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Preface

This volume contains the papers presented at the 15th String Processing and In-
formation Retrieval Symposium (SPIRE), held in Melbourne, Australia, during
November 10–12, 2008.

The papers presented at the symposium were selected from 54 papers sub-
mitted in response to the Call For Papers. Each submission was reviewed by
a minimum of two, and usually three, Program Committee members, who are
experts drawn from around the globe. The committee accepted 25 papers (46%),
with the successful authors also covering a broad range of continents. The paper
“An Efficient Linear Space Algorithm for Consecutive Suffix Alignment Under
Edit Distance” by Heikki Hyyrö was selected for the Best Paper Award, while
Dina Sokol was awarded the Best Reviewer Award for excellent contributions
to the reviewing process. The program also included two invited talks: David
Hawking, chief scientist at the Internet and enterprise search company Funnel-
back Pty. Ltd. based in Australia; and Gad Landau, from the Department of
Computer Science at Haifa University, Israel.

SPIRE has its origins in the South American Workshop on String Process-
ing which was first held in 1993. Starting in 1998, the focus of the symposium
was broadened to include the area of information retrieval due to the com-
mon emphasis on information processing. The first 14 meetings were held in
Belo Horizonte, Brazil (1993); Valparaiso, Chile (1995); Recife, Brazil (1996);
Valparaiso, Chile (1997); Santa Cruz, Bolivia (1998); Cancun, Mexico (1999); A
Coruña, Spain (2000); Laguna San Rafael, Chile (2001); Lisbon, Portugal (2002);
Manaus, Brazil (2003); Padova, Italy (2004); Buenos Aires, Argentina (2005);
Glasgow, UK (2006); and Santiago, Chile (2007).

The annual SPIRE conference provides an opportunity for researchers to
present original contributions on areas such as string processing (the searching,
compression and mining of text, pattern matching, natural language process-
ing, automata based string processing); information retrieval (indexing, rank-
ing, filtering, cross-lingual IR systems, multimedia IR, digital libraries, collab-
orative retrieval, Web-related applications); interaction of biology and compu-
tation particularly related to string processing and retrieval; and information
retrieval languages and applications (XML, SGML, information retrieval from
semi-structured data, generation of structured data from text).

While many people have helped to make this conference possible, we particu-
larly thank the members of the Program Committee and the additional review-
ers who worked hard to ensure the timely review of all submitted manuscripts.
We also thank William Webber, who compiled the proceedings, and Shane
Culpepper, who maintained the website for the conference. We are grateful to
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Yahoo! Research for providing funding in support of student attendees. Submis-
sions were managed using the EasyChair conference system.

August 2008 Amihood Amir
Andrew Turpin
Alistair Moffat
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Self-indexing Natural Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Nieves R. Brisaboa, Antonio Fariña, Gonzalo Navarro,
Angeles S. Places, and Eduardo Rodŕıguez
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“Search Is a Solved Problem” and Other
Annoying Fallacies

David Hawking

Chief Scientist
Funnelback Pty Ltd, Australia
David.Hawking@funnelback.com

Abstract. Since Google became a celebrity in the early noughties, many
people with the power to control and direct research resources have taken
the view that there is no more research to be done on the problem of
information retrieval. In reality, there are so many variants of “the search
problem” that not all have been catalogued, and few have been solved to
the point where we can rely absolutely on the quality of results. Appar-
ently no-one told the Web search companies that the problem was solved
as, since that time, they have researched and developed a range of new
search facilities and invested heavily in improving their basic products.
Google, Yahoo! and Microsoft all maintain search research and develop-
ment teams much larger than the biggest University computer science
departments!

Through my involvement with the Funnelback internet and enterprise
search company I have worked on many twists on the information re-
trieval problem which are not modelled in well-known test collections,
and not encountered in basic Web search. In my talk I will try to outline
some of the issues in trying to apply information retrieval and string
processing theory into commercial practice.

A. Amir, A. Turpin, and A. Moffat (Eds.): SPIRE 2008, LNCS 5280, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Approximate Runs - Revisited

Gad M. Landau1,2

1 Department of Computer Science,
University of Haifa, Haifa, Israel

landau@cs.haifa.ac.il
2 Department of Computer and Information Science,

Polytechnic University, New York, USA
landau@poly.edu

Abstract. The problem of finding repeats within a string is an impor-
tant computational problem with applications in data compression and
in the field of molecular biology. Both exact and inexact repeats occur
frequently in the genome, and certain repeats are known to be related
to human diseases.

A multiple tandem repeat in a sequence S is a (periodic) substring
r of S of the form r = uau′, where u (the period) is a prefix of r, u′ is
a prefix of u and a ≥ 2. A run is a maximal (non-extendable) multiple
tandem repeat. An approximate run is a run with errors (i.e. the repeated
subsequences are similar but not identical).

Many measures have been proposed that capture the similarity among
all periods. We may measure the number of errors between consecutive
periods, between all periods, or between each period and a consensus
string. Another possible measure is the number of positions in the periods
that may differ.

In this talk I will survey a range of our results in this area. Various
parts of this work are joint work with Maxime Crochemore, Gene Myers,
Jeanette Schmidt and Dina Sokol.

A. Amir, A. Turpin, and A. Moffat (Eds.): SPIRE 2008, LNCS 5280, p. 2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Engineering Radix Sort for Strings�

Juha Kärkkäinen and Tommi Rantala

Department of Computer Science, University of Helsinki, Finland
{juha.karkkainen,tommi.rantala}@cs.helsinki.fi

Abstract. We describe new implementations of MSD radix sort for ef-
ficiently sorting large collections of strings. Our implementations are sig-
nificantly faster than previous MSD radix sort implementations, and in
fact faster than any other string sorting algorithm on several data sets.
We also describe a new variant that achieves high space-efficiency at a
small additional cost on runtime.

1 Introduction

Sorting is a fundamental problem in computer science that underlies a vast va-
riety of computational tasks. When the sort keys are strings, it is possible to use
any comparison based sorting algorithm but there are more efficient algorithms
specialized for sorting strings. Among the best-known, simplest and fastest string
sorting algorithms is the MSD (Most Significant Digit first) radix sort.

There are many possible ways of implementing the MSD radix sort. There
exist extensive experimental studies on efficient implementation [2, 6] and recent
new variants [7], but the possibilities have not been exhausted. We describe
several new implementations, the best of which are significantly faster than any
previous ones.

Radix sort and other string sorting algorithms tend to have irregular memory
access patterns that are poorly suited for modern computer architectures with
CPUs that are much faster than the main memory. Similar to several recent
string sorting algorithms [7, 11, 12], our implementations reduce the number
of slow memory accesses through better utilization of the cache memory. In
addition, our algorithms reduce the cost of slow memory accesses by better
utilization of the out-of-order execution capabilities of modern CPUs.

Some of our implementations are also very space-efficient. This is critical, for
example, in several suffix array construction algorithms that rely on fast and
space-efficient string sorting (see [9]).

Related Work. A seminal study on implementing MSD radix sort is by McIl-
roy, Bostic and McIlroy [6]. Andersson and Nilsson [2] describe more variants
and provide another extensive experimental comparison. A recent, cache-efficient
variant is by Ng and Kakehi [7]. Theoretical studies of radix sorting can be found
in [1, 8].

� Supported in part by Academy of Finland grant 118653 (ALGODAN).

A. Amir, A. Turpin, and A. Moffat (Eds.): SPIRE 2008, LNCS 5280, pp. 3–14, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



4 J. Kärkkäinen and T. Rantala

Two other fast string sorting algorithms are multikey quicksort [3] and burst-
sort [11, 12]. Like radix sort, both distribute strings into buckets based on a single
character. However, multikey quicksort uses character comparisons to distribute
the strings into just three buckets (smaller, equal and larger), while burstsort
organizes the buckets into a data structure called burst trie.

There is also an extensive literature on radix sorting integers (see [4, 10], e.g.),
but these usually involve LSD radix sort, and the issues are quite different.

2 Problem and Experimental Setup

We consider the problem of sorting a set of strings R = {s1, s2, . . . , sn} over the
alphabet Σ = {0, 1, . . . , σ − 1} into the lexicographic order. Besides n and σ, an
important parameter of the problem is D, the total length of the distinguishing
prefixes of the strings. The distinguishing prefix of a string si is the shortest
prefix of si that separates it from the other strings. Thus, D is the minimum
number of characters that need to be inspected, and provides a lower bound for
the problem complexity. The best theoretical variants of radix sorting have time
complexity O(D + σ) [8].

The experiments use the standard representation of strings in the C program-
ming language. Thus, σ = 256 and each string is terminated with 0, which does
not appear elsewhere in the strings. The task is to sort an array containing point-
ers to the beginning of the strings. The actual strings are stored contiguously
in one array and are not moved during the sorting. Besides the sorting time, we
are interested in the amount of space needed in addition to the input.

The data sets used in the experiments are described in Table 1. The initial
order of the strings is random.

Table 1. Description of the test data. The datasets URL, Genome, and Unique are
from [12] while Random A and Random B we have generated ourselves.

Name n D Description
URL 107 3.1 × 108 URL addresses with the protocol name stripped
Genome 3 × 107 3 × 108 strings of length 9 over the alphabet {a, c, g, t}

from real genomic data
Unique 3 × 107 2.8 × 108 unique words collected from English documents
Random A 3 × 107 4.6 × 108 strings of single character with the length chosen

uniformly at random from [0, 30)
Random B 3 × 107 1.2 × 108 strings of length 30 with the characters chosen

uniformly at random from [32, 255)

The experiments were carried out on a machine with an Intel Core 2 proces-
sor model E6400 running at 2.13 GHz. The sizes of the processor’s L1 and L2
caches are 32 kilobytes and two megabytes, respectively. The caches have 8-way
associativity, and they use a block size of 64 bytes. The data TLB (Transla-
tion Lookaside Buffer) has two levels: DTLB0 with 16 entries (supporting loads
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only) and DTLB1 with 256 entries. The page size is 4 kilobytes. The machine
was equipped with two gigabytes of RAM.

We used the Linux operating system, kernel version 2.6.22. The compiler is
GCC version 4.1.2 (Red Hat) with optimization flags -O3 and -march=core2.
Debugging was disabled with -DNDEBUG. To measure the runtime of each algo-
rithm, we calculate the CPU time using the getrusage function. Memory usage
was measured using the memusage utility that is included in GNU libc1. Other
measurements, including cache misses, are based on hardware counters, and were
obtained using OProfile2 version 0.9.3.

3 Basic Algorithm

The basic idea of MSD radix sort is simple. Start by distributing the strings into
buckets based on the first character. Each bucket in turn is sorted recursively
in the same way except that the second character is used in the second level of
recursion, the third character in the third level of recursion and so on.

MSDRadixSort(R, depth)
1 if |R| < t then InsertionSort(R, depth)
2 for s ∈ R do B[s[depth]] := B[s[depth]] ∪ {s}
3 for c ∈ Σ \ {0} do if |B[c]| > 0 then MSDRadixSort(B[c], depth + 1)

The first line switches to insertion sort for small buckets. We and others before
us [2, 6] have found this to be an essential optimization in practice. It can be
supported theoretically, too, as the analysis below shows.

Theorem 1. The time complexity of MSDRadixSort is O((σ/t + t)D).

Proof (sketch). The total time complexity is O(tD) for line 1, O(D) for line 2,
and O((σ/t)D) for line 3. ��

Implementations are, of course, more compilicated and can differ significantly
from each other but all efficient ones spend nearly all of their time in three
kinds of activities that we can identify with the three lines of the pseudocode
algorithm:

1. Insertion sort for small buckets.
2. Iterating through all strings.
3. Iterating through all buckets.

Based on the theoretical analysis, one would expect that either line 1 or line 3
dominates the run time depending on the value of the threshold t. Indeed, if t is
too small, line 3 dominates, and if t is too large, line 1 dominates. However, if t is
chosen somewhere close to the theoretically optimal value of

√
σ =

√
256 = 16,

1 http://www.gnu.org/software/libc/
2 http://oprofile.sourceforge.net/
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it is line 2 that dominates the run time in practice. We use t = 32 in the
experiments; the precise value is not critical.

One explanation for the discrepancy between theory and practice is that the
theoretical analysis represents the worst case, which for line 2 is usually close to
the real behaviour, whereas lines 1 and 3 are often far from the worst case. An-
other significant reason is that line 2 produces most of the expensive cache and
TLB misses. This can be seen in Table 2 that shows the experimental distribution
of several performance measurements in the straightforward CE0 implementa-
tion described in Section 5. It is clearly line 2 where optimization efforts should
focus.

Table 2. Distribution of performance measurements within CE0

Collection Clock cycles Instructions TLB misses L2 cache misses
Ln 1 Ln 2 Ln 3 Ln 1 Ln 2 Ln 3 Ln 1 Ln 2 Ln 3 Ln 1 Ln 2 Ln 3

URL 2% 95% 3% 8% 73% 19% 1% 99% 0% 1% 99% 0%
Genome 0% 99% 1% 0% 85% 15% 0% 100% 0% 0% 100% 0%
Unique 8% 88% 4% 32% 48% 20% 6% 94% 0% 4% 96% 0%
Random A 0% 100% 0% 0% 100% 0% 0% 100% 0% 0% 100% 0%
Random B 7% 92% 1% 50% 45% 5% 14% 86% 0% 3% 97% 0%

4 Variants

Despite the simplicity of the basic algorithm, there are many variants of MSD
radix sort that differ significantly in implementation details. Here we outline sev-
eral variants at a general level and describe them in more detail in the following
sections.

One factor that complicates a radix sort implementation is that we do not
know the sizes of the buckets in advance. There are two main ways of addressing
this difficulty. We call these the C- and D-variants of MSD radix sort:

C (Counting): Perform the distribution twice, the first time only counting the
bucket sizes without actually moving the strings.

D (Dynamic buckets): Implement the buckets using some dynamically expand-
ing data structure.

The C-variants can be further categorized based on how the actual distribu-
tion is implemented. Variant CE (External array) distributes the strings into
an external array, from where they are copied back to the input array in the
end. A drawback is the extra space needed for the external array. Variant CI
(In-place) performs the distribution by an in-place permutation. This variant is
more complicated to implement and, unlike CE, does not produce a stable order.

Both kinds of C-variants are described by McIlroy et al. [6]. A significant
drawback in all C-variants in comparison with D-variants is that the bucket of
each key is computed twice. This can be an expensive operation since it is likely
to cause cache and TLB misses. We describe new ways to reduce this cost in
Section 5.
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The D-variants can be further categorized by which data structure is used
for implementing the dynamic buckets. McIlroy et al. [6] and Andersson and
Nilsson [2] have described implementations using linked lists. The main drawback
of D-variants is the time and space overhead due to dynamic data structures,
which for lists is significant. In Section 6, we describe implementations based on
more efficient data structures.

In both C- and D-variants, distributing the strings into buckets requires an
access to one character in each string. This is typically the most expensive oper-
ation due to cache and TLB misses. However, whenever the algorithm accesses
one character, it could cheaply (with low probability of additional misses) ac-
cess the next few characters, too. In Section 7, we consider two ways of taking
advantage of this possibility.

5 C-Variants

The C-variant of MSD radix sort has two phases. The first phase counts the
bucket sizes and the second phase does the actual distribution. Here is a straight-
forward implementation of the CE-variant, which uses a temporary array in the
second phase.

void CE0(unsigned char** strings, size_t n, size_t depth)

{

if (n < 32) {

insertion_sort(strings, n, depth);

return;

}

size_t bucketsize[256] = {0};

for (size_t i=0; i < n; ++i) /* Loop A */

++bucketsize[strings[i][depth]];

unsigned char** sorted =

(unsigned char**) malloc(n*sizeof(unsigned char*));

static size_t bucketindex[256];

bucketindex[0] = 0;

for (size_t i=1; i < 256; ++i)

bucketindex[i] = bucketindex[i-1]+bucketsize[i-1];

for (size_t i=0; i < n; ++i) /* Loop B */

sorted[bucketindex[strings[i][depth]]++] = strings[i];

memcpy(strings, sorted, n*sizeof(unsigned char*));

free(sorted);

size_t bsum = bucketsize[0];

for (size_t i=1; i < 256; ++i) {

if (bucketsize[i] == 0) continue;

CE0(strings+bsum, bucketsize[i], depth+1);

bsum += bucketsize[i];

}

}

As we saw in Table 2, most of the time is spend in loops iterating through all
strings, i.e., the two for loops marked “Loop A” and “Loop B”. The main culprit
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is the data access strings[i][depth] appearing in both loops. It accesses a
single character in a string, and with no other accesses to the same string during
the execution of the loop, it is quite likely to cause cache and TLB misses both
times. Doing this slow access twice is the main drawback of the C-variants (both
CE and CI) in comparison with the D-variants.

We introduce a new improvement based on the observation that both for
loops do exactly the same sequence of slow character accesses. When we access
each string for the first time in loop A, we also copy the character into a separate
array called oracle.

for (size_t i=0; i < n; ++i) /* Loop A */

++bucketsize[oracle[i] = strings[i][depth]];

In loop B, we then replace strings[i][depth] with oracle[i].

for (size_t i=0; i < n; ++i) /* Loop B */

sorted[bucketindex[oracle[i]]++] = strings[i];

Because we access the oracle array sequentially, the new loop B generates much
fewer cache and TLB misses (see Table 3), and the resulting implementation CE1
is much faster (see Fig. 1).

Loop A is still slow, though, but we can speed it up significantly using loop
fission. We split loop A into two loops A1 and A2:

for (size_t i=0; i < n; ++i) /* Loop A1 */

oracle[i] = strings[i][depth];

for (size_t i=0; i < n; ++i) /* Loop A2 */

++bucketsize[oracle[i]];

The implementation CE2 with the split loop is much faster than CE1 on
most data sets (see Fig. 1). The explanation for this surprising behaviour is in
the out-of-order execution capabilities of modern processors. While waiting for
the slow memory load strings[i][depth] to finish, the processor can execute
subsequent instructions as long as they do not depend on the result of the load.
In particular, the next slow load strings[i+1][depth] is independent and can
start before the previous one has finished. However, loop A in CE1 (and CE0)
has an instruction between the two slow loads that interferes: a memory store
whose address depends on the first load (updating the counter). Such a store
might (as far as the processor knows) change the value of any memory location.
Thus subsequent memory loads cannot proceed until the address of the store is
known. After the split, loop A1 does not have such a blocking store and loop A2
does not have a slow load. The effect of the loop fission can be clearly seen in
the number of loads blocked in Table 3.3

3 TLB misses, too, are reduced as a result of the loop fission. The unsplit loop A
generates, in fact, about two TLB misses per iteration, even though one would
expect only one. We suspect that the load blocks somehow cause the TLB miss
counter to be incremented twice.
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Table 3. Hardware performance counter readings for the Unique data set (n = 30×106,
D = 280 × 106). Loads blocked measures the number of instructions that load a value
from memory but are stalled due to a preceding store instruction for which the store
address is not yet known.

Algorithm Clock cycles Instructions TLB misses L1 misses L2 misses Loads blocked
CE0 36200 × 106 7600 × 106 800 × 106 530 × 106 400 × 106 520 × 106

Loop A 17900 × 106 1200 × 106 380 × 106 230 × 106 220 × 106 200 × 106

Loop B 13300 × 106 1800 × 106 360 × 106 210 × 106 160 × 106 220 × 106

CE1 23000 × 106 7700 × 106 450 × 106 330 × 106 265 × 106 395 × 106

Loop A 17700 × 106 1200 × 106 390 × 106 235 × 106 210 × 106 220 × 106

Loop B 1200 × 106 1800 × 106 1 × 106 20 × 106 5 × 106 100 × 106

CE2 11200 × 106 8500 × 106 206 × 106 330 × 106 190 × 106 180 × 106

Loop A1 5300 × 106 1200 × 106 150 × 106 230 × 106 150 × 106 0.1 × 106

Loop A2 700 × 106 1000 × 106 1 × 106 5 × 106 2 × 106 5 × 106

Loop B 1300 × 106 2100 × 106 2 × 106 20 × 106 5 × 106 120 × 106

CI 13700 × 106 11400 × 106 280 × 106 320 × 106 180 × 106 125 × 106

The additional space requirement of the CE2 algorithm is 4n bytes for the
external pointer array and n bytes for the oracle array. The CI algorithm gets
rid of the external pointer array by using the in-place distribution technique
described in [6]. Otherwise, CI is identical to CE2.

An experimental comparison of the implementations in this section is shown
in Fig. 1. Also included is the CI-type implementation by McIlroy, Bostic &
McIlroy [6, Program C], which is commonly used as the reference implementation
of MSD radix sort in the literature. Our best implementations are more than
twice as fast on most data sets.
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6 D-Variants

The D-variants of MSD radix sort use dynamic data structures to represent the
buckets eliminating the need for a separate counting pass. The code looks like
this:

template <typename Bucket>

void D(unsigned char** strings, size_t n, size_t depth, Bucket* buckets)

{

if (n < 32) {

insertion_sort(strings, n, depth);

return;

}

for (size_t i=0; i < n; ++i) /* Loop C */

buckets[strings[i][depth]].push_back(strings[i]);

size_t bucketsize[256];

for (size_t i=0; i < 256; ++i)

bucketsize[i] = buckets[i].size();

size_t pos = 0;

for (size_t i=0; i < 256; ++i) {

if (bucketsize[i] == 0) continue;

std::copy(buckets[i].begin(), buckets[i].end(), strings+pos);

pos += bucketsize[i];

}

for (size_t i=0; i < 256; ++i)

buckets[i].clear();

pos = bucketsize[0];

for (size_t i=1; i < 256; ++i) {

if (bucketsize[i] == 0) continue;

D(strings+pos, bucketsize[i], depth+1, buckets);

pos += bucketsize[i];

}

}

The loop marked as “Loop C” is the expensive one here. It suffers from the
load blocking phenomenon we saw in the previous section, and the cure is the
same, too: loop fission. With a small trick, we can now manage with a much
smaller oracle array:

size_t i=0;

for (; i < n-n%32; i+=32) {

unsigned char oracle[32];

for (size_t j=0; j < 32; ++j)

oracle[j] = strings[i+j][depth];

for (size_t j=0; j < 32; ++j)

buckets[oracle[j]].push_back(strings[i+j]);

}

for (; i < n; ++i)

buckets[strings[i][depth]].push_back(strings[i]);
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The implementation takes the dynamic bucket data structure as a template
argument. We have three variants using data structures from the standard C++
library, DL (std::list), DV (std::vector) and DD (std::deque), and one
variant called DB using a custom data structure described below. As Fig. 2
shows, DV, DD and DB are quite competitive with CE2. The variant DL, on
the other hand, turned out to be hopelessly slow and is excluded. Instead, the
figure includes a list-based implementation by Andersson and Nilsson [2, MSD].
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The slowness of DL is due to a large number of memory allocations and
deallocations of list nodes. Andersson and Nilsson avoid this problem by passing
the lists as an argument to the recursive calls instead of copying the lists back
to the input array. Still, it is much slower than our implementations.

The variant DB is designed to reduce the space requirement by using a well-
known data structure that we call the block-list. It is a linked list, where each list
node holds a pointer to a fixed-size array (block). Using a block-list with a block
size B, the buckets can be implemented using O(n/B + σB) space in addition
to the string pointers. With B =

√
n/σ, this is O(

√
nσ). We use B = 1024.

Furthermore, our DB implementation gets rid of the need to store all the
string pointers outside the input array by using the almost in-place distribution
technique described in [5, Appendix B]. The idea is that as strings are distributed
into the buckets, the space in the beginning of the input array becomes free, and
can be used as storage for the blocks. The idea is illustrated in Fig. 3. The total
additional space needed by the block-list is O(

√
nσ) [5, Theorem B.1].

The DB variant has a significant overhead in processing empty or small buck-
ets. To reduce this overhead, DB switches to CE2 when n drops below 216.
This needs some further additional space. In total, though, the additional mem-
ory needed by the implementation remains less than 3 megabytes plus 3n/256
bytes. A comparison of memory requirements is shown in Table 4 in Section 8.
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dynamically
allocated block

unused part of input array
blocks obtained from

input array

bucket

Fig. 3. Blocklist

7 Algorithmic Caching and Superalphabet

The previously described implementations spend a significant amount of their
time simply accessing characters because each access is likely to cause cache
misses. Two techniques, algorithmic caching and superalphabet, reduce the num-
ber of these slow accesses. Neither is a new technique, but combined with the
improvements we have already seen, they lead to very fast implementations.

Algorithmic caching reduces cache misses by copying characters in advance to
a place where they can be accessed more efficiently. More precisely, we represent
each string not only by a pointer to the beginning but also by four characters
stored next to the pointer. Initially, the characters are the first four characters
of the string, but later they will be replaced by the next four characters, then
by the next four and so on. The four characters in the cache are moved with
the string pointer and can thus be accessed efficiently. Only every fourth level
of recursion is slower due to refilling the cache.

The idea in the superalphabet technique is to treat pairs of characters as single
characters in a larger alphabet. This effectively halves the number of characters
and thus the number of character accesses. Increasing the alphabet size from 28

to 216 can also reduce the speed of the algorithm due to the cost of iterating
through all buckets (see Section 3). To avoid this, we switch from superalphabet
to normal alphabet when the number of strings drops below 216.

Fig. 4 shows the performance of variants of CE2 described in Section 5 using
algorithmic caching (CE2-A) and superalphabet (CE2-S). Using superalphabet
improved performance in all cases. Also in the figure are an algorithmic caching
implementation by Ng and Kakehi [7], which is a modification of the algorithm
by McIlroy et al. in Fig. 1, and a superalphabet implementation by Andersson
and Nilsson [2, Adaptive], which is a modification of the algorithm by the same
authors in Fig. 2.

We also implemented superalphabet versions of CI, DV and DD, obtaining in
each case a similar, usually small, improvement as with CE2. Some experimental
results are shown in Section 8. We did not implement a superalphabet version
of DB, since it cannot deal effectively with a large alphabet due to inefficiencies
in handling small and empty buckets.
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8 Comparison to Other Algorithms

We finish with a comparison of some of our implementations with two other
fast string sorting algorithms: multikey quicksort [3] and burstsort [11]. Like our
algorithms, burstsort is designed to reduce cache misses and to run efficiently
on modern hardware. The runtimes are shown in Fig. 5.

 0

 5000

 10000

 15000

 20000

 25000

URL Genome Unique Random A Random B

T
im

e 
(m

s)

Multi-Key-Quicksort (McIlroy, Bentley)
Burstsort (Sinha, Zobel)

CE2-S
CI-S

DV-S
DB
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Finally, Table 4 shows the additional memory requirements of several imple-
mentations. Note, in particular, the implementation DB that combines a small
space requirement with good runtime.
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Table 4. Peak memory required in addition to input. MiB = 220 bytes.

Implementation Memory peak
URL Genome Unique Random A Random B

Program C [6] 0 MiB 0 MiB 0 MiB 0 MiB 0 MiB
MSD [2] 117 MiB 352 MiB 352 MiB 352 MiB 352 MiB
CRadix [7] 76 MiB 229 MiB 229 MiB 229 MiB 229 MiB
Adaptive [2] 117 MiB 352 MiB 352 MiB 352 MiB 352 MiB
Multi-Key-Quicksort [3] 0 MiB 0 MiB 0 MiB 0 MiB 0 MiB
Burstsort [11] 102 MiB 249 MiB 376 MiB 133 MiB 194 MiB
CE2 48 MiB 143 MiB 143 MiB 143 MiB 143 MiB
CI 10 MiB 29 MiB 29 MiB 29 MiB 29 MiB
DV 133 MiB 144 MiB 169 MiB 196 MiB 223 MiB
DD 39 MiB 117 MiB 117 MiB 117 MiB 117 MiB
DB 3 MiB 3 MiB 3 MiB 3 MiB 3 MiB
CE2-S 57 MiB 172 MiB 172 MiB 172 MiB 172 MiB
CI-S 19 MiB 57 MiB 57 MiB 57 MiB 57 MiB
DV-S 228 MiB 160 MiB 179 MiB 199 MiB 194 MiB
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Abstract. Let s = s1..sn be a text (or sequence) on a finite alphabet
Σ. A fingerprint in s is the set of distinct characters contained in one
of its substrings. Fingerprinting a text consists in computing the set F
of all fingerprints of all its substrings. A fingerprint, f ∈ F , admits a
number of maximal locations 〈i, j〉 in S, that is the alphabet of si..sj is
f and si−1, sj+1, if defined, are not in f . The set of maximal locations is
L, |L| ≤ n|Σ|. Two maximal locations 〈i, j〉 and 〈k, l〉 such that si..sj =
sk..sl are named copies and the quotient of L according to the copy
relation is named LC . The faster algorithm to compute all fingerprints
in s runs in O(n + |L| log |Σ|) time. We present an O((n + |LC |) log |Σ|)
worst case time algorithm.

1 Introduction

We consider a finite ordered alphabet Σ and s = s1..sn a sequence of n letters,
si ∈ Σ. The set of all sequences over Σ is denoted Σ∗. The rank of each letter
α in Σ is given by fΣ(α) that ranges between 0 and |Σ| − 1. A sequence v ∈ Σ∗

is a factor or substring of s if s = uvw. The fingerprint C(s) of a sequence s is
the set of distinct letters in s. By extension, Cs(i, j) is the set of distinct letters
in si..sj . A fingerprint is represented below by a binary table of F of size |Σ|. If
s contains the character α, F [fΣ(α)] ← 1, otherwise F [fΣ(α)] ← 0.

Definition 1. Let C be a set of letters of Σ. A maximal location of C in s =
s1..sn is an interval [i, j], 1 ≤ i ≤ j ≤ n, such that
(1) Cs(i, j) = C; (2) if i > 1, si−1 �∈ Cs(i, j); (3) if j < n, sj+1 �∈ Cs(i, j)
This maximal location is denoted 〈i, j〉.
We denote by F the set of distinct fingerprints and by L the set of maximal
locations of all fingerprints of F .

Definition 2. Two maximal locations 〈i, j〉 and 〈k, l〉 of s = s1..sn are copies
if si..sj = sk..sl.
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The “copy” relation is obviously an equivalence relation. We denote LC the set
of equivalence classes. Let q ∈ LC and 〈i, j〉 a maximal location in q, we denote
sts(q) the string si..sj . Table 1 shows an example of a copy relation.

In this paper, given a sequence s, we are interested in the following algorithmic
problem:

+ Compute the set F of all fingerprints in s

This problem has many applications in information retrieval, computational
biology and natural language processing [1]. The input alphabet Σ is considered
to be the alphabet of the input sequence, thus |Σ| ≤ n.

The problem has first be considered in [1] in which they presented a O(n|Σ|
log n log |Σ|) algorithm. This complexity has been improved to Θ(min{n|Σ|
log |Σ|, n2}) time in [4]. The bound Θ(n|Σ| log |Σ|) is that of the last algorithm
in [4]. The Θ(n2) bound is obtained using the first algorithm of [4], although
this algorithm was first presented by Didier with O(n2 log n) and Ω(n2) time
complexities in [3]. The log n gain between these two versions has been obtained
using a lowest common ancestor algorithm (LCA). Surprisingly enough, these
complexities were independent of the sizes of F and L, although many sequence
families have few fingerprints or few maximal locations. We thus proposed in [7]
a new algorithm running in O((n + |L|) log |Σ|) time. We improved it later to
O(n+|L| log |Σ|) time in [8]. As |L| ≤ n|Σ|, this algorithm is, at worst, as efficient
as the last algorithm of [4], but much faster on many sequence families. However,
in our will to deeply understand the problem, a question arises: what are the
best parameters for this problem ? This paper is a new step toward the answer.

We present below an algorithm running in O((n + |LC |) log |Σ|) time, quite
always faster than the previous algorithm because it depends of LC instead of
L. Note that the number |LC | can be significantly less than |L|. As an example,
we can consider the word wk over the alphabet Σk = {a1, a2, . . . , ak} which is
defined in the following inductive way: w1 = a1 and wk = wk−1(a1a2 . . . ak)k for
k > 1. For this word we have |wk| = 1

6k(k + 1)(2k + 1), |L| = 1
12k(3k3 + 2k2 −

9k + 16) = Θ(|wk|4/3), and |LC | = 1
6k(k2 + 5) = Θ(|wk|). Thus, in this case

|LC | = o(|L|) as k → ∞.

Table 1. Copy relation example for s = a1 b2 a3 c4 e5 a6 b7 a8 c9 d10

Class q Maximal locations sts(q)
I ∅ ε
1 a1 | a3 | a6 | a8 a
2 b2 | b7 b
3 c4 | c9 c
4 d10 d
5 e5 e
6 a3c4 | a8c9 ac
7 c9d10 cd
8 c4e5 ce
9 e5a6 ea

Class q Maximal locations sts(q)
10 a1b2a3 | a6b7a8 aba
11 a1b2a3c4 | a6b7a8c9 abac
12 a3c4e5a6 acea
13 e5a6b7a8 eaba
14 a6b7a8c9d10 abacd
15 a1b2a3c4e5a6 abacea
16 a3c4e5a6b7a8 aceaba
17 a3c4e5a6b7a8c9 aceabac
18 a3c4e5a6b7a8c9d10 aceabacd
19 a1b2a3c4e5a6b7a8c9d10 abaceabcd
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Following the previous approaches, our algorithm improve a naming technique
introduced in [6], adapted to the fingerprint problem in [1] and then successively
improved in [4] and in [7]. The paper is organized as follows. In Section 2 we
present a new structure called “participation tree” that is built from the suffix
tree. This structure contains all the fingerprints that need to be coded using the
new naming algorithm presented in Section 3.

We assume below without loss of generality that the input sequence does
not contain two consecutive repeating characters. Such a sequence is named
simple. The segments of repeating characters, say α, of any input sequence can
be reduced to a unique occurrence of α. The two sequences have the same sets,
F , and the same sets, L and LC , up to small changes in the bounds. These
changes can, however, be simply retrieved in Θ(1) per maximal location and the
reducing algorithm is Θ(n). This technical trick really simplifies the algorithms
we present by removing many straightforward technical cases.

2 Participation Tree

Let s = s1..sn be a simple sequence of characters over Σ. In this first phase, for
reasons that will appear clearly below, we add to the sequence a last character
sn+1 = # that does not appear in the sequence. Thus s = s1..sn#n+1. Let i, j
be a position in s, 1 ≤ i ≤ j ≤ n + 1. We define fos(i, j) as the string formed
by concatenating the first occurrences of each distinct character touched when
reading s from position i (included) to position j (included). For instance, if
s = a1b2a3c4e5a6b7a8c9d10#, fos(3, 9) = aceb and fos(5, 10) = eabcd.

Definition 3. Let s = s1..snsn+1 with sn+1 = # and 1 ≤ i ≤ n a position in s.
Let j > i the minimum position such that sj = si if it exists, j = n+2 otherwise.
We define lfos(i) = fos(i, j − 1).

For instance, if s = a1b2c3a4d5a6b7a8c9b10e11#12, lfos(1) = abc and lfos(5) =
dabce#.

The participation tree ressembles a tree of all lfos(i) in which we removed each
last character (the need of this removal will appear clearly below). It contains
the same paths labels. However, building this exact tree is too time consuming
and the participation tree allows some redundancy in the path labels, the same
path label might correspond to several paths from the root. Our tree is thus not
always “deterministic” in the sense that a node can have several transitions by
the same character. We define it and build it from the suffix tree by cutting and
shrinking edges. We first succintly recall the properties of the suffix tree.

2.1 Suffix Tree

The suffix tree ST(s) is a compact representation of all suffixes of a given se-
quence s = s1 . . . sn. It is basically a trie of all suffixes of s where all nodes with
a single child are merged with their parents. Each transition of the tree is then
coded as an interval [i, j] corresponding to si..sj . Its size is O(n) and there ex-
ists many O(n log |Σ|) time contruction algorithm based on different paradigms.
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Fig. 1. Suffix tree of s = a1 b2 a3 c4 e5 a6 b7 a8 c9 d10#11. Square boxes contain the
initial position of the suffix. Each edge is labeled by a pair [k, l] pointing to sk..sl that
we explicity write on the edge for clarity.

The three most important are chronically that of Weiner [11], McCreight[9] and
Ukkonen [10]. An example of such a suffix tree is given in Figure 1.

We assume below that in the suffix tree each transition interval [i, j] of ST(s)
corresponds to the leftmost occurrence of the factor si . . . sj in s. For instance, in
Figure 1, the transition from 1 to 2 is the pointer [1, 1] = s1 = a. This property
is insured by Ukkonen [10] algorithm, but can also be insured on every suffix
tree by a simple additional O(n) step.

2.2 Participation Tree

Let s = s1..snsn+1 where sn+1 = #. The participation tree PT (s) is built from
the suffix tree ST (s) the following way. Imagine the suffix tree in an “expanded”
version, that is each edge [i, j] explicitely written by the corresponding factor
si..sj (see Figure 1). Let us consider the sequence of characters on each path
from the root and let α be the first character on this path. Let o be the second
occurrence of α on this path if it exists. We perform the following steps:

1. we first reduce all characters on this path after o (included) to the empty
string ε;

2. then, on the section from the root to the character before o we only keep the
first occurrence of each appearing character, i.e. the others are reduced to ε;

3. we then replace the last character of each path from the root to a leaf by ε;
4. we replace all multi-characters edges by an equivalent serie of a single char-

acter and a node. An example of such a resulting tree is shown in Figure 2
(left);

5. as a last step, all ε edges (p, ε, q) are removed by merging p and q. The
resulting tree is the participation tree. An example of this last tree is shown
in Figure 2 (right).
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Fig. 2. From suffix tree to the participation tree (right picture) of s =
a1b2a3c4e5a6b7a8c9d10#11. New nodes are in gray. The ε transitions are removed in
the last step. Attached suffixes are shown in square boxes.

For each node q of ST (s) and PT (s) we denote Suff(q) the set of suffixes of
s that appear as leaves of the subtree rooted in q. We consider below that the
suffixes associated to a node in ST (s) remains associated to the node in PT (s),
even after the merging. This is shown in Figure 2: the suffixes in the square
boxes associated to nodes 4 and 5 in the left picture are associated to node 2 in
the participation tree (right picture).

Lemma 1. Let s = s1..sn. For all i = 1..n, each proper prefix of lfos(i) labels a
path from the root in PT (s).

Proof. The reduction of the path of suffix i in the suffix tree corresponds, when
nodes are ignored, to lfos(i) without its last character. �

Note that a proper prefix of lfos(i) might label several paths from the root in
PT (s).

Let [i, j] be an interval on s = s1..sn and let Support([i, j]) be the mini-
mum of the indices of the rightmost occurrences of α = sp, i ≤ p ≤ j, in
the interval [i, j]. We define O

[i,j]
s as fos(Support([i, j]), j). For instance, if s =

a1b2a3c4e5a6b7a8c9d10#11, Support(〈1, 3〉) = 2, Support([4, 10]) = 5, O
〈1,3〉
s = ba

and O
[4,10]
s = eabcd.

Definition 4. Let s = s1..sn and 1 ≤ i ≤ j ≤ n. We define Extends(i, j) as the
maximal location reached when extending the interval [i, j] to the left and to the
right while the closest external characters si−1 or sj+1 (if they exist) belong to
Cs(i, j).

For instance, if s = a1 b2 a3 c4 e5 a6 b7 a8 c9 d10#11, 〈1, 4〉 = Extends(2, 4) and
〈1, 9〉 = Extends(2, 7)

Lemma 2. Let 〈i, j〉 be a maximal location of s = s1..sn. There exists a per-
mutation of all characters of Cs(i, j) that labels a path from the root in PT (s).
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Proof. O
〈i,j〉
s is obviously a proper prefix of lfos(Support(〈i, j〉)), which, by lemma

1, labels a path from the root in PT (s). �

Corollary 1. Let s = s1..sn. For all i, j, 1 ≤ i ≤ j ≤ n, there exists a per-
mutation of all characters of Cs(i, j) that labels a path from the root in PT (s).
Proof. It suffices to extend the segment si..sj to 〈k, l〉 = Extends(i, j) in which
it is contained. Then Cs(i, j) = Cs(k, l) and lemma 1 applies. �

Let z = ((r, α1, p1), . . . , (pi−1, αi, pi)) be a path in PT (s = s1..sn) from its root
r. By notation extension, we denote Suff(z) = Suff(pi). Let SPref(s) be the set
of all such paths and w(z) = α1α2..αi. Let P(L) be the set of all sets of maximal
locations.We consider the function Φ formally defined as:

Φ : SPref(s) −→ P(L)
z −→ {〈k, l〉 ∈ L | O

〈k,l〉
s = w(z) and Support(〈k, l〉) ∈ Suff(z)}

Lemma 3. Let z = ((r, α1, p1), . . . , (pi−1, αi, pi)) be a non empty path in
SPref(s). Then Φ(z) �= ∅.
Proof. By construction of the participation tree, there exits m ∈ Suff(z) such
that α1 . . . αi is a proper prefix of lfo(m). Let p be the first position of αi in s
following m. Then ∪1≤f≤i{αf} = Cs(m, p). Let 〈k, l〉 = Extends(m, p).

We prove now that Support(〈k, l〉) = m. As α1 . . . αi is a proper prefix of
lfo(m), there exist α = lfo(m)i+1 such that there is no occurrence of α in the
interval [m, p], and thus after the extension of [m, p] to a maximal location 〈k, l〉,
the indice l is strictly less than the indice of the first occurrence of α after m.
As, by definition of lfo(m), there is no occurrence of sm before the indice of α
after m in s, there is no other occurrence of sm at the right of sm in the interval
[m, l]. Moreover, as all characters in α1 . . . αi and only them appears after m in
[m, l] in the order of α1 . . . αi, and that the extension procedure insures that all
characters in [k, m] are characters of α1 . . . αi, Support(〈k, l〉) = m.

Finally, it is obvious that O
〈k,l〉
s = O

[m,p]
s = α1..αi = w(z), and thus 〈k, l〉 ∈

Φ(z). �

Lemma 4. Let z1, z2 ∈ SPref(s) be two distinct non empty paths, then Φ(z1)∩
Φ(z2) = ∅.
Proof. Assume a contrario that there exists 〈k, l〉 ∈ Φ(z1) ∩ Φ(z2). Let m =
Support(〈k, l〉), m ∈ Suff(z1) and m ∈ Suff(z2), thus one of the path is a prefix
of the other. As O

[k,l]
s = w(z1) = w(z2), the two paths must be equal, which

contradicts the hypothesis. �

Lemma 5. Let 〈i, j〉 and 〈k, l〉 be two distinct maximal locations of s = s1..sn in
the same equivalence class of Lc. There exits z ∈ SPref(s) such that 〈i, j〉 ∈ Φ(z)
and 〈k, l〉 ∈ Φ(z).

Proof. Let m1 = Support(〈i, j〉) and m2 = Support(〈k, l〉). As si..sj = sk..sl,
u = sm1 ..sj = sm2 ..sl and m1 and m2 are thus in the subtree of the path h labeled
by u in ST (s). After reduction of this path in PT (s), the resulting path z is such
that w(z) = O

〈i,j〉
s = O

〈k,l〉
s and m1, m2 ∈ Suff(z). Thus 〈i, j〉, 〈k, l〉 ∈ Φ(z). �
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Theorem 1. All maximal locations are in the image Φ(z) of a path z in PT (s =
s1..sn) and the size of PT (s) is O(|LC |).

Proof. Lemma 2 directly implies that all maximal locations are in the image
Φ(z) of a path z in PT (s). As by lemma 4 the images Φ(z) are non overlapping,
they form a partition of L. Lemma 5 insures that LC partition is a subpartition
of the partition formed by the images of Φ. As by lemma 3 there is no empty
image, the number of such images is smaller than or equal to |LC |. �

Note that we considered the size of PT (s = s1..sn) without the initial positions
of suffixes (square boxes in Figure 2). With these positions, its size is O(n+|LC |).

2.3 From Suffix Tree to Participation Tree

We extend the notion of fos(i, j) keeping the positions of the characters in
s = s1..sn. We define efos(i) as the string formed by concatenating the first
occurrences of each distinct character touched when reading s from position i
(included) to position n (included) but indexed by the position of this charac-
ter in the sequence. For instance, if s = a1b2a3c4e5a6b7a8c9d10#11, efos(3) =
a3c4e5b7d10#11 and efos(5) = e5a6b7c0d10#11.

The idea of the algorithm is the following. For each transition (i, j) on the
path of a longest suffix v = sf . . . sn we compute the “participation” of the edge
to lfos(f), that is, the number of new characters the edges brings in lfos(f). For
instance, in Figure 1 the participation of edge (6, 8) = [5, 11] is e, since it is on
the path of the longest suffix s3 . . . sn and lfos(3) = ace. The participation of
edge (12, 14) = [5, 11] is eab since lfos(4) = ceab. To compute the participation
of interval [i, j] on the path of a longest suffix v = sf . . . sn, we use efos(f) and
also the next position of sf after f in s, if it exists. Assume it is the case and let
p be this position. Thus sp = sf . Let efos(f) = sfsl1sl2 . . . slz and lh ≤ p ≤ lh+1.
If i ≥ p, the participation of [i, j] is the empty word ε. Otherwise, i < p and its
participation is the string (potentially empty) sla . . . slb with

– i ≤ la and la is the smallest such indice;
– lb ≤ min(j, p − 1) and lb is the greatest such indice.

For instance, on Figure 1, efos(2) = b2a3c4e5d10#11 and p = 7 since 7 is the
next position of b after position 2. Thus, participation of edge (1, 9) = [2, 4] =
b2a3c4 = bac, participation of (9, 11) = [5, 11] = e5 = e (since p = 7). For each
suffix [k, n], given efos(k) and p, a bottom-up process from leaf k to the root
of the suffix tree allows us to calculate the participation of each (not previously
touched) edge on this path. We modify the suffix tree using successively efos(k)
for k = 1..n. A sketch of this algorithm is given in Figure 3.

At the end of this process, we first replace the last character of all paths from
the root by ε. we finally remove all (p, ε, q) edges by merging p and q.

Theorem 2. The participation tree of s = s1..sn can be built in O(n log |Σ| +
|LC |) time and O(n + |LC |) space.
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Build part tree(ST (s = s1..snsn+1 with sn+1 = #))
1. Compute efos(1) and p1

2. For i = 1..n Do
3. Current ← Leaf(i) in ST (s).
4. While Current not marked and Current �= Root Do
5. Prec ← Parent(Current) in ST (s).
6. Compute the participation of edge (Parent, Current) in efos(i)
7. Mark Current
8. efos(i + 1) ← Update efos(i)
9. pi+1 ← next position of si+1 after i + 1 in s
10. End of while
11. End of for
12. Replace each last character of all paths from the root by ε.
13. Remove ε edges by node merging.

Fig. 3. Building the participation tree from the suffix tree

Proof. The algorithm is correct since it consists of directly compute the partici-
pation of each edge one after the other. We now study its complexity.

For each suffix [k, n], given efos(k) in an AVL tree and p, the bottom-up
process from leaf k to the root of the suffix tree can be done in O(log |Σ|) time
for each unmarked node. If the first efos(1) is given as an AVL tree, initially built
in O(|Σ| log |Σ|), efos(2) can be obtained in O(log |Σ|), and so on for k = 3..n,
assuming that for each k we know the next position of sk in sk+1 . . . sn if it exits.
To know these positions, |Σ| lists, one for each character α, of positions of α
in s can be initialy computed in O(|Σ| + n) time and consumed character after
character. Thus, calculating the participation of each edge in the suffix tree can
be done in O(log |Σ|) writing each time a unique part of the PT (s) tree.

Replacing the last character of each path from the root by ε is O(n). Merging
each ε edges can also be performed in O(n) since each such edge is either a
previous edge of the suffix tree or was labeled by a single last character of a path
from the root. The whole construction of PT (s) is thus O(n log |Σ|+ |LC |) time.

The size of the AVL tree is bounded by |Σ|, thus by n. The space required is
the size of the suffix tree plus the size of the participation tree, thus O(n+ |LC |)
space. �

3 Naming All Fingerprints

In this section we explain how to name all fingerpints from the participation
tree. The naming technique itself is originally based on that of [6] that has been
adapted for the fingerprint problem in [1]. The naming technique is used to give a
unique name to each fingerprint of a substring of s. We first describe the naming
technique and then we explain how to use it to name all fingerprints of s.
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3.1 Naming Technique

We assume for simplicity, but without loss of generality, that |Σ| is a power of
two. We consider a stack of log |Σ| + 1 arrays on top of each other. Each level
is numbered from 1. The lowest, called the fingerprint table, contains |Σ| names
that might be only [0] or [1]. Each other array contains half the number of names
that the array it is placed on. The highest array only contains a single name that
will be the name of the whole array. Such a name is called a fingerprint name.
Figure 4 shows a simple example with |Σ| = 8.

[7]
[5] [6]

[2] [2] [3] [4]
[1] [0] [1] [0] [1] [1] [0] [0]

Fig. 4. Naming example

The names in the fingerprint table are only [0] or [1] and are given. Each cell,
c, of an upper array represents two cells of the array it is placed on, and thus
a pair of two names. The naming is done in the following way: for each level
going from the lowest to the highest, if the cell represents a new pair of names,
give this pair a new name and assign it to the cell. If the pair has already been
named, place this name into the cell. In the example in Figure 4, the name [2]
is associated to ([1], [0]) the first time this pair is encountered. The second time,
this name is directly retrieved.

3.2 Naming a List of Fingerprint Changes

Assume that a specific set S of fingerprints can be represented as a list L =
(α1, α2, . . . αp) of distinct characters such that S = {f1, f2, . . . , fp} where fi =
∪1≤j≤i{αj}. The core idea of the algorithm of [4] is to fill a fingerprint table
bottom-up by building for each level an ordered list of new names that corre-
sponds to the fingerprint changes induced at the previous level. A pseudo-code
of this naming algorithm is given in Figure 5. We explain it below.

We number the level from 1, the lowest, to log |Σ| + 1. The original list L is
first tranformed into a list L1 of changes on level 1 by replacing each character
αi by the pair {[1], fΣ(αi)}. To initialize the process we add a list of |Σ| pairs
{[0], i}, i = 1..|Σ| at the beginning of L1.

This initial list is then used to compute all names of the cells in the second
level. A table, FT , of |Σ| names temporary records the pair of names to be
coded. A list L′

1 of pairs of names is built as follows. The first |Σ| elements of
L1 are read to initialize FT . The list L′

1 is initialized with |Σ|/2 pairs built by
reading FT . Then, the remaining of the list L1 is read and for each new element
{[a], j} (1) the table FT is changed in position j by FT ← [a] and (2) the
pair {(FT [2�j/2�], FT [2�j/2�+ 1]), j/2} if added to the end of L′

1. This means
that in cell j/2 of the second level a name has to be given to the name pair
(FT [2�j/2�], FT [2�j/2�+ 1]).
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Name lists(L = (α1, α2, . . . αp) initial list of changes)
1. L1 ← ({[0], 0}, . . . , {[0], |Σ| − 1})
2. add ({[1], fΣ(α1)}, . . . , {[1], fΣ(αp)}) to end of L1

3. For r = 1.. log |Σ| Do
4. FTr ← name table of size |Σ|/2r−1

5. Etp ← first element of Lr

6. For l = 0..|Σ|/2r−1 − 1 Do /* initialization of table FT */
7. {[a], j} ← Etp

8. FTr[j] ← [a]
9. Etp ← next element in Lr

10. End of for
11. Let L′

r be an empty list
12. For l = 0..|Σ|/2r − 1 Do /* initialization of L′

r list */
13. add {(FT [2l], FT [2l + 1]), l} to end of L′

r

14. End of for
15. Etp ← first element of Lr

16. While Etp exists Do
17. {[a], j} ← Etp

18. FTr[j] ← [a]
19. add {(FTr[2	j/2
], FTr[2	j/2
 + 1]), j/2} to end of L′

r

20. Etp ← next element in Lr

21. End of while
22. sort the pair of names in L′

r in lexicographical order
23. give new names in each unique pair in L′

r

24. build Lr+1 by copying L′
r but replacing each pair by its new name

25. End of for

Fig. 5. Naming a list L = (α1, α2, . . . αp) of fingerprint changes

At this point L′
1 records the list of changes to be made in the cells at level 2

and the pairs of names that must receive a name. The pairs in this list are then
sorted in lexicological order (through a radix sort) and a new name is assigned
to each distinct pair of names (n1, n2). A new list L2 is built from L′

1 (keeping
the initial order of L′

1 and thus of L1) by replacing each pair with its new name.
For instance, if {([1], [0]), 1} was in the list L′

1 and if the pair ([1], [0]) received
the new name [2], then L2 now contains {[2], 1}.

The list L2 is the input at level 2 and the same process is repeated to obtain
the names in the third level, and so on. The last list Llog |Σ|+1 contains the names
of all the fingerprints of S.

Complexity. The initialization of L1 is Θ(|L|) time. Then a linear sort of Θ(|L|)
elements is performed for every level. As there are log |Σ|+1 levels, naming the
list is Θ(|L| log |Σ|) time.

3.3 Naming a Participation Tree

The naming approach of the previous section has been modified in [7] to name
on the same set of names a table of lists of fingerprint changes. The main
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Depth first search(FTk,Current)
1. For all α such that δ(Current, α) �= Θ Do
2. q ← δ(Current, α)
3. {[a], j} ← ∆(Current, α, q)
4. prec ← FTk[j]
5. FTk[j] ← [a]
6. ∆(Current, α, q) ← {(FTk[2	j/2
], FTk[2	j/2
 + 1]), j/2}
7. Depth first search(FTk,q)
8. FTk[j] ← prec
9. End of for

Name fingerprint(PT (s))
10. ninit1 ← [0]
11. For k = 1.. log |Σ| Do

12. FTk ← name table of size |Σ|/2k−1 all initialized to ninitk

13. Depth first search(FTk,Root(PT (s)))
14. Sl ← Θ /* empty stack */
15. For all edges e = (p, α, q) in PT (s) Do
16. {(n1, n2), j} ← ∆(p,α, q)
17. Add (n1, n2) to Sl.
18. End of for
19. add the couple (ninitk, ninitk) to Sl
20. sort Sl in lexicographical order
21. give new names for each different couple in Sl
22. replacing each pair in ∆(p,α, q) by its new name
23. ninitk+1 ← name of the pair (ninitk, ninitk)
24. End of for

Fig. 6. Naming all fingerprints in a participation tree PT (s)

modification is that the linear sorting is done for each level on all the pairs
of all the lists of the table. We use a similar approach, but instead of a table
of lists we consider the set of all paths from the root in the participation tree
PT (s). Each such path is considered as a list of fingerprint changes. The corol-
lary 1 guaranty our approach. The Name fingerprint algorithm names all
fingerprints. Its pseudo-code is given in Figure 6.

As in the list naming of section 3.2, log |Σ| iterations are performed, one by
fingerprint array level (loop 14-27), the lowest one excepted. With each edge
(p, α, q) of PT (s) is associated a value ∆(p, α, q). At the end of iteration k, this
value records the change corresponding to the edge in the fingerprint array of
level k + 1. The value ∆(p, α, q) is assumed to be initialized with {[1], fΣ(α)}
corresponding to the change induced by the edge at the lowest level 1.

In each iteration k, the recursive algorithm Depth first search is called
(line 16) on the participation tree to update all values ∆(p, α, q) during a depth
first search. The update operation on each such value is similar to the pair update
in the naming of a simple list of fingerprint changes in section 3.2. Note that in
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Depth first search a special FT table is modified (line 6) before the recursive
call but reinitialized to the previous value after the call (line 11). This permits
to initialize the table FT only once before the first call to Depth first search
(line 15).

After the depth first search the values ∆(p, α, q) are collected on all the edges
(p, α, q) of the participation tree (lines 18-22) in a list Sl. This list is lexicograph-
ically sorted and a new name is given to each unique pair (line 25), similarly to
the naming of a single list in section 3.2. The first pair of names of each ∆(p, α, q)
is then replaced by its new name.

To initialize the fingerprint array at the next level, the couple (ninitk, ninitk)
is added to the list of names (line 23) and its new name is retrieved after the
sorting and the renaming (line 27).

At the end of the last iteration of the main loop (line 14-28), the last naming
(line 25) returns the list of all the fingerprint names.

Theorem 3. The Name fingerprint algorithm applied on PT (s) names all
fingerprints of s in Θ(|LC | log |Σ|) time.
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Abstract. A framework of context-sensitive grammar transform is pro-
posed. A greedy compression algorithm with the transform model is pre-
sented as well as a Knuth-Morris-Pratt (KMP)-type compressed pattern
matching (CPM) algorithm. The compression performance is a match
for gzip and Re-Pair. The search speed of our CPM algorithm is almost
twice faster than the KMP type CPM algorithm on Byte-Pair-Encoding
by Shibata et al. (2000), and in the case of short patterns, faster than the
Boyer-Moore-Horspool algorithm with the stopper encoding by Rautio
et al. (2002), which is regarded as one of the best combinations that
allows a practically fast search.

1 Introduction

In this paper, we propose a framework of context-sensitive grammar (CSG)
transform for fast compressed pattern matching. For this objective, we introduce
a subclass of CSGs and construct an effective compression algorithm with a
special case of the grammar transform model. We also implement Knuth-Morris-
Pratt (KMP) pattern matching automaton on the compressed strings and show
its performance by experiments. We thus refer to related work in both grammar-
based compression and compressed pattern matching.

In the last several years, many researchers have tackled the minimum CFG
problem as the optimum compression. The problem is defined as to find a small-
est CFG which derives an input string only, which is NP-hard due to the relation
with an algebraic problem called the addition chain [6]. Charikar et al. [3] proved
the hardness of approximating the problem. They also showed an O(log n)-
approximation algorithm for a string of length n, which is currently the best
ratio. Rytter [13] independently presented another O(log n)-approximation al-
gorithm using the suffix trees and the LZ-factorization technique. The same
approximation ratio without suffix tree construction is achieved in [14], and the
space efficiency is improved in [15] preserving a log-scale approximation ratio.
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On the other hand, a large number of practical algorithms have been proposed.
We specially refer to Re-Pair [7] since our compression algorithm is also based
on the recursive pairing. The Byte-Pair-Encoding (BPE) is considered as simple
implementation of Re-Pair with grammar symbols at most 256.

Such effective compression algorithms are closely related to the compressed pat-
tern matching (CPM). Amir et al. [2] showed an algorithm of finding the first oc-
currence of a pattern on LZW compression in O(n + m2) time, where n and m
are the lengths of text and pattern, respectively. Navarro and Raffinot [11] devel-
oped a more general technique, which abstracts both LZ77 and LZ78 and runs in
O(nm/w+m+occ) time, where w is the machine word length and occ is the num-
ber of pattern occurrences. Kida, et al. [5] proposed the collage systems: a formal
system to represent a string by dictionaryDand sequenceS of variables, which uni-
fies various dictionary-based compressions such as LZ family (LZ77, LZSS, LZ78,
LZW), CFG transform based compressions, the Run-Length encoding, and so on.
They also presented a general CPM algorithm on collage systems which runs in
O(h · (d + s) + m2 + occ) time, where d, h are the size and the maximum depen-
dence of D, respectively, and s is the length of S, and the factor h disappears for
the class of truncation-free collage systems that subsumes the CFG transform.

For practical speed-up of CPM, compressions with byte code are attractive
since we can avoid any bitwise processing. BPE limits the number of the grammar
symbols by 256 in order to represent in one byte each of them, and allows a
fast search [16,17]. The compression ratio is, however, very poor. Matsumoto et
al. [10] recently proposed to represent a large number of grammar symbols by
byte-oriented Huffman code and improved both the compression and the search
performances. However, the space requirement for the finite-state machine used
grows linearly proportional to the number of grammar symbols.

Along this line of researches, our study is motivated by improving the present
CPM performance in both theoretical and practical sense. Let us express our strat-
egy for grammar-based compression by an intuitive example. If a text contains
many occurrences of a digram AB, we can replace all of them by a single variable X
which is associatedwith AB likeX → AB. The text is thus compressed to a shorter
one according to the digram frequency. However the variables are incompatible
among different digrams, i.e., we must produce k variables for k different digrams.
Since this restriction is not avoidable in CFG transform, we relax the grammar
class to context-sensitive grammars (CSGs) and introduce the CSG transform.

The introduced CSGs are monotone grammars1 such that each of the pro-
duction rules is of the form aA → γ or A → γ with a symbol a in the alphabet
and a variable A. The production rules of the former form is called Σ-sensitive,
so the grammar is also called Σ-sensitive. This grammar transform is related
to the context-dependent grammar (CDG) by [18]. Indeed, a subclass of the Σ-
sensitive grammars produced by our compression algorithm is included in the
CDG transform.

Our contribution in this paper is as follows. We first analyze the expressive-
ness of Σ-sensitive grammars compared with CFGs by proving the upper/lower

1 The length of string is not decreasing by any production rules.
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bound of grammar size. We next give a compression algorithm by recursive pair-
ing. In our method, digram AB is replaced by a variable X for every occurrence
of trigram aAB with yielding a new production rule aX → aAB. This strategy
is potentially better than the standard recursive pairing since different digrams
like AA, AB, . . . can be replaced by a same variable if they are appearing in dif-
ferent contexts. While the compression model is a special case of the Σ-sensitive
grammars, we can show that, even when the number of grammar symbols is
bounded by 256, the compression performance is a match for other practical
methods such as Gzip and Re-Pair. Finally we develop a CPM algorithm on the
compression model and show that it runs almost twice faster than the KMP
type CPM algorithm on BPE by Shibata et al. [16], and that in the case of short
patterns, it runs faster than the CPM technique of Rautio et al. [12], which
is based on a variant of the Boyer-Moore-Horspool algorithm and the stopper
encoding (SE), regarded as one of the best combinations of compression scheme
and pattern matching technique that allow a fast search in practice.

2 Preliminaries

We assume a finite set Σ of alphabet symbols. The set of all strings over Σ is
denoted by Σ∗, and Σ+ = Σ∗ − {ε} for the empty string ε. The expression Σi

denotes the set of all strings of length i. The length of a string w ∈ Σ∗ is denoted
by |w|, and also for a set S, the notation |S| refers to the size of S.

We recall the definition of context-free grammars (CFGs) and context-
sensitive grammars (CSGs). A CFG is defined by G = (V, Σ, P, S) with dis-
joint finite sets Σ and V , a finite set P ⊆ V × (V ∪ Σ)∗ of production rules ,
and the start symbol S ∈ V . Symbols in V are called variables . For any strings
α, β ∈ (V ∪ Σ)∗, we write αXβ ⇒ αγβ if (X → γ) ∈ P . Moreover, the reflex-
ive, transitive closure of ⇒ is denoted by ∗⇒. The set of all strings defined by
S

∗⇒ w ∈ Σ∗ is called the language of the grammar, and w is said to be derived
from S.

A CSG is defined by G = (V, Σ, P, S) such that any production rule is of
αAβ → αγβ for A ∈ V and α, β, γ ∈ (V ∪ Σ)∗.

These grammars are almost2 equivalent to the monotone grammars: each
production rule α → β satisfies |α| ≤ |β|. The semantics of the derivation by a
CSG is analogously defined.

The size of a grammar, |G|, is the total length of all production rules. Without
loss of generality, we can regard the size of a CFG G as |V | in G, since there is
an equivalent CFG G′ in Chomsky normal form such that |G′| ≤ 2 · |G|.

3 CSG Transform and Grammar Size Analysis

In this section, we give the definition of a very restricted class of CSGs and show
that the class is powerful enough to handle the CSG transform defined as follows.
2 The difference is only that monotone grammars never derive ε.
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We assume that any CFG G is restricted to be an admissible grammar : G derives
exactly one string w ∈ Σ+. This notion leads us to the CFG transform: G is an
encoding of w and S

∗⇒ w is the decoding to w. The notion of CSG transform is
directly obtained by the same condition, i.e. any CSG derives exactly one string.
We then assume that any CSG is also an admissible grammar.

3.1 Σ-Sensitive Grammars

For our grammar transform problem, we introduce a monotone CSGs each of
which production rules is either of the forms:

aA → γ and A → γ,

where a ∈ Σ, A ∈ V , and γ ∈ (V ∪ Σ)+. Such a grammar is said to be Σ-
sensitive. This notion is naturally extended to the Σn-sensitive grammars, where
a production rule uA → γ for u ∈ Σn is allowed. Moreover, the production
uA → γ can be reduced to a short expression XA → γ, where X is a variable
in a CFG which derives u. The language class of Σ-sensitive grammars properly
includes that of CFGs, e.g. the language {anbncn | n ≥ 1} is derived by a
Σ-sensitive grammar.

Next we mention a normal form of Σ-sensitive grammar. Any production rule
aA → γ with γ = A1 · · ·Ak can be simulated by Bi → Ai+1Bi+1 (1 ≤ i ≤ k− 3)
and Bk−2 → Ak−1Ak. Thus, without loss of generality, we can assume that the
length of right hand of any production rule is bounded by two.

3.2 Upper and Lower Bounds on Grammar Size

Let Gs be a minimum Σ-sensitive grammar for w ∈ Σ+ and |Σ| = k, and let
Gf be a minimum CFG equivalent to Gs.

Theorem 1.
|Gf |
|Gs|

= O(k�), where � is the height of the derivation tree of Gs.

Proof. Let Ts be the derivation tree of Gs and let n be a node of Ts whose right
and left child are n1 and n2, respectively. Let Tf be the initial skeleton tree
which is obtained by removing all labels from Ts. We can construct a derivation
tree Tf of Gf from Ts by the following labeling function h.

1. h(n) = a on Tf if n is a leaf on Ts whose label is a ∈ Σ.
2. h(n) = Ah(n1),h(n2) on Tf if the production rule for n on Ts is A → γ.
3. h(n) = Aa,h(n1),h(n2) on Tf if the production rule for n on Ts is aA → γ.

For the labeled trees Ts, Tf and any nodes n, m, we can easily show that h(n) =
h(m) on Tf iff Ts(n) = Ts(m) on Ts, where T (n) denotes the subtree of T
rooted by n. Thus we obtain the derivation tree Tf of a CFG Gf equivalent
to Gs. Finally we estimate the size of Gf . If the labels of Ts are different each
other, then clearly, |Gs| = |Gf |. Let n, m be internal nodes on Ts such that
Ts(n), Ts(m) are maximal subtrees deriving a same string. Then the difference
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of labeling between Tf (n) and Tf (m) does not occur except in the leftmost path
since two production rules aA → α and bA → β are identical if a = b ∈ Σ. Thus,
we obtain the upper bound |Gf | ≤ k�|Gs|. ��

Theorem 2.
|Gf |
|Gs|

= Ω

(
k log n

k

k + log n
k

)
, where n is the length of input string.

Proof. For m ≥ 1 and Σ = {ai, bj | 0 ≤ i ≤ k, 0 ≤ j < k}, let us consider the
following string.

w = (
m︷ ︸︸ ︷

a0 · · ·a0 b0b0) · (
m︷ ︸︸ ︷

a1 · · ·a1 b1b1) · · · (
m︷ ︸︸ ︷

ak−1 · · ·ak−1 bk−1bk−1) · akak

For this w we can construct the Σ-sensitive grammar defined by

3k production rules

⎧⎨⎩
aiA → aiai

biA → ai+1ai+1 (0 ≤ i < k)
aiB → bibibi

and (�log m� + �log k� + 1) production rules for the derivations X
∗⇒ AmB

and S
∗⇒ a0X

kA. On the other hand, it is clear that Gf must contain at least
k�log m� production rules for deriving w. Thus, we obtain the lower bound by
the relation n = km + 2k + 2. ��

Finally we consider the CSG transform on constant alphabets. For this purpose,
we begin with the notion of LZ-factorization. The factors f1, f2, . . . , fk is called
the LZ-factorization of a string w if w = f1f2 · · · fk, f1 = w[1], and fi is the
longest prefix of fi · · · fk appearing in f1 · · · fi−1. For example, if w = ababaaba,
the LZ-factorization is a, b, ab, a, aba. By #LZ(w), we denote the number of
factors of the LZ-factorization of w.

Theorem 3. (Rytter [13]) For any string w and its admissible CFG G, it holds
that #LZ(w) ≤ |G|.

Here we show a lower bound of the ratio CFG/CSG over a constant alphabet. For
this proof, we mention the infinite square-free string over a three-letter alphabet.

A string is said to be square-free if it contains no squares α2. For example,
abcacb is square-free but ababc is not square-free. It is known (see e.g. [8]) that for
a three-letter alphabet Σ = {a, b, c}, there exist infinite square-free strings, such
as abcbacbcabcbabcacbacabcacbcabacbabcabacbcacbacabcacb · · ·. Using this string
and its infinitely many prefixes, we prove the lower bound for our CSG transform
for a constant alphabet.

Theorem 4. Let Σ = {a, b, c} and w ∈ Σ∗. Let G∗
s be a minimum Σn-sensitive

grammar for w. Then, |Gf |
|G∗

s | = Ω
(

3√n log n
3√n+log n

)
, where n = |w|.

Proof. Let pi be the i-th prefix of the infinite square-free string, that is, p0 =
a, p1 = ab, p2 = abc, p3 = abcb, . . . For a sufficiently large m, we define the
following string w.
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w =
∏m

2
i=0

(
pm
2ip

2
2i+1

)
· p2

m+2

= (
m︷ ︸︸ ︷

p0 · · · p0 p1p1) · (
m︷ ︸︸ ︷

p2 · · · p2 p3p3) · · · (
m︷ ︸︸ ︷

pm · · · pm pm+1pm+1) · pm+2pm+2

We first analyze the size of Gf . We consider the LZ-factorization of w. If
pm

i contains a period shorter than i, it must be of (αβ)kα for some k ≥ 2,
which is not square-free. Thus, pk

i is not appearing in pm
j for any i < j and

k ≥ 2. Hence, the LZ-factorization for pm
i contains Ω(log m) factors, that is,

#LZ(w) = Ω(m log m) ≤ |Gf |.
On the other hand, we can construct a CFG deriving all p1, p2 . . . , pm+2 by m

production rules defined by the variables P1, P2 . . . , Pm+2. Then, this grammar
encodes the string to the following string w̄.

w̄ = (
m︷ ︸︸ ︷

p0 · · · p0 P1P1) · (
m︷ ︸︸ ︷

P2 · · ·P2 P3P3) · · · (
m︷ ︸︸ ︷

Pm · · ·Pm Pm+1Pm+1) · Pm+2Pm+2

By the similar technique in Theorem 2, we can construct a Σn-sensitive
grammar which derives w̄ within O(log m2) = O(log m) production rules. Thus,
|G∗

s| = O(m + log m).
Therefore, since |pm| = m and |w| = n = Θ(m3), we can obtain the lower

bound |Gf |
|G∗

s | = Ω
(

m log m
m+log m

)
= Ω

(
3√n log n
3√n+log n

)
. ��

From the analysis in this section, we can conclude that our CSG transform is
powerful compared with the standard CFG transform.

4 Greedy Compression Algorithm

Re-Pair [7] is one greedy CFG transform algorithm based on the most-frequent-
first strategy. It replaces every occurrence of a most frequent digram AB in
the input string by a new variable symbol X and generates the production rule
X → AB. This process is repeated until no digram appear more than once.

We extend this algorithm to the CSG transform. Let Σ = {a1, . . . , ak} with
|Σ| = k. The key idea is to select a digram AiBi that occurs most frequently
just after ai for every i = 1, . . . , k, and generate the following production rules.

a1X → a1A1B1, a2X → a2A2B2, . . . , akX → akAkBk,

where X is a new variable symbol and Ai, Bi are either symbols in Σ or variable
symbols introduced so far. Every occurrence of AiBi preceded by ai in the input
string is replaced by one symbol X independently of i. The preceding symbol ai

of an occurrence of digram AiBi is called its context. We remark that rewriting
the input string yields occurrences of digrams preceded by a variable symbol
(not a symbol in Σ), but their contexts remain unchanged and can be kept.

Although a straightforward extension of the algorithm of [7] requires
Ω(|Σ||w|) time and space, our algorithm runs in O(|w|) time and space. The
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key technique is a data structure which returns in constant time one of the most
frequent digram for each context. Let c ∈ Σ, and let Lc(f) be the list of ac-
tive digrams with context c having frequency f . We use a specialized priority
queue which stores Lc = Lc(f1), . . . , Lc(fk), where f1, . . . , fk are the positive
integers (priorities) in the increasing order such that Lc(fi) is not empty for all
i = 1, . . . , k. We maintain the priority queues Lc for all contexts c. An update of
the priority queues takes constant time per a replacement operation. The total
time and space complexity is thus O(|w|).

5 Compressed Pattern Matching

One goal of the CPM problem (Goal 1) is a faster search in a compressed text,
compared with decompression followed by an ordinary search [1]. A more ambi-
tious goal (Goal 2) is a faster search in a compressed text in comparison with an
ordinary search in the original text [9]. The aim of compression in the context
of Goal 2 is not only to reduce disk storage requirement or data transmission
cost but also to speed up string searching. In this section, we consider the CPM
problem for restricted Σ-sensitive grammars and show a CPM algorithm based
on [5]. We then discuss a Goal 2-oriented implementation of it.

Definition 1. CompPatMatch
Input: A pattern π ∈ Σ+ and a Σ-sensitive grammar G = (V, Σ, P, S) gener-
ating a string w ∈ Σ+ such that every production rule in P takes either of the
forms: aA → aγ and A → γ (a ∈ Σ, A ∈ V, γ ∈ (V ∪ Σ)+).
Output: All occurrences of π within w.

The production rule with lhs S is called the start rule, and the set of other rules
in P is denoted by P#. Let S → bµ be the start rule of G with b ∈ Σ and
µ ∈ (V ∪ Σ)∗. Similar to the collage system, we regard P# as a dictionary and
bµ as a variable sequence although the rules of P# are not context-free. Denote
by ‖P#‖ the total length of the rhs’s of rules in P#. Let V # = V − {S}.

For a ∈ Σ and X ∈ V , let ξ(a, X) denote the string u in Σ+ such that
aX

∗⇒ au. If no such a string u exists, ξ(a, X) is undefined. For X = c ∈ Σ, let
ξ(a, X) = c. Let λ(a, X) be the rightmost symbol of ξ(a, X).

Lemma 1. The function λ : Σ×(V #∪Σ) → Σ can be constructed in O(‖P#‖)
time so that it responds in constant time.

5.1 Application of Algorithm by Kida et al.

The input Σ-sensitive grammar G = (V, Σ, P, S) is equivalent to the CFG G′ =
(Vf ∪ Vs ∪ {S}, Σ, Pf ∪ Ps ∪ {S → ψ(b, µ)}, S), where

Vf = {A | A ∈ V # and A → γ ∈ P for some γ},
Vs = {Aa | A ∈ V , a ∈ Σ, and aA → aγ ∈ P for some γ},
Pf = {A → γ | A ∈ Vf and A → γ ∈ P},
Ps = {Aa → ψ(a, γ) | Aa ∈ Vs and aA → aγ ∈ P},
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where ψ(a, γ) denotes the string over (Vf ∪Vs ∪Σ) obtained from γ by replacing
every occurrence of A ∈ V − Vf such that γ = αAβ and α, β ∈ (V ∪ Σ)∗ by
Ac ∈ Vs such that c = λ(a, Y ) where Y is the rightmost symbol of aα. Conversion
of G into G′ takes O(‖P‖) time by using the function λ.

A naive solution to CompPatMatch would be to convert G into G′ and apply
the algorithm of Kida et al. [5]. The algorithm first preprocesses π and the rules in
Pf∪Ps to build a finite-state machine M and then makes M run over the symbols
of ψ(b, µ). The machine M consists of state-transition and output functions
defined on the domain Q×(Vf ∪Vs∪Σ), where Q is the set of states of the KMP
automaton for π. It can be implemented in O(|π|2+‖Pf ∪Ps‖) = O(|π|2 +‖P#‖)
time and space and runs in O(|µ| + occ) time over ψ(b, µ).

Theorem 5. CompPatMatch can be solved in O(|π|2 +‖P‖+occ) time using
O(|π|2 + ‖P#‖) space.

5.2 Practically-Fast Implementation

For practical speed-up, we want to implement the state-transition function as
a two-dimensional array of size |Q| × |Vf ∪ Vs ∪ Σ| as in [16]. However, this is
unrealistic for a large V since |Vf ∪ Vs| can be |V #| · |Σ|. In what follows, we
describe how to reduce the domain size.

Consider the set Q = {0, 1, . . . , |π|} of states of the KMP automaton for a
pattern π, where j corresponds to the j-length prefix of π. The idea is to modify
the KMP automaton by adding |Σ| distinct states so that it memorizes the
symbol read previously. Let QΣ = {qa | a ∈ Σ} be the set of these states. The
state-transition function δ′ : (Q ∪ QΣ) × Σ → Q ∪ QΣ of the modified KMP
automaton is defined as follows.

δ′(q, a) =

⎧⎪⎨⎪⎩
δ(0, a), if q = qc ∈ QΣ for some c;
qa, if q ∈ Q ∧ δ(q, a) = 0;
δ(q, a), otherwise,

where δ is the state-transition function of the original KMP automaton. The
function δ′ is computed from the modified version of the goto and the failure
functions. The modified goto function differs from the original one in that the
arrows from the auxiliary state ⊥ to qa and the arrows from qa to state 1 are
added for all a ∈ Σ. The inductive computation of the modified failure function
is performed in exactly the same way as the original one.

An example of the modified KMP automaton is shown in Fig. 1, together with
the original one.

Based on the modified KMP automaton, we define functions Jump and Output
on the domain (Q ∪ QΣ) × (V # ∪ Σ) by

Jump(q, X) = δ′(q, ξ(a, X)),

Output(q, X) =
{
|ξ(a, X)| − |w|

∣∣∣∣w is a non-empty prefixes of ξ(a, X)
such that δ′(q, w) is the final state.

}
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a b a b b
0 1 2 3 4 5

a,b

a b a b b
0 1 2 3 4 5

a

b
6

7

a
a

Fig. 1. KMP automaton for π = ababb is displayed on the left, and the modified one is
displayed on the right, where Σ = {a, b} and the solid and the broken arrows represent
the goto and the failure functions. We note that the values of the failure function for
states 1 and 2 differ between the two automata.

Jump(q, X)
a b A B

0 1 7 — —
1 (a) 1 2 2 7
2 (b) 3 7 — 4
3 (a) 1 4 2 5
4 (b) 3 5 — 4
5 (b) 1 7 — 2
6 (a) 1 7 2 7
7 (b) 1 7 — 2

Output(q, X)
a b A B

0 ∅ ∅ — —
1 (a) ∅ ∅ ∅ ∅
2 (b) ∅ ∅ — ∅
3 (a) ∅ ∅ {2} {0}
4 (b) ∅ {0} — ∅
5 (b) ∅ ∅ — ∅
6 (a) ∅ ∅ ∅ ∅
7 (b) ∅ ∅ — ∅

Fig. 2. Jump and Output functions built from the modified KMP automaton of Fig. 1
for production rules aA → aBB,aB → abb, bB → bab. Each parenthesized symbol
following state s means the symbol read immediately before reaching s. Variable A
represents bbab in context a, while it represents nothing in context b. Also variable B
means bb in context a, while it means ab in context b.

b a b a b a b b a boriginal text :

Jump:
b B B a Arhs of start rule:

{2}Output:

 :

Fig. 3. Move of the machine of Fig. 2 over the rhs of S → bBBaA.

where q ∈ (Q − {0}) ∪ QΣ, X ∈ V # ∪ Σ, and a ∈ Σ is the context memorized
by state q. For q = 0, Jump(q, X) and Output(q, X) are defined only for X ∈ Σ.

Fig. 2 shows the functions Jump and Output built from the modified KMP
automaton of Fig. 1 for the production rules aA → aBB, aB → abb, bB → bab.
Fig. 3 shows the move of the machine over the rhs of S → bBBaA.

We note that the domain (Q ∪ QΣ) × V # is much smaller than the domain
Q × (Vf ∪ Vs ∪ Σ). This is a big advantage in the sense that we can adopt the
standard two-dimensional array implementation of Jump.

Theorem 6. We can build in O(|π| · |V |+ ‖P#‖) time a two-dimensional table
storing the values of Jump and a data structure for Output which responds in
time linear in the answer size.

If |V # ∪ Σ| ≤ 256, we can encode symbols in V # ∪ Σ in one byte. Compared
to the CPM algorithm on BPE presented in [16], the number of production
rules can be |Σ| times larger whereas the table size of Jump is larger just by
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256 · |Σ| table entries. Thus, both the compression and the search performances
are expected to be improved drastically.

6 Computational Experiments

We implemented in C language the compression algorithm presented in Section 4
where the grammar symbols are bounded by 256 and encoded in one byte, and
the CPM algorithm presented in Section 5.2. We evaluated their performances
by a series of computational experiments. All the experiments were carried out
on a SUN Ultra 20 M2 Workstation with a 2.2GHz Dual Core AMD Opteron
1214 and 2.0 GB RAM running Solaris 10. The text files we used are as follows.

Medline. A clinically-oriented subset of Medline, consisting of 348,566 refer-
ences. The file size is 60.3 Mbytes. |Σ| = 87.

Genbank. The file consisting of accession numbers and nucleotide sequences
taken from a data set in Genbank. The file size is 17.1 Mbytes. |Σ| = 59.

DBLP. A set of DBLP XML records. The file size is 130.7 Mbytes. |Σ| = 96.
Sources. The concatenation of all the .c, .h, .C, .java files of the linux-2.6.11.6

and gcc-4.0.0 distributions. The file size is 52.4 Mbytes. |Σ| = 227.
Pitches. A sequence of pitch values obtained from a myriad of MIDI files freely

available on Internet. The file size is 52.4 Mbytes. |Σ| = 133.

Table 1 compares the compression ratios of our method and other compres-
sors, where SE denotes the stopper encoding with 4-bit base symbols. Despite
using byte codes, the compression ratio of our method is competitive to or slightly
worse than the standard compressors for Medline, Genbank and DBLP. It is also
much better than the other Goal 2-oriented compressors. On the other hand, the
performance of our method is poor for Sources and Pitches. For Pitches, the per-
formance of Re-Pair is also poor. Although Pitches is a mixture of pitch data
with different nature, our method as well as Re-Pair depends on the substring
statistics over the whole data and therefore shows poor performance. In fact,
the performance of our method was improved by partitioning the file into frag-
ments and then compressing them separately. The poor performance for Sources
is mainly due to the large alphabet size (|Σ| = 227). We note that the num-
ber of production rules generated is upper-bounded by |Σ|(256 − |Σ|), and the
bounds for Medline, Genbank, DBLP, Sources and Pitches are, respectively,
14703, 11623, 15360, 6583 and 16359. Thus our compression scheme is suited
when |Σ| is closed to 128.

We compared the search time of our method with the KMP algorithm (KMP)
and the BMH algorithm (BMH) over uncompressed text as well as existing
Goal 2-oriented CPM methods: the KMP algorithm over BPE compressed text
(KMP on BPE) [17] and the BMH algorithm over SE compressed text (BMH on
SE) [12]. Fig. 4 displays the search times (including the preprocessing times) for
Medline and DBLP. Our method runs faster than BMH on SE for short patterns.
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Table 1. Compression ratio comparison (%)

standard compressors Goal 2-oriented compressors
gzip bzip2 Re-Pair SE [12] BPE ours

Medline 33.29 23.57 33.83 66.50 56.41 32.94
Genbank 21.98 22.17 31.32 51.74 31.37 28.22
DBLP 17.48 11.66 17.67 70.05 40.83 20.24
Sources 23.29 19.79 31.07 71.93 80.54 55.56
Pitches 30.27 35.73 58.23 74.77 78.34 63.36
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Fig. 4. Search-time comparison

7 Conclusion

We proposed a special case of CSGs called Σ-sensitive grammars for effec-
tive grammar transform and fast compressed pattern matching. While the Σ-
sensitiveness is strong restriction, we show that this grammars is powerful enough
to represent a compact formal model. Using a small subclass of this class, we
obtained a sufficient compression ratio competitive with other practical models.
Moreover we implemented the CPM algorithm on the compressed texts and con-
firmed its performance. In particular, compared to the BMH algorithm and the
stopper encoding, regarded as one of the best combinations that allows a prac-
tically fast search, our method achieves much better compression and a faster
search for short patterns.
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Abstract. Though many compression methods are based on the use
of variable length codes, there has recently been a trend to search for
alternatives in which the lengths of the codewords are more restricted,
which can be useful for fast decoding and compressed searches. This
paper explores the construction of variable-to-fixed length codes, which
have been suggested long ago by Tunstall. Using a new heuristic based
on suffix trees, the performance of Tunstall codes could be improved by
more than 30%.

1 Introduction and Background

Huffman’s classical algorithm [8] designs an optimal variable length code for a
given distribution of frequencies of elements to be encoded. These elements can
be simple characters, in which case this is a fixed-to-variable length code, but
better compression can be obtained if the text at hand can be parsed into a
sequence of variable length strings, the set of which is then encoded according to
the probabilities of the occurrences of its elements, yielding a variable-to-variable
length encoding.

If one considers, however, also other aspects of variable length codes, not just
their compression ratio, there might be incentives to revert back to fixed length
codes. Decoding, for instance, is more complicated with variable length, as the
end of each codeword must be determined. Variable length codewords carry
usually also a processing time penalty, especially for decoding and also for other
desirable features, like the possibility to search directly within the compressed
text, without the need to decompress first.

This lead to the development of several compromises. In a first step, the opti-
mal binary Huffman codes were replaced by a 256-ary variant [12], in which the
lengths of all the codewords are integral multiples of bytes. The loss in compres-
sion efficiency, which might be large for small alphabets, becomes tolerable and
almost not significant as the alphabet size increases, in particular considering
the trend set by the Huffword variant [11], of encoding entire words as basic el-
ements rather than just individual characters. On the other hand, the byte-wise
processing is much faster and easier to implement.

When searches in the compressed text should also be supported, Huffman
codes suffer from a problem of synchronization: denoting by E the encoding
function, the compressed form E(x) of an element x may appear in the com-
pressed text E(T ), without corresponding to an actual occurrence of x in the
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text T , because the occurrence of E(x) is not necessarily aligned on codeword
boundaries. To solve this problem, [12] propose to reserve the first bit of each
byte as tag, which is used to identify the last byte of each codeword, thereby
reducing the order of the Huffman tree from 256-ary to 128-ary. These Tagged
Huffman codes have then been replaced by End-Tagged Dense codes (ETDC) in
[3] and by (s, c)-Dense codes (SCDC) in [2]. An alternative code based on higher
order Fibonacci numeration systems and yielding similar features is studied in
[10]. The three last mentioned codes consist of fixed codewords which do not
depend on the probabilities of the items to be encoded. Thus their construction
is simpler than that of Huffman codes: all one has to do is to sort the items
by non-increasing frequency and then assign the codewords accordingly, starting
with the shortest ones.

This paper’s objective is to push the idea of the compromise one step fur-
ther by advocating again the use of fixed length codes. To still get reasonable
compression, the elements to be encoded, rather than the codewords, will be
of variable length, thus forming a variable-to-fixed length encoding. In a cer-
tain sense, this can be considered as the inverse of the basic problem solved by
Huffman’s algorithm. The original problem assumed that the set of elements to
be encoded is given and sought for an optimal set of variable length codewords
to encode those elements; the inverse problem considers the set of codewords
as given, assuming furthermore that they are of fixed length, and looks for an
optimal set of variable length substrings of the text which should be encoded by
those codewords.

Dealing with the inverse problem can be justified by a shift in the point of
view. The classical problem had as main objective to maximize the compression
savings, or equivalently, using Huffman’s formulation, to minimize the redun-
dancy. The complementing approach considers as its main target a fast and easy
decoding, for which a fixed length code is the best solution, but still tries to
achieve good compression under these constraints. There are good reasons to
view the coding problem as asymmetrical and to prefer the decoding side: in
many applications, like for larger textual Information Retrieval systems, encod-
ing is done only once while building the system, whereas decoding is repeatedly
needed and directly affects the response time.

In the next section, we shall define the problem formally and also bring previ-
ous work, in particular on Tunstall codes [15], which are variable-to-fixed length
codes. In Section 3 we suggest a new algorithm and bring experimental results
in Section 4.

2 Variable to Fixed Length Encoding

Consider a text of length n characters T = t1t2 · · · tn to be encoded, where
ti ∈ Σ and Σ is some general alphabet, for example ASCII. The text should be
encoded by a fixed length code in which each codeword is of length k bits, k
being the only parameter of the system. The objective is to devise a dictionary
D of different substrings of the text, such that |D| ≤ 2k so that each of the
elements of the dictionary can be assigned one of the k-bit codewords, and such
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that the text T can be parsed into a sequence of m dictionary elements, that is
T = c1c2 · · · cm, such that

m +
∑

cj∈D
|cj | (1)

is minimized.
The size of the encoded text will be km, which explains why one wishes to

minimize the number m of elements into which the text is parsed. The reason
for adding the combined size of the elements in the dictionary

∑
cj∈D |cj | in (1)

is to avoid a bias: usually, the size of the dictionary is negligible relative to the
size of the text, so that m will be dominant in (1), but without the sum, one
could define one of the dictionary elements to be the entire text itself, which
would yield m = 1.

More specifically, we are looking for an increasing sequence of integers

1 ≤ i1 < i2 < · · · < im−1 < im = n,

which are the indices of the last characters in the parsed elements of the text,
so that c1 = t1 · · · ti1 , and for 1 < j ≤ m, cj = tij−1+1 · · · tij . Denote by � =
|{cj, j = 1, . . . , m}| the number of different strings cj in the parsing, and by
d1, . . . , d� the elements of D themselves. Each parsed substring cj of the text,
1 ≤ j ≤ m, is one of the elements di of the dictionary, 1 ≤ i ≤ �, and the
constraints are

� ≤ 2k and m +
�∑

i=1

|di| is minimized.

The number of possible partitions for fixed m is
(

n−1
m−1

)
, and if one sums over

the possible values of m, we get
∑n

m=1

(
n−1
m−1

)
= 2n−1, so that an exhaustive

search over the possible partitions is clearly not feasible for even moderately
large texts. Choosing an optimal set of strings cj might be intractable, since even
if the strings are restricted to be the prefixes or suffixes of words in the text,
the problem of finding the set is NP-complete [7], and other similar problems of
devising a code have also been shown to be NP-complete in [5, 6, 9]. A natural
approach is thus to suggest heuristical solutions and compare their efficiencies.

A well known variable-to-fixed length code has been suggested by Tunstall
[15]. Assuming that the letters in the text appear independently from each other,
the Tunstall code1 is iteratively built as follows: if Σ denotes the alphabet, the
dictionary D of elements to be encoded is initialized as D ←− Σ. As long as the
size of D does not exceed 2k, the preset size of the desired fixed length k-bit code,
one then repeatedly chooses an element d ∈ D with highest probability (where
the probability of a string is defined as the product of the probabilities of its
constituent characters), removes it from D and adds all its one letter extensions
instead, that is, one performs
1 Formally, a code is a set of codewords which encode some source elements, so in

our case, the code is of fixed length and consists of the 2k possible binary k-bit
strings; what has to be built by Tunstall’s algorithm is not the code, but rather the
dictionary, the set of variable length strings to be encoded.
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D ←− D − {d} ∪
( ⋃

σ∈Σ

dσ

)
.

The resulting set D is a prefix free set, where no element is the prefix of
any other, implying unique encodability. This property may be convenient in
practical applications, but is not really necessary: even if the parsing of the
text into elements of D can be done in more than one way, there are several
possible choices of parsing heuristics for actually breaking the text into pieces,
for example a greedy approach, choosing at each step the longest possible match.
On the other hand, removing the constraint of unique encodability enlarges the
set of potential dictionaries, which might lead to better compression.

Tunstall’s procedure has been extensively analyzed [1], and the assumption of
independent character appearance has been extended to sources with memory
[13, 14]. Our approach is a more practical one: instead of trying to model the text
and choosing the dictionary based on the expected probabilities of the strings
as induced by the model, we deal directly with the substrings that actually
appear in the text and which can be processed by means of the text’s suffix tree.
This can be motivated by the fact that any theoretical model of the character
generation process yields only an imperfect description of natural language text.
For example, a Tunstall code assuming character independence may assign a
codeword to the string eee according to its high associated probability, even
though the string might possibly not appear at all in a real text; conversely,
the probabilities of positively correlated strings like the or qu will probably be
underestimated. The use of a suffix tree may restrict the strings to be chosen to
such that actually appear, and possibly even frequently, in the text.

On the other hand, one might object that there is a considerable effort in-
volved in the construction and the processing of a suffix tree. Though there are
algorithms that are linear in the size of the given text, e.g. [16], the overhead
relative to the simple Tunstall construction might be larger than could be jus-
tified. But for applications where encoding is done only once, as for large static
IR systems, the additional time and space requirements might not be an issue.
The details of the suggested heuristic are given in the following section.

3 A New Procedure for Constructing a Variable-to-Fixed
Length Code

Given the text T = t1 · · · tn, we start by forming the set S of all the suffixes
si = titi+1 · · · tn$ of the string T $, where $ is a character not belonging to the
original alphabet Σ. Each such string si is unique and may be used to identify
the position i in the text T . The strings si are then stored in a trie, which is a
labeled tree structure, as follows: every internal node of the trie has one or more
children, and all edges are directed from a node to one of its children; the edges
emanating from a node are labeled by different characters of Σ. Every node v
of the trie is associated with a string s(v), which is obtained by concatenating,
in order, the labels on the edges forming the path from the root to node v. The
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suffix tree of T $ is defined as the trie for which the set of strings associated to
its leaves is the set S of the suffixes of T $.

This basic definition may yield a structure of size Ω(n2), which can be reduced
to O(n) by compaction, i.e., deleting, for every node v that has only a single
outgoing edge to a node w, both the node v and this edge (v, w), appending the
label of the deleted edge to the right of the label of the edge e which entered v,
and directing e now to point to w. Schematically, a structure

x
α
−→ v

b
−→ w is transformed into x

αb
−→ w.

Thus in the compacted suffix tree, also called a suffix trie, edges may be labeled
by strings, not just characters. Suffix trees have been used for a myriad of ap-
plications in string processing, including recently for data compression [4]. Our
approach is different and will be described next.

Each node v can also be assigned a frequency f(v). The frequency of a leaf
node is 1, and that of an internal node is the sum of the frequencies of its
children, so that all the frequencies can be evaluated in a post-order traversal
of the suffix tree. As mentioned, both the construction and the assignment of
labels and frequencies can be done in time linear in the size n of the text.

The problem of constructing a variable to fixed length code, once the size 2k

of the set of codewords is fixed, is to choose an appropriate subset of the nodes
of the suffix tree and use the corresponding labels as elements of the dictionary.
The choice of the subset will be guided by the following analogy: an element
that appears with probability p is ideally encoded in − log2 p bits. This is closely
approached by an arithmetic encoder, and approximated in Huffman coding,
because of the additional constraint that the length of a codeword is an integral
number of bits. Looking at the relation between the probability and the corre-
sponding codeword length, but reversing the roles of what is given (codewords
of length k bits) and what we are looking for (elements to be encoded), we con-
clude in our case that all the strings to be chosen should have approximately
probability 2−k.

The frequencies f(v) associated with the nodes in the suffix tree can be used
to estimate the desired probabilities, but one has to be aware that several ap-
proximations are involved in the process. First, consider two strings x and y,
such that a proper suffix of the first is a proper prefix of the second, in other
words, there are non-empty strings x′, y′ and z, such that x = x′z and y = zy′.
The frequencies f(x) and f(y) give the number of occurrences of these strings
in the text T , but not necessarily in any parsing of T into codewords. Since x
and y may be overlapping, a part of the occurrences of y may not appear in the
parsing. It does not even help to know the number of occurrences of the con-
tracted superstring x′zy′, because the parsing is not necessarily forced to start
the encoding of this string at its beginning: x′ itself may have a proper prefix w,
such that x′ = wx′′, which could be encoded as part of a preceding codeword,
for example if wx′′zy′ is preceded in the text by h and hw happens to be a
dictionary item. This example can obviously be further extended.
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Second, in order to translate the desired probabilities 2−k into frequencies
which can be compared to those stored in the suffix tree, one needs to multiply
them with the total number of elements in the partition of T , which has been
denoted in the introduction by m. However, this gives rise to a chicken and egg
problem: one needs knowledge of m to evaluate the frequencies, with the help of
which an appropriate subset of nodes can be selected; the corresponding strings
then form the dictionary and induce a partition of the text T into m′ occurrences
of the dictionary terms. There is no guarantee that m = m′.

We still shall base our heuristic on the frequencies f(v), but do not claim that
these values reflect the actual number of occurrences. They can, nevertheless,
serve as some rough estimate if one assumes that the overlaps mentioned above,
which will bias the counts, are spread evenly over all the processed strings. To
describe the heuristic, we need some definitions.

Definition 1. Given a compacted suffix tree, we define a cut C of the tree as
an imaginary line crossing all the paths from the root to each of the leaves at
exactly one edge.

Definition 2. The lower border of a cut, LB(C), is the set of nodes of the suffix
tree just below the cut, where we refer to the convention of drawing (suffix) trees
with the root on the top and with edges leading from a parent to a child node
pointing downwards.

Definition 3. The upper border of a cut, UB(C), is the set of nodes of the suffix
tree which are parent nodes of at least one node of the lower border.

Figure 1 is a schematic representation of a small suffix tree visualizing these
definitions. The cut is the broken line traversing the full breadth of the tree.
Nodes above the cut are drawn as circles and those below the cut as squares.
The nodes of the borders are filled with color (black squares for the lower border

Fig. 1. Schematic representation of a cut in a suffix tree
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and black circles for the upper one), and those not belonging to any of the
borders are only outlined.

The following properties will be useful below.

Theorem 1. Given a compacted suffix tree with n leaves, and any cut C of the
tree, we have ∑

v∈LB(C)

f(v) = n,

that is, the sum of the frequencies of the nodes of the lower border of all possible
cuts is constant, and equal to the size of the underlying text n.

Proof: By induction on |UB(C)|, the number of nodes in the upper border of C.
If the upper border includes only one node, it must be the root. The children of
the root are labeled by the single characters2, and the sum of their frequencies
is clearly n.

Assume the truth of the claim for every cut C such that |UB(C)| = i− 1, and
consider a cut C0 for which there are i nodes in its upper border. Let v be one of
these i nodes, choosing v as one of the nodes of maximal depth in UB(C0), and
denote by w1, . . . , wr the children of v, and by p its parent node. Because of the
maximal depth, we have that wj ∈ LB(C0) for all j, and f(v) =

∑r
j=1 f(wj). If

the cut C0 is moved upwards so as to cross the path from the root to wj not on
the edges (v, wj), but on the edge (p, v), yielding a new cut C1, this removes the
nodes wj from the lower border, but adds their parent v to it. We thus have that

∑
x∈LB(C1)

f(x) =
∑

x∈LB(C0)

f(x) −
r∑

j=1

f(wj) + f(v) =
∑

x∈LB(C0)

f(x),

so that the sum of frequencies on the lower bound of the cut remained constant.
But we cannot yet apply the inductive hypothesis, because the size of the upper
bound of C1 is not necessarily i − 1. Indeed, v has been removed from UB(C0),
but its parent node p could have been added. That will happen if all the sibling
nodes of v were also in the upper border of C0.

We therefore repeat the above procedure of pushing the cut upwards until a
cut Ch is reached for which |UB(Ch)| = i − 1. This must ultimately happen,
because each iteration reduces the number of nodes above the cut, which is a
superset of the upper border, by 1. Each step leaves the sum of the frequencies
constant, so we conclude that∑

x∈LB(C0)

f(x) =
∑

x∈LB(Ch)

f(x) = n,

the last equality following by the inductive assumption.

2 Unless there is a character which is always followed by the same one, like q and u,
but in that case, the string qu should be considered as if it were a single element
of Σ.
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Theorem 2. Given a compacted suffix tree with n leaves, and any cut C of the
tree, the strings associated with the nodes of the lower border LB(C) form a
dictionary D which ensures unique encodability.

Proof: For the fact that at most one encoding is possible, it suffices to show that
the strings form a prefix set. Assume on the contrary that there are two strings
v and w in D such that v is a prefix of w, and denote the corresponding nodes
in the tree by nv and nw, respectively. Then nv is an ancestor node of nw in the
tree, and since both nodes belong to LB(C), the cut C crosses the path from
the root to nw twice: once at the edge entering nw and once at the edge entering
nv, in contradiction with the definition of a cut. Thus no string of D is the prefix
of any other.

At least one encoding is always possible due to the completeness of the set, in
the sense that a cut has been defined as a line crossing every path in tree. As a
constructive proof, suppose that the prefix of length i− 1 of T has already been
uniquely encoded, we show that exactly one codeword can be parsed starting at
the beginning of the remaining suffix titi+1 · · ·. Consider a pointer pointing to
the root of the suffix tree, and use the characters titi+1 · · · to be processed as
guides to traverse the tree. For each character x read, follow the edge emanating
from the current node and labeled by x. Such an edge must exist, because the
tree reflects all the substrings that appear in the text. This procedure of stepping
deeper into the tree at each iteration must ultimately cross the cut C, and the
string associated with the first node encountered after crossing the cut, is the
next element in the parsing.

Note that the strings associated with the upper border of a cut do not always
form a prefix set, as can be seen in the example in Figure 1.

From Theorem 2 we learn that it might be a good idea to define the dictio-
nary as the lower border of some cut, so we should look for cuts C for which
|LB(C)| = 2k. Our heuristic, which we call DynC for Dynamic Cut, extends
the Tunstall procedure, but working on the suffix tree with actual frequencies
instead of an artificial tree with estimated probabilities. DynC will traverse the
tree left to right and construct the lower border of the desired cut according
to the local frequencies. One of the problems mentioned earlier was that one
cannot estimate the frequencies without knowing their total sum. But because
of Theorem 1, we know that if we restrict ourselves to choose the elements
of the lower border of a cut, the sum of all frequencies will remain constant.
We can therefore look for nodes v in the tree for which f(v)/n � 2−k, that is
f(v) � n2−k.

Ideally, there should be 2k such elements, but in practice, there is a great
variability in the frequencies. We therefore suggest to build the dictionary incre-
mentally in a left to right scan of the tree, adapting the target value of the
desired frequency for the current element dynamically, according to the cu-
mulative frequencies of the elements that are already in the dictionary. More
formally:
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DynC: Left-to-right construction of D

D ←− ∅
target ←− n2−k

cumul ←− 0
scan the suffix tree in DFS order while |D| < 2k

v ←− next node in scan order for which f(v) ≤ target
D ←− D ∪ {v}
cumul ←− cumul +f(v)
target ←− n − cumul

2k − |D|
end while

The updated target value is obtained by dividing the expected sum of the
frequencies of the remaining elements to be added by their number. This allows
the procedure to set the target higher than initially, in case some elements have
been chosen with very low occurrence frequency.

The strict compliance with the constraints imposed by deciding that D should
be a complete prefix set turned out to be too restrictive. In many cases, a node
with quite high frequency could have several children with very low occurrence
rate, and including the strings associated with these children nodes in D would
eventually clog the dictionary with many strings that are practically useless for
compression. To avoid the bias caused by the low values, a lower bound B has
been imposed on f(v) for the string s(v) to be considered as a candidate to be
included in D. As a result, the dictionary was not complete any more, so to
ensure that the text can be parsed in at least one way, D was initialized with
the set of single characters. This, in turn, implied the loss of the prefix property,
so the parsing with the help of the suffix tree needed to be supplemented with
some heuristic, for example a greedy one, trying at each step to parse the longest
possible dictionary element.

Decoding of the fixed length code is of course extremely simple. All one has
to do is to store the strings of D consecutively is a string S, and refer to each
element by its offset and length in the string S. These (off,len) pairs are stored in
the dictionary table DT , which is accessed by 2-byte indices (in the case k = 16)
forming the compressed text. Formally:

Decoding of DynC encoded text

while (i ←− read next 2 bytes) succeeds
(off,len) ←− DT [i]
output S[off ·· off+len−1]

For k = 12, in order to keep byte alignment, one could process the compressed
text by blocks of 3 bytes, each of which decodes to two dictionary elements.
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4 Experimental Results

To empirically test the suggested heuristic, we chose the following input files of
different sizes and languages: the Bible (King James version) in English, and
the French version of the European Union’s JOC corpus, a collection of pairs of
questions and answers on various topics used in the arcade evaluation project
[17]. To get also different alphabet sizes, the Bible text was stripped of all punc-
tuation signs, whereas the French text has not been altered.

Table 1. Comparison of compression performance between Tunstall and DynC

File Bits Tunstall DynC
expected actual B compression

English
2.96 MB
52 chars

50 0.616
12 0.617 0.614 200 0.477

300 0.591

2 0.477
16 0.589 0.587 7 0.391

10 0.399

French
7.26 MB
131 chars

300 0.549
12 0.744 0.751 500 0.496

700 0.561

20 0.404
16 0.691 0.689 25 0.401

30 0.414

Table 1 compares the compression efficiency of the suggested heuristic with
that of the Tunstall codes, for both k = 12, corresponding to a small dictionary
of 4096 entries, and k = 16, for a larger dictionary with 65536 elements. The
first column lists also relevant statistics, the size of the files and the size of the
alphabets, and the second column gives the parameter k. All compression figures
are given as the ratio of the compressed file to the full size before compression.
The column headed expected gives the expected compression of the Tunstall code:
let A =

∑
v∈L pv�v be the average length of a Tunstall dictionary string, where L

is the set of leaves of the Tunstall tree, pv is the probability corresponding to leaf
v, and �v is its depth in the tree. Then n/A is the expected number of codewords
used for the encoding of the text, so the expected size of the compressed text
is kn/8A, and the compression ratio is k/8A. As noted above, the Tunstall
dictionary contains many strings that are not really used. The column headed
actual is the results of actually parsing the text with the given dictionary, giving
quite similar results.
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The results for DynC are given for several bounds. Interestingly, on all our
examples, compression first improves with increasing bound, reaches some opti-
mum, and then drops again. This can be explained by the fact that increasing
the bound leads to longer strings in the dictionary, but increasing it too much
will imply the loss of too many useful shorter strings. Table 1 brings 3 examples
of different bounds B for each file and each k. One can see that DynC reduces
the file by additional 20–40% relative to Tunstall.

Table 2. Comparison of compression performance of DynC with other methods

Tunstall Huffman DynC SCDC Fib3

English 100 89.9 66.4 43.1 39.2

French 100 83.9 58.2 34.7 31.2

A comparison of DynC with other methods can be found in Table 2, which
arranges the methods by order of decreasing performance. The sizes are given
as a percentage of the size of the file compressed by Tunstall, corresponding
to 100%. Regular Huffman coding, based on the individual characters, is only
10–12% better than Tunstall. The values for DynC correspond to the parameters
B and k that gave the best results in Table 1. Much better compression can be
obtained if one does not insist on fixed length codes, as for SCDC [2], where the
values are given for the best (s, c) pair, or Fib3 [10].

We conclude that if one has good reasons to trade compression efficiency for
the simplicity of fixed length codes, the suggested heuristic may be a worthwhile
alternative to the classical Tunstall codes.
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Abstract. The BM25 similarity computation has been shown to provide effec-
tive document retrieval. In operational terms, the formulae which form the basis
for BM25 employ both term frequency and document length normalization. This
paper considers an alternative form of normalization using document-centric im-
pacts, and shows that the new normalization simplifies BM25 and reduces the
number of tuning parameters. Motivation is provided by a preliminary analysis
of a document collection that shows that impacts are more likely to identify doc-
uments whose lengths resemble those of the relevant judgments. Experiments on
TREC data demonstrate that impact-based BM25 is as good as or better than the
original term frequency-based BM25 in terms of retrieval effectiveness.

1 Introduction

Given a natural language query q and a text collection D of N documents, the princi-
pal task of information retrieval systems is to rank the documents in decreasing order
of their similarity to the query. Several models for document ranking have been inves-
tigated over the years, including vector space and probabilistic models. These models
have been compared both experimentally in the context of the Text REtrieval Confer-
ence (see http://trec.nist.gov/ for results using these models) and theoretically (for
example, see Fuhr [2001] for a probabilistic interpretation of these models). While the
themes underlying these various models differ, they are quite alike in their implemen-
tations: in operational terms, they all end up with a formula to calculate the similarity
score S(d, q) between d ∈ D and q. The majority of them also employ a bag of terms
approach, which takes into account only the frequencies of terms in documents and
queries, and ignores the order in which terms appear.

In the bag of terms approach, the raw values employed in the similarity computation
include the term frequencies fd,t and fq,t of term t in a document d and the query q,
respectively; and the document frequency ft, which is the number of documents in D
that contain t. Another value that is frequently used is the document length |d|, which is
conventionally calculated from the values fd,t and ft across the set of terms that appear
in d. The formulation of S(d, q) for both the vector space and probabilistic models
is then a combination of the underlying statistics. Moreover, each of the raw values
typically appears in a way that can be viewed as being a normalized version of the
initial raw value. This notion is discussed further in the next section.

A. Amir, A. Turpin, and A. Moffat (Eds.): SPIRE 2008, LNCS 5280, pp. 51–62, 2008.
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Within the framework of vector space ranking, Anh and Moffat [2005] explored the
idea of using the ranks of the term frequencies fd,t in each document d, instead of the
fd,t values themselves. This led to the development of document- (and query-) centric
impacts, which simplified the similarity computation, and enhanced both the efficiency
and effectiveness of vector space ranking.

This paper explores the use of document impacts in similarity computations in which
there are explicit and varied normalizations of the various components, such as the
BM25 method [Robertson et al., 1994], which has been shown to be successful in
achieving good retrieval effectiveness in a range of experimental environments
[Spärck Jones et al., 2000]. Like the vector space model, BM25 employs both term fre-
quency and document length normalization.

Section 2 provides necessary background. Section 3 employs a document collection
and a set of queries and their relevance judgments to illustrate empirically how term
frequencies differ from impacts, and speculates that applying impacts to BM25 might
be effective. Section 4 puts that idea into practice, and describes further variations. The
experiments reported in Section 5 then quantify those benefits.

2 Term Frequencies, Document Lengths and Normalization

The similarity scores of both the vector space and BM25 models can be operationally
expressed as

S(d, q) =
∑

t∈d∩q

QTF(q, t) · TF(d, t, D) · IDF(t, D) (1)

where the first factor is essentially defined through fq,t; the second from fd,t and pos-
sibly ft plus collection-wide statistics; and the third through ft, and further use of
collection-wide statistics. The appearance of d in TF(d, t, D) is normally expressed
in terms of document length |d|.

In the vector space model, various formulations of S(d, q) are possible
[Salton and Buckley, 1988]. In the experiments described by Zobel and Moffat [1998]
one of the better performing formulations defines the components of Formula (1) via

IDF(t, D) = log
(
1 + f avg

t /ft

)
QTF(q, t) = 1 + log fq,t

|d| =
√∑

t∈d ((1 + log fd,t) · IDF(t, D))2

TF(d, t, D) = (1 + log fd,t) / ((1 − s) + s · |d|/|d|avg) ,

(2)

where f avg
t and |d|avg are the average values of ft and |d| over the collection, and s is a

constant with a typical value of 0.7. This particular form is referred to in this work as
the standard vector space model, or Std-VSM.

The Std-VSM formulation employs several normalization schemes. The first is the
shift from using raw term frequencies to their logarithm in QTF(q, t) and TF(d, t, D)
[Buckley et al., 1993]. Note that this shift reduces the relative gap between TF(d, t, D)
values as fd,t increases. The second normalization scheme is the scaling of ft in
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IDF(t, D) using the logarithm and f avg
t . Finally, in TF(d, t, D), the pivoted document

length normalization (as described by Singhal et al. [1996a,b]) is used, where the doc-
ument lengths |d| are adjusted using the slope constant s.

In probabilistic models, weighting methods normally rely on the estimation of vari-
ous probabilities [Robertson and Spärck Jones, 1976]. And, as in the case of the vector
space model, there are a number of schemes to choose from. In this work, we employ
a version of BM25, referred to as Std-BM25 (that is, standard BM25), which defines the
components of Formula (1) as

QTF(q, t) = fq,t/(k3 + fq,t)
|d| =

∑
t∈d fd,t

TF(d, t, D) = fd,t/ (k1 · ((1 − b) + b · |d|/|d|avg) + fd,t)
IDF(t, D) = loge ((N − ft + 0.5)/(ft + 0.5))

(3)

where k1, k3 and b are parameters with the default values of 1.2, 1000, and 0.75, re-
spectively [Robertson et al., 1998]. It can be seen that several normalization schemes
are also present in this formulation.

In the impact-based vector space model, or Imp-VSM, the similarity score is calcu-
lated as

S(d, q) =
∑

t∈d∩q

ωq,t · ωd,t . (4)

where ωq,t (the impact of t in query q) and ωd,t (the impact of t in document d) are inte-
ger numbers, valued between 1 and kω , typically a small integer like 8 [Anh and Moffat,
2005]. Compared with Formula (1), this approach normalizes each of QTF(q, t) ·
IDF(t, D) and TF(d, t, D) to small integers. Impact normalization also has two key dis-
tinguishing features: first, like the impacts themselves, the set of resultant score values
has a small cardinality; and second, the normalization process employs ranks rather than
exact values. In the case of document impacts, the set of all term frequencies within a
document is normalized with respect to each other, so that, within any single document,
terms having the same frequencies are assigned the same impact (but it does not follow
that terms sharing the same impact have the same frequency). Only a small number of
terms are assigned high impacts, and the great majority of the terms in each document
are assigned low impacts. A different process is applied to query impacts, employing
the products QTF(q, t) ·IDF(t, D) (t ∈ q∩d) in a quantitative way (see Anh and Moffat
[2005] for details).

3 Term Frequencies Versus Impacts

To explore the differences between term frequencies and rank-based impacts in repre-
senting documents, and the consequential effects on retrieval effectiveness, we made
use of the WSJ collection. A component of the TREC data, WSJ consists of 173,252
articles from The Wall Street Journal published in 1987–1992; and is accompanied by
a set of 50 topics and a corresponding set of pool-based human-generated relevance
judgments. For the purpose of our experimentation, 50 queries were formed by taking
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Fig. 1. Pearson correlation between two vector
representations of documents (term frequencies
and term impacts)

the TREC <title> fields for topics
051-100. The corresponding relevance
judgments (covering 6,228 relevant doc-
uments in total) then allowed retrieval ef-
fectiveness to be evaluated.

As a first step, we compared the cor-
relation between each document’s term
frequency vector and the corresponding
impact vector, taking only the non-zero
entries. The correlation is based on docu-
ment length |d|, defined as the total num-
ber of word tokens in d, that is, |d| =∑

t∈d fd,t. This choice is justified by our
expectation that changes to the document
length would affect the distributions of
frequencies and impacts differently. The
correlation between the vectors is calcu-
lated using Pearson coefficient, where r = −1, 0, and 1 indicate negative, no, and
positive correlation, respectively. A randomly selected sample of 10,000 of these cor-
relation values are plotted in Figure 1 as a function of the length of the document they
relate to, together with the average (over all of the documents in the collection that fall
within that binary-power range of document lengths) of the Pearson coefficients. Most
of the documents in the collection contain fewer than 4,000 tokens, and only a few are
longer than 6,000 tokens. Because of this, we restrict the analysis in the rest of this
section to documents with a maximum length of 4,000.

It is unsurprising that, in general, impacts are positively correlated with term fre-
quencies. However, the correlation is on average not especially strong, and there are
many uncorrelated document vectors (with r close to zero); and a sizeable minority of
documents that demonstrate negative correlations. The reason for the varied behavior
is, of course, that impacts take into account the relative importance of each term in the
document, rather than just the raw occurrence frequency. The lesson to be learned from
Figure 1 is that substituting frequencies by impacts might result in a non-linear change
in document vectors, and to (potentially) changes in the document ranking outcome.

The next step was to compare the pattern of documents retrieved by the vector space
and BM25models with the pattern exhibited by the relevant documents. We implemented
the three retrieval schemes described earlier (Std-VSM, Std-BM25, and Imp-VSM) and
compared their performance with systems built by others. Specifically, we compared
the results of all three implementations with the results described by Anh and Moffat
[2005] for the collections TREC12, TREC45-CR and wt10g (see Section 5 for a descrip-
tion of the data sets). In addition, the results from our Std-BM25 implementation were
also cross-checked with the baselines established by Tao and Zhai [2007] for the col-
lections (used in their work) AP, FR and TREC8 (the latter is also TREC45-CR, but with
a smaller query set). All of the cross-checks showed our implementations to be com-
petitive with their counterparts, and that the differences in retrieval effectiveness were
marginal.
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Fig. 2. Distribution of document lengths in tokens for (a) the documents that were relevant to the
50 queries and (b), (c), (d), for the retrieved results using three retrieval models. The total number
of documents is 6,228 in (a) and 46,885 in the other graphs. The retrieval effectiveness as MAP
for parts (b), (c) and (d) are respectively 0.2175, 0.2218, and 0.2308.

Each of the retrieval models was then applied to the 50 queries with a cut-off depth
of 1,000 results per query, following the usual TREC approach. In the end, there were

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

Document length (word tokens)

P
ro

ba
bi

lit
y

16 64 256 1024 4096

Relevant
Std−VSM
Std−BM25
Imp−VSM

Fig. 3. Smooth plots using Loess to represent the prob-
ability of a document being relevant, or retrieved, as a
function of document length

46,885 items in each result set.
The histograms in Figure 2 plot
the length distributions (using the
same definition of |d| as in Fig-
ure 1) of the relevant documents,
and of the three sets of retrieved
documents. The vertical axis of
the histograms is expressed as per-
centages of the corresponding set
size, rather than raw frequency
counts. Figure 2(a) shows that the
majority of relevant documents are
less than 1,000 tokens in length,
with peaks at 200, 600, and 800 to-
kens. The Std-VSM and Std-BM25
show a noticeable bias towards
short documents of around 200 to-
kens (Figure 2(b) and Figure 2(c)).
On the other hand, in Figure 2(d),
the Imp-VSM approach appears to
select more documents that are
around 800 tokens in length. Out of the three length distributions of retrieved docu-
ments, it is Imp-VSM that most closely resembles the relevant judgments.
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This supposition is supported by an alternate view that is based on a further anal-
ysis resembling the one undertaken by Singhal et al. [1996a]. In this experiment the
173,252 documents in the collection were divided into equally-sized bins of 100 docu-
ments each. The document with the median length of each of the 1,733 bins was then
used to represent that bin. Using the relevance judgments, we calculate the probability a
document d in a given bin bi is relevant by dividing the number of relevant documents in
that bin by the total number of relevant documents. A similar calculation is performed
for each of the three sets of retrieved documents, to estimate the probability that a docu-
ment of that length would be returned by the corresponding retrieval model. Thus, these
two sets of calculations represent P (d ∈ bi|d is relevant) and P (d ∈ bi|d is retrieved),
respectively. These probabilities are plotted against the designated median length for
each bin (not shown) and local regression lines using Loess are drawn through each set
of points [Cleveland et al., 1992]. The result of this analysis is shown in Figure 3.

Figure 3 confirms that the probability with which Imp-VSM returns documents is a
good fit to the probability of documents of that length being relevant, whereas the devia-
tion arising from the use of Std-VSM and Std-BM25 is pronounced for long documents.
On the other hand, the number of long documents in the collection is small (a fact illus-
trated in Figure 1), meaning that the overall effect of the length distribution mismatch
on retrieval effectiveness might not be significant.

Combining the tendencies presented in Figure 2 and Figure 3 with the fact that
Imp-VSM is the “impact version” of Std-VSM, it is natural to speculate that combin-
ing impacts with the Std-BM25 approach in a reasonable way might give rise to useful
improvements in effectiveness.

4 Impact-Based BM25

We have explored several BM25 variants that make use of impacts rather than term fre-
quencies, while keeping QTF(q, t) and IDF(t, D) for the most part unchanged. The vari-
ants are summarized in Table 1 and described below.

Naive: In this variant we blindly replace the bag of term frequencies by the corre-
sponding bag of term impacts. That is, we suppose that each document d is rewritten
so that term t now has the frequency ωd,t instead of fd,t. The document length is rede-
fined as |dω| =

∑
t∈d ωd,t. This version is Naive because various normalizations have

already been integrated into the impacts, and the distributions of impacts and document
lengths might be quite different from those of frequency and frequency-based lengths.

Unit: This variant is based on the supposition that in the impact-based document space,
all documents have the same length. With rank-based impact assignments, each docu-
ment is associated with a small number of high impact terms and a much larger number
of low impact terms. Moreover, the highest impact is just kω = 8, smaller than the
highest term frequency in most documents. As a result, in the impact space, document
lengths are much closer to each other than in the frequency space. The Unit variant
takes these observations a step further by supposing that the transformation process
aims to have the ideal state when all documents have the same length, yielding a for-
mula that no longer depends on the parameter b.
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Table 1. Using ranked impacts to normalize the TF(d, t, D) component of BM25. The Unit and
QueryImp approaches differ because the latter uses ωq,t as the normalized value for IDF(t,D) ·
QTF(q, t), whereas the other methods retain the original BM25 computation.

Method TF(d, t, D)
Naive ωd,t / (k1 · ((1 − b) + b · |dω|/|dω |avg) + ωd,t)

Unit ωd,t / (k1 + ωd,t)

Avg ωd,t / (k1 · |dω|avg + ωd,t)

UnitLog log(1 + ωd,t) / (k1 + log(1 + ωd,t))

AvgLog log(1 + ωd,t) / (k1 · |d∗
ω|avg + log(1 + ωd,t))

QueryImp ωd,t / (k1 + ωd,t)

Avg: This approach is also based on the supposition that all documents have the same
length. However, we pull back a bit, and reason that even though there is no difference
in document length, it is still appropriate to include a collection-dependent value as a
normalizing constant.

UnitLog: This variant is a modification of Unit in which the document impacts are
adjusted by the taking of logarithms, further lowering the role of large impact values.

AvgLog: This variant is similar to Avg in the way that UnitLog is similar to Unit.

QueryImp: This variant uses the same TF(d, t, D) as Unit, but differs (from all of the
previous four variants) in that it adopts the impact retrieval approach of Anh and Moffat
[2005], by combining the QTF(q, t) and IDF(t, D) components together, and mapping
that value to an integer.

Note that in all of these BM25-based methods the document and query impacts are both
integers, but the computations shown in Table 1 mean that the similarity scores as-
signed to documents are not integers, and the fast query processing methods designed
for Imp-VSM cannot be directly applied.

5 Experiments

This section describes the experiments conducted to check the effectiveness of the de-
scribed impact-based BM25 models by comparing against the original BM25 and the
impact-based VSM approaches. We employ the TREC document collections and
queries that were used for ad-hoc retrieval. Since the performance of a retrieval method
might vary with different data sets, we try to provide a good picture by using
all data collections and query sets provided by TREC to date for this purpose. The data
sets are named in the TREC conventional way, with the maximal number of judged
topics provided by TREC. Thus, we have the data sets TREC12, TREC23, TREC24,
TREC45, TREC45-CR, wt10g, and .GOV2. The topics for these data sets are 051-200,
201-250, 251-300, 301-350, 301-450 plus 601-700 minus 672 (topic 672 has no
relevant judgement), 451-550, and 701-850, respectively. For details, see
http://trec.nist.gov/.

http://trec.nist.gov/
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All of the retrieval models are implemented within the same programming environ-
ment. In processing the data, a “light” stemmer (only stripping regular word endings
like “s”, “ies”, and “ed”) was applied, and no words were stopped. Queries are nor-
mally short and were formed by taking the title fields of the TREC topics. However, in
the case of queries 201-250 only long description fields for these topics were supplied
by TREC, and so these were employed as the queries. Three effectiveness metrics were
monitored: mean average precision (MAP), mean precision at 10 documents retrieved
(P@10), and mean reciprocal rank (RR).

BM25 Parameter Selection
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Fig. 4. Effectiveness, measured as MAP, of different
BM25 models as a function of k1

The first experiments aimed to set
values for the parameters needed
– the ones used in Std-BM25 may
be inappropriate for the Imp-BM25
variants. Since we focus only on
the term frequency and document
length factors, we fix the parame-
ter k3 to the same value that was
used in the original BM25. Simi-
larly, the parameter b only appears
in Naive, and its usual value of 0.5
is retained. On the other hand, the
relationship between k1 and effec-
tiveness needs to be explored.

The WSJ collection and queries
051-100 were used for this train-
ing exercise. Retrieval effective-
ness as a function of k1 is plotted in Figure 4, and shows that the performance of
Std-BM25 and the Naive method varies markedly with the value of k1. On the other
hand, k1 has almost no effect on the suite of other impact-based versions, giving them
an absolute advantage. Performance patterns in one data set do not necessarily indicate
that the same trends will be observed in other data sets; nevertheless, stability of the
lines at the top of Figure 4 give certain level of confidence that k1 can be dropped away
from the new similarity mechanisms. For definiteness, we use k1 = 2 henceforth.

Impact Range

Another issue to consider is the validity of selecting kω = 8 as the maximum impact
value. Anh and Moffat [2005] conclude that this value is the best for their model, but
that conclusion cannot be automatically transferred to the BM25 methods. For the val-
idation, we used the data set wt10g with the method Unit and the values of kω =
2, 4, 8, 16, 32 and 64. The results, not reported here, show that Unit even gives rea-
sonable levels of effectiveness when kω = 4, and that there is no noticeable further
improvement when moving beyond kω = 8. In the detailed experiments reported be-
low, kω = 8 was used.
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Table 2. Effectiveness of impact-based BM25 models relative to Std-BM25 and Imp-VSM. In all
cases the performance of VSM (not shown) is inferior to that of Imp-VSM. Figures in bold indicate
results significantly greater than both of the baselines using a t-test at p < 0.05. For each effec-
tiveness measure, the row Mean shows the per-query average over all collections, and the next
row shows the same information, but without including TREC23.

Data set Std-BM25
Impact-based methods (as % of Std-BM25)

Imp-VSM Unit Avg UnitLog AvgLog QueryImp

Mean Average Precision
TREC12 0.2025 103.70 105.09 105.09 102.47 108.20 104.54
TREC23 0.2320 92.76 79.87 96.34 70.78 83.58 84.40
TREC24 0.1435 99.16 116.72 100.63 112.33 116.72 107.18
TREC45 0.2049 95.36 104.39 94.68 105.12 105.27 104.00
TREC45-CR 0.2156 100.51 114.61 104.04 114.05 115.45 115.12
wt10g 0.1778 103.21 110.35 103.99 108.10 113.39 111.30
.GOV2 0.2520 101.75 118.21 103.41 117.50 119.92 117.66
Mean, All 0.2111 100.79 110.28 102.83 110.88 111.01 110.16
Mean, no TREC23 0.2097 101.32 112.31 103.26 112.22 111.99 111.88
Mean Precision at 10
TREC12 0.4693 104.69 97.32 105.41 95.18 100.58 97.74
TREC23 0.4800 94.58 72.08 95.42 64.17 75.42 74.58
TREC24 0.2660 101.50 117.29 103.76 115.04 117.29 110.53
TREC45 0.3540 103.95 105.08 102.82 105.08 104.52 105.08
TREC45-CR 0.4028 101.19 105.98 103.20 105.09 106.68 106.28
wt10g 0.2850 102.81 103.16 105.26 102.46 104.91 102.46
.GOV2 0.5087 107.78 115.96 109.10 116.10 115.71 117.55
Mean, All 0.4136 103.07 104.40 104.50 105.19 106.69 104.85
Mean, no TREC23 0.4092 103.63 106.56 105.11 106.62 107.61 106.87

Evaluation

With the parameters established, Table 2 reports the effectiveness of the main Imp-BM25
variants described in Section 4. The method Naive was excluded because of its clearly
inferior performance in the previous experiment.

Table 2 shows a number of interesting trends. First, the figures for TREC23 are dra-
matically different from all others. As TREC23 is the only case when long queries are
employed, it appears that all of the impact-based models are inadequate for long queries
(and it may also be that the same problem arises with the Imp-VSM approach).

Second, of the Imp-BM25 variants, AvgLog seems to be the best, especially for mean
average precision – it improves MAP by around 12%, and mean P@10 and mean RR
(not shown in the table) by around 8% in comparison with the original Std-BM25. This
level of improvement arises in the majority of the test environments, and AvgLog can
be taken to represent the Imp-BM25 model.

Third, three other Imp-BM25 variants, namely Unit, UnitLog, and QueryImp, also
perform very well, with the effectiveness scores being very close to those of AvgLog.
The only remaining variant – Avg – is also competitive. These results confirm our
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hypothesis that the inclusion of document impacts in the BM25 computation can lead
to improvements in effectiveness. However, we reiterate that the conclusion is, at this
stage, applicable only for short queries.

Fourth, comparison in terms of effectiveness between Unit and its query impact
version QueryImp shows that the normalization of QTF(q, t) · IDF(t, D) to the integral
term impact ωq,t for Std-BM25 does not bring any benefit. In fact, it slightly reduces
the effectiveness scores.
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Fig. 5. Distribution of word lengths from the histograms
of Figure 2(a) and Figure 2(c), represented as cumula-
tive percentages, with Imp-BM25 added as a third line.
The Imp-BM25 method has mean average precision of
0.2380.

Having a similarity formula that
gives good retrieval effectiveness
is always encouraging. However a
similarity formula that is simple is
also nice. In this regard, the Unit
method is notable. Despite the fact
that it is very simple, it gives good
retrieval effectiveness.

We conclude our experiments
by returning to the histograms of
Figure 2 and the collection WSJ,
with AvgLog now taken to be
the “Imp-BM25” method we were
seeking. Figure 5 presents cumula-
tive percentages for two of the dis-
tributions in Figure 2, with the cor-
responding curve for Imp-BM25
added. The Imp-BM25 document
retrieval pattern is close to that of
the relevant judgments, and also
matches the Imp-VSM distribution.

Absolute Performance

Table 2 shows that the Imp-BM25 scheme (that is, the one listed in Table 1 as AvgLog)
performs well relative to the baseline Std-BM25 scheme. It is interesting also to com-
pare its performance with that of current language modeling approaches. To this end, we
also compared Imp-BM25 against the Dirichlet-smoothed language modeling approach
used by Metzler and Croft [2007], using the four document collections that were in-
cluded both in their work and in our experiments. Note, however, that
Metzler and Croft’s need to train parameters against each collection has restricted the
size of each of the test query sets. The data set description and comparison is provided
in Table 3.

The results show that Imp-BM25 is competitive on the Web data (that is, the col-
lections wt10g and .GOV2), which is pleasing given that there are no per-collection
parameters required. On the other hand, the results for WSJ were disappointing, but it is
not clear as how much the training factor contributes to the results of the LM in this case
– where 100 queries were used for training, and only 50 for experiments.
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Table 3. Effectiveness of Imp-BM25 relative to the language modeling results reported by
Metzler and Croft [2007]. The choice of MAP is dictated by them. Significance testing was
not possible.

Collection
Queries MAP

Training
Test LM Imp-BM25 Change

(LM only)
WSJ 051-150 151-200 0.3258 0.2976 –8.6%
TREC45-CR 301-450 601-700 0.2920 0.2814 –3.6%
wt10g 451-500 501-550 0.1861 0.1925 +3.4%
.GOV2 701-750 751-800 0.3234 0.3337 +3.2%

6 Conclusion and Discussion

This work has explored the use of document-centric impacts as defined by
Anh and Moffat [2005] in combination with the BM25 similarity computation, and has
shown that improved retrieval effectiveness for short queries can be attained. We based
our comparison on both the original frequency-based BM25 and the vector space impact
models. This conclusion is demonstrated using an extensive empirical study of most of
the TREC ad-hoc data, and is cross-referenced against recent language model results.

A recent investigation by Metzler et al. [2008] showed that a probabilistic formu-
lation of non-integral impacts using mean average precision as a guide for training
achieved slightly (but significantly) better performance than the unsupervised integer-
valued arrangement described by Anh and Moffat [2005], and used also in the exper-
iments of this paper. Integer-valued impacts can thus be preferred if efficiency is a
concern, or if insufficient data is available for training. (We also note that Metzler et al.
give results that show that the alternative Language Modelling approach can lead to
markedly improved retrieval effectiveness on all but large collections, albeit at the cost
of further increased retrieval complexity.)

The impact-based BM25models are based on simple formulations, and have a number
of advantages in comparison to the original BM25. In particular, they do not require as
many tuning parameters as the latter: the parameter b can be omitted entirely, and the
parameter k1 can be fixed more confidently than the original model. The new formulas
also eliminate the use of individual document lengths, which speeds up the ranking
process. Impacts can be stored in the indexes instead of term frequencies, and this may
mean that the index can be organized in an impact-sorted manner that supports fast
query processing.

The success of the Imp-BM25 methods show that it is possible and desirable to con-
sider only frequency ranks inside each document, rather than their precise values. This
is at least correct for the vector space model and the probabilistic BM25 model. It can
now be suggested that, whenever a similarity measure contains term frequency and/or
document length normalization, it is worth trying impacts instead.
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Abstract. Probabilistic latent semantic analysis (PLSA) is a method
of calculating term relationships within a document set using term fre-
quencies. It is well known within the information retrieval community
that raw term frequencies contain various biases that affect the precision
of the retrieval system. Weighting schemes, such as BM25, have been
developed in order to remove such biases and hence improve the over-
all quality of results from the retrieval system. We hypothesised that
the biases found within raw term frequencies also affect the calcula-
tion of term relationships performed during PLSA. By using portions of
the BM25 probabilistic weighting scheme, we have shown that applying
weights to the raw term frequencies before performing PLSA leads to
a significant increase in precision at 10 documents and average recip-
rocal rank. When using the BM25 weighted PLSA information in the
form of a thesaurus, we achieved an average 8% increase in precision.
Our thesaurus method was also compared to pseudo-relevance feedback
and a co-occurrence thesaurus, both using BM25 weights. Precision re-
sults showed that the probabilistic latent semantic thesaurus using BM25
weights outperformed each method in terms of precision at 10 documents
and average reciprocal rank.

Keywords: probabilistic latent semantic analysis, probabilistic model,
information retrieval.

1 Introduction

For most information retrieval systems, a text document is a sequence of inde-
pendent terms. Through further analysis of the document set, we are able to find
clusters of terms that are related to each other; this process is considered to be
the discovery of hidden topics. When given a collection of text documents, latent
semantic analysis (LSA) [2] or probabilistic latent semantic analysis (PLSA) [3]
are used to discover term relationships to hidden topics within the document
set and hence relationships to other terms within the document set. The term
relationships are calculated using the term frequencies found within a set of doc-
uments. Therefore, the term relationships are document set specific and are used
to assist the increase of precision during the information retrieval process.
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Latent semantic indexing, uses latent semantic analysis to construct an index
based on relationships between the documents, terms and calculated topics. The
process involves representing each document and term as a set of topics; when
a query is provided, the documents with the most related topics to the query
topics are considered the most relevant. It can be shown that this process is
a mixture of term expansion using the latent semantic term relationships and
document retrieval using a document-term frequency index [5, 7].

Recent experiments have shown that we are able to store probabilistic latent
semantic information in a thesaurus and hence separate it from the document
index [6, 8] This separation was shown to provide many benefits, including faster
query times and using much less storage space when compared to a latent se-
mantic index.

So far, probabilistic latent semantic term relationships have only been calcu-
lated using the raw frequency counts of each term in each document. It is well
known that there are many biasing factors found with raw term frequency counts
and there have been many research experiments performed by the information
retrieval community in order to understand and remove these biases [1, 4]; the
state of the art being BM25. This method is a term frequency weighting scheme
that tries to remove any biases using probabilistic analysis of the document set.

We believe that the biasing factors found in raw term frequencies that disrupt
the information retrieval process, also affect the term relationship calculations
when using probabilistic latent semantic analysis. Therefore, we hypothesise that
the term relationships obtained using PLSA will be more effective if calculated
using weighted term frequencies rather than raw term frequencies. To examine
this hypothesis, we will use the probabilistic latent semantic thesaurus, since it
is able to isolate the term relationships and the effect the term weighting has on
them.

This paper provides the following important contributions:

– An analysis of the effects of document and term weights on the PLSA term
relationships through examination of retrieval results.

– A comparison of weighted PLSA to BM25 pseudo-relevence feedback and
co-occurrence thesaurus term expansions methods.

In this document we will analyse the effectiveness of PLSA calculated term rela-
tionships when using the BM25 weighing scheme to weight our term frequencies.
This will be compared to PLSA term relationships using raw term frequencies.
The article will proceed as follows: section 2 will review the concept of PLSA
and how it is used to discover hidden term relationships. Section 3 examines the
bias found in term frequencies, how we can reduce their effect using BM25 and
how to apply these effects to PLSA. Finally, we will examine the experiments
performed and discuss the results in section 4.

2 Latent Semantic Analysis

Before we can begin our analysis of the effect of term weights on the PLSA
term relationships, we must explain how the term relationships are calculated
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and how we can extract them from the latent semantic analysis process. In this
section we will examine the latent semantic analysis concept.

2.1 Document Retrieval

The process in which the idea is transferred from the author’s mind to the
written article and then to the reader’s mind, is a very lossy process. If we were
able to model this process, then we would be able develop better methods of
transferring our ideas to paper and also better methods of transferring ideas
from paper to our own minds. Information retrieval systems try to model the
former process in order to calculate which ideas are present in a document. Once
the content of a document is known, the retrieval system can calculate better
relevance judgements when given a query.

A basic document retrieval system comprises an inverted index containing
the terms that are found in each document and an application to extract these
values and compute document scores based on a provided query. When a query
is given, the lists of documents associated to each query term are extracted from
the index and combined using a document score function such as:

s(d, Q) =
∑
t∈Q

wd,twtwq,t (1)

where s(d, Q) is the document score of document d given the set of query terms
Q, wd,t is the document-term weight, wt is the term weight, and wq,t is the
query-term weight. Each of the weight values wd,t, wt and wq,t are based on fd,t,
ft and fq,t respectively, where fd,t is the frequency of term t in document d, ft

is the number of documents term t appears in, and fq,t is the frequency of term
t in query q.

Equation 1 shows us that document retrieval methods, which use a document-
term index containing term frequencies, base their document score calculation
on the occurrence of the user supplied query terms in each document. This allows
the retrieval system to provide fast query times and use a conservative amount
of storage, but the model suggests that all of the terms in the document set are
independent of each other. For example, a search for “baby clothes” will return
documents containing the terms “baby” or “clothes”, but not provide documents
containing related terms such as “infant”, or “suits”. This model assumes that
authors write documents in the following manner:

1. the idea is constructed in the author’s mind
2. specific terms are chosen from the term pool to express the idea on paper.

This model is shown in figure 1. Note that in this model, if other terms are
chosen for the document, it would express a different idea because each of the
terms are assumed independent of each other. We can see that this model does
not reflect the actual process that an author does use to write a document.
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Fig. 1. A näıve document creation model. The author chooses specific terms for the
document. If different terms are chosen the document will not convey the same message.
This is the model used by retrieval systems that assume all terms are independent of
each other (such as an inverted index of terms).

2.2 Latent Topics

We have seen in the previous section that the document retrieval model implies a
poor document creation model. To make the model more realistic, we introduce
an intermediate stage where the author chooses topics from a set of independent
topics, to represent the document. Each of the topics contains a set of associated
terms which are then chosen to include in the document. The process becomes:

1. the idea is constructed in the authors mind
2. specific topics are chosen from the topic pool to express the author’s idea
3. for each topic, terms are chosen from the associated topic term pool to

express the idea on paper

where the topic term pool is a set of terms that are related to the associated topic.
Note that although the topics are independent, the associated terms may appear
in many topics due to the synonomy found in many terms. This model is shown
in figure 2. The final step allows the author to choose any of the terms associated
to the selected topic to use within the document. This process suggests that as
long as two documents contain the same topics, they can convey the same idea
even though they contain different terms. The chosen topics must be the same
in each document, but they are not written in the document; they are hidden
from the reader and expressed in the terms that have been written.

Latent semantic analysis is the process of discovering these hidden topics and
their relationship to the term and document set.

2.3 Probabilistic Latent Semantic Analysis

Probabilistic latent semantic analysis (PLSA) [3] is the process of calculating
the term, topic and document relationships using probabilistic means. In this
section, we will explain the basic concepts behind the method.

Consider the document set as being a bag filled with tokens; one token for
every occurrence of a term in the document set. Each token has an associated
term and document label attached. We can say that P (d, t) is the probability
that we put our hand in the bag and take out a token with the document label
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Fig. 2. The LSA document model. The author chooses specific topics for the document
and then chooses a term from the topic to place in the document. This model implies
that documents containing different terms can convey the same message, as long as the
replacement terms are associated with the same topic.

d and term label t associated with it. Therefore if fd,t tokens are in the bag
with labels d and t, implying that term t appeared fd,t times in document d, we
obtain the sample probability:

P̂ (d, t) =
fd,t∑

δ∈D

∑
τ∈T fδ,τ

(2)

where D and T are the set of document and terms respectively and P̂ (d, t) is the
sample probability of document d and term t. PLSA attempts to model these
sampled document-term probabilities as the sum of hidden topic distributions:

P (d, t) =
∑
z∈Z

P (d|z)P (t|z)P (z) (3)

where Z is the set of hidden topics, P (d, t) is the probability of term t being
related to document d, P (d|z) is the probability of document d given topic z,
P (t|z) is the probability of term t given topic z, and P (z) is the probability of
topic z. Using this model, we must fit our |D| × |T | samples using |D| × |Z| +
|T | × |Z| + |Z| parameters, where |Z| is much smaller than |D| and |T |.

3 Removing Bias in PLSA

Many weighting schemes have been developed for document retrieval systems
to remove the bias found in non-homogeneous document collections [1, 4, 10].
Factors such as document length and term rarity can lead to the favour of certain
irrelevant documents if not normalised.

We would expect that these biases also exist when calculating term relation-
ships. We have seen that our samples P̂ (d, t) are crucial in the calculation of
the unknown probabilities based on z. This leaves us with the question, what
do we base our document-term sample probabilities on? We hypothesise that
the biases found within raw term frequencies also affect the calculation of term
relationships performed during PLSA.

In this section, we will examine the popular BM25 weighting scheme and how
we can apply it to PLSA.
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3.1 BM25 Weighting Scheme

The BM25 weighting scheme [4] has a probabilistic background based on the
modeling of relevant and irrelevant documents using Poisson distributions [9]. It
has been developed for use in relevance feedback systems, but when simplified
to use no document relevance information, it is still very competitive [12].

The simplified (no relevance feedback) document scoring equation can be
shown as:

s(d, Q) =
∑
t∈Q

wd,twt (4)

where d is the document to be scored, Q is the set of query terms, wd,t and wt

are the document-term and term weights respectively.
The term weight is calculated as either the log odds of the term appearing in

a document:

wt = log
(

N − ft + 0.5
ft + 0.5

)
(5)

or the negative log of the probability of the term appearing in a document:

wt+ = log
(

N

ft

)
(6)

where N is the number of documents and ft is the number of documents con-
taining term t. The term weight is used to reflect the importance of the term
due to its rarity. For example a term that appears in all documents is not useful
as a query term, since it will return all documents, therefore its weight is low. A
term that appears in one document is very useful as a query term, therefore its
weight should be high.

The document-term weight is the function:

wd,t =
(k1 + 1)fd,t

K + fd,t
(7)

where fd,t is the frequency of term t in document d, k1 is a positive constant,
and K is the pivoted document normalisation value. This function has two pur-
poses. The first is to reduce the effect of large fd,t values. When searching for
documents, one that contains twenty occurrences of a query term is not twice
as relevant as one that contains ten occurrences of the same query term. In
fact, they would both be considered just as relevant as each other. This function
achieves this by reducing the increase in weight due to an increase in the term
frequency. The second is to normalise the weight due to document length. A
document that contains the query terms once in ten pages is not as relevant as
one that contains the query terms in one page. The K value achieves this by
normalising the documents based on their length.

3.2 Applying the Weights

Probabilistic latent semantic analysis calculates the maximum likelihood fit of
the raw term frequencies (shown in equation 2). We want to perform a maxi-
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mum likelihood fit of the term frequencies with biases removed, therefore we will
perform PLSA on weighted term frequencies rather than raw term frequencies.

To use the weighted term frequencies, we simply substitute the weighted value
where raw term frequencies are found. Therefore our new PLSA relationship
becomes:

P̂ (d, t) =
ωd,t∑

δ∈D

∑
τ∈T ωδ,τ

(8)

where ωd,t is the weighted term frequency fd,t.
PLSA uses the weighted term frequencies to construct a probabilistic model

of the document set, therefore it is a requirement that the weight associated
with each term in a document is positive. If we examine equation 5, we find
that the log function returns negative values when applied to values less than
one, which would occur when term t appears in over half of the documents.
This property makes wt unsuitable for use as an estimate of P (d, t). The term
weighting in equation 6 and the document-term weighting in equation 7 can
never be negative, which make these weighting equations more suitable for our
needs. Therefore we have the choice of using either of ωd,t = wd,t, ωd,t = wt or
ωd,t = wd,twt. Once the weights are applied to every frequency value, we use the
PLSA method to obtain the value of P (d, t) and each of its components.

4 Experiments

We wish to analyse the effect of using weighted terms during the calculation
of the PLSA term relationships. In this section, we describe the experiments
performed and examine the data they produce.

We assumed that an increase in document retrieval precision implies that
the term expansion is producing better terms for the query. Hence the proba-
bilistic latent semantic analysis has established better relationships between the
terms. Therefore, we will measure the effectiveness of the term relationships by
examining the quality of the documents retrieved from a set of queries.

To store the weighted PLSA values, we will use a probabilistic latent semantic
thesaurus (PLST), rather than a probabilistic latent semantic index (PLSI). The
PLST has shown to provide greater precision, faster query times, and smaller
storage space than the PLSI [8]. The PLST stores the probabilities P (tx|ty)
based on the computed P (d|z), P (z) and P (t|z). The P (tx|ty) values are used
as a query expansion.

Our experimental environment was an information retrieval system consisting
of a document-term frequency index using the BM25 weighting scheme and a
probabilistic latent semantic thesaurus. Our experiments will examine the effect
that weighting has on the the PLSA term relationships by performing one set
of experiments with raw term frequencies (ωd,t = fd,t) to calculate P (tx|ty) and
another set of experiments using BM25 weights (ωd,t = wd,t, ωd,t = wt+, and
ωd,t = wd,twt+) to calculate P (tx|ty).

Previous work [6, 8] lead us to select the following constants for each latent
semantic thesaurus: Only terms that appeared in more than 50 documents were
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Table 1. Statistics of the four document sets used in the weighted latent semantic
thesaurus experiments

document set ZIFF1 ZIFF2 AP1 AP2
documents 75180 56920 84678 79919
median document length 181 167 353 346
avg. document length 412 394 375 370
unique terms 98206 82276 101708 95666
terms in 50 documents 7930 6781 10937 10498
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Fig. 3. A comparison of the increase in precision at 10 documents due to query
expansion for PLST using fd,t (Raw), wd,t (Document), wt+ (Term), and wd,twt+

(Document-Term) weights on the ZIFF1 and ZIFF2 document sets. The baseline BM25
precision at 10 documents with no expansion is 0.1985 and 0.1527 respectively.
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Fig. 4. A comparison of the increase in precision at 10 documents due to query
expansion for PLST using fd,t (Raw), wd,t (Document), wt+ (Term), and wd,twt+

(Document-Term) weights on the AP1 and AP2 document set. The baseline BM25
precision at 10 documents with no expansion is 0.3781 and 0.3554 respectively.

included in the thesaurus; the expansion terms were mixed with the query terms
at a ratio of 0.6 to 0.4 respectively. Experiments were run on four separate
document sets from TREC disks 1 and 2 named ZIFF1, ZIFF2, AP1 and AP2
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(shown in table 1). On each document set, query expansions were performed
using expansion sizes 10, 20 50, 100, 200, 300, 500, 700, 1000, 1200, 1500 and
2000. The expansion of size zero (implying no query expansion is performed) was
used as a baseline to examine the precision of the retrieval system without using
the probabilistic latent semantic term relationships. Therefore the results are
presented in terms of increase in precision relative to this baseline. By setting
the term expansion size to zero, we are switching off the PLST and thus our
system becomes a BM25 document-term frequency index.

The experimental results showing precision at 10 documents are shown in fig-
ures 3 and 4. We can see in these plots that the wd,t weighted PLSA term relation-
ships provide higher precision for most of our query expansion sizes for the ZIFF1
and ZIFF2 document sets. For the AP2 document set, PLSA using the raw term
frequencies (fd,t) provides higher precision than the wd,t weighted PLSA term ex-
pansion for 10, 20 and 50 terms. For all other expansion sizes the BM25 weighted
PLSA expansion provides higher precision. It is interesting to note that the PLSA
using the raw term frequencies (fd,t) is generally flat for the three mentioned doc-
ument sets. For the AP1 document set, we can see that PLSA using the raw term
frequencies (fd,t) provides higher precision for all levels of query expansion and
is followed closely by the document weighted (wd,t) expansion.

Significance testing using Wilcoxon’s signed rank test was performed for three
measures and is shown in table 2. The three measures used are mean average
precision (MAP), precision after 10 documents (Prec10), and average reciprocal
rank (ARR). MAP is used to judge the precision where many documents are
required from the retrieval system, Prec10 is used to judge a system where a few
documents are wanted, and ARR is used to judge a system where one document
is wanted. The measures Prec10 and ARR are more useful for systems such as

Table 2. P-values from the Wilcoxon signed rank test. A P-value < 0.05 (marked
with *) implies that using the associated weighting caused a significant increase in the
associated measure. The measures shown are mean average precision (MAP), precision
at 10 documents (Prec10) and average reciprocal rank (ARR).

Method MAP Prec10 ARR
wd,t 0.618 0.011∗ 2.97 × 10−06∗

wt+ 0.995 0.989 0.227
wd,twt+ 1 1 0.9999182

Table 3. Storage sizes in megabytes for each of the thesauruses using different weight-
ing schemes. We can see that there is a clear drop in storage size for each of the four
document sets, when weights are applied during the thesaurus construction.

Weight AP1 AP2 ZIFF1 ZIFF2
fd,t 99.25 92.56 55.93 43.93
wd,t 86.75 82.68 41.68 31.87
wt 78.50 73.50 40.56 32.93
wd,twt 82.31 76.68 34.06 27.37
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Web search engines, where the user does not require specific documents, but
only a few documents to satisfy their information need.

We can see from the P-values that there is no significant increase in either
of MAP, Prec10 and ARR when using wt+ and wd,twt+ values for the PLST.
There is, however, a very significant increase in Prec10 and ARR when using
wd,t weights for the PLST.

We have also provided the storage required for each of the probabilistic latent
semantic thesauruses in table 3. It is interesting to see that the storage required for
each of the weighted thesauruses was much less than that needed by the thesaurus
using raw term frequencies (fd,t). This is probably due to the weighted values hav-
ing a smaller range and thus requiring less bits for each level in each range.

4.1 Comparison to BM25 Pseudo-Relevance Feedback

To obtain an understanding of how well our weighted PLSA query expansion
method performs, we have provided a comparison to the results obtained when
using BM25 pseudo-relevance feedback [4] and a BM25 co-occurrence thesaurus.

Relevance feedback, unlike our static thesaurus method, is the dynamic pro-
cess of supplying the retrieval system with a set of documents relevant to the
query. The retrieval system then extracts a set of terms from the relevant doc-
uments to use as a query expansion. Pseudo-relevance feedback, unlike rele-
vance feedback, does not obtain any relevance information from the user; it
chooses the top ranking documents to the query as the set of pseudo-relevant
documents. This set of documents is then used to obtain the term expansion.
Pseudo-relevance feedback using BM25 weighting has been a very successful
query expansion method at TREC, therefore it is a useful benchmark.

A co-occurrence thesaurus is a table of term to term relationships obtained
by calculating:

P (tx|ty) =
∑

d∈D fd,txfd,ty∑
tz∈T

∑
d∈D fd,tzfd,ty

(9)

The co-occurrence thesaurus is used just as the PLST is used.
Previous experiments comparing PLSA using raw term frequencies to pseudo-

relevance feedback and co-occurrence thesaurus using BM25 weights showed that
PLSA provided significant increases in ARR and Prec10, but pseudo-relevance
feedback provided greater MAP. We have shown that the BM25 weighted PLSA
provides significant increases in ARR and Prec10 over PLSA, but there is no
significant increase in MAP. Therefore we will observe the difference in ARR
and Prec10 between BM25 weighted PLSA, pseudo-relevance feedback and the
co-occurrence thesaurus. The prior results suggest the pseudo-relevance feedback
will produce the greatest MAP.

We have produced plots in figure 5, comparing each of the mentioned method
for various levels of query expansion.

We can see from these plots that the PLSA query expansion using BM25
document weights is far superior in terms of average reciprocal rank, achieving
an average 8% increase. We can see that our PLST method using document
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Fig. 5. Comparison of term expansion results on the AP2 document set using the
average reciprocal rank (ARR) and precision at 10 documents (Prec10) measures. PLST
(Document) is our probabilistic latent semantic thesaurus using document weights
(wd,t), PRFB is pseudo-relevance feedback, and COT is a co-occurrence thesaurus
expansion method.

weights obtains a higher precision after 10 documents if 100 or more terms are
chosen. Unfortunately, the relevance-feedback produces a greater mean average
precision when using only a few terms. These results are similar to those of the
PLST using unweighted term frequencies [8].

From these results we can see that our system would benefit a user who is
searching for a few relevant documents, due to its high average reciprocal rank
values. An example of this type of use would be found in typical Web searching.
The pseudo-relevance feedback method would be more beneficial to a user who
would want many or all relevant documents.

5 Conclusion

This article contains an analysis of the effect of using weighted terms during the
probabilistic latent semantic analysis calculations and the impact it provides on
probabilistic latent semantic term relationships.

We hypothesised that the term relationships obtained using PLSA will be
more effective if calculated using weighted term frequencies rather than raw
term frequencies. Raw term frequencies contain many forms of bias; weighted
term frequencies are used to remove this bias during the query process, therefore
weighted term frequencies should also be using when calculating probabilistic
latent semantic term relationships.

Our hypothesis was tested by running precision experiments on a collection
of document sets. We compared the precision from using a probabilistic latent
semantic thesaurus built using raw term frequencies and a probabilistic latent
semantic thesaurus built from weighted term frequencies. We found that us-
ing the thesaurus built from document weighted term frequencies provided a
significant increase in precision at 10 document and average reciprocal rank.
These results suggest that term relationships obtained using PLSA will be more
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effective when based on document weighted term frequencies rather than raw
term frequencies.

We also compared the results obtained from the PLSA weighted thesaurus to
those obtained using the BM25 pseudo-relevance feedback system. This analysis
showed that the PLSA weighted thesaurus provided an average 8% increase in
reciprocal rank and an increasing significance in precision after 10 documents,
as the size of the term expansion increased. This implies that a PLSA weighted
thesaurus retrieval system would be more useful than the BM25 pseudo-relevance
feedback when found in an environment where a few document are required, such
as a typical Web search.
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Abstract. Classified s-grams have been successfully used in cross-lan-
guage information retrieval (CLIR) as an approximate string matching
technique for translating out-of-vocabulary (OOV) words. For example,
s-grams have consistently outperformed other approximate string match-
ing techniques, like edit distance or n-grams. The Jaccard coefficient has
traditionally been used as an s-gram based string proximity measure.
However, other proximity measures for s-gram matching have not been
tested. In the current study the performance of seven proximity measures
for classified s-grams in CLIR context was evaluated using eleven lan-
guage pairs. The binary proximity measures performed generally better
than their non-binary counterparts, but the difference depended mainly
on the padding used with s-grams. When no padding was used, the bi-
nary and non-binary proximity measures were nearly equal, though the
performance at large deteriorated.

1 Introduction

Cross-Language Information Retrieval (CLIR) refers to retrieval of documents
written in a language other than that of the user’s request. The document collec-
tion’s language is called the target language and the query language the source
language. A typical approach to CLIR is automatically translating the query into
the target language. For an overview of CLIR, see [1]. Out-of-vocabulary (OOV)
words constitute a major problem in query translation in CLIR. Due to the ter-
minology missing from dictionaries, untranslatable keys appear in queries. Many
typical OOV words, like proper names and technical terms, are often important
query keys [2]. Therefore their translation is essential for query performance. In
European languages, technical terms often share a common Greek or Latin root
but are rendered with different spelling. This provides a good basis for the use of
approximate string matching in translating the OOV words, as the words similar
to a query’s OOV words can be found from the target document collection and
recognized as the translations of the query words.

The classified s-gram matching technique is a generalization of the well-known
n-gram matching technique developed as a solution to the OOV word problem

A. Amir, A. Turpin, and A. Moffat (Eds.): SPIRE 2008, LNCS 5280, pp. 75–86, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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in dictionary-based CLIR [3]. In s-gram matching the strings compared are de-
composed into shorter substrings, called s-grams. Skipping characters is allowed
when forming the s-grams and the degree of similarity between the strings is
computed by comparing their s-gram sets. s-grams, or gapped q-grams, have
also been described e.g. in [4] where they were applied for fast and efficient fil-
tering for approximate string matching. The classified s-grams differ from the
other gapped q-grams in that several different s-grams are grouped together into
sets of s-grams prior to calculating the similarity. The classified s-grams have
been developed with CLIR and natural language processing in mind, i.e., for
relatively short strings including relatively little repetition of s-grams. In CLIR
applications, the technique has outperformed several other established approxi-
mate string matching techniques, such as the edit distance, the longest common
subsequence and n-grams [3,5].

There are several ways of calculating the s-gram proximity between two
strings. In the context of n-gram matching the L1 distance [6], its binary ver-
sion Hamming distance [7], the Dice coefficient [8], and the Jaccard coefficient
[9] among others have been used. Robertson and Willett [10] mention that any
proximity measure could be used, while Zobel and Dart [7] propose that mea-
sures used in IR, such as the cosine measure [8], should not be appropriate for
phonetic n-gram matching as they factor out the document length.

Only similarity measures based on the Jaccard coefficient have previously been
tested with classified s-grams [3,5]. Clearly, other proximity measures could also
be applied, but it is not obvious which might be the best suited ones. Järvelin
et al. [11] formalized a few proximity measures for s-gram matching, e.g., the
L1 distance. They argued that, theoretically, the Jaccard coefficient may not be
the choice proximity measure to be used in the s-gram matching, as it is binary
and thus insensitive to the counts of each s-gram in the strings to be compared.
The non-binary L1 distance should be a more sensitive proximity measure, as
it takes both the types of s-grams and their number in the strings compared
into account. Järvelin et al. [11] did not test their claim empirically, but their
definitions enable the comparison of different s-gram proximity measures.

As the choice of the proximity measure used with the s-grams may affect
the performance of the technique, testing the different proximity measures is
needed. This article contributes to the issue by reporting the results of an evalu-
ation of several proximity measures for s-gram matching of cross-lingual spelling
variants. Especially the differences between the binary and the non-binary prox-
imity measures are considered. The binary proximity measures Jaccard coeffi-
cient, binary cosine similarity and Hamming distance were compared to their
non-binary counterparts Tanimoto coefficient, cosine similarity and L1 distance
respectively. Also, the binary Dice coefficient was tested. Cross-lingual spelling
variants in seven languages (English, Finnish, French, German, Italian, Spanish
and Swedish) were used as source words that were translated into four target lan-
guages, English, German, Swedish and Finnish, using classified s-gram matching.
In total eleven language pairs were used. The proximity measures’ performance
was evaluated as average translation precision.
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Next, Section 2 provides an introduction to the s-grams and their proximity
measures. Section 3 presents the materials and methods and Section 4 the results.
Finally, section 5 contains a brief discussion and the conclusions.

2 s-gram Definitions

2.1 Introduction to s-grams

Word variation, where a language pair shares words written differently but hav-
ing the same origin, is called cross-lingual spelling variation. Pirkola et al. [3] and
Keskustalo et al. [5] showed that this kind of variation can advantageously be
modeled with the s-grams. In s-gram matching the text strings to be compared
are decomposed into substrings and the similarity between the strings is calcu-
lated as the overlap of their common substrings. Unlike in n-gram matching,
skipping some characters is allowed when forming the s-grams. In CLIR appli-
cations substring length of two has been used. It has been found beneficial in
IR applications to use padding spaces around the strings when forming s-grams
[5,10]. This helps to get the characters at the beginning and at the end of a
string properly presented in string comparison.

In classified s-gram matching technique [3] the s-grams originating from the
same string are classified into sets based on the number of characters skipped
prior to calculating the similarity. Only the s-grams belonging to the same set
are compared to each other. Gram class indicates the skip length(s) used when
generating a set of s-grams. The largest value in a gram class is called the
spanning length of the gram class [5], e.g., for gram class {0, 1}, the spanning
length is one. Two or more gram classes may also be combined into more general
gram classes. The character combination index (CCI) then indicates the set of all
the gram classes to be formed from a string, e.g. CCI {{0}, {1, 2}}means that two
gram classes are formed from a string: one with conventional n-grams formed of
adjacent characters ({0}) and one with s-grams formed both by skipping one and
two characters ({1, 2}). For the string “abracadabra”, the s-gram set produced
by the CCI {{1, 2}} is {ar, ba, rc, aa, cd, db, bc, ra, ad, ca, ab, dr}, when duplicate
s-grams are not listed.

2.2 s-gram Profiles and Their Proximities

s-gram-based string proximity measures are based on strings’ s-gram profiles.
The s-gram profile definitions given in this paper are extended from Ukkonen’s [6]
n-gram profile definition. Next strings’ s-gram profiles are defined, which are then
generalized for gram classes. Then various gram class based proximity measures
are given, because the strings’ CCI based proximity measures are calculated as
the average gram class distance of the CCI’s gram classes.

Definition 1. Let w = a1a2 . . . am be a string over a finite alphabet Σ, n ∈
N+ be a gram length, k ∈ N a skip length and let x ∈ Σn be an s-gram. If
aiai+k+1 . . . ai+(k+1)(n−1) = x for some i, then w has a sn,k-gram occurrence of
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x. Let Gk(w)[x] denote the total number of sn,k-gram occurrences of x in w. The
sn,k-gram profile of w is the vector Gn,k(w) = (Gk(w)[x]), x ∈ Σn.

s-gram profile can easily be generalized for gram classes. The gram class profiles
are formed by summing up the s-gram profiles in a given gram class.

Definition 2. Let w ∈ Σ∗, C ∈ P(N) a gram class and x ∈ Σn. Let GC(w)[x] =∑
k∈C Gk(w)[x]. The gram class profile of w is the vector Gn,C(w) = (GC(w)[x]),

x ∈ Σn. In other words, Gn,C(w) =
∑

k∈C Gn,k(w).

Sometimes the exact number of the occurrences of s-grams in the string is irrel-
evant, but merely the information if a specific s-gram occurs at all in the string
is needed. This leads to the notion of binary gram class profile.

Definition 3. Let w ∈ Σ∗, and C ∈ P(N) a gram class and x ∈ Σn. Let

BC(w)[x] =
{

1 if GC(w)[x] > 0
0 otherwise .

The binary gram class profile of w is the vector Bn,C(w) = (BC(w)[x]), x ∈ Σn.

Various proximity measures can now be used to calculate string proximities based
on the general and binary gram class profiles. Next, only the proximity measures
using the general gram class profile of Definition 2 are given, because the cor-
responding proximity measures using binary profiles are defined by substituting
the general s-gram profiles with binary ones in the following equations.

Let v and w be strings in Σ∗, n ∈ N+ be a gram length and C ∈ P(N) a gram
class. L1 distance for gram classes of strings v and w is

L1n,C(v, w) =
∑

x∈Σn

|GC(v)[x] − GC(w)[x]|. (1)

The L1 distance has been used with n-grams by Ukkonen [6] and its binary
version, the Hamming distance, was proposed by Zobel and Dart [7]. Therefore
its performance was investigated in s-gram based OOV word translation.

The cosine gram class similarity between v and w is defined as

Cosn,C(v, w) =
GC(v)T GC(w)

‖GC(v)‖‖GC(w)‖ , (2)

where ‖ · ‖ denotes the Euclidean norm and T the transpose of a vector. Cosine
similarity (or normalized dot product) is a widely utilized proximity measure in
text retrieval applications [12] and therefore its performance in s-gram matching
was also investigated along its binarized counterpart.

The Tanimoto coefficient [13] between gram classes of v and w is given by

Tn,C(v, w) =
GC(v)T GC(w)

‖GC(v)‖2 − GC(v)T GC(w) + ‖GC(w)‖2 . (3)
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The Tanimoto coefficient was tested, because its binary counter part, the Jaccard
coefficient, has traditionally been used in s-gram matching [3,5,11].

Turning to the binary profile based proximity measures, the Hamming dis-
tance Hn,C(v, w) between v and w is derived by substituting the general gram
class profile with binary profile in (1), binary cosine similarity BinCosn,C(v, w)
by substituting with binary profiles in (2), and Jaccard coefficient Jn,C(v, w) by
doing the same substitution in (3).

Lastly, the Dice’s coefficient was investigated, because it has been used in
n-gram matching [10]. It is closely related to the Jaccard coefficient, but weights
more the matching profile positions between the gram class profiles than the
mismatching ones [12]. The Dice coefficient between v and w is given by

Dn,C(v, w) =
2BC(v)T BC(w)

‖BC(v)‖2 + BC(v)T BC(w) + ‖BC(w)‖2 . (4)

The character combination index based string proximity measures tested in
this paper are defined as the average of strings’ gram class proximities. For
example, for a CCI C ∈ P (P(N)), and a gram length n, the CCI-distance
corresponding to L1 distance is

L1n,C (v, w) =
1
|C |

∑
C∈C

L1n,C(v, w). (5)

All CCI-based proximity measures tested below were defined analogously.
One problem that might arise when using the s-gram profiles in approximate

string matching is the length of the profiles. With sn,k-grams, the profile length
is |Σ|n where Σ is the specified alphabet. For example, the standard English
alphabet consists of 26 letters, and thus even the di-gram profiles are quite long.
However, with natural languages, the s-gram and the gram class profiles are typ-
ically very sparse, and well suited for sparse vector implementations. Therefore,
the proximities between the s-gram profiles can be evaluated efficiently.

3 Materials and Methods

3.1 Materials

The test data consisted of three parts: the search keys, the target words and the
set of correct translations, i.e., the relevance judgments. 271 search keys were
expressed in seven languages, which were English, Finnish, French, German,
Italian, Spanish and Swedish. The search keys were mostly technical terms from
the domains of biology, medicine, economics and technology, but also a list of
geographical names obtained from [5] was included. These are typical cases of
cross-lingual spelling variants that tend to be OOV words and thus problematic
in CLIR. In total, 11 language pairs were used in the study, with four target
languages: English, German, Finnish and Swedish. English was combined with
all of the other languages as a target language and was also used as a source



80 A. Järvelin and A. Järvelin

language with Finnish, German and Swedish. Translation was also done both
ways between Swedish and German.

Target word lists (TWLs) consisted of CLEF 2003 [14] document collection’s
indices for the target languages. The collections are full-text newspaper docu-
ment collections from 1994–1995. The size of the collections, and thus the TWLs,
varies between languages. The English TWL consisted of ca 257,000, the Swedish
TWL of ca 388,000 and the Finnish TWL of ca 535,000 unique word forms. The
German CLEF03 collection was considerably bigger and thus only a part of it
was used for creating a TWL including ca 391,000 unique word forms.

All the TWLs were lemmatized (i.e. the index words were returned into their
basic forms) with the TWOL morphological analyzer by Lingsoft Ltd. The words
not recognized by the morphological analyzer were indexed in the word forms
they appeared in the text. Compounds were split and both the original com-
pounds and their constituents were indexed. The missing translation equivalents
of the search keys were added to the TWLs, and there was only one correct
translation for each search key in the TWLs.

3.2 Methods

The performance of the proximity measures was tested as follows. The s-gram
length was set to two, because earlier research [3,5] suggests it to be the most
appropriate gram length for CLIR. Padding was used at both ends of the strings
and the length of the padding string was (n − 1)(k + 1), where n is the gram
and k the skip length. Also, s-grams with no padding and padding only at
the beginning of strings were tested for two language pairs (English-German
and German-English) with CCI {{0}, {1, 2}} to see how the padding affects the
results. For each search key 100 best translations were produced, with exception
of ties in the last place when all translations within the cohort of equal proximity
values were included into the result set. Translations found later were not taken
into consideration, as taking more than 2-4 s-gram translation candidates into
a query deteriorates its performance [15].

This study concentrates on comparing the proximity measures. Exhaustive
testing of all possible CCIs, proximity measures and language pairs was not
sensible or even possible within this study. If skip lengths 0 – 4 were considered,
there would be 25 − 1 = 31 possible gram classes, and thus about 231 − 1, about
two billion, combinations as possible CCIs. To be able to restrict the scope
of the study to some evidently useful CCIs, statistics on typical cross-lingual
spelling variation between French and English and German and English were
used. Pirkola et al. [16] generated statistical transformation rules that model
typical character changes and correspondences between several language pairs.
The rules were generated from over 10,000 term pairs of medical words. They
model the same cross-lingual spelling variation phenomenon as the s-grams, but
are based on an independent method and character correspondence statistics
from an independent large dataset. We mapped a subset of ca 200 most frequent
transformation rules to the corresponding gram classes for both language pairs
and calculated the frequency of each gram class in the data.
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Table 1. The number of transformation rules corresponding to each gram class for
French to English and German to English cross-lingual spelling variants

Gram class {1} {0, 1} {1, 2} {0, 2} {2} {1, 3} {0, 3} {2, 3} {3}
Fr-En 56 65 44 11 12 7 3 5 3
Ge-En 117 37 36 20 7 3 4 1 0
Total 173 102 80 31 19 10 7 6 3

Table 2. The twelve CCIs used for the comparison of the proximity measures. Note
that CCI0 corresponds to the traditional n-grams. For CCI0 gram length of two and
three was experimented, for the remaining CCIs only gram length of two was used.

CCI0 {{0}} CCI4 {{0}, {1}} CCI8 {{0, 1}}
CCI1 {{0}, {0, 1}} CCI5 {{0}, {0, 1}, {1}} CCI9 {{0, 1, 2}}
CCI2 {{0}, {0, 1}, {1}, {1, 2}} CCI6 {{0}, {1}, {1, 2}} CCI10 {{1}}
CCI3 {{0}, {0, 1}, {1, 2}} CCI7 {{0}, {1, 2}} CCI11 {{1, 2}}

There were some differences between the language pairs, but the transfor-
mation rules that model character changes corresponding to the gram classes
{1}, {0, 1} and {1, 2} were clearly the most common ones in the data. Table 1
summarizes the results for both languages. Based on this it seemed reasonable
to use only gram classes with spanning length of two or less when matching
cross-lingual spelling variants. Changes corresponding to the remaining clearly
less frequent gram classes were thus discarded. Keskustalo et al. [5] reached an
equal conclusion, when deciding which gram classes they should use.

Based on the results of Table 1, the gram classes {1}, {0, 1}, and {1, 2} and
gram class {0} corresponding to the n-grams were selected as the base gram
classes for the tested CCIs. In total, the twelve CCIs of Table 2 were used in
the tests. For CCI0, in addition to the gram length of two (di-grams), also gram
length of three (tri-grams) was used. This set of CCI0 - CCI11 is a representative
set on effective s-grams, and by using this set a reliable picture of various s-gram
proximity measures in s-gram matching can be obtained.

To compare the performances of the proximity measures, the average precision
(AP, or reciprocal rank - as there is only one correct translation, these are the
same) was calculated for each proximity measure at three different levels: among
top 2, top 5 and top 100 highest ranked translation candidates. If the correct
translation was in a cohort of words sharing the same proximity value with the
target word, the average rank of the cohort was used. The top 2 and top 5 levels
were the most interesting ones, as more translation candidates would deteriorate
the query performance. The Friedman test [17] was used to test the statistical
significance of the differences between the proximity measures. Below, statisti-
cally significant difference corresponds to α-level α = 0.01, statistically highly
significant difference to α-level α = 0.001, and statistically almost significant
α-level α = 0.05.
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Fig. 1. The medians of APs of the proximity measures at top 5 translation candidates
for all CCIs over all language pairs, zoomed in for clarity

4 Results

4.1 CCIs and Proximity Measures over All Languages

The results for all proximity measures and CCIs over all language pairs are pre-
sented in Fig. 1 and in Table 3 as the medians of AP when the top 5 translation
candidates are considered. The results in top 2 and top 100 followed the same
trends and are not presented due to the lack of space. The results divide the
s-grams into two groups: the s-grams with CCIs that combine several s-gram
types into a gram class and the s-grams where only one s-gram type is present
in each gram class. In the former group (CCIs 1, 2, 3, 5, 6, 7, 8, 9, 11), the binary
proximity measures performed clearly better than their non-binary counterparts,
i.e., Jaccard performed better than Tanimoto, binary cosine better than cosine
and Hamming better than L1. The differences between Jaccard and Tanimoto
and binary cosine and cosine were statistically significant for 7 of these 9 CCIs for
8 language pairs out of 11. For CCI5 the differences were statistically significant
only for five language pairs (EN-FI, EN-GE, FI-EN, FR-EN, IT-EN) of which
two (EN-GE, FR-EN) were only almost significant. For CCI6 the differences
were statistically significant for seven language pairs (EN-FI, EN-GE, FR-EN,
GE-EN, IT-EN, SP-EN, SW-EN), two of these (IT-EN, SW-EN) being almost
significant. For the two closest related language pairs (GE-SW and SW-GE)
the differences were not statistically significant. Also, for EN-SW the differences
were statistically significant only for CCIs 1, 2, 8, and 9. The differences be-
tween Hamming and L1 were typically not statistically significant. The three
best measures Dice, Jaccard and binary cosine performed similarly and clearly
better than the rest of the proximity measures. L1 and Hamming were the worst
proximity measures. The performance difference between them and the other
proximity measures was statistically significant for all language pairs and CCIs.

In the latter group, including the adjacent di-grams and tri-grams (CCI0)
and the s-grams with CCI4 and CCI10, the difference between the binary and
non-binary proximity measures was smaller and always to the advantage of the
non-binary measures. These differences were nevertheless never statistically sig-
nificant. Tanimoto was the best proximity measure, while L1 and Hamming were
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Table 3. The medians of the APs of the proximity measures among top 5 translation
candidates for all CCIs over all language pairs. The best proximity measures for each
CCI are in bold. Tanimoto coefficient performs best for n-grams and s-grams with
CCI10 and Dice coefficient performs best for the s-grams with CCI’s that combine
several s-gram types into more general gram classes.

Proximity measure
CCI Cos BinCos Tanimoto Jaccard L1 Hamming Dice

di-grams 0.5490 0.5382 0.5493 0.5454 0.5100 0.5070 0.5454
CCI1 0.5417 0.5655 0.5475 0.5678 0.5349 0.5418 0.5683
CCI2 0.5627 0.5755 0.5629 0.5774 0.5522 0.5506 0.5795
CCI3 0.5549 0.5774 0.5573 0.5807 0.5522 0.5504 0.5810
CCI4 0.5708 0.5699 0.5715 0.5715 0.5355 0.5343 0.5726
CCI5 0.5624 0.5760 0.5647 0.5811 0.5371 0.5449 0.5819
CCI6 0.5638 0.5816 0.5670 0.5839 0.5490 0.5486 0.5855
CCI7 0.5656 0.5781 0.5637 0.5818 0.5518 0.5469 0.5821
CCI8 0.5208 0.5539 0.5214 0.5567 0.5265 0.5258 0.5567
CCI9 0.4939 0.5448 0.4958 0.5465 0.5392 0.5276 0.5465
CCI10 0.5417 0.5373 0.5446 0.5418 0.5142 0.5114 0.5418
CCI11 0.5380 0.5592 0.5382 0.5585 0.5429 0.5279 0.5585
tri-grams 0.5280 0.5272 0.5296 0.5296 0.4913 0.4891 0.5296

MEDIAN 0.5490 0.5655 0.5493 0.5678 0.5371 0.5343 0.5683

the worst ones the difference being always statistically significant. n-grams per-
formed clearly worse than the s-grams with CCIs combining s-gram types into
more general gram classes. The s-grams with CCI4, combining two gram classes
of a single s-gram type, performed better. This suggests that the s-gram tech-
nique benefits from combining gram classes into one CCI. It also seems that the
more s-gram types were combined into a gram class, the more the performance
of Tanimoto and cosine suffered. The CCI9 is an example of this, showing a
notable fall in the performance of Tanimoto and cosine in Fig. 1.

4.2 Results for Each Language Pair

The results in Fig. 1 and in Table 3 are medians over all the language pairs tested.
To give a better picture of the results for the different language pairs, a typical
CCI was selected to represent each group. CCI6 represents the s-grams that
combine several s-gram types in the gram classes. The results are presented for
all language pairs in Fig. 2 (a) as AP among the top 5 translation candidates. The
binary proximity measures performed better than their non-binary counterparts.
Differences between Jaccard and Tanimoto and binary cosine and cosine were
statistically significant for 7 language pairs, as mentioned above (not for FI-
EN, SW-GE, GE-SW, EN-SW). Dice, Jaccard and binary cosine were the best
proximity measures, while L1 and Hamming were the worst ones. The differences
between these were consistently statistically significant. Fig. 2 (b) presents the
results for CCI0 di-grams representing the other class of s-grams as AP among
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Fig. 2. (a) The AP of the proximity measures at top 5 for all language pairs for the
s-grams with CCI6. (b) The AP of the proximity measures at top 5 for all language
pairs for traditional di-grams (CCI0). Both figures are zoomed in for clarity.

the top 5 translation candidates. The results were scattered depending on the
language pair, though still in line with the median results presented in Table 3
and Fig. 1. The non-binary proximity measures (Tanimoto and cosine) performed
on average better than their binary counterparts, but the differences were not
statistically significant. Hamming distance and L1 were the worst measures, with
statistically significant difference to the other proximity measures. Tri-grams
performed generally worse than di-grams.

4.3 Padding

The differences between the binary and non-binary proximity measures were
clearly reduced when no padding or padding only at the beginning of the strings
were used. When no padding at all was used, the results deteriorated for all prox-
imity measures and more for the binary than the non-binary proximity measures.
For cosine and Tanimoto, the results even improved slightly for one of the two
language pairs (GE-EN). Thus the differences between corresponding binary and
non-binary proximity measures were reduced and were not statistically signifi-
cant. When only the left-side padding was used, the overall effect on results was
a little unclear: for English to German matching the best results deteriorated
slightly, but for German to English the top results improved slightly. The non-
binary proximity measures improved in comparison to their binary counterparts
and the differences between them were not statistically significant. L1 and Ham-
ming suffered both from not using padding and also from using padding only
at the beginning of the strings. They were always clearly the worst proximity
measures with a statistically highly significant difference between them and the
other proximity measures.

5 Discussion

To sum up the results, the binary proximity measures performed better than
their non-binary counterparts in s-gram based matching of OOV words. Dice,
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Jaccard and binary cosine performed best and any of these measures could be
beneficially used. The difference between the binary and non-binary proximity
measures seems to depend on the CCI used: when a number of different s-gram
types were combined into a more general gram class (such as {{1, 2}}), the binary
proximity measures clearly outperformed their non-binary counterparts. For the
CCIs where only one s-gram type was present in each gram class (the traditional
n-grams, CCI4, and CCI10), the differences between the binary and non-binary
proximity measures vanished. Also, the more s-gram types were combined into
a gram class, the more the performance of Tanimoto and cosine suffered.

This seems to be linked to the padding used with s-grams: When several
s-gram types are combined into one gram class and padding was used, identi-
cal s-grams from both ends of strings are formed repeatedly and become over-
weighted when using non-binary proximity measures. As character changes are
especially common at the ends of cross-lingual spelling variants (e.g. antiseptic
- antiseptique), this damages the performance of the non-binary proximity mea-
sures. Removing the padding is nevertheless not a guarantee of success as it may
affect the overall performance of the s-gram matching negatively. Keskustalo
et al. [5] have found earlier that whether the padding on both sides of strings or
only at the beginning performs best depends on the language pair at hand. For s-
gram matching implementations using non-binary s-gram profiles, the repetitive
occurrences of s-grams including padding characters should be ignored.

L1 and its binary counterpart Hamming distance did not perform well and
they do not seem suitable proximity measures for this application area. With
these proximity measures the distance between two strings is calculated as the
mean value of the different s-grams in the gram classes. This causes the measures
to favor short words as no s-grams can be formed of one letter words (without
padding) and none or very few of two or three letter words. Therefore, L1 and
Hamming give more non-relevant short words at the top ranks in the result lists
than the other proximity measures. This is also reflected in the fact that the
results for L1 and Hamming deteriorated when the padding was removed.

Non-binary proximity measures are suitable for applications where a lot of
repetition of s-grams occur (e.g. gene matching). In cross-lingual OOV word
matching the alphabet used is rather large and the strings processed quite short.
Consequently the repetition of s-grams is not extensive and therefore the binary
and non-binary s-gram profiles approach each other. Therefore, no advantage is
achieved with the use of the non-binary proximity measures.
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Abstract. We introduce a novel alphabet sampling technique for speed-
ing up both online and indexed string matching. We choose a subset of
the alphabet and select the corresponding subsequence of the text. On-
line or indexed searching is then carried out on that subsequence, and
candidate matches are verified in the full text. We show that this speeds
up online searching, especially for moderate to long patterns, by a factor
of up to 5. For indexed searching we achieve indexes that are as fast
as the classical suffix array, yet occupy space less than 0.5 times the
text size (instead of 4) plus text. Our experiments show no competitive
alternatives in a wide space/time range.

1 Introduction

The string matching problem is to find all the occurrences of a given pattern
P = p0p1 . . . pm−1 in a large text T = t0t1 . . . tn−1, both being sequences of
characters drawn from an alphabet Σ of size σ.

One approach to string matching is online searching, which means the text is
not preprocessed. Thus these algorithms need to scan the text when searching
and their time cost is of the form O(n · f(m)). The worst-case complexity of the
problem is Θ(n), first achieved by the Knuth-Morris-Pratt algorithm [9]. The
average complexity of the problem is Θ(n logσ m/m), achieved for example by
the BDM algorithm [3]. Other non-optimal algorithms such as the Boyer-Moore-
Horspool (BMH) algorithm [7] are very competitive in practice.

The second approach, indexed searching, tries to speed up searching by pre-
processing the text and building a data structure that allows searching in O(m ·
g(n) + occ · h(n)) time, where occ is the number of occurrences of the pattern
in the text. Popular solutions to this approach are suffix trees and suffix arrays
[10]. The first gives an O(m + occ) time solution, while the suffix array gives an
O(m log n + occ) time complexity which can be improved to O(m + occ) using
extra space [1]. The problem of these approaches is that the space needed is too
large for many practical situations (4–20 times the text size). Recently, a lot
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of effort has been spent to compress these indexes [13] obtaining a significant
reduction in space, but requiring considerable implementation effort [5].

In this work we explore sampling the text by removing a set of characters from
the alphabet. We first apply an online algorithm to this sampled text, obtaining
an approach in between online searching and indexed searching. We call this kind
of structure a semi-index. This is a data structure built on top of a text, which
permits searching faster than any online algorithm, yet its search complexity
is still of the form O(n · f(m)). To be interesting, a semi-index should be easy
to implement and require little extra space. Several other semi-indexes exist in
the literature, even without using that name. For example, q-gram indexes [12],
directly searchable compression formats [11], and other sampling approaches.

We also consider indexing the sampled text. We build a suffix array indexing
the sampled positions of the text, and get a sampled suffix array. This approach
is similar to the sparse suffix array [8] as both index a subset of the suffixes, but
the different sampling properties induce rather different search algorithms.

A challenge in our method is how to choose the best alphabet subset to
sample. We present analytical results, supported by experiments, that simplify
this process by drastically reducing the number of combinations to try. We show
that it is sufficient in practice to sample the least frequent characters up to some
limit. In both cases, online and indexed, our sampling technique significantly
improves upon the state of the art, especially for relatively long search patterns.
For example, online searching is speeded up by a factor of up to 5 on English
text. For indexed searching we achieve indexes that are as fast as the classical
suffix array, yet occupy less than 0.5 times the text size (instead of 4) plus text.

2 Text Sampling

The main idea of our online approach is to choose a subset of the alphabet
to be the sampled alphabet and then to build a subsequence of the text by
omitting all characters not in the sampled alphabet. At regular intervals we
map the positions of the sampled text to their corresponding positions in the
original text. When searching, we build the sampled pattern from the pattern
by omitting all characters not in the sampled alphabet and then search for this
sampled pattern in the sampled text. For each candidate returned by this search
we verify a short range of the original text with the help of the position mapping.

Let T = t0t1 . . . tn−1 be the text over the alphabet Σ and Σ̃ ⊂ Σ the sampled
alphabet. The proposed semi-index is composed of the following items:

– Sampled text T̃ : Let T̃ = ti0ti1 . . . tiñ−1 be the sequence of the ti’s that
belong to the sampled alphabet Σ̃. The length of the sampled text is ñ.

– The position mapping M : A table of size �ñ/q� where M [i] maps the q · i’th
character of T̃ to its corresponding position in T so T̃ [q · i] = T [M [i]].

Given a pattern P = p0p1 . . . pm−1, search on this semi-index is carried out as
follows. Let P̃ = pj0pj1 . . . pjm̃−1 be the subsequence of pi’s that belong to the
sampled alphabet Σ̃. The length of the sampled pattern is thus m̃. The sampled
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Text

Sampled Text
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Sampled Pattern

1 6 Mapping

Omitting a’s Omitting a’s

Fig. 1. Example of preprocessing

search (T̃ = t̃0t̃1 . . . t̃ñ−1, P̃ = p̃0p̃1 . . . p̃m̃−1, T = t0t1 . . . tn−1,
P = p0p1 . . . pm−1, j0, q, M [0 . . . ñ/q])

1. for (i ← 0 to σ − 1) d[i] ← m̃
2. for (i ← 0 to m̃ − 2) d[p̃i] ← m̃ − 1 − i
3. pos ← 0
4. while (pos < ñ − m̃)
5. j ← m̃ − 1
6. while (j ≥ 0 and t̃pos+j = p̃j) j ← j − 1
7. if (j = −1)
8. Check for occurrence from M [pos/q] + (pos mod q) − j0
9. to M [pos/q + 1] − (q − pos mod q) − j0
10. pos ← pos + d[t̃pos+m̃−1]

Fig. 2. Searching the sampled text for a sampled pattern with the BMH algorithm

text T̃ is then searched for P̃ , and for every occurrence, the positions to check in
the original text are delimited by the position mapping M . If the sampled pattern
is found in position ir in T̃ , the area T [M [ir/q] + (ir mod q) − j0 . . . M [ir/q +
1] − (q − ir mod q) − j0] is checked for possible startings of real occurrences.

For example, if the text is T = abaacabdaa, the sampled text built omitting
the a’s (Σ̃ = {b, c, d}) is T̃ = t1t4t6t7 = bcbd. If we map every other position in
the sampled text, the position mapping M is {1, 6}. For searching the pattern
acab we omit the a’s and get P̃ = p1p3 = cb. We search for P̃ = cb in T̃ = bcbd,
finding an occurrence at position 1. The previous mapped position is M [0] = 1, so
t̃0 corresponds to t1, and the next mapped position is M [1] = 6, so t̃2 corresponds
to t6. Because the first sampled character in P is in position 1, we verify the
area 1 . . . 4 in the original text finding the match at position 3. Preprocessing for
the text and pattern of the previous example is shown in Fig. 1.

Because the sampled patterns tend to be quite short, we implemented the
search phase with the BMH algorithm [7], which has been found to be fast in
such settings [14]. Figure 2 shows the algorithm for this basic method.

Although the above scheme works well for most of the patterns, it is obvi-
ous that there are some bad patterns which would be searched faster in the
original text. The average complexity of the BMH algorithm is O(n(1/m +
1/σ)) = O(n/ min(m, σ)) assuming a uniform and independent distribution of
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the characters of the alphabet [2]. If the distribution is not uniform, a better ap-
proximation is to replace σ by the the effective alphabet size σ̄, which is defined
as the inverse of the probability of two random characters matching, i.e. 1/σ̄ =∑

c∈Σ p2
c , where pc is the empirical probability of occurrence of the character c.

To determine if it would be faster to just search the pattern in the original
text we tried calculating the ratios n/ min(m, σ̄) and n · (1/m + 1/σ̄) both for
the sampled text and pattern and for the original text and pattern. If the ratio
is lower for the original text and pattern, we search only in the original text.
The results were better using the ratio n/ min(m, σ̄).

3 Optimal Sampling for Online Search

A question arises from the previous description of our sampling method: How
to form the sampled alphabet Σ̃? We will first analyze how the average running
time of the BMH algorithm changes when we sample the text and then, based on
this, we will develop a method to find the optimal sampled alphabet. Throughout
this section we assume that the characters are independent and we analyze the
approach for a general pattern not known when preprocessing the text.

Let us define bA =
∑

c∈A pc and aA =
∑

c∈A p2
c where A ⊂ Σ. Now the length

of the sampled text will be bΣ̃n, the average length of the sampled pattern bΣ̃m
(assuming it distributes similarly to the text) and the probability of two random
characters matching in the sampled text aΣ̃/b2

Σ̃
. Given the average complexity

of the BMH algorithm, O(n(1/m+1/σ̄)), the average search cost in the sampled
text is

O
(

bΣ̃n

(
1

bΣ̃m
+

aΣ̃

b2
Σ̃

))
= O

(
n

(
1
m

+
aΣ̃

bΣ̃

))
.

When considering the verification cost we assume for simplicity that the map-
ping M contains the position of each sampled character in the original text, i.e.
q = 1. The probability that a position has to be verified is then

pver =
m∑

i=0

(
m

i

)
bi
Σ̃

(1 − bΣ̃)m−i

(
aΣ̃

b2
Σ̃

)i

=
(

aΣ̃

bΣ̃

+ 1 − bΣ̃

)m

.

If we assume that each verification costs O(m) then the cost of verification is

n · pver · O(m) = n ·
(

aΣ̃

bΣ̃

+ 1 − bΣ̃

)m

· O(m) .

The total cost of searching in our scheme is thus

O
(

n ·
(

1
m

+
aΣ̃

bΣ̃

+
(

aΣ̃

bΣ̃

+ 1 − bΣ̃

)m

· m
))

and hence the optimal sampled alphabet Σ̃ minimizes the cost per text character

E(Σ̃) =
1
m

+
aΣ̃

bΣ̃

+
(

aΣ̃

bΣ̃

+ 1 − bΣ̃

)m

· m
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which can be divided into the search cost in the sampled text 1/m + aΣ̃/bΣ̃ and
the verification cost (aΣ̃/bΣ̃ + 1 − bΣ̃)m · m.

The verification cost always increases when a character is removed from the
alphabet so the search cost in the sampled text must decrease for the combined
cost to decrease. If R = Σ\Σ̃ is the set of removed characters, the function

hR(p) =
1
m

+
aΣ − aR − p2

1 − bR − p

gives the search cost in the sampled text, per text character, if an additional
character with probability p is removed. The derivative of hR(p) is

h′
R(p) = 1 − (1 − bR)2 − (aΣ − aR)

(1 − bR − p)2

which has exactly one zero pz = (1−bR)−
√

(1 − bR)2 − (aΣ − aR) in the interval
[0, 1−bR]. We can see that the function hR(p) is increasing until pz and decreasing
after that. Solving the equation hR(pR) = hR(0) we get pR = (aΣ−aR)/(1−bR).
So removing a single additional character decreases the search cost in the sampled
text only if the probability of occurrence for that character is larger than pR.
Otherwise both the search cost in the sampled text and the verification cost will
increase and thus removing the character is not beneficial.

Suppose now that we have already fixed whether we are going to keep or
remove each character with probability of occurrence higher than pc and now we
need to decide if we should remove the character c. If pc > pR, we will need to
explore both options as removing the character will decrease search cost in the
sampled text and increase verification cost. However, if pc < pR we know that if
we added only c to R the searching time in the sampled text would also increase
and therefore we should not remove c. But could it be beneficial to remove c
together with a set of other characters with probabilities of occurrence less than
pR? In fact it cannot be. Suppose that we remove a character c with probability
pc < pR. Now the new removed set will be R′ = R∪{c} so we get aR′ = aR + p2

c

and bR′ = bR + pc. Now the new critical probability will be

pR′ =
aΣ − aR′

1 − bR′
=

aΣ − aR − p2
c

1 − bR − pc
.

We know that hR(pc) > hR(pR) = hR(0) because pc < pR. Therefore

1
m

+
aΣ − aR − p2

c

1 − bR − pc
>

1
m

+
aΣ − aR

1 − bR

and so

pR′ =
aΣ − aR − p2

c

1 − bR − pc
>

aΣ − aR

1 − bR
= pR .

Thus even now it is not good to remove a character with probability less than
the critical value pR for the previous set and this will again hold if another char-
acter with a small probability is removed. Therefore we do not need to consider
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Ropt = {}
sort characters of Σ in descending order
find_opt(0, {})
return Ropt

find_opt(i, R)
1. if (i = σ)
2. if (E(Σ\R) < E(Σ\Ropt))
3. Ropt = R
4. else
5. pR = aΣ−aR

1−bR

6. if (pi > pR)
7. find_opt(i + 1, R ∪ {i})
8. find_opt(i + 1, R)
9. else
10. find_opt(σ, R)

Fig. 3. Pseudo code for searching for the optimal set of removed characters

removing characters with probabilities less than pR. Note however that removing
a character with a higher probability will decrease the critical probability pR and
after this it can be beneficial to remove a previously unbeneficial character. In
fact, if the sampled alphabet contains two characters with different probabilities
of occurrence, the probability of occurrence for the most frequent character in
the sampled alphabet is always larger than pR. Thus it is always beneficial for
searching in the sampled text to remove the most frequent character.

The above can be applied to prune the exhaustive search for the optimal
set of removed characters. First we sort the characters of the alphabet in the
decreasing order of frequency. We then figure out if it is beneficial for searching
in the sampled text to remove the most frequent character not considered yet.
If it is, we try both removing and not removing that character and proceed
recursively for both cases. If it is not, we prune the search here because none of
the remaining characters should be removed. Figure 3 gives the pseudo code.

In practice when using this pruning technique the number of examined sets
drops drastically as compared to the exhaustive search, although the worst case
is still exponential. For example, the number of examined sets drops from 261 to
2,810 when considering the King James Bible as the text.

Table 1. Predicted and observed optimal number of removed characters for the King
James Bible. The predicted optima are computed with the algorithm suggested by the
analysis, which in our experiments always returned a set of most frequent characters.

m 10 20 30 40 50 60 70 80 90 100
Predicted optimal number of removed characters 3 7 9 11 12 13 14 15 16 16
Observed optimal number of removed characters 3 7 11 13 14 15 17 17 16 18
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In our experiments, the optimal set of removed characters always contained
the most frequent characters up to some limit depending on the length of the
pattern, as shown in Table 1. Therefore a simpler heuristic is to remove the k
most frequent characters for varying k and choose the set that predicts the best
overall time. However, if the verification cost is very high for some reason (e.g.
going to disk to retrieve the text, or uncompressing part of it) it is possible that
the optimal set of removed characters is not a set of most frequent characters.

4 Sampled Suffix Array

To turn the sampling approach into an index, we use a suffix array to index the
sampled positions of the text. When constructing the suffix array, only suffixes
starting with a sampled character will be considered, but the sorting will still be
done considering the full suffixes. The resulting sampled suffix array is like the
suffix array of the original text where suffixes starting with unsampled characters
have been omitted. The construction of the sampled suffix array can be done in
O(n) time using O(ñ) words of space if we apply the construction technique of
the word suffix array [4]. The sampled suffix array for the text T = abaacabdaa
is shown in Fig. 4, where the sampled alphabet is Σ̃ = {b, c, d}.

Search on the sampled suffix array is carried out as follows. Given a pattern
P = p0p1 . . . pm−1 we first find the first sampled character of the pattern. Let this
be at index j. The pattern is now divided into the unsampled prefix p0 . . . pj−1
and the suffix starting with the first sampled character pj . . . pm−1. We search
the sampled suffix array for this suffix of the pattern like in an ordinary suffix
array. Each candidate match returned by this search will then be verified by
comparing the unsampled prefix against the text.

We could also construct the suffix array directly for the sampled text but this
would entail more verifications as the unsampled characters of the pattern suffix
would not be required to match. We would also need to store the sampled text,
or to skip the unsampled characters in the original text each time we read a
suffix.

The sampled suffix array resembles a sparse suffix array [8], which indexes
regularly sampled text positions. However, we only need to make one search on

6

4

7

1 baacabdaa

bdaa

cabdaa

daa

0 1 2 3 4 5 6 7 8 9
T = a b a a c a b d a a

Sampled SA

Fig. 4. The sampled suffix array for the text T = abaacabdaa with the sampled al-
phabet Σ̃ = {b, c, d}. The sorted suffixes are only shown for convenience. They are not
part of the structure.
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the sampled suffix array, while using a sparse suffix array one would need to
make q searches if the sparse suffix array indexes every q’th position. On the
other hand, the sampled suffix array can only be used for patterns that contain
at least one sampled character whereas the sparse suffix array can be used if
the pattern length is at least q. The variance of the search time when using the
sampled suffix array is also larger than when using a sparse suffix array because
in the sampled suffix array we have much less control over the length of the
string that is used in the suffix array search.

5 Optimal Sampling for Suffix Array

Suppose that we have enough space to create the sampled suffix array for b · n
suffixes where 0 < b < 1. How should we now choose the sampled alphabet
Σ̃ so that the search time would be optimal? Obviously bΣ̃ = b but we still
have a number of possible sampled alphabets to choose from. The search on the
suffix array will compare the suffix of the pattern starting with the first sampled
character against a text string O(log n) times. The comparison time is minimized
when the probability of matching for the first sampled character is minimized.
Thus the sampled alphabet Σ̃ should be a set of least frequent characters.

Let us then consider the verification. The probability that two random char-
acters are unsampled and match is aR = aΣ − aΣ̃ where R is the set of removed
characters. Thus the average cost of a single verification is 1/(1 − aΣ + aΣ̃).

The probability that the suffix of the pattern starting with the first sampled
character matches a random string of equal length is

bΣ̃

aΣ̃

b2
Σ̃

(aΣ)ms−1 =
aΣ̃

bΣ̃

(aΣ)ms−1

where ms is the length of the suffix starting with the first sampled character.
This is also the probability of verification per character in the original text. The
average cost of verification per text character is then

aΣ̃

bΣ̃

(aΣ)ms−1 · 1
1 − aΣ + aΣ̃

=
aΣ̃

1 − aΣ + aΣ̃

· (aΣ)ms−1

bΣ̃

.

Because we attempt to determine the optimal sampled alphabet such that bΣ̃ =
b, bΣ̃ and the distribution of ms do not depend on which characters we remove.
Thus we should minimize f(aΣ̃) = aΣ̃/(1−aΣ +aΣ̃). The derivative of f(aΣ̃) is

f ′(aΣ̃) =
1 − aΣ

(1 − aΣ + aΣ̃)2
> 0

so the verification cost increases when aΣ̃ increases. To minimize aΣ̃ the sampled
alphabet Σ̃ should be a set of least frequent characters. This also minimizes the
total cost because also the suffix array search cost is minimized by this choice.
Interestingly, this corresponds to the simplified heuristic we proposed in Sect. 3.
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6 Experiments

6.1 Semi-index

To determine the sampled alphabet, we ran the exact algorithm of Sect. 3 for dif-
ferent pattern lengths to choose the sampled alphabet that produces the smallest
estimated cost E(Σ̃). For all pattern lengths the algorithm recommended remov-
ing a set of most frequent characters. To see how well these results correspond
to practice, we tested the semi-index approach by removing the k most frequent
characters from the text for varying k. We used a 2 MB prefix of the King James
Bible as the text, and the patterns are random substrings of the text. For each
pattern length 500 patterns were generated, and the reported running times are
averages over 200 runs with each of the patterns. The most frequent characters
in the decreasing order of frequency were “␣ethaonsirdlfum,wycgbp” where ␣ is
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Fig. 5. The running time for various pattern lengths for the basic method. The left
figure shows the mean running time; the right shows the median, minimum, maximum,
and 25% and 75% quartiles.
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Fig. 6. The running time for various pattern lengths for the tuned version where search-
ing in the sampled text is skipped if it looks like searching in the original text is faster.
The left figure shows the mean running time; the right figure shows the median, mini-
mum, maximum, and 25% and 75% quartiles.
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the space character. The tests were run on a 1.0 GHz AMD Athlon dual core
processor with 2 GB of memory, 64 kB L1 cache and 512 kB L2 cache, running
Linux 2.6.23. The code is in C and compiled with gcc using -O3 optimization.

Figure 5 shows the results of these experiments with the basic method map-
ping every 64’th sampled character to its position in the original text. If we make
the mapping sparser the running time will start to increase a little earlier, but
the effect is quite mild. The results for zero removed characters correspond to the
original BMH algorithm. As we can see, the semi-index is up to 5 times faster,
especially when the patterns are long. Figure 5 also shows that, for each pattern
length, there is an optimal number of characters to remove. A comparison of
these optima and those given by the analysis is shown in Table 1. As we can see,
the analysis gives reasonably good results although it recommends removing too
few characters with long patterns, because we estimated the verification time
quite pessimistically. When more characters are removed it is unlikely that we
would need to scan m characters for each verified position.

The results for the tuned method, where we search the original text if the
ratio n/ min(m, σ̄) looks unfavorable for searching the sampled text, is shown
in Fig. 6. Again we are mapping every 64’th sampled character to its position
in the original text. As we can see, the optimal number of removed characters
is closer to being the same for all pattern lengths than in the basic approach.
For example by choosing to remove the 13 most frequent characters, we would
do reasonably well for all pattern lengths using just 0.18 times the original text
size to store the sampled text. Comparing Figs. 5 and 6 we see that the median
running times are almost the same, but the maximum and the 75% quartile are
lower for the tuned method. This is also reflected in the average values.

6.2 Sampled Suffix Array

Figure 7 shows the results obtained by comparing our sampled suffix array
against our implementation of the sparse suffix array [8] and the locally com-
pressed suffix array (LCSA) [6], an index that compresses the differential suffix
array using Re-Pair. Note that when the space usage of the sampled or sparse
suffix array is maximal (3.25 times the text) both of them index all suffixes and
behave exactly like a normal suffix array. The experiments were run on a Pentium
IV 2.0 GHz processor with 2 GB of RAM running SuSE Linux with kernel 2.4.31.
The code was compiled using gcc version 3.3.6 with -O9 optimization. We used
50 MB texts from the PizzaChili site, http://pizzachili.dcc.uchile.cl.

Our approach performs very well for moderate to long patterns. Already for
m = 50 it starts to dominate the other alternatives. For m = 100 the sampled
suffix array behaves almost like a suffix array (and much faster than the other
methods), even when using less than 0.5 times the text size (plus text). The
novel compressed self-indexes [5,13] are designed to use much less space (e.g.
0.8 times the text size including the text) but take much more time, and thus
are inappropriate for this comparison. We chose the LCSA as an alternative that
compresses less but is much faster than the other self-indexes [6]. Its compression
performance varies widely with the text type, and is not particularly good on
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Fig. 7. Search times for the sampled and sparse suffix arrays and LCSA for XML,
English and protein data. LCSA uses little space for XML data but it is much slower
than the other approaches, so these results are not shown. The top figures show results
for pattern length 20 and the bottom figures show the results for pattern lengths 50
and 100. The space fraction includes that of the text, so it is of the form 1+ index size

text size .

English and Proteins. On XML it requires extra space equal to the size of the
text, yet its times are much higher and fall well outside the plot (and this is still
much faster than the other self-indexes!). The LCSA, on the other hand, would
perform better on shorter patterns, where our index is not competitive.

7 Conclusions and Further Work

We have presented two sampling approaches to speed up string matching with
long patterns. The sampled semi-index profits from nonuniform character distri-
bution to gain a speedup over online searching, while the sampled suffix array
works also with a uniform distribution. It is also worth noting that in the semi-
index approach the sampled text is an internal structure of the semi-index so
any transform, like compression or code splitting [15], could be applied to it.

The current approach is not applicable to small alphabets. To extend the
approach to smaller alphabets we could use q-grams. In the semi-index approach
we would then define a sampled alphabet for each (q − 1)-long context and the
sampled text would contain those characters that are sampled in the context
where they occur. When searching for a pattern, we must always discard the
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first q−1 characters of the pattern as their context is not known. Using q-grams
with the sampled suffix array is simpler. The sampled suffix array would just
index all suffixes starting with a sampled q-gram.

Another interesting direction to minimize the extra space of the semi-index is
to replace the original text by the subsequence of the non-sampled characters,
and use a bitmap to indicate the subset each symbol of T belongs to. With
rank/select capabilities [13] this bitmap replaces the current position mapping for
verification and permits searching on the sampled or the unsampled characters.
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Abstract. We consider the well known problem of pattern matching
under the Hamming distance. Previous approaches have shown how to
count the number of mismatches efficiently, especially when a bound is
known for the maximum Hamming distance. Our interest is different in
that we wish collect a random sample of mismatches of fixed size at
each position in the text. Given a pattern p of length m and a text t
of length n, we show how to sample with high probability c mismatches
where possible from every alignment of p and t in O((c + log n)(n +
m log m) log m) time. Further, we guarantee that the mismatches are
sampled uniformly and can therefore be seen as representative of the
types of mismatches that occur.

1 Introduction

Approximate pattern matching is one of the most studied problems in computer
science. Numerous measures of approximation have been developed over the years
with wide ranging applications from computer vision to bioinformatics. The chal-
lenge of approximate matching is that with every different way of measure the dis-
tance between two strings comes theneed todevelop often entirely novel techniques
to cope with the need for ever larger amounts of data to be processed efficiently.

One of the most common and simplest measures of approximation is the
Hamming distance. Given a pattern p of length m and a text t of length n, the
task is to return the number of mismatches between p and every substring of t
of length m. Much work has gone into fast solutions to this general problem as
well as a restricted version called k-mismatch where only distances up to k are
to be reported. However, in many situations it is desirable to know not only how
� Research supported in part by the Binational Science Foundation (BSF) and the

Israel Science Foundation (ISF).

A. Amir, A. Turpin, and A. Moffat (Eds.): SPIRE 2008, LNCS 5280, pp. 99–108, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



100 R. Clifford et al.

many mismatches occur but also to have some idea what the mismatches are.
Unfortunately, in the worst case no algorithm that returns all mismatches can
run in less than Θ(nm) time.

In order to be able to understand which mismatches occur it will therefore be
necessary to return a fixed sample of the mismatches at each alignment. We call
the problem we consider Mismatch Sampling and define it as follows. Given an
integer c, sample uniformly at random c distinct mismatches that occur between
the pattern and text at each possible alignment. Where the Hamming distance is
less than c, all mismatches are to be reported. Such samples will have a variety of
interpretations depending on the context but can be seen as representing typical
spelling errors when searching text or for example, common DNA mutations in
the context of bioinformatics. In the general case where the maximum Hamming
may be as large as m, we are not aware of any existing techniques which improve
on the naive Θ(nm) time algorithm in the worst case.

In the process of tackling the Mismatch Sampling problem, we also give a
faster randomised algorithm for the 1-mismatch problem which improves the
time complexity from O(n log m) to O(n + m logm). The 1-mismatch algorithm
is a powerful tool in its own right which has been used to develop related algo-
rithms for the k-mismatch with don’t cares problem [3] and generalised pattern
matching [9], for example. In the latter case, the new 1-mismatch algorithm can
be used as a direct replacement and in the former the same speedup applies if
the don’t cares occur only in the pattern.

2 Preliminaries

Let Σ be a set of characters which we term the alphabet and let t = t1t2 . . . tn ∈
Σn be the text and p = p1p2 . . . pm ∈ Σm the pattern. The terms symbol and
character are used interchangeably throughout. Similarly, we will sometimes
refer to a location in a string and synonymously at other times a position. We
will also refer to an alignment of the pattern and text which is to be understood
as the location in the text where the pattern starts to be compared.

Definition 1. Define HD(i) to be the Hamming distance between p and t[i, . . . ,
i + m − 1].

Our algorithms make extensive use of the fast Fourier transform (FFT). An
important property of the FFT is that in the RAM model, the cross-correlation,

(t ⊗ p)[i] def=
m∑

j=1

pjti+j−1, 0 ≤ i ≤ n − m + 1,

can be calculated accurately and efficiently in O (n log n) time both over the
integers Z, and a finite field Fq (see e.g. [4], Chapter 32). By a standard trick
of splitting the text into overlapping substrings of length 2m, the running time
can be further reduced to O (n log m).

We will often assume that the text is of length 2m in the presentation of
an algorithm or analysis in this paper and that the reader is familiar with this
splitting technique.
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In order to fix terminology we give a definition of the term with high proba-
bility which is also abbreviated to w.h.p. Our definition is at the stricter end of
those found in the literature when analysing randomised algorithms and has as
one consequence that the bounds still hold even if the algorithm is repeated a
polynomial number of times.

Definition 2. We say that an algorithm outputs the correct answer with high
probability or w.h.p. in time Θ (f(n)) if for every α ≥ 1, there exist a value
cα > 0 depending on α, such that after Θ (f(n)) time, the algorithm outputs the
correct answer with probability at least 1 − cα

nα . Note that the constant in the Θ
notation may also depend on α.

3 Related Work and Previous Results

Much progress has been made in finding fast algorithms for the Hamming dis-
tance problem over the last 20 years. O(n

√
m log m) time solutions based on

repeated applications of the FFT were given independently by both Abraham-
son and Kosaraju in 1987 [1, 7]. The major improvements have concentrated on
a bounded version of the problem called k-mismatch. In this problem an integer
bound k is given in advance and only Hamming distances less than or equal to k
need be reported. In 1985 Landau and Vishkin gave a beautiful O(nk) algorithm
that is not FFT based which uses constant time lowest common ancestor (LCA)
operations on the suffix tree of p and t [8]. This was subsequently improved in
[2] to O(n

√
k log k) time by a method based on filtering and FFTs again. Ap-

proximations within a multiplicative factor of (1 + ε) to the Hamming distance
can also be found in O(n/ε2 log m) time [6]. More recently, a randomised al-
gorithm for the k-mismatch problem with don’t cares was given which runs in
O(n(k + log m log k) log n) time and returns all the mismatches found [3].

The existing fast k-mismatch algorithms do also return the mismatches that
have been found and so might appear to be helpful for our problem of mismatch
sampling. However, in our case k can be as large as m which would give an
algorithm whose time complexity is no better than a naive O(nm) solution.
Despite this limitation, some the techniques we will employ are related to those
given in the previous work of [3]. The most important similarity is the idea of
sampling single mismatches using masked versions of the patterns. However the
solution we present is different and more efficient than those given before and as
we will show, a number of further technical obstacles need to be overcome before
we are able to provide a full solution for the Mismatch Sampling problem.

4 Results and New Techniques

We summarise the main results and discuss the techniques that were developed.

– The first result in Section 5 is a randomised algorithm that solves a problem
called 1-mismatch with constant probability in O(n + m log m) time. The
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1-mismatch problem is to find a single mismatch, where at least one occurs,
at every alignment. The algorithm gives the correct answer with constant
probability as long as the true Hamming distance HD(i), can be estimated
to within a constant factor.
The main new technique here is a sampling trick which masks out enough of
the pattern so that only one mismatch is likely to remain. This enables us
to sample single mismatches even when the true Hamming distance may be
considerably larger. In order to perform this sampling efficiently, we show
that the expensive cross-correlation calculations using FFTs need only be
performed over a constant number of arrays of length 2m. The only compu-
tations that have to be performed on an array of the length of the text run
in linear time. This saves a log factor in the overall time complexity as well
as being practically more efficient due to the overheads inherent in the FFT
calculations.
We also show that by performing all calculations modulo a large prime q, we
can ensure that the single mismatches found are chosen uniformly at random
from the set of mismatches at each alignment. The overall time complexity of
the algorithms is maintained by performing the FFT calculations and hence
the cross-correlations, over the field Fq.

– In Section 6 we present the first solution for the Mismatch Sampling problem
which samples min(c, HD(i)) mismatches w.h.p. at every alignment. The 1-
mismatch algorithm is repeatedly run over O(log m) stages with each stage
providing a different estimate of the Hamming distances between pattern
and text. This gives an O(c log n(n + m log m) log m) time algorithm. It is
important to note that the probabilistic bounds we give are particularly
strong and hold for every position in the text simultaneously.

– Finally we show how by using a k-mismatch algorithm as a preprocessing
step, we are able to speed up the Mismatch Sampling algorithm and still find
the correct answer w.h.p. The main idea is quickly to eliminate all positions
where the Hamming distance is less than 2c and then concentrate only on
those remaining positions. The overall time complexity is therefore reduced
to O((c + log n)(n + m log m) log m) time. We also show that the algorithm
can easily be made Las Vegas while maintaining the same running time
w.h.p.

5 Randomised 1-Mismatch

We first present the main algorithmic tool that will be used to sample distinct
mismatches. The 1-mismatch problem is to find a single mismatch, where at
least one occurs, between the pattern and every alignment of the text. The
overall strategy for Mismatch Sampling will be to repeatedly sample single mis-
matches from each alignment of the pattern and text using an algorithm for the
1-mismatch problem.

Our solution to the 1-mismatch problem is randomised and requires O(n +
m log m) time per iteration, returning a single sampled mismatch for each align-
ment where HD(i) ≥ 1, with constant probability. However, in order to find
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the mismatches with constant probability we will require an estimate within a
constant factor of the Hamming distance at each alignment of the pattern and
text. For the time being we assume that such an estimate is available and in
Section 6 we show that only O(log m) distinct estimates will be required overall.

In order to be able to sample individual mismatches we must find a way to
eliminate all other mismatches that could have occurred. We first create masked
versions of the pattern, so that an alignment of the masked pattern and the text
is likely to only contain one mismatch. To perform this efficiently we create a
random array r of length 2m. A sampling rate s is then defined which determines
the probability that a given rj will be set to zero. For a given sampling rate s,
the aim is for 1-mismatch to find single mismatches for every alignment i for
which s ≤ HD(i) ≤ 2s. The aim will be to mask out all but one mismatch
at each alignment by multiplying the difference (pj − ti+j−1) by the random
element ri+j−1.

We define the random array r such that each rj = 0 with probability ((s −
1)/s) and 1 with probability 1/s, rj is chosen independently and uniformly
at random from [1, . . . , q − 1]. We set q to be a prime which is larger than
max((maxi,j |(pj − ti)|), n)). We then compute the cross-correlation between the
pattern and r and an array r′ of the same length as r such that r′i = iri. This
gives two arrays A = p ⊗ r and C = p ⊗ r′. In this way, any values set to
zero in r will effectively eliminate the contribution from corresponding values in
p. The cross-correlation calculations over arrays of length 2m, need only to be
performed once per iteration of the 1-mismatch algorithm and do not require
the input text. In this way it can be seen as a preprocessing step.

For each position i in the text we then calculate
∑m

j=1 ri+j−1(i + j − 1)(pj −
ti+j−1)/

∑m
j=1 ri+j−1(pj − ti+j−1) with all calculations performed over the finite

field Fq. This calculation is the main body of the 1-mismatch algorithm and
Algorithm 1 describes the main steps assuming the text of length 2m. Using the
standard method of splitting the text into segments of length 2m with overlap
m described in Section 2 the algorithm can then be applied to the whole text.

For any i where there is exactly one mismatch between p and t[i, . . . , i+m−1],
E[i] is the location in t of the mismatch and E[i] − i + 1 is the location in p.
We can check for all the positions where there are no mismatches in linear time
using any of the well known exact matching algorithms. As we have the location
of the proposed mismatch in both the pattern and text a simple constant time
check per alignment will tell us if we have indeed found a mismatch.

Input: Pattern p, text t, random array r and prime q
Output: E[i] contains a single mismatch location with probability at least 1/2e
Compute A s.t. A[i] =

Pm
j=1 ri+j−1pj for each 1 ≤ i ≤ m;

Compute B s.t. B[i] =
Pm

j=1 ri+j−1ti+j−1 for each 1 ≤ i ≤ m;
Compute C s.t. C[i] =

Pm
j=1(i + j − 1)ri+j−1pj for each 1 ≤ i ≤ m;

Compute D s.t. D[i] =
Pm

j=1(i + j − 1)ri+j−1ti+j−1 for each 1 ≤ i ≤ m;
Compute E = (C − D)/(A − B);

Algorithm 1. Randomised 1-mismatch for text of length 2m
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Lemma 1. Algorithm 1 run over a text of length n takes O(n + m log m) time.

Proof. Calculating B, D and E for every partition of the text into sections
of length 2m takes O(n) in total. The time required to compute A and C is
dominated by the running time of the FFT on an array of length O(m) and is
therefore O(m log m). A and C do not need to be recalculated for each segment
of the text of length 2m. The total running time of Algorithm 1 is therefore
Θ (n + m log m)

Lemma 2. For a given alignment i and sampling rate s ≤ HD(i) ≤ 2s, Al-
gorithm 1 samples a single mismatch uniformly from the set of mismatches at
alignment i with probability at least 1/2e .

Proof. Suppose k = HD(i) ≥ 1, and let i1, ..., ik be the locations of the mis-
matches. Algorithm 1 will find a single mismatch i1 if ri+ij−1 = 0 for all
1 < j ≤ k and ri+i1−1 > 0. Therefore the probability of a single mismatch
being found is k

s (1 − 1
s )k which is bounded below by 1/2e. It is also possible

that the algorithm will accidentally find a mismatch even when there are two or
more mismatch positions available. However this can only increase the probabil-
ity of a mismatch being found. Finally, it is also possible that the denominator
(A−B) =

∑m
j=1 ri+j−1(pj − ti+j−1) = 0 in which case we know that there can’t

be a single mismatch at the relevant alignment and so we can simply discard the
result.

We now show that any mismatch found is selected uniformly at random. If
there is only one mismatch then the result follows immediately from the obser-
vation that the non-zero elements of r are chosen with equal probability. We
also know that each non-zero ri+j−1 is chosen uniformly from [1, . . . , q] and that
all calculations are being performed in Fq. As the sum of two uniform random
numbers in Fq is also a uniform random number, then it follows that if there is
in fact more than one mismatch from which (C − D)/(A − B) returns a valid
mismatch position, the mismatch will also be chosen uniformly at random.

Non-uniform Sampling

In our application we require that the 1-mismatch algorithm returns mismatches
chosen uniformly at random in order that the full Mismatch Sampling algorithm
will return uniformly random subsets of the possible mismatches. However, 1-
mismatch is also useful as a tool in its own right and there can be situations
where it is not required that the mismatches are chosen at random. In this case a
simplification to Algorithm 1 is possible which may provide a practical speedup.
Instead of choosing rj from a large range, we can simply make r a binary array
with rj set to 0 with probability (s − 1)/s) and 1 with probability 1/s. The
calculations, including the FFTs can then be performed over the integers instead
of the finite field Fq .

In this case, the mismatches found will no longer be chosen uniformly at
random from the possible mismatches at each alignment. Why this is true is
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Input: Pattern p, text t and an integer c
Output: O[i] =sample of up to min(HD(i), c) distinct mismatches
/* Iterate over O(log m) sample rates */

for 	 = 1 to log2 m do
for O(c log n) times do

Create random array r with sampling rate s = 2�−1;
Perform 1-mismatch(p, t, r);
Add new mismatches to output O;

end

end

Algorithm 2. Simple Mismatch Sampling

best shown with an example. Consider p = 4, 4, 4 and t = 3, 2, 3 so that E =
(r1 + 4r2 + 3r3)/(r1 + 2r2 + r3). In this case, if r has two or more non-zero
positions then the only mismatch that will be found is at position 2. However,
single mismatches will still be found with probability at least 1/2e although no
longer uniformly at random.

6 The Mismatch Sampling Algorithm

In this Section we will present the main Mismatch Sampling algorithm. This will
be done in two phases. In the first we will give a simple algorithm based on re-
peated applications of 1-mismatch which runs in O((c log n)(n+m logm) log m)
time and samples c mismatches w.h.p. wherever possible w.h.p. We will then
show how to speed up the approach using k-mismatch as a preprocessing stage
resulting in the final O((c + log n)(n + m logm) log m) Mismatch Sampling al-
gorithm. We also discuss how this algorithm can be made Las Vegas without
increasing the time complexity w.h.p.

To start, recall from Section 5 that the 1-mismatch algorithm requires an
estimate of the Hamming distance. In order to apply it to the full problem
where the Hamming distance at each alignment is not known, we will require
O(log m) stages overall. At each stage � we set the sampling rate s set to 2�−1.
The algorithm which is set out in Algorithm 2 will repeat 1-mismatch a sufficient
number of times at each sampling rate so that when the correct sampling rate is
found, we will find c mismatches w.h.p., assuming the true Hamming distance
is at least c.

The following Lemma shows that when the correct sampling rate is found for
a particular alignment i, all min(c, HD(i)) mismatches will be found w.h.p. The
proof is an application of the coupon collector’s problem (see e.g. [5]). Although
the usual analysis of the coupon collector’s problem would require only O(c log c)
iterations we set the number of iterations to O(c log n) in order to ensure that
the probabilistic bound holds at all alignments in the text simultaneously.
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Lemma 3. For all alignments i such that s ≤ HD(i) ≤ 2s, at least min(c,
HD(i)) distinct mismatches will be found after O(c log n) iterations of
1-mis-match w.h.p. and they will be chosen uniformly at random from the set of
mismatches alignment i.

We can now give the running time of the first Mismatch Sampling algorithm.

Theorem 3. For each 1 ≤ i ≤ n, Algorithm 2 samples min(c, HD(i)) mis-
matches w.h.p. uniformly at random in O((c log n)(n + m log m) log m) time.

Proof. From Lemma 3 we know that after O(c log n) iterations we will find
min(c, HD(i)) mismatches w.h.p. for s ≤ HD(i) ≤ 2s. Therefore, by repeating
this process for each of O(log m) sampling rates, s, we will find min(c, HD(i))
mismatches w.h.p. at every alignment i. Our algorithm performs O(c log n log m)
1-mismatch procedures. Therefore the overall running time is O(c log n(n +
m log m) log m).

Mismatch Sampling in O((c + log n)(n + m log m) log m) time

We now show the final speedup and give the full Mismatch Sampling algorithm.
First, we observe that some positions are easier to sample c mismatches from
than others. In particular, the following Lemma shows that if there are more
than 2c mismatches, we can sample c mismatches more quickly than before.

Lemma 4. For all alignments i such that s ≤ HD(i) ≤ 2s, and HD(i) ≥ 2c,
c distinct mismatches will be found after O(c + log n) iterations of 1-mismatch
w.h.p. and will be chosen uniformly at random from the set of mismatches at
alignment i.

Proof. By Lemma 2 we will find one mismatch at every iteration of 1-mismatch
algorithm with constant probability. Because HD(i) ≥ 2c, if we have found fewer
than c mismatches then probability that a discovered mismatch will be new is
at least 1/2. So at every iteration of the 1-mismatch algorithm we will found a
new mismatch with constant probability. So after O(c + logn) iterations we will
have found at least c mismatches w.h.p. As before, this bound holds at every
alignment in the text simultaneously.

The second part of the improvement is to eliminate all the alignments where
fewer than 2c mismatches occur. This can be done by using the k-mismatch
algorithm of Landau and Vishkin [8] and setting k = 2c. After this preprocess-
ing step we will have found min(c, HD(i)) mismatches for all alignments where
HD(i) ≤ 2c in O(nc) time. We can now concentrate only on those alignments
where HD(i) > 2c.

Algorithm 3 sets out the main steps and Theorem 4 sets out the final running
time.
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Input: Pattern p, text t and an integer c
Output: O[i] =sample of up to min(HD(i), c) distinct mismatches
/* Eliminate alignments with few mismatches */

Run 2c-mismatch(t,p) ;
/* Many mismatches stage */

for 	 = 	log 2c
 to log m do
for O(c + log n) times do

Create random array r with sampling rate s = 2�−1;
Perform 1-mismatch(p, t, r);
Add new mismatches to output O;

end

end

Algorithm 3. Mismatch sampling

Theorem 4. For each 1 ≤ i ≤ n, Algorithm 3 samples min(c, HD(i)) mis-
matches w.h.p. uniformly at randomly in O((c+log n)(n+m log m) log m) time.

Proof. The 2c-mismatch algorithm handles the cases with at most 2c mismatches
and runs in O(nc) time. Then we choose random array r and perform the 1-
mismatch algorithm O((log m

c )(c+log n) times taking O((n+m log m)(log m
c )(c+

log m) time overall. After performing these two stages, at each alignment i
we have found min(c, HD(i)) mismatches w.h.p. Therefore we will also find
min(c, HD(i)) mismatches at all alignments w.h.p.

By repeating the 1-mismatch step in Algorithm 3 until min(c, HD(i)) mis-
matches are found at each alignment, the algorithm can straightforwardly be
made Las Vegas and it follows from Theorem 4 that the running time will be
O((c + log n)(n + m log m) log m) w.h.p.

7 Discussion

The motivation for Mismatch Sampling can be applied to any number of ap-
proximate pattern matching problems and it is of interest to know which will
allow a fixed size sample to be given efficiently. The most obvious direct ex-
tension is to Mismatch Sampling for the Hamming distance with don’t cares
problem considered in [3], where a deterministic 1-mismatch algorithm allowing
don’t cares is developed. The sampling rate s from Section 6 can now be used to
choose positions from the patterns with the remaining positions replaced with
don’t care characters. Following the same overall strategy of sampling single
mismatches over O(log m) stages will now give a Mismatch Sampling algorithm
allowing don’t cares that runs in O((c + log n)(n log2 m)) time. The problem of
sampling errors where pattern matching is to be performed over more sophisti-
cated approximation measures, such as the edit distance for example, appears
to be considerably more challenging.
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Abstract. The Compact Directed Acyclic Word Graph (CDAWG) is
a well-known suffix data structure designed for an efficient solution to
problems on strings. Some applications, especially those from the data
compression field, require maintaining a CDAWG over a sliding window.
The fastest known solution to this problem is an approximation algo-
rithm that slides a CDAWG in an amortized constant time. However, the
existence of an exact algorithm performing within the same complexity
bounds has been an open question so far. We show that the answer to
this question is negative and present an on-line algorithm with the best
asymptotic complexity possible.

1 Introduction

The Compact Directed Acyclic Word Graph (CDAWG) [1,2,3] is a well known
suffix data structure which allows an efficient solution to a number of problems on
strings. Some applications, especially those from the data compression field [4,5],
require maintaining a CDAWG over a sliding window. The sliding could be im-
plemented in a naive way by building a new CDAWG from scratch for each
subsequent window, which requires time and space proportional to the window
size. However, it would be desirable to design a solution that does the change in-
crementally to preserve the additional information (e.g. branching statistics [4,5])
added to the CDAWG by the algorithm that uses it.

The process of incremental sliding of the CDAWG over some string can be
split into two operations: deletion of the leftmost character of the string and
addition of a new character to the right side. The addition is solved by an on-line
CDAWG construction algorithm [3] that works in an amortized constant time.
However, the deletion appears to be a bigger challenge. The best existing solution
is an approximation algorithm that works in an amortized constant time [2]. But
this algorithm may sometimes delete up to the half of the characters from the
underlying string instead of one.

CDAWG can be obtained by a node minimization of a suffix tree as well
as by a path compression of a Directed Acyclic Word Graph (DAWG). While
suffix tree allows perfect deletion in a constant time [6,4], DAWG requires a time
proportional to the size of the window [7]. Does a CDAWG inherit this property
from a suffix tree, or from a DAWG? We close this issue as follows.
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Theorem 1 (Main Result). The problem to maintain a CDAWG for a per-
fect sliding window of size k over a string on an alphabet Σ, has the following
amortized time complexity per one sliding window move

Θ(k) if |Σ| ≥ 2,

Θ(1) if |Σ| = 1.

2 Notation and Definitions

The concepts used in this paper but not defined below can be found e.g. in [8].
Let Σ be a finite alphabet. A sequence σ of n elements of Σ is called a string
of length |σ| = n. For every 1 ≤ i ≤ j ≤ |σ|, σ[i] denotes the i-th character of σ
while σ[i..j] = σ[i]σ[i+1] . . . σ[j]. The set of all strings over Σ is denoted by Σ∗,
while λ denotes the empty string. A concatenation of strings α and β is denoted
by αβ. Strings α, β and γ (each possibly empty) are called a prefix, factor, and
suffix of a string σ = αβγ. Moreover, β = σ[i..j] is called an occurrence of β in
σ at position i. If σ[i − 1] (σ[j + 1]) exists, it is called the left (right) context of
this occurrence. The sets of all prefixes, factors, and suffixes of σ are denoted by
Pref(σ), Fact(σ), and Suf(σ), respectively.

A factor β of σ is called right (left) branching if it occurs in σ in at least
two distinct right (left) contexts, and unique if it occurs in σ exactly once. Let
BranR(σ) and USuf(σ) denote the sets of right branching factors and unique
suffixes of σ, respectively, while EBUS(σ) = {λ} ∪ BranR(σ) ∪ USuf(σ). The
notation A = B ∪̇C means that A = B ∪ C and B ∩ C = ∅. Finally, the set of
all vertices of a graph G is denoted by V(G).

2.1 CDAWG Definition and Properties

We begin by introducing two concepts that simplify the CDAWG definition.

Definition 2 (Right End Equivalence). For every α, β ∈ Σ∗,

α ≡R
σ β if {γα | γα ∈ Pref(σ)} = {δβ | δβ ∈ Pref(σ)} .

It is straightforward to verify that ≡R
σ is an equivalence relation and hence all

strings can be partitioned into classes with respect to ≡R
σ . The equivalence class

where string α belongs and the longest member of the same class are denoted
by [α]Rσ and (α)R

σ , respectively. Less formally, [α]Rσ contains all strings whose
occurrences in σ end on the same positions as α. Note that there always is
a degenerated class DCR

σ consisting of all strings of Σ∗ \ Fact(σ).

Definition 3 (Right Extension). The right extension of α ∈ Fact(σ), denoted
by 〈α〉Rσ , is the shortest string β ∈ EBUS(σ) such that α ∈ Pref(β).

Informally, 〈α〉Rσ is created by adding characters to the right of α until a member
of EBUS(σ) is reached.
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Definition 4 (Compact Directed Acyclic Word Graph). The Compact
Directed Acyclic Word Graph for a string σ ∈ Σ∗, denoted by CDAWG(σ),
is a directed acyclic graph whose vertices are equivalence classes [α]Rσ for every
α ∈ EBUS(σ). For every pair of distinct vertices [α]Rσ , [γ]Rσ , there is a

– directed edge from [α]Rσ to [γ]Rσ labelled with string aβ for some a ∈ Σ and
β ∈ Σ∗, if 〈αa〉Rσ = αaβ = γ,

– suffix link from [α]Rσ to [γ]Rσ , if (γ)R
σ equals the longest suffix of α which is

not a member of [α]Rσ .

Note that CDAWG was originally introduced by Blumer et al. [1] as a graph with
vertex set based on EBUS(σ) ∪ Suf(σ). The definition provided above, which
follows the approach of Inenaga et al. [3,2], is more suitable for our purposes, as
it allows an efficient realization of operation Update described below.

Before proceeding further, we inspect some basic properties of a CDAWG.
Note that some simpler proofs must have been omitted due to the space con-
straints.

Lemma 5 (Classification of Vertices). For every non-empty σ ∈ Σ∗,

V(CDAWG(σ)) =
{
[λ]Rσ

}
∪̇
{
[σ]Rσ

}
∪̇
{
[α]Rσ | α �= λ, α ∈ BranR(σ)

}
.

Consequently, CDAWG(σ) has a unique source [λ]Rσ with no incoming edges and
a unique sink [σ]Rσ with no outgoing edges. The path from the source to the sink
of CDAWG(σ) that spells out σ is called backbone.

It is sometimes convenient to treat a string α ∈ Fact(σ) \ EBUS(σ) as an
implicit node of CDAWG(σ), located on the edge leading from [β]Rσ to [γ]Rσ ,
where β is the longest member of Pref(α) ∩ EBUS(σ), and γ = 〈α〉Rσ . In this
context, strings α ∈ EBUS(σ), which are represented by corresponding vertices
[α]Rσ of CDAWG(σ), are called explicit nodes. We define the active point of
a CDAWG(σ) as the node α such that α is the longest non-unique suffix of σ.

2.2 CDAWG Operations

In this paper, we study CDAWG with respect to the following two operations.

Definition 6 (CDAWG Operations).
Operation Delete receives CDAWG(aβ) for some a ∈ Σ, β ∈ Σ∗ and returns
CDAWG(β).
Operation Update receives CDAWG(α) for some α ∈ Σ∗ and a character b ∈ Σ
and returns CDAWG(αb).

Now we are ready to formulate the main problem studied in this paper.

Definition 7 (CDAWG for a Perfect Sliding Window).
Input: A string σ ∈ Σ∗ and an integer k such that 0 < k < |σ|.
Output: A sequence C1, C2, . . . , C|σ|−k+1, such that C1 = CDAWG(σ[1..k]) and
Ci+1 = Update(Delete(Ci), σ[i + k]).

It is known that the worst-case time complexity of the same problem is Θ(n) for
a suffix tree [6,4] and Θ((n− k)k) for a DAWG [7]. The purpose of this paper is
to determine the complexity for a CDAWG.
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3 Perfect Sliding in Linear Time Is Impossible

In this section we show that the lower bound on the time required to maintain
CDAWG for a perfect sliding window is the same as that for a DAWG [7].

Lemma 8 (Adversary String). Let l ≥ 2, m ≥ 1, ω = (ab)ma for distinct
a, b ∈ Σ and σ ∈ Fact(ωl) such that ωa ∈ Fact(σ). Let v = |V(CDAWG(σ))|.

v

{
= m + 2 if σ [1] = a,
≥ m + p + 2, where 0 ≤ p < m and b(ab)paωa ∈ Pref(σ) if σ [1] = b.

Proof. In both cases BranR(σ) \ {λ} = {(ab)ia | 0 ≤ i ≤ m− 1} ∪ {b(ab)ia | 0 ≤
i ≤ m − 2}. Also, (ab)ia ≡R

σ (ab)ja iff i = j and b(ab)ia ≡R
σ b(ab)ja iff i = j.

If σ[1] = a, then b(ab)ia ≡R
σ (ab)i+1a for every 0 ≤ i ≤ m − 2 and therefore

{[α]Rσ | α �= λ, α ∈ BranR(σ)} = {[(ab)ia]Rσ | 0 ≤ i ≤ m−1}. Hence, by Lemma 5,
CDAWG(σ) contains m + 2 vertices. This settles part σ[1] = a.

However, if σ[1] = b, then b(ab)paωa ∈ Pref(σ) for some 0 ≤ p < m. Hence
b(ab)ia is a prefix of σ for each 0 ≤ i ≤ p and therefore it cannot be ≡R

σ equivalent
to (ab)ja for any j > i. Moreover, as a(ab)ja ∈ Fact(σ) for every 0 ≤ j ≤ m in
this case, we also have b(ab)ia �≡R

σ (ab)ja for any j ≤ i ≤ p. On the other hand,
b(ab)ia ≡R

σ (ab)i+1a still holds for every p < i ≤ m − 2 as in the previous case.
It follows that {[α]Rσ | α �= λ, α ∈ BranR(σ)} = {[(ab)ia]Rσ | 0 ≤ i ≤ m −

1} ∪̇{[b(ab)ia]Rσ | 0 ≤ i ≤ min(p, m− 2)} is a set of size m + min(p, m− 2) + 1 ≥
m + p. The conclusion of case σ[1] = b now follows from Lemma 5. ��

Theorem 9 (Lower Bound). Let |Σ| ≥ 2. Then an arbitrary algorithm that
maintains CDAWG for a perfect sliding window of size k over a string σ ∈ Σ∗,
|σ| = n, requires Ω((n − k)k) time in the worst case.

Proof. First note that at least n−k steps of the algorithm are necessary to move
the sliding window from the initial to the final position. In case k ≤ 5 this gives
the desired lower bound.

For k ≥ 6, put m = �k−2
4 � and ω = (ab)ma for distinct a, b ∈ Σ. Consider the

input string σ = ωn[1..n] where n > k. Then k ≥ 4m + 2 and hence each string
σ[i..i + k − 1], 1 ≤ i ≤ n − k + 1, contains ωa as a factor. Since σ is a power of
a string of length 2m + 1, it suffices to consider only i ≤ 2m + 1. Let Ci denote
CDAWG(σ[i..i + k − 1]). From Lemma 8 we obtain that for i = 1, 2, . . . , 2m + 1

|V(Ci)|
{

= m + 2 if i is odd,
≥ 2m − i

2 + 2 if i is even .

Hence for every even i, at least m − i
2 vertices must be added to construct Ci

from Ci−1. Assuming that a creation of a vertex takes at least one step of the
algorithm, the total number of steps required to construct Ci from Ci−1 for
i = 2, 3, . . . , 2m+1 is at least

∑2m
i=2, i even(m− i

2 ) =
∑m

i=1(m− i) = (m2−m)
2 . Due

to the periodic nature of σ, this is also a lower bound on the number of steps
to construct Ci for i = q(2m + 1) + 2, q(2m + 1) + 3, . . . , (q + 1)(2m + 1), where
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0 ≤ q < �n−k+1
2m+1 �. Consequently, the total number of steps can be bounded from

below by⌊
n − k + 1
2m + 1

⌋
m2 − m

2
=Ω((n − k)m)=Ω

(
(n − k)

⌊
k − 2

4

⌋)
=Ω((n − k) k) .��

Recall that the naive algorithm can build CDAWG for each subsequent window
from scratch in time O(k) [3] and therefore its total running time is bounded by
O((n − k)k). This together with the above theorem verifies Theorem 1.

4 Change Analysis

Now that we have derived the complexity of sliding the CDAWG, we describe an
incremental algorithm achieving that bound. Unlike the naive solution, it builds
a CDAWG for each subsequent window by local modifications of the existing
data structure, preserving the additional information [4,5]. Recall that sliding
can be divided into two operations, described by Definition 6. As operation
Update is done easily using the on-line CDAWG construction algorithm [3],
we concentrate on operation Delete. First we need to describe changes made
in a CDAWG by one application of this operation. To discover what happens
when transforming CDAWG(aβ) into CDAWG(β), we analyse the individual
components of CDAWG definition. Beside the equivalence relation, it employs
the set EBUS and the right extension. However, the definitions of both rely
solely on λ, BranR and USuf. Thus we can concentrate only on changes to the
equivalence classes and the sets of right branching factors and unique suffixes.

Lemma 10 (Observations).

1. Let α ∈ Fact(σ).
(a) [α]Rσ = {β ∈ Suf((α)R

σ ) | |β| ≥ p} for some 0 ≤ p ≤ |(α)R
σ |.

(b) α = (α)R
σ iff α is a prefix or a left branching factor of σ.

2. If αβ ∈ Fact(σ), then
(a) α has at least as many occurrences in σ as αβ,
(b) α has at least as many left contexts in σ as αβ,
(c) |[α]Rσ | ≤ |[αβ]Rσ |

3. aα ∈ Pref(aβ) ∩ Pref(β) iff aα = am ∈ Pref(β).
4. BranR(aβ) = BranR(β) ∪ {the longest right branching prefix of aβ}.
5. USuf(aβ) \ {aβ} = USuf(β) \ {the longest non-unique prefix of aβ}.
6. |{cγ ∈ Fact(σ) | c ∈ Σ, γ ∈ Pref(σ)}| ≤ |{[α]Rσ | α ∈ Fact(σ)}|.

Following the approach of Blumer [7], the next lemma describes what happens to
(non-degenerated) equivalence classes when the first character of aβ is removed.

Lemma 11 (Modifications). Let γ = (γ)R
aβ.

1. If γ is not a prefix of aβ, then either [γ]Rβ = [γ]Raβ or [γ]Rβ = [γ]Raβ ∪ {δ},
where δ is the longest suffix of γ not in [γ]Raβ and δ ∈ Pref(aβ).
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2. If γ = aα is a prefix of aβ, then aα ∈ [aα]Rβ , [aα]Raβ \ {aα} ⊆ [α]Rβ and
α = (α)R

β . In particular,
(a) if [aα]Raβ = {aα} and aα occurs exactly once in aβ, then aα ∈ DCR

β .
(b) if [aα]Raβ = {aα} and aα occurs more than once in aβ and all occurrences,

except the first, have the same left context b and aα is not a prefix of β,
then aα ∈ [baα]Rβ .

(c) if [aα]Raβ = {aα}, aα occurs more than once in aβ and all occurrences,
except the first, have the same left context b and aα is a prefix of β, then
b = a and [aα]Raβ = [aα]Rβ = {aα}.

(d) if [aα]Raβ = {aα} and aα occurs in aβ in at least two different left con-
texts, then [aα]Raβ = [aα]Rβ = {aα}.

(e) if [aα]Raβ �= {aα} and aα occurs exactly once in aβ, then aα ∈ DCR
β .

(f) if [aα]Raβ �= {aα}, aα occurs more than once in aβ and all occurrences,
except the first, have the same left context b, then aα ∈ [baα]Rβ .

(g) if [aα]Raβ �= {aα} and aα occurs in aβ in at least two different left con-
texts, then [aα]Rβ = {aα}.

3. Let aα, aαb ∈ Pref(aβ), then only the following combinations of cases from
part 2 are possible for [αb]Raβ and [aαb]Raβ.

[aαb]Raβ

2a 2b 2c 2d 2e 2f 2g
2a + − − − + − −
2b + + − − + + −
2c + + + − + + −

[aα]Raβ 2d + + + + + + +
2e − − − − + − −
2f − − − − + + −
2g − − − − + + +

Proof. 1. When γ is not a prefix of aβ, then the same holds for the rest of
[γ]Raβ by Lemma 10. Hence all occurrences of these strings in aβ lie in β and
they are equivalent under ≡R

β as they were under ≡R
aβ . Also occurrence(s)

separating members of [γ]Raβ from any longer strings still exists in β. However,
if δ were a prefix of aβ, it may have lost the only occurrence that separated
it from members of [γ]Raβ and now possibly belongs to [γ]Rβ . But then the
longest suffix of δ, different from δ, is still a prefix of β and thus cannot
belong to [γ]Rβ . By Lemma 10, there are no more members in this class.

2. When aα is a prefix of aβ, then strings from [aα]Raβ \ {aα} are not prefixes
of aβ and so all their occurrences are in β. Hence aα ∈ [aα]Rβ �= [α]Rβ ,
while members of [aα]Raβ \ {aα}, if any, stay together in [α]Rβ . Moreover, by
Lemma 10, α = (α)R

β .
(a) As aα has no occurrences in β, it falls into the degenerated class DCR

β .
(b) As all occurrences of aα in β are preceded by b and aα is not a prefix of

β, aα is equivalent with baα.
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(c) Because aα is a prefix of β, it is the longest string in [aα]Rβ by Lemma 10.
Thus [aα]Rβ = {aα}.

(d) There exist two distinct characters b and c, such that baα and caα occur
in aβ. Either they both occur in β, or one of them only appears as
a prefix of aβ, which means that aα is a prefix of β. In both cases aα is
not equivalent with any longer string in β. Hence [aα]Rβ = {aα}.

(e) As in 2a, aα ∈ [aβ]Rβ .
(f) There is no need to worry about whether or not is aα a prefix of β. If

it were a prefix of β, then aα = am by Lemma 10. But am can not be
equivalent with any of its suffixes as they occur both as a prefix and
a suffix of am. Hence aα ∈ [baα]Rβ as in 2b.

(g) [aα]Rβ = {aα} for the same reasons as in 2d.
3. Apply part 2 of Lemma 10. ��

We need to be able to detect which case of Lemma 11 applies to any given
vertex [aα]Raβ of CDAWG(aβ). The following lemma lists the properties needed
and a description how the detection is done.

Lemma 12 (Detection). Let [aα]Raβ ∈ V(CDAWG(aβ)) and aα = (aα)R
aβ.

1. aα ∈ Pref(aβ) iff [aα]Raβ lies on the backbone.
2. If aα is a prefix of aβ then [aα]Raβ = {aα} iff none of the [aα]Raβ ancestors,

including [aα]Raβ, on the backbone is of in-degree at least two.
3. If aα is a prefix of aβ, then aα occurs in aβ more than once iff there exists

a node baα for some b ∈ Σ.
4. If aα is a prefix of aβ, then aα occurs in aβ in at least two distinct left

contexts iff there exist nodes baα and caα for distinct b, c ∈ Σ.
5. If aα is a prefix of aβ, then aα is also a prefix of β iff α = am and a is the

next symbol on the backbone.
6. aα occurs more than once in aβ and all occurrences, except the first, are in

the same left context b iff baα is a node while caα for any c �= b is not.

Note that the suffix links that are useful for sliding DAWG [7] cannot be used
for the detection in case 4, as most of them are only implicit due to the path
compression. For example, string aa is both left and right branching in string
σ = aaabaacaa, but vertex [aa]Rσ has no incoming suffix link in CDAWG(σ).

The analysis is completed by description of the actions needed to make the
changes necessary to transform CDAWG(aβ) into CDAWG(β).

Lemma 13 (Sink Type). Let [aα]Raβ be a vertex of CDAWG(aβ). Then [aα]Raβ

is the sink of CDAWG(aβ) iff [aα]Raβ is of type 2a or 2e of Lemma 11.

Lemma 14 (Actions). Let aα be a prefix of aβ, v = [aα]Raβ ∈ V(CDAWG(aβ))
a vertex on the backbone, e the backbone edge leading to v, and u the active point.
Then the following actions need to be done for each v to change CDAWG(aβ) to
CDAWG(β). The actions depend on the Lemma 11-type of the class [aα]Raβ and
are done for the shortest aα first. No other actions are necessary.
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2a or 2e. If u is an implicit node, then the label of edge e must be shortened at
u. Otherwise, node u is explicit and edge e must be deleted. If u has only one
out-edge f now, then its label must be appended to every incoming edge of
u, the incoming edges redirected to point to the target of f and both u and f
deleted. No more changes to the graph are necessary.

2b or 2f. Redirect edge e to the vertex [〈baα〉Raβ ]Raβ, extending its label by γ, where
baαγ = 〈baα〉Raβ , if necessary. If the type is 2b, then remove vertex v and all
edges and vertices below that are no longer on any path from the source. No
more changes to the graph are necessary.

2c or 2d. No changes to v or its edges are necessary. Move on to the next vertex
lying on the backbone.

2g. Create a new vertex w and add out-edges to w that are duplicates of out-
edges leading from v. Redirect e to w. Move on to the next vertex lying on
the backbone.

Proof. We start by examining implicit backbone node aα using Lemma 11 and
Lemma 13. First, implicit node of type 2a or 2e may appear only on an edge
leading to the sink. Any such node should be deleted. This happens either when
cleaning up after edge redirection in case 2b or when removing or shortening the
edge to the sink. Second, implicit node of type 2b or 2f should be joined with
baα. This happens when redirecting edge in case 2b or 2f or when shortening
the edge to the sink as only vertices of types 2a, 2b, 2f, or 2e are below. Third,
implicit node of type 2c or 2d should be preserved as is. It could be influenced
by edge redirection or shortening, but this does not result in a join to another
class as in 2b or 2f due to the differing number of occurrences. Last, implicit
node of type 2g can only appear on an edge leading to a branching vertex of
type 2f or 2g and is split from its original class when this edge is redirected, but
does not join another class due to differing occurrences.

2a or 2e: By Lemma 13, vertex v is the sink. Lemma 11 tells us to remove the
longest member from the class represented by vertex v. This is done by removing
edge e. However, strings with more than one occurrence could be represented
on this edge and would be lost after deletion. To preserve these strings, edge e
is not removed, but shortened to save even the longest of these strings, which
is represented by node u. Note that shortening effectively deletes the longest
member from the class represented by v and adds u to the class of unique suffixes.
After deleting edge e, there could be two issues with the resulting graph. First,
the sink could have no more incoming edges and must be deleted. Second, explicit
node u ceased to be branching and now has only one out-edge f . Thus node u
must be made implicit by redirecting any incoming edges to the target of f while
appending the label of f to their labels and deleting u and f afterwards. As we
have reached the sink, all vertices were already handled.

2b or 2f: As Lemma 11 tells us, we have to split aα from its class and add
it to the class [baα]Raβ . The split is done by redirecting edge e to another target.
However, the target class might be represented only by implicit nodes, where
baα is represented by w lying on edge f leading to vertex x. To solve this issue,



Sliding CDAWG Perfection 117

we have to redirect edge e to x, but also to append the part of the label of f
below w to the label of e.

By redirecting the edge, we have split all strings of the aαγ type, with more
than one occurrence, from their original classes and added them to classes con-
taining baαγ, if different. This solves any nodes of type 2a, 2b, 2f, or 2e below.
However, this also does not change the nodes not representing prefixes of aβ, as
aαγ and baαγ were already equivalent. Hence the last thing needed is to remove
all nodes below v that are now unreachable from the source.

2c or 2d: This case calls for no changes to the class represented by v, but
there may be other vertices below that need attention. So we move on to the
next vertex lying on the backbone.

2g: Lemma 11 requires aα to be split from the rest of [aα]Raβ , which is exactly
what happens when we create new vertex w, duplicate out-edges and redirect
edge e. Note that this does no changes to the vertices below and classes they
represent as all source-sink paths passing through v and w have exactly the same
labels as before. However, some of these vertices may need our attention. So we
move on to the next vertex lying on the backbone. ��

5 Algorithm

The preceding change analysis is materialized in Algorithm 1, described on
pages 118–119. Note that for the sake of space and clarity we omit commands
needed to keep suffix links, active point and edge labels (cf. [9]) valid.

To verify the upper bound stated in Theorem 1, we need to analyse the running
time of Delete(CDAWG(aβ)). Let e denote the number of edges of CDAWG(aβ)
and k = |aβ|. The initialization part (lines 1.1–1.11) is the only part outside of
loops and takes only a constant amount of time.

We now turn our attention to loops. Note that in our analysis we ignore the
time needed for branching in vertices, i.e. maximum time B needed to select the
outgoing edge whose label starts with the desired character. When the imple-
mentation allows a binary search at each explicit node, B = O(log |Σ|). If |Σ| is
not considered to be a constant, the total running time of our algorithm derived
below should be multiplied by B.

First, there are the two loops that initialize and update left contexts and begin
at lines 1.15 and 1.21, respectively. These loops trace out caβ for all c ∈ Σ in
parallel. The number of steps is proportional to the number of factors cγ of aβ
for which γ ∈ Pref(aβ). By part 6 of Lemma 10, this number can be bounded
by the number of equivalence classes with respect to ≡R

aβ , which is known to be
O(k), see e.g. [8, Theorem 5.3.5].

Second, there is the main loop starting at line 1.20. We have already covered
the inner loop starting at line 1.21. The remaining code on lines 1.30 to 1.38 with
the exception of the call to the procedure AdjustExplicitVertex handling the
vertices at line 1.37 takes a constant time in each iteration. In the procedure
AdjustExplicitVertex, there are three lines that take other than a constant
time per iteration. Lines 2.7 and 2.21 are calls to the Cleanup procedure, that
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Algorithm 1. Delete(CDAWG(aβ))

location := ↑ [λ]Raβ ; // Last node on the backbone1.1

last-nonunique := location; // Last node with two occurrences1.2

active-edge := NIL; // Last edge used to enter location1.3

new-vertex := NIL; // New explicit node1.4

trivial-class := true; // Does location represent class of size 1?1.5

simple-string := true; // Does location represent string am?1.6

stop := false; // Is the main loop done?1.7

contexts[]; // Dictionary of (character c,↑node aβ)1.8

last-context := (aβ) [1]; // Last seen left context of location1.9

count := 0; // Number of left contexts for location1.10

i := 1; // Index to characters of string aβ1.11

if there is only one out-edge e leading from location then1.12

shorten the label of edge e by one character or delete both edge e and1.13

its target if the label is only one character long;
stop1.14

forall out-edges e leading from location do1.15

if c is the first character on the edge label of e then1.16

last-context := c;1.17

contexts[c] := ↑node representing c;1.18

count++;1.19

while not stop and i ≤ |aβ| do1.20

forall entries contexts[c] in the dictionary do1.21

if (caβ) [1..i] is a node of CDAWG(aβ) then1.22

contexts[c] := ↑node (caβ) [1..i];1.23

else1.24

if count = 1 then1.25

last-nonunique := location;1.26

last-context := c;1.27

delete contexts[c];1.28

count−−;1.29

location := ↑node (aβ) [1..i];1.30

active-edge := ↑last edge used to reach location;1.31

if simple-string and (aβ) [i] �= (aβ) [1] then1.32

simple-string := false;1.33

if trivial-class and location has ≥ 2 incoming edges then1.34

trivial-class := false;1.35

if location is an explicit node then1.36

AdjustExplicitVertex;1.37

i++;1.38

are followed by instructions that stop the outer loop and prevent a second call to
Cleanup. Procedure Cleanup deletes the subgraph that is no longer accessible
from the source, using a depth first search, and so its complexity is bounded
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Procedure AdjustExplicitVertex

if trivial-class then2.1

switch count do2.2

case 0 // Can not be reached - handled at line 1.122.3

case 12.4

if simple-string and (aβ) [i + 1] = (aβ) [1] then2.5

redirect active-edge to point to the vertex representing2.6

〈contexts[last-context ]〉Raβ and adjust its label accordingly;
Cleanup(location);2.7

stop := true;2.8

else2.9

// Nothing to do

case ≥ 22.10

// Nothing to do

else2.11

switch count do2.12

case 02.13

if last-nonunique is an implicit node on active-edge then2.14

shorten active-edge at implicit node last-nonunique;2.15

redirect active-edge to location;2.16

else2.17

delete active-edge;2.18

case 12.19

redirect active-edge to point to the vertex representing2.20

〈contexts[last-context ]〉Raβ and adjust its label accordingly;
Cleanup(location);2.21

stop := true;2.22

case ≥ 22.23

new-vertex := ↑new vertex;2.24

redirect active-edge to new-vertex ;2.25

duplicate all out-edges of location as out-edges of new-vertex ;2.26

location := new-vertex ;2.27

Procedure Cleanup(location)
if location has no incoming edges then3.1

foreach out-edge e from location to target do3.2

delete edge e;3.3

Cleanup(target);3.4

delete vertex location;3.5
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by O(e). Line 2.26 duplicates all outgoing edges of the current vertex to a new
vertex. This may be done many times. However, every edge of CDAWG(aβ) is
duplicated at most once and thus the total work done by this line is bounded by
O(e). So we have shown that the total work of the main loop without the inner
loop at line 1.21 depends on the number of iterations, which is limited by k, and
the number of edges e, which can be also bounded by O(k), see e.g. [1].

Consequently, the total running time of Algorithm 1 is bounded by O(k).

6 Concluding Remarks

This paper closes the issue on the exact complexity of the perfectly sliding
CDAWG. It also describes an on-line algorithm for perfect sliding with asymp-
totically optimal running time. This offers a freedom to choose the approxima-
tion [2] for speed or our solution for perfect sliding. In particular, perfect sliding
may be useful for a CDAWG variant of the suffix tree based compression [5].

One may ask what is the expected time complexity of our algorithm. Note
that the naive solution takes Θ(k) expected time per window move. On the other
hand, Blumer [7] shows that her moving window algorithm for a DAWG requires
O(n log k) expected time. Is there a similar bound for a CDAWG?
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Abstract. Self-indexing is a concept developed for indexing arbitrary
strings. It has been enormously successful to reduce the size of the large
indexes typically used on strings, namely suffix trees and arrays. Self-
indexes represent a string in a space close to its compressed size and
provide indexed searching on it. On natural language, a compressed in-
verted index over the compressed text already provides a reasonable al-
ternative, in space and time, for indexed searching of words and phrases.
In this paper we explore the possibility of regarding natural language
text as a string of words and applying a self-index to it. There are sev-
eral challenges involved, such as dealing with a very large alphabet and
detaching searchable content from non-searchable presentation aspects
in the text. As a result, we show that the self-index requires space very
close to that of the best word-based compressors, and that it obtains
better search time than inverted indexes (using the same overall space)
when searching for phrases.

1 Introduction and Related Work

Text indexing has become the only alternative to provide searching capabilities
on the extremely large collections of strings that arise from different fields, such
as bioinformatics (DNA and protein sequences), the Web and other natural
language collections, software development (source code), multimedia databases
and signal processing (music, audio, video and numeric streams), and so on.

For many years, the inverted index and its variants [4] have been a simple and
effective solution to index natural language text, and the base of the success of
Web search engines. We note that “natural language” is used to denote text that
is composed of an alternating sequence of “words” and “separators”, which can
be easily distinguished syntactically; that the set of different words follows some
statistical laws such as growing sublinearly with the text size (Heaps’ law [14]);
and especially that only whole words and sequences thereof (called “phrases”)
can be searched for. These limitations have been widely accepted despite they
exclude many human languages (such as Chinese and Korean).
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On so-called natural language text, the basic inverted index consists of a
vocabulary, that is, the set of different words in the text, and a posting list
recording the text positions of each vocabulary word in increasing order. This
simple data structure immediately answers single-word searches, and can handle
phrase searches by essentially intersecting the corresponding posting lists. The
way to carry out the intersections is still an active area of research [5, 6, 10, 28].

To save space, compression techniques have been applied to inverted indexes.
In general the idea is to differentially encode each posting list (as its numbers are
increasing) and encode those gaps with an encoding that favors small numbers.
Some absolute samples are also inserted to allow fast intersections. The famous
book Managing Gigabytes [32] describes this technology in detail. The text can be
compressed as well, the preferred choice being Huffman coding [15] where source
symbols are words and target symbols are bits (hence called “word-oriented bit-
wise Huffman”). To further save space, the text can be divided into blocks, so
that the postings point to the blocks where the word appears. This is called a
block-addressing inverted index [3, 25]. At search time, the resulting blocks must
be sequentially scanned to find the exact occurrences. The block size provides an
obvious space/time tradeoff. In this tradeoff, it is advantageous to opt for a text
compression method that permits much faster searches than bitwise Huffman
[9, 25]. Nowadays, very efficient indexed searching can be obtained by occupying,
with the compressed text plus the compressed index, 30% to 40% of the original
text size (and removing the original text of course).

Other variants of inverted indexes, out of the scope of this paper, are oriented
to document (rather than exact position) retrieval, or to relevance ranking [4].

The situation, up to the last decade, was far less satisfactory with other types
of sequences. Without a concept of word, it is necessary to provide searching
for any text substring. This was accomplished with powerful data structures
called suffix trees [1, 31] and suffix arrays [17]. Those were able to locate the occ
occurrences of a pattern of length m in O(m + occ) time, regardless of the text
size. However, they require 10–20 (suffix trees) or at best 4 (suffix arrays) times
the text size, plus the text, and this rendered them unsuitable in many cases.

This changed drastically with the rise of compressed self-indexes, which were
able to represent the text in space proportional to its empirical entropy [18], and
within that space, offer indexed searching for any text substring [24]. For exam-
ple, the smallest compressed self-index [12] offers searching in O(m� log σ

log log n� +
occ · log1+ε n) time, where n is the collection size, σ is the alphabet size, and
ε is any positive constant. Another index, Sadakane’s Compressed Suffix Array
(CSA) [26], performs equally well in practice (despite not in theory) and has the
interest for this paper of smoothly handling very large alphabets.

For example, on natural language texts, these indexes take around 60% to
70% of the original text size (and replace it). This is remarkable compared with
the 400% plus text needed by suffix arrays, yet not competitive with the 30% to
40% achieved by compressed inverted indexes over compressed text. However,
the comparison is not fair because self-indexes can search for any text substring
whereas inverted indexes search only for whole words and phrases.
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In this paper we explore the idea of applying a compressed self-index (as
developed for general strings) over the sequence of words of a natural language
text, that is, regarding the words as the basic symbols. This is promising because
a self-index achieving high-order entropy should capture the dependence between
consecutive words, which is significant in natural language [7, Chapter 4]. More-
over, even the slower CSA is able to locate the occurrences of a phrase of m words
in O(m log n + occ · log1+ε n) time (and know the number of occurrences in just
O(m log n) time). This compares favorably with inverted indexes, which need to
carry out intersections. For example, for a phrase of 2 words appearing occ1 and
occ2 times, an inverted index can take time O(occ1 + occ2) or O(occ1 log occ2),
where both occ1 and occ2 are (possibly much) larger than occ.

Applying a self-index to natural language words poses some challenges. A first
one is that the alphabet is very large, and this rules out the theoretically best
schemes [12, 13], which achieve k-th order entropy at the price of Ω(σk) extra
space, where σ is the vocabulary size in our case. A text of n words is known
to have a vocabulary of size σ = O(nβ) [14], where β ≈ 0.5 [4]. Thus σk may
become Ω(n) already for k = 2! However, other self-indexes such as Sadakane’s
CSA [26] approach high-order entropy space without such a dependence on σ.
Our first structure, the Word CSA (WCSA), results from regarding the text as
a sequence of word and separator identifiers and representing it with a CSA.

A second challenge is that, in many applications, we wish to have more flexible
searching. For example, inverted indexes often permit to find phrases regardless
of whether the words are separated by a space, two spaces, a tab, a newline,
etc. This complicates the simple WCSA model where the self-index can repro-
duce the original text and thus the latter can be discarded. We must store
some information on the separators in order to be able of exactly recreating
the original text. Moreover, it is customary to apply some filtering on the text
words to be searched [4], that is, users normally want to regard "preprocess",
"pre-process", and "PRE-PROCESS" as occurrences of "preprocess", and even
also "preprocessing" and "preprocessed" (the latter is achieved by stem-
ming, that is, indexing/searching the roots of the words). It is also usual to
disregard stopwords (articles, prepositions, etc.) in the searches. This shows that
there should be a presentation layer, where the text is filtered into the searchable
sequence of (possibly stemmed, lowercase, stopwords removed) bare words, and
the presentation sequence containing the separators and all extra information
on the bare words that permits recreating the original sequence. The search-
able sequence is self-indexed, while the presentation sequence is just compressed
with a technique that permits fast direct access for displaying purposes. Both
sequences are compressed by different means, thus the choice of what is search-
able is not a space/time tradeoff but depends on user’s needs. We call Flexible
WCSA (FWCSA) this second data structure.

Our resulting data structures achieve excellent compression results, close to
many natural language text compressors (that do not provide any indexing).
Texts are usually compressed to around 35-40% of their original size with the
FWCSA (values up to 30% can be obtained depending on the parameters used,
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but the resulting index becomes slow). We compare FWCSA with a block ad-
dressing inverted index (II) over compressed text using the same amount of
space and offering the same functionality (a full word-addressing inverted index
requires much more space, around 60-70%). The results show that, with the same
available space requirements, FWCSA overcomes II when we are interested in
compression ratios below 40%. When more space is available, the FWCSA is still
faster for locating occurrences on either single words or phrases, except on words
with many occurrences, where the II becomes superior. Also FWCSA obtains
better results in the extraction of snippets for phrases in most cases.

The WCSA requires even less space, around 1-2 percentage points less than
FWCSA in compression ratio. We compare the WCSA with recent related works
that offer similar functionality: (1) Compressing the text with a word-oriented
bytewise Huffman-like compressor prior to applying a basic (character-oriented)
self-index to the result [11]; (2) reordering the bytes of the output of a word-
oriented dense-code compressor in a wavelet-tree-like [13] shape, to give search
capabilities to the compressed text [8]; and finally (3) a block addressing inverted
index with the same functionality. Again WCSA is the best choice when little
memory is available. By increasing the size of the indexes until around 45% in
compression ratio, the WCSA is still the best choice for dealing with searches on
phrases composed of several words. However, the wavelet-tree-like index performs
better when single-word patterns are searched for.

We note that the (F)WCSA operates in main memory, and therefore requires
that the compressed text does not exceed the available RAM. Because of its
access pattern, the (F)WCSA is not promising on secondary memory, whereas
inverted indexes perform well. Recently, however, there has been much interest
in inverted indexes that operate in RAM [28, 30], motivated by the large main
memories available at reasonable prices (up to 4GB is standard) and the common
distributed architectures where the text collection resides in the RAM of several
computers (then the problem is how to integrate the results of several indexes
across the slow network). Therefore, main memory data structures are of interest
nowadays, unlike what was assumed 10 years ago.

2 Sadakane’s Compressed Suffix Array (CSA)

Let T [1, n] be a sequence over an alphabet Σ of size σ. The suffix array [17]
A[1, n] of T is a permutation of [1, n] of all the suffixes T [i, n] so that T [A[i], n] ≺
T [A[i + 1], n] for all 1 ≤ i < n, being ≺ the lexicographic ordering. Since every
substring of T is the prefix of a suffix, and all suffixes prefixed by a search pattern
P [1, m] are contiguous in A, we can binary search A for the interval A[sp, ep] of
the pointers to all the occurrences of (i.e., suffixes starting with) P in T , in time
O(m log n). Each step of the binary search needs to access T [A[i], A[i] + m − 1]
for some i, in order to compare that string with P [1, m].

Let us now define another permutation Ψ [1, n] such that Ψ(i) = A−1[A[i] +
1] (or A−1[1] if A[i] = n). Hence Ψ(i) tells where in A is there the pointer
following T [A[i]]. Assume one has computed C[1, σ], so that C[c] is the number
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of occurrences of symbols ≺ c in T . We show how can one obtain the successive
letters of T [A[i]...] (so as to carry out the binary search) with Ψ and C and
without A and T . To extract the first letter, note that all the suffixes starting
with c are in the area A[C[c] + 1, C[c + 1]], and therefore a binary search on C
for the c such that C[c] < i ≤ C[c + 1] gives the desired first letter, T [A[i]] = c.
To extract the next letter, we use the identity T [A[i] + 1] = T [A[Ψ(i)]], thus we
simply have to move to i′ ← Ψ(i) and carry out the same process again to obtain
T [A[i′]], and so on. This is sufficent to replace A and T .

The binary search on C can be implemented in constant time as follows. Set
up a string S[1, σ′], σ′ ≤ σ, containing all the different symbols that actually
occur in T , in increasing lexicographical ordering. Also, set up a bitmap D[1, n]
with all zeros except D[C[c] + 1] = 1 for all c ∈ Σ. Now, the c corresponding to
an i value is c = S[rank(D, i)], where rank(D, i) is the number of 1s in D[1, i].
This is (easily) computed in constant time using o(n) bits on top of D [16, 22].

The description above is the essential idea of Sadakane’s CSA [26], where
we have removed several possible optimizations that are not promising for our
particular application (backward searching, compressed bitmaps, etc.). One im-
portant remaining point is how to compress Ψ , as in principle it is as large as
the suffix array A it replaces. Sadakane shows that Ψ is formed by σ increasing
subsequences, and thus it can be compressed to around the zero-order entropy
of T , more precisely nH0(T ) + O(n log log σ), by gap encoding its differential
values. Furthermore, as shown later [24], Ψ contains at most nHk + σk (for any
k) runs of values, so that consecutive differences equal 1 within each run. Thus,
by enriching the gap encoding with run-length compression of those runs one
achieves higher-order compression. Absolute Ψ values at regular intervals d are
retained to permit fast random access to Ψ (yielding constant time in theory).

Note that, since we do not have A anymore, determining the interval A[sp, ep]
is not sufficient to locate the occurrences, that is, to output the values A[i] in
the interval. For this sake, the text is sampled at regular intervals l, and the
suffix array positions pointing to sampled text positions are recorded, in suffix
array order, into an array AS [1, n/l]. Those sampled positions in A are marked
in a bitmap BA[1, n], thus if BA[i] = 1 we know that A[i] = AS [rank(BA, i)].
Otherwise, we try i ← Ψ(i) successively, as we are virtually moving forward in
T by one position at each iteration. Hence, if we determine A[i] = j after k
applications of Ψ , then our original value was j−k. Due to the regular sampling
in T we carry out at most l iterations until finding a sampled position in A.

Finally, in order to discard T , we need to be able to extract any substring
T [a, b]. For the same sampled text positions j ·l sampled above, we store A−1[j ·l]
in text position order into an array A−1

S [1, n/l]. Thus, we find the latest sampled
position j ·l preceding a, j = �a/l�, and know that j ·l is pointed from i = A−1

S [j].
From that i we use the mechanism we have described to extract a string using
C and Ψ , to find out the substring T [j · l, b] which covers the one of interest to
us. (This is not the way Sadakane’s theoretical description handles this [26], but
the way he implemented it in practice.)
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3 A Word-Based CSA

In this section we present the simple word-based self-index (WCSA). It can be
seen as the adaptation of Sadakane’s CSA [26] to a large word-based alphabet.

To create the WCSA we first map each different word or separator1 (let us call
both “words”) from the source text to an integer id. Then, an integer sequence
Sid is formed with the identifiers of the consecutive text words and a vocabulary
array V is created to store the word corresponding to each id. Finally, Sid is
self-indexed by building an integer-based CSA (iCSA) on it. The algorithm to
create iCSA first builds the suffix array A of Sid, as well as D, and can discard
Sid. Then, arrays A−1 and ψ are created, as well as BA, AS and A−1

S . Then
A and A−1 can be discarded. Assuming that there are σ different words, the
vocabulary used by the iCSA is {1, 2, . . . , σ}, so it remains implicit and there
is no need to store it (nor S[1, σ′]). Finally, ψ is compressed by storing some
absolute samples and Huffman-encoding the consecutive gaps, including a special
encoding for the runs.2 To sum up, WCSA consists of the vector of words V
(sorted alphabetically) and a bottom layer composed of an iCSA built on Sid.

As any typical self-index, iCSA provides the following basic functions using
the CSA algorithms described: countiCSA(P’) counts the number of occurrences
of pattern P ′ in Sid; locateiCSA(P’) locates P ′s positions in Sid; and extrac-
tiCSA(l,r) retrieves the integers Sid[l] . . . Sid[r].

Searches for a pattern P = {w1, w2, . . . wm} on the WCSA start by bi-
nary searching V for each word wi of P to obtain its corresponding idi (its
position in V ), hence obtaining a new pattern P ′ = {id1, id2, . . . idm} to be
searched in the iCSA. Operation countWordsWCSA(P ) is directly translated
into countiCSA(P ′), and locateWordsWCSA(P ) to locateiCSA(P ′) (note this
gives word offsets, not byte offsets, of the occurrences). Finally, extractWords-
WCSA(s, e) recovers the original text from the sth to the eth word: We ob-
tain the word ids with extractiCSA(s, e) and then retrieve the original words
stored at those positions (ids) in array V . Notice that snippets composed of
k words around the occurrences of P ′ can be obtained by applying occs =
locateWordsWCSA(P ′) followed by extractWordsWCSA(occs[i − k], occs[i +
k]) for each i ∈ [1..|occs|].

4 Flexible Word-Based CSA

We show how a more flexible index can be obtained based on WCSA. Our
Flexible WCSA (FWCSA) can deal with many typical requirements of natural
language searching, such as case-insensitive search, stemming, disregarding stop-
words and/or separators, etc. The FWCSA does not index the original text as

1 We parse the text using the spaceless model: If a word is followed by a single blank,
that separator is not encoded but implicitly regenerated at snippet extraction time.
This saves 70% of the separators [21].

2 Further details were omitted for lack of space.
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such, but rather a normalized version of it. Normalization is a user-defined func-
tion from (original) words and separators to (normalized) words or a null word.
It can be used to express the requirements above3. We map the set of different
normalized words to integer ids, then replace each word from the original text
by the id of its normalized version (or ignore it if the normalization gives the
null word), and finally build an iCSA on the resulting sequence of ids.

As we want FWCSA to be able to recover any part of the original text, some
additional information has to be stored in what we call the presentation layer.

�

5 10 23 35 40 53 61 71=Z

1 2 3 4 5 6 7 8 9

0 0 1 1 1 1 0 1 0=CT 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0

1 5 10 15 20 25 28

4 6 9 14 16 20 25 27=B

1 2 3 4 5 6 7 8 9

_

_of_the_

1

01

The_ 001

_are_ 0000

_and_the_ 0001

Separators

The Blue Color of the sea and the blue COLOR of the sky are different colors

1 5 10 16 19 23 27 31 35 40 46 49 53 57 61 71

Sequence of ids of valid words

2 3 5 2 3 6 4 3 1=Sid

1 2 3 4 5 6 7 8 9

$

0 1

0 1

0 1

0 1

Original text

Canonical words & variants

blue color different sea sky$

Color

COLOR

1

01

colors 00

different 0

sea 0

sky 0

2 3 4 5 61

1

2

3

4

5

1

2

3

45

P
r
e
s
e
n

ta
tio

n
la

y
e
r

iC
S

A
la

y
e
r

A =

1 2 3 4 5 6 7 8 9

9 1 4 8 2 5 7 3 6

1 1 0 1 0 0 1 1 1=D

A =
-1

2 8 7=

2 5 8 3 6 9 7 4 1

1 1 0 0 0 1 0 0 0=BA

blue Blue

0 1

colors COLOR

Color

0 1

0 1

blue

Blue

0

1

5 6 1 9 4 3

Fig. 1. General Structure of FWCSA

Fig. 1 shows the general structure of WCSA. A first pass over the original text
is needed to gather some statistics from the source text. We split the original text
into “valid words” and “separators”. A “valid word” is a text word or separator4

that normalization does not map to the null word. A “separator” in this context
is all the text between valid words, that is, a maximal sequence of text words and
separators mapped to the null word by normalization. Hence valid words and
separators strictly alternate in the text5. A vocabulary of canonical (i.e., nor-
malized) words is built, and kept sorted alphabetically. For each canonical word,
a list with all the variants that the normalization process maps to it is stored
(sorted by frequency). Similarly, a vocabulary containing all the “separators” in
the source text is created and sorted by frequency.

A second pass over the original text permits to fill the structures from the
presentation layer shown in Fig. 1, as well as array Sid. Notice that Sid[1] = 2

3 For example, if one wishes a case-insensitive search ignoring stopwords and sepa-
rators, a proper normalization could map all words to their lowercase version, and
stopwords and separators to the null word.

4 What is a text word can also be user-defined, being the typical definition a maximal
sequence of letters and digits.

5 If normalization wishes to keep separators as valid words, we insert dummy “sepa-
rators” between valid words.
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because the first valid word from the text, “Blue” is mapped via normalization
to the second canonical word, “blue”. Once the presentation layer is built, the
iCSA structure is constructed over the sequence Sid.

In the presentation layer, bitmap CT keeps a compressed representation of
the presentation aspect of the text. Based on the alternation between words
and separators, CT will have a codeword belonging to a word, followed by the
codeword of a separator, and so on. As an example, in Fig. 1, we can observe
that CT [1..3] =‘001’ is the codeword associated to the separator “The ” and
CT [4] =‘1’ is the codeword of the variant “Blue” of the canonical word “blue”.
Those codewords are obtained as follows. On the one hand, separators are as-
signed a codeword using a word-based Huffman’s algorithm [15, 19] over the
whole vocabulary of separators (storing the shape of that tree requires little
overhead using canonical Huffman [20]). On the other hand, the variants of each
canonical word (that are also kept sorted by frequency) are also encoded with
the same method. Therefore, along with the variants of each canonical word,
the shape of the Huffman tree used to encode them has also to be known for
decoding. In practice, when a canonical word has a unique variant it is actually
not encoded in CT (however, in the example in Fig. 1 we used 1 bit for clarity).
Together with the information on canonical words provided by Sid (which is not
explicitly stored but obtained via iCSA), we can recreate the original text, as
Sid indicates which Huffman tree to access when decoding words from CT .

To enable decoding from any random word position in the text we provide
synchronism the codewords of CT , by using a vector B. Given a position i in
Sid, B[i] = p tells the offset in CT from which the corresponding variant of the
canonical word j = Sid[i] can be decoded (using the Huffman tree associated to
the jth canonical word). After decoding one symbol from that point p in CT, we
will find the beginning of the codeword of a separator, and after it the codeword
of the variant of the canonical word in Sid[i + 1], and so on. In our example,
we can see that B[5] = 16 is the beginning in CT of the codeword ‘01’ that
corresponds to the third (Sid[5] = 3) canonical word (‘01’ → “COLOR”). Then,
CT [18, 19] =‘01’ is the codeword of the separator “ of the ”.

A second array, Z, is needed for locate and display operations. It maps any
position i from vector Sid to its actual byte offset in the original text T : Z[i] = j
means that T [j] is the first character of the word represented by Sid[i].

To save space, both B and Z are sampled at regular positions i · kb and i · kz ,
respectively, and only those positions are stored. A non-sampled value p from B
(ikb < p < i(kb + 1)) is obtained by moving to position B[i · kb] in CT and then
decoding alternatively p − (ikb) words and separators. The number of decoded
bits from CT added to the value B[i · kb] tells us the value of B[p]. A non-
sampled value p from Z is obtained similarly by adding to the previous sampled
value Z[ikz] the number of characters decoded after processing p − ikz words
and p − ikz separators. In this case decoding starts at position B[ikz] of CT .

For lack of space we omit the detailed structures of the presentation layer and
the details of the search operations on FWCSA: countWords, locateWords, and
extractSnippet.
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5 Experimental Results

We used a large text collection with 1023MiB, obtained by aggregating several
corpora from trec-2: AP Newswire 1988 (AP) and Ziff Data 1989-1990 (ZIFF),
as well as from trec-4: Congressional Record 1993 (CR) and Financial Times
1991 to 1994, and finally Calgary corpus6. An isolated Intel R©Pentium R©-IV 3.00
GHz, with 4 GB RAM was used. It ran Debian (kernel 2.4.27), using gcc version
3.3.5 with -O9 optimizations. Time results measure cpu user time.

We compared our self-indexes WCSA and FWCSA against two in-memory
block-addressing inverted indexes (II and FII) with similar features7. II is the
same index from authors in [8] and FII is its Flexible counterpart. Therefore, the
text is compressed with ETDC [9]; whereas postings are encoded differentially
with ETDC and absolute samples are kept every k values to speed-up intersec-
tions. This approach differs only slightly from that in [10], and obtains similar
results in practice. The normalization process of FWCSA and FII consisted of:
(1) choosing as valid words maximal alphanumeric sequences, (2) skipping sep-
arators and stopwords, (3) folding to lowercase.

We measured locateWords time and also the time needed to extract a snippet
containing 20-words around all the occurrences of a given pattern. We used
100 test patterns from 4 different groups of single-word patterns (with different
frequency ranges) and also 4 groups of phrase-patterns composed of 2, 4, 6, and
8 words. Results for both locateWords and for snippet extraction refer to average
time per occurrence (in msec/occurrence).
WCSA vs II. We consider two configurations varying the memory usage of
the indexes. We used two setups of WCSA depending on the parameters of its
iCSA layer; that is, on the sampling periods for its structures: {tψ, tA, tA−1}.
One, named WCSA1, used {tψ, tA, tA−1} = {16, 16, 64}; the other, WCSA2, was
set to {32, 32, 64}. For II, two parameters are needed, {k, b}, that refer to the
sampling period to index its compressed postings lists, and the block size (in
Kbytes). We call II1 the setup {k, b} = {8, 16}, and II2 to {k, b} = {32, 256}.

Table 1 shows that WCSA2 overcomes II2 in all aspects. In practice, when
little memory is available the WCSA is clearly the best choice. Only when we
use more memory, II1 can compete with WCSA1 in the extraction of snippets
for either single-word patterns or short phrases. However, WCSA1 is still faster
than II1 for locating. When we search for phrase patterns, the performance gaps
between WCSA and II increase with the number of words in the phrase.
FWCSA vs FII. We used three setups of FWCSA using fixed values B =
32 and Z = 512 (presentation layer) and depending on the three sampling
6 ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus
7 Some freely available inverted indexes were checked, but they either: i) used a

different retrieval model than that of (F)WCSA, for example Zettair (retrieves
passages, http://www.seg.rmit.edu.au/zettair/), Wumpus (needs the text sep-
arately, http://www.wumpus-search.org), and Lemur (ranked document retrieval,
http://www.lemurproject.org); or ii) were not ready, or not public, or we could
not install them, such as Galago (http://www.galagosearch.org/ [30]), those in
[10] and [29], and Terrier (http://ir.dcs.gla.ac.uk/terrier/).

http://www.seg.rmit.edu.au/zettair/
http://www.wumpus-search.org
http://www.lemurproject.org
http://www.galagosearch.org/
http://ir.dcs.gla.ac.uk/terrier/
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Table 1. Results comparing WCSA against II and FWCSA against FII

WCSAi IIi FWCSAi FIIi

i=1 i=2 i=1 i=2 i=1 i=2 i=3 i=1 i=2 i=3
Ratio (%) 45.03 38.08 45.54 39.07 41.42 38.84 37.54 41.32 38.93 37.50

Locate Locate
Words 1-100 0.009 0.018 0.018 0.246 0.030 0.058 0.070 0.042 0.161 0.503
(freq 101-1000 0.007 0.019 0.019 0.237 0.030 0.059 0.070 0.019 0.074 0.200
range) 1001-10000 0.006 0.019 0.023 0.163 0.030 0.058 0.069 0.021 0.089 0.171

10000+ 0.006 0.019 0.014 0.029 0.028 0.057 0.067 0.011 0.020 0.022
phrases 2 0.005 0.014 0.028 0.113 0.027 0.054 0.063 0.044 0.118 0.159

4 0.005 0.009 1.128 3.737 0.030 0.058 0.069 0.026 0.064 0.089
#words 6 0.069 0.069 14.028 76.319 0.032 0.062 0.074 0.077 0.304 0.485

8 0.059 0.059 7.396 50.118 0.044 0.059 0.074 3.086 15.551 27.795
Snippet Snippet

Words 1-100 0.055 0.091 0.027 0.255 0.086 0.148 0.160 0.041 0.161 0.512
(freq 101-1000 0.053 0.083 0.021 0.238 0.087 0.151 0.161 0.022 0.078 0.204
range) 1001-10000 0.054 0.084 0.024 0.164 0.085 0.149 0.159 0.024 0.093 0.174

10000+ 0.054 0.084 0.015 0.030 0.083 0.145 0.155 0.014 0.023 0.025
phrases 2 0.046 0.070 0.028 0.114 0.078 0.139 0.148 0.047 0.121 0.163

4 0.029 0.043 1.130 3.737 0.085 0.148 0.158 0.029 0.067 0.092
#words 6 0.069 0.139 14.028 76.389 0.092 0.159 0.170 0.080 0.307 0.486

8 0.118 0.118 7.396 50.059 0.084 0.153 0.162 3.110 15.463 27.717

parameters of its iCSA. The first, named FWCSA1, used the values {16, 16, 32};
FWCSA2 was obtained by setting {32, 16, 64}; and FWCSA3 used the values
{32, 32, 64}. For FII, {k, b} were set to {64,16} to obtain FII1; FII2 was created
with the values {64, 128}, and finally, II3 used values {64, 1024}.

The results show that, when compression ratio is around 40% there is not a
clear winner. FWCSA is better than FII for dealing with long phrases, but FII
obtains the best results on high frequency words. However, as the amount of
memory decreases, the results of FII worsen much faster than those of FWCSA.

Moreover, it is noticeable that II and FII versions are lower bounded in size
by around 35%. However, with that amount of available memory (F)WCSA per-
forms much better. Furthermore, we can always set (F)WCSA space to around
30%, yet with a clear loss in performance.
Non-II Alternatives. Other competitors to the inverted index, in a spirit simi-
lar to our WCSA, have recently appeared in the literature. We briefly compare
with these in this section.

We first compare WCSA1 and WCSA2 with the wavelet-tree index on words
(WT) [8]. We used two configurations of WT with different memory usage.
WT1 occupies 44.37% of the original text, whereas WT2 uses 38.61%. Results in
Table 2 show that, to search for single-word patterns, WT1 is faster than WCSA1.
However, WCSA1 overcomes WT1 when locating phrases. Similar results are ob-
tained for WT2 versus WCSA2.

We also briefly compared our WCSA against the approach called TH+AFFM
in recent work [11] (word-based compression followed by character-wise self-
indexing). We consider locating of phrases composed of 4 words (other choices
give similar results). We adjust WCSA to work with the same memory of
TH+AFFM, for different parameter combinations of both methods. It turns
out that WCSA searches around 5 times faster in all cases.
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Table 2. Results comparing WCSA against WT

WCSAi WTi WCSAi WTi

i = 1 i = 2 i = 1 i = 2 i = 1 i = 2 i = 1 i = 2
Ratio (%) 45.03 38.08 44.37 38.61 45.03 38.08 44.37 38.61

Locate Snippet
Words 1-100 0.009 0.018 0.005 0.007 0.055 0.091 0.026 0.058
(freq 101-1000 0.007 0.019 0.004 0.044 0.053 0.083 0.025 0.093
range) 1001-10000 0.006 0.019 0.002 0.007 0.054 0.084 0.021 0.051

10000+ 0.006 0.019 0.002 0.003 0.054 0.084 0.019 0.045
phrases 2 0.005 0.014 0.010 0.021 0.046 0.070 0.025 0.058

4 0.005 0.009 0.458 0.926 0.029 0.043 0.476 0.958
#words 6 0.069 0.069 9.028 21.181 0.069 0.139 9.028 21.250

8 0.059 0.059 5.562 15.562 0.118 0.118 5.621 15.562

6 Conclusions and Future Work

We have shown that a self-index applied to natural language text, seen as a
sequence of words rather than symbols, offers a very relevant alternative to the
traditional inverted indexes. With sizes around 40% the inverted indexes can
still compete with our (F)WCSA in some operations (extraction of snippets),
but when we aim at using less space, our proposal performs much better.

In this work we have focused on one self-index, Sadakane’s CSA. We plan to
try out others that have mild dependence on the alphabet size. In particular,
adapting the LZ-index [2, 23] should offer fast locating of occurrences.

Inverted indexes are also used for other purposes, as explained [4]. For ex-
ample they are used to implement the tf-idf model by recording the number of
occurrences of each word in each document, in decreasing order of frequency.
Only a short prefix of the posting list is fetched to solve queries. Can we provide
similar functionalities with a self-index? Some initial advances have been made
by Sadakane [27], but we are far from a definitive answer.
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Abstract. In this paper we consider the prefix array π = π[1..n] of
a string x = x[1..n] in which π[1] = 0 and, for i > 1, π[i] = k iff k is
the largest integer such that x[i..i+k−1] = x[1..k]. The prefix array π is
closely related to the border array β: an integer array [1..n] such that
β[i] = k iff the length of the longest border of x[1..i] is k. Border arrays
or their variants are used in many string algorithms and prefix arrays can
be used directly for pattern-matching. It is well known that for regular
strings π provides all the information that β does; we show however that
for indeterminate strings (those containing entries that match a subset of
the alphabet) π actually provides more information, in fact still enabling
all the borders of every prefix of x to be specified. Since a lot of the
entries of π are expected to be zeros, it is natural to represent π in
compressed form using integer arrays POS[1..m] and LEN[1..m], where
m is the number of nonzero entries in π and π

ˆ
POS[j]

˜
= LEN[j] iff the

jth nonzero entry in π occurs in position POS[j] and takes the value
LEN[j]. The expected value of m is n/σ−1, where σ is the alphabet size.
The straightforward way of computing POS/LEN requires computing π
first, therefore requires O(n) extra space. We describe two Θ(n)-time
algorithms PL1 & PL2 to compute POS/LEN for regular strings using
only 8m bytes of storage in addition to the n bytes required for x. PL1
requires about one-third the time of the standard border array algorithm
MP on English-language strings; PL2 executes faster than MP on both
English-language and highly periodic strings on {a, b}. For indeterminate
strings, we describe an extension IPL of PL1 that computes POS/LEN in
O(n2) worst-case time (though generally much faster), still using only 8m
bytes of additional storage. For both regular and indeterminate strings,
the compressed form of π can be used for efficient pattern-matching.
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1 Introduction

A border of a string x = x[1..n] is a proper prefix of x that is also a suffix. The
border array β of x is an integer array [1..n] such that β[i] = k iff the length
of the longest border of x[1..i] is k. Apparently first introduced in 1970 [MP70]
as the failure function, the border array in various guises has numerous appli-
cations; for example, pattern-matching [AC75, KMP77, BM77, G79, CCGJ94],
computing repetitions [ML84, M89], Lyndon decomposition [D83], determining
quasiperiodicity [LS02]. In a field to which periodicity is so important compu-
tationally, this ubiquity is perhaps not surprising: to know the length � of any
border of a string x = x[1..n] is to know that x has period n−�. Furthermore,
since for every i ∈ 1..n such that β[i] > 0, the longest border of x

[
1..β[i]

]
is the

second longest border of x[1..i], it follows that the border array determines all
the periods of every prefix of x. (These properties hold for strings on a regu-
lar alphabet Σ; later we introduce indeterminate strings, whose entries may
match not only letters in Σ, but also specified subsets of Σ — for such strings,
these properties do not necessarily hold.)

However, a property that holds for every border array, regardless of the nature
of the underlying alphabet of x, is the following:

(P) If for some i ∈ 2..n, β[i] > 0, then x[1..i−1] has a border of length
β[i]−1.

Property (P) implies that all the borders of the prefixes of x occur in arithmetic
sequences fully determined by maximum border lengths k; more precisely, if the
maximum border length of x[1..i] is k > 0, then

x[1..i−1], x[1..i−2], . . . , x[1..i−k+1] (1)

must have borders of (not necessarily maximum) lengths

k−1, k−2, . . . , 1,

respectively. (Of course every nonempty prefix of x has a border of length zero.)
Thus to describe all the borders of every nonempty prefix of x, it suffices to
specify only the maximum border k at each position i > 0. Since in each of the
sequences (1), x[i−k+1] = x[1], it becomes clear that to describe all the borders
of every prefix of x, it suffices to specify in every position j ∈ 2..n the length
k > 0 of the longest substring x[j..j +k−1] = x[1..k] — that is, the longest
substring that matches a prefix of x. Following [CHL01, CHL07], we define the
prefix array π = π[1..n] in which π[1] = 0 and, for i > 1, π[i] = k iff k is the
largest integer such that x[i..i + k− 1] = x[1..k]. Based on the above discussion,
we claim

Lemma 1. The prefix array π describes all the borders of every prefix of x. ��

The standard border array algorithm [MP70], that we call Algorithm MP, is well
known. [CHL01] outlines a basis for Θ(n)-time algorithms to compute β from π
and vice versa.
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Since for every i ∈ 2..n, π[i] = 0 if and only if x[i] �= x[1], the number of
nonzero elements in π is exactly m, where m is the number of occurrences of
x[1] in x other than at position 1. If we let σ = |Σ|, the expected value of m
is n/σ−1, a quantity less than n/2 for σ ≥ 2. Thus it is natural to represent π
in compressed form using integer arrays POS[1..m] and LEN[1..m], defined as
follows: π

[
POS[j]

]
= LEN[j] iff the jth nonzero entry in π occurs in position

POS[j] and takes the value LEN[j]. If we allow q bytes for storage of an integer
(generally q = 4), the expected storage requirement for this compressed form
will be 2q(n/σ−1) bytes, a substantial saving for larger alphabets over the qn
bytes required for the border array (and no more even for σ = 2).

The straight forward approach to compute POS/LEN, is of course to com-
pute π first and then re-write it in the compress form. However, this approach
requires at least additional qn (temporary) space. In Section 2 we describe a new
algorithm, executing on regular strings in worst-case Θ(n) time using (peak)
qm+O(1) bytes of additional storage, that computes π in compressed form
POS/LEN. We show how to use POS/LEN for efficient pattern-matching. In
Section 3 we introduce indeterminate strings and discuss the advantages and
use of the prefix array in this context, again including in particular efficient
pattern-matching. Section 4 gives the results of test runs of our algorithms on
large regular strings of various kinds, and Section 5 outlines future related work.

2 The Compressed Prefix Array on Regular Strings

In [CHL07] an elegant algorithm is described for computing π in its usual un-
compressed form. In Figure 1 we display a related algorithm PL1 that computes
π in its compressed POS/LEN form.

PL1 executes in two main phases:

(1) In the first phase a scan of π identifies the positions that match x[1], thus
determining m. Then the POS array is formed with these positions in as-
cending order, while each position in the LEN array is initialized to 1 — the
length of the shortest possible matching prefix.

(2) For every j ∈ 1..m, the second phase computes the length LEN[j] of the
longest substring x

[
POS[j]

]
that equals a prefix of x, making use of the

knowledge that LEN[j] ≥ 1.

For every j ∈ 1..m, let i = POS[j]. Then the second phase depends on three
main parameters:

– pref: initially the current length, then the maximum length, of the substring
beginning at x[i] that matches a prefix of x;

– end: the rightmost position in x such that x[i..end] matches a prefix of x;
– lim: the largest value of end that has so far been computed over all the

previous positions i in x.

The second phase of PL1 uses two routines, match and copy. Beginning with
the current matching prefix pref at position i, the function match extends the
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— Initialize POS/LEN for m positions x[i] = x[1], i ∈ 2..n.
λ ← x[1]; x[n+1] ← $; m ← 0
for i ← 2 to n do

if x[i] = λ then
m ← m+1; POS[m] ← i; LEN[m] ← 1

— For each j ∈ 1..m, determine longest match with prefix of x.
j ← 1; lim ← 1
while j ≤ m do

i ← POS[j]; pref ← LEN[j]
if i+pref > lim then

pref ← match(1+pref, i+pref)−1
LEN[j] ← pref
end ← i+pref−1
if end > lim then

lim ← end; copy(j+1, lim)
j ← j+1

— Return number of matching positions x[pos1 · ·] : x[pos2 · ·].
function match(pos1, pos2)
while x[pos1] = x[pos2] do

pos1 ← pos1+1; pos2 ← pos2+1
return pos1
— Update LEN for every λ in x[i+1..lim−1] = x[2..pref−1].

procedure copy(J, lim)
J ′ ← 1; I ← POS[J ]
while I < lim do

LEN[J ] ← min{LEN[J ′], lim−I+1}
J ← J+1; J ′ ← J ′+1; I ← POS[J ]

Fig. 1. Algorithm PL1: compute the POS/LEN arrays for x = x[1..n]

match as far to the right as possible, essentially adding to pref (if possible)
and determining end. (Note that explicit end-of-string detection is avoided in
match by adding a sentinal letter $ at position n+1 of x that does not match
any other letter in x.) If it turns out that end > lim, then it is possible that
there may exist positions I > i such that x[I] = x[1] and I < end – in such
cases, there is a substring beginning at I that matches a substring beginning at
position I ′ < i (hence already computed) that in turn matches a prefix of x.
For all such I and corresponding I ′, the procedure copy extends the match as
far as end (now lim) by copying as much as possible of the already computed
LEN value corresponding to I ′ into the LEN value corresponding to I. Note that
copy depends critically on the transitivity of matching (a = b and b = c implies
a = c), a property that always holds for regular strings. The use of copy avoids
repeating letter comparisons and ensures that for each value of i considered, pref
is as large as possible.

The first phase of PL1 requires n−1 letter comparisons and executes in Θ(n)
time. The second phase requires at most n−1 letter comparisons and otherwise
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x[n+1] ← $; pref ← 0; i ← 1; m ← 0
while i < n do

if pref = 0 then i ← i+1
pref ← match(i, pref)
if (pref �= 0)

m ← m+1; POS[m] ← i; LEN [m] ← pref
copy(i, pref, m)

Fig. 2. Algorithm PL2: compute the prefix array π for x = x[1..n]

— Return number of matching positions x[pos1 · ·] : x[pos2 · ·].
function match(i, pref)
while x[i+pref] = x[1+pref] do

pref ← pref+1;
return pref

procedure copy(i, pref, m)
J ← 1
while POS[J ] ≤ pref do

max ← pref−POS[J ]+1
if LEN[J ] < max then

m ← m+1; POS[m] ← i+POS[J ]−1; LEN[m] ← LEN[J ]
elsif i+pref ≥ n then

m ← m+1; POS[m] ← i+POS[J ]−1; LEN[m] ← max
else

pref ← −1; J ← J−1
J ← J+1

if pref = −1 then
i ← i+POS[J ]−1; pref ← max

else
i ← i+pref−1; pref ← 0

Fig. 3. Routines match and copy for Algorithm PL2

requires only constant time for each position i in x that needs to be considered.
Thus PL1 is a Θ(n) time algorithm. As noted earlier, additional storage required
for POS/LEN is 2qm bytes, where q is the number of bytes needed for integer
storage.

Because it deals efficiently with positions in x that do not match x[1], Algo-
rithm PL1 is more efficient on strings with larger alphabets that occur frequently
in practice. In Figure 2 we describe an alternative algorithm PL2 that is fast
(faster than MP) on highly periodic strings on {a, b} as well as on strings on
larger alphabets.

The new routines match and copy are shown in Figure 3. PL2 differs from
PL1 primarily in its approach to copy: rather than copying as much as possible
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up to the current value of lim, PL2 copies only if the match to be copied can
be copied in its entirety (or if end-of-string is reached). If the copy cannot be
completed, a nonzero value of pref is returned, indicating the minimum length
of the match at the next occurrence of x[1].

Given a pattern p = p[1..n1] and a text y = y[1..n2], the positions of all
occurrences of p in y can be identified by first forming

x = p#y,

where # �= $ is a sentinel that does not appear in p or x and n = n1+n2+1,
then executing PL1 or PL2. The positions in y at which p occurs are identified
by the values of j ∈ 1..m such that LEN[j] = n1. The time requirement is Θ(n)
with a maximum of 2n−2 letter comparisons, a minimum of n−1.

3 Prefix Array on Indeterminate Strings

Let λi, |λi| ≥ 2, 1 ≤ i ≤ s, be pairwise distinct subsets of Σ. We form a new
alphabet Σ′ = Σ ∪ {λ1, λ2, .., λs} and define a new relation match (≈) on Σ′

as follows:

– for every µ1, µ2 ∈ Σ, µ1 ≈ µ2 if and only if µ1 = µ2;
– for every µ ∈ Σ and every λ ∈ Σ′−Σ, µ ≈ λ and λ ≈ µ if and only if µ ∈ λ;
– for every λi, λj ∈ Σ′−Σ, λi ≈ λj if and only if λi ∩ λj �= ∅.

Observe that match is reflexive and symmetric but not necessarily transitive;
for example, if λ = {a, b}, then a ≈ λ and b ≈ λ does not imply a ≈ b. This
idea seems to have first been mentioned in [FP74] and existed in varies guises
such as generalized strings [A87], subset matching [CHI99, CH03], partial words
[BSH02], and degenerate strings [IRVV07].

Here we define the letters in Σ′−Σ to be indeterminate, and a string con-
taining indeterminate letters is called an indeterminate string. A position in
x at which an indeterminate letter appears is called a hole. An important spe-
cial case of an indeterminate letter is λ = {Σ}, usually denoted by ∗ and called
a don’t-care. In [IMMP03] an average-case Θ(n)-time (worst-case O(n2)-time)
algorithm was described for the calculation of all the borders of every prefix of a
string x = x[1..n] containing don’t-cares. In [HS03] this algorithm was extended
to strings with arbitary holes.

Because of the nontransitivity of the match operation on indeterminate let-
ters, it is no longer necessarily true, as remarked in the Introduction, that β

[
β[i]
]

necessarily gives the length of the second-longest border of β[1..i]. For example,
if x = aba∗ b, a border array β = 00122 would give correctly the longest borders
of x[1..i], i ∈ 1..5, but because β

[
β[4]
]

= 0, it would not report the fact that ac-
tually β[1..4] has a border of length 1 in addition to its longest border of length
2. Thus the algorithms given in [IMMP03, HS03] all need to compute a linked list
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— Initialize POS/LEN/EQUAL for m positions x[i] ≈ x[1], i ∈ 2..n.
λ ← x[1]; x[n+1] ← $; m ← 0
for i ← 2 to n do

if x[i] ≈ λ then
m ← m+1; POS[m] ← i; LEN[m] ← 1
if x[i] = λ then EQUAL[m] ← TRUE

else EQUAL[m] ← FALSE

— For each j ∈ 1..m, determine longest match with prefix of x.
j ← 1; lim ← 1
while j ≤ m do

i ← POS[j]; pref ← LEN[j]
if i+pref > lim then

pref ← match(1+pref, i+pref, j)−1
LEN[j] ← pref
end ← i+pref−1
if end > lim then

lim ← end; copy(j+1, lim)
j ← j+1

— Return number of matching positions x[pos1 · ·] : x[pos2 · ·].
function match(pos1, pos2, j)
while x[pos1] ≈ x[pos2] do

pos1 ← pos1+1; pos2 ← pos2+1
if x[pos1] �= x[pos2] then EQUAL[j] ← FALSE

return pos1
— Update LEN for every λ in x[i+1..lim−1] = x[2..pref−1].

procedure copy(J, lim)
J ′ ← 1; I ← POS[J ]
while I < lim do

if EQUAL[J ′] then LEN[J ] ← min{LEN[J ′], lim−I+1}
J ← J+1; J ′ ← J ′+1; I ← POS[J ]

Fig. 4. Algorithm IPL: compute the POS/LEN arrays for indeterminate x = x[1..n]

at each position i of β in order to give specifically all the borders of the prefixes
of the indeterminate string x. In the worst case, this requires O(n2) storage.
However, due to the validity of Lemma 1 for both regular and indeterminate
strings, the computation of π rather than β eliminates the requirement for lists:
for an indeterminate string, the nonzero positions i > 1 in π will be those for
which x[i] ≈ x[1], and the values of these π[i] will be sufficient to specify all
the borders of all the prefixes of x, just as in the indeterminate case, with no
additional storage required. In the above example, it would suffice to return
π = 00220.

Another consequence of the intransitivity of indeterminate matching is that
the relationship between border and period, mentioned in the Introduction, is
modified. Following [BSH02] we say that an indeterminate string x has strong
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period p if and only if for every i1, i2 ∈ 1..n such that i1 ≡ i2 (mod p), x[i1] ≈
x[i2]; x has weak period p if and only if for every i1, i2 ∈ 1..n such that
i2 = i1+p, x[i1] ≈ x[i2]. If an indeterminate string x has a border of length �,
we can say only that x has weak period n−�, not necessarily a strong period.
Consider, for example, x = abcab ∗ abd of length n = 9 with a border of length
� = 6.

Figure 4 gives pseudocode of Algorithm IPL, the indeterminate version of
Algorithm PL1 (Figure 1). The main change is the introduction of a bit array
EQUAL[1..m]: EQUAL[j] = TRUE iff the substring starting at position POS[j]
of length LEN[j] is equal to (rather than merely matching) a prefix of x. If
equality holds, then the copy procedure can be performed as usual; if not, then
it must be skipped. EQUAL is maintained in function match: if at any position
there is a match (≈) with a prefix of x but not equality (=), EQUAL[j] is
permanently set to FALSE. An alternative, brute-force (and perhaps in practice
faster) approach would have been to simply eliminate copy altogether and to
perform all matches directly with x[2 · ·]. In any case IPL has worst-case time
O(n2), attained for example by x = ∗λn−1, but only requires 9(n/σ−1) bytes
of storage. The implementation of letter-matching (≈) in indeterminate strings
can be nontrivial; various alternatives are discussed in [HSW06, HSW08].

By computing π rather than borders, Algorithm IPL makes available all the
border information in a generally much more compact form, without the need
to store linked lists of possible borders for each position of x.

4 Experimental Results

We have tested Algorithms PL1 and PL2 against the standard border array
algorithm MP and the algorithm PI for computation of the uncompressed π
array of [CHL07], using two kinds of test data: highly periodic strings on {a, b}
and English-language texts. The highly periodic strings are concatenations of
long strings in the family of strings with many runs identified in [FSS03]; the
English files are concatenations of various novels (for example, The Mysterious
Affair at Styles, War and Peace). The results are presented in Figures 5 and 6.
Experiments were conducted using a 2.6GHz Opteron 885 processor with 2GB
main memory available, under GNU Linux (kernel release 2.6.18-92.1.1.el5). The
compiler was g++ with the -O3 option. The run times used were the minima over
10 runs, not including input/output.

On periodic strings Algorithms PL2 and PI are comparable, slightly faster
than MP, that in turn requires only two-thirds the time of PL1. On English-
language strings, however, PL1 is the fastest algorithm, requiring about one-third
the time of MP, and slightly faster than PL2.

5 Summary and Future Work

In this paper we have presented new efficient algorithms PL1 and PL2 to compute
the prefix array in compressed form. More comprehensive testing is required
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Fig. 5. Test Result on Periodic Strings

Fig. 6. Test Result on English Strings

to determine the kinds of strings on which they execute most quickly. It appears
that, on strings arising in practice, these algorithms generally execute consider-
ably faster than the border array algorithm while providing the same (for regular
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strings) or more (for indeterminate strings) information in a much more compact
form. In future we propose investigating algorithmic applications for the prefix
array in situations where the border array is currently used. Experimental and
theoretical investigation of the efficiency of prefix array calculation and use on
indeterminate strings is also of interest in the context of applications to DNA
and protein sequences. While an algorithm for determining whether or not an
array of integers is a prefix array for some string has apparently been found for
regular strings [C08], no such algorithm has been discovered for indeterminate
strings. As we have shown, the latter problem is well defined, whereas the corre-
sponding one for a border array is not. For the border array problem on regular
strings see [FGLR02, DLL05].
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Abstract. We present a new search procedure for approximate string
matching over suffix trees. We show that hierarchical verification, which
is a well-established technique for on-line searching, can also be used
with an indexed approach. For this, we need that the index supports
bidirectionality, meaning that the search for a pattern can be updated
by adding a letter at the right or at the left. This turns out to be eas-
ily supported by most compressed text self-indexes, which represent the
index and the text essentially in the same space of the compressed text
alone. To complete the symbiotic exchange, our hierarchical verification
largely reduces the need to access the text, which is expensive in com-
pressed text self-indexes. The resulting algorithm can, in particular, run
over an existing fully compressed suffix tree, which makes it very appeal-
ing for applications in computational biology. We compare our algorithm
with related approaches, showing that our method offers an interesting
space/time tradeoff, and in particular does not need of any parameteri-
zation, which is necessary in the most successful competing approaches.

1 Introduction and Related Work

Approximate string matching (ASM) is an important problem that arises in
applications related to text searching, pattern recognition, signal processing,
and computational biology, to name a few. The problem consists in locating all
the occurrences O of a given pattern string P , of size m, in a larger text string
T , of size n, where the distance between P and O is less than a given threshold
k. We focus on the edit distance, that is, the minimum number of character
insertions, deletions, and substitutions of single characters to convert one string
into the other.
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The most successful indexed approach to this problem, in practice, is so-
called “hybrid” indexing. It starts with a filtration phase that determines the
positions of potential occurrences. Those positions are then sequentially verified
in the text. The pattern pieces searched for in the filtration phase are short
enough to control the exponential cost of this search, and long enough so that
the number of occurrences to verify in the text is also controlled. By carefully
optimizing this partitioning, hybrid indexes achieve O(mnλ) average time, for
some 0 < λ < 1, and work well for reasonably high error levels. Hybrid methods
have been implemented over q-gram indexes [1], suffix arrays [2], and q-sample
indexes [3]. Yet, many of those linear-space indexes are very large anyway. For
example, suffix arrays require 4 times the text size and suffix trees require at
least 10 times [4]. Compressed indexes, based on succinct and compressed data
structures, provide less space-demanding indexes [5]. Their space requirements
are measured in terms of the empirical text entropy, Hk, which gives a lower
bound for the number of bits per symbol achievable over that text by a k-th
order compressor.

There have been several approaches to ASM over compressed indexes. The
most successful one in practice is that of Russo et al. [6], which builds over
a Ziv-Lempel-based compressed index, and approaches hybrid performance in
practice. This is faster than our new index, still ours is significantly smaller, in
theory and in practice. In addition, our algorithm can run over most compressed
text indexes, in particular over fully-compressed suffix trees [7] (FCSTs), which
offer complete suffix-tree functionality. Hence, our algorithm can be used as a
subroutine in other suffix-tree-based algorithms.

2 Our Contribution

In this work we explore the impact of hierarchical verification on hybrid search.
Hierarchical verification means that an area that needs to be verified is not imme-
diately checked with the maximum number of errors; instead the error threshold
is raised gradually. Curiously enough, this technique was originally proposed by
Myers [1] in his hybrid index and later extended and used by Navarro et al. [8]
for an on-line algorithm. However, these approaches used hierarchical verifica-
tion directly over the text T , meaning that none of the repeated computation
was factorized. We investigate precisely how to do this computation over the
index, thus allowing us to avoid repeated computation.

Simultaneously, our result achieves compressed space, because we use FCSTs,
which are functional representations of suffix trees and in particular are bidi-
rectional. Typical indexes, classical suffix trees in particular, are unidirectional,
meaning that they can search only by using the letters at the end of the pattern.
Due to the Rank/Select duality [5], bidirectionalily arises naturally in a class
of compressed indexes, which we will refer to as bidirectional compressed indexes.

Bidirectional indexes are one important ingredient of our approach. Another
crucial piece is computing the edit distance. Algorithms for this purpose are
typically unidirectional, computed from left to right, because they are based
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on dynamic programing or automata. Interestingly this computation was made
bidirectional, more than 10 years ago, by Landau et al. [9]. They showed how to
obtain the edit distance for strings A and cB by extending that for for strings
A and B, where c is a letter.

Combining these bidirectional algorithms we can use hierarchical verification
directly over the index, instead of over T . Thus, we fill an important gap in
indexed ASM. Moreover, while hybrid methods need careful tuning (where a
small error can be disastrous), ours achieve close performance without need of
tuning (and can be improved by tuning as well).

In addition, our work addresses a very important practical issue. Compressed
indexes are usually self-indexes, meaning that they do not store the text T but
even so they are able to consult it. Even when in theory reading � consecutive
letters takes O(�) time, experimental results show [10] that this is still two orders
of magnitude slower than storing T . This can easily be explained as the penalty of
missing cache in modern computer architectures. Efficient algorithms for ASM
over compressed indexes must therefore minimize their accesses to T . Hence
hierarchical verification directly over the index is a very important technique in
this context, both in theory and in practice.

3 Basic Concepts

We denote by T a string; by Σ the alphabet of size σ; by T [i] the symbol at
position (i mod n); by T.T ′ concatenation; by T = T [..i − 1].T [i..j].T [j + 1..]
respectively a prefix, a substring and a suffix; by S ! S′ that S is a substring
of S′. We refer indifferently to nodes and to their path-labels, also denoted by
v. The suffix tree of T is the deterministic compact labeled tree for which the
path-labels of the leaves are the suffixes of T $, where $ is a terminator symbol not
belonging to Σ. We will assume n is the length of T $. For a detailed explanation
see Gusfield’s book [11]. The suffix array A[0, n − 1] stores the suffix indexes
of the leaves in lexicographical order.

3.1 Bidirectional Compressed Indexes

Our algorithm can be implemented over any bidirectional index. This means
that, from the index point corresponding to a text substring T [i..j] we can effi-
ciently move to that of T [i..j + 1] but also to that of T [i − 1..j].

Although classical text indexes are not usually bidirectional, most compressed
indexes are. For example, FM-indexes [12] offer a so-called LF mapping opera-
tion, which moves from the suffix array position k such that A[k] = i, to position
k′ such that A[k′] = i − 1. Compressed suffix arrays [13], instead, offer function
ψ, moving to a k′ such that A[k′] = i + 1, thus the inverse of ψ serves as an LF
mapping as well.

FCSTs [7] build complete suffix tree functionality on top of a compressed
bidirectional index, in particular an FM-index fits best. The LF mapping allows
FCSTs implement Weiner links [14]: WeinerLink(v, a), for node v and letter a,
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a b c c b a

a b b b a b

Fig. 1. Schematic repre-
sentation of the edit dis-
tance between abccba and
abbbab

a b c c b a j: a b c c b a j:
0 1 2 3 4 5 6 0 0 0

a 1 0 1 2 3 4 5 1 a 0 1
b 2 1 0 1 2 3 4 2 b 1 0 1 2
b 3 2 1 1 1 2 3 3 b 2 1 1 1 2 3
b 4 3 2 2 2 2 3 4 b 2 2 2 2 4
a 5 4 3 3 3 3 2 5 a 2 5
b 6 5 4 4 4 3 3 6 b 6
i: 0 1 2 3 4 5 6 i: 0 1 2 3 4 5 6

Fig. 2. D table computation for strings abccba
and abbbab. (left) The numbers in bold refer to
the alignment shown in Fig. 1. (right) Compu-
tation with increasing error bound.

gives the suffix tree node v′ with path-label a.v[0..], and it is the key to move from
a v representing T [i..j] to a v′ representing T [i − 1..j], that is, to birectionality.
The other direction, that is, from T [i..j] to T [i..j+1], is supported just by moving
to a child of v. FCSTs support all of the usual suffix tree navigation operations,
including suffix links (via ψ) and lowest common ancestors (LCA(v, v′)).

3.2 Approximate String Matching

The edit or Levenshtein distance between two strings, ed(A, B), is the smallest
number of edit operations that transform A into B. We consider as operations
insertions, deletions, and substitutions.There is a well-known dynamic program-
ming (DP) algorithm that computes the D matrix, where D[i, j] is the edit
distance, ed(A[..i − 1], B[..j − 1]), between the prefixes A[..i − 1] and B[..j − 1]
of A and B. Fig. 2(left) shows an example of the D matrix for A = abccba
and B = abbbab. Therefore by looking at cell D[6, 6] = 3 we can conclude that
ed(abccba, abbbab) = 3. Let the size of A and B be m and m′ respectively. This
matrix can be computed, in O(mm′) time, by setting D[0, 0] = 0 and

D[i, j] = min

⎧⎨⎩
D[i − 1, j] + 1 if i > 0
D[i, j − 1] + 1 if j > 0
D[i − 1, j − 1] + δA[i−1]=B[j−1] if i, j > 0

⎫⎬⎭ ,

where δx=y is 0 if x = y and 1 otherwise. Ukkonen [15] noted that in order to
find cells in D whose value is k there is no need to compute cells with value
larger than k; those can be replaced by +∞. The remaining cells are referred
to as active cells. With this method, extending the computation of ed(A, B) to
ed(Ac, B) or ed(A, Bc) requires only O(k) time.

Assuming we have a text T , previously pre-processed into a FCST, the prob-
lem we are interested in solving in this paper is: given a pattern P and error limit
k, determine all the substrings O of T for which ed(P, O) ≤ k. As our running
example consider that P = abccba, k = 2 and T = abbbab. The only substring O
of T is abbba. A way to find this string, not always the most efficient one, is to
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perform a depth-first search over the suffix tree of T , moving one letter at a time,
simultaneously computing the D table, for P and O′, where O′ is the path-label
of the node we are visiting. This table can be used to control the search. When
we reach a point O′ and ed(P, O′) ≤ k, which can be checked as D[|P |, |O′|] ≤ k,
this string is reported as an occurrence. Usually we also report all the positions
in T at which O′ occurs, which means traversing the whole subtree of O′ and
reporting all its leaf positions. Otherwise if ed(P, O′) > k but there is at least
one active cell in the last row, i.e. D[i, |O′|] ≤ k for some i, this means that
ed(P [..i − 1], O′) ≤ k and, therefore O′ can potentially be extended into an oc-
currence and the search is allowed to proceed. If, on the other hand, there are
no active cells in the last row of D, the search can be abandoned, not proceeding
to deeper points. For example by looking at Fig. 2 we can conclude that the
search should not proceed further after abbbab because there are no active cells
in the last row of the table. Also, since all the other rows contain active cells,
this point is indeed reached by the search. It helps to think of D as a stack of
rows that is growing downwards. Note that it is a convenient coincidence that
the difference between the D tables of ed(P, O′) and ed(P, O′c) is only the last
row. This means that we can move between these two tables simply by adding
or removing a row. At each step the DFS algorithm either pushes a new element
into the stack, i.e. moves from ed(P, O′) to ed(P, O′c), or it removes a row from
the stack, i.e. moves from ed(P, O′c) to ed(P, O′). This process is known as
neighborhood generation and it will be a key ingredient in our algorithm. The
problem with this process is that it might have a very low success rate, i.e. only
a small percentage of the nodes visited by the process turn out to be occurrences
of P .

4 Bidirectional Traversal

Our algorithm will proceed in a slightly more sophisticated fashion. Instead of
extending O′ only in one direction, to the right, we will use a bidirectional search.
Landau et al. [9] obtained the surprising result that it is possible to compute
ed(A, cB) from ed(A, B), also in time O(k). The resulting algorithm is very
sophisticated and the reader should consult the original paper. For our purposes
all we need are the following observations. The extension is not restricted to B,
i.e. we can also extend ed(A, B) to ed(cA, B). The number of errors does not have
to be fixed, i.e. we can extend a computation with k errors to a computation
on k + 1 errors in O(k + 1) time. Finally, the data structure they use in their
algorithm are two doubly linked lists organized in a grid. This means that if we
compute ed(A, cB) from ed(A, B) we can revert back to the ed(A, B) state by
simply keeping a rollback log of which pointers to revert, which requires O(k)
computer words1. For our algorithm this idea suffices since, as in the previous
paragraph, the states we need to visit are always organized in a stack. Therefore

1 It seems to us that it is possible to extend their algorithm to support this directly,
but if that is not the case we can still use the rollback log idea.
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we never need to compute a sequence such as ed(A, B) to ed(A, cB) to ed(dA, cB)
to ed(dA, B).

To improve the success rate of the process described above we should start our
search from an area of P that is well preserved. To limit the number of errors
we divide the pattern into smaller pieces. We will use the following filtration
lemma.

Lemma 1 ([10]). Let A and B be strings, let A = A0A1 . . . Aj, for strings Ai

and some j ≥ 1. Let ki ∈ R such that ed(A, B) <
∑j

i=0 ki. Then there is a
substring B′ of B and an i such that ed(Ai, B

′) < ki.

In our algorithm we will use A = P and B = O and divide the errors in a
homogeneous fashion, i.e. choose ki = α|Ai| + ε, where α = k/m and ε > 0
is a number that can be as small as we want and it is only used to guarantee
that ed(A, B) <

∑j
i=0 ki. Recall our running example with O = abbba and

P = abc.cba, assuming this is the partition of A. Therefore we should have
k0 = k1 = (2/6)×3+ε. Hence the lemma says that in any O there is at least one
substring O′ such that ed(O′, abc) < 1+ ε or ed(O′, cba) < 1+ ε. In our example
there are in fact two substrings O′ that satisfy this property, ed(abb, abc) ≤ 1 and
ed(bba, cba) ≤ 1. On one hand this is good because it validates the lemma. On
the other hand it is excessive because the same string will be found in more than
one way. To solve this redundancy notice that we do not need to add ε to both
ki’s, i.e. we can choose k0 as before and k1 = 1. This means that the conclusion
of the lemma now states that there should be an O′ such that ed(O′, abc) ≤ 1
or ed(O′, cba) < 1 ⇒ ed(O′, cba) ≤ 0, and hence the redundancy is eliminated.

Note that the condition on O′ is no guarantee that there exists an occurrence O
of P , since it is a one-way implication. Hence the area around O′ must be verified
to determine whether there is an occurrence or not. Note that in previous work
the usual verification procedure is computed in T , not taking advantage of the
index. Therefore, verifying those occurrences can cost O(k(m + k)) operations.
The problem with dividing P too much, such as when j = k + 1, is that the
number of positions to verify can become excessively large and again we get a
low success rate, i.e. only a small percentage of the O′s verified by the process
turn out to be occurrences of P .

The hybrid approach tries to maximize the overall success rate by finding an
optimal balance between filtration and neighborhood generation. It was shown [2]
that the optimal point occurs for j = Θ(m/ logσ n), with a complicated constant.
Our approach can have a slightly different optimal point, but if we use their j
the resulting algorithm is never worse than theirs. Moreover we also attempt
to automatically determine the hybrid point and hence eliminate the need for
parameterization.

5 Indexed Hierarchical Verification

We modify the verification phase, after filtration, in two ways. (1) We will
perform it over the FCSTs instead of over T , to factor our possibly repeated
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computations. (2) We use hierarchical instead of direct verification, which also
provides a strategy to approximate the optimal point.

The idea of hierarchical verification is to gradually extend the error level
instead of jumping directly to k. This is obtained by iterating Lemma 1.This
technique was shown to be extremely efficient for the on-line approach [2]. We
use the following lemma (proof omitted).

Lemma 2. Let A and B be strings, let A = A0A1 . . . Aj, for strings Ai and
some j + 1 = 2h ≥ 1. Let ki ∈ R such that ed(A, B) <

∑j
i=1 ki. For some

fixed 0 ≤ i ≤ j, define A′
i′ = A2i′�i/2i′� . . . A2i′ (1+�i/2i′�)−1, for any 0 ≤ i′ ≤

h, as the hierarchical upward path from Ai to A, and define accordingly k′
i′ =∑2i′(1+�i/2i′ �)−1

i′′=2i′�i/2i′� ki′′ as the error level corresponding to each A′
i′ . Then there are

strings B0 ! ... ! Bh = B and an i such that for any 0 ≤ i′ ≤ h we have
ed(A′

i′ , Bi′) < k′
i′ . Moreover, for each i′, if A′

i′ is a prefix(suffix) of A′
i′+1 then

Bi′ is a prefix(suffix) of Bi′+1.

Consider our running example with k = 2 and P = abccba. Instead of applying
Lemma 2 we will instead iterate Lemma 1, which is actually the way we compute
the partition in practice. We divide P = A = abc.cba into pieces of size 3
and therefore we have k′

0 = k′
1 = 3 × (2/6) + ε = 1 + ε, which in practice

means 1 error per piece. Now we divide these pieces as ab.c.cb.a and we have
k0 = k2 = 2 × (2/6) + ε and k1 = k3 = 1 × (2/6) + ε, this means 0 errors for all
the pieces. Notice that we can refine our method by adding ε to only one ki, as
we did in Section 3.2. Hence we can choose k0 = k2 = 2/3 and k1 = 1/3 + ε and
k3 = 1/3. Notice that in our example the occurrence abbba verifies this lemma
because ed(ab, ab) < 2/3 and ed(abb, abc) < (2/3) + (1/3) + ε, where ab and abc
are substrings of P .

This lemma is used to reduce the cost of verifying an occurrence. Instead
of directly verifying the space around a B0 when ed(Ai, B0) < ki for a string
B such that ed(A, B) < k, we extend the error level gradually. Assuming i
is even, this means checking for ed(Ai.Ai+1, B1) < ki + ki+1 first, for some B1.
Fig. 2(right) shows an example of this process, computed with table D.Whenever
a row reaches a certain level in the hierarchy and contains active cells, the com-
putation on that row is extended to activate the cells that are < ki + ki+1. For
example since D[2, 2] = 0 the cells in row 2 that can be < 1+ε are activated, i.e.
cells D[1, 2] and D[3, 2], that correspond to ed(a, ab) and ed(abc, ab). A similar
process happens at row 3. In theory we can compute all the cells that are ≤ k all
the time. Still, we can also start to compute them at a given row, especially since
it is not necessary to fill upwards the missing cells in the table. That is, we can
compute the missing cells, up to < ki + ki+1, from the ones already in the table.
There is no problem if the value of the new cells is larger than their value on the
complete D table. In fact it is desirable. This will only make the algorithm skip
occurrences that, because of Lemma 2, will be found in another case.

To determine that ed(Ai, B0) < ki we must compute the DP table for these
two strings. Extending this computation to ed(Ai.Ai+1, B1) < ki+ki+1 is simple
because table D only needs to be updated in its natural directions (to the right
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and downwards). From the suffix tree point of view this situation is also natural
because it involves descending in the tree.

When i is odd the situation is a bit trickier. This time we must check for
ed(Ai−1.Ai, B1) < ki−1 + ki. This is much more difficult because we need to
move in the FCST by prepending letters to the current point. This is possible
with the WeinerLink operation, recall Section 3.1. Moreover we need to extend
the DP in unnatural directions (to the left and upwards). For this we use the
result [9] mentioned in Section 3.2. Hence computing each new row requires only
O(k) operations. Note that the underlying operation on which their algorithm
relies is the longest common prefix of any two suffixes of A and B. To solve
this we build a FCST for P , in O(m) time, in uncompressed format so that the
LCA operation takes O(1) time. Note that this FCST is built only once at the
beginning of the algorithm and adds O(m log m) bits to the space requirements of
the algorithm. We determine the positions of O′[i..] in that suffix tree, in O(m′)
time, with the Parent and WeinerLink operations. Together with the LCA
operation we can compute the size of the necessary longest common prefixes.
Note that whenever O′ is extended to/contracted from cO′, this information
must be updated, by recomputing in O(m′) time.

Our algorithm consists in neighborhood generation, where the error bound is
gradually increased. Depending on the position of current P ’s substring in the
hierarchical verification the string O′ is extended either to the left or to the right.
Hence, as mentioned before, the ed(P, O′) states are stored in a stack, whereas
the O′ string being generated is stored in a double stack structure that can be
pushed/popped at both ends.

6 Practical Issues and Testing

We implemented a prototype, BiFMI, to test our algorithm. Lacking a FCST
implementation, we simulated it with a bidirectional FM-Index over one wavelet
tree [5]. We reverse the search so that the most common search (forwards) is done
using LF (where the FM-index is faster) instead of ψ. We use efficient sequential
algorithms as a baseline (namely BPM, the bit-parallel DP matrix of Myers [16],
and EXP, the exact pattern partitioning by Navarro and Baeza-Yates [17]). We
also included in the comparison authors’ implementation of several competing
indexes: Hybrid is the classical hybrid technique over plain suffix arrays [2];
LZI and DLZI are basic and improved algorithms based on the LZ-index [18],
which partition into j = k + 1 exact searches for pattern pieces and decompress
the candidate text areas for (non-hierarchical) verification [19]; FMIndex is the
same strategy applied over Navarro’s fast and large FM-index implementation
(which is much faster than our own FM-index); and finally ILZI is a recent ASM
algorithm [6] over the ILZI compressed index [10].

The machine was a Pentium 4, 3.2 GHz, 1 MB L2 cache, 1GB RAM, running
Fedora Core 3, and compiling with gcc-3.4 -O9. We used the texts from the
Pizza&Chili corpus2, with 50 MB of English and DNA and 64 MB of proteins.
2 http://pizzachili.dcc.uchile.cl
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Fig. 3. Average user time for finding the occurrences of patterns of size 30 with k
errors. The y axis units are in seconds and common to the three plots.

Table 1. Memory peaks, in Megabytes, for the different approaches when k = 6

ILZI Hybrid LZI DLZI FMIndex BiFMI
English 55 257 145 178 131 54
DNA 45 252 125 158 127 40
Proteins 105 366 217 228 165 63

The pattern strings were sampled randomly from the text and each character
was distorted with 10% of probability into an insertion, deletion, or substitution.
All the patterns had length m = 30. Every configuration was tested during at
least 60 seconds using at least 5 repetitions. Hence the number of repetitions
varied between 5 and 130,000. To parameterize the hybrid index we tested all
the j values from 1 to k+1 and reported the best time. We did a similar process
on the ILZI index. We tested our algorithm, BiFMI, in automatic mode, i.e. not
using any parameterization.

The average query time, in seconds, is shown in Fig. 3 and the respective
memory heap peaks for indexed approaches are shown in Table 1. The hybrid
index provides the fastest approach to the problem. However it also requires the
most space. Our BiFMI index, on the other hand, achieves the smallest space
(and it can still be reduced). We maintain a sparse sampling for our prototype, to
show that even within little space we can achieve competitive performance. The
FMIndex, on the other hand, needs a much denser sampling to be competitive.
Thus our hierarchical and bidirectional verification method was faster than the
basic one, even if run on a much slower index (our versus Navarro’s FM-Index).

Aside from the hybrid index, the fastest approach in reduced space is the
ILZI-based one. The performance of our prototype closely follows that of ILZI,
except for the DNA file. This indicates that we were able to approach hybrid
performance. We were also, mostly, able to reduce the gap caused by cache
misses. Notice that the ILZI index is consistently at most one order of magnitude
slower than Hybrid, for k ≤ 3. Our algorithm was not so effective in the DNA
file but was still able to avoid two orders of magnitude slowdown for proteins
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and English. Notice that this is important, since aside from the ILZI, the other
compressed approaches seem to saturate at a given performance for low error
levels: in English k = 1 to 3, in DNA k = 1 to 2, and in proteins k = 1 to 5. This is
particularly troublesome since indexed approaches are the best alternative only
for low error levels. In fact the sequential approaches outperform the compressed
indexed approaches for higher error levels. In DNA this occurs at k = 4 and in
English at k = 5.

We did not implement the algorithm of Landau et al. [9]; instead we used the
bit-parallel NFA of Wu et al. [20] and recomputed the D table whenever it was
necessary to change the computing direction. Note this requires O(m) time when
we switch from right to left or vice versa, but after the change it will require only
O(k) time for each new row. Although in theory this process could slow down
our algorithm by a factor of O(log k), in practice this factor was negligible.

7 Conclusions and Future Work

In this paper we studied the impact of hierarchical verification in ASM. We ob-
tained an automatic hybrid index that uses fully-compressed suffix trees. This
a very important result because it is the first algorithm that approximates the
performance of the hybrid index automatically and effectively in practice. Our
result is also very important because FCSTs require only compressed space, i.e.
nHk +O(n log σ) bits. Compared to other compressed indexes, our approach was
more efficient for low error levels. Although it was less efficient than the ILZI-
based algorithm, it requires less space in theory and in practice. In theory, the
ILZI requires 5nHk + o(n log σ) bits, but, in practice that is closer to 3nHk, in-
cluding the sublinear term. On the other hand, a FCST requires nHk+o(n log σ)
bits in theory, but this becomes a bit higher in practice if we consider the sub-
linear term. Moreover our algorithm can be used as a subroutine in a suffix tree
algorithm whereas the ILZI-based algorithm cannot.
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Abstract. We discuss the following variant of incremental edit distance
computation: Given strings A and B with lengths m and n, respectively,
the task is to compute, in n successive iterations j = n . . . 1, an encoding
of the edit distances between A and all prefixes of Bj..n. Here Bj..n is the
suffix of B that begins at its jth character. This type of consecutive suf-
fix alignment [3] is powerful e.g. in solving the cyclic string comparison
problem [3]. There are two previous efficient algorithms that are capable
of consecutive suffix alignment under edit distance: the algorithm of Lan-
dau et al. [2] that runs in O(kn) time and uses O(m+n+k2) space, and
the algorithm of Kim and Park [1] that runs in O((m + n)n) time and
uses O(mn) space. Here k is a user-defined upper limit for the computed
distances (0 ≤ k ≤ max{m, n}). In this paper we propose the first effi-
cient linear space algorithm for consecutive suffix alignment under edit
distance. Our algorithm uses O((m + n)n) time and O(m + n) space.

1 Introduction and Preliminaries

Computing edit distance between two given strings A and B is a classic string
processing problem that has applications e.g. in spelling correction and compu-
tational biology. In this paper we concentrate on the classic form of edit distance,
which is defined as the minimum number of single-character insertions, deletions
and/or substitutions that are needed in order to transform A into B or vice versa.
We denote such an edit distance between A and B by ed(A, B). For example
ed(“wrong”,“string”) = 3, which reflects how we may transform “wrong” into
“string” by substituting ‘w’ → ‘t’ and ‘o’ → ‘i’ and inserting ‘s’ to the front.

For a string S, the notation Si refers to its ith character and Si..j to its sub-
string whose beginning and ending positions are i and j, respectively. Through-
out this paper A will be a string of length m and B a string of length n, and so
A = A1..m and B = B1..n.

The fundamental solution for computing ed(A, B) is based on filling an (m +
1)×(n+1) dynamic programming matrix D, where eventually D[i, j] = ed(A1..i,
B1..j). The initially known values are D[i, 0] = i for i = 0 . . .m and D[0, j] = j
for j = 0 . . . n, and the remaining cells can be filled in O(mn) time using the
recurrence D[i, j] = min{1+D[i−1, j], 1+D[i, j−1], δ(i, j)+D[i−1, j−1]}. Here

A. Amir, A. Turpin, and A. Moffat (Eds.): SPIRE 2008, LNCS 5280, pp. 155–163, 2008.
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δ(i, j) is a substitution penalty function: δ(i, j) = 0 if Ai = Bj , and δ(i, j) = 1
if Ai �= Bj .

Landau et al. [2] stated the problem of incremental string comparison in the
following manner. Given that we have previously computed a solution for com-
paring A and B, the task is to compute efficiently a solution for comparing A
and B′, where either B′ = Bb or B′ = bB for some character b, and B′ has
length n′ = n + 1. That is, B′ is formed from B by inserting some character b
either to the front or rear of B. Within the context of this paper, comparing A
and B refers to computing ed(A, B), but generally also other measures of string
distance (or similarity) could be used. The character insertions to B can be done
to the front or rear in any order. We might first be asked to compute ed(A, bB),
then ed(A, bBc), then ed(A, abBc), and so on, where a, b and c are some char-
acters. We note that a solution refers to an appropriate encoding of information
that not only gives the currently asked value ed(A, B), but also enables efficient
computation of the possibly next asked value ed(A, B′).

Later Landau et al. [3] defined consecutive suffix alignment as follows: Given
the strings A and B, the task is to compare A against each suffix Bh..n of B
in the order h = n . . . 1, ie. from the shortest suffix to the longest. This task is
essentially a restricted form of incremental string comparison where each new
character must always be inserted to the front (ie. of form B′ = bB), and the
string compared with A evolves from Bn to the full string B1..n.

In similar fashion we may define consecutive prefix alignment as the task of
comparing A against each prefix B1..j of B in the order j = 1 . . . n.

We define these alignment tasks under edit distance more formally as follows.

Definition 1. The task of consecutive suffix alignment under edit distance:
Compute a representation of the distances ed(A, Bh..j) for j = h . . . n in the
order h = n . . . 1.

In other words, when we compare A and a suffix Bh..n, we wish to compute the
edit distance between A and each prefix Bh..j of Bh..n, where h ≤ j ≤ n. By
“a representation of the distances” we mean that the distances may be stored
in some other form than their actual values. As will be seen later, we will use
a representation that allows enumerating the values ed(A, Bh..j) j = h . . . n at
iteration h in O(1) time per value.

Definition 2. The task of consecutive prefix alignment under edit distance:
Compute a representation of the distances ed(A, B1..j) for j = 1 . . . h in the
order h = 1 . . . n.

When comparing A and a prefix B1..n, we again wish to compute the edit distance
between A and each prefix Bh..j of Bh..n, where h ≤ j ≤ n.

The basic recurrence for filling D inherently performs consecutive prefix align-
ment. If we have previously filled D when computing ed(A, B1..h−1), the values
ed(A, B1..j) are already known for j = 1 . . . h−1. The missing value ed(A, B1..h)
may be computed simply by adding column h into D and filling it according to
the recurrence and the character Bh. Hence for each value of h, only one new
value of form ed(A, B1..j) needs to be computed.
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As noted by Landau et al. [2], the case of consecutive suffix alignment (in-
serting to the front of B) is much more difficult. On the other hand, consecutive
suffix alignment has many advantages [2,3]. One example is the task of approxi-
mate string matching, in which we are given a text string T , a pattern string P
and an error threshold k, and the task is to find each j for which ed(P, Th..j) ≤ k
for some h ≤ j. This problem can be solved by using the basic dynamic pro-
gramming recurrence with the modified initial values D[0, j] = 0 for j = 0 . . . n.
One limitation of this solution is that it is not able to report the lengths (or
starting positions) of the approximate occurrences, but only their end positions
within T . We might wish to know at least some h, or perhaps the largest h, for
which ed(P, Th..j) ≤ k at a given position j. This type of questions are easy to
answer during consecutive suffix alignment. We initially set A = P and B = T .
When the suffix alignment is comparing A and Bh..n, we will find out the values
ed(A, Bh..j) = ed(P, Th..j) for j = h . . . n. This makes it simple to gather infor-
mation regarding both starting and ending positions of each found occurrence.

Landau et al. [2,3] list also several other problems, e.g. the cyclic string com-
parison problem, that can be solved efficiently with consecutive suffix alignment.

There are currently two algorithms that can perform efficient consecutive
suffix alignment under edit distance. By an efficient algorithm we mean one that
takes at most linear time O(m+n) when computing the values ed(A, Bh..j) after
the values ed(A, Bh+1..j) have been computed before, ie. the total time is at most
O(n(m + n)). For example using the basic dynamic programming algorithm for
D would require O(mn2) time.

The first efficient algorithm is the algorithm of Landau et al. [2], which per-
forms the computation in O(kn) time while using O(n+k2) space. This algorithm
receives an error threshold k, where 0 ≤ k ≤ max{m, n}, as a parameter and
does not compute values ed(A, B1..j) > k. Note that if we wish to compute all
values ed(A, B1..j), the running time of this algorithm can be stated in the form
O((m + n)n). The second efficient algorithm is the algorithm of Kim and Park
that runs in O((m + n)n) time and uses O(mn) space. Both of these afore men-
tioned algorithms are capable of general incremental edit distance computation.

In terms of related work, there exists an efficient algorithm by Landau et al. [3]
for consecutive suffix alignment under the longest common subsequence (LCS)
similarity function. After a single preprocessing phase that takes O(n log n) time,
the algorithm runs in O(Ln) time and uses O(m+n) space, where L is the length
of the LCS between A and B.

In what follows we will propose the first linear space algorithm for consecutive
suffix alignment under edit distance. Our algorithm is inspired by the algorithm
of Landau et al. [3] for consecutive suffix alignment under LCS similarity, but
the details are very different. The running time of our algorithm is O((m+n)n).

2 A Suitable Linear Space Representation

We use the notation Dg
h to denote a dynamic programming matrix D that corre-

sponds to ed(Ag..m, Bh..n). The matrix Dg
h exists for g = 1 . . .m and h = 1 . . . n.
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The values in Dg
h are defined to be Dg

h[i, j] = ed(Ag..i, Bh..j) for i = g . . . m
and j = h . . . n. In addition, Dg

h[g − 1, j] = j − h + 1 for j = h − 1 . . . n and
Dg

h[i, h − 1] = i − g + 1 for i = g − 1 . . .m. These latter values correspond to
row 0 and column 0 of D. Note that Dg

h is addressed according to the indices
of the corresponding character positions in the full strings A and B: the matrix
has rows g − 1 . . .m and columns h − 1 . . . n.

Choosing a suitable representation for the distance information is the most
crucial step in designing a linear space algorithm for consecutive suffix alignment.
We have chosen to represent row m of Dg

h in incremental fashion in a vector Rg
h,

which is defined as follows:

1. The vector Rg
h contains n − h + 1 positions, whose indices are h . . . n.

2. Rg
h[h] = Dg

h[m, h].
3. Rg

h[j] = Dg
h[m, j] − Dg

h[m, j − 1], for j = h + 1 . . . n when h < n.

The first value Rg
h[h] is the base value of the vector, and the remaining values

tell the differences between adjacent values on row m of Dg
h. Under this repre-

sentation Dg
h[m, j] = ed(Ag..m, Bh..j) = Rg

h[h] + Σj
q=h+1R

g
h[q] for h ≤ j ≤ n.

Our goal is to compute the vector R1
h in iteration h of consecutive suffix

alignment. The vector R1
h represents the distances ed(A, Bh..j) in such a manner

that they can be enumerated in O(1) time per value in the order j = h . . . n.
It is useful to also define special vectors Rm+1

h for h = 1 . . . n. These correspond
to A = ε, where ε is the empty string. Because Rm+1

h represents the values
ed(ε, Bh..j) = h − j + 1 for j = h . . . n, we define Rm+1

h [j] = 1 for j = h . . . n.
The motivation for selecting this particular representation comes from the fact

that the vectors Rg
h have the following three useful properties. We omit proofs

of Lemmas in this short paper (see Appendix for proof-sketches).

Lemma 1. When 1 ≤ g ≤ m, the nonequality Rg
h[j] �= Rg+1

h [j] holds in at most
three positions j, where h ≤ j ≤ n.

Lemma 2. When 1 ≤ h < n, the nonequality Rg
h[j] �= Rg

h+1[j] holds in at most
three positions j, where h + 1 ≤ j ≤ n.

Lemma 3. When 1 ≤ g ≤ m and 1 ≤ h < n, the nonequality Rg
h[j] �= Rg+1

h+1[j]
holds in at most three positions j, where h + 1 ≤ j ≤ n.

Given some vectors Rs
t and Ru

v , we define ∆(Rs
t , R

u
v ) to be a difference list that

contains in the order of increasing j the pairs (j, Rs
t [j]) for those positions j

where Rs
t [j] �= Ru

v [j]. We allow the case where t �= v, that is, the vectors may
have different size. We interpret the nonequality Rs

t [j] �= Ru
v [j] to hold whenever

exactly one of the two values does not exist, and insert the special value (j,−1)
in ∆(Rs

t , R
u
v ) if s ≤ j < t. Here -1 signals a non-existing value.

Lemma 1 enables us to represent the m vectors Rg
h for g = 1 . . .m using

only linear space. At each iteration h, we use the trivially known vector Rm+1
h

as the base vector. Then for g = m . . . 1, each vector Rg
h is represented by the

difference list ∆(Rg
h, Rg+1

h ). Lemma 1 ensures that each list ∆(Rg
h, Rg+1

h ) consists
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of at most three pairs (j, Rg
h[j]) where Rg

h[j] �= Rg+1
h [j]. Hence the base vector

Rm+1
h and the lists ∆(Rg

h, Rg+1
h ) take overall O(m + n) space to represent all

vectors Rg
h at a given h.

3 Computing Vectors Rg
h from Vectors Rg

h+1 in Linear
Time

Now we have a linear space representation of the distances. The next question
is how to compute the vectors Rg

h efficiently when the vectors Rg
h+1 are known.

To get the computation started, we note that the vectors Rg
n and the lists

∆(Rg
n, Rg+1

n ) are easy to compute for g = m . . . 1 in O(m) time and space:
we know that Rg

n[n] = Dg
n[m, n] = ed(Ag..m, Bn) = m − g if the character

Bn matches a character within Ag..m, and otherwise Rg
n[n] = ed(Ag..m, Bn) =

m − g + 1. The lists ∆(Rg
n, Rg+1

n ) can then be created for g = m . . . 1 during a
single-pass traversal over the values Rg

n[n]. Therefore we may assume that the
lists ∆(Rg

h+1, R
g+1
h+1) are available when we wish to compute the vectors Rg

h.
For a given h < n, the vectors Rg

h are computed in the order g = m . . . 1. The
special vectors Rm+1

h and Rm+1
h+1 are simple to build in O(n) time and space and

we know that ∆(Rm+1
h , Rm+1

h+1 ) = {(h, 1)}. So we will assume that the difference
list ∆(Rg

h+1, R
g+1
h+1) is available. Moreover, the vector Rg

h+1 can be computed in
O(1) time from Rg+1

h+1 when ∆(Rg
h+1, R

g+1
h+1) is known. Hence we also assume that

the vectors Rg+1
h and Rg+1

h+1 are explicitly known when we next compute Rg
h.

Let us introduce some further notation and useful properties.

Lemma 4. Let Rs
t , Ru

v and Rx
y be some vectors. Assume that we have the dif-

ference lists ∆(Rs
t , R

u
v ) and ∆(Ru

v , Rx
y) whose sizes are �1 and �2, respectively.

Then the difference list ∆(Rs
t , R

x
y) can be constructed in O(�1 + �2) time/space.

Lemma 5. Let Rs
t , Ru

v and Rx
y be some vectors. Assume that we have the dif-

ference lists ∆(Ru
v , Rs

t ) and ∆(Rx
y , Rs

t ) whose sizes are �1 and �2, respectively.
Then the difference list ∆(Ru

v , Rx
y) can be constructed in O(�1 + �2) time/space.

We use the notation R̂g
h+1 to denote an extended version of the vector Rg

h+1
that contains also position h. This new position corresponds to an initial value
in column 0 of D and is set to contain the value R̂g

h+1[h] = Dg
h+1[m, h] =

m − g + 1. After this, the representation of R̂g
h+1 is corrected to include only a

single base value by setting R̂g
h+1[h + 1] = Rg

h+1[h + 1] − R̂g
h+1[h]. Note that if

Rg
h+1[h+1]−(m−g+1) �= Rg

h+1[h+1], then ∆(R̂g
h+1, R

g
h+1) = {(h, m−g+1), (h+

1, Rg
h+1[h+1]− (m− g +1))}, and otherwise ∆(R̂g

h+1, R
g
h+1) = {(h, m− g +1)}.

We will represent the vectors Rg+1
h , R̂g+1

h+1 and R̂g
h+1 implicitly as a combina-

tion of a base vector Rg+1
h+1 and the difference lists ∆(Rg+1

h , Rg+1
h+1), ∆(R̂g+1

h+1, R
g+1
h+1)

and ∆(R̂g
h+1, R

g+1
h+1). The lists ∆(Rg+1

h , Rg+1
h+1) and ∆(R̂g+1

h+1, R
g+1
h+1) are known,

and ∆(R̂g
h+1, R

g+1
h+1) may be computed in O(1) time and space from the known
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lists ∆(R̂g
h+1, R

g
h+1) and ∆(Rg

h+1, R
g+1
h+1) (Lemma 4). After this, the remaining

process of computing Rg
h has the five steps:

Step 1. Construct the difference list ∆(Rg
h, Rg+1

h+1).
Step 2. Construct the difference list ∆(Rg

h, Rg+1
h ).

Step 3. Construct the difference list ∆(Rg
h, Rg

h+1).
Step 4. Transform the vector Rg+1

h+1 into Rg
h+1 according to ∆(Rg

h+1, R
g+1
h+1).

Step 5. Transform the vector Rg+1
h into Rg

h according to ∆(Rg
h, Rg+1

h ).

Once ∆(Rg
h, Rg+1

h+1) has been constructed in step 1, steps 2-3 can be done in O(1)
time and space (Lemma 5). Also steps 4-5 are easy to do in O(1) time during
a scan of the lists ∆(Rg

h+1, R
g+1
h+1) and ∆(Rg

h, Rg+1
h ). So let us concentrate on

step 1. The construction of Rg
h is based on the recurrence given in Lemma 6.

The notation 〈Rg
h[j]〉 refers to the actual value Dg

h[m, j] = Rg
h[h] + Σj

q=h+1R
g
h[q]

that Rg
h[j] represents incrementally. We use this notation instead of Dg

h[m, j] to
emphasize that the actual values Dg

h[m, j] are not stored explicitly.

Lemma 6. 〈Rg
h[j]〉 = min{1+ 〈Rg+1

h [j]〉, δ(g, h)+ 〈R̂g+1
h+1[j]〉, 1 + 〈R̂g

h+1[j]〉}, for
j = h . . . n.

The recurrence allows us to construct the list ∆(Rg
h, Rg+1

h+1) during a O(1) time
and space “merging” of the lists ∆(Rg+1

h , Rg+1
h+1), ∆(R̂g+1

h+1, R
g+1
h+1) and ∆(R̂g

h+1,

Rg+1
h+1) in relation to their common base vector Rg+1

h+1. First we (temporarily) add
1 to Rg+1

h [h] and R̂g
h+1[j], and δ(g, h) to R̂g+1

h+1[h]. Adding to the base value takes
care of these additions for all j. Assume that we are currently at position j in
Rg+1

h+1, and let X , Y and Z be such references to the vectors Rg+1
h , R̂g+1

h+1 and
R̂g

h+1 that 〈X [j]〉 ≤ 〈Y [j]〉 ≤ 〈Z[j]〉. Initially at j = h the references can be set
appropriately by an O(1) explicit comparison of the base values at position h.
If X [h] �= Rg+1

h+1[h], the pair (h, X [h]) is inserted to ∆(Rg
h, Rg+1

h+1). The ordering
of X , Y and Z cannot change, and ∆(Rg

h, Rg+1
h+1) contain a difference, before the

next position j′ > j that contains a difference in one of the lists ∆(Rg+1
h , Rg+1

h+1),
∆(R̂g+1

h+1, R
g+1
h+1) and ∆(R̂g

h+1, R
g+1
h+1). Based on the difference(s) at such j′, we

check the ordering 〈X [j′]〉 ≤ 〈Y [j′]〉 ≤ 〈Z[j′]〉 and possibly reassign the refer-
ences accordingly. If X is not reassigned and ∆(X, Rg+1

h+1) contains a difference
at j′, it is inserted also to ∆(Rg

h, Rg+1
h+1). If Y (or same way Z) takes over X ,

we know that Rg
h[j′] = 〈Y [j′]〉 − 〈X [j′ − 1]〉 = Y [j′] + 〈Y [j]〉 − 〈X [j]〉. This is

because 〈Y [j′−1]〉−〈X [j′−1]〉 = 〈Y [j]〉−〈X [j]〉 . If Rg+1
h+1[j

′] �= Rg
h[j′], we insert

(j′, Rg
h[j′]) to ∆(Rg

h, Rg+1
h+1). Then we move to the next position with a difference

and repeat. As there are O(1) positions with differences, the total time for this
process of constructing ∆(Rg

h, Rg+1
h+1) is O(1).

Initializing Rm+1
h and Rm+1

h+1 takes O(n) time, and each of the remaining m
steps takes O(1) time. Hence iteration h takes O(m+n) time, and the total time
over h = n . . . 1 is O((m + n)n). The used space is O(m + n) when we store the
size-O(n) vector Rg

h and the O(m) size-O(1) difference lists only for h and h+1.
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Appendix

Here we present some sketches for the proofs of the Lemmas in order to help the
reviewers evaluate their correctness.

Proof of Lemma 1

Dg
h and Dg+1

h determine Rg
h and Rg+1

h . Since the difference between the cor-
responding compared strings is only the one character Ag, we know that the
values Dg

h[m, j] = ed(Ag..m, Bh..j) and Dg+1
h [m, j] = ed(Ag+1..m, Bh..j) can dif-

fer by at most one. That is, Dg
h[m, j] = Dg+1

h [m, j] − 1, Dg
h[m, j] = Dg+1

h [m, j],
or Dg

h[m, j] = Dg+1
h [m, j] + 1. We show later that if there are indices u and w

such that Dg
h[m, u] = Dg+1

h [m, u] − c and Dg
h[m, w] = Dg+1

h [m, w] − c, where
c ∈ {−1, 0, 1}, then Dg

h[m, v] = Dg+1
h [m, v] − c for all v = u . . . w. This means

that all indices j where Dg
h[m, j] = Dg+1

h [m, j]−c form a consecutive block. And
since c has three possibilities, there can be at most three such blocks. When j−1
and j belong to the same such block, then Dg

h[m, j − 1] = Dg+1
h [m, j − 1] − c

and Dg
h[m, j] = Dg+1

h [m, j] − c. This leads to Dg+1
h [m, j − 1] − Dg

h[m, j − 1] =
c = Dg+1

h [m, j] − Dg
h[m, j]. From this we have that Dg

h[m, j] − Dg
h[m, j − 1] =

Dg+1
h [m, j] − Dg+1

h [m, j − 1], which implies Rg
h[j] = Rg+1

h [j] when j > h. Hence
the nonequelity Rg

h[j] �= Rg+1
h [j] is possible only if j = h or j − 1 and j belong

to different blocks. There are at most two borders between three blocks, so the
total number of differing positions j is at most three.

Now we show that if there are indices u and v such that Dg
h[m, u] = Dg+1

h [m, u]
− c and Dg

h[m, v] = Dg+1
h [m, v] − c, where c ∈ {−1, 0, 1}, then Dg

h[m, w] =
Dg+1

h [m, w] − c for all w = u . . . v
It is well-known that edit distance corresponds to a shortest path in D and

that such paths are piecewise optimal. Consider Fig. 1. It is related to Dg
h and

Dg+1
h . We show paths that correspond to distances, and each path is labeled with

its length (corresponding distance). Path a corresponds to ed(Ag..m, Bh..w) =
a. Path b1b2 corresponds to ed(Ag..m, Bh..v) = b1 + b2. Path c1c2 corresponds
to ed(Ag..m, Bh..u) = c1 + c2. Path d1d2 corresponds to ed(Ag+1..m, Bh..w) =
d1 + d2. Path e1e2 corresponds to ed(Ag+1..m, Bh..v) = e1 + e2. Finally, path
f corresponds to ed(Ag+1..m, Bh..u) = f . The piece-ends are connected at the
crossings marked with black points.
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b1

b2

c1

c2

d1

d2
e1

e2

g

g + 1

u v w
m

a

f

Fig. 1.

If u = w or u = w − 1 there is nothing to prove. So assume u < w − 1 and
consider v for which u < v < w. There are three cases.

Case 1: c = −1, ie. Dg
h[m, u] = Dg+1

h [m, u] + 1 and Dg
h[m, w] = Dg+1

h [m, w] + 1.
In terms of Fig. 1, in this setting it is known that a > d1 + d2. We use proof
by contradiction. Assume that Dg

h[m, v] ≤ Dg+1
h [m, v]. In Fig. 1 this means that

b1 + b2 ≤ e1 + e2. Since a is a shortest path, b1 + d2 ≥ a > d1 + d2. This
implies b1 > d1. In similar fashion, d1 + b2 ≥ e1 + e2. Putting these together
we have b1 + b2 > d1 + b2 ≥ e1 + e2, which contradicts our assumption that
b1 + b2 ≤ e1 + e2.

Case 2: c = 1, ie. Dg
h[m, u] = Dg+1

h [m, u] − 1 and Dg
h[m, w] = Dg+1

h [m, w] − 1.
In terms of Fig. 1, in this setting it is known that f > c1 + c2. The proof
is symmetric with case 1. Assume that Dg

h[m, v] ≥ Dg+1
h [m, v]. In Fig. 1 this

means that b1 + b2 ≥ e1 + e2. Since f is a shortest path, e1 + c2 ≥ f > c1 + c2.
This implies e1 > c1. In similar fashion, c1 +e2 ≥ b1 + b2. Putting these together
we have e1 + e2 > c1 + e2 ≥ b1 + b2, which contradicts our assumption that
b1 + b2 ≥ e1 + e2.

Case 3: c = 0, ie. Dg
h[m, u] = Dg+1

h [m, u] and Dg
h[m, w] = Dg+1

h [m, w]. In terms
of Fig. 1, in this setting it is known that a = d1+d2 and f = c1+c2. We prove two
subcases by contradiction. Assume first that Dg

h[m, v] < Dg+1
h [m, v]. In Fig. 1

this means that b1+b2 < e1+e2. Since a is a shortest path, b1+d2 ≥ a = d1+d2.
This implies b1 ≥ d1. In similar fashion, d1 +b2 ≥ e1 +e2. Putting these together
we have b1 + b2 ≥ d1 + b2 ≥ e1 + e2, which contradicts our assumption that
b1 + b2 < e1 + e2. Assume then that Dg

h[m, v] > Dg+1
h [m, v]. In Fig. 1 this means

that b1 + b2 > e1 + e2. Since f is a shortest path, e1 + c2 ≥ f = c1 + c2. This
implies e1 ≥ c1. In similar fashion, c1 + e2 ≥ b1 + b2. Putting these together
we have e1 + e2 ≥ c1 + e2 ≥ b1 + b2, which contradicts our assumption that
b1 + b2 > e1 + e2.

This completes the proof.
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Proofs of Lemma 2 and Lemma 3

We do not give separate proofs here, but mention just that the proofs are done in
similar fashion as the proof of Lemma 1. Especially Lemma 2 is quite symmetric
with Lemma 1.

Proofs of Lemma 4 and Lemma 5

These should be quite obvious. The process is in some sense similar to merging
two sorted lists into a single sorted list. Traversing the difference lists takes time
proportional to their combined length. The traversal can be done in parallel in
both lists so that if one of the two lists has a difference at position j, we can
check in O(1) time whether also the other has one. In both Lemma 4 and Lemma
5, it is not difficult to combine the values of the two lists in a suitable manner
to get the desired merged result.

Proof of Lemma 6

The situation is actually the same, although for reverse strings, as the situation
in the traditional recurrence for filling D. Let A denote the reverse string of A.
Then Ai = Am+1−i for i = 1 . . .m. Define B′ as the reverse of the string B1..j ,
so that B′

i = Bj+1−i for i = 1 . . . j.
Now 〈Rg

h[j]〉 corresponds to ed(Ag..m, Bh..j) = ed(A1..m−g+1, B′
1..j−h+1),

〈Rg+1
h [j]〉 to ed(Ag+1..m, Bh..j) = ed(A1..m−g, B′

1..j−h+1), 〈R̂g+1
h+1[j]〉 to

ed(Ag+1..m, Bh+1..j) = ed(A1..m−g, B′
1..j−h), and 〈R̂g

h+1[j]〉 to ed(Ag..m, Bh+1..j)
= ed(A1..m−g+1, B′

1..j−h).
From the basic recurrence for D we get that ed(A1..m−g+1, B′

1..j−h+1) is the
minimum over the choices

• 1 + ed(A1..m−g, B′
1..j−h+1)

• δ′(m−g+1, j−h+1)+ed(A1..m−g, B′
1..j−h), where δ′(i, j) = 0, if Ai = B′

j ,
and otherwise δ′(i, j) = 1.

• 1 + ed(A1..m−g+1, B′
1..j−h)

This leads to 〈Rg
h[j]〉 = min{1+ 〈Rg+1

h [j]〉, δ(g, h)+ 〈R̂g+1
h+1[j]〉, 1 + 〈R̂g

h+1[j]〉},
for j = h . . . n, as in Lemma 6.
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Abstract. A repetitive sequence collection is one where portions of a
base sequence of length n are repeated many times with small variations,
forming a collection of total length N . Examples of such collections are
version control data and genome sequences of individuals, where the dif-
ferences can be expressed by lists of basic edit operations. This paper
is devoted to studying ways to store massive sets of highly repetitive
sequence collections in space-efficient manner so that retrieval of the
content as well as queries on the content of the sequences can be pro-
vided time-efficiently. We show that the state-of-the-art entropy-bound
full-text self-indexes do not yet provide satisfactory space bounds for
this specific task. We engineer some new structures that use run-length
encoding and give empirical evidence that these structures are superior
to the current structures.

1 Introduction

Self-indexing [5, 9, 20, 24] is a new algorithmic approach to storing and retrieving
sequential data. The idea is to represent the text (a.k.a. sequence or string)
compressed so that random access to the content of the text is maintained, and
pattern retrieval queries on the content of the text are supported as well.

The self-indexing approach becomes especially interesting when applied to
collections of texts. A special case of a text collection is one which contains several
versions of one or more base sequences. Such collections are not uncommon. For
example, a version control system needs to store several versions of the same file
with only small edit differences between the consecutive entries. If the entries
are stored independently of each others, the version control system will end up
spending unnecessarily large amounts of memory. If the system stores only the
edits, queries on the content of one specific version becomes non-trivial.

An analogy to the storage and retrieval of version control data is soon becom-
ing reality in the field of molecular biology. Once the DNA sequencing technolo-
gies become faster and more cost-effective, it may be that in the near future the
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sequencing of individual genomes becomes a feasible task [3, 12, 21]. With such
data in hand, many fundamental issues such as storing and analyzing thousands
of individual genomes become a top concern. For the analysis of such collections
of biological sequences, one would need to use some variant of a generalized suffix
tree [11] as that provides a variety of algorithmic tools to do analysis in linear or
near-linear time. The memory requirement of such solution is unimaginable with
current random access memories and also challenging in permanent storage.

Self-indexes should, in principle, cope well with the two applications above as
both data types contain high amounts of repetitive structure. In particular, as
the main building blocks of compressed suffix trees [7, 22, 23, 25] they enable
compressing the collections to close to their high-order entropy and enabling
flexible analysis tasks to be executed. However, there is a fundamental problem
with the fact that the high-order entropies are defined by the frequencies of
symbols in their fixed-length contexts. These contexts do not change at all when
more identical sequences are added to the collection. Hence, these self-indexes
are unable of exploiting the fact that the texts in the collection are highly similar.

In this paper, we propose new self-indexes based on run-length compression,
that are suitable for storing highly repetitive collections of texts. We imple-
mented the new structures and compared them experimentally to existing struc-
tures. The experiments show that our new structures achieve superior compres-
sion both on DNA collections and on version control data. The superiority can
be explained in theory as well; the theoretical analysis together with related
extended results (see Sect. 7) is part of subsequent work [16].

The paper is structured as follows. Section 2 introduces the basic concepts
and goes through the related literature. Sections 3, 4, and 5 derive the new run-
length compressed indexes. Section 6 gives the experimental results and Sect. 7
discusses the subsequent work.

2 Basic Concepts

A string S = S1,n = s1s2 · · · sn is a sequence of symbols (a.k.a. character or
letter). Each symbol is an element of a alphabet Σ = {1, 2, . . . , σ}. A substring
of S is written Si,j = sisi+1 . . . sj . A prefix of S is a substring of the form S1,j ,
and a suffix is a substring of the form Si,n. If i > j then Si,j = ε, the empty
string of length |ε| = 0. A text string T = T1,n is a special string with tn = $.
The lexicographical order “<” among strings is defined in the obvious way.

We assume the reader is familiar with the empirical k-th order entropy Hk(T )
for which holds 0 ≤ Hk(T ) ≤ Hk−1(T ) ≤ · · · ≤ H0(T ) ≤ log σ [18].

The compressors to be discussed are derivatives of the Burrows-Wheeler trans-
form (BWT) [2]. The transform produces a permutation of T , denoted by T bwt,
as follows: (i) Build suffix array [17] SA[1, n] of T , that is an array of pointers
to all the suffixes of T in the lexicographic order; (ii) The transformed text is
T bwt = L, where L[i] = T [SA[i] − 1], taking T [0] = T [n].

The BWT is reversible, that is, given T bwt = L we can obtain T as follows:
(a) Compute the array C[1, σ] storing in C[c] the number of occurrences of
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characters {$, 1, . . . , c− 1} in the text T ; (b) Define the LF mapping as follows:
LF (i) = C[L[i]] + rankL[i](L, i), where rankc(L, i) is the number of occurrences
of character c in the prefix L[1, i]; (c) Reconstruct T backwards as follows: set
s = 1, for each n− 1, . . . , 1 do ti ← L[s] and s ← LF [s]. Finally, append the end
marker tn ← $. We study the following problem.

Definition 1. Given a collection C of r sequences T k ∈ C such that |T 1| = n and∑r
k=1 |T k| = N , where T 2, T 3, . . . , T r contain overall s mutations (i.e., symbol

substitutions) from the base sequence T 1, the repetitive collection indexing prob-
lem is to store C in as small space as possible such that the following operations
are supported as efficiently as possible: count(P ) (How many times P appears
as a substring of the texts in C?); locate(P ) (List the occurrence positions of
P in C); and display(k, i, j) (Return T k

i,j).

The above is an extension of the well-known basic indexing problem, where the
collection has only one sequence T . We call a data structure a self-index if it
does not need T to solve the three queries above.

A comprehensive solution to the basic indexing problem uses the suffix array
SA[1, n]. Two binary searches are enough to find the interval SA[sp, ep] such that
count and locate are immediately solved [17]. The solution is not as space-
efficient as possible, since array SA requires n logn bits, and the solution is not
yet a self-index, since T is needed.

The FM-index [5] is a self-index based on the BWT. It solves counting queries
by finding the interval SA[sp, ep] that contains the occurrences of pattern P . The
FM-index uses the array C and function rankc(L, i) in the so-called backward
search algorithm, calling function rankc(L, i) O(m) times. The two other basic
indexing problem queries are solved e.g. using sampling of SA and its inverse
SA−1, and LF -mapping to derive the unsampled values from the sampled ones.
Many variants of the FM-index have been derived that differ mainly in the way
the rankc(L, i)-queries are solved [20]. For example, on small alphabet sizes, one
can achieve nHk(1 + o(1)) space with constant time support for rankc(L, i) [6].

Now, the (repetitive) collection indexing problem can be solved using the nor-
mal self-index for the concatenation T 1#T 2# · · ·T r$, where # �∈ Σ is a special
symbol. However, the space requirement achieved even with a high-entropy com-
pressed index is not attractive for the case of repetitive collections. For example,
the solution by Ferragina et al. [6] requires NHk(C) + o(N log σ) bits. Notice
that even with s = 0, Hk(C) ≈ Hk(T 1), and hence the space is about r times
more than what the same solution uses for the basic indexing problem.

In this paper, we derive solutions whose space requirements depend on the
number of runs in the Burrows-Wheeler transform. We will introduce some nota-
tions to talk about runs. A self-repetition is a maximal interval SA[i, i+l] of suffix
array SA having a target interval SA[j, j+l] such that SA[j+r] = SA[i+r]+1 for
all 0 ≤ r ≤ l. Let Ψ(i) = SA−1[SA[i]+1] [9, 24]. The intervals of Ψ corresponding
to a self-repetition in the suffix array are called runs. We have Ψ(i+1) = Ψ(i)+1
when both Ψ(i) and Ψ(i + 1) are contained in the same run.

Let RΨ (T ) be the number of runs in Ψ of text T and R(T ) = Rbwt(T ) the
number of equal letter runs in Tbwt. Both are tightly connected, RΨ and Rbwt,
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namely RΨ ≤ Rbwt ≤ RΨ + σ [14], allowing one to use them interchangeably
under most circumstances. We will denote both with R when clear from context.

Now, it is easy to see that quantities Rbwt(T ) and Rbwt(C) are the same
when s = 0. Mutations make Rbwt(C) grow. It is possible to derive expected
case bounds on how these terms are related; these analyses are omitted here.
Instead, we introduce structures whose space depends on Rbwt(C) and study
empirically the growth of Rbwt(C) on varying s. We limit our attention to self-
indexes providing query count(P ).

3 RLCSA: Run-Length Compressed Suffix Array

The Run-Length Compressed Suffix Array is based on the Compressed Suffix
Array by Mäkinen, Navarro and Sadakane [15]. We use run-length encoding
of the differences Ψ(i) − Ψ(i − 1) to store the array. Absolute Ψ(i) values are
sampled at regular intervals of the compressed array. The resulting structure
supports counting queries with backward searching.

Differential encoding of Ψ transforms a run Ψ(i)Ψ(i+1) · · ·Ψ(i+ l) into Ψ(i)−
Ψ(i − 1) followed by l 1s, where Ψ(i) − Ψ(i − 1) > 1. We say that the run is
trivial if l = 0. If we use run-length encoding on the 1s, we encode the trivial
runs simply as Ψ(i) − Ψ(i − 1). A nontrivial run, instead, is encoded as three
numbers, Ψ(i) − Ψ(i − 1), 1, l. That is, each time we encode a difference equal
to 1, the length of the run of 1s follows. This way, run-length compression pays
nothing for trivial runs, only for nontrivial runs where it has a potential benefit.

Let N be the total size of the collection and R′ the number of nontrivial runs.
The sum of all the differences Ψ(i) − Ψ(i − 1) is at most σN [15], and the total
length of the runs of 1s is N − R. Hence by using Elias delta coding to encode
the integers, we need at most

|Ψ | ≤
(

R log
σN

R
+ R′

(
1 + log

N − R

R′

))
(1 + o(1))

bits for the array Ψ . By using sampling step of B bits, we need O(( |Ψ |
B +σ) log N)

bits for the sampled Ψ(i) values, effectively making the total size of RLCSA
|Ψ |(1 + ε) for any ε > 0.

To retrieve Ψ(i), we first binary search the samples and then sum up the
differences in the corresponding part of the Ψ array until we reach position i.
This gives us count(P ) queries in O(|P |(log |Ψ |

B + B)) time by using bacward
searching [15].

4 RLWT: Run-Length Encoded Wavelet Tree

Next we will describe a new data structure that we call Run-Length encoded
Wavelet Tree. We exploit well-known bit-vector operations: For a bit vector B
of length u, rankb(B, i) gives the number of b-bits in B[1, i] for all 1 ≤ i ≤ u
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and b ∈ {0, 1}. The inverse function selectb(B, x) gives the position of the x’th
b-bit in the bit vector B.

Wavelet tree [8] is a binary tree structure whose leaves represent the symbols
in the alphabet. The root is associated with the sequence T = T1,N . In a balanced
wavelet tree, the left (right) child of the root is a wavelet tree of the sequence T<

(T≥) obtained by concatenating all positions i having ti < σ/2 (ti ≥ σ/2). This
subdivision is represented by a bit vector of length n that marks which positions
go to the left subtree (by 0) and which go right (by 1). Recursion is continued
until the concatenated sequence contains a repeat of one symbol. One can reveal
ti, compute rankc(T, i), and selectc(T, j) with O(log σ) rank/select queries on
the bit-vectors on the path to the leaf (or back) containing c [8].

The space required by a balanced wavelet tree depends on how we encode
the bit vectors. Let R be the number of runs in a text T1,N . Let Ball be the
level-wise concatenation of all the bit vectors in the balanced wavelet tree for
the sequence T . In the worst case, each run in T equals one 0/1-bit run on each
of the log σ levels of the wavelet tree, so that the upper-bound for the number
of 0/1-bit runs in Ball is R log σ (the best case is 1 · log σ). Let b ≤ � 1

2R log σ�
be the number of 1-bit runs in Ball. The RLWT data structure encodes Ball

into two separate bit vectors B1 and Brl such that the number of 1-bits in both
bit vectors is exactly b: bit vector B1 marks all the starting positions of 1-bit
runs in Ball, and bit vector Brl encodes the run-lengths of these runs in unary
coding. More precisely, B1[i] = 1 only if Ball[i] = 1 and Ball[i − 1] = 0, for all
1 < i ≤ N log σ, and B1[1] = 1 if Ball[1] = 1. Unary code for a bit run of length
j contains j − 1 zero bits concatenated with one 1-bit. The length of Brl is the
sum of the lengths of 1-bit runs in Ball, which is always at most N log σ bits.

Query rank1(Ball, i) can be solved using only the bit vectors B1 and Brl by
calculating the number of 1-bits in two closed intervals [0, j− 1] and [j, i], where
j is the starting position of the 1-bit run that precedes position i in Ball. For
the first interval, let r be the number of 1-bit runs in Ball that start before or
at the position i, i.e. r = rank1(B1, i). From the definition of Brl follows that
rank1(Ball, j − 1) equals select1(Brl, r − 1). Now it remains to calculate the
number of 1-bits in the closed interval [j, i] of the bit vector Ball: Let k be the
length of the rth run, that is to say k ← select1(Brl, r)− rank1(Ball, j−1). The
number of 1-bits in the closed interval is

rank1(Ball, i) − rank1(Ball, j − 1) =
{

k if i − j ≥ k,
i − j + 1 otherwise.

Finally, the answer to the original rank1(Ball, i) query is just the sum of the
above values rank1(Ball, j − 1) and rank1(Ball, i) − rank1(Ball, j − 1).

Gupta et al. [10] have shown that a binary searchable dictionary representa-
tion (BSD) of a bit-vector B of u bits containing b 1-bits, requires |gap(B)| +
O(|gap(B)|/ log b) = |gap(B)|(1 + o(1)) bits of space and supports rank queries
in tAT = AT (u, b) time, where AT (u, b) = o((log log u)2), and and select in
O(log log b) time. In the worst case, length of the gap encoded sequence |gap(B)|
is b log(u/b) + O(b log log(u/b)) bits.
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For the bit vectors B1 and Brl, we have strict upper-bounds of u ≤ N log σ
and b ≤ � 1

2R log σ�. Using the BSD, the bit vectors can be represented in at
most R log σ log 2N

R (1 + o(1)) + O
(
R log σ log log 2N

R

)
bits. All the wavelet tree

queries can be supported without storing the bit vector Ball itself.
Using the RLWT structure with backward searching [5], we can count the

number of occurrences of a pattern of length m in O(m log(σtAT)) time. Table
C adds σ log N bits to the space requirement.

5 RLFM+: Improved Run-Length FM-Index

The RLWT structure can be improved in the case the input text is T bwt: The
Run-Length FM-Index (RLFM) of [14] uses a reduction such that the equal
letter runs of T bwt are marked into two bit-vectors, and the sequence of run
heads of length R is encoded using a normal wavelet tree. We can represent
the two bit-vectors using BSD, giving immediately the following result: The
RLFM data structure for the sequence T bwt takes (R log σ+2R log N

R )(1+o(1))+
O
(
R log log N

R

)
+σ log N bits of space.The structure supports count(P ) in time

O(|P |(log(σ) + tAT)).

6 Experimental Results

We implemented the three proposed structures RLCSA, RLWT, and RLFM+,
each supporting count()-queries. Standard strategies to support display() and
locate() are trivial to add. (Almost all space/time tradeoffs are possible for
those queries, so the base structure for supporting count() is the crucial one.)

For comparison, we selected several well-engineered implementations of self-
indexes from the Pizza&Chili site1. Unless otherwise noted, we used no extra
space for display() and locate(), and left the default options for the rest. We
also compared our indexes to several compressors and a version control system.

We performed experiments on two data sets. The synthetic DNA sequence
collections were based on the DNA sequences from Pizza&Chili. We took a 1,
4 or 16 MB prefix and repeated it 25, 50 or 100 times. Each character in the
repetitions was individually mutated into another character in {A, C, G, T } with
ten different probabilities ranging from 0 to 0.05. This was intended to simulate
the case of one base sequence and r − 1 mutated sequences.

Our other data set is based on the source code for portable versions of
OpenSSH2. We used a 4.44 MB tar archive containing the source code for ver-
sion 4.7p1, as well as on another 176.55 MB archive containing the source code
for all 75 versions up to version 4.7p1. The latter contained multiple copies of
the same files as well as many highly similar files, making it highly compressible.

The experiments were performed on a 3 GHz Intel Pentium 4 Northwood
machine with 3 GB RAM running Fedora Core 7 based Linux.
1 http://pizzachili.dcc.uchile.cl/ or http://pizzachili.di.unipi.it/ .
2 http://www.openssh.com/

http://pizzachili.dcc.uchile.cl/
http://pizzachili.di.unipi.it/
http://www.openssh.com/
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6.1 Implementations and Parameters

The implementations of Succinct Suffix Array (SSA, version 2) [6, 14], Run-
Length FM-index (RLFM) [14], Alphabet-Friendly FM-index (AFFM, version
2) [6] were taken from the Pizza&Chili site. All of them use a Huffman-shaped
wavelet tree to achieve compression. SSA achieves zero-order compression by
building the wavelet tree directly on the BWT, and is the fastest. RLFM builds
it on the run heads of the BWT, and thus its space is related to the number of
runs in the collection, yet the two extra bit-vectors it uses are not compressed.
AFFM achieves high-order compression, NHk + o(N log σ) bits, by partitioning
the BWT into suitable chunks and building a wavelet tree per chunk. Its space
is not related to the runs in the BWT.

Sadakane’s Compressed Suffix Array (CSA) [24] implementation was also
taken from Pizza&Chili. It achieves high-order compression related to the runs
in Ψ , yet also includes less compressed bit vectors. We used sample rates 128
(default; CSA-128) and 1024 (CSA-1024 or CSA) for the Ψ values. The total
size of the samples for a 400 MB collection is 3.1 MB for CSA-1024 and 25 MB
for CSA-128. Suffix array sample rate was set to 65536 to make the size of these
unused samples negligible (not to confuse with the sampling to access Ψ).

Also included in the comparison was a self-index based on Lempel-Ziv parsing
(LZ-index, Pizza&Chili version 4) [1]. We selected 1/ε = 15 as a reasonable
space/time tradeoff and subtracted the space (41 MB for a 400 MB collection)
used for display() and locate() queries, for fairness with the other structures
(although the implementation does not let one discard it).

Our indexes RLCSA, RLWT, and RLFM+ can be seen as versions of CSA,
SSA, and RLFM, respectively, enhanced to profit from highly repetitive collec-
tions. The implementation of RLCSA is optimized for secondary memory. Hence
we have used 32 kilobyte sampling step for Ψ (RLCSA-32k or RLCSA) in addi-
tion to the more reasonable 128 bytes (RLCSA-128). In practice, RLCSA-128 is
at most 20% larger than RLCSA-32k. The difference can be reduced by changing
the size of the samples from 24 bytes to 3�log N� bits per sample. In RLWT and
RLFM+, we used simpler encoding for the bit vectors than the original BSD.
The implemented structure solves rank in O(log b) time.

In addition to the existing self-indexes, we compared our new indexes to sev-
eral plain compressors. The well-known gzip and bzip2 compressors were used
with parameter -9 to achieve maximum compression. Due to their small block
sizes, they cannot profit from the large-scale repetitiveness in our data sets. We
have also used the highly efficient LZ77-based compressor p7zip3 with options
-mx=9 -md=30 to see how much we pay for the retrieval functionality. With a
window of length up to 1 GB, p7zip can compress texts with long repeats much
better than standard Lempel-Ziv based compressors.

Finally we have used the Subversion (SVN)4 version control system for the
OpenSSH source code data set. The source codes were inserted into a repository

3 http://p7zip.sourceforge.net/
4 http://subversion.tigris.org/

http://p7zip.sourceforge.net/
http://subversion.tigris.org/
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Fig. 1. The number of runs in Ψ (left) and the average number of new runs per mutation
(right) on repeated DNA sequences
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Fig. 2. The size of RLCSA on repeated DNA sequences (left) and the average number
of bits required to encode a run on 25x16 MB DNA (right)

using FSFS file system in a chronological order one version at a time. We mea-
sured the sizes of subdirectory db/ of the repository, using utility du.

6.2 Results

Fig. 1 shows the number of runs in Ψ of repeated DNA sequences. The number of
runs grows somewhat sublinearly in the number of mutations. New runs are cre-
ated when mutations move suffixes to new positions in the suffix array. However,
as the mutations accumulate, it becomes more likely that a similar mutation has
already happened before, reducing the number of new runs created.

Fig. 2 shows the sensitivity of the sizes of our new self-indexes to the number
of runs in the collection. RLCSA is clearly smaller than the two other indexes.
It is interesting to see that with high mutation rates, p7zip requires only about
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Fig. 3. A comparison of our indexes with existing self-indexes. The peak of LZI at
0.003 is an artifact of the implementation.

1.2 bits per run, suggesting some connection between the number of runs in Ψ
and the space requirements of Lempel-Ziv compression (see Sect. 7).

We select the 25 times repeated 16 MB DNA prefix for comparisons between
new and existing self-indexes. As Fig. 3 shows, our indexes clearly outperform the
existing self-indexes when the number of mutations is small. In particular, it can
be seen that our indexes are the most sensitive to high repetitiveness, followed by
CSA and RLFM, and then LZ-index. SSA and AFFM are completely insensitive.

As predicted by the theoretical space bounds, RLCSA outperforms RLWT.
Surprisingly, RLWT outperforms RLFM+. This is explained by the fact that
RLFM+ always uses two bit-vectors with R bits set, and a separate wavelet
tree taking close to R log σ bits (or slightly less in practice due to the Huffman
shape). RLWT instead uses a wavelet tree formed by log σ levels of bit vectors
each with at most R bits set. This worst case does not happen in practice. On
random text the expected number of bits set is σ/2

σ−1R log σ, and this decreases on
non-random text due to the BWT effect. For example on DNA (log σ = 2) there
are only 1.25R bits set in RLWT. Assuming a δ-encoding of the run lengths, we
get a pretty good approximation of 14.34 bits for RLWT, and 18.58 for RLFM+.

The size difference between RLCSA and RLFM+ is also surprising, given the
similar high-order terms in the space bounds. This is partially explained by the
ratio of non-trivial runs to total runs R′/R decreasing from 0.80 at mutation rate
0.001 to 0.37 at 0.05. Additionally, the size bound for RLFM+ has a significant
low-order term. Also note the size difference of the similar CSA and RLFM.
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Fig. 4. Compression results for OpenSSH sources

Table 1. Time for counting on the different indexes. We remind that the LZ-index is
not designed for counting.

Structure Time (µs) Size (MB)
CSA-128 103.0 112.29
CSA-1024 347.0 90.41
LZ-index 198596.8 281.92
RLFM 29.5 156.50
SSA 13.0 116.37
AFFM 19.4 124.15

Structure Time (µs) Size (MB)
RLCSA-128 72.7 77.54
RLCSA-32k 11130.0 65.52
RLWT 1050.0 89.30
RLFM+ 189.7 124.48

Next we compare our indexes with existing self-indexes as well as plain com-
pressors on OpenSSH sources. As seen in Fig. 4, our indexes clearly outper-
form the existing self-indexes. Again RLWT outperforms RLFM+ even with
this larger alphabet size, indicating that the average RLWT space requirement
is better than the worst case (see also [4] for a more rigorous analysis of runs in
wavelet tree). It is interesting to note that despite the search functionality, our
indexes remain smaller than the SVN repository.

The increased space efficiency of our indexes has been paid in time efficiency.
To test this, we extract 1000 random substrings of length 10 from the 16 MB
DNA prefix. We then repeat the prefix 25 times with mutation rate 0.01 and
measure counting query times. Table 1 gives average query times and structure
sizes, showing the competitiveness of RLCSA-128.

7 Discussion

In this study, we have mainly considered self-indexes based on the Burrows-
Wheeler framework. There is also a family of (self-)indexes which is based on
the Lempel-Ziv parsing, see [13, 19, 20]. It is easy to see that the LZ77 parsing
of a repetitive text collection consists of at most of P (T 1)+ s+1 phrases, where
P (T 1) gives the number of phrases in T 1. It follows that LZ77 based indexes
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require at most O(n log σ + s log n) bits of space. However, there does not exist
a LZ77 based self-index, as they require the uncompressed text to operate. All
the Lempel-Ziv self-indexes (like the one experimented here) are based on the
LZ78 parsing, which does not guarantee equally good performance. Hence, a
promising future direction is to develop LZ77 based self-indexes.

Our experiments considered only point mutations on DNA, although there
are many other types of mutations, like insertions, deletions, translocations, and
reversals. The runs in the Burrows-Wheeler transform change only for those suf-
fixes whose lexicographic order is affected by a mutation. In all mutation types
(except in reversals5) the effect is identical to point mutations, so the com-
pression result should be similar. We emphasize that the proposed indexes are
completely universal, as they do not need to know what and where the mutations
are. This is also illustrated by the experiment on version control data, where the
changes are cumulative, and there is no base sequence, but rather a “founder
sequence”. The founder model also characterizes genome collections, but again
the index does not need to know the phylogeny to succeed in compression.

In subsequent (still theoretical) work [16], we have derived dynamic versions of
all the proposed self-indexes, where sequences can be deleted from and inserted
to the collection at any time. These indexes take basically the same space as the
static ones discussed here. We have also considered new structures for display
and locate, where the number of suffix array samples depend on s as well. One
can use both the static and the dynamic versions of these indexes as building
blocks of recent compressed suffix trees [7, 22, 23].
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Abstract. We present a practical study on the compact representation
of sequences supporting rank, select, and access queries. While there are
several theoretical solutions to the problem, only a few have been tried
out, and there is little idea on how the others would perform, especially
in the case of sequences with very large alphabets. We first present a
new practical implementation of the compressed representation for bit
sequences proposed by Raman, Raman, and Rao [SODA 2002], that is
competitive with the existing ones when the sequences are not too com-
pressible. It also has nice local compression properties, and we show that
this makes it an excellent tool for compressed text indexing in combi-
nation with the Burrows-Wheeler transform. This shows the practicality
of a recent theoretical proposal [Mäkinen and Navarro, SPIRE 2007],
achieving spaces never seen before. Second, for general sequences, we
tune wavelet trees for the case of very large alphabets, by removing their
pointer information. We show that this gives an excellent solution for
representing a sequence within zero-order entropy space, in cases where
the large alphabet poses a serious challenge to typical encoding methods.
We also present the first implementation of Golynski et al.’s representa-
tion [SODA 2006], which offers another interesting time/space trade-off.

1 Introduction

During the past years, there has been an increasing interest in compressed data
structures, since they allow one to manipulate more data in main memory, waiv-
ing the painful overcost of accessing the disk. Apart from saving space, this
largely improves the execution time of an algorithm even when the compressed
version makes several times more operations than the uncompressed counterpart.
This applies, albeit less sharply, to all levels of memory hierarchy.

Probably the most basic tool, used in virtually all compressed data struc-
tures, is the sequence of symbols supporting rank, select and access. Rank(a,i)
counts the number of as until position i. Select(a,i) finds the position of the i-th
occurrence of a in the sequence. Access(i) returns the symbol at position i in
the sequence. The most basic case is when the sequence is drawn from a binary
alphabet. Theoretically and practically appealing solutions have been proposed
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for this case, achieving space close to the zero-order entropy of the sequence and
good time performance.

The general case, when the alphabet has size σ > 2, has many applications to
compressed representation of texts [8, 9, 14], trees [1, 18], graphs [5], binary rela-
tions [1], etc. For example, it has been shown [7, 14] that a compressed represen-
tation of a sequence that supports rank and access suffices to build a compressed
full-text index if combined with the Burrows-Wheeler transform (BWT) [3]. Many
solutions for general sequences have been proposed [8, 9], but as far as we know
only some implementations of wavelet trees [6, 11] have been tried out.

In this paper we propose and study practical implementations of sequences.
Our first contribution is a compressed representation of binary sequences based
on Raman, Raman, and Rao’s (RRR) [18] theoretical proposal. We combine
faithful implementation of the theory with commonsense decisions. The result
is compared, on uniformly distributed bitmaps, with a number of very well-
engineered implementations for compressible binary sequences [16], and found
to be competitive when the sequence is not too compressible, that is, when the
fraction of 1s raises over 10%.

Still this result does not serve to illustrate the local compressibility property
of RRR data structure, that is, it adapts well to local variations in the sequence.
Mäkinen and Navarro [12] showed that the theoretical properties of RRR struc-
ture makes it an excellent alternative for full-text indexing: By combining it with
the BWT, a high-order compressed self-index is immediately obtained, without
all the extra sophistications used up to then [14]. In this paper we show exper-
imentally that the proposed combination does work well in practice, achieving
(sometimes significantly) better space than any other existing self-index, with
moderate or no slowdown. The other compressed bitmap representations do not
achieve this result: the bitmaps are globally balanced, but they exhibit long runs
of 0s or 1s that only the RRR technique exploits so efficiently.

We then turn our attention to representing sequences over larger alphabets.
Huffman-shaped wavelet trees have been used to approach zero-order compres-
sion of sequences [6, 11]. This requires O(σ log n) bits for the symbol table and
the tree pointers, where n is the sequence length. On large alphabets, this factor
can be prohibitive in space and ruin the compression ratios. We propose an al-
ternative representation that uses no (or just log σ) pointers, and concatenates
all the bitmaps of the wavelet tree levelwise. As far as we know, no previous
direct solution to select over this representation existed. Combined with our
compressed bitmap representation, the result is an extremely useful tool to rep-
resent a sequence up to its zero-order entropy, disregarding any problem related
to alphabet size. We illustrate this point by improving an existing result on
graph compression [5], in a case where no other considered technique succeeds.

Finally, we present the (as far as we know) first implementation of Golynski
et al.’s data structure for sequences [9], again combining faithful implementation
of the theory with common sense. The result is a representation that does not
compress the sequence, yet it answers queries very fast without using too much
extra space. In particular, its performance over a sequence of word identifiers
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provides a sequence representation that uses about 70% of the original space
of the text (in character form) and gives the same functionality of an inverted
index. It might become an interesting alternative to recent wavelet-tree-based
proposals for representing text collections [2], and to inverted indexes in general.

2 Related Work

We divide the related work into two subsections, the first one covering rank,
select and access for binary sequences, and the second covering the case of larger
alphabets. We omit the base of logarithms when it is 2. We make heavy use of
the definition of zero-order empirical entropy for a sequence S of length n drawn
from an alphabet Σ of size σ: H0(S) =

∑
a∈Σ

na

n log n
na

, where na is the number
of occurrences of symbol a in S. In the case where Σ = {0, 1} and n1 = m << n,
it is interesting to write H0 = m log n

m + O(m).

2.1 Binary Sequences

Many solutions have been proposed for the case of binary sequences. Consider a
bitmap B[1, n] with m ones. The first compact solution to this problem is capable
of answering the queries in constant time and uses n+ o(n) bits [4] (i.e., B itself
plus o(n) extra space); the solution is straightforward to implement [10]. This
was later improved by Raman, Raman and Rao (RRR) [18] achieving nH0(B)+
o(n) bits while answering the queries in constant time, but the technique is not
anymore simple to implement. Several practical alternatives achieving very close
results have been proposed by Sadakane and Okanohara [16], tailored to the case
of small m: esp, recrank, vcode, sdarray, and darray. Most of them are very
good for select queries, yet rank queries are slower. The variant esp is indeed a
practical implementation of RRR structure that saves space by replacing some
pointers by estimations based on entropy.

In this work we implement the RRR data structure [18]. It divides the sequence
into blocks of length u = log n

2 and every block is represented as a tuple (ci, oi).
The first component, ci, represents the class of the block, which corresponds
to its number of 1s. The second, oi, represents the offset of that block inside
a list of all the posible blocks in class ci. Three tables are defined: E, R and
S. Table E stores every possible combination of u bits, sorted by class, and
by offset within each class. It also stores all answers for rank at every position
of each combination. Table R corresponds to the concatenation of all the ci’s,
using �log(u+1)� bits per field. Table S stores the concatenation of the oi’s using⌈
log
(

u
ci

)⌉
bits per field. This structure also needs two partial sum structures [17],

one for R and the other for the length of the oi’s in S, posS. For answering rank
until position i we first compute sum(R, �i/u�) =

∑�i/u�
j=0 Rj , the number of 1s

before the beginning of i’s block, and then rank inside the block until position i
using table E. For this we need to find oi: using sum(posS, �i/u�) we determine
the starting position of oi in S, and with ci and u we know how many bits we
need to read. For select queries, they store the same extra information as Clark
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[4], but no practical implementation for this extra structure has been shown.
Access can be answered with two ranks, access(i) = rank(1, i) − rank(1, i − 1).

2.2 Arbitrary Sequences

Rank, select and access operations can be extended to arbitrary sequences drawn
from an alphabet Σ of size σ. The two most prominent data structures that solve
this problem are reviewed next.

Wavelet Trees. [8, 11, 15] are perfectly balanced trees that store a bitmap of
length n in the root; every position in the bitmap is either 0 or 1 depending
on the value of the most significant bit of the symbol in that position in the
sequence.1 A symbol with a 0 goes to the left subtree and a symbol with a 1
goes to the right subtree. This decomposition continues recursively with the next
highest bit, and so on. The tree has σ leaves and requires n�log σ� bits, n bits
per level. Every bitmap in the tree answers access, rank and select queries.

The access query for position i can be answered by following the path de-
scribed for position i. At the root, if the bitmap at position i has a 0/1, we
descend to the left/right child, switching to the bitmap position rank(0/1, i) in
the left/right subtree. This continues recursively until reaching the last level,
when we finish forming the binary representation of the symbol.

Query rank for symbol a until position i can be answered in a similar way as
access, the difference being that instead of considering the bit at position i in
the first level, we consider the most significant bit of a; for the second level we
consider the second highest bit, and so on. We update the position for the next
subtree with rank(b, i), where b is the bit of a considered at this level. At the
leaves, the final bitmap position corresponds to the answer to rank(a, i) in S.

The select query does a similar process as rank, but upwards. To select the
i-th occurrence of character a, we start at the leaf where a is represented and do
select(b, i) where, as before, b is the bit of a corresponding to this level. Using
the position obtained by the binary select query we move to the parent, querying
for this new position. At the root, the position is the final result.

The cost of the operations is O(log σ) assuming constant-time rank, select and
access over bitmaps. A practical variant to achieve n(H0(S) + 1) bits of space is
to give the wavelet tree the shape of the Huffman tree of S [11, 15].

Golynski et al. [9] proposed a data structure capable of answering rank, select
and access in time O(log log σ) using n logσ +n o(log σ) bits of space. The main
idea is to reduce the problem over one sequence to n/σ chunks of length σ. For
each symbol they concatenate, in unary, the number of its occurrences in each
chunk, and then concatenate those sequences for all the symbols in a bitmap B.
Armed with rank and select structures, B’s total length is 2n + o(n) bits.

1 In general wavelet trees are described as dividing alphabet segments into halves. The
description we give here, based on the binary decomposition of alphabet symbols, is
more convenient for the solutions shown in this paper.
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With B it is possible to answer rank and select queries up to chunk granularity.
Every chunk stores σ text symbols using a bitmap X and a permutation π. X
stores the cardinality of every symbol of the alphabet in the chunk using the same
encoding as B. π stores the permutation obtained by stably sorting the sequence
represented by the chunk, and uses a data structure that allows computation of
π−1 in O(log log σ) time [13]. This adds up to 2n + n logσ + n o(log σ) bits,
and permits completing all queries in constant time for select, and O(log log σ)
time for rank and access. The latter complexity needs a Y-Fast trie within each
chunk to search π for the position of interest, among those corresponding to the
occurrences of a single symbol within the chunk.

We note that the n o(log σ) extra term does not vanish asymptotically with n
but with σ. This suggests, as we verify experimentally later, that the structure
performs well only on large alphabets.

3 Practical Implementations

3.1 Raman, Raman and Rao’s Structure

We fix u = 15 so that the ci’s need 4 bits to represent the class (0−15). We store
table E using 16-bit integers for the bitstring contents, and for the pointers to the
beginning of each class in E. The answers to rank are not stored but computed
on the fly from the bitstrings, so E uses just 64 KB. Table R is represented by
a compact array using 4 bits per field, achieving fast extraction. Table S stores
each offset using

⌈
log
(

u
ci

)⌉
bits.

The partial sums are represented by a one-level sampling. For table R we
sample the sum every k values, and store these values in a new table sumR
using �log m� bits per field, where m is the number of ones. To obtain the partial
sum until position i we compute sumR[j] +

∑i
p=jk cp where j = �i/k�, and the

summation of the cp’s is done sequentially over the R entries. The positions in S
are represented the same way: We store the sampled sums in a new table called
posS using �log(

∑n/u
i=1�log

(
u
ci

)
�)� bits per field. We compute the position for

block i as posS[j] +
∑i

p=jk�log
(

u
cp

)
�. We precompute the 16 possible �log

(
u
cp

)
�

values in order to speed up this last sequential summation.
With this support, we answer rank queries by using the same RRR procedure.

Yet, select(1, i) queries are implemented in a simpler and more practical way.
We use a binary search over sumR, finding the rightmost sampled block for
which sumR[k] ≤ i. Then we traverse table R looking for the block in which we
expect to find the i-th bit set (i.e., adding up cp’s until we exceed i). Finally we
access this block in table E and traverse it bit by bit until finding the i-th 1.
Select(0, i) can be implemented analogously.

3.2 Wavelet Trees without Pointers

There exist already Huffman-shaped wavelet tree implementations that
achieve close to zero-order entropy space. Yet, those solutions are not efficient
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when the alphabet is very large: The overhead of storing the Huffman symbol
assignment and the wavelet tree pointers, O(σ log n), ruins the compression if σ
is large. In this section we present an alternative implementation that achieves
zero-order entropy with a very mild dependence on σ (i.e. O(log σ log n) bits of
space), thus extending the existing results to the case of very large alphabets. We
use two bitmaps: DA and Occ. DA[1, σ] stores which symbols appear in the se-
quence, DA[i] = 1 if symbol i appears in S. This allows us to remap the sequence
in order to get a contigous alphabet; using rank and select over DA we can map
in both directions (we only use it if the alphabet is not contiguous). Occ[1, n]
records the number of occurrences of symbols i ≤ k by placing a one at

∑k
i=1 ni.

For example, the sequence 113213323 would generate Occ = 001010001.
Our implementation of the wavelet tree stores �log σ� bitmaps of length n.

The tree is mapped to these bitmaps levelwise: the first bitmap corresponds to
the root, the next one corresponds to the concatenation of left and right children
of the root, and so on. In this set of bitmaps we must be able to calculate the
interval [s, e] corresponding to the bitmap of a node, and to obtain the new
interval [s′, e′] upon a child or parent operation. Assume the current node is at
level l (l = 1 at the leaves) on a tree of h levels. Further, assume that a is the
symbol related to the query, that Σ = {0, . . . , σ−1}, and that selectOcc(1, 0) = 0.

We compute the left child as s′ = s and e′ = e − rank(1, e) + rank(1, s − 1),
and the right child as s′ = e + 1 − rank(1, e) + rank(1, s − 1) and e′ = e. Let
us explain the left child formula. In the next level, the current bitmap segment
is partitioned into a left child and right child parts. The left child starts at
the same position of the current segment in this level, so s′ = s. To know
the end of its part, we must add the number of 0s in the current segment, e′ =
s+rank(0, e)−rank(0, s−1)−1 = s+(e−rank(1, e))−((s−1)−rank(1, s−1))−1.

The formula to compute the parent is s′ = selectOcc(1, �a/2l� · 2l) + 1 and
e′ = selectOcc(1, (�a/2l�+1)·2l). The idea is to consider the binary representation
of a, as this is the way our wavelet tree is structured. A node at level l should
contain all the combinations of the l lowest bits of a. For example, if l = 1 and
a = 5 = (101)2, its parent is the node at level l = 2 comprising the symbols
4 = (100)2 to 5 = (101)2. The parent of this node, at level l = 3, comprises the
symbols 4 = (100)2 to 7 = (111)2. We blur the last l bits of a and use selectOcc

to find the right segments at any level corresponding to the symbol intervals.
To achieve compression we represent the bitmaps of each level (as well as Occ)

using RRR, whose sampling yields a time/space trade-off for the structure.

3.3 Golynski’s Structure

We implement Golynski et al.’s proposal rather faithfully, except that we replace
the Y-Fast trie by a binary search over the positions for the rank query. In
practice, this yields a gain in space and time except for large σ values and biased
symbol distribution within the chunk (remind that we must search within the
range of occurrences of a symbol of Σ in a chunk of size σ, i.e. the range is O(1)
size on average). Hence the time for rank is O(log σ) worst case, and O(1) on
average. The version used for permutations [13] requires (1 + ε)n�log n� bits for
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n elements and computes π−1 in O(1/ε) worst-case time (code by D. Arroyuelo).
This gives us a space/time tradeoff parameter for this data structure.

In the case when n ≈ σ we also experiment with using only one chunk to
represent the structure. This speeds up all the operations since we do not need
to compute which chunk should we query, and all the operations over B become
unnecessary, as well as storing B itself.

4 Experimental Results

We first test the data structures for binary sequences, on random data and on the
BWT of real texts, showing that RRR is an attractive option. Second, we com-
pare the data structures for general sequences on various types of large-alphabet
texts, obtaining several interesting results. Finally, we apply our machinery to
obtain the best results so far on compressed text indexing.

The machine is a Pentium IV 3.0 GHz with 4GB of RAM using Gentoo
GNU/Linux with kernel 2.6.13 and g++ with -O9 and -DNDEBUG options.

4.1 Binary Sequences

We generated three random uniformly and independently distributed bitmaps
of length n = 108, with densities (fraction of 1s) of 5%, 10% and 20%. Fig. 1
compares our RRR implementation against the best practical ones in previous
work [16], considering operations rank and select (access can be implemented as
the difference of two rank’s, and in some cases it can be done slightly better, yet
only some of the structures in [16] support it). As control data we include a fast
uncompressed implementation [10], which is insensitive to the bitmap density.

Our RRR implementation is far from competitive for very low densities (5%),
where it is totally dominated by sdarray, for example. For 10% density it is
already competitive with esp, its equivalent implementation [16], while offering
more space/time tradeoffs and achieving the best space. For 20% density, RRR is
unparalleled in space usage, and alternative implementations need significantly

Fig. 1. Space in bits per symbol and time in seconds for answering 108 random queries
over a bitmap of 108 bits
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Table 1. Space (as a fraction of bitmap size) and rank time (in µsec/query) achieved
by various data structures on the wavelet tree bitmaps of a BWT-transformed text

Variant Size Rank time
sdarray 2.05 > uncompressed
recrank 1.25 > uncompressed
esp 0.50 0.594
RRR (ours) 0.48 0.494
uncompressed 1.05 0.254

more space to beat its time performance. We remark that RRR implements
select(0, i) in the same time of select(1, i) with no extra space, where competing
structures would have to double the space they devote to select.

A property of RRR that is not apparent over uniformly distributed bitmaps,
but it becomes very relevant for implementing the wavelet tree of a BWT-
transformed text, is its ability to exploit local regularities in the bit sequence.
To test this, we extracted the 50MB English text from Pizza&Chili (http://
pizzachili.dcc.uchile.cl), computed the balanced wavelet tree of its BWT,
and concatenated all the bitmaps of the wavelet tree levelwise. Table 1 shows the
compression achieved by different methods. Global methods like sdarray and
recrank fail, taking more space than an uncompressed implementation. RRR
stands out as the clear choice for this problem, followed by esp (which is based
on the same principle). The bitmap density is around 40%, yet RRR achieves
space similar to 5% uniformly distributed density.

4.2 General Sequences

We compared our implementations of Golynski et al.’s and different variants of
wavelet trees. We consider three alphabet sizes. The smaller one is byte-size: We
consider our plain text sequences English and DNA, seeing them as character
sequences. Next, we consider a large alphabet, yet not large enough to compete
with the sequence size: We take the 200MB English text from Pizza&Chili and
regard this as a sequence of words The result is a sequence of 46, 582, 195 words
over an alphabet of size 270, 096. Providing access and select over this sequence
mimics a word-addressing inverted index functionality [2]. Finally, we consider a
case where the alphabet is nearly as large as the text. The sequence corresponds
to graph Indochina after applying Re-Pair compression on its adjacency list [5].
The result is a sequence of length 15, 568, 253 over an alphabet of size 13, 502, 874.
The result of Re-Pair can still be compressed with a zero-order compressor, but
the size of the alphabet challenges all of the traditional methods. Our techniques
can achieve such compression and in addition provide rank/select functionality,
which permits implementing backward traversal on the graph for free.

We consider full and 1-chunk variants of Golynski. On wavelet trees, variant
DA maps the alphabet to a contiguous range, RRR compresses the bitmaps with
RRR, Ptrs uses the standard version with pointers, and Huff gives Huffman tree
shape to the pointer-based wavelet tree. We show several combinations of these.
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Fig. 2 shows the results for byte alphabets. Golynski’s structure is not compet-
itive here. This shows that their o(log σ) term is not yet negligible for σ = 256.
On wavelet trees, the Ptrs+Huff variant excells in space and in time. Adding
RRR reduces the space very slightly in some cases; in others keeping balanced
shape gives better time in exchange for much more space. We also included
Naive, an implementation for byte sequences that stores the plain sequence plus
regularly sampled rank values for all symbols [2]. The results show that we could
improve their wavelet trees on words by replacing their Naive method by ours.

Fig. 2. Results for byte alphabets. Space is measured as a fraction of the sequence size
(assuming one byte per symbol).

Fig. 3 shows experiments on larger alphabets. Here Golynski et al.’s structure
becomes relevant. On the sequence of words it adds to the previous scenario a
third space/time tradeoff point, offering much faster operations (especially select)
in exchange for significantly more space. Yet, this extra space is acceptable for
the sequence of word identifiers, as overall it requires 70% of the original text.
As such it competes with a word-addressing inverted index, following a recent
trend of replacing inverted indexes by a succinct data structure for representing
sequences of word identifiers [2], which can retrieve the text using access but
also find the consecutive positions of a word using select.

Again, adding RRR reduces the space of Ptrs+Huff, yet this time the reduc-
tion is more interesting, and might have to do with some locality in the usage
of words across a text collection.
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Fig. 3. Results for word identifiers (left) and a graph compressed with Re-Pair (right).
Space is measured as a fraction of the sequence (using �log σ� bits per symbol).

For the case of graphs, where the alphabet size is close to the text length, the
option of using just one chunk in Golynski et al.’s structure becomes extremely
relevant. It does not help to further compress the Re-Pair output, but for 20%
extra space it provides very efficient backward graph traversal. On the other
hand, the wavelet trees with DA+RRR offer further compression up to 70%
of the Re-Pair output size, which is remarkable for a technique that already
achieved excellent compression results [5]. The price is much higher access time.
An interesting point here is that the versions with pointers are not applicable
here, as the alphabet overhead drives their space over 3 times the sequence size.
Hence exploring versions that do not use pointers pays off.

4.3 Compressed Full-Text Self-indexes

It was recently proved [12] that the wavelet tree of the Burrows-Wheeler trans-
form (BWT) of a text (the key ingredient of the successful FM-index family
of text self-indexes [15]), can achieve high-entropy space without any further
sophistication, provided the bitmaps of the wavelet tree are represented using
RRR structure [18]. Hence a simple and efficient self-index emerges, at least in
theory. In Section 4.1 we showed that RRR indeed takes unique advantage from
the varying densities along the bitmap typical of the BWT transform. We can
now show that this proposal [12] has much practical value.
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Fig. 4 compares the best suffix-array based indexes from Pizza&Chili: SSA,
AFFM-Index, RLFM-Index (the three based on the BWT) and CSA. We com-
bine SSA with our most promising versions for this setup, WT Ptrs+RRR and
WT Ptrs+Huff+RRR. All the spaces are optimized for the count query, which
is the key one in these self-indexes

We built the index over the 100 MB texts English, DNA, Proteins, and
Sources provided in Pizza&Chili. We chose 105 random patterns of length 20
from the same texts and ran the count query on each.

Fig. 4. Times for counting, averaged over 105 repetitions, for patterns of length 20

As can be seen, our new implementation is extremely space-efficient, achieving
a space performance never seen before in compressed full-text indexing, and in
some cases without a time penalty.

The reason why combining RRR with Huffman shape is better than RRR
alone, when RRR by itself should in principle exploit all of the compressibility
captured by Huffman, is in the c component of the (c, o) pairs of RRR. These
pose a fixed overhead per symbol which is not captured by the entropy. Indeed,
we measured the length of the o components (table S) in both cases (for En-
glish) and the difference was 0.02%. The Huffman shape helps reduce the total
number of symbols to be indexed, and hence it reduces the overhead due to the
c components.

Several lines of work are open to future work, in particular implementing an
efficient version of RRR combined with run-length encoding, which should give
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even better spaces. Another line is to pursue on the idea of an inverted-index-like
capability by encoding the sequence of words of a natural language text, or a
word-based self-index.
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Abstract. In this paper we propose a method for the analysis of very
large graphs obtained from query logs, using query coverage inspection.
The goal is to extract semantic relations between queries and their terms.
We take a new approach to successfully and efficiently cluster these large
graphs by analyzing clique overlap and a priori induced cliques. The
clustering quality is evaluated with an extension of the modularity score.
Results obtained with real data show that the identified clusters can be
used to infer properties of the queries and interesting semantic relations
between them and their terms. The quality of the semantic relations
is evaluated both using a tf-idf based score and data from the Open
Directory Project. The proposed approach is also able to identify and
filter out multitopical URLs, a feature that is interesting in itself.

1 Introduction

Knowledge discovery is one of the main problems in data mining and information
retrieval. Human interaction through the Web generated implicit knowledge -or
the wisdom of crowds [1]- represents an important path towards improving the
discovery of interesting knowledge. Nowadays the Web is the biggest representa-
tion of human knowledge, where people contribute with content either explicitly
or implicitly. An example of an implicit contribution is searching, as people con-
tribute with their knowledge by clicking on retrieved documents. Thus, queries
submitted to search engines carry implicit knowledge and they can be seen as
equivalent to tags associated to clicked documents. An important and interesting
challenge is then to extract relevant relations from query logs, namely semantic
relations between queries and their terms.

Graphs are a natural way to view relations between queries and URLs. As
Baeza-Yates and Tiberi [2], we start with the bipartite graph of queries and
URLs, where a query q and a URL u are connected if a user clicked in the
URL u that was an answer for the query q. Then, we generate a query graph by
analyzing common URLs among queries. A more frequent approach is to define
a similarity measure among queries. However it is more difficult to understand
why queries are similar and it can add noise to data already noisy.

This paper proposes two different contributions. First, we propose a method
to efficiently cluster very large graphs using clique percolation [3] and a priori

� Work done while visiting Yahoo! Research Barcelona.
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induced cliques. The quality of the clustering is evaluated by computing an ex-
tension of the modularity score [4,5] for overlapping clusters. Second, we analyze
the obtained clusters and extract semantic relations, inside and among clusters,
obtaining new information about the nature of the queries and the URLs. To
evaluate our method we use a part of the query log of the Yahoo! search engine,
with 2.8 million queries with at least one clicked URL and 4.9 million different
URLs. For each query, the data includes information on which URLs were clicked
and with which frequency. The quality of the inferred semantic relations is eval-
uated both with a tf-idf (term frequency-inverse document frequency) derived
score and against data from Open Directory Project (ODP).

The rest of the paper is organized as follow. In Section 2 we discuss previous
work on query similarity and knowledge extraction from queries. In Section 3
we describe the cover graph and its properties. In Section 4 we describe the
clustering method and we present the modularity score. In Section 5 we analyze
a large graph and we evaluate our approach. We end with some final remarks
and future work.

2 Previous Work

Most of the work on query similarity is related to query expansion or query
clustering. Here we mention only the main related papers.

Wen et al [6] proposed to cluster similar queries to recommend URLs to
frequently asked queries of a search engine. They used four notions of query
distance: (1) based on keywords or phrases of the query; (2) based on string
matching of keywords; (3) based on common clicked URL’s; and (4) based on
the distance of the clicked documents in some pre-defined hierarchy. As the av-
erage number of words in queries is small (about two) and the number of clicks
in the answer pages is also small [7], notions (1) and (2) generate distance ma-
trices that are very sparse. Notion (4) needs a concept taxonomy and requires
the clicked documents to be classified into the taxonomy as well, something that
cannot be done in a large scale. Although (3) is also sparse, this sparsity can be
diminished by using large query logs. Befferman and Berger [8] also proposed a
query clustering technique based on (3) and Zaiane and Strilets [9] used variants
of (1) and (3) as well as other simpler features.

Baeza-Yates et al. [10,11] used the content of clicked Web pages to define a
term-weight vector model for a query. They consider terms in the URLs clicked
after a query. Each term is weighted according to the number of occurrences of
the query and the number of clicks of the documents in which the term appears.
Then, the similarity of two queries is equivalent to the similarity of their vector
representations, using the cosine distance function. This notion of query similar-
ity has several advantages. First, it is simple and easy to compute. On the other
hand, it makes it possible to relate queries that happen to be worded differently
but stem from the same topic. Therefore, semantic relationships among queries
are captured.
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In the work by Chuang et al. [12,13,14,15] they use query logs to build a query
taxonomy to also cluster answers. However they do not use any user feedback,
like user clicks. This idea of building a taxonomy based on queries is extended
in [16], but this is not the same as building a taxonomy of the queries, which
is what we would call a query taxonomy. Later, Dupret and Mendoza [17] used
the rank of clicked URLs to define relations among queries. They recommend
better queries by generating query relations that can be associated to parts of a
query taxonomy. Recently, Baeza-Yates and Tiberi [2] used (3) and a very large
query log to define semantic relations such as equivalency or specificity based
on different set conditions among the set of clicked URLs. Using the ODP they
found a precision up to 83% on the relations discovered and also that the ones
not found were too specific to appear in ODP. Our work can be viewed as a
followup to this paper.

3 The Cover Graph

In this section we define the cover graph G that arises naturally from the bipartite
graph of queries and URLs, based on the notion of common clicked URLs [18,19].
Let Q be the set of queries and U be the set of URLs. Given a query q ∈ Q, the
cover of q is the set of URLs clicked by q. Let µ : Q → 2U be a function that
maps each query q to its cover set µ(q) ⊆ U .

The cover graph G = (V, E) is an undirected and unweighted graph with
queries as vertices and where exists an edge between two queries whenever they
share at least one common clicked URL. Formally, V = Q and E ⊆ V × V is
such that (q1, q2) ∈ E if and only if µ(q1) ∩ µ(q2) �= ∅.

For the part of the query log of the Yahoo! search engine analyzed in this
paper, the full cover graph is very large with more than 359 million edges (first
row of Table 1). Since many URLs are clicked with a very low frequency, this
graph is also very noisy. Hence, we will filter the edges in order to remove the
noise and reduce the graph size.

Let W : Q × U → [0, 1] be a function such that W(q, u) is the ratio with
which the URL u was clicked for the query q. Thus, given a ratio threshold w, the
filtered cover graph G = (V, E) is such that V = Q and (q1, q2) ∈ E if and only if
{u ∈ µ(q1) | W(q1, u) ≥ w}∩{u ∈ µ(q2) | W(q2, u) ≥ w} �= ∅. Note that this type
of filtering is different from previous methods used to filter edges [2], where each
query has a frequency weight vector associated and edges are weighted according
to the cosine similarity. Both approaches are related since high frequency URLs
increase the cosine similarity and also increase the confidence we have in the
fact that queries joined by a given edge are truly related. However, with our
approach, we can easily find cliques in G as we describe in the next section.

In Table 1 we give details about the cover graph for different values of w. For
w = 0.5 we successfully reduce the size of the cover graph, since the filtered graph
has only 36% of the edges in the full graph. Higher values of w reduce even more
the size of the graph and the size of the giant connected component. The degree
distributions of studied cover graphs follow a power law behavior, as exemplified
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Table 1. Details of the studied cover graphs, where CC is the set of connected compo-
nents, S is the set of singleton vertices, gC is the giant component and |V | = 2, 822, 337

w |E| 2|E|/|V | |E|/|V | log |V | |CC|/|V | |S|/|V | |gC|/|V |

0.0 359,881,327 255.023 8.584 0.556 0.499 0.348
0.5 129,915,749 92.062 3.099 0.697 0.620 0.145
0.7 70,487,699 49.949 1.681 0.785 0.718 0.063
0.8 35,324,706 25.032 0.842 0.859 0.806 0.002
1.0 30,695,828 21.752 0.732 0.890 0.847 0.002

degree

# of vertices

 1

 10

 100

 1000

 10000

 1e+06

 1  10  100  1000  10000

 1e+05

Filtered graph (w=0.5) without mult. topic.
Filtered graph (w=0.5)

Fig. 1. Cover graph degree distribution before and after multitopical URL removal

later in Figure 1 for the case w = 0.5 the power law has an exponent of 1.51.
We note also that an abrupt change occurs in the size of the giant connected
component, as is clear in Table 1 when w changes from 0.7 and 0.8. Another
interesting fact is that for w ≥ 0.8, even for w = 1.0, the number of edges does
not decrease as much as we may expect. That happens because there are many
navigational queries, i.e., queries with just one clicked URL, and many of them
refer to the same URL. In the next section we will study the cover graph for
w = 0.5 in detail and analyze the existing semantic relations among queries.

Given 0 ≤ w ≤ 1, the cover graph can be computed efficiently. Let N̄ and N̂ be
the average and the maximum number of URLs covered per query, respectively.
Let also M̄ and M̂ be the average and the maximum number of queries that cover
an URL, respectively. First, we sort the URLs for each query in O(|Q|N̄ log N̂)
time. Filtering the URLs for each query takes linear time with respect to the
number of URLs per query, i.e., takes O(|Q|N̄) time. We also need to compute the
list of queries for each URL. This can be done in O(|Q|N̄ ) time by transposing the
list of URLs for each query, a procedure that can be performed while filtering.
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Finally, we compute the adjacency list for each query by merging the list of
queries for each URL in the URL list of the current query. Given the list of
URLs for some query and given that the lists of queries and URLs are sorted,
we can do the merge using a priority queue where we store the head of each
URL query list. Thus, the merging takes O(N̄M̂ log N̂) time per query. Given
these complexities, the cover graph can be computed in O(|Q|N̄M̂ log N̂) where
N̄ , N̂ and M̂ are small compared to |Q| and |U|. For the data we study in this
paper and for w = 0.5, N̄ is 1.370, N̂ is 4 and M̂ is 7,974.

4 Clique Analysis and Clustering

We are interested in studying overlapping clusters of G in order to identify
query relationships and extract semantic information from them. In this paper
we specifically study the cliques of G and how they overlap. Previous work has
been done on the identification of overlapping clusters from overlapping cliques
[20,3]. In our approach, we use a clustering method similar to clique percolation
as introduced by Palla et al. [3], where clusters are formed by joining cliques
that overlap above a given threshold k.

Since computing maximal cliques is computationally hard [21], we will use a
priori induced cliques. Let µ−1 : U → 2Q be the “inverse” function of µ that
maps each u to its coverable set of queries µ−1(u) ⊆ Q. Clearly, since every
query q in the set µ−1(u) share at least the URL u, the set µ−1(u) induces a
clique in the graph G. If we are dealing with a filtered version of G, the cliques
are induced by the sets {q ∈ µ−1(u) | W(q, u) ≥ w}, where w is the frequency
threshold.

Given the induced cliques and a threshold k, the clustering method works
by merging every clique which overlaps in more than k vertices. Note that each
URL has a (filtered) list of queries that are the vertices of the induced clique.
Therefore we must intersect each URL list with all other URL lists. The running
time is O(|U|2M̄), where M̄ is the average number of queries per URL and, for
the studied graph with w = 0.5, M̄ is 0.784. Given that we are filtering by k,
the number of URLs is usually much smaller than |U|.

We compute an extension of the modularity measure for overlapping clusters
to evaluate the quality of the clustering. Given a non-overlapping clustering
C = {C1, ..., Cn} of G, the modularity Q is defined [4,5] as

Q =
1

2|E|
∑

p,q∈V

[
Apq −

dpdq

2|E|

]
δ(cp, cq), (1)

where 1 ≤ ci ≤ n denotes the cluster where vertex i belongs, A is the adjacency
matrix of G, di is the degree of vertex i and the δ-function is such that δ(i, j) = 1
if i = j and δ(i, j) = 0 otherwise. Note that the above sum runs over all possible
pairs of vertices. Therefore each edge is summed twice. If we split the sum in
two terms,

1
2|E|

∑
p,q∈V

Apqδ(cp, cq) and
1

2|E|
∑

p,q∈V

dpdq

2|E| δ(cp, cq), (2)
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the first term is the fraction of edges that fall within the clusters and the second
term is the expected fraction of edges within the clusters, if the edges were
randomly distributed while respecting the vertices degrees. In particular, if the
edges were randomly placed as mentioned, dpdq/|E| is the probability of the
existence of an edge between vertices p and q.

Thus, modularity measures the fraction of edges that connect vertices in the
same component minus the expected value of the same quantity in a graph with
the same components but random connections between the vertices [4]. Values
near 1, the maximum value of Q, indicate strong community structure. Typically,
values for graphs underlying common networks with known community structure
are in the range from 0.3 to 0.7.

However, if C has overlapping clusters, the measure needs refinement because
it was designed for non-overlapping clusters. In this work, we extend the def-
inition of modularity by weighting edge contributions with the cluster overlap
centrality of the vertices. The cluster overlap centrality ν of a vertex q ∈ V is
the number of clusters that contain q. It is a generalization of the clique over-
lap centrality proposed by Everett and Borgatti [20]. Therefore, we extend the
modularity definition as

Q =
1

2|E|
∑

p,q∈V

[
Apq −

dpdq

2|E|

]
δ(cp, cq)

νpνq
. (3)

This definition of modularity is a particular case of a more general extension
proposed recently by Nicosia et al. [22]. Notice that this definition is equivalent
to equation 1 when the clustering does not contain overlapping clusters.

5 Experimental Evaluation

We studied several cover graphs for different values of w. In this section we
present the experiments with w = 0.5, as they exemplify our approach and pro-
vide interesting insights with respect to semantic relations among queries. We
built the filtered cover graph as described in Section 3. Then, we applied the
clustering method described in Section 4 for different values of k and we com-
puted the modularity score to evaluate the quality of clustering. The clustering
obtained with k = 266 (Figure 2) has the highest modularity score, Q = 0.667,
a value that indicates the existence of well defined clusters. We found that these
clusters are induced by 67 URLs with a high number of queries, the biggest
one having 7, 974 queries. It is interesting to note that these 67 URLs are all
multitopical web pages.

Since multitopical web pages usually introduce noise as they relate very dif-
ferent queries, we generate the graph without the above 67 URLs. We note
that a previous method was proposed by Baeza-Yates and Tiberi [2] to remove
multitopical URLs. It is interesting that, although different, both approaches
reduce the number of edges to similar values. The filtered graph has less than 14
million edges and Figure 1 depicts the degree distribution before and after the
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Fig. 2. Modularity score for different values of k

Fig. 3. Cluster intersections for queries “linux os” and “airport brussel”

URL removal. Both distributions follow power laws with coefficients of 1.51 and
1.70, respectively. We have applied the clustering method to this new graph and
the results are rather interesting. The clustering with highest score, Q = 0.809,
was obtained with k = 2 (Figure 2). This implies that the original graph struc-
ture was almost defined by a few large cliques and, after the multitopical URL
removal, the result is a graph with a structure defined by cliques of size 3 (perco-
lation of size 2 results from the intersection of cliques with more than 3 vertices).
This clustering has 116, 044 clusters and covers 25% of the original queries. Note
that 62% of the original queries are isolated vertices and, therefore, the cluster-
ing covers 66% of non singleton queries. More interesting, this clustering covers
79% of the queries in the giant component for the filtered graph with w = 0.5.

After obtaining this clustering, we examined the relations within and among
clusters. Figure 3 contains two examples of the observed clusters and cluster
intersections. In the first example the query “linux os” appears in two contexts:
one related to the Debian distribution and the other to Unix operating systems.
In the second example we see that the technique can find related queries even
in different languages (English and Flemish). By analyzing the clusters we were
able to find different contexts for given queries. We were also able to find equiv-
alences between queries, e.g. “ge” and “general electrics”. However, it would be
interesting to have some method to classify queries and terms in the clusters and
extract relevant semantic information as in [2].

For this, we have processed the clusters as follows. First we enumerated the
terms for each cluster and then we computed the tf-idf score for each term. We
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Table 2. Cluster tf-idf average, maximum and terms with tf-idf score ≥ 0.5

C.id tf-idf Max |C| Terms

1 5.658 5.831 3 synaptics, touchpad
2 2.374 2.569 4 erricson, ericcson, ericson, ericsson
3 2.336 4.998 4 charleroi, airport, brussel, aeroport
4 1.612 5.282 6 velux, skylite, www.velux.com, skylight, windows
5 1.423 2.881 6 debian, linux, os, gnu, woody, install
6 1.369 3.588 7 zaventem, brussel, airport, luchthaven, aankomst
7 1.329 2.359 3 linux, os, xp, servers
8 1.327 2.991 3 hfs, whfs, 99.1, whfstival, 105.7, dc
9 1.099 2.691 5 slackware, linux, kernel, slackware.com, 2.6, 9.0

10 1.024 2.143 6 unix, linux, linex, system, operating, os
11 1.019 2.778 5 longhorn, windows, screenshots
12 0.899 2.359 3 linux, wine, windows
13 0.848 2.105 4 cooking, wine, recipes, good, food
14 0.757 1.616 9 longhorn, steakhouse, horn, long, steak
15 0.662 1.262 5 spirits, liquor, pa, wine, pawineandspirits.com
16 0.591 1.727 7 baseball, longhorn, texas
17 0.585 1.054 7 union, credit, federal, teachers, teacher, tfcu
18 0.464 1.994 8 scorpios, scorpio, meaning, sign
19 0.091 0.970 51 windows, xp
20 0.072 0.838 76 delta, flights
21 0.069 0.594 104 yahooligans, games, kids

ranked the clusters by tf-idf average and, for each cluster, we also ranked the
terms by tf-idf score. In Table 2 we provide tf-idf values for some clusters.

The analysis of the cluster ranking provides interesting information with re-
spect to the nature of the queries. Clusters with navigational queries appear at
the top of the ranking. Usually these queries have few terms, although very infor-
mative. The top ten clusters in Table 2 are examples of clusters with navigational
queries, e.g., “synaptics touchpad” that is one of the 3 queries in the first cluster
or “www.velux.com” that appears as term and as query in the second cluster.
But we can generalize this analysis and verify that when a user knows what to
search the queries appear in a higher ranked cluster. An example is the query
“install woody” in Figure 3 and also in the fifth cluster of Table 2. Although
this query does not refer Debian or Linux, it clearly refers to the installation of
the Debian Linux distribution named Woody. Note that navigational queries are
also an example of queries where the user knows what he wants.

The importance of a given term within a cluster can be inferred from the
ranking of terms for each cluster. In Table 2 the terms are sorted from left to
right, with the maximum tf-idf being the score of the first term. Thus, those
terms are the most relevant in each cluster and can be seen as a description of
the cluster.

By studying the overlap of terms among clusters, we can improve the semantic
information obtained from cluster overlapping and we are able to identify context
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Table 3. Distribution of queries with respect to ODP score

σ ≥ 0.25 ≥ 0.33 ≥ 0.50 ≥ 0.66 ≥ 0.75 = 1.00

% 90.5 85.6 69.7 56.5 49.6 34.7

and polysemy. In Table 2 we can identify clusters where a given term appears
in the same context and others where the context is different. For example, the
term “windows” appears in cluster three with the usual meaning and it appears
in the other clusters as the Microsoft operating system. The term “wine” is
an example of polysemy. It appears in cluster eleven as the Windows api for
Unix-like operating systems and in the other clusters as a beverage.

In spite of the above interesting results, evaluating the quality of semantic
relations is difficult. We would like to know if, from the user perspective, the
queries in each cluster are truly related and contain valuable semantic informa-
tion. Thus, we systematically evaluated a sample of clusters against data from
ODP1. The Open Directory is a comprehensive human-edited directory of the
Web and is constructed and maintained by a community of volunteer editors.

We randomly selected 1, 000 clusters among the 116, 044 clusters obtained.
Then, we submitted each query in these clusters to the ODP and we obtained a
set of categories matches in form of paths between directories. Note that these
categories are ordered by relevance. For instance, the query “airport brussel”
would provide the category “Regional: Europe: Belgium: Transportation” as
the most relevant. To measure the similarity between queries, we measure the
similarity between categories [2]. Thus, given two queries, we select the two most
similar categories d1 and d2 as provided by ODP. The similarity score σ is defined
as follows

σ(d1, d2) =
|π(d1, d2)|

max{|d1|, |d2|}
, (4)

where π(d1, d2) is the longest common prefix and | · | is the directory path length.
The ODP similarity for two queries is the value of equation 4 for the most similar
categories between them, i.e., the maximum among all possible pairs of categories
for those queries. For each cluster we computed the ODP score as average of ODP
similarity over all pairs of queries for which ODP provides at least one category.
Note that, for pairs with queries with 0 categories, equation 4 is undefined.

Although the similarity score has values from near 0 to 1, we get an average
of 0.7 among the 1, 000 clusters and 35% of the clusters have a score of 1.0.
We provide the ODP score distribution in Table 3. Thus, we can infer that
the clusters found reflect relevant semantic relations. We also verify that small
clusters usually have higher values, which is to be expected, given the focus of
their queries as discussed above. But, as depicted in Figure 4, the cluster ranking
is much different from the tf-idf ranking and the score decreases much slower. It
1 http://www.dmoz.org/
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Fig. 4. Tf-idf and ODP scores for different cluster sizes

Table 4. Cluster ODP scores and relevant categories

C.id Score |C| ODP category (most significant)

1 1.000 3 Computers: Software: Operating Systems: Linux: Hardware ...
3 1.000 4 Regional: Europe: Belgium: Transportation

11 1.000 5 Computers: Software: Operating Systems: Microsoft Windows: ...
9 1.000 5 Computers: Software: Operating Systems: Linux: Distributions: ...
4 1.000 6 Business: Construction and Maintenance: Materials and Supplies: ...

17 0.976 7 Business: Financial Services: Banking Services: Credit Unions
5 0.889 6 Computers: Software: Operating Systems: Linux: Projects: ...

13 0.722 4 Home: Cooking
16 0.722 7 Sports: Baseball: College and University: NJCAA
10 0.629 6 Computers: Software: Operating Systems: Linux
19 0.621 51 Computers: Software: Operating Systems: Microsoft Windows: ...
12 0.600 3 Computers: Emulators: Intel x86 Architecture: DOS and Windows
15 0.535 5 Recreation: Food: Drink: Liquor
21 0.477 104 Kids and Teens: Games: Online: Collections
7 0.467 3 Computers: Software: Shareware: Networking

14 0.443 9 Business: Hospitality: Restaurant Chains: Steakhouses
6 0.400 7 Regional: Europe: Belgium: Regions: Brussels: Travel ...

20 0.312 76 Recreation: Aviation: Experience Flights
8 0.056 3 Arts: Radio: Regional: North America: United States: Maryland
2 0.048 4 Regional: ...

18 0.024 8 Society: Religion and Spirituality: Divination: Astrology: ...

is also important to note that there are small clusters with very low tf-idf and
ODP score. This happens because these clusters usually have few queries with
many terms and usually these are more specific queries.
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It is also interesting that, with the ODP score we were able to evaluate large
clusters and distinguish which ones have more relevant information, as shown
in Figure 4. Note that the score is not correlated to the cluster size and is
better than tf-idf similarity. With the tf-idf score we were unable to perform
this discrimination since larger clusters have smaller scores. In fact, if we also
had considered the best ranked terms by tf-idf in each cluster, we would have
improved the ranking of some larger clusters (although not the ODP score).

In Table 4 we provide the obtained scores for the clusters given in Table 2. We
also provide the ODP category obtained with the two or three most significant
terms for each cluster given in Table 2. Note that this is done by combining the
tf-idf score and the ODP score, thus providing an interesting categorization of
clusters.

6 Final Remarks

The efficient graph mining techniques proposed in this paper can be applied to
very large graphs obtained from query logs, and the results show that these tech-
niques are effective at obtaining semantic relations between queries. In the con-
crete case studied, the semantic relations discovered are useful and have provided
interesting insights about implicit knowledge contained in queries submitted to
a search engine.

The quality of the results can be improved by incorporating more data, i.e.,
by using larger logs, since more data will consolidate the relations obtained.
Further analysis of the structure of the graph will also be important to unveil
more relations. One possibility is to extend the similarity analysis to all the
clusters and use edges with w < 0.5 to find weaker relations among the clusters
to infer a possible taxonomy. The efficiency of the proposed methods makes them
applicable to much larger graphs, thus making them useful for the extraction of
semantic relations from less frequent queries.
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Abstract. We present a method for optimizing phrase search based on
inverted indexes. Our approach adds selected (two-term) phrases to an
existing index. Whereas competing approaches are often based on the
analysis of query logs, our approach works out of the box and uses only
the information contained in the index. Also, our method is competitive
in terms of query performance and can even improve on other approaches
for difficult queries. Moreover, our approach gives performance guaran-
tees for arbitrary queries. Further, we propose using a phrase index as a
substitute for the positional index of an in-memory search engine work-
ing with short documents. We support our conclusions with experiments
using a high-performance main-memory search engine. We also give ev-
idence that classical disk based systems can profit from our approach.

1 Introduction

Searching in huge collections of text documents is a pervasive feature of mod-
ern life. Many search engines are deployed to execute queries on collections of
documents or records taken from the web, from personal computers, or from
large corporate intranets and databases. Typically, users of search engines have
several options for defining their queries. As well as Boolean operators like AND,
OR and NOT, they can enter their queries as short phrases. The advantage of
entering a phrase is that it specifies certain relations between the words in the
phrase, and this constrains the result set more narrowly than individual search
terms can do.

Examining query logs, one observes that often hype words appear for a while
and quickly disappear again [1]. This dynamical aspect of user behavior regarding
search terms may be unpredictable and makes it difficult to optimize search
engines for (phrase) queries.

The most popular data structure for text search engines is the inverted index
(see, e.g., [2]). Use of an inverted index to answer Boolean queries containing
single terms is efficient, but phrase queries are computationally more expensive.
Attempts have been made to speed up phrase queries on inverted indexes by
adding further information to their data structures (see Section 2). These at-
tempts have the disadvantage that they consume more space. This disadvantage
is especially critical for high-performance main-memory search engines. Although
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modern hardware configurations feature ever more random access memory, mem-
ory capacity is still significantly more restricted and more expensive than disk
capacity in classical search engine systems.

In this paper, we present a method for selecting phrases to add to an existing
inverted index. Whereas competing approaches have often been based on the
analysis of query logs, our approach works out of the box and uses only the
information contained in the index of single terms. Our approach has the advan-
tages over the other approaches that query logs (a) are not available for many
real-world applications and (b) are just a snapshot of user behavior, which often
changes unpredictably. Despite this, our method is competitive in terms of query
performance and can even improve on the other approaches for difficult queries.
Also, our approach enables us to derive theoretical performance guarantees for
arbitrary queries. Our main focus is on search engines that hold all their data
structures in main memory, but we give evidence that our results can be applied
to classical disk-based systems as well.

The remainder of the paper is organized as follows. We give an overview
of related work in Section 2. Section 3 describes our phrase indexing scheme.
Section 4 gives an experimental evaluation using real-world benchmark data.
Section 5 summarizes our results and outlines possible future work.

2 Related Work

Decades ago, researchers began to create inverted indexes by indexing phrases
instead of single terms (see, e.g., [3]). But building indexes that cover all phrases
within a (large) document collection takes enormous amounts of space and time.
So authors designed a variety of methods for selecting (short) phrases. All of
these approaches focus on choosing phrases that are as meaningful as possible.
They use syntactical and statistical analyses of a given text to extract suitable
candidate phrases for the index [3,4,5]. The main aim of such analyses is to
improve the retrieval quality in the absence of a full-text index.

More recently, ways have been found to speed up phrase query times for (full-
text) inverted indexes. Williams et al. [6] proposed nextword indexes, in which for
each term or firstword, a list of all successors is stored together with the positions
at which they occur as a consecutive pair. With this approach, phrase queries can
be answered four times faster than by a classical inverted index. However, this
technique requires an additional 50% to 60% of the space occupied by a standard
inverted index. This can be reduced to about 40% to 50% using the compression
techniques of [7] at little cost in query performance. To achieve further reductions
in memory consumption, Bahle et al. introduced partial nextword indexes [8]. A
partial nextword index contains only the most common words as firstwords. It
can be used in combination with a conventional inverted index acting as fall-back
for query terms that are not listed in the nextword index. A partial nextword
index enables phrase queries to be evaluated in half the time using 10% more
space compared to an inverted index.
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A combination of partial nextword index, partial phrase index, and inverted
index was proposed in [9]. An existing query log is analyzed to optimize the
indexes. This reduces the average query time to a quarter by indexing the three
most common words as firstwords and the 10 000 most common phrase queries.
The space overhead for the three-way index combination is about 26%.

Another method, based on the analysis of query logs, was introduced by Chang
and Poon [10]. Their approach divides the vocabulary into two sets: rare terms
and common terms. Common terms are the most frequent terms found in the
query log; all others are rare terms. For each common term, there is a tree whose
root-to-leaf paths contain all phrases from the query log starting with that term
and ending with a terminal term. Terminal terms are defined by a lexical analysis
of the query log: any term that is not a preposition, adverb, conjunction, article,
or pronoun is a terminal term. Each leaf points to the inverted list for its phrase.
The resulting common phrase index shows 5% improvement in average query
time over a partial nextword index with only a 1% extra storage cost. For long
query phrases the query time improvement can reach 20%.

All these approaches are designed for systems that hold major parts of their
indexes on disks. So the cited values apply for disk-based systems.

Another index data structure held mostly in main memory and capable of
answering phrase queries efficiently is the suffix array. The array stores all suf-
fixes of a given text and can therefore answer queries consisting of concatenated
terms very quickly. Also, suffix arrays can be efficiently compressed. However,
they cannot compete with inverted indexes in classical document-based search
scenarios at present [11,12].

3 Two-Term Phrase Indexes

We propose a phrase selection scheme confined to a subset of the two-term
phrases contained in a document collection to be indexed. Two-term phrases
are the most widely used form of text queries [13]. They are also the slowest to
resolve [11]. Once they are in the index, they can be used to speed up queries of
arbitrary length greater than two [14]. We can easily generalize our approach to
phrases consisting of more than two terms.

The idea behind our indexing scheme is simple. We build up an inverted index
I and independently make a list of the two-term phrases that occur. We define
a function C((s, t)) estimating the real costs caused by evaluating a term pair
query s · t through I. We require C to be determined by properties that are
also available at query time. We choose a suitable threshold TI and add just the
phrases s · t such that C((s, t)) ≥ TI to the index I.

We can exploit this to speed up the handling of some phrase queries with
empty result sets. We estimate the cost of each two-term phrase occurring in
the query and check whether it is above the threshold for the index. If it is, and
if there are results for the phrase, the phrase is in the index and we return the
results. Otherwise, we know the result set is empty and we are done.
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3.1 Selection Criteria

There are various options to define suitable cost functions for a phrase s · t.
One approach would be to take the sum of the lengths of their inverted lists
C((s, t)) = ‖s‖+ ‖t‖ as this reflects the amount of memory to be retrieved from
an external storage for intersecting them. However, on main-memory systems
the minimum C((s, t)) = min{‖s‖ , ‖t‖} may be more closely related to the cost
of the intersection when a form of per-list indexes is used (see, e.g., [15]). Other
criteria can be used. For example, the phrase query is often implemented as a
(fast) AND query followed by a check for consecutive term positions. In this
case, a cost function can be defined as the number of entries in the result set of
the AND query. Queries that do not profit from the phrase index can be still
evaluated in nearly the same time.

Our experiments show that these selection methods differ only marginally
in average run-time. However, the sum-based cost function is of theoretical
importance.

Proposition 1 (Performance guarantee). Let I be a two-term phrase index
and C((s, t)) = ‖s‖ + ‖t‖ ≥ TI its selection criterion. Then, the cost of a two-
term query t1 · t2 on I is O(TI).

3.2 Querying Phrases

The two-term phrase index can be used to speed up queries consisting of an
arbitrary number of terms. Phrase queries can be evaluated efficiently, as follows
[14,8]. Let t1 · t2 · ... · tn be a phrase query consisting of n terms and l1, l2, ..., ln
their inverted lists. Starting at l1, we replace each list li with the inverted list of
the phrase ti · ti+1 where possible, because ‖ti · ti+1‖ ≤ ‖ti‖. Then, we sort the
resulting set of inverted lists by increasing length. Taking the smallest list as the
initial result set, the others are intersected (taking phrase offsets into account)
with it successively. We skip inverted lists of two-term phrases that are already
covered by previous lists during the intersections.

3.3 A Substitute for Positional Indexes

Positional indexes for text collections with small documents consisting of just
a few words are not very space efficient [11]. However, business application sce-
narios often involve huge amounts of short business texts like memos or product
descriptions that require fast access. With such scenarios in mind, we propose
an alternative index design adapted to the characteristics of small text docu-
ments. Instead of storing the position of each term in a positional index, we
store the sequence of term IDs for each document. Our experiments show that
for small documents this requires less space than a positional index. Note that
in scenarios where the search system has to answer its queries with actual doc-
ument contents, this information is required anyway. A phrase query can then
be implemented in two steps. In step 1, preselect possible documents by execut-
ing an AND query. In step 2, select the results from them by using the string



204 F. Transier and P. Sanders

matching algorithm of [16] on their term ID lists. Because this implementation
is generally slower than evaluating a phrase query using a positional index, we
add a phrase index that makes the preselection process more precise. This gives
a better trade-off between compression and query performance (see Section 4).
We call this modified index design a short-text index.

4 Experiments

We evaluated the performance of a two-term phrase index against the query log
based three-way index combination of [9] mentioned in Section 2. To fill our
indexes, we used the GOV2 [17] test collection from TREC. This collection is a
crawl of a large proportion of the websites from the .gov domain in early 2004.
This corpus contains 25 million documents filling 426 GB.

We used four different query logs. The first two consist of the queries from
the TREC Efficiency task topics from the years 2005 [18] and 2006 [19]. We call
them 05eff and 06eff respectively. They were extracted from a real-world query
log to compare the performance of different search engine systems on the GOV2
test collection. In fact, the 2005 query log does not match GOV2 very well, so
it can be processed much more quickly than more realistic queries because it
contains many terms that occur either rarely or not at all in GOV2 (or in the
documents of the .gov domain). For this reason, the 2006 queries were selected
more carefully to fit the data [20,21].

For our third query log, we used the queries from the Excite log [1]. We
extracted queries that were explicitly indicated as phrases by means of quotation
marks. Again, these queries were originally addressed to the whole web and not
just to the sites of the .gov domain, so this query log is also a rather unrealistic
sample. Indeed, there are many very selective queries on the GOV2 corpus with
empty or very small result sets that can be processed very quickly.

Finally, the Random query log was built using the pseudo real-world query
generation method of [11]. We selected random hits from the GOV2 test corpus
varying in their length of between two and ten terms. This can be seen as a
counterweight to the two easy query logs 05eff and Excite. The algorithm selects
many queries containing very frequent terms so that the result sets are likely to
be larger than they would be in real life.

The three-way index combination needs a training set of queries. Hence, we
split all the query logs into two parts and used the first one for training purposes.
All our measurements were made on the second parts.

4.1 Results for Main-Memory Systems

We implemented the two-term phrase index and the three-way index combination
as an extension to the main-memory search engine of [11] using C++. All our
code was compiled by the gnu C++ compiler 4.1.2 with optimization level -O3.
Timing was done using PAPI 3.5.0 [22]. The experiments were done on one core
of an Intel Core 2 Duo E6600 processor clocked at 2.4 GHz with 4 GB main
memory and 2 × 2 MB L2 cache, running OpenSuSE 10.2 (kernel 2.6.18).
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Fig. 1. Average query time

We split the GOV2 corpus into 64 roughly equal-sized and contiguous parts
to obtain the amount of data normally assigned to a single processing core of an
in-memory text search engine based on a cluster of low-cost machines. Assigning
more than 1–2 GB of data to one core would skew hardware investment too
heavily toward RAM rather than processing power. For our measurements, we
randomly selected one of the parts. It would have been much more expensive
to average over all the parts, and the sizes of the result sets suggested that the
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chosen portion fit the 06eff and the Random query log. After normalization (re-
moving HTML tags with the HTMLparser of libxml2 and also non-alphanumeric
characters), the part shrank to about 1.8 GB of plain text.

Our first experiment compares the three-way index combination (3W) from
[9] and the two-term phrase index (2T) based on the average query time for the
Excite query log. Figure 1(a) shows the speed-up of the average query times
against the space growth in relation to the classical inverted index, indexing
only single words. Following [9], we added the 10 000 most frequent queries of
the training log to 3W and varied the number of the most frequent firstwords
between the values 3, 6, 12, 24 and 48. For 2T, we chose the minimum of the
inverted list lengths as selection criterion and adapted the threshold for the
space growth factors resulting from 3W. We see that 3W is slightly faster than
2T up to a space growth factor of 1.38. This observation should be interpreted
with care, since here 3W is being benchmarked on the Excite log for which it
was optimized. Indeed, these results are unrealistically good, as in most cases no
query logs are available or existing query logs are out of date. To simulate the
more usual situation, we also trained 3W with the 06eff query log instead of the
Excite log and compared the outcomes. As Figure 1(a) shows, this transforms
the outcome. The intersection with the 2T Excite line slips down to about 1.15
on the space axis and the speed-up difference below 1.15 is marginal. Moreover,
2T seems to scale better with increasing space factors than 3W in both cases.

In a second experiment we compared the performance on the Random query
log. Figure 1(a) shows the result. The 2T index can process the query log in about
70% of the time compared to 3W over the entire range of additional memory.

A tempting alternative to overcome the problem of unsuitable or missing
query logs is to use the Random query log as training set for 3W. Our next
experiment explored this approach. Figure 1(b) shows the average querying times
for different query logs on 2T and Random-trained 3W. As the Random queries
yield more results, the range of space growth factors is higher compared to our
previous experiments at equal parameters for 3W. Again, we come to a clear
conclusion: a Random-trained 3W cannot compete with 2T. The Excite and
05eff query log are about 2 and 1.6 times faster on 2T than on 3W. For the more
difficult 06eff query log, the speed-up of 2T is as much as 2.25 times higher than
that of 3W.

Indexes for Small Documents. We also implemented the short-text index of
Section 3.3 and used the two-term phrase index as a substitute for the positional
information within the index. This somewhat unconventional application of two-
term phrase indexes can reduce the memory consumption of an index.

For these experiments, we used the WT2g.s test collection introduced in [15]).
It contains short documents and is derived from the WT2g corpus [23] by in-
terpreting each sentence of the plain text as a single document. The total size
of the text of WT2g.s is about 1.5 GB. The average document size of this test
collection is 25.6 terms. However, about 2000 of its more than 10 million docu-
ments were much larger than that. They occupied more than 30 MB in total, so
we truncated them to a size of 1024 terms each.
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Table 1. Plain positional index vs. plain phrase index on WT2g.s

pos. index phrase index no phrases
size [KB] 1 460 683 ×1.0 ×0.9 ×0.8 ×0.7 ×0.6

av
g.

[µ
s] 05eff 614 186 260 386 592 987

06eff 687 120 178 296 487 804
Excite 1 193 298 475 765 1 179 2 200
Random 23 985 943 1 249 2 097 5 062 63 118

w
.-
c.

[µ
s] 05eff 133 715 125 715 125 707 124 203 125 721 424 127

06eff 88 123 13 445 19 181 67 683 81 101 366 231
Excite 211 793 17 699 22 039 45 536 108 050 697 359
Random 1 917 584 109 618 109 575 109 605 178 414 4 276 635

We compared the short-text index with the classical positional index. Table 1
shows the average query times as well as the worst-case query times for different
query logs on both indexes. The index size given for the positional index contains
bags of words for each document. The bags are sorted lists of the term IDs for
each document (without duplicates). They are used in the implementation of [11]
for reconstructing document contents from the indexes. But if we add term ID
sequences to the index as described in Section 3.3, the bags become superfluous.
So all other size values contain just the space needed for these sequences. The
short-text index without any additional phrases needs about 60% of the size of
the positional index. We added phrases to the short-text index and measured
the query log running times at different thresholds. As Table 1 shows, if we use
about 17% more memory for the phrases, the short-text index performs better
than the positional index.

4.2 Evaluation for External Memory Systems

For our tests, we did not have a disk-based external memory implementation
of our search engine. However, to get an idea of performance on such systems,
we measured the memory size of the inverted lists that were accessed for each
query. We believe that this is a good estimation for the performance of disk-based
systems as it reflects the costs for retrieving the lists from external storage.

The phrase index construction can run as follows. Write all term pairs during
the standard indexing process to disk. Iterate through them and check if a phrase
has to be added. If so, look up the phrase in the index. If the phrase is not yet
present, do the search and add the outcomes.

We report results that correspond to those of our main-memory experiments.
As cost function for 2T, we used the sum of the sizes of the inverted lists for
the two terms. Figure 2(a) shows the average amount of memory touched during
query execution. Again, we normalized all values against those of the classical
inverted index. First of all, we can see that a 06eff-trained 3W loses by a constant
factor compared to an Excite-trained 3W. The characteristics are similar to those
we observed in the main-memory case. However, even the worse-trained 3W can
process the (easy) Excite query log with access to less memory than 2T can. But
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Fig. 2. Average memory per query required to retrieve from external storage

the advantage diminishes as the space growth factor increases. For the Random
log, we see again that 2T beats 3W. Also, Figure 2(b) shows that 2T touches
less memory than a Random-trained 3W for all query logs.

Because we were aware that the amount of data used in our previous exper-
iments was unrealistically small for external memory search engines, we per-
formed additional experiments with larger data sets. Figure 3 shows the amount
of touched memory for data sets of different sizes using about 22% of additional
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memory for both 2T and 3W. We indexed 25%, 50%, and 200% of the amount
of data considered in Figure 2(a). For smaller inputs, we averaged over all pieces
of the largest input. For the Excite query log, each curve converges to a flat line
that is independent of the input size. So the conclusions for small inputs seem
to remain valid for larger inputs.

5 Conclusion

Our experiments have shown that our two-term phrase indexing scheme can be
used to achieve significant query time speed-up without the assistance of query
logs. The run times of more expensive and difficult queries are halved when 13%
more space is made available for the indexes on our main-memory search engine.
Given that amount of space, an approach based on query logs can only achieve
a run-time reduction of about 10%. Approaches based on query logs admittedly
perform better on simple and very selective queries. However, we believe that it
is more important to speed up difficult queries that fit the data than to reduce
the costs of queries that are fast anyway, and this is suggested by our results.

In systems based on external memory, the reduction of query costs is even
higher. On this point, our estimations for those systems coincide with previous
work. For such systems, we arrive at similar conclusions as for main-memory
systems. Approaches based on query logs can process easy queries slightly more
quickly, but our two-term phrase index is clearly faster for difficult queries.

It would be interesting to try our approach on a disk-based implementation
of a search engine to avoid relying on approximate estimations. Other inter-
esting future work would be to investigate the query evaluation heuristics of
Section 3.2. The previous work [14] is a useful experimental study but work
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grounded in theory would be welcome. It would be useful to explore the de-
pendency between optimizing query evaluation, finding a good phrase selection
criterion, and choosing main or disk memory for the search system.
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21. Büttcher, S., Clarke, C., Soboroff, I.: The TREC 2006 terabyte track (2006)
22. Mucci, P.: Performance API (2005), http://icl.cs.utk.edu/papi/
23. Hawking, D., Voorhees, E., Craswell, N., Bailey, P.: TREC-8 web track (1999),

http://ir.dcs.gla.ac.uk/test collections/access to data.html

http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm
http://trec.nist.gov/data/terabyte/05/05.efficiency_topics.gz
http://trec.nist.gov/data/terabyte/06/06.efficiency_topics.tar.gz
http://icl.cs.utk.edu/papi/
http://ir.dcs.gla.ac.uk/test_collections/access_to_data.html


Approximated Pattern Matching
with the L1, L2 and L∞ Metrics
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Bar-Ilan University�

Abstract. Given an alphabet Σ = {1, 2, . . . , |Σ|} text string T ∈ Σn

and a pattern string P ∈ Σm, for each i = 1, 2, . . . , n − m + 1 define
Ld(i) as the d-norm distance when the pattern is aligned below the text
and starts at position i of the text. The problem of pattern matching
with Lp distance is to compute Lp(i) for every i = 1, 2, . . . , n − m + 1.
We discuss the problem for d = 1,∞. First, in the case of L1 match-
ing (pattern matching with an L1 distance) we present an algorithm
that approximates the L1 matching up to a factor of 1 + ε, which has
an O( 1

ε2 n log mlog|Σ|) run time. Second, we provide an algorithm that
approximates the L∞ matching up to a factor of 1 + ε with a run
time of O( 1

ε
n log mlog|Σ|). We also generalize the problem of String

Matching with mismatches to have weighted mismatches and present
an O(n log4 m) algorithm that approximates the results of this problem
up to a factor of O(log m) in the case that the weight function is a metric.

1 Introduction

The last few decades have prompted the evolution of pattern matching from a
combinatorial solution of the exact string matching problem [FP74, KMP77] to
an area concerned with approximate matching of various relationships motivated
by a wide range of scientific and business applications. To this end, two new
paradigms were needed - “Generalized matching” and “Approximate matching”.

In generalized matching the input is still a text and pattern but the “match-
ing” relation is defined differently. The output is all locations in the text where
the pattern “matches” under the new definition of “match”. The different ap-
plications define the matching relation. An early generalized matching was the
string matching with don’t cares defined by Fischer and Paterson [FP74]. An-
other example of a generalized matching problem is the less-than matching
[AF95] problem defined by Amir and Farach. In this problem both texts and
patterns are numbers. All text locations are sought where every pattern number
is less than its corresponding text number. Amir and Farach showed that the
less-than-matching problem can be solved in O(n

√
m logm) time. More exam-

ples of generalized matching are parameterized matching [AFM94] and shift
matching [CH02]. Lower bound results on generalized matching can be found
in [MR95].
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The second important pattern matching paradigm and the one with which
we are concerned this paper is approximate matching. In approximate matching
the distance metric between the objects (e.g. strings, matrices) is defined and all
locations in the text are sought where the distances between them and the pat-
terns are within the tolerated bounds, under the given distance function. Some
examples that motivate approximate matching include finding a “close” muta-
tion in computational biology, adjusting noise transmission in communications,
allowing common typing errors in texts and adjusting for lossy compressions,
occlusions, scaling, affine transformations or dimension loss in multimedia.

A well known distance function concerning strings of characters is the Ham-
ming distance. The Hamming distance is defined as the number of character
changes needed to convert one string to the other. The string matching with
mismatches is defined as computing the Hamming distance between the pattern
and every substring of the same length of the text. By applying methods similar
to those of Fischer and Paterson [FP74] we can show that the string matching
with mismatches problem can be solved in O(min(|Σ|, m)n logm) time. For given
finite alphabets the time needed is O(n log m). Abrahamson [Abr87] developed
an algorithm that solves this problem for general alphabets in O(n

√
m log m)

time. It is an open question whether this bound is tight or it can be reduced.
Karloff [Kar93] introduced an algorithm that approximate the Hamming dis-
tance up to a factor of 1 + ε and works in time O( 1

ε2 n log3 m).
Hamming distance gives a mismatch error a fixed weight, independent of

the characters that were exchanged. We discuss a generalization for the prob-
lem of String Matching with Mismatches. The problem of String Matching with
Weighted Mismatches defined in [Mut95] is informally, summing up, for each
text location i, the weighted mismatches that occur when the pattern is com-
pared to ti, ti+1, . . . , ti+m−1. We show that the String Matching with Weighted
Mismatches can be solved deterministically in O(n|Σ| log m) time, and can be
approximated using techniques of embedding up to a factor of O(log m) , in a
time of Õ(n), if the weight function is a metric.

In many aspects of science we deal with strings of numbers, which are also
referred to as time-series data. In meteorology we measure temperature , air
pressure, wind speed, etc. over time. In the Stock Market or in the Foreign
Exchange market we keep a record of the stock price or the exchange rate over
time. Another area which deals with such strings is Music Information Retrieval
(MIR) [Per00]. If we wish to seek patterns in such strings of numbers, it would
be non realistic to seek the exact same values, rather than “close” instances of
a pattern. When dealing with strings of numbers the most common distance
metrics are the L1, L2 and L∞ Minkowsky norm metrics. The 1-norm distance
is more colorfully called the taxicab norm or Manhattan distance, because it
is the distance a car would drive in a city laid out in square blocks. The 2-
norm distance is the famous Euclidean distance, which is a generalization of
the Pythagorean theorem to more than one coordinates. It is what would be
obtained if the distance between two points were measured with a ruler: the
“intuitive” idea of distance. L∞ is known as the Maximum metric.
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Therefore, we propose new pattern matching problems: The string L1 distance
matching problem (L1 matching, for short) to compute the L1 distance between
the pattern and every substring of the same length of the text. Similarly we
define the String L∞ Distance Matching (L∞ Matching) problems.

The problem of searching for patterns among time-series data has been ex-
tensively studied for building time-series databases. In this case, the problem is
pre-processing the data in such a way that will enable us to run fast queries for
patterns [FRM94, CW99].Another variant is looking for some periodicity along
the data [IKM00]. Most of the algorithms used for these variants apply L2 as
the distance function. Moreover, most of them are also based on heuristics, and
do not have any “worse time” analysis.

In this paper we provide a deterministic algorithm for the L1 matching prob-
lem, based on methods similar to those of Fischer and Paterson [FP74] which
works in O(min(|Σ|, m)n logm) time can be constructed according to a method
similar to the one used in [ILLP04]. For given finite alphabets, the runtime
is O(n log m), but for large alphabets (i.e. |Σ| = n) it is worse than the naive
algorithm which works in O(nm) time. This time complexity leads us to assume
that the main difficulty in constructing an efficient algorithm (i.e. Õ(n)) is with
the alphabet size. Therefore, we have searched for a method to reduce the al-
phabet size. In [LP01] techniques for dividing the alphabet into frequent and
non-frequent symbols, similar to those in [Abr87] provided an algorithm that
works in O(n

√
m log m) time. We show in [LP05] that the string matching with

mismatches problem can be linearly reduced to the L1 matching problem. This
fact has led us to look for an approximation algorithm rather than an exact
solution that seems to be difficult to construct in Õ(n) time. A randomized al-
gorithm that approximates the L1 matching results up to a factor of 1 + ε and
an err with a probability bounded by δ can be constructed based on [Ind00],
with a run time of O( 1

ε2 n log 1
δ log m). We present a deterministic algorithm for

approximating L1 which has a runtime of O( 1
ε2 n log m log |Σ|).

We also present an algorithm that approximates the L∞ matching results up
to a factor of 1 + ε and works, as well, in O(1

ε n log mlog|Σ|) time. All algo-
rithms, except the approximation method for String Matching with Weighted
Mismatches, are based on convolutions, and therefore can easily be extended to
include don’t care symbols within the alphabet.

This paper is organized as follows: section 2 provides definitions and pre-
liminaries, section 3 presents the algorithms for string matching with weighted
mismatches. Section 4 deals with the problem of L1 Matching - presents an ap-
proximation algorithm for the L1 matching problem. Finally section 5 discusses
the problem of L∞ Matching and presents an approximation algorithm for the
problem.

2 Preliminaries and Problem Definition

All algorithms in this paper, except those in section 3, deal with alphabets of
the form Σ = {1, 2, . . . |Σ|}. We assume the RAM model of computation, which
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allows arithmetic on log N bit numbers in O(1) time, where N is the order of
the maximum problem size. In addition we use n to denote |T | and m to denote
|P |. We can assume w.l.o.g n ≤ 2m, otherwise we can use the method of cutting
the text into n/m overlapping segments, each with a length of 2m.

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two vectors over Σ. Then
the Minkowsky Ld distance metric between x and y is defined as: Ld(x, y) =
d
√

Σn
i=1|xi − yi|d The L1, L2 and L∞ metrics are the well-known Manhattan,

Euclidean and Max metrics, respectively. The approximation algorithms we con-
struct for L1 and L∞ Matching have an approximation factor of 1 ± ε and are
easily changed to have a factor of 1 + ε by running the algorithm with ε

2 and
multiplying the results by 1 + ε

2 .

Convolutions
The convolution vector of two vectors t, p, denoted by t⊗ p is defined as vector
w such that

w[i] =
m∑

j=1

t[i + j − 1]p[j].

The convolution can be computed in O(n log m) time, in a computational
model with a word size of O(log m), by using the Fast Fourier Transform (FFT)
[CLR92].

2.1 Problem Definitions

We provide more convenient definitions of the problems that are equivalent to
the form in which they were introduced above.

The String Matching with L1 Distance (L1 Matching for short) is defined as
follows:
Input: Text vector t = t1, t2, . . . , tn, pattern vector p = p1, p2, . . . , pm where
ti, pj ∈ {1, 2, . . . , |Σ|}.
Output: results vector O[1, . . . , n − m + 1] , where for every i O[i] =∑m

j=1 |ti+j−1 − pj |.
The Approximated String Matching with L1 Distance (Approximated L1 Match-

ing) is defined as follows:
Input: Text vector t = t1, t2, . . . , tn, pattern vector p = p1, p2, . . . , pm, ex-
actness parameter 0 < ε < 1.
Output: results vector Ô[1, . . . , n − m + 1], s.t. O[i] ≤ Ô[i] ≤ (1 + ε)O[i],
where O[i] =

∑m
j=1 |ti+j−1 − pj|.

The String Matching with L∞ Distance (L∞ Matching) is defined for the same
form of input, but the Output vector is defined differently.
Output: results vector O[1, . . . , n−m+1] where for every i O[i] = Maxm

j=1
|ti+j−1 − pj |.

The Approximated String Matching with L∞ Distance (Approximated L∞
Matching) is defined as follows:
Input: Text vector t = t1, t2, . . . , tn, pattern vector p = p1, p2, . . . , pm, ex-
actness parameter 0 < ε < 1.



216 O. Lipsky and E. Porat

Output: results vector Ô[1, . . . , n − m + 1], s.t. O[i] ≤ Ô[i] ≤ (1 + ε)O[i],
where O[i] = Maxm

j=1|ti+j−1 − pj |.
The String Matching with Weighted Mismatches is defined for an arbitrary

alphabet as follows:
Input: Given some distance function f : Σ × Σ → ", Text vector t =
t1, t2, . . . , tn and pattern vector p = p1, p2, . . . , pm, where ti, pj ∈ Σ.
Output: result vector O[1, . . . , n − m + 1], s.t. O[i] =

∑m
j=1 f(ti+j−1, pj).

3 String Matching with Weighted Mismatches

Note that the alphabet distance function does not have to be a metric. The time
complexity of the algorithm is O(|Σ|n log m).

This algorithm is a direct extension of the algorithm given by Fischer and
Paterson in [FP74]. They examined a case where the distance function defined
on the alphabet is:

f(σ1, σ2) =
{

1 σ1 �= σ2
0 σ1 = σ2

We generalize the problem to any given distance function f : Σ × Σ → ".

Algorithm steps:

1. For each σ ∈ Σ
(a) Create tσ by replacing every σ by 1 and every other symbol by 0.

(b) Create pσ by replacing every pj �= φ by f(pj, σ), and φ by 0.

(c) Compute Oσ = tσ ⊗ pσ

2. Compute O ←
∑
σ∈Σ

Oσ

It is easily seen that the algorithm computes the desired results. The time com-
plexity of this algorithm is derived from the time needed to compute a con-
volution, and the size of the alphabet. Therefore the overall time needed for
this algorithm is O(|Σ|n log m). For given finite alphabets, the time needed is
O(n log m), but for large alphabets (i.e. |Σ| = m) it is worse than the naive
algorithm which works in O(nm) time.

If the alphabet distance function f is a metric we can approximate the re-
sults up to a factor of log m in the Õ(n) time algorithm, using embedding tech-
niques [Ind01] into L1 and then using the L1 Matching approximation algorithm.

4 String Matching with L1 Distance

The problem of Exact L1 Matching can be solved in O(|Σ|n log m) time using
the algorithm described in section 3. An O(n

√
m log m) time algorithm can be

designed using methods of dividing the alphabet into frequent and non-frequent
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symbols, as in [ILLP04, ALPU05, LP01]. Therefore, the current best known
time for Exact L1 Matching is O(n

√
log mmin(|Σ|

√
log m,

√
m)).

The problem of String Matching with Mismatches can be linearly reduced to
the problem of Exact L1 Matching [LP05]. This fact led us to search for an
approximation algorithm rather than an exact one, which seems hard to design
in a better time complexity.

We have designed an algorithm that approximates the results of L1 Matching
up to a factor of 1 + ε and works in a run time of O( 1

ε2 n log m log |Σ|).

4.1 L1 Approximation Algorithm

We begin by describing an exact algorithm that solves the L1 Matching prob-
lem in O(n|Σ| log m log |Σ|) and showing its correctness. Then we modify it
and insert the exactness parameter ε in order to reduce the time complexity.
The total time complexity of our algorithm for Approximated L1 matching is
O( 1

ε2 n log m log |Σ|). We emphasize the fact that the exact algorithm is not effi-
cient, and is used only for methodological reasons, to construct the approxima-
tion algorithm.

We use a specific alphabet distance function to construct our algorithm. Given
some k, define k − 2k String Matching to be String Matching with Weighted
Mismatches with the specific weight function: f : Σ × Σ → " defined as:

f(σ1, σ2) =

⎧⎨⎩
0 |σ1 − σ2| < k
�|σ1 − σ2| − k� k ≤ |σ1 − σ2| ≤ 2k
�k� 2k < |σ1 − σ2|

For σ1 �= φ and σ2 �= φ, and f(σ1, σ2) = 0 otherwise. Note that this problem
can be solved in time O(|Σ|n log m), because it is a specific case of the String
Matching with Weighted Mismatches.

Exact L1 Matching: We provide an algorithm to solve L1 Matching that uses
k − 2k Matching as a given procedure.

Algorithm Steps:

1. Initialize array O[1, . . . , n − m + 1] to zeros.
2. k = 1

2
3. While k < |Σ| do:

(a) Run k−2k Matching with t,p and k and get a result vector V [1, . . . , n−
m + 1]

(b) For i = 1, . . . , n − m + 1 do O[i] ← O[i] + V [i]
(c) k = k ∗ 2

Algorithm Correctness: By problem definition of L1 Matching, we need to show
that for every i, O[i] =

∑m
j=1 |ti+j−1 − pj |. It is suffice to prove that for every

i, j we add |ti+j−1 − pj| to O[i]. For some i, j call d = |ti+j−1 − pj |. Concerning
d, in every iteration of the while loop the k − 2k Matching checks whether
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d < k, k ≤ d ≤ 2k or 2k < d, and adds 0, d − k or k respectively. In the first
while iteration 1 is added if d �= 0, in the following iterations it adds 1, 2, 4, and
so on up to 2x where 2x+1 ≤ d < 2x+2. In the next iteration, where k = 2x+1,
d − k = d − 2x+1 is added. In the remaining iterations d < k and therefore
nothing is added to O[i]. In the cases where d > 0, the summary of the additions
we have is:1 + 1 + 2 + · · ·+ 2x + d− 2x+1 = d. If d = 0 all the iterations do not
add anything to O[i] since d < k for all k.

Time: We have log |Σ| iterations of the while loop, each using one time k − 2k
Matching and O(n). If it takes f(n, m) time to compute the k − 2k Matching
then the time complexity of the L1 algorithm is O((f(n, m) + n) log |Σ|). The
current best known time for the k− 2k Matching is O(|Σ|n log m), therefore the
time is O(|Σ|n log mlog |Σ|).

First Modification of the Exact Algorithm. Consider the exact algorithm
described above. Note that in fact we add every d = |ti+j−1 − pj| to O[i] by
iterations that check whether d > 1

2 , d > 1, d > 2, d > 4, · · · , d > 2x, · · ·.
Therefore d is made from the sum 1 + 1 + 2 + 4 + . . . + 2x + (d− 2x+1) = d. The
idea behind the following modification is that in case we drop the first elements
of this sum, where d is large enough, we do not greatly err. Now consider that
we are given some 0 < ε < 1. Our first modification is to reduce the alphabet
size as follows. For each time we run k−2k Matching we run it with t′, p′ instead
of t, p where t′ and p′ are defined as:

t′i ← ti mod 4k
ε 1 ≤ i ≤ n

p′j ← pj mod 4k
ε 1 ≤ j ≤ m

The error gained by this modification is if d is “very large” compared to k. In
such cases, in order to err in this iteration of k − 2k Matchingm it is required
that dmod 4k

ε < 2k. In details, consider d = |ti+j−1 − pj |, if d > 4k
ε then perhaps

where d mod 4k
ε < 2k then less than k is added to V [i] at this iteration of

k − 2k (It can only err by adding less than needed). This is acceptable, because
if we err with at most k in this iteration and d > 4k

ε then our error is less than
ε/4. Summing all the iterations we can err, and 1, 1, 2, . . . , ε

4d is bounded by
ε
2d. The time complexity of this modified version of the algorithm is derived
from the alphabet size in each of the iterations of the k − 2k procedure, which
leads to: Σ

k= 1
2 ,1,2,4,..., |Σ|

2

4k
ε n log m = O(1

ε |Σ|n logm). This time complexity is
not satisfactory leading us to the next modification.

Second Modification of the Exact Algorithm. If we keep in mind that
every d = |ti+j−1−pj| is computed from the sum of 1+1+2+4+ . . .+2x +(d−
2x+1) and we already allowed error within the small elements, we can reduce
the alphabet even more, in such a way that cause a small error in the biggest
element in the sum, d − 2x+1, where 2x+1 < d < 2x+2. We now run the stage
of k − 2k Matching with t′, p′ which has an alphabet size of 4k

ε . The Second
Modification will be as follows:
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For each time we run k − 2k Matching we run it with t′′, p′′, k′′ instead of
t′, p′, k where t′′, p′′ and k′′ are defined as:

t′′i ← t′i div kε
2 1 ≤ i ≤ n

p′′j ← p′j div kε
2 1 ≤ j ≤ m

k′′ ← 2
ε

And we change step 3(b) in the exact algorithm to:
For i = 1, . . . , n − m + 1 do O[i] ← O[i] + V [i]kε

2 .
If we consider some d = |ti+j−1 − pj |, let dk = |ti+j−1div kε

2 − pjdiv kε
2 |. This

method would not make any differrence for any of the elements in the sequence
with a sum of d except for the largest one. We can concentrate on three groups
of elements in the sequence: where d > 2k, k ≤ d ≤ 2k and d < k.

In the iterations where d > 2k, it is easily seen that dk > 4
ε and therefore

4
ε ×

kε
2 = 2k is added to O[i]. In the iteration where d < k , then dk < 2

ε and thus
nothing is added to O[i]. The only element that is affected from the modification
is where k ≤ d ≤ 2k, i.e. d − 2x+1. If k ≤ d ≤ 2k then 2

ε ≤ dk ≤ 4
ε . Therefore,

(dk − 2
ε )kε

2 = dk
kε
2 − k is added to O[i]. We use the following inequaliy to assure

that our error is bounded by kε
2 :

Lemma 1. For any integers x, y s.t. k ≤ |x − y| ≤ 2k:

|x − y|(1 − ε) ≤ |x div kε − y div kε|kε ≤ |x − y|(1 + ε)

The total error from both modifications is bounded by kε for k ≤ d ≤ 2k, and
therefore is within the tolerated distance of up to a factor of ε. Note that L1[i] is
defined as Σm

j=1|ti+j−1 − pj |, so if we err in each pair (ti+j−1, pj) up to a factor
of 1 + ε the total error is also bounded by this factor.

Proof (of lemma). If we divide the natural numbers into groups of c elements
i.e. g1 = (1, 2, . . . , c), g2 = (c + 1, c + 2, . . . , 2c), · · · (this is equivalent to the div
c operation) and the distance between each two elements is assumed to be the
distance in groups multiplied by c, then our error is bounded by the sum of the
distances of each of these two elements from the center of the group, which is
c
2 + c

2 = c. If c = kε we find that:

|x − y| − kε ≤ |x div kε − y div kε|kε ≤ |x − y| − kε

Given that k ≤ |x − y| ≤ 2k the inequality holds.
The fact that in each iteration we reduce our alphabet first by mod4k

ε and
then by div kε

2 leads to an alphabet size of O( 1
ε2 ). The time needed to run

the k − 2k procedure is O( 1
ε2 n log m). The total time for this algorithm is

O( 1
ε2 n log m log |Σ|).

5 String Matching with L∞ Distance

This problem differs from the problems of L1 and L2 Matching since the distance
function defined between strings is not the sum of distances between symbols, but
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rather is defined for all pairs of symbols. We first construct an O(n|Σ| log m) time
algorithm, and then construct an algorithm that approximates L∞ matching up
to a factor of 1 + ε and works within a run time of O(1

εn log m log |Σ|).

5.1 O(n|Σ| log(m + |Σ|)) Algorithm [ALPU05]

The method in this algorithm is to encode the text and the pattern in such a
way that we find the results in one convolution, and a linear time pass on the
convolution result.

Key idea: If we look at one text number, t, and one pattern number p. We
encode both of them into |Σ| long binary strings. The encoding of t is all 0’s
except the t-th bit which is 1, and similarly with p, which is encoded to all 0’s
except the p-th bit. Let c(i) denote the encoded i. Now, we begin by aligning c(p)
below c(t) and starting at position −|Σ| (where c(t) is fixed to start at position
1). We move c(p) to the right till both 1-bits are one below the other. At this
position, the distance between the starting position of c(t) and the starting
position of c(p) equals the difference |t − p|. An example depicting this process
is given in Figure 1. If we look at r = c(t) ⊗ c(p) we see either r[−|t − p|] = 1
or r[|t− p|] = 1. Extending this idea to encode strings of numbers requires us to
add leading (or tracing) zeros between the encoded numbers.

0 0 0 0 0 0 0 0 01t=8     c(t)
t-p=4

4 00000001000p=4  c(p)

0

000

1 0000000000

0
t-p=-3

3

p=11  c(p)

t=8     c(t)

1000000

Fig. 1. c(p) moved below c(t) till the 1-bits are aligned

In detail: first, define χ �=0(x) = 1 if x �= 0 and otherwise 0. Next, define
for every x ∈ Σ = {1, . . . , n}, ct(x) = ct(x)1, . . . , ct(x)2|Σ| where ct(x)i = 1 if
i = |Σ|+x and otherwise 0. Similarly define cp(x) = cp(x)1, . . . , cp(x)2|Σ| where
cp(x)i = 1 if i = x and otherwise 0.

Algorithm Steps

1. Construct ct(T ) = ct(t1) · · · ct(tn)
2. Construct cp(P ) = cp(p1) · · · cp(pm)
3. Compute R = ct(T ) ⊗ cp(P )
4. For i = 1, . . . , n − m + 1

O[i] ← max|Σ|
s=−|Σ| χ �=0(R[(2i − 1)|Σ| + 1 + s])|s|
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Claim: At the end of the algorithm O[i] = maxm
j=1 |ti+j−1 − pj |.

Time: The time needed to convolve 2 strings of size n|Σ| and m|Σ| is O(n|Σ|
log n). The computation of O[i] takes 2|Σ| steps , and i = 1, 2, . . . , n − m + 1,
thus this step takes O(n|Σ|). Both steps together take O(n|Σ| log n). We can
slightly improve the time to a total time of O(n|Σ| log(m + |Σ|)) by using the
technique of cutting the text into n/m overlapping segments, each with a length
of 2m.

5.2 L∞ Approximation Algorithm

Below we present an algorithm that approximates the L∞ Matching up to a
factor of 1 + ε.

Algorithm Steps:

1. Initialize array O[1, . . . , n − m + 1] to zeros.
2. For q = 1, 2, 4, . . . |Σ| do:

(a) Create t′ from t, where t′i = (ti div qε)mod4
ε .

(b) Create p′ from p, where p′i = (pi div qε)mod4
ε .

(c) Run L∞ exact algorithm with t′, p′ and attain a result vector
V [1, . . . , n − m + 1].

(d) For i = 1, . . . , n − m + 1 do O[i] ← V [i]qε if V [i] ≥ 1
ε or leave

unchanged otherwise.

Algorithm Correctness. For each O[i] , the maximal q where V [i] > 1
ε mean that

L∞(p, t[i, . . . , i + m− 1]) > q, but also that L∞(p, t[i, . . . , i + m− 1]) < 2q. Now
since we reduce our alphabet by divqε we receive the value computed with an
error of ±qε, which is acceptable since the exact value is between q and 2q.

Time. For each q it takes O(1
ε n log n). since we reduce the alphabet to be of

size 4
ε . We run it with q = 1, 2, 4, . . . , |Σ| , therefore O(1

ε n log n log |Σ|). If we
apply the technique of cutting the text into n/m overlapping segments, we get
the total time of O(1

ε n log m log |Σ|).

6 Open Problems and Conclusions

We have presented an O( 1
ε2 n log m log |Σ|) time 1 + ε approximation algorithm

for the L1 matching problem. L2 matching is related to convolution computa-
tion, therefore any improvement in the time for one of the problems, directly
means improvement for the other as well. The current best time for both L2
and convolution is O(n log m). The most interesting case is L∞. In this case we
have an Õ(n|Σ|) algorithm, which means its run time is worse than the naive
for large alphabets. The problem of solving the exact L∞ matching within a
better-than-naive time for large alphabets still remains open. We have presented
a 1 + ε approximation algorithm for this problem in O(1

ε n log m log |Σ|).
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For the String Matching with Weighted Mismatches problem we have provided
an O(n|Σ| log m)-time exact algorithm. Nonetheless, whether the exact solution
can be improved or a better approximation ratio can be shown with the Õ(n)-
time algorithm remains an open question.
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Abstract. Given an input string S and a target string T when S is a
permutation of T , the interchange rearrangement problem is to apply
on S a sequence of interchanges, such that S is transformed into T . The
interchange operation exchanges the position of the two elements on
which it is applied. The goal is to transform S into T at the minimum
cost possible, referred to as the distance between S and T . The distance
can be defined by several cost models that determine the cost of every
operation. There are two known models: The Unit-cost model and the
Length-cost model. In this paper, we suggest a natural cost model: The
Element-cost model. In this model, the cost of an operation is determined
by the elements that participate in it. Though this model has been
studied in other fields, it has never been considered in the context of
rearrangement problems. We consider both the special case where all
elements in S and T are distinct, referred to as a permutation string,
and the general case, referred to as a general string. An efficient optimal
algorithm for the permutation string case and efficient approximation
algorithms for the general string case, which is NP-hard, are presented.

Keywords: Interchange rearrangement, Cost models.

1 Introduction

The problem of defining the distance or similarity between two strings S and T
has been studied extensively over the years. There are many known and estab-
lished methods, such as the Edit distance and the Hamming distance [13]. The
Edit distance allows three operations (substitution, insertion or deletion) upon
the input string. There are several generalizations of the basic Edit distance
(also referred to as the Levenshtein distance), which defines a unit-cost for every
operation. One is the the operation-weight edit distance, which gives a unit-cost
for every type of operation. Another is the alphabet-weight edit-distance, which
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defines a cost for every operation depending on the elements participating in the
specific operation.

These string metrics deal with errors of data appearing in the text and give
a measure of either similarity or distance between an input string S to a target
string T . The order of the elements is assumed to be correct. However, address
errors may also be considered ([1,2,3,4]). In these types of errors, elements in S
may only be mispositioned. It is commonly assumed that the input string is a
permutation of the target string in order to have a finite distance. In a rearrange-
ment problem, it is assumed that only address errors have occurred. The goal is
to apply a sequence of legal operations on S, such that S is transformed into T
at the minimum cost possible, referred to as the distance between S and T .

The interchange rearrangement problem was studied by Cayley [10]. Cayley
solved this problem for permutation strings under the Unit-cost model and left
open the problem of general strings. Recently, Amir et al. solved Cayley’s open
problem by showing it is NP-hard and giving a 1.5-approximation algorithm.
In addition, they extended this problem by examining it under the Length-cost
model [4]. In this paper, we further extend this problem on both permutation
strings and general strings by examining it under the Element-cost model.

We begin with formal definitions of the interchange operator and the Element-
cost model.

Definition 1. Let S = s1, . . . , sn be a string. An interchange of elements si and
sj, i < j, transforms S into S′ = s1, . . . , si−1, sj , si+1, . . . , sj−1, si, sj+1, . . . , sn.

There are two known cost models in the context of rearrangement problems. In
the Unit-cost model (UCM) each operation is given a unit cost, so the problem is
to transform S into T with a minimum number of operations. In the Length-cost
model (LCM) [4,7], the cost of an operation depends on its length characteristic.
Other characteristics may be considered in the rearrangement problem. For ex-
ample, some elements may be heavier than other elements. In such cases, moving
light elements is preferable to moving heavy elements. This observation moti-
vated researchers to explore the Element-cost model (ECM). In [12], Gupta and
Kumar considered the problem of sorting and selection in the comparison model
for structured costs. In their work, it is assumed that every element has a weight
and that the cost of a comparison is defined by a function applied to the weight
of the elements that participate in the comparison. They gave approximations
for the optimal solution for families of structured functions such as summation,
multiplication, etc. Recently, [5] addressed the same problem of sorting and se-
lection for random costs. However, this paper is the first to consider the ECM
for dealing with rearrangement problems.

Definition 2. Let w : Σ → R+ be a weight function, which assigns a non-
negative weight to every element in Σ. Let g : Σ × Σ → R+ be a function
defining the interchange cost. The function g is called a general function if it
satisfies the following conditions:

1. ∀x, y ∈ Σ : g(x, y) = g(y, x).
2. ∀x, y, z ∈ Σ : w(y) ≤ w(z) ⇔ g(x, y) ≤ g(x, z).
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The summation function g(x, y) = w(x) + w(y) and the multiplication function
g(x, y) = w(x) · w(y) are two examples of intuitive general functions.

If all elements in S are distinct, a unique bijection f : S → {1, . . . , n} can
be defined such that f(si) equals the position of the element si in T . Thus S
can be represented by π = f(s1), f(s2), . . . , f(sn) and T by 1, . . . , n. For this
case the term permutation string is used. The input string is then assumed to
be π, i.e, a permutation of 1, . . . , n. Under this assumption the rearrangement
problem is simply a sorting problem, i.e. the distance is the minimum cost for
sorting π. Problems of sorting a permutation string have been studied exten-
sively [6,8,9,11,14,15]. For the general case in which S may have repetitions of
elements, the term general string is used.

Our main results are:

1. O(n) time algorithm for the interchange rearrangement problem for permu-
tation strings for any general function.

2. Two approximation algorithms for the general strings case, which is NP-
hard:
(a) O(n) time 3-approximation algorithm for any general function.
(b) O(n · lg |Σ|) time 1.72-approximation algorithm for the summation

function.

In addition, we give some minor results, which are presented in the full ver-
sion of the paper, considering the transposition rearrangement problem under
the ECM, UCM and the LCM for general strings and permutation strings.
A transposition of an element si, � positions forward transforms the string S
into the string S′ = s1, . . . , si−1, si+1, . . . , si+�, si, si+�+1, . . . , sn and a transpo-
sition of an element si, � positions backward transforms the string S into the
string S′ = s1, . . . , si−�−1, si, si−�, . . . , si−1, si+1, . . . , sn. Table 1 summarizes the
known and new results.

The paper is organized as follows. Section 2 gives additional preliminaries and
notations. Section 3 presents an algorithm for the interchange rearrangement
problem for permutation strings for any general function. Section 4 present an
approximation algorithm for the interchange rearrangement problem for general

Table 1. A Summary of Results

UCM ECM LCM
Interchanges

Permutation strings O(n) [10] O(n) (general functions) O(n) [4]
General Strings NP-hard [4] General function: O(n) [4]

O(n · lg |Σ|) O(n) 3-approximation
1.5-approximation [4] Summation function:

O(n · lg |Σ|) 1.72-approximation
Transpositions

Permutation strings O(n lg n) [14] O(n lg n) O(n lg n)
General Strings O(n2) O(n2) O(n lg n)
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strings for any general function and an improved approximation algorithm for
the summation function.

2 Preliminaries and Notations

Given an input string S and a target string T , we define a multi-graph GS,T =
(V, E) in the following way: V = {v ∈ Σ : v appears in S and T } and E =
{(ti, si), 1 ≤ i ≤ n}. In other words, every distinct character has a vertex and for
every index 1 ≤ i ≤ n there is an edge connecting the vertex representing ti with
the vertex of si, meaning that by the end of the rearrangement process, si will
be moved and replaced by a ti character. Since S and T have the same quantities
of each element of Σ, the number of incoming edges of every vertex equals the
number of its outgoing edges, which is the number of occurrences of the vertex’s
character in S (and hence in T ). Therefore, GS,T is an Eulerian directed graph
and by definition can be decomposed into edge-disjoint directed cycles. If S is a
permutation string, every vertex has exactly one incoming edge and one outgoing
edge and therefore, GS,T can be uniquely decomposed into edge-disjoint directed
cycles. This fact is not true for general strings. Furthermore, there might be
an exponential number of ways to decompose GS,T into edge-disjoint directed
cycles. However, once such a decomposition of GS,T is given, it uniquely defines
a labeling of the elements of S and T such that every element appears exactly
once. An edge-disjoint directed cycle in a given decomposition is also called a
permutation cycle. We use the following notations:

• d(π): The distance in the permutation string case (the minimum cost for
sorting π) and d(S, T ) in the general string case (the minimum cost for
transforming S into T ).

• e ↔ f : Denotes the operation of interchanging elements e and f . Note that if
e and f appear in the same cycle, interchanging them splits their cycle into
two cycles. If e and f appear in different cycles, interchanging them unites
their cycles into one cycle.

• Smin: Denotes the minimum cost element in S. If the input string is a per-
mutation string we substitute this notation with πmin.

• S̃: Denotes the multi-set of elements that are not in place. For example, if
T = abcab and S = bbaca then S̃ = {a, a, b, c}.

The following notations apply directly to a permutation string. However, given a
decomposition of GS,T into edge-disjoint directed cycles in the case of a general
string, these notations may be also applied. We use the notation Gπ instead of
GS,T for the case of a permutation string:

• For a cycle C:
◦ |C|: Denotes the number of elements in C (the size of C). We use the

term �-cycle for a cycle of size �.
◦ Cmin: Denotes the minimum cost element in C.

• c(π): Denotes the number of cycles in Gπ.



228 O. Kapah et al.

3 Sorting a Permutation String

In this section we present an algorithm for the interchange rearrangement prob-
lem when the input string is a permutation string for any general function under
the ECM. This problem is defined as follows:

Definition 3. Let π be a permutation string and let g : Σ×Σ → R+ be a general
function. Compute the minimum cost for sorting π by interchanges when g(x, y)
is the cost of interchanging elements x and y.

Cayley [10] studied this problem under the UCM. He showed that given a per-
mutation π of 1, . . . , n, the minimum number of interchanges needed for sorting
π, is n− c(π). This is achieved by interchanging only elements that share a cycle
until there are no such elements (the permutation is sorted). When the ECM is
used, one might also be inclined to apply a minimum number of interchanges.
This inclination implies that one would be making interchanges only within cy-
cles. Any interchange between elements of different cycles would result in an
increase in the number of interchanges needed for sorting π and probably in the
total cost for sorting π. However, this inclination is incorrect. Moreover, there
might be cases in which the optimal solution would be to increase the number
of interchanges needed for sorting π in order to decrease the total cost. We will
describe an algorithm for sorting a permutation string by interchanges under
ECM, and then prove that it yields the optimal cost, i.e., the distance d(π).

3.1 The O(n) Time Algorithm

The basic idea of the CEAps algorithm (Fig. 2) is quite simple. In order to sort
the permutation π at the minimum cost, either the cheapest element in some
cycle is used to sort all the other elements including itself, or (if the cheapest
element in the cycle is not cheap enough) the cost for introducing into the cycle
the cheapest element in π is ”paid” by interchanging it with the cheapest element
of the cycle. Doing so unites the cycle with the cycle of the minimum cost element
of π. Then the cheapest element of π can be used to sort all the other elements
in the cycle. We call this algorithm ”The Cheapest Employee Algorithm” (CEA).

Definition 4. Let C be a cycle in Gπ, define:

• αin(C) =
∑

x∈C\{Cmin} g(Cmin, x) =
∑

x∈C g(Cmin, x) − g(Cmin, Cmin)

This represents the case in which a cycle C is sorted within itself, i.e. by using
only interchanges of elements within C. This is done by repeatedly interchanging
Cmin with the other elements in C as shown in Fig. 1(a) until all C’s elements
including Cmin are sorted.

• αout(C) =
∑

x∈C g(πmin, x) + g(πmin, Cmin)

This represents the case in which in order to sort the elements of C, πmin is
introduced into C by interchanging Cmin with πmin. The result of this interchange
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Fig. 1. In (a) the sorting is done within the cycle using its minimum cost element,
Cmin. In (b) the sorting is done by introducing the cycle to the minimum cost element,
πmin. Note that after the interchange Cmin ↔ πmin the elements of C form a connected
path in the new cycle (the black vertices path) and πmin is positioned at the tail of
this path (white vertex).

is that the elements of C in the new united cycle form a connected path and
πmin is positioned at the tail of this path. Then πmin is interchanged with all the
elements of C in order to sort them in the same manner described for αin(C)
(see Fig. 1(b)).

• α(C) = min{αin(C), αout(C)}
The minimum cost method for sorting C.

Step 1 of the CEAps algorithm (Fig. 2) computes the permutation cycles of
π. This is done by a left to right traversal of π. In addition, the minimum cost
element for every cycle and for the whole permutation string is computed. Then,
in steps 3 − 13, each cycle is tested separately for the cheapest sorting method
and this method is applied.

3.2 Correctness of the Algorithm

In this subsection we show that the CEAps algorithm is optimal, i.e., returns
the distance d(π). The cost returned by the CEAps algorithm defines an upper
bound for the distance, which is:

d(π) ≤
∑

1≤i≤c(π)

α(Ci)

We now show that it matches the lower bound.

Lemma 1. Let π be a permutation string and let C1, . . . , Cc(π) be the cycles of
Gπ, then:

d(π) ≥
∑

1≤i≤c(π)

α(Ci)
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CEAps algorithm

Data : A permutation string π, a general function g : Σ × Σ → R+

Result : Sorts π and returns the cost
begin

1. Compute C1, . . . , Cc(π) and πmin,,C1min , . . . , Cc(π)min

2. cost← 0
3. For 1 ≤ i ≤ c(π) do
4. Compute αin(Ci) and αout(Ci)
5. If αin(Ci) ≤ αout(Ci)
6. While ∃e ∈ Ci with an edge (e, Cimin) and |Ci| �= 1 do
7. Cimin ↔ e
8. cost ← cost+αin(Ci)
9. Else

10. Cimin ↔ πmin

11. While ∃e ∈ Ci with an edge (e, πmin) do
12. πmin ↔ e
13. cost← cost+αout(Ci)
14. return cost

end

Fig. 2. Algorithm for sorting a permutation string by interchanges under ECM

π
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e f

e

f

π
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e
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e f

)(a )(b

Fig. 3. In case 1 - (a), e, f ∈ C1 and after the interchange e ↔ f : e ∈ A and f ∈ B. In
case 2 - (b), e ∈ C1 and f ∈ C2 and after the interchange e ↔ f : e, f ∈ A.

Proof. By induction on the number of interchanges performed by the optimal
solution. The case in which the optimal solution performs 0 operations is trivial
(a sorted permutation). Assume that the lemma applies for a permutation that
can be optimally sorted in k − 1 interchanges. We prove that the lemma also
applies for a permutation that can be optimally sorted in k interchanges. Let π
be a permutation of 1, . . . , n with cycles C1, . . . , Cc(π), which can be optimally
sorted in k interchanges. Suppose that the first interchange of this solution is
e ↔ f . Then the resulting permutation after performing this interchange is
a permutation π′, which can be optimally sorted in k − 1 operations. Thus π′

satisfies the induction hypothesis. The cost for sorting π is: d(π) = d(π′)+g(e, f).
There are two cases to consider:
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Case 1: e and f in π belong to the same cycle. Assume w.l.o.g. that
e, f ∈ C1 and after performing the interchange, e ∈ A and f ∈ B (see Fig. 3
(a)). The distance is:

d(π) = d(π′) + g(e, f) ≥ α(A) + α(B) +
∑

2≤i≤c(π)

α(Ci) + g(e, f)

This case implies four subcases depending on the values of α(A) and α(B).

Case 2: e and f in π belong to different cycles. Assume w.l.o.g. that e ∈ C1
and f ∈ C2 and after performing the interchange e, f ∈ A (see Fig. 3 (b)). The
distance is:

d(π) = d(π′) + g(e, f) ≥ α(A) +
∑

3≤i≤c(π)

α(Ci) + g(e, f)

This case implies two additional subcases depending on the value of α(A).
The proof of these subcases is omitted and is fully detailed in the full version

of the paper. ��

Theorem 1 immediately follows from the upper bound of the algorithm and
Lemma 1.

Theorem 1. Let π be a permutation string and let C1, . . . , Cc(π) be the cycles
of Gπ. Then the minimum cost for sorting π by interchanges under ECM for
any general function is d(π) =

∑
1≤i≤c(π) α(Ci).

Complexity: By Theorem 1, the CEAps algorithm computes the distance d(π).
Since computing the permutation cycles can be done in linear time by a left to
right traversal and since testing all the cycles is done in linear time, the CEAps

algorithm runs in linear time in the size of Gπ and thus linear in n.

4 Rearranging General Strings

In the previous section we showed a linear time algorithm that computes the
distance in the interchange rearrangement problem when the input string is a
permutation string and for every general function. In this section we consider
the following problem:

Definition 5. Let S be the input string and T be the target string, when S is
a permutation of T and let g : Σ × Σ → R+ be a general function. Compute
the minimum cost for transforming S into T by interchanges when the cost of
interchanging elements x and y is given by g(x, y).

The interchange rearrangement problem under the UCM for general strings is
NP-hard [4]. Hence, as the UCM is a special case of ECM where all elements
have equal weights, Corollary 1 follows:

Corollary 1. The interchange rearrangement problem under ECM for general
strings is NP-hard.
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In the following subsections we present an O(n) time, 3-approximation algorithm
for any general function. In addition, we present an O(n · lg |Σ|) time 1.72-
approximation algorithm for the summation function.

4.1 O(n) Time 3-Approximation Algorithm for General Functions

The hardness of this problem is due to the difficulty of pairing each element in S
with an identical element in T (converting the problem into a permutation string
problem) in a way that gives the minimum distance. As explained in Section 2,
pairing elements from S with elements in T is equivalent to performing an edge-
disjoint decomposition of GS,T into directed cycles. Since S is a permutation
of T , GS,T is an Eulerian directed graph and such a decomposition exists. The
CEAgs algorithm (Fig. 4) arbitrarily decomposes GS,T into cycles and then
applies the CEAps algorithm (Fig. 2). We prove the following theorem:

Theorem 2. The CEAgs algorithm gives a 3-approximation ratio for any gen-
eral function.

Proof. We first observe that any solution for the problem implies a decompo-
sition of GS,T into edge-disjoint directed cycles. This is true because any solu-
tion implies a pairing of identical elements of S and T , which is equivalent to
performing such a decomposition. Assume that the optimal solution implies a
decomposition of GS,T into cycles C1, . . . , Ck. Then by Theorem 1:

d(S, T ) =
∑k

i=1 α(Ci)
=
∑k

i=1 min{
∑

x∈Ci
g(Cimin , x) − g(Cimin , Cimin) ,∑

x∈Ci
g(Smin, x) + g(Cimin , Smin) }

Since w(Smin) ≤ w(Cimin ) then by decreasing the weight of Cimin , ∀1 ≤ i ≤ k
to w(Smin) the total cost may only decrease:

CEAgs algorithm

Data : Input string S, target string T , a general function g : Σ × Σ → R+

Result : Transform S into T
begin

1. Compute GS,T .
2. Compute a decomposition D of GS,T as follows:
3. D ← ∅.
4. Add to D all the 1-cycles of GS,T and remove their edges.
5. Add to D an arbitrary decomposition of the remaining edges.
6. Apply the CEAps algorithm on D.

end

Fig. 4. 3-approximation algorithm for the interchange rearrangement problem under
ECM for general strings for a general function g
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d(S, T ) ≥
∑k

i=1(
∑

x∈Ci
g(Smin, x) − g(Smin, Cimin))

Define Z =
∑

x∈S̃ g(Smin, x) =
∑k

i=1
∑

x∈Ci
g(Smin, x). The expression∑k

i=1 g(Smin, Cimin) is bounded by the case when all cycles are 2-cycles. Since
for every 2-cycle, C, with elements x and Cmin: g(Smin, Cmin) ≤ 1

2 (g(Smin, x)+
g(Smin, Cmin)), it follows that

∑k
i=1 g(Smin, Cimin) ≤ 1

2Z. Therefore, a lower
bound for the distance of the optimal solution is:

d(S, T ) ≥ Z − 1
2Z = 1

2Z

We now show an upper bound on the distance computed by the CEAgs algo-
rithm, denoted by dalg. Consider a modified version of the CEAgs algorithm that
sorts each cycle in the decomposition D with the αout sorting method. Since the
CEAps applied in step 6 of the CEAgs is optimal, the distance computed by the
CEAgs algorithm may only be lower than the distance computed by the modi-
fied version. Let C1, . . . , Cl be the cycles arbitrarily decomposed by the CEAgs

algorithm. We therefore have:

dalg ≤
∑l

i=1(
∑

x∈Ci
g(Smin, x) + g(Smin, Cimin))

≤ Z + 1
2Z = 1 1

2Z

The ratio between dalg and d(S, T ) is: dalg

d(S,T ) ≤ 1 1
2 Z
1
2 Z

= 3. ��

Complexity: Since a GS,T computation and an arbitrary decomposition of GS,T

can be computed in linear time and since the CEAps algorithm is a linear time
algorithm, the CEAgs algorithm runs in linear time.

4.2 O(n · lg |Σ|) Time 1.72-Approximation Algorithm for the
Summation Function

In this subsection we consider the special case of the summation function, i.e,
g(x, y) = w(x)+w(y). The αin(C), αout(C) for a given cycle are therefore defined
as follows:

• αin(C) =
∑

x∈C\{Cmin} g(Cmin, x) =
∑

x∈C w(x) + (|C| − 2) · w(Cmin)
• αout(C) =

∑
x∈C g(Smin, x) + g(Smin, Cmin) =

∑
x∈C w(x) + (|C| + 1) ·

w(Smin) + w(Cmin)

We show that applying the CEAps algorithm on the decomposition presented
by [4] gives a 1.72-approximation ratio. The decomposition presented by [4] is
basically the same as the decomposition of the CAEgs except that it contains
a maximum number of 2-cycles. This difference is represented by step 5 of the
CAE+

gs (Fig. 5). We use the following lemma:

Lemma 2. [4] Given an Eulerian directed graph G = (V, E), then for every
2-cycle, C, in G there exists a decomposition of E into a maximum number of
edge-disjoint directed cycles, in which C appears as a cycle in the decomposition.
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CEA+
gs algorithm

Data : Input string S, target string T
Result : Transform S into T
begin

1. Compute GS,T .
2. Compute a decomposition D of GS,T as follows:
3. D ← ∅.
4. Add to D all the 1-cycles of GS,T and remove their edges.
5. Add to D a maximum number of 2-cycles from GS,T

and remove their edges.
6. Add to D an arbitrary decomposition of the remaining edges.
7. Apply the CEAps algorithm on D.

end

Fig. 5. 1.72-Approximation algorithm for the interchange rearrangement problem un-
der ECM for general strings for the summation function

By Lemma 2 there exists a decomposition of GS,T into a maximum number of
edge-disjoint directed cycles that contains a maximum number of 2-cycles. This
can be shown inductively by repeatedly finding a 2-cycle and removing it from
GS,T until there are no more 2-cycles. By lemma 2 in every stage, there exists
a decomposition into a maximum number of edge-disjoint directed cycles that
contains the chosen 2-cycle. Removing it results in a new graph G′, which is also
an Eulerian directed graph. Therefore, the same can be applied for G′. We prove
the following theorem (the proof is omitted and given in the full version of the
paper):

Theorem 3. The CEA+
gs algorithm gives a 1.72-approximation ratio.

Complexity: The CEA+
gs algorithm differs from the CEAgs algorithm only in

step 5 of CEA+
gs. Since finding a maximum number of 2-cycles in GS,T can be

done in O(n · lg(|Σ|)) time, the CEA+
gs algorithm runs in O(n · lg(|Σ|)) time.
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Abstract. This paper defines a new pattern matching problem by com-
bining two paradigms: δγ–matching and parameterized matching. The
solution is essentially obtained by a combination of bitparallel techniques
and a reduction to a graph matching problem. The time complexity of
the algorithm is O(nm), assuming text size n, pattern size m and a con-
stant size alphabet.

Keywords: combinatorial algorithms, δ–matching, δγ–matching, pa-
rameterized matching, bipartite matching.

1 Introduction

String searching is inarguably one of the foremost and most basic and useful
computational primitives [6]. More formally, the input to the string matching
problem consist of two strings: the pattern P1..m and the text T1..n. The output
should list all occurrences of the pattern string in the text string. The symbols
in the strings are chosen from some set which is called an alphabet. An alphabet
could be any collection of symbols and it is normally drawn from a set of pre-
existing characters which is habitually designated as the common ASCII1 code
set. Nonetheless, in many real computing situations instead, the alphabet is
drawn from a set of integer values. These integer strings are normally found in
cipher text, financial data [44], meteorology data, image data, and music data
[16, 23], to name some. If we were to seek for patterns in those strings of numbers,
it would prove unrealistic and ineffective to seek for exactly the same values, but
rather ought to search for a close instance of this pattern.

Delta-Gamma Matching. δ–matching algorithms are very effective in searching
for all similar but not necessarily identical occurrences of a given pattern. In
the δ–matching problem two integer strings of the same length match if the
corresponding integers differ by at most a fixed bound δ. We also consider δγ–
matching, where γ is a bound on the total sum of differences. Many kinds
1 American Standard Code for Information Interchange.

A. Amir, A. Turpin, and A. Moffat (Eds.): SPIRE 2008, LNCS 5280, pp. 236–248, 2008.
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of algorithms have been put forward to resolve this problem (see for instance
[15, 19, 24, 25, 26]). According to our research, Cambouropoulos et.al. [15] was
perhaps the first to propose an algorithm in this context, possibly motivated by
Crawford et.al. [22] where some open problems were posed for applications that
arise in bioinformatics, computer vision, but mainly, music information retrieval.
Recently, several variants to this problem have been developed in order to allow
for don’t care symbols [21, 46], transposition-invariant [39] and gaps [17, 18, 28],
among others. On the other hand, δ– and δγ–matching are closely related but
not identical to the most common distance metrics L1 and L∞ also referred to as
the Manhattan and Chevyshev Distances, respectively. For recent work in this
direction, see e.g. [2, 4, 40, 41, 42, 43, 47].

Parameterized Matching. In this variant, two equal length strings (but not nec-
essarily integer strings) parameterized-match if there exist a bijective function
π from the alphabet for which every text symbol in one string is equal to the
image under π of the corresponding symbol in the other string. In 1993, Brenda
Baker [10] was the first researcher to have addressed this problem, and many
others [3, 8, 11, 12, 13, 20, 29, 31, 36, 45, 48] since have followed Baker’s work.
She did, indeed, open up a wide-field of extensive research. Over the years, other
lines of research that have been pursued are: parameterized matching under edit
distance [14], parameterized matching under Hamming distance [7, 30], param-
eterized matching under LCS distance [34], multiple parameterized matching
[33], 2-dimensional parameterized matching [1] and function matching [1, 5].
This accelerated research could only be justified by the usefulness of its practi-
cal applications such as in software maintenance [10], plagiarism detection [13],
image processing [9, 49] and computational biology [1], to name some.

Our contribution. In this paper, we show that one can extend Baker’s theory
of parameterized string matching [10] to algorithms that support the δ– and
δγ–distance. For a given pattern P1..m and a text T1..n, we provide an algorithm
for the δ–Approximate Parameterized Matching problem that takes time O(nm),
based on a bitparallel technique known as the Shift-And algorithm [15] and a
reduction to the Maximum–Size Bipartite Matching (MSBM) problem. For the
MSPM problem, the classic solution is an O(

√
|V ||E|) algorithm by Hopcroft

and Karp [32]. However we use an improved algorithm by Feder and Motwani
[27] that runs in O((

√
|V ||E|)/k(|V |, |E|)), where k(x, y) = log(x)/(log(x2/y).

We furthermore give an O(nm)–time algorithm for the δγ–Approximate Pa-
rameterized Matching problem based on the Shift-Plus bitparallel algorithm
[15] and a reduction to the Maximum–Weight Bipartite Matching (MWBM)
problem. The classic solution for the MWBM problem is the O(|V |3)-time al-
gorithm by Kuhn [37] (a.k.a. the Hungarian Algorithm). Nevertheless, we use a
recent result by Kao et.al. [35] that runs in O((

√
|V |W )/k(|V |, W

N )), where N
is the largest weight of any edge and W is the total weight of the graph. There-
fore, there are two main contributions in this paper: (1) A formalization of the
δ– and δγ-approximate parameterized matching problems and (2) simple but
cost-effective solutions to both of these problems. All time complexities above
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assume constant alphabet size (cf. Section 3.1, 4.1 for asymptotically tighter
bounds).

The outline of the paper is as follows: Some preliminaries are described in
§2. An algorithm for the δ–approximate parameterized matching problem is pre-
sented in §3. We follow this in §4 by an algorithm for the δγ–approximate pa-
rameterized matching problem. Conclusions and further remarks are drawn in
the last section.

2 Preliminaries

A string is a sequence of zero or more symbols from an alphabet Σ; the string
with zero symbols is denoted by ε. (Recall that in the original definition of [10]
for parameterized matching, the alphabet is supposed to be divided in constants
and parameters. However, for our purposes, it is more convenient to consider the
alphabet as being composed of parameters only. The extension to the general
case is straightforward). The set of all strings over the alphabet Σ is denoted
by Σ∗. Throughout the paper, the alphabet Σ is assumed to be an interval of
integers and considered to be Σ = {1, 2, ..., σ}, σ = |Σ|. A text T = T1..n is a
string of length n defined on Σ. Ti is used to denote the i-th element of T , Ti..j

is used as a notation for the substring TiTi+1 · · ·Tj of T , where i, j ∈ {1..n}.
Similarly, a pattern P = P1..m is a string of length m defined on Σ. For easy
notation, we use T i to denote the substring of T of length m starting at position
i, thus T i = Ti..i+m−1.

For the string comparison problem, let m denote the (equal) length of two
strings X and Y in Σ. Let δ, γ be two given numbers (δ, γ ∈ N). Then, X and
Y are said to be δ–matched (denoted as X δ= Y ), iff maxm

j=1 |Xj − Yj | ≤ δ.
Additionally, X and Y are said to be δγ–matched (denoted as X δγ= Y ), iff∑m

j=1 |Xj − Yj | ≤ γ and X δ= Y . For the same strings X and Y , we say that
X δ–parameterized-matches Y (denoted as X δ

� Y ) if there exist a bijective
function π : Σ → Σ such that maxm

j=1 |Xj − π(Yj)| ≤ δ, for some permutation
π of Σ. We also say that there is a δγ–parameterized-match between X and Y
(denoted as X δγ� Y ) if there exist a bijective function π : Σ → Σ such that∑m

j=1 |Xj − π(Yj)| ≤ γ and X δ
� Y . To give an example, let us assume that

δ = 1, Σ={1,2,3,4,5}, X={2,2,1,3,4,3,4,5,2,2}, and Y ={3,5,3,4,1,2,1,2,5,4} (cf.
Fig. 1). Then, X δ

� Y iff there exist a bijective function π : Σ → Σ such that
max10

j=1 |Xj−π(Yj)| ≤ 1. Note that each possible ordering/permutation of the set
Σ corresponds to a specific bijection π, and there are σ! different permutations
for a σ-set. Hence, naively, one could compute all possible permutations of Σ to
see whether there exist a permutation satisfying max10

j=1 |Xj − π(Yj)| ≤ 1. For
our running example, Fig. 1(d) lists all 120 possible permutations of given Σ.
Only three of them (shown bold-underlined) make X δ

� Y . Fig. 1(a,b,c) present
the corresponding matching for each of them. Thus, one can safely conclude that
X δ
� Y . If your aim is also to check if X δγ� Y for, let us say, same δ and γ = 6,

then only permutation (5, 4, 1, 3, 2) (cf. Fig. 1(d)) will make X δγ� Y .
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Fig. 1. δ– and δγ–parameterized matching example for Σ={1,2,3,4,5}, δ = 1, γ = 6,
X={2,2,1,3,4,3,4,5,2,2}, and Y ={3,5,3,4,1,2,1,2,5,4}, (a) permutation (5,4,1,2,3): δ–
equal but not δγ–equal, (b) permutation (5,4,2,3,1): δ–equal but not δγ–equal, (c)
permutation (5,4,1,3,2): both δ–equal and δγ–equal, (d) All 120 possible permutations
of Σ. Best permutations yielding a δ–parameterized match are shown bold-underlined.

The main problems studied in this paper are for the string pattern matching
problem, we formally defined the problems of δ– and δγ–approximate parame-
terized matching as follows:

Definition 1 (δ–approximate parameterized matching problem). For a
given text T , pattern P and integer δ, the δ–Approximate Parameterized
Matching Problem (DAPM) is to calculate the set of all indices i ∈ {1..n −
m+1} satisfying the condition P δ

� T i. Note that the best permutation π yielding
P δ= π(T i) is not necessarily the same at every position.

Definition 2 (δγ–approximate parameterized matching problem). For
a given text T , pattern P and integers δ and γ, the δγ–approximate param-
eterized matching problem (DGAPM) is to calculate the set of all indices
i ∈ {1..n−m+1} satisfying the condition P δγ� T i. Note that the best permutation
π yielding P δγ= π(T i) is not necessarily the same at every position.

In the sequel we also make use of the following graph-theoretic notions: An
undirected graph G(V, E) is bipartite if we can partition V into two sets L and
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R such that all edges are incident to one vertex in L and one vertex in R. We
henceforth sometimes write G as G(L, E, R). A matching M ⊆ E is a set of edges
such that every vertex is incident to at most one edge in M . In other words, if the
degree of every vertex in the subgraph (V, M) is at most 1. A perfect matching
is a matching such that saturates all the vertices. Thus, matching M is a perfect
matching iff |L| = |R| = |M |. M is a maximal matching if we cannot greedily
increase the size of M , i.e. ∀e ∈ E, M ∪ e is not a matching. M is a maximum
matching if there are no possible matchings of greater size. In this paper, we are
interested in matching in bipartite graphs with same-sized partitions (|L| = |R|).
Unless otherwise stated, we will use the term bipartite graph to represent this
kind of bipartite graph. The following definitions will be central to the techniques
used in this paper.

Definition 3 (maximum–size bipartite matching problem). For an undi-
rected bipartite graph G(L, E, R), the maximum–size bipartite matching
problem2 (MSBM) is to find a matching M ⊆ E with the property of |M ′| ≤
|M | for any other matching M ′ of G.

Definition 4 (maximum–weight bipartite matching problem). For an
undirected bipartite graph G(L, E, R) with positive integer weights on the edges,
the maximum–weight bipartite matching problem3 (MWBM) is to find a
set M ⊆ E for which the sum of the weights of the edges is maximum. More
formally, if each edge ei ∈ E is associated with a weight wi. A maximum–weight
bipartite matching is defined as a perfect matching for which the sum of the
weights wi associated with the edges in the matching has a maximal value, i.e.
the perfect matching M that maximizes

∑
i wi|ei ∈ M .

The following theorems are standard and crucial to our algorithms. They hold
for both definitions of bipartite matching above.

Theorem 1 (Complexity of the MSBM problem). For an undirected bi-
partite graph G(L, E, R), the MSBM problem can be solved accurately and effi-

ciently in O(
√

|V ||E|
k(|V |,|E|)), where k(x, y) = log(x)

log( x2
y )

, by applying the Feder-Motwani

algorithm [27].

Theorem 2 (Complexity of the MWBM problem). For an undirected
bipartite graph G(L, E, R) with positive integer weights on the edges. Let N be
the largest weight of any edge. Let W be the total weight of G. Then, the MWBM

problem can be solved accurately and efficiently in O(
√

|V |W
k(|V |, W

N ) ), where k(x, y) =
log(x)

log( x2
y )

, via the Kao et.al. algorithm [35].

For the bit-parallel operations we adopt the following notation. A machine word
has w bits, numbered from the least significant bit to the most significant bit.
We use C-like notation for the bitwise operations; & is bitwise AND, and | is
bitwise OR.
2 a.k.a. Maximum Cardinality Bipartite Matching Problem.
3 a.k.a. Assignment Problem.
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3 δ – Approximate Parameterized Matching

We begin by limiting our attention to the special case of string comparison, thus,
when the two strings to be compared have the same length. Then we will extend
this solution to the general case where the two strings are unequal in length,
i.e. the string pattern matching case. In this case, the two strings are called: the
pattern (shorter) string and the text string.

The core idea of our algorithm consists of three basic steps; they are as follows:

Step 1. [Preprocessing Step] Compute bitvector D: ∀α ∈ Σ, we set D[α] = r,
where r = rσ ..r2r1 is a σ-length binary number with r� = (α δ= � ? 1 : 0),
∀� ∈ {1..σ}. The preprocessing step is carried out only once for the entire
alphabet.

Step 2. [Filter Step] Once the D bitvector is computed, we compute bitvector
E and F as follows: ∀j ∈ {1..m}, we set E [j] = D[Xj ], and ∀α ∈ Σ, F [α]
is set as the bitwise AND operation among all E [j] with Yj = α.

Step 3. [Matching Step] Construct a balanced bipartite graph Gδ = (L, E, R)
with bipartition (L, R) as follows: L = R = Σ. There is an edge (u, v) ∈
E with weight 1 iff F [u]v = 1, u, v ∈ Σ. Then, we run a MSBM algorithm
over Gδ to find a maximum-size matching M ⊆ E. We conclude that
X δ
� Y iff |M | = σ (i.e., M is a perfect matching).

Step 1–2 identify candidate symbols for a successful renaming function from
Y to X . Let us say that x and y are two corresponding symbols taken, resp., from
X and Y , and that y appears once more in Y but with corresponding symbol
x′ �= x. Then, the permitted renamings (to make x δ= y and x′ δ= y) for y are
clearly {x−δ .. x+δ}∩{x′−δ .. x′+δ}. For example, if σ = 10, δ = 2, x = 4, x′ = 6
and y = �4, then π(�) ∈ {2, 3, 4, 5, 6} ∩ {4, 5, 6, 7, 8} = {4, 5, 6}. Hence, in order
to solve the problem correctly, we need to find the permitted renamings for each
symbol in Y . Note that E [j] = D[Xj ] allows us to know (independently) which
are the permitted renamings for each Yj using a bit number5. Since all sets
are stored as binary words, the set-intersection operation can be perform as an
O(1)-time bitwise AND operation. For our example, 0000111110 & 0011111000
= 0000111000. That is why, table F [α] stores the intersection of all possible
renamings of symbol α in Y . Therefore, F [α]� = 1, iff � is a valid renaming of
α in Y such that if we rename all occurrences of α for �, all these renamings
will δ-math with their corresponding symbol in X . Since each α ∈ Σ in Y can
have more than one renaming we can easily reduce this problem to a bipartite
matching problem [7]. Having built the required bipartite graph Gδ as outlined
in Step 3, it immediately follows that X δ

� Y iff there exist a perfect matching
in Gδ.

Example 1. Let us assume Σ = {1, 2, 3, 4, 5} and that we want to know whether
X={2,2,1,3,4,3,4,5,2,2} is δ–parameterized equal to Y ={3,5,3,4,1,2,1,2,5,4}, for

4 The symbol ‘�’ denotes any symbol in the alphabet.
5 This underlying idea is similar, but not identical, to that in [15].
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Fig. 2. (a) D bitvector, (b) E bitvector, and (c) F bitvector, if we arbitrarily choose to
set Σ = {1, 2, 3, 4, 5}, δ = 1, X={2,2,1,3,4,3,4,5,2,2} and Y ={3,5,3,4,1,2,1,2,5,4}. (d)
Corresponding Gδ bipartite graph. (f) A perfect matching in Gδ . (e) An illustrative
example of how one can use bitvector E to get bitvector F . The numbers in parenthesis
are the bit numbers represented as decimal numbers.

Algorithm 1. DAPM algorithm
Input: P, T, δ, Σ � σ=|Σ|,m=|P |,n=|T |,Gδ(L,E,R),L=R=Σ

Output: {i ∈ {1..n − m + 1} : T i
δ
� P}

1. D[α]� ←
{

1, if α δ= 	
0, otherwise , ∀α, � ∈ Σ

2. for i ← 1 to n − m + 1 do
3. F [α] ← (2σ − 1), ∀α ∈ Σ
4. for j ← 1 to m do F [T i

j ] ← F [T i
j ] & D[Pj ]

5. E ← ∅
6. Gδ.add edge(u, v) iff F [u]v = 1, ∀u, v ∈ Σ
7. M ←MSBM(Gδ)
8. if |M | ≤ δ then Output(i)

Fig. 3. DAPM Algorithm

δ = 1. We first compute bitvector D (see Fig. 2(a)), E (see Fig. 2(b)) and F
(see Fig. 2(c)). Note, for instance, that E [3] = D[X3] = D[1] = 00011. Also
notice how F [2] = E [6] & E [8] = 01000, because Y6 = Y8 = 2 (see Fig. 2(e)
for an illustrative example of how to get bitvector E out from F). Fig. 2(d)
graphically depicts the bipartite graph generated by the algorithm in Step 3.
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Fig. 2(f) shows a perfect matching solution of Gδ. Therefore, we conclude that
X δ
� Y because Y can be renamed to Y ′={1,3,1,2,5,4,5,4,3,2} using renaming

function π : (1, 2, 3, 4, 5) → (5, 4, 1, 2, 3) (cf. Fig. 2(e)) that makes X δ= Y ′.

In order to generalize this algorithm for δ–approximate parameterized matching
we need to use these simple algorithmical ideas, O(n) times, to check whether
P δ
� T i, i ∈ {1..n − m + 1}. Fig. 3 shows the main steps of the algorithm and

Section 3.1 analyzes its time complexity.

3.1 Time Complexity Analysis

In Line 1, bitvector D can be computed in O(σ� σ
w�) time/space, where w is

the computer size word. This time complexity can be achieve, for instance, by
creating a binary word z = 22δ+1 − 1 with 2δ + 1 one-bits, and then shifting
z accordingly to the left using a O(� σ

w�)-time bitwise Shift-Left operation. The
body of the loop of line 2 is executed O(n) times and corresponds to lines 3 to 8.
Line 3 initializes the bitvector F in O(σ� σ

w�) time/space. Line 4 takes O(mσ� σ
w �)

time. Note that Algorithm 1 dispenses with the use of bitvector E . Bitvector E
was used above to partially explain (for a better understanding) the computation
of bitvector F . Line 5 takes constant time. Note that each binary number in F
is comprised of bitwise-AND operations on binary numbers with at most 2δ + 1
one-bits, so the total number of bits set to 1 in F is O(σδ), hence line 6 can be
implemented in O(σδ) time (proportional to the number of bits set to 1 in F).
This is possible since log2(b) determines the location of the most significant bit
in a binary word b, then, in constant time, we can remove that bit and proceed
to find the next significant bit on b and so on so forth until b becomes zero,
thus, it is possible to extract all 1’s from b in time proportional to the number
of bits set to 1 in b. In line 7, the time complexity to find the maximum–size
bipartite matching on Gδ using Theorem 1, |V | = O(σ) and |E| = O(δσ) is
O(

√
σσδ

k(σ,σδ) ) = O( σ1.5δ
k(σ,σδ) ), where k(x, y) = log(x)/ log(x2

y ). Therefore, the total
time complexity of Algorithm DAPM is

O

(
σ� σ

w� + n
(
σ� σ

w � + mσ� σ
w � + σδ + σ1.5δ

k(σ,σδ)

))
,

which is O(nm) if we assume a constant alphabet. The overall space complexity
is bounded by O(σ� σ

w�) + σ + σδ).

4 δγ – Approximate Parameterized Matching

This algorithm follows the same main steps as the previous algorithm in Section
3. The basic steps are as follows:

Step 1. [Preprocessing Step] We need to compute the D bitvector as we did
before, and the G bitvector: ∀α ∈ Σ, we set G[α] = s, where s = sσ..s2s1,
s� = |α−�| if α δ= �, otherwise, s� = 0, ∀� ∈ Σ. Each s� is in turn a binary
number of d bits, d = �log(δm)�. The preprocessing step is carried out
only once for the entire alphabet.
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Step 2. [Filter Step] Once the G bitvector is computed, we can use it to com-
pute a second bitvector H. ∀α ∈ {1..σ}, we set H[α] =

∑m
j=1((Yj =

α) ?G(Xj), 0).
Step 3. [Matching Step] We construct a balanced bipartite graph Gδγ = Gδ

and assign weights to edges as follows: ∀(u, v) ∈ E, w(u, v) = δm−H[u]v.
Then, we run a maximum-weight bipartite matching over Gδγ to find a
perfect matching M . Let w(M) be the total weight of this match, then
X δγ� Y iff (σδm − w(M)) ≤ γ.

Apart from identifying candidate symbols for a successful renaming function
from Y to X , we also need to know the total δ–differences we incur if we choose
a candidate symbol. The main idea is by using bitparallelism: Each binary num-
ber in H will work like a collection of σ counters. We have to make sure that
each counter will never overflow. That is why the size of each counter is set to
log2(mδ). For example, if X = Y {3, 3, 3, 3, 3, 3, 3, 3, 3, 3} and δ = 2, the maxi-
mum counter value will be 20, so we should use 5 bits capacity for each counter.
This allow us to perform several additions in parallel, which is also the main
idea used in [15]. Having bitvector H, we can easily reduce this problem to a
maximum-weight bipartite matching problem. Since we want to minimize the
δ–differences, we built the required bipartite graph Gδγ in a way such that the
problem becomes of minimization. It immediately follows that X δγ� Y iff there
exist a matching M in Gδγ of size σ and w(M) ≤ γ.

Example 2. For our running example, suppose now that we are told that γ = 6 in
order to prune the δ–match. If we use the permutation (5, 4, 1, 2, 3) (cf. Fig. 2(e))
obtained by the previous algorithm, the sum of all errors is 8 (cf. Fig. 1(a)) and
therefore we should conclude that X and Y do not δγ–parameterized match. If
we use the above algorithm, we would get a different result. So let us see. We
compute bitvector G (see Fig. 4(a)) and bitvector H (see Fig. 4(b)). Note, for
instance, that H[2] =

∑10
j=1((Yj = 2) ?G[Xj ], 0) = 0+0+0+0+0+G[X6]+0+

G[X8]+0+0 = G[3]+G[5] = 4112+4096 = 8209 (0000 0010 0000 0001 0000).
Fig. 4(c) graphically depicts the bipartite graph Gδγ generated by the algorithm
in Step 3. Note, for instance, that w(2, 4) = δm −H[2]4 = 10 − 2 = 8. Fig. 4(d)
shows a perfect matching solution of Gδγ . Therefore, we conclude that X δγ� Y
because Y can be renamed to Y ′={1,2,1,3,5,4,5,4,2,3} using renaming function
π : (1, 2, 3, 4, 5) → (5, 4, 1, 3, 2) (found in Fig. 4(d)), and X δγ= Y ′ under this
permutation.

In order to generalize this algorithm for δγ–approximate parameterized matching
we need to use these simple algorithmical ideas, O(n) times, to check whether
P δγ� T i, i ∈ {1..n − m + 1}. Fig. 5 shows the main steps of the algorithm and
Section 4.1 analyzes its time complexity.

4.1 Time Complexity Analysis

The computation of D and F is just like in Algorithm 1. In Line 1, bitvector G
can be computed in O(σ�σd

w �) space and O(δ+σ�σd
w �) time, where w is the com-

puter size word and d = log2(mδ). Line 3 initializes the bitvector H in O(σ�σd
w �)
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Fig. 4. An example of the (a) G bitvector and (b) H bitvector for Σ = {1, 2, 3, 4, 5},
δ = 1, γ = 6, X={2,2,1,3,4,3,4,5,2,2} and Y ={3,5,3,4,1,2,1,2,5,4}. (c) Bipartite graph
Gδγ . (d) A perfect matching solution.

Algorithm 2. DGAPM algorithm
Input: P, T, δ, γ, Σ � σ=|Σ|,m=|P |,n=|T |,Gδγ(L,E,R),L=R=Σ

Output: {i ∈ {1..n − m + 1} : T i
δγ� P}

1. D[α]� ←
{

1, if α δ= 	
0, otherwise ,G[α]� ←

{
|α − 	|, if α δ= 	
0, otherwise , ∀α, � ∈ Σ

2. for i ← 1 to n − m + 1 do
3. F [α] ← (2σ − 1),H[α] ← 0, ∀α ∈ Σ
4. for j ← 1 to m do F [T i

j ] ← F [T i
j ] & D[Pj ],H[T i

j ] ← H[T i
j ] + G[Pj ]

5. E ← ∅
6. Gδγ .add edge(u, v,H[u]v) iff F [u]v = 1, ∀u, v ∈ Σ
7. M ←MWBM(Gδγ)
8. if ((|M | ≤ δ) AND (w(M) ≤ γ)) then Output(i)

Fig. 5. DGAPM Algorithm

time/space. Line 4 takes O(mσ�σd
w �) time. Line 6 can be implemented in O(σδ)

time. In line 7, the time complexity to find the maximum–weight bipartite match-
ing using Theorem 2, |V | = O(σ), N = O(mδ) and W = O(mδ|E|) = O(mσδ2)
is O(

√
σmσδ2

k(σ, mσδ2
mδ )

) = O(mσ1.5δ2

k(σ,δ2) ), where k(x, y) = log(x)/ log(x2

y ). Therefore, the

total time complexity of Algorithm DGAPM is



246 I. Lee, J. Mendivelso, and Y.J. Pinzón

O

(
σ� σ

w�+ δ + σ�σd
w �+n

(
σ� σ

w�+σ�σd
w �+mσ� σ

w�+ mσ�σd
w �+ σδ + mσ1.5δ2

k(σ,δ2)

))
,

which is O(nm) if we assume a constant alphabet. The overall space complexity
is bounded by O(σ� σ

w�) + σ�σd
w �) + σ + σδ).

5 Conclusions

We have presented new O(nm)–algorithms that solve the δ– and δγ–approximate
parameterized matching problem for two strings (the pattern P1..m and the text
T1..n). We believe that this complexity could be further improved since every
alignment combines two previous alignments [38].
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Abstract. In pattern matching with pair correlation distance problem,
the goal is to find all occurrences of a pattern P of length m, in a text T
of length n, where the distance between them is less than a threshold k.
For each text location i, the distance is defined as the number of different
kinds of mismatched pairs (α, β), between P and T [i . . . i+m]. We present
an algorithm with running time of O

“
min{|ΣP |2 n log m, n(m log m)

2
3 }

”

for this problem. Another interesting problem is the one-side pair corre-
lation distance where it is desired to find all occurrences of P where the
number of mismatched characters in P is less than k. For this problem,
we present an algorithm with running time of O (min{|ΣP |n log m, n√

m log m}
´
.

1 Introduction

Approximate pattern matching requires finding all occurrences of a pattern P in
a text T where a match is defined by a distance metric and a threshold. The sim-
plest distance metric is Hamming distance, where the distance in location i is the
number of mismatches between the pattern and the sub-string T [i . . . i+m]. Lan-
dau and Vishkin [LV86] used suffix trees and LCA queries to solve this problem
in O(nk). Amir et al. [ALP00] used Landau and Vishkin method and combined
it with filtering and verification to get an algorithm that runs in O

(
n
√

k log k
)

and solves Hamming distance problem. A more generalized problem is the edit
distance problem, which captures also insertion and deletion. It was presented by
Levenshtein [Lev66] and a dynamic programming algorithm was presented by
Lowrance and Wagner [LW75, Wag75]. Another distance metrics were defined
in parameterized matching [Bak93, Bak96, Bak97, AFM94, HLS04], function
matching [AAC+03], and swap matching [ALLL98]. The last three metrics are
more sophisticated than the traditional distance metrics in the sense that they
take into account relationships between mismatches. However, even those met-
rics don’t take into account repetitive mismatches of the same kind, and the
weight they give to each occurrence is equal for all mismatches.
� Research supported in part by US-Israel Binational Science Foundation.
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In this paper we present a new metric, called pair correlation distance, which
counts the number of different kinds of mismatched pairs. A mismatched pair
(α, β), α ∈ ΣP , β ∈ ΣT , increases the distance only once, regardless of the num-
ber of times it occurs. Computational biology is a field where pair correlation is
needed. The need for such a metric arises in computational biology. For example,
if substance A is required for some reaction but it is missing, it will be replaced
by some other substance B. This can be addressed by pair correlation. Such a
case may occur in protein chain synthesis, when some amino-acid is replaced by
another one due to a shortage or some malfunction (radiation that deteriorates
the protein structure). The reason for the first substitute may cause another sim-
ilar substitutes, hence it is very important to detect such connection between
mismatches. Sometimes finding a connection between repeating mismatches can
yield better explanations for experiments than traditional edit distance.

We also define another problem called one-side pair correlation where mis-
matches are counted by pattern characters only. This metric is used when we
want to know that substance A is missing, but we are not interested which
substance replaces it.

Pair correlation is well motivated by music retrieval [SYHC+99], stock market
analysis [Nos04] and copy detection [SWW03], where mismatches influence each
other.

2 Problem Definition

Following are some useful definitions that we use through this document.

Notation 1. Let S1 and S2 be two equal length strings of size �, over alphabets
Σ1 and Σ2 respectively. The function Occ(a, b) denotes the number of times the
symbol a ∈ Σ1 is aligned with the symbol b ∈ Σ2. Formally,
Occ(a, b) = |{1 ≤ i ≤ � : S1[i] = a ∧ S2[i] = b}|.

Definition 1. Let S1 and S2 be two equal length strings, over alphabets Σ1 and
Σ2 respectively. Pair Correlation Distance is PC(S1, S2)= |{(a, b) : Occ(a, b)≥1,
a �= b, a ∈ Σ1, b ∈ Σ2}|. In other words, PC(S1, S2) counts the number of pairs
(a, b), a ∈ Σ1, b ∈ Σ2 that are mismatched.

Definition 2. Let T = t1 . . . tn be a text, and P = p1 . . . pm be a pattern over
alphabets ΣT and ΣP respectively, and let k ∈ N. The Pair Correlation Distance
problem of P and T with threshold k, is that of finding all locations i = 1, ..., n,
where the Pair Correlation Distance of P and a prefix of ti . . . tn is no more than
k, i.e. all locations where PC(P, ti . . . ti+m−1) ≤ k.

Definition 3. Let S1 and S2 be two equal length strings, over alphabets Σ1 and
Σ2 respectively. One Side Pair Correlation Distance is PC1(S1, S2) = |{a : ∃b ∈
Σ2, a �= b, Occ(a, b) ≥ 1}|. In other words, this metric counts the number of pat-
tern symbols that caused at least one mismatch.



Pattern Matching with Pair Correlation Distance 251

Definition 4. Let T = t1 . . . tn be a text, and P = p1 . . . pm be a pattern over
alphabets ΣT and ΣP respectively, and let k ∈ N. The One-Side Pair Correlation
Distance problem of P and T with threshold k, is that of finding all locations
i = 1, ..., n, where the One-Side Pair Correlation Distance of P and a prefix of
ti . . . tn is no more than k, i.e. all locations where PC1(P, ti . . . ti+m−1) ≤ k.

For example, consider the following two (equal length) strings:

abcaabbcd
fbeffbbee

Using traditional hamming distance, the number of mismatches is 6. Applying
two-side pair correlation distance, the number of mismatches is only 3 because
there are only three pairs that are mismatched (f, a), (e, c), (e, d). The one-side
pair correlation distance gives only 2 mismatches because there are only two
symbols that are mismatched: f and e. This example shows that pair correlation
distance metric succeeds to detect the similarity between the two strings while
under the traditional hamming metric they are not resemble each other. The
result of this comparison helps a researcher to find out the real reason for the
difference between those strings.

Remark. Algorithms that solve traditional pattern matching problems, usually
find all text locations that match the pattern. The algorithms presented in this
paper, reports the number of mismatches in each text location that is a match
as well.

2.1 Naive Algorithms

The naive algorithm runs over all text alignments and compares each one of
them to the whole pattern. It updates counters for each mismatch to calculate
the moment distance in each alignment. The running time of the naive algorithm
is O(nm), because for each text alignment no more than m counters are updated.

2.2 Convolutions

In some cases we can improve the naive algorithm by using convolutions. The
naive algorithm finds for each symbol in the pattern how many times it appears
against each symbol in the text for each text location. For each symbol a ∈ ΣP

in the pattern we make a convolution with every symbol b ∈ ΣT in the text
(except the symbol a itself, since it is not a mismatch). These convolutions
give all errors caused by each pattern symbol. Knowing how many mismatches
each symbol caused it is possible to calculate Pair Correlation Distance for each
location. Basically, this algorithm does what the naive algorithm does, but by
using convolutions it achieves better running time than the naive algorithm when
the alphabets are small.

The number of convolutions made is O (|ΣT | |ΣP |), which gives a total running
time of O (|ΣT | |ΣP |n log m).
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For one-side pair correlation it is required to count how many errors each
pattern symbol causes, regardless of the text symbols it is aligned with. Hence
for each pattern symbol we make only one convolution to check how many errors
it contributes. Therefore, the number of convolutions made is only O (|ΣP |),
which result in running time of O (|ΣP |n log m).

2.3 Filtering and Verification

In some cases it is possible to utilize some properties of the pattern and to divide
the algorithm into two stages:

1. Filtering - In this stage a quick scan of the text is made in order to eliminate
a considerable number of text locations.

2. Verification - In this stage each text location that passed the filtering stage
is checked whether it is a match or not. Due to the filtering the number of
locations to be verified is much lower than the total number of text locations.

In [ALP00] this method is used widely. However in our case, some changes
are required as described in the next section.

3 Algorithm for One-Side

In this section we deal with one-side pair correlation. This is a simpler problem
than two-side pair correlation since we are interested only in pattern symbols. For
each pattern symbol we want to know whether it causes at least one mismatch
or doesn’t cause any. This can be achieved by using one convolution for each
symbol, resulting in |ΣP | convolutions and running time of O (|ΣP |n logm), as
described in sub-section 2.2. This algorithm has reasonable running time when
|ΣP | is smaller than m. However, when |ΣP | = O(m) the running time becomes
O(nm log m) which is worse than the naive algorithm.

To improve this we define x to be a threshold such that if |ΣP | < x we make
|ΣP | convolutions to solve the problem. The exact value of x will be determined
later. From now on, we deal only with the case where |ΣP | ≥ x.

Definition 5. A pattern symbol is called frequent if it appears more than m
x+1

times in the pattern. Otherwise it is called rare.

The number of frequent symbols is no more than x, hence making a convolution
for each frequent symbol results in running time of O(nx log m).

For rare symbols we use the filtering and verification method. In the filtering
stage we look at the first occurrence of each of the pattern symbols. Following
is the filtering algorithm:

The filtering stage actually counts how many first occurrences of pattern sym-
bols are aligned with each text location. Each text location that got less than
|ΣP |−k scores is discarded, since there are more than k mismatches. The number
of locations that passed the filtering stage is at most O

(
n

|ΣP |−k

)
. For each text
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Input: a pattern P of length m and a text T of length n
Let offset be an array of all offsets of the first occurrence in the pattern of each1

symbol in ΣP ;
Let score be an array of length |T |, initialized to 0;2

for i = 1 to n do3

Let j=i-offset[T[i]];4

if j ≥ 0 then score[i − j] ← score[i − j] + 1;5

Algorithm 1. Filtering Stage

location that passed the filtering stage we have to check only rare symbols, since
the frequent symbols were counted by convolutions. Each rare symbol appears no
more than m

x+1 times and there are no more than |ΣP | rare symbols, so for each

text location we have to check at most O
(

m|ΣP |
x+1

)
locations in the pattern. We

assume that k ≤ |ΣP |
2 . Since there are no more than O

(
n

|ΣP |−k

)
text locations

to check, total time for rare symbols is O
(

nm
x

)
. The total time for all symbols,

rare and frequent is O
(
xn log m + nm

x

)
. Optimizing over x values we get that

the minimum is when x =
√

m
log m , yielding a running time of O

(
n
√

m log m
)
.

Conclusion: Total running time for the algorithm that solvesone-side pair cor-
relation is O

(
min{|ΣP |n log m, n

√
m log m}

)
.

In the above analysis we assumed that k ≤ |ΣP |
2 . This assumption was made

to bound the number of text locations that may pass the filtering stage. However,
bounding k by

√
m

2
√

log m
, gives the same running time, because the filtering stage

is done only when |ΣP | ≥
√

m
log m , which bounds the number of text locations

that passed the filtering by O
(

n
|ΣP |

)
. Hence, the constraint on k is that it should

be less than O
(
max{ |ΣP |

2 ,
√

m
log m}

)
.

4 Algorithm for Two-Side

The algorithm showed above, for one-side pair correlation distance, can be ex-
tended to solve the problem of two-side pair correlation distance. We use a com-
mon technique in pattern matching, and divide the text into n

m overlapping
segments of size 2m. In each segment there is a sub-segment that its alphabet is
bounded by O (|ΣP | + k), otherwise there is no match.

The reason is that each text location that has more than |ΣP | + k different
symbols is a mismatch. Hence, if a match exists there is a segment of size m
with alphabet of size |ΣP |+ k. Because each segment is of size 2m there are no
more than O (|ΣP | + k) different text symbols in each text segment. We assume
that k ≤ |ΣP |

2 . Using this assumption, the number of convolutions made is no

more than O
(
|ΣP |2

)
.
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As in one-side pair correlation we set a parameter x such that if |ΣP | < x we
make O

(
|ΣP |2

)
convolutions, otherwise we do the following.

We define a frequent symbol as in definition 5, namely, a symbol that appears
more than m

x+1 . In contrast to one-side pair correlation where we have to deal
with pattern symbols only, here we have to handle also text symbols. There are
four groups of symbols we have to check:

1. Frequent pattern symbols with frequent text symbols
2. Frequent pattern symbols with rare text symbols
3. Rare pattern symbols with frequent text symbols
4. Rare pattern symbols with rare text symbols

For the first group we use convolutions. There are no more than x frequent
pattern symbols, and no more than 2x frequent text symbols, hence total number
of convolutions is O(x2). To check all other groups we use the filtering and
verification method. We apply algorithm I to eliminate text locations that got
less than |ΣP |−k scores. After filtering stage there are no more than O

(
n

|ΣP |−k

)
locations to check. In the verification stage we check each rare pattern symbol
naively. There are no more than |ΣP | rare symbols, and each one of them has
no more than x occurrences, hence running time for each text location to count
rare pattern symbols is O

(
|ΣP |m
x+1

)
. The number of locations we have to check

is no more than O
(

n
|ΣP |−k

)
(due to the filtering stage), hence total running

time for rare pattern symbols is O
(

nm
x

)
. So far we checked frequent pattern

symbols with frequent text symbols, and rare pattern symbols with frequent
and rare text symbols. All we have to check is frequent pattern symbols with
rare text symbols. This is done exactly as we checked rare pattern symbols - we
check naively each text symbol. However, now we handle rare pattern symbols as
don’t care to avoid counting them twice. The running time for frequent pattern
symbols with rare text symbols is also O

(
nm
x

)
.

The total time for all symbols, rare and frequent is O
(
x2n log m + nm

x

)
. Op-

timizing over x values we get that the minimum is where x = 3

√
m

log m , yielding

a running time of O
(
n (m log m)

2
3

)
.

Conclusion: Total running time for pair correlation distance is O
(
min{|ΣP |2 n

log m, n (m logm)
2
3 }
)
.

As in one-side pair correlation we assumed that k ≤ |ΣP |
2 . Here, in two-

side pair correlation this assumption has two reasons: to bound the number of
different text symbols in each text segment when using convolutions (in case
|ΣP | ≤ 3

√
m

log m ), and to bound the number of text locations that may pass the

filtering stage (otherwise).
Bounding k by

3√m

2 3√log m
, gives the same running time. In case |ΣP | ≤ 3

√
m

log m ,

the number of different text symbols is no more than O
(
|ΣP | +

3√m

2 3√log m

)
, hence
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the number of convolutions made is bounded by O

((
m

log m

) 2
3
)

. In the other

case, when |ΣP | > 3

√
m

log m , the number of text locations that pass the filtering is

bounded by O
(

n
|ΣP |

)
resulting in running time of no more than O

(
n(m log m)

2
3

)
.

Hence, the constraint on k is that it should be less than O
(
max{ |ΣP |

2 , 3

√
m

log m}
)
.

5 Summary

In this paper we presented and defined the problems of one-side pair correla-
tion and two-side pair correlation. For one-side pair correlation we presented an
algorithm that runs in O

(
min{|ΣP |n log m, n

√
m log m}

)
, for any k that is

bounded by O
(
max{ |ΣP |

2 ,
√

m
log m}

)
. This algorithm was extended to solve the

problem of two-side pair correlation with running time of O
(
min{|ΣP |2 n log m,

n (m log m)
2
3 }
)
, for any k that is bounded by O

(
max{ |ΣP |

2 , 3

√
m

log m}
)
.
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Abstract. This paper is devoted to polynomial-time approximations
for the problems of finding a shortest common nonsubsequence and a
shortest common supersequence of given strings. The main attention is
paid to the special case of the latter problem where all given strings are
of length two. We show strong connections of this case to the feedback
vertex set problem, the maximal network flow problem and the maximal
multi-commodity network flow problem.

1 Introduction

Let L be a finite set of strings on an alphabet Σ. A Shortest Common NonSubse-
quence (SCNS) or a Shortest Common Supersequence (SCS) is a shortest string
on Σ that is not a subsequence or, respectively, is a supersequence of every string
in L. The problems of finding SCNS and SCS we call simply the SCNS problem
and the SCS problem. Without loss of generality, we assume that no string in L
is a subsequence of another string in L. We also assume that Σ∗ and |σ| stand
for the set of all strings in Σ and the length of a string σ ∈ Σ∗, respectively,
and that |S| will denote the number of elements in a set S. For the rest of the
paper, we set n = |Σ|, k = |L|, l = max{|σ| : σ ∈ L}.

As well as the SCS problem, the SCNS problem has applications in manufac-
turing, bioinformatics and data processing but has a definitely shorter history
and less studied than the SCS problem [8, 9, 12, 16, 17, 18, 19, 20].

The SCNS problem is NP-hard [16, 17] even if n = 2 [10] but can be solved in
polynomial time if k is fixed [16, 17]. The problem originates from the study of
the flexibility of a group technology presented by the set of technologies L with
the set of technological operations Σ. If we are given a technology σ ∈ Σ∗ and
asked whether σ can be fulfilled by L, we should check whether σ is a subsequence
of one of the technologies in L. It is not always necessary to do it by a multiple
sequence comparison operations if we know the length of an SCNS for L. Indeed,
if |σ| < |SCNS|, then we can obviously avoid comparisons of σ with technologies
in L and be sure that σ can be fulfilled by L. At our knowledge, approximations
for the SCNS problem have not yet been studied.

The SCS problem is also NP-hard [9] even if n = 2 [14] but can also be solved
in polynomial time if k is fixed [18, 19, 20]. For fixed l and r, let Ll, SCSl and

A. Amir, A. Turpin, and A. Moffat (Eds.): SPIRE 2008, LNCS 5280, pp. 257–268, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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SCSl(r) denote the set L with only strings of length l, an SCS of Ll, and an
SCSl in the case where every symbol of Σ appears r times totally in all strings
of Ll, respectively. Then the SCS2(2) problem is solvable in polynomial time,
while the SCS2(3) and SCS3(2) problems are NP-hard [19].

Efficient polynomial-time approximations for the SCS problem are inherently
impossible: a linear approximation implies P=NP, and an approximation with
ratio O(logδ k) for a fixed δ > 0 implies NP⊆DTIME(2polylogk) [8]. There are
known only trivial approximations with ratios n and l [8], tournament and greedy
approximations with ratios 3k+2

8 and k+3
4 , respectively [6]. Another greedy ap-

proximation has length |SCS|+ O(|SCS|0.707) on the average [8]. The version of
the SCS problem with the SP-score criterion is more tractable and has approxi-
mations with ratios 2− 2

k [7], 2− 3
k [12] and 2− l

k for any fixed l ≤ k [1]. Recent
papers devoted to the SCS problem consider heuristics and computational ex-
periments with them [2, 3, 4, 11, 13].

In this paper we show that, a polynomial algorithm for the Shortest NonSub-
sequence (SNS) problem, i.e., the SCNS problem with k = 1 [16, 17], leads to
SCNS approximations with ratios n and l, i.e., the same approximations as for
the SCS problem. For any fixed m ≤ n − 2, we propose an O(nm+2) algorithm
finding an SCS2 approximation with ratio 2 − 3m

n+m . Using a maximal network
flow model [5], we show that this ratio can be reduced to 2 − 4

n+1 if m = 1.
Developing the network flow approach towards the SCS2 problem, we show

how a nontrivial lower bound for |SCS2| can be obtained by a maximal multi-
commodity network flow model [5].

We also propose a polynomial-time SCS approximation with ratios n− 1
2 and

n − 1
4 for even and odd l, respectively, in the case where every string in L does

not have symbol squares, as well as a polynomial-time SCS approximation with
ratio n(1 − m

l+m ) for any fixed m ≤ |SCS| − l. Possible ways of improving the
results established here are discussed as well.

The acronyms used in this paper are collected in the following list:

NS = NonSubsequence CS = Common Supersequence
SNS = Shortest NS SCS = Shortest CS
CNS = Common NS CS2 = CS of L2

SCNS = Shortest CNS SCS2 = Shortest CS2

2 CS-CNS Relations and SCNS Approximations

Let L = {ω1, . . . , ωk}, and let η1, . . . , ηk be SNSs of ω1, . . . , ωk, respectively. Note
that an SNS of a string can be found in polynomial time [16, 17]. Let m be the
length of a longest string among the SNSs.

Lemma 1. m ≤ |SCNS|.
Otherwise there exists i with |ηi| = m such that an SCNS is a shorter NS of ωi

than ηi. Lemma 2 shows a simple way of constructing CNSs.

Lemma 2. Let ν be a CS of {ν1, . . . , νk}, where ν1, . . . , νk are NSs of ω1, . . . , ωk,
respectively. Then ν is a CNS of {ω1, . . . , ωk}.
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Otherwise there exists i such that ν is a subsequence of ωi, hence, νi is a subse-
quence of ωi as well.

Let σ be an alphabet string, i.e., a string of length n that contains all sym-
bols of Σ. Since each symbol of Σ appears in σ only once, and σm is a CS of
{η1, . . . , ηk}, Lemmas 1 and 2 imply the inequality

|σm|
|SCNS| =

m|σ|
|SCNS| ≤

m|σ|
m

= n

which proves the following theorem:

Theorem 1. σm is an SCNS approximation with ratio n.

We can also obtain an approximation with ratio l as follows. Let Ai be the set
of symbols located in ith positions of strings η1, . . . , ηk, i = 1, . . . , m. If |ηj | < i
for some j, then ηj contributes nothing to Ai. Let σi be a string in which the
symbols of Ai are written in an arbitrary order. The string σ1 . . . σm is a CS of
{η1, . . . , ηk}. But |σi| ≤ l for i = 1, . . . , m, so by Lemma 1,

|σ1 . . . σm|
|SCNS| =

|σ1| + . . . + |σm|
|SCNS| ≤ ml

m
= l

Therefore, from Lemma 2 we have the following theorem:

Theorem 2. σ1 . . . σm is an SCNS approximation with ratio l.

Lemma 3 establishes a relationship between SCNSs and SCSs and can be con-
sidered as dual to Lemma 2.

Lemma 3. Let ω be an SCNS of {ω1, . . . , ωk}. Then there exist NSs ν1, . . . , νk

of ω1, . . . , ωk, respectively, such that ω is an SCS of {ν1, . . . , νk}.

To prove it let us try to find the leftmost embedding of ω into ωi for each
i = 1, . . . , k. Then νi can be defined as the shortest prefix of ω that is an NS
of ωi. Thus, ω is a CS of {ν1, . . . , νk}. Lemma 2 implies that ω is an SCS of
{ν1, . . . , νk} indeed. Note that νi is not necessarily an SNS of ωi.

3 SCS2 and Feedback Vertex Set

Let us consider only CS2s where every symbol appears either once or twice.
It is clear that all SCS2s are among them. Besides, if a symbol appears twice
in a CS2 then it has its left position and its right position in it. There always
exists an embedding of an L2 into its CS2 such that all the left/right positions
(of symbols that appear twice) absorb only beginnings/ends of strings of L2.
This embedding is obviously unique, and we call it a regular embedding of L2
into its CS2. Taking into account these observations, let us show a polynomial
equivalence of the SCS2 problem and the following well-known graph problem.
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Feedback Vertex Set (FVS). Given a directed graph G with the vertex set
V and the arc set A, find a smallest subset F ⊆ V covering all cycles in G.

If we identify vertices with symbols, arcs with strings of length two, and set
V = Σ, A = L2, then the relationship between F and an SCS2 can be described
as follows. Let U ⊆ V . Let us replace every vertex u ∈ U by the pair of vertices
uin and uout and switch all arcs going in/out of u to uin/uout. This operation
converts G into a graph we call a bifurcation or, to be more specific, the U
bifurcation of G. Vertices of U we call bifurcated, see Fig. 1.

a b c

dG

ain bin c

daout bout

Fig. 1. The graph G for the string set L = {aa, ab, bc, ca, cd, ad} on the alphabet
Σ = {a, b, c, d} and its {a, b} bifurcation

The following lemma is a straightforward corollary from the definition of a
bifurcation of a directed graph.

Lemma 4. U covers all cycles in G if and only if the U bifurcation of G is
acyclic.

We call a sequence of all vertices of an acyclic directed graph a chain if it is
compatible with its arcs. Note that a chain can be found by a topological sorting
algorithm in polynomial time [15]. Chains naturally define strings on Σ.

Let C be a chain of an acyclic U bifurcation of G. Since C is compatible with
arcs of G, every string in L2 is a subsequence of C, i.e., C defines a CS2, and
the bifurcated vertices in C define symbols that appear twice in this CS2. On
the other hand, since symbols appearing twice in CS2 define bifurcated vertices,
a regular embedding of an L2 into its CS2 defines an acyclic bifurcation of G.
Thus, we have

Theorem 3. CS2s and only they define chains of acyclic U bifurcations of G.
Hence |CS2| = n + |U |.

Since Lemma 4 holds, Theorem 3 has the following corollaries that prove the
required equivalence and a lower bound for |SCS2|.

Corollary 1. An SCS2 defines a chain of an F bifurcation of G and vice versa.
Hence |SCS2| = n + |F |.

Corollary 2. No m vertices cover all cycles in G if and only if |SCS2| > n+m.
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4 Binomial SCS2 Approximations

Now we describe an O(nm+2) algorithm finding an SCS2 approximation with
ratio

2 − 3m

n + m

for any m ≤ n
2 . As will will see, the algorithm produces an SCS2 if m = �n

2 �.
For each k = 0, 1, 2, . . . , m let us check whether there exist the vertex sets Pk

and Qk in G with k and n − k vertices, respectively, such that each covers all
cycles in G. We can do this by enumerating all

(
n
k

)
subsets with k vertices and

their compliments. If P0, P1, . . . , Pk−1 do not exist but Pk does for some k, then
F = Pk and, by Corollary 1, a chain of the Pk bifurcation is an SCS2. Otherwise
P0, P1, ..., Pm do not exist, hence by Corollary 2, |SCS2| > n + m, and whether

(i) Q0, Q1, ..., Qk exist but Qk+1 does not for some k < m or
(ii) Q0, Q1, ..., Qm exist.

In the case (i), we can obtain an SCS2 as a chain of the Qk bifurcation. In the
case (ii), we can take a chain of the Qm bifurcation and, using Theorem 3, obtain
an SCS2 approximation with length 2n − m and ratio

2n − m

n + m
= 2 − 3m

n + m

In the worst case, we enumerate 2[
(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
m

)
] = O(nm) subsets of V .

For each subset, we need to check for cycles in the correspondent bifurcation in
time O(n2) [15]. The total time requirement is O(nm+2).

Thus, if m = 1, the ratio 2 − 3
n+1 can be reached in time O(n3). However,

as we show in the following three sections, using a reduction to the maximal
network flow problem, the ratio 2 − 4

n+1 can be reached in the same time.

5 Two Trivial SCS2 Approximations

Let, as before, σ be an alphabet string, and let γ0 denote a chain of the graph
G without cycles. Then we can define the string

α0 =
{

γ0 if G is acyclic
σσ otherwise

Since |σσ| = 2n and an SCS2 repeats at least one symbol if n > 1, we have

Theorem 4. If n = 1 then α0 is an SCS2. If n > 1 then α0 is an SCS2
approximation with ratio 2 − 2

n+1 .

Note that, if L2 contains strings aa for all a ∈ Σ, i.e., all vertices in G have
loops, then α0 = σσ is an SCS2. Now we consider more precise approximations.
The first one follows from the following evident fact.
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Lemma 5. If a directed graph has cycles and a vertex without a loop, the other
vertices will cover all cycles in it.

Let v be a vertex in G without a loop. Then Lemmas 4 and 5 imply that the
V−{v} bifurcation of G is acyclic. Let γ1 denote a chain of such a graph G.
Observing that γ1 is an SCS2 if n = 2, we can define the string

α1 =

⎧⎨⎩
γ0 if G is acyclic
γ1 if G has a vertex without a loop
σσ if all vertices in G have loops

Since |γ1| = 2n− 1, we have

Theorem 5. If n ≤ 2 then α1 is an SCS2. If n > 2 then α1 is an SCS2
approximation with ratio 2 − 3

n+1 .

6 Rip Up, Sew Up, Cut Up

Without loss of generality, we assume that the graph G does not have loops
(otherwise every vertex with a loop must be included in F ) and is strong, i.e.,
strongly connected (otherwise, since each cycle in G is in a strong component of
G, the FVS problem for G reduces to a number of separate FVS problems for
strong components of G). Let us define the following derivatives from G:

G − U : the reduction of G on U ⊆ V , derived from G by deleting all vertices of
U and adjacent arcs;

G|G: the V bifurcation of G we call further the rip of G; note that the rip has
its vertices in pairs {vin, vout}, v ∈ V , and no cycles;

GG: the sewn rip of G, derived from G|G by adding the sewing arcs vin � vout

for all v ∈ V ;
xGGx: the network of G on x ∈ V , derived from GG by deleting the sewing

arc xin � xout; we assume that xout is the source and xin is the sink in this
network and that the capacities of sewing arcs and original arcs are one and
unbounded, respectively, see Fig. 2.

The following lemma directly follows from the above definitions.

Lemma 6. Any two sewing arcs in GG or xGGx do not have common vertices.
Besides, there are natural one-to-one correspondences between

a b c

G

ain bout cin

aout bin cout

ain bout cin

aout bin cout

Fig. 2. The graph G for the string set L = {ab, ba, bc, cb} on the alphabet Σ = {a, b, c},
the sewn rip GG and the network bGGb, where Fb = {b}, C = {ain � aout, cin � cout}
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– vertices in G and sewing arcs in GG,
– cycles in G and cycles in GG,
– cycles through x in G and paths from xout to xin in xGGx.

Let V (S) denote a vertex subset in G that corresponds to a sewing arc subset
S in GG or xGGx, and let us consider the following auxiliary problems.

Feedback Cut (FC). Given a directed graph G with the vertex set V and a
vertex x ∈ V , find a smallest set Fx ⊆ V covering all cycles in G through x.

Network Cut (NC). Given a network N with the arc set E, integer capacities,
a source s and a sink t, find a set C ⊆ E of minimum total capacity covering
all paths from s to t.

Note that the NC problem is dual to the maximal network flow problem with
integer capacities that can be solved in polynomial time [5].

The equations N = xGGx, s = xout, t = xin provide a polynomial reduction
of the FC problem to the NC problem. Herein, C contains only sewing arcs, see
Fig. 2. Thus, Lemma 6 implies Fx = V (C) and

Lemma 7. The FC problem can be solved in polynomial time.

7 Cut-by-Cut Towards 2 − 4
n+1

The following algorithm finds a vertex set B as an approximation of F . Initially
B is empty.

Cut-by-Cut Algorithm. Using a polynomial algorithm for the FC problem,
choose a vertex x in G with the smallest feedback cut Fx, add Fx into B, and
repeat this procedure for every nontrivial strong component of G − Fx.

Obviously, there are no cycles in G− B. The cut-by-cut algorithm grows a root
tree that we call a cut-by-cut tree with the following properties:

– the root corresponds to the original strong graph G;
– the leafs correspond to nonbifurcated vertices of G;
– the forks correspond to nontrivial strong subgraphs of G, the vertices x

chosen in them and feedback cuts Fx deleted from them; thus, it is convenient
to denote a fork as x.

Moreover, every fork x has at least one leaf, it is x, and all terminal forks
correspond to pairwise nonintersecting nontrivial strong subgraphs of G. The
set of these subgraphs provides us a set of pairwise nonintersecting cycles in G.
Besides, B does not contain leafs. So we have the following lemma.

Lemma 8. Let f and g be the numbers of terminal forks and leafs in a cut-by-
cut tree, respectively. Then |F | ≥ f and |B| ≤ n − g.

Since every feedback cut Fx is smallest, only one branch grows from a fork x if
and only if G is a complete graph, and G − Fx is a trivial graph with only one
vertex x. Consequently, if G is not a complete graph then at least two branches
grow from the root. This proves the following lemma.
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Lemma 9. If G is not a complete graph then f + 1 ≤ g.

Let r be the root of a cut-by-cut tree of height one. Since Fr is smallest, |Fr| ≤
|F |, and since the height of the tree is one, the graph G − Fr does not have
cycles, i.e. Fr covers all cycles in G. This means that B = Fr = F .

Lemma 10. If a cut-by-cut tree is of height one then B = F , i.e. the cut-by-cut
algorithm finds an exact solution in this case.

Lemma 11. (a) If G is a complete graph then B = F and |B| = n − 1.
(b) If G is not a complete graph and n ≤ 3 then B = F and |B| = 1.
(c) If G is not a complete graph and n > 3 then |B| ≤ n − 2.

The claims (a) and (b) immediately follow from Lemma 10: if G is a complete
graph or n ≤ 3, the cut-by-cut tree is of height one; if G is not a complete graph,
then we get |B| ≤ n − 2 from Lemmas 8 and 9 because f ≥ 1.

Let, as before, G be a directed graph with the vertex set V , and let V0 be
the subset of vertices with loops. Let p and q denote the numbers of strong
components of G − V0 that are complete or have at most three vertices and,
respectively, that are not complete and have more than three vertices.

Running the cut-by-cut algorithm for these p+q strong graphs, we can produce
the related vertex sets B1, . . . , Bp and C1, . . . , Cq for them, respectively, set
V1 = B1 + . . . + Bp, V2 = C1 + . . . + Cq, and define the string

α2 =
{

a chain of the (V0 + V1) bifurcation if q = 0,
a chain of the (V0 + V1 + V2) bifurcation if q > 0.

From Theorem 3, Corollary 2, and Lemmas 7 and 11 we obtain the ratio 2n−2
n+1

and the following theorem.

Theorem 6. If q = 0 then α2 is an SCS2. If q > 0 then n > 3 and α2 is an
SCS2 approximation with ratio 2 − 4

n+1 .

8 Cut-by-Cut Umbrella

Let us imagine a root tree of height two that is a bunch of paths of length one
and one more path of length one growing from the root. Holding the shortest
path as a handle, we can really see an umbrella in hand. What is good in it?

The thing is the umbrella is the only version of a cut-by-cut tree of height at
least two for which the inequality f +1 < g (i.e., the number of leafs exceeds the
number of terminal forks by at least two) is false, see Lemmas 8 and 9. Therefore,
if we improved the cut-by-cut algorithm so that the umbrella can be grown with
the output B = F , we would increase Lemma 11, replacing n−2 by n−3, and get
the ratio 2− 5

n+1 . The cut-by-cut algorithm grows an umbrella if, after deleting
the first smallest feedback cut Fx from G, we obtain a graph with complete
strong components. Herewith, there are at least one trivial component, x, and
at least one nontrivial component among them. Perhaps, it is worth studying
such graphs to attain better ratios.
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9 SCS2 and Maximal Multi-commodity Flow

Let us consider again the sewn rip GG, see Section 6, and construct the net-
work GV G placing intermediate vertices on all sewing arcs. In other words, we
exchange the arcs vin � vout in GG by pairs of the arcs vin → von, von → vout

for all v ∈ V , where von are new n vertices. Let vout and von be the sources and
the sinks, respectively, in GV G. Let the capacity of the arcs vin → von be one,
and let the capacity of the other arcs be unbounded.

It is not hard to verify a polynomial reduction from the FVS problem to the
problem of finding an arc set F of minimal total capacity1 that shuts off all n
different flows in the network GV G from the sources vout to the sinks von. The
latter problem, however, can be formulated as the following program.

GVG Cut. Given a directed graph G with n vertices and the arc set A, find
nonnegative xk

i , yk
ij , zi, where i, j, k = 1, . . . , n, that minimize z1 + . . . + zn

under the following conditions for all arcs i → j ∈ A and k:⎧⎨⎩
xi

j− xi
i− yi

ij+ zi = 1
xk

j− xk
i − yk

ij+ zi = 0, i �= k
zi ∈ {0, 1}

Note that F = {vin → von : zv = 1}. If we treat arcs in G as tasks of an
irregular (since G has cycles) network model for n projects, xk

i , xk
j , and yk

ij

as start, completion, and processing times, respectively, of the task i → j in
project k, then the GV G cut problem is finding a smallest bifurcation of G (as
a regular network model) in which all n projects can be finished. The tasks can
be performed with delays determined by the variables zi.

If the constraints zi ∈ {0, 1} are replaced by the constraints 0 ≤ zi ≤ 1 for
all i = 1, ..., n, the GVG cut problem turns into a linear program that is dual to
the maximal multi-commodity network flow problem [5] for GVG.

Since the dual problem is a relaxation of the GVG cut problem, the quantity
of a maximal multi-commodity network flow in GVG can be used as a lower
bound for |SCS2|. This can lead to better SCS2 approximations.

10 SCS of Strings without Squares

Let us show how SCS2 approximations can be used for SCS approximations.
Scanning strings of L from left to right let us cut them into segments of length
two (of course, the last, i.e. the most right, segment may be of length one) and
construct the string set L1 from all the first, i.e., the most left, k segments, and
the set L2 from all the second segments, and so on. When constructing, the
segments from shorter strings can be exhausted at certain point, and then the
next string sets will have been formed at the expense of longer strings.

Thus, we obtain the sets L1, . . . , Lt, where t = l
2 for even l and t = l−1

2 +1 for
odd l, where l is the length of a longest string in L. For even l, the sets consist
1 Here we use the denotation F from the FVS problem to show its relevance.
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of strings of length two. And only for odd l, the set Lt consists of one-symbol
strings. Thus, an SCS for Lt, we denote it as τ0, is trivial with |τ0| ≤ n. If L
consists of only strings without squares, i.e., aa, where a ∈ Σ, then strings in
the sets Li, i = 1, . . . , t, have no squares as well. This means that the related
graphs do not have loops (see Section 3).

Theorem 3 and Lemma 5 imply that there exist simple SCS2 approximations
of length 2n− 1 for all t sets like γ1 (see Section 5). Let us find and concatenate
them saving the numeration of the sets. And let us denote the resulted string as
τ1. Its length is at most (2n−1)l

2 for even l and at most (2n−1)(l−1)
2 + n for odd l.

Dividing these two expressions by l, i.e., a lower bound for |SCS|, and setting

τ =
{

τ0 if l = 1
τ1 if l > 1

we prove the following theorem:

Theorem 7. Let L be a set of strings without squares on an alphabet with n
symbols, and let l be the length of a longest string in L. Then the string τ is
an SCS approximation for L with ratios n − 1

2 and n − 1
4 for even and odd l,

respectively.

Unfortunately, Lemma 11 does not work here.

11 Ratios Less Than Alphabet Size

Let, as before, σ be an alphabet string, and let l be the length of a longest string
in L. Since l is a trivial lower bound for |SCS| and |σl|

|SCS| ≤ nl
l , the string σl

is a trivial SCS approximation with ratio n. Decreasing the length of the SCS
approximation and increasing the lower bound are two ways of reaching a better
ratio. We will follow the latter, using the idea of Corollary 2.

Let ◦ be the empty symbol not belonging to Σ, and let Λ be the set of longest
words in L. The denotations Prefi(λ) and Suffi(λ) will stand for the prefix and
the suffix of length i of a string λ, respectively. Looking through the strings

µ(a, λ, i) = Prefi(λ) a Suffl−i(λ)

for all triplets (a, λ, i), where a ∈ {◦} ∪ Σ and λ ∈ Λ, where i = 0, 1, . . . , l, we
can check whether µ(a, λ, i) is an SCS of L. If such a string is found, we denote
it as µ1. Now let us consider the string

µ′
1 =
{

µ1 if the procedure founds µ1
σl otherwise

If the procedure described above finds µ1 then µ′
1 = µ1 is an SCS of L. Otherwise,

l + 1 is a lower bound for |SCS|, and then µ′
1 has ratio nl

l+1 . This proves

Theorem 8. Let L be a string set on an alphabet with n strings, and let l be
the length of a longest string in L. Then the string µ′

1 is an SCS approximation
for L with ratio n

(
1 − 1

l+1

)
.
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To improve the procedure let us replace strings µ(a, λ, i) by the strings

λ0i1a1λi1+1,i2a2 . . . am−1λim−1+1,imamλim+1,l+1

for all vectors (a1, . . . , amλ, i1, . . . , im), where m is fixed, a1, . . . , am ∈ {◦} ∪ Σ,
λ ∈ Λ, 0 ≤ i1 < . . . < im ≤ l + 1, and λuv is a substring of ◦λ◦ located in
the positions u, u + 1, . . . , v − 1, v. We assume that the positions 0 and l + 1
contain ◦. If one of these strings is an SCS, we denote it as µm. The procedure
runs in polynomial time because m is fixed. Defining the string µ′

m in the same
way as µ′

1 finishes the proof of the following theorem:

Theorem 9. Let L be a string set on an alphabet with n symbols, and let l be
the length of a longest string in L. Then for every fixed m, where m ≤ |SCS|− l,
the string µ′

m is an SCS approximation for L with ratio n
(
1 − m

l+m

)
.

12 Concluding Remarks

Section 2 shows that NSs prove to be connecting links between CNSs and CSs,
and Lemma 3, as we suggest, can throw more light on the relationship between
SCNS and SCS approximations. The cut-by-cut umbrella from Section 3 is an
annoying hindrance in getting a better SCS2 approximation by the cut-by-cut
algorithm. In fact, any procedure neutralizing the ‘umbrella’ effect in a combi-
nation with the cut-by-cut algorithm could give essentially more precise SCS2
approximations. The GVG cut problem from Section 9 can be useful not only
for computing a lower bound for |SCS2|, but worthy of a special attention in
studying the SCS problem by the multi-commodity network flow model. We
also believe that an elaboration of the way of the decomposition of L into L2s
can improve the results established in Sections 10 and 11.
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Abstract. Given a set of sequences, S, and degeneracy parameter, d, the
Consensus Sequence problem asks whether there exists a sequence that
has Hamming distance at most d from each sequence in S. A valid motif
set is a set of sequences for which such a consensus sequence exists, while
a decoy set is a set of sequences that does not have a consensus sequence
but whose pairwise Hamming distances are all at most 2d. At present,
no efficient solution is known to the Consensus Sequence problem
when the number of sequences is greater than three. For instances of
Consensus Sequence with binary sequences and cardinality four, we
present a combinatorial characterization of decoy sets and a linear-time
exact algorithm, resolving an open problem posed by Gramm et al. [7].

1 Introduction

Understanding the structure and function of genomic data remains an important
biological and computational challenge. Motifs are short sequences of genomic
DNA responsible for controlling biological processes, such as gene expression.
Motifs with the same function may not entirely match, due to random mutations
or chemical properties. The motif consensus of the instances is a short sequence
representing their shared pattern. Given a number of DNA sequences, motif
recognition is the task of discovering motif instances in sequences without prior
knowledge of the consensus or their placement within the sequence.

Closely related to the motif recognition problem is the Consensus Sequence
problem that asks, given a parameter d and a set of sequences S = {s1, . . . , sn}
each of length l, whether there exists a sequence s∗, which we call a consensus,
that is of distance at most d from each sequence in S. Note that the consensus
sequence need not be contained in S. In this context, the distance metric is
the Hamming distance, H(si, sj), between two sequences si and sj . Consensus
Sequence is NP-complete, even for the case where each sequence is binary;
therefore, no polynomial-time solution is possible unless P = NP [5]. Clearly, a
set for which the distance between any pair of sequences exceeds 2d cannot have
a consensus. We say a set of sequences S is pairwise bounded if for all sequences
a, b ∈ S, H(a, b) ≤ 2d. Thus, the Consensus Sequence problem essentially
reduces to discerning between pairwise bounded sets that have a consensus, and
if so, finding one such sequence s∗, and those that do not. A set of sequences S

A. Amir, A. Turpin, and A. Moffat (Eds.): SPIRE 2008, LNCS 5280, pp. 269–281, 2008.
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is a motif set if there exists a consensus sequence, s∗. We say set S is a decoy set
if S is pairwise bounded but does not have a consensus.

These problems – motif recognition and Consensus Sequence – have an
extensive number of applications, due to the fact that many problems aim to
determine if a set of sequences has a specific measure of similarity. For example,
the Consensus Sequence problem arises in areas such as coding theory [3,5],
data compression [6], and bioinformatics [7,8,10]. In the context of coding the-
ory, a well-known problem related to Consensus Sequence asks if there exists
a code that is not too far away from a given set of codes [3,5]. Given its ap-
plicability, the Consensus Sequence problem needs to be solved efficiently in
practice. Li et al. [12] present a polynomial-time approximation scheme (PTAS)
for Consensus Sequence. For a given value of r, all choices of r subsequences
of length l are considered from the n sequences. The algorithm has O(l(nm)r+1)
run time, which is polynomial for any constant r. Many researchers have studied
the algorithm due to Li et al. [12]; for a variant of Consensus Sequence there
are known “weak” instances for which the approximation ratio is 1 + Θ(1/

√
r)

[1], and “strong” instances for which the PTAS will be guaranteed to determine
the correct answer in efficient time [2].

Another approach is to investigate the parameterized complexity of Consen-
sus Sequence. A problem ϕ is said to be fixed-parameter tractable (FPT) with
respect to parameter k if there exists an algorithm that solves ϕ in f(k) · nO(1)

time, where f is a function of k that is independent of n [8]. Gramm et al. [7]
demonstrate that Consensus Sequence is FPT when the number of sequences
remains fixed: the problem is polynomial-time solvable with a fixed number of
sequences. This FPT result is based on an Integer Linear Programming (ILP)
formulation with a constant number of variables (assuming n is fixed), and the
application of the result of Lenstra [11], which states that ILP is polynomial-
time solvable when the number of variables remains fixed. Unfortunately, such
an ILP formulation is only of theoretical interest since the corresponding algo-
rithms lead to very long running times even when the number of sequences is
small (e.g., four sequences over a binary alphabet). Other parameterizations of
the Consensus Sequence also exist; for example, when d is fixed, the problem
can be solved in O(nl + nd(d + 1)d) time [8].

Gramm et al. [7] and Sze et al. [14] give direct (non-ILP based) combinatorial
algorithms for solving Consensus Sequence exactly for three sequences. The
algorithm of the former authors considers the possible combinations of alphabet
symbols that can occur for three sequences, then specifies conditions for which
a consensus sequence can be constructed [7]. Sze et al. [14] give a counting
argument to demonstrate a condition for which a set of three sequences has a
consensus and when it does not. In fact, a stronger property applies to binary
sequences: any three pairwise-bounded binary sequences have a consensus.

Gramm et al. state that the problem of finding an efficient polynomial-time
algorithm for solving Consensus Sequence on a set of four sequences remains
open “due to the enormous combinatorial complexity [of the ILP-based solution]”
[8, p. 13]. We resolve this open problem for binary sequences; specifically, we
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give an exact combinatorial algorithm for four binary sequences. This result
is inspired by the combinatorial decomposition theorem for decoy sets that is
also presented, which demonstrates that each decoy set can be characterized
by containing two specific subsequences. Our aim is that these results might
be extended to resolve the more general Consensus Sequence problem, in
particular, for the four-symbol DNA alphabet, or for more than four sequences.

2 Preliminaries

We begin with some definitions concerning general sequence analysis. Let l, d ≤ l,
and n be positive integers and σi be a function that returns the ith symbol in a
sequence. For any symbol β ∈ Γ let βl denote the l-length sequence of all β’s.
Given a set of sequences S = {s1, . . . , sn}, each of which has length l, the ith
column refers to the column vector ci = [σi(s1), . . . , σi(sn)]T in the n× l matrix
representation of S. A sequence s∗ is an optimal sequence for S if and only if
there is no sequence s∗2 with maxi=1,...,n H(s∗2, si) < maxi=1,...,n H(s∗, si). Note
that the optimal sequence for S is not unique; there may exist multiple. We
formally define the Consensus Sequence problem as follows:

Consensus Sequence
Instance: a set of n sequences, S = {s1, s2, . . . , sn} over an alphabet Γ , each
of length l, and a positive integer d.
Find: a l-length sequence s∗ over alphabet Γ where H(s∗, si) ≤ d for every si

in S, or declare that no such s∗ exists.

The difficulty of Consensus Sequence lies in distinguishing between decoy
and valid motifs. In the context of coding theory, Frances and Litman show
that Consensus Sequence remains NP-hard even when restricted to a binary
alphabet; in this case, they refer to the corresponding problem as Radius De-
cision [5]. We will be interested in the cardinality of a decoy set, that is, the
number of sequences contained in the set. We say set Ŝ ⊆ S is a decoy of minimal
cardinality if Ŝ is a decoy set such that for all S′ ⊆ S, if |S′| < |Ŝ|, then S′ has
a consensus.

Gramm et al. [7] refer to the process of permuting the columns of S such that
these are grouped by column type as “normalization”. A normalized instance can
be derived from the input set of sequences by a simple linear-time algorithm.
Given an optimal sequence for the normalized set of sequences, the inverse of
this same permutation returns an optimal sequence for the original input [7].

Definitions Specific to Sets of Cardinality Four: Given a set S = {s1,
. . . , s4} of binary sequences, the symbols in each column have either two, three, or
four matching symbols. Sixteen types of columns are possible in general. We say
a column belongs to group i if it has exactly i matching symbols. To reduce the
number of possible types to eight, suppose without loss of generality that s4 = βl.
Equivalently, create a new set S′ by performing a logical exclusive-or of each
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Table 1. The values λαββ through λααβ denote the number of columns of each type
in groups three and two. The symbol “-” implies that the value is undefined at these
columns.

Group Four Three Two
# of columns. λβββ λαββ λβαβ λββα λααα λβαα λαβα λααβ

s1 β α β β α β α α
s2 β β α β α α β α
s3 β β β α α α α β
s4 β β β β β β β β

maji β β β β α - - -

sequence in S with s4 (say α corresponds to boolean true). A consensus sequence
for S is found by performing another exclusive-or on a consensus sequence for S′.
Let λabc denote the number of instances of column (a, b, c, β)T , where a, b, c ∈
{α, β}. See Table 1. Note that only columns of group three and two need to
be considered, since any optimal sequence will have the majority vote at each
column of group four. A pair of columns are considered to be identical if a pair of
sequences in one column mismatch if and only if the same sequences mismatch
in the second column. For example the column [ααββ]T is identical to [ββαα]T ,
but neither is identical to [αββα]T .

Let maji denote the majority of the four symbols in column i. That is, maji =
α if symbol α occurs three or more times in column i and maji = β if symbol
β occurs three or more times; maji is undefined if α and β each occur twice.
Assuming that s4 = βl, only the columns associated with λααα are such that
maji = α.

3 Ubiquitousness or Rareness of Bounded Decoy Sets

In this section, we consider the relative frequency, or infrequency, of decoy sets
that do not have a proper subset that is also a decoy. Our empirical results
demonstrate that the relative frequency of such decoy sets is minimal, and that
the majority of decoy sets contain a decoy subset of cardinality four. Still, the
results of Gramm et al. [8] imply that we cannot characterize all decoy sets of
arbitrary size n as having a proper subset that is a decoy. We refer to a set Q
of decoys, each of cardinality n, as having decoys of bounded cardinality if every
decoy in Q has a proper subset that is a decoy.

Proposition 1. Let Γ denote an alphabet of arbitrary fixed size. If P �= NP ,
then for any n0 there exist a decoy set S such that every subset of S of cardinality
n0 has a consensus.

Proof. Suppose otherwise. That is, there exists an n0 such that every decoy S of
size n ≥ n0 has a subset of size n0 that is a decoy. By Gramm et al. [8], for any
fixed n0, there exists an algorithm that decides whether a set of n0 sequences
is a decoy in f(l, d) time, where f(l, d) is polynomial in l and d. Consequently,
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for any set of n ≥ n0 sequences S, we can check each of the
(

n
n0

)
subsets of S

of size n0 to determine whether any is a decoy in time O(nn0f(l, d))). That is,
we can determine in polynomial time whether S is a decoy. Since Consensus
Sequence is NP-complete, this is possible only if P = NP. �

It should be noted that this corollary does not preclude the fact that there may
exist values of n where all decoys of cardinality n have the cardinality of the
minimal decoy also as n. What the result implies is that there does not exist a
threshold γ such that for all values of n greater than γ the minimal decoy sets
have bounded cardinality below γ, if P �= NP . Although Proposition 1 implies
that no fixed n0 exists, we conjecture that most decoys have a subset of size
four that is a decoy. We provide evidence toward this property with an empirical
study on random sets of binary sequences which we now describe. In turn, these
results motivate the need for an efficient algorithm for determining whether a set
of four sequences is a consensus; we describe such an algorithm in Section 4.2.

We empirically investigate the rarity of the occurrence of decoy sets of cardi-
nality n for which the cardinality of a minimal decoy set is large relative to n. We
sampled without replacement 1000 times from the set of all possible pairwise-
bounded sets of binary, l-length sequences; each set sampled has exactly n se-
quences taken from the binary alphabet. We varied the values for n, l and d. For
each sample set, we determined whether the set is a decoy or a valid motif, with
respect to the value of d, and determined the cardinality of the minimum decoy
set. We repeated this experiment 10 times and calculated the mean values ob-
tained. Table 2 outlines this data. One significant empirical trend demonstrates
that as the number of sequences increased, the number of decoys that do not
contain a minimal decoy of cardinality four became exponentially smaller; when

Table 2. Data obtained from calculating the average of 10 experiments that obtain
a random sample, without replacement, of 1000 sequence sets and determine the size
of the minimal decoy contained in each set decoy obtained in the sample. The first
column is the cardinality of the minimum decoy set.

No. of l = 8, d = 3 l = 10, d = 3 l = 15, d = 4
sequences n = 6 n = 10 n = 12 n = 6 n = 10 n = 12 n = 6 n = 10 n = 12

No. of valid 443.4 4.6 88.7 394.4 9.3 3.6 101.4 3.5 2.6
motif

4 542.2 995.4 991.3 605.6 990.7 996.4 898.6 996.5 997.4
5 12.4 0 0 7 0 0 4.1 0 0
6 2 0 0 0.2 0 0 0.8 0 0
7 - 0 0 - 0 0 - 0 0
8 - 0 0 - 0 0 - 0 0
9 - 0 0 - 0 0 - 0 0
10 - 0 0 - 0 0 - 0 0
11 - - 0 - - 0 - - 0
12 - - 0 - - 0 - - 0
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n was 10 and 12 the number of minimal decoys of size larger than four was 0.
The only value of n for which decoys of size n were seen was 6. Further, the
total number of decoys in 900,000 set of sequences sampled were approximately
1,500 in total. In summary, the empirical results appear to indicate that a large
percentage of binary decoys can be characterized by containing a minimal decoy
set of size four, the smallest size possible, further motivating the main results in
this paper.

4 Investigating Binary Decoy Sets of Cardinality Four

Gramm et al. [7] suggest that a direct combinatorial approach to solve Consen-
sus Sequence where n is fixed would be of practical and theoretical interest.
Here we focus on partially resolving this open problem. We restrict interest to
binary decoy sets of cardinality four, give a decomposition theorem and a linear-
time, exact algorithm for these instances. We first prove that all binary sets of
cardinality four can be decomposed into subsequences that have a specific char-
acterization. The linear-time exact algorithm considers all possible combinations
of symbols from the binary alphabet, and sequentially constructs a consensus or
returns that no consensus exists.

4.1 A Decomposition Theorem

We will prove that each decoy of cardinality four can be decomposed into two
subsequences that have a specific characterization. We begin by presenting the
terminology and notation used to define these two subsequences. We define an
αβ-set for an alphabet {α, β} as the set of all possible sequences of length two,
that is, the set {αα, αβ, βα, ββ}. Given a set S = {s1, s2, s3, s4} of cardinality
four, we refer to S as containing an αβ-set if there are distinct indices i and j
where the set of subsequences defined by columns i and j of S is an αβ-set. For
example, the set of four sequences {ααβ, αββ, βαα, βββ} contains an αβ-set at
the first two columns. Next, we refer to a sequence s as adequately far if there
exists a sequence, say s1 ∈ S, such that H(s, s1) = d − 1, and for all si ∈ S the
distance H(si, s) is equal to either d − 1 or d. We refer to a sequence s2 as too
close if there exists some si ∈ S with H(s2, si) ≤ d−2 and H(s2, si) ≤ d−1, for
all si ∈ S. Putting these definitions together, we obtain the following property:

Definition 1. (Characterization of decoys of cardinality four) A set of
binary sequences S has property D if the following conditions hold:

1. S has an αβ-set realised at indices i and j, and
2. each optimal sequence for S′, the set of sequences obtained from S by remov-

ing the columns i and j, is adequately far.

We require Lemma 1 to prove our combinatorial decomposition theorem. The
proof is omitted due to space constraints. We illustrate an example of property
D in Figure 1: a decoy set where all sequences that have distance to the closest
sequence equal to d − 1 and an αβ-set at the last two columns.
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Fig. 1. Illustrates a decoy set such that optimal sequence to the set of sequences ob-
tained from S by removing the last two columns that have the αβ-set, is adequately
far, and more specifically each has distance equal to d − 1 to the optimal sequence

Lemma 1. Assume d ≥ 2, l ≥ 2 and Γ = {α, β}. Every decoy set S of cardi-
nality four contains an αβ-set.

Theorem 1. (Decomposition theorem for cardinality four) Assume d ≥
2, l ≥ 2 and Γ = {α, β}. A set S of cardinality four is a decoy if and only if
there exists a set of subsequences contained in S such that property D holds.

Lastly, we demonstrate the following result about the existence of an unique
consensus for sets of arbitrary cardinality. It seems natural that as the cardinality
of a valid motif set S increases relative to d, the number of consensuses for S
decreases. As we observe in Proposition 2, a valid motif set of maximal cardinality
has an unique consensus when d < l.

Proposition 2. If a set S has a consensus but no superset of S has a consensus,
then either:

1. d < l and S has a unique consensus, or
2. d ≥ l and S is the set of all possible binary sequences of length l, each of

which is a consensus for S.

Proof. Case 1. Assume d < l. Assume S has two distinct consensuses, denoted
by a and b. Since no superset of S has a consensus, all sequences c such that
H(a, c) ≤ d must be in S. The same holds for all sequences e such that H(b, e) ≤
d. Furthermore, sequences a and b must be in S. Consequently, H(a, b) ≤ d. Let
δ = H(a, b). Without loss of generality, assume that a and b differ in the first δ
bits. Let f denote a binary sequence that agrees with a in the first δ bits, differs
from a in the next d bits, and agrees with a in any remaining bits. Observe that
H(f, b) = H(f, a) + H(a, b) = d + δ > d. Consequently, f is not in S. Since
H(a, f) ≤ d, sequence a is a consensus of S ∪ {f}. This derives a contradiction;
our assumption must be false and the consensus of S must be unique.

Case 2. Assume d ≥ l. Any two binary sequences of length l differ in at most
l bits. Since no superset of S has a consensus, S = Γ l. �

In some cases, a set of sequences S that has a consensus does not have a decoy
as a superset whereas in other cases, every pairwise bounded superset of S is
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a decoy. For example, let d = 1, let S = {ββββ, ββαα, βαβα, αββα}, and let
S′ = {ββββ, βββα, ββαα}.

4.2 Finding a Consensus for a Set of Four Sequences

As motivated in Section 1, the only previous polynomial-time solution for finding
a consensus of a set of four sequences [8] was intended more to demonstrate
the fixed-parameterized tractability of the problem rather than to provide an
efficient solution. As acknowledged by its authors, the corresponding description
(for which many details are omitted) results in an algorithm with extremely high
(although theoretically linear) run time and, furthermore, does not lend itself
well to simple or practical implementation. In this section, we present a simple
linear-time algorithm for finding a consensus of a set of four binary sequences or
determining that the set is a decoy. After describing the algorithm, we prove its
correctness and show its worst-case run time is O(l) for any arbitrary d.

Given a set of binary sequences S = {s1, . . . , s4}, algorithm BinaryConsen-
sus4 identifies a consensus sequence s∗ for S if one exists. Again, to simplify the
algorithm’s, description suppose s4 = βl. The algorithm greedily assigns symbols
to s∗, one symbol at a time. Each column ci is initially considered to be free; that
is, no symbol has been assigned to σi(s∗). Once it is assigned a symbol, we say
column ci is fixed and its value is not modified again. The algorithm has three
phases in which columns of groups four, three, and two are fixed, respectively.

Phase One. Fix symbols of s∗ in all columns of group four such that these
agree with the symbol of the corresponding column.

Phase Two. The symbols of s∗ in columns of group three are fixed sequentially.
Say the first i− 1 columns of group three have been fixed and consider consider
the ith such column. Let sj denote the sequence of S that disagrees with the
remaining three sequences in this column. Let s+ denote the sequence given by
the symbols of s∗ in the fixed columns and the symbols of sj in the free columns.
If s+ is a consensus for S, then let s∗ = s+ and return s∗. Otherwise, fix the
current column of s∗ to agree with the majority and continue to the next column
of group three.

Phase Three. If phase three is reached, then only columns of group two remain,
of which at most three types may be present. The free columns are fixed by
selecting the number of columns of each type that will be assigned symbol α
versus β. That is, a solution for columns of group two corresponds to a triple
of integers (x, y, z), where x ∈ [0, λβαα] denotes the number of columns of type
λβαα that will be assigned the symbol α and λβαα−x represents the number that
will be assigned the symbol β. The variables y and z are defined analogously.
See Table 3. We denote the corresponding sequence by s∗x,y,z. Therefore, the
problem reduces to identifying an integer triple (x, y, z) selected from the region
R = [0, λβαα] × [0, λαβα] × [0, λααβ ] that minimizes

f(x, y, z) = max
si∈S

H(si, s
∗
x,y,z), (1)
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where

H(s1, s
∗) = λαββ + x + λαβα − y + λααβ − z, (2a)

H(s2, s
∗) = λβαβ + λβαα − x + y + λααβ − z, (2b)

H(s3, s
∗) = λββα + λβαα − x + λαβα − y + z, (2c)

H(s4, s
∗) = λααα + x + y + z. (2d)

The sequence s∗x,y,z does not actually need to be constructed since the corre-
sponding value of (1) is obtained in constant time upon fixing values for x, y,
and z.

Table 3. The consensus s∗ found by algorithm BinaryConsensus4 (if one exists) is
displayed in the last row. The values λβββ through λααβ denote the number of columns
of each type and functions x, y, and z denote the number of occurrences of symbol α
in the corresponding column as derived by the algorithm.

Column Group Four Three Two
Algorithm Phase 1 2 3

Number of Columns λβββ λαββ λβαβ λββα λααα λβαα λαβα λααβ

Set S

s1 β α β β α β α α
s2 β β α β α α β α
s3 β β β α α α α β
s4 β β β β β β β β

Consensus s∗ β β β β α x y z

Instead of evaluating all integer combinations for (x, y, z) (requiring O(l3)
time), we identify a set T ⊆ Q3∩R containing a constant number of triples such
that the optimal (possibly non-integer) solution to (1) is a triple in T . Interpreted
geometrically, (2a) through (2d) correspond to four respective hyperplanes in R4

whose maximum, f(x, y, z),, defines a surface. Let

x0 =
1
4

(−λαββ + λβαβ + λββα − λααα + 2λβαα) ,

y0 =
1
4

(λαββ − λβαβ + λββα − λααα + 2λαβα) ,

z0 =
1
4

(λαββ + λβαβ − λββα − λααα + 2λααβ) . (3)

If (x0, y0, z0) ∈ R, then let T = {(x0, y0, z0)}. Otherwise, let T denote the set of
triples that correspond to x-, y-, and z-coordinates of vertices of the intersection
of the surface defined by (1) with the boundary of R. If this intersection is empty,
then it follows that no consensus exists.

For each triple (x, y, z) ∈ T , evaluate the integer triples within unit �∞ dis-
tance of (x, y, z) in region R. That is, for every (x, y, z) ∈ T , consider the integer
triples in [max(0, x − 1), min(x + 1, λβαα)] × [max(0, y − 1), min(y + 1, λαβα)] ×
[max(0, z − 1), min(z + 1, λααβ)], of which there are at most eight. Compute
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(1) for each such integer triple (x, y, z) and store the corresponding minimizing
sequence s∗x,y,z. Let s∗ = s∗x,y,z.

Termination. Consider the maximum distance between s∗ and a sequence in
S, i.e., the minimum (integer) value of (1). If this value is at most d, then s∗

is returned as a consensus sequence for S. Otherwise, S is a decoy set and no
consensus sequence exists.

We now demonstrate that algorithm BinaryConsensus4 correctly returns
a consensus s∗ for every set S that is a valid motif set. Furthermore, this is
achieved in O(l) time, independently of d. The proof of Theorem 2 refers to
Lemmas 2 and 3 which follow.

Theorem 2. Given any d ∈ Z+, any l ∈ Z+, and any set S of four binary
sequences of length l, algorithm BinaryConsensus4 returns a consensus for S
with degeneracy parameter d if one exists or returns that S is a decoy in O(l)
time.

Proof. The correctness of Phase 1 is straightforward. The correctness of Phase
2 follows by induction on i using Lemma 2. Consequently, if S has a consensus,
then either a consensus has been found by the end of Phase 2 (i.e., s∗ = s+), or
there exists a consensus s∗ such that σx(s∗) = majx for all columns of groups
three and four. The optimal solution for the remaining free columns is found in
Phase 3. The correctness of Phase 3 follows by Lemma 3. Therefore, algorithm
BinaryConsensus4 returns a consensus s∗ if one exists, and returns that no
consensus exists otherwise.

Each phase requires a single pass through the columns of S. Phase 1 simply
requires counting the number of columns of each type. Phase 2 also requires
maintaining the twelve distances H(si, s

+
j ) for each {i, j} ⊆ {1, . . . , 4}, where s+

j

denotes s+ for which the free columns are defined according to sj (as described in
Phase 2 of algorithm BinaryConsensus4). Every time a column of group three
is fixed, each of these twelve values can be updated in constant time. Phase 3
simply requires counting the number of columns of each type. Since (1) is defined
by the maximum of four hyperplanes and region R is bounded by three pairs
of parallel planes, the number of triples in T is constant and, furthermore, the
coordinates of these triples are straightforward to compute in constant time.
Finally, since any point in R3 has at most eight integer points within unit �∞
distance from it, the set of integer triples evaluated is also computed in constant
time and space. Therefore, algorithm BinaryConsensus4 terminates in O(l)
time. �

Definition 2 (Majority Rule Property). We say property P (i) holds for a
set S of four binary sequences if and only if either

1. S is a decoy, or
2. there exists a consensus of S for which the first i columns of group three have

value maji.
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Lemma 2. Let S = {s1, . . . , s4} denote a set of four binary sequences that has
m columns of group three. If P (i) holds for some i ∈ {0, . . . , m − 1} and sj ∈ S
denotes the sequence that mismatches in the (i+1)st column of group three, then
either

1. P (i + 1) holds for S, or
2. s+ is a consensus for S,

where σx(s+) = majx in the first i columns of group three and σx(s+) = σx(sj)
in the remaining columns.

Proof. If s+ is a consensus for S then the claim holds. Similarly, if S is a decoy
then P (i + 1) is true and the claim holds. Therefore, suppose S is not a decoy
and s+ is not a consensus for S. By P (i), S has a consensus s∗ for which the
first i columns of group three have value majx. Let k denote the index of the
(i + 1)st column of group three.

Case 1. Suppose σk(s∗) = majk. Therefore, P (i + 1) is true, and the claim
holds.

Case 2. Suppose σk(s∗) �= majk. That is, σk(s∗) = σk(sj). Since s+ is not a
consensus, s∗ and s+ must differ in at least one column; let k′ denote the index of
such a column. Let s∗∗ denote a sequence of length l such that σx(s∗∗) �= σx(s∗)
for x ∈ {k, k′} and σx(s∗∗) = σx(s∗) otherwise. That is, σk(s∗∗) = majk. Thus,
H(sj , s

∗∗) = H(sj , s
∗) and, furthermore,

∀x ∈ {1, . . . , 4}, H(sx, s∗∗) ≤ H(sx, s∗).

Therefore, s∗∗ is a consensus for S, P (i + 1) is true, and the claim holds. �

Lemma 3. There exists an integer triple (x, y, z)∈ [0, λβαα]×[0, λαβα]×[0, λααβ]
that minimizes (1) and is within unit �∞ distance from a triple in T , where set
T contains either (3) or the set of triples that correspond to vertices of the
intersection of the surface defined by (1) with the boundary of R.

Proof. Since no two of the hyperplanes induced by (2a) through (2d) are parallel,
f(x, y, z) is a convex function whose surface includes a unique simplicial vertex
located at the point of intersection of these four hyperplanes. Furthermore, this
point minimizes f(x, y, z) since f is increasing as it tends to infinity in any
direction. Thus, f(x, y, z) is minimized at a unique (possibly non-integer) point
found by solving for x, y, and z in

H(s1, s
∗) = H(s2, s

∗) = H(s3, s
∗) = H(s4, s

∗). (4)

The constraints of (4) corresponds to system of three linear equations with the
unique solution (3).

Since the coefficients of x in (2a) through (2d) are all ±1, function f(x, y, z)
has slope ±1 along the x-axis for any fixed y and z. The same holds for any
fixed x and y or any fixed x and z. Consequently, since f(x, y, z) is convex, a
minimum integer solution to (1) lies within unit �∞ distance of its non-integer
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solution. The set T contains either the unique minimum (3) (if it lies within
region R) or the set of triples that correspond to vertices of the intersection
of the surface defined by f(x, y, z) with the boundary of R, one of which must
minimize f(x, y, z) over R. Therefore, the claim holds. �

5 Conclusion

Motif recognition, in which the objective is to identify meaningful patterns in
biological data, is a fundamental problem of computational biology. We have ob-
tained a combinatorial characterization of the consensus problem for instances of
four binary sequences, and a linear-time algorithm for obtaining a consensus for
this restricted set of instances. Our results generalize previous work and answer
some open problems concerning Consensus Sequence [7]. We aim to general-
ize our current results to identify a combinatorial characterization of decoy sets
over larger alphabets. Such a generalization would invite many open problems
in motif recognition to be revisited, as their tractability might be determined
more concretely, opening the possibility for more efficient algorithmic solutions.
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Abstract. Let a seed, S, be a string from the alphabet {1, ∗}, of arbi-
trary length k, which starts and ends with a 1. For example, S = 11 ∗ 1.
S occurs in a binary string T at position h if the length k substring of T
ending at position h contains a 1 in every position where there is a 1 in
S. We say that the 1s at the corresponding positions in T are covered. We
are interested in calculating the probability distribution for the number
of 1s covered by a seed S in an iid Bernoulli string of length n with prob-
ability of 1 equal to p. We refer to this new probability distribution as
CnSp, for covered, with S being the seed. We present an efficient method
to calculate this distribution exactly. Covered 1s represent matching po-
sitions detected in DNA sequences when using multiple hits of a spaced
seed. Knowledge of the distribution provides a statistical threshold for
distinguishing true homologies from randomly matching sequences.

1 Introduction

Let a seed, S, be a string from the alphabet {1, ∗}, of arbitrary length k, which
starts and ends with a 1. For example, S = 11∗1 with length, k = 4. S occurs in
a binary string T at position h if the length l substring of T ending at position
h contains a 1 in every position where there is a 1 in S. We say that the 1s at
the corresponding positions in T are covered.

More formally, let S = s1, . . . , sk, and T = t1, . . . , tn. Then S occurs at
position h in T if for every i ∈ [1..k] if si = 1 then th−k+i = 1. A 1 at tj is
covered by S if there exists some h and i such that S occurs at position h in T ,
si = 1, and j = h − k + i. For example, if T = 101101111 and S = 11 ∗ 1, then
S occurs in T at positions 6 and 9. Five 1s in T are covered, those at positions
3, 4, 6, 7, and 9:

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1

1 1 * 1 1 1 * 1
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We are interested in calculating the probability distribution for the number of
1s covered by a seed S in binary strings of length n randomly generated by
an iid (independent and identically distributed) Bernoulli process with p equal
to the probability of 1 (success). For a contiguous seed (consisting entirely of
1s, for example S = 111), this reduces to the Rnkp probability distribution for
the number of 1s which occur in runs of length k or longer (k is the number
of 1s in S) in an iid Bernoulli string of length n [4,8]. For an example of these
distributions, see figure 3. We will refer to the new probability distribution as
CnSp, for covered, with S being the seed.

The Rnkp distribution has proven useful as a criterion for detecting tandem
and inverted repeats in DNA sequences [2,11]. In those applications, the binary
string (here called the representative string) represents a gapless alignment be-
tween two homologous sequences (homologous means that the sequences have a
common evolutionary ancestor) which have undergone random point mutations.
As in the example below, a 1 represents a position where the two sequences
remain the same and a 0 represents a position where they differ.

Sequence 1: A C G T G C G T A A T T T C G

Sequence 2: A C C A G C T T T A T T C C G

Representative string: 1 1 0 0 1 1 0 1 0 1 1 1 0 1 1

The parameter p models the expected probability that any two aligned posi-
tions (i.e. in a column) remain the same. A typical assumption might be that
80% of the positions are expected to remain the same (i.e. p = 0.8).

Algorithms that seek to detect mutated homologous sequences typically start
by finding small matching words. A match is called a hit and each hit is tested
to see if it is part of an extended region of homology. The seed, S, describes the
shape of the small matching words. If S = 111, then in the example sequences
above, the nucleotide triplet ATT is considered a hit because it appears in both
sequences and shows up as 111 in the representative string. Hit testing for ex-
tended homology uses dynamic programming alignment or some approximation
to alignment and is usually the most costly step in homology detection programs.

While searching with seeds is an effective method, it suffers from a serious draw-
back. A short seed (in the example, three matching letters) will occur frequently
at random, especially in long genomic sequences, and as a result, too much time
is spent pointlessly extending hits. One solution to this problem involves using a
longer seed (say 11 or 12 letters), which significantly reduces the number of ran-
dom hits, but also reduces the sensitivity of the detection program because many
homologous sequences do not contain long unmutated stretches of nucleotides.

Another solution uses smaller seeds, but requires multiple seed hits clustered
closely together. This is where the Rnkp distribution comes in. It provides an
estimate for the expected number of matching aligned positions that participate
in those hits. This permits the setting of a reasonable threshhold criterion to
distinguish between clustered hits occurring randomly in unrelated sequences
and clustered hits occurring in homologous sequences. Fortuitously, the Rnkp

distribution for homologous sequences of distinct sizes can be obtained merely
by varying the parameter n.
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Spaced seeds. A few years ago, interest turned to spaced seeds [9,5,7,10] which
increase single hit sensitivity without simultaneously increasing the number of
random hits. While a contiguous seed, such as S = 111, is a short word, a spaced
seed consists of a number of explicit positions which must match separated by
“don’t care” positions which may or may not match. The seed 11 ∗ 1 at the
beginning of this section is a spaced seed. The 1s indicate matching positions
and the * indicates a wildcard position which may align with either a 1 or
0 (match or mismatch) in the representative string. In the aligned sequences
above, the string pairs (GCGT, GCTT) and (TTTC,TTCC) are hits for the
seed 11 ∗ 1 because in each pair, the first, second, and fourth letters match.

Spaced seeds have been studied primarily in terms of a single hit paradigm,
in part, because there was no straightforward way to compute the distribution
CnSp. In this paper, we present an efficient method to calculate this distribution
exactly, which also yields an efficient method for the exact computation of the
Rnkp distribution. (On the way to this result, we developed a less efficient method
for calculating the distribution, presented in [3].)

Importantly, our method is probability independent in that the calculation
yields a formula in terms of the probability parameter p, and does not require
fixing the value of p in advance. Previous methods for computing Rnkp have all
required that p be specified in advance, and in that case, if the model parameter p
changes, then the computation must be run again. The probability independent
method is based on probability equivalence classes which partition the set of
representative strings. This method has previously been used in a different form
by us to identify all optimal spaced seeds for single hit homology detection [10].
These seeds are optimal in the sense that they have the highest sensitivity of all
seeds with equivalent random hit probability.

Our coverage concept is similar to coverage defined in [6], although that paper
deals with minimum coverage using a fixed number of spaced seeds, rather than, as
here, a probability distribution on coverage for an unconstrained number of seeds.
A dynamic programming algorithm is presented in [6] (which is similar in some
ways to [3]) for computing minimum number of spaced seeds which hit alignments
in which the number of mismatches is fixed. This minimum number of seeds is then
used to compute a minimum coverage with a branch and bound algorithm.

The remainder of the paper is organized as follows. In section 2 we show how to
efficiently calculate CnSp, first in the probability independent manner, and then
in the probability dependent manner. We give time and space complexities for the
calculation on spaced and contiguous seeds. In section 3 we show how to modify the
calculation to restrict the distribution to binary strings that represent confirmable
alignments in the hit extension phase of a homology detection program. Finally in
section 4 we present several graphs illustrating the distribution.

2 Methods

Probability equivalence classes. Binary strings (representative strings)
which have the same probability, when the success probability parameter p is
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specified, belong to the same probability equivalence class. For strings of length
n, there are n + 1 classes, corresponding to the possible number of 1s, i.e.
0, 1, 2, . . . , n. For example, when n=100, each string with 70 1s, no matter how
arranged, has probability p70(1 − p)30.

For the purposes of this work, we further divide the equivalence classes. Let

X[n, i, j, b]

be the number of binary strings with i ones, j of which are covered by a given
seed S when considering all strings of length n such that the strings all begin
with the same prefix, represented by X , and all have the same initial covered
positions, as indicated by b. For example if X represents 111111, and b = 10101,
then all the strings counted in X [n, i, j, b] start with 11111 and all have positions
1, 3, and 5 covered and positions 2 and 4 uncovered.

Modified Aho-Corasick tree data structure. Our data structure for count-
ing strings in the equivalence classes is a simple modification of the Aho-Corasick
tree (AC tree [1]) built on the patterns of the seed S. A pattern of a seed is any
string of 1’s and 0’s which is obtained by replacing each wildcard in the seed by
either a 1 or 0. For a seed with r stars, there are 2r patterns.

The AC tree is modified as follows. Refer to figure 1. In a normal AC tree, one
unlabeled directed fail edge exits every node. We dispense with these edges and
for each node which now has less than two out edges, referred to as a fail node,
we add one or two new directed fail edges to bring the total number of out edges
to two. Each new fail edge is labeled with either a 0 or a 1 such that the two out
edges at each node have distinct labels. Each fail edge terminates on a fail-to
node determined as follows. Let the node string for node X be the concatenation
of edge labels from the root to X . The node string has length depth(X), where
the root has depth zero. If X is a fail node and the new fail edge out of X has
label σ, then the fail-to node, Y , is the node whose node string is the longest
proper suffix of the node string for X concatenated with σ.

Fail nodes and fail-to nodes are here called marked nodes. The X in the
probability equivalence class notation above is a marked node in the AC tree.
The string represented by X is the node string for X . b is a binary string of
length min(depth(X)− 1, 0) which indicates a possible pattern of initial covered
positions in a string that starts with the node string for X . For example, in
figure 1, the node string for node X is 111111, and one possible pattern of
covered positions is b = 10101.

The root, R, of the AC tree is a special node. It’s probability equivalence
class holds all the information necessary to determine CnSp. If we fix n, p, S,
and j (and realize that b for the root is the empty string bε), then the combined
probability of all strings which have j covered 1s is

nX
i=j

(R[n, i, j, bε]) pi(1 − p)n−i.

Allowing j to vary and summing the terms as above gives us CnSp directly.
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Fig. 1. Left: Modified Aho-Corasick tree for seed 1*1**1. Fail edges are shown for
nodes X, Y , W , and R (labeled with ���.) Right: Idea for recursion. Node string to X
followed by label σ of edge from X to Y replaces node string to Y in one set of strings
through Y .

2.1 Recurrence Formula

Recurrence idea. The calculation of X [n, i, j, b] for any marked node X is
accomplished using a dynamic programming recurrence. We assume that the
counts in the equivalence classes for each marked node for string lengths from 1
to n−1 have been computed. Each equivalence class saves some additional infor-
mation about the extreme left ends of its strings (the prefix string represented
by X and the coverage pattern by b). Then, inductively, computing an equiva-
lence class for strings of length n consists of following out edges from node X in
the AC tree, and accumulating the counts in the equivalence classes down those
edges. The effect is to substitute the node string for X in place of an existing
prefix, possibly resulting in some additional covered bits (figure 1).

Computing the equivalence class counts. Assume that the recurrence is
being computed for marked node X . It has two out edges and depending on X ,
each out edge is either a fail edge or an edge included in the original AC tree as
follows:

• two fail edges (X is a leaf)
• one fail edge and one edge included in the AC tree (X is an internal node

preceding a 1 in the seed)
• two edges included in the AC tree (X is an internal node preceding a * in

the seed)
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The recurrence formula for X depends on its node type. For brevity, we show the
formula for the second category above. The fail edge yields a summation using
information stored at the fail-to node Y . The AC tree edge yields a summation
using information stored at one or more marked descendant nodes Z1, Z2, . . .
(the first marked descendant nodes down any path below X in the AC tree
edge). An explanation for the notation is given after the formula. Note that the
base cases are omitted due to space limitations.

∀i ∈ [0, n], j ∈ [0, i], bx ∈ Bx

X[n, i, j, bx] =
X

by∈BFy(bx)

Y [n − ddxy, i − odxy, j − cv(by), by ]

+

X
Zl, l∈{1,2,...}

0
@ X

bzl
∈BDzl

(bx)

Zl[n, i, j, bzl ]

1
A .

(1)

Depth difference: The difference in recursion level between the nodes as de-
termined by the AC tree.

ddxy = depth(X) + 1 − depth(Y).

For example, in figure 1 ddxy = 2. The 1 in the formula accounts for the fail
edge from X to Y.

Ones difference: The increase in 1s in the strings of the equivalence class when
substituting the node string for X followed by the fail edge label (depth(X)
+ 1 bits) for the node string to Y (the leftmost depth(Y ) bits).

odxy = ones(X) + I − ones(Y ) where I =
{

1 if edge XY is labeled 1
0 if edge XY is labeled 0

where ones(X) is the number of 1s in X .

Covered difference: The increase in covered positions when replacing the left-
most bits as above. Note that there is only an increase if X is a leaf, otherwise
there are no new covered positions. An example is shown on the left side of
figure 2.

cv(by) =
{

number of 1 bits in ([bs OR by] XOR by) if X is a leaf
0 if X is not a leaf

where

• bs is the bit string obtained from the seed S by replacing every star (*) by 0.
These are the positions covered by an occurrence of the seed. For example,
if S = 1 ∗ 1 ∗ ∗1, then bs = 101001.

• in the OR and XOR operations, by is left filled with zeros so that it contains
as many bits as bs,
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101001 b_s 101110 b_x right filled with zeros

OR 001010 b_y OR* 101001 b_s

--------- ---------

101011 *0*11*

XOR 001010 b_y *11* rightmost 4 positions

--------- (length of strings in B_y)

100001

number of 1 bits = 2 {*11*} = {0110, 0111, 1110, 1111}

and intersection with B_y yields {1111}

Fig. 2. Left: Example of cv(by) calculation. S = 1 ∗ 1 ∗ ∗1, by = 1010, and X is a leaf.
Then bs = 101001 and by left filled with zeros is 001010. The number of 1 bits in 100001
is 2 so cv(1010) = 2, which means replacing the node string to Y with the node string
to X followed by the label of the fail edge from X to Y yields two additional covered
1’s. Right: Example of the calculation of the compatible subset BFy(bx) when X is a
leaf. S = 1 ∗ 1 ∗ ∗1, bx = 10111, By = {0000, 0101, 1010, 1011, 1111}. *11* produces
four strings, of which one string intersects with the set By .

Compatible subsets of bit strings: In equation 1, Bx is the set of bit strings
which indicate initial covered positions compatible with starting a string with
the node string for X . The bit strings in Bx have length depth(X) − 1. If this
value is negative, Bx only contains the empty string. For example, in figure 1
the compatible bit strings for node X are 10100, 10101, 10110, 10111, 11110 and
11111. For every marked node X , Bx can be determined by a recursive formula
based on the modified AC tree. Details are omitted.

BFy(bx) is the set of bit strings in By that can lead to bit string bx when
Y follows X along a fail edge (the F stands for fail edge). The method for
constructing the set depends on whether or not X is a leaf. Also, in some cases,
not all bx can be achieved down a fail edge to a particular Y . An example for
the case where X is a leaf is given on the right side of figure 2.

BFy(bx) = φ if truncate-right(depth(Y ) − 1, (bx XOR bs)) contains 1s

and X is a leaf.

otherwise

BFy(bx) =
{

By ∩ {pats-right(depth(Y ) − 1, (bx OR* bs))} if X is a leaf
By ∩ {pats-right(depth(Y ) − 1, (bx||∗))} if X is not a leaf

where

• φ is the empty set (not the same as the set containing the empty string),
• in the XOR and OR* operations, bx is right filled with zeros so that it

contains as many bits as bs,
• in the OR* operation, if bs is 1, the result is *, if bs is 0, the result is the

same as the bit in bx,
• truncate-right(v, s) removes the rightmost v bits from s,
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• pats-right(v, s) yields all patterns (bit strings) which can be generated from
a string s over the alphabet {∗, 0, 1} by replacing each * by a 0 or a 1. Only
the rightmost v bits are retained in each generated string.

• ∩ means intersection,
• || means concatenate,

BDz(bx) is the set of bit strings in Bz that can lead to bit string bx when Z
follows X along edges in the AC tree (the D stands for descendant).

BDz(bx) = Bz ∩ {pats-right(depth(Y ) − 1, (bx||∗depth(Z)− depth(X)))}

where

• ∗depth(Z)− depth(X) is a string of stars of length depth(Z)−depth(X).

2.2 Time and Space Complexity

Theorem 1. The CnSp distribution for strings of length n and a seed S of
length k with r stars can be computed in time O(2r(k − r + 1)n3Bmax), and
space O(2r(k − r + 1)(k + 2)n2B · Bmax) where B is the average size of the set
Bx for marked nodes X and Bmax is the size of the largest such set.

Although B and Bmax are potentially as large as 2k−1, (the bx coverage bit
strings are always 1 bit shorter than the depth of node X), in our calculations,
we have found that they are typically small integers.

Corollary 1. The Rnkp distribution for strings of length n and a seed S con-
sisting of k 1s can be computed in time O(kn3Bmax) and space O(2kn2B ·Bmax).

2.3 Probability Dependent Recursion

The recursion can be made probability dependent which requires picking p first.
The formulation is similar to that shown in equation 1, except the variable i
(the number of 1s in the strings), is omitted since equivalence classes now only
depend on the number of covered positions j. Also, the array elements hold
probabilities rather than sequence counts. Formulas are omitted due to space
limitations. The time and space complexities are reduced by a factor of n.

3 Restricting CnSp to Confirmable Alignments

The calculations described above assume that alignments of homologous se-
quences can be represented by all possible bit strings. Yet, representative strings
that contain too many 0s reflect homologies that can not be confirmed in the
hit extension step of homology detection programs because there are too many
mismatches. For example, ”homologous sequences” in which only 30% of the
positions match could never be confirmed because the alignment score would be
too low. Although the probabilities of representative strings that contain many
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(a) CnSp for seeds 11111 and 1 ∗ 11 ∗ 11 at p = 0.8 and n = 100.

(b) Cumulative CnSp for seeds 11111 and 1 ∗ 11 ∗ 11 at p = 0.8 and
n = 100. The small vertical lines mark the 5% threshold.

Fig. 3.

0s are relatively small when p is set high, for example, p = 0.8, these probabilities
nonetheless have a significant impact on the CnSp distribution as we now show.

We recalculated the CnSp distribution with a restriction that eliminates the
contribution from strings with many 0s. Different approaches are possible. We
chose to use the following. Define a representative string of length n, as con-
firmable if for every suffix of the bit string, of length ≥ nmin, the fraction of 1s is
≥ f . In the recurson arrays, this corresponds to the elements of X [n, i, j, bx] in
which i/n ≥ f . Therefore, to restrict our results to confirmable alignments, any
element of an array with n ≥ nmin that has a ratio i/n < f is not used at higher
recursion levels (and is therefore not computed). Note that the distribution CnSp

assumes that the total probability across all j is 1. Here we must normalize the
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(a) CnSp for seed 1 ∗ 11 ∗ 11 at ratio i/n >= 0.0, 0.6, 0.7, and 0.8
with p = 0.8 and n = 100 and nmin = 14.

(b) Normalized cumulative CnSp for seed 1∗11∗11 at ratio i/n >=
0.0, 0.6, 0.7, and 0.8 with p = 0.8 and n = 100 and nmin = 14 (twice
the seed length).

Fig. 4.

distribution so that the total probability is the sum of the probabilities of the
confirmable alignments.

4 Results

Figure 3(a) shows the exact probability distribution CnSp for two seeds, 11111,
and 1*11*11 for strings of length 100 and p = 0.8. These seeds have equal weight,
that is, they have equal expected probability of random hits (determined by the
number of 1s in the seed). As expected, the spaced seed which is more sensitive
in the single hit paradigm shifts the probability distribution to the right. Note
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that for seed 11111, CnSp is identical to the distribution Rnkp. The calculation
for the spaced seed took 5 seconds on a 64-bit system, dual, dual core 2.8GHZ
with 4GB RAM. Figure 3(b) shows the cumulative probabilities for the same
seeds shown in figure 3(a). For the purposes of DNA homology detection, the
threshold for number of matching positions detected to trigger a hit extension
is typically set at the 5% level of the distribution. Note the significant shift in
this threshold to a higher value for the spaced seed (47.5) over the contiguous
seed (38). Recall that the average number of 1s is 80 in these sequences.

Figure 4(a) shows the probability distribution CnSp for the seed 1∗11∗11 under
several assumptions for the ratio i/n ≥ f . Figure 4(b) shows the cumulative
probabilites. Note again the shift to a higher threshold as the value of f increases.

5 Conclusion

This paper presents a dynamic programming method for calculating the proba-
bility distribution CnSp exactly. The distribution describes the expected number
of 1s in a random bit string covered by occurrences of a spaced seed. The re-
currence is built on a modified Aho-Corasick tree data structure. Two methods
are presented. The first is probability independent, in that the time consuming
steps are performed before setting the parameter p, the probability of a match
between aligned positions in homologous sequences. Once completed, different
values of p can be selected and the calculation of CnSp proceeds quickly. The
second method is probability dependent and faster overall, but only applies to
a single value of p. An example shows the improvement in coverage of a spaced
seed over a contiguous seed of equal weight. Calculation of the distribution over
bit strings which represent confirmable alignments is discussed. An example il-
lustrates the increase in hit extension threshold value under this assumption.
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