
Practical Rank/Select Queries over Arbitrary

Sequences�

Francisco Claude and Gonzalo Navarro

Department of Computer Science, Universidad de Chile
{fclaude,gnavarro}@dcc.uchile.cl

Abstract. We present a practical study on the compact representation
of sequences supporting rank, select, and access queries. While there are
several theoretical solutions to the problem, only a few have been tried
out, and there is little idea on how the others would perform, especially
in the case of sequences with very large alphabets. We first present a
new practical implementation of the compressed representation for bit
sequences proposed by Raman, Raman, and Rao [SODA 2002], that is
competitive with the existing ones when the sequences are not too com-
pressible. It also has nice local compression properties, and we show that
this makes it an excellent tool for compressed text indexing in combi-
nation with the Burrows-Wheeler transform. This shows the practicality
of a recent theoretical proposal [Mäkinen and Navarro, SPIRE 2007],
achieving spaces never seen before. Second, for general sequences, we
tune wavelet trees for the case of very large alphabets, by removing their
pointer information. We show that this gives an excellent solution for
representing a sequence within zero-order entropy space, in cases where
the large alphabet poses a serious challenge to typical encoding methods.
We also present the first implementation of Golynski et al.’s representa-
tion [SODA 2006], which offers another interesting time/space trade-off.

1 Introduction

During the past years, there has been an increasing interest in compressed data
structures, since they allow one to manipulate more data in main memory, waiv-
ing the painful overcost of accessing the disk. Apart from saving space, this
largely improves the execution time of an algorithm even when the compressed
version makes several times more operations than the uncompressed counterpart.
This applies, albeit less sharply, to all levels of memory hierarchy.

Probably the most basic tool, used in virtually all compressed data struc-
tures, is the sequence of symbols supporting rank, select and access. Rank(a,i)
counts the number of as until position i. Select(a,i) finds the position of the i-th
occurrence of a in the sequence. Access(i) returns the symbol at position i in
the sequence. The most basic case is when the sequence is drawn from a binary
alphabet. Theoretically and practically appealing solutions have been proposed

� Partially funded by Fondecyt Grant 1-080019 (Chile).

A. Amir, A. Turpin, and A. Moffat (Eds.): SPIRE 2008, LNCS 5280, pp. 176–187, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Practical Rank/Select Queries over Arbitrary Sequences 177

for this case, achieving space close to the zero-order entropy of the sequence and
good time performance.

The general case, when the alphabet has size σ > 2, has many applications to
compressed representation of texts [8, 9, 14], trees [1, 18], graphs [5], binary rela-
tions [1], etc. For example, it has been shown [7, 14] that a compressed represen-
tation of a sequence that supports rank and access suffices to build a compressed
full-text index if combined with the Burrows-Wheeler transform (BWT) [3]. Many
solutions for general sequences have been proposed [8, 9], but as far as we know
only some implementations of wavelet trees [6, 11] have been tried out.

In this paper we propose and study practical implementations of sequences.
Our first contribution is a compressed representation of binary sequences based
on Raman, Raman, and Rao’s (RRR) [18] theoretical proposal. We combine
faithful implementation of the theory with commonsense decisions. The result
is compared, on uniformly distributed bitmaps, with a number of very well-
engineered implementations for compressible binary sequences [16], and found
to be competitive when the sequence is not too compressible, that is, when the
fraction of 1s raises over 10%.

Still this result does not serve to illustrate the local compressibility property
of RRR data structure, that is, it adapts well to local variations in the sequence.
Mäkinen and Navarro [12] showed that the theoretical properties of RRR struc-
ture makes it an excellent alternative for full-text indexing: By combining it with
the BWT, a high-order compressed self-index is immediately obtained, without
all the extra sophistications used up to then [14]. In this paper we show exper-
imentally that the proposed combination does work well in practice, achieving
(sometimes significantly) better space than any other existing self-index, with
moderate or no slowdown. The other compressed bitmap representations do not
achieve this result: the bitmaps are globally balanced, but they exhibit long runs
of 0s or 1s that only the RRR technique exploits so efficiently.

We then turn our attention to representing sequences over larger alphabets.
Huffman-shaped wavelet trees have been used to approach zero-order compres-
sion of sequences [6, 11]. This requires O(σ log n) bits for the symbol table and
the tree pointers, where n is the sequence length. On large alphabets, this factor
can be prohibitive in space and ruin the compression ratios. We propose an al-
ternative representation that uses no (or just log σ) pointers, and concatenates
all the bitmaps of the wavelet tree levelwise. As far as we know, no previous
direct solution to select over this representation existed. Combined with our
compressed bitmap representation, the result is an extremely useful tool to rep-
resent a sequence up to its zero-order entropy, disregarding any problem related
to alphabet size. We illustrate this point by improving an existing result on
graph compression [5], in a case where no other considered technique succeeds.

Finally, we present the (as far as we know) first implementation of Golynski
et al.’s data structure for sequences [9], again combining faithful implementation
of the theory with common sense. The result is a representation that does not
compress the sequence, yet it answers queries very fast without using too much
extra space. In particular, its performance over a sequence of word identifiers

178 F. Claude and G. Navarro

provides a sequence representation that uses about 70% of the original space
of the text (in character form) and gives the same functionality of an inverted
index. It might become an interesting alternative to recent wavelet-tree-based
proposals for representing text collections [2], and to inverted indexes in general.

2 Related Work

We divide the related work into two subsections, the first one covering rank,
select and access for binary sequences, and the second covering the case of larger
alphabets. We omit the base of logarithms when it is 2. We make heavy use of
the definition of zero-order empirical entropy for a sequence S of length n drawn
from an alphabet Σ of size σ: H0(S) =

∑
a∈Σ

na

n log n
na

, where na is the number
of occurrences of symbol a in S. In the case where Σ = {0, 1} and n1 = m << n,
it is interesting to write H0 = m log n

m + O(m).

2.1 Binary Sequences

Many solutions have been proposed for the case of binary sequences. Consider a
bitmap B[1, n] with m ones. The first compact solution to this problem is capable
of answering the queries in constant time and uses n+ o(n) bits [4] (i.e., B itself
plus o(n) extra space); the solution is straightforward to implement [10]. This
was later improved by Raman, Raman and Rao (RRR) [18] achieving nH0(B)+
o(n) bits while answering the queries in constant time, but the technique is not
anymore simple to implement. Several practical alternatives achieving very close
results have been proposed by Sadakane and Okanohara [16], tailored to the case
of small m: esp, recrank, vcode, sdarray, and darray. Most of them are very
good for select queries, yet rank queries are slower. The variant esp is indeed a
practical implementation of RRR structure that saves space by replacing some
pointers by estimations based on entropy.

In this work we implement the RRR data structure [18]. It divides the sequence
into blocks of length u = log n

2 and every block is represented as a tuple (ci, oi).
The first component, ci, represents the class of the block, which corresponds
to its number of 1s. The second, oi, represents the offset of that block inside
a list of all the posible blocks in class ci. Three tables are defined: E, R and
S. Table E stores every possible combination of u bits, sorted by class, and
by offset within each class. It also stores all answers for rank at every position
of each combination. Table R corresponds to the concatenation of all the ci’s,
using �log(u+1)� bits per field. Table S stores the concatenation of the oi’s using⌈
log

(
u
ci

)⌉
bits per field. This structure also needs two partial sum structures [17],

one for R and the other for the length of the oi’s in S, posS. For answering rank
until position i we first compute sum(R, �i/u�) =

∑�i/u�
j=0 Rj , the number of 1s

before the beginning of i’s block, and then rank inside the block until position i
using table E. For this we need to find oi: using sum(posS, �i/u�) we determine
the starting position of oi in S, and with ci and u we know how many bits we
need to read. For select queries, they store the same extra information as Clark

Practical Rank/Select Queries over Arbitrary Sequences 179

[4], but no practical implementation for this extra structure has been shown.
Access can be answered with two ranks, access(i) = rank(1, i) − rank(1, i − 1).

2.2 Arbitrary Sequences

Rank, select and access operations can be extended to arbitrary sequences drawn
from an alphabet Σ of size σ. The two most prominent data structures that solve
this problem are reviewed next.

Wavelet Trees. [8, 11, 15] are perfectly balanced trees that store a bitmap of
length n in the root; every position in the bitmap is either 0 or 1 depending
on the value of the most significant bit of the symbol in that position in the
sequence.1 A symbol with a 0 goes to the left subtree and a symbol with a 1
goes to the right subtree. This decomposition continues recursively with the next
highest bit, and so on. The tree has σ leaves and requires n�log σ� bits, n bits
per level. Every bitmap in the tree answers access, rank and select queries.

The access query for position i can be answered by following the path de-
scribed for position i. At the root, if the bitmap at position i has a 0/1, we
descend to the left/right child, switching to the bitmap position rank(0/1, i) in
the left/right subtree. This continues recursively until reaching the last level,
when we finish forming the binary representation of the symbol.

Query rank for symbol a until position i can be answered in a similar way as
access, the difference being that instead of considering the bit at position i in
the first level, we consider the most significant bit of a; for the second level we
consider the second highest bit, and so on. We update the position for the next
subtree with rank(b, i), where b is the bit of a considered at this level. At the
leaves, the final bitmap position corresponds to the answer to rank(a, i) in S.

The select query does a similar process as rank, but upwards. To select the
i-th occurrence of character a, we start at the leaf where a is represented and do
select(b, i) where, as before, b is the bit of a corresponding to this level. Using
the position obtained by the binary select query we move to the parent, querying
for this new position. At the root, the position is the final result.

The cost of the operations is O(log σ) assuming constant-time rank, select and
access over bitmaps. A practical variant to achieve n(H0(S) + 1) bits of space is
to give the wavelet tree the shape of the Huffman tree of S [11, 15].

Golynski et al. [9] proposed a data structure capable of answering rank, select
and access in time O(log log σ) using n logσ +n o(log σ) bits of space. The main
idea is to reduce the problem over one sequence to n/σ chunks of length σ. For
each symbol they concatenate, in unary, the number of its occurrences in each
chunk, and then concatenate those sequences for all the symbols in a bitmap B.
Armed with rank and select structures, B’s total length is 2n + o(n) bits.

1 In general wavelet trees are described as dividing alphabet segments into halves. The
description we give here, based on the binary decomposition of alphabet symbols, is
more convenient for the solutions shown in this paper.

180 F. Claude and G. Navarro

With B it is possible to answer rank and select queries up to chunk granularity.
Every chunk stores σ text symbols using a bitmap X and a permutation π. X
stores the cardinality of every symbol of the alphabet in the chunk using the same
encoding as B. π stores the permutation obtained by stably sorting the sequence
represented by the chunk, and uses a data structure that allows computation of
π−1 in O(log log σ) time [13]. This adds up to 2n + n logσ + n o(log σ) bits,
and permits completing all queries in constant time for select, and O(log log σ)
time for rank and access. The latter complexity needs a Y-Fast trie within each
chunk to search π for the position of interest, among those corresponding to the
occurrences of a single symbol within the chunk.

We note that the n o(log σ) extra term does not vanish asymptotically with n
but with σ. This suggests, as we verify experimentally later, that the structure
performs well only on large alphabets.

3 Practical Implementations

3.1 Raman, Raman and Rao’s Structure

We fix u = 15 so that the ci’s need 4 bits to represent the class (0−15). We store
table E using 16-bit integers for the bitstring contents, and for the pointers to the
beginning of each class in E. The answers to rank are not stored but computed
on the fly from the bitstrings, so E uses just 64 KB. Table R is represented by
a compact array using 4 bits per field, achieving fast extraction. Table S stores
each offset using

⌈
log

(
u
ci

)⌉
bits.

The partial sums are represented by a one-level sampling. For table R we
sample the sum every k values, and store these values in a new table sumR
using �log m� bits per field, where m is the number of ones. To obtain the partial
sum until position i we compute sumR[j] +

∑i
p=jk cp where j = �i/k�, and the

summation of the cp’s is done sequentially over the R entries. The positions in S
are represented the same way: We store the sampled sums in a new table called
posS using �log(

∑n/u
i=1�log

(
u
ci

)�)� bits per field. We compute the position for
block i as posS[j] +

∑i
p=jk�log

(
u
cp

)�. We precompute the 16 possible �log
(

u
cp

)�
values in order to speed up this last sequential summation.

With this support, we answer rank queries by using the same RRR procedure.
Yet, select(1, i) queries are implemented in a simpler and more practical way.
We use a binary search over sumR, finding the rightmost sampled block for
which sumR[k] ≤ i. Then we traverse table R looking for the block in which we
expect to find the i-th bit set (i.e., adding up cp’s until we exceed i). Finally we
access this block in table E and traverse it bit by bit until finding the i-th 1.
Select(0, i) can be implemented analogously.

3.2 Wavelet Trees without Pointers

There exist already Huffman-shaped wavelet tree implementations that
achieve close to zero-order entropy space. Yet, those solutions are not efficient

Practical Rank/Select Queries over Arbitrary Sequences 181

when the alphabet is very large: The overhead of storing the Huffman symbol
assignment and the wavelet tree pointers, O(σ log n), ruins the compression if σ
is large. In this section we present an alternative implementation that achieves
zero-order entropy with a very mild dependence on σ (i.e. O(log σ log n) bits of
space), thus extending the existing results to the case of very large alphabets. We
use two bitmaps: DA and Occ. DA[1, σ] stores which symbols appear in the se-
quence, DA[i] = 1 if symbol i appears in S. This allows us to remap the sequence
in order to get a contigous alphabet; using rank and select over DA we can map
in both directions (we only use it if the alphabet is not contiguous). Occ[1, n]
records the number of occurrences of symbols i ≤ k by placing a one at

∑k
i=1 ni.

For example, the sequence 113213323 would generate Occ = 001010001.
Our implementation of the wavelet tree stores �log σ� bitmaps of length n.

The tree is mapped to these bitmaps levelwise: the first bitmap corresponds to
the root, the next one corresponds to the concatenation of left and right children
of the root, and so on. In this set of bitmaps we must be able to calculate the
interval [s, e] corresponding to the bitmap of a node, and to obtain the new
interval [s′, e′] upon a child or parent operation. Assume the current node is at
level l (l = 1 at the leaves) on a tree of h levels. Further, assume that a is the
symbol related to the query, that Σ = {0, . . . , σ−1}, and that selectOcc(1, 0) = 0.

We compute the left child as s′ = s and e′ = e − rank(1, e) + rank(1, s − 1),
and the right child as s′ = e + 1 − rank(1, e) + rank(1, s − 1) and e′ = e. Let
us explain the left child formula. In the next level, the current bitmap segment
is partitioned into a left child and right child parts. The left child starts at
the same position of the current segment in this level, so s′ = s. To know
the end of its part, we must add the number of 0s in the current segment, e′ =
s+rank(0, e)−rank(0, s−1)−1 = s+(e−rank(1, e))−((s−1)−rank(1, s−1))−1.

The formula to compute the parent is s′ = selectOcc(1, �a/2l� · 2l) + 1 and
e′ = selectOcc(1, (�a/2l�+1)·2l). The idea is to consider the binary representation
of a, as this is the way our wavelet tree is structured. A node at level l should
contain all the combinations of the l lowest bits of a. For example, if l = 1 and
a = 5 = (101)2, its parent is the node at level l = 2 comprising the symbols
4 = (100)2 to 5 = (101)2. The parent of this node, at level l = 3, comprises the
symbols 4 = (100)2 to 7 = (111)2. We blur the last l bits of a and use selectOcc

to find the right segments at any level corresponding to the symbol intervals.
To achieve compression we represent the bitmaps of each level (as well as Occ)

using RRR, whose sampling yields a time/space trade-off for the structure.

3.3 Golynski’s Structure

We implement Golynski et al.’s proposal rather faithfully, except that we replace
the Y-Fast trie by a binary search over the positions for the rank query. In
practice, this yields a gain in space and time except for large σ values and biased
symbol distribution within the chunk (remind that we must search within the
range of occurrences of a symbol of Σ in a chunk of size σ, i.e. the range is O(1)
size on average). Hence the time for rank is O(log σ) worst case, and O(1) on
average. The version used for permutations [13] requires (1 + ε)n�log n� bits for

182 F. Claude and G. Navarro

n elements and computes π−1 in O(1/ε) worst-case time (code by D. Arroyuelo).
This gives us a space/time tradeoff parameter for this data structure.

In the case when n ≈ σ we also experiment with using only one chunk to
represent the structure. This speeds up all the operations since we do not need
to compute which chunk should we query, and all the operations over B become
unnecessary, as well as storing B itself.

4 Experimental Results

We first test the data structures for binary sequences, on random data and on the
BWT of real texts, showing that RRR is an attractive option. Second, we com-
pare the data structures for general sequences on various types of large-alphabet
texts, obtaining several interesting results. Finally, we apply our machinery to
obtain the best results so far on compressed text indexing.

The machine is a Pentium IV 3.0 GHz with 4GB of RAM using Gentoo
GNU/Linux with kernel 2.6.13 and g++ with -O9 and -DNDEBUG options.

4.1 Binary Sequences

We generated three random uniformly and independently distributed bitmaps
of length n = 108, with densities (fraction of 1s) of 5%, 10% and 20%. Fig. 1
compares our RRR implementation against the best practical ones in previous
work [16], considering operations rank and select (access can be implemented as
the difference of two rank’s, and in some cases it can be done slightly better, yet
only some of the structures in [16] support it). As control data we include a fast
uncompressed implementation [10], which is insensitive to the bitmap density.

Our RRR implementation is far from competitive for very low densities (5%),
where it is totally dominated by sdarray, for example. For 10% density it is
already competitive with esp, its equivalent implementation [16], while offering
more space/time tradeoffs and achieving the best space. For 20% density, RRR is
unparalleled in space usage, and alternative implementations need significantly

Fig. 1. Space in bits per symbol and time in seconds for answering 108 random queries
over a bitmap of 108 bits

Practical Rank/Select Queries over Arbitrary Sequences 183

Table 1. Space (as a fraction of bitmap size) and rank time (in μsec/query) achieved
by various data structures on the wavelet tree bitmaps of a BWT-transformed text

Variant Size Rank time

sdarray 2.05 > uncompressed
recrank 1.25 > uncompressed
esp 0.50 0.594
RRR (ours) 0.48 0.494
uncompressed 1.05 0.254

more space to beat its time performance. We remark that RRR implements
select(0, i) in the same time of select(1, i) with no extra space, where competing
structures would have to double the space they devote to select.

A property of RRR that is not apparent over uniformly distributed bitmaps,
but it becomes very relevant for implementing the wavelet tree of a BWT-
transformed text, is its ability to exploit local regularities in the bit sequence.
To test this, we extracted the 50MB English text from Pizza&Chili (http://
pizzachili.dcc.uchile.cl), computed the balanced wavelet tree of its BWT,
and concatenated all the bitmaps of the wavelet tree levelwise. Table 1 shows the
compression achieved by different methods. Global methods like sdarray and
recrank fail, taking more space than an uncompressed implementation. RRR
stands out as the clear choice for this problem, followed by esp (which is based
on the same principle). The bitmap density is around 40%, yet RRR achieves
space similar to 5% uniformly distributed density.

4.2 General Sequences

We compared our implementations of Golynski et al.’s and different variants of
wavelet trees. We consider three alphabet sizes. The smaller one is byte-size: We
consider our plain text sequences English and DNA, seeing them as character
sequences. Next, we consider a large alphabet, yet not large enough to compete
with the sequence size: We take the 200MB English text from Pizza&Chili and
regard this as a sequence of words The result is a sequence of 46, 582, 195 words
over an alphabet of size 270, 096. Providing access and select over this sequence
mimics a word-addressing inverted index functionality [2]. Finally, we consider a
case where the alphabet is nearly as large as the text. The sequence corresponds
to graph Indochina after applying Re-Pair compression on its adjacency list [5].
The result is a sequence of length 15, 568, 253 over an alphabet of size 13, 502, 874.
The result of Re-Pair can still be compressed with a zero-order compressor, but
the size of the alphabet challenges all of the traditional methods. Our techniques
can achieve such compression and in addition provide rank/select functionality,
which permits implementing backward traversal on the graph for free.

We consider full and 1-chunk variants of Golynski. On wavelet trees, variant
DA maps the alphabet to a contiguous range, RRR compresses the bitmaps with
RRR, Ptrs uses the standard version with pointers, and Huff gives Huffman tree
shape to the pointer-based wavelet tree. We show several combinations of these.

184 F. Claude and G. Navarro

Fig. 2 shows the results for byte alphabets. Golynski’s structure is not compet-
itive here. This shows that their o(log σ) term is not yet negligible for σ = 256.
On wavelet trees, the Ptrs+Huff variant excells in space and in time. Adding
RRR reduces the space very slightly in some cases; in others keeping balanced
shape gives better time in exchange for much more space. We also included
Naive, an implementation for byte sequences that stores the plain sequence plus
regularly sampled rank values for all symbols [2]. The results show that we could
improve their wavelet trees on words by replacing their Naive method by ours.

Fig. 2. Results for byte alphabets. Space is measured as a fraction of the sequence size
(assuming one byte per symbol).

Fig. 3 shows experiments on larger alphabets. Here Golynski et al.’s structure
becomes relevant. On the sequence of words it adds to the previous scenario a
third space/time tradeoff point, offering much faster operations (especially select)
in exchange for significantly more space. Yet, this extra space is acceptable for
the sequence of word identifiers, as overall it requires 70% of the original text.
As such it competes with a word-addressing inverted index, following a recent
trend of replacing inverted indexes by a succinct data structure for representing
sequences of word identifiers [2], which can retrieve the text using access but
also find the consecutive positions of a word using select.

Again, adding RRR reduces the space of Ptrs+Huff, yet this time the reduc-
tion is more interesting, and might have to do with some locality in the usage
of words across a text collection.

Practical Rank/Select Queries over Arbitrary Sequences 185

Fig. 3. Results for word identifiers (left) and a graph compressed with Re-Pair (right).
Space is measured as a fraction of the sequence (using �log σ� bits per symbol).

For the case of graphs, where the alphabet size is close to the text length, the
option of using just one chunk in Golynski et al.’s structure becomes extremely
relevant. It does not help to further compress the Re-Pair output, but for 20%
extra space it provides very efficient backward graph traversal. On the other
hand, the wavelet trees with DA+RRR offer further compression up to 70%
of the Re-Pair output size, which is remarkable for a technique that already
achieved excellent compression results [5]. The price is much higher access time.
An interesting point here is that the versions with pointers are not applicable
here, as the alphabet overhead drives their space over 3 times the sequence size.
Hence exploring versions that do not use pointers pays off.

4.3 Compressed Full-Text Self-indexes

It was recently proved [12] that the wavelet tree of the Burrows-Wheeler trans-
form (BWT) of a text (the key ingredient of the successful FM-index family
of text self-indexes [15]), can achieve high-entropy space without any further
sophistication, provided the bitmaps of the wavelet tree are represented using
RRR structure [18]. Hence a simple and efficient self-index emerges, at least in
theory. In Section 4.1 we showed that RRR indeed takes unique advantage from
the varying densities along the bitmap typical of the BWT transform. We can
now show that this proposal [12] has much practical value.

186 F. Claude and G. Navarro

Fig. 4 compares the best suffix-array based indexes from Pizza&Chili: SSA,
AFFM-Index, RLFM-Index (the three based on the BWT) and CSA. We com-
bine SSA with our most promising versions for this setup, WT Ptrs+RRR and
WT Ptrs+Huff+RRR. All the spaces are optimized for the count query, which
is the key one in these self-indexes

We built the index over the 100 MB texts English, DNA, Proteins, and
Sources provided in Pizza&Chili. We chose 105 random patterns of length 20
from the same texts and ran the count query on each.

Fig. 4. Times for counting, averaged over 105 repetitions, for patterns of length 20

As can be seen, our new implementation is extremely space-efficient, achieving
a space performance never seen before in compressed full-text indexing, and in
some cases without a time penalty.

The reason why combining RRR with Huffman shape is better than RRR
alone, when RRR by itself should in principle exploit all of the compressibility
captured by Huffman, is in the c component of the (c, o) pairs of RRR. These
pose a fixed overhead per symbol which is not captured by the entropy. Indeed,
we measured the length of the o components (table S) in both cases (for En-
glish) and the difference was 0.02%. The Huffman shape helps reduce the total
number of symbols to be indexed, and hence it reduces the overhead due to the
c components.

Several lines of work are open to future work, in particular implementing an
efficient version of RRR combined with run-length encoding, which should give

Practical Rank/Select Queries over Arbitrary Sequences 187

even better spaces. Another line is to pursue on the idea of an inverted-index-like
capability by encoding the sequence of words of a natural language text, or a
word-based self-index.

References

1. Barbay, J., He, M., Munro, I., Srinivasa Rao, S.: Succinct indexes for strings, binary
relations and multi-labeled trees. In: 18th SODA, pp. 680–689 (2007)

2. Brisaboa, N., Fariña, A., Ladra, S., Navarro, G.: Reorganizing compressed text.
In: SIGIR (to appear, 2008)

3. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
Tech.Rep. 124, December (1994)

4. Clark, D.: Compact Pat Trees. Ph.D thesis, University of Waterloo (1996)
5. Claude, F., Navarro, G.: A fast and compact Web graph representation. In: Ziviani,

N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 118–129. Springer,
Heidelberg (2007)

6. Ferragina, P., González, R., Navarro, G., Venturini, R.: Compressed text indexes:
From theory to practice (manuscript, 2007), http://pizzachili.dcc.uchile.cl

7. Ferragina, P., Manzini, G.: Indexing compressed texts. J. ACM 52(4), 552–581
(2005)

8. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM TALG 3(2) article 20 (2007)

9. Golynski, A., Munro, I., Rao, S.: Rank/select operations on large alphabets: a tool
for text indexing. In: SODA, pp. 368–373 (2006)

10. González, R., Grabowski, S., Mäkinen, V., Navarro, G.: Practical implementation
of rank and select queries. Posters WEA, pp. 27–38 (2005)

11. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:
SODA, pp. 841–850 (2003)

12. Mäkinen, V., Navarro, G.: Implicit compression boosting with applications to self-
indexing. In: SPIRE, pp. 214–226 (2007)

13. Munro, I., Raman, R., Raman, V., Srinivasa Rao, S.: Succinct representations of
permutations. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 345–356. Springer, Heidelberg (2003)

14. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comp. Surv. 39(1)
article 2 (2007)

15. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comp. Surv. 39(1)
article 2 (2007)

16. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary.
In: ALENEX (2007)

17. Raman, R., Raman, V., Srinivasa Rao, S.: Succinct dynamic data structures. In:
Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001, vol. 2125, pp. 426–437.
Springer, Heidelberg (2001)

18. Raman, R., Raman, V., Srinivasa Rao, S.: Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets. In: SODA, pp. 233–242 (2002)

http://pizzachili.dcc.uchile.cl

	Practical Rank/Select Queries over Arbitrary Sequences
	Introduction
	Related Work
	Binary Sequences
	Arbitrary Sequences

	Practical Implementations
	Raman, Raman and Rao's Structure
	Wavelet Trees without Pointers
	Golynski's Structure

	Experimental Results
	Binary Sequences
	General Sequences
	Compressed Full-Text Self-indexes

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

