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Abstract. Given a set of sequences, S, and degeneracy parameter, d, the
Consensus Sequence problem asks whether there exists a sequence that
has Hamming distance at most d from each sequence in S. A valid motif
set is a set of sequences for which such a consensus sequence exists, while
a decoy set is a set of sequences that does not have a consensus sequence
but whose pairwise Hamming distances are all at most 2d. At present,
no efficient solution is known to the Consensus Sequence problem
when the number of sequences is greater than three. For instances of
Consensus Sequence with binary sequences and cardinality four, we
present a combinatorial characterization of decoy sets and a linear-time
exact algorithm, resolving an open problem posed by Gramm et al. [7].

1 Introduction

Understanding the structure and function of genomic data remains an important
biological and computational challenge. Motifs are short sequences of genomic
DNA responsible for controlling biological processes, such as gene expression.
Motifs with the same function may not entirely match, due to random mutations
or chemical properties. The motif consensus of the instances is a short sequence
representing their shared pattern. Given a number of DNA sequences, motif
recognition is the task of discovering motif instances in sequences without prior
knowledge of the consensus or their placement within the sequence.

Closely related to the motif recognition problem is the Consensus Sequence
problem that asks, given a parameter d and a set of sequences S = {s1, . . . , sn}
each of length l, whether there exists a sequence s∗, which we call a consensus,
that is of distance at most d from each sequence in S. Note that the consensus
sequence need not be contained in S. In this context, the distance metric is
the Hamming distance, H(si, sj), between two sequences si and sj . Consensus
Sequence is NP-complete, even for the case where each sequence is binary;
therefore, no polynomial-time solution is possible unless P = NP [5]. Clearly, a
set for which the distance between any pair of sequences exceeds 2d cannot have
a consensus. We say a set of sequences S is pairwise bounded if for all sequences
a, b ∈ S, H(a, b) ≤ 2d. Thus, the Consensus Sequence problem essentially
reduces to discerning between pairwise bounded sets that have a consensus, and
if so, finding one such sequence s∗, and those that do not. A set of sequences S
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is a motif set if there exists a consensus sequence, s∗. We say set S is a decoy set
if S is pairwise bounded but does not have a consensus.

These problems – motif recognition and Consensus Sequence – have an
extensive number of applications, due to the fact that many problems aim to
determine if a set of sequences has a specific measure of similarity. For example,
the Consensus Sequence problem arises in areas such as coding theory [3,5],
data compression [6], and bioinformatics [7,8,10]. In the context of coding the-
ory, a well-known problem related to Consensus Sequence asks if there exists
a code that is not too far away from a given set of codes [3,5]. Given its ap-
plicability, the Consensus Sequence problem needs to be solved efficiently in
practice. Li et al. [12] present a polynomial-time approximation scheme (PTAS)
for Consensus Sequence. For a given value of r, all choices of r subsequences
of length l are considered from the n sequences. The algorithm has O(l(nm)r+1)
run time, which is polynomial for any constant r. Many researchers have studied
the algorithm due to Li et al. [12]; for a variant of Consensus Sequence there
are known “weak” instances for which the approximation ratio is 1 + Θ(1/

√
r)

[1], and “strong” instances for which the PTAS will be guaranteed to determine
the correct answer in efficient time [2].

Another approach is to investigate the parameterized complexity of Consen-
sus Sequence. A problem ϕ is said to be fixed-parameter tractable (FPT) with
respect to parameter k if there exists an algorithm that solves ϕ in f(k) · nO(1)

time, where f is a function of k that is independent of n [8]. Gramm et al. [7]
demonstrate that Consensus Sequence is FPT when the number of sequences
remains fixed: the problem is polynomial-time solvable with a fixed number of
sequences. This FPT result is based on an Integer Linear Programming (ILP)
formulation with a constant number of variables (assuming n is fixed), and the
application of the result of Lenstra [11], which states that ILP is polynomial-
time solvable when the number of variables remains fixed. Unfortunately, such
an ILP formulation is only of theoretical interest since the corresponding algo-
rithms lead to very long running times even when the number of sequences is
small (e.g., four sequences over a binary alphabet). Other parameterizations of
the Consensus Sequence also exist; for example, when d is fixed, the problem
can be solved in O(nl + nd(d + 1)d) time [8].

Gramm et al. [7] and Sze et al. [14] give direct (non-ILP based) combinatorial
algorithms for solving Consensus Sequence exactly for three sequences. The
algorithm of the former authors considers the possible combinations of alphabet
symbols that can occur for three sequences, then specifies conditions for which
a consensus sequence can be constructed [7]. Sze et al. [14] give a counting
argument to demonstrate a condition for which a set of three sequences has a
consensus and when it does not. In fact, a stronger property applies to binary
sequences: any three pairwise-bounded binary sequences have a consensus.

Gramm et al. state that the problem of finding an efficient polynomial-time
algorithm for solving Consensus Sequence on a set of four sequences remains
open “due to the enormous combinatorial complexity [of the ILP-based solution]”
[8, p. 13]. We resolve this open problem for binary sequences; specifically, we
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give an exact combinatorial algorithm for four binary sequences. This result
is inspired by the combinatorial decomposition theorem for decoy sets that is
also presented, which demonstrates that each decoy set can be characterized
by containing two specific subsequences. Our aim is that these results might
be extended to resolve the more general Consensus Sequence problem, in
particular, for the four-symbol DNA alphabet, or for more than four sequences.

2 Preliminaries

We begin with some definitions concerning general sequence analysis. Let l, d ≤ l,
and n be positive integers and σi be a function that returns the ith symbol in a
sequence. For any symbol β ∈ Γ let βl denote the l-length sequence of all β’s.
Given a set of sequences S = {s1, . . . , sn}, each of which has length l, the ith
column refers to the column vector ci = [σi(s1), . . . , σi(sn)]T in the n× l matrix
representation of S. A sequence s∗ is an optimal sequence for S if and only if
there is no sequence s∗2 with maxi=1,...,n H(s∗2, si) < maxi=1,...,n H(s∗, si). Note
that the optimal sequence for S is not unique; there may exist multiple. We
formally define the Consensus Sequence problem as follows:

Consensus Sequence
Instance: a set of n sequences, S = {s1, s2, . . . , sn} over an alphabet Γ , each
of length l, and a positive integer d.
Find: a l-length sequence s∗ over alphabet Γ where H(s∗, si) ≤ d for every si

in S, or declare that no such s∗ exists.

The difficulty of Consensus Sequence lies in distinguishing between decoy
and valid motifs. In the context of coding theory, Frances and Litman show
that Consensus Sequence remains NP-hard even when restricted to a binary
alphabet; in this case, they refer to the corresponding problem as Radius De-
cision [5]. We will be interested in the cardinality of a decoy set, that is, the
number of sequences contained in the set. We say set Ŝ ⊆ S is a decoy of minimal
cardinality if Ŝ is a decoy set such that for all S′ ⊆ S, if |S′| < |Ŝ|, then S′ has
a consensus.

Gramm et al. [7] refer to the process of permuting the columns of S such that
these are grouped by column type as “normalization”. A normalized instance can
be derived from the input set of sequences by a simple linear-time algorithm.
Given an optimal sequence for the normalized set of sequences, the inverse of
this same permutation returns an optimal sequence for the original input [7].

Definitions Specific to Sets of Cardinality Four: Given a set S = {s1,
. . . , s4} of binary sequences, the symbols in each column have either two, three, or
four matching symbols. Sixteen types of columns are possible in general. We say
a column belongs to group i if it has exactly i matching symbols. To reduce the
number of possible types to eight, suppose without loss of generality that s4 = βl.
Equivalently, create a new set S′ by performing a logical exclusive-or of each
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Table 1. The values λαββ through λααβ denote the number of columns of each type
in groups three and two. The symbol “-” implies that the value is undefined at these
columns.

Group Four Three Two

# of columns. λβββ λαββ λβαβ λββα λααα λβαα λαβα λααβ

s1 β α β β α β α α
s2 β β α β α α β α
s3 β β β α α α α β
s4 β β β β β β β β

maji β β β β α - - -

sequence in S with s4 (say α corresponds to boolean true). A consensus sequence
for S is found by performing another exclusive-or on a consensus sequence for S′.
Let λabc denote the number of instances of column (a, b, c, β)T , where a, b, c ∈
{α, β}. See Table 1. Note that only columns of group three and two need to
be considered, since any optimal sequence will have the majority vote at each
column of group four. A pair of columns are considered to be identical if a pair of
sequences in one column mismatch if and only if the same sequences mismatch
in the second column. For example the column [ααββ]T is identical to [ββαα]T ,
but neither is identical to [αββα]T .

Let maji denote the majority of the four symbols in column i. That is, maji =
α if symbol α occurs three or more times in column i and maji = β if symbol
β occurs three or more times; maji is undefined if α and β each occur twice.
Assuming that s4 = βl, only the columns associated with λααα are such that
maji = α.

3 Ubiquitousness or Rareness of Bounded Decoy Sets

In this section, we consider the relative frequency, or infrequency, of decoy sets
that do not have a proper subset that is also a decoy. Our empirical results
demonstrate that the relative frequency of such decoy sets is minimal, and that
the majority of decoy sets contain a decoy subset of cardinality four. Still, the
results of Gramm et al. [8] imply that we cannot characterize all decoy sets of
arbitrary size n as having a proper subset that is a decoy. We refer to a set Q
of decoys, each of cardinality n, as having decoys of bounded cardinality if every
decoy in Q has a proper subset that is a decoy.

Proposition 1. Let Γ denote an alphabet of arbitrary fixed size. If P �= NP ,
then for any n0 there exist a decoy set S such that every subset of S of cardinality
n0 has a consensus.

Proof. Suppose otherwise. That is, there exists an n0 such that every decoy S of
size n ≥ n0 has a subset of size n0 that is a decoy. By Gramm et al. [8], for any
fixed n0, there exists an algorithm that decides whether a set of n0 sequences
is a decoy in f(l, d) time, where f(l, d) is polynomial in l and d. Consequently,
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for any set of n ≥ n0 sequences S, we can check each of the
(

n
n0

)
subsets of S

of size n0 to determine whether any is a decoy in time O(nn0f(l, d))). That is,
we can determine in polynomial time whether S is a decoy. Since Consensus
Sequence is NP-complete, this is possible only if P = NP. �

It should be noted that this corollary does not preclude the fact that there may
exist values of n where all decoys of cardinality n have the cardinality of the
minimal decoy also as n. What the result implies is that there does not exist a
threshold γ such that for all values of n greater than γ the minimal decoy sets
have bounded cardinality below γ, if P �= NP . Although Proposition 1 implies
that no fixed n0 exists, we conjecture that most decoys have a subset of size
four that is a decoy. We provide evidence toward this property with an empirical
study on random sets of binary sequences which we now describe. In turn, these
results motivate the need for an efficient algorithm for determining whether a set
of four sequences is a consensus; we describe such an algorithm in Section 4.2.

We empirically investigate the rarity of the occurrence of decoy sets of cardi-
nality n for which the cardinality of a minimal decoy set is large relative to n. We
sampled without replacement 1000 times from the set of all possible pairwise-
bounded sets of binary, l-length sequences; each set sampled has exactly n se-
quences taken from the binary alphabet. We varied the values for n, l and d. For
each sample set, we determined whether the set is a decoy or a valid motif, with
respect to the value of d, and determined the cardinality of the minimum decoy
set. We repeated this experiment 10 times and calculated the mean values ob-
tained. Table 2 outlines this data. One significant empirical trend demonstrates
that as the number of sequences increased, the number of decoys that do not
contain a minimal decoy of cardinality four became exponentially smaller; when

Table 2. Data obtained from calculating the average of 10 experiments that obtain
a random sample, without replacement, of 1000 sequence sets and determine the size
of the minimal decoy contained in each set decoy obtained in the sample. The first
column is the cardinality of the minimum decoy set.

No. of l = 8, d = 3 l = 10, d = 3 l = 15, d = 4
sequences n = 6 n = 10 n = 12 n = 6 n = 10 n = 12 n = 6 n = 10 n = 12

No. of valid 443.4 4.6 88.7 394.4 9.3 3.6 101.4 3.5 2.6
motif

4 542.2 995.4 991.3 605.6 990.7 996.4 898.6 996.5 997.4
5 12.4 0 0 7 0 0 4.1 0 0
6 2 0 0 0.2 0 0 0.8 0 0
7 - 0 0 - 0 0 - 0 0
8 - 0 0 - 0 0 - 0 0
9 - 0 0 - 0 0 - 0 0
10 - 0 0 - 0 0 - 0 0
11 - - 0 - - 0 - - 0
12 - - 0 - - 0 - - 0
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n was 10 and 12 the number of minimal decoys of size larger than four was 0.
The only value of n for which decoys of size n were seen was 6. Further, the
total number of decoys in 900,000 set of sequences sampled were approximately
1,500 in total. In summary, the empirical results appear to indicate that a large
percentage of binary decoys can be characterized by containing a minimal decoy
set of size four, the smallest size possible, further motivating the main results in
this paper.

4 Investigating Binary Decoy Sets of Cardinality Four

Gramm et al. [7] suggest that a direct combinatorial approach to solve Consen-
sus Sequence where n is fixed would be of practical and theoretical interest.
Here we focus on partially resolving this open problem. We restrict interest to
binary decoy sets of cardinality four, give a decomposition theorem and a linear-
time, exact algorithm for these instances. We first prove that all binary sets of
cardinality four can be decomposed into subsequences that have a specific char-
acterization. The linear-time exact algorithm considers all possible combinations
of symbols from the binary alphabet, and sequentially constructs a consensus or
returns that no consensus exists.

4.1 A Decomposition Theorem

We will prove that each decoy of cardinality four can be decomposed into two
subsequences that have a specific characterization. We begin by presenting the
terminology and notation used to define these two subsequences. We define an
αβ-set for an alphabet {α, β} as the set of all possible sequences of length two,
that is, the set {αα, αβ, βα, ββ}. Given a set S = {s1, s2, s3, s4} of cardinality
four, we refer to S as containing an αβ-set if there are distinct indices i and j
where the set of subsequences defined by columns i and j of S is an αβ-set. For
example, the set of four sequences {ααβ, αββ, βαα, βββ} contains an αβ-set at
the first two columns. Next, we refer to a sequence s as adequately far if there
exists a sequence, say s1 ∈ S, such that H(s, s1) = d − 1, and for all si ∈ S the
distance H(si, s) is equal to either d − 1 or d. We refer to a sequence s2 as too
close if there exists some si ∈ S with H(s2, si) ≤ d−2 and H(s2, si) ≤ d−1, for
all si ∈ S. Putting these definitions together, we obtain the following property:

Definition 1. (Characterization of decoys of cardinality four) A set of
binary sequences S has property D if the following conditions hold:

1. S has an αβ-set realised at indices i and j, and
2. each optimal sequence for S′, the set of sequences obtained from S by remov-

ing the columns i and j, is adequately far.

We require Lemma 1 to prove our combinatorial decomposition theorem. The
proof is omitted due to space constraints. We illustrate an example of property
D in Figure 1: a decoy set where all sequences that have distance to the closest
sequence equal to d − 1 and an αβ-set at the last two columns.
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Fig. 1. Illustrates a decoy set such that optimal sequence to the set of sequences ob-
tained from S by removing the last two columns that have the αβ-set, is adequately
far, and more specifically each has distance equal to d − 1 to the optimal sequence

Lemma 1. Assume d ≥ 2, l ≥ 2 and Γ = {α, β}. Every decoy set S of cardi-
nality four contains an αβ-set.

Theorem 1. (Decomposition theorem for cardinality four) Assume d ≥
2, l ≥ 2 and Γ = {α, β}. A set S of cardinality four is a decoy if and only if
there exists a set of subsequences contained in S such that property D holds.

Lastly, we demonstrate the following result about the existence of an unique
consensus for sets of arbitrary cardinality. It seems natural that as the cardinality
of a valid motif set S increases relative to d, the number of consensuses for S
decreases. As we observe in Proposition 2, a valid motif set of maximal cardinality
has an unique consensus when d < l.

Proposition 2. If a set S has a consensus but no superset of S has a consensus,
then either:

1. d < l and S has a unique consensus, or
2. d ≥ l and S is the set of all possible binary sequences of length l, each of

which is a consensus for S.

Proof. Case 1. Assume d < l. Assume S has two distinct consensuses, denoted
by a and b. Since no superset of S has a consensus, all sequences c such that
H(a, c) ≤ d must be in S. The same holds for all sequences e such that H(b, e) ≤
d. Furthermore, sequences a and b must be in S. Consequently, H(a, b) ≤ d. Let
δ = H(a, b). Without loss of generality, assume that a and b differ in the first δ
bits. Let f denote a binary sequence that agrees with a in the first δ bits, differs
from a in the next d bits, and agrees with a in any remaining bits. Observe that
H(f, b) = H(f, a) + H(a, b) = d + δ > d. Consequently, f is not in S. Since
H(a, f) ≤ d, sequence a is a consensus of S ∪ {f}. This derives a contradiction;
our assumption must be false and the consensus of S must be unique.

Case 2. Assume d ≥ l. Any two binary sequences of length l differ in at most
l bits. Since no superset of S has a consensus, S = Γ l. �

In some cases, a set of sequences S that has a consensus does not have a decoy
as a superset whereas in other cases, every pairwise bounded superset of S is
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a decoy. For example, let d = 1, let S = {ββββ, ββαα, βαβα, αββα}, and let
S′ = {ββββ, βββα, ββαα}.

4.2 Finding a Consensus for a Set of Four Sequences

As motivated in Section 1, the only previous polynomial-time solution for finding
a consensus of a set of four sequences [8] was intended more to demonstrate
the fixed-parameterized tractability of the problem rather than to provide an
efficient solution. As acknowledged by its authors, the corresponding description
(for which many details are omitted) results in an algorithm with extremely high
(although theoretically linear) run time and, furthermore, does not lend itself
well to simple or practical implementation. In this section, we present a simple
linear-time algorithm for finding a consensus of a set of four binary sequences or
determining that the set is a decoy. After describing the algorithm, we prove its
correctness and show its worst-case run time is O(l) for any arbitrary d.

Given a set of binary sequences S = {s1, . . . , s4}, algorithm BinaryConsen-
sus4 identifies a consensus sequence s∗ for S if one exists. Again, to simplify the
algorithm’s, description suppose s4 = βl. The algorithm greedily assigns symbols
to s∗, one symbol at a time. Each column ci is initially considered to be free; that
is, no symbol has been assigned to σi(s∗). Once it is assigned a symbol, we say
column ci is fixed and its value is not modified again. The algorithm has three
phases in which columns of groups four, three, and two are fixed, respectively.

Phase One. Fix symbols of s∗ in all columns of group four such that these
agree with the symbol of the corresponding column.

Phase Two. The symbols of s∗ in columns of group three are fixed sequentially.
Say the first i− 1 columns of group three have been fixed and consider consider
the ith such column. Let sj denote the sequence of S that disagrees with the
remaining three sequences in this column. Let s+ denote the sequence given by
the symbols of s∗ in the fixed columns and the symbols of sj in the free columns.
If s+ is a consensus for S, then let s∗ = s+ and return s∗. Otherwise, fix the
current column of s∗ to agree with the majority and continue to the next column
of group three.

Phase Three. If phase three is reached, then only columns of group two remain,
of which at most three types may be present. The free columns are fixed by
selecting the number of columns of each type that will be assigned symbol α
versus β. That is, a solution for columns of group two corresponds to a triple
of integers (x, y, z), where x ∈ [0, λβαα] denotes the number of columns of type
λβαα that will be assigned the symbol α and λβαα−x represents the number that
will be assigned the symbol β. The variables y and z are defined analogously.
See Table 3. We denote the corresponding sequence by s∗x,y,z. Therefore, the
problem reduces to identifying an integer triple (x, y, z) selected from the region
R = [0, λβαα] × [0, λαβα] × [0, λααβ ] that minimizes

f(x, y, z) = max
si∈S

H(si, s
∗
x,y,z), (1)
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where

H(s1, s
∗) = λαββ + x + λαβα − y + λααβ − z, (2a)

H(s2, s
∗) = λβαβ + λβαα − x + y + λααβ − z, (2b)

H(s3, s
∗) = λββα + λβαα − x + λαβα − y + z, (2c)

H(s4, s
∗) = λααα + x + y + z. (2d)

The sequence s∗x,y,z does not actually need to be constructed since the corre-
sponding value of (1) is obtained in constant time upon fixing values for x, y,
and z.

Table 3. The consensus s∗ found by algorithm BinaryConsensus4 (if one exists) is
displayed in the last row. The values λβββ through λααβ denote the number of columns
of each type and functions x, y, and z denote the number of occurrences of symbol α
in the corresponding column as derived by the algorithm.

Column Group Four Three Two
Algorithm Phase 1 2 3

Number of Columns λβββ λαββ λβαβ λββα λααα λβαα λαβα λααβ

Set S

s1 β α β β α β α α
s2 β β α β α α β α
s3 β β β α α α α β
s4 β β β β β β β β

Consensus s∗ β β β β α x y z

Instead of evaluating all integer combinations for (x, y, z) (requiring O(l3)
time), we identify a set T ⊆ Q3∩R containing a constant number of triples such
that the optimal (possibly non-integer) solution to (1) is a triple in T . Interpreted
geometrically, (2a) through (2d) correspond to four respective hyperplanes in R4

whose maximum, f(x, y, z),, defines a surface. Let

x0 =
1
4

(−λαββ + λβαβ + λββα − λααα + 2λβαα) ,

y0 =
1
4

(λαββ − λβαβ + λββα − λααα + 2λαβα) ,

z0 =
1
4

(λαββ + λβαβ − λββα − λααα + 2λααβ) . (3)

If (x0, y0, z0) ∈ R, then let T = {(x0, y0, z0)}. Otherwise, let T denote the set of
triples that correspond to x-, y-, and z-coordinates of vertices of the intersection
of the surface defined by (1) with the boundary of R. If this intersection is empty,
then it follows that no consensus exists.

For each triple (x, y, z) ∈ T , evaluate the integer triples within unit �∞ dis-
tance of (x, y, z) in region R. That is, for every (x, y, z) ∈ T , consider the integer
triples in [max(0, x − 1), min(x + 1, λβαα)] × [max(0, y − 1), min(y + 1, λαβα)] ×
[max(0, z − 1), min(z + 1, λααβ)], of which there are at most eight. Compute
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(1) for each such integer triple (x, y, z) and store the corresponding minimizing
sequence s∗x,y,z. Let s∗ = s∗x,y,z.

Termination. Consider the maximum distance between s∗ and a sequence in
S, i.e., the minimum (integer) value of (1). If this value is at most d, then s∗

is returned as a consensus sequence for S. Otherwise, S is a decoy set and no
consensus sequence exists.

We now demonstrate that algorithm BinaryConsensus4 correctly returns
a consensus s∗ for every set S that is a valid motif set. Furthermore, this is
achieved in O(l) time, independently of d. The proof of Theorem 2 refers to
Lemmas 2 and 3 which follow.

Theorem 2. Given any d ∈ Z+, any l ∈ Z+, and any set S of four binary
sequences of length l, algorithm BinaryConsensus4 returns a consensus for S
with degeneracy parameter d if one exists or returns that S is a decoy in O(l)
time.

Proof. The correctness of Phase 1 is straightforward. The correctness of Phase
2 follows by induction on i using Lemma 2. Consequently, if S has a consensus,
then either a consensus has been found by the end of Phase 2 (i.e., s∗ = s+), or
there exists a consensus s∗ such that σx(s∗) = majx for all columns of groups
three and four. The optimal solution for the remaining free columns is found in
Phase 3. The correctness of Phase 3 follows by Lemma 3. Therefore, algorithm
BinaryConsensus4 returns a consensus s∗ if one exists, and returns that no
consensus exists otherwise.

Each phase requires a single pass through the columns of S. Phase 1 simply
requires counting the number of columns of each type. Phase 2 also requires
maintaining the twelve distances H(si, s

+
j ) for each {i, j} ⊆ {1, . . . , 4}, where s+

j

denotes s+ for which the free columns are defined according to sj (as described in
Phase 2 of algorithm BinaryConsensus4). Every time a column of group three
is fixed, each of these twelve values can be updated in constant time. Phase 3
simply requires counting the number of columns of each type. Since (1) is defined
by the maximum of four hyperplanes and region R is bounded by three pairs
of parallel planes, the number of triples in T is constant and, furthermore, the
coordinates of these triples are straightforward to compute in constant time.
Finally, since any point in R3 has at most eight integer points within unit �∞
distance from it, the set of integer triples evaluated is also computed in constant
time and space. Therefore, algorithm BinaryConsensus4 terminates in O(l)
time. �

Definition 2 (Majority Rule Property). We say property P (i) holds for a
set S of four binary sequences if and only if either

1. S is a decoy, or
2. there exists a consensus of S for which the first i columns of group three have

value maji.
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Lemma 2. Let S = {s1, . . . , s4} denote a set of four binary sequences that has
m columns of group three. If P (i) holds for some i ∈ {0, . . . , m − 1} and sj ∈ S
denotes the sequence that mismatches in the (i+1)st column of group three, then
either

1. P (i + 1) holds for S, or
2. s+ is a consensus for S,

where σx(s+) = majx in the first i columns of group three and σx(s+) = σx(sj)
in the remaining columns.

Proof. If s+ is a consensus for S then the claim holds. Similarly, if S is a decoy
then P (i + 1) is true and the claim holds. Therefore, suppose S is not a decoy
and s+ is not a consensus for S. By P (i), S has a consensus s∗ for which the
first i columns of group three have value majx. Let k denote the index of the
(i + 1)st column of group three.

Case 1. Suppose σk(s∗) = majk. Therefore, P (i + 1) is true, and the claim
holds.

Case 2. Suppose σk(s∗) �= majk. That is, σk(s∗) = σk(sj). Since s+ is not a
consensus, s∗ and s+ must differ in at least one column; let k′ denote the index of
such a column. Let s∗∗ denote a sequence of length l such that σx(s∗∗) �= σx(s∗)
for x ∈ {k, k′} and σx(s∗∗) = σx(s∗) otherwise. That is, σk(s∗∗) = majk. Thus,
H(sj , s

∗∗) = H(sj , s
∗) and, furthermore,

∀x ∈ {1, . . . , 4}, H(sx, s∗∗) ≤ H(sx, s∗).

Therefore, s∗∗ is a consensus for S, P (i + 1) is true, and the claim holds. �

Lemma 3. There exists an integer triple (x, y, z)∈ [0, λβαα]×[0, λαβα]×[0, λααβ]
that minimizes (1) and is within unit �∞ distance from a triple in T , where set
T contains either (3) or the set of triples that correspond to vertices of the
intersection of the surface defined by (1) with the boundary of R.

Proof. Since no two of the hyperplanes induced by (2a) through (2d) are parallel,
f(x, y, z) is a convex function whose surface includes a unique simplicial vertex
located at the point of intersection of these four hyperplanes. Furthermore, this
point minimizes f(x, y, z) since f is increasing as it tends to infinity in any
direction. Thus, f(x, y, z) is minimized at a unique (possibly non-integer) point
found by solving for x, y, and z in

H(s1, s
∗) = H(s2, s

∗) = H(s3, s
∗) = H(s4, s

∗). (4)

The constraints of (4) corresponds to system of three linear equations with the
unique solution (3).

Since the coefficients of x in (2a) through (2d) are all ±1, function f(x, y, z)
has slope ±1 along the x-axis for any fixed y and z. The same holds for any
fixed x and y or any fixed x and z. Consequently, since f(x, y, z) is convex, a
minimum integer solution to (1) lies within unit �∞ distance of its non-integer
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solution. The set T contains either the unique minimum (3) (if it lies within
region R) or the set of triples that correspond to vertices of the intersection
of the surface defined by f(x, y, z) with the boundary of R, one of which must
minimize f(x, y, z) over R. Therefore, the claim holds. �

5 Conclusion

Motif recognition, in which the objective is to identify meaningful patterns in
biological data, is a fundamental problem of computational biology. We have ob-
tained a combinatorial characterization of the consensus problem for instances of
four binary sequences, and a linear-time algorithm for obtaining a consensus for
this restricted set of instances. Our results generalize previous work and answer
some open problems concerning Consensus Sequence [7]. We aim to general-
ize our current results to identify a combinatorial characterization of decoy sets
over larger alphabets. Such a generalization would invite many open problems
in motif recognition to be revisited, as their tractability might be determined
more concretely, opening the possibility for more efficient algorithmic solutions.
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