which a 

structure of finite length was modelled. The presence of secondary peaks on those 

curves (see Figure 5.b) reveals the finite aspect of the structure [11]. Moreover, 

the width of the peaks of the TS0 and RA0 curves is wider than the width of the gap. 

Indeed, the coupling between the modes is not strictly limited to the frequency 

range of the band gap ([236 kHz ; 241 kHz]). This is also a consequence of the use 

of a limited periodic structure. 

4 Influence of the depth of the grooves 

The hypothesis of the weakness of the corrugation of the surface may introduce 

the question of the influence of the depth of the grooves on the results of the 

modal and harmonic analysis. In other words, one may wonder what the influence 

of the depth of the grooves is on the mini-stop-band S0/A0 and on the 

attenuation/conversion of the S0 mode. To this end, modal and harmonic analysis 

were performed with the corrugation depth varying from 50 µm to 500 µm. 

In Figure 7, the influence of the depth of the grooves on the width of the gap is 

exhibited. At least for the depths investigated a linear relation, with a reliability 

factor Rf = 0.9995, rules the variation of the width of the mini-stop-band S0/A0. 

Fig. 7 Variation of the width of the gap as a function of the depth of the grooves. 
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For each value of the depth of the grooves and at f = fgap, the values of the TS0 

and RA0 coefficients are calculated and plotted on Figure 8 : as expected the deeper 

the grooves, the higher the value of RA0 and the lower the value of TS0. These 

curves could be used as master curves to estimate the depth of the grooves. 

Fig. 8 Variation of the depth of the grooves on the transmission and reflection coefficients at the 

central frequency of the gap. 

For each value of depth of the grooves considered, the sum TS0 + RA0 is globally 

equal to 1 with less than 1 % of error while the hypothesis of the small 

perturbations is still verified (Figure 9). So, except the S0 and A0 modes, there is 

no other mode carrying energy through the waveguide at f = fgap.  

For the values of the depth greater than 400 µm, the sum TS0 + RA0 increases 

beyond the numerical error. The physical nature of the problem is then quite 

different : the Lamb wave propagates no more in a slightly corrugated plate but in 

a structure with flaws. The coupling between the Lamb wave and the flaws has to 

be computed with another meshing and another PML in order to take into account 

the presence of evanescent modes. 

Fig. 9 Assessment of the conservation of the energy of the A0 and S0 modes. 
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5 Conclusion 

The presence of a mini-stop band is related to a coupling between two modes. 

This coupling implies an energy transfer from the incident mode to the converted 

one. Then, the incident mode is attenuated when propagating through the grating. 

As this attenuation is related to the depth of the grooves, a relation with the width 

of the gap can be deduced. It has been quantitatively verified that the width of the 

gap is related to the depth of the grooves : the deeper the grooves, the larger the 

gap. However, even if the maximum of attenuation appears at the central 

frequency of the gap, the coupling is not strictly limited to the frequency range of 

the band gap. 

 

Two perspectives can be envisaged for this study. Firstly, with the help of the 

shape of the attenuation curve, it might be possible to evaluate the parameters of 

the grating (groove number, depth, shape). Secondly, a theoretical coupling factor 

between two coupled modes has to be properly defined. This might be an 

alternative way to obtain the dispersion curves. 
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Abstract   The 3D surface waves in the linearly viscoelastic layered plates and 

cylinders are considered either under any of the homogeneous boundary condi-

tions providing energy reflection back into the solid, or in the case of fluid load-

ing. A fundamental property of waves in such structures is their generalized or-

thogonality, which is deduced and discussed. The eigenmodes of discrete 

spectrum are orthogonal to each other and to the waves of continuous spectrum (if 

they exist). A method for the exact calculation of the far field caused by an acous-

tic source of finite size is suggested. The obtained results can be used for evaluat-

ing the fields radiated by ultrasonic transducers of arbitrary aperture and by other 

realistic sources in the layered plate, cylinder, space or half-space using modal 

analysis. The results are also applicable to the post processing of the FEM calcula-

tions.  

1 Introduction  

Broad use of composite materials causes a steady attention to the guided waves in 

layered plates and cylinders, which are described in monographs, reviews and 

numerous papers. As known, such guided waves are not orthogonal like trigono-

metrical Fourier series but they possess the orthogonality relations (OR) with re-

spect to the power flow. These OR were deduced in the 70’s for elastic strips [1-7] 

and cylinders [8, 9] with various homogeneous boundary conditions on their faces. 

The relations for 3D guided waves are presented below. Such OR can be used to 

construct linear algebraic system of equations with respect to unknown mode co-



 

efficients when using modal decomposition for various problems, e.g., such as dif-

fraction by crack or wave reflection by the edge of a plate or cylinder. In this pa-

per, the 3D guided waves are considered in a laminate with homogeneous bound-

ary conditions on its faces (HBCF). For a cylinder, HBCF are set on the lateral 

surfaces. The linear viscoelasticity is taken into account in the form of the Kelvin-

Voigt model or of the Maxwell model. The main motivation for this study is to 

generalise the results obtained earlier for one layer and pure elasticity [10-13], to 

elucidate the physics, and to work out a method for exact calculation of the field 

radiated by a realistic acoustic source into viscoelastic laminates and cylinders.  

 

Since the numerical methods for 3D problems are time consuming the analytical 

and semi-analytical methods remain of substantial interest for NDT needs. 

2 Background 

Consider a laminated solid composed of N  isotropic plies subjected to the time-

harmonic load tie ω− (this factor is omitted in what follows). The displacements 
juα , stresses  

j
αβσ  and strains 

j
αβε  in each j th layer satisfy the equations of mo-

tion and the relations of linear viscoelasticity in the form of Kelvin-Voigt or of 

Maxwell.  Thus, the Lamé constants jj µλ , ; wave numbers j
SPk ,  and wave speeds 

j
SPc ,  are complex-valued { } ( ) 12

2
−+= jjj

j
Pc ρµλ ,  { } 12 −= jj

j
Sc ρµ ,  j

SP
j
SP ck ,, ω=  

( jρ  are mass densities). The body forces 
jfα  are specified later. Let us proceed 

to the cylindrical coordinates zr ,, θ : θcos1 rx = , θsin2 rx = , zx =3 . The ge-

ometry of solid may be flat, so that j th ply occupies a region ∞<< r0 , 

1+≤≤ jj zzz  (case (a)), or it may occupy a cylindrical region 1+≤≤ jj RrR , 

∞<<−∞ z  (case (b)) as shown in Fig. 1. On the interfaces jzx =3  (or jRr = ), 

Nj ,,3,2 K=  the conditions of the full contact are assumed. In addition, the field 

may satisfy some boundary conditions on the faces, i.e., for the case (a) either the 

stresses m

3ασ , or displacements m

αu  or their combinations may be prescribed at 

1zz =−  and 1+
+ = Nzz . For the case (b) the same is given at the radii 1RR =−  and 

1+
+ = NRR . First let us describe the modes satisfying HBCF accordingly to the 

cases (a) and (b). 
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Fig. 1. (a) 

Laminate ge-

ometry; (b) 

layered cylin-

der. 

  

 

(a)     (b) 

3 Field representation   

a) Using Lamé potentials and separation of variables, the waves propagating in r -

direction in j th layer in the absence of body forces are as follows 
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Here )(srBB nn ≡  are any of the appropriate Bessel function nJ  or Neumann 
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j svdzdusudzdv −≡+≡ ταβχ   , , 

,  , j
j

j
j

jj
j

j
j

j sudzdvsudzdvp βασγβ +≡+≡  

where jj βα +≡ 2 , jjj µλβ ≡ , 1+≡ jj βγ . The continuity equations at the in-

terface jzz =  are rewritten in the form 

jj uu =−1 ,   jj vv =−1 ,   jj ww =−1 ,                                                (4) 

,
1

1
j

j
j

j σµσµ =−
−  ,1

1
j

j
j

j τµτµ =−
−  .

1
1 dzdwdzdw

j
j

j
j µµ =−
−     (5) 

 

Hereafter the HBCF on the face 1zz =−  imply one of the conditions: 

0111 === dzdwτσ         (stress free), 

0111 === wvu                    (clamped),              

0111 === dzdwv τ       (mixed 1), 

0111 === vuσ               (mixed 2). 

 

The similar formulations are used for 1+
+ = Nzz . Any combination of HBCF at 

mzz =  and Eqs.(4), (5) gives us a linear system of algebraic equations with re-

spect to j
S

j
SP BA ±± ,,  whose NN 66 ×  matrix L  yields two dispersion equations 

0det =PSVL ,         0det =SHL ,         







=

SH

PSV

L

L
L

0

0
.                     (6) 

The equations (6) are independent of number n  and coincide with the equations 

of the respective in-plane and out-of-plane problems with the same matrix blocks 

PSVL  and SHL . Assume that Eqns.(6) have simple roots. Then these roots can be 

subdivided into two subsets SHPSVl SSs ∪∈  due to the wave polarization: 

PSVSs∈ :   0=jw ;   0, ≠jj
vu ,                                                            (7  

     SHSs∈ :     0== jj vu ; 0≠jw .                                                            (8) 

 

In addition, the frequency equations are symmetrical for s  and s− , and in the 

case of pure elasticity the symmetry also holds for s  and s . Setting 1+= S
l
n AM  or 

1+= S
l
n BM , other j

SPA
±

, , j
SB
±  are expressed from the equations 

[ ] 0, =× ± Tj
SPPSV AL ,         [ ] 0=× ± Tj

SSH BL . 
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b)  For a layered cylinder the similar techniques of the variable separation leads to 

the following representation of homogeneous waves propagating along z -axis in 

j the curvilinear layer: 
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where functions ( ) ( ) ( )ξξξ n
Y
mjn

J
mjmn YAJAf +≡ , ( ) ξξ ddff mnmn ≡′  are determined 

up to constants 
YJ

mjA
,

. The conditions on the interface jRr =  acquire the form 

 
jj uu =−1 ,   jj vv =−1 ,   jj ww =−1 ,                                                       (9) 

,
1

1
j
rrj

j
rrj τµτµ =−

−   ,
1

1
j
rj

j
rj θθ τµτµ =−

−   .
1

1
j
rzj

j
rzj τµτµ =−

−                      (10  

 

Similarly to the previous case, HBCF on the face −= Rr  are as follows 

 

 

0111 === rzrrr τττ θ          (stress free), 

0111 === wvu               (clamped), 

0111 === rzru ττ θ                (mixed 1), 

0111 === rrwv τ                 (mixed 2). 

 

At the lateral surface += Rr , we assume any of these combinations. Any HBCF 

at mRr =  and Eqs.(9), (10) result in a linear system of algebraic equations for 
YJ

mjA
,

 whose NN 66 ×  matrix L  yields the frequency equation 0det =L . In con-

trast to the case (a), the decoupling of waves with SH- and PSV- polarization takes 

place only for 0=n  (torsional waves and Pochhammer-Chree waves). For 1≥n , 
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we deal with the flexural modes. The symmetry of the frequency equation is as 

above. Again, for simple roots ls  we may express 
YJ

mjA
,

 via basic coefficient J
NA1 . 

4 Orthogonality relations 

a) Let us introduce a standard scalar product across j th layer for any two 

functions related to the wave numbers  ls  and ms  and compose the following 

quantities 
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Consider cylinders { }1  , +≤≤≤=Ω jjj zzzRr  whose lateral and top/bottom sur-

faces are { }1  , +≤≤==Ω jj
j
R zzzRr   and { }1,  , +=≤=Ω jjj zzRr

m

, respectively. 

Denote the integrals over j
RΩ  by angle brackets. After some manipulations, the 

following set of identities for the homogeneous waves can be obtained 

( 01 nn δξ +≡ , α
βδ  is a Kronecker delta) 
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dAgfgf , . (14)  

The factors with cylindrical functions nB  are mutually independent and we obtain 

0=∗
lmW ,         0=∗

lmG ,          0=∗
lmT      for       22

ml ss ≠ .                         (15) 

Equations (15) are the sought OR between modes with the 3D “in-plane” and/or 

“out-of-plane” polarization. Their physical meaning is the power flow addittivity. 

Indeed, substituting   { }tij
leu ω

α
−Re  instead of j

luα  into the averaged power flow, 

we arrive at the expressions 
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The choice of 
( )2,1
nn HB =  for the propagating mode  0>ls   in case of pure elas-

ticity yields 
∗±= lllnrl WcP ξ* , ll sc ω=  ( )PSVl Ss ∈ ,            ∗±= llnrl TP ωξ*  ( )SHl Ss ∈ .              (19) 

{ }
lss

l
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l
grl dsdcREKcP
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≡+∞→+± ω , ,~

** , ( )SHlPSVl SsSs ∈∈ or                           (20)         

where lK , lE  are integrals of the positive kinetic and elastic energy densities 

across the cylindrical surface. The sign ±  is chosen accordingly to the first or 

second kind of Hankel’s function, respectively. Thus, we may select the real ls  

upon the radiation conditions (19) and (20). 

b) The corresponding combinations of scalar products in the cross section of a cyl-

inder look as follows 
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with the familiar form of the orthogonality relations: 0=∗
lmW  ( )22

ml ss ≠ . The av-

eraged power flow of the propagating mode across the cylinder cross section  is 

simpler then for the case (a), namely, 

R
2

1* ∈= ∗
llnzl WiP ωπξ ,  { }**
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  ( )0>ls . 

5 Far field of a finite acoustic source 

a) Assume that the laminate motion is caused by the body forces jfα  distributed in 

a finite volume embedded into cylinder jΩ∪=Ω , or by surface load distributed 

over a finite region on −Ω1  or +ΩN  (see Fig. 2a). Remaining part of the faces satis-

fies HBCF. Let us represent the laminate response as function of zr ,,θ  and de-

3D orthogonality relations 243



 

compose it into Fourier series of the angle θ . Accordingly the general theory of 

partial differential equations the field inside Ω  ( )Rr <  has two components: a 

particular solution caused by the acoustic source and a general homogeneous solu-

tion. At Rr >  the particular solution vanishes and the field equals the series of 

modes (1) with 
( )1
nn HB =  (or 

( )2
nH ) due to the energy radiation. On the surfaces 

j
RΩ  ( )Rr =  the inner and outer solutions satisfy the continuity of juα  and j

rασ  

( )zr ,,θα = . For each wave number ms , we introduce a standing wave with 

)()( rsJrsB mnmn ≡  and with the same components j
mu , j

mv  and j
mw  in formulae 

(1). Then, integrating the total field 
j

αβσ , juα  over cylinder a Ω  with this stand-

ing wave as a dummy solution, we obtain  
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in a similar form for the combination of trigonometrical functions θncos , θnsin  

or θnsin− , θncos  in formulae (1). By this reason we do not introduce different 

notations, but the value mnΓ  (and the mode coefficient) depends on the choice of 

these functions. However mnΓ  does not contain any unknowns. For example, if 

the source is given by stresses −
zασ  on −Ω1  and +

zασ  on +ΩN  this expression yields 

 

{ } { } .

1

111 dAuuudAuuu mzrmzrzmzz
N
mz

N
rmzr

N
zmzzmn

N

∫∫∫∫
−+ Ω

−−−

Ω

+++ ++−++−=Γ θθθθ σσσσσσ  

Then the following procedure applies: replace the field on the lateral surfaces j
RΩ  

by the mode series for the outer zones with Hankel’s functions 
( )

nnn iNJH +=1  (or 

( )2
nH ); annihilate in the left hand side of Eq.(21) all waves except mss =  using 

OR (11)-(15) and simplify the left hand sides in (21) using the basic property of 

cylindrical function: ( ) ( ) ( ) ( ) mmnmnmnmn RsRsNRsJRsNRsJ π211 =− ++ . 

 

Finally it yields the exact formulae for the mode coefficients 
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Hence, we suggest a general method to evaluate the “far” field – but in fact the to-

tal field at the distance Rr > , where R2  is the longitudinal size of an acoustic 

source. The method requires the calculation of spectra PSVS  and SHS , modes (1)-

(3) and coefficients (23) in the double series wrt n  and ms . In the case of pure 
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elasticity the classical far field as waves propagating to infinity is expressed by 

ordinary series of n  with a finite set of real wave numbers ms at each frequency. 

 

Fig. 2. 

Acoustic 

source. 

 

 

(a) 

 (b) 

b) For an acoustic source, shown in Fig. 2b inside a finite cylinder Ω  
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where lnm

Γ  and l
nM ±  depend on the choice of functions θncos , θnsin  or 

θnsin− , θncos , and the sign ±  corresponds to zone +> zz  or −< zz , respec-

tively.  

6 Some exact solutions 

a) Consider a few examples of calculating mnΓ . Assume that the load is distrib-

uted over a circular region +ΩN  and the surface stresses ( )θσ ,rzz
+ , ( )θσ ,rrz

+  and 

( )θσθ ,rz
+  are expanded into the Fourier series of θ . In accordance with the repre-

sentations (1), let us for a moment denote coefficients of θncos  (or θnsin− ) for 
+
zzσ  and +

rzσ  by  ( )rzn
+τ  and ( )rrn

+τ , respectively. For +
zθσ  the coefficient of  

θnsin  (or θncos ) is denoted by ( )rn
+
θτ . The substitution into (22) yields 
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In particular, for a constant normal load 20
+
zτ  and constant tangent load +

10τ  in 

the direction 1x we obtain the following 
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with 0=Γmn  for 2≥n . It is also easy to obtain the laminate response to a con-

centrated load. For the concentrated body forces ( )03210 ,, zxxxTf j −= δδ β
αα  

( 10 +≤≤ jj zzz ) at any HBCF we obtain 
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with a similar result for the concentrated surface load ( )210 , xxz δδτσ β
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N
mmn u

,0
0 βτ . Note that these formulae are non singular since the 

dummy displacements ( )0,, zru
j
m θβ  with nn JB =  is regular at the origin.  How-

ever, the mode series may have singularity at the origin due to the Hankel func-

tions involved.  

b) In the similar notations, the Green function for ( )321010 ,, xxxxTf j −= δδ β
αα , 

  110 +≤≤ jj RxR is given by modal coefficients  l
nM ±  with the quantities 
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βτ  in the case of 

the surface load ( )3210 ,, xxRxt
+++ −= δδτσ β

αα . Modelling the transducer contact 

area by the surface load distributed on the curvilinear rectangle +ΩN  

( += Rr , LzL ≤≤− , 00 θθθ ≤≤− ) the modal coefficients  l
nM ±  can be easily ex-

pressed via the load components of Fourier series of θ : ( )zrn
+τ , ( )zzn

+τ  and ( )zn
+
θτ . 

The quantities lnm

Γ  are equal to 
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7 Some generalizations 

a) First natural generalization is for a fluid loaded laminate. Assume that some 

layers (specified by an additional superscript 0) are not solids but are the ideal 

compressible (or incompressible) fluids. Thus, in each k th fluid ply we must sat-

isfy the equation of motion and the conditions on the fluid-solid interface:  the 

continuity of the normal displacement and the balance of normal stress and the 
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fluid pressure  k
k

kP 0
0

0 u∇−= λ .  The analogue of HBCF in the case of the fluid 

face is the absence of pressure or of the normal displacement. The displacement 

vector in fluid is determined similarly to (1)-(3) with 0=kw  and with the pres-

sure 
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The waves with the “out-of-plane” polarization in the laminate remain unper-

turbed, but the “in-plane” waves have some corrections. The identities (11)-(14) 

and orthogonality relations (15) remain in force. The formulae (15) and (23) now 

include ∗
lmW  modified as follows 
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The term mnΓ  in Eqn.(23) should contain the additional volume integrals and 

modified facial integrals (if these faces are of fluid ply)  
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The second generalization concerns the layers of infinite thicknesses (half spaces). 

Now the spectrum of the corresponding boundary value problem is subdivided 

into discrete part SHPSV SS ∪ , whose homogeneous waves are described similarly 

to (2), (3)  (with ( )zq
j
P±exp , ( )zq

j
S±exp  for infinite thickness), and by continuous 

part SHPSV ηηη ∪=  for which we obtain 
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with ( )sMM sc
n

sc
n

,, = . The continuous part consists of the cut-offs for radicals SPq ,  

in each half space. For the case of finite source it is important that the field of con-

tinuous part satisfies the homogenous equations and HBCF at Rr > . For this rea-

son, the identities (11)-(14) hold not only for a discrete part of spectrum but also 

when SHPSVl Ss ,∈ , η∈ms  ( )22
ml ss ≠  and vice versa. The right hand side in (11)-

(14) must be integrated over η . Thus, the relations (25)-(27) are valid and:  

• different homogeneous waves of discrete spectrum are orthogonal to each 

other; 

• homogenous waves of discrete spectrum are orthogonal to the waves of con-

tinuous spectrum. 

This readily results in the mode coefficients (23) for SHPSVm SSs ∪∈  without 

considering the direct and inverse Fourier transform. The required wave numbers 

are easily obtained from the frequency equation for the plane wave problem of 
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laminate. However, for the continuous part of spectrum there is no simplification 

in the consideration of the cut-offs in the inverse Fourier transforms. 

b) A hollow cylinder filled in by a compressible fluid can be described by passing 

to a physical limit (absence of shear modulii in fluid layers). The orthogonality re-

lations involve the fluid pressure and remain in force with a simple modification 
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The modal coefficients caused by an acoustic source are sought as previously. The 

same concerns the waves of discrete spectrum in the case of a cylinder embedded 

into a fluid or into a viscoelastic space. 

8 Conclusion 

The obtained results can be naturally subdivided into three groups. First group in-

cludes orthogonality relations for the cylindrical guided waves in laminates and in 

cylinders satisfying HBCF. They correlate with known results for an elastic layer 

and cylinder and possess all the necessarily limit properties. The explicit expres-

sions for reciprocity relations are obtained for both elastic and linearly viscoelastic 

media. The second group describes solving methods for one important problem of 

evaluating the far field from an acoustic source - surface loads or body forces lo-

calised in a finite region. The obtained Green functions can be applied to represent 

the field caused by an arbitrary aperture using convolution integrals. The solution 

for a circular region is of interest for modelling circular transducers. In particular, 

one may also evaluate a pulse train using harmonic synthesis. The third group 

generalizes the above mentioned for the case of fluid loaded laminate and cylin-

der, and/or in case of layers with infinite thicknesses. For the latter we obtain the 

closed form of 3D Rayleigh, Love, Stoneley or Scholte waves. As far as the 

guided wave completeness is concerned, we may refer to the more general result. 

Normally, the total set of eigenfunctions of the polynomial operator pencil has 

multiple completeness (accordingly to its degree) in the functional Sobolev’s 

space on a cross-section of the geometrical region considered (see [13-18]). The 

same property is expected for 3D guided waves. The ordinary completeness is ob-

tained by reducing this set, e.g., in the case of laminate (a) the subset 0Im <ls  for 

basic functions  )1(
nn HB =  ( )0>r  is excluded from the consideration. Another 

application is for the post processing of FEM calculation, performed in a finite 

area of laminate with defects, inclusions, etc., with the interpretation of the ob-

tained results in terms of outgoing waves [19]. 
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Abstract Despite considerable efforts in the last decades to find reliable NDT 
methods for the control of adhesive joints, the durability and the quality of the ad-
hesive bonding remains troublesome to be determined by ultrasonic non-
destructive methods knowing that both the cohesion and the adhesion aspects must 
be considered. In this paper, the adhesive lap joints between two aluminum plates 
are first investigated by a finite element approach to compute the transmission and 
reflection coefficients of Lamb modes. The cohesion is taken into account by the 
characteristics of the adhesive layer and the adhesion by the interfacial conditions. 
Two methods are used to compute the energy dissipation: one based on the or-
thogonality relations and the other based on a signal processing procedure that in-
volves a 2D Fourier transform. Then they can be used to verify the sensitivity of 
the guided waves to the presence of a contaminant. This model is compared to ex-
perimental measurements performed on adhesive lap joints. In order to get repro-
ducible measurements, the detection of the fundamental ultrasonic guided modes 
is performed with air-coupled transducers. 

1 Introduction 

Using adhesive joints in the industry instead of screw or rivets has many advan-
tages: they are lighter and the concentration of stresses is reduced. The classical 
ultrasonic methods like pulse-echo or pitch-catch methods, permits to detect de-
fects like lack of adhesive or porosity but not to quantify the quality of adhesive 

  



                                                                      

joint at the beginning of the structure life and during its life. At the present time, 

the cohesion and the quality at the interfaces (peeling, presence of a contami-
nant…) i.e. the adhesion. 
The methods for the control of adhesive joints are currently destructive. So an im-
portant objective of industry is to find a Non Destructive Testing (NDT) method. 
Find reliable NDT methods for the control of adhesive joints, the durability and 
the quality of the adhesive bonding remains troublesome. Indeed it’s not easy to 
consider both the cohesion and the adhesion aspects. 
The aim of this work is to try to establish a method to control the quality of adhe-
sive joint. The classical ultrasonic investigations are not satisfactory for the adhe-
sive bonded joint because they usually only have longitudinal effects on the joint. 
Since ultrasonic guided waves are loading the joint with shear effects, they are 
promising to investigate the adhesive bonds. In the first part of the paper a model 
taking into account both the adhesion and the cohesion is introduced. The model is 
validated by computation of the energy balance with the orthogonality relations 
and compared to the experimental results by a 2D Fourier Transform. 

2 Modeling of the adhesive joint 

 2.1 The geometry of the samples 

Two aluminum plates with the same dimensions, 250 mm length and 3 mm thick, 
as shown in Figure 1, are bonded with an overlap length of 50 mm. The thickness 
of the adhesive layer is 0.2 mm. The aluminum is chosen as a well-known mate-
rial, isotropic and elastic, in order to focalize the study on the lap joint.  
Two samples were supplied by ASTRIUM-ST. The first sample is made with an 
adhesive, which is usually used in industry. This sample is the reference sample. 
The second sample was prepared with the same adhesive but the interfaces were 
partly contaminated with silicon in the middle part of the overlap in order to simu-
late a bad adhesion. The density ρ and the viscoelastic properties C11

* and C66
* of 

the adhesive, given in Table 1, were measured with a classical transmission 
method [1]. It’s important to note that the imaginary parts of these stiffnesses C11

* 
and C66

*, obtained by experimental investigations, which take into account the at-
tenuation in the adhesive, play an important rule in the model and can‘t be ig-

  

aspects to take into account: the quality inside the adhesive (defects, cracks…) i.e. 
there is no reliable method to control the quality of adhesive joints. There are two 
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nored.

 
Figure 1: Dimensions (mm) and mesh of the adhesive lap joint. 

  Adhesive Aluminum 
ρ (g/cm3) 1.17 2.78 

! 

C
11

* =
E

*
1"#( )

1+ #( ) 1" 2#( )
   GPa( )   6.7 (1 + 0.04 i)  112 

! 

C
66

* =
E

*

2 1+ "( )
   GPa( ) 1.4 (1 + 0.06 i) 27 

Table 1: Characteristics of the materials 

2.2 The model 

A criterion to design a right mesh is to verify, after the computation, that the shear 
stresses are equal to 0, everywhere at the free surfaces. Of course, 0 means much 
smaller than the amplitudes of the stresses elsewhere. On the corner of the struc-
ture, this can be not completely satisfied in a small area since it was verified that 
in this case, the local refinement of the mesh does not change the whole result.  
So the structure is meshed with 10400 quadrilateral elements and 11271 nodes. In 
the thickness of the adhesive layer, a minimum of two elements is assumed 
(Figure 1). Two absorbing regions (AR) are added at the two extremities of the 
aluminum plates to make the plates semi-infinite and eliminate the undesirable re-
flections. The adhesive layer enables to simulate the cohesion. Indeed the charac-
teristics of the adhesive can be modified and some defects can be added in order to 
simulate a decrease in the value of the cohesion. If the continuity of interfacial 
stresses and displacements is assumed, this model enables only the study of the 
cohesion. To take into account the adhesion, two surface distributions of springs 
with stiffnesses 

! 

k
L

 and 

! 

k
T

, are added at the interfaces (Figure 2). These stiff-
nesses are respectively the normal and the tangential stiffness and are defined with 
the discontinuity of displacements [2]: 
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 (1) 

In equation (1), u1 and u2 are the normal and longitudinal displacements and σ11 
and σ12 are the normal and the shear stress at the interface. 

 
 
 
 
 
 
 
 
 

 
 
 

 
 

Figure 2: Model of the adhesive layer taking into account the properties of the interfaces. 

It is assumed that the presence of a contaminant has essentially an influence on the 
shear stiffness k

T
 at the interface. So the longitudinal stiffness k

L
 is chosen to be 

equal to the minimum value that simulates a perfect bonding, defined in the fol-
lowing. The decrease of the value of k

T
 represents the loss of adhesion for study-

ing the interfacial contamination. In the Finite Element program [3], the dis-
placements discontinuities at the interfaces are introduced by using a 
“multiphysic” approach [4]. 

3 Computation of the intrinsic amplitudes 

To check the model, the energy balance is computed with the reflection and 
transmission coefficients, which are the ratios between reflected and incident am-
plitudes and between transmitted and incident amplitudes (Equation 2). 

 
I

m

T

m

I

m

R

m
TR

!

!

!

!
==  (2) 

The energy balance E is the ratio between the sum of reflected and transmitted en-
ergies and the incident energy. These energies are the sums of the energies carried 
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by all the modes m. The energy carried by a mode is proportional to the square of 
the intrinsic amplitudes αm. Then the energy balance is defined by: 

 E =

!
R

m2 +!
T

m2( )
m

"

!
I

m2

m

"
 (3) 

The intrinsic amplitude of a mode m is defined by these relations: 
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To compute the intrinsic amplitude of each mode, two methods are introduced. 

4 Signal processing based on a 2D Fourier Transform. 

This method can be used for the model and the experimental results. The intrinsic 
amplitudes of each mode are deduced from the displacements fields at the surface 
of the plate. The monitored zones are two regions at the surface of the plate: one 
before the joint and the other after the joint.   

Figure 3: Space/Time to Frequency/Wave number transformation 

From the data in the time/space domain, a two-dimensional Fourier Transform [7] 
gives results in the frequency/wave number domain taking into account the spatial 
window [5] as shown in Figure 3. At a given frequency the amplitude at the sur-
face of each mode A

x
1
=0( )

m  can be obtained. This amplitude is the amplitude of the 

normal displacement at the surface in the centre of the spatial window [5]. A 
power-normalized mode is defined as a mode carrying an energy equal to 1 [5-6]. 
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Knowing the power-normalized displacements field u
1 x

1
=0( )

m  at the surface of the 

aluminum plate, given by a semi-analytical computation [8], the intrinsic ampli-
tudes are computed by: 

 !m =
A

x
1
=0( )

m

u
1 x

1
=0( )

m
 (5) 

This signal processing needs only the normalized displacements field at the sur-
face and the amplitudes at the surface, which are obtained with a set of signals 
computed or required experimentally. 

4.1 The orthogonality relations 

This post process computation uses the results of the FE model given along two 
cross sections into the aluminum plates, one before the joint for the incident and 
reflected modes and the other after the joint for the transmitted modes. Like in the 
previous section the powered-normalized fields of displacements and stresses of 
mode m are given by a semi analytical computation. So the intrinsic amplitude of 
each mode are given by the following relation: 
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h
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,  (6) 

where h is the thickness of the aluminum plate and the symbol “tot” means the 
displacements and the stresses fields computed by the FE model that includes the 
contribution of all the modes. Then the reflection and transmission coefficients 
and the energy balance can be obtained with the relations (2) and (3). Since this 
method needs the displacements and the stresses fields in a cross section of the 
plate, it is not possible to use it for the experimental results, only for the results of 
the model. 

5 Validation of the model with the orthogonality relations 

In order to validate the model, two cases are studied. First the imaginary parts of 
the adhesive are suppressed to make the adhesive elastic, for which the expected 
energy balance is 1. In Figure 4 a), the energy balance plotted as a function of the 
frequency permits to verify the quality of the model. The second validation is the 
comparison between the model without springs and the model with springs in 
which the stiffnesses k

L
 and k

T
 are chosen to assume a perfect bonding. In these 
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models, the adhesive is viscoelastic. In Figure 4b), the results of the models are 
very close. Because of the viscoelasticity of the adhesive, the energy balance is 
less than 1 and the variation of the energy balance as a function of the frequency is 
probably due to some resonances into the joint. To reach this result, the values of 
the stiffnesses k

L
and k

T
have been set to a minimum large value of 106 GPa/mm 

that defines the value for obtaining a perfect bonding. 
 

 
Figure 4: Validation of the model: a) Elastic case, b) Viscoelastic case (Doted line:without 

springs), (Continuous line : with springs). 

6 Study of the adhesion - Impact of a contaminant in the model 

6.1 Two cases of studies 

Figure 5: Values of k
T

 versus the position (mm) in the length of the joint: a) Perfect joint, 

b) Contaminated joint 

Now the effect of a contaminant at the interfaces of the joint is studied with the 
Finite Element model. Two cases represent the experimental samples. The first 
sample is equivalent to a good adhesion (no contamination is present). For that, 
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the shear springs is chosen to be high ( k
T

= 106 GPa/mm). The second sample 
simulates a joint with interfaces partly contaminated. Figure 5 shows the shape of 
the k

T
value along the joint for the two cases. 

6.2 Results of the model 

The A0 mode is generated in the aluminum plate in a range of frequencies go-
ing from 0.1 kHz to 550 kHz. This mode is transmitted, reflected, converted and 
dissipated. Figure 6 gives the reflection and transmission coefficients of the A0 
mode. These coefficients are locally sensitive to the adhesion, but not always in 
the same frequency area. However around 400 kHz, the sensitivity to the contami-
nation is important as well for the reflection as for the transmission coefficient. 
Then the model permits to choose the frequency domain, around 400 kHz for the 
experimental study.  

Figure 6: Results of sensitivity to a contaminant: Solid line no contaminant, Dotted line 

contaminant a) Reflection coefficient, b) Transmission coefficient 

7 Validation with the experiments 

7.1 Experimental set-up 

For the generation of A0 mode, the transmitter and the receiver are both air-
coupled transducers (Figure 7). These transducers need no contact with the plates 
so the reproducibility of the measures is realized. The angles of the transducers 
must satisfy the Snell Descartes relations for transmitting or receiving a specified 
mode. The angle of the transmitter is fixed to the angle of A0 and the angle of the 
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receiver is adjusted to the angle of A0 (9.5°) or S0 (3.5°) since the joint can intro-
duce some mode conversion. So the post-processing is simplified because the 
modes are already almost isolated.  

 

  
Figure 7 Experimental set-up of the generation of the A0 model 

The receiver can also be translated for scanning the plate and for obtaining a set of 
signals in the time/space domain. Then a double Fourier transform transforms this 
domain in the frequency/wave number domain to measure the amplitude of the 
modes [5]. 

7.2 Experimental results with A0 incident 

The measurements are made several times and the results given in Table 2 are 
the averaging of these different measures with standard deviations. A0 mode is 
generated at 400 kHz, the frequency at which the model is sensitive to the con-
tamination of the interfaces. Like the model the experiments give very different 
reflection and transmission coefficients in the case of presence or absence of con-
taminant. So this mode at this frequency seems sensitive to the contamination. The 
comparison with the results of FE model (given in Table 2) shows very satisfying 
results. Indeed the experimental coefficients are close to those for the model.  

 
  Reference Contaminated 

Model R/I 0.66 0.34 
Experiments R/I 0.60 ± 0.08 0.29 ± 0.03  

Model T/I 0.34 0.55 
Experiments T/I 0.27 ± 0.03 0.64 ± 0.05 

Table 2: Experimental and model results for the generation of the A0 mode in the case of 

the reference lap joint and contaminated lap joint 
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8 Conclusion 

A FE model to evaluate the quality of the adhesion of a lap joint, based on a repar-
tition of springs at the interfaces between adhesive and adherent was presented. 
This model was tested with two methods to compute the intrinsic amplitude of 
each mode: one based on a signal processing applied to the model results and the 
experimental results and the other based on the orthogonality relations. It was used 
for studying the presence of a contaminant for which it was found that the guided 
mode A0 is sensitive to its presence. 
The comparison between the results of the model with optimal and decreased 
stiffnesses permits to find the frequency domain for which the reflection and the 
transmission of the guided mode is the most sensitive. The good fitting between 
the experimental results and the model results permits to validate this sensitivity to 
the value of the adhesion.  
In the future, some mechanical tests will be made to link the results of ultrasonic 
guided waves investigations to the mechanical results. Other materials like elas-
tomer or composite will be investigated since they are more and more used in the 
industry. 
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Guided waves in empty and filled pipes with 

optimized magnetostrictive transduction   

A. Phang and R. Challis1 

 

 

Abstract This paper considers the design of magnetostrictive transducers for the 

excitation and detection of guided waves in pipes, as part of an apparatus for 

monitoring pipeline contents in a chemistry laboratory. The transducer design and 

sensitivity were optimised on the basis of equivalent electrical circuits, the guided 

wave excitability function and a frequency-domain filter based on the effect of the 

dynamic magnetic field on the excitable spatial wavenumbers. Experiments were 

carried out on pipes with different contents - empty, water, and supercritical CO2. 

Reassigned Spectrogram analysis of the results enabled the pipe contents to be 

differentiated on the basis of resolving the guided wave modes. 

1  Introduction 

Magnetostrictive transduction of guided wavess in rods and pipes have been 

reported by many workers and significant contributions are to be found in [1]-[4]. 

In the context of the design of the transducer and its associated electronics it is 

significant to note that excitation voltages and currents up to 300V and 40 A 

respectively have been used in order to provide adequate signal levels. The 

purpose of our system was to differentiate between three pipe contents – empty, 

when filled with water, and when filled with super-critical CO2. The apparatus 

was to be used in a chemistry laboratory, and for safety reasons it was necessary to 

use low voltage/current excitation to the transducers, our aim being to limit the 

voltage and currents to no more 100 V and 1 A respectively. Therefore the 

transducer design requires optimisation in relation to the propagating modes and 

overall signal levels.  

                                                           

School of Electrical and Electronic Engineering, University of Nottingham, University Park, 

Nottingham NG7 2RD, UK. 

e-mail : albert.phang@nottingham.ac.uk 



This paper considers the transducer design, taking into consideration the 

effects of the spatial distribution of the exciting magnetic field associated with the 

transducers on guided wave excitation and reception, in combination with the 

signal transfer characteristics of the driving and receiving electronics. The 

sensitivity of the overall system may then be optimised, in relation to the electrical 

conditions and frequency bandwidths achievable. Differentiation of contents of the 

pipe would be based on changes to the characteristics of the propagating guided 

wave modes over the frequency range 0 to 500 kHz. 

Guided wave modes in pipes with different contents 

This work was carried out on a high-pressure, stainless steel (316L) Swagelok 

(Solon, OH, USA) pipe, to allow operation with different fluids including CO2 at 

the supercritical state (above 304.2 K temperature and 73.8 bar pressure). The pipe 

diameter was 12 mm with wall thickness of 2 mm. The outer surface of the pipe 

was electroplated with nickel (0.1 mm thickness) to provide the required 

magnetostrictive properties. Longitudinal modes will be considered in this work, 

on account of their established feasibility for interrogation of fluid-filled pipes [4]. 

Figs. 1-2(left) show, respectively, the dispersions for the longitudinal 

modes for the pipe when empty, when filled with water, and when filled with 

supercritical CO2, from 0 to 500 kHz. The dispersions were obtained using the 

DISPERSE simulation package [5]. There are clear differences between the guided 

wave modes, depending on the contents of the pipe. Specifically, the presence of 

fluids in the pipe will introduce additional modes over the given frequency and 

wavenumber bandwidths, i.e. L(0, 1), L(0, 2) and L(0, 3) for the water filled pipe, 

and L(0, 1) to L(0, 8) inclusive for the pipe filled with super-critical CO2. 

The extent to which any given mode is excitable depends on the 

distribution of motions across the pipe wall (the mode shape) particularly the 

amplitude of the motion at the pipe outer surface, where the magnetostrictive 

transduction will be applied. A useful quantitative measure of the excitability of a 

guided wave mode is E(ω)==ω, where A is the displacement amplitude at the 
surface of the pipe and  ω is radian frequency [6]. As an example, Fig. 4 shows 

the excitability function calculated for the L(0, 1) mode from the mode shape 

obtained using DISPERSE. The drop in excitability around 150-180 kHz is in 

accordance with the guided wave characteristics, which at that frequency range is 

most dispersive. 
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Fig. 1: Dispersion curves (group velocity versus frequency) for the Swagelok 

pipe when it is empty (left); and when it is filled with water (right). 
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Fig. 2: (left) Dispersion curves (group velocity versus frequency) when the pipe 

is filled with supercritical CO2; (right) Excitability of the L(0,1) mode versus 

frequency, for the empty pipe. 

Magnetostrictive transduction 

The magnetostrictive transducer comprised enamelled copper wire (diameter 

0.762 mm) wound in a tight spiral onto a polystyrene tube with a bore diameter of 

12 mm. The winding was held in place by circular side cheeks of 0.5 mm thick 

polystyrene sheet aligned axially on to the tube and adhered to it. Coils of 15, 30, 

60 and 100 turns were prepared. Six Alcomax bar magnets (RS Components, UK, 

part number 297-8747) were used to provide a static biasing magnetic field. Each 

transducer was connected to a 50  coaxial cableΩ , which is in turn connected to 

the system electronics. 

The basic scheme for the magnetostrictive transduction is that a static 

magnetic field Hs (from the magnets) is applied to bias the material (nickel layer), 

and an alternating field H (from the spiral coil) is superimposed in order to excite 

wave motion. When a sufficiently strong bias field (HS >> H) is applied then the 
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magnetostrictive behaviour is both linear and non-hysteretic [7]-[8]. The stress σ 

and magnetic flux B in the material are 

 

HecH εεσ −=      (1) 

HeB H εµε +=      (2) 

 

where ε is mechanical strain, H is the alternating field, and c
H
, e
ε

, e
μ

, and
  με 

are constants; the superscripts H and ε imply constant field and constant strain 

respectively.  Given these basic relationships, the applied alternating field and the 

associated spatial distribution along the pipe will restrict the frequency-

wavenumber range over which guided waves can be successfully excited and 

received. These restrictions can be expressed in terms of an overall system 

frequency response which applies over and above the basic excitability outlined 

above. The response can conveniently be expressed as 

 

)()()()()()()( ωωωωωωω YGGGGEG ERkRETkT=    (3) 

 

where E(ω) is the excitability of the guided wave mode transmitted, GkT(ω) and 

GkR(ω) are functions which result from the spatial distribution of the applied 

alternating magnetic field, for the transmitting and receiving transducers, 

respectively. GET(ω) and GER(ω) are the respective frequency responses 

associated with the transmitting and receiving coils. Y(ω) is the fixed response of 

the transmitting and receiving electronics. Each of these frequency response 

functions will now be analysed. 

Spatial distribution of the alternating field 

The magnetostrictive transducer was based on a flat spiral coil of radius a 

consisting of N turns and mounted axially on a pipe of radius x. The coil generates 

the exciting magnetic field around the periphery of the pipe, in the direction of the 

pipe axis. The distribution in space of the intensity of this field then set bounds on 

the range of guided wavenumbers which were excitable, because the effective 

magnetic aperture acted as an extended acoustic source. The axial distribution of 

such a field in a non-magnetic medium is a classical solution [9]; calculation of 

the field parallel with the coil axis but at a point displaced from it by distance x 

(the radius of the pipe in this case) was derived on the basis of the Biot-Savart law 

with the following result 
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where the integration variable φ corresponds to a geometrical angle on the 

plane of the coil, and may be integrated numerically. Fig. 3 (left) shows the 

distribution of the field in the axial, z-direction on the pipe surface for x = 6.1 mm. 

The finite dimensions of the function imply a limitation to the range of 

wavenumbers which are excitable. Fourier transformation of H(z) gives the 

effective filter in wavenumber domain, and the equivalent filter in the frequency 

domain, GkT(ω), can be obtained by reference to the dispersion curve for the 

guided wave mode of interest. As an example, Fig. 3 (right) shows GkT(ω) for the 

L(0, 1) mode in the empty pipe. The same reasoning can be applied to the 

receiving transducer, so the transmit-receive product may be expressed as 
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Fig. 3: (left) Spatial distribution of the alternating field in the axial direction for 

x = 6.1 mm; (right) The function GkT(ω) for the L(0,1) mode in the empty pipe, as 

a function of frequency. 

Equivalent electrical circuit: transmitting coil 

If the transmitting coil of inductance LT is excited by a conventional Thévenin 

source of output resistance Rs, the equivalent circuit is that of Fig. 4(left). The 

transmission sensitivity is then 
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and is therefore dependent on the source resistance RS, operating frequency ω and 

the number of turns NT. kT1 and kT2 are constants of proportionality which we do 

not derive theoretically; kT2 depends on the effective permeability of the magnetic 

circuit, the coil radius and axial length, and measured values were of the order 

of3.5x10
-8

 Henries per (turns)
2
. An optimization scheme is required to arrive at 
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working combinations of frequency, source resistance and number of turns. In real 

systems, the source resistance RS will likely be restricted by the system 

electronics, a typical value being 50 . Ω If we take the modulus of equation 6, 

differentiate with respect to NT and set the result to zero we obtain 
 

2

2 TTs NkR ω=     (7) 

 

For given Rs and ω the optimum number of turns is then 
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R
N

ω
=     (8) 

 

As a design example, Fig. 4(right) shows Nopt versus frequency for Rs = 50  Ω
and a typical value of kT2 = 3.5x10

-8
. 
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Fig. 4: (left) Equivalent circuit for the transmitting magnetostrictive transducer; 

(right) Optimum number of turns on the coil, Nopt versus frequency for Rs = 50 Ω 

and kT2 = 3.5x10
-8

. 

 

On the receiving end, the arriving guided wave results in changes to the 

mechanical strain and magnetic permeability – both terms in equation 1 - on the 

nickel layer on the pipe. These then result in changes to the magnetic flux linking 

the coil, which then generates a signal voltage with a rate of change which follows 

that of the changing flux. The equivalent circuit for the receiving transducer is 

shown on Fig. 5(left). Neglecting the effect of the capacitance of the cable 

between the transducer and the receiver amplifier, the receiver sensitivity (at the 

amplifier terminals) is then 
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As before, kR1 and kR2 are constants of proportionality, and RIN will likely be 

constrained to 50 Ω (typical value) by the input impedance of the receiver 

Rs 
+ 

- 

LT 
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amplifier in a real system. The optimum value of NR is found in the same way as 

for the transmitter, giving 
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Fig. 5 (right) shows Nopt versus frequency for this condition, given a typical 

value of kR2 = 3.5x10
-8

. 
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Fig. 5: (left) Equivalent circuit for the receiving magnetostrictive transducer. 

(right) Optimum number of turns on the coil, Nopt versus frequency for RIN = 50 Ω 

and kR2 = 3.5x10
-8

. 

Experiments: transducer sensitivities 

The purpose of the experiments was to evaluate the overall transmit-receive 

sensitivity given by equation 3 for different transducer arrangements. The L(0, 1) 

mode was propagated between two magnetostrictive transducers in an empty pipe. 

The overall sensitivity could then be verified by fixing the receiving transducer 

and changing the transmitting transducer conditions, or vice-versa. 

The transmitting transducers were driven using a Wavemaker Duet unit 

(Wavemaker, Macro Design Ltd., London, UK) which had an output resistance RS 

of 50  and was set to generate fiveΩ -cycle Hanning windowed sine-wave bursts at 

100 V amplitude in the frequency range 50 kHz (the minimum possible) to 150 

kHz, which is the frequency range over which the mode L(0, 1) is non-dispersive. 

The receiver amplifier formed part of an Embedded Ultrasonic Instrument (EUI, 

NDT Solutions Ltd., Chesterfield, UK), and had an input resistance RIN of 50  Ω
and programmable gain between -20 dB and +60 dB. The amplifier output was 

digitised using a digital storage oscilloscope (LeCroy 9341CM, LeCroy, Chestnut 

Ridge, NY, USA) which was in turn connected to a personal computer for 

processing and analysis. 

RIN 

LRx + 

- 
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Fig. 6(left) shows the overall sensitivities as functions of frequency, for 

two transmitting coils with different numbers of turns (NT = 15 and 30 turns), and 

a receiving coil of NR = 100 turns. The experimental results are in reasonable 

agreement with the theory. A similar result may be obtained by fixing the 

transmitter and changing the number of turns on the receiver. In a real system 

however, it would be advantageous to use the same number of turns on both 

transducers, in addition to the 50 Ω constraints on Rs and RIN. The calculated 

overall sensitivities for these conditions are shown versus frequency on Fig. 

6(right) for four values of N – 15, 30, 60 and 100 turns respectively. The 

sensitivity increases as N increases but tends to saturate as N approaches 100, due 

to the dominance of the inductance terms (N
2
) in the denominators of equations 10 

and 12 at higher values of N. The frequency at which the peak sensitivity occurs 

reduces as N increases, due to the significance of the inductance terms in the 

denominators of equations 6 and 9. Whilst N should be chosen to maximise the 

response at any chosen frequency, a value of N around 60 turns in our case 

provides a close to optimum response over a range of frequencies. 
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Fig. 6: (left) Overall sensitivity as functions of frequency for two transmitting 

coils with different numbers of turns (NT = 15 turns – bottom; NT = 30 turns - top), 

and a receiving coil of NR = 100 turns. Rs and RIN are 50 . Ω Crosses indicate 

experimental measurements, while solid lines represent numerical predictions 

from equation 3; (right) Overall sensitivity G(ω) as functions of frequency, for 

different numbers of turns on identical transducers (N = 15, 30, 60 and 100). Both 

Rs and RIN are constrained to 50 .Ω  

Experiments: empty and fluid filled pipes 

The objective of these experiments was to differentiate between different contents 

in the pipe, by using the magnetostrictive transducers to excite and detect guided 

waves under these different conditions, and resolving changes in the guided wave 

dispersion curves. To excite wave modes over a broad frequency range the 
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transmitting transducer was driven using 100 V broadband pulses of 1 s μ
duration in lieu of the sinusoidal bursts used earlier. The pulses were generated by 

the Embedded Ultrasonic Instrument (see previous section) with an output 

resistance of 50 . The received signals were processed using the Reassigned Ω
Spectrogram [10] method to provide a time-frequency representation of the signal, 

which then represents the arrival times of the guided wave packets. For 

verification, the software package DISPERSE was used to numerically evaluate 

the group velocity dispersions as functions of frequency. Division of the wave 

propagation distance by the group velocity dispersions then produces a time-

frequency representation of the expected arrival times of the guided wave packets. 

Figs. 8-9 give the experimental results showing the reassigned 

spectrogram data superimposed onto the transformed dispersion curves. In all 

three cases there is excellent agreement between the spectrograms and the 

expected dispersion curves. The spectrogram for the supercritical CO2 is less well 

defined, due to the low density of the fluid which results in a correspondingly low 

coupling between the energy associated with the wave in the pipe wall and the 

fluid. The contrast of the processed data was enhanced by means of a logarithmic 

transformation with the result that the new modes could be identified clearly on 

the reassigned spectrogram. 
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Fig. 8: (left) Reassigned spectrogram showing guided wave modes in the empty 

pipe, superimposed onto transformed dispersion curves. (right) Reassigned 

spectrogram showing guided modes in the pipe when filled with water, 

superimposed onto transformed dispersion curves. 
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Fig. 9: Reassigned spectrogram showing guided modes in the pipe when filled 

with supercritical CO2, superimposed onto transformed dispersion curves. 

Concluding remarks 

The principles of guided wave transduction using magnetostrictive transducers on 

pipes have been established by previous workers, however such systems tended to 

require high voltage and current excitations in order to provide adequate signal 

levels. Our aim was to develop a relatively simple and compact apparatus for 

operation in a chemistry laboratory, and this required low voltage and current 

excitations to the transducers due to safety concerns. Therefore it was necessary to 

optimise the design and sensitivity of the transducers within the frequency and 

wavenumber bandwidths required. This required careful consideration of the 

equivalent electrical circuit responses, guided wave excitability and the effects of 

the dynamic excitation magnetic field in the axial direction. In real applications, 

the system electronics will likely impose constraints on the electrical resistances 

of the transducers; the overall transducer sensitivities therefore depend on 

optimising the number of turns on the transducer coils. Experimental sensitivity 

results showed good agreement with expected results obtained from equations. 

Measurements were carried out on a thick-walled stainless steel pipe when empty, 

when filled with water and when filled with supercritical CO2, and the results were 

processed using the Reassigned Spectrogram method. Clear differentiation of the 

pipe contents was achieved, and the spectrograms indicated quantitatively good 

agreement with expected dispersion curves calculated using DISPERSE. 
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Piezoelectric material characterization by
acoustic methods

E. Le Clézio, T. Delaunay, M. Lam, G. Feuillard

Abstract Two characterization methods of piezoelectric materials based on acous-
tic measurements are presented. Their main objective is to identify the entire set

the first section of the paper presents an identification protocol based on the study
of the resonance spectra of parallelepipeds. The second characterization method is
performed by means of the measurement of the transmission coefficients of plane
waves propagating through an immersed plate. It is suitable for the determination of

1 Introduction
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of electromechanical constants of piezoelectric materials from a single sample.
In order to characterize new materials like single-crystals with small dimensions,

the properties of bulk piezoelectric ceramics.

Piezoelectric material manufacturers are looking for characterization methods al-
lowing the control of the quality, of the reliability and of the reproducibility of their

needed to design complex devices. Classical characterization methods are based on
electrical measurements [1], and can not be applied to any kind of sample shapes and
sizes. At least three samples have to be used to identify the entire electromechanical

The main objective of the methods presented in this paper is to identify the entire

production. Moreover, the complete set of constants of the constitutive materials is

set of electromechanical properties of piezoelectric materials from a single sample.

tensors [2] leading to possible inconsistencies in the identified material constants.



They were first developed for elastic materials and are here extended to piezoelectric

small dimensions, an identification protocol based on the study of the resonance

measurement of the transmission coefficients of plane waves propagating through
an immersed plate [4]. Due to the larger dimensions of the tested samples, it is well
adapted to the determination of the properties of piezoelectric plates.

2 Resonant Spectroscopy

This method was developed to characterize relaxor-based ferroelectric single crys-
tals [3]. These materials can have excellent piezoelectric properties compared to
conventional PZT ceramics commonly used in ultrasonic transducers. Their large
electromechanical coefficient k33, their high dielectric permittivity εT

33 and their typ-
ical piezoelectric constant d33 of 2500pC/N make these materials very attractive for
ultrasonic transducer applications requiring a high sensitivity and a large bandwidth
[5]. However, the existing characterization methods have to be adapted to (i) the
small dimensions of single crystals, (ii) their anisotropy degree, and (iii) the diffi-
culty in obtaining homogeneous compositions [6]. The study reported in this section
is based on the Resonant Ultrasound Spectroscopy method. It was first applied to
elastic materials [7] and then extended to piezoelectric samples [8]. In the latter
cases, mechanical excitations and detections were carried out involving pinducers
or ultrasonic transducers positioned at the sample corners [9]. These methods are in-
herently limited by the transducer bandwidths leading to an inhomogeneous mode
excitation. This section presents results from [3] where a new experimental set-up
is proposed for Resonant Ultrasound Spectroscopy measurements. It is based on an
electrical excitation of the piezoelectric sample and on the detection of its mechani-
cal vibrations through a laser interferometer. The experimental set-up and the model
are applied to the characterization of piezoelectric cubes and an identification pro-
tocol based on a sensitivity analysis is proposed. The identification of the entire set
of properties of a [001]c PZN-12%PT single crystal in the tetragonal phase (4mm)
is presented here.

2.1 Modeling of the resonant vibration modes of piezoelectric
parallelepipeds

Consider a non metalized piezoelectric parallelepiped. The material characteristics
are the density ρ and components CE

i jkl , emkl and εS
mn of the elastic stiffness ten-

sor measured at constant electrical field E, of the piezoelectric tensor and of the
dielectric tensor measured at constant strain respectively. The Lagrangian of this
piezoelectric body of volume V0 is [8, 10]:

spectra of parallelepipeds is first presented [3]. The second method is based on the
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samples. In order to characterize new materials, and especially single-crystals with



L =
1
2

∫∫∫

V0

ui, jC
E
i jkluk,l + 2φ,memkluk,ldV −

1
2

∫∫∫

V0

φ,mεS
mnφ,n + ρω2uiuidV, (1)

where ω is the angular frequency. A eiωt time dependence is assumed for mechan-
ical and electrical fields. In a variational approach, any mechanical displacement
ui → ui + δui and electrical potential variation φ → φ + δφ yields a variation of
the Lagrangian: L → L+ δL. Hamilton’s principle leads to look for the Lagrangian
stationary points where δL = 0. This determines a motion equation whose solutions
correspond to the free vibrations of the piezoelectric body. In accordance with the
Rayleigh-Ritz method [10], the mechanical displacements and the electrical poten-
tial are expressed as a linear combination of functions:

u =
N

∑
p=1

apψ p ; φ =
M

∑
r=1

brϕr. (2)

The ψ p, p = 1, . . . ,N and ϕr, r = 1, . . . ,M functions are chosen to be orthonor-
mal. To determine ap and br constants, an eigenvalue problem is expressed by sub-
stituting expressions (2) into equation (1), and by the condition of the stationary
Lagrangian:

(

Γ + ΩΛ−1Ω t)a = ρω2a ; b = Λ−1Ω ta. (3)

a = (a1,a2, . . . ,aN)t and b = (b1,b2, . . . ,bM)t are unknown vectors. Γ , Ω and Λ
are respectively the elastic, piezoelectric and dielectric interaction matrices. They
depend on the shape and on the electromechanical properties of the piezoelectric
body, and their descriptions are given in the appendix of [8]. The determination of
the eigenvalues ρω2 and the eigenvectors a and b allows the resonant frequency ω ,
the modal elastic displacements u and the electric potential φ to be identified.

As pointed out in literature, the Legendre polynomial basis is well adapted to
describe the behavior of the electrical and acoustical fields inside parallelepipeds.
Moreover, Mochizuki showed that the symmetry classification of the free oscilla-
tions of anisotropic parallelepipeds is useful for material characterization [11]. This
principle is extended to piezoelectric materials of parallelepiped shape [3] where the
free modes of vibration of a parallelepiped are classified according to eight symme-
try elements. The solutions of the eigenproblem (3) are then sought in the form [8]:

u = ∑
λ µνi

aλ µνi
√

L1L2L3
Pλ

(

x1

L1

)

Pµ

(

x2

L2

)

Pν

(

x3

L3

)

ei, (4)

φ = ∑
ξςη

bξςη
√

L1L2L3
Pξ

(

x1

L1

)

Pς

(

x2

L2

)

Pη

(

x3

L3

)

, (5)

where the pth and rth basic functions ψp and ϕr are defined by the triplets (λ , µ ,

linked to L1, L2, L3 dimensions of the solid. The relations between the coefficients
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ν) and (ξ , ς , η), respectively is the Legendre function of order α and ei

i direction. 1√
L1L2L3

is a normalization term
Pα

(

xi

(

vector in the xis the unit displacement



aλ µνi and bξςη and the symmetry groups are presented in [3]. Using this decom-

matrices leading to eight independent eigenvalue problems yielding reduced com-
putation times.

In order to perform poling of the piezoelectric materials, electrodes have to be
laid down on two surfaces orthogonal to the desired polarization axis. To take into
account any potential imposed by an electrode on the piezoelectric solid surface, the
work performed by the electrical charges of the metalized surfaces has to be sub-
tracted from the Lagrangian (1). Delaunay et al. [3] showed that no significant mod-
ification of the resonant frequencies or of the mechanical mode-shapes are induced
by the electrodes. Thus, the effect of the electrodes is neglected in the following.

2.2 Experimental results and discussion

This section presents the experimental set-up developed in [3] to generate and detect
the free vibrations of a piezoelectric cube. It is applied to the characterization of the
electromechanical properties of a single crystal in the tetragonal phase 4mm (PZN-
12%PT).

2.2.1 Experimental set-up and materials

An electrical excitation is performed to generate the vibrations of the piezoelectric
solid. It is delivered through an impedance analyzer (Agilent 4395A) also allowing
the sample electrical resonances and anti-resonances to be measured (Figure 1(a)). It
has a very large frequency bandwidth (10kHz - 500MHz) and the delivered electrical
power is set between 0 dBm and 10 dBm depending on the excited modes. The
sample is set on a plastic holder and the electrical contact is ensured by a metallic
strip fixed on a spring so that the free mechanical boundary conditions at the surfaces
of the cube are fulfilled.

Velocity measurements at the surface of the sample are carried out through a
Laser vibrometer (Polytech OFV-505) so as to detect the resonance frequencies as
well as the associated mode-shapes. The interferometer is positioned at 50 cm from
the sample leading to a 20 µm focal area. The velocity decoder sensitivity is either
5 (mm· s−1)/V or 25 (mm· s−1)/V depending on the cut-off frequency, respectively
250 kHz and 1.5 MHz. The sample holder is fixed onto a two-dimensional microm-
eter computer controlled translation unit. 100 acquisition points are taken on the
surface of the sample leading to the representation of the mode-shapes for each
resonance.

To carry out the electrical excitation, the two surfaces of the sample orthogonal
to the x3 polarization axis are metalized. In order to generate a maximum number of
modes, an electrode patterning is used allowing particular mode symmetries to be
highlighted. One of the metalized faces is then only partially covered by electrodes
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position, the interaction matrices Γ , Ω and are separated into eight independentΛ



Fig. 1 (A) Experimental set-up ; (B) PZN-12%PT single crystal cube and the corresponding
surface velocity spectrum measured on one of the upper corners for frequencies ranging from
94500 Hz to 210000 Hz.

electrical field close to zero. Finally, since the sample is excited by an electrical
source and that mechanical velocities are measured by laser vibrometry, the detected
vibrations are necessarily those of piezoelectrically coupled modes meaning that full
elastic, piezoelectric and dielectric tensors are recoverable.

2.2.2 Inverse problem and PZN-12%PT single crystal characterization

To identify the material characteristics, a fit procedure has been developed. Modify-

to be matched to the measured data. Due to symmetry considerations, eleven con-
stants have to be identified for tetragonal (4mm) piezoelectric materials. An identi-
fication protocol based on a sensitivity analysis is proposed in [3]. The frequency
dependence of each mode to the constants is theoretically evaluated to identify the
vibration modes that were mainly sensitive to a single material constant. The modes
sensitive to one or two characteristics are revealed and their resonant frequencies
are used to identify the corresponding material properties.

The resonant ultrasound spectroscopy method is applied to the characterization
of a 7.55×7.52×7.71 mm3 PZN-12%PT single crystal cube. The sample is poled
along the [001]c direction leading to a 4mm symmetry. The tested sample presents
internal defects that might alter its resonant behavior (figure 1(b)). However, the
number of measured modes and their corresponding resonant frequencies are as-
sumed to be sufficient in order to identify the electromechanical characteristics of
the cube. Figure 1(b) also presents the spectrum of the surface velocity measured
by the laser vibrometer on one of the upper corners in the [94.5,210] kHz frequency
range. Six peaks are observed and identified through the measurement of their me-
chanical displacements. They are labelled according to the Mulliken notation [12].
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ing the CE, e and εS tensors enables the resonant frequencies computed from (3)

(Figure 1(b)) in order to deliver enough electrical power while keeping the external

(A) (B)



No existing electromechanical tensor of a PZN-12%PT single crystal is available
in the literature but some materials are expected to possess very close properties,
such as PMN-x%PT single crystals with a PT ratio inducing a tetragonal symmetry.
Thus, the electromechanical properties of a PMN-42%PT single crystal [13] are
used as initial guess in the characterization process. To evaluate the accuracy of the

results, a distance ∆mc between the experimental resonance frequencies f (i)
measured and

the computed ones f (i)
computed is defined by:

∆mc =

∑
i

∣

∣

∣
f (i)
measured − f (i)

computed

∣

∣

∣

∑
i

f (i)
measured

. (6)

In Table 1, ∆mc is equal to 0.95. Moreover, independent modifications of the con-
stants are made and the accuracies correspond to the maximum values of these mod-
ifications inducing no significant change in ∆mc. The characteristics presented in
Table 1 are, to the authors’ knowledge, the first complete elastic, piezoelectric and
dielectric tensors of a PZN-12%PT single crystal reported in the literature. They are
consistent with tensors of single crystals with similar compositions [5].

Table 1 PZN-12%PT single crystal cube properties identified by acoustic spectroscopy.

CE
11 (GPa) CE

12 (GPa) CE
13 (GPa) CE

33 (GPa) CE
44 (GPa) CE

66 (GPa)

152±2 87±1 90±0.5 84±2 37±3 22±1

Density (kg/m3) e15 (C/m2) e31 (C/m2) e33 (C/m2) εS
11 (ε0) εS

33 (ε0)

8380 35±3 −3±0.5 4±1 2420±150 331±50

3 Transmission spectroscopy

The second characterization method is based on the generation of acoustic waves
with controlled propagation paths inside plates. This method has first been im-
plemented for the characterization of pure elastic or visco-elastic plates [14], and
the model used in this paper is based of a state-vector formalism [15]. It has
been extended to piezoelectric material by Kraut and Adler [16, 17] and has been
fully developed by Lothe & Barnett [18, 19]. The theoretical model describing
reflection-transmission of plane acoustic waves through piezoelectric anisotropic
plates is based on the octet formalism of piezoacoustics and the concept of the
impedance/admittance [20] matrices. Incorporating different types of electrical
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boundary conditions for an immersed plate, the reflection and transmission coef-
ficients are expressed through this admittance in explicitly the same way as in the
case of a pure elastic plate [21, 22, 23]. This theoretical model is then engaged for a
Ferroperm Piezoceramics high permittivity PZT-NN ceramic [24] characterization.

3.1 Theoretical background

Consider an infinite piezoelectric plate, possibly absorbing, with the density ρ and
the tensors of elastic CE, piezoelectric e and dielectric ε coefficients, referred to
some crystallographic basis {x1,x2,x3}. Assume the wave train in the form

u = A(y)eik(x−vt), σn = F(y)eik(x−vt),

φ = ϕ (y)eik(x−vt), d = D (y)eik(x−vt),
(7)

where the axes x and y are, respectively, parallel and orthogonal to the plate faces. k
is the wavenumber along the x-axis, v = ω/k is the phase velocity. σn is the normal
component of the mechanical stress tensor σ , u is the elastic displacement, d and
φ are the induction and potential of the electric field induced by the piezoelectric
effect. The state-vector approach in piezoacoustics implies expressing the governing
equations for plane waves as the first-order ordinary differential system (ODS)

[

ikN(v)−
d
dy

]

η (y) = 0, (8)

where the eight-component state vector η is in the form

η =

(

U
V

)

, U =

(

A
ϕ

)

, V = ik−1
(

F
Dy

)

. (9)

The expression of the 8×8 matrix N(v) is presented in [23]. The state-vector for-
malism for a plate is based on the solution of (8) in the form of a matricant M, so
that η (y1) = M(y1,y2)η (y2) . Through a homogeneous plate with faces at y = ±h
it is given by

M(h,−h) = exp [2ikhN(v)] =

(

M1 M2

M3 M4

)

. (10)

This formalism also involves impedance/admittance matrices, representable via M.
The admittance matrix Y(h,−h) is defined as

(

U(−h)
U(h)

)

= iY(h,−h)

(

V(−h)
−V(h)

)

, (11)

where Y can be written via the blocks of M: Y =i

(

M−1
3 M4 M−1

3
M1M−1

3 M4 −M2 M1M−1
3

)

.

The above definitions and ensuing properties are the same for the 6×6 format of
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elasticity and the 8×8 format of the piezo-elasticity. However, the case of piezoelec-
tric plates often calls for more versatile formulations of the impedance/admittance
matrices [25, 26, 27]. In [23], a 6×6 version of the admittance matrix ˜Y including
the electrical boundary conditions (BC) is presented. Once this matrix is obtained,
it defines the sought coefficients of reflection and transmission via their known ex-
pressions for the purely elastic case [22]:

T =
−2Y (n)

3 Yf e−2ikp f h

(

Y (n)
1 −Yf

)(

Y (n)
4 −Yf

)

−Y (n)
2 Y (n)

3

, (12)

where Yf = −ip f /ρ f v2, p f =
√

v2/c2
f −1 and Y (n)

i = n · ˜Yin (i = 1, ...,4). ˜Yi are

the 3×3 blocks of the 6×6 admittance ˜Y of piezoelectric plate.

3.2 High permittivity PZT-NN material characterization

One of the main axes of piezoelectric material research deals currently with the elab-
oration of ceramics with very high properties because the size reduction of the de-
vices usually yields smaller performances of the constitutive materials. This section
presents the characterization of a high permittivity material - Pz59 - developed by
Ferroperm in the framework of the MINUET European project (n˚NMP2-CT-2004-
505657). Of Pb[Zr,Ti,(Ni1/3Nb2/3)]O3 composition, these materials are meant to be
introduced into miniature multi-element devices such as transducer networks, and

To infer the material constants, ultrasonic plane wave transmission measurements
are performed. An experimental set-up has lately been applied to the characteriza-
tion of carbon-polymer based composite plates [14] and is here adapted to the iden-
tification of the entire piezo-elastic tensor of piezoelectric materials. As presented
in figure 2.(A), the sample is immersed into a water tank. It is fixed on a motor-
ized rotation stage. A 0.375 inch diameter transducer (Technisonic ISL-0303-HR)
with a 3.5 MHz central frequency is excited by a pulse centered between 3.5 and
4 MHz. The transmitted acoustic fields are captured for an incident angle ranging
from 0◦ to 50◦ every 0.5◦. The reference signal transmitted through water without
the sample is also recorded. Fast Fourier Transforms are then performed and the
transmitted spectra are divided by the reference one, yielding the angular spectrum
of the absolute value of transmission coefficient at a given frequency.
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possess higher piezoelectric properties than classical ceramics.

mission spectra to numerical simulations obtained from a program based on the
formalism described in §3.1 in which the material constants CE, e and ε are the
input parameters. This method has already been validated on a Pz27 ceramic and

As in §2.2, a fit procedure is then applied to compare the experimental trans-

the effect of the material metallization has been quantified [4]. It is here applied to the
identification of the values of elastic, piezoelectric, and dielectric coefficients of the Pz59
plate. Figure 2.(B) presents the variation of the transmission coefficients through a



Fig. 2

Density (kg/m3) CE
11 (GPa) CE

13 (GPa) CE
55 (GPa) CE

33 (GPa)

7850±50 137.8±2.2 % 78.8±1.9 % 24.4±7.7 % 116.6±0.6 %

e15 (C/m2) e31 (C/m2) e33 (C/m2) εS
11 (ε0) εS

33 (ε0)

19.5±9.6 % −7±58 % 25.4±1.6 % 4103±13.9 % 2729±2.9 %

Most of the characteristics presented in Table 2 are identified with an accuracy
better than 3%. C55, e15 and εS

11 have accuracies of 8%, 10%, and 14% respectively,
remaining in the accuracy range of the piezoelectric material characterization meth-
ods. However, e31 is identified at about 60% accuracy. This can be explained with
the help of the Christoffel tensor calculated in the x1x3 plane for a propagation an-
gle θ given with respect to the normal of the plate surfaces. It indicates that the e31

situated above the longitudinal wave critical angle. Only transverse waves are then
transmitted through the plate and their damping is greater than that of compressional
waves. The amplitudes of the resulting signals are then small and the accuracy of
e31 is deteriorated.
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Pz59 plate with the incidence angle. The resonance angles are accurately identified,

Solid lines: measurements ; Dashed lines : numerical simulations.
(A) Experimental setup ; (B) Evolution with the angle of the transmission at f = 3.11 MHz.

or by a frequency dependance of the material damping.
tude discrepancies are observed. They can be explained by diffraction losses and/

angular zone of sensitivity ranges between 30˚and 70˚. This angular region is

validating the determination of the real parts of the characteristics. However, ampli-

Table 2 Acoustical characterization of a Pz59 plate.

(A) (B)



4 Conclusions
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Two piezoelectric material characterization methods were presented. Resonant Ul-

where the electrical excitation of the parallelepiped sample and the laser detection
of its mechanical displacements enabled piezo-electrically coupled vibration modes
to be studied. To identify the material constants, particular attention was paid to the
modes’ sensitivity to independent elastic, piezoelectric or dielectric constants. The
method has been applied to the identification of the full tensor of a PZN-12%PT
single crystal. The tested sample was of several hundreds of mm3 but the instrumen-
tation, and particularly the laser interferometer, should enable the characterisation
of smaller samples. The second method called Transmission Spectroscopy is based

characterization of a high permittivity ceramic developed in the framework of the
MINUET European Project for high frequency medical imaging. Most of the prop-
erties are identified with very good accuracies, but a sensitivity study is currently 

on the propagation of acoustic waves through immersed plates. It was applied to the

being carried out to define a new identification protocol and improve the robustness of
the characterization method.

trasound Spectroscopy measurements were carried out using an experimental set-up



Ultrasound characterization of aggregated red
blood cells: towards in vivo application

Abstract Ultrasonic backscattered signals from blood contain frequency-dependent
information that can be used to obtain quantitative parameters reflecting the ag-
gregation state of red blood cells (RBCs). The difficulty to use this frequency-
dependent information in vivo is due to the attenuation caused by intervening tissue
layers that distorts the spectral content of backscattering properties from blood mi-
crostructures. We propose an optimization method to simultaneously estimate tissue
attenuation and blood structure factor. In an in vitro experiment, we obtained satis-
factory estimates with relative errors below 25% for attenuations between 0.115
and 0.412 dB/cm/MHz and D <10 (D the aggregate diameter expressed in number
of RBCs).

1 Introduction

For the detection and characterization of tissues, quantitative ultrasound techniques
using the radio frequency (rf) backscattered signals have received broad interest for
the past 30 years. One approach is to use the magnitude and frequency dependence
of the rf backscatter spectrum in order to quantify the tissue structures such as the
size, acoustic impedance, and concentration of the scatterers. Many in vitro and in
vivo experiments have been performed to demonstrate the utility of this approach for
characterizing of the eye, liver, kidney, prostate and breast. Recently, the frequency
dependence of the ultrasound backscattering coefficient (BSC) was studied to as-
sess the level of red blood cell (RBC) aggregation. Two parameters describing RBC
aggregation, the packing factor and mean aggregate diameter, were estimated from
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the Structure Factor Size Estimator (SFSE).1 The difficulty in using the SFSE in
vivo is that the spectral content of backscattered signals is also affected by attenua-
tion caused by intervening tissue layers between the probe and the blood flow. More
generally, ultrasound scatterer size estimation techniques for tissue characterization
(such as liver, kidney, prostate or breast) has had limited success in clinical practice
because of tissue attenuation effects.2,3 Some groups2,4,5 have developed measure-
ment methods to evaluate the frequency-dependent attenuation in order to compen-
sate a posteriori the backscattered power spectrum. Our goal is to explore another
strategy for in vivo measures of RBC scatterer sizes. Recently, we have proposed
an optimization method providing an estimate of total attenuation and blood struc-
tural parameters simultaneously, termed the Structure Factor Size and Attenuation
Estimator (SFSAE).6 This method consists in fitting the spectrum of the backscat-
tered rf echoes from blood to an estimated spectrum by a modified SFSE model.
Herein, the SFSAE is improved and in vitro experimental evaluation of the SFSAE
is performed.

2 Background: Structure Factor Size and Attenuation Estimator

The technique allowing one to estimate simultaneously blood structural parameters
and total attenuation has been described in detail in Ref. 6 and is summarized here.

Blood can be considered as a very dense suspension of particles (i.e. red cells)
having strong interactions (collision, attraction, deformation, flow dependent mo-
tions). We develop a theoretical model of blood ultrasound backscattering based on
the particle approach.7,8 This approch consists of summing contributions from indi-
vidual RBCs and models the RBC interaction by a particle pair-correlation function.
The model proposed in Ref. 1 has been modified to predict the theoretical backscat-
ter coefficient from blood:6

BSCtheor(k) = mσb(k)S(k)A(k) (1)

where k is the wave vector, m is the number density of RBCs in blood estimated
by measuring the hematocrit H by microcentrifugation (m = H/Vs, where Vs is the
volume of a RBC), σb is the backscattering cross section of a single RBC, S is the
structure factor describing the spatial organization of RBCs, and A is the frequency-
dependent attenuation function. The backscattering cross-section σb of a weak scat-
tering particle small compared to the wavelength (Rayleigh scatterer) can be de-
termined analytically as follows: σb(k) = 1/(4π2)k4V 2

s γ2
z , where γz is the variation

of impedance between the RBC and its suspending medium (i.e. the plasma). The
structure factor S is the Fourier transform of the pair-correlation function8 g and is
approximated by its second-order Taylor expansion1 in k as

S(k) = 1 + m
∫

(g(r)−1)e−2 jkrdr ≈W −
12
5

(kR)2. (2)
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In this last equation, W is the low-frequency limit of the structure factor (S(k)|k→0)
called the packing factor.8,9 R is the radius of 3D RBC aggregates assumed to be
isotropic. We introduce D = R/a as the isotropic diameter of an aggregate (ex-
pressed in number of RBCs) with a the radius of one RBC sphere-shaped model
of volume Vs. The attenuation function A is given by: A(k) = e−4α0 f , where f
is the frequency and α0 is the attenuation coefficient (in dB/MHz) defined by:
α0 = ∑

i
αiei, where αi and ei are respectively the intervening tissue layer attenu-

ations (in dB/cm/MHz) and thicknesses. We thus assume that the attenuation in-
creases linearly with the frequency: α( f ) = α0 f .

The measured backscatter coefficient was computed as

BSCmeas(k) = BSCre f (k)
Pmeas(k)

Pre f (k)
. (3)

In Eq. (3), the mean backscattered power spectrum Pmeas was obtained by aver-
aging the power spectra of 20 backscattered echoes from blood. The mean power
spectrum Pre f was obtained from a reference sample of non-aggregated RBCs at a
low hematocrit of 6% (i.e. Rayleigh scatterers).10 In this case, 20 echoes were also
averaged. This reference sample was used to compensate the backscattered power
spectrum Pmeas for the electromechanical system response, and the depth-dependent
diffraction and focusing effects caused by the ultrasonic beam.

The packing factor W , aggregate diameter D and total attenuation along the prop-
agation path α0 were determined by matching the measured BSCmeas given by Eq.
(3) with the theoretical BSCtheor given by Eq. (1). For this purpose, we searched
values of W , D and α0 minimizing the cost function F(W,D,α0)=||BSCmeas −
BSCtheor||

2. In all studied cases, the cost function seemed to have a unique global
minimum, as was observed by plotting the cost function surface F(W,D) with vary-
ing values of α0 (see Fig. 1 in Ref. 6). For the optimization problem, we defined a
set of lower and upper bounds on the variables (W , D, α0) so that the solution is
searched in the range: 0≤W ≤100, 0≤D ≤50 and 0≤α0 ≤1 dB/MHz. We chose to
reject the solution (W , D, α0) having an estimated diameter D very small compared
to 0.1.

3 In vitro experiment in a Couette flow device

3.1 Blood preparation

Fresh porcine whole blood was obtained from a local slaughter house, centrifuged
and the plasma and buffy coat were removed. Two blood samples were then pre-
pared: (i) a H6 reference sample, which was a 6% hematocrit non-aggregating RBCs
resuspended in saline solution; and (ii) a 40% hematocrit T40 test sample, which
consisted of RBCs resuspended in plasma to promote aggregation.
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3.2 Experimental set up

US measurements were performed in a Couette flow system to produce a linear
blood velocity gradient at a given shear rate. The schematic configuration of the ex-
perience is shown in figure 1. The system consisted of a rotating inner cylinder with
a diameter of 160 mm surrounded by a fixed concentric cylinder of diameter 164
mm. A 60 mL blood sample was sheared in the 2 mm annular space between the
two coaxial cylinders. The US scanner (Vevo 770, Visualsonics, Toronto, Canada)
equipped with the RMV 710 probe was used in B-mode. The single-element fo-
cused circular transducer had a center frequency of 25 MHz, a diameter of 7.1 mm
and a focal depth of 15 mm. We operated at a sampling frequency of 250 MHz with
8 bits resolution (Gagescope, model 8500CS, Montreal, Canada). The probe was
mounted in the side wall of the fixed outer cylinder and was positioned to have its
focal zone at the center of both cylinders. To ensure ultrasonic coupling, the hole
within the outer stationary cylinder (containing the probe) was filled with a liquid
agar gel based mixture. When solidified, this gel was cut to match the curvature of
the cylinder to avoid any flow disturbance. The gel was a mixture of distilled wa-
ter, 3% (w/w) agar powder (A9799, Sigma Chemical, Saint-Louis, MO), 8% (w/w)
glycerol and a specific concentration of 50 µm cellulose scattering particles (S5504
Sigmacell, Sigma Chemical, Saint-Louis, MO) that determined the attenuation coef-
ficient. Five experiments were performed with five mixtures having Sigmacell (SC)
concentrations varying from 0% to 1% (w/w). Since skin is one of the most atten-
uating tissue layers during in vivo scanning, phantoms were prepared in order to
have attenuations close to skin attenuation. The 0% concentration constituted the
non-attenuating gel and the four other mixtures mimicked skin attenuations.

   RMV 710 probe composed of an

  oscillating single-element focused

   circular transducer of fc=25 MHz

   (Vevo 770, Visualsonics, Canada)

Agar and Sigmacell gel

eSC=10 mmSCSC

Rotating inner cylinder

Fixed outer cylinder

Fig. 1 The Couette flow system
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3.3 Attenuation measurements

The attenuation coefficients of the reference (0% SC) and of the others skin-
mimicking phantoms αsc were determined by using a standard substitution method.
A transducer with center frequency of 25 MHz (Vevo 770, Visualsonics, Toronto,
Canada) was used in transmission/reception with a reflector on the opposite side
of the phantom for reflection measurements. Reflected signals were recorded both
with and without the agar gel sample in the acoustic path. The attenuation coeffi-
cient was then estimated using a log spectral difference technique. For each con-
centration of SC, six regions were scanned for averaging purpose. Thicknesses of
skin-mimicking phantoms esc were fixed to 10 mm. As shown in the table 1 sum-
marizing results, attenuation coefficients of skin-mimicking phantoms were in the
same range as the human dermis (0.21 dB/MHz at 14 - 50 MHz considering a 1 mm
dermis thickness11).

Attenuations of the blood αblood sheared at different shear rates were also mea-
sured in the reflection mode using the same experimental configuration shown in
figure 1. The gel had a 0% SC concentration and the rotating inner cylinder was
used as the reflector. Table 2 summarizes results.

Table 1 Estimated values of the attenuation coefficients of the reference (0% SC) and of the others
skin-mimicking phantoms (using a log spectral difference technique)

SC Sigmacell attenuation αsc

(%) (dB/MHz)
0.25 0.115
0.5 0.219

0.75 0.320
1 0.412

Table 2 Estimated values of the blood attenuation sheared at different shear rates in the Couette
flow device (using a log spectral difference technique)

Shear rates Blood attenuation αblood

(s−1) (dB/MHz)
5 0.053

10 0.036
20 0.024
30 0.016
50 0.013
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3.4 Measurement protocol

Prior to each measurement, the T40 blood was sheared at 200 s−1 during 30 s to
disrupt RBC aggregates. The shear rate was then reduced to residual values of 5,
10, 20, 30 and 50 s−1 during 90 s to reach an equilibrium in the state of aggrega-
tion in the sheared blood sample. After that, for each shear rate, 20 B-mode images
were constructed for 80 s. For each line of the B-mode images, echoes were se-
lected with a rectangular window of length 0.4 mm at twenty depths every 0.04 mm
(i.e. with 90% overlap between windows). For each depth, the power spectra of the
backscattered echoes were averaged over 20 acquisitions (corresponding to the 20
acquired images) to provide Pmeas. This protocol was repeated five times with the
five agar-based phantoms. Then, the T40 blood was removed and the H6 sample was
introduced in the Couette device. The H6 sample was sheared at 50 s−1 and coupled
with the 0% SC concentration agar gel. Echoes were windowed as for the H40 sam-
ple at the same depths and their power spectra were averaged over 20 acquisitions
to obtain Pre f .

3.5 Reference measurements with the 0% SC concentration
phantom

The experiment with the 0% SC phantom was realized in order to have reference
results on packing factors Wre f and aggregate diameters Dre f obtained from the clas-
sical SFSE.1 These parameters were assumed to be true values of packing factors
and aggregate diameters for all shear rates, and will be compared in the next section
with packing factors and diameters estimated by the SFSAE and by the SFSE when
skin-mimicking phantoms are used.

It is important to emphasize the fact that the H6 reference sample was also mea-
sured with the 0% SC phantom. The phantom attenuation, although small with no
SC, therefore affected equivalently both spectra Pmeas and Pre f in Eq. (3). The re-
sulting measured backscatter coefficient BSCre f was thus not biased by attenuation.

4 Results

4.1 Reference parameters with the SFSE

Figure 2 reports results on Wre f and Dre f from the SFSE with compensation for
blood attenuation in the case of no gel attenuation. It can be observed that the am-
plitude of the backscattering coefficient as well as the estimation of the parameters
on Wre f and Dre f decrease when the shear rate increases (i.e. the level of aggregation
becomes smaller).
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Fig. 2 Backscatter coefficients for blood sheared at different residual shear rates and measured
with the 0% SC concentration phantom, and corresponding fitting with the classical SFSE with no

4.2 Parameters evaluated with the SFSAE

Typical results of the SFSAE minimization procedure for the different agar phan-
−1

Wre f and D

0

re f corresponds to αscesc + αbloode where αsc

and αblood

α0 were estimated by the SF-

rameter correspond to: (W −Wre f )/Wre f , (D−Dre f )/Dre f and (α0 − )/αre f .
Except for the shear rate 5 s−1 with the skin-mimicking phantom having the small-

W and D with relative errors below 25%.

Ultrasound characterization of aggregated red blood cells: towards in vivo application 299

compensation for attenuation (in dashed lines).

re f , as wellthe SFSAE are very similar to the reference parameters

The reference total attenuation α
are the skin-mimicking phantom attenuation and the blood attenuation

estimated in the reflection mode as shown in section 3.3.

toms at a shear rate of 10 s
the total attenuation increases, the more the backscattering coefficient amplitude
decreases at all frequencies and the more the frequency dependence of the backscat-
tering coefficient changes. One can also notice that the parameters W and D from

blood

are given in Fig. 3. It can be observed that the more 

SAE. Figure 4 summarizes these results. In this figure, the relative errors for each pa-

est attenuation (0.25% SC), the SFSAE gave quantitatively satisfactory estimates of

from the SFSAE similar to the reference total attenuation.

For each residual shear rate, parameters W , D and

as the total attenuation α

re fα
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 (
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-1
.s

r-
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Fitted Wref =24.56  Dref =10.11
           r2=0.55 

Shear rate 5 s-1

Shear rate 10 s-1

Shear rate 20 s-1

Shear rate 30 s-1

Shear rate 50 s-1

Fitted Wref =9.14  Dref =4.59
           r2=0.93 

Fitted Wref =3.90  Dref =2.68
           r2=0.94 

Fitted Wref =0.44  Dref =0.82
           r2=0.95 

Fitted Wref =3.90  Dref =1.39
           r2=0.95 



−1

4.3 Parameters evaluated with the SFSE with compensation for
blood attenuation

The packing factor Wcomp comp were also eval-
uated by compensating the backscatter coefficients in the SFSE with the value mea-
sured in reflection. Results are presented in Fig. 5. The relative errors are below 25%
for all shear rates and all skin-mimicking phantoms.

5 Conclusions

The accuracy of the estimates obtained with the SFSAE was as satisfactory as those
obtained with the SFSE with attenuation-compensation (i.e. when a priori are known
about the attenuation). For both methods, relative errors for W and D were below
25%, except for one value corresponding to the shear rate 5 s−1 with the skin-
mimicking phantom having the smallest attenuation (0.25% SC). In this last case,
the SFSAE gave less accurate estimates (relative errors around 50% for W and α0).
The SFSAE seems to reach its limit of applicability for large aggregate sizes: typi-
cally Dre f = 10.11 (i.e. kR=2.8)
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Fig. 3 Backscatter coefficients for blood sheared at 10 s and measured with each of the five
phantoms. The corresponding fitted models are the SFSE for the 0% SC phantom, and the SFSAE

and the diameter of the aggregates D

for the four other skin-mimicking phantoms (0.25, 0.5, 0.75 and 1% SC).

10-1
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Frequency (MHz)

 B
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m

-1
.sr

-1
)

10-5

10-6

0.036 dB/MHz
0.151 dB/MHz
0.255 dB/MHz
0.356 dB/MHz
0.448 dB/MHz

Fitted model SFSE (0.036 dB/MHz, 0%SC)
Wref =9.14  Dref =4.59

Fitted SFSAE (0.255 dB/MHz, 0.50% SC)
W=9.35   D=4.83   a0=0.283

Fitted SFSAE (0.356 dB/MHz, 0.75% SC)
W=9.08   D=4.84   a0=0.367

Fitted SFSAE (0.448 dB/MHz, 1%SC)
W=10.86   D=5.07 a0=0.418

Fitted SFSAE (0.151 dB/MHz, 0.25% SC)
W=10.14   D=5.25   a0=0.172



Fig. 4 (a) Values of W , D and α0 (in dB/MHz) for different residual shear rates estimated by
the classical SFSE for the 0% SC concentration and by the SFSAE for the four skin-mimicking
phantoms. (b) Corresponding relative errors.

Fig. 5 (a) Values of Wcomp and Dcomp for the four skin-mimicking phantoms obtained with the
SFSE with attenuation-compensation using the attenuation values estimated in reflection. (b) Cor-
responding relative errors. Parameters Wcomp and Dcomp are compared with Wre f and Dre f .
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Nevertheless, the SFSAE has the major advantage to be easily applicable in vivo
because of the simultaneous estimation of the blood structural properties and total
attenuation (contrary to the SFSE attenuation-compensation method, needing the
attenuation and thickness of the tissue intervening layers to be known).
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A 3D semi-analytical model to predict the 
behavior of ultrasonic bounded beam traveling 
in cylindrical solid bar embedded in a solid 
matrix. 

S. Yaacoubi, L. Laguerre, E. Ducasse, M. Deschamps1 

 
 
 

Abstract    A 3D semi-analytical model for predicting the behaviour of ultrasonic 
bounded beam travelling in cylindrical solid bar is presented. The bar is embedded 
in a solid matrix and the beam is emitted by an off-axis source for generating non-
axisymmetric waves. Fourier series and Vector Hankel transform are combined to 
decompose the inside field into infinity of elementary cylindrical waves propagat-
ing into radial direction and planar waves propagating in axial direction. Global 
resolution method and Generalized Debye Series Expansion (GDSE) are used both 
to calculate the global reflection/transmission coefficients. A numerical model is 
implemented to demonstrate the validity of the present theoretical solution for pre-
dicting velocity signatures. 

1 Introduction 

In many applied fields such as civil engineering, mechanical engineering or 
aeronautics, ultrasonic guided waves (UGW) are applied in non-destructive evalua-
tion (NDE) to detect defects in waveguides.  

This technique is appealing among others because it can provide a rapid, accu-
rate and inexpensive assessment in a wide range of industries. It offers also the pos-
sibility to inspecting long lengths of waveguide from a single position. But, there 
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are some difficulties in applying this technique. One prominent difficulty is the 
multimodal and dispersive nature of the waveguide [1, 2]. The presence of elastic or 
visco-elastic embedding medium is another [3-5]. These embeddings tend to at-
tenuate the propagating energy. This can severely degrade the performance of 
guided wave test with regard to test sensitivity and the distance of propagation. 
Therefore, a necessary step before detecting defects is to be able to calculate and 
understand the propagated elasto-dynamical field in such a healthy waveguide. To 
do so, a number of models have been developed.  

These are generally based upon source decomposition on the transverse 
waveguide modes. This needs to identify the wavenumber along the guiding direc-
tion versus frequency relationships (i.e. the dispersion curves) and associated 
modeshapes. This can be done for the free axisymmetric case of the infinite cylin-
der by solving the Pochhammer-Chree characteristic equations followed by the 
resolution of the eigenvalue problem. Zemanek [6] was one of the first to fully de-
rive the dispersion curves in 3D (axisymmetric and nonaxisymmetric) using root-
finding algorithms. Pavlakovic et al. [7] extends this work for the calculation of the 
dispersion curves and associated modehapes for multi-layered cylinder waveguides. 
The case of the finite cylinder including excitation, wave propagation of multiple 
modes and reception was considered for the 2D case by Puckett and Peterson [8] 
through the derivation of a normal mode expansion model.  

In this paper we propose a semi-analytical alternative solution to modal tech-
nique, which is a 3D extension to the 2D model from Laguerre et al. [9] to predict 
and interpret the ultrasonic pulsed bounded beam propagation in solid cylinder em-
bedded (or not) in solid matrix. The spectral response to an inside spatial limited 
axis-off source field can be studied from the angular spectrum decomposition and 
generalized reflection/transmission coefficients modeling. This can be done through 
global resolution of using Debye series formalism. The transient response is then 
expressed after inverse transform integral as the superposition of semi infinite me-
dium contribution and longitudinal, shear (SH and SV type) and coupled longitudi-
nal-to-transversal contributions. This avoids the time consuming task of root-
findings and the difficulty to calculate complex Bessel functions for leaky systems. 
This formalism can help to enhanced physical interpretation since the transient re-
sponse is the combination of each sidewalls interaction. Moreover, the ability of the 
model to consider non-axisymmetric sources can be used as a first step to study 
wave field from defects.   

2 Problem statement  

Consider an infinitely long elastic, homogeneous and isotropic bar of den-
sity ρ and circular cross-section of radius b . As shown in Fig.1. a cylindrical coor-
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dinate system ( ), ,r zθ is chosen with the z-direction coincident with the axis of 

the bar. This bar is in an infinite, homogeneous, isotropic elastic medium.  

 
 

A source is imposed and localized off the cylinder axis of revolution. The source 
is assumed to be axisymmetric (with radius a) in its own local polar coordinate sys-

tem ( )1 11, , θ
r r

ro e e . To facilitate the calculation, this function will be expressed in 

the global coordinate system ( ), , θ
r r

ro e e . 

3 Theoretical development  

In order to interpret accurately the elastodynamical field transiting in the bar, the 
field generated by the source must be first characterized. For solving this problem, 
there are several methods such as a normal mode expansion [10-11] and integral 
transform. All methods are equally rigorous and the choice is a matter of conven-
ience for the problem at hand. The first method is not suitable when there is trans-
mission (leakage) into embedding medium (when shear velocity is smaller than that 
of the waveguide). In such a case, the orthogonality relations underlying the normal 
mode expansion method are not directly applicable.  Instead of using this method, 
we use here the integral transform method. 

3.1 Integral transform method 

The vector wave equation in cylindrical coordinates is given in space-time do-
main by:  

y 

y1 

Waveguide 

Source 

Embedding medium 

x1 

Fig. 1 Problem geometry 
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 ( ) v v f vλ μ μ ρ+ ∇∇ ⋅ + ∇ ⋅ ∇ + =
rr r r&  (1) 

where λ  and μ are the Lamé constants, ρ is the mass density, f
r

and v
r

are the 

vector volume force and the vector velocity respectively.  Besides on the solution 
obtained earlier by separation of variables via the Helmholtz decomposition 
method, we resolve it by means of the transform integral method. 

Firstly, by performing a Fourier series expansion with respect to the angular co-

ordinate θ , any field (v
r

 and f
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) can be written as the discrete sum of orthogonal 
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where ( ), ,r r zθ=
r

is the displacement coordinates and t is the time. 0
ks
r

, 
,n

ks
r

and ,n
ks

⊥r
, ( ), ,k r zθ=  do not depend on the azimuth coordinate θ . Injecting 

Eq. (2) in Eq. (1), we obtain a discrete set of three decoupled  wave equations sys-

tems (corresponding to  0
ks , ,n

ks
r

and ,n
ks

⊥r
), the spatial variables being r  and z : 

Secondly, to these systems, we apply vector Hankel transform [12-13] which is 
defined by:  
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( )rk rℑ is 3 3×  matrix which is expressed as follows: 
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where  
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nJ is a cylindrical Bessel function of the first kind and order n , n  is the 

circumferential number. The radial wavenumber rk  is related to the radial fre-

quency by 2rk pπ= . Consequently, these systems which are already in ( ), ,r z t  

become a standard partial differential system of second order in ( ), ,rk z t  domain:  
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 (6) 

The first equation of the above system is obviously decoupled from the two oth-

ers. This system, without body forceF
r

, can be solved by performing the Fourier 
transform with respect to the time t . 

Finally, the solution is given in the frequency-radial wavenumber domain, con-
sidering the fact that the propagation is in z+  direction and solutions for 
( )z → +∞  have to vanish, by: 

 ( ) ( )
1

2
1̂ , , , Ti w z

r T rV k f z A k f e π−=  

( )

( )
( ) ( )

2

2 2 2

3

1ˆ , ,
, ,

ˆ , , 1
L T

rr i w z i w zLL r T r r
r T

kV k f z
wA k f e A k f ekV k f z w

π π− −
⎧ ⎫⎧ ⎫⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 

  (7) 

where 2 2 2/L Lw f c p= −  and 2 2 2/T Tw f c p= −  are the axial space fre-

quencies of the longitudinal and the shear waves respectively. Their propagation 

velocities are ( )2 /Lc λ μ ρ= +  and /Tc μ ρ=  respectively. LA ,
1TA and 

2TA are the amplitudes of the cylindrical waves L , 1T  and 2T  respectively.  

The function 1̂V is associated with horizontal polarized shear waves, while the 

functions 2̂V and 3̂V are associated with longitudinal and vertical polarized shear 
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waves. Now the source is involved in the boundary conditions at 0z = and so the 

vector velocity ( ) 0
, ,

z
v r tθ

=

r
is known. Then by performing Fourier series expan-

sions combined with vector Hankel transform and Fourier transform with respect to 

r  and t  respectively, ( )
0

,r z
V k f

=

r
can be calculated. Hence, the amplitudes LA , 

1TA and 
2TA  can be easily deduced from Eq.(7). 

To interpret the behaviour of the propagating field, solution in space-time do-
main is desired.  For an unbounded medium, the general solution is obtained by 
means of the mathematical tools (inverse vector Hankel transform combined with 
inverse Fourier transform) described above. We obtain then: 

 ( ) ( ) ( ) 2

0 0

, , , i ft
n r r n r r

n

v r t k k rV k z f dk e dfπ
+∞ ∞+∞

=−∞

= Γ ℑ∑∫ ∫
rr r

 (8) 

with 
cos sin cos

, ,sin s sinn

n n n
diag n co n n

θ θ θ
θ θ θ

−⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞Γ = ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 

The infinity of waves constructing the incident field will propagate through the 
waveguide. These individual waves undergo multiple interactions with the 
waveguide/embedding interface. Consequently, the resulting field in such receiver 
point M  in the waveguide (bounded medium) can be deduced from that in an un-
bounded medium by: 

 ( ) ( ) ( ) ( ) 2

0 0

, , , , i ft
n r r r n r r

n

v r t k F k f k rV k z f dk e dfπ
+∞ ∞+∞

=−∞

= Γ ℑ∑∫ ∫
rr r

 (9) 

( ),rF k f is the transfer function of the waveguide (By taking into account of 

the propagation waves conversions) or more precisely the waveguide part from the 
source to the point receiver M . In the following paragraph, we shall determine the 
transfer function. After that the total field will be determined.  

3.2 Global method resolution and Debye series 

The global method calculations give a global description of the scattering. The 
multiple reflections by waveguide/embedding interface and transmissions through it 
are not clear in the global formalism. The connection between the global theory and 
the ray acoustics is known as the Debye-series expansion. The Debye-series expan-
sion allows for the decomposition of the global physical process in a series of local 
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interactions, which can bring a better physical understanding than the global resolu-
tion. 

The incident wave can be longitudinal (L ), vertical shear ( 1T ) or horizontal 

shear ( 2T ). Each engenders three waves by reflection and three waves by transmis-

sion through waveguide/embedding medium interface. Continuity conditions of ve-
locities and stresses at this interface lead to a linear system of equations:   

 =n n n
i iC X P    , ( )1 2, ,i L T T=  (10) 

where  

 { }1 2
, , ,

2 1
, ,

tr
n
i

n n n n n n
X X X X X XiL iLiT iT iT iTX

− − − + + +
=  (11) 

The superscript tr is for vector transposition. 
The first three coefficients represent the global reflection coefficient vector. The 

last three components represent the global transmission coefficient vector.
nC  repre-

 
1 2

1 1 1 1 2 1 1

2 2 1 2 2 2 2

1

1

,

Nn n n n n
iL LL T L T L iL
n n n n n
iT LT TT T T iT

Nn n n n n
iT LT TT T T iT

X r r r r

X r r r r

X r r r r

−−

∞
−

=−

⎡ ⎤ ⎧ ⎫⎧ ⎫
⎢ ⎥ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭

∑  (12) 

n
ijr  are the local reflection coefficients of a cylindrical wave by the 

waveguide/embedding interface, when i and j are the incident and reflected wave 
respectively.  N is the interactions number. Eq.(12) retains explicitly the multiple 
interactions with the interface. 

3.3 Total field in the bar 

In order to inspect the inner medium, it’s interesting to show the velocity behav-
iour in this medium. So, in this section, only velocity field for <r b  will be ex-
pressed. The space-time velocity field at a distance z from the source is the combi-
nation of Vector Hankel Transform, Fourier series and the global coefficient 
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sents the continuity matrix for each cylindrical wave. 
n
iP  is the velocity-stress vec-

 vector is: 

 tor of the incident field. By extending the Generalized Debye Series used in 2D study 

[9] for 3D study, the final explicit expression of the global reflection coefficient 



 

reflections  n
iLX − ,

1

n
iTX − , 

2

n
iTX −  which are determined from their respective Debye 

series expansions (12). The vector field can be expressed by: 

 θ θ= + +
r r r r

r r z zv v e v e v e  (13) 

Here, for the sake of clarity, only the z-component will be shown using the fol-
lowing synthesized form: 

( ) ( ) ( ) ( ) 2
1 1

0 0

ˆ, 2 2 2 , ,ij n I ft
z n ij

n

v r t p X B Qr V p z f dp e dfππ η π π
+∞ ∞+∞

−

=−∞

⎡ ⎤
= Γ +⎢ ⎥

⎣ ⎦
∑∫ ∫

r
 

  (14) 

where I  is the imaginary number, 2 1I = − , η  is a coefficient which indicates 

the type of polarization (co-polarization and mode propagation conversion) and Q  

is the radial space frequency of the cylindrical waves propagating in the waveguide. 
They are expressed respectively by:  

 
1

0

if i j

if i j
η

=⎧⎪= ⎨ ≠⎪⎩
; 

 ( )
( )

1 2 2 1

1 2,
T L

L T

p if i j or ij TT or TT

q w if i j and i LQ

q w if i j and i T T

= =⎧
⎪⎪ ≠ == ⎨
⎪ ≠ =⎪⎩

 

Note that the shear waves 1T  and 2T  have the same axial space frequency 

(
1 2T T Tw w w= = ).  

The norm of the total field can be written as: 

 2 2 2
r zv v v vθ= + +

r
 (15) 

4 Numerical evaluation 

In principle, the integral transform method is exact, but in most cases its inver-
sion which is intractable (such Eq.(7) in this paper) must be carried out numerically. 
Additionally, the resolution of 6 6×  matrix to determine the local coefficients re-
flection and the calculation then of the global coefficients reflection are complexes 
and should be performed numerically. Furthermore, the dispersive and multimodal 
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nature of the ultrasonic signals and the fact that their behaviors within the bar are 
desired dictate that the computations be made numerically. The interpretation of 
these behaviors in the time domain is complement by that in frequency domain. The 
mutual relation between these two domains can be described numerically by the 
discrete Fourier transform (DFT). For length M  input vector y , the DFT is a 

length M  vector Y , with elements  

 ( ) ( ) ( )( )2 1 1 /

1

M
I m MY m y n e π ν

ν

− − −

=

= ∑ ,1 m M≤ ≤  (16) 

The inverse DFT is given by  

 ( ) ( ) ( )( )2 1 1 /

1

1 M
I m M

m

y n Y m e
M

π ν− −

=

= ∑ ,1 n M≤ ≤  (17) 

where ν  and m correspond to time and frequency respectively.  
Now the discrete form of the z-component of the velocity field (Eq.(14)) can be 

written in the space-time domain as following:   

 
( ) ( )( ) ( ) ( )

( )( )

1 1
1 0 0

2 1 1 /

1 ˆ2 , 2 2 , ,

, 1

tronctronc
PNM

ij n
z n ij

m n

I m N

v p X p m B QrV p z m dp
M

e Mπ ν

ν π η π π

ν
= =

− −

= Γ +

≤ ≤

∑ ∑ ∫
 (18)  

where troncN  is the truncation index of the series at hand, while troncP  is the 

truncated radial frequency of the integration over p . In the far propagation, the ef-

fects of evanescent waves are negligible compared to those of progressive waves 
and consequently troncP  will be reduced to /tronc LP m c=  . 

The frequency dependence of the wavenumber in propagation direction (as well 
as the phase velocity and the group velocity) requires that the model be able to per-
form the velocity field in the axial wavenumber-frequency domain. To do it, we 
substitute the term within the square brackets of Eq. (14) into Eq.(16). The discrete 
form of this equation is given by: 

( ) ( )( ) ( ) ( )

( )( )

1 1
1 0 0

2 1 1 /

ˆ, 2 , 2 2 , ,

, 1

troncz tronc

z

z z

PM N
ij n

z z n ij z
n

I m N
z z

V m f p X p f B Qr V p f dp

e m M

ν

π ν

π η π π ν
= =

− − −

⎡ ⎤= Γ +⎢ ⎦⎣

≤ ≤

∑ ∑ ∫
(19) 

where the indices zν  and zm correspond to space coordinate z  and axial fre-

quency zw  respectively and zM is the number of points in the DFT. 
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Some examples 

As an application example of this model, we consider a bar embedded in a ce-
ment grout. The source can be either a transducer or a defect. For generating the 
non-axisymmetric waves, the source is localized in an off-axis of the bar (fig.1).  A 
question can be asked: can we generate these waves by only an axial excitation? So, 
the velocity field is expressed in the source basis by:  

 ( ) ( ){ } ( )1 1, 0, 0,
tr

zv r t v r e t=
r

 (20) 

where, at 0z = , zv is a bounded Gaussian beam which is expressed as follows:   

 
[ ]
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0 1 12exp , 0,2

0 ,
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rv r aand
v

otherwise

π θ π
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⎧ ⎛ ⎞
− < ∈⎪ ⎜ ⎟= ⎝ ⎠⎨

⎪
⎩

 (21) 
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[ ] [ ]

2 2
02
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0

, 2 2 2 ,

0, 0,2

n
inp

z n
n

v r p v e B pr J pr e dp

r b and

θ θπαθ π α π π

θ π

=+∞ +∞ −−

=−∞

=

∈ ∈

∑ ∫  (22) 

 
The propagation of the waves in the waveguide will create radial, tangential and 

axial motions. The velocity field in space-time domain can be expressed by: 

 

( ) }

2 22
0 1

0 0

2 2
0 0

( , ) 2 (2 )

(2 ) cos ( )i

ij n p
z ij

n

I w z I ft
n
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π π

ε π η α π

π θ θ

+∞ +∞+∞
−

= −∞

− −

⎧⎪ ⎡ ⎤= +⎨ ⎣ ⎦
⎪⎩

−

∑ ∫ ∫
r

 (23) 

where ( )E f  is a spectre of a modulated Gaussian input pulse. 
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follows: 

By using the addition theorem [14]  and the inverse vector Hankel transform, the 
axial velocity component can be written in the global basis after simplification as 

( ), , zr wθ zw ( ),r θ

( ),w f . 

amplitudeV  as a function of ( ),zw f

sion in , f  domain, where  

the velocity has a unique value for each            z

frequencies

 T he representation of the velocity 

The discrete equation (19) of the velocity z-component and those for radial and tan-  
gential velocities which can be evaluated by the same way lead to the velocity expres-

defined the dispersion diagram. 

is the space axial frequency. For       fixed,
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in 

( ),zw fthe 

For the sake of clarity, we represent the image of the velocity amplitudeV
plane. The result of this representation is illustrated by figures 2.a, 2.b, 

2.c and 2.d. The first three simulated dispersion diagrams are superposed with  

 
 
 
 
 
 
dispersion curves (few lines). These curves are derived from Disperse software 
which is based on modal solutions. We observe a very good agreement between our 

axisymmetric waves contribute to the solution. When the source is located off the 
cylinder axis, then the solution consists of the contributions of all waves (axisym-
metric and non-axisymmetric ( 1≥n )). The number of these waves is determinated 
by means of the convergence study of the series expansion (Eq.(12)). 

The dispersion diagram is a function of the source nature (piston, gaussian…), 
excitation type (longitudinal, shear) and evidently the bar radius and the frequency. 
Since the excitation is only longitudinal, the simulated signal phase velocities de-
scribe only the portion of the dispersion curves greater than the velocity of longitu-
dinal wave in steel Lc
tation (only the zv component is not zero), all types of modes are excited:  

longitudinal L(0,m), torsional T(0,m) and flexural F(n>0,m). The generation of 
flexural modes is due to off-axis source positioning.  In addition, in some cases, the 
non-axisymmetric wave amplitude ( )0n >  is greater than that of axisymmetric 

the velocity amplitude versus the circumferential number n for 0r =5mm, r=8mm. In 

software for z0=110 mm and f0=2.5MHz: (a) longitudinal modes L(0,m), (b) Torsional 
modes T(0,m), (c) flexural modes F(1,m) and (d) total velocity (sum of all modes). 

dispersion diagrams and dispersion curves: longitudinal L(0,m), torsional T(0,m) 

Fig. 2 Velocity dispersions diagrams (wz, f) and dispersion curves simulated by Disperse 

as shown in figures 2.a, 2.c and 2.d. In spite of the axial exci-

wave. This is shown in Fig.3 (bottom) which plots (as histograms) the maximum of 

and flexural F(1,m). When the source is located on the cylinder axis, only the 

(b) (a) 

(c) (d) 

( )1
zw cm−  
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this case, the source and the point receiver are coplanar (they have the same circum-
ferential angle).  

5 Conclusion 

Because an incident field causes a non uniform energy distribution in solid cy-
lindrical waveguide even if the transducer is on-axis cylinder, a theoretical devel-
opment of a three-dimensional bounded beam traveling in a cylindrical solid 
waveguide embedded in an infinite medium has been presented. This development 
is based on a combination of Vector Hankel Transform and Fourier series for de-
composing a bounded beam in partial cylindrical waves propagating in radial and 
axial directions. Generalized Debye series is employed for expressing global reflec-
tion coefficients with respect to local reflection coefficients. To generate nonaxially 
symmetric waves, an off-axis source is used. If the source is localized in the cylin-
der axis, only axisymmetric waves can be generated. Otherwise, non-axisymmetric 
are generated. For some source positioning, their amplitudes are greater than that of 

 S. Yaacoubi, L. Laguerre, E. Ducasse, and M. Deschamps 314

0 = 0, 2, 5 mm while 0θ  is

0 

interference of travel waves dictates the distortion of the signals. The first pulse is 
0 = 5 mm the 

a function of circumferential number n for r0 

= 0 (top), r0 = 2mm (middle) and r0 = 5 mm 
(bottom). It’s defined as a percentage of the 
greatest amplitude velocity. 

and z=200mm for r0 = 0 (top), r0 = 2mm 
(middle) and r0 = 5 mm (bottom). 

Fig. 3 Maximum of the amplitude velocity as Fig. 4 Time waveforms velocity at r=8mm 

Figure 4 plots time waveforms of the total velocity for the steel bar embedded in 
r positions cement grout.   The source is localized on the 

last trailing pulses (1, 2) are important and can not be neglected.  
similar for the three cases while others are differents.  Additionally, at  r

r  increase. This is due to the reduced path between source and receiver point. The 
fixed at zero for all cases. The time waveform amplitudes increase when the coordinate 

 
 
 
 
 
 
 
 
 
 
 

(2)



tion when dealing with both source leading and detection characterization.  
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Comparison between a multiple scattering
method and direct numerical simulations for
elastic wave propagation in concrete

M. Chekroun, L. Le Marrec, B. Lombard, J. Piraux and O. Abraham

Abstract Numerical simulations are performed to study the propagation of elastic
waves in a 2-D random heterogeneous medium such as concrete. To reduce spuri-
ous numerical artefacts to a negligible level, a fourth-order time-domain numerical
scheme and an immersed interface method are used together. Effective properties of
the equivalent homogeneous medium are extracted and compared to the predictions
of a multiple scattering method (ISA), to evaluate the validity of this latter.

1 Introduction

Concrete is made up of coarse aggregates embedded in a cement paste matrix (mor-
tar). When ultrasounds propagate in this heterogeneous medium, multiple scattering
is important when the wavelength and the size of scatterers are similar. In this case,
the wave field is the superposition of a coherent field, obtained by averaging fields
over several realizations of disorder, and of an incoherent field. The coherent field
amounts to waves propagating in an equivalent homogeneous medium, with effec-
tive phase velocity and attenuation deduced from an effective wavenumber.

The goal of multiple-scattering methods, such as the Independent Scattering
Approximation (ISA) [1], is to provide analytical expressions of this effective
wavenumber. A basic assumption for derivation of ISA is that the concentration
of scatterers is low. Since aggregates may represent 50 % in volume, the medium
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cannot be considered as dilute, and a deeper analysis is required to decide whether
ISA is valid in that case.

For that purpose, a purely numerical methodology is followed, based on 2D di-
rect numerical simulations and on signal-processing tools. Doing so is much faster
and less expensive than real experiments, allowing also much finer measures. In pre-
vious works, this methodology has been applied successfully to a case where ISA
has been experimentally validated: steel rods immersed in water [2]. In the present
paper, the host medium and the aggregates are both modeled as elastic media. Cases
of different concentrations of aggregates are discussed. Since the propagation of
Rayleigh waves along a free surface of concrete is the original motivation of the
present study, the case of both compressional and shear incident plane wave is con-
sidered (P-SV problem).

2 Problem statement

2.1 Concrete model

Aggregates are assumed to be circular cylinders with a unique radius a = 6 mm, in a
bidimensional geometry. The probing frequency varies from 50 kHz to 700 kHz. In
that range, wavelengths vary from about 3 mm (S wave) to 90 mm (P wave), hence
aggregates are considered as heterogeneities for waves. On the contrary, mortar is
considered as an homogeneous medium for wave propagation, since the size of its
components (water, sand and cement) is much smaller than the wavelengths. The
concrete is then be considered as a two phase medium with parameters [3]

(ρ, cp, cs) =





(2050kg/m3, 3950m/s, 2250m/s) in mortar,

(2610kg/m3, 4300m/s, 2475m/s) in aggregates,

where ρ is the density, cp and cs are the celerities of P and S waves. The concentra-
tion of aggregates in concrete is described by the number n of scatterer per unit area.
Three surface ratios φ = nπ a2 are considered in the following: φ = 6%, 12%, and
18%, defining 3 concretes called C6, C12 and C18 respectively. The average dis-
tance between nearest scatterers is lφ = a

√
π /φ , hence: l6% = 43 mm, l12% = 32

mm, l18% = 25 mm. We assume perfect contact between aggregates and mortar (con-
tinuity of tractions and of displacements at the boundaries) and no dissipative effect.
These hypotheses and the low density of aggregates affect the realism of our model
but allow us to focus on the validity of ISA without additional artifact.
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2.2 Independent Scattering Approximation

The formulation of the Independent Scattering Approximation (ISA) is usually es-
tablished with an fluid matrix [4], but it can be straightforwardly extended to an
elastic matrix. As correlation between scatterers is not taken into account, mode
conversion does not perturb the expression of effective wavenumbers. Then, the ef-
fective wavenumbers kP,e f f and kS,e f f obtained with incident plane P and S waves
satisfy

k2
P,e f f (ω) = k2

P,0 −4 in fPP(0), k2
S,e f f (ω) = k2

S,0 −4 in fSS(0), (1)

where kP,0 and kS,0 denote P and S wavenumbers of the matrix, ω = 2π f is the
angular frequency, and fPP(0) is the far field pattern in P mode of the interaction
between an incident plane P wave and a single scatterer in the forward direction
(idem for S waves with fSS(0)).

3 Direct numerical simulation

3.1 Elastodynamic equations

A velocity-stress formulation of 2D elastodynamics is followed. To solve the hyper-
bolic system so-obtained, a uniform Cartesian grid with mesh sizes ∆ x = ∆ y and
time step ∆ t is defined. An explicit fourth-order accurate finite-difference ADER
scheme is used [5], with a CFL constraint of stability β = c∆ t/∆ x ≤ 0.9. A plane
wave analysis of this scheme is performed in homogeneous medium, in terms of β
and of G = ∆ x/λ , G ∈]0, 0.5], where λ is the wavelength [6]. The maximal arti-
facts are obtained when the direction of propagation coincides with grid axes, that
is in 1D configurations. In that case, the ratio q between exact and discrete phase
velocities, and the discrete attenuation α , are

q(β , G) = 1−
2π4

15
(β 2 −1)(β 2 −4)G4 +O(G6). (2)

α(β , G, ∆ x) =
4π6 β
9∆ x

(β 2 −1)(β 2 −4)G6 +O(G8). (3)

In forthcoming numerical experiments, β = 0.44 and G = 1/90 correspond to the
most penalizing situation of SV waves in mortar at f = 250 kHz. With these pa-
rameters, (3) gives a quality factor Q ≈ 3.2107, hence the numerical attenuation is
much smaller than the expected physical attenuation of the effective medium.
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3.2 Discretization of interfaces

Three classes of drawbacks are classically induced by interfaces in finite-difference
schemes on Cartesian grids. First, the geometrical description of arbitrary-shaped
interfaces is poor, and generates spurious diffractions. Second, the jump conditions
are not enforced numerically. Third and last, non-smoothness of the solution across
interfaces decreases the accuracy, leading to spurious oscillations or even instabil-
ities. These three drawbacks prevent from using simulations as metrological tools
in highly heterogeneous media. To circumvent them, the ADER scheme is coupled
with an immersed interface method [7], which accounts both for the jump condi-
tions and for the subcell geometry at points along the interfaces. The main part of
the work can be done during a preprocessing step, before numerical integration. At
each time step, O(L /∆ x) matrix-vector products are done, where L is the total
perimeter of interfaces, and the matrices are small-size, typically 5×100. Then, the
results are injected in the scheme.

Fig. 1 Snapshot of the horizontal velocity at the initial instant (a), and after 0.04 µs of propagation
(b). In (a), the regular grid denotes the location of the receivers.

3.3 Numerical setup

The size of the computational domain is 375 mm along x and 750 mm along y, with
∆ x = 0.1 mm and β = 0.85 in aggregates. The aggregates are randomly distributed
on a 248 mm × 740 mm rectangular subdomain (figure 1). An exclusion length
of 6∆ x between each scatterer is ensured. The right-going incident P or SV plane
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wave is a Ricker centered at 250 kHz. At the initial instant, the right part of the
wave front is located at x = 0. At each time step, the exact plane wave solution in
homogeneous medium is enforced on the edges of the domain. The simulations are
stopped when the incident wave has crossed the inclusions: 3250 time steps with an
incident P wave, 5300 time steps with an incident S wave.

A set of 41 horizontal lines of receivers is taken with N = 221 regular offsets
along x, denoted by di = d0 + i∆ xr, with i = 0, ...,N −1, d0 = 14 mm and ∆ xr = 1
mm. The distance between two lines is ∆ yr = 6.25 mm. Each line corresponds to
a realization of a random process. These parameters are discussed in section 4.2.
Receivers are sufficiently far from the boundaries of the computational domain to
avoid spurious reflections.
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Fig. 2 Seismograms of the horizontal velocities ux from the simulation with incident P wave in
C12: one particular realization (a), coherent field obtained after averaging (b).

Three simulations provide 41×3 = 123 independent realizations of disorder, en-
suring the convergence of the signal processing methods. Recorded velocities along
a line of receivers can be plotted as seismograms. A particular seismogram in the
case of incident P wave in C12 is presented in figure 2(a). A main wave train is
clearly visible and is followed by an incoherent coda. After averaging on the 123
realizations of disorder, the coherent field is obtained and is presented in figure 2(b).
The main wave train is still clearly visible and all the incoherent variations of the
field have greatly decreased.

With an incident P wave (respectively S wave), the coherent field is observed
through the averaging of horizontal velocities ux (respectively vertical velocities uy).
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In such configuration, the propagation through the effective medium is equivalent
to a 1D propagation in a slab, what explains that no effective S wave (respectively P
wave) is observed in the case of an incident P wave (respectively S wave).

The dispersion curves and damping factor curves can now be estimated from the
Fourier transform of this coherent field.

4 Signal processing

4.1 Methods

The phase velocity c(ω) is computed using the p−ω transform which represents the
entire data wave field into the slowness-frequency domain (p−ω), where p = 1/c
[8]. The method consists in a “slant stack summation” of the wave field (or τ−p
transform, with τ representing a delay time) followed by a 1D Fourier transform
over τ to obtain the wave field in the p−ω plane, where the dispersion curves can be
directly picked. Here, we follow a formulation entirely in the frequency domain [9].
The time Fourier transform of the coherent field s(ω,di) at the distance di is

s(ω,di) = A(ω,di)e
−iω p0(ω)di , (4)

where A(ω,di) is the amplitude spectrum at di. The p−ω stack ŝ(ω, p) is

ŝ(ω, p)=
N

∑
i=1

A(ω,di)e
iω(p−p0(ω))di . (5)

The computation of ŝ(ω, p) is performed with several values of p. Given ω , the
maximum of the modulus |ŝ(ω, p)| is reached at p = p0(ω); the |ŝ(ω, p)| map is
plotted as a 2D function of p and ω and the maximum locus is extracted at each
frequency.

The damping factor is estimated from the decrease of the amplitude spectrum
of the coherent field during propagation. In the frequency domain, the amplitude
spectrum in (4)-(5) takes the following expression:

A(ω,di) = A0(ω)e−α(ω)di , (6)

where A0(ω) is the amplitude of s at the first receiver. The damping parameter α(ω)
is determined by the slope of a least-square linear fit of ln(A(ω,di)). Since the inci-
dent wave is plane, no geometrical spreading has to be considered.
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4.2 Analysis of accuracy

For evaluating the damping factor, no restriction is imposed about the number and
position of receivers. For phase velocity, however, aliasing and limited resolution
may be encountered [10]. The quantification of these artifacts has justified the nu-
merical acquisition setup (number and position of the receivers). Aliasing occurs
when ∆xr > λmin, while resolution is limited by the total length of the acquisition
setup LN = N ×∆xr. Phase velocity estimation is accurate as long as λ < LN/2.
Consequently, in the range of frequency under study, LN ≥ 180 mm and ∆xr = 1
mm.
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Fig. 3 1D homogeneous medium: analytical and simulated dispersion (a) and damping (b).

To evaluate how accurately the phase velocity and the damping factor are esti-
mated, we apply the processing tools to 1-D simulation in an homogeneous medium,
where numerical dispersion (2) and damping (3) are known. The numerical errors
are maximum with the slowest celerity and shortest wavelength. In our case, it corre-
sponds to the propagation of shear waves in mortar. A 1D homogeneous simulation
of this case is computed, using the same numerical and acquisition parameters as
used in 2D. The phase velocity and damping factor measured are compared to their
theoretical counterparts in figure 3. The error between the theoretical curves and the
measured ones is lower than 10−3%. The signal processing method used and the
acquisition setup chosen is then suitable to evaluate the dispersion curves and the
damping factor with no significant signal processing artifacts.
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5 Numerical experiments

5.1 Stabilized regime

The multiple-scattering regime requires a minimal distance of propagation to be
established. The numerical tools proposed in sections 3 and 4 allow to estimate this
distance lstab to get a stabilized regime, frequently mentioned in the litterature [11]
but rarely quantified to our knowledge. To do so, measures of α deduced from (6)
are used: unlike the phase velocity, the attenuation may be estimated accurately on
a distance of acquisition much smaller than the total length LN , authorizing to test
various zones of acquisition. Here, a fixed offset d0 is considered, with a variable
length of acquisition LM = d0 + (M − 1)∆ xr and M ≤ N (see section 3.3). The
configuration under study is an incident S wave in a concrete C12.
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Fig. 4 Damping evaluated from the first offset d0, at fixed length of acquisition LM (a) and at fixed
frequency (b).

Figure 4-(a) shows α( f ) obtained with various values of the length of acquisition
LM . If LM < 90 mm, the curves are noisy, especially in the low-frequency range
where they do not grow monotonically, which is not realistic. In high frequency,
differences up to 2 Np/m are measured between the various curves. Figure 4-(b)
shows α(LM) with various values of f . The attenuation is noisy up to LM ≈ 90 mm,
independently of the frequency; with greater values of LM , the curves are almost
constant, which amounts to a stabilized regime of propagation.

This observation is confirmed with the other concentrations and with incident
plane P waves. Only the approximate minimal length of acquisition LM varies: 90
mm for C6, as seen in the previous paragraph; 70 mm for C12; and 50 mm for C18.
These distances are close to 2 lφ whatever the frequency range and the concentration.

Consequently, numerical simulations indicate that the minimal distance of prop-
agation to get a stabilized scattering regime is roughly lstab ≈ 2 lφ . Similar expres-
sions have been proposed in the related area of band-gap creation in phonic crystals

M. Chekroun, L. Le Marrec, B. Lombard, J. Piraux and O. Abraham324



[12]. From now on, all measures are done by excluding this zone of stabilization,
i.e. from 2 lφ to LN .
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Fig. 5 Phase velocity: comparison between ISA and numerical simulations, with various concen-
trations of aggregates. (a): incident P wave (a); incident S wave (b).

5.2 Validity of ISA

The damping factor and phase velocity computed with ISA are compared to similar
quantities measured on simulated data. The latter can be considered as the reference
solutions, as shown in section 3.

First, the phase velocity is examined in figure 5. With an incident P wave (a),
differences up to 1 m/s are observed between ISA and the simulated measures. Even
with C18, ISA fits well the measured phase velocity. With an incident S wave (b),
differences are of about 5 m/s, which remains acceptable. The slight decrease of the
phase velocity at high frequencies is well described by ISA for both waves.

Second, the damping factor is examined in figure 6. With an incident P wave,
the error is lower than 2 Np/m at the concentration 18 % (b). With an incident
S wave, the same remark holds up to 12 %; with higher concentration, the error
increases dramatically (d). In both cases, ISA gives better results with lowest con-
centration and low frequencies, which is consistent with the main hypotheses of a
dilute medium.

6 Concluding remarks

The main results of this work are as follows:
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Fig. 6 Damping factor: comparison (left) and difference (right) between ISA and numerical simu-
lations, with various concentrations of aggregates. Top: incident P wave; bottom: incident S wave.

1. the distance of propagation required to get a stabilized regime of multiple scat-
tering is roughly 2 lφ , where lφ is the mean distance between scatterers;

2. with an incident P wave, ISA provides good estimations of phase velocity and
acceptable estimation of attenuation (lower than 2 Np/m ) with a concentration
nearly up to 20%; with an incident S wave, the concentration must be smaller
than 10% to get the same agreement.

Three directions are distinguished for further investigation:

1. increasing the surfacic concentration of aggregates, up to 50%. Doing so requires
to parallelize the algorithms used for direct numerical simulations;

2. considering continuous distribution size of aggregates, from a few mm to 20
mm. Is the aforementionned empirical formula still valid in the case of a medium
where lφ varies ?

3. studying higher-order multiple-scattering methods [11].
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Abstract   This experimental study aims at investigating the use of porous 
polymer foam piezoelectrets as a potential transducer material for air coupled 
ultrasonic applications. When a voltage is applied, these materials exhibit a 
phenomenon similar to the inverse piezoelectric effect. The defining features of 
the piezo-like polymer foam are small, elliptically shaped and electrically 
polarized voids located inside the polymers. The sensitivity is related to the 
effective piezoelectric coupling coefficient d33 which is much higher than in 
traditional piezoelectric materials. The d33 values of the cellular polypropylene 
foams were estimated using a laser vibrometer at different input voltages for a 
continuous wave excitation. It was observed that the effective d33 coefficient 
strongly depends on the volume fraction of electrically charged voids in the 
material as the material compliance decreases with increased material voids.  The 
change in acoustic impedance across the surface of the sample was measured with 
a high-resolution ultrasonic scanning system. Finally, these foams were used as 
prototype transducers for the transmit-receive mode in air; practical limitations 
imposed by acoustic attenuation in air were assessed. 

1  Introduction 
 
Traditional ultrasonic inspection of components can be broadly categorized as 
contact and immersion based testing. In both cases however, a good coupling 
medium with optimum acoustic impedance and thickness is essential to transmit 
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the maximum amount of ultrasonic energy into the component being inspected. 
An immersion testing configuration requires the component to be immersed in the 
couplant medium which can be difficult in case of very heavy and large size 
components and/or those that cannot be dismantled from their place of operation. 
The contact based inspection has the advantage over immersion testing by offering 
flexibility of “in-situ” and in many occasions “real-time” testing of components. 
However, transducers used in contact inspections have to be very rugged to endure 
rough handling in the field and subjected to wear and tear as the surface conditions 
of the components are seldom smooth. Also, a uniform layer of couplant cannot be 
ensured always during such complicated testing conditions.  
As an alternative, air coupled ultrasonics (ACU) offers several advantages with 
respect to immersion or contact inspection.  Firstly, the need for a couplant is 
eliminated.  This means that the components need not be immersed in a couplant 
medium and hence in situ and real time testing are possible. Second, a layer to 
protect the transducer from rough surfaces is no longer necessary.  This increases 
the sensitivity of the transducer considerably. Thus the domain of non-contact 
inspection using air-coupled ultrasonics (ACU) becomes attractive if the challenge 
of the acoustic impedance mismatch with air as the couplant layer can be 
eliminated.  This is because the impedance mismatch between transducer-air-

component is so high that very little ultrasonic energy is actually transmitted. 
When the issues with regard to ACU are suitably addressed, many applications 
open up for ACU [1, 2]. Possible applications include weld monitoring, coated 
textile testing, bond-integrity, and composite materials testing. 

2  Transducer materials for ACU 
 
New polymer based materials like PVDF, Teflon and cellular polypropylene have 
been identified as potential transducer materials for air coupled applications. 
Though the use of PVDF for ultrasonic applications has been reported, the 
piezoelectret nature and high sensitivity of the polypropylene electret foam, with 
experimentally measured values of d33 ranging from 100-200 pC/N, makes it a 
very good candidate for ACU applications [3, 4].  These materials are electrically 
charged, extremely porous polymers containing gas bubbles 10-100 microns long 
and a few microns thick with the charges residing on the bubble surfaces.  

 
Figure 1: Typical polymer foam cross sections as imaged using SEM [5,6] 
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Figure 2: Charge arrangement in voids of closed cell polymer foam 

Figure 1 shows the internal structure of a cellular polypropylene imaged using 
scanning acoustic microscopy [3].  Figure 2 shows how the charges are distributed 
inside the voids in a polymer foam cellular polypropylene sample specimen [7, 8].  
Of particular interest is the flexibility of the foams, making possible a wide range 
of transducer geometries.  For larger transducer sheets, the homogeneity of void 
distribution in the material is increasingly important.  Characterization of any 
heterogeneity in the material response is a key step to creating large scale 
transducers for air coupled ultrasonics. 

Table 1: Comparison of piezoelectret and other transducer material properties [6] 

 
Table 1 gives a comparison of cellular polypropylene with other common 
transducer materials. It can be seen from Table 1 that the acoustic impedance of 
the polymer foam is two orders of magnitude closer to that of air than to the PVDF 
and the ceramic (PZT) polymer composites. The highest impedance mismatch is 
shown by ceramics PZT, which is four orders of magnitude higher, even though 
the piezoelectric coefficient is quite high. It should be noted that both a compatible 
acoustic impedance with air and a very high piezoelectric (d33) coefficient (and 
also a very small d13 coefficient) make the cellular polypropylene a very good 
transducer material with high sensitivity even in air coupled applications.  
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3  Experimental Setup 

3.1 Laser Vibrometer based studies 
 
A laser vibrometer based estimation of the material response and sensitivity is 
very convenient as an accurate, non-contact measurement. Samples of polymer 
foam cellular polypropylene (70 micrometers thick) with dimensions 15 mm x 15 
mm were fixed on a rigid copper tape backing material attached to an ABS plastic 
base.  The polymer foam was subject to a continuous wave excitation for different 
voltage-frequency combinations and the transient surface displacements were 
measured using the laser interferometric techniques. The schematic diagram of the 
experimental setup used for the study is shown in Figure 3. 
 

Figure 3: Schematic of the laser vibrometer setup used to measure d33. 

3.2 The C-scan system 
 
The experimental setup used in the study consists of a custom built immersion 
testing tool using a fully automated manipulator with five degrees of freedom: 
three translations and two rotations.  The samples under study were mounted on a 
suitable stand and immersed in water. The imaging was carried out using a 
focused immersion transducer of 10 MHz centre frequency using a pulse-echo 
based configuration. The experimental setup is given in Figure 4. The position of 
the specimen was optimally placed at the transducer focus so as to obtain a signal 
of maximum amplitude.  
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Figure 4: Experimental setup of the C-scan apparatus for imaging polymer foams 

4  Results and Discussions 
 
The experiments were divided into five parts. The first part involved the 
estimation of the piezoelectric coupling coefficient at randomly chosen points on 
the polymer foam sample. The second part of the experiments involved the C-scan 
imaging of the polymer foams to locate regions which might have low values of 
the piezoelectric coupling coefficient. Once these regions are located, the third 
part involved the estimation of the d33 in these regions and estimates the deviation 
from the average value. The fourth part investigated the decay in the amplitude of 
the signal with separation distance when using a prototype polymer foam transmit-
receive transducer pair subjected to a pulsed excitation on one of the transducers. 
The fifth part of the study investigated the foams used as prototype ACU 
transducers in transmit-receive mode in air. 

 

4.1 Estimation of the material response using a laser vibrometer 
 
The variation of the piezoelectric coefficient with different input voltages and/or 
at different frequencies of excitation is of crucial interest as it is desirable to use 
these novel polymer foams as broadband transducers. Figure 5 shows the variation 
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of the d33 with respect to different excitation frequencies for different input 
voltages. Many specimen samples of the polymer foam transducer materials were 
investigated and the following observations were made. 
The resonant frequency of the polymer foams was observed to be around 300-330 
kHz. 
The variation in d33 with respect to the frequency of excitation was also quite flat 
till 250 KHz after which there was a steep rise till the resonant frequency and fell 
rapidly after 340 kHz. 
The d33 value was found to fluctuate between 1.0 and 2.1 Å/V in the region having 
nearly flat response. The average value of d33 in this region was estimated to be 
1.22 Å /V.   

 

Figure 5: The variation of the material response (d33) with respect to the 
frequency of excitation for different input voltages. 

The measured values of d33 through laser vibrometry vary between 1.0-2.1 
Angstrom/Volt (100-210 pm/V) in the frequency range of 50-250 kHz.  The 
magnitude of the d33 is in the same range as 100-200 pC/N (or pm/V) as the 
experimentally measured values reported in the literature [3,4].  The numerical 
value of d33 will be the same for the foams either in pC/N and pm/V, from 
Maxwell thermodynamic relations [9]. Additionally, the small gradual drop in 
material response between 50 – 150 kHz is to be expected due to the frequency 
dependence of material visco-elasticity. After this, response increases due to the 
first thickness resonance at 330 kHz. 

4.2 C-scan imaging 

The polymer foam has many gas filled voids that are randomly distributed along 
the thickness. It is desirable to have as many voids as possible so as to achieve 
maximum piezoelectric like effect. However, the piezoelectric coupling 
coefficient varies along the surface as not only the distribution but also the size of 
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the bubbles across the foam thickness is not uniform. It is therefore essential that a 
quick and reliable method be used which can qualitatively estimate the 
distribution of the piezoelectric coupling coefficient along the polymer surface. 
The ultrasonic imaging technique is based on the fact that more reflection of 
ultrasonic energy will result from a region having higher impedance mismatch 
than from a region having lower impedance mismatch.  

Although voids are assumed to be randomly distributed in the material, there are 
certain regions that have higher or lower concentration of voids.  Regions having 
more voids have more gas entrained inside the material.  The lower local material 
density and sound speed results in lower acoustic impedance and hence greater 
acoustic impedance mismatch with water.  The local variation in impedance 
mismatch can be imaged using the ultrasonic C-scan as increased impedance 
mismatch at the surface corresponds to increased reflection. Thus, the regions 
having a low density of voids will reflect much less ultrasonic energy which are 
invariably the regions of relatively lower d33 values. C-scan imaging of two 
samples was carried out and regions with potentially lower d33 were identified. 
Figure 6 shows the C-scan images of the two samples along with these regions. 

4.3 Estimation of the d33 at areas of low void concentration 
 
After the locations of the low void density were identified in the foam samples, 
the positions were marked and tested using the laser vibrometer. Figure 7 shows 
the estimated d33 values at normal and low void density locations in one of the 
polymer foam samples. It was observed that the value of d33 in the normal region 
was significantly lower than the value in a low void density region. It was also 
observed that the value of the d33 increased steeply beyond 250 kHz as the 
excitation frequency approached the resonance frequency. The values of d33 in the 
range close to the resonance frequency are not a true measure of the piezoelectric 
coupling coefficient d33 but are actually the resonant response of the material. This 
is because the foam loses the broadband characteristic in this regime and the 
material response at resonance overtakes the otherwise nearly constant surface 
displacement characteristic. The average percentage error (calculated between 50-
250 kHz) in the estimation of d33 between regions of normal and low void fraction 
was estimated to be 13%. 
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(a) Polymer foam sample 1                  (b)  Polymer foam sample 2      

  

Figure 6(a-b): C-scan images of the three polymer foam samples along with the 
circled regions of low void density and potentially low d33 values. 

 

Figure 7: Estimated d33 values at normal and low void density locations for 
different excitation frequencies. 

 
From the ultrasonic C-scan, a region of low void fraction was identified.  To 
correlate the ultrasound data to the laser vibrometer measurement of d33, the 
absolute amplitude plot along a single line was extracted from the ultrasonic C-
scan.  Laser vibrometer data was taken along the same line on the polymer foam 
surface.  A one to one correspondence was observed between the two 
measurements, as seen in Figure 8.  However, the variation may not be on the 
same scale for the two.  The laser vibrometer is more sensitive and can resolve 
subtle surface displacements more accurately than the ultrasonic imaging as the 
impedance variation between low and normal void fraction regions need not be 
very high.  Though the percent variation between low and normal void density 
areas on the foam was lower for ultrasonic signals, the measurement can be 
performed quickly, with higher spatial resolution, and without applying a voltage.  
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Figure 8: Comparison of a line scan of laser vibrometer measurement of d33 at 
200 kHz and ultrasonic C-scan data showing a region of low void fraction. 

 
In order to investigate the utility of the polymer foams for air coupled ultrasonics, 
prototype piezoelectret transducers were fabricated and used in the transmit-
receive mode. The experimental arrangement is shown in Figure 9 above. It was 
observed that the transducers could pick up the signal at a separation distance of 
130 mm. A typical pulsed signal obtained at a separation distance of 25 mm in the 
pitch catch mode is shown in Figure 10. When an obstruction was placed between 
the two transducers, a fall in the signal amplitude was also observed. Thus, it was 
inferred that the piezoelectret foam transducers can be used successfully in ACU 
applications. Studies are being conducted at the Laboratory for Ultrasonic NDE at 
Georgia Tech Lorraine on the application of the piezoelectret polymer foam 
transducers to image defects for mainstream applications. 
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4.4 Polymer foam transducers in transmit-receive mode 

Figure 9: Experimental setup used for the prototype piezoelectret polymer foam 
transmitter-receiver arrangement. 

Figure 10(a-b): Signal from the prototype piezoelectret polymer foam 
transmitter-receiver arrangement for a tone burst of 330 kHz 

5.5 Decay of Signal amplitude with distance  
 
It is important to estimate the decay of the signal amplitude with distance to obtain 
a signal of sufficiently high signal to noise ratio. The strength of a signal for 
different distances can be investigated, characterizing the attenuation in air of the 
acoustic field emitted from the piezoelectret polymer foam transducer. Figure 11 
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         (a) No obstruction                              (b) With obstruction 
 



shows the variation of the peak amplitude of the output signal with increasing 
separation between the two transducers. The 330 kHz centre frequency of the 10 
cycle tone burst signal was set close to the material resonance (300-330 kHz), so 
as to obtain the maximum signal. It is seen that a signal of sufficient amplitude can 
be observed even at a separation distance of 130 mm between the transducer pair.  
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Figure 11: Variation of the peak amplitude of the received signal with distance  

6  Conclusions 
 
Experiments were carried out on novel polymer foam samples to estimate the 
piezoelectric coupling coefficient (d33) for different input voltage-excitation 
frequency combinations. It was seen that the material response is nearly flat for 
50-250 kHz.  This makes them a potential candidate for broadband air coupled 
transducer or commercial acoustic applications. C-scan imaging was carried out 
on polymer samples to locate regions of heterogeneity which can result from 
manufacturing variability. These heterogeneities were carefully identified and the 
d33 values in these locations were also estimated. It was seen that the d33 values 
were significantly lower in the low void density regions when compared with the 
normal density regions. It can hence be concluded that the C-scan imaging can be 
successfully used to identify and locate regions of decreased material response in 
polymer foam materials which can increase the reliability of larger scale 
transducers. Prototype transducers were fabricated and used successfully in 
transmit-receive mode. The fall in the amplitude of the received signal with 
increase in the distance of separation between the transducers was also 
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investigated.  The ability to measure ultrasonic signal even at a separation of 130 
mm indicates the initial promise of these materials in air coupled ultrasonics. 
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analysis 
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Abstract  The identification of Lamb modes is still the most difficult step in the 

process of damage detection. Therefore, the aim of this paper is to use a dual 

signal processing approach in order to better identify Lamb modes. This approach 

is based on the use of a relationship between the Short Time Fourier Transform 

(STFT) and the Two Dimensional Fourier Transform (2DFT). Indeed, one direct 

theoretical relationship between their amplitudes is given in the case of both 

monomode and multimode signals. This relationship is then numerically verified 

by a two dimensional finite element method. This system is suitable for defect 

detection and can be easily implemented for real application to structural health 

monitoring. 

1 Introduction 

Since their propagation characteristics are directly related to the microstructure 

and the mechanical properties of the medium, ultrasonic waves are widely used in 

the fields of characterisation and non-destructive testing of structures. Usually, the 

full characterisation of the structures requires two kinds of information: the first 

one is related to the material quality, the other one aims at the evaluation of the 

structure health, i.e. the detection of localised damage or defects. The problem of 

detecting and locating defects or damage in thin structures is currently of 

tremendous importance, due to an increasing tendency to maintain ageing 

structures in service much beyond their originally designed service life. Therefore, 
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many ultrasound-based techniques have been investigated to address this problem 

[1]. 

 

A large number of researchers have already recognised the advantages of using 

Lamb waves for rapid inspection of metallic and composite structures [2-6]. A 

good summary of guided Lamb waves for identification of damage in composite 

structures can be found in ref. 6. The damage or flaw detection is traditionally 

carried out by analysing the modifications in the received Lamb wave signals. 

However, due to the multi-mode and dispersive nature of the Lamb waves, the 

interpretation of the received signal is not always obvious, particularly in complex 

structures [7]. Indeed, the major problem in using such techniques is to find a 

solution to ease the signal analysis. 

 

In this way, time-frequency analyses [8-10] have been used to solve such a 

problem. Indeed, time-frequency representation allows the group velocities of the 

Lamb modes to be obtained as functions of the frequency. This type of 

presentation has its own intrinsic advantages and disadvantages, but most 

importantly, it suffers from the Heisenberg's uncertainty principle [11], i.e. the 

optimum resolution cannot be achieved in both time and frequency. Consequently, 

it is not always possible to separate Lamb waves packets propagating in the 

structure even if the group velocities are well known. 

 

Another possible digital signal processing technique that can be used to analyse 

Lamb waves propagation is the two Dimensional Fourier Transforms (2DFT). 

Indeed, by measuring the Lamb waves signal at different positions along the Lamb 

waves propagation, it allows to identify Lamb waves in the wave number-

frequency domain. The identification of the modes is then performed either by the 

wave number or the phase velocity. This technique has been used by a large 

number of researchers [12-13] and they showed its effectiveness to identify and 

measure the amplitude of Lamb modes generated in metallic plates. It was also 

used for composite structures and adhesive bonded components [3]. Nevertheless, 

this technique requires a multi-element transducer at the reception and the 

identification of converted modes or reflected modes with such a technique is not 

always obvious.  

 

In order to optimise this kind of analysis, it is essential that the propagation 

characteristics of the waves could be studied using both parameters, i.e. the phase 

velocity and the group velocity. So, the time-frequency representation could be 

combined with the 2DFT to better identify Lamb modes propagating within the 

structure. The purpose in this work is therefore to present a dual signal processing 

approach based on the relationship between the STFT and the 2DFT amplitudes 

that allows a better interpretation and identification of Lamb modes. 
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In the next section, the theoretical relationship between the STFT and the 2DFT in 

the case of a monomode Lamb wave is given and tested in the case of a simulated 

S0 mode. A subsequent section is devoted to the development of the relationship in 

the case of a multimode Lamb wave. This relation will be experimentally verified 

using a healthy plate in the last section. Experimentally, a 3 mm thick aluminum 

plate with an emitter and a receiver are considered (see section III). The emitter 

consists of two piezoelectric elements with different widths in order to allow the 

excitation of two different frequency bands. In fact, Fromme et al.
14

 considered 

that in practical applications measurements should be performed at more than a 

single frequency, corresponding to different wavelength-diameter ratios, in order 

to ensure the reliable detections of damage of unknown severity. The receiver 

consists of a multi-electrodes piezoelectric transducer developed especially to 

increase the received power. Experimental results concerning the detection of the 

 

 

 

 Fig. 1 Schematic description for the application of the two dimensional Fourier Transforms 

 

2 Relationship between STFT and 2DFT in the case of a 

monomode Lamb wave 

2.1 Problem statement 

In order to find a relationship between the STFT and the 2DFT, let us consider the 

situation present in Fig. 1 with the following assumptions. (1), the source is a five 

cycle sinusoidal tone burst at center frequency f0 windowed by a Hanning 

function. (2), only one non attenuating mode of wave number k1 in the x direction 

is generated. Thus, the emitted signal )(te  and the received signal 1( , )s t x  at the 

distance x  can be written respectively as:  

02
( ) ( )

j f t

H
e t e w t

π= ,  (1) 

and 

( ) ( )1 0
( 2 )

1 1 1 1 1
( , )

j k x f t

H
s t x A e t t A e w t t

π− +
= − = − , (2) 
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hole through the plate can be found in Ref. 15. Work under progress is the detection
of asymmetric hole in the plate. 



 

where t1 corresponds to the time of flight of the signal between the source and the 

reception positions (
1
t x V= , V is the group velocity of the considered mode), 

1
A  

is the maximum amplitude of the signal and Hw  is a Hanning window of size 

H
N  and given by [16]: 

[ ]

( )

1 2
( ) 1 cos  for 0, 1 , 

2 1

 0 otherwise.

H H

H

H

n
w n n N

N

w n

π
= − ∈ −

−

=

   
   
   



 (3) 

In the discrete form and for 
0 0

x d m d= = ∆ (m0 being an integer), the received 

signal is given by: 

( )0 1 0
( 2 )

1 1 1
( )

j m K F n

H
s n A e w n

π α− +
= − ,  (4) 

with 
1 0
d V tα = ∆ , t n t= ∆  (n being an integer), 

1 1
K k d= ∆  and 

0 0
F f t= ∆ . t∆  

and d∆  are the temporal and spatial sampling respectively. Finally, 
1
K  and 

0
F  

correspond to the normalized wave number and the normalized temporal 

frequency respectively. 

 

In the following, it is assumed that around the excitation frequency, the effect of 

dispersion is relatively unimportant. Although this assumption is not strictly true, 

it is a reasonable approximation when the input signals are windowed tonebursts 

with a precise centre frequency and limited bandwidth and the Lamb waves are 

barely dispersive around the excitation frequency [17].  

 

2.2 Development of the STFT formulation 

The general equation of the numerical N points Short Time Fourier Transform is 

given by [11]: 

1
2

0

( , ) ( ) ( )
N

STFT j Fn

R

n

S b F w n b s n e
π

−
−

=

= −∑ ,  (5) 

where wR(n) is a rectangular window of length L which is translated in time along 

the temporal signal s(n,m) with delay b. The frequency F is the normalized one. 

By introducing Eq.(4) in Eq. (5), the STFT can be written as: 
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( )

1 0 0 1

1

0

1

2 ( )

1 1

1
2 '

1

'

( , )

( ' ) ( ')

jK m j F FSTFT

N
j F F n

R H

n

S b F Ae e

w n b w n e

π α

α
π

α

α

− − −

− −
− −

=−

=

+ −∑
. (6) 

When 
1

b α= , the above equation simply reduces to : 

( )01 0 0 1

1
2 '2 ( )

1 1 1

'

( , ) ( ') ( ')
N b

j F F njK m j F FSTFT

R H

n b

S F A e e w n w n e
ππ αα

− −
− −− − −

=−

= ∑ . (7) 

In the following study, the length of the rectangular window used for the STFT is 

always chosen greater than the length of the Hanning window corresponding to 

the transient excitation, i.e. 
H

L N≥ . The integer number N  is always taken 

greater than 1
H
N b+ + . Hence, when 

0
F F= , the modulus of the STFT is given 

by: 

1 1 0 1

sin sin ( )
1 1

( , )
2

4sin 4sin
1 1

H H

H HSTFT H

H H

N N

N NN
S F A

N N

π π

α
π π

    
−    − −    = − −

    
−     − −    

. (8) 

Since 1
H
N >> , the previous modulus of the STFT can be easily approximated 

as: 

1
1 1 0( , )

2

STFT HA N
S Fα ≅ . 

  (9) 

2.3 Development of the 2DFT formulation 

The monomode Lamb wave s1(n,m) received at m equidistant spatial positions 

situated between 
0

x d=  and ( )0
1x d m d= + − ∆ and its two Dimensional 

Fourier Transform are given by: 

( )0 1 1 0( 2 )

1 1 1 1
( , )

j m K mK F n

H
s n m Ae w n m

π α β− − += − −  (10) 

and 
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( ) ( )
1 1

22

1 1

0 0

( , ) ( ) ( ) ,  
N M

j Fn KmDFT

N M

n m

S K F w n w m s n m e
π

− −
− −

= =

= ∑∑ , (11) 

respectively, where 
N
w  and 

M
w  are two rectangular windows of sizes N and M 

respectively. 
1

d V tβ = ∆ ∆  is the time of flight of the considered Lamb mode 

corresponding to the distance d∆ . Substituting Eq. (10) in Eq. (11), the 2DFT can 

be rewritten as: 

( ) ( ) ( ) ( ) ( ) ( )0 1 10 1 0

1
2 222

1 1 0

0

,
M

j F F K K mj F F jm KDFT

H M

m

S K F Ae W F F w m e
π β ππ α

−
− − − − − − −  

=

= − ∑ (12) 

where 
H

W  is the Fourier Transform of the Hanning window 
H
w on the time 

dimension. The modulus of the 2DFT at the frequency F=F0 is equal to: 

( )
( )
( )

1

2 1

1

1

sin
2

,  
2

sin
2

DFT H

K K
M

AN
S K F

K K

−

=
−

 
  

. (13) 

For 
1

K K=  the above 2DFT reaches to its maximum value which is equal to 

1
2

H
A N M . This maximum value is related to the modulus of the STFT {see Eq. 

(9)} by the following relationship : 

2

1 1 0 1 1 0
( , ) ( , )

DFT STFT
S K F M S Fα=  (14) 

In the following N, L and NH are always taken equal to 1024, 180 and 160 

respectively. 

 

2.4 Application of the dual signal processing approach in the case of a 

simulated S0 mode 

In order to verify the validity of the above relationship in quasi-realistic conditions 

of Lamb wave propagation, the propagation of a S0 Lamb mode in a 3 mm thick 

aluminium plate has been simulated (Fig. 2) with the help of a two-dimensional 

finite element (FE) model. The size of each element (quadratic interpolation) in 

the FE mesh was chosen to be at least smaller than / 4λ , where λ is the smallest 

wavelength from all generated modes, to maintain a large accuracy of the FE 

results.  
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Fig. 2 Finite element mesh of the aluminium plate of thickness 3mm. 

 

The generation of only the S0 symmetrical Lamb mode was done by applying, at 

the edge of the plate, both tangential symmetrical and normal anti-symmetrical 

displacements, with respect to the median plane, windowed by a Hanning 

temporal function. The applying displacement was a 5 cycles 400 kHz sinusoidal 

tone burst. At this central frequency, the group velocity of this mode is about 

5460 m s  and its wave number is about 
-1

460  m . In addition, the S0 mode is 

not very dispersive in the vicinity of this frequency. Tangential displacements are 

extracted at M=32 different spatial positions spaced by a step 2d mm∆ =  on the 

surface of the plate. The initial distance between the excitation and the response is 

0
20d cm= . 

 

Fig. 3. Tangential surface displacement of the plate at d0 = 20 cm. 

Fig. 4.STFT of the tangential surface displacement of Fig. 3. 
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Fig. 5. 2DFT of the 32 predicted free tangential surface displacements. 

 

The computed time history of the tangential displacement is shown in Fig. 3. The 

1024 points STFT of the free tangential surface displacement given in Fig.3 is 

shown in Fig. 4. The presence of only one mode, i.e. the S0 mode, is confirmed. 

The 2DFT application, 1024 point Fourier transforms were used in both time and 

spatial domains, the length of the spatial records being increased from the 32 

computed points by zero padding. Fig. 5 shows the result of carrying out a 2DFT. 

At 
0

F F= , the amplitude reaches a maximum at a single wave number that 

corresponds to that of the S0 mode, thus confirming that the incident wave is a 

pure S0 mode. In Figs. 4-5 the secondary lobes due to the use of the windowed 

time in order to compute the two transformations can be easily seen. In fact, the 

continuous Fourier transform of à pure sinusoidal signal is equal to Dirac operator 

but the numerical Fourier transform of the same signal is given by sinus cardinal 

function. 

 

Finally, the comparison of the STFT and 2DFT amplitudes computed at the 

frequency 400 kHz is in good agreement with the Eq. (14). 

 

 

3 Application to a multimode Lamb wave 

In most cases, the generation of a monomode is not possible and the response is 

usually composed by several Lamb modes. Therefore, the resulting Lamb wave 

signal ( ),
T
s n m  can be supposed as the sum of these Lamb modes: 

( ) ( ), ,
T i

i

s n m s n m= ∑ ,                                                                                   (15) 
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where ( ),
i
s n m  is given by Eq. (2) by substituting index 1 by i. So, the STFT of 

the Lamb wave signal sT can be written as:  

( ) ( ), ,
STFT STFT

T i

i

S b F S b F= ∑ .  (16) 

If we assume that Lamb modes can be distinguished in the temporal signal then 

the i
th 

Lamb mode ( )i i
b mα β= +  and at the frequency 

0
F F= , the modulus of 

the STFT is given by: 

( )0,
2

STFT i H

T i i

A N
S m Fα β+ ≅ .  (17) 

Similarly, by using the linearity properties of the Fourier transform, the 2DFT of 

signals ( ),
T
s n m  can be given by: 

( ) ( )2 2
, ,

DFT DFT

T i

i

S K F S K F= ∑ .  (18) 

Thus, when 
0

F F=  and 4
i j
K K M j iπ− > ∀ ≠ , the modulus of the 2DFT of 

the i
th

 Lamb mode of wave number 
i
K  can be approximated by : / 2i HA N M . 

In theses conditions, it is interesting to note that the relation obtained in the case of 

a single mode {see Eq. (14)} is still valid for the case of multi modes.  

 

 

4 Experimental results 

The experimental setup is shown in Fig. 6. The emitter consists of two 

piezoelectric elements with different widths. They have the same length and 

thickness, which are equal to 15 mm and 1 mm respectively. Their widths are 2 

and 3 mm and their transverse resonance frequencies are then equal to 600 kHz 

and 400 kHz respectively. These elements were stuck on the plate, keeping an 

arbitrary inter-element distance of 6 mm. The excitation in phase of these 

elements by a 5 cycles sinusoidal tone burst at their resonance frequency allowed 

us to work in the frequency band between 300 kHz and 650 kHz. At these 

frequencies the fundamental A0 and S0 modes are excited [14]. Moreover, the S0 

mode is less dispersive at the frequency of 400 kHz and dispersive at the 

frequency of 600 kHz. At the reception, a sensor using metallic multi-electrodes 

deposited on a piezoelectric substance [18] was especially developed to allow the 

temporal measurements with an inter-electrode distance of 2 mm. This receiver 
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has 32 electrodes, and is chosen to be 400 µm thick, 15 mm wide and 63 mm long. 

The initial distance between the emitter and the sensor was chosen to be 25 cm. 

 

Fig. 6. Experimental measurement setup. 

The Lamb waves generated by the emitter were received on the different 

electrodes of the sensor. All the signals were then recorded by a digital 

oscilloscope and transferred to a PC computer in which signal processing, i.e. 

STFT and 2DFT, could be applied. 

 

Figs. 7(a) and 7(b) below show the received signal on the first electrode and its 

time-frequency representation respectively. Fig. 7(c) shows the result of the 2DFT 

of the 32 received signals. The Fourier transforms in Figs. 7(a) and (7b) have been 

filtered in order ton eliminate secondary lobes. It is interesting to note that the A0 

mode is stronger than S0 mode. After comparison of the theoretical curves with the 

experimental results, these representations demonstrate that fundamental Lamb 

modes (S0 and A0) propagate within the structure in the frequency band  between 

300 and 650 kHz. Since it is difficult to make a direct comparison between 

amplitudes of the STFT and 2DFT using Fig. 7, table I gives a comparison 

between the STFT and 2DFT amplitudes of the identified Lamb modes. These 

amplitudes were computed from Fig. 7 for ( )
i i

b and F Fα= = and for 

( )
i i

K K and F F= = , respectively (i = 1 corresponding to the S0 mode while 

i = 2 corresponding to the A0 mode). As a result, it can be noticed that for each 

Lamb mode, the values obtained with both methods are close to each other. So, 

the theoretical and experimental results are in good agreement. Finally, the 

relationship as given by Eq. (14) is then verified. 
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Fig. 7. (a) Time history of the received signal on the first electrode of the receiver transducer; 

(b) the STFT of the above received signal; (c) the 2DFT of the 32 received signals. 
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Tab. 1. Comparison between the 2DFT and STFT amplitudes for the identified Lamb modes. 

Frequency 

(kHz) 
Mode Wavelength 

(mm) 

Amplitude 

(TF2D) 
Amplitude 

(STFT) 

S
0
 13 2.00 2.10 

400 
A

0
 6 1.95 2.15 

S
0
 8.5 2.66 2.74 

600 
A

0
 4.5 6.16 6.23 

 

 

5 Conclusion 

A dual signal processing analysis using the STFT and the 2DFT was developed to 

characterize Lamb wave propagation in plates. The relation between their 

amplitudes was first demonstrated theoretically and second validated by the finite 

element method. The proposed approach can be simply implemented for real 

application on SHM systems. In fact, the SFTD and the 2DFT must be only 

computed at one point.An experimental study has been done using an aluminum 

plate. The proposed dual signal processing has been used to detect defects in 

plates [15]. 
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Structural health monitoring of bonded
composite patches using Lamb waves

B. Chapuis, N. Terrien, D. Royer and A. Déom

Abstract Bonded composite patches are an attractive way to repair cracked or cor-
roded airframe structures because of their several advantages compared to tradi-
tional riveted doublers. However, certification issues limit the application of this
technology. We present here the first step in the development of a SHM system for
detecting disbonds between the patch and the structure. This will provide important
information concerning the damage state of the repair. PZT discs embedded between
the patch and the metallic parent structure are used to excite and detect Lamb waves.
Analytical study of the ultrasonic characteristics of both structure and actuator is es-
sential to adjust the experimental setup. Processing of experimental signals allows
us to locate the damage and shows the sensitivity of the SHM system to the size of
the defect.

1 Introduction

The appearance of cracks in ageing aircraft structures is one of the main issues for
maintenance operators. In order to avoid a replacement of the damaged structure,
always time consuming and costly, a metallic riveted doubler is generally applied to
provide a supplementary path for the load. However this solution induces stress con-
centrations around the fasteners leading to additional problems. An alternative and
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more recent technique involves bonding a composite patch on the damaged structure
with an adhesive film. Such patches have been successfully used to repair cracked
but also corroded structures. They are usually composed by a stacking of several lay-
ers of carbon or boron composite reinforced polymer (CFRP or BFRP). This tech-
nology provides significant advantages compared to traditional mechanical repairs
[1, 2] : there is no further damage to the structure, as the interface is sealed there
is no corrosion problems, patches can be easily conformed to curved surfaces and
their mechanical performances are excellent. However certification requirements
limit their application to non-primary structures due to the lack of methodology for
monitoring the damaged state of the repaired structure. The most promising solu-
tions using the concept of smart structures are given by fibre optic Bragg grating
sensor [3, 4] and piezoceramics [5, 6].

We present here the development of a SHM system based on piezoelectric (PZT)
discs inserted between the patch and the structure (figure 1).

aluminium adhesive film

plies of CFRP

12
5 

μm

 3
00

 μ
m

PZT discs

x
1

x
3

Fig. 1 Schematic section of a typical bonded patch repair and integration of PZT discs.

The discs are used both as actuators and sensors of Lamb waves and we try to
monitor the defect by studying the waves reflected by it. We focus our study on the
detection of disbonds between the patch and the structure. However, with the aim of
separating the difficulties we have divided the work in several steps and the results
presented here are the set-up of tools which will be used in the final application.

In the first part we recall the principles of Lamb wave propagation in multilay-
ered anisotropic structures and we detail some theoretical and experimental consid-
erations about the detection and the excitation of these Lamb waves by PZT discs.
In the second part we present the experimental results of the detection of a growing
hole drilled in an aluminium plate by three PZT discs bonded on the surface.
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2 Identification of propagative modes in the healthy structure

2.1 Dispersion curves

The studied structure is very complex from an ultrasonic point of view due to the
presence of different anisotropic materials. Each layer (one single layer of the CFRP
patch, the adhesive film or the aluminium) can be considered as a monoclinic mate-
rial with x1x2 as a plane of symmetry. The stress-strain relation in the n-th layer is
therefore: 

T11
T22
T33
T23
T13
T12

=


C11 C12 C13 0 0 C16
C12 C22 C23 0 0 C26
C13 C23 C33 0 0 C36
0 0 0 C44 C45 0
0 0 0 C45 C55 0

C16 C26 C36 0 0 C66




S11
S22
S33
S23
S13
S12

 (1)

where Ci j (i, j = 1, ...,6) is the stiffness matrix of the material in the direction of
propagation. The Christoffel equation allows us to determine the phase velocity in
the direction x1 and the polarisation of a plane wave (ur

l = Ur
l ei(kx1+qrx3−ωt), l =

1,2,3) propagating in the plane x1x3 of an infinite medium of the material of the
n-th layer with the phase velocity Vφ =

ω

k
in the direction x1 :

C11k2−ρω2 +C55q2
r C16k2 +C45q2

r (C13 +C55)kqr
C16k2 +C45q2

r C66k2−ρω2 +C44q2
r (C36 +C45)kqr

(C13 +C55)kqr (C36 +C45)kqr C55k2−ρω2 +C33q2
r

Ur
1

Ur
2

Ur
3

=

0
0
0

 (2)

Vanishing the determinant of the 3 ∗ 3 matrix given in (2) yields to a third-order
polynomial in q2

r which 6 roots can be explicitly obtained from known formulas.
The general solution of the motion equation in the n-th layer is therefore a linear
combination of 6 partial waves:

ul =

(
6

∑
r=1

ArUr
l eiqrx3ei(kx1−ωt)

)
l = 1,2,3 (3)

where the coefficients Ar are the amplitude of the partial waves. They are determined
by the boundary conditions of each layer: displacement and stress continuity along
the interfaces between the layers and traction-free boundary conditions for the top
and the bottom surfaces of the laminate. A total of 6N equations if there are N layers
is established and numerically solved by using the global matrix method [7].

This method is very general but necessary for the studied structure. It gives us in
the simple case of an aluminium plate the dispersions curves of figure 2 which are
the phase velocities of the different modes as a function of the product frequency-
thickness. These curves are significant from an experimental point of view as they
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section.

Fig. 2 Dispersion curves of Lamb waves propagating in an aluminium plate.

Another important data can also be derived from these curves: the group velocity,
which represents the velocity of energy propagation and is defined by:

V g
i =

(
∂ω

∂ki

)
k j

j 6= i (4)

In anisotropic materials this equation leads to :

Vg =
1

cosψ

(
∂ω

∂k

)
ni

(5)

were ni is a unit vector parallel to the wave vector k and ψ is the angle between
the group velocity vector and k. In isotropic materials ψ vanishes, hence the wave
front curve, which is the locus of group velocity vector for every possible choice of
direction of propagation, is simply a circle. We will see in the last section how to
use this wave front curve to locate a defect.

2.2 Generation and Detection of Lamb Waves by PZT Discs

In this section we investigate the behavior of a bonded thin PZT disc used to generate
and detect Lamb waves. First we calculate analytically the response of the PZT to
an incident plane wave. That reveals the presence of cut-off wavelengths that the
disc cannot detect properly. Then FE simulations and experimental measurements
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propagate in the plate, provided they are correctly excited as we will see in the next



show that the PZT disc regarded as an actuator generates Lamb waves with the same
cut-off wavelengths.

We consider a PZT of thickness hPZT and diameter D = 2R bonded on the
host structure of thickness hplate. According to its geometry (hPZT � hplate and
R�hPZT ) it can be considered in state of plane stresses, with T33 = 0. Considering
that the electrical impedance of the measurement circuit is higher than those of the
PZT, we can assume that the electric displacement D3 = 0. Simplification of the
constitutive equations of the piezoelectric material leads to:

E3 =−h̃31 (S11 +S22) (6)

where E3 is the electric field in the third direction, h̃31 is the piezoelectric coefficient
at plane stress and Sii the strain [8].

θ

R

incident plane wave 
wavenumber k
circular frequency ω

x
1

x
2

PZT disc

Fig. 3 Incident plane wave on a circular PZT disc.

We now consider the displacement created by an incident plane wave (figure 3):

u(x, t) = U0e j(kx1−ωt) (7)

The measured voltage V is therefore averaged on the surface of the PZT:

V =−h̃31
hPZT

πR2

∫
S
(S11 +S22)ds (8)

Applying Stockes theorem to the previous equation gives:

V =−h̃31
hPZT

πR2

∫
S

div(u)ds =−h̃31
hPZT

πR2

∫
∂S

u.ndΓ (9)

thus

V =−h̃31
hPZT

πR2 U02e− jωt
∫

π

0
e jkRcosθ Rcosθ dθ

=−2 jh̃31
hPZT

R
U0e− jωt J1 (kR) (10)
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R

aluminium plate absorbing layer

computation of the normal velocity

Lamb modes

action of the PZT 

(a) (b)

Fig. 4 (a) Geometry used in the FE simulations, (b) 2D-FFT of the normal velocity computed at
the surface of a 1 mm thick aluminium plate excited by a PZT of diameter 10 mm driven by a
1-cycle toneburst at 300 kHz; dots correspond to theoretical dispersion curves.

where J1 is the Bessel function of first kind and first order. Hence, the voltage of
the PZT disc is proportional to |J1 (kR)|= |J1 (πD/λ )|. The plane wave is therefore
optimally detected for the wavelength λ = 1.7D (maximum of the |J1| function) and
minimally detected for λ = 0.8D (first zero of the |J1| function).

Now we will study the behavior of the PZT discs as actuators. We determine
the impulse response of a PZT bonded on an aluminium plate by FE simulations
and we compare them with experimental data. The FE model is a 2D axisymetric
aluminium plate with an absorbing layer to minimize the reflection at the edges
of the plate (figure 4(a)). As the bonded material is very thin, the shear stress is
transmitted to the structure only at the periphery of the disc [9]. The action of the
PZT is therefore represented as a ponctual force at the extremity of the disc.

In order to study the influence of a single mode, we consider the out of plane
velocity at the surface of the aluminium plate for low frequency-thickness products.
A 2D-FFT confirms that, under that hypothesis, only the A0 mode has to be consid-
ered (figure 4(b)). In figure 5(a) we can see the amplitude of the out of plane velocity
versus the wavelength of A0 mode for different diameters of PZT discs. The simu-
lations were computed in the frequency domain and then converted to a function of
λA0 using the wavelength curve deduced from the previous dispersion curves (figure
2). We can see that there are again cut-off wavelengths which also correspond to the
zeros of the function |J1 (πD/λ )|.

The results of the FE simulations are compared to experimental measurements of
the normal velocity at the surface of the aluminium plate performed with a hetero-
dyne interferometric probe (figure 5(b)). The positions of the cut-off wavelengths
are clearly visible and correspond well with numerical results.

This study shows the necessity of adapting the diameter of the PZT disc to the
wavelength of the Lamb modes we want to generate/detect in the structure.
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(a) (b)

Fig. 5 (a) Normal velocity at the surface of a 1 mm thick aluminium plate for PZT discs of dif-
ferent diameters, (b) Normal velocity at the surface of a 2 mm thick aluminium plate excited by a
10 mm diameter PZT disc, comparison between FE simulations and measurements with a hetero-
dyne interferometric probe.

3 Experimental study of the SHM system

Some experiments were conducted to set-up the tools necessary to locate and eval-
uate the size of a defect with the SHM system. To avoid facing all the difficulties
directly, we have not bonded an anisotropic patch in our experiments yet. Therefore
the specimen used was a 2 mm thick aluminium plate and the defect a hole well
calibrated.

The SHM system was achieved with three PZT discs of 10 mm diameter and
0.15 mm thickness bonded onto the aluminium plate. The distances between the
discs were respectively 15.4 mm, 15.8 mm and 18.9 mm. The instrumentation con-
sisted of an Agilent 33220A [Santa Clara, USA] arbitrary waveform generator and a
Lecroy Waverunner 44Xi [Chestnut Ridge, USA] oscilloscope. Pulse-echo method
was employed, the generation consisted of a 1-cycle toneburst of centre frequency
300 kHz and an amplitude of 10 Vpp. We used the S0 mode which is the fastest mode
at this frequency and is therefore not perturbed by edge reflection of other modes.
In order to minimize the voltage at the input of the oscilloscope during the transmit
event, a limiter diode bridge placed in parallel with the receive circuitry was used.
The signals were initially measured on a healthy plate and then compared to those
measured after drilling a hole of increasing diameters from 2 mm to 10 mm.

Figure 6(a) shows the typical pulse-echo signal measured. After the initial exci-
tation we observe a spurious ringing due to the diode limiter which may obstruct
the visualisation of the signal due to the hole if it is too close to the PZT disc. The
presence of the hole is visible due to the wave packet arriving at 24 µs, the first
boundary echo occurs at 46 µs. Figure 6(b) shows the difference between the signal
in the damaged structure and the healthy one. The presence of the hole is clearly ob-
served when its diameter is larger than 2 mm. However, when the distance between
the sensor and the hole is too large, it can be difficult to detect a defect smaller than
4 mm. Measuring, with the three PZT discs, the time of flight of the wave packet
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(a) (b)

Fig. 6 (a) Pulse-echo signal measured on a 10 mm diameter PZT disc bonded onto a 2 mm thick
aluminium plate. The PZT disc is excited by a 1-cycle toneburst at 300 kHz and localized at
120 mm of a 8 mm diameter hole, (b) Difference between the signal measured for increasing
diameters of hole and the signal obtained for an undamaged plate.

(a) (b)

Fig. 7 (a) Localization of the hole by triangulation, (b) Variation of the maximal spectral amplitude
of the echo as a function of the diameter of the hole.

reflected on the hole enables us to locate the defect by triangulation as we can see in
figure 7(a). The estimated position is the intersection of the three wave front curves
(calculated in a previous paragraph) centered on the PZT and dilated by the corre-
sponding time of flight. In the case of the aluminium it is simply the intersection of
three circles but it will give a more complex figure in the case of anisotropic struc-
tures. However the estimated position of the hole is in a very good agreement with
the real one.

Figure 7(b) shows the maximal spectral amplitude of the echo as a function of
the hole diameter. The quasilinear variation of this indicator allows us to estimate
the size of the defect.
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4 Conclusion

A SHM system for detecting and locating a defect based on three PZT discs us-
ing propagative Lamb waves has been presented. In order to properly generate and
detect the waves some considerations about the behavior of PZT discs have been
detailed. In particular it has been highlighted the necessity to adapt the diameter of
the PZT disc with the wavelength. Some experimental preliminary tests of the SHM
system in an academic situation have also been described showing the ability of the
setup to locate a defect and estimate its size.
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Abstract  In some polycrystalline materials, ultrasonic non destructive testing is 

affected by structural noise and attenuation. Those phenomena can cause signifi-

cant loss in detection performances, thus their prediction is of great practical inter-

est. During previous works at CEA-LIST, noise and attenuation models have been 

developed and implemented into the simulation software for non destructive test-

ing CIVA. These two models are based on distinct methods and both require ref-

erence ultrasonic measurements to reproduce the behavior of a given material. The 

main purpose of this work is to improve these models by linking structural noise 

and attenuation to the microstructural parameters. This should suppress the need 

for reference measurements and allow for more accurate simulations. In this 

communication, a method using one scattering model to compute both structural 

noise and attenuation is presented. This method is based on the assumption that 

both phenomena can be considered to depend only on the average of the energy 

scattered by a unit volume of the material. A model based on the Born approxima-

tion is used to relate this averaged scattered energy to second order statistical 

properties of the microstructure and to the elastic properties of a single crystallite. 

This model is valid in a frequency domain larger than the Rayleigh domain. Dur-

ing the simulation of the testing of a polycrystalline material, a non-attenuated ul-

trasonic field is firstly computed. Attenuation is applied afterwards using a time-

dependant filtering. Noise is simulated by generating a random set of point-like 

scatterers in the medium. Mode conversions and phenomena related to anisotropic 
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scattering are accounted for. Simulation results obtained with this approach are 

compared to experimental results. 

1 Introduction 

As an ultrasonic wave propagates in a polycrystalline material, a part of its energy 

is scattered in all directions of space by individual crystallites. This interaction be-

tween the ultrasonic field and the microstructure of the material induces the at-

tenuation of defect echoes and the presence of signals known as structural noise. 

During the ultrasonic testing of some materials, those phenomena can become sig-

nificant and hide defect echoes. 

 

The simulation software for non destructive testing CIVA includes tools for 

taking into account structural noise and attenuation. These two phenomena are 

handled separately: attenuation is computed by applying a frequency filter to sig-

nals, and structural noise is obtained using a specific “noise generator” algorithm. 

In the current version of the software, expressions of the attenuation coefficients 

as well as parameters for the noise generator have to be entered manually using 

the software interface. Preliminary measurements of attenuation and noise are nec-

essary to adjust those parameters for a given material. 

 

The work outlined in this article aims at gaining a better knowledge of the phe-

nomena that cause attenuation and structural noise. This should enable to develop 

new simulation tools. 

 

The existing CIVA tools, which will serve as a basis for new developments, are 

described. Then, a theoretical model relating ultrasonic scattering to properties of 

the microstructure is outlined. Its integration to existing algorithms, which should 

enable to compute structural noise and attenuation from material properties, is dis-

cussed. 

2 Simulation of structural noise and attenuation in CIVA 9  

The CIVA 9 software offers tools that allow taking into account structural noise 

and attenuation when modeling ultrasonic testing. The computation of an ultra-

sonic testing involving noise and attenuation can be summarized as such: an ultra-

sonic field is computed without noise or attenuation. A user-defined attenuation 

filter will be applied afterwards at any position where the value of the ultrasonic 
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field is needed. A set of point-like scatterers is generated to produce noise. Finally, 

the responses of those scatterers as well as the responses of defects are computed, 

using the value of the computed field and the attenuation. 

Attenuation  

The CIVA algorithms start by computing ultrasonic fields that are not attenu-

ated. Then, at any position where the knowledge of the attenuated field is needed, 

the attenuation is accounted for by using the Beer-Lambert law: 

( )0 expu u dα ω = −  . 

u0 being the non-attenuated field and u the attenuated one. d is the distance 

traveled by the wave from its entry interface to the position where u is computed. 

( (α α  is a parameter known as the attenuation coefficient, and reflects the attenu-

ative properties of the medium. The expression above can be regarded as a fre-

quency filter that depends on the distance the wave has traveled in the medium.  

 

Several forms of attenuation functions ( (α α  are available to the user. In any 

case the parameters of the function have to be set by the user, who has to refer ei-

ther to a model or to preliminary measurements. 

Noise  

The CIVA noise generator creates a random set of point-like scatterers. These 

scatterers are uniformly distributed in the medium, and each of them is character-

ized by a random scattering coefficient. Two parameters must be adjusted to 

mimic the noise reflected by a given material: ρ (the number of scatterers per 

volume unit) and σ (the standard deviation of the probability density function 

from which scattering coefficients are drawn). 

 

The model used to compute noise is similar to the one developed by Gustafsson 

and Stepinski [1]. It is a single scattering model. The response of a set of scatterers 

to an ultrasonic pulse S( (α  is the sum of the individual contributions of each scat-

terer and can be expressed as:  

( ) ( ) ( ) ( )2

1

exp exp

K

k k k k

k

V A d j C Sω ω α ω ωτ ω
=

 = − − ∑ . 

Ak is a coefficient randomly assigned to each scatterer. It follows a normal 

probability distribution whose mean is zero and standard deviation is σ. dk is the 

length of the emitter-scatterer-receiver path and τk is the corresponding time of 
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flight. Ck is a factor which quantifies the interaction between the emitter and the 

receiver at the location of the scatterer, and stems from a form of the reciprocity 

theorem which is used in CIVA to compute echoes. The α2
 term in the expression 

describes how the amplitude of the scattered waves varies with frequency: α2
 cor-

responds to the Rayleigh domain and is used here because it is assumed that struc-

tural noise is due to scatterers that are very small compared to wavelengths. exp[-

( (α α dk] is the attenuation filter expressed as a function of the time of flight. 

 

The set of scatterers remains the same as the echoes are computed for different 

positions of the transducer. Consequently, a same grain is apparent for successive 

positions of the transducer, which ensures that a generated B-scan has the same 

coherent properties as the measured one. 

Limitations of the method 

Once correct noise and attenuation parameters have been set for one material in 

one configuration, they can be used for the same material in some other configura-

tions. But this transposability of parameters has limits. 

 

As the parameters reflect intrinsic properties of the material, they do not de-

pend on the geometry of the inspected block, on the incidence angle, or on the di-

vergence of the beam. They are also independent of frequency, as long as the 

bandwidth remains in the Rayleigh domain (grains must be small compared to 

wavelength). However, the noise model is only valid for a simulation involving 

one wave type (Longitudinal or Shear) and one scattering angle. 

 

The integration of a scattering model should enable to refine the noise genera-

tor and to go past the transposability limits, as well as suppressing the need for 

reference measurements. 

3 Integration of a scattering model 

Principles 

A model based on the approach proposed by Rose [2] was selected. This model 

describes a metal as a set of juxtaposed anisotropic crystallites. All the crystallites 

have identical properties, except for their shape, size, and orientation. The elastic 
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constants of crystallites being anisotropic, the variations of orientation induce the 

scattering. 

 

The study presented here is limited to materials whose crystallites are only 

slightly anisotropic (which is the case in usual metals) and whose grains are not 

too big compared to wavelengths. For such materials the Born approximation, 

which assumes that the ultrasonic field is only slightly affected by the microstruc-

ture, is relevant. Rose [2] shows that when using the Born approximation it is pos-

sible to compute the field scattered by the microstructure as a function of the field 

that would propagate in an effective uniform medium. This will make it possible 

to use an ultrasonic field computed by CIVA in a uniform medium as a basis for 

structural noise computations.  

 

In the computation method presented here, the Born approximation will only be 

used locally, to compute scattering coefficients. When it comes to computing the 

response of an entire block, it is important to take into account some perturbation 

of the field by the microstructure in the form of attenuation, which becomes sig-

nificant at the scale of several wavelengths. Consequently, it will be considered 

that noise arises from the interaction between the microstructure and a beam equal 

to the beam propagating in an unperturbed medium, except that it has been attenu-

ated. It will be a single scattering model, thus the interaction between the micro-

structure and the scattered field will not be taken into account (except for attenua-

tion, as in the case of the incident field). 

 

In many ways, the new algorithm will be similar to the one used in CIVA 9: an 

unperturbed field will be computed, attenuation will be applied afterwards, and 

noise will be accounted for by a random set of scatterers. The main differences are 

that in the new algorithm the attenuation filters and the properties of the scatterers 

will not be user-defined, and that the response of the scatterers will represent more 

accurately structural noise. 

Noise 

A straightforward way to generate noise based on a scattering model would be 

to generate a realistic polycrystalline microstructure, and to use the model to com-

pute the ultrasonic responses of every crystallite. But the number of crystallites 

present in metals (typically several thousands crystallites per mm
3
) would require 

unacceptably long computations. 

 

As the statistical properties of structural noise are simple, a faster method can 

be developed. Structural noise recorded at a given moment comes from a large 

number of crystallites, which can be regarded as uncorrelated scatterers. Therefore 
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structural noise is a case of fully developed speckle, as described by Goodman [3], 

which is basically a colored Gaussian noise with zero mean. Such a noise can be 

mimicked using a smaller number of scatterers, as long as it is ensured that the 

generated noise will be Gaussian with zero mean and will have the same variance 

as the original noise. 

 

As in the case of the CIVA 9 noise generator, random sets of scatterers will be 

created. Again, their scattering coefficients will be randomly assigned following a 

Gaussian probability with zero mean, which will ensure that even when a small 

number of scatterers are insonified the probability distribution of the noise will 

have the correct form. The standard deviation of the scattering coefficient distribu-

tion will be set in a way that will ensure that the noise has the correct variance. 

 

It can be shown that if the scattering coefficients are set in the following way, 

the noise signal generated by point-like scatterers will have the same variance as 

the noise generated by crystallites: 

( ) ( ) inc
k k

scat

v
D

N v

η ω
ω β= . 

Dk is the scattering coefficient of one scatterer, βk a random factor affected to 

each scatterer using a standard normal distribution (with a mean of zero and a 

standard deviation of one), and N the number of point-like scatterers per unit vol-

ume. inc and scat refer to the types (longitudinal, shear horizontal or shear verti-

cal) of the incident and scattered waves and vtype to wave speeds. η is the differ-

ential cross section as defined by Margetan et al. [4]. The noise computed by the 

new noise generator will be equal to:  

( ) ( ) ( ) ( ) ( )
1

exp exp

K
inc

k k k k
scatk

v
V d j C S

N v

η ω
ω β α ω ωτ ω

=

 = − − ∑ . 

This new noise generator will account for mode conversions and variations of 

the scattering coefficient as a function of scattering angles. These phenomena are 

included in the computations made by Margetan et al. [4]. They write η in the 

following form: 

( )
( )

( )
2

2 24
3

2 5 3
1

44
inc scat ijkl mnpq

Or
scat inc

k D
C C D

v v

θω
η θ δ δ π

πρ

−

→

 ∆
 = +
 
 

. 

θ is the scattering angle, ρ the material density, δC the variations of elastic 

constants compared to the average medium, k( (Δ θ  the difference between scat-

tered and incident wave vectors. D is the correlation length that is used in the spa-

tial correlation function W(R(=exp(-2R/D(. 

 

This spatial correlation function is defined as the probability that two points 

separated by a distance R are in the same crystallite. The inverse exponential form 
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that leads to the expression of η above is an approximation meant to simplify cal-

culations. In a real material, the spatial correlation function depends on the grain 

size distribution. It should be noted that some theoretical results obtained during 

this Ph.D. work suggested that, for certain grain size distributions, assuming this 

inverse exponential form will lead to an error of a few decibels in the computed 

noise.  

Attenuation 

Several methods can be used to compute attenuation coefficients. A method 

that allows for relatively flexible computations (which will permit an easier adap-

tation to different microstructures), and whose domain of validity is fairly large, 

was used in this study. It consists in relating the attenuation to the energy that the 

beam looses on average as it propagates. The latter quantity can be obtained 

through a sum of η on all directions and on all scattered wave types. In the case 

of longitudinal waves, it yields the following expressions for the attenuation coef-

ficient:  

( ) ( ) ( ) ( )
2

0

sin
2

L L L L SH L SV d

π

θ

π
α η θ η θ η θ θ θ→ → →

=

 = + + ∫ . 

SH and SV indicate respectively shear horizontal and shear vertical waves, as 

defined in [4]. 

 

Figure 1 compares attenuation computed with this method to attenuation com-

puted by a reference model [7] and to its Rayleigh asymptote.  

 

Fig. 1: Attenuation computed by different models, L wave in austenitic steel 

This comparison shows that in terms of attenuation this model agrees with the 

reference model beyond the Rayleigh domain. Nevertheless, it should be noted 

that the reference model used here assumes, like the model used to compute η, 
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that the spatial correlation function is inverse exponential. Therefore it does not al-

low estimating how a particular grain-size distribution would change attenuation 

coefficients. 

4 Comparison to experiment 

Computations were run with the algorithms, and the results were compared to a set 

of measurements. These measurements were made on a diffusive block of austen-

itic steel. Computations were run using the CIVA 9 algorithm, by adjusting the en-

try parameters for noise and attenuation in order to obtain the best possible fit. 

Computations were also run using the new algorithm based on the interaction 

model. As no micrographs were available for this block, grain size was unknown 

and different likely values of the correlation lengths were tested. The one that gave 

the best agreement (12t m) between measureμ d and simulated attenuation was 

chosen.  

 

The results presented here are obtained for a configuration using shear waves 

with a 45° incidence angle, and a 2.25MHz central frequency. When plotted in B-

scans (Figure 2), measured and computed results have a similar aspect. 

Fig. 2: Measured and computed B-scans for a block of austenitic steel 

Differences appear when plotting noise as a function of time, as in Figure 3 

(noise is quantified as the variance of the signal at a given time, along transducer 

positions where only noise was present).  
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Measurement 

 
Computation based on model 



Fig. 3: Noise as a function of time (measurement and computations by the two algorithms). The 

echo of a defect in a reference block was used as a reference in amplitude. 

The slopes of the three curves are identical, which means that attenuation is 

correctly predicted. Thus, in the case of the CIVA 9 computations the user-defined 

attenuation coefficients were correct, and in the case of the new algorithm they 

were correctly predicted by the model. 

 

The two computations show different errors on noise. The CIVA 9 algorithm 

agrees with experiment until 2t s. Afterwards it underestimates the noise peak μ
that corresponds to the bottom of the block. This underestimation can be explained 

by the fact that a fraction of the noise coming from the bottom of the block in-

volves corner echoes which are scattered at an angle different from the angle of di-

rect echoes (Figure 4). As the CIVA 9 algorithm does not account for angular 

variation of the scattering coefficient, it can not compute those echoes properly. 

The new algorithm, which takes angular variations into account, yields a better es-

timation of the relative height of that noise peak. 

 

Fig. 4: Types of echoes involved in the noise coming from the bottom of the block 

However, the noise computed by the new algorithm is underestimated by ap-

proximately 6 dB. There are several possible origins for that error. Some theoreti-

cal results obtained during this work suggested that the inverse exponential form 

assumed for the spatial correlation function could introduce an error of several 

decibels when applied out of the Rayleigh domain, as an accurate representation 

of the grain size distribution becomes necessary. The Rayleigh domain can be de-
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fined as the frequencies for which kSD<<1: in this example kSD≈0.5, which 

could explain the error. Knowing the actual spatial correlation function of the ma-

terial would allow correcting for such an error, but micrographs would be neces-

sary. The error could also be due to an additional source of diffusion in the mate-

rial (for example a high density of dislocations). It also might just be a calibration 

problem.  

 

Still, it is not possible to conclude on the complete relevance of this new algo-

rithm without testing it on a material for which the microstructure is perfectly 

known. Consequently, new noise measurements are currently performed on blocks 

for which micrographs are planned. 

5 Conclusion 

The algorithm used by CIVA 9 to compute ultrasonic testing involving noise and 

attenuation may be improved using a wave-microstructure interaction model. This 

new approach would suppress the need for reference measurements and account 

for mode conversions and angular variations of scattering. 

 

A model which can be used to compute both noise and attenuation was se-

lected. A method to generate noise based on this model with a limited number of 

calculations was developed. The predictive abilities of this new algorithm have 

been tested showing encouraging results. Yet, discrepancies remain between 

measured and simulated noise amplitude. These discrepancies are currently ad-

dressed in a study that includes both ultrasonic and micrographic measurements 

on a set of specimens with various mean grain sizes. 

 

Subsequently, this work may continue with the application of the approach out-

lined here to materials having more complex microstructures. Other themes of re-

search could be the improvement of the scattering model, of the noise generator 

algorithm, or the study of potential additional sources of noise. 
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Ultrasonic array reconstruction methods for the
localization and the characterization of defects
in complex NDT configurations

A. Fidahoussen, P. Calmon, and M. Lambert

Abstract In this paper, we present ultrasonic array reconstruction techniques aim-
ing at localizing and characterizing flaws in an inspected piece. The proposed algo-
rithms derive from the synthetic focusing approach, which exploits the time-of-flight
information. Theoretical forward models implemented in the CIVA software plat-
form are able to provide this information. An advantage is that these models can
deal with complex inspection configurations, in particular with complex geometries
(irregular surface, for example). The algorithms can be applied to data issued from
various operating modes of array inspection. We describe the different algorithms
and show examples of their applications for both simulated and measured data.

1 Introduction

Ultrasonic arrays are increasingly used in NDT applications. They offer more flexi-
bility and adaptability to complex configurations compared to conventional probes.
In addition they provide a larger amount of data, which can improve diagnostics
through adapted processing techniques. Classical reconstruction methods based on
simple hypotheses are not always able to localize defects for non-canonical config-
urations, such as complex geometries.

In this paper, we study reconstruction algorithms based on an inspection mod-
elling, which allows to deal with complex configurations. The proposed algorithms
derive from the synthetic focusing approach, which consists in coherently summing
the received signals to have maximum amplitude where scatterers are really located.
Basically, the algorithms exploit the time of flight, which is evaluated theoretically,
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but the possibility of exploiting the amplitude of the signals is also studied here.
These quantities (time of flight and amplitude) are determined from existing forward
models implemented in CIVA platform, which allow to deal with non-canonical sit-
uations (complex geometry, heterogeneous parts, anisotropic materials, etc) [1, 2].
Moreover the adopted approach is generic and can be applied to any inspection pro-
viding a set of ultrasonic signals. So a wide range of array operating modes (elec-
tronic scanning, beam steering, transmit-receive independent functions, per channel
acquisition) can be processed. This paper is organized as follows: the principle of
the algorithms is first described, some examples of reconstruction using both simu-
lated and measured data are shown in Section 3. Finally, the conclusion is given in
Section 4.

2 Algorithm description

2.1 Modelling of the ultrasonic response of a point-like scatterer

To extract the quantities we need for the reconstruction algorithms, echo signal for
a point-like scatterer and for every array inspection is modelled with the acoustical
impulse response formalism. Under the hypothesis of scalar waves, it can be shown

that the echo signal s(th)
i j (P, t) due to a point-like scatterer in P, with the transmitting

element i and receiving element j, is proportional to

s(th)
i j (P, t) = v(t) ⊗ htr

i (P, t) ⊗ hre
j (P, t) , (1)

where ⊗ stands for the temporal convolution product, v(t) is the excitation signal,
and htr

i (P, t), hre
j (P, t) are respectively the acoustical impulse responses of transmit-

ting element i and receiving element j.
Any kind of array inspection can be envisaged, we introduce two sets of elements

T and R, which represent transmitting elements and receiving elements used in the
acquisition. Electronic delays at transmission (τ tr

i ) and reception ( τre
j ) can also be

applied. So in the general case, the echo signal can be considered proportional to

s(th)(P, t) = v(t) ⊗ ∑
i∈T

∑
j∈R

htr
i (P, t − τ tr

i ) ⊗ hre
j (P, t − τre

j ) . (2)

The reconstruction algorithms exploit the time and amplitude information by
considering the Hilbert envelope of the signal. For a signal s(t), this envelope
denoted env [s] (t), is the modulus of its associated complex analytical signal
sa(t) = s(t) + jH {s}(t) where H {s}(t) is the Hilbert transform of s(t). So, this
envelope is calculated by

env [s] (t) =
√

s(t)2 + H {s}(t)2 . (3)
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The times of flight tP, which are the propagating times transmitters-P-receivers,

and the amplitudes s(th)
P are calculated from the Hilbert envelope of the echo signal

(2) denoted env
[

s(th)
]

(P, t), s(th)
P is the maximum of the echo signal envelope, tP is

the time for this amplitude:

tP = argmax
t

{

env
[

s(th)
]

(P, t)
}

, (4a)

s(th)
P = env

[

s(th)
]

(P, tP) . (4b)

2.2 Imaging algorithms

The proposed algorithms aim at localizing in the part, the origin of the echoes de-
tected during the inspection. The output of the reconstruction process is the mapping
in the Region Of Interest (ROI) of an estimator E(P) proportional to the presence
probability of a scatterer at a point P. Let us consider that the inspection is consti-
tuted by the acquisition of N signals sn(t), n varying from 1 to N. The ROI is a grid
and each node P is considered as a potential point-like scatterer. Such scatterer can
be for example flaws edges, which are at the origin of diffraction echoes, or flaws
with a caracteristic length smaller than the considered wavelength. The first step
of the process corresponds to the computation of the times of flight tnP with (4a),
corresponding to all the transmit-receive operations and to all nodes P. The second
step consists in computing the “localized amplitudes” snP, which are the values of
the measured signals sn(t) at the time of flight tnP.

The first estimator E1 considered here corresponds to classical synthetic focus-
ing. It is given by the summation over all the transmit-receive operations of the
quantities snP

E1(P) =
N

∑
n=1

snP , (5)

it consists in assuming that the signal amplitude at the time tnP is likely to be due
to the scattered wave from P and, the closer P to the real defect localization is, the
larger snP is. This algorithm combined to a simplified model has been firstly intro-
duced in ultrasonic NDT field in the context of mechanically scanned monolithic
transducers with the well-known SAFT algorithm [3]. More recently it has been ap-
plied by different authors to process UT array data of the type “Full Matrix Capture”
(see below) (for example see [4]).

The latter estimator exploits only the times-of-flight information extracted from
forward modelling. We propose an other estimator which aims at taking into account

the global correlation between theoretical amplitudes s(th)
nP extracted from simulation

–thanks to (4b)– and the quantities s̃nP = env [sn] (tnP) obtained from the measured
data sn (t). By defining the correlation coefficient C(P) as:
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C(P) =

(

N

∑
n=1

s̃nP s(th)
nP

)2

/

(

N

∑
n=1

s̃ 2
nP

N

∑
n=1

s(th) 2
nP

)

, (6)

this second estimator E2 is expressed by:

E2(P) = C(P)
N

∑
n=1

snP = C(P)E1(P) . (7)

By applying this estimator, the amplitudes of the echoes measured at tnP are
weighted according to the correlation between the distribution of these measured
amplitudes and the theoretical amplitudes corresponding to the presence of a scat-
terer at P.

3 Application on both simulated and measured data

In the following, our general approach is used on both simulated and experimental
acquisitions obtained from three different array inspection modes: sectorial scan-
ning, per channel data and full matrix acquisitions. Sectorial scanning is a standard
acquisition for which delay laws are applied to electronically sweep the beam. The
others are examples of acquisition for which we consider elementary signals corre-
sponding to the different transmitting elements.

The array we used in the experiments is a 2-MHz linear array composed of 64
elements. The element dimensions are 25× 1.2 mm and the spacing between ele-
ments is 0.2 mm. The inspected part is a steel block with an irregular surface as
shown in figure 1. It contains a set of four 2-mm diameter side drilled holes located
at different depths. All the measurements were performed in immersion.

Fig. 1 Inspected piece containing a set of side drilled holes under the irregular surface.
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3.1 Reconstruction with US beam: example of sectorial scanning

The first example concerns the technique of sectorial scanning, which consists in ap-
plying successively different delay laws to deflect the beam at different angles. This
technique is schematized in figure 2. Delay laws are applied both at transmission
and reception, and the signals are summed at reception.

Here, only the 16 elements at the center of the array are used to considere the set
of side drilled holes in the far field and to have a narrow beam. The delay laws are
taking into account the irregular surface to perform the sectorial scanning from 0◦

to 60◦ (1◦ step) with longitudinal waves.

Fig. 2 Sectorial scanning
inspection configuration.

In figure 3 we can see the sectorial images (S-scan) obtained with simulated
and experimental data. Such an image is obtained by displaying the signals along
the beam axis (represented in figure 2). This imaging technique is based implicitly
on a ray model and supposes both i) that the beam is distributed around a central
ray (”the beam axis”), ii) that the received echo signal is due to the presence of a
scatterer somewhere along the central ray. The rays are calculated by taking into
account the surface [5].

Fig. 3 S-scan imaging. Sim-
ulated (left) and measured
(right) data.

In figure 3 we can see the localization of the deepest hole is inaccurate, this is due
to the perturbation of the beam by the surface irregularities. Indeed, if we replace
this complex surface by a plane surface, the S-scan obtain in this case shows an
accurate localization of the defect as we can see in the figure 4.

Synthetic focusing algorithms are now applied. The dimensions of the ROI are
50× 47 mm. In figure 5, we can see the results obtained with both simulated and
measured data for each estimator E1 and E2. Experimental and simulated results
are similar, which confirms the validity of the forward model. The maxima of the
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Fig. 4 S-scan imaging with
simulated data. Irregular (left)
and plane (right) surface.

amplitude of the two estimators are observed at the real position of the defects how-
ever the one we proposed (E2, equation (7)) drastically reduces the artefacts and
improves the precision of the localization.

(a) Simulated data

(b) Measured data

Fig. 5 Mapping of the estimators E1 (left) and E2 (right) in the beam steering case, with both
simulated (a) and measured data (b).

3.2 Reconstruction from elementary signals

In the previous example, reconstruction was performed from phased-array data for
which delay laws were applied to the various elements of the array. Now we are
interested with acquisitions in which all the elementary signals are collected.
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Let us first consider the technique called “Full Matrix Capture”, which consists
in acquiring the complete set of signals corresponding to the combination of all
transmitting-receiving elements on the array. In our case we obtain 64×64 signals
which can be put together in the so-called inter-element matrix transfer whose ele-
ment links the response of one element of the array to the excitation of another. From
this kind of acquisitions, another imaging methods based on the analysis of singular
values decomposition of this matrix can be processed (for example see [6, 7]).

Fig. 6 inspection configu-
ration for the “Full Matrix
Capture”

(a) Simulated data (b) Measured data

Fig. 7 Mapping of the estimators E1 (left) and E2 (right) in the third considered case, with both
simulated (a) and measured (b) data.

The array is positioned in immersion above the irregular surface of the part as
illustrated in figure 6 and the dimensions of the ROI are 30× 50 mm. Defects are
correctly localised with a good signal to noise ratio (SNR) (the reference is the max-
imum amplitude), 21 dB and 25 dB respectively, with the application of estimators
E1 and E2, as shown in figure 7. These results show that synthetic focusing based
algorithms are very well adapted to such kind of acquisition technique. Indeed, the
redundancy of processed data is very important and the US field both in transmis-
sion and in reception is divergent. The defect localization is very effective by only
exploiting times of flight (estimator E1) whereas taking into account amplitudes
(estimator E2) doesn’t significantly improve the results.

The last application example presented here corresponds to another per channel
data acquisition technique, simpler than the previous one. Here, all the elements
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emit at the same time and all the received signals are independently stored. So the
number of post-processed signals is equal to the number of active elements in recep-
tion, 64 in this case. This technique aims at creating a planar wave front in the part.
Well adapted for planar geometry it appears that in the case of irregular surface,
the aberration effects, which are not corrected by suitable delay laws are notably
perturbing the transmitted beam. This is illustrated in figure 8, which shows a car-
tography of the (normalized) amplitude of the elastodynamic field (for longitudinal
waves) in the considered ROI, the array being also in the same position as consid-
ered in the previous example. In this image it is easy to see that the insonification of
the four defects is very weak.

Fig. 8 Cartography of the (normalized) amplitude of the elastodynamic field inside the ROI (30×
50 mm).

(a) Simulated data (b) Measured data

Fig. 9 Mapping of the estimators E1 (left) and E2 (right) in the third considered case, with both
simulated (a) and measured (b) data.

A. Fidahoussen, P. Calmon, and M. Lambert384



The synthetic focusing algorithms have been tested in this unfavourable situation.
The results obtained by reconstruction algorithms E1 and E2 with both simulated
and measured data are reported in figure 9. The algorithms provide an accurate
localization of the defects. We can also notice a SNR improvement by exploiting
theoretical amplitudes (SNR = 7 dB and SNR = 17 dB respectively for E1 and E2).
Nevertheless, some artefacts remain, which shows that with a perturbated US beam
(in this case due to the complex specimen surface), the times of flight may not be
efficiently evaluated in the areas where the field is the weakest.

4 Conclusion

In this paper, we describe reconstruction algorithms based on the synthetic focusing
approach. Unlike the classical reconstruction techniques, the algorithms have been
coupled to existing forward models, which allow to deal with complex parts. We
have presented some examples of results obtained on simulated and experimental
data, which show the ability of the reconstruction to localize echoes in parts pre-
senting irregular surfaces. The algorithms can be applied on any array (or conven-
tional) acquisition providing ultrasonic signals. Work in progress aims at accurately
quantifying performances of the algorithms coupled to various operating modes of
array inspection.
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Abstract  Identification methods of nonlinear parameters are developed to charac-

terize solid materials and soft tissues. In the frame of classical parametric interac-

tion methods, the parameter evaluation is based on the measurement of quantities 

combinations and/or multiple harmonic of primary wave frequencies, and are gen-

erally weak in comparison to the amplitudes of the sources. Hence, the use of ex-

perimental devices excited at high amplitude levels is required. One problem in 

the identification of nonlinear parameters is that the ultrasonic device itself is not 

exempt of nonlinearity. Generally speaking the problem is to ensure, for each spe-

cific configuration, that the involved instrumentation (waveform generator, volt-

age amplifier, transducer), the coupling medium, mutual interactions between 

many sources…, do not perturb the evaluation of the investigated nonlinear ef-

fects.  

1 Introduction 
 

The measurement of nonlinearity by classical harmonic generation and parametric 

interaction methods [1-4] require to discern between nonlinearity whose craddle is 

the sample and spurious nonlinearity from the instrumentation. The approach has 

Fig. 1, for both configurations, the influence of the nonlinearity originating from 

the experimental device has been calculated and compared to Second Harmonic 

Generation (SHG) from the primary wave at the source [7]. In the first case (Fig. 

1a), the propagation medium is water, simulating tissue-like medium. The second 

case deals with aluminum (Fig. 1b). Pressure and velocity fields take into account 

Université François Rabelais de Tours, LUSSI CNRS ERL 3106 / INSERM U930, Ecole Nationale  
d’Ingénieurs du Val de Loire, rue de la Chocolaterie, BP3410, 41034 Blois Cedex, France         

related to the acoustic wave propagation medium. They appear at frequencies 

been used in nondestructive testing of soft tissues [5] and solid materials [6]. In 



attenuation effects and diffraction corrections for 0.5 and 1 inch diameter active 

elements, respectively. Both situations exhibit similar behaviour concerning the 

It is different in the case of SHG which is less important in the heavy medium. It 

emerges from the comparison that spurious nonlinearity is a most affecting factor 

in the case of solid samples. Furthermore, the amount of nonlinearity from the de-

vice has to be controlled in order to obtain reliable results with regards to the sam-

ple under test. 
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Fig. 1: (a) SHG from a 0.2 MPa field at 1 MHz in water (solid line) and linear propagation at 

double frequency for a 0.5% component of the primary field (dashed line), as a function of the 

distance from the source. (b) Similar calculations for an aluminum medium using a 0.2 m/s pri-

mary field. 

Ultrasonic measurements in the linear regime, for non destructive testing, are tools 

which comply with industrial constraint. Dedicated devices, including transducers 

and electronic systems, are commercially available at typical frequencies within 

the 0.5MHz -10MHz range. 

In the case of nonlinear acoustic methods, high excitation voltages are usually re-

quired to obtain nonlinear effects in the sample. The usual devices are no longer 

efficient and specific instrumentation has to be employed. It includes accessories 

originally manufactured for Radio Frequency (RF) (see e.g. www.arww-

rfmicro.com) or amateur radio applications (see e.g. www.mfjenterprises.com) 

[4,8]. A main challenge is to obtain suitable characteristics, as for instance, low 

distortion factors. Up to now, nonlinear acoustic methods are less spread than lin-

ear ones, so that only a few high-power ultrasonic instruments are available (see 

e.g. www.ritecinc.com). Another difficulty to built acoustic systems with elements 

from other fields of application concerns the frequency range which is intermedi-

ate between the vibration field at low frequencies and the RF range which extends 

far beyond the ultrasonic frequency range. 

Parametric interaction methods in solids have been used with bulk waves [1-4, 6, 

8], and recently with Rayleigh [9] and Lamb [10,11] waves. Among the elements 

commonly used in the accompanying devices, the electric instruments, the trans-

ducer and coupling medium are possible sources of nonlinearity. For the harmonic 

generation and phase modulation setups [12,13], the main sources of spurious 

nonlinearity correspond to elements excited by high voltages and/or parts in the 

system, in which wave mixing can occur, affecting the quantity under interest 
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(transducers, electronics, coupling medium). Generally speaking, spurious nonlin-

earity from the device has many origins and is of various kinds.   

In Sect. 2, the nonlinearity from the emitting part of devices is experimentally in-

vestigated. The results do not provide an exhaustive analysis of a particular setup, 

but rather a way to highlight and classify the effective sources of spurious har-

monic signals. In support of this experimental study, a simplified analytical model 

of the source is presented in Sect. 3. 

2 Nonlinearity in the instrumentation 

 

2.1 Distorsion of the electric signal 
 

A basic setup to reach a sufficient velocity field in an aluminum sample, such as to 

induce observable second order effects, is presented (Fig. 2a). A 1.8 MHz sinusoi-

dal tone-burst generated by a HP 3314A waveform generator is sent into a 60dB 

ENI A150 power amplifier and applied to a wideband transducer (Videoscan 

Panametrics). Signals are obtained from an AR DC 2600A dual directional cou-

pler inserted between a Ritec low pass filter whose cut-off frequency is 2 MHz, 

and the transducer. The forward signal applied to the transducer is the only one to 

be measured. The spectrum, measured for a 350mV excitation from the waveform 

generator, highlights a discrepancy of 40dB between fundamental (f) and second 

harmonic (2f) components (Fig. 2b). For amplitude levels up to 350mV, the ampli-

fication at f is constant (Fig. 2c). Fig. 2d shows that the transducer is also excited 

by a 2f component which approximately reaches 1V. The influence of this compo-

nent is linked to the electromechanical conversion efficiency of the transducer at 

this frequency. By choosing it close to a mechanical antiresonance frequency, the 

second order radiation level in the sample can be minimized. 

 

2.2 Cross modulation in a dual frequency transducer 
 

A case of a multifrequency excitation is considered and the nonlinear component 

at combination of primary frequencies is investigated [14]. The dual frequency 

transducer (Figs. 3a-b) used is a prototype designed and made by the Dakel Czech 

company in the frame of the AERONEWS European FP7 project. Two piezoelec-

tric elements, a ring and a disk with nominal frequencies of 2 MHz and 6 MHz re-

spectively, are excited by separate electric channels in order to avoid cross interac-

tions in the amplification stage. The transducer is loaded by a 75mm thick 

aluminum plate sample. The acoustic contact is ensured by a salt of phenyl-

salicilate (salol), which is a solid coupling medium. The displacement field at the 

sum frequency of the primary waves, is measured at the rear face of the sample 

along a line corresponding to a diameter of both emitting elements, using a Poly-

tech  OFV  505  laser  interferometer  (Fig. 3c).  
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Fig. 2: Voltage applied to a loaded transducer. (a) Setup, (b) spectrum at 150V, (c) fundamental 

and (d) second harmonic components.  

The experimental data are compared to calculations considering only cumulative 

nonlinear effects in the sample. The model deals with longitudinal waves and is 

based on the development of the radiated field from a piston like source, into a 

sum of Gaussian beams to depict diffraction phenomenon for both circular [15,16] 

and annular active elements [14]. The crucial input parameters for the model are 

the two averaged displacement fields at the radiating areas of the transducer. 

These quantities are the source terms needed for sum-frequency harmonic genera-

tion calculations; they are determined experimentally using a self-reciprocity cali-

bration method based on measurements of the transducer input and the output 

voltage and current signals [4,13]. Only taking into account the sample nonlinear-

ity, the theoretically field amplitude is found to be half of the measured one (Fig. 

3c). This result shows that SHG in the sample is not sufficient to explain the 

measured values. Since electrical channels are separated, it highlights that a mix-

ing between the High Frequency (HF) and the Low Frequency (LF) signals takes 

place in the transducer, possibly from close active elements mutual interactions, 

or/and in the coupling layer, the resulting component being propagated linearly 

across the sample. 

 

2.3 Saturation in a commercial type transducer 
 

Considering the classical SHG experiment [4], the wave auto-modulation during 

propagation in a homogeneous solid sample yields weak nonlinear effects. A 

highly linear device is required to ensure pure harmonic excitation at high voltage 

levels. It is shown in this section that the choice of a commercial type transducer is 

not suitable to this situation in order to evaluate the nonlinearity from the sample. 
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Fig. 3: (a) Dual frequency transducer (b) sketch of the PZT element dimensional characteristics 

(c) Sum frequency displacement field profile at the rear face of a 75mm thick aluminum plate 

(theoretical from the sample: solid line, experimental: doted line). 

The experiment is conducted using a VideoScan Panametrics V109 broadband 

transducer [17]. It is excited at 5 MHz by a tone-burst with a number of periods 

fitted to the thickness of the sample to avoid interferences. 10, 15, 20, 30, 40, 45, 

50 and 100 mm thick samples made of aluminum are used. Cross sectional areas 

of the plates are 200x200mm
2
. The electrical signal is produced by a Ritec’s 

RAM-5000. For each sample, the excitation amplitude is 400 Vpp. To lessen the 

second harmonic level produced by the excitation system, a high power low pass 

filter is inserted between the RAM-5000 and the transducer. All the electrical sig-

nals for the eight samples have been observed and no rate of harmonic distortion 

has been found above 0.5%.  

Optical measurements are achieved at the rear surface of the sample. The ampli-

tude of the particle velocity is strongly dependent on the position since the wave-

length is smaller than the diameter of the radiating area. Thus, an accurate posi-

tioning of the probe is needed in order to properly evaluate the fundamental and 

second harmonic components on the acoustical axis.  

The evolution with the distance of the amplitude of the fundamental component is 

reported in Fig. 4a. Source velocities are measured for each sample [4, 13] and 

used to obtain theoretical velocity evolutions on the acoustical axis. Since each 

measurement is made from a particular sample, the agreement between theory and 

measurements establishes a satisfying reproducibility in the manufacturing of the 

coupling between the transducer and the samples. The mean particle velocity cor-

responding to 400 Vpp at f is  0.19 m/s. It is used as input parameter in the model 

for the determination of the second harmonic generated in aluminum along a 

propagation path from 0 to 10 cm (solid line in Fig. 4b). The velocity amplitude at 

double frequency is equal to zero at the source. In the near field, SHG should be 

weak because of its cumulative nature, but a great amount of harmonic has been 

measured. The discrepancy observed between predicted and measured data is in-

terpreted through the existence of a supplementary source at 2f coming from the 

apparatus and the coupling media (salol). Fitting its amplitude and summing both 

theoretical nonlinear contributions furnishes a curve displaying a clear correlation 
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with the measurements, both in near and far fields (dashed line). The double fre-

quency component linearly propagated from the transducer enables to evaluate the 

velocity distortion rate at the transducer radiating area around 6%. This value is 

very high compared to the electrical harmonic distortion and can not be explained 

by the distortion within the electrical device. It is also more important than the 

maximum theoretical second harmonic distortion rate predicted by the model. It is 

therefore produced by the transducer and/or the contact. A possible reason is the 

presence in the transducer of an inductor to match the electric impedances of the 

piezoelectric disk and the coaxial cable. Standard commercially available induc-

tors usually have ferrite cores which saturate under high power. After 10 cm of 

propagation through aluminum, the measured second harmonic distortion de-

creases to about 4.5%, and merges the value from the sample alone. 

 

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
N
o
rm

al
iz
ed

A
m
p
li
tu
d
e

Propagation distance (cm)
0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Propagation distance (cm)

N
o
rm

a
li
ze
d
A
m
p
li
tu
d
e

(a) (b)

 

Fig. 4: On axis radiated velocity field as a function of distance from the transducer for an excita-

tion voltage of 400 Vpp. (a) : theoretical (solid line) and experimental data (circles) at the fun-

damental frequency. (b) : theoretical SHG in the sample (solid line), SHG with an added compo-

nent at double frequency linearly propagated (doted line) and experimental data (circles). 

3 Analytical calculations 

Works dealing with the modelling of the response of ultrasonic systems and elec-

tromechanical behavior of monoelement transducers have been conducted by 

Schmerr and Song for nondestructive testing purpose in the linear approximation 

[18]. Considering nonlinear effects in the system leads to a more challenging 

computational task since they are connected to the linear field knowledge that 

ing possibility to measure the distorsion of PZT (Lead Zirconate Titanate) ele-

ments and depict theoretically their functionning [20]. 

In the following, simple calculations are proposed to support the observed experi-

mental trend giving to spurious nonlinearity a proeminent role near the source. 

The 1-D model depicts the situation of a piezoelectric plate (medium 1) excited 

electrically and radiating in a semi infinite passive medium indexed 2. Governing 
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equations for the piezoelectric material along the coordinate z comprised into the 

interval [-a, 0], are [21-23]: 
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In these expressions, ρi, Ti and ui are respectively the density, the stress and the 

mechanical displacement in the medium i, E the electrical field and D the electri-

cal displacement in medium 1. ci and mi are the second and third order elasticity 

constants, e and l the second and third order piezoelectric constants, ε and ε’ the 

second and third order permittivity constants and q the electrostriction constant. 

The problem is solved by the successive approximation method for the displace-

ment field, assuming ui written as follow: 
10

iii uuu +=  with 
01

ii uu <<  

The reader is referred to [22] for the derivation of the solution 
0

iu . In our prob-

lem, the following boundary conditions are used: zero stress at z = -a, stress and 

displacement continuity at z = 0, time harmonic voltage V applied across the 

thickness a : VdzE
a

=∫
−

0

0
. The quantity

0

iu can be used to express source terms in 

wave equations, thus leading to: 
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where Γ and Λ are effective third order constants of the piezoelectric plate and 

ε2

11 eccD +=  [23]. Superscripts 0 and 1 refer to second and third order quan-

tities, respectively. Hence, solutions can be chosen as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )zktjzktjzktjzktj FeYeeXBzeCAztzu 1111 22221

1 , +−+− +++++= ωωωω

 for -a < z < 0 (4.a) 

and  ( ) ( ) ( )zktjeHGztzu 221

2 , −+= ω
 for z > 0 (4.b) 

A, B, Y, F and G are calculated from wave equations (3). C, X and H are found 

with boundary conditions similar to those used in the linear case, except for the 

external source which becomes: 0

0

1 =∫
−a

dzE . 

The computations are conducted for a 500Vpp excitation voltage at 5MHz applied 

to a plate of thickness a = 0.56 mm and a cross sectional area equal to 20 mm
2
. 

The following non zero parameters are used in the computations: ρ1 = 7780 kg.m
-

3
, c1=245(1+0.003j) GPa, ε = 247ε0 (ε0 : permittivity in vacuum), e = 1.3 C.m

-2
, m1 

= -50000 GPa, q = 86.10
-10

 F.m
-1

, ρ2 = 2700 kg.m
-3

, c2 = 107 GPa, m2= -749 GPa. 

The evolution of the nonlinear velocity fields in the aluminum medium are dis-

played in Fig.5. At the interface (z = 0), SHG in the piezoelectric element leads to 

a transmitted value equal to 0.4 mm.s
-1

. It is linearly propagated in the aluminum 

and its influence decreases with an increasing travel length. The source veloc-

ity amplitude at 5MHz is 50.5dB higher than this spurious component. In the sam-

ple, SHG from the source is shown to rapidly become the main origin of the 

nonlinear component. However, the influence of the spurious components is not 

negligible 10 cm away from the source.  
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Fig. 5: 1-D calculations of the second order velocity field in an aluminum semi-infinite medium 

as a function of the propagation distance, for a 500Vpp excitation voltage at 5MHz. SHG in the 

medium (dashed line), linear propagation at double frequency (solid line) and their sum (dashed-

doted line). 

Finally, calculations confirm that the spurious nonlinearity induced by the behav-

iour of the piezoelectric element is significant close to the source. It can be noted 

that the level is found to be below the maximum of SHG in the sample. In the case 

of experimental results in Fig.4, the spurious nonlinearity is of the order of SHG in 

the sample. The difference indicates that the active element is not the only origin 

of nonlinearity in a commercial type transducer such as the one used in section 

2.3.   

4 Concluding remarks 

The few situations presented in this work deal with the nonlinearity in parametric 

interaction devices. Among commonly found elements in the devices, the investi-

gations concern the electronics and the emitting transducers. It emerges from this 

work that spurious nonlinearity can contribute to the measurements or even over-

whelm weak nonlinear effects from the sample, especially in the near field of the 

source. A straight choice to minimize spurious nonlinearity is to use elements in 

the device, which exhibit highly linear behavior under high excitation voltages 

[2,4,6,8]. In this way, results can be satisfying but the choice of elements is lim-

ited due to the very specific needed instrumentation and also to the application: 

e.g. LiNbO3 (Lithium Niobate) piezoelectric elements have on one side very low 

distorsion factor and on the other side long transient response not suitable for thin 

samples. Authors have proposed electrical and mechanical improvements to rein-

force wave generation efficiency. Impedance matching networks can be used to 

favour power transmission between the amplifier and the electroactive element. 

Concerning the coupling medium between the transducer and the sample and the 

efficiency of the electromechanical conversion, a recent paper describes a direct 
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way for nonlinear Rayleigh wave excitation without the use of a polymeric wedge 

[24]. It offers the advantage to reduce the excitation voltages needed to reach the 

quadratic regime range (below 60Vpp in [24]), giving back the opportunity to use 

commercial PZT-based transducers. 
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Investigation of damage mechanisms of 

composite materials: Multivariable analysis 

based on temporal and wavelet features 

extracted from acoustic emission signals 
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Abstract   A procedure for the investigation of damage development and time-to-

failure mechanisms within composite materials based on the analysis of the sig-

nals of acoustic emission (AE) is presented. An unsupervised automatic classifica-

tion is proposed for the clustering of the monitored AE events in order to identify 

the different damage mechanisms and the most critical damage sources in com-

posite materials. Thus, pattern recognition analyses (fuzzy C-means clustering) as-

sociated with a principal component analysis are used for the classification. A 

cluster analysis of AE data is achieved and the resulting clusters are correlated to 

the damage mechanisms of the material under investigation. After being validated 

on model samples composed of unidirectional fiber-matrix composites, this 

method is applied to actual composites such as polymer concretes. Furthermore, 

AE signals generated by heterogeneous materials are not stationary. Thus, time-

scale methods (continuous and discrete wavelet transforms) are used to determine 

new relevant descriptors to be introduced in the classification process in order to 

improve the characterization and the discrimination of the damage mechanisms. 

They provide a better discrimination of damage mechanisms of composite materi-

als such as cross-ply composites than some time-based descriptors.  

 



 

 

1 Introduction 
 

Fiber/matrix and polymer concrete composite materials are extensively used in in-

dustry. However, their damage and time-to-failure mechanisms still require a bet-

ter understanding. Acoustic Emission (AE), which represents the generation of 

transient ultrasonic waves in a material under load, is a useful tool for non destruc-

tive testing [1]. It is used in this paper to identify the most critical damage mecha-

nisms occurring in these materials in order to estimate their remaining lifetime in a 

non-destructive way. One of the main issues is to discriminate the different types 

of source mechanisms from the detected AE signals which are characterized by 

multiple relevant descriptors. Most studies so far have used AE descriptors such as 

the amplitude and the energy of the signal to characterize the development of 

damage [2,3]. In order to improve these analyses, it is possible to consider all de-

scriptors with multivariable data analyses [4]. Thus, each AE signal is associated 

to a pattern composed of multiple descriptors. In the feature space, the patterns 

can be divided into clusters representative of damage mechanisms according to 

their similarity by the use of pattern recognition algorithms. In order to improve 

the classification for complex composite materials, fuzzy C-means clustering [5] 

associated with a principal component analysis (PCA) [6] are proposed in this pa-

per. The fuzzy C-means clustering method is an effective unsupervised algorithm 

for automatic clustering and separation of AE events based on multiple features 

extracted from the random AE waveforms. The PCA is first used to give an idea 

of the relevance of the descriptors. If the representation in the projection space 

shows several clusters with a minimum overlap between them, the features could 

lead to classify the damage mechanisms. The clustering data obtained with the 

fuzzy C-means are also visualized in the projection space given by the PCA. The 

proposed method, applied on a model unidirectional fiber/matrix composite mate-

rial and a more complex material such as polymer concrete, leads to the identifica-

tion of the damage mechanisms and their evolution with time till the sample fail-

ure. 

However AE signals in composite materials mainly result from the energy re-

lease of failure modes and are usually not stationary. Thus, waveform processing 

of AE signals based on time-scale [7] or time-frequency analysis appears as a very 

promising signal processing technique to discriminate fracture mechanisms. Some 

previous works have shown that continuous and discrete wavelet transforms can 

provide relevant information from AE signals to discriminate the damage types 

[8,9]. This point has been investigated in [9] and it has been shown that it is possi-

ble to use both wavelet transforms in order to define new relevant time-scale de-

scriptors to improve the characterization of damage mechanisms. In this paper, 

classification results obtained with time-scale descriptors are applied on another 

composite materials: cross-ply composites. A comparison with the classification 

results obtained with temporal descriptors on the same test confirms the improve-

ment of the discrimination with the use of time-scale descriptors. 
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2 Materials and experimental procedure 

The experimental work is carried out on glass fiber reinforced polymer com-

posite materials. Model composite materials are studied: unidirectional composites 

with fiber reinforcement at ±45° to the loading direction. Complex composite ma-

terials are also studied: cross-ply composites noted [±90°]8 consist of 8 layers of 

unidirectional reinforcement at ±0° and ±90° to the loading direction. These com-

posite materials samples are in parallelepiped form and have dimensions 

10×150×2 mm
3
. Polymer concrete samples are also studied. They consist of a 

combination of 30% of polymer resin, 30% of gravel and 40% of fine sand. They 

are in parallelepiped form with the dimensions 40×160×15 mm
3
.  

An external load applied to the composite materials results in several damage 

mechanisms occurring at a microscopic scale. Some damage mechanisms are pre-

dominant depending on the composite materials and the fibre orientation in com-

parison with the loading direction. In this study, fiber/matrix composite materials 

are damaged with static tensile tests. Concrete samples and cross-ply composites 

are damaged with three-point static bending tests. Experiments are performed at 

room temperature using a servo-hydraulic Instron universal testing machine with a 

5 kN capacity. The crosshead speed of the machine is fixed at 0.05 mm/min.  

Simultaneously, transient ultrasonic waves generated by damage occurrence 

and propagation within the materials were recorded using two channel AE data 

acquisition system of Euro Physical Acoustics company (EPA) (see Fig. 1). AE is 

used to discriminate the different damage mechanisms and permits real-time 

monitoring of damage growth by the analysis of these generated ultrasonic waves. 

AE measurements are achieved by using two piezoelectric sensors with a fre-

quency range 100kHz - 1MHz, coupled on the faces of the specimens with silicon 

grease. To eliminate background noise, we included an amplitude threshold of 

35dB, where 0dB corresponds to 1µV. The data acquisition system is used to re-

cord AE data such as temporal descriptors and waveforms of each AE signal with 

a sampling rate of 5MHz and 40dB pre-amplification.  
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Fig. 1. Composite sample under load with AE monitoring. Typical AE waveform and its descrip-

tors calculated by the acquisition system for each AE event. 
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Several time-based descriptors are calculated by the acquisition system for each 

AE event (see Fig. 1): maximum amplitude, energy, duration, rise time, number of 

peaks whose amplitudes are higher than the given amplitude threshold (called 

counts), etc. These collected features as well as new time-scale descriptors com-

puted by wavelet analysis are used as input parameters in the proposed classifica-

tion method. 

3 Multivariable data clustering 
 

Multivariable analyses provide a data classification. Similarities are found be-

tween data clusters in a multidimensional space with the use of several features. 

Applied to AE, these methods enable to identify, within multiple parameters, sig-

nal clusters with similar features and thus characterizing the same source damages 

in a material. 

The parameters collected from AE waveforms are the components of an input 

pattern vector. Each component provides information from the AE signals such as 

the amplitude of the signal, its energy, etc. To make this study as general as possi-

ble we used an unsupervised pattern recognition analysis: the fuzzy C-means clus-

tering method (FCM) [4,5]. It uses fuzzy partitioning so that each pattern vector 

can belong to all clusters with different membership grades between 0 and 1. The 

input parameter of the algorithm is the number of clusters. Each cluster resulting 

from the classification corresponds to a different damage mechanism identified in 

the material. In order to associate each output cluster of the algorithm to the corre-

sponding damage mechanism, the distributions of the principal features such as 

amplitude are computed. The distributions of the features of each obtained cluster 

are compared to other results found in the bibliography relative to characteristics 

of damage types of composite materials [2,3,8,10]. Thus, we can associate each 

resulting cluster to the corresponding damage type. 

Then, a principal component analysis is applied on the matrix composed of the 

parameters collected from AE waveforms. PCA is mathematically defined as an 

orthogonal linear transformation that transforms the data to a new coordinate sys-

tem so that the greatest variance by any projection of the data comes to lie on the 

first coordinate (called the first principal component), the second greatest variance 

on the second coordinate, and so on. PCA is theoretically the optimum transform 

for a given data in least square terms. Thus, PCA can be used for dimensionality 

reduction in a data set by retaining the characteristics of the data set that contribute 

most to its variance. The PCA projection shows the distribution of the data. If the 

data do not overlap, an automatic classification should be possible. Thus, we can 

deduce the most relevant descriptors to be used in the clustering. The PCA shows 

that the temporal descriptors can separate the damage mechanisms. In addition, 

once the automatic classification is realized with the fuzzy C-means clustering 
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method, we use the PCA to visualize the clusters of data into a two-dimension 

subspace. 

The fuzzy C-means clustering method requires the knowledge of damage 

mechanisms in the materials as each cluster corresponds to a different damage 

mechanism. This method has been validated on well-known unidirectional fibre 

composite materials and provides fair results even for more complex materials 

such as cross-ply composites or SMC [9]. This method enables to identify and 

monitor in real time several damage mechanisms at the microscopic scale. 

4 Results 

4.2 Damage characterization of 45° unidirectional fiber/matrix 

composite materials 

The composite materials described in this part are unidirectional composites 

with fiber reinforcement at ±45° to the loading direction. They are experimented 

under static tensile tests. Different damage mechanisms have been identified on 

these composite materials from their AE signals [2,10]: matrix cracking and inter-

facial debonding (see table 1). Figure 2 presents the amplitude histograms of the 

recorded AE hits (2131 AE hits) and shows two distinct area: one centered around 

45dB and the other one around 70dB. 

The multivariable analysis is applied in order to discriminate the damage 

mechanisms according to their AE signals. The fuzzy C-means clustering method 

is applied with two clusters that correspond to the two mechanisms. The five de-

scriptors used are the energy, the amplitude, the rise time, the counts and the dura-

tion of the signals. A PCA is achieved in order to visualize the results in a two-

dimension subspace (see Fig. 3a). Two clusters corresponding to matrix cracking 

and interfacial debonding damage mechanisms have been well identified. This un-

supervised clustering method also shows the time dependency of the different 

damage types in the material (see Fig. 3b). This visualization shows that the ma-

trix cracking is the most important damage mechanism as it begins from the start 

of the tests and involves much more numerous events than the other mecanism 

does (it involves 85% of AE events). The interfacial debonding appears at the end 

of the experiments and their number increases during the tests (15% of AE 

events). The clustering process shows some good results and presents two advan-

tages: a multivariable analysis and an unsupervised clustering. Several features 

can be used together in a single multidimensional analysis and no labelled signal 
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data base in terms of damage mechanism is required a priori for clustering (unsu-

pervised method). 

Fig. 2. Static tensile test on 45° unidirectional fiber/matrix composite material: Amplitude histo-

grams of AE hits.  

Fig. 3. Static tensile test on 45° unidirectional fiber/matrix composite material: (a) PCA visuali-

zation of the fuzzy C-means clustering (90% information kept). (b) Time dependency of the 

identified damage types. 

4.2 Damage characterization of polymer concrete materials 

Three-point static bending tests are applied on polymer concrete materials. AE 

activity increases with the evolution of applied stress during the experiment and 

becomes very important near the failure of the material (see Fig. 4). 

Multivariable AE data analysis enables to identify three clusters corresponding 

to three damage mechanisms identified in this material (see Fig. 5a). The main 

characteristics of those identified signals are presented in table 1. Their principal 

features are similar to those observed in fiber/matrix composite materials. Figure 
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5b presents the time dependency of the different damage types. Matrix crackings 

and interfacial debondings appear from the start of the experiment and their num-

ber increases till the failure of the material. Gravel failures appear only at the end 

of the experiment and lead to the final failure. 90% of AE signals correspond to 

matrix cracking signals, 9% correspond to gravel/resin debonding and 1% are re-

ferring to gravel failure signals. 

Table 1. Principal characteristics of AE hits identified as matrix cracking and interfacial 

debonding signals on fiber/matrix composite and polymer concrete materials. 

Composite material Damage mechanism Amplitude Rise time Energy Duration 

Fiber/matrix composite Matrix cracking 

Interfacial debonding 

35-55 dB 

60-80 dB 

>0.04 ms 

<0.01 ms 

<10
3
 J 

>10
4
 J 

≈0.2 ms 

≈0.05 ms 

Polymer concrete Matrix cracking 

Interfacial debonding 

Gravel failure 

35-60 dB 

50-90 dB 

95-100 dB 

>0.04 ms 

<0.02 ms 

<0.03 ms 

<10
3
 J 

>10
4
 J 

>10
6
 J 

<0.2 ms 

0.2-0.4 ms 

≈0.1 ms 

 

Fig. 4. Load over time of three-point static bending test and amplitude distribution of AE hits of 

polymer concretes. 

Fig. 5. Polymer concretes : (a) PCA visualization of the fuzzy C-means clustering (91% informa-

tion kept). (b) Time dependency of the identified damage types. 
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The identified damage mechanisms are highlighted in figure 6 with post-test 

micrograph and photography of the failure area. 

a b  

Fig. 6. (a) Post-test SEM (Scanning Electronic Microscope) micrograph of polymer concrete 

sample. (b) Post-test optical photography of matrix cracking, gravel failure and gravel/resin in-

terfacial debonding. 

4.3 Wavelet analysis of AE data 

4.3.1   Time-scale analysis of AE data of composite materials 

AE source identification of composite materials is usually based on temporal 

features of AE waveforms. However, AE signals generated within local displace-

ments inside materials (microcracks, etc) are generally not stationary. That is why 

wavelet transforms are applied in order to identify the different damage mecha-

nisms as, in addition, the temporal descriptors are not always relevant. The two 

types of wavelet transforms: continuous and discrete are well adapted to our prob-

lem [7,9] and are used to extract quantitative descriptors in order to improve the 

discrimination of damage mechanisms within composite materials. 

The continuous wavelet transform (CWT) of a signal f(t) is defined as follows 

[7]: 

       )dt,
a

bt
(f(t)ψ

a

1
=b)(a,CW

+

f

−
∫

∗∞

∞−
    (1) 

with the scale parameter a, the time translation factor b, the analyzing wavelet ψ 

and * represents the complex conjugation.  
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The discrete wavelet transform (DWT), which enables to decompose each sig-

nal on a wavelet basis, is defined as [7]: 

 k),t2ψ(2=(t)ψ      (t)dt,f(t)ψ=k)(j,DWT
j2/j

kj,

+
*

kj,f −−−
∞

∞−
∫      (2) 

with the scale parameter j, the time translation factor k, the analyzing wavelet ψ 

and the analyzed signal f(t). The DWT decomposes f(t) on a wavelet basis refer-

ring to different continuous frequency bands, called wavelet levels [7]. The origi-

nal signal passes through two complementary filters and two signals are obtained, 

corresponding to the approximation and detail coefficients. The approximations 

are the high scale, low frequency components of the signal in the band 







1j+

e

2

f
0 . 

The details are the low scale, high frequency components in the band 
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e
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2

f
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fe denotes the sampling frequency and j is the level of decomposition. 

These two wavelet transforms are used to extract new time-scale descriptors 

based on the moduli of CWT and DWT coefficients corresponding to the most en-

ergetic scales. More details about the definition and the validation of these new 

features can be found in a previous study [9]. The first feature extracted from the 

CWT is the sum of the square moduli of CWT coefficients defined as [9]: 

 | | .Ib,b)(a,CW=)I(a,f b
b

2
fb1 ∈∑   (3) 

The second feature is the maximum of the square moduli of CWT coefficients [9]: 

 | | .Ib,b)(a,CWmax=)I(a,f b
2

fb2 ∈   (4) 

f1 and f2 are calculated for each scale on a limited time duration Ib. This duration is 

set from an adaptive threshold which corresponds to a percentage (10%) of the 

maximum amplitude of the wavelet coefficients. The duration of the AE signal Ib 

corresponds to the time during which the amplitude of the wavelet coefficients 

goes beyond the threshold. Then the features corresponding to the most energetic 

scale are selected as new descriptors. 

The DWT could also provide new relevant descriptors to add in the clustering 

analysis. Thus, an another feature is defined: the maximum of the square detail 

coefficients for each level of decomposition. This new descriptor is defined as fol-

lows [9]: 
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with DWTf(j,k) detail wavelet coefficients of each level of decomposition j. This 

descriptor f3 is calculated for the levels of decomposition with the most significant 

amplitudes. 

4.3.2   Clustering of fiber/matrix composite materials 

The analysis is applied to AE events collected from a static three-point bending 

test on an actual material as cross-ply composite material. Two damage mecha-

nisms, matrix cracking and interfacial debonding are identified on AE events. The 

typical characteristics of AE hits representative of damage mechanisms are pre-

sented in table 1. 

FCM is applied with two clusters corresponding to the two damage types. The 

traditional temporal AE features are first used to build patterns (see Fig. 1). A 

PCA is achieved in order to visualize the results in a two-dimension subspace (see 

Fig. 7a). The PCA projection shows that two clusters are well identified but some 

patterns of the two different clusters are mixed with each other. Thus, with the 

temporal descriptors, the separation between the patterns is not effective in this 

area. In order to improve the clustering, new relevant descriptors defined from 

wavelet analyses are used to build patterns used for the automatic classification.  

The PCA visualization of the clustering obtained on the same AE data set but 

with time-scale feature are presented in figure 7b. The damage mechanisms are 

well identified in the material. Indeed, the PCA projection highlights the similari-

ties between the patterns. In addition, there is no overlap between the patterns be-

longing to each cluster with these time-scale descriptors. Thus, the data classificia-

tion and the identification of the different damage mechanisms are improved.  

Fig. 7. PCA visualization of the fuzzy C-means clustering of three-point bending test on cross-

ply composite material : (a) with temporal descriptors (90% information kept). (b) with time-

scale descriptors (94% information kept). 
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5. Conclusion 

Fuzzy C-means clustering method has been coupled with a principal compo-

nent analysis to discriminate the different damage mechanisms from the AE sig-

nals and to visualize the division into classes. Clustering, applied with the typical 

temporal descriptors of AE waveforms, permits to identify the different damage 

mechanisms in model and complex composite materials. Wavelet analyses applied 

to transient AE signals permits to define new relevant time-scale descriptors. The 

use of these new descriptors in the clustering method improves the identification 

of damage mechanisms of complex composite materials. This method also leads to 

highlight the time evolution of damage types in these materials till the final fail-

ure. Thus, the most critical damage sources in a composite material can be identi-

fied. The identification of damage sources with time could permit to estimate the 

remaining life time of composite materials.  
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Propagation of elastic waves in a fluid-loaded
anisotropic functionally graded waveguide:
Application to ultrasound characterization of
cortical bone

Cécile Baron and Salah Naili

Abstract Non-destructive evaluation of heterogeneous materials is of major inter-
est not only in industrial but also in biomedical fields. In this work, the studied
structure is a three-layered one: a laterally heterogeneous anisotropic solid layer is
sandwiched between two acoustic fluids. An original method is proposed to solve
the wave equation in such a structure without using a multilayered model for the
plate. This method is based on an analytical solution, the matricant, explicitly ex-
pressed under the Peano expansion form. We validate this approach for the study of
a fluid-loaded anisotropic plane waveguide with two different fluids on each side.
This configuration corresponds to the axial transmission technique to the ultrasound
characterization of cortical bone in vivo.

1 Introduction

A lot of natural media have unidirectional varying elastic properties. The mantel
crust, the oceans and cortical bone are some of these functionally graded media.
Scientists focused on the advantages presented by this type of materials in terms
of mechanical behavior and since the 80’s, they developed industrial Functionally
Graded Materials (FGM) particularly exploited in high-technology and biomedical
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Laboratoire de Mécanique Physique, UMR CNRS 70 52, B2OA
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applications. Consequently, the non-destructive evaluation of these materials is a
key issue. Surface and guided waves play a major role in non-destructive testing and
evaluation of complex structures. Several studies are dedicated to the leaky Lamb
wave propagation in fluid-loaded plates [4, 5, 6]. In all these studies, the media are
homogeneous or multilayered. In this work, we introduce a general method to take
into account the continuous property variation in an anisotropic waveguide. This
method is based on the knowledge of an analytical solution of the wave equation,
the matricant, explicitly expressed via the Peano series. To the best of our knowl-
edge, this is the first method to evaluate the mechanical behavior of a fluid-loaded
anisotropic waveguide with continuously varying properties without modelling the
FGM plate as a multilayered plate.

In this work, we first present the method and its setup with fluid-structure inter-
action; then we proceed to the validation of the method by comparing our results
to the dispersion curves obtained from classical schemes on homogeneous waveg-
uides (isotropic and anisotropic). Two advantages of the method are underlined:
i) an asymmetric fluid-loading may be taken into account without modifying the
scheme for the numerical solution; ii) the influence of the property gradient on the
mechanical behavior of the waveguide may be investigated. Finally, we get onto the
relevancy of this model applied to the ultrasound characterization of cortical bone
by the axial transmission technique.

2 General formulation of the problem

We consider an elastic parallel plate waveguide of thickness d sandwiched between
two perfect fluids f1 and f2, of respective mass densities ρ f1 and ρ f2 , and, of re-
spective velocities c f1 and c f2 . The interfaces between the fluids and the plate are
infinite planes parallel to the (x1,x2)-plane. Therefore, we assume that the structure
is two-dimensional and that the guided waves travel in the plane x2 = 0 (see Fig. 1);
in the following parts, this coordinate is implicit and is omitted in the mathematical
expressions.

Fig. 1 Geometrical configu-
ration of the waveguide.

3x

1xO  !1 1
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2x
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 !2 2
,f fc"fluid 2

The elastic plate is supposed to be anisotropic and is liable to present continu-
ously varying properties along its thickness (x3-axis). These mechanical properties
are represented by the elasticity tensor C= C(x3) and the mass density ρ = ρ(x3).
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2.1 System equations

2.1.1 The wave equation in the fluid fn (for n = 1 or 2)

In the fluid fn, the characteristic equations are written as:



−∂ p(n)

∂x j
= ρ fn

∂ 2u(n)
j

∂ t2 ,

p(n) = Kfndiv u(n),

(1)

where u(n) and p(n) respectively represent the displacement vector and the pres-
sure in the fluid fn; its compressibility and velocity are respectively Kfn and
c fn =

√
Kfn/ρ fn . The operator div is the divergence.

The solutions of the system (1) for the fluid fn are sought under the form:

fn(x1,x2; t) = An(x3)exp ı(k1x1 + k(n)
3 x3−ωt), (2)

where k1 is the wavenumber along the x1-axis, k(n)
3 is the wavenumber along the

x3-axis in the fluid fn and ω is the angular frequency.
We consider an incident wave reaching the plate at an angle θ1 from the x3-axis

in the fluid f1. The incident displacement-field is defined in the following form,
assuming that its amplitude is normalized:

u(1)
I =




sinθ1

0
cosθ1


exp ı(k1x1 + k(1)

3 x3−ωt), (3)

with sinθ1 = k1c f1/ω and cosθ1 = k(1)
3 c f1/ω . From this, the expression of the re-

flected displacement-field u(1)
R in f1 and of the transmitted displacement-field u(2)

T
in f2 are deduced:

u(1)
R = R




sinθ1

0
−cosθ1


exp ı(k1x1− k(1)

3 x3−ωt),

u(2)
T = T

c f2
c f1




sinθ1

0
cosθ1


exp ı(k1x1 + k(2)

3 x3−ωt).

(4)

The incident, reflected and transmitted pressure fields, respectively noted p(1)
I ,

p(1)
R and p(2)

T are deduced from the expressions (3) and (4) and the second equation
of the system (1).
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2.1.2 The wave equation in the plate waveguide

The body forces in the solid plate are neglected. The momentum conservation equa-
tion associated with the constitutive law of linear elasticity (Hooke’s law) gives the
following equations:





∂σi j

∂x j
= ρ

∂ 2ui

∂ t2 ,

σi j =
1
2

Ci jk` (
∂uk

∂x`
+

∂u`

∂xk
)

(5)

where ui (for i = 1, ...,3) and σi j (for i, j = 1, ...,3) respectively represent the com-
ponents of the displacement-field u and of the stress σ . The solutions are sought
for the vectors of displacement u and traction σi3 (for i = 1, ...,3) (assumed to be
harmonic in time t and space along the x1-axis) under the form:

f(x1,x3; t) = A(x3)exp ı(k1x1−ωt), (6)

2.1.3 Fluid-loading interface conditions

The conditions at both interfaces x3 = 0 and x3 = d are the continuity of the normal
displacement and the one of the normal stresses. We consider that the fluids f1 and f2

are perfect, consequently, the shear stresses are zero at the interfaces (σ13(x1,0; t) =
σ13(x1,d; t) = 0 and σ23(x1,0; t) = σ23(x1,d; t) = 0). The following relations are
obtained:

{
u3(x1,0; t) = u(1)

3 (x1,0; t), u3(x1,d; t) = u(2)
3 (x1,d; t),

σ33(x1,0; t) =−p(1)(x1,0; t), σ33(x1,d; t) =−p(2)(x1,d; t).
(7)

2.2 A closed-form solution: the matricant

Introducing the expression (6) in the equation (5), we obtain the wave equation un-
der the form of a second-order differential equation with non-constant coefficients.
For particular forms of geometrical profiles, this equation has analytical solutions
expressed with special functions (Bessel or Hankel functions) [18]. But in the gen-
eral case, there is no analytical solution to the problem thus formulated. The most
current methods to solve the wave equation in unidirectionally heterogeneous media
are derived from the Thomson-Haskell method [9, 17]. These methods are appro-
priate for multilayered media [10, 11, 12, 19]. But, for continuously varying media,
these techniques mean to replace the continuous profiles of properties by step-wise
functions. Thereby the studied problem becomes an approximate one, even before
the resolution step; the accuracy of the solution as its validity domain are hard to
evaluate. Moreover, the multilayered model of the waveguide creates some “virtual”
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interfaces likely to induce artefacts. In order to deal with the exact problem, that is to
keep the continuity of the properties variation, the wave equation is re-written under
the form of an ordinary differential equations system with non-constant coefficients
for which an analytical solution exists: the matricant [1].

We consider that the plate is orthotropic which allow to decouple the P-SV (Pres-
sure - Shear Vertical) waves, polarized in the propagation plane (x1,x3) and the SH
(Shear Horizontal) waves polarized along x2-axis. The incident media f1 is a perfect
fluid, only the P-SV waves travel in the plate. Applying a spatio-temporal Fourier
transform on (x1, t) of the displacement field (noted û(k1,x3;ω)) and on the trac-
tion field (noted σ̂i3(k1,x3;ω) for i = 1, ...,3), the wave equation becomes a matrix
system expressed using the Thomson-Haskell parametrization of the Stroh formal-
ism [16] and the Voigt notation (Ci jk` for i, j,k, ` = 1, ...,3 is replaced by cIJ for
I,J = 1, ...,6):

d
dx3

η(x3) = ıωQ(x3)η(x3), (8)

that is

d
dx3




ıω û1

ıω û3

σ̂13

σ̂33


 =

(9)

ıω




0 s1 1/c55(x3) 0
−c13(x3)/c33(x3)s1 0 0 1/c33(x3)

ρ(x3)− s2
1ζ (x3) 0 0 −c13(x3)/c33(x3)s1

0 ρ(x3) −s1 0







ıω û1

ıω û3

σ̂13

σ̂33


 ,

with the relations:

ζ (x3) = c11(x3)− c2
13(x3)

c33(x3)
, k1 = ωs1, (10)

where s1 is the x1-component of the slowness. The matrix Q includes all the in-
formation about the heterogeneity of the waveguide because it is expressed from
the plate mechanical properties (ρ(x3),C(x3)) and from two acoustical parameters
(s1,ω). The wave equation thus formulated has an analytical solution expressed be-
tween a reference point (x1,0,x0

3) and some point of the plate (x1,0,x3) in the prop-
agation plane. This solution is called the matricant and is explicitly written under
the form of the Peano series expansion:

M(x3,x
0
3) = I+(ıω)

x3∫

x0
3

Q(ξ )dξ +(ıω)2

x3∫

x0
3

Q(ξ )
( ξ∫

x0
3

Q(ξ1)dξ1
)
dξ + ..., (11)
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where I is the identity matrix of dimension (4,4). We underline that the ıω-
factorization leads up to a polynomial form of the matricant. The ıω-polynomial
coefficients are matrices independent of ω .

Using the propagator property of the matricant through the plate thickness, the
state-vector (defined in (9)) at the second interface η(d) is evaluated from the state-
vector at the first interface η(0) as follows:

η(d) = M(d,0)η(0). (12)

The fluid-structure interaction is taken into account via the interface conditions
(7) used after a spatio-temporal Fourier transform on (x1, t). The condition to obtain
a non-trivial solution to the equation (12) leads to the following relation:

ıω û1(k1,0;ω)×M13 + ıω û3(k1,0;ω)×M32 + σ̂33(k1,0;ω)×M34 = 0, (13)

where Mi j (for i, j = 1, ...,4) represent the components of the matrix M. The dis-
placement component û1(k1,0;ω) can be expressed as a linear combination of
û3(k1,0;ω) and σ̂33(k1,0;ω) and thus the system (12) of dimension 4 is reduced
to a matrix system of dimension 2:

η(d) =
(

P1 P2

P3 P4

)
η(0), where η(x3) =

(
ıω û3

σ̂33

)
. (14)

with the relations:

P1 = M22−M21
M32

M31
, P2 = M24−M21

M34

M31
,

P3 = M42−M41
M32

M31
, P4 = M44−M11

M34

M31
.

(15)

The interface conditions (7) are transformed in the Fourier domain (k1,ω). The
expressions of the displacement and the pressure in the fluids, so that the one of
the displacement and traction fields in the solid plate (14), are substituted in the
transformed interface conditions. We obtain the following matrix equation:




ıωs(1)
3 c f1 1 0 0

−ıωρ f1c f1 0 1 0

0 P1 P2 −ıωs(2)
3 c f2 exp(ıωs(2)

3 d)
0 P3 P4 −ıωρ f2 c f2 exp(ıωs(2)

3 d)







R
α1

α2

T


 =




ıωs(1)
3 c f1

ıωρ f1c f1
0
0


 , (16)

where s(n) = k(n)/ω is the slowness-vector in the fluid fn (n = 1 or 2); the quan-
tities α1 and α2 are respectively the amplitudes of the displacement-field and of
the traction-field in the waveguide at the interface x3 = 0. We deduce the analytical
expressions of the complex reflection and transmission coefficients (R̂(s1,x3; t) and
T̂ (s1,x3; t) respectively):
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R̂ =
(P3−P1Z2 +P4Z1−P2Z1Z2)
(P3−P1Z2−P4Z1 +P2Z1Z2)

,

(17)

T̂ =
−2Z2(ρ f1c f1/ρ f2 c f2)(P1P4−P2P3)

(P3−P1Z2−P4Z1 +P2Z1Z2)
exp(−ıωs(2)

3 d),

with Zn = ρ fn/
√

1/c2
fn
− s2

1 (for n = 1 or 2).

3 Validation

The aim of this sub-section is to check that the Peano expansion of the matricant
is well-adapted to study fluid-loaded waveguides. We take into account the fluid-
structure interaction in different configurations of homogeneous plates comparing
the results obtained from the numerical implementation of the Peano expansion of
the matricant to results taken from the literature.

The numerical evaluation of P1,P2,P3 and P4 requires us to truncate the Peano
series and to numerically calculate the integrals. Thus, the error can be estimated
and controlled [1]. We retained 70 terms in the series and evaluate the integrals
over 100 points using the Simpson’s rule (fourth-order integration method). The
expressions (17) give the frequency spectrum (modulus and phase) of the reflection
coefficient for different incidences (s1 varies from zero – normal incidence – to
1/c f1 corresponding to the critical incidence in the fluid f1). A lot of works detailed
the relationship between the poles and the zeroes of the reflection coefficient and
the leaky Lamb waves dispersion curves [5, 6].

The results of sub-section 3.1 compare the dispersion curves obtained by seeking
the poles of the reflection coefficient (17) and the results taken from the literature or
from closed-form solution.

3.1 Validation for a homogeneous and isotropic or anisotropic
fluid-loaded plate

The method is tested by plotting the dispersion curves (variation of the phase veloc-
ity versus frequency-thickness product) for an isotropic aluminium plate immersed
in water. The data in the paper of [5] is used. The results obtained (not shown) by
the present method are in perfect agreement with the results presented by them [5].

Taking into account the anisotropy does not change the scheme for the numerical
solution of wave equation with the matricant. We consider a transverse isotropic
plate immersed in water. For that configuration, [14] developed a method to obtain
an analytical solution. By using the data from this paper, the results obtained (not
shown) with the present method are in perfect agreement with theirs.
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3.2 Asymmetric loading and heterogeneous waveguide

The formalism presented here to solve the wave equation in an unidirectionally
graded medium presents two main advantages: without changing the scheme to ob-
tain the numerical solution we can take into account i) an asymmetric loading and
ii) the unidirectional continuous heterogeneity.

3.2.1 Isotropic homogeneous plate and asymmetric loading ( f1 6= f2)

The mechanical behavior of the plate is different for symmetric and asymmetric
loadings. For example, in the symmetric loading case, there is a unique critical fre-
quency and a unique phase velocity value vϕ in the plate, which corresponds to
the propagation velocity in the fluid (vϕ = c f1 = c f2), for which the displacements
and the stresses at the interfaces are quasi-null; whereas in the asymmetric loading
( f1 6= f2), there are two critical frequencies and two values of the phase velocity in
the plate for which the structure does not respond [7]. The validation is done on an
isotropic aluminium plate with the following properties: ρ = 2.79 g.cm−3 ; the lon-
gitudinal and transverse waves velocities are respectively vL = 6.38 mm.µs−1 and
vT = 3.10 mm.µs−1. The characteristic properties of the fluid f1 correspond to those
of water: ρ f1 = 1 g.cm−3 and c f1 = 1.485 mm.µs−1; the characteristic properties of
the fluid f2 correspond to glycerine: ρ f2 = 1.26 g.cm−3 and c f2 = 1.920 mm.µs−1.
This configuration is the same as the one studied by [8]. The modulus of the reflec-
tion coefficient versus the incident angle is plotted in the Fig. 2 for a fixed frequency-
thickness product ( f × d = 4.7 MHz.mm).

Fig. 2 Reflection coefficient
modulus for an asymmetri-
cally fluid-loaded aluminium
plate (water and glycerine)
versus incident angle: in dark
lines results published in [8],
in grey crosses the reflection
coefficient modulus calcu-
lated from (17). The vertical
lines (dashed) represent the
two critical angles for longi-
tudinal waves and transverse
waves. The dashed curve
correspond to the resonant
amplitudes [8].
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This figure shows the perfect agreement between our results and the ones pre-
sented by [8].
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3.2.2 Influence of the property gradient on the frequency spectrum of the
reflection coefficient

The main characteristic of the formalism developed in this study is the possibility to
take into account a continuous variation of the mechanical properties of a structure
along one space direction (here, it is the thickness of the waveguide). The influence
of a linear gradient of properties (corresponding to a 10%-increase of the porosity
and a 10%-decrease of the propagation velocities) in a transverse isotropic bone
plate immersed in water is investigated. Its properties are reported in Tab. 1.

Table 1 Elastic properties of transverse isotropic bone plate with linearly varying properties along
the x3-axis between the planes x3 = 0 and x3 = d.

ρ C11 C22 = C33 C13 = C12 C44 C55 = C66

(g.cm−3) (GPa) (GPa) (GPa) (GPa) (GPa)
x3 = 0 1.9 30.04 24.6 10 6.16 9.2
x3 = d 1.81 23.18 18.98 7.72 4.75 7.1

The frequency spectrum of the reflection coefficient is plotted in Fig. 3 for an
incidence close to the critical incidence of longitudinal waves in the plate, which
corresponds to the formation of the wave called lateral wave [3] (θ1 ∼ 21.93 degrees
(thin grey line and black circles) and θ1 ∼ 23.08 degrees (thin black line)).

Fig. 3 Frequency spectrum
of the reflection coefficient
modulus for a homogeneous
plate whose properties are
those at x3 = 0 (grey line), for
a homogeneous plate whose
properties are the average of
the properties through the
plate thickness (black line)
and for a linearly varying
plate (empty circles).
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This figure shows evidence that the behavior of the reflection coefficient modulus
is sensibly the same for frequencies between 0 and 1.8 MHz. Beyond this value, the
behavior is clearly different.
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4 Perspectives

From this study, the transient response of a fluid-loaded plate is considered. The fre-
quency spectrum of the reflection coefficient is calculated for incidences between
the normal and critical incidences for compression waves in the fluid f1. Thus,
the plate transfer function is calculated in the Fourier domain (x1-wavenumber, fre-
quency): R̂(k1,x3;ω). A double inverse Fourier transform on (k1,ω) is applied on
R̂(k1,x3;ω) to transform into the space-time domain; the temporal signals can be
obtained at different points along the propagation x3-axis: R(x1,x3; t).

Lastly, the formalism presented here is well-adapted to deal with wave propa-
gation in anisotropic tubes with radial property gradients [15]. The wave equation
keeps the same form as (8), the state vector is expressed from the displacement and
traction components in the cylindrical basis and the matrix Q depends on the radial
position r (Q = Q(r)). In cylindrical homogeneous structures, to take into account
an anisotropy more important than transverse isotropy is fussy because there is no
analytical solution to the ”classical” wave equation (second-order differential equa-
tion). The Stroh’s formalism (hamiltonian formulation of the wave equation) [16],
upon which the Peano expansion of the matricant is based, is a promising alternative
solution which allows to consider altogether the geometry (cylinder), the anisotropy
and the heterogeneity (radial property gradients) of a medium.

4.1 Relevancy of the method for ultrasound characterization of
cortical bone by axial transmission technique

Several studies of demonstrated the heterogeneous nature of the cortical bone, par-
ticularly they show evidence the gradual variation of the volumetric porosity (ratio
between pores and total volume) across the cortical thickness. Yet, the porosity is
intrinsically linked to the macroscopic mechanical behavior of the cortical bone [2].
Therefore, the continuous variation of porosity induces a continuous variation of
material properties. Taking into account the gradient should prove itself to be essen-
tial in the context of diagnosis and therapeutic monitoring of osteoporosis. Indeed,
the gradient characterization would allow to assess geometrical (cortex thickness)
and material (elastic coefficients variation) information, which are fundamental pa-
rameters to evaluate the bone fragility. For several years, the quantitative ultrasonog-
raphy (by axial and transverse transmissions) proved itself to be an alternative hope-
ful technique to evaluate the fracture risk [13]. However, the inter-individual and
inter-site variations of bone mechanical properties make the standardization of the
protocol of fracture risk evaluation by ultrasound very delicate. In this context, the
characterization of a relative variation of mechanical properties in the plate thick-
ness may turn out to be relevant to carry out a “standardized” estimation of bone
strength. The axial transmission technique is specially dedicated to the ultrasound
characterization of the cortical bone, which represents 80% of the bone mass in hu-

C. Baron and S. Naili420



man skeleton, in bone pathologies diagnosis. The corresponding configuration may
be modelled by a cortical bone plate with varying properties in the thickness and
sandwiched between two different fluids, soft tissues and marrow. According to the
results presented in this study, the signals recorded by axial transmission technique,
corresponding to the waves reflected by the plate and travelling into the fluid (soft
tissues), are sensitive to the gradient (see Fig. 3) and may be exploited to its char-
acterization, then to evaluate the bone fragility. To do so, a parametric study must
be carried out to determine which ultrasound parameters, accessible by the axial
transmission technique, are the most representative of the property gradients (which
modes, at which frequencies ?). When the gradient will be characterized, the second
step will be to elaborate a standardized and reliable protocol to evaluate the bone
strength by ultrasound measurements in preparation for a clinical application.
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Abstract  Multiple scattering results usually concern uniform distributions of scat-
terers. In this work, we evaluate the propagation of SH coherent waves through a 
non-uniform distribution of parallel flat cracks. The spatial variation of distribu-
tion is taken into account via replacing a heterogeneous medium by a stack of ef-
fective homogenous layers. Propagation in each layer is governed by the effective 
acoustic impedance and the effective wave number, which are derived by consid-
ering cracks as finite-size scatterers. On this basis, the reflection and transmission 
coefficients due to non-uniformly distributed scatterers are calculated by using the 
transfer matrix method. Effect of the distribution profiles is also investigated. 

1 Introduction 

During last several decades, much work has been done on studying the effective 
behaviour of heterogeneous media, such as bubbly liquids, fibber-reinforced 
or/and multi-cracked composite materials. A number of dynamic models has been 
developed for describing phase velocity and attenuation of coherent elastic plane 
waves propagating in those media [2, 6, 8, 10]. 

We focus on shear-horizontal (SH) coherent wave propagation in a damaged 
medium. The energy loss is assumed to be due to the multiple scattering by the 
cracks (discontinuous phase) randomly distributed in the lossless host matrix. Sig-
nificance of this study lies in considering the spatial variation of the crack density. 
This aspect is taken into account by replacing heterogeneous media by stacks of 
effective homogenous layers. Each layer is viewed as having uniform distribution 
with effective bulk parameters. The reflection and transmission responses of such 



 

non-uniform distribution of scatterers concentration are evaluated by using the 
transfer matrix method. Two approximations of the effective attenuation are also 
proposed. 

2 Effective field parameters for uniform concentration of 
scatterers 

distribution of identical cracks. They are assumed to be parallel and infinite along 
the axis 2y . Their cross section is constant in the ( )1 3,y y  plane. Flat (ribbon-
shaped) cracks are regarded as discontinuity lines of width 2a  [1, 7]. The crack 
faces are stress-free. The number of cracks per unit area (density) is denoted by η . 

An incident monochromatic SH plane wave propagates along the axis 3y , nor-
mally to the crack faces. Its propagation in the lossless crack-free matrix is gov-
erned by the wavenumber / Tk cω= , where ω  is the angular frequency and Tc  
the phase velocity of SH wave in the matrix. 

It is well known that, in presence of multiple scatterers, the coherent plane 
wave propagation in the two-phase (damaged) medium is described by a complex-
valued wavenumber K . The dissipation is assumed to be induced only by the 
multiple scattering, i.e. the anelastic attenuation is not taken into account. For the 
axes adopted, the coherent wave is represented by the displacement components. 

 1 3 0u u= = , ( )3i
2 e Ky tu A ω−= , (1) 

where A  is an amplitude factor and K  is the effective wavenumber, which can 
be related to k  in terms of the single-crack scattering amplitudes f . For brevity, 
the time-factor ie tω−  is omitted in the following. In contrast to the previous works, 
the cracks are considered here as parallel finite-size scatterers and no longer as 
line-like scatterers [4]. By writing boundary conditions for the average exciting 
field on each finite-size crack, Angel and Koba derived a formula for K  [2], 
which can be expressed in terms of the scattering amplitude f , defined in Ref. 
[5], as follows 

 ( )
1

2 2
2

4
1 0K k f

k
πη

−
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

. (2) 

The angular shape function ( )0f  indicates the far-field response of a single flat 
crack in the forward direction with respect to plane-wave excitation propagating 
normally to the crack faces. 

Alternatively, the dynamic mechanical behaviour of a two-phase medium sub-
jected to multiple scattering of SH waves can be described macroscopically [3, 9]. 

Consider a linearly elastic and isotropic medium containing a random and uniform 
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Due to the symmetry of cracks and their uniform and parallel arrangement, the 
damaged medium behaves macroscopically as an orthotropic homogeneous me-
dium. In the heterogeneous slab response established by Angel and Koba [2], we 
have identified the quantity which plays the role of an acoustic impedance in the 
homogenous description. On this grounds, we have found that the quantity 

 k
K

Θ =  (3) 

represents the ratio of the effective acoustic impedance of the damaged medium, 
Z , to that of the matrix, z . In Eq. (3), the wavenumber K  is given by Eq. (2). 

Note that Eq. (3) agrees well with Eq. (15) of Ref. [3] which has been previ-
ously established in the context of Waterman and Truell approach [3, 10]. We re-
call here that, in the special case of flat cracks, the far-field forward and backward 
scattering amplitudes of a single scatterer are opposite ( ) ( )( )0f f π= − . 

The dispersion relation of the coherent plane wave propagating in an infinite 
homogenous medium (with the effective mass density ρ  and the effective shear 
stiffness μ  along the axis 3y ) is 

 
2

2K
ωρ μ= . (4) 

By using Eqs. (3) and (4) and the following relationship 

 K
Z

K
ω μρ

ω
= = , (5) 

we find that 

 0ρ ρ= , (6) 

 ( )0 2

41 0f
k
πμ μ η

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
, (7) 

with 0ρ  and 0μ  standing for the mass density and the stiffness of the matrix. Note 
that the complex-valued bulk parameters ρ  and μ  depend on the frequency and 
the crack density η .  

For small kaω =% , using the low-frequency expression of the scattering ampli-
tude f  given in Ref. [5], it follows that 

 ( ) ( )( )2 2 2 2

0

1 ln i 1 ln ,
4 8

O Oμ φ πφφ ω ω ω ω ω ω
μ

⎛ ⎞= − + + − +⎜ ⎟
⎝ ⎠

% % % % % %  (8) 
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where φ πε=  and 2aε η=  stands for the crack density. 
We recall that the formulas (6) and (7) have been derived by viewing the dam-

aged region as a homogenous layer embedded in the matrix. This perspective im-
plies that the bulk parameters (6) and (7), and the linear effective constitutive law 
( )23 23σ με=  involving the spectra of the only nonzero stress and strain compo-
nents ( 23σ  and 23ε , respectively), guarantee the coherent displacement and the 
coherent stress vector to be continuous across each interface. 

3 Transfer matrix method 

Consider a multilayered medium of thickness h , embedded in the matrix as de-
fined in the previous section, Figure 1. Each of the p  parallel layers is character-
ized by a wavenumber jk , a shear stiffness jμ  and a constant thickness 

/jd h p= . The lateral dimensions of the layers are assumed to be infinite. The 
multilayered stack is subjected to a SH plane wave normally incident on the first 
layer. The outcoming waves are evaluated at the exit of the last layer. The sur-
rounding matrix is assumed in the form of semi-infinite substrates bonded on both 
sides of the multilayered medium. 

Fig. 1 Schematic representation of a 
multilayered medium ( )j

j

h d= ∑  

h

y3
dj

kj

μj

u0T

(k, μ0)

u0R

u0

(k, μ0)

y1

 

Introduce the SH state vector  

 ( )
( )
( )

2 3

3
23 3

u y
y

yσ

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

W , (9) 

composed by the out-of-plane displacement 2u  and the shear stress component 
23σ . The state vectors at both faces jξ  and 1jξ +  of the thj  layer can be related as 

follows  
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 ( ) ( ) ( )1 , , ,j j j j j jm k dξ ω μ ξ+ =W W , (10) 

where ( )
sin

cos
, , ,

sin cos

j j
j j

j jj j j j

j j j j j j

k d
k d

km k d
k k d k d

μω μ
μ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

. (11) 

Invoking the continuity of the state vector (9) at the interfaces between the lay-
ers, the state vectors at both edges of the multilayered medium, 3 0y =  and 

3y h= , are related as follows 

 ( ) ( ) ( )0h m ω=W W , (12) 

where ( ) ( )
1

, , ,j j j j
j p

m m k dω ω μ
=

= ∏ , (13) 

is the transfer matrix through the layers. 
We now consider the wave fields outside the multilayered medium. The inci-

dent wave of amplitude 0u  and wavenumber k  is reflected by the first interface 
(amplitude 0u R ) and transmitted through the stack of layers (amplitude 0u T ). 
The state vectors ( )0W  and ( )hW  are written as 

 ( )
( )0

0

1
0

i 1

R
u

k Rμ

+⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
W , ( )

i

0 i
0

e

i e

kh

kh

T
h u

k Tμ

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

W , (14) 

where 2
0 0 Tcμ ρ= . Thus, the two unknown amplitudes R  and T  are evaluated 

from a system of two equations established by combining Eqs. (10)-(14). 
The above-outlined transfer matrix method is applied to damaged layers sub-

jected to multiple scattering by cracks. Each multi-cracked layer is replaced by an 
appropriate effective homogenous layer. The surrounding medium is the matrix. 
The dynamic behaviour of each damaged layer, containing jη  cracks per unit 
area, is governed by the effective wavenumber ( )j jK η  and the effective shear 
stiffness ( )j jμ η , 1j p= … , see Eqs. (2) and (7). The reflection and transmission 
responses of the stack of damaged layers are then evaluated from Eqs. (12) and 
(14), in which the parameters jk  and jμ  are replaced by ( )j jK η  and ( )j jμ η . 
The matrix m  in Eq. (12) becomes 

 ( )( ) ( ) ( )( )
1

3, , , ,j j j j j j
j p

m y m K dω η ω η μ η
=

= ∏ , (15) 

where ( )3yη  stands for the spatial function of the crack density over the multi-
layer depth. 
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4 Application to non-uniform concentration of cracks 

The non-uniform crack density ( )3yη  of parallel identical flat cracks is intro-
duced by replacing multi-cracked media by stacks of effective homogenous layers 
with a constant crack density jη  each. 

Numerical results are obtained for the space-varying crack density 

 ( )

2 2
3

2

/ 2 /2

3 0 / 2

e e

1 e

y h h

h
y

σ σ

σ

η η

−⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞−⎜ ⎟
⎝ ⎠

−
=

−

, (16) 

for 30 y h≤ ≤  (so that ( ) ( )0 0hη η= = ), with 0.005σ = , 30.3h mm=  and 
1a mm= , see Figure 2. The maximum value of Eq. (16) is taken as 0η =  

( )/2 30 000hη =  cracks 2/m . The matrix material is aluminium with 
3.13 /Tc m ms=  and 3

0 2.7 /g cmρ = . 

Fig. 2. Profiles of crack density. 
( )3yη  is given by Eq. (16), while 
( )1 3yη  and ( )2 3yη  satisfy Eq. 

(18) 

3y

2hh

1η

2η

0 8.8 103 3 104 3.76 104

η

number of cracks / m2

 

4.1 Effect of discretization 

The non-uniform multi-cracked medium is viewed as p  layers of thickness 
/jd d h p= = . The moduli of the reflection and transmission coefficients are 

shown in Figure 3 as functions of the frequency ν  for several values of p . Note 
that the dimensionless frequency kaω =%  is less than 6  when ν  is less than 

MHz3 . The amplitude of R  is displayed in the logarithm scale in all the figures. 
When the number of layers increases, the values of the crack density at the first 

and last layers decrease and approach zero. Therefore, the difference between the 
acoustic impedance of the matrix and those of the 1st  and thp  tends to zero. While 
the transmission coefficient is independent of the layer number, some artefacts ap-
pear in R  for frequencies ( )qν  corresponding to the resonances of a single layer. 
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They can be approximated from the wavelength λ  of the incident wave, as fol-
lows 

 ( )

2 2
q T

j
pc

d q q
h

λ ν≈ ⇔ ≈ , (17) 

where 1,2q = … . When the number of layers increases, the resonance frequencies 
move to higher frequency and therefore depart from the plots. In the following, p  
is chosen to be equal to 101 . 

Fig. 3 Moduli of the reflection and 
transmission coefficients for the 
space-varying crack density (16). 
The number of layers takes values 
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4.2 Different profiles of concentration 

In this section, we introduce two additional uniform crack densities, ( )1 3 1yη η=  
and ( )2 3 2yη η= , which imply the same number of cracks over the range [ ]0,h  as 
the Gaussian profile (16), see Figure 2. Thus, their mean values are all identical 
according to 

 ( ) 2
3 3 1 20

1 h h
y dy

h h
η η η= =∫ . (18) 
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While the thickness of the stack with ( )1 3 1yη η=  is h , the stack thickness for 
( )2 3 2yη η=  is chosen such that 2 2h σ= . This value corresponds to the dis-

tance between the coordinates 3y , where the variation of the profile ( )3yη  is the 
highest. 

The reflection coefficient calculated for each of the three space-varying crack 
densities coincides only at very low frequency, when the scatterer location does 
not affect the response, Figure 4. In turn, the transmission coefficient is almost in-
sensitive to the profiles for any frequency.  

Fig. 4 Moduli of the reflection and 
transmission coefficients for the 
three profiles of crack density dis-
played in Figure 2. The low-
frequency part of R  is zoomed 
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In the high-frequency limit ( )1ω >>% , the effective attenuation ( )α ∞  of the 
coherent wave can be expressed in terms of the effective density of cracks η  as 
follows 

 ( ) 2 aα η∞ = . (19) 

Then, we have 

 2e a hT η−→ , ( )ω → ∞% . (20) 

Knowing the stack thickness, one can identify the effective density η  from the 
measurement of the high-frequency limit for T . In addition, we observe that the 
curves for T  in Figure 4 coincide in the high-frequency range. For the two uni-
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form crack densities, we have naturally 1η η=  and 2η , respectively. Thus, Eqs. 
(18) and (20) yield 

 ( )3 30

1 h
y dy

h
η η= ∫ , (21) 

for the Gaussian profile (16). 

4.3 Partial wave decomposition 

Individual reflection and transmission coefficients at an interface between the thj  
and ( )1 thj +  layers are given by 

 1
, 1

1

j j
j j

j j

z z
R

z z
+

+
+

−
=

+
 and , 1

1

2 j
j j

j j

z
T

z z+
+

=
+

, (22) 

where jz  stands for the acoustic impedance of the thj  layer, Figure 5. In the spe-
cial case of multi-cracked layers, jz  depends on the crack density jη  and is 
evaluated from Eq. (3). The coefficients (22) are used in the Debye serie method 
of calculating the aggregate reflection and transmission coefficients. 

Fig. 5 Partial wave decomposition. 
Exchanges between the thj  and 
( )1 thj +  layers: , 1 , 1,j j j jR T+ + . 
Specular reflection by the thj  inter-
face: jr  

h

y1

y3

p1 jr1

rj

Rj, j+1

Tj, j+1

dj
 

In this context, the spectrum of the forward propagating wave through the first 
( )1 thj −  layers, reflected by the thj  interface and going back towards the matrix, 
Figure 5, can be expressed as 

 ( )
1

1

1 0,1

2i 1

1, 1, , 1
1

e , 2 1

j

q q q
q

K d j

j j j q q q q
q

r R

r R T T j p
η

−

=

−

− − −
=

=⎧
⎪⎪
⎨ ∑

= ≤ ≤ +⎪
⎪⎩

∏
 (23) 
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with , 1 ,0p p pR R+ = . The properties of the surrounding matrix are indicated by the 
subscript 0. 

Figure 6 shows a comparison between the reflection coefficient R  of the mul-
tilayered medium and the sum of the specular reflections (23) by all the 1p+  in-
terfaces. A good agreement between these predictions outlines that the reverbera-
tions inside each single layer are negligible for a large number of layers, hence a 
low contrast between them. 

Fig. 6 Moduli of the reflection and 
transmission coefficients for the 
space-varying crack density (16). 
Approximation obtained by neglect-
ing the reverberations inside each 
single layer: (a) 1

1| |p
j jr
+
=∑ , with Eq. 

(23); (b) Eq. (24) 
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i
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K dη
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∑( )exp

 

The effect of the internal reverberations on T  is examined in a similar way. 
Figure 6 compares T  and 

 ( )
1

exp i
p

j j j
j

K dη
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ . (24) 

The two curves match well. The internal reverberations still remain insignifi-
cant for the calculation of T . 
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4.4 Effective attenuation: approximation 

For the density profile (16), we assess the effective attenuation α  of the multilay-
ered medium from the transmission coefficient T  evaluated by using the transfer 
matrix method described above. Neglecting the difference in the acoustic imped-
ances between the matrix and the damaged region, we have e h Tα− ≈  and so 

 ln T
h

α ≈ − . (25) 

Discarding the reverberation between the layers (thereby disregarding the non-
uniformity of the crack density), the effective attenuation can also be evaluated 
from 

 ( )
1

1
Im

p

j j
j

K
p

α η
=

≈ ∑ , (26) 

where the effective wavenumber of the thj  layer is given by Eq. (2). 
Figure 7 shows the effective attenuation (25) and (26) of the coherent plane 

wave propagating through the non-uniform density of crack ( )3yη . The two 
curves coincide because the reverberation has been discarded. 

Fig. 7 Assessments (25) and (26) of 
the effective attenuation of the co-
herent wave propagating through 
the profile of space-varying crack 
density (16) 
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5 Summary 

Propagation of SH coherent wave in a space-varying distribution of parallel flat 
cracks embedded in an elastic matrix has been investigated. The non-uniform dis-
tribution is approximated by a stack of layers each with a uniform distribution.  

The reflection response of the Gaussian distribution coincides with that of con-
stant distributions of appropriate value and thickness at low frequency. Interest-
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ingly, the transmission at any frequency is not sensitive to the distribution of a 
given number of cracks. 

The impact of the reverberations inside each layer and of the spurious reso-
nance frequencies of the individual layers on the reflection R  and transmission 
T  coefficients of the non-uniform distribution can be made negligible. 
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104 Complex Computing-Networks
Brain-like and Wave-oriented
Electrodynamic Algorithms
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