


Lecture Notes in Artificial Intelligence 5325
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science



Stefano Carpin Itsuki Noda
Enrico Pagello Monica Reggiani
Oskar von Stryk (Eds.)

Simulation, Modeling,
and Programming
forAutonomous Robots

First International Conference, SIMPAR 2008
Venice, Italy, November 3-6, 2008
Proceedings

13



Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Stefano Carpin
University of California–Merced, Merced, CA, USA
E-mail: scarpin@ucmerced.edu

Itsuki Noda
AIST, Information Technology Research Institute, Tsukuba, Japan
E-mail: i.noda@aist.go.jp

Enrico Pagello
University of Padua, Padova, Italy
E-mail: epv@dei.unipd.it

Monica Reggiani
University of Padua, Vicenza, Italy
E-mail: monica.reggiani@unipd.it

Oskar von Stryk
Technische Universität Darmstadt, Darmstadt, Germany
E-mail: stryk@sim.tu-darmstadt.de

Library of Congress Control Number: 2008937919

CR Subject Classification (1998): I.2.9-11, I.2.6, I.6, F.1.1-2, K.4.3, H.5

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-89075-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-89075-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12561513 06/3180 5 4 3 2 1 0



Preface

The First International Conference on Simulation, Modeling, and Programming
for Autonomous Robots (SIMPAR 2008) was held during November 3-6, 2008,
in Venice, at Telecom Future Center, with a special session held in Padua, in
the Archivio Antico of the university.

The SIMPAR Conference was promoted to offer to a selected number of re-
searchers the possibility to discuss, in a highly stimulating atmosphere, how to
identify and solve the key issues necessary to ease the development of robot soft-
ware, and boost a smooth shifting of results from simulation to real applications.

Novel robotics applications driven by society and industry call for the devel-
opment of systems of ever-increasing complexity. Systems with sliding autonomy,
humanoid robots, distributed robots, and mobile sensor networks are just a few
examples of this exciting area. But unfortunately, steady improvements in robot
hardware have not been matched by corresponding advancements in robot soft-
ware. Besides fundamental open problems still waiting for sound answers, the
lack of broadly accepted and reusable development tools, libraries, standards,
and algorithms is one of the main technological obstacles towards the efficient
development of this new generation of robotics applications.

Hence, simulation environments able to replicate a robot’s sensing and motion
abilities and their interaction with the physical world are playing an essential role
in reducing the development time and cost of large-scale autonomous systems.
Notwithstanding, their use is still regarded by many as suspicious. Seamless
migration of code from general-purpose simulators to real-world systems is still
a rare circumstance, due to the complexity of robot, world, sensors, and actuators
modeling. The above challenges drive the quest for next-generation development
methods in robotics. We are convinced that SIMPAR has succeeded in giving
a first answer to this search, and it can be followed by proper scientific and
engineering actions in the near future.

This book collects 29 papers that were presented orally in Venice, selected
among a total of 42 that were submitted to the main single-track conference.
Seven papers address methodologies and environments of robot simulation, 11
refer to methodologies about autonomous robot programming and middleware,
and 11 describe applications and case studies. Each submitted paper received at
least two reviews by the members of a carefully selected international Program
Committee.

In addition, to enlarge the scientific attention towards particularly challeng-
ing environments, six workshops were offered: The Universe of RoboCup Simu-
lators; Standards and Common Platforms for Robotics; Omnidirectional Robot
Vision; Mini and Micro UAV for Security and Surveillance; Brain–Computer In-
terface; and Teaching with Robotics. Papers presented at these workshops were
collected in a CD-ROM edited separately, by Emanuele Menegatti. A Tutorial



VI Preface

on USARSim/MOAST was kindly offered by Stephen Balakirsky from the Na-
tional Institute of Standards and Technology. Two invited talks were also given
in Venice at the opening, by Herman Bruyninckx and Yoshi Nakamura, while
Hiroshi Ishiguro and Giulio Sandini gave invited talks in Padua, at a special
session organized on New Perspectives on Humanoids Research.

We want to gratefully thank Telecom Future Center for offering such a beau-
tiful ancient location, in the heart of the city of Venice. We also express our
gratitude to the Program Committee members and all other supporters, orga-
nizers, and volunteers who contributed in making SIMPAR possible. Without
their effort, it would not have been possible to run SIMPAR!

November 2008 Stefano Carpin
Itsuki Noda

Enrico Pagello
Monica Reggiani
Oskar von Stryk



Organization

Executive Committee

General Chair Enrico Pagello (University of Padua, Italy)
International Program Co-chairs

America Stefano Carpin (University of California,
Merced, USA)

Asia Itsuki Noda (AIST, Japan)
Europe Oskar von Stryk (Technische Universität

Darmstadt, Germany)
Local Chair Monica Reggiani (University of Padua, Italy)
Workshop Chair Emanuele Menegatti (University of Padua,

Italy)
Tutorial Chair Antonio Cisternino (University of Pisa, Italy)
Award Chair Paolo Fiorini (University of Verona, Italy)

Steering Committee

Hans-Dieter Burkhard Humboldt University, Berlin, Germany
Maria Gini University of Minnesota at Minneapolis, USA
Tamio Arai The University of Tokyo, Japan

Program Committee

America

Steve Balakirsky NIST, USA
Joseph Fernando Microsoft Research, USA
Andrew Howard Jet Propulsion Laboratory, USA
Mike Lewis University of Pittsburgh, USA
Michael Quinlan University of Texas at Austin, USA
Luis Sentis Stanford University, USA
Bill Smart Washington University in St. Louis, USA
Richard Vaughan Simon Fraser University, Canada

Asia

Noriaki Ando AIST, Japan
Joschka Boedecker Osaka University, Japan
XiaoPing Chen University of Science and Technology of China
Hyungsuck Cho KAIST, Korea
Takayuki Kanda ATR Intelligent Robotics & Communication Labs,

Japan



VIII Organization

Mohammed Jarrah American University of Sharjah, UAE
Alexei Makarenko Australian Centre for Field Robotics, USYD,

Australia
Takashi Minato Osaka University, Japan
Oliver Obst CSIRO, Sydney, Australia
Jun Ota University of Tokyo, Japan
Masaki Takahashi Keio University, Japan
Ryuichi Ueda The University of Tokyo, Japan
Changjiu Zhou Singapore Polytechnic

Europe

Rachid Alami LAAS/CNRS, France
Davide Brugali University of Bergamo, Italy
Sven Behnke University of Bonn, Germany
Berthold Baeuml DLR/Institute of Robotics and Mechatronics,

Germany
Andreas Birk Jacobs University Bremen, Germany
Antonio Chella University of Palermo, Italy
Alessandro Farinelli University of Southampton, UK
Giuseppina Gini Politecnico di Milano, Italy
Frans Groen University of Amsterdam, The Netherlands
Martin Huelse University of Wales, UK
Luca Iocchi University of Rome “La Sapienza”, Italy
Alexander Kleiner Albert-Ludwigs-Universität Freiburg, Germany
Gerhard Kraetzschmar FH Bonn-Rhein-Sieg, Germany
Pedro Lima Lisbon Technical University, Portugal
Olivier Michel Cyberbotics, Switzerland
Rezia Molfino University of Genoa, Italy
Mohan Sridharan University of Birmingham, UK
Antonio Sgorbissa University of Genoa, Italy

Additional Reviewers

F. Dalla Libera
C. Dornhege
J. Gaspar
V. Gazi

N. Greggio
B. MacDonald
M. Sartori
Z. Song

M. Sridharan
K. Tatsuno
T. Tsubouchi

Sponsoring Institutions

Telecom Italia, Italy
Department of Information Engineering, University of Padua, Italy
Istituto di Ingegneria Biomedica del CNR, Padua, Italy
University of Padua, Italy



Table of Contents

Invited Talks

Simulation, Modeling and Programming for Autonomous Robots: The
Open Source Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Herman Bruyninckx

Studies on Humanlike Robots – Humanoid, Android and Geminoid . . . . . 2
Hiroshi Ishiguro

Modeling, Understanding, and Interacting with Humans . . . . . . . . . . . . . . 3
Yoshihiko Nakamura

Humanoids, Brain and Cognitive Sciences . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Giulio Sandini

Simulation

XPERSim: A Simulator for Robot Learning by Experimentation . . . . . . . 5
Iman Awaad and Beatriz León

From Simulated to Real Scenarios: A Framework for Multi-UAVs . . . . . . 17
Andrea Cesetti, Adriano Mancini, Emanuele Frontoni,
Primo Zingaretti, and Sauro Longhi

Simulation of Multi-Robot Teams with Flexible Level of Detail . . . . . . . . 29
Martin Friedmann, Karen Petersen, and Oskar von Stryk

MM-ulator: Towards a Common Evaluation Platform for Mixed Mode
Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Matthias Kropff, Christian Reinl, Kim Listmann, Karen Petersen,
Katayon Radkhah, Faisal Karim Shaikh, Arthur Herzog,
Armin Strobel, Daniel Jacobi, and Oskar von Stryk

A Multi-agent 3D Simulation Environment for Clothing Industry . . . . . . 53
Rezia Molfino, Enrico Carca, Matteo Zoppi, Fabio Bonsignorio,
Massimo Callegari, Andrea Gabrielli, and Marco Principi

A Lunar Surface Operations Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Hari Nayar, Bob J. Balaram, Jonathan Cameron, Abhinandan Jain,
Christopher Lim, Rudranarayan Mukherjee, Stephen Peters,
Marc Pomerantz, Leonard Reder, Partha Shakkottai, and
Stephen Wall



X Table of Contents

YARS: A Physical 3D Simulator for Evolving Controllers for Real
Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Keyan Zahedi, Arndt von Twickel, and Frank Pasemann

Programming

A Software Platform for Component Based RT-System Development:
OpenRTM-Aist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Noriaki Ando, Takashi Suehiro, and Tetsuo Kotoku

A Software System for Robotic Learning by Experimentation . . . . . . . . . . 99
Iman Awaad, Ronny Hartanto, Beatriz León, and Paul Plöger

A Mobile Robot Control Framework: From Simulation to Reality . . . . . . 111
Stephen Balakirsky, Frederick M. Proctor,
Christopher J. Scrapper, and Thomas R. Kramer

Implementing Flexible Parallelism for Modular Self-reconfigurable
Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Mirko Bordignon, Lars Lindegaard Mikkelsen, and Ulrik Pagh Schultz

Real-Time Software for Mobile Robot Simulation and Experimentation
in Cooperative Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Andreu Corominas Murtra, Josep M. Mirats Tur,
Oscar Sandoval, and Alberto Sanfeliu

Knowledge Processing Middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Fredrik Heintz, Jonas Kvarnström, and Patrick Doherty

Towards Automated Online Diagnosis of Robot Navigation Software . . . . 159
Alexander Kleiner, Gerald Steinbauer, and Franz Wotawa

A Common Framework for Co-operative Robotics: An Open, Fault
Tolerant Architecture for Multi-league RoboCup Teams . . . . . . . . . . . . . . . 171

Lúıs Mota and Lúıs Paulo Reis

Multilevel Testing of Control Software for Teams of Autonomous
Mobile Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Sebastian Petters, Dirk Thomas, Martin Friedmann, and
Oskar von Stryk

ppPDC Communication Framework – A New Tool for Distributed
Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Grzegorz Polaków and Mieczyslaw Metzger

The Experimental Robotics Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
João Xavier and Helder Araújo



Table of Contents XI

Applications

Where Am I? A Simulated GPS Sensor for Outdoor Robotic
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Benjamin Balaguer and Stefano Carpin

An Emphatic Humanoid Robot with Emotional Latent Semantic
Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Antonio Chella, Giovanni Pilato, Rosario Sorbello, Giorgio Vassallo,
Francesco Cinquegrani, and Salvatore Maria Anzalone

Developing Robot Motions by Simulated Touch Sensors . . . . . . . . . . . . . . . 246
Fabio Dalla Libera, Takashi Minato, Hiroshi Ishiguro,
Enrico Pagello, and Emanuele Menegatti

3D Simulation of a Motorized Operation Microscope . . . . . . . . . . . . . . . . . 258
Markus Finke and Achim Schweikard

Real-Time Least-Square Fitting of Ellipses Applied to the RobotCub
Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Nicola Greggio, Luigi Manfredi, Cecilia Laschi, Paolo Dario, and
Maria Chiara Carrozza

An Introduction to a New Commentator for RoboCup 3D Soccer
Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Amin Habibi Shahri

Authority Sharing in a Swarm of UAVs: Simulation and Experiments
with Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

François Legras, Arnaud Glad, Olivier Simonin, and
François Charpillet

Rescue Robot Navigation: Static Stability Estimation in Random Step
Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Evgeni Magid, Kentaro Ozawa, Takashi Tsubouchi,
Eiji Koyanagi, and Tomoaki Yoshida

Performance Evaluation of Repeated Auctions for Robust Task
Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Maitreyi Nanjanath and Maria Gini

Conceptual Framework to Maintain Multiple and Floating Relationship
among Coordinate Reference Systems for Robotics . . . . . . . . . . . . . . . . . . . 328

Itsuki Noda, Hiroki Shimora, and Hidehisa Akiyama

Conceptual Design of a Power Distribution Line Maintenance Robot
Using a Developed CG Simulator and Experimental Robot System . . . . . 340

Kiyoshi Tsukahara, Yorihiko Tanaka, Yingxin He,
Toshihisa Miyamoto, and Kyouichi Tatsuno

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353



Simulation, Modeling and Programming for
Autonomous Robots: The Open Source

Perspective

Herman Bruyninckx

Katholieke Universiteit Leuven
Department of Mechanical Engineering

Celestijnenlaan 300B
B3001 Leuven

Belgium
http://people.mech.kuleuven.be/∼bruyninc
http://www.mech.kuleuven.be/robotics/acm/

Dr. Bruyninckx has been active in open source robot control software devel-
opment since the year 2000, and has created the Orocos project that targets
(realtime) simulation and control of complex robot systems. In this talk, he will
present a broad vision on which software components exist, or have still to be
developed, in open source, in order to reach an all-encompasing, powerful and
vertically integrated software stack that supports all possible aspects of advanced
robotics research and development. The talk gives an overview of current and
future projects that work towards these goals, and of the difficult problem of
having these projects work towards a common set of long-term objectives. The
presentation also indentifies several practical, technical, legal and commercial
hurdles, to be taken by participants (both academic and industrial) that are
part of the current open source ecosystems, or that are interested in becoming
part of such ecosystem.

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://people.mech.kuleuven.be/~bruyninc
http://www.mech.kuleuven.be/robotics/acm/


Studies on Humanlike Robots – Humanoid,
Android and Geminoid

Hiroshi Ishiguro

Department of Adaptive Machine Systems, Osaka University
ATR Intelligent Robotics and Communication Laboratories

JST ERATO ASADA Synergistic Intelligence System Project
ishiguro@ams.eng.osaka-u.ac.jp

http://www.ed.ams.eng.osaka-u.ac.jp

Why are we attracted to humanoids and androids? The answer is simple. We,
humans, always anthropomorphize targets of interaction. In other words, we
find a human itself in the humanoid. This is the reason why I am studying on
humanoids and androids.

I have encountered the uncanny valley problem when I have developed the
child android. Then, I have developed the female androids for compensating
the problem and studied on human likeness represented with the robot in both
of Robotics and Cognitive Science. However, a more serious problem is that
the android could not naturally talk with people because of lack of the perfect
AI. Therefore, I have developed the geminoid that is a tele-operated android
connected through the Internet and studied on human-like presence.

Recently, I am focusing on the complicated mechanism of the humanlike
robots and origin of the social intelligence that appears among humans and
robots. This talk will introduce the series of the humanlike robot studies and
discusses the fundamental issues.

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, p. 2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.ed.ams.eng.osaka-u.ac.jp


Modeling, Understanding, and Interacting with
Humans

Yoshihiko Nakamura

University of Tokyo
Department of Mechano-Informatics and

Information and Robotics Technology Research Initiative
nakamura@ynl.t.u-tokyo.ac.jp

http://www.ynl.t.u-tokyo.ac.jp

Machines and robots extend their frequency and quality of interaction with hu-
mans. Tools invented by humans have shown evolution in the history. One may
find a similar genealogical tree of tools to the evolution of life. Machines that
interact with humans based on understanding humans are in a sense the ul-
timate tools for humans. The advance of computational algorithms and mod-
eling technology in robotics encourages us making a challenge pursuing such
machines. My talk will highlight and introduce our recent research results on
emulating somatosensory sensation of humans, semiotics of human whole-body
motion patterns, and using them for machines interacting with humans.

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, p. 3, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.ynl.t.u-tokyo.ac.jp


Humanoids, Brain and Cognitive Sciences

Giulio Sandini

Department of Robotics, Brain and Cognitive Sciences
Italian Institute of Technology and

LIRA-Lab, University of Genoa

In the talk I will discuss how research on humanoid robots, cognition and brain
sciences can be seen as parts of a multidisciplinary, coordinated effort aimed at
advancing knowledge on the foundation of human intelligence and at develop-
ing new, human-centered technologies. The rationale stems from the observation
that developing human-like intelligence in artificial systems with human-like mor-
phology (humanoids) requires to address the same questions cognitive neurosci-
entists are asking through experimental investigations. Conversely understanding
human intelligence from all its multifaceted perspective can take advantage of the
realistic simulation allowed by the physical implementation of hardware models.
Within this framework I will present results of projects ongoing at the Depart-
ment of Robotics, Brain and Cognitive Sciences of IIT in the areas of humanoid
cognition, robotic rehabilitation and motor learning, multimodal sensory integra-
tion and brain machine interface.

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, p. 4, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



XPERSim: A Simulator for Robot Learning by
Experimentation�

Iman Awaad1 and Beatriz León2

1 Bonn-Rhein-Sieg University of Applied Science
Grantham-Allee 20, 53757 Sankt Augustin, Germany

iman.awaad@fh-bonn-rhein-sieg.de
2 Universitat Jaume I, Castellon de la Plana, Spain
beatriz.leon@smail.inf.fh-bonn-rhein-sieg.de

Abstract. In this paper, we present XPERSim, a 3D simulator built
on top of open source components that enables users to quickly and
easily construct an accurate and photo-realistic simulation for robots
of arbitrary morphology and their environments. While many existing
robot simulators provide a good dynamics simulation, they often lack
the high quality visualization that is now possible with general-purpose
hardware. XPERSim achieves such visualization by using the Object-
Oriented Graphics Rendering Engine 3D (Ogre) engine to render the
simulation whose dynamics are calculated using the Open Dynamics En-
gine (ODE). Through XPERSim’s integration into a component-based
software integration framework used for robotic learning by experimen-
tation, XPERSIF, and the use of the scene-oriented nature of the Ogre
engine, the simulation is distributed to numerous users that include re-
searchers and robotic components, thus enabling simultaneous, quasi-
realtime observation of the multiple-camera simulations.

1 Introduction

Robot simulators are widely used in the robotics field for different purposes.
They have mainly been used to design and test new robot models as well as
to develop the necessary software for running the robots, such as controllers or
behaviors. The simulation of multi-robot teams, for example, is a vital tool in
fields such as RoboCup [1], where the setting up of a whole team of robots is a
time-consuming task. The simulation can be run for as long as is needed and is
not limited by physical constraints such as battery life. In this way, simulation
also contributes to speeding up the pace of research. Where multi-robot teams

� The work described in this article has been partially funded by the European Com-
mission’s Sixth Framework Programme under contract no. 029427 as part of the
Specific Targeted Research Project XPERO (“Robotic Learning by Experimenta-
tion”). The authors thank Keyan Zahedi, Ronny Hartanto, Karl-Heinz Sylla and
Paul Plöger for their guidance and the researchers in the XPERO project for their
feedback and support.The authors gratefully acknowledge the reviewers’ comments.

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 5–16, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



6 I. Awaad and B. León

are concerned, a simulator that allows the testing of team behaviours is ideal.
A 2D simulator is often sufficient for this purpose. The field of evolutionary
robotics also relies heavily on simulation, as the time spans used for such pur-
poses are generally very long. In this special case, a fast simulation is the highest
priority.

The quality of a simulation is largely dependent on the physics engine which
calculates the dynamics of the simulation, and the rendering engine which is used
to visualize it. The results of the physics simulation are highly dependent on the
accuracy of the models which are provided by the user. There are many physics
engines available with varying quality and cost. Similarly, a wide variety of 3D
rendering engines also exist. The game industry has helped to advance the quality
of these engines to its current limits; to the point where open-source engines that
provide this exceptionally high-quality visualization are now available.

In the above-mentioned cases, the visualization of the simulation is used by
the researcher to observe the behavior of the robots and is not available to the
simulated robots themselves, e.g. for their vision processes (as is the case in the
XPERO project, which deals with robot learning by experimentation and for
which XPERSim was developed). Within the project, the simulation is used by
both the researchers and the robot itself. For the robot to function as expected,
its perception of its environment should be as realistic as possible, both dynam-
ically and visually. The dynamics of its environment must use accurate models
of friction, mass, forces, rigid body collisions, and so on. The dynamics have
to allow for an accurate simulation of the manipulation process itself. Realistic
visualization of this interaction with its environment is vital for the observation
and the perception processes. The robots use a variety of vision techniques and
mechanisms such as focus of attention and novelty detection which allow them
to autonomously find objects to experiment with. In order for these techniques
to be tested and used in a simulated environment, it is necessary that the visu-
alization be as realistic as possible. The use of lighting, shadows, textures and
the ability to simulate optical aberrations contribute to this realism and help
to ensure that the same algorithms which are streamlined in simulation may be
used in real world scenarios.

XPERSim provides a realistic and accurate physics simulation that is also
visually realistic at a reasonable computational cost. It achieves high quality
visualization by using the Ogre 3D engine [2] to render the simulation whose
dynamics are calculated using ODE [3]. In this paper we describe our simulation
of the the Khepera [4] robot and the XPERO environment in which it functions
as created using XPERSim. We will first give a brief overview of 3D robot
simulators. We will introduce the architecture of XPERSim and the contents of
the packages. We then discuss the advantages of using the Ogre 3D engine and
the ODE physics library as well as the challenges and results of integrating these
technologies before presenting the methods used to distribute the simulation to
multiple users simultaneously in a quasi-realtime manner. The results are then
presented. Finally, we conclude with a discussion of the work.



XPERSim: A Simulator for Robot Learning by Experimentation 7

2 Related Work

There are numerous 3D robot simulators available, such as Gazebo [5], USARSim
[6] and Webots [7]. Many use ODE for their dynamics simulation. ODE is a free,
open-source, high-performance library for simulating rigid body dynamics. It is
stable, mature and platform-independent with an easy to use C/C++ application
programming interface (API). It has advanced joint types and integrated collision
detection with friction. ODE’s major drawback is that of the quality of rendering
done through the drawstuff library that comes with it. It should be noted
that the drawstuff library is provided by the authors of ODE for debugging
purposes and is not meant to be used for a simulation. In this section we briefly
survey a number of 3D robot simulators.

Gazebo is part of the Player/Stage project, one of the leading tools in the
robotics field. It comes with a large library of sensors and models of existing
robots. These can be controlled by either the Player server or by controllers
provided by the user. To create one’s own robot requires code-based modeling of
the robot in C [5]. Gazebo’s dynamics simulation is based on the ODE library.

Webots [7] from Cyberbotics is a commercial simulator capable of simulating
many kinds of mobile robots. Features include a complete library of sensors and
actuators, the ability to program the robots in C, C++, Java or third party
software and the use of the ODE library for physics simulation. It also comes
with models of some commercially available robots. In addition, there is a robot
and world editor that enables the user to create the environment and the robot
from the libraries mentioned above.

USARSim is a high fidelity simulation of urban search and rescue robots and
environments intended as a research tool for the study of human-robot inter-
action (HRI) and multirobot coordination [6]. It uses the Unreal game engine
for the dynamics simulation and the visualization. The physics engine used by
Unreal is the Karma engine. During the assessment phase of existing simulators,
it was the case that USARSim and the Karma engine did not allow actuated
entities to manipulate other actuated entities (e.g. a robot manipulator would
not be able to grasp a door handle). This was later enabled in [8]. The Unreal
engine is much more than a rendering engine. It includes not only the physics
and rendering engines, but also sound, networking, AI and even voice support.
These features, while extremely useful to game developers, would be excessive if
all that is required are rendering and physics engines, as is the case with XPER-
Sim. The choice to use the Ogre rendering engine, as opposed to other rendering
engines such as CrystalSpace 3D, was based on the feature set, documentation,
support and the learning curve needed to get projects up and running. Ogre
consistently came out on top in these areas. A detailed comparison of Ogre and
CrystalSpace is found in [9].

The simulator which is closest to the one described here is presented in [10].
It uses the Ogre engine for visualization and the PhysX SDK for the dynamics.
It is built to support human-controlled avatars to enable HRI and collaboration
studies. The similarity between XPERSim and this simulator extends beyond the
use of a the same rendering engine. It is the only other robot simulator, to our



8 I. Awaad and B. León

knowledge, that allows experiments which include users participating from geo-
graphically remote locations. To enable this distribution of their simulation, the
Torque Networking Library was used. A major difference between this simulator
and XPERSim is in the roles of the clients and servers which vary considerably.

3 Approach

To solve the problem of ODE’s limited-quality visualization, the Ogre 3D engine
was chosen to perform the rendering. Ogre is a free, open source 3D engine writ-
ten in C++, which is designed to make it easier and more intuitive for developers
to produce applications using hardware-accelerated 3D graphics. In addition to
the usual feature set found in many other rendering engines, it provides advanced
features which are not present in APIs such as OpenGL [10]. It is important to
note that Ogre is not a complete simulation engine. It performs many tasks, but
most of them are related to 3D computer graphics. It does not, for example,
provide physics, sound, networking, GUIs or artificial intelligence. There are,
however, other libraries from which one can choose to perform these tasks. This
separation provides developers with the flexibility to make the choices on which
packages to use in order to fulfill their requirements which in turn enables them
to keep it simple.

The core concept of Ogre is the “scene”. Within this scene, the “root” object
is the entry point to the Ogre system [2]. It maintains pointers to all objects in
the system, such as scene and resource managers. These give access to individual
entities within a scene. Each entity is attached to a “scene node”. The root object
also contains a method that is in charge of looping to render continuously. A
“scene-graph” (a collection of nodes in a graph or tree structure) is created at the
beginning of a simulation and is maintained throughout. Each frame, this graph
is traversed and the entities rendered, thus producing the simulation. With each
iteration of the simulation loop, the position as well as the orientation of the
entities to be simulated is retrieved from ODE and rendered using Ogre.

XPERSim has a client-server architecture where the client controls the robot
in the simulation which is running on the server-side. The client can be a console
running on Windows or any other platform. The server can be interfaced with a
client in the form of an AI program or a planner which would then control the
robot. The current version of XPERSim implements the Khepera robot.

3.1 Implementation

XPERSim provides a library of model components, written in C++, that are
useful for robot simulation. Its modular architecture also allows for maximum
code reuse and makes it open for expansion. Any simulation requires a robot
and the environment on which it will act. The contents of the simulation are
thus categorized as being either part of the environment or part of the robot.

Setting up the environment requires only very basic knowledge of ODE as a
wrapper encapsulates the ODE function calls necessary for the creation of the



XPERSim: A Simulator for Robot Learning by Experimentation 9

entities. The same function call stores away information that will be used by
Ogre to render the entities into description arrays. Such information includes
the specific mesh to be used to visualize the object and its parenthood. This
information is then retrieved later on to create the scene-graph that Ogre will
use to render these entities and update them every frame. Joints, while critical
to the physics of the environment (e.g. used to hold together entities - they do
not need to be controlled), it is not desirable to have them rendered or updated
as you would a robot’s actuators. As such, they are not considered entities and
are not saved within any description array.

The robot differs from the environment in that it contains actuators and
sensors in addition to rigid bodies and non-actuated joints. These need their
own descriptions to facilitate retrieving sensor values and sending commands
to the actuators. Two packages have been created specifically for sensors and
actuators. In addition, the method of communication with each embodiment
will differ. For this reason, each Robot contains its own communicate function.

3.2 Actuators and Sensors

The Actuator package contains a number of actuators, namely a differential
drive, the Khepera arm and the gripper have been implemented. The arm, for
example, has been implemented using a hinge joint that connects the arm to
its turret. The joint is parameterized to enable the arm to be moved as per the
specifications of the Khepera. The two grippers are then connected to the arm
via slider joints. Additional joints can be easily added.

The Sensor package currently implements a number of sensors, such as the
IR proximity sensor, light barrier sensor, touch sensor, wheel encoder and the
camera. The light barrier and touch sensors are simulated using the IR sensor
implementation.

The IR sensors have been implemented using five rays, all with the same start
position. This implementation was provided by [11]. One ray lies in the exact
orientation given. Two of the remaining rays are directed at orientations that
take into consideration a spread angle on the x-axis, while the remaining two
rays take into consideration the spread angle in the y-axis. In this way, a cone
is created that more accurately emulates an IR sensor’s field. The spread angles
are parameters that the user is able to set, as is the length of the ray which
is set to the sensitivity of the IR sensor being simulated. This is an advantage
over other simulators, which use only one ray for an IR sensor. This method of
modeling the sensor with five rays also allows a more realistic sensor model to
be created. The real sensor detects a distant object, if a close object penetrates
the cone less than halfway. If one of the other rays is activated, a weighted sum
could be used to calculate the distance instead of the minimum value [11]. By
varying the spread-angles of the rays, the sensor model can be changed to reflect
a real sensor whose values have been obtained, or to simulate noise. By gradually
changing the parameters, a transition can be made from the idealistic simulated
world to the real world.



10 I. Awaad and B. León

Fig. 1. A screenshot of the XPERSim window running alongside the console

The XPERSim window contains two viewports, each displaying the view from
a specific camera (see Fig. 1). The “overhead” camera is displayed on the right
while the left half of the window displays the “first-person” camera attached to
the robot. Ogre allows the user to add as many viewports as is needed and as
many cameras. This feature can be used to easily simulate stereo-vision. While
the rendering is done in all the viewports, XPERSim currently allows the user
to move the “overhead” camera only. It is possible to save and retrieve rendered
frames to and from a file. This means that it is also possible to apply vision algo-
rithms to these frames, or transmit them over a network to users. A perception
module with basic vision algorithms was implemented for the Logging version of
XPERSim which allowed the frames to be analyzed in an off-line manner. The
process of saving a file to disk is however a costly process as the image must first
be flushed from the GPU (Graphics Processing Unit).

The communication framework enables the simulation running on the server-
side to communicate with a client-side console over TCP/IP. It is robot-specific.
For this reason, the communication for the Khepera robot is included within the
class implementing it.

4 Distributing the Simulation

This section details the efforts made to distribute the simulated images for
tele-observation. Although the implementation is specific to the XPERSim sim-
ulator, the same approach could conceptually be used for other simulators.
XPERSim has been integrated into the XPERSIF framework [12], a component-
based software integration framework which was specified, defined, developed,
implemented and tested by the authors. The framework and architecture com-
prise loosely-coupled, autonomous components that offer services through their
well-defined interfaces and form a service-oriented architecture. The Ice [13]



XPERSim: A Simulator for Robot Learning by Experimentation 11

middleware is used in the communication layer. The framework enables com-
ponents (running in a distributed setting) that are responsible for such tasks as
the design of experiments, planning, robot control, motivation, machine learning
and of course feature extraction and vision to be integrated into an architecture
for learning by experimentation. This integration of XPERSim into XPERSIF
enables the simulation of an experiment and the testing and streamlining of the
components mentioned above, thus providing a tool-driven validation process.

While tele-operation and tele-observation of the simulation were previously
implemented, the solution for tele-observation was provided with a focus on
fulfilling a use case for data generation which provided traces for the machine
learning tools. These traces included the simulated image which was requested
and transmitted through a synchronous Remote Procedure Call (RPC). While
this requirement was met, the solution did not enable a frame-by-frame viewing
of the simulation. The specification of new use-cases specified the need for the
architecture to supply quasi-real time observation of the simulated image. The
implementation of the solution is presented in this section.

A number of issues precluded the use of the same method for true real time
tele-observation of the experiment. One is the presence of a bottleneck in ob-
taining the rendered image from the GPU to the CPU which makes the process
of simply obtaining the image a time-consuming affair. Another issue is the
transmission of the image itself takes time.

It should be noted that these issues made infeasible the real time or quasi-
real time tele-observation of the experiment by even one single client. In order
to facilitate scalability, bottlenecks must be avoided.

The solution presented here, which bypasses this bottleneck, uses a proven
methodology (implemented in multi-player games for over a decade) which in-
volves moving the rendering of images from the server-side to the client-side by
sending out a subset of the scene information to ensure that all clients are op-
erating synchronously [14], thus drastically reducing the amount of data being
transmitted. This is facilitated due to the scene-oriented nature of the XPERSim
simulation. As mentioned previously, the Ogre 3D rendering engine simplifies
the processing of objects or groups of objects by using scene-graphs (a graph of
nodes) to represent hierarchies. If a parent node is translated or rotated, this
transformation is applied to the child scene nodes as well.

The latency resulting from the distributed nature of the application is ame-
liorated by sending the node information from the simulator while the client is
rendering the previous one – i.e. the server does not wait for the client to re-
quest the image but sends it continuously once it has subscribed. The method
described above to distribute a simulation to multiple clients is implemented
here by decoupling the physics and graphics engines of XPERSim to create an
XPERSim Server (calculating dynamics) and a TeleSimView client (rendering
the nodes at their new positions). The XPERSim Server sends out the posi-
tions and orientations of all scene-nodes to the clients that simply transform
the specified nodes to the specified positions and orientations and in so doing
produce the same scene in an efficient and real time manner. In this refactored



12 I. Awaad and B. León

Fig. 2. An example setup for a simulation with 15 nodes (4 cubes, and the Khepera
robot). With optimization, only the shaded nodes (8) would need to be published.

implementation of the XPERSim simulator, no distinction is being made between
parent nodes and child nodes. It is recommended however that this distinction
be made as it would reduce the number of nodes whose data needs to be trans-
mitted (transmit parent nodes only and nodes which can be moved separately
from the hierarchy – a gripper for example which, despite being a member of
the robot node, may be moved on its own). This can be seen in Fig. 2. The
implementation details are described below.

4.1 XPERSim Server

As mentioned above, the XPERSim Server is now solely responsible for calcu-
lating the dynamics of the simulation and for their distribution. The separation
of the two engines was straightforward due to the modular structure of the
simulator. Previously, every rendered frame would step the simulation by 0.05
seconds (5 x 0.01 seconds). With this link to the rendering of a frame gone, the
speed at which the simulation proceeded was much faster. Various methods for
transmitting the node information were evaluated.

During the start-up of the simulation and the creation of the ODE bodies,
the information pertaining to the Ogre-scene is accumulated. This information is
stored in a container structure that is requested by the Camera subcomponents
as they are the image providers (Fig. 3). The XPERSim server continuously sends
out node positions and orientations in absolute coordinates (i.e. the same node
information is sent to all Camera subcomponents). As the robot’s camera is
attached to it, it will automatically be moved when the robot does. If a pan/tilt
camera is used, then its position and orientation could be sent out as a node.

In an effort to further reduce network latency, a one-way invocation is used to
send the new frame. This can in fact be quite expensive when many such small
messages need to be sent. This is because the run time taps into the OS kernel
for each message and because each of these messages is sent out with its own
message header [13]. To ameliorate this problem, batched one-way invocations
are used. This allows the Ice run time to buffer these small messages until the
XPERSim Server explicitly flushes them.



XPERSim: A Simulator for Robot Learning by Experimentation 13

XPERSim
Server

Perception
Camera

Vision
Algorithm
using

TeleSimView TeleSimView
Client

Observation
Camera

Vision
Algorithm
using

TeleSimView

subscribe (once)

update / notify

Fig. 3. An overview of the system showing the XPERSim Server sending node updates
to the camera subcomponents within XPERSIF. They in turn act as image providers
to the various TeleSimView clients which have subscribed to receive the updates.

Originally, it was envisioned that the parametrization of XPERSim would be
done through an XML file. This would allow the client to send the setup for
a new experiment without necessitating the recompilation of XPERSim. The
limited number of scenarios and the low frequency at which these scenarios are
changed dispenses with the need for the XML parametrization and makes it
equally efficient to choose precompiled setups.

4.2 TeleSimView Client

The TeleSimView client is used to visualize the simulated scene. With the same
node information, the view from both cameras is rendered. The subscription to
receive the node information is made with the XPERSIF components: Percep-
tion (robot camera) or Observation (overhead camera). This provides clients
with the flexibility to choose the cameras they wish to subscribe to.

A two-way invocation to the Perception (or Observation) component
fetches the scene which will be created and subsequently updated. The creation
of the scene involves the creation and attaching of nodes, their positioning and
the creation of such basic scene items as the plane, lights, and sky. Once this has
been done, the client uses operations found within the interfaces which are ex-
tended by the Perception and Observation components in order to subscribe
as an image-observer. As soon as this is done, the images will be transmitted to
it from the relevant Camera subcomponent (as seen in Fig. 3 ).

The TeleSimView client only requires Ogre (and its dependencies). Ogre has
always been available for all platforms. The source for a project running under
Windows could not previously be compiled and used on other platforms however
due to the use of Windows-specific libraries handling events and key input. With
the release of Ogre version 1.4.6 (a.k.a. ‘Eihort’), this problem is now solved with
the use of the Object-oriented Input System (OIS) platform.

5 Results

The XPERO project has provided XPERSim with an invaluable testing ground.
XPERSim has proven to be highly useful and effective in speeding up the pace of



14 I. Awaad and B. León

research. This has been made even more evident within the distributed research
environment. XPERSim has been successfully used to aid the human researcher
in developing and evaluating concepts as well as providing test data [15] by using
the initial Logging version of XPERSim and subsequent versions following its
integration via XPERSIF. A perception module has been developed as proof of
concept that allows basic vision algorithms to be performed on the simulated
scene. The Client Console (used with the Logging version) enables tele-operation
of the simulated robot using the same commands that are sent to the physical
robot. In this way, any user with code to control a Khepera can use this code
in XPERSim. Simultaneous multiple camera simulation of the rendered scene is
possible at high frame rates. A library of components that can be parametrized
by the user has been created. This library includes a number of commonly-used
sensors and actuators.

Due to the modular architecture of the simulator, it should be possible to
easily simulate multiple robots by making minor additions to the structure of
XPERSim. The number of simultaneous camera simulations is limited by the
maximum resolution of the screen if real-sized viewports are required for the
“first-person” cameras. The frame-rate is mainly affected by the number of ob-
jects within a scene and the number of triangles in the mesh used to visualize it.
A slowdown in the frame-rate usually occurs when many hundreds of nodes are
being visualized. There are many optimizations that can be made within Ogre
to help in situations where these numbers are very large. Many are available to
download from the Ogre website. A potential bottleneck exists in flushing the
buffer in the graphics card to save the rendered image. If this is done often, for
example for logging purposes, the simulation speed slows down. This is in fact
a focus of graphics-cards manufacturers who are currently establishing two-way
communication to the GPU in order to ease this process.

Distribution of the simulation through its integration via the XPERSIF ar-
chitecture was successfully achieved. The scalability of the implementation de-
scribed above was evaluated by measuring the impact on the quality of the
simulation by varying the number of subscribers to the tele-observation service.
This detailed scientific evaluation validated the use of a batched one-way invo-
cation for distributing the image. Table 1 shows the measurements made when
one, three, five and then ten clients are subscribed to the service. All experi-
ments were repeated three times, measuring the time it took for 60 frames to

Table 1. The time in seconds between receiving two subsequent images (15 nodes)
using the batched one-way invocation method. Optimizing the process by sending only
parent and actuated nodes out (as described in section 4) in this scenario would result
in a total of only 8 nodes needing to be published and processed for updating.

Trial 1 client 3 clients 5 clients 10 clients
1 0.0039 s 0.0039 s 0.0219 s 0.0227 s
2 0.0023 s 0.0172 s 0.0128 s 0.0352 s
3 0.0075 s 0.0036 s 0.0120 s 0.0448 s

Mean 0.0046 s 0.0082 s 0.0156 s 0.0342 s



XPERSim: A Simulator for Robot Learning by Experimentation 15

be delivered to the TeleSimView client. It is worth noting that the size of the
image to be rendered is inconsequential. As nodes are being sent and not an
image, it is the number of nodes within a scene that impacts the time and not
the image size. For the test case above, 15 nodes were transmitted (representing
the Khepera robot and four cubes). Using this information, the scene may be
rendered from the viewpoint of any number of cameras.

6 Discussion

The system presented here has been used successfully, not only in the initial
stages of the project in allowing the researchers to pursue multiple scenarios
simultaneously to develop and evaluate concepts, but also in the later stages
by providing vital traces used for the machine learning process. The initial
results [15] from the XPERO project support the original assertion that sim-
ulation has indeed enhanced the speed of research within the project.

As robotic vision techniques become more and more sophisticated, any simu-
lation of a robot using these techniques must be as visually realistic as possible.
Given that the technology which enables this is freely available, there is no
barrier to robot simulators taking advantage of these technologies. In addition,
given that robotics is very much a multi-disciplinary field. and that the benefits
of cooperation across these field boundaries are great, tools that facilitate such
cooperation are a necessity. In this context, the distribution of a simulation to
researchers (and their tools) is a valuable feature to have.

XPERSim has the advantages of providing a more realistic camera simu-
lation at over 30 fps and a library of available model components that are
useful for robot simulation and include realistic sensor models. It is modular,
extensible, easy to use and understand and provides logging functionality. It en-
ables distributed work without the need for a physical robot and enables easy
replicability.

We have addressed the problem of tele-observation by decoupling the physics
and rendering components within the simulator in a manner that optimizes
computational power and harnesses the power of node-oriented scene-graphs,
and thus reduced network latency. We have produced a simulation with accurate
physics and high quality graphics that can be used with great ease and without
the use of special hardware.

The extension of the library to include more robot models, sensors and ac-
tuators is a top priority on our agenda. One which is facilitated by the use
of the Ogre 3D engine and ODE as base components in our simulator’s archi-
tecture since many models for these engines already exist within the robotics
community. The current version of the simulator runs on both Windows and
Linux platforms. A port to the Mac platform is well underway. Upgrading the
Ogre engine to the new release will enable cross-platform compatibility of the
same source code. Enabling simulated robots to be controlled though the Player
API [16] is another goal as this would make available the libraries within (e.g.
landmark tracking and probabilistic localization). Additional optimizations



16 I. Awaad and B. León

which would further reduce the number of nodes being sent out (see
section 4) will also be tested.

References

1. The RoboCup Federation, http://robocup.org
2. The Ogre Team: Ogre Manual v1.2.0 (Dagon) (2006)
3. Smith, R.: Open Dynamics Engine (2006)
4. Mondada, F., Franzi, E., Ienne, P.: Mobile robot miniaturization: A tool for investi-

gation in control algorithms. In: Proceedings of the Third International Symposium
on Experimental Robotics, pp. 501–513. Springer, Berlin (1993)

5. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 2149–2154 (2004)

6. Wang, J.: USARSim: A Game-based Simulation of the NIST Reference Arenas
(2006)

7. Cyberbotics Ltd.: Webots User Guide. release 5.1.7 edn. (2006)
8. Zaratti, M., Fratarcangeli, M., Iocchi, L.: A 3d simulator of multiple legged robots

based on usarsim. In: RoboCup Syposium 2006 (2006)
9. Crystal Space or Ogre 3D, http://www.arcanoria.com/CS-Ogre.php

10. Faust, J., Simon, C., Smart, W.D.: A video game-based mobile robot simulation
environment. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 3749–3754 (2006)

11. Ghazi-Zahedi, K.: Self-regulating neurons: A real-time learning algorithm for re-
current neural networks. PhD thesis, University of Osnabrueck (to appear, 2008)

12. Awaad, I., Hartanto, R., Leon, B., Plöger, P.: A software system for robotic learning
by experimentation. In: Carpin, S., Noda, I., Pagello, E., Reggiani, M., von Stryk,
O. (eds.) SIMPAR 2008. LNCS (LNAI), vol. 5325, pp. 99–110. Springer, Heidelberg
(2008)

13. Henning, M., Spruiell, M.: Distributed Programming with Ice. ZeroC Inc. Revision
3.2 edn. (2007)

14. Funkhouser, T.: Ring: A client-server system for multiuser virtual environments.
In: Proceedings of the SIGGRAPH Symposium on Interactive 3D Graphics, ACM
SIGGRAPH, pp. 85–92 (1995)

15. Bratko, I.: Initial experiments in robot discovery in xpero. In: International Confer-
ence on Robotics and Automation Workshop on Concept Learning for Embodied
Agents (2007)

16. Gerkey, B., Vaughan, R.T., Howard, A.: The player/stage project: Tools for multi-
robot and distributed sensor systems. In: Proceedings of International Conference
on Automation and Robotics, pp. 317–323 (2003)

http://robocup.org
http://www.arcanoria.com/CS-Ogre.php


From Simulated to Real Scenarios: A Framework
for Multi-UAVs

Andrea Cesetti, Adriano Mancini, Emanuele Frontoni, Primo Zingaretti,
and Sauro Longhi

Universitá Politecnica delle Marche, DIIGA, Ancona, Italy
{cesetti,mancini,frontoni,zinga}@diiga.univpm.it,

sauro.longhi@univpm.it

Abstract. In this paper a framework for simulation of Unmanned Aerial
Vehicles (UAVs), oriented to rotary wings aerial vehicles, is presented. It
allows UAV simulations for stand-alone agents or multi-agents exchang-
ing data in cooperative scenarios. The framework, based on modularity
and stratification in different specialized layers, allows an easy switching
from simulated to real environments, thus reducing testing and debug-
ging times. CAD modelling supports the framework mainly with respect
to extraction of geometrical parameters and virtualization. Useful appli-
cations of the framework include pilot training, testing and validation of
UAVs control strategies, especially in an educational context, and simu-
lation of complex missions.

Keywords: modelling framework for robots and environments, testing
and validation of robot control software, simulated sensors and actuators,
UAV.

1 Introduction

Nowadaysmobile robotics is going through a period of constant growth, producing
tangible results in both scientific and commercial areas. However there is a signif-
icant difference between the results achieved with ground vehicles and aircrafts.
Unmanned Aerial Vehicles (UAVs) represent a challenging research field due, on
one hand, to the complexity of systems and operating environment and on the other
hand to the variety of tasks they can perform. The range of aerial vehicles is ample
(blimps, gliders, kites, planes, helicopters, etc.) and each one has a particularity
that makes the difference in a mathematical description of physical phenomena.

Mathematical models are really complex because an aerodynamic description
has to be taken into account and dynamics is also influenced by turbulence from
rotors and wind. Small-scale helicopters probably represent the most difficult
systems to model because of the complex nature of their dynamics. At the same
time their unique manoeuvrability capabilities (including hovering, vertical take-
off and landing) and multiple flight modes make them able to perform various
tasks, such as surveillance, search and rescue, photogrammetry and mapping.

In many cases, complex missions can be carried out by fleets of cooperat-
ing autonomous and heterogeneous vehicles, hence interaction, cooperation and

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 17–28, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



18 A. Cesetti et al.

supervision become the main problems. UAV application development is closely
linked to the possibility of exploiting all benefits of simulation: modularity, re-
peatability and low cost. The risks produced from a direct use of real aircrafts
are obvious. The only alternative to a powerful simulation framework could be
the supervision of an expert pilot, but this solution is often quite difficult to
practise. The complexity correlated to today challenges in terms of missions
and tasks sets up the necessity of simulating, debugging and testing. Simulation
activities are essential for testing and validation of control strategies because
different methodological approaches can be easily implemented and evaluated to
reduce developing times [1].

To allow an easy transfer of results from simulated to real applications is
important to design a modular structure in which dedicated modules can be
substituted with real devices.

In the case of ground robots a lot of simulation and test frameworks have
been developed [2,3]. Player/Stage/Gazebo is actually one of the most complete
framework owing to advanced features like the emulation of 2D-3D environ-
ments, the simulation of sensors (LRF, sonar,. . . ) and the integration with com-
mercial robotic platforms (i.e., MobileRobots, Segway...) [3]. Other simulation
environments are Carmen [4], Microsoft Robotics Studio [5] and USARsim (for
RoboCup) [6]; these are taking the attention of scientific community for the full
integration with a lot of commercial platforms. For the UAV branch of robotics
the state of the art is a bit different.

In this paper a framework for simulation and testing, oriented to rotary wings
aerial vehicles, is presented. The framework allows the simulation of UAVs (as
stand-alone agent or exchanging data for cooperation) owing to a Ground Control
Station (GCS) that supervises the tasks of each agent involved in the mission.
The control of a single agent can be switched between the GCS and a human
pilot using a joystick. The framework, based on modularity and stratification
in different specialized layers, allows an easy switching from simulated to real
environments, thus reducing testing and debugging times. CAD modelling sup-
ports the framework mainly with respect to extraction of geometrical parameters
and virtualization. Useful applications of the framework include pilot training,
testing and validation of UAVs control strategies, especially in an educational
context, and simulation of complex missions.

The paper is organized as follows: next session introduces our framework. The
use of a UAV CAD modelling for parameter extraction and simulation aids is pro-
posed in Section III; the modelling activity is contextualized to the Bergen Twin
ObserverHelicopter. In Section IV, a test case involving twohelicopters in a leader-
follower mission is presented. Section Vpresents amethodology to validate the pro-
posed framework. In Section VI conclusions and future works are outlined.

2 Framework

Robotic systems are inherently multi-disciplinary and for such applications soft-
ware aspects are of prime importance. Even a single robot application generally



From Simulated to Real Scenarios: A Framework for Multi-UAVs 19

implies the use of external hardware and sensors having each their own control sys-
tem and has de facto a distributed architecture. Several research has been devoted
to build simulation frameworks of distributed systems. Two different approaches
have been considered when identifying requirements for a framework. The first ap-
proach takes into account the functionality of typical applications that would be
performed with the framework itself, whereas the second one considers the needs of
potential users. From this analysis we derived the following requirement list for our
framework: integration of different robotic systems, concurrent control of several
robots, platform independent GUI, shared controlbetween severalusers, easy inte-
gration of user’s algorithms, flexibility (Distribution, Modularity, Configurability,
Portability, Scalability, Maintainability), performance and efficiency. It is obvious
that some requirements conflict with each other: performance and efficiency for
instance have to be traded with flexibility.

Looking at the simulator panorama, game engines and flight simulators are
the only available frameworks to simulate UAVs. Also most of them are devel-
oped for planes and not for helicopter. Game engines (like FlightSimulator [7]
or FMS [8]) are optimal for visualization, while flight simulators (like JSBSim,
YASim and UUIU [9]) are characterized by a high-fidelity mathematical model,
but they are lacking in visualization. A good but expensive exception is the
RotorLib developed and commercialized by RTDynamics [10]; in the helicopter
context, frameworks with good performances are almost absents [11]. The frame-
work here proposed aims at overtaking this lack. In Fig.1 a graphical abstraction
with the main layers of the developed simulator is shown. The stratification of
the framework permits to identify five different modules as Supervision, Com-
munication, Dynamics, Agent, User Interaction.

An interface for sockets allows the data exchange between GCS and agents in
the case of simulated agents, while the communication makes use of a dedicated
long-range radio modem if a real vehicle (e.g., helicopter) is used [12].

All the modules are implemented in Matlab/Simulink; the main motivation of
this choice is the reduced complexity for code development and costs of commer-
cial products. In particular, the end-user of the framework can easily integrate his

Fig. 1. Structure of the framework for UAV simulation



20 A. Cesetti et al.

code for developing and testing an algorithm, e.g., for obstacle avoidance, with-
out the necessity of re-compiling other activities. An additional motivation for the
adoption of Matlab is the capability to interface the AeroSim toolbox released by
Unmanned Dynamics [13]. The AeroSim Blockset is a Matlab/Simulink block li-
brary that provides components for rapiddevelopment ofnonlinear 6-DOF aircraft
dynamic models. In addition to aircraft dynamics the blockset also includes envi-
ronment models such as standard atmosphere, background wind, turbulence, and
earth models (geoid reference, gravity and magnetic field). These blocks can be
added to the basic framework to increase the realism of simulation.

2.1 Agent Structure

In a simulated or real case, the structure of an agent in the context of Unmanned
AerialVehicles is basedona complex interactionof different specializedmodules. In
the real case, the Flight Management System (FMS) is implemented as real-time
code running on high performance architectures; in the simulation environment,
FMS is a complex set of S-functions to reduce the simulation complexity.

However, in both cases FMS has a series of basic packages as: Communication
Module, Queue of Tasks, Guidance Module, Fast Path Re-planner, Attitude and
Pose Estimator, Auto and/or Semi-Manual Pilot, Obstacle Avoidance, Fault
Diagnosis Identification and Isolation (see Fig.2).

Tasks like take-off, landing, point to point or waypoint navigation are
currently available in the developed framework.

FMS exchanges data continuously with GCS for telemetry and task assign-
ments/supervision. Its Communication Module makes use of sockets or functions
to interface the radio modem.

References about position are generated by the Guidance Module, which de-
cides step by step what references should be passed to the controllers (auto-pilot).
This module takes into account the actual position of the agent with respect to
the local inertial frame and the goal to reach.

Fig. 2. The Avionic and Flight Management Systems



From Simulated to Real Scenarios: A Framework for Multi-UAVs 21

The Fast Path Replanner (FPR) provides a real-time re-calculation of path
according to information provided by the Obstacle Avoidance package. FPR
provides also for correcting the path if external disturbances (e.g., wind) generate
a high error in position.

The Attitude and Position Estimator, using the inertial data obtained by the
Attitude Heading Reference System (AHRS) and the Inertial Navigation System
(INS) calculates the position and attitude of the vehicle; inertial strapdown
equations are currently implemented and solved [14]. The Auto and/or Semi-
Manual Pilot is the core of vehicle’s control. The user can control a set of axes
by a joystick/transmitter interface. This feature is especially suitable in the
field of photogrammetry, where the user concentrates only on forward and/or
lateral movements, while the control of altitude and heading (heading lock) is
performed by inline controllers. The adopted philosophy tries to emulate the
training process of a novel-pilot, who usually controls directly only a limited set
of vehicle’s axes, while the teacher supervises the activities.

Controllers can be easily updated or modified by changing their code; no
additional activities are required. Controllers can be simple PID or PID with
gain scheduling and fuzzy logic. Feedback linearization is available in the frame-
work, with some tricks to increase its robustness: computational cost is a major
drawback of this technique. Other control techniques, e.g., based on H∞ can be
included.

The Obstacle Avoidance module tries to avoid obstacles owing to information
obtained by the avionic system, e.g., by radar and Laser Range Finder (LRF)
sensors; actually, a set of modules (based on fuzzy logic) are available in the
framework to improve the safety of vehicles during navigation.

The Avionic System, in the case of simulated or real vehicles, is formed by actu-
ators and sensors. Actuators are usually analog or digital servos in reduced-scale
helicopters; a second order model to represent the servos dynamics is adopted in
simulated environments. Sensors provide information for a large set of aspects as
navigation, obstacle avoidance,mapping and other. Using a radar sensor new tasks
become feasible, as flight/operate at a given altitude or avoid an unexpected ob-
stacle. In fact, the Radar Altimeter provides the altitude above the ground level,
calculated as the difference between height above the sea level and ground eleva-
tion (Digital Elevation Model maps); geometric corrections, due to pitch and roll
angles, are then applied. Noise is added to make the simulation more realistic; fail-
ure occurrences are also simulated. Simulated sensors as IMU and AHRS are also
available in the framework; in this case an errormodel of each sensor is implemented
(misalignment, temperature drift, non-linearity and bias).

In a similar way, to emulate the Global Position System (GPS), the geographic
coordinates of the aircraft are computed from the knowledge of data about a
starting point; noise is then added to match the performance of a common GPS
receiver able to apply EGNOS corrections.

An analysis of main differences between the real and simulated case is pre-
sented in Table 1; this table summarizes an analysis of main differences between
real and simulated case.



22 A. Cesetti et al.

Table 1. Many elements (features) are shared between real and simulated scenario.
The main difference concerns the Communication and Avionic System.

Aspect Simulated Scenario Real Scenario

Supervision Similar Similar
Communication Socket Radio Modem
Dynamics Blade element, Actuator Disk Real Phenomena
FMS Similar (different control laws) Similar
Avionic System Simulated Sensors & Actuators Real HW
User Interaction Similar Real streaming video

The switch from virtual to real world and vice versa is relatively easy; mainly
FMS is the module that requires different set-up especially for the automatic
control (control laws of each servo installed on the real helicopter).

2.2 Helicopter Dynamics Simulation

The framework is actually provided with a helicopter mathematical model. Em-
ploying the principles of modularity and standardization, the complete model
is broken down into smaller parts that share information and interact among
themselves, as shown in Fig.3. In particular, we identified four subsystems de-
scribing actuator dynamics, rotary wing dynamics, force and moment generation
processes and rigid body dynamics [15].

Fig. 3. Helicopter dynamics

2.3 Ground Control Station

The Ground Control Station has a lot of capabilities among which telemetry
data acquisition and data logger for post flight analysis; in the cooperative con-
text GCS is responsible for mission and task allocation/supervision. Data are
collected and sent using the communication layer. A GUI was developed to ob-
tain a visual feedback of a single agent, all agents, mission status, telemetry. A
screenshot of the developed GCS is shown in Fig.4. User can control the mission
of each agent choosing the vehicles; the main panels allow to monitor in real-time
the agent status owing to the Attitude Direction Indicator (ADI); information as
global position (GPS coordinate), status of embedded electronics-batteries, fuel
consumption are currently shown in the GUI. An interesting feature of GUI is



From Simulated to Real Scenarios: A Framework for Multi-UAVs 23

Fig. 4. A screenshot of developed GCS’ GUI

the capability to control directly a set of vehicle’s axes using a joystick interface;
in this case the interaction between human and machines (remote controlled
vehicles) allows to control the vehicles taking into account the information pro-
vided by ADI indicators. In a simulation context, joystick is interfaced using the
Virtual Reality Toolbox (described below).

2.4 Virtual Reality and World Representation

A synthetic rendering of world and agents is one of the basic module; as men-
tioned in the introduction section, market offers a series of different complex
systems to virtualize world and agents. The choice adopted in the proposed
framework is to integrate the Matlab Virtual Reality Toolbox. A VRML model
of world (environment) and agents (aerial vehicles) can be easily controlled in
a Simulink diagram. Students are often familiar with the Matworks software.
The mission area is represented as a digital grid map or Digital Elevation Model
(DEM). A set of different world scenarios is available in the developed frame-
work. Scenarios are generated considering the DEM of mission area. DEM maps
represent the mission area (real or simulated) as a grid map; a critical parameter
is the cell resolution. The resolution of available maps is usually 10m in the case
of real scenarios. This value is too high in critical mission where an accurate
localization is required. The GUI allows to edit/create a new DEM to overtake
this limitation; data are obtained by exploration of mission area.

Virtual Reality Toolbox is used to present in soft real-time the state of each
vehicle involved in the mission. A VRML world can be customized in terms of
textures, position of camera(s) (attached to vehicle or fixed), light(s). The above
mentioned toolbox is also used to interface a joystick; this kind of device allows
a manual control of the helicopter (user can select the set of axes that wants
to control). This features is really useful for novel pilot(s) during the training
phases. A 3D model of Bergen Twin Observer Helicopter was developed; a more



24 A. Cesetti et al.

Fig. 5. An example of scenario where two UAVs are performing a mission

detailed introduction to 3D CAD modelling is presented in Section 3. In Fig.5 a
basic virtual scenario is presented.

Currently, work is focused on the adoption of other virtual reality environ-
ments inspired to flight simulators games as FlightGear [16] and Microsoft Flight
Simulator [7].

3 CAD Modelling

CAD modelling plays an essential role, supporting the framework mainly with
respect to mathematical model parameterization and virtual reality rendering.

Blocks describing the helicopter simulated dynamics need a set of geometrical
and inertial parameters such as inertia matrix, mass, distances between Centre Of
Gravity (COG) and force attacking points, rotors geometry and leverage gains.

Fig. 6. A view of the CAD model of Bergen Twin Observer; the transparencies allow
to see hidden parts, e.g., avionic box and fuel



From Simulated to Real Scenarios: A Framework for Multi-UAVs 25

Fig. 7. Diagram of Reverse engineering process

Providing the model with the real parameters of a specific helicopter makes really
useful the simulations, allowing an effective shift of results to real applications.

Because some data are time-variant, due to fuel consumption, not trivial to
be determined, and should be re-calculated at every change of mass disposal like
a new device installation, a detailed 3D CAD model helps to solve the problem,
allowing to simply extract all information needed.

Performing an accurate reverse engineering process on a RC mini helicopter
a model implementation was carried out. The Bergen Twin Observer available
at our laboratory, designed in Solid Edge environment, is presented in Fig.6.

Solid Edge represents a standard in 3D mechanical modelling. It is a powerful
feature-based CAD software, quite simple to use and available in a cheap academic
license. It allows an accurate and rapid design of the system and its geometric and
inertial characterization. The model can be exported to specific software, saved in
VRML format or merely used for a rendering process. In Fig.7 the whole procedure
is shown.

The obtained digital model can be mostly used to evaluate the effect of cus-
tomization (e.g. addition of payloads, sensors) by simply extracting geometrical
and inertial parameters after any structural or set up variation. It is also func-
tional to visualize the agent in a Virtual Reality environment, allowing a pleasant
and more significant representation of the simulation results.

4 Test Case: A Leader-Follower Mission

In this section, a simulation using the presented framework is reported. This
simulation presents two Bergen Twin Observer helicopters involved in a “leader-
follower mission” [17,18]. Leader-follower mission belongs to the problem of coali-
tion formation inspired by the motion of bevies; the main objective of coalition
formation is the clustering of a series of agents to reach a target or to cooperate,
extending the capabilities of each agent (“union is strength”) [19,20].



26 A. Cesetti et al.

Simulated sensors adopted are AHRS, GPS and Radar. The helicopters are
linked to GCS using sockets for data exchange. Each helicopter has five servos
(digital and analog) and one main engine (piston engine). The simulation time of
reported simulations is strongly close to the real time (simulation is a bit slowly
in particular conditions and the lag depends on the complexity of controllers ).
The GCS and the two instances of helicopters run on three PCs connected by
an Ethernet link.

Leader starts the mission (a simple circular path) and follower tends to main-
tain a fixed distance minimizing the error in terms of the following expression.

P (s) =
[
x (s) y (s) z (s)

]T ‖Pf (sf) − Pl (sl − k)‖2
< εk, ε ∈ R

where subscript l and f stand for leader and follower, respectively (see Fig. 8);
P is the helicopter position and k the distance between helicopters evaluated
along the trajectory.

Fig. 8. During the flight, the helicopter-follower maintains a fixed distances to leader

Follower estimates leader trajectory using leader position that is obtained by
radar and GCS telemetry. Then, on the base of estimated trajectory, follower
tends to track leader trajectory minimizing the error [21]. A graphical represen-
tation of simulation is shown in Fig. 8.

5 Validation

According with a principle of modern behaviour-based robotics, an efficient
framework should omit internal representations, centering rather on the direct
relation between stimulus and action. Hence a quality simulator has to implement
accurate models of: robots’ geometry and kinematics, sensors, environment and,
finally, robot-environment interactions. Since all these components work prop-
erly, simulation will provide an adequate model of the process and the results
may be shifted to real applications.

This approach to robotics research, however, depends crucially on validation of
the models used so that researchers have reasonable assurance that the problems



From Simulated to Real Scenarios: A Framework for Multi-UAVs 27

Fig. 9. An approach for fine-tuning of simulation model

they encounter and solutions they devise are representative of actual problems
and solutions in robotics rather than simply artifacts of the simulation.

The level of effort devoted to validation has been a distinguishing feature of
this work, even if in preliminary stage. Each of its major constituents (robot
kinematics, interaction with the environment, sensors and camera video) have
been subjected to ongoing validation testing.

A schematic idea for fine model tuning is shown in Fig. 9. An expert pilot
controls the helicopter performing manoeuvres with a high dynamic content. The
actions of pilot are real-time recorded; real and simulated measures of agent state
are compared evaluating the goodness of the simulation model; this methodology
is inspired by adaptive control systems (e.g, Model Reference Adaptive System).

6 Conclusions and Future Works

In this paper a framework for UAV simulation in cooperative scenarios and
testing was presented. The modularity of its architecture permits to update or
rewrite a block in a short time; new controllers can be easily tested. This activity
does not require re-compiling or deep rearrangement of the code.

Adding or changing the mathematical model, different aerial vehicles can be
simulated; actually the research unit is working on simulating a quad-rotor heli-
copter. This kind of vehicle is versatile and useful for short range missions; due
to these characteristics, the quad-rotor is widely used by researchers in the UAV
context. Moreover, the proposed approach allows an easy switching from simu-
lated to real environments; this is possible owing to stratification of functions in
specialized layers. User interaction, e.g., training of novel-pilots, is supported by
GCS, joystick or RC-transmitter interfaces.

Future works will be steered to improve the quality of the VR module for an
easy interaction with vehicles without a video streaming feedback. Integration
of new kind of aerial vehicles will be the main activity. The adoption/integration
of FlightGear or Microsoft Flight Simulator graphical engines will be then inves-
tigated. New robust non-linear control techniques to enhance the performance
(in terms of energy consumption and Time To Task) of agents will be tested.



28 A. Cesetti et al.

At the end of validation phase (introduced in Section V), the simulator will
be relesed to scientific community under the GNU license.

References

1. Sanders, C.P., DeBitetto, P.A., Feron, E., Vuong, H.F., Leveson, N.: Hierarchical
control of small autonomous helicopters. In: Proceedings of the 37th IEEE Con-
ference on Decision and Control (December 1998)

2. Frontoni, E., Mancini, A., Caponetti, F., Zingaretti, P.: A framework for simula-
tions and tests of mobile robotics tasks. In: Proceedings of 14th Mediterranean
Conference on Control and Automation, MED 2006 (2006)

3. Collett, T.H.J., MacDonald, B.A., Gerkey, B.P.: Player 2.0: Toward a practical
robot programming framework. In: Australasian Conf. on Robotics and Automa-
tion, ACRA 2005 (2005)

4. Carmen robot navigation tool kit (2008), http://carmen.sourceforge.net/
5. Microsoft robotics studio (2008), http://msdn.microsoft.com/robotics/
6. Usarsim (2008), http://sourceforge.net/projects/usarsim/
7. Microsoft fs (2008), http://www.microsoft.com/games/flightsimulatorX/
8. Fms project (2008), http://www.flying-model-simulator.com/
9. Jsbsim home page (2008), http://jsbsim.sourceforge.net/

10. Rotorlib home page (2008), http://www.rtdynamics.com/v1.0/
11. Taamallah, S., de Reus, A.J.C., Boer, J.F.: Development of a rotorcraft mini-uav

system demonstrator. In: The 24th Digital Avionics Systems Conference, DASC
2005 (2005)

12. Frontoni, E., Mancini, A., Caponetti, F., Zingaretti, P., Longhi, S.: Prototype uav
helicopter working in cooperative environments. In: Proceedings of IEEE/ASME
international conference on Advanced intelligent mechatronics, AIM 2007 (2007)

13. Aerosim toolbox (2008), http://www.u-dynamics.com/aerosim/
14. Jetto, L., Longhi, S., Venturini, G.: Development and experimental validation of an

adaptive extended kalman filter for the localization of mobile robots. IEEE Trans.
on Robotics and Automation 15(2), 219–229 (1999)

15. Koo, T.J., Sastry, S.: Output tracking control design of a helicopter model based
on approximate linearization. In: Proceedings of the 37th IEEE Conference on
Decision and Control (1998)

16. Flightgear project (2008), http://www.flightgear.org
17. Wang, X., Yadav, V., Balakrishnan, S.N.: Cooperative uav formation flying with

obstacle/collision avoidance. IEEE Transactions on Control Systems Technol-
ogy 15, 672–679 (2007)

18. Lechevin, N., Rabbath, C.A., Sicard, P.: Trajectory tracking of leader-follower for-
mations characterized by constant line-of-sight angles. Automatica 42(12), 2131–
2141 (2006)

19. Merino, L., Caballero, F., Martinez de Dios, J.R., Ollero, A.: Cooperative fire
detection using unmanned aerial vehicles. In: Proceedings of IEEE International
Conference on Robotics and Automation, ICRA 2005 (2005)

20. Beard, R.W., et al.: Decentralized cooperative aerial surveillance using fixed-wing
miniature uav. Proceedings of the IEEE 94(7), 1306–1324 (2006)

21. Mahony, R., Hamel, T.: Robust trajectory tracking for a scale model autonomous
helicopter. Int. Journal of Robust and Nonlinear Control 14(12), 1035–1059 (2004)

http://carmen.sourceforge.net/
http://msdn.microsoft.com/robotics/
http://sourceforge.net/projects/usarsim/
http://www.microsoft.com/games/flightsimulatorX/
http://www.flying-model-simulator.com/
http://jsbsim.sourceforge.net/
http://www.rtdynamics.com/v1.0/
http://www.u-dynamics.com/aerosim/
http://www.flightgear.org


Simulation of Multi-Robot Teams with Flexible
Level of Detail

Martin Friedmann, Karen Petersen, and Oskar von Stryk

Technische Universität Darmstadt, Department of Computer Science
Hochschulstr. 10, D-64289 Darmstadt, Germany

{friedmann,petersen,stryk}@sim.tu-darmstadt.de
http://www.sim.tu-darmstadt.de

Abstract. A key methodology for the development of autonomous
robots is testing using simulated robot motion and sensing systems. An
important issue when simulating teams of heterogeneous autonomous
robots is performance versus accuracy. In this paper the multi-robot-
simulation framework (MuRoSimF) is presented which allows the flexible
and transparent exchange and combination of the algorithms used for
the simulation of motion and sensing systems of each individual robot
in a scenario with individual level of realism. It has already been used
successfully for the simulation of several types of legged and wheeled
robots equipped with cameras and laser scanners. In this paper the core
functionalities of MuRoSimF are presented. Existing algorithms for simu-
lation of the robots’ motions are revised. Newly added features including
the execution of the simulation on multi core CPUs and two different
algorithms for the simulation of laser scanners are presented. The per-
formance of these features is tested in an urban scenario using wheeled
robots.

1 Introduction

The development of control software for teams of autonomous robots is a highly
challenging task. Reasons for lack of performance as well as for failure are ex-
tremely difficult to analyze by experimental evaluation only, because an au-
tonomous robot usually consists of a highly interacting set of different software
and hardware modules. Therefore one of the most valuable tools supporting the
development of control software is software in the loop (SIL) testing using simu-
lation of robot hardware under real-time conditions. The benefits of simulation
are manifold, including testing of software under repeatable and controllable
conditions and unlimited availability (compared to real hardware).

The general requirements on the simulation may differ significantly depending
on the scope of the simulation experiment. For example, a high level of detail
in robot motion simulation using multi-body dynamics is important for inves-
tigation of motion control of robots with high motion dynamics and inertial
stabilization like humanoid or flying robots. On the other hand for four-wheeled
robots on even ground usually vehicle kinematics models are sufficient to test

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 29–40, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



30 M. Friedmann, K. Petersen, and O. von Stryk

team cooperation and kinetical models which would need a larger computational
effort are not required. In some cases, even a too realistic robot motion simula-
tion may not be desireable for some tests. E.g., the disturbing effects of a robot’s
motion like sliding or shaking may overshadow other sources of observed errors.

Similar considerations apply to the simulation of sensors: For testing sensor
data processing, it is necessary to have a high fidelity simulation of the sensors,
including simulation of possible sources of errors. If higher levels of abstraction
within the control software (like behavior control) are under consideration, it may
be useful to provide the software with ground truth data from the simulation
skipping sensor simulation and processing completely. The latter kind of tests
are very difficult to conduct on real robots, as ground truth data usually require
additional sensors in the environment and may also suffer from measurement
errors. An obvious tradeoff when creating a robot simulation is fidelity vs. real-
time performance.

1.1 Requirements for Robot Simulation

As mentioned before, the requirements on the simulation of mobile autonomous
robots may differ strongly for different purposes even for the same robot. One
way to handle this problem is to use different simulators on different levels
of detail and realism. Although often practiced, this approach has the major
drawback of multiplying user efforts as well as sources of errors, as each robot
has to be modeled for each simulator and each simulator has to be linked to the
robot control software for specific tests.

Therefore it is highly desirable to use one simulator enabling different levels
of accuracy and realism in robot motion and sensing (sub-)systems. Depending
on the requirements, different simulation algorithms for each robot of a team
within one scenario should be selectable at the same time, e. g., by having a full
multi-body system dynamics simulation for one robot and kinematic models for
other robots. To achieve this flexibility for the simulation setup, the simulator
must provide means to exchange a variety of algorithms with different level of
physical detail for the same robot motion or sensor (sub-)system as well as the
possibility to flexibly combine these algorithms for different robots in the scene.

A second issue for simulation of large robot teams is real-time-performance:
When executing simulations on normal laptop or desktop computers (as in many
cases of research and education), CPU power often is a limiting factor for the
overall performance of a simulation. As the majority of all new laptop and desk-
top computers features at least a dual-core CPU, optimal performance of a
simulation requires support for multi-threaded execution.

1.2 Existing Robot Simulators

USARSim [1] is an open source simulation which supports several different types
of robots (wheeled, legged, tracked robots, submarines, helicopters) and sensors
(cameras, different distance sensors, RFID sensors, odometry, sound, motion
sensors, etc.). Physics simulation and visualization are based on the game engine
Unreal Engine by Epic Games [2].



Simulation of Multi-Robot Teams with Flexible Level of Detail 31

Several simulators rely on the Open Dynamics Engine ODE [3] for physics
simulation: Gazebo [4] is the 3D simulator of the player/stage project [5] pro-
viding different sensors (cameras, distance sensors, GPS) and several types of
robots (wheeled, legged robots, helicopters). SimRobot [6] is a simulator which
supports wheeled and legged robots which can be equipped with some sensors,
e.g. cameras, distance sensors, and bumpers. Webots [7] is a commercially avail-
able simulator that is able to simulate many different types of robots, including
wheeled, legged and flying robots. It comes up with many configurable sensors,
e.g. cameras, distance sensors, range finders, touch sensors, light sensors, GPS.

Microsoft Robotics Studio [8] is another commercially available simulator. It
also supports many different robots and sensors. Physics simulation is done with
PhysX by NVIDIA [9], which can be accelerated by using special hardware.

Simbad [10] is an open source simulator written in Java. It supports some
different robot models and sensors like cameras, range sensors and bumpers.
Dynamics are calculated with a simplified physics engine.

To the authors’ knowledge none of these 3D simulators fulfills all requirements
stated before. Most of them depend on external physics engines, restricting them
to a very specific level of accuracy of the algorithms used for simulation of robot
motion dynamics and for the numerical integration of the underlying initial value
problems for ordinary differential equations. If no algorithms on different levels
of accuracy are available, these effects only can be reached by huge efforts like
remodeling parts of the scene on different levels of detail.

Also multi-threading is not available in most of the aforementioned simula-
tions. The Unreal Engine 3 supports the usage of multiple CPUs, but USAR-
Sim is currently based on the Unreal Engine 2 without multi-threading. PhysX,
which is used by the Unreal Engine 3 and by Microsoft Robotics Studio, sup-
ports multi-threading, but it is not stated if Microsoft Robotics Studio makes
use of this functionality. ODE, which is used by Gazebo, Webots and SimRobot
is not multi-threaded.

In this paper the Multi-Robot-Simulation-Framework (MuRoSimF) is presented.
It provides a wide variety of simulation algorithms which can be combined to cre-
ate simulations for autonomous mobile robots on different levels of accuracy. As
the data models describing the robot’s structure and state are separated from
the algorithms used, algorithms can be exchanged transparently. MuRoSimF has
already been used successfully for the simulation of several mobile autonomous
robots (e. g. [11,12]). Recent developments covered in this paper include algo-
rithms for the simulation of laser scanners and the possibility to execute simu-
lations multi-threaded thus improving scalability on multi-core CPUs.

2 Structure of Simulation in MuRoSimF

2.1 Data Models

The basic building blocks for the data models of robots and environment are
so called objects. An object is a container for a set of properties which can be
constant or variable. Properties can be assigned at runtime to each object.



32 M. Friedmann, K. Petersen, and O. von Stryk

It is possible to declare a set of properties of different objects to be explicitly
equal, so that all properties will share the same space in memory thus avoiding
unnecessary copying of data. Due to this feature objects representing sensors
can be attached easily to any other object by simply sharing the properties of
interest, e. g. the object’s position and orientation.

Complex models can be created by joining any number of objects into a
so called compound. Compounds may have arbitrary internal structures and
relations of the single objects.

Robots are special compounds with a tree shaped structure. The basic building
blocks for a robot’s kinematic structure are the robot’s base, forks, fixed trans-
lations and rotations (to represent rigid bodies) as well as variable rotations and
translations (to represent joints). For the sake of simplicity only binary forks are
used.

During model setup the kinematic structure of a robot is created from these
basic blocks. To create a robot model a set of helper functions is provided. These
functions allow creation of the tree in a depth-first manner as well as adding
constant properties to each part of the tree. Currently models are programmed
directly in C++. Readers to load models created with external 3D modeling
tools can be added to MuRoSimF. As the rendering of shapes is based on textured
meshes, this will also improve the quality of the simulation’s visualization.

2.2 Algorithms

To make the simulation do something, simulation algorithms are needed. Algo-
rithms are classes which can be connected during simulation setup to the data
models of a simulation. When an algorithm is connected to an object, the algo-
rithm can add additional variable properties dynamically to the object. Due to
this feature, objects only store variable properties required or calculated by the
algorithms in use.

Externally implemented simulation algorithms can be used within MuRoSimF
based simulations by creating a new algorithm class which will connect to the
required properties of the model. This approach is less efficient than implement-
ing algorithms using the tools provided by MuRoSimF as all required properties
need to be copied between the external algorithm and the rest of the simulation.

2.3 Controllers

Controllers are special algorithms which may change and read variable proper-
ties of an object due to external requests. They are used to interface the sim-
ulation to external control software, thus enabling software in the loop testing.
Controllers can interface to data stream oriented connections like serial ports or
TCP-sockets. As controllers may connect to any property of a simulated robot,
new controllers for arbitrary external control software can be added to MuRoSimF.

Several generic controllers for setting joint values and reading sensors are
provided. For more complex control tasks a controller is provided which can
execute arbitrary control algorithms loadable from a dynamic link library.



Simulation of Multi-Robot Teams with Flexible Level of Detail 33

2.4 Execution of Simulations

After setup of the models and algorithms of a simulation, the simulation can be
executed. To do this, all algorithms are registered at a scheduler which will exe-
cute each algorithm at an arbitrary rate, thus allowing algorithms with different
purposes to be run at different speeds (e. g. high rates for robot dynamics and
lower rates for camera simulation). The execution rate can be chosen individu-
ally for each algorithm and each robot, enabling fine tuning of the performance
and accuracy of the simulation.

As the structures required for the exchange of data between the algorithms in
use are created during simulation setup, it is not possible to exchange algorithms
at runtime.

The set of algorithms registered at the scheduler can be structured in two
ways. Sequences of algorithms which have to be executed always in the same
order and at the same rate can be added as one item to the scheduler. It is
possible to execute a set of such sequences in parallel threats. Parallel execution
can be controlled in several ways: It is possible to spawn an individual threat for
each sequence, thus exploiting the maximum number of cores on a CPU present,
but it is also possible to limit the number of parallel threads, e. g. if part of the
CPU time has to be saved for other purposes.

3 Motion Simulation

MuRoSimF provides several modules for robot motion simulation, differing in
levels of accuracy, complexity and generality. The modules can be divided into
two major groups: robot-specific algorithms and general algorithms.

3.1 Robot Specific Algorithms

Two robot specific algorithms are currently provided for kinematic motion sim-
ulation for biped robots and for vehicles with differential drive. Both algorithms
make strong assumptions limiting the motion possibilities as well as the accu-
racy of the simulation. Nevertheless these algorithms have been used successfully
when investigating the high level behavior for homogeneous (e. g. [13]) and het-
erogeneous (e. g. [12]) teams of robots. Another merit of these algorithms is the
low complexity. It is possible to simulate many robots in real time on a standard
computer.

Kinematic biped simulation. The kinematic simulation for biped robots is based
on the assumption, that the robot places its feet on a plane and that always at
least one foot touches this plane. Using this assumption the robot’s motion is
simulated by calculating the direct kinematics of the robot while keeping one foot
fixed to the ground. Whenever a contradiction occurs (e.g. one foot penetrating
the ground plane), the standing foot is swapped. A feature of this algorithm
is the fact, that the simulated humanoid robot does not suffer from effects like
shaking, sliding or falling over which is helpful for certain SIL tests.



34 M. Friedmann, K. Petersen, and O. von Stryk

Differential Drive. Motion of vehicles with differential drive is simulated under
similar assumptions: Both wheels always touch the ground plane. In this case
the angular and linear velocity of the vehicle’s base can be calculated from the
velocity of the wheels.

3.2 General Algorithms

The algorithms presented in this section do not make any assumptions on the
robot’s structure.

Point Model. The point model is the most simple motion simulation algorithm
available in MuRoSimF. Only motion of the robot’s base is considered (and con-
trolled) externally. If necessary (e. g. when investigating control of articulated
external sensors), direct kinematics relative to the robot’s base can be calcu-
lated to give the position and orientation of the robot’s parts. This algorithm
can be used when investigating large scale scenarios considering problems like
team communication or coordination.

Simplified Dynamics Simulation. The simplified dynamics simulation makes no
assumption on the robot’s kinematic structure. Unlike the algorithms presented
before, the following algorithm considers the dynamics of a robot system. To
allow for real-time simulation of teams of robots, this algorithm simplifies the
simulated robot to a single body with center of gravity (CoG) and inertia tensor
changing due to the motion of the robots joints. All internal motions of the
robot are calculated by direct kinematics. Motions of the robot relative to the
environment are calculated by summing up any external forces and torques (e. g.
caused by friction, collision or gravity) at the current CoG and calculating the
resulting linear and angular accelerations of the CoG. The algorithm does not
consider the forces generated by the servo motors of the robot’s joints. Instead
it assumes that the motors are moving at a given rate or acceleration. Further
the algorithm neglects any effects caused by relative motions of the parts of the
robot like Coriolis forces. Even though these simplifications limit the use of this
algorithm when studying whole body motions of a robot, the algorithm has been
used successfully for several types of wheeled, biped and quadruped robots.

As the algorithm requires the external forces experienced by the robot, detect-
ing and handling of collisions are essential. Detection of collisions is currently
based on primitive shapes (box, sphere, cylinder, plane) assigned to the bod-
ies of the robots. To avoid intersecting each body of each robot with each other
body in the scene, a hierarchy of bounding volumes is used (see [11]). As collision-
detection and -handling are modules separated from the motion simulation, they
can be substituted by other algorithms, e. g. by collision detection using meshes.

3.3 Discussion

The algorithms presented in this section differ in complexity, realism and gener-
ality. Depending on the requirements of a given simulation setting an appropriate
algorithm can be chosen allowing to set up an adequate simulation.



Simulation of Multi-Robot Teams with Flexible Level of Detail 35

Due to the modular design of MuRoSimF any other algorithm like full multi-
body system dynamics simulation can be added easily and be exchanged trans-
parently for existing models.

4 Sensor Simulation

Simulation of sensors is performed by algorithms which are connected to the
respective object representing the sensor under consideration. These algorithms
may need further information to simulate the sensor (e. g. rendering information
for the scene in case of camera simulation). In the following subsections the
capabilities of MuRoSimF for simulation of internal sensors and cameras already
presented in [11,13] are revised. After this the newly developed algorithms for
simulation of laser scanners are discussed in detail.

Internal Sensors. Simulation of internal sensors like joint encoders, gyroscopes
or acceleration sensors is based on respective physical values calculated by the
simulation. Sensor errors like noise, saturation or limited resolution of AD con-
verters can be simulated in a post processing step.

Camera. The camera simulation uses the OpenGL based visualization module of
MuRoSimF which is also used for generating the main view. The scene is rendered
from the camera’s point of view, later it is possible to apply blur using a Gaussian
filter or distortion like it is caused by a lens.

Laser Scanner. MuRoSimF provides two different approaches for simulating dis-
tance sensors like laser scanners. One approach is using the z-Buffer information
generated during OpenGL based 3D rendering. The other approach is calculating
intersections of rays with the objects present in the simulation. The approaches
vary in terms of performance and usability, depending on the configuration of
the laser scanner (2D/3D, resolution) and the structure of the scene (number of
static and dynamic objects and their distance to the sensor).

Using the z-buffer to simulate a laser scanner is similar to the camera sim-
ulation up to the point, that the complete scene is rendered from the point of
view of the laser scanner. As only the depth-information is processed, it suffices
to render the geometry data of all objects omitting lighting, color or texture
information thus improving performance. The depth-information is read back
after rendering and can be used to calculate the orthogonal distance of the de-
picted objects from the viewing plane. Considering the direction of the rays, this
information can be used to calculate the length of the rays (see Fig. 1).

Within the standard pinhole model used by OpenGL rendering the view rays
are distributed uniformly on the projection plane yielding a non-uniform angular
distribution of the rays (cf. Fig. 1). For a scan of 2n + 1 rays of the range
[−αmax . . . αmax], the i-th ray from the center has the direction

α̃i = arctan
(

i

n
· tan(αmax)

)
.



36 M. Friedmann, K. Petersen, and O. von Stryk

Fig. 1. Left: Distribution of the rays and measured distance in z-buffer. Middle: Vehicle
with 3D laser scanner, augmented with visualization of the scan. Right: Depth-image
read from the z-Buffer.

As most real laser scanners have a uniform angular distribution, a mapping
of the distances calculated from the z-buffer to the rays of the simulated scanner
must be performed. This can be done by using interpolation, optionally preceded
by supersampling (that is, rendering at a higher resolution than desired).

As the pinhole projection is limited to aperture angles below 180 deg, the
opening angle for the simulated laser scanner is limited. Due to the non-uniform
distribution of the angles it should be well below this limit. Simulation of laser
scanners with a wider angular range can be done using multiple rendering passes
with different viewing directions.

Simulating a laser scanner by calculating ray intersections may use an ar-
bitrary number of rays with any distribution. To speed up the calculation, a
hierarchy of bounding volumes is used. The same hierarchy already is used for
collision detection (see [13]), so it imposes no extra overhead on the simulation.
The calculation is further sped up exploiting local coherence: If a ray intersects
an object, it is likely, that a neighboring ray will also intersect this object, so
that the search space can be limited further.

To integrate simulated laser scanners with a control application a controller-
algorithm (see Sect. 2.3) can be attached to the simulated laser scanner. This
controller is used to handle communication with any external application. A
special controller has been developed implementing the SCIP2.0 (see [14]) pro-
tocol of the widely used Hokuyo URG04LX laser scanner. Using this controller,
applications can be connected transparently to the real or the simulated device.

5 Results

5.1 Applications

MuRoSimF has been used to create several simulations for a wide range of robots
differing in mode of locomotion as well as simulated sensors. Due to the easy
recombination of the existing algorithms simulations adequate for a given pur-
pose, e. g. by choosing appropriate algorithms for motion or sensor simulation
can be created easily.

Simulation of biped robots has been used successfully for testing several mod-
ules of the control software including image processing, world modeling, behavior



Simulation of Multi-Robot Teams with Flexible Level of Detail 37

Fig. 2. Left: Simulation of a team of humanoid soccer playing robots. Middle: Simula-
tion of a newly developed quadruped robot. Right: Simulation of a heterogeneous team
of autonomous robots.

control and motion generation. Beyond biped robots MuRoSimF-based simulations
have been used for several purposes including development of a quadruped robot
and research in the field of cooperation for heterogeneous teams of autonomous
robots (see, e.g., Fig. 2 and [12,15]).

Most recently a simulation for a newly developed small four-wheeled au-
tonomous offroad vehicle equipped with a laser scanner has been created. This
simulation is used to evaluate high level behavior and sensor processing for con-
trol applications for single vehicles as well as teams of vehicles (cf. Figs. 3, 4).
The simulation consists of model data for the environment and for each simu-
lated vehicle. Each vehicle is modeled as a compound object, including a laser
scanner object. Motion simulation is based on the simplified dynamics algorithm
presented in Sect. 3.2. The laser scanner can be simulated with either algorithm
described in Sect. 4.

5.2 Performance of Simulation

The performance of the simulation has been measured for the simulation of four-
wheeled vehicles in a simplified urban scenario described above. Measurements
were taken on two laptop computers (cf. Table 1) equipped with a single resp.
dual core CPU.

Fig. 3. Structure of the simulation: Vehicle data, motion and laser scanner (LS) simu-
lation and the controllers can be duplicated to simulate more than one vehicle. Arrows
indicate direction of data flow.



38 M. Friedmann, K. Petersen, and O. von Stryk

Fig. 4. Simulation of the vehicle (left) connected to a RoboFrame-based control appli-
cation (right). The visualization of the simulation is augmented with the readings from
the vehicle’s laser scanner.

The performance of the motion simulation was measured with disabled laser
scanners. Only the collision detection and the dynamics modules (both running
at 1000 fps) and the controllers were active in this test. Using one core of the
CPU of computer A up to 20 vehicles could be simulated in real time. Using
both cores (parallelizing only dynamics simulation, but not collision detection),
up to 30 vehicles could be measured. On computer B (single core CPU) up to
19 vehicles could be simulated in real time.

The performance of the laser scanner simulation has been measured for several
setups of laser scanners in 2D and 3D configurations (see Table 2). During these
measurements the motion simulation was running single threaded at 1000 fps.
An interesting result of the measurements is the fact, that simulation of scanners
with many rays is more efficient using the z-buffer method while calculation of
ray intersections is more efficient for scanners with very view rays.

Another result from these measurements is, that the performance of the single
simulation algorithms strongly differs by the hardware used. On computer A the
break even in performance of the two laser-scanner-simulation algorithms was at
much less rays then on computer B. Using the modular approach of MuRoSimF
it is possible to choose an algorithm appropriate for the respective computer.

Table 1. Computers used for performance measurements

Computer A Computer B
CPU Intel Centrino Duo Intel Pentium M

(dual core) (single core)
Speed 1.67 GHz 1.86 GHz
RAM 1 GByte 1 GByte

Graphics-chipset Intel 945GM express ATI Mobility Radeon X700



Simulation of Multi-Robot Teams with Flexible Level of Detail 39

Table 2. Measurement of real-time performance of laser scanner simulation

Scanner Vehicles on
Method Resolution FPS Computer A Computer B
z-buffer 10 × 1 10 7 12

100 × 1 10 7 10
100 × 10 10 5 6
100 × 100 10 2 5

ray-intersection 10 × 1 10 9 16
100 × 1 10 5 10
100 × 10 10 2 2

6 Conclusions and Outlook

In this paper MuRoSimF, a framework capable of creating 3D simulations for
teams of autonomous mobile robots with different modes of locomotion (wheeled,
biped, quadruped) and different sensors has been presented. To the authors’
best knowledge it has the unique feature of enabling a very flexible selection of
simulation methods and algorithms for motion and sensing (sub-)systems with
different levels of realism for different robots in the same scene. Specifically, a
newly developed simulation for teams of wheeled vehicles has been presented
and evaluated in this paper.

Several improvements of the earlier developments described in [11,13] have
been achieved: The high performance of MuRoSimFwhen simulating legged robots
could be transfered to wheeled robots. Two new algorithms for the simulation of
laser scanners were added to the framework. They can be exchanged transpar-
ently allowing to choose the algorithm appropriate for a given simulation task.
It is planned to enhance these algorithms by considering distortions of the scan
caused by the robot’s motion.

First steps were taken to enable the distribution of the simulation to multiple
CPUs. Even though currently only the algorithms used for motion simulation
can be parallelized, by using a dual core CPU the number of vehicles simulated
in real-time could be increased by 50%. The next step in improving the simula-
tion’s performance will be the development and integration of collision-detection
algorithms which can be executed in parallel threads.

To provide more realistic simulations, it is planned to validate motion- and
sensor-simulation algorithms by comparing performace of simulated and real de-
vices and improving model data. One possible way to do this is the iterative
approach presented in [16] to determine the motor data of a robot motion dy-
namics model.

Even though MuRoSimF is not open source, the source code is available upon
request for research and educational purposes (see www.dribblers.de/murosimf).

Acknowledgment. Parts of this research have been supported by the German
Research Foundation (DFG) within the Research Training Group 1362 “Coop-
erative, adaptive and responsive monitoring in mixed mode environments”.



40 M. Friedmann, K. Petersen, and O. von Stryk

References

1. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: a robot
simulator for research and education. In: Proc. of the 2007 IEEE Intl. Conf. on
Robotics and Automation (ICRA) (2007)

2. Epic Games, Unreal engine (2007), http://www.epicgames.com
3. Smith, R.: ODE - Open Dynamics Engine (2007), http://www.ode.org
4. Koenig, N., Howard, A.: Gazebo - 3D multiple robot simulator with dynamics

(2003), http://playerstage.sourceforge.net/gazebo/gazebo.html
5. Gerkey, B.P., Vaughan, R.T., Howard, A.: The Player/Stage project: Tools for

multi-robot and distributed sensor systems. In: Intl. Conf. on Advanced Robotics
(ICAR), Coimbra, Portugal, 30 June - 3 July 2003, pp. 317–323 (2003)

6. Laue, T., Spiess, K., Röfer, T.: SimRobot - a general physical robot simulator and
its application in RoboCup. In: Bredenfeld, A., et al. (eds.) RoboCup 2005. LNCS
(LNAI), vol. 4020, pp. 173–183. Springer, Heidelberg (2006)

7. Michel, O.: Cyberbotics ltd. - webots(tm): Professional mobile robot simulation.
Intl. Journal of Advanced Robotic Systems 1(1), 39–42 (2004)

8. Microsoft Robotics Studio (2007), http://msdn.microsoft.com/robotics/
9. AGEIA PhysX website (2007), http://www.ageia.com/physx/

10. Hugues, L., Bredeche, N.: Simbad: an autonomous robot simulation package for
education and research. In: Proceedings of The Ninth International Conference on
the Simulation of Adaptive Behavior (SAB 2006), Rome, Italy (2006)

11. Friedmann, M., Petersen, K., von Stryk, O.: Tailored real-time simulation for teams
of humanoid robots. In: Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F. (eds.)
RoboCup 2007: Robot Soccer World Cup XI. Lecture Notes in CS/AI, vol. 5001,
pp. 425–432. Springer, Heidelberg (2008)

12. Kiener, J., von Stryk, O.: Cooperation of heterogeneous, autonomous robots: A
case study of humanoid and wheeled robots. In: Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), San Diego, CA, USA, Oc-
tober 29 - November 2, 2007, pp. 959–964 (2007)

13. Friedmann, M., Petersen, K., von Stryk, O.: Adequate motion simulation and col-
lision detection for soccer playing humanoid robots. In: Proc. 2nd Workshop on
Humanoid Soccer Robots at the 2007 IEEE-RAS Int. Conf. on Humanoid Robots,
Pittsburgh, PA, USA, November 29 - December 1 (2007)

14. Kawata, H., Ohya, A., Yuta, S.: Development of ultra-small lightweight optical
range sensor system. In: Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (2005)

15. Friedmann, M., Petters, S., Risler, M., Sakamoto, H., Thomas, D., von Stryk, O.: A
new, open and modular platform for research in autonomous four-legged robots. In:
Berns, K., Luksch, T. (eds.) Autonome Mobile Systeme 2007, Informatik aktuell,
Kaiserslautern, October 18 - 19, 2007, pp. 254–260. Springer, Heidelberg (2007)

16. Stelzer, M., Hardt, M., von Stryk, O.: Efficient dynamic modeling, numerical op-
timal control and experimental results for various gaits of a quadruped robot. In:
CLAWAR 2003: 6th International Conference on Climbing and Walking Robots,
Catania, Italy, September 17-19, 2003, pp. 601–608 (2003)

http://www.epicgames.com
http://www.ode.org
http://playerstage.sourceforge.net/gazebo/gazebo.html
http://msdn.microsoft.com/robotics/
http://www.ageia.com/physx/


MM-ulator: Towards a Common Evaluation
Platform for Mixed Mode Environments

Matthias Kropff, Christian Reinl, Kim Listmann, Karen Petersen,
Katayon Radkhah, Faisal Karim Shaikh, Arthur Herzog, Armin Strobel,

Daniel Jacobi, and Oskar von Stryk�

Technische Universität Darmstadt, Research Training Group “Cooperative, Adaptive
and Responsive Monitoring in Mixed Mode Environments”, 64289 Darmstadt,

Germany
http://www.gkmm.tu-darmstadt.de

Abstract. We investigate the interaction of mobile robots, relying on in-
formation provided by heterogeneous sensor nodes, to accomplish a mis-
sion. Cooperative, adaptive and responsive monitoring in Mixed-Mode
Environments (MMEs) raises the need for multi-disciplinary research
initiatives. To date, such research initiatives are limited since each disci-
pline focusses on its domain specific simulation or testbed environment.
Existing evaluation environments do not respect the interdependencies
occurring in MMEs. As a consequence, holistic validation for develop-
ment, debugging, and performance analysis requires an evaluation tool
incorporating multi-disciplinary demands. In the context of MMEs, we
discuss existing solutions and highlight the synergetic benefits of a com-
mon evaluation tool. Based on this analysis we present the concept of the
MM-ulator : a novel architecture for an evaluation tool incorporating the
necessary diversity for multi-agent hard-/software-in-the-loop simulation
in a modular and scalable way.

1 Introduction

Mixed Mode Environments cover the range from static and structured to highly
dynamic and unstructured environments and consist of a myriad of networked
nodes including sensors, robots and possibly humans-in-the-loop. Further, MMEs
are characterized by different kinds of heterogeneity with respect to the utilized
devices and their capabilities (e.g. communication interfaces, energy resources,
sensor data). The scenarios addressed within MMEs may vary from monitor-
ing and surveillance tasks, using heterogeneous sensors, to the coordination of
autonomous vehicles. Accomplishing these tasks requires knowledge from four
main domains: (1) robotics and control, (2) communication, (3) sensing, and (4)
dependable middleware.

� This research has been supported by the German Research Foundation (DFG) within
the Research Training Group 1362 “Cooperative, adaptive and responsive monitoring
in mixed mode environments”.

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 41–52, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.gkmm.tu-darmstadt.de


42 M. Kropff et al.

In order to respect the multi-disciplinary issues, a common tool is needed
to examine the various problems and mutual dependencies. Throughout the last
years, the design of such simulation environments has been of significant interest,
particularly to the RoboCup community [3]. To the best of our knowledge, how-
ever, there exists no evaluation tool covering the diversity of the above named
fields. Thus, a concept introducing a holistic validation tool respecting the in-
terdisciplinarity and heterogeneity in MMEs is developed. In the remaining of
the paper, we will refer to this concept as the MM-ulator.

The paper is organized as follows: Next, we highlight the benefits of a common
evaluation tool and define the necessary requirements. In Section 3 we survey
relevant simulation tools and discuss their applicability to relevant scenarios.
The proposed architecture of the MM-ulator is presented in Section 4.

2 Benefits and Challenges of a Common Evaluation
Platform

For the purpose of validation and performance analysis, three well known evalu-
ation methodologies can be applied: (1) analytical modeling, (2) simulation, and
(3) real experiments. Since analytical modeling is rather impractical and real
experiments are expensive and time consuming, a valuable approach is to use
simulation. But as only real experiments provide realistic results, they cannot
be neglected in general. Hence, validation techniques giving the opportunity to
incorporate real systems, would be beneficial. To this end, we focus on emula-
tion, a hybrid validation technique combining simulation and real-world experi-
ments, including the known elements of software- and hardware-in-the-loop tests.
Figure 1 highlights the conceptual differences to pure simulation.

Relying on the emulation approach, the developer does not have to cope with
simulation time semantics, and the integration of existing sensor and robot hard-
ware to a certain degree is facilitated. This turns emulation into a suitable tool
for controlled prototype testing and debugging. Figure 1 also indicates that the

Communication

Middleware

Distributed Control 
and Robotics

Sensing / Computer 
Vision

Simulation

Modeling

Emulation
Real-World

Testbed

Real Application 
code

Degree of abstractionhigh low

Communication

Middleware

Distributed Control 
and Robotics

Sensing / Computer 
Vision

CommunicationCommunication

MiddlewareMiddleware

Distributed Control Distributed Control 
and Roboticsand Robotics

Sensing / Computer Sensing / Computer 
VisionVision

Hybrid

Fig. 1. Emulation as hybrid approach of simulation and real-world experiments



MM-ulator: Towards a Common Evaluation Platform for MMEs 43

Robotics and

Distributed Control

Communication

Computer

Vision

Middleware/

Dependability

Mobility patterns

Object detection

Information
exchange for 
distributed
detection

Integrating
heterogeneous
sensors

Dependable
communication
mechanism

Service discovery 
for managing task 
assignment
Group addressing/ 
selection

Dependability info. 
for mission control
Event notification 
for mission control

Vision-based
localization

Interoperability
of devices

Network traffic

Service requirements

Communication
topology

Scene interpretation

Vision-based localization

Fig. 2. Multi-disciplinary knowledge

degree of abstraction depends merely on the modeled building block: Since only
minor parts need to be modeled in detail, the degree of abstraction for the
middleware and communication module is low, whereas the sensing and control
module require a moderate degree of abstraction.

2.1 Benefits of Validation by Using Multi-disciplinary Knowledge

The synergetic benefits of tightly coupled multi-disciplinary knowledge is shown
in Figure 2. The interconnecting arrows indicate the potential decrease in the
level of abstraction regarding the shown dependencies, enabling more realistic
results. To have a more thorough understanding of the highlighted challenges,
let us consider an explosion in a chemical plant and a subsequent spread of fire,
evolving into a toxic environment, inaccessible to human operators. In order to
support the rescue operations, a team of robots starts exploring the environment.
Fundamental tasks are building a map of the environment, locating victims and
marking safe exit pathways or unreachable areas.

In the following, we will point out some sparsely tackled research questions
from the perspective of cooperative control and mobile communicating, as well
as sensing and middleware.

Benefits for Mobile Communicating Teams of Vehicles and Nodes:
In order to use heterogeneous autonomous mobile sensing platforms such as
robots within MMEs, it is crucial to combine their control and coordination
oriented communication. It has been shown that the information flow among
the robots influences the stability of their coordinated movement [10]. Due to
this mutual coupling, the communication properties of the environment and the
robots need to be respected when applicable control algorithms are being de-
signed. These properties include reflections, fading effects, communication range
and packet losses. On the one hand, these effects have a significant impact, e.g.
on close loop stability for cooperative control. On the other hand, distributed



44 M. Kropff et al.

control may change the network topology, improving routing efficiency or cov-
ering a wider area while remaining connected. This combination is obviously
bidirectional and very important with respect to cooperative control of robotic
groups.

Typically, field data is provided by sensors. Cooperative data gathering based
on aggregated information is closely related to the positions of the robots and
viewing angles of their sensors. Thus, the verification of hypotheses in scene inter-
pretation and object detection can be significantly improved by connecting the
algorithms to the motion control of robots. Realistic simulated sensor outputs,
e.g. including noise, will show the reliability of control algorithms in non-ideal
situations and will give rise to increase the robustness of the applied meth-
ods. Furthermore, visual servoing [8], dynamic acquisition of navigational data,
and distributed cooperative mapping strategies are other representative topics.
They incorporate fundamental issues from sensing and motion control, such as
the amount of necessary information exchange between multiple unmanned vehi-
cles, mission control, or stability of coordination of partially autonomous robots.

Benefits for Sensing and Middleware: In the exemplified scenario, robots
will have to discover services offered by sensor nodes in radio proximity and
therefore, help to re-establish a reliable and efficient communication infrastruc-
ture. This smart behavior still imposes several research challenges on communi-
cation and middleware concepts. Self-description and self-profiling mechanisms
are needed to spontaneously migrate devices into the networked environment,
regardless of the given sensor manufacturer or interface. Middleware simplifies
the interconnections between sensing, communication, and distributed control. A
formal specification of interfaces for these parts leads to an increase of the inter-
operability of different devices. One challenge is to specify a common represen-
tation, to allow hardware independent robot task assignment, actuator control,
interpretation of pre-processed sensor data, and robot capability description.

Dependability supporting approaches like multi-path routing require the spec-
ification of constraints, which can be provided by the middleware if appropriate
interfaces are defined. Finally, several questions in the communication domain
are closely linked to information provided by a well-defined middleware con-
cept. For instance, approaches like efficient semantic addressing and routing of
sensing and actuation data require certain self-description functionalities on the
communication level.

Even by this brief discussion on upcoming research challenges, a fundamental
question arises: How will multi-disciplinary performance metrics look like? We
believe that having a holistic evaluation tool, available solutions for MME prob-
lems can be regarded from new perspectives. For instance, as migrating wireless
network constraints into robot control, new metrics like coordination stability
will emerge.

To our knowledge, these cross-sectional issues are not supported by any of
the existing simulation environments. Based on this analysis we propose the
requirements, which are fundamental for such a holistic evaluation tool.



MM-ulator: Towards a Common Evaluation Platform for MMEs 45

2.2 Basic Requirements

The simulation and emulation of a real physical world requires a flexible ap-
proach. A modular architecture is necessary to facilitate scalability and ad-
justable degrees of abstraction. Furthermore, the MM-ulator needs to provide
realistic fault and security models as well as efficient analysis and visualization of
gathered data. Dependability aspects provide different faults and threat models
which can also be considered in the MM-ulator.

Modeling Node Properties: Robots, unmanned vehicles, sensors, actuators,
and main servers require heterogeneous 3D models. Besides, the locomotion
properties, kinematics and motion dynamics of robots and vehicles are essen-
tial to be modeled. Sensor readings, e.g., for laser scanners, cameras, or contact
sensors must be considered with an adjustable accuracy. Specific resources like
processing power (e.g., for on-board image processing), memory, communica-
tion capabilities, energy consumption, and sensing devices with different levels
of accuracy have to be modeled properly and comprehensively.

Modeling Physical Environment Properties: The physical environment
splits up in static and dynamic properties. The static part consists of a realistic
3D model of the environment, including obstacles, buildings, surface proper-
ties, and various objects of interest as well as physical effects like gravity. The
dynamic parts of the physical environment include basic radio frequency propa-
gation models for identifying communication links and specific scenario settings
like mobility patterns of victims and rescue teams, chemical and physical con-
centrations (e.g., radioactivity), diffusion process of (toxic) gas, or the spread of
fire. The dynamic parts need to be modeled thoroughly. Also interactions with
the environment by the nodes, e.g., the distribution of RFID tags, robot driven
installment of sensor nodes need to be incorporated in the model of the physical
environment.

3 Related Work

Currently available simulation environments for testing algorithmic approaches
for the addressed scenarios are either rooted in the area of 3D robot simulation,
Wireless Sensor Networks (WSNs) or in Mobile Ad Hoc Networks (MANETs).

USARSim [6] is a 3D simulator for testing robotic applications, especially for
search and rescue scenarios. It is based on the Unreal Engine by epic games [1],
providing plausible physics simulation and high quality visualization. State infor-
mation is exchanged with the engine using the scripting language Unrealscript.
USARSim supports a variety of robot models, including legged, wheeled and
tracked vehicles, as well as submarines and helicopters, and additionally pro-
vides a wide range of sensor models, including cameras, range, touch or odom-
etry sensors. Based on existing classes and adapted scripts new robots/sensors
can be added, respectively. Robot control can either be performed by sending



46 M. Kropff et al.

text messages via TCP sockets, or by utilizing wrappers for the middleware
Player [7], Pyro [5] or MOAST [4], that are already available in USARSim. In
most cases, code that was developed within the simulation will also work on the
real robots.

The Multi-Robot-Simulation-Framework (MuRoSimF) [12] (cf. Fig. 5(left))
can be used to create simulations for cooperating teams of heterogeneous robots
in dynamic environments. MuRoSimF provides models for different legged and
wheeled robots equipped with sensors, like cameras and laser range finders. Its
modular structure facilitates to assign different algorithms to each part in the
simulation (e.g. motion or sensor simulation for individual robots) and provides
the option to be extended by the required inter robot communication mechanism.

Other related robot simulation environments are Webots [24], Gazebo [17],
Microsoft Robotics Studio [2] and SimRobot [18]. Common to the named tools
is their focus on detailed 3D models of the environment, surfaces, robots and
physics simulation, while they predominantly lack of components for modeling
wireless multi-hop communication, integration of mediating middleware concepts
or the incorporation of dependability models for realistic scenario test-runs.

A second category of simulation environments evolves from the area of Wire-
less Sensor Networks (cf. Fig. 5(right)). TOSSIM [19] is a simulator for wireless
sensor nodes which are running the operating system TinyOS. Its dual mode
functionality allows to run TinyOS code in a controlled simulation mode as well
as on real sensor hardware. In simulation mode TOSSIM models link connectiv-
ity by probabilistic models and provides detailed hardware abstraction effects
including ADC and battery models. A similar approach is the cycle-accurate
instruction level simulator Avrora [26], which operates on sensor node firmware
images and provides simulation of fine grained radio models including detailed
models to evaluate the energy efficiency of different protocols. A two tier form
of WSN heterogeneity is supported by the EMStar framework [13]. It provides
simulation and emulation capabilities for constrained motes, as well as more
powerful microservers, and therefore focus on middleware mechanisms to pro-
vide interoperability.

The most significant drawback of the presented platforms is that they were
intentionally designed for static, resource constrained nodes. This disallows the
simultaneous integration of more powerful platforms within this setup.

Mobile nodes possessing higher processing/communication capabilities are ad-
dressed in the area of Mobile Ad Hoc Networks. Typical emulation environments
strongly focus on the evaluation of routing protocols for Mobile Ad Hoc Net-
works and are shown in [9,11,14,20,21,22,23,25,27]. However, these approaches
address predominantly algorithmic solutions on the network and medium ac-
cess layer, while mobility and network traffic patterns are predefined in ad-
vance of a testrun. As a result, the evaluation of mechanisms for dynamic
and cooperative task assignment, motion control under constraints of network
connectivity or the interaction of heterogeneous groups of mobile robots are
disregarded.



MM-ulator: Towards a Common Evaluation Platform for MMEs 47

4 Proposed Architecture

The proposed architecture for the MM-ulator aims to fulfill two main require-
ments: (1) reducing the software re-implementation overhead when switching
from validation by simulation to a real-world test-run and (2) incorporating real
hardware platforms in the evaluation process. To cover a wide range of possible
devices, a generic node architecture is proposed that allows to run the same soft-
ware code either on real embedded systems like robots or sensor hardware, or to
instantiate a pure software entity as a virtual node on a common PC platform
to increase the scalability of a test-run.

4.1 Inner Node Architecture

The inner node architecture describes the functionalities of the node modules
and their interconnecting interfaces. The modularity of the architecture allows
to model a variety of heterogeneous devices. For instance, while the algorithms
encapsulated in the distributed control module model the task planning com-
ponent on a mobile robot, they might be absent in case the instantiated node
entity represents a static, resource limited node, which only supports basic sens-
ing capabilities. The Knowledge Database provides information about the node’s
communication, processing and memory capabilities. It also comprises the node’s
sensing and actuating resources and provides information about the node’s type
of locomotion, allowing to easily configure an autonomous vehicle or a static
sensor node. Moreover, the knowledge database provides details about a node’s
energy source and depletion process during operation.

The Middleware module provides standardized interfaces to bridge the intra
node communication between the sensors, actuators, distributed control- and
communication module. It encapsulates algorithms and protocols to provide se-
mantic node addressing and basic Publish/Subscribe mechanisms, facilitating
efficient group communication among diverse node groups. Furthermore, the
middleware architecture comprises mechanisms for idle sleep cycles to model
energy saving algorithms for wireless sensors. Based on information from the
knowledge database, the middleware module can generate a generic node de-
scription, which can be distributed to neighboring nodes to provide and dis-
cover remote sensing capabilities and to coordinate actuation capabilities for
distributed task planning. Additionally, the middleware module encapsulates
mechanisms for controlling data privacy and security issues.

The Distributed Control module comprises the algorithms for distributed task
planning, coordinated task assignment and mission control. It holds the control
logic for robot movements and deduces possible task goals, depending on the
predefined mission statement or the scene interpretation based on sensing infor-
mation. Predefined mission tasks range from fetching simple sensor readings at
a specific location to more elaborated tasks such as exploring the environment
and finding injured people.

The Communication module encompasses higher level algorithms and proto-
cols for wireless ad hoc communication. To provide an heterogeneous emulation



48 M. Kropff et al.

Static / Mobile 
Real / Virtual 
Node Entity

Central Emulation Controler

Distributed Control

Middleware

Communication

Simulated Physical World
(Environment, Scenario)

D
ep

en
da

bi
lit

y
Dependability

Knowledgebase

 Adaptation 
 Layer

Sensors ActuatorsInterfaces

Map N

Map 2

Map 1

Visualisation, Loging and Data Analysis as 
Map based World Models (MWM)

Fig. 3. Architecture of the proposed MM-ulator

scenario of virtual and hardware nodes simultaneously, network layer functional-
ities like routing algorithms, service discovery and interface management mech-
anisms are modeled consistently on node level. For modeling further wireless
network mechanisms like the Medium Access (MAC) layer or topology control
algorithms, the communication interface at the adaptation layer provides means
to specify packet based scheduling policies and transmit power adjustments,
which are used in the centralized emulation controller to determine the resulting
packet scheduling and network topology.

The inner node core is enriched by the Dependability module, which provides
the extra-functional abstraction layer (EFAL) for other modules. The EFAL
provides fault modeling and injection of faults to ensure the proper execution of
application code in the face of failures. For secure execution of applications, the
EFAL provides threat modeling and threat injection mechanisms. The EFAL also
enables dependability/security evaluation metrics for comprehensive evaluation
and debugging of inner node interactions.

4.2 Inter Node Architecture

The connection of the nodes to the simulated world, the so called central em-
ulation controller, is crucial to the architecture presented in Fig. 3. Generally,
all node-to-environment and node-to-node interactions are exchanged using this
connection. The connection is mainly supported by the adaptation layer on the
side of the node and by the simulated physical world on the side of the central
emulation controller. The former acts as a filter for the exchanged data such that
only the information relevant to this node is incorporated and passed to the inner
node modules. The latter defines the world model leading to physically correct
information. This world model consists of a 3D model of the environment pos-
sessing real physical properties (e.g. friction, gravity). Moreover, communication



MM-ulator: Towards a Common Evaluation Platform for MMEs 49

simulated

node

physical world
tk+1

ttk

θw, xw
θw, xw ˙̃xn

˙̃xw → ẋw

∫
−→ xw

˙̃xn = f(x̃n, u, θn)

Fig. 4. Information flow between the node and the central emulation controller

links (basic RF propagation) and scenario settings can be respected. Consider-
ing our interest in search and rescue operations, the spread of substances/fire
needs to be modeled; also an interaction with the environment is necessary. Such
architecture leads to the information flow structure shown in Fig. 4.

A state space description of each node is applied which, e.g. for a mobile
robot, describes its dynamical motion. At time tk every node computes its own,
desired change of state ˙̃xn using the node’s own state x̃n, control variable u and
the relevant parameters θn. The relevant information for each node needs to be
filtered out of the world information and adapted according to the properties of
the node. As already mentioned, this adaptation is performed by the adaptation
layer. This layer can work with real hardware or simulated virtual nodes. In the
case of a pure simulation, threat, sensor and actuator models for the virtual node
mimic the features of real sensors or actuators, resulting in a versatile structure
and enabling realistic simulation.

After the computation of ˙̃xn, each node transmits its desired change of state
to the world simulation. Here, the desired changes of state of each node are
combined to ˙̃xw , the desired change of state of all nodes. Due to the fact that
only local knowledge is available for each node, ˙̃xw is not necessarily reasonable.
Thus, before computing the eventual change of state of each node ẋw , feasibility
of ˙̃xw must be checked. The feasibility study is conducted by physical engines,
e.g. PhysXTM by Ageia/nVIDIA or the Open Dynamics Engine ODE. Given
an appropriate interpretation of ˙̃xw due to environmental properties, these en-
gines can compute ẋw, excluding impossible movements this way. Additionally,
a dependability interface provides the system with realistic fault/threat models.
Similar to the inner node architecture, it investigates which, when and where to
inject faults and threats [15] to influence the system behavior.

Dependability can simulate the probability of specific consequences, such as
catastrophic failures. As simulation progresses, it is possible to observe 1) how
the system evolves, 2) how different failures impact the system, and 3) how well
the protocols handle security threats. Provided that some system properties
are uncertain, the significance of those uncertainties can be determined. To the
authors’ knowledge, these dependability models have not been respected in the
design of multi-robot system simulators before.

The above described inner node architecture enables real change of state of
each node ẋw. A standard integration leads to the new state of all nodes xw.



50 M. Kropff et al.

Fig. 5. Robot simulation of a wheeled vehicle equipped with a laser scanner exploring
an urban area (left). WSN simulation without locomotion properties (right).

Including the possibly altered parameters of the simulation and the environment
θw, the state xw is subsequently sent back to each node at time tk+1 and the
simulation can proceed.

4.3 Visualization and Analysis

In general, efficient tracing, analysis, and visualization of log data is one of the
main and important aspects of a simulation. Since spatial correlation is common
in MMEs, the MM-ulator visualization abstractly presents the regions of interest
instead of single sensor values. Maps are a natural way to describe the physical
real world as well as the network world. The MM-ulator provides a Map-based
World Model (MWM) [16] consisting of a stack of maps of relevant attributes
(e.g., fault/threat map, connectivity map, residual energy map) (cf. Fig. 3).

The MWM abstracts different levels in MM-ulator such as communication
issues and supports arbitrary applications. It allows efficient event detection,
prediction and querying the network. The analysis based on MWM provides
efficient mechanisms for predictive monitoring, proactive MME reconfiguration,
enhancement of MME functionality, dependability and security.

4.4 First Implementation Steps

The screenshot outlined in the left part of Fig. 5 shows our search and res-
cue benchmark scenario in the MuRoSimF-based simulation [12] environment.
Although, MuRoSimF with its origin in robot simulation provides detailed in-
formation on the physical environment and on the control/task states during the
exploration phase, the aspects of wireless communication for robot interaction
and remote sensor reading is not fully supported yet.

The right part of the figure shows the simulation of a homogeneous, static
wireless sensor network (e.g. by using [19]) incorporating detailed protocol per-
formance depending on sensor coverage and network connectivity for reliable
event reporting. Based on the design proposed in 4.1 - 4.3 it is possible to
integrate the communication characteristics of wireless multi-hop networks to
MuRoSimF’s dynamic environment models, providing more realistic radio prop-
agation models as well as scenario dependent packet flows.



MM-ulator: Towards a Common Evaluation Platform for MMEs 51

5 Conclusion

A novel architecture for a simulation environment has been proposed for em-
ulation and validation of fundamental research topics from the diverse fields
involved in using heterogeneous networks of sensors and mobile robots in mixed
mode environments. Motivated by various benefits of such a tool, a modular
architecture has been presented to meet the different requirements and levels of
realism in simulation. The architecture itself is comprised of a central emulation
controller acting as the physical world and independent modules, incorporat-
ing the node specific characteristics, that are connected to this physical world
emulation. Resulting in a highly scalable approach, this architecture respects is-
sues that have not been considered before and is designed such that every node
instance may either be simulated or real hardware equipment.

Future work will primarily deal with the implementation of this architecture
as a stand-alone simulation tool extending existing simulators.

Acknowledgements. The authors thank Johannes Meyer, Paul Schnitzspan,
Mykhaylo Andriluka, Martin Friedmann, and Abdelmajid Khelil for helpful
discussions.

References

1. Epic games, unreal engine (2007), http://www.epicgames.com
2. Microsoft Robotics Studio (2007), http://msdn.microsoft.com/robotics/
3. Balakirsky, S., Scrapper, C., Carpin, S., Lewis, M.: USARSim: providing a frame-

work for multi-robot performance evaluation. In: Proceedings of PerMIS (2006)
4. Balakirsky, S., Scrapper, C., Messina, E.: Mobility open architecture simulation

and tools environment. In: Proc. of the Intl. Conf. on Integration of Knowledge
Intensive Multi-Agent Systems (2005)

5. Blank, D.S., Kumar, D., Meeden, L., Yanco, H.: Pyro: A python-based versatile
programming environment for teaching robotics. Journal of Educational Resources
in Computing (JERIC) (2004)

6. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: a robot
simulator for research and education. In: Proc. of the 2007 IEEE Intl. Conf. on
Robotics and Automation (2007)

7. Collett, T.H.J., MacDonald, B.A., Gerkey, B.: Player 2.0: Toward a practical robot
programming framework. In: Proc. of the Australasian Conf. on Robotics and
Automation (2005)

8. Cowan, N., Lopes, G., Koditschek, D.: Rigid body visual servoing using navigation
functions. In: Proc. of the 39th IEEE Conf. on Decision and Control (2000)

9. Engel, M., Freisleben, B., Smith, M., Hanemann, S.: Wireless Ad-Hoc Network
Emulation Using Microkernel-Based Virtual Linux Systems. In: Proc. of 5th EU-
ROSIM Congress on Modeling and Simulation, pp. 198–203 (2004)

10. Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle for-
mations. IEEE Trans. on Automatic Control 49(9), 1465–1476 (2004)

11. Flynn, J., Tewari, H., O’Mahony, D.: JEmu: A Real Time Emulation System for
Mobile Ad Hoc Networks. In: Proc. of the SCS Conf. on Communication Networks
and Distributed Systems Modeling and Simulation, pp. 115–120 (2002)

http://www.epicgames.com
http://msdn.microsoft.com/robotics/


52 M. Kropff et al.

12. Friedmann, M., Petersen, K., von Stryk, O.: Adequate motion simulation and col-
lision detection for soccer playing humanoid robots. In: Proc. 2nd Workshop on
Humanoid Soccer Robots at the 2007 IEEE-RAS Intl. Conf. on Humanoid Robots
(2007)

13. Girod, L., Stathopoulos, T., Ramanathan, N., Elson, J., Estrin, D., Osterweil, E.,
Schoellhammer, T.: A system for simulation, emulation, and deployment of hetero-
geneous sensor networks. In: Proc. of the 1st Intl. Conf. on Embedded Networked
Sensor Systems (2004)

14. He, R., Yuan, M., Hu, J., Zhang, H., Kan, Z., Ma, J.: A Real-time Scalable and
Dynamical Test System for MANET. In: Proc. of 14th IEEE Conf. on Personal,
Indoor and Mobile Radio Communications, pp. 1644–1648 (2003)

15. Johansson, A., Murphy, B., Suri, N.: On the impact of injection triggers for os
robustness evaluation. In: The 18th IEEE Intl. Symp. on Software Reliability En-
gineering (2007)

16. Khelil, A., Shaikh, F.K., Ayari, B., Suri, N.: MWM: A map-based world model
for event-driven wireless sensor networks. In: The 2nd ACM International Con-
ference on Autonomic Computing and Communication Systems (AUTONOMICS)
(to appear, 2008)

17. Koenig, N., Howard, A.: Gazebo - 3D multiple robot simulator with dynamics
(2003), http://playerstage.sourceforge.net/gazebo/gazebo.html

18. Laue, T., Spiess, K., Röfer, T.: SimRobot – A General Physical Robot Simulator
and Its Application in RoboCup. In: Bredenfeld, A., et al. (eds.) RoboCup 2005.
LNCS (LNAI), vol. 4020, pp. 173–183. Springer, Heidelberg (2006)

19. Levis, P., Lee, N., Welsh, M., Culler, D.: Tossim: accurate and scalable simulation of
entire tinyos applications. In: Proc. of the 1st Intl. Conf. on Embedded Networked
Sensor Systems, pp. 126–137 (2003)

20. Lin, T., Midkiff, S.F., Park, J.S.: A Dynamic Topology Switch for the Emulation
of Wireless Mobile Ad Hoc Networks. In: Proc. of the 27th Annual IEEE Conf. on
Local Computer Networks, pp. 791–798 (2002)

21. Mahadevan, P., Rodriguez, A., Becker, D., Vahdat, A.: MobiNet: A Scalable Emu-
lation Infrastructure for Ad hoc and Wireless Networks. In: Proc. of Intl. Workshop
on Wireless Traffic Measurements and Modeling, pp. 7–12 (2005)

22. Maier, S., Herrscher, D., Rothermel, K.: On Node Virtualization for Scalable Net-
work Emulation. In: Proc. of Intl. Symp. on Performance Evaluation of Computer
and Telecommunication Systems, pp. 917–928 (2005)

23. Matthes, M., Biehl, H., Lauer, M., Drobnik, O.: MASSIVE: An Emulation En-
vironment for Mobile Ad-Hoc Networks. In: Proc. of IEEE 2nd Annual Conf. on
Wireless On-demand Network Systems and Services, pp. 54–59 (2005)

24. Michel, O.: Cyberbotics ltd. - webots(tm): Professional mobile robot simulation.
Intl. Journal of Advanced Robotic Systems 1(1), 39–42 (2004)

25. Puzar, M., Plagemann, T.: NEMAN: A Network Emulator for Mobile Ad-Hoc
Networks. In: Proc. of 8th Intl. Conf. on Telecommunications (2005)

26. Titzer, B.L., Lee, D., Palsberg, J.: Avrora: Scalable sensor network simulation with
precise timing. In: Proc. of 4th Intl. Conf. on Information Processing in Sensor
Networks, Los Angeles (2005)

27. Zheng, P., Ni, L.M.: EMWIN: Emulating a Mobile Wireless Network Using a Wired
Network. In: Proc. of 5th ACM Intl. Workshop on Wireless Mobile Multimedia,
pp. 64–71 (2002)

http://playerstage.sourceforge.net/gazebo/gazebo.html


S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 53–64, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

A Multi-agent 3D Simulation Environment  
for Clothing Industry  

Rezia Molfino1, Enrico Carca1, Matteo Zoppi1, Fabio Bonsignorio1, 
Massimo Callegari2, Andrea Gabrielli2, and Marco Principi2 

1 PMARlab, DIMEC, University of Genova, Italy 
2 Department of Mechanics, Polytechnic University of Marche, Ancona, Italy 

{molfino,carca,zoppi}@dimec.unige.it, 
{m.callegari,andrea.gabrielli,m.principi}@univpm.it  

Abstract. The clothing artefact business is facing relevant restructuring to be-
come able to produce items with enhanced value as for quality reliability, fash-
ion inventiveness and mass customization. The paper presents a multi-agent 
simulation environment developed to assess and virtually check the feasibility 
and performances of flexible automation solutions that can help the clothing in-
dustry to overcome the shift towards knowledge driven organizations. It ad-
dresses new options based on distributed intelligence and robotized cooperative 
resources including human assisted working. 

Keywords: Cloth manufacture, multi-agent simulation, robotics. 

1   Introduction 

The textile clothing industry characterizes by wit and knowledge driven settings, fol-
lowed by labour intensive shop lay-outs and, so far, to improve effectiveness, produc-
tive break-up is exploited, with advertising and creative firms fed by decentralized 
processing sections, to distribute the work according to wages and skills figures. Busi-
ness success is sought, balancing added value and cost reduction, by productive decen-
tralization aiming at preserving quality critical jobs under direct control.  

The evolution coherently moves towards new organizations, based on distributed intel-
ligence to grant products quality monitoring, while enabling flexibility by including func-
tional robotic resources and specialized manufacturing cells as well as new production 
schedules assuring return on investment following the lean manufacturing concept [1]. 

The paper addresses innovation based on the development of a simulation environment 
able to reconstruct cloth manufacturing processes including traditional and innovative ro-
botized devices. First, basic organizational requirements are outlined, with reference 
methods to establish and assess improvements; then, multi-agent simulation aids are re-
viewed [2], with explanatory discussion on cloth manufacturing environments. The simu-
lator is purposely referred to the case of quality man jacket production but, thanks to the 
modular architecture it can be used for different garments production. The main scope of 
the simulator is to offer to users (garment manufacturers) and to system integrators (manu-
facturing process developers) a mean to assess the value of the adoption of new resources 
and new technologies introducing different levels of flexible automation [3]. 



54 R. Molfino et al. 

2   Cloth Manufacturing Flexibility and Leanness: State of the Art 
and Trends 

Cloth suppliers are increasingly concerned by quick-response policies, ranking at cus-
tomers driven scopes [4]. These, by the way, presume technological versatility, adap-
tive resources and process schedules, so that effectiveness is directly related with 
flexibility issues, to find out better facility lay-outs and production as well as organi-
zation and schedules.  

In automotive industries, e.g., integration of flexibility and leanness is recognised 
to be winning opportunity and prospected as Toyota paradigm (to replace Ford para-
digm), whenever fast changing product mixes need be processed, to satisfy likes and 
tastes of diversified buyers. Very little has been done, so far, in that direction by 
clothes industries; labour centred shops are maintained and performance is accepted 
to be ranked into non uniform ranges, with quality and price highly dependent on 
each other. Indeed, dresses manufacture distinguishes several quality ranks, from 
high-standing articles (in the domain of handicraft), down to cheap offers, with stan-
dard attributes whether properly mass produced [5].   

Even for mass production, clothes enterprises use loosely connected automation, 
bringing about flexibility in job schedules and delivery issues by means of operators 
trained skill and decision ability.  

In view of intelligent manufacturing, the area peculiarities bring about to re-think 
resources and methods, stressing on flexible automation, and process control integra-
tion [6]. The simulation techniques promote betterments, by balancing added value 
investments with transparency of the effects. To such a purpose, a multiple-step pro-
cedure should be available, as indicated in Fig. 1.  

An intelligent manufacturing solution, on these premises, is more a bet than a chal-
lenge, unless the selected lay-out is made to operate with proper production pro-
grammer and the strategic, tactical or execution flexibility is turn by turn exploited, 
with due account of the technological resources versatility [7]. 

 

Fig. 1. Tools to assess flexibility effects in manufacture 

Computer simulation and testing with virtual set-ups should be used as powerful 
decision aids, for off- and on-line use to deal with flexibility. The tools are typical is-
sue of the IT, providing: - at the facility design-development stage to select the re-
sources and to set-up the layout configurations: resources setting needs comply with 



 A Multi-agent 3D Simulation Environment for Clothing Industry 55 

enterprise sale policies; agendas are stated for balanced throughput and due time; - at 
the facility management-fitting stage to update the plans and to explore the recovery 
ability: production schedules are updated by on-process data, to face planned (e.g. 
itemization) or unpredictable (e.g. failures) discontinuities. In the first stage simula-
tion will provide a precious demonstration tool for new manufacturing concepts to 
establish comparative enterprise forecasts and to anticipate benefits or drawbacks of 
the proposed solutions; in the second one simulation will support the plant manage-
ment also in case of unexpected events on the basis of the embedded reference 
knowledge.  

Simulation codes are, now, standard options, mainly, based on object languages 
and modular structures. Modularity is useful, to focus the attention on subsets of 
quantities, while leaving unaffected other parameters, drawn out from the facts to be 
assessed [8]. The plant effectiveness, actually, depends on a large number of proper-
ties and the investigation should distinguish direct from cross-related effects, so that 
the knowledge frame [5] is step-wise built up to the required level of completeness.   

The clothing industry benefits move that way; the ‘intelligent factory’ concept is 
observed with caution: technology-driven additions, to a labour-intensive environ-
ment, cannot be accepted without fully acknowledging the return on investment. The 
throughout testing of achievements and drawbacks of virtual plants offers an afford-
able commitment, making easy to rank competing facilities and/or plans. Multi agent 
manufacturing model and simulation allow to reproduce accurately the production 
environment including traditional, robotic and human resources in order to make 
knowledge based design choices and plant management. A main advantage of multi 
agent simulation is in the parallel development of the processes with concurrent ac-
tivities ongoing. Maintenance and upgrading of the simulator including introduction 
of new classes of agents for new types of resources are easy. 

Ergonomic modules can be used for better definition and utilization of the involved 
human resources. 

3   The Reference Environment 

The reference environment is high quality cloth manufacturing plants where special 
attention is devoted to the adoption of new resources developed within the Leapfrog 
IP project1. The process flow is sketched in Fig. 2, where the grey boxes represent  
the sub-processes for which new resources have been purposely developed and for  
which the integration in the overall process has to be virtually assessed through the  
simulator. The main new resources are:  

• a grasping robotic system for cut parts unloading from the cut table and deliver-
ing to the transport system;  

• an intelligent transport system where single part carriers have complete informa-
tion about the part (order, delivery, specific manufacturing operations..);  

• a 3D sewing robotized system and a 2D sewing autonomous device.  

                                                           
1 Leadership for European Apparel Production From Research along Original Guidelines, FP6-

2003-NMP-NI-3, Contract n° 515810-2. 



56 R. Molfino et al. 

Client order

Model-size
selection

&
parts 

nesting

Cutting
room

CAD 
room

Internet

Fabric roll

Material 
store 
room

Fabric 
laying and 

cutting

Cut parts
fusing

Cut parts 
unloading

Sewing
room

Cut parts 
positing

Cut parts 
sewing and

cloth 
assembly

Accessories

Pressing
room

Cloth 
ironing

and 
finishing 

Cloth store
& delivery

room

Inbound logistics
Outbound logistics

MARKET, CUSTOMERS

C
LO

TH
 M

A
N

U
F

A
C

TU
R

E

   

Fig. 2. Sketch of the cloth manufacturing process and foreseen areas of application of new 
technologies (green boxes) 

4   Simulator  

The system to be designed is a complex multi-agent non linear manufacturing system 
where the relation between the design parameters and the constraints cannot be ex-
pressed in a closed form [9]. Therefore this is a typical case where the simulation of 
the various alternative solutions can be an effective design support tool: in this case a 
DES (Discrete Events Simulation) model2 of a whole quality cloth manufacturing 
plant has been implemented and analysed. The specific simulation environment pro-
vides both a qualitative (e.g. by means of visual animation) and quantitative (e.g. by 
means of performance indices) verification of the possible design choices.  

In order to assess the technical feasibility and advantage of introducing new robot-
ized resources for fabric manipulation, transport and joining operations, CAE applica-
tions have been adopted to test in advance the functionality of the innovative resources 
and their integration within the overall layout design. To this aims, a 3D physics-based 
multibody (PBMS) detailed simulator3 has been developed and integrated with the 
DES model under a common simulation framework, as shown in Fig. 3: in the PMBS 
simulation the process execution strategies can be tested against realistic metrics of the 
production resources and actors, as interactively communicated by DES simulation. 
Symmetrically, the modifications on the production agents caused by the process are 
scheduled as events influencing the operative strategy of the whole plant. 

                                                           
2 Based on DELMIA Quest package (by Dassault Systemes). 
3 Based on DELMIA IGRIP package (by Dassault Systemes). 



 A Multi-agent 3D Simulation Environment for Clothing Industry 57 

 

Fig. 3. Interaction between continuous time simulation and discrete event simulation (courtesy 
Dassault Systemes) 

The run-time interfacing of the DES and PBMS models has proven to be very  
important for the detection of the functionalities that the control architecture must 
provide to make the innovative production agents cooperate. The results of this inte-
grated approach is a realistic simulation model where the flows of materials is gov-
erned by a discrete events logics and the preparation of the list of future events  
depends by the results of physics based simulation, mainly in terms of the duration of 
processes and the kind of the produced items. In the following a brief overview of the 
main objects is given. The process PX is modeled in the PBMB environment and it is 
recalled by the discrete events simulation at time t0 whose master session freezes 
waiting for PBMB PX process end. The process duration is TX. Then the simulation 
control passes to the DES that restarts the simulation clock from t0 and updates the list 
of future events by considering that the items generated by PX will be available at 
time t0 + TX. 

4.1   Part Models  

Parts are passive entities object of the activities of system resources (agents). Parts are 
generated by sources, transformed and processed by agents and destroyed by sinks at 
the end of their lives. Cloth kinds, cut parts, fabric rolls, cloth finishing accessories 
are the main parts considered in the simulator environment. In our case study we con-
sidered formal man jackets and parts are represented in Fig. 4 laying down on a cut-
ting table.  

  

Fig. 4. Man jacket cut parts 
 



58 R. Molfino et al. 

 

Fig. 5. Icons of the main agent resources 

Due to the mass customization and quality clothing production it has been assumed 
a single layer cutting [10]. The part models include information about geometry and 
fabric physical properties useful for the PBMS software modules. User defined attrib-
utes can be introduced if and when necessary according to the application peculiari-
ties: a meaningful example is the ID that identifies the production batch to which 
every part belongs to. 

4.2   Agent Models  

The productive facilities in cloth manufacturing plants have been classified including 
new purposely developed robotic resources: this led to the definition of the corre-
sponding element classes. Each family of entities is displayed through an easily rec-
ognizable 3D mock-up. A survey is hereafter given.  

• FabricRollWareHouse (Fig.5a). The formal jacket production orders are generated 
by this entity, which acts as a source of the simulation model. The icon of produced 
items is a fabric roll. The launch of an order is done in agreement with a Bill of Order, 
read from an external text file. 
• FeederMachine (Fig.5b). The attributes of this entity reproduce the functions of the 
fabric roll spreaders and cloth wrapping. 
• CutTable (Fig.5c). The fabric rolls entering this machine are destroyed and substi-
tuted by the parts that belong to the jacket or, in general, to the cloth to be manufac-
tured. To the CutTable are associated different processes and related logics like: the 
scanning of the fabric faults, the single-ply cutting, the fusing with application of 
stiffening agents and labelling for the future recognition of the parts.  
• OperatorLoadingOfInterlining. This resource models the operator loading of inter-
lining on specific cut parts laying down on the cut table. This agent works in tight co-
operation with the CutTable resource.  
• FusingPress (Fig.5c). It represents the conventional thermal curing of cut parts as 
well as the pre-shaping of fabric shells by mean of new resources for the application 
of nano-agents. 
• CutTableUnloading robotic system (Fig.5d). This resource class stands for the robot 
work-cell deputed to the picking of the cut parts and their loading on the conveyor.  



 A Multi-agent 3D Simulation Environment for Clothing Industry 59 

• Automatic2DSewing. The resources of this family are the fixed automation 2D sew-
ing machines for special sewing operations.  
• Manual2DSewing (Fig.5e). This denomination indicates several agent classes that 
model the manual sewing stations for particular seams, sleeves or other operations 
that cannot be profitably automated. At this detail level the only differentiation be-
tween manual and automatic stations consists on different failure statistics that repre-
sent the workers' daily shifts. The distinction may indeed be useful for to the further 
sustainability assessment of the work burden to human operators: software solutions 
for the ergonomic analysis of manual tasks could indeed be integrated on the detailed 
simulation of these tasks. 
• Robot3DSewing (Fig.5.f). This resource models the whole 3D robotized sewing cell; 
it is a new concept cloth assembly system that develops a set of actions like the load-
ing and positioning of parts to be joined, the robotic 3D sewing performing and the 
unloading of the semi-manufactured items.  
• Transport system. Different transport systems have been modelled taking into ac-
count their specific features. The main transport families are: - AGV and Labour: 
Mobile storage capacities that are used to model respectively transporters (e.g. fork 
lifts), automated guided vehicles, cranes, or hand moving of parts; - Conveyor and 
Power and Free (PnF): one-way continuous parts movement units with a fixed spatial 
interval between moved parts: they are conceptually identical, but conveyors perform 
a simple point-to-point, one-way linear transport, while PnF transportation is based on 
carriers travelling along a complex shape, closed loop track.  

4.3   Agent’s Behaviours  

All elements in the simulator are controlled by built-in behavioural rules, that have a 
generic scope. The need for controlling the model behaviour at a very detailed level, 
by providing built-in data structure and methods that are specific for the run-time con-
trol and monitoring of any elements, led to write specific behavioural rules, that go 
beyond the standard ones: the QUEST's Simulation Control Language (SCL) was 
used, that is a Pascal-like, object based programming language. 

These rules may be classified into the following categories:  
• routing rules or productive parameters of an agent as a function of the char-

acteristics and state of any other agent or process in execution;  
• conditional execution of agents’ logics;  
• interruptions (e.g. maintenances) or random failures rules;  
• unexpected user-driven events management rules.  

Each element class has its own procedures that control the behaviour of the agents 
in the class. Hereafter the main procedures implemented for the innovative robotic 
agents are introduced with reference to the cut table unloading process, see Fig. 6. 

The fabric is unwrapped and cut on each cutting table and the cut parts are loaded 
with their lining by operators just before entering the fusing. The duration and re-
quirements of all simulated processes were determined in agreement with the indica-
tion suggested by an expert industrial partner.  At last the processed parts are removed 
from the cutting table’s conveying belt by means of a robotic arm equipped with a 
grasping device that clamps the fabric parts to the hangers and puts them into the 
Power and Free based internal logistic system.  



60 R. Molfino et al. 

 

Fig. 6. PnF at cut line exit: empty hangers wait into pits, loaded hangers flow along main rail  

All parts coming from the same fabric cloth inherit from it a common univocal ID 
that allows to recognize and reassemble them in the plant. This ID is coded as a nu-
meric “user attribute”. The process starts when all previous parts have been removed 
from the cutting table. Afterwards a suitable command causes a new fabric cloth to 
enter the machine and its ID is retrieved. The cutting process is recalled and executed, 
the availability status of the machine is changed to busy on processing. After the 
process completion, all the parts are selected and labelled with the ID inherited by the 
parent cloth.  

The Grasping Agent Procedures. The procedure is run by the fingers when the ena-
bling condition holds, otherwise these mechanisms hold on indefinitely. Firstly the 
mechanisms back to the initial position, then the grasping device detaches a hanger 
from the hanging conveyor, and enables its clamp to follow the fingers. The tips of 
the three fingers have turbine fans that lift the fabric by means of vacuum. The fingers 
lift up and retract, so that the fabric hems shift between the hanger clamps. After that 
the grasping device freezes the hanger and hands the pattern over it. As soon as the 
confirmation by the hanger comes, the gripper communicates to the controller that 
everything is ready to move towards the loading point in the hanging conveyor. The 
resetting of all I/O channels concludes the procedure. The master device must be able 
to kill the execution of the procedures associated to the slave devices. The main rou-
tine of the gripper fingers envelops the operative procedure into a while loop: the es-
cape condition is determined by the robot controller.   

The Hanger Agent Procedure. The reconfigurable hanger is made up by three pas-
sive fingers attached to the hanger body device that are reconfigured by the gripper in 
a two-agents synchronous task. The associated procedure is very simple: each finger 
is bound to follow a tag placed on the corresponding grasping device clamp. The in-
verse kinematics settings of the hanger's fingers let them replicate only the position of 
the master tags, because the orientation is not an independent parameter for a 2 DOF 
mechanism.  



 A Multi-agent 3D Simulation Environment for Clothing Industry 61 

 

Fig. 7. 3D digital mock-up of the grasping system for cutting table unloading  

The Robot Agent Procedure. The main procedure grasp, composed by elementary 
action procedures, is recalled each time a carrier is ready to be loaded with a fabric 
pattern, and groups the operations related to the hanger's grabbing, reconfiguring, 
loading and re-inlet into the inbound logistic system. With its first move, the robot 
gets ready to grab an empty carrier, that is always brought at the same point of the 
conveyor. The robot controller drives the fingers, so that they can attain the grabbing 
points on the current hanger. Once the hanger is secured to the gripper interface, the 
robot can move away from the grabbing position to the home position. The tool refer-
ence frame changes to the robot wrist frame: this same frame is indeed used by the 
gripper controller as the reference for calculating the fingers displacements and solve 
their inverse position kinematics problems. The robot moves the to the goal point and 
its controller orders the grasping device to reshape the hanger to the pattern grasping 
configuration. Actually, the robot controller is serving as a supervisor of the simulta-
neousness of the grasping device fingers' tasks. When the robot controller receives a 
suitable message, it assumes that the pattern has been successfully loaded and gives 
its agreement to the reloading of the hanger on the hanging conveyor. The manipula-
tor ends the grasping procedure by moving back home.  

5   Tests and Results  

The production schedule is generated through a suitable database from realistic pro-
duction information. Thanks to the modularity of this approach a database of all rele-
vant parameters has been set, and specific input masks, as shown in Fig. 8, have been 
introduced in order to make the data input more intuitive to the end-users.  

In the specific DES simulation environment the quantities and features of resources 
in a model can be modified through the batch processing of a configuration file. An 
application automates the process, by progressively generating a sequence of configu-
rations that are closer and closer to an optimal solution: the optimization mechanism 
relies on the "Scatter Search" meta-heuristic approach and is applied to the output of 
each simulation run. The user must input a tentative solution, define the optimization 
drivers, the lower and upper bounds for the parameters to be optimized, that can be 
either discrete or continuous, and set one or more algebraic constraints on their  
values.  



62 R. Molfino et al. 

 

Fig. 8. Extraction of the production bills from a database  

An articulated test campaign has been planned and several significant results have 
been derived. The amount of jackets produced in 40 hours in steady conditions is the 
driver of the layout performance optimization. Here after only some results concern-
ing the influence of the dimensions of the production orders are presented.  

The dimensions of lots made up of jackets with the same style and size has a key 
influence in product throughput and heavily impacts plant productivity. As an exam-
ple, cut parts have to be sorted along their origin from a common batch before loading 
them on the robotized garment assembly cell: the smaller is the mean lot size, the 
longer will be the waiting time before a whole set of compatible parts is gathered up 
and processed.  

The automation in the research of optimal solutions let investigate the plant perform-
ance when processing bills of orders made up of differently sized batches: along with the 
extreme conditions of unitary and mass production, the management of lots with mean 
dimensions of 2, 5, 10, 20 and 50 items (with 20% standard deviation) was simulated.  

The optimization study helps to lay out the most suitable sets of resources for a 
certain production type, or even gives indication about the dynamic allocations of the 
production agents (i.e. the use of highly skilled human “jolly” resources). In particular 
the optimal number of carriers varies with the lot size (see Table 1), so that a dynamic 
carrier reservoir system would be implemented to face the variability on the composi-
tion of the order.  

Table 1. Optimal number of carriers for several lots mean sizes 

 

In the case of unitary-lot production, Fig. 9 reveals the inelasticity of system’s re-
sponse to the increasing of the overall work burden, i.e. there is a maximum launching 
rate of new items into production that cannot be exceeded; in case of batch production 



 A Multi-agent 3D Simulation Environment for Clothing Industry 63 

instead, the system succeeds in managing a wider throughput range although increas-
ing the amount of work in progress, and thus the lead time. As a matter of facts, the cut 
parts originating from the same batch (style and size) are processed in along parallel 
paths have to be re-collected before concurring in the Garment Assembly cell: the 
smaller is the mean lot size, the most the production is paced by the parts' sorting proc-
ess, that causes the saturation of the buffering capacity of the conveyor rings. 

 

Fig. 9. Plant productivity as a function of lots mean size (with optimal number of carriers) 

6   Conclusions  

The paper introduces a new simulator environment for intelligent clothing manufac-
ture. The competition between enterprises resorts to the process-added value of actu-
ally sold apparel, rather than to large products batches, requiring to run after buyers, 
with advertising or lower sale prices. High-standing clothes are noteworthy, as clients 
require personalized quality and quick service. The discussion offers hints to look af-
ter the integrated manufacturing approach and the influence on the process efficiency 
of new robotized resources developed within Leapfrog Integrated Project is specifi-
cally dealt with. The process description is based on a modular lay-out, to separate the 
effect of influence quantities and to investigate details, preserving the overall view of 
the process evolution.   

One should emphasize the fact that, today, the clothing industries are work-
intensive set-ups and extensively resort to the on-line operators versatility to modify 
production, while the process progresses; this possibly hinders the benefit of intelli-
gent manufacturing, based on the concurrent run of the material and the information 
flows for adaptive flexibility: - at the organizational range (process-attuned manag-
ers): to select the fabrication agendas; - at the co-ordination range (decentralized con-
trollers): to optimize the cloth bolts choice; - at the execution range (real-time super-
visors): to adapt the material dispatching service.   

The example discussion shows that flexible automation can deal with foregoing in-
formation on self-sufficient bases; actually, the benefits depend on a large number of 
cross-related facts and actual implementations, hard to be fixed, remain out of the 
reach of front-end operators. The area of high-standing garments, satisfying varying 
market requests, is exemplary case where automation provides critical support for 
quality certification.   



64 R. Molfino et al. 

The changes towards flexible lean automation, however, need be investigated in 
terms of realistic system behaviour and expected economic returns; simulation studies 
that integrate discrete events and 3D physics-based multi-body models are dominant 
help, to compare competing alternatives referring to actual production contexts and, 
moreover, to provide explanatory examples with training support immediately related 
to sets of feasible implementations.   

Acknowledgments. The research work has been developed within the Leapfrog IP 
project funded by EU under the Sixth Framework Programme. The precious support 
of Kuka Italy is kindly acknowledged, together with all Leapfrog partners.  

References 

1. Acaccia, G.M., Callegari, M., Michelini, R.C., Molfino, R.M.: Simulational assessment of 
a modular assembly facility. In: Intl. Conf. on Concurrent Engineering and Electronic 
Design Automation, pp. 37–41 (1996) 

2. Moss, S., Davidsson, P.: Multi-Agent-Based Simulation. Springer, Heidelberg (2001) 
3. Michelini, R.C., Acaccia, G.M., Callegari, M., Molfino, R.M., Razzoli, R.: Knowledge 

based emulation simulation for flexible automation manufacturing. In: EUROSIM 
Conference, pp. 1259–1264 (1995) 

4. Fontana, M., Rizzi, C., Cugini, U.: Computer-aided apparel tailoring with virtual 
simulation, J. Product Development 4(6), 600–625 (2007) 

5. Acaccia, G.M., Chiavacci, A., Michelini, R.C., Callegari, M.: Benchmarking the Clothing 
Industry Effectiveness by Computer Simulation. In: 11th European Simulation 
Symposium and Exhibition: Simulation in Industry (ESS 1999), pp. 519–524 (1999) 

6. Michelini, R.C., Acaccia, G.M., Callegari, M., Molfino, R.M.: XIMSIFIP: an expert 
simulation environment for factory automation. In: IFIP Transactions: Human Aspects in 
Computer Integrated Manufacturing, pp. 797–804. NorthHolland, Amsterdam (1992) 

7. Bonsignorio, F., Molfino, R.M.: An object based virtual reality simulation tool for design 
validation of a new paradigm cloth manufacturing facility. In: Information Technology for 
Balanced Manufacturing Systems, vol. 220, pp. 301–308. Springer, Boston (2006) 

8. Bruzzone, L.E., Molfino, R.M., Zoppi., M.: A discrete event simulation package for 
modular and adaptive assembly plants. In: 22nd Int. Conf. Modelling, Identification and 
Control, pp. 280–282. IASTED/ACTA Press (2003) 

9. McNally, P., Heavey, C.: Developing simulation as a desktop resource. J. Computer 
Integrated Manufacturing 17(5), 435–450 (2004) 

10. Qin, S.F., Lagoudakis, E., Kang, Q.P., Cheng, K.: Customer-Centric Strategy for E-
Manufacturing in Apparel Industry. Applied Mechanics and Materials 10(12), 39–44 
(2008) 



S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 65–74, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

A Lunar Surface Operations Simulator 

Hari Nayar, Bob J. Balaram, Jonathan Cameron, Abhinandan Jain, Christopher Lim, 
Rudranarayan Mukherjee, Stephen Peters, 

Marc Pomerantz, Leonard Reder, Partha Shakkottai, and Stephen Wall 

Jet Propulsion Laboratory, California Institute of Technology, 
4800 Oak Grove Drive, Pasadena, CA 91109 

Abstract. The Lunar Surface Operations Simulator (LSOS) is being developed 
to support planning and design of space missions to return astronauts to the 
moon. Vehicles, habitats, dynamic and physical processes and related environ-
ment systems are modeled and simulated in LSOS to assist in the visualization 
and design optimization of systems for lunar surface operations. A parametric 
analysis tool and a data browser were also implemented to provide an intuitive 
interface to run multiple simulations and review their results. The simulator and 
parametric analysis capability are described in this paper. 

1   Introduction 

The National Aeronautics and Space Administration (NASA) is leading an interna-
tional partnership to develop and deploy a series of missions to return astronauts to 
the moon in 2025 [1]. In addition to habitation on, and exploration of the lunar sur-
face, these missions, developed under NASA’s Constellation Program, will be precur-
sors for subsequent manned missions to Mars. To enable these missions, new launch, 
crew transport, lander, and surface mobility vehicles and lunar habitat systems are 
being designed. Simulators are playing a vital role in assisting in the mission design 
and planning, visualization and design optimization of these systems. 

The Lunar Surface Operations Simulator (LSOS) is one of the simulators under 
development within the Constellation Program. As its name suggests, it models sur-
face systems, their mechanical properties, dynamic interactions and operations. In 
addition to simulating the dynamic interactions during operations, for example, soil 
interaction or component motion, LSOS also models associated environmental, and 
system mechanical and non-mechanical processes. These include thermal, radiation 
and power transients, lighting and shadows, and terrain. LSOS’s integrated architec-
ture allows use of common models and enables interactions between components 
operating in different domains to be easily modeled. For example, the illumination, 
solar panel power and thermal models use a common sun model and incidence angle. 
Simulations and post simulation analyses have been recently performed within LSOS 
to show that it can be a powerful tool to assist both in the design and planning of 
missions, and in component design optimization.   

LSOS has been built on and extended from previous simulation packages developed 
at the Jet Propulsion Laboratory. Its core physics simulation engine is the DARTS 
package originally developed to simulate the Cassini spacecraft [3]. DARTS is a multi-
body domain-independent dynamics engine. Subsequent development around DARTS 



66 H. Nayar et al. 

has led to supporting packages and simulators for a variety of space applications. 
These include Dshell [4], SimScape [8], ROAMS [5, 6], and DSENDS [7]. 

This paper gives an overview of LSOS. We start in the next section with a descrip-
tion of the models that have been developed within LSOS. We have used LSOS in a 
batch mode to perform parametric analysis. Procedures developed to enable this ca-
pability are described with an example in the section on Parametric Analysis. We 
finally conclude with a description of our current status and future plans. 

The results from simulators like LSOS, combined with the analytical approaches 
by others [2] are essential for successful and timely development of NASA’s vision 
for our return to the moon. 

2   Models 

Simulations in LSOS are composed from models of many components. Some of the 
more important component models are described in this section.  

2.1   Vehicle Models 

A number of prototype autonomous and teleoperated vehicles are have been devel-
oped for terrestrial demonstration of potential lunar surface operations. As develop-
ment on and demonstrations of these vehicles for Lunar missions continue, they are 
being modeled and simulated in LSOS to facilitate visualizing and evaluating their 
performance under Earth and Lunar surface environmental conditions and to assist in 
design optimization. 

The K-10 [9] built at the NASA Ames Research Center (ARC), ATHLETE [10] 
built at JPL and Chariot [11] built at the NASA Johnson Space Center (JSC) rovers 
are three prototypes being used in a series of field trials to demonstrate lunar opera-
tions capabilities. These vehicles, modeled in LSOS, are shown on Figure 1. 

 

Fig. 1. The K-10 (left), ATHLETE (middle) and Chariot (right) rovers modeled in LSOS 

A generalized infrastructure for vehicle modeling in LSOS has led to a streamlined 
process for modeling the variety of kinematic, dynamic and constraint properties found 
in these vehicles. Re-use of common elements has allowed us to reduce the complexity 



 A Lunar Surface Operations Simulator 67 

and improve the reliability of the modeling and simulation software. Each vehicle 
model is configured by assembling it from a library of components. The use of com-
mon components allows each unique vehicle to inherit many wheeled vehicle proper-
ties, for example, inertial sensors or mobility and navigation yet maintain their unique 
properties. The models are composed of detail elements of the vehicle including mass 
and inertia tensors of all rigid-body elements and joints, actuators and sensors. 

2.2   Habitat Model 

The Space Mission Analysis Branch [12] at the NASA Langley Research Center 
(LaRC) has been analyzing and developing models and scenarios of lunar surface 
systems for the Constellation Program. The development of a Lunar surface system 
architecture is a complex problem in which a wide variety of constraints have to be 
satisfied. Some design constraints are imposed from interactions with the supporting 
systems. For example the size of the habitat modules will have to fit within the space 
available in the launch vehicles. 

Many other constraints have to be determined by evaluating performance under 
simulated operations. For example, the amount of power generated by the habitat 
solar panels depends on the location selected on the surface of the moon, the elevation 
and topography of the surrounding terrain, the kinematics and control of the solar 
panels, the efficiency of the solar panels and so on. In the design of systems as com-
plex as the lunar habitat, the use of a simulator can assist in the design and optimiza-
tion of components and the evaluation of overall performance. 

 

Fig. 2. LSOS visualization of a potential Lunar habitat system from NASA LaRC 
 



68 H. Nayar et al. 

The LSOS team is working with lunar habitat designers at NASA LaRC to support 
the development of the lunar outpost. We have modeled the version of the lunar habi-
tat shown on Figure 2 that was released in January 2008. Simulations were performed 
with this model for a power analysis assessment of the configuration. The model 
implemented in LSOS can place the static elements of the habitat on a terrain model 
at any user specified location.  The supporting simulation sub-systems that enabled 
the power analysis simulation are described in the following sub-sections. 

As the habitat design for the Lunar missions evolves, and as analytical and simula-
tion needs arise, we will continue to update our habitat models and perform simula-
tions and analysis to assist in the design of the lunar habitat. 

2.3   Solar Panels 

The current version of the lunar habitat implemented in LSOS has six solar panels. Each 
panel is mounted to a four degrees-of-freedom articulation system. The implementation 
of the solar panel system in LSOS used an 
existing software component for modeling 
robot arms. Six such robot arms with identical 
kinematics but placed at the six specified base 
attachment points were used for modeling the 
solar panel arms and articulation. 

The configuration of the arms (shown on  
Figure 3) is a yaw joint at its base, a pitch 
joint at its elbow, a pitch joint at its wrist and 
a roll joint also at the wrist. The LSOS models 
derived the kinematics of the arms from the 
component graphics models we received from 
NASA LaRC. The LSOS models specify 
kinematics, and range of motion of the arm 
elements. 

The objective in the control of the arms is 
to maximize the exposure of the solar panels 
to the sun while avoiding collisions between 
the arms and between arms parts and the habi-
tat. Implicit in the goal of maximizing the 
solar panel exposure is the minimization of 
self-shadowing of the solar panels. 

In our simulations, a simple algorithm was 
implemented for control of the solar panel arms. 
The motion of the sun with respect to the lunar 
habitat at the chosen location at the South Pole 
of the lunar surface is to traverse in a counter-
clockwise direction very low on the horizon 
(between -3 degrees and +3 degrees) on a 27-
day monthly cycle. Consequently, the solar 
panels should have their roll-axes vertical and be rotated to face the sun. The other three 
joints of the solar panel arms are periodically (four times during each monthly cycle) 

 

 

Fig. 3. Solar panel articulation in LSOS 



 A Lunar Surface Operations Simulator 69 

modified depending on the sun azimuth angle to translate the roll joint axis and im-
prove the solar panel exposure to sunlight. 

2.4   Terrain 

Terrain models are an important component of surface simulations. LSOS uses the 
SimScape [8] package to 
incorporate terrain models. A 
number of terrain models 
have been generated for 
LSOS simulations. Among 
these are analog terrestrial 
field-trial locations at Meteor 
Crater in Arizona, USA and 
versions of lunar terrain mod-
els. Our lunar habitat simula-
tor uses the recently released 
Goldstone Solar System Ra-
dar (GSSR) terrain model 
[13]. The GSSR terrain cov-
ers an area of about 300km 
by 600km at a 40m/pixel 
resolution. The terrain model 
was generated from radar 
images of the moon taken 
from the Earth. At the South 
Pole of the moon, the planned 
location of the lunar outpost, 
this terrain dataset is the best 
currently available.  

Due to the process used in 
generating the GSSR terrain 
model, regions not viewable from the Earth (because they are obscured by terrain 
features) are holes in the terrain. In LSOS, these regions have been filled with interpo-
lated values shown in red on Figure 4. While the 40m resolution of the GSSR terrain 
model is adequate for the habitat simulation, the terrain model will have to be en-
hanced to centimeter-level resolution to be good enough for accurate simulation of 
vehicle-terrain interactions.  

2.5   Sun Propagation 

LSOS uses the Spacecraft Planet Instrument C-matrix Events (SPICE) database and 
toolkit [14] to determine the locations of the moon, the sun and other planetary bodies at 
specified times during simulations. This data is used to compute the relative location of 
the sun with respect to specified locations on the surface of the moon at specified times. 

The sun azimuth and elevation angle derived from the SPICE interface is available 
in the simulation environment for use by any algorithm. In the lunar habitat simulation, 

Fig. 4. GSSR model of South Pole region of the moon 



70 H. Nayar et al. 

it is used to drive the roll angle value for each solar panel arm and for illumination 
modeling. In vehicle simulations, it is additionally used for computing heat radiation to 
the vehicle and ground, for solar panel lighting in the vehicle power analysis. 

3   Parametric Analysis 

One of the most powerful uses of LSOS is in performing parametric analysis to ex-
plore the behavior of systems as simulation parameters are varied. The software infra-
structure to enable this was developed for the ROAMS [15] simulator to vary terrain 
and soil parameters and DSENDS [7] simulator to vary atmospheric conditions in 
entry, descent and landing simulations. This parametric analysis infrastructure was 
adapted for LSOS to orchestrate batch runs of lunar habitat simulations. In addition, 
the parametric analysis tools enable specification of parameters to vary the statistics 
of parameter variation, and data collection and storage from the simulations.  

3.1   Parameters 

Two parameters, height of the habitat and location of the habitat, were varied in a 
demonstration of parametric analysis applied to the lunar habitat simulation. 

The height parameter placed the habitat at the specified height above the local ter-
rain height (see Figure 5). In computing power generation, it was found that, because 
the sun is always low on the horizon, surrounding 
terrain features often obscure the solar panels from 
the sun. An advantage can be gained by increasing 
the height of the habitat because it raises the pan-
els above the terrain shadows. This parameter was 
selected to determine the sensitivity of habitat 
height to the power generation. During the para-
metric analysis batch simulations, the height pa-
rameter was varied uniformly between 0 and 30m. 

Locations at the South Pole of the moon have 
been identified as likely landing sites for lunar 
missions. This is motivated by the possibility that 
ice may be found close to the surface at the bottom 
of craters and the sun may be visible year-round 
from selected locations. For these reasons, Shackleton Crater, located almost exactly 
at the South Pole of the moon is an ideal site. Choosing a specific location on the rim 
of Shackleton is not as easy a task because surrounding terrain features obscure some 
areas, the elevation of the rim and proximity to the South Pole varies at different  
locations. 

The complex interaction of these properties makes the analytical determination of 
the best habitat location complex. Varying the location in multiple simulations and 
determining power generation for each location is an alternative approach to deter-
mine ideal locations for the placement of a habitat. 

Figure 6 shows the locations around the rim of Shackleton that were selected for the 
parametric analysis. Thirty locations, approximately equally spaced, were selected. The 

h 

Fig. 5. The height parameter is 
measured from the local terrain 

height 



 A Lunar Surface Operations Simulator 71 

coordinates for these locations were entered in a table. During the parametric analysis 
simulations, an index into the table was uniformly varied to select a particular location 
to use for the simulation. 

 

 

Fig. 6. Locations around the rim of Shackleton Crater varied as a parameter 

3.2   Parametric Analysis Runs 

A total of 200 simulations were run in the parametric analysis. Each simulation ran a 
one-month (720 hours) simulation with time incremented in one hour steps. The start 
time use in the simulations was March 7, 2011, GMT 01:00:00. 

To illustrate the parametric analysis, a simple power model was implemented in 
the simulation runs.  At each step, the power generated was computed by multiplying 
the exposed solar panel area by 400 Watts/m2 to factor the solar power collected and 
converted into useful energy. This approximates the solar panel efficiency to be about 
thirty percent. A battery model with a capacity of 100000 Watt-hrs was used in the 
simulations to store the power generated. A constant drain on the battery of 200 Watts 
was also implemented to model power usage during surface operations. The simula-
tions were initialized with the battery at fifty percent charged, i.e. with 50000Watt-hrs 
of energy. Data collected during the simulations include the time, habitat height and 
location, the sun azimuth and elevation angles, current power, battery charge and total 
accumulated power. 

Data collected from the simulations was stored in HDF5 format. A browser, devel-
oped to retrieve data from the HDF5 store and selectively view the data, provides an 
intuitive interface to inspect the results from the simulations. 

Screen shots from the data browser display are shown on Figure 7. A scatter plot of 
accumulated power versus location index for all the simulation runs is shown on  



72 H. Nayar et al. 

b) Accum. power vs. Height 

c) Power vs. Time 

a) Accum. power vs. Location index 

d) Accum. power vs. Time 

Figure 7a). For the simulation conditions used (terrain, habitat model, etc), the results 
indicate that locations 1-10 and 20-30 are generally better than locations 11-19. The 
browser allows the user to select simulations from the scatter plot to view in detail. 

 

 
Fig. 7.  Browser display of parametric analysis data: a) scatter plot of accumulated power ver-
sus location for all 200 simulation runs, b) Accumulated power versus height for selected simu-
lation runs at location 9, c) Power versus time for selected simulation runs at location 9, and d) 
Accumulated power versus time for selected simulated runs at location 9 

We can see from Figure 7b) that, not surprisingly, at location 9, increasing height 
improves power accumulation.  Figure 7a), however, shows that power generation at 
some locations are more sensitive to height changes than at other locations. Figure 7c) 
and 7d) show that, at location 9, a terrain feature probably blocks the sun about 
1600000 secs (about 444 hours or about 18.5 days) after the start of the simulation.  

We used this simulation and parametric analysis example to illustrate the utility of 
applying high-quality simulations to assist the design of systems. The capability to 



 A Lunar Surface Operations Simulator 73 

select and view any parameter or simulation variable plotted against any other pa-
rameter or simulation variable can be used to identify hidden relationships in the data 
that may lead to new revelations to optimize designs. 

4   Conclusions 

We have presented, in this paper, preliminary results from our development of LSOS. It 
has been used to demonstrate the simulation of a variety of models and operational sce-
narios. We also describe a parametric analysis package to manage batch execution of 
multiple simulations with varying parameters. A demonstration of this capability is used 
to illustrate how simulations can be used effectively to aid in the optimization of designs. 

Future development plans for LSOS include extensions to handle new lunar vehi-
cle types, simulate more complex operations and scenarios, incorporate models of 
other physics-based processes, share models and data with other lunar mission simu-
lators and support design and development activities and field trial planning for 
NASA lunar missions. Plans are also underway to generate high-resolution terrain 
models using re-construction techniques based on physical process models [16]. 

Acknowledgement 

This work was carried out at the Jet Propulsion Laboratory, California Institute of 
Technology, under a contract with the National Aeronautics and Space Administra-
tion. We thank our our sponsor, Doug Craig from NASA Headquarters, and our col-
laborators at the United States Geological Survey (USGS), NASA Glen Research 
Center, NASA Langley Research Center, NASA Johnson Space Center, NASA Ames 
Research Center, NASA Marshall Space Flight Center and Jet Propulsion Laboratory 
for support in the development of LSOS. 

References 

1. Cooke, D., Yoder, G., Coleman, S., Hensley, S.: Lunar Architecture Update. In: AIAA 
NASA 3rd Space Exploration Conference, Denver, Colorado (February 2008) 

2. Fincannon, J.: Lunar South Pole Illumination: Review, Reassessment, and Power System 
Implications. In: AIAA 5th International Energy Conversion Engineering Conference and 
Exhibit (IECEC), St. Louis, Missouri (June 2007) 

3. Jain, A., Man, G.: Real-time simulation of the Cassini spacecraft using DARTS: functional 
capabilities and the spatial algebra algorithm. In: 5th Annual Conference on Aerospace 
Computational Control, Jet Propulsion Laboratory, Pasadena, CA (August 1992) 

4. Biesiadecki, J., Henriquez, D., Jain, A.: A Reusable, Real-Time Spacecraft Dynamics 
Simulator. In: 6th Digital Avionics Systems Conference, Irvine, CA (October 1997) 

5. Jain, A., Guineau, J., Lim, C., Lincoln, W., Pomerantz, M., Sohl, G., Steele, R.: ROAMS: 
Planetary Surface Rover Simulation Environment. In: International Symposium on Artifi-
cial Intelligence, Robotics and Automation in Space (i-SAIRAS 2003), Nara, Japan, May 
19-23 (2003) 



74 H. Nayar et al. 

6. Jain, A., Balaram, J., Cameron, J., Guineau, J., Lim, C., Pomerantz, M., Sohl, G.: Recent 
Developments in the ROAMS Planetary Rover Simulation Environment. In: IEEE Aero-
space Conference (March 2004) 

7. Balaram, J., Austin, R., Banerjee, P., Bentley, T., Henriquez, D., Martin, B., McMahon, 
E., Sohl, G.: DSENDS - A High-Fidelity Dynamics and Spacecraft Simulator for Entry, 
Descent and Surface Landing. In: IEEE 2002 Aerospace Conf., Big Sky, Montana, March 
9-16 (2002) 

8. Jain, A., Cameron, J., Lim, C., Guineau, J.: SimScape Terrain Modeling Toolkit. In: Sec-
ond International Conference on Space Mission Challenges for Information Technology 
(SMC-IT 2006), Pasadena, CA (July 2006) 

9. Fong, T., Allan, M., Bouyssounouse, X., Bualat, M., Deans, M., Edwards, L., Flückiger, 
L., Keely, L., Lee, S., Lees, D., To, V., Utz, H.: Robotic Site Survey at Haughton Crater. 
In: 9th International Symposium on Artificial Intelligence, Robotics and Automation in 
Space (iSAIRAS), Los Angeles, CA, February 26-29 (2008) 

10. Wilcox, B., Litwin, T., Biesiadecki, J., Matthews, J., Heverly, M., Morrison, J., Townsend, 
J., Ahmed, N., Sirota, A., Cooper, B.: ATHLETE: A Cargo Handling and Manipulation 
Robot for the Moon. Journal of Field Robotics 24(5), April 17 (2007) DOI: 
10.1002/rob.20193 

11. Ambrose, R.: Human-Robotics Interactions: Field Test Experiences from a collaborative 
ARC, JPL and JSC Team. In: AIAA NASA 3rd Space Exploration Conference, Denver, 
Colorado (February 2008) 

12. Troutman, P.: The House of More Than a Decade of Tomorrows. NASA News and  
Features, 
http://www.nasa.gov/topics/moonmars/features/troutman-
architecture.html 

13. Hensley, S.: Lunar Imaging from Goldstone. In: AIAA NASA 3rd Space Exploration Con-
ference, Denver, Colorado (February 2008) 

14. NASA’s Navigation and Ancillary Information Facility (NAIF), SPICE 
http://naif.jpl.nasa.gov/naif/aboutspice.html 

15. Madison, R., Jain, A., Benenyan, G., Lim, C., Reder, L., Maimone, M.: Large Scale Rover 
Simulations: Supercomputing to Evaluate Rover Control Algorithms, Space 2005 (August 
2005) 

16. Gaskell, R., Husman, I.E., Collier, I.B., Chen, R.L.: Synthetic Environments for Simulated 
Missions. IEEE A&E Magazine (July 2007) 



YARS: A Physical 3D Simulator for Evolving
Controllers for Real Robots

Keyan Zahedi1, Arndt von Twickel2, and Frank Pasemann2

1 MPI for Mathematics in the Sciences, Inselstrasse 22, 04103 Leipzig, Germany
zahedi@mis.mpg.de

2 University of Osnabrück, Institute of Cognitive Science,
Albrechtstraße 28, 49076 Osnabrück, Germany

{arndt.von.twickel,frank.pasemann}@uni-osnabrueck.de

Abstract. This paper presents YARS (Yet Another Robot Simulator),
which was initially developed in the context of evolutionary robotics
(ER), yet includes features which are also of benefit to those outside of
this field. An experiment in YARS is defined by a single XML file, which
includes the simulator configuration, the (randomisable) environment,
and any number of (mobile) robots. Robots are either controlled through
an automatised communication, or by dynamically loaded C++ pro-
grams. Therefore, YARS, although still under active development, is
comparable with commercial and open-source robot simulators which
include a physics engine such as Webots and Breve but with a much
stronger focus on requirements originating from the field of evolutionary
robotics.

1 Introduction

The development of robots is time-consuming and, therefore, often very expen-
sive. Especially in research, where budgets are limited, and various novel ap-
proaches are tested in hardware and software, simulators can play an important
role in reducing development cost and time. Another advantage is that research
groups can cooperate and exchange results, even if the physical robot platform
is not available to all groups. These advantages only hold if the simulator does
not require a high implementation effort for a new experiment and if the results
obtained in simulation are portable to the physical platform.

In the context of evolutionary robotics (ER) [1] additional requirements must
be fulfilled. A simulator is only advantageous if it is much (in the order of ten
times) faster than real-time and if the results do not require additional porting
effort. Another important criterion is the automatic set-up of the experiment
after each evaluation to ensure compatibility of the fitness values.

There is a large number of robot simulators available, emphasising different
aspects of robot simulation. Examples are Khepera 2.0 Simulator, Webots, Dar-
win2k, Adams, Yobotics, Gazebo, Breve, and USARSim [2,3,4,5,6,7,8,9,10]. So
why is there a need for Yet Another Robot Simulator? The simulators mentioned
above were reviewed by the authors before work on YARS was initiated, but not

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 75–86, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



76 K. Zahedi, A. von Twickel, and F. Pasemann

Table 1. Comparison of simulators, evaluated with respect to evolutionary robotics
as it is performed within the presented context (see fig. 1). The simulators listed here
were chosen during the assessment phase of YARS because of their particular emphasis
and as they were the most widely used simulators in the field of robotics. The entries�

and
�

refer to a positive or negative evaluation, respectively. Evaluations given in
brackets were not tested by the authors of this work, but obtained through available
documentation. The evaluation of Webots refers to version 3, and might not be true
for the current version 5. As none of the available simulators met all the requirements,
YARS was initiated. Footnotes: 1) Available source refers to the possibility to include
motor and sensor models, 2) Publication [10] states up to 300 times faster than real-
time. This could not be validated with the examples provided in the evaluation version
(Ver. 5, Mac OS 10.5.4, 2.5GHz Dual Core, 4GB RAM). Achieved maximum was
ca. seven times faster than real-time. 3) Documentation states that Webots can be
started as batch-process, 4) No statements made in the documentation, 5) Supervisor-
concept available, but in Version 3 not well suited for evolution as performed in this
context, i.e. with an external evolution- and evaluation-software, and the requirement
to set and re-set the simulation externally.

Simulator Speed Optional GUI Free Auto. reset Source avail.1

Webots [
�

]2 [
�

]3
�

[
�

]5
�

Breve [
�

]4 [
�

]
�

[
�

]4
�

Adams
� � �

[
�

]4
�

Darwin2k [
�

] [
�

]
�

[
�

]4 [
�

]
Yobotics [

�
]

� �
[
�

]
�

YARS
� � � � �

chosen because of either cost, speed, or restricted usability for ER (for a discus-
sion see tab. 1). The latter refers to setting up an experiment, and resetting it
automatically after every evaluation of an individual. Additionally, customising
and adding new sensors and actuators is either not possible or requires a high
implementation effort, which excludes corresponding simulators for experiments
such as those presented here. Furthermore, the evolution time can be reduced,
if the evaluation of populations is distributed in a cluster. This is only possible
if the simulator does not require GUI interactions and a running visualisation,
two features which are not widely supported.

An additional feature which supports the distribution of the evaluation is
the possibility to fully configure YARS either via command-line parameters, a
configuration file or through network communication.

These requirements are a few of the features of YARS presented in this paper,
which is organised as follows: the following section covers the approach of YARS
and explains how it is well-suited for both, ER and mobile robot simulation in
general. The third section explains the concept of YARS and describes its most
prominent features. The fourth section introduces RoSiML, the XML description
language of YARS. The fifth section gives an outlook of the future of YARS and
the final section closes with a discussion.



YARS: A Physical 3D Simulator for Evolving Controllers 77

2 Approach

In the context of ER, a simulator is used for four main reasons: 1. During evolu-
tion, hardware-damaging behaviours are likely to occur. 2. A simulator can run
faster than real-time. 3. The state of the simulator can be precisely set by the
experimenter, increasing the comparability of the fitness values of the individu-
als in a population. 4. For the analysis of the behaviour-relevant dynamics, it is
essential to control all the parameters.

Yet, these reasons only hold if the simulator-reality gap does not lead to
significant behavioural differences. Closing the gap is related to the precision
of the simulator, which stands in contrast to the simulation speed, i.e. there
is a trade-off. The central issue here is how precise must the simulator be to
ensure the portability of the results and still remain fast enough to fulfil the
requirements of ER.

In the approach followed here, it is not important if the characteristic curve
of each motor is identical in simulation and reality, as a robust controller should
compensate for these differences. Hence, the simulator is sufficiently precise if
the observed behaviours in simulation and reality are qualitatively equivalent.

This has implications on the physics engine which is required in a num-
ber of experiments, e.g. walking [11,12,13] and gravity driven [14,15] machines.
ODE [16] was chosen as the physics engine for YARS, because it is faster than
real-time (depending on the complexity of the simulation, see next section for an
example), numerically stable and well-documented. Numerically stable, in this
case, means that the simulation will not crash, if the internal physics runs into
computational singularities. For evolution, this type of simulator behaviour is
very important. First, the singularities indicate hardware-damaging behaviour,
which can be punished by the fitness-function. Second, for the next individual,
the running simulator is simply reset and does not have to be restarted otherwise.

This advantage comes with a trade-off. ODE uses a first-order Euler integrator
for the physics, a linear force model for the actuators, and only a Coulomb
friction model, which together, result in a fast, numerically stable but not very
precise simulation. In the approach followed here, this is not a drawback, as
robust controllers are generated by including noise, exploiting the sensori-motor
loop, and are evolved on an abstraction of the hardware. A sufficient abstraction
is determined by comparing intermediate results on the simulated and real robot
on the behaviour level. This approach leads to portable controllers, and hence,
validates YARS for ER and robot development. The latter is briefly discussed
in the next section, but the procedure is equivalent, except that the evolution is
exchanged with other controller-generating or learning methods. An example is
the use of YARS to simulate the RunBot [17] (see fig. 3(d)).

YARS has been used for over five years of research in numerous experiments.
A small overview is presented in figure 3 (a more comprehensive list is given
in [18]). This is only possible because it was designed to be general, while not
requiring any programming knowledge. The last two statements are discussed in
the following sections.



78 K. Zahedi, A. von Twickel, and F. Pasemann

3 YARS

YARS was initially designed to connect to ISEE [18,19,20], an ER environment.
Therefore, the early application was to connect to an external control program.
For each robot, a UDP socket communication port is opened automatically and
the morphological configuration of the robot is communicated through a hand-
shake mechanism. Each description of a sensor and an actuator includes the
mapping of the values. This can be used to adapt the pre- and post-processing
of the controller automatically. Java and C++ classes are provided to connect
other software by the same mechanism.

A reload mechanism in YARS supports on-line modification of the XML file.
This enables the easy modification of the experiment’s parameters and the ob-
servation of their influence without the need to halt the controller or to restart
the simulation. This is an important feature in closing the simulator-reality gap.
There is also the possibility to send the XML file through a socket communication
port to YARS, which enables the co-evolution of environment, morphology and
controller (see fig. 1). The same mechanism can be used to externally generate
complex environments.

The properties discussed above, automatic communication and external con-
figuration and control of YARS, enable YARS to connect to existing software

Fig. 1. Interactive evolutionary robotics. Left: The experiments begins with the defi-
nition of a question, e.g. insect-locomotion (see Octavio in text below and figure 3(c)).
From this question, a well-suited hardware platform is defined, built and a simula-
tion capturing the main physical properties is written in YARS. Recurrent neural
networks are evaluated in simulation and the observations are used to modify the evo-
lution parameters. Intermediate results are tested on hardware, and a comparison of
the behaviour of the simulated and physical robot yields to modifications of the sim-
ulation parameters. Final results are extracted, generalised and may also be used as
initial populations in other experiments. Right: YARS offers different possibilities for
its controlled and configured. A control program can connect via a UDP connection
to exchange sensor and motor commands, but can also be loaded dynamically during
runtime. An experiment description is given as a command line parameter, or may be
passed through a UDP port to YARS. The latter can be used to generate complex
environment descriptions by an external tool.



YARS: A Physical 3D Simulator for Evolving Controllers 79

with little effort, and are features from ER that make YARS attractive for robot
simulation in general.

In ER, a large number of different controllers must be evaluated, until a
good solution is found, i.e. the simulation speed is crucial. Currently, non-trivial
simulations (e.g. Octavio, see fig. 3(c)) run between 10-70 times faster than real-
time on a Pentium M 1.7 GHz. The high values result from the possibility to
start YARS without visualisation or by reducing the refresh-rate of the rendering,
while the lower bound is a consequence of the OpenGL rendering.

In closed-source simulators, actuators and sensors are problematic, as they
can either not be extended at all, or require a large amount of implementation
effort. YARS includes the most common sensors and actuators, which can be
fully configured. Adding a new sensor or actuator is possible, as YARS is open-
source (for details see sec. 5, Sensors)

Essential for the analysis of a controller is the ability to log data from the
simulator. Sensor and motor values are available through the communication
interface, pose of the objects can be written to a text file, and data can be
displayed on-line, currently through a gnuplot interface.

RoSiML. Setting-up an experiment can be a very time-consuming process, and
often requires programming knowledge or knowledge of 3D modelling languages
such as VRML. We chose a different approach and designed our own description
language: RoSiML (Robot Simulation Markup Language) [21,22]. This was done
for one main reason. If the keywords of the description language are chosen with
care, it is human-readable and does not require any programming knowledge.

Standardised 3D description languages, e.g. VRML and X3D, were not chosen,
because they are too extensive in their possibilities, and require advanced pro-
gramming knowledge. Their focus lies on scene descriptions and extending them
to robotics requires heavy modifications, eliminating the advantage of avail-
able graphical development tools. XSLT [23] offers the possibility to convert

Fig. 2. YARS example: This figure shows snippets of RoSiML code and sketches of the
robot. The snippets were taken from the SRN experiment discussed in the text below
and shown in figure 3(b). An XML file is given to YARS either through command line,
or through a UDP communication protocol (see fig. 1). A proximity sensor is simulated
by five rays.



80 K. Zahedi, A. von Twickel, and F. Pasemann

description languages, e.g. to convert VRML to RoSiML, but still requires ad-
ditional manual modifications.

The first version of RoSiML was used in the German Research Foundation
Priority Program 1125 as a general simulator description language to make de-
scriptions exchangeable among the program members (e.g. [21,22]), independent
of the simulation system.

The description of an experiment in RoSiML is divided into three main sec-
tions, the simulator, the environment and the movables (see fig. 2). The simulator
section relates to the general configuration of YARS, e.g. update frequency of
the physics and controller, keyboard commands, window size, camera position,
etc. The environment section describes all static objects. Their position can be
randomised at every reset, but remain fixed in their pose throughout the sim-
ulation run. The objects are basic geometric primitives (box, sphere, etc.) that
are also used to define a movable. The movable section includes any number of
movables, which are either controlled (see below) or passive. An example is a
RoboCup [24] scenario in which groups of controlled robots act in a static envi-
ronment interacting with a movable but otherwise passive ball. The concept of
a moveable is detailed below.

Movables. A moveable is a generalised concept of a (mobile) robot. There are
four possible types, active, passive, controlled, and moving, which are distin-
guished by their form of control and whether or not communication is estab-
lished.

For each active movable, UDP socket communication is automatically estab-
lished. Exceptions are passive movables, which do not require any form of control
or communication. Both types are elaborated next.

In ER it is desirable to have a dynamic environment, i.e. other robots that
interact with the robot and controller of interest. An example is an obstacle-
avoidance controller that should not only avoid static but also moving ob-
stacles. In this case, only the obstacle-avoider should be active, i.e. open to
evolution/analysis/development, whereas the behaviour of the other robots re-
main unchanged. This case is covered by the controlled movable. YARS provides
the possibility to dynamically load C++ classes. A string identifier in the XML
file relates to the name of the C++ class, which contains the implementation of
the controller. The moving movable is very similar to the controlled movable. The
difference is that the outputs of the C++ program are forces which are applied
directly to the body. The next paragraphs cover the concept of the morphology,
sensors, and actuators of a movable.

Morphology. The morphology description of a movable is organised in a four-level
tree (see fig. 2). The first-level node is named body, and it includes compounds
and connectors. A compound is a group of connected rigid bodies or compos-
ites of rigid bodies, called objects for short. Connectors are active or passive
joints between two objects. Inter-compound connectors are defined below the
body node, intra-compound connectors within the compound. For each object,
the physical parameters, e.g. weight and friction coefficients, must be specified.



YARS: A Physical 3D Simulator for Evolving Controllers 81

Composites [16] allow the definition of complex rigid bodies. Trimesh objects
will be included in a future release.

Sensors. Currently, different generic and specific sensors are implemented, both
exteroceptive and proprioceptive. Exteroceptive sensors are attached and posi-
tioned relative to an object. Proprioceptive sensors are included in the actua-
tor definition. The list of exteroceptive sensors includes: generic rotation sensor
(3D compass), generic proximity sensor, two specific Sharp infra-red proximity
sensors (DM2Y3A003K0F, GP2D12-37), generic light-dependent resistor sensor,
and a generic directed camera sensor. The generic sensors are fully configurable,
including noise. Available proprioceptive sensors are: joint (angular) position,
joint (angular) velocity, joint force/torque, and an energy sensor. A special group
are global sensors, which are not usually available in physical robots and which
are used for the evaluation. Currently included are a global coordinate sensor and
an ambient light sensor. Both were used to calculate the fitness in the examples
discussed below.

Custom sensors can be added through modification of the source code, or
may result from the combination of available sensors, e.g. a laser-scanner can be
simulated by an array of proximity sensors.

Actuators. Actuators connect two rigid bodies, and are positioned relative to
their source. Possible actuators are hinge, hinge2 (combination of two hinges),
slider, ball joint, and a complex hinge. They are configurable in torque/force,
max. deflection, damping and spring properties, and noise.

4 Examples

Aibo. The first example is an evolved neuro-controller for a fast quadrupedal
walking behaviour [13] (see fig. 3(a)). The experimentation platform is the Sony
Aibo robot [25]. A detailed 3D model of the Aibo is available, which enables the
extraction of the body’s proportions, but there are no specifications available
about the motors and the weight distribution. This increases the difficulty of
evolving a controller in simulation and porting it to the real hardware. Further
challenges were the unknown friction coefficients and the non-trivial shape of the
Aibo legs, which could not be simulated in detail. The solution to these problems
were manifold. First, a few tests were conducted with the actual robot in order
to get rough approximations of the motor torques. The second step was to find
a good approximation for the weight distribution and morphology. The third
step was to test intermediate evolution results on the real hardware, using the
German Team framework [26], until the behaviour was qualitatively equivalent.
With these techniques, the final solution only required minimal changes to a few
synaptic weights in order to run on the physical hardware.

Octavio. Octavio is an example of a complex walking machine where a multitude
of nonlinear mechatronic effects have to be taken into account in simulation to



82 K. Zahedi, A. von Twickel, and F. Pasemann

(a) Fast Quadrupedal Walking [13]. Left:
The physical robot platform Right: Simu-
lated Aibo.

(b) Left: The randomised environment
used in the SRN adaptive light-seeker
experiment. Right: A swarm experi-
ment.

(c) Octavio is a modular eight-legged
walking machine. First different con-
trollers for single-leg control were
evolved [11] and then combined in
a walking machine (left). Right: The
physical platform.

(d) RunBot is the fastest two-
legged walking machine [17]
(robot image was taken from the
BCCN Göttingen site)

Fig. 3. YARS application examples

enable an efficient transfer of neuro-controllers to the real hardware. Octavio is
a modular four-, six-, or eight-legged machine with autonomous legs with re-
gard to control and energy supply (see fig. 3(c)). Each leg has three active and
one passive joint of which each active one is equipped with a DC-motor-gear
combination, a spring coupling, a pre-stressed spring, an angle, and a current
sensor. Instead of using the motors as servo motors with the desired positions
as input, controllers may take full advantage of the four states that the motor
offers: forward torque, backward torque, relaxed and brake. Activation ampli-
tude is determined by pulse-width modulation. On the one hand, this gives more
power to the neuro-controller to e.g. save energy by making use of the relaxed
mode; on the other hand it imposes a higher demand on the simulator in terms
of transferability of controllers to hardware because effects like backlash, friction
and inertia have a much more direct impact on performance. This is because
they are not hidden from the neuro-controller by means of a black-box servo
control. For successful transfers of neuro-controllers to hardware the usual strat-
egy of reproducing weight distributions, including sensor- and motor noise etc.
(see e.g. the Aibo example above) was not sufficient and the simulator therefore,
had to be extended in several ways, of which a few examples are given here: sim-
ple models including static and dynamic joint friction which were derived from
experiments, rotor inertia is taken into account as an energy storage that greatly
influences the passive dynamics, pulse-width to maximum no-load velocity and



YARS: A Physical 3D Simulator for Evolving Controllers 83

maximum stall torque mappings were determined experimentally and backlash
effects were quantified and included in the simulator. Going beyond the trans-
ferability of controllers from simulation to Octavio a comparability of artificial
neuro-controllers with biological controllers in e.g. the stick insects is desired.
To this end, simple muscle models based on biological data are implemented to
take into account the neuro-muscular transform.

A detailed elaboration on the implementation of the neuromuscular transform
will be subject of future publications.

Adaptive Light-Seeker. The adaptive light-seeker with the Self-Regulating Neu-
ron (SRN) model [18,27] demonstrates the randomisation possibilities of an envi-
ronment in YARS (see fig. 3(b)). The SRN model is an extension of the standard
additive neuron model, which is motived by Ashby’s Homeostat [28]. Coupled in
an embodied and situated recurrent neural network, it enables adaptivity within
such structures. To demonstrate this, an environment was chosen in which a
light source has to be found under varying light conditions. The robot cannot
distinguish between a light source and the ambient light in the raw sensor data.
YARS enables the randomisation of the pose of any object in the environment
and the value of the ambient light. The former feature was used to first evolve a
light-seeker without ambient light. The obstacles were randomised such that a
static, non-explorative behaviour, e.g. cyclic movements with increasing radius,
would not lead to a good fitness, as the environment changes from generation to
generation. In the next step, the ambient light was randomised. The result is a
pure feed-forward SRN network that is able to find a light source under varying
ambient light conditions, as a result of the homeostatic properties of the SRN
and the interaction with the environment [18].

Another example, RunBot [17], not in the context of evolutionary robotics, is
shown in figure 3(d).

5 Outlook

The current state of YARS is well suited for experimentation in- and outside
the field of ER (see examples given in figure 3). With XML as the description
language, researchers who may not be familiar with programming are able to
create their experiments within YARS. The communication is established au-
tomatically, and sources in Java and C++ are available to connect YARS to
other programs. Controllers can also be written directly in C++ and loaded
dynamically during the start-up of YARS. Hence, YARS can also be used with-
out any additional software, such as ISEE. Recompiling YARS to test new con-
trollers/morphologies/environments is not necessary. Nevertheless, there are still
considerable improvements currently under development or in planing phase.

Modularisation/Plug-in Concept. The entire source of YARS is built into one
monolithic executable, with the exception of the C++ controllers which are
loaded dynamically during runtime. The next step of the YARS development



84 K. Zahedi, A. von Twickel, and F. Pasemann

will split functional subgroups of YARS into shared libraries, which can then be
easily exchanged without the need to recompile the entire system. Such func-
tional groups are the physics engine, the visualisation, sensors, actuators, and
logging. Each of them is discussed in the following paragraphs.

Visualisation. The ODE visualisation engine, drawstuff, was replaced by a faster
OpenGL implementation which also supports multiple cameras. The next step
is to make the visualisation optional at compile-time, and to allow the user to
choose between different visualisations, i.e. none, minimal, such as OpenGL,
or more comfortable such as e.g. wxWidgets. The more comfortable GUI will
also allow graphical, interactive manipulation of the scene. As our focus was on
exploiting the capabilities of simple sensors in the sensori-motor loop, textures
for photo-realistic rendering has, so far, not been included, but will follow with
the refactoring of the visualisation.

Physics. Current developments in the field of open-source physics engines tend
towards impulse-based physics simulation [29]. Physics engines will be added
after evaluation, if they meet the requirements and provide improvements.

Sensors/Actuator. A sensor and an actuator requires almost the same implemen-
tation effort in YARS. At this stage, first the XSD grammar has to be changed,
followed by the parser, the internal representation, the simulation of the sen-
sor/actuator, and finally the communication. Although well-structured, this is
a considerable amount of implementation to add a new sensor/actuator. Under
current planing is a plug-in concept to reduce this effort significantly and to
support dynamic loading.

Logging/Plotting. The possibility to log and plot simulation variables is essential
in order to analyse the quality of a controller or, as in the context in which YARS
was developed, to understand the correlation between the neuro-dynamics and
behaviour, given the sensori-motor loop. A template concept will support logging
of data into any format, such that also exports to e.g. povray [30] will be possible.

Multi-OS. YARS runs on Linux (gcc 4.x), and is currently ported to Mac OS X
10.5 and Win32.

6 Discussion

YARS is a very flexible, highly configurable robot simulator. If physics is re-
quired and the on-line visualisation does not need to be highly sophisticated, it
is currently, to the best of the authors’ knowledge, the fastest available simulator.
YARS’ main contribution is simulation speed, but keeping the simulator-reality
gap in mind, ensuring quick portability of simulation results to the physical
platforms. Other contributions of the YARS development are easy integration of
new sensors and actuators, and concerning evolutionary robotics; automating of
communication, randomisation of the environment, and the possibility to reset



YARS: A Physical 3D Simulator for Evolving Controllers 85

the experiment through a communication channel. The experiment description
file may also be passed to YARS through socket communication, which enables
co-evolution of the environment, morphology and controller and enables gener-
ation of complex environments by external programs. YARS has also proven to
be useful in experiments outside the field of ER, as in e.g. RunBots.

Therefore, YARS already has many desired features for research which is
currently discussed in the field of ER, but also supports robotics development
outside this field.

YARS is open-source and available from sourceforge:
http://sourceforge.net/projects/yars/.

Acknowledgements. Steffen Wischmann contributed to the implementation
of the early version of the YARS core. The generic communication interface be-
tween YARS and Hinton was designed and implemented by Björn Mahn. Verena
Thomas implemented the dynamical loading of control programs, the OpenGL
visualisation, and the virtual camera sensor.

This work was partly funded by the DFG grants CH 74/9, PA 480/4, PA 480/6.

References

1. Floreano, D., Urzelai, J.: Evolutionary robots with on-line self-organization and
behavioral fitness. Neural Netw. 13(4-5), 431–443 (2000)

2. Michel, O.: Khepera simulator 2.0 (last visited: August 2008),
http://diwww.epfl.ch/lami/team/michel/khep-sim/

3. Michel, O.: Webots (last visited: August 2008),
http://www.cyberbotics.com/products/webots/

4. Leger, C.: Darwin2k (last visited: August 2008),
http://darwin2k.sourceforge.net/

5. MSC Software: Adams (last visited: August 2008),
http://www.mscsoftware.com/products/adams.cfm

6. Yobotics Inc.: Yobotics website (last visited: August 2008), http://yobotics.com/
7. Koenig, N., Polo, J.: Gazebo (last visited: August 2008),

http://playerstage.sourceforge.net/index.php?src=gazebo

8. Klein, J.: breve: a 3d simulation environment for the simulation of decentralized
systems and artificial life. In: Proceedings of Artificial Life VIII, the 8th Inter-
national Conference on the Simulation and Synthesis of Living Systems, Sydney,
Australia. MIT Press, Cambridge (2002)

9. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: Usarsim: a robot
simulator for research and education. In: Proceedings of the 2007 IEEE Conference
on Robotics and Automation (2007)

10. Michel, O.: Webots: Professional mobile robot simulation. Journal of Advanced
Robotics Systems 1(1), 39–42 (2004)

11. von Twickel, A., Pasemann, F.: Reflex-oscillations in evolved single leg neurocon-
trollers for walking machines. Natural Computing 6(3), 311–337 (2007)

12. Manoonpong, P.: Neural Preprocessing and Control of Reactive Walking Machines
Towards Versatile Artificial Perception-Action Systems. In: Cognitive Technologies.
Springer, Heidelberg (2007)

http://sourceforge.net/projects/yars/
http://diwww.epfl.ch/lami/team/michel/khep-sim/
http://www.cyberbotics.com/products/webots/
http://darwin2k.sourceforge.net/
http://www.mscsoftware.com/products/adams.cfm
http://yobotics.com/
http://playerstage.sourceforge.net/index.php?src=gazebo


86 K. Zahedi, A. von Twickel, and F. Pasemann

13. Markelić, I., Zahedi, K.: An evolved neural network for fast quadrupedal locomo-
tion. In: Xie, M., Dubowsky, S. (eds.) Advances in Climbing and Walking Robots,
Proceedings of 10th International Conference (CLAWAR 2007), pp. 65–72. World
Scientific Publishing Company, Singapore (2007)

14. Popp, J.: sphericalrobots (last visited: August 2008),
http://www.sphericalrobots.org

15. Wischmann, S., Hülse, M., Pasemann, F.: (Co)Evolution of (de)centralized neural
control for a gravitationally driven machine. Advances in Artificial Life, 179–188
(2005)

16. Smith, R.: ODE (last visited: August 2008), http://www.ode.org
17. Geng, T., Porr, B., Wörgötter, F.: Fast biped walking with a sensor-driven neuronal

controller and real-time online learning. The International Journal of Robotics
Research 25(3), 243–259 (2006)

18. Ghazi-Zahedi, K.M.: Self-Regulating Neurons. A model for synaptic plasticity in
artificial recurrent neural networks. PhD thesis, University of Osnabrück (2008)

19. Zahedi, K., Hülse, M.: ISEE – integrated structure envolution environment (last
visited: August 2008), http://sourceforge.net/projects/isee/

20. Hülse, M., Wischmann, S., Pasemann, F.: Structure and function of evolved neuro-
controllers for autonomous robots. Connection Science 16(4), 294–296 (2004)

21. Laue, T., Spiess, K., Röfer, T.: Simrobot — a general physical robot simulator and
its application in robocup. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y.
(eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 173–183. Springer, Heidelberg
(2006)

22. Mayer, N., Boedecker, J., da Silva Guerra, R., Obst, O., Asada, M.: 3d2real: Sim-
ulation league finals in real robots. In: RoboCup 2006: Robot Soccer World Cup
X, pp. 25–34 (2007)

23. Clark, J., Lipkin, D., Marsh, J., Thompson, H., Walsh, N., Zilles, S.: XSL Trans-
formations (XSLT) Version 1.0. W3C (1999)

24. The RoboCup Federation: Robocup official site (last visited: August 2008),
http://www.robocup.org

25. Sony: Sony aibo europe (last visited: August 2008),
http://support.sony-europe.com/aibo/

26. Röfer, T., Laue, T., Burkhard, H.D., Hoffmann, J., Jüngel, M., Göhring,
D., Düffert, U., Spranger, M., Altmeyer, B., Goetzke, V., von Stryk, O.,
Brunn, R., Dassler, M., Kunz, M., Risler, M., Stelzer, M., Thomsas, D.,
Uhrig, S., Schwiegelshohn, U., Dahm, I., Hebbel, M., Nistico, W., Schu-
mann, C., Wachter, M.: Germanteam 2004 (2004) (last visited: August 2008),
http://www.germanteam.org/GT2004.pdf

27. Zahedi, K., Pasemann, F.: Adaptive behavior control with self-regulating neurons.
In: Lungarella, M., Iida, F., Bongard, J.C., Pfeifer, R. (eds.) 50 Years of Aritficial
Intelligence. LNCS (LNAI), vol. 4850, pp. 196–205. Springer, Heidelberg (2007)

28. Ashby, W.R.: Desgin for a brain. Chapman & Hall Ltd., London (1954)
29. Bender, J.: Impulse-based dynamic simulation (last visited: August 2008),

http://www.impulse-based.de/

30. Persistence of Vision Raytracer Pty. Ltd.: Povray – the persistence of vision ray-
tracer (last visited: August 2008), http://www.povray.org/

http://www.sphericalrobots.org
http://www.ode.org
http://sourceforge.net/projects/isee/
http://www.robocup.org
http://support.sony-europe.com/aibo/
http://www.germanteam.org/GT2004.pdf
http://www.impulse-based.de/
http://www.povray.org/


A Software Platform for Component Based
RT-System Development: OpenRTM-Aist

Noriaki Ando, Takashi Suehiro, and Tetsuo Kotoku

Intelligent Systems Research Institute,
National Institute of Advanced Industrial Science and Technology (AIST),

AIST Tsukuba Central 2, Tsukuba, Ibaraki 305-8568, Japan
{n-ando,t.suehiro,t.kotoku}@aist.go.jp,

http://www.openrtm.org/

Abstract. This paper proposes the RT-Middleware for robot system
integration. “RT” means “Robot Technology” which is applied not only
to industrial field but also to nonindustrial field such as human daily
life support systems. We have studied modularization of RT elements
and have developed software platform RT-Middleware which promotes
application of RT in various field. Robotic system development method-
ology and our RT-Middleware concepts is discussed. The RT-Component
which is a basic madular unit of RT-Middleware based system integration
is derived from this discussion. A methodology of system development
with RT-Components, and a framework to make component are shown.

1 Introduction

The progress of robotics research has accumulated vast amounts of knowledge
and technology. Those technologies called “Robotic Technology (RT) [1]” have
begun to be applied to various field including ubiquitous computing, intelligent
room and service robot applications. However the applications of those tech-
nologies are not developed enough, and the system integration issues for those
technologies are receiving increasing attention both by academia and industrial
circles. Especially software takes the lead in robotic system integration method-
ology. As the supportive evidence of it, many software platforms for robots have
been developed in the world in recent years.

We have studied software building block architecture for robot development,
and the RT-Middleware (RTM) and RT-Component (RTC) has been proposed as
the one of solution about it [2]. The purpose of the RT-Middleware is to establish
basic technologies for integrating robot systems with a new function easily by
using modularized software components named RT-Component. If robot systems
with new functions can be constructed more flexibly, it can satisfy every users’
needs individually which cannot be satisfied now. Thus, it is expected that the
conventional robot industry mainly restricted to the manufacturing field will be
expanded to the nonmanufacturing field like support robots for daily life.

The research on software platforms and libraries for robotic systems are per-
formed actively in recent years. “Player/Stage” is a free software project for

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 87–98, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



88 N. Ando, T. Suehiro, and T. Kotoku

research in robot and sensor systems. The Player, which is a robot server with
robot control interface, and its simulation backends, Stage and Gazebo, are very
widely used especially by mobile robotics researchers [3]. “ORCA” is an open-
source framework for developing component-based robotic systems. It provides
the means for defining and developing the software components as the building-
blocks [4]. “CLARAty” (Coupled-Layer Architecture for Robotic Autonomy) is
an integrated framework for reusable robotic software developed by JPL, Uni-
versity of Minesota and Carnegine Mellon University [5]. It defines interfaces for
common robotic functionality and integrates multiple implementations of any
given functionality. “MSRDS” (Microsoft Robotics Developer Studio) is soft-
ware platform for robotics that is distributed by Microsoft. This platform is
based on DSSP (Decentralized Software Services Protocol) that is SOAP based
application protocol for lightweight services. This platform also provides Visual
Programming Language (VPL) for robot developers.

The main differences between those software platforms and our RT-
Middleware are characterized by the open specification and interoperability.
The RT-Component, which is managed its lifecycle by the RT-Middleware, is
a software component based on the open specification. Since the specification
is opened, any software vendors can implement based on it, and because of the
common specification, different implementation can be interoperable. We also
have implemented RT-Middleware and RT-Component framework based on the
specification, and the implementation named “OpenRTM-aist” is provided as an
open source reference implementation.

In the following, first, the requirement of the software platform for com-
ponent based RT-system development is discussed, and the basic concept of
RT-Middleware is shown. Then, on the basis of the discussion, a component
model of RT-Component is shown. Based on the proposed component model, the
RT-Middleware and RT-Component framework is implemented. Finally, some
RT-Middleware based systems are shown and the discussion and conclusion are
given.

2 What Is Needed for RT Software Platform

In this section, the core architecture of the RT-Componet is discussed. In consid-
eration of RT-specific features for software, the requirement for the component
model for RT systems is clarified.

2.1 Code Reusability

The reusability has two meanings. One is reusability of user’s code, the other
is reusability of components. Users are unwilling to use the component frame-
work which needs to remake all codes. In order to reuse a lot of software library
developed until now, it is necessary to provide the framework for modularizing
the existing software library easily. Therefore, framework needs to support var-
ious operating systems and various programming languages. After modularized



A Software Platform for Component Based RT-System Development 89

as an component, the component should be used without any modification and
re-compile of codes.

OpenRTM-aist provides a component framework and template code genera-
tor. User can easily embed their code in it and can make it reusable component.
Since component framework provides various functionality such as lifecycle man-
agement, network communication including data-oriented and service-oriented
interaction and runtime configuration, user can focus on his/her own main logic.

2.2 Various Granularity Support

Various granularity size of modules could be considered, when modularizing an
RT element. A motor, a sensor, and a controller can be a fine granularity com-
ponent respectivly. A vision system with some image processing algorithms, a
several degrees of freedom manipulator arm and a mobile robot with some sen-
sors are example of middle-fine granularity components. An application program
might want to handle a humanoid robot, an intelligent room, etc. as a coarse
grained module respectivly. The software platform needs to support various com-
ponent grain size in the framework.

OpenRTM-aist’s component model provides data-centric interaction method,
which is mainly used for fine grained components, and service-oriented interac-
tion method, which is mainly used for coarse grained components.

2.3 Active Module

Usually, a general distributed object works as a passive object that sends back
return values to a method invocation. In this case, an object is modeled as
interfaces that contain operations with input and output parameters and a return
value. An internal activity model of an object is not considered.

On the other hand, some of modularized RT element has its own tasks like
real-time feedback control in it, and it is necessary to collect required data RT-
element itself, or to notify event to other elements when it happened.

In the RT-Component model, a component’s business logic is associated with
at least one execution entity named Execution Contexts. The Execution Context,
which is a logical thread, executes user’s logic implemented in the RT-Component
framework.

2.4 Realtime Capabilities

Realtime capabilities of module activity are an indispensable function in RT
systems especially in low level control layer. It is necessary not only in one com-
ponent but also in composite component that is composed of some fine-grained
components. For example, in order to make two or more modules cooperate in
the real-time schedule, the time synchronization between modules is needed.
Software platform for RT systems should satisfy these requirements.

Above mentioned Execution Context, which is a logical thread, is associated
with RT-Component in run-time. Replacing by a execution context driven by a
real-time thread, real-time execution of the RT-Component’s can be possible.



90 N. Ando, T. Suehiro, and T. Kotoku

2.5 Platform Independency

Here the platform contains some meanings such as operating systems, program-
ming language, network middleware and communication media. As mentioned
above, it is significant that platform supports multiple operating systems and
languages for code reusability. Generally as for the code of a low level which
controls hardware, C and C++ language are used, and a code of a high level,
such as behavior and judgment of a robot will often be described by Java or
script languages. In many cases, device drivers for robotic devices support a few
operating systems and needs special communication media. Since a device and
its device driver often depend on operating systems and communication media,
the framework for modularizing it should not be dependent on them.

Currently OpenRTM-aist supports C++, Java, Python and C# languages on
various UNIX, Mac OS X and Windows platforms. OpenRTM-aist’s interoper-
ability among these languages and OSs is realized by CORBA (Common Object
Request Broker Architecture).

2.6 Social Requirement

The software platform has to be stable in the meaning of the quality of software
code itself and the social continuity of the software. Needless to say that the
code quality of the software platform is important. Additionally since many
software components that are developed on the platform depend on the platform,
continual existence of the platform is also important issue. The open source and
copyleft strategy can be one of solution for it, and the open specification is the
other solution.

OpenRTM-aist is an open source project, and it is released under LGPL
license. We also opened its specification including component model and interface
definition. Currently we released C++, Java and Python version of OpenRTM,
and one private company released OpenRTM for C#, which is compatible with
our OpenRTM-aist for C++, Java and Python. Multi-vendor environment gives
the software platform diversity, optionality and continuousness. Additionally the
specification itself has to be stable, so we have standardized the RT-Component
specification in OMG (Object Management Group) [6].

3 Component Model

From the requirements mentioned above, we had studied about appropriate com-
ponent model for RT-systems, and had defined the functionality in the compo-
nent model. We call it RT-Component (RTC). Figure 1 shows the architecture
block diagram of the RT-Component. The functionality of the RT-Component
is as follows:

– Component metadata for dynamic component assembly.
– Component action and execution context for business logic execution.
– Data ports for data exchange between RTCs.



A Software Platform for Component Based RT-System Development 91

Activity

RTComponent

RTComponent Service

Configuration
interface RTC Interfaces RTCEx Interfaces

OutPortInPort

RTCS Consumer

InPort 0

InPort n OutPort n

OutPort0

Service

Service

reply

push
put

get, subscribe

Buffer Buffer

BufferBuffer

Consumer

Proxy

Consumer

Proxy

reply

get
put

use provideprovide

State Machine

Fig. 1. The proposed architecture of RT-Component model. The RT-Component has a
component body, common interface for metadata acquisition, component action, data
ports, service ports and configuration interface.

– Service ports for service-oriented communication between RTCs.
– Configuration interface for runtime parameter setting.

3.1 Metadata Acquisition

The metadata acquisition capability, which realize querying and administer-
ing RTCs at runtime, is also known as “Introspection” (Figure 2). RTC has
some interfaces to get metadata including profile, properties about ports. These
capabilities can be used by other RTCs, tools or other application programs
that support dynamic RTC composition. By using these metadata, applica-
tion programs can obtain these metadata from RTC in runtime, and can make
dynamic composition of RTCs in runtime. These metadata is also useful for
components debugging tools and components composition tools. This function-
ality has two features, one is resource data model, the other is stereotype and
interfaces. Resource data, which is a kind of data-only class, describes com-
ponent profiles. Interfaces defines some methods to get or set profiles and
properties.

port0

port1

A

B
C

D

E

port2

port3

port4

parameter name
value

ExecutionContext

port5

port6

port7

Fig. 2. The RTC provides introspection interfaces to obtain metadata of the RTC.
Other RTC or application can utilize the metadata to make dynamic RTC composition.



92 N. Ando, T. Suehiro, and T. Kotoku

Error

ExecutionContext::activate_component

ExecutionContext::deactivate_component

[ReturnCode_t!=OK]/ ComponentAction::on_aborting

[ReturnCode_t!=OK]

[ReturnCode_t=OK]

ExecutionContext::reset_component

do/ComponentAction::on_error

Active
entry/ComponentAction::on_activate
exit/ComponentAction::on_deactivate

Resetting

entry/ComponentAction::on_error

Steady Error

Inactive

Fig. 3. The state machine of the Execution-
Context. Each callback named “on xxx” is in-
voked on related transition events and actions.

Device
Initialization

Servo
Off

Servo
On

Emergency
Stop

Error

ActiveInactive

Execution Context

Init RTC

An Example of Arm Component

Fig. 4. The Component Action call-
backs in which the component specific
logic is implemented are invoked by
the logical thread ExecutionContext

3.2 Component Action

The “Component Action” interface defines callbacks corresponding to the exe-
cution of the lifecycle operations of RTC. These callbacks would be invoked by
the execution entity named “Execution Contexts” that is a logical thread object.

An RTC developer would implement Component Action’s callback operations
that would be invoked in each state of “Execution Context”, in order to execute
RT-component-specific logic. An RTC can participate in Execution Contexts,
and an Execution Context can accept multiple RTC participants. As shown in
Figure 3 and 4, an Execution Context performs a state transition between “Ac-
tive” “Inactive” and “Error” state, and Component Action callbacks is invoked
in appropriate timing in the state transition.

As mentioned above, the logic of an RTC and the logical thread is decoupled
in the RTC model. This model is useful to implement tightly coupled RTCs in a
single (real-time) thread. It is called the synchronous composite RT-Component.

3.3 Data Ports

In the low level real-time control layer, if a component is considered as the
functional unit which consists of inputs, processing, and outputs like a control
block diagram, it will be easy to perform a system configuration (Figure 5). This
input/output model is not suitable for general usage of the distributed object
model. Because an object which sends its data to other objects has to know
all objects’ complete interface definition. On the other hand, in such low level
control layer, data type, number of data and unit of data are more important
than interface definition. As shown in Figure 6, RT-Component adopted the
publisher/subscriber model and defines it as InPort/OutPort.

OutPort supports some subscription types, “New”, “Periodic” and “Flush.”
For example, the ”New” subscription type means that an OutPort sends data
to InPorts which subscribe it when a new data come from the Component
Action.



A Software Platform for Component Based RT-System Development 93

Data Flow
Data Port

Position
data

Torque
data

Kp

TDS

1
TIS

Reference
Position

Actuator
RTC

Controller
RTC

Sensor
RTC

Fig. 5. A DataPort usage example.
The DataPort is used for data-
centric communication between
components.

Component A

Generated Data Data from Comp.A

BufferBuffer

DataPorts

ExecutionContext ExecutionContext

Component B

Fig. 6. The DataPort provides data-centric port
for RTCs. The InPort receives data from the
OutPort. The OutPort has some subscription
types that control data pushing timing.

3.4 Service Ports

The software component should have enough interfaces to access to detailed func-
tionality of the component from outside (Figure 7). The “Service Ports” provide
endpoint to attach provided interfaces and required interfaces on it. Component
developer can provide his/her own defined interface through the Service Port.
The developer also can use provided interfaces by the other components through
the Service Ports, as shown in Figure 8.

3.5 Configuration

The Configuration interface provides interfaces to administrate user defined
RTC’s parameters. As mentioned above, a component should not have the hard-
coded configuration parameters which prevent reuse of the component.

The configuration consists of some configuration parameters as list of values
with name, as shown in Figure 9. RTC is able to have some configurations as sets.
This is called the Configuration Set. The Configuration Sets can be replaced in

Manipulator

Data Port
Position

data

Arm Interface Service Port
- Mode setting
- Coordinate setting
- Ctrl parameter setting
- Jacobian get/set
- Status acquisition
- etc.

Manipulator
RTC

Fig. 7. AServicePort usage example.The
ServicePort is used for service-oriented
communication between components.

Service Port
with Consumer

Service Port
with Provider

Component A

Operation invocation

Service
Proxy

ServicePorts

ExecutionContext
Service

Implementation

Actual processing
are performed here

Component B

Fig. 8. The ServicePort provides service-
oriented communication between RTCs.
User defined service objects can be ex-
ported through the ServicePort.



94 N. Ando, T. Suehiro, and T. Kotoku

name
ModeA

ModeB

ModeC

name

name

Kp

Kp

Kp

Ki

Ki

Ki

Kd

Kd

Kd

max

max

max

min

min

min

0.6

0.8

0.3

0.01

0.0

0.1

0.4

0.01

0.31

5.0

10.0

1.0

-5.0

-10.0

-1.0

value

value

value

Kp

Kds

Ki
s

Limiter

PID Controller RTC

PID gain and limiter parameter
can be switched according to

a target plants or modes in runtime.

Select and Set

PID Controller

ConfigurationSet

ConfigurationSet name

Configuration parameters

Fig. 9. The Configuration interface allows manipulation of configuration parameters
in runtime. User can define some sets of the configurations.

runtime to adapt the RTC into the applications. For example, if an RTC realises
PID controller with P-I-D gain as configuration parameters, the configuration
set can be replaced or changed to adapt to the plant.

4 Implementation

4.1 OpenRTM-aist

According to the proposed RTC model, the “OpenRTM-aist (Open RT-
Middleware distributed by AIST)” that is a component framework and mid-
dleware environment for RTCs have been implemented [7]. “OpenRTM-aist”
consists of an RT-Component development frame work, a middleware including
RTC manager and some tools. OpenRTM-aist is implemented on CORBA (Com-
mon Object Request Broker Architecture), because of its network transparency,
OS/language independency and interoperability. Currently OpenRTM-aist sup-
ports C++, Java and Python languages on Windows, Linux and other UNIX-like
operating systems. An RTC developer can choose appropriate language accord-
ing to granularity, logic abstraction level and preference of language, and RTCs
implemented on different languages are interoperable each other. OpenRTM-
aist is also CORBA independent implementation, so it supports some CORBA
implementation like omniORB, TAO, MICO and ORBexpress.

“OpenRTM-aist” provides a GUI tool to manage and administrate RTC on
the network. The Figure 10 is the tool named “RtcLink.”

The left side pane is “Name Service View” that show component list on the
specific name server. The center pane is “System Editor” that is editor area to
compose RTCs connection and to activate/deactivate RTCs. The right side pane
is “Property View” to show the selected RTC’s profile.

This GUI tool is implemented as an Eclipse plug-in. The Eclipse is a open-
source project, and a lot of third party plug-ins is available. Since the Eclipse is
one of the most widely used integrated development environment now, we have
chosen the Eclipse as a platform of our tools.



A Software Platform for Component Based RT-System Development 95

Fig. 10. RtcLink on Eclipse. RT-System online design tool running on Eclipse IDE.

4.2 RTM Based Systems

OpenRTM-aist already has more than 100 users, and some of national robotic
projects in Japan adopts it as official platform. Here some of RTM based systems
are shown.

Force Controled Manipulator. This is an example system, which consists of
a force sensor RTC, a manipulator RTC, a joystick RTC and a dumper controller
RTC, to show real-time capability of OpenRTM-aist.

As shown in Figure 12, these components are associated with same real-time
thread, and each component’s logic are executed synchronously in a 2 ms periodic
task. Table 1 shows task execution time statistics in this experiment. The point
is that these three devices components and one control component are not a

Joystick

End-effector
force/torque sensor

Manipulator

Fig. 11. Manipulator system equip-
ment: End-effector force/torque sen-
sor, manipulator, joystick

End-effector force sensor

Joystick

Manipulator

Controller
(Damping control)

Real-time loop

A Synchronous Composite Component

Force/Torque
(TimedFloatSeq type)

End-effector velocity
(TimedFloatSeq type

Force/Torque
(TimedFloatSeq type)

2

3
4

1

Fig. 12. A force controlled manipulator sys-
tem using a synchronous composite compo-
nent. Number in upper left of each block means
execution order.



96 N. Ando, T. Suehiro, and T. Kotoku

Table 1. Execution time of force controlled manipulator system

Task period time 2.00 ms
Maximum execution time 2.01 ms
Minimum execution time 1.99 ms
Mean execution time 2.00 ms
Standard deviation 4.41 µs

monolithic program but programs completely created separately. Furthermore,
the point that these components were executed synchronizing in real-time is
important.

Automatic LRF Calibration System. Sasaki et al. implemented their dis-
tributed LRF (laser range finder) automatic calibration algorithm on OpenRTM-
aist [8](Figure 14).

This system consists of four type of RTC: LRF RTC, Tracker RTC, LRF Cali-
bration RTC, Coordination Transform RTC. LRF sensors distributed on network
are integrated by the network transparency capability of OpenRTM-aist.

Other RTCs. The following is an example of the components developed on
OpenRTM-aist by OpenRTM-aist community.

– 3D recoginition and tracking RTCs by AIST and Applied Vision Co.
Ltd.(Figure 15)

– Learning/inference RTCs baed on β-RNA by AdIn Research, Inc.
– LRFbasedhuman trackingRTCsbySystemEngineeringConsultantsCo.,Ltd.
– Manipulator and bilateral tele-operation RTCs by AIST
– Input device RTCs (Game-pad, PHANToM, GUI, etc.) by AIST
– Dynamics simulator: OpenHRP3 by AIST(Figure 16)

Fig. 13. The LRF automatic calibration algo-
rithm. Relative.

Fig. 14. LRF automatic calibra-
tion and tracking system based on
OpenRTM-aist



A Software Platform for Component Based RT-System Development 97

Fig. 15. 3D recognition and tracking RTCs. This system is based on VVV (Versatile
Volumetric Vision) developed in AIST.

Fig. 16. The OpenHRP3 provides an environment for dynamics simulation for vari-
ous types of robots including humanoid robots, manipulators and mobile robots. The
controller RT-Component that is tested in the OpenHRP3 can be exported to the real
robot without recompiling.

Currently a lot of RT-Components are being developed and circulation in a
user community is also starting.

5 Conclusion

In this paper, we proposed component based robotic system integration
scheme RT-Middleware and RT-Component. The functions required for the
RT-Component which supports robot specific features were discussed and
clarified. To realize component based robotic system development efficiently,
RT-Component and its architecture was proposed. The “OpenRTM-aist”,
which includes RTC development framework, middleware and tools, have been
implemented.



98 N. Ando, T. Suehiro, and T. Kotoku

References

1. Japan Robot Association, Summary Report on Technology Strategy for Creating a
Robot Society in the 21st Century (2001),
http://www.jara.jp/e/dl/report0105.pdf

2. Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T., Yoon, W.-K.: RT-Middleware:
Distributed Component Middleware for RT (Robot Technology). In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2005), pp. 3555–
3560 (2005)

3. Gerkey, B.P., Vaughan, R.T., Stoy, K., Howard, A., Sukhatme, G.S., Mataric, M.J.:
Most Valuable Player: A Robot Device Server for Distributed Control. In: Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2001), pp. 1226–1231 (November 2001)

4. Makarenko, A., Brooks, A., Kaupp, T.: Orca: Components for Robotics. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2006), Workshop on Robotic Standardization (2006)

5. Volpe, R., Nesnas, I.A.D., Estlin, T., Mutz, D., Petras, R., Das, H.: The CLARAty
Architecture for Robotic Autonomy. In: Proceedings of the 2001 IEEE Aerospace
Conference, Big Sky Montana, March 10-17 (2001)

6. Object Management Group, Robotic Technology Component Specification Version
1.0, formal/2008-04-04 (2008)

7. OpenRTM-aist official web site, http://www.openrtm.org
8. Sasaki, T., Hashimoto, H.: Hierarchical Framework for Implementation of Intelli-

gent Space. In: Proceedings of the 33rd Annual Conference of the IEEE Industrial
Electronics Society (IECON 2007), vol. 11, pp. 28–33 (2007)

http://www.jara.jp/e/dl/report0105.pdf
http://www.openrtm.org


A Software System for Robotic Learning by
Experimentation

Iman Awaad1, Ronny Hartanto1, Beatriz León2, and Paul Plöger1

1 Bonn-Rhein-Sieg University of Applied Science
Grantham-Allee 20, 53757 Sankt Augustin, Germany

{iman.awaad,ronny.hartanto,paul.ploeger}@fh-bonn-rhein-sieg.de
2 Universitat Jaume I, Castellon de la Plana, Spain
beatriz.leon@smail.inf.fh-bonn-rhein-sieg.de

Abstract. The goal of this work is to develop an integration framework
for a robotic software system which enables robotic learning by experi-
mentation within a distributed and heterogeneous setting. To meet this
challenge, the authors specified, defined, developed, implemented and
tested a component-based architecture called XPERSIF. The architec-
ture comprises loosely-coupled, autonomous components that offer ser-
vices through their well-defined interfaces and form a service-oriented
architecture. The Ice middleware is used in the communication layer.
Additionally, the successful integration of the XPERSim simulator into
the system has enabled simultaneous quasi-realtime observation of the
simulation by numerous, distributed users.

1 Introduction

Software solutions have developed from a simple algorithm to programs that
might contain more than one algorithm, to groups of programs forming an ap-
plication. Nowadays, these solutions might encompass numerous applications
running on a number of machines. More often, these applications are developed
independently and must be integrated into a single architecture. Along with
these developments, the complexity in the task of designing and abstracting (or
architecting) these architectures has also grown. Principles that guide the struc-
turing of such distributed applications are necessary, as is the use of technology
which facilitates their development.

The test bed for the software system presented in this work is the XPERO
project, the goal of which is robot learning by experimentation. The task at
hand is the integration of required applications, such as planning of experiments,
perception of parametrized features, robot motion control and knowledge-based
learning, into a coherent cognitive architecture. This allows a mobile robot to
use the methods involved in experimentation in order to learn about its environ-
ment. The software applications are distributed due to both the processing power
needed and the multidisciplinary cooperation inherent in robotics research.

The results of this work demonstrate that the framework is robust and flex-
ible, and can be successfully scaled to facilitate the complete integration of the

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 99–110, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



100 I. Awaad et al.

necessary applications, thus enabling robot learning by experimentation. The
cognitive architecture is itself beyond the scope of this paper. The design sup-
ports composability, thus allowing components to be grouped together in order
to provide an aggregate service. Distributed simulation enables quasi real-time
tele-observation of the simulated experiment by users and applications.

The following section will discuss and compare related work. Next, the nec-
essary background information on the chosen approach is provided in the form
of an overview of service-oriented architecture (SOA) [1] and component based
software engineering (CBSE). The XPERSIF [2] system architecture and the
component model which forms the basis for all components within the loop is
then presented. An overview of the resulting architecture follows. As simulation
was used from the start to speed up the pace of research [3] the solution used to
distribute the simulation to numerous clients simultaneously is then presented.
The results are presented in section 6 followed by a discussion of the work.

2 Related Work

In this section, we present an overview of robotic software systems (RSS) and
relate them to this work.

As laid out in [4], RSS tend to fall within one of three categories, driver and
algorithm implementations, communication middleware, and robotic software
frameworks. Often, the borders between these categories are blurred. Compar-
isons between RSS within different categories is misleading as each is motivated
differently and serves a different function – i.e. they are simply unlike each other
except in their shared goal of increasing reusability in robotics. An attempt is
made here to present an example RSS from each of the three categories above,
and relate them to this work.

The Player project [5] is an excellent example of the first type of RSS described
above (driver and algorithm implementations). It includes a robot device inter-
face which serves as a hardware abstraction layer (HAL) for robotic devices, as
well as the robot simulators Stage and Gazebo. They are all open source and
free. Player allows the same interface to be used to control the robot by provid-
ing ‘drivers’ which translate the abstract commands available in the interface
into robot-specific commands.

Middleware for Robotics (Miro) [6] is a distributed object-oriented framework
for mobile robot control, based on CORBA. The overhead in terms of memory
and processing power which results from the use of CORBA is a disadvantage of
this solution. In addition, the complexity involved in understanding and learning
to use it is also a hurdle. In comparison, the use of the much simpler and more
efficient Ice middleware [7] by XPERSIF precludes such problems. Miro is an
example of the second type of RSS.

Orca [8] is very much a robotic software framework. It is an open-source
framework for developing component-based robotic systems. It uses a CBSE
approach which allows building-blocks (components) to be developed and used
together to create a more complex robotic system. The main motivation is the



A Software System for Robotic Learning by Experimentation 101

advancement of robotics research through the reuse of such building blocks.
This is done by providing commonly-used interfaces, libraries and a repository
of existing components. Orca’s successor, Orca2, uses the Ice middleware.

While the use of the Player project would address the issue of robot control
and perhaps simulation, it could not be used for the integration of a complete
robotic system (such as the cognitive architecture presented here). The same
can be said of Miro. Of the three RSS presented above, Orca is most similar
to XPERSIF in that it is also a thin framework which utilizes the Ice middle-
ware, provides a simple component model and uses simple and efficient com-
munications patterns. An added advantage of the XPERSIF framework is its
service-oriented nature. Despite being a mature project, Orca’s repository does
not provide interfaces, components or libraries which offer the more advanced
functionalities relating to cognitive architectures. Section 6 presents the results
of the XPERSIF framework and architecture which highlight the advantages of
its design.

3 Approach

A CBSE approach has been used to encapsulate the functionalities of the robotic
software and hardware systems into components. These components have been
loosely coupled to form a SOA.

“Service-Orientation” is a design paradigm for architecting a distributed ar-
chitecture which centers around loosely-coupled autonomous components and
groups of components providing services in order to carry out a given task. The
principles of this paradigm allow the separation of the business and application
logic domains of an enterprise. They guide their structuring into the layers asso-
ciated with a SOA model. Additionally, they provide tennets for the granularity
and other characteristics towards which individual services should strive. SOAs
are basically a collection of services. A service is well-defined and self-contained,
and does not depend on the context or state of other services [1]. These ser-
vices can be registered with a central registry which allows service requesters to
discover them. This is the essence – the abstract idea of a SOA.

How a SOA is implemented can vary. An implementation approach based on
that of traditional distributed architectures, or alternatively one utilizing “Web
Services” (WS) which takes advantage of the Internet and its proprietary-free
communications network may be adopted. Such a SOA might use document-
style messages which are encoded in protocols such as the Simple Object Access
Protocol (SOAP) to transport, process and route the payload which itself is
represented in the Xtensible Markup Language (XML).

Components can be placed on various computers –dedicated application servers
– to form a distributed architecture. Traditionally, Remote Procedure Calls
(RPCs) are used for communicationbetween componentswithin such a distributed
architecture. This is a point of difference between SOAs based on these distributed
architectures and those based on WS, as the communication between services in
the latter case is accomplished through document-style messages using protocols



102 I. Awaad et al.

such as SOAP, which are as self-sufficient as possible (containing policy rules,
meta-information and processing instructions for example). This tends to result
in larger messages that are sent and received less frequently in comparison to RPC
communication as used in traditional distributed architectures.

In this work, the traditional distributed architecture is used in the implemen-
tation of a SOA. Additionally, no workflow and orchestration (in the strict SOA
sense) are used. These are not necessary as the architecture presented here has
no need for service discoverability and the use of services within the architecture
is static rather than dynamic. The composability of SOA is achieved through the
use of the CBSE approach. CBSE adopts the doctrine of ‘divide and conquer’
by breaking down a system into functional or logical components. These compo-
nents (and the services they provide) are accessed through their interfaces. The
component model used for this work is defined in the following section.

4 Architecture

Components within the XPERSIF architecture are classified into one of three ba-
sic groups of components, namely basic components, organizational components
responsible for managing a hierarchy of components, and aggregate components
which are organizational components which appear as a single component but
are composed of individual components which cooperate to provide the services
of the aggregate component by using the facade software pattern.

A component’s structure can be summarized by stating that it offers services
as commands and operations (as defined below) and notifies its users of the final
state of the service (Fig. 1). In order to provide this functionality several abstract
interfaces are specified. Namely, the Operation interface (which provides func-
tionality for component administration), the Subject interface (which provides a
means to subscribe to notifications) and the Observer interface (which provides a
means to receive notifications). The component-specific functionality is specified
within the Component interface. As none of the components within the XPERO
system are hard real-time components, this component model meets the soft
real-time requirements in the simplest way possible. This is not to say that soft
real-time systems are sufficient for robotics in general. Certainly in legged robots
and where coordination between actuators are involved, a hard real-time system
is essential. These three interfaces are thus sufficient for the requirements of the
project.

Operations are used for services which complete q uickly, commands for those
that need more time, and notifications serve to enable a call to a command to
quickly return (thus enabling a non-blocking call) and to provide monitoring
and error handling mechanisms. To prevent components from blocking, while
at the same time allowing for tasks which may have varying duration, a dif-
ferentiation is made between commands and operations. Both commands and
operations return immediately, however, commands will start an asynchronous
process which completes when the component notifies the original caller of the
command’s completion.



A Software System for Robotic Learning by Experimentation 103

<<component>>

ExampleComponent1

<<component>>

ExampleComponent2

notification

command

operation

Fig. 1. The XPERSIF component model

Commands are used for tasks which may take time to complete, such as
moving to a position for example or gripping an object. They are implemented
as non-blocking RPCs. From a planning perspective, commands could be seen
as planning operators and as such should have preconditions and effects so that
a planner can make use of this information. These preconditions and effects
may be seen as a contract. Operations, on the other hand, do not start an
asynchronous process. Tasks such as getting the readings from the IR sensors or
setting the maximum velocity are implemented as operations, as they take very
little time to execute and pose no risk of blocking the component when they are
called. This distinction has many effects on the architecture. It is useful to specify
preconditions and effects for operations as well. For example, an operation which
should deliver the shape of an object might specify as a precondition that the
object is in view at a specified distance from the camera. The definition of such
preconditions for operations would then form a contract (as with commands).

4.1 The XPERSIF Components

A component diagram depicting the data flow between the various components
of the loop is shown in Fig. 2. The components here have been grouped according
to their functionality. This diagram does not elaborate on the implementation of
each of these components – for example, it does not mention which are applica-
tions and which are components that are grouped to form an application. They
simply show the components of the loop and the data flowing between them.
The LoopModel component which is the organizational center of the loop is
seen at the center of Fig. 2. It serves as an entry point to the loop for a graph-
ical user interface (GUI) (or a console client as in the current implementation)
which uses it to configure the loop. It is responsible for parametrizing, starting,
monitoring and exiting the necessary components within the loop. For the sake
of simplicity, the flow of the component status information from each component
to the LoopModel is not depicted.

The DesignOfExperiments component is responsible for designing effective
experiments when the robot is in the experimentation state. The GoalDesign
module is responsible for the robot’s actions when it is not in the experimentation
state. Once a goal state for the robot has been formulated, the planner should



104 I. Awaad et al.

Fig. 2. A component diagram showing the data flow between XPERSIF components

produce a plan to achieve this goal, and the Execution component should then
execute this plan.

The robotic embodiment is itself represented by a group of components. As
the embodiments are mobile manipulators, the components include a Reloca-
tion and a Manipulation component. In addition, a Perception component
provides access to the embodiment’s sensors. These components receive com-
mands from the execution component and return monitoring information to it.
A central point to query the embodiment’s state is the RobotModel compo-
nent. It is part of the organizational layer as it is responsible for starting those
components which make up the robotic embodiment. These components make
API calls to either the physical embodiment or to the simulated embodiment
within the XPERSim simulator, thus, it may be seen as a form of tool-driven
validation.

An overhead camera is often used within the cognitive loop both by the hu-
man researcher to tele-observe the experiment, and by the robot itself to provide
ground truth. In the latter case, the view from the overhead camera is provided
to the robot as a service (by the Observation component). Both this compo-
nent and the Perception component are displayed as aggregate components in
Fig. 2 as they use their own instances of the RobotFeatureExtraction



A Software System for Robotic Learning by Experimentation 105

meta-component. They are responsible for initializing the instances of this com-
ponent and are the sole users of the interfaces.

The FeatureExtraction component takes as input the raw sensor data from
the embodiment and theoverheadcamera,andextractsmeaningful features (byde-
fault objects and their poses). Should the FeatureSelection component specify
additional features to be extracted, this maybe carried out by either theFeature-
Extraction component itself or the Vision component. The FeatureExtrac-
tion component generates a feature vector as the output of this process.

Components such as those of the Motivation aggregate component and the
MachineLearning component receive these feature vectors and use them to
generate their own outputs (curiosity and surprise values, a prediction, a notion,
etc). For the sake of simplicity, the diagram in Fig. 2 shows only the data flowing
into the knowledge base, although it serves as a central point for all components
to query for data at anytime.

5 Distributing the Simulation

The integration of the XPERSim simulator [9] provided not only the means to
conduct research but a means to validate the software system itself. This sec-
tion details the efforts made to distribute the simulation for tele-observation by
researchers and for processing by individual components. Although the imple-
mentation is specific to the XPERSim simulator, the same approach can concep-
tually be used for other simulators. This integration of XPERSim into XPERSIF
allows the simulation to be run in a distributed setting.

XPERSim is a 3D simulator based on open source components, built by the
authors, that quickly and easily constructs an accurate and photo-realistic simu-
lation for robots of arbitrary morphology and of the environments within which
they function. XPERSim achieves such high quality visualization by using the
Object-Oriented Graphics Rendering Engine 3D (Ogre) engine to render the
simulation whose dynamics are calculated by Open Dynamics Engine (ODE).
Simultaneous multiple camera simulation of the rendered scene is possible at
high frame rates. A library of sensors and actuators commonly-used in robotics
is available.

The solution presented here uses a proven methodology (implemented in
multi-player games for over a decade) which involves moving the rendering of
images from the server-side to the client-side by sending out a subset of the scene
information to ensure that all clients are operating synchronously [10]. This dras-
tically reduces the amount of data being transmitted and is possible due to the
scene-oriented nature of the XPERSim simulation. As mentioned previously, the
Ogre 3D rendering engine uses scene-graphs to represent hierarchies, which sim-
plifies the processing of objects or groups of objects. A scene-graph consists of
nodes (with parent nodes and child nodes). If a parent node is translated or
rotated, this transformation is applied to the child scene nodes as well.

The latency resulting from the distributed nature of the application is ame-
liorated by sending the node information from the simulator while the client is



106 I. Awaad et al.

rendering the previous one – i.e. the server does not wait for the client to re-
quest the image but sends it continuously once it has subscribed. The method
described above to distribute a simulation to multiple clients is implemented
here by decoupling the physics and graphics engines from XPERSim to create
an XPERSim Server (calculating dynamics) and a TeleSimView client (rendering
the nodes at their new positions). The XPERSim Server sends out the positions
and orientations of all scene-nodes to the clients that simply transform the spec-
ified nodes to the specified positions and orientations and in so doing produce
the same scene in an efficient and real time manner.

In an effort to further reduce network latency, a one-way invocation is used to
send the new frame. This can in fact be quite expensive when many such small
messages need to be sent. This is because the run time taps into the OS kernel
for each message and because each of these messages is sent out with its own
message header [11]. To ameliorate this problem, batched one-way invocations
are used. This allows the Ice run time to buffer these small messages until the
XPERSim Server explicitly flushes them.

6 Results and Discussion

The XPERO project has provided XPERSIF with an invaluable testing ground.
The success of the framework lies in whether all the requirements are met effi-
ciently. This has been most clearly demonstrated in the efficient communication
of the outputs from the various components throughout the loop. The most de-
manding of these outputs is the distribution of the simulated scene in a quasi
real-time manner.

The evaluation of the software integration framework is first measured here
qualitatively against various criteria such as flexibility, reusability, scalability,
ease of use, level of documentation, and development time. After this evalu-
ation, empirical results which highlight the success of the distributed simula-
tion solution as tested during the running of the various other components are
presented.

Flexibility of the framework was the core criterion in the development process.
It is manifested not only by the ease of changing implementations independently
of the abstract interfaces (e.g. using different planning algorithms beneath the
same interface) but also by the ease with which components use each other’s
services. Flexibility was enhanced by the use of the organizational components
which centralize the point at which changes might need to be made. Even a
change of interfaces would be simple enough to propagate. The flexibility was
further enhanced through the adherence to the SOA principle of service-stateless.
The services offered through the component interfaces are at a level of granularity
which enables their use under different control flow scenarios which have been
specified within the project.

Reusability has been achieved by allowing various existing implementations
of an application to be reused beneath the interfaces. Numerous instances of
components (such as Vision) also contributed to the reusability of a component.



A Software System for Robotic Learning by Experimentation 107

Scalability has been ensured through the use of the component-based approach
and through the consistent use of simple and efficient communication patterns.

Ease of development was facilitated by the use of a single basic component
model (augmented as need be for organizational components). The simplicity in
design of this basic component model, which is nonetheless robust and efficient in
propagating information through the various layers, is an achievement in itself.
It allowed the system to be easily debugged and facilitated error handling which
results in a robust system. The implemented base applications also contributed to
the ease of integration of components and applications. This ease of development
also contributed to the extensibility of the architecture. The framework was
designed with future needs in mind (e.g. a workbench for robot learning by
experimentation, the use of stereo vision, of multiple robots, etc). This includes
the facilitation of implementing a change in the experimentation process. The
use of the GoalDesign and DesignOfExperiments modules to orchestrate
the loop allows such changes to be confined to these components. The interfaces
of the remaining components are abstract enough to not need amendments.

The level of documentation is accurate and consistent at a variety of levels
including the source code, installation and user guides for the various versions
which have so far been released to the project partners. This holds for both the
XPERSim and the XPERSIF projects. The Ice middleware too, has a high level
of documentation which is both extensive and easy to reference.

Sliding autonomy [12] is, in the case of this work, a valuable criterion, as the
evaluation of the functional performance of the architecture must be carried out
from the viewpoint of both the researcher and the robot (the two XPERSIF
users), and often must be carried out from both points of view simultaneously.
The ability to use XPERSIF under varying levels of autonomy is a necessity.
The use of the LoopModel component to parametrize the experiment and the
enabling of placeholders for the application (e.g. allowing a pre-generated plan
to be used through the interface) provided this varying degree of autonomy.

With the exception of XPERSim, the framework was evaluated using place-
holder components that were implemented using the various component models
and performed as the components would, observing the relevant components,
publishing their own outputs and receiving notifications. These components
helped validate the XPERSIF specifics as a whole system was tested.

Distribution of the simulation through the integration of XPERSim into the
XPERSIF architecture was successfully achieved. The scalability of the imple-
mentation described above was evaluated by measuring the impact on the quality
of the simulation by varying the number of subscribers to the tele-observation
service during the execution of various other applications. The initial efforts to
distribute the simulation provided the image’s color pixel values, in the BGR
format, as a sequence of integers. In addition to the image itself, the width and
height of the image, as well as the time to which it belongs, were also sent. A
set of experimental evaluations was carried out (Fig. 3 details the experimental
setup) to measure the time in seconds which is needed to receive a new image
of size 416 x 600 pixels. For this set of evaluations, the image was sent from



108 I. Awaad et al.

* Robot Control
* Overhead Camera Control
* Surprise
* XPERSimServer

Node 1
Pentium 4, 2GB, 
ATI Radeon X800

* Vison
* Robot Feature Extraction
* TeleSimView

Node 2
Pentium 4, 2GB, 
ATI Radeon X600

* Client starting loop
* Loop Model
* Execution
* TeleSimView

Node 3
AMD Turion, 1GB, 
ATI Radeon 200M

* TeleSimView

Node 4
Pentium 3, 0.5GB 

Intel Extreme

Network

18-24 Mbps 18-24 Mbps

100 Mbps18-24 Mbps

Fig. 3. The experimental setup used to obtain the empirical results for distributed
simulation below. Depicted here is the specification for the four nodes along with the
components which ran on them during the measurement process. Nodes 2 and 3 each
ran one TelesimView client while Node 4 ran additional clients as needed.

the machine running at Node 1 to the machine running at Node 3. The round
trip time needed to deliver the image was measured at 9.5346 seconds (i.e. at a
frame rate of <1 fps). Using the approach described above, the time measured
between receiving two subsequent images was 0.0046 seconds (i.e. 217 fps).

Table 1 shows the measurements made when one, three, five and then ten
clients are subscribed to the service. All experiments were repeated three times,
measuring the time it took for 60 frames to be delivered to the TeleSimView
client. It is worth noting that the size of the image to be rendered is inconse-
quential. As nodes are being sent and not an image, it is the number of nodes
within a scene that affects the time and not the image size. For the test case
above, 15 nodes were transmitted (representing the Khepera robot and the four
cubes). Using this information, the scene may be rendered from the viewpoint
of any number of cameras.

A number of issues are currently being addressed. In the current implemen-
tation of the XPERSim simulator, no distinction is being made between parent

Table 1. The time in seconds between receiving two subsequent images using the
batched one-way invocation method

Trial 1 client 3 clients 5 clients 10 clients
1 0.0039 s 0.0039 s 0.0219 s 0.0227 s
2 0.0023 s 0.0172 s 0.0128 s 0.0352 s
3 0.0075 s 0.0036 s 0.0120 s 0.0448 s

Mean 0.0046 s 0.0082 s 0.0156 s 0.0342 s



A Software System for Robotic Learning by Experimentation 109

nodes and child nodes. It is recommended however that this distinction be made
as it would reduce the number of nodes whose data needs to be transmitted
(transmit parent nodes only and nodes which can be moved separately from the
hierarchy – a gripper for example which, despite being a member of the robot
node, may be moved on its own). In the setup above, for example, the number of
nodes being transmitted would be reduced from 15 to just eight. Additionally,
the TeleSimView client is being upgraded to use the latest version of Ogre.

7 Discussion

The resulting software framework easily and efficiently allows the integration
of components (both software and hardware) with heterogeneous platforms and
languages. The use of CBSE allows the software architecture to maximize con-
currency in the application development process of the various research groups.
The adoption of the SOA approach in the design of the framework has pro-
duced a system which is highly flexible and maintainable. The framework is
data-centric with communication of the data playing a significant role in the de-
sign. The simplicity of the communication patterns contributes to the efficiency
and flexibility of the framework. The data itself which is exchanged between
components is abstracted in such a way as to maintain interfaces which are as
simple as possible. Additionally, the solution for the tele-observation of experi-
ments is a significant contribution to the framework as a whole. The architecture
thus developed has successfully enabled effective, simultaneous, quasi-realtime
observation of the simulation by numerous, distributed users.

The component model and communication patterns on which the framework
is built are basic, lending themselves to providing the base of frameworks for the
design of heterogenous robot systems. The differentiation made between com-
mands and operations and the associated data structures contribute to the value
of the framework. Although the Ice middleware has been used successfully in the
implementation presented here, the component model itself remains independent
of it and this in turn enables users to choose any other middleware. The methods
used to distribute the simulation, although implemented here with XPERSim,
may be adopted by other simulators.

The implementation of additional mechanisms to support real-time are a top
priority in the further development of the framework, for example, implementing
methods to ensure Quality of Service (QoS). Extending the framework to allow
for multiple agents simultaneously is an on-going endeavor. The use of WS SOA
approaches to enable a more loosely-coupled system is under investigation.

Acknowledgements

The work described in this article has been partially funded by the European
Commission’s Sixth Framework Programme under contract no. 029427 as part
of the Specific Targeted Research Project XPERO (“Robotic Learning by Ex-
perimentation”). The authors express their gratitude to Karl-Heinz Sylla for his



110 I. Awaad et al.

guidance and to the researchers of the XPERO project for their feedback and
support. The authors gratefully acknowledge the reviewers’ comments.

References

1. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River (2005)

2. Awaad, I., Leon, B.: Xpersif: A component-based software integration framework
for robotic learning by experimentation. Technical report, University of Applied
Sciences Bonn-Rhein-Sieg (2008)

3. Bratko, I.: Initial experiments in robot discovery in xpero. In: International Confer-
ence on Robotics and Automation Workshop on Concept Learning for Embodied
Agents (2007)

4. Makarenko, A., Brooks, A., Kaupp, T.: On the benefits of making robotic software
frameworks thin. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems Workshop (2007)

5. Gerkey, B., Vaughn, R.T., Howard, A.: The player/stage project: Tools for multi-
robot and distributed sensor systems. In: Proceedings of International Conference
on Automation and Robotics, pp. 317–323 (2003)

6. The Miro Group, Miro Manual Version 0.9.4 (2006)
7. Henning, M.: Massively multiplayer middleware. Association for Computing Ma-

chinery Queue Magazine 1(10) (2004)
8. Makarenko, A.: The ORCA manual 2.7.0 (2007)
9. Awaad, I., Leon, B.: Xpersim: A simulator for robot learning by experimentation.

In: Proceedings of this conference (2008)
10. Funkhouser, T.A.: Ring: A client-server system for multiuser virtual environments.

In: Proceedings of the SIGGRAPH Symposium on Interactive 3D Graphics, Asso-
ciation for Computing Machinery SIGGRAPH, pp. 85–92 (1995)

11. Henning, M., Spruiell, M.: Distributed Programming with Ice. ZeroC Inc. Revision
3.2 edn. (2007)

12. Brookshire, J.D.: Enhancing multi-robot coordinated teams with sliding autonomy.
Master’s thesis, Carnegie Mellon University (2004)



A Mobile Robot Control Framework: From
Simulation to Reality

Stephen Balakirsky, Frederick M. Proctor, Christopher J. Scrapper,
and Thomas R. Kramer

National Institute of Standards and Technology Gaithersburg, MD USA 20899

Abstract. In order to expedite the research and development of robotic
systems and foster development of novel robot configurations, it is es-
sential to develop tools and standards that allow researchers to rapidly
develop, communicate, and compare experimental results. This paper de-
scribes the Mobility Open Architecture Simulation and Tools Framework
(MOAST). The MOAST framework is designed to aid in the develop-
ment, testing, and analysis of robotic software by providing developers
with a wide range of open source robotic algorithms and interfaces. The
framework provides a physics-based virtual development environment for
initial testing and allows for the seamless transition of algorithms to real
hardware. This paper details the design approach, software architecture
and module-to-module interfaces.

1 Introduction and Related Work

The usefulness of simulation for developing control systems is well established.
The role of simulation is to provide convincing sensor measurements in response
to a controller’s actuator outputs in an environment observable to developers.
Ideally the simulation should be accurate enough so that performance parameters
tuned in simulation work as well in the real world. In practice, attaining this
level of simulation is often more costly than real-world testing, and simulators
that respond plausibly if not accurately are acceptable. Plausible simulation
then complements real-world testing to minimize the time and effort needed to
build controllers that work well. Several such simulation systems exist; several
of which are open source, including the Unified System for Automation and
Robot Simulation (USARSim)[1]1 and the Stage and Gazebo components of
Player/Stage [2].

While the typical simulation system allows one to directly connect and exper-
iment with servo-level controllers, they in general lack any form of intelligence

1 No approval or endorsement of any commercial product by the National Institute of
Standards and Technology is intended or implied. Certain commercial equipment,
instruments, or materials are identified in this report in order to facilitate under-
standing. Such identification does not imply recommendation or endorsement by the
National Institute of Standards and Technology, nor does it imply that the materials
or equipment identified are necessarily the best available for the purpose.

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 111–122, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



112 S. Balakirsky et al.

or ability to interpret sensor readings and issue meaningful commands. For this
reason, it is necessary to connect the simulation engine to a control framework.
Several such systems exist in the literature and on the web. Perhaps the most
popular of which is the Player portion of Player/Stage.

Player/Stage combines a robot server interface, called Player, with a simu-
lation system, called Stage, so that Player-enabled robots can be easily inter-
changed with each other and their simulated counterparts. The Player interface
is installed on robotic vehicles, providing an interface to the robot’s sensors and
actuators over a TCP/IP network. Stage simulates a population of robotic ve-
hicles and sensors in a 2-D environment. Gazebo is a 3-D counterpart provided
for outdoor simulation. While Player started as a robot interface with drivers
that directly control hardware, it has grown to include several abstract drivers
since then. These abstract drivers use other drivers, instead of hardware, as the
sources for data and the sinks for commands. Several well-known algorithms are
now included with the system thus providing services such as way-point naviga-
tion and obstacle avoidance.

Several component-based architectures have been developed. These include
the middleware project RT-Middleware [3] and the component architecture
OCRA [4]. These architectures provide a component specification that prescribes
a component’s interfaces, activity, and input/output ports. They do not provide
a functional architecture. In the case of RT-Middleware, a graphical tool may
be used to interconnect various components and create a fully functional robotic
system.

USARSim provides robot and sensor models and a standardized actuator/raw-
sensor level interface for communicating with a physics-based simulation engine.
Many of the robots and sensors have been validated against their real counter-
parts. In addition, USARSim supports a Player driver that allows algorithms
coded to its interface specification to utilize Player to communicate with real
hardware.

A new entry to the robot simulation/control arena is Microsoft Robotics De-
veloper Studio (MSRDS) [5]. MSRDS includes support for simulation and im-
plements services to control robotic platforms. While MSRDS is not as mature
as Player/Stage or USARSim, it promises to build a library of services that will
be available to robot developers.

1.1 Adding an Architecture: MOAST

Player, USARSim, and MSRDS focus on the interfaces to mobile robots that
allow developers to build their own controllers, with portability across robots
that support Player or MSRDS made easier. Rt-Middleware and OCRA provide
a component level specification. None of the systems defines an overall architec-
ture or high-level interface specification that guides the development of robot
controllers. We have found that an architecture is essential to the efficient devel-
opment of intelligent systems. An architecture assigns roles and responsibilities
among controllers and dictates what services are necessary. It defines module
timing, data and control interfaces, and planning extents. An architecture also



A Mobile Robot Control Framework: From Simulation to Reality 113

provides the framework in which the rest of the intelligent system resides and
dictates the rules that the modules must follow. For these reasons, we built
the Mobility Open Architecture Simulation and Tools Framework (MOAST).
MOAST begins with a well defined architecture, and adds simulations, services,
and controllers. The entire MOAST framework is intended to provide tools to
lead a researcher through all of the phases of development and testing of an
autonomous agent system.

MOAST is made up of the following components:

1. A reference model architecture that dictates how control responsibilities are
divided between modules.

2. Communication interface specifications that dictate how and what modules
will communicate.

3. Sample control modules for the control of a sample simulated robotic plat-
form. These modules include sensor processing, world modeling, and be-
havior generation for 4 levels of the hierarchical architecture and provide a
complete control system.

4. Validated sensors and robot models in the simulation.
5. Tools to aid in development and debug of the control system.

The remainder of this paper will address the components of MOAST.
Section 2 describes the reference model architecture that is utilized by MOAST.
Section 3 describes the various services and capabilities that are provided by the
framework, Section 4 describes how MOAST transitions from simulation to real
hardware. Finally, Section 5 describes future work and concludes the paper.

2 Reference Model Architecture

The capabilities of the MOAST framework are encapsulated in components that
are designed based on the 4D/RCS Reference Model Architecture [6][7]. The
RCS reference model architecture is a hierarchical, distributed, real-time control
system architecture that decomposes a robotic system into manageable pieces
while providing clear interfaces and roles for a variety of functional elements.

Figure 1 depicts the general structure of each echelon (level) of the 4D/RCS
hierarchy. Each echelon in 4D/RCS contains a systematic regularity and is com-
posed of control nodes that perform the same general type of functions: sensory
processing (SP), world modeling (WM), value judgment (VJ), and behavior gen-
eration (BG). Sensory processing is responsible for populating the world model
with relevant facts. These facts are based on both raw sensor data and the results
of previous SP (in the form of partial results or predictions of future results).
WM must store this information, information about the system self, and general
world knowledge and rules. Furthermore, it must provide a means of interpreting
and accessing this data. BG computes possible courses of action to take based
on the knowledge in the WM, the system’s goals, and the results of plan simu-
lations. VJ aids in the BG process by providing a cost/benefit ratio for possible
actions and world states.



114 S. Balakirsky et al.

Fig. 1. Generic 4D/RCS Control Node

The principal difference between control nodes at the same echelon is in the set
of resources managed, while the principal difference between nodes at different
echelons is in the knowledge requirements and the fidelity of the planning space.

This regularity in the structure enables flexibility in the system architecture
that allows scaling of the system to any arbitrary size or level of complexity [8].

2.1 Generic Module

While 4D/RCS provides a reference model for the architecture, MOAST is an
implementation of that architecture. Therefore, specific responsibilities, knowl-
edge requirements, and interfaces have been designed for each control module.
Each control module is based upon a generic core controller that is shown in
Figure 2. The MOAST hierarchical decomposition in terms of its control mod-
ules is depicted in Figure 3.

The control module core has the following flow:

1. Initialize: The initialization opens any communication buffers, places the
system in a safe known state, and initializes any control parameters.

2. Read Command: Command information is received, and the system is
prepared to execute the command. When a new command is received, the
old command is immediately replaced by this command.

3. Read Config: Configuration information is received, and the system is pre-
pared to change its settings. A separate configuration channel is provided to
allow for control parameters to be changed without interrupting the current
controller. For example, a user may want to change a system’s cycle time
without interrupting a complex control function.

4. Handle Command State Tables: All of the modules run on a fixed cycle
time. Therefore, command functions must either guarantee that they fin-
ish in under the cycle time, or provide for being re-entrant. Although this
text refers to the command execution as being finite state machine (FSM)
based, search based planning systems have also been implemented under this
framework.

5. Handle Config State Tables: Requests to change configuration settings
are carried out similarly to handling command state tables.



A Mobile Robot Control Framework: From Simulation to Reality 115

Fig. 2. Generic core of control module

6. Write Status and Settings: The current module status and the configu-
ration’s settings are sent out over communication buffers.

2.2 RCS Library

Support for developing software conforming to the 4D/RCS methodology is pro-
vided by the RCS Library [9]. The RCS library includes portable utilities for
creating and synchronizing real-time tasks following the 4D/RCS architecture.
Code generation and diagnostics tools simplify much of the application setup

Fig. 3. Modular decomposition of MOAST framework that provides modularity in
broad task scope and time



116 S. Balakirsky et al.

and debugging. Communication between RCS control modules is provided by
the Neutral Message Language (NML), a software library for communication
ported to a variety of platforms including Linux, Solaris, VxWorks, LynxOS,
QNX, Windows and MacOS. Applications using NML define a message vocab-
ulary as C++ classes and call C++ methods to open buffers, read and write
messages. Java bindings are also available. NML applications running on one
platform can communicate with ones running on any other platform. The lo-
cation of buffers and processes that connect to them is selected at run time,
and a running application can be extended to communicate with new processes
dynamically. NML source code is freely available at [10] and documented in [9].

3 MOAST Provided Functions

The development and maintenance of an advanced mobile robot require expertise
ranging from sensor processing, path planning, and communications protocols, to
basic auto repair. While many of the algorithms for accomplishing these functions
are well known, freely available code that implements these functions tends to
be incompatible with other code or robotic platforms. This necessitates interface
and functional tweaks before the code modules become useful.

Part of the original design philosophy of MOAST was to provide “out of the
box” functionality that would reduce the breadth of expertise required to con-
duct research with mobile robots. The developers of MOAST have taken many
well known algorithms and implemented them within the 4D/RCS framework.
The result is a fully functional framework that allows researchers and students
to immediately begin to experiment with functional robots in both simulated
and real environments. Researchers are then free to examine the code modules
that address functions in their areas of expertise. The hope is that as improve-
ments are made, the researchers will contribute the improved modules back to
the community. The basic functionality of the mobile robot may be broken down
in the the areas of sensor processing and mobility.

3.1 Sensor Processing

The majority of the sensor processing work performed in MOAST is in the de-
tection of obstacles. The decomposition of this responsibility by echelon in the
MOAST framework is shown in Table 1. For the laser scanner, the Primitive
(Prim) Echelon provides a series of data tuples as shown in Figure 4. The data
is available over the communications interface and includes the location of the
device when the beam was fired and the beam hit point in vehicle relative coor-
dinates. Under the current system, the laser is constrained to be fixed mounted
and facing straight ahead of the vehicle in a level orientation. While this presents
an instantaneous snapshot of the environment, the data tends to be noisy, and
encompass a very small region.This data is further processed to produce a cel-
lular height map of the environment as shown in Figure 5. Due to the mounting
constraint on the laser, whenever the vehicle is driving on a flat level surface the



A Mobile Robot Control Framework: From Simulation to Reality 117

Table 1. Sensor processing requirements and responsibilities

Data Out Description
Primitive Echelon laser scan data Beam start and hit point
Autonomous Mobility Echelon height map Cellular map of 2.5D elevations
Autonomous Mobility Echelon obstacle probabil-
ity

Cellular map of obstacle probabili-
ties

Vehicle Echelon obstacle map Concave hull of obstacle areas from
AM

height of every cell that has been observed is either the height of the floor or the
height of the laser above the floor.

While the external representation is transmitted as a cellular height map, in-
ternally, the cell’s height, range, hits history, and obstacle probability are stored.
The model for the terrain being observed is like a 3D bar chart, where solid blocks
of various heights extend through cells in the XY plane. The height of each cell
records the estimated distance its block extends above the local XY plane. The
height is negative if the top of the block is below the XY plane. The range of
a cell records the largest distance from which a cell has been seen to contain
an obstacle. Some obstacles are seen only when they are close to the sensor. It
is desired to avoid having the system decide that an obstacle no longer exists
because it is not seen when the system is farther away than its range. It is ex-
pected that if a cell containing an obstacle is viewed from within the cell’s range,
the obstacle will be seen again, but if the cell is viewed from beyond its range,

Fig. 4. Laser range data from Prim includes the start and end of each beam



118 S. Balakirsky et al.

Fig. 5. Cellular height map generated from laser data. Yellow represents cells that have
never been seen, and cells that are observed are shown in shades of aqua based on their
height. Due to the mounting configuration of the laser, only heights of “ground,” shown
as very dark aqua (i.e. black), or heights of above the laser, shown as bright aqua, are
displayed (hard copies of this paper should be printed in color).

the obstacle might not be seen. The range is used in setting the hits history, as
described below.

The hits for a cell encodes the seven most recent viewings of the cell. A cell
is regarded has having been viewed whenever a ladar ray passes through it (the
cell is not seen) or bounces off an obstacle in it (the cell is seen).

Obstacle probability is a real number from 0.0 to 1.0. It represents the system’s
best estimate of the chances that the cell is occupied by an obstacle. A separate
map of obstacle probability is exported over a communication channel for use
by other modules.

3.2 Mobility

The mobility functions consist of a family of planning algorithms that are able to
compute obstacle free paths for Ackerman, skid-steered, and omni-drive ground
robot platforms as well as helicopter-like air platforms and sub-like underwater
vehicles. When examining the planning systems, it is useful to note the knowledge

Table 2. Mobility planning requirements and responsibilities

Plan Out Command In Knowledge In
Prim actuator/motor commands Constant curvature arcs Kinematics
AM constant curvature arcs Way-points Dynamics
Vehicle way-points Named location a priori map
Section vehicle actions Behaviors Vehicle Capabilities



A Mobile Robot Control Framework: From Simulation to Reality 119

Fig. 6. Cellular obstacle map generated from obstacle probability data. Yellow repre-
sents cells that are unknown. Green represents free-space, orange represents the edge
of obstacles, and red represents obstacles. The obstacles are grown by half the vehicle
width to allow for the planner to plan on a point-sized robot. The white path represents
the planned path for the platform and the platform’s current location is shown as the
black dot (hard copies of this paper should be printed in color).

required by each module as well as the module’s output format, i.e., the form
the plan takes. This information is represented in Table 2.

At the lowest echelon, the output of the planning system consists of actuator
and motor commands that are sent through MOAST’s generic interface known
as SIMware [11]. These commands are platform steering type dependent and
consist of such things as left and right wheel velocities for a skid-steered vehicle
or steering curvature and velocity for an Ackerman steered vehicle. This module
requires a series of obstacle free constant curvature arcs as input. In addition
to the command input, the module requires knowledge of the specific robot
kinematics. Item such as wheelbase, tire diameter, and minimum turning radius
must be provided.

An additional way-point interface exists into the planning hierarchy. This in-
terface accepts a series of way-points as its commands and computes a series of
obstacle-free constant curvature arcs as output. This module reads in the obsta-
cle probability map from the sensor processing chain and also has knowledge of
the vehicle dynamics. A graphical example of this module’s output is shown in
Figure 6.



120 S. Balakirsky et al.

Fig. 7. Vector-based a priori map used by the a priori planner. The red areas are
obstacle polygons and the white is free space. The computed path is shown in green,
and the robot location is shown with a large green circle. The small green dots represent
the planning horizon of the way-point planning system.

This planning module has two main strengths. It quickly plans realistic smooth
paths with appropriate speeds and curve radii while keeping within the allowed
deviation and avoiding obstacles. Second, it plans paths dynamically in environ-
ments with moving obstacles (such as other vehicles). Weaknesses of this planner
stem primarily from not getting enough sensory information and not attempting
to use all the information available.

If a priori data is available, then a planning module exists to take advantage
of this data. This module ingests a priori vector data and computes a visibility
graph based plan that starts at the way-point planner’s planning horizon and
terminates at a named point (for example an address). This system currently
reads .mif formatted vector data. An example of the plan output is shown in
Figure 7. The system accepts a named point as its input and outputs a list of
way-points for the platform to follow.

Finally, a planning system capable of coordinating groups of vehicles exists.
This planner accepts behavior based commands (i.e. explore, or deliver packages)
and coordinates the actions of several platforms to accomplish the tasks. The
system accepts the behavior command as its input and outputs named points
and tasks for the platforms to accomplish. The system must have knowledge of
individual platform capabilities.

4 Migration to Real Hardware

The Servo Echelon in Figure 3 is implemented outside of MOAST by real or simu-
lated vehicles. To limit the spread of vehicle-specific source code into MOAST, an
external middleware layer was built that bridges different controllers to different



A Mobile Robot Control Framework: From Simulation to Reality 121

vehicles or vehicle simulations. This Simulation Interface Middleware (SIMware)
defines a software application programming interface (API) based on the notion
of “skins” that customize an environment to particular controllers and simula-
tions or real vehicles [11]. Skins are divided into superior skins that interface
SIMware to vehicle controllers, and inferior skins that interface SIMware to sim-
ulations or real vehicles. Programmers build a SIMware middleware layer by
instantiating a particular superior skin that interfaces to a controller, instantiat-
ing a particular inferior skin that interfaces to a robot and sensor environment,
and defining configuration information specific to each skin.

Inferior skins have been created that communicate with the simulator USAR-
Sim, the Player interface library, and directly to smart motor drives. This has
allowed for the direct application of simulated code to real platforms. Since all of
the interfaces above the Servo Echelon do not change, no modifications to the al-
gorithms under test are necessary. In fact, by using a validated simulation engine
such as USARSim, the authors have been able to migrate the entire MOAST
framework from simulation to an ATRV platform without changing any lines
of code. In addition, real/virtual operation is possible where part of the system
operates in simulation while other aspects are run on real hardware. This has
been demonstrated with the use of real mobility and simulated perception. In
this case, mobility planning algorithms are able to take advantage of perceived
attributes that may not be available from the current generation of perception
algorithms.

5 Future Work and Conclusions

The MOAST framework has been used to control virtual robots in both urban
search and rescue environments and manufacturing settings, and physical robots
(automated guided vehicles) on real shop floors. By utilizing the Player inferior
skin of SimWare, identical algorithms that have been tuned in simulation are
being experimented with on real hardware in identical environments. The idea
is to validate performance in both the real and virtual worlds in order to verify
simulated models and control system utility.

In addition, new algorithms are constantly being added to the framework.
Work is progressing on Simultaneous Localization and Mapping (SLAM) as well
as the inclusion of a true 3D world model. The MOAST website highlights the
latest improvements.

References

1. USARSim, http://www.sourceforge.net/projects/usarsim
2. The Player Project, http://playerstage.sourceforge.net
3. Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T., Woo-Keun, Y.: Rt-

middleware:distributed component middleware for rt (robot technology). In: Pro-
ceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 3933–3938. IEEE, Los Alamitos (2005)

http://www.sourceforge.net/projects/usarsim
http://playerstage.sourceforge.net


122 S. Balakirsky et al.

4. Brooks, A., Kaupp, T., Makarenko, A., Williams, S., Oreback, A.: Towards
component-based robotics. In: Proceedings of the 2005 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 163–168. IEEE, Los Alamitos
(2005)

5. Microsoft Robotics Studio, http://msdn.microsoft.com/robotics
6. Albus, J.: Outline for a theory of intelligence. IEEE Transactions on Systems Man

and Cybernetics 21, 473–509 (1991)
7. Albus, J.: 4D/RCS reference model architecture for unmanned ground vehicles.

In: Proceedings IEEE International Conference on Robotics and Automation, pp.
3260–3265 (2000)

8. Balakirsky, S., Scrapper, C.: Planning for on-road driving through incrementally
created graphs. In: Proceedings IEEE Conference on Intelligent Transportation
Systems (2004)

9. Gazi, V., Moore, M.L., Passino, K.M., Shackleford, W.P., Proctor, F.M., Albus,
J.S.: The RCS Handbook: Tools for Real-Time Control Systems Software Devel-
opment. John Wiley and Sons, Chichester (2001)

10. The Real-Time Control Systems Library,
http://www.isd.mel.nist.gov/projects/rcslib

11. Scrapper, C.J., Proctor, F.M., Balakirsky, S.: A simulation interface for integrating
real-time vehicle control with game engines. In: Proceedings of the ASME Com-
puters in Engineering Conference, September 3-7 2007, Las Vegas, Nevada USA,
pp. DETC2007–34495 (2007)

http://msdn.microsoft.com/robotics
http://www.isd.mel.nist.gov/projects/rcslib


Implementing Flexible Parallelism
for Modular Self-reconfigurable Robots

Mirko Bordignon, Lars Lindegaard Mikkelsen, and Ulrik Pagh Schultz�

Maersk Institute – Modular Robotics Lab, University of Southern Denmark
Campusvej 55, DK-5230 Odense M, Denmark

mirko@mmmi.sdu.dk, llm@simac.dk, ups@mmmi.sdu.dk

http://modular.mmmi.sdu.dk/

Abstract. Modular self-reconfigurable robots are drawing increasing
interest due to their nature as a versatile, resilient and potentially cost-
effective tool. Programming modular self-reconfigurable robots is how-
ever complicated by the need for closely coordinating the actions of each
module with those of its neighbors. In this paper, we investigate the
need for a flexible set of concurrency primitives with which to express
control algorithms, while respecting the constraints posed by the physical
structure. We present two solutions for the ATRON self-reconfigurable
robot built over TinyOS and the Java Virtual Machine. Both solutions
are based on the principle of split-phase operations, and both address
the need for a structured, language-neutral way to express the desired
control flow, while retaining the flexibility needed to efficiently cope with
the constraints specific to highly physically concurrent robotic systems.

1 Introduction

Modular self-reconfigurable robots are robotic devices capable of changing their
own shape. They are usually built from multiple physically distinct modules that
can manipulate each other in order to perform shape change. Additionally, they
can fulfill a range of other more conventional tasks, like locomotion [1,2,3,4,5].
Envisioned applications for this kind of system includes space exploration, op-
erations in occluded environments and in general tasks where versatility and
resilience to unanticipated failures can represent key advantages [6].

One of the unique characteristics of this kind of system, which makes it partic-
ularly difficult to program, is the tight coupling of multiple entities within a single
physical ensemble. This coupling imposes a strict coordination among the oper-
ations of single modules, resulting in algorithms that contain detailed sequences
of control steps to be carefully translated by developers into code. We observe
that this issue is particularly acute in many self-reconfiguration sequences. While
a number of conventional programming techniques can be adopted, we in this
paper define more appropriate concurrency primitives by explicitly modeling

� This work was supported by The Danish Council for Technology and Production
and Sun Microsystems.

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 123–134, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



124 M. Bordignon, L.L. Mikkelsen, and U.P. Schultz

and exploiting specific features of these robotic systems. We show that software
written using such tailored constructs is closer to the original control algorithms
and more time efficient than the counterparts employing traditional methods.
The contribution of our work includes two implementations of programming in-
terfaces (APIs) for modular robots: one built over TinyOS [7] using nesC [8]
and targeting resource-constrained devices, like modular robots equipped with
simple microcontrollers; the other built over Java and providing a suitable al-
ternative for common computing platforms, including those hosting simulation
environments. The APIs are shown to provide an advantage for implementing
common sequences of reconfigurations for the ATRON robot, both in simulation
and on the physical system. Although our work is motivated by and targeted to
modular self-reconfigurable robots, we expect that a similar approach would be
applicable for many other types of robotic systems.

The rest of the paper is organized as follows. First, Sec. 2 describes the
ATRON hardware, and discusses issues in programming the ATRON robot by
means of a few examples. Sec. 3 presents the main contribution of this paper:
a conceptual model suitable for expressing concurrent control and two imple-
mentations of a set of concurrency primitives that enable a direct and efficient
controller implementation. Last, Sec. 4 presents related work and Sec. 5 con-
cludes and outlines directions for future work.

2 The ATRON Self-reconfigurable Robot

2.1 The ATRON Platform

The ATRON self-reconfigurable robot is a 3D lattice-type robot [2,10]. Fig. 1
(left) shows an example ATRON car robot built from 7 modules. As a concrete
example of self-reconfiguration, this car robot can change its shape to become a
snake (a long string of modules) capable of traversing obstacles; part of this self-
reconfiguration sequence is illustrated in the rest of Fig. 1 ending in an 8-shape
that is easily transformed into the snake shape. An ATRON module has one
degree of freedom, is spherical and is composed of two hemispheres which can
be rotated relatively to each other. A module may connect to neighbor modules
using its four actuated male and four passive female connectors. The connectors
are positioned at 90 degree intervals on each hemisphere. Eight infrared ports,

Fig. 1. Self-reconfiguration on the ATRON robot [9]



Implementing Flexible Parallelism for Modular Self-reconfigurable Robots 125

Fig. 2. USSR simulation of a self-reconfiguration step on the ATRON robot [9]

one below each connector, are used by the modules to communicate with neigh-
boring modules and sense distance to nearby obstacles or modules. A module
weighs 0.850kg and has a diameter of 110mm. The single rotational degree of
freedom of a module makes its ability to move very limited: in fact a module is
unable to move by itself. In the current hardware revision a module has 128KB
of flash memory for storing programs and 4KB of RAM for use during execution
of the program. Modules have until now been programmed in ANSI C using a
simple, low-level API that provides non-blocking operations for e.g. controlling
the actuators of each module.

Simulation of the ATRON robot is supported by our simulator for self-
reconfigurable robots, see Fig. 2 for an example. This simulator, named the
“Unified Simulator for Self-Reconfigurable Robots” (USSR), is designed to sup-
port a wide variety of self-reconfigurable robots [11,12], which currently includes
the ATRON, Odin, and M-TRAN systems [2,3,13]. It is based on a physics en-
gine and hence allows simulation of dynamic interaction with the environment,
such as friction and object manipulation, but is also precise enough to simu-
late self-reconfiguration. The simulator is implemented in Java but provides a
lightweight interface for controllers written in ANSI C. The control API for the
simulated ATRON basically mirrors the low-level C API, except that each mod-
ule can be configured to use blocking or non-blocking operations; as most of the
users found the blocking API easier to use, it is currently the default.

2.2 Basic Requirements in Controller Development

We are interested in providing a flexible means of expressing the actions of a
single module. General approaches to controlling the ATRON self-reconfigurable
robot include, among the others, rule-based techniques [14], metamodules [15],
and role-based control [16]. These approaches however deal with issues like task
selection, distribution of behaviors across the ensemble, and management of the
relationships among modules. We will instead focus on the basic expressive re-
quirements for a single module based on practical experience developing ATRON
controllers.

In order to reason about concrete cases, we now present two examples with dif-
ferent expressive requirements. First, we consider again the self-reconfiguration
sequence depicted in Fig. 1. As is often the case for self-reconfiguration oper-
ations, the control algorithm running on each module resembles a sequence of
steps involving connections and disconnections from other modules, rotations,



126 M. Bordignon, L.L. Mikkelsen, and U.P. Schultz

and communication. For example, the start of the self-reconfiguration sequence
causes the module acting as the “front axle” of the car (i.e., the module con-
nected to the two “front wheels”) to perform the following actions:

1. rotate 90 degrees in clockwise direction
2. wait for the right wheel to be connected to rest of the structure
3. disconnect the right wheel
4. rotate 90 degrees in clockwise direction
5. wait for the left wheel to be connected to rest of the structure
6. disconnect the left wheel

An easily recognizable feature of this kind of control algorithm is the temporal
interdependency among actions involving physical changes: the module cannot
rotate (step 4) before being disconnected from the previously attached left wheel,
otherwise it will collide with the rest of the structure; likewise it has to explicitly
wait (step 5) for a connected module to be ready to be disconnected, otherwise
it will fall due to premature disconnection. This interdependency is implicitly
stated by the algorithm’s progression through subsequent steps, each of them
fully terminating before letting the next one begin. As we elaborate in Sec. 3,
this seems to suggest a natural implementation as a program consisting of a
similar sequence of commands making use of traditional blocking semantics.

As a second example, we consider a subsequence of a controller implement-
ing a two-dimensional surface reconfiguration [9]. The steps under analysis are
depicted in Fig. 2 as a USSR simulation, and the module performing them is
the one starting in the lower portion of the surface (leftmost picture) and end-
ing in the higher one (rightmost picture). Informally speaking, once the module
has received the message triggering the self-reconfiguration behavior it needs
to disconnect from two of the modules it is attached to, then notify a neigh-
bor unit that it is ready to be moved. At this point another module will rotate
so as to move it to the destination position. Disconnecting from the two mod-
ules is ideally done in parallel, since this is more time efficient, but this is not
possible using standard blocking semantics. Conversely, the subsequent rotation
operations must not begin until both disconnections have completed.

3 Flexible Concurrency Primitives

3.1 Analysis

Control algorithms such as the described self-reconfiguration sequences typically
involve operations with inherently different runtime behaviors:

– synchronous commands, immediately completed upon return from execution,
similarly to a standard procedure call;

– asynchronous commands, started by the execution of a synchronous proce-
dure, and completed after a possibly undetermined amount of time upon
the occurrence of a specific condition (analogous e.g. to asynchronous I/O
in standard computer systems);



Implementing Flexible Parallelism for Modular Self-reconfigurable Robots 127

– asynchronous events, occurring with a timing possibly independent from the
user defined control flow (similarly e.g. to interrupt requests).

Returning to the running example outlined at the end of the last section, the 2D-
surface reconfiguration subsequence is comprised of the following steps: (1) wait
for a start message to arrive, (2) disconnect from the two modules on the left
side, and (3) send a message to notify the next module. The first step is triggered
by an asynchronous event, as a self-reconfiguration request can arrive at any
time. The second step involves issuing an asynchronous disconnection command,
which as all actuator operations starts by setting a target state and completes
when this state is reached, with a delay determined by physical load, battery
level, etc. The third step can either be performed as a synchronous command
or an asynchronous one, depending on the specific hardware used to send the
message. In the case of the half-duplex infrared channel used for neighbor-to-
neighbor communication in the ATRON it is an asynchronous operation (it starts
with a channel acquisition request and completes after a grant event). Whether
operations execute in sequence or in parallel can have a significant impact on
performance: on the ATRON robot a (dis)connection operation takes about 2.5
seconds, while a 90 degrees rotation can take between 1.5 and 4 seconds [9]. Given
the number of steps involved in a self-reconfiguration sequence (68 for the car-to-
eight sequence of Figure 1), parallelizing temporally unconstrained operations,
like the two disconnections in step no. 2, can bring significant speedups.

A conventional way to ensure that an operation will be performed after the
completion of a previous one is by means of blocking semantics, sometimes also
referred to as synchronous [17]. An execution environment embodying this se-
mantic paradigm yields control to the statement following a blocking call after
the latter is deemed to be completed, thus making the calling context appear to
block until then. This convenience usually implies that a number of issues, like
for example stack management, are dealt with by the environment, be it an op-
erating system or some programming language facility. Environments providing
a blocking semantics are usually implemented as threaded systems, but such an
implementation can be overly expensive in terms of resources on small embedded
systems like most modular, self-reconfigurable robots. Moreover, although it is
clear that the 2D self-reconfiguration sequence could easily be implemented using
a standard blocking style interface, it is not obvious how to program the parallel
and more time efficient version, even if the blocking API was supplemented by
non-blocking versions of the same procedures.

An alternative approach is to first tackle the need for parallelism, and then to
impose sequentiality constraints. Instead of focusing on self-contained, blocking-
to-completion calls, we can shape the ATRON programming interface after a
non-blocking, split-phase semantics, directly modeling the nature of long
running-operations composed of a start request and a separate completion event.
By exposing both the invocation and the completion phases we allow finer-
grained control over the system’s operations. This makes it possible and rel-
atively straightforward to implement, for example, the parallel version of the
example algorithm.



128 M. Bordignon, L.L. Mikkelsen, and U.P. Schultz

3.2 An Extended ATRON Platform

To implement a simple and extendable programming environment for the
ATRON we ported the TinyOS operating system to the ATRON hardware [7].
This not only allows us to program in an event-based fashion using the nesC
language [8], but also provides numerous benefits in terms of stability and mod-
ularity. For instance, compared to our previous ATRON API which performed
most of the operations within interrupt handlers, we can now exploit a mecha-
nism similar to bottom-half handling [18] in order to keep the system responsive
even under intensive interrupt load. Moreover, by basing our programming en-
vironment upon an event-based system we made it open to extensions: it is
now easy to implement further abstractions over a non-blocking, split-phase se-
mantics as it emulates the behavior of the hardware. This allowed us, as we
will illustrate later, to extend the system in order to support a simple form of
threading, and provides a suitable ground for further experimentation.

Following the TinyOS philosophy our port models the ATRON hardware as a
collection of components, each accessible through interfaces where the comple-
tion of split-phase operations are signalled using events (i.e. callbacks registered
statically at compile time). Component libraries from both the standard TinyOS
distribution and from the contributors’ community can be directly reused on the
ATRON: we were for example able to use a standard sensor network dissemina-
tion protocol in order to diffuse messages within an ATRON ensemble.

Using TinyOS and nesC, we can now precisely express the concurrency we
require for the 2D-metamodule example. The overall control flow is outlined
in Fig. 3 as a finite state machine (FSM) along with the corresponding nesC
implementation. Event handlers are declared using the keyword event, whereas
synchronous operations are executed immediately using the keyword call, or
defined within the body of a task procedure scheduled for later execution with
the keyword post. In the example the overall control flow starts with a message
sparking a Receive.receive event, after which a task is posted that initiates
the disconnection operations. When both operations are done, a notify message
is sent using the task notifyCompletion. Please note how we need to maintain
explicitly shared state information, a side effect known as “stack ripping” [17].

3.3 Augmenting the Event-Driven Model: Stackless Threads

We note that a significant drawback of the purely event-based programming
model is the hard-to-follow control flow. Instead of being linearly expressed
within the body of a single procedure, it is fragmented among several handlers
executed in a reactive fashion upon event occurrences. This well-known problem
forces the code to resemble an FSM (Fig. 3), where state is explicitly maintained
as global variables, and events can trigger state transitions [19]. With this pro-
gramming style it is therefore difficult to write the code for even slightly complex
control algorithms, and it is even harder to infer an algorithm’s control flow af-
terwards from the source code, making debugging and maintenance difficult.
As this applies even to experienced programmers, not surprisingly our initial



Implementing Flexible Parallelism for Modular Self-reconfigurable Robots 129

event message_t* Receive.receive(...) {
if ((NeighborMsg*)rcvdMsg->info ==

START_RECONFIGURATION) {
if (!reconfigurationStarted)
post startReconfiguration();

} ...
} task void startReconfiguration() {

reconfigurationStarted = TRUE;
call Connector4.retract();
call Connector6.retract();

} event void Send.sendDone(...) {
notificationSent = TRUE;

}

event void Connector4.retractDone(...) {
connector4retracted = TRUE;
if (connector6retracted)

post notifyCompletion();
} event void Connector6.retractDone(...) {
connector6retracted = TRUE;
if (connector4retracted)

post notifyCompletion();
}

task void notifyCompletion() {
((NeighborMsg*)sendMsg)->info

= DISCONNECTION_COMPLETED;
call Send.send(sendMsg, ...);

}

Fig. 3. The purely event-driven nesC code and the corresponding state machine

experience with event-based programming in nesC is that fellow roboticists in
our lab had a hard time producing reasonably bug-free, working code.1

To simplify programming those cases where arbitrary parallelism is inter-
twined with traditional sequential execution, we need to be able to explicitly
block and wait for a condition to be true. This can be the completion of a sub-
routine, the arrival of an event and more generally any boolean condition we
could express. With such a flexible composition system, custom blocking calls
can easily be tailored for the application at hand, or alternatively a single proce-
dure can be written in which operations are started asynchronously but checks
are inserted to enforce the temporal constraints.

We implemented such a paradigm by making use of so-called stackless threads,
also known as protothreads after a popular implementation of this concept [20].
Instead of operating a full context switch every time a thread blocks and yields
control to the scheduler, just the local continuation (see [20]) is saved so that
execution can restart from the yield point the next time the thread is sched-
uled. The advantage of this technique is that all thread-like procedures rely on
a single stack, which is unwound at every task switch. This makes systems with
tight resource constraints able to benefit from blocking-style constructs, as every
thread just requires memory for the local continuation and scheduling informa-
tion (5 bytes, in our current implementation). Conversely, in a full multithreaded

1 This observation is based on the implementation effort at USD Modular Robotics
Lab concerning participation in the ICRA’08 Planetary Contingency Challenge.



130 M. Bordignon, L.L. Mikkelsen, and U.P. Schultz

blockingTask(reconfigurationSubsequence) {
blockingTaskBegin();
/*1*/ blockingWaitUntil(triggerReceived);
/*2*/ runBlockingTask(disconnect);
/*3*/ runBlockingTask(notifyDone);
blockingTaskEnd();

}

event message_t* Receive.receive(...)
{

if ((NeighborMsg*)rcvdMsg->info ==
START_RECONFIGURATION) {

triggerReceived = TRUE;
} ...

}

event void Send.sendDone(...) {
notificationSent = TRUE;

}

blockingTask(disconnect) {
blockingTaskBegin();
call Connector4.retract();
call Connector6.retract();
blockingWaitUntil(call Connector4.get()
== CONNECTOR_RETRACTED &&
call Connector6.get()
== CONNECTOR_RETRACTED);

blockingTaskEnd();
}

blockingTask(notifyDone) {
blockingTaskBegin();
((NeighborMsg*)sendMsg)->info
= DISCONNECTION_COMPLETED;

call Send.send(sendMsg, ...);
blockingWaitUntil(notificationSent);
blockingTaskEnd();

}

Fig. 4. The 2D reconfiguration subsequence implemented with stackless threads

system a conservative amount of memory would need to be allocated for each
thread, to prevent the stack from overflowing if the worst-case call sequence hap-
pens during its execution (e.g., because of nested interrupt requests). As many
modular robotic systems, including ours, are designed around simple microcon-
trollers with a very limited amount of RAM (as low as 1 KB [4]), this solution
represents a viable option. Fig. 4 shows the subsequence of Fig. 3 reimplemented
with stackless threads: we can easily distinguish the three original control steps
in the main thread reconfigurationSubsequence. To achieve this compact form,
we subsumed the underlying event-based system by explicitly blocking on flags
(triggerReceived) on the components state (call Connector4.get()), and on
the completion of similar constructs (disconnect). Our preprocessor-based im-
plementation automatically saves and restores the local continuation in a way
similar to the original implementation proposed in [20]. Additionally, it transpar-
ently allocates and manages the control structures of the threads and performs
the scheduling as needed, by means of a purposely developed scheduler com-
ponent. The main drawback is dictated by the reliance on a single stack which
must be unwound whenever a thread blocks: this implicitly means that eventual
automatic variables (with procedure scope) are not properly saved and restored
across context switches. A common workaround is to use local variables declared
as static [20], or to simply use global variables.

3.4 Java Futures as Concurrency Constructs

The stackless thread implementation is designed for use in resource-limited sys-
tems. In less constrained ones these primitives can be provided at a higher level
of abstraction. In the case of Java, threads are normally used to express con-
currency. They are however inappropriate for fine-grained parallelism: separate
thread classes and signalling through wait and notify combined with the over-
head of creating a new thread for each operation makes this overly cumber-
some. To provide a higher level abstraction, we encapsulate the concurrency
control primitives using objects. We observe that futures provide a convenient



Implementing Flexible Parallelism for Modular Self-reconfigurable Robots 131

interface Future {
void block();
boolean isCompleted();
void onCompletion(Action a);

}

interface Action {
void execute();
void timeout();

}

class Futures {
static void waitFor(Future f1,
Future f2) { ... }

...
}

// sequential
receive(START_RECONFIGURATION).block();
// parallel
Futures.waitFor(openConnector(4),

openConnector(6));
// sequential
send(...,DISCONNECTION_COMPLETED).block();

// completion handler
rotate(90).onCompletion(
new ActionImpl() {
void execute() { ... }
void timeout() { ... }

}
);

Fig. 5. The ATRON future API: definition and examples

abstraction for the concurrent control primitives of the ATRON robot: a fu-
ture is an object that represents the result of an unfinished computation [21].
Concretely, split-phase operations return a future object that can be used to syn-
chronize on whether the operation has completed. The ATRON Java interface
for futures is shown in Fig. 5 (left) along with examples of API usage (right). Ro-
tating or actuating a connector returns an object that implements the interface
Future which allows the caller to (1) block waiting for the operation to complete,
(2) query whether the operation is completed, and (3) specify an action to run
when the operation is completed. Synchronizing on the completion of a future
can for example be done using the static method Futures.waitFor that blocks
waiting for the two future arguments to complete. In general, encapsulating the
execution of split-phase operations into futures allows arbitrary dependencies to
be expressed using standard object-oriented programming techniques.

We have implemented a futures-based ATRON API on a prototype Java-
enabled ATRON module as well as in the USSR simulator. The prototype Java-
enabled ATRON module is the result of integrating a Sun SPOT processor
board [22] within a standard ATRON module: the Sun SPOT controls the stan-
dard ATRON electronics over an SPI connection. This “SunTRON” module is
programmed using the CLDC-compliant Squawk Java virtual machine, allowing
the standard Java thread model to be used when programming controllers. Both
implementations of the future-based ATRON API are based on a scheduler that
manages Java threads: each future is represented by a Java thread and the sched-
uler decides which threads to activate based on the state of the hardware. While
the simulator-based implementation provides a futures-based version of the full
ATRON API, the SunTRON-based implementation is still preliminary and only
provides an API subset, including e.g. futures-based control of the actuators.

4 Related Work

In order to simplify the programming of modular robots forming highly dis-
tributed and tightly coordinated systems, there is a growing interest in the de-
velopment of high-level languages and programming environments. A principal



132 M. Bordignon, L.L. Mikkelsen, and U.P. Schultz

aim of these approaches is to deal with the coordination among the individual
modules in a larger robot, through abstractions like roles [23,24] and localized
spatial pattern matching [25], so as to provide overall control of the robot. Our
work is complementary in that it concerns coordination of actions on a single
module; even if generalized to a distributed setting, our work is complementary
in the sense that we are not concerned with the decision of whether to initiate an
action, only the orchestration of the action once it has been initiated. Similarly,
existing work on software architecture for modular robots [26,27] deals with the
distributed coordination of services, not sequencing of actions.

We use low-level API primitives such as events or threads to implement our
concurrency primitives. Alternatively, a language with explicit concurrency prim-
itives such as occam-π can be used, which allows the programmer to directly
specify whether to perform operations in sequence of concurrently [28,29]. This
approach is however tied to a specific language and virtual machine, whereas
our conceptual approach is more generally applicable and has thus far been
implemented for nesC and Java without the need for language extensions. Nev-
ertheless, we are investigating to what extent similar, more powerful concurrency
primitives can be provided in our implementation framework.

5 Conclusions and Future Work

In this paper we have shown how to design an API that resolves the con-
currency and coordination issues in programming modular self-reconfigurable
robots. Our implementations of this design span from low-end robots with a
minimal TinyOS kernel to high-end robots with a full Java VM. Concretely, we
have both ported TinyOS to the ATRON robot to enable controlled concurrent
programming through a mix of event-driven and threaded semantics and imple-
mented a Java-based version of our API inside the USSR simulator and on the
prototype Java-enabled ATRON modules. In general, although the work pre-
sented in this paper has been instantiated for a specific type of modular robot
(the ATRON), we believe that the challenges that we address are common to
the larger group of systems that we define as physically interlocked systems [24],
meaning systems made of different, independent computational entities whose
behavior is influenced by and closely coordinated with that of their immediate,
physical neighbors.

In terms of future work, we are interested in generalizing our model to a dis-
tributed scenario, such as the one shown in the metamodule self-reconfiguration

Fig. 6. Distributed sequentiality and concurrency in self-reconfiguration



Implementing Flexible Parallelism for Modular Self-reconfigurable Robots 133

sequence of Fig. 6. Here, several modules sometimes need to disconnect within
the same time step, and similarly to the case for one module this can be done
either in sequence or in parallel. For this reason, we are interested in providing
a distributed API supporting split-phase operations on local, neighboring mod-
ules. Adding distributed operations naturally necessitates dealing with partial
failures, but would simplify programming self-reconfiguration sequences.

Acknowledgements

We would like to thank Danish Shaikh for building the SunTRON modules.

References

1. Castano, A., Chokkalingam, R., Will, P.: Autonomous and Self-Sufficient CONRO
Modules for Reconfigurable Robots. In: Proc. Int. Symp. on Distributed Au-
tonomous Robotic Systems (DARS 2000), Knoxville, TN, USA (2000)

2. Jørgensen, M.W., Østergaard, E.H., Lund, H.H.: Modular ATRON: Modules for a
self-reconfigurable robot. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS 2004), Sendai, Japan (2004)

3. Murata, S., Yoshida, E., Tomita, K., Kurokawa, H., Kamimura, A., Kokaji, S.:
Hardware Design of Modular Robotic System. In: Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS 2000), Takamatsu, Japan (2000)

4. Zykov, V., Chan, A., Lipson, H.: Molecubes: an Open-Source Modular Robotics
Kit. In: Proc. IROS 2007 Wksh. on Self-Reconfigurable Robots & Systems and
Applications, San Diego, CA, USA (2007)

5. Yim, M., Duff, D.G., Roufas, K.D.: PolyBot: a Modular Reconfigurable Robot. In:
Proc. IEEE Int. Conf. on Robotics and Automation (ICRA 2000), San Francisco,
CA, USA (2000)

6. Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E.,
Chirikjian, G.S.: Modular Self-Reconfigurable Robot Systems [Grand Challenges
of Robotics]. IEEE Robotics and Automation Magazine (March 2007)

7. Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay,
D., Hill, J., Welsh, M., Brewer, E., Culler, D.: TinyOS: An Operating System for
Wireless Sensor Networks. In: Ambient Intelligence. Springer, Heidelberg (2005)

8. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC
Language: A Holistic Approach to Networked Embedded Systems. In: Proc. ACM
SIGPLAN Conf. on Programming Language Design and Implementation (PLDI
2003), San Diego, CA, USA (2003)

9. Brandt, D., Christensen, D.J., Lund, H.H.: ATRON Robots: Versatility from Self-
Reconfigurable Modules. In: Proc. IEEE Int. Conf. on Mechatronics and Automa-
tion (ICMA 2007), Harbin, China (2007)

10. Lund, H.H., Beck, R., Dalgaard, L.: Self-reconfigurable Robot with ATRON Mod-
ules. In: Proc. Int. Symp. on Autonomous Minirobots for Research and Edutain-
ment (AMiRE 2005), Fukui, Japan (2005)

11. Schultz, U.P.: Unified Simulator for Self-reconfigurable Robots (USSR),
http://modular.mmmi.sdu.dk/wiki/USSR

12. Christensen, D.J., Brandt, D., Støy, K., Schultz, U.P.: A Unified Simulator for
Self-Reconfigurable Robots. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS 2008), Nice, France (2008)

http://modular.mmmi.sdu.dk/wiki/USSR


134 M. Bordignon, L.L. Mikkelsen, and U.P. Schultz

13. Garcia, R.F.M., Støy, K., Christensen, D.J., Lyder, A.: A Self-Reconfigurable Com-
munication Network for Modular Robots. In: Proc. Int. Conf. on Robot Commu-
nication and Coordination (RoboComm 2007), Athens, Greece (2007)

14. Brandt, D., Østergaard, E.H.: Behaviour Subdivision and Generalization of Rules
in Rule-Based Control of the ATRON Self-Reconfigurable Robot. In: Proc. Int.
Symp. on Robotics and Automation (ISRA 2004), Querétaro, Mexico (2004)

15. Christensen, D.J., Støy, K.: Selecting a Meta-Module to Shape-Change the ATRON
Self-Reconfigurable Robot. In: Proc. IEEE Int. Conf. on Robotics and Automation
(ICRA 2006), Orlando, FL, USA (2006)

16. Støy, K., Shen, W.-M., Will, P.: Using Role Based Control to Produce Locomotion
in Chain-Type Self-Reconfigurable Robots. IEEE/ASME Trans. on Mechatronics,
special issue on Self-Reconfigurable Robots (2002)

17. Adya, A., Howell, J., Theimer, M., Bolosky, W.J., Douceur, J.R.: Cooperative Task
Management Without Manual Stack Management. In: Proc. 2002 USENIX Annual
Tech. Conf., Monterey, CA, USA (2002)

18. Rusling, D.A.: Kernel Mechanisms: Bottom Half Handling. In: The Linux Kernel.
The Linux Documentation Project (TLDP) (1996-1999)

19. Kothari, N., Millstein, T., Govindan, R.: Deriving State Machines from TinyOS
Programs using Symbolic Execution. In: Proc. Int. Conf. on Information Processing
in Sensor Networks (IPSN 2008), St. Louis, MO, USA (2008)

20. Dunkels, A., Schmidt, O., Voigt, T., Ali, M.: Protothreads: Simplifying Event-
Driven Programming of Memory-Constrained Embedded Devices. In: Proc. ACM
Conf. on Embedded Networked Sensor Systems (SenSys 2006), Boulder, CO, USA
(2006)

21. Baker Jr., H.C., Hewitt, C.: The incremental garbage collection of processes.
In: Proc. 1977 Symp. on Artificial Intelligence and Programming Languages,
Rochester, NY, USA (1977)

22. Sun Microsystems: Project Sun SPOT, http://www.sunspotworld.com
23. Støy, K., Shen, W.-M., Will, P.: Implementing Configuration Dependent Gaits in a

Self-Reconfigurable Robot. In: Proc. IEEE Int. Conf. on Robotics and Automation
(ICRA 2003), Taipei, Taiwan (2003)

24. Schultz, U.P., Christensen, D.J., Støy, K.: A Domain-Specific Language for Pro-
gramming Self-Reconfigurable Robots. In: Proc. Wksh. on Automatic Program
Generation for Embedded Systems (APGES 2007), Salzburg, Austria (2007)

25. De Rosa, M., Goldstein, S.C., Lee, P., Campbell, J.D., Pillai, P.: Programming
Modular Robots with Locally Distributed Predicates. In: Proc. IEEE Int. Conf. on
Robotics and Automation (ICRA 2008), Pasadena, CA, USA (2008)

26. Zhang, Y., Roufas, K.D., Yim, M.: Software Architecture for Modular Self-
Reconfigurable Robots. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS 2001), Maui, Hawaii (2001)

27. Zhang, Y., Yim, M., Eldershaw, C., Roufas, K.D., Duff, D.G.: Attribute/Service
Model: Design Patterns for Distributed Coordination of Sensors, Actuators and
Tasks. In: Proc. Wksh. on Embedded Systems Codesign (ESCODES 2002), San
Jose, CA, USA (2002)

28. Barnes, F., Welch, P.H.: Communicating Mobile Processes. In: Proc. Conf. on
Communicating Processes Architectures (CPA 2004), Oxford, UK (2004)

29. Jacobsen, C.L., Jadud, M.C.: Towards Concrete Concurrency: occam-pi on the
LEGO Mindstorms. In: Proc. ACM Tech. Symp. on Computer Science Education
(SIGCSE 2005), St. Louis, MO, USA (2005)

http://www.sunspotworld.com


Real-Time Software for Mobile Robot
Simulation and Experimentation

in Cooperative Environments

Andreu Corominas Murtra1, Josep M. Mirats Tur1,
Oscar Sandoval1, and Alberto Sanfeliu1,2,�

1 Institut de Robòtica i Informàtica Industrial, IRI (UPC-CSIC). C/Llorens i Artigas,
4-6, 2nd floor, Barcelona, Spain

{acorominas,jmirats,osandoval,asanfeliu}@iri.upc.edu
www-iri.upc.es

2 Universitat Politècnica de Catalunya, UPC. Barcelona, Spain

Abstract. This paper presents the software being developed at IRI (In-
stitut de Robòtica i Informàtica Industrial) for mobile robot autonomous
navigation in the context of the european project URUS (Ubiquitous
Robots in Urban Settings). In order that a deployed sensor network and
robots operating in the environment cooperate in terms of information
sharing, main requirements are real-time performance and the integra-
tion of information coming from remote machines not onboard the robot.
Moreover, the project involves a group of eleven industrial and academic
partners, therefore software integration issues are critical. The proposed
software framework is based on the YARP middleware and has been
tested in real and simulated experiments.

Keywords: Mobile robot software, real-time, sensor networks.

1 Introduction

Research in robotics is experiencing a steady incoming of new hardware compo-
nents, platforms and devices, with the aim of overcomingperception and actuation
limitations of current robotic systems. These hardware novelties need software to
be operative, but developing such a software is a time consuming and error prone
task. Therefore, good practices in software development are required in robotic
laboratories in order to economize engineering time and share results and mod-
ules between research teams. Also, simulation of robot systems is a generalized
task that saves a lot of power and human energies, but the danger of recoding
algorithms for both simulation and experimentation arises. All these topics have
been recently discussed within the robotic research community [1,2,3,4].

� Research conducted at the Institut de Robòtica i Informàtica Industrial of the
Universitat Politècnica de Catalunya and Consejo Superior de Investigaciones
Cient́ıficas. Partially supported by Consolider Ingenio 2010, project CSD2007-00018,
CICYT project DPI2007-61452, and IST-045062 of the European Community Union.

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 135–146, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



136 A. Corominas Murtra et al.

In the last years some interesting middlewares have been presented which
can be downloaded as open source software [5,6,7,8]. These projects coincide on
being real-time oriented and based on fully independent processes running in the
same machine or in a network of computers, thus they require a fast and robust
inter-process communication tool to operate.

Our context is that of the URUS european project [9] involving open research
fields such as network robot systems and cooperative robotics. Different exper-
iments, as transport of goods or evacuation of people, are envisaged in outdoor
urban scenarios, involving a camera network recently deployed on the URUS
environment and a team of heteregeneous robots running in it. In order to be
successful with the software integration and experimentation a good software
practice and a process communication approach are mandatory.

In this work we present a software framework based on the YARP middleware
[10]. YARP was initially written for people working with humanoid robots hence
involving a lot of hardware devices to be controlled. We do use YARP in our
context to provide communication capabilities between different processes of the
whole system, whether these processes are running onboard the same robot or
not. Therefore, our framework is developed with the aim of being executed in
a decentralized network of computers, being flexible to accept an heterogeneous
set of devices and algorithms and being independent of whether the data sources
are real or simulated platforms and devices, or files with stored off-line data.

This paper is organized as follows: section 2 overviews the whole software
structure, section 3 presents the knowledge basis of our system while section 4
focuses on the involved processes and their designed hierarchy. In section 5 the
graphical user interface is presented. Real-time experiments, both simulated and
real, are presented in section 6, validating the operability of the presented soft-
ware. Finally, section 7 summarizes the main conclusions of the work.

2 Framework Overview

The proposed software framework has the main goal of providing a mobile robot
with autonomous navigation capability. Moreover, our mobile robot is thought
to be running in a cooperative environment, that is, an area where other mobile
robots are also operating and where a sensor network is deployed. The whole
system should provide a set of services in an urban environment such as trans-
portation of goods and people, cleaning or surveillance. Figure 1 shows the pro-
posed navigation software framework in this context including hardware devices
providing data (grey boxes), processes running concurrently (white boxes), and
YARP connections (black arrows) building a network of processes that exchange
data. This figure also indicates with an asterisc the processes that are running in
a remote machine (not on-board the robot) and, thus, a wireless link is required
to connect them to on-board processes. The running mode variable indicates
if the robot is tele-operated (RM=0), executing a path (RM=1) or following a
visual target (RM=2).



Real-Time Software for Mobile Robot Simulation and Experimentation 137

Fig. 1. Network of processes building up the proposed software framework for au-
tonomous navigation in cooperative environments. Grey boxes are devices while white
boxes are processes. Processes running in a remote machine are marked with *.

Our design divides the proposed software in three parts: knowledge-basis,
processes and graphical user interface. The knowledge basis is a set of classes
implementing the data base and methods to deal with it, representing all that
the mobile robot ’knows’. In our context, this refers to the environment model
(map) and the methods to efficiently operate with it. Process classes implement
the core of this software design. These classes are organized in a three-level
hierarchy in order to exploit C++ modularity and inheritance. This set of classes
implements the basic process loop (layer 1), the process network (layer 2) and
the specific device drivers and algorithms (layer 3). Finally, the graphical user
interface (GUI) provides a mean to display real-time data while allowing the
user to drive the robot in a tele-operation running mode.

3 Knowledge Basis

The set of classes implementing the a priori knowledge of the robot builds up the
knowledge basis. In our map-based navigation case, this a priori knowledge is
given by a map of the environment and different geometric methods to operate
with it. This map could also be implemented off-board, as a data server provid-
ing answers to requests about distances, angles or line-of-sights. However, since
some navigation algorithms perform thousands or even millions of operations
per second related to the map, the “server approach” is unfeasible for real-time



138 A. Corominas Murtra et al.

applications. This fact forces us to load the knowledge basis to the local memory
of the computers where processes requiring it are running.

In the context of our network robot system the map is described in a data
file of about 40KB, using a compatible format with Geographical Information
Systems (GIS). The model represents the environment as a list of obstacles, each
one described with metric and semantic information. When a robot initializes,
it requests the map to a map server. The map server replies sending the map file
and the robot loads it to a program variable, thus the knowledge basis is now in
the local memory and processes requiring it have faster access to their methods.

For other applications this knowledge basis could be a dictionary, as a set
of objects to be identified, or a set of faces to be recognized (parameterized
or not). Obviously, if there were no real-time constraints in our application, we
could implement this knowledge basis as a data base server running in a machine
not onboard the robot.

4 Processes

The hierarchy of the classes implementing processes is organized in three lay-
ers. The first layer defines a basic process class. A second layer implements the
interfaces, defining data packets and connections between processes, thus the
process network is completely stablished. This second layer is based on the com-
munication capabilities of the YARP middleware. Finally, the third layer of the
hierarchy implements specific algorithms and drivers to control devices.

Figure 2 shows the C++ class hierarchy for the involved processes in our
framework. In the next subsections we detail each layer of this hierarchy.

4.1 Layer 1: Basic Process Class

This single class defines a generic process as an independent thread. The pro-
tected variables of this class are listed below:

int status; //=0 when process runs ok. Otherwise is an error code

int partnerId; //id of the partner responsible of that process

int machineId; //id of the machine where this process is running

char label[20]; //short label identifying the process

int sleepPeriod; //sleep period [us] to regularize loop period

ofstream logFile; //file to print log messages

ofstream dataFile; //file to print data

timeval timeStamp; //time stamp of the process output data

int processThreadID; //thread id

pthread_t processThread; //thread variable

This variable set has been found as the minimum common set that all our
processes need to be operative. The variable status indicates if a process is running
with no trouble (status=0) or if some error or unexpected situation is encountered



Real-Time Software for Mobile Robot Simulation and Experimentation 139

Fig. 2. Hierarchy of classes involved in the process implementation. Claser and Cplat-
formAq (acquisition) basic interfaces are unfolded to their related specific classes for
illustrative purposes. Boxes are classes and arrows imply inheritance relation.

(status=errorCode). The variable partnerId identifies which partner is responsi-
ble of the process among a group of partners working in the project. The variable
machineId carries the identification of the machine on which the process is run-
ning. The label string is used to shortly define the process as, for instance, ’gps’,
’frontLaser’ or ’obstacleAvoidance’. The sleepPeriod integer, defined in microsec-
onds, is the pause that the process will execute to regularize its output to a given
output frequency, specially for those cases where process stuff is very low and data
output is not required to be fast. Two files are also members of a process, one to
keep log messages during execution and the other to save process data. Both, log
messages and process data are always printed with a time stamp value provided
by the variable timeStamp (TS). Last two variables are needed to run the process
as a separate thread.

For this basic process class, we have the following public member functions:

ClogDataProcess(int ptid, int rid, char *labelStr); //constructor

virtual ~ClogDataProcess(); //destructor

int writeLogFile(char *msg);//prints message with TS to logFile

int writeDataFile(char *msg);//prints message with TS to dataFile

virtual void printAlive(); //prints alive message to std output

virtual void process()=0; //Main method processing the data

virtual void printData()=0; //prints data content to dataFile



140 A. Corominas Murtra et al.

virtual void sendData()=0; //sends data content (publish data)

void startRun(); //Throws the thread calling the run() method

void endRun(); //Cancels the run() this process

static void *run(void *thisPnt); //Main loop

The proposed set of public member functions is also designed to satisfy the min-
imum common needs for all the processes. The constructor initializes the status
to −1, sets the variables partnerId, machineId and labelString, and opens the log-
File and the dataFile. Destructor will close these files. We have also the member
functions writeLogFile() and writeDataFile(), that print a given message in the
log/data file with the current time stamp. The virtual member function print-
Alive() prints a basic alive message to the standard output. If desired, it can be
overridden to print a more specific alive message. After that, we find three pure
virtual member functions that are just named in this class but not implemented.
The process() member function will contain all the process work and it will be
implemented in the last layer of the hierarchy, that of the device/algorithm spe-
cific classes. The other two functions will be implemented in the second layer of
the hierarchy: the printData() member function printing the whole data packet
that the process outputs to the dataFile, and the sendData() member function
sending a data packet through a communication channel (publishes data). Fi-
nally, there are three member functions implementing the starting of the thread,
its main loop and its end or cancel condition. The run() member function is the
main loop of the thread and it is detailed in the following code:

while (1)
{

thisProcess->process();//main job of this process
thisProcess->printData();//prints data to data file
thisProcess->sendData();//writes data to output ports
sleep(thisProcess->sleepValue);//adjusts output frequency

}

Please note that in this basic process class neither the process connections nor
the data packets are still defined, since each process uses a different number of
inputs and outputs and works with different kind of data. The second layer of
the hierarchy will define and manage these issues.

4.2 Layer 2: Basic Interface Classes

Classes in the second layer implement communication between processes, that is,
they define the network connecting processes and data packets passing through
that network. This layer is motivated by the fact that several implementations of
a given algorithm or sensor driver use the same inputs and outputs and manage
the same data packets. The idea within this layer is to define, for each interface
class, which are the required inputs, the provided outputs, and the format of the
data packets going through these inputs and outputs. It is only in this layer where



Real-Time Software for Mobile Robot Simulation and Experimentation 141

Fig. 3. Concept of the localization basic class. Inputs, outputs and data packets are
defined at this basic interface layer.

YARP, the chosen middleware, is used to support the communication network.
Such a layer is critical since we are working in a project involving several industrial
and academic partners, and is in this layer where integration guidelines must be
carefully respected [11]. Only if we faithfully follow these guidelines we will enjoy
the integration work as an assembling of “little black boxes”.

As an illustrative example we show the localization basic class, implementing
the communication layer for all specific localization algorithms. Figure 3 shows
this class as a black box accepting inputs from several real-time observations and
outputing a data packet containing the estimations of the robot pose, velocities
and related uncertainties. Hence, the localization basic class is in charge of putting
a localization specific module in the right place within the network of processes.

To fully implement an interface, we need to define the format of the data
packets provided by each interface. With this aim, we have designed a set of
structs named xPacket for each content format travelling throughout the process
network. Moreover, we have a set of classes inheriting yarp ports, specialized to
send or receive a given data packet. In figure 3, the localization basic class
has, for instance, a laserReceiverPort, an object in charge of receiving real-time
observations from a laser driver process, always storing the last one. In the output
side, the localization process, publishes a localization data packet through a
localizationSenderPort, with the format specified in figure 4.

In terms of integration, and following the illustrative localization case, a given
process P requiring real-time localization data only has to incorporate a “local-
izationReceiverPort” object and connect it to the output port of the localization
process. Doing this, the process P has available in its local memory the last
estimation of the robot position, published by the localization process.

However, these interface classes do not implement the process() member func-
tion presented at section 4.1, thus they ’do nothing’, but the robot has to sense
and move. The next section details the third layer of the presented software
framework, where specific algorithms and drivers are implemented.

4.3 Layer 3: Specific Device/Algorithm Classes

This last layer of the hierarchy implements the specific processes of drivers con-
trolling hardware and algorithms for navigation tasks, that is, it implements the
member function process() that remainded a pure virtual function in the first



142 A. Corominas Murtra et al.

Fig. 4. Output data packet for the localization. All specific localization algorithms
publish the same data packet. Grey fields form the common header of all data packets.

and second layers of the hierarchy. It is precisely in this layer where robotic
researchers have to program their own algorithms to solve the different naviga-
tion tasks. The only restriction when programming a specific device or algorithm
class is to agree with the related interface, a fact that appears naturally in object
oriented languages as C++, when class inheritance is used.

For each basic interface related to a device family, we have a class implement-
ing a simulation of that device family, a class reading off-line data for that device
family, and a class for each physical device that we have in our laboratory. For
instance, the basic class being in charge of the acquisition of the platform data
(CplatformAq), has four inherited classes implementing the above mentioned
cases: CplatformAqSim, CplatformAqOffLine, CplatformAqSegwayRMP200,
CplatformAqP3AT (see figure 2).

The key point of the proposed software architecture is that all these four spe-
cific classes inherit the basic CplatformAq class, thus from the point of view
of communications, these four classes have the same interface and manage the
same data packets, and, therefore, for a process requiring platform data it is
completely transparent which kind of platform (simulated, off-line or real) is
currently providing the real-time data. To keep the real-time in off-line exe-
cutions, the sleepPeriod of the process reading a data file is adapted at each
iteration according to the time stamp increment between the two last data rows.

This approach facilitates also the integration work. For instance, a team re-
quiring the localization data for its task allocation research do not worry on
which specific algorithm is performing the localization. This team only needs to
incorporate a localizationReceiverPort to its module and to connect this port to
the output port of the localization process.

5 Graphical User Interface

The developed graphical user interface allows monitoring the navigation exper-
iments. Figure 5 shows a snapshot of this GUI for a simulated case.

On the right side of the screen snapshot in figure 5 we can see a map represent-
ing the 10000m2 campus outdoor area where the robots are expected to operate.



Real-Time Software for Mobile Robot Simulation and Experimentation 143

Fig. 5. GUI snapshot

In this map, we can see three robots (R0..R2) as red dots and five fixed cameras
(C0..C4) as black squares. We can also see simulated GPS data for robots R0
and R2 positions as green spots on the map layout (R1 was out of gps coverage),
and how the camera network process is detecting robot R1 with camera C4 and
is sending range-bearing observations, each one depicted as a green segment.

On the left of the snapshot (figure 5), we can see the simulated onboard sensor
data for the selected robot (R0 in this case). Leds near each sensor label indicate
whether the status of the sensor driver is ok (green) or if some problem occurs on
providing data (red). In the shown case, the cameraNetwork led is in red since
there are no detections for R0 (the selected robot), since it is out of the camera
network coverage. On the bottom left there are also the control buttons to move
the robots and to change the selection of the current robot.

6 Real-Time Experiments. Position Tracking Example

6.1 Simulated Experiments

We first show a simulated experiment on position tracking. The localization fil-
ter is a process fusing data coming from six simulated device processes: platform
acquisition (odometry), front laser, back laser, compass, gps and camera net-
work observations. Moreover, during this execution we have a process moving
the platform and updating the simulated ground truth and the GUI. All these
processes run in real-time, providing and receiving data through the YARP net-
work. The localization filter process do not worry about where are the computers
providing data arriving to its data ports (see figure 3) and whether these data is



144 A. Corominas Murtra et al.

Fig. 6. Simulation of a position tracking experiment. Red poses are for ground truth.
Blue poses are the output of the filter. Green poses form the odometry path. Little
green dots are GPS data. Green segments are camera detections.

simulated or real. This localization process is completely ready to be exported
to a real experiment with no change on the code. Figure 6 shows the map frame
after the execution of this simulated experiment.

6.2 Real-World Experiments

This experiment is a position tracking experiment of the segway platform RMP-
200 of figure 7 (left). This position tracking is processed at real-time, since the
filter output rate was about 3Hz and the maximum robot speed was about
0.5m/s. Since the overall camera network infrastructure and robot detection al-
gorithms are not yet fully operative, the localization filter only fuses onboard
sensor data, coming from a front laser, a back laser and the odometry of the
platform. However, the robot position is sent throughout the ouput port(see
figure 3) and a remote computer connected to this port can see the position of
the robot. In this experiment we have validated that the proposed software is
operative in real conditions, but also we have ascertained that integration of the
provided localization service can be easily done if a receiver process incorporates
a localizationReceiverPort object and connects it to the output port of the lo-
calization process. Figure 7 (right) shows the map frame after the execution of
this real experiment.



Real-Time Software for Mobile Robot Simulation and Experimentation 145

Fig. 7. Left: The segway robot with two lasers and one computer onboard. Right:Real
position tracking experiment. Blue poses are the output of the filter. Green poses form
the odometry path.

7 Conclusions

This paper presents a software architecture to solve navigation tasks for au-
tonomous mobile robots operating in cooperative environments. We mean by a
cooperative environment an area where a sensor network is deployed and a team
of robots operates in it. This network robot system is the context of the URUS
european project where eleven industrial an academic partners are developing
joint research. Both engineering and social contexts of this project force to de-
velop software following three main aims: real-time constraints for mobile robot
navigation techniques, easiness on integration software modules and decentral-
ized computing approach.

Real-time constraints in navigation techniques is a mandatory issue if we
want that the robots operate autonomously in such environment. Easiness on
integration is due to the fact that the proposed experiments demonstrating the
validity of the whole project involve several partners and several robotic fields
such as computer vision, data fusion or human-robot interaction. Finally, a net-
work robot system approach implies that a set of computers are physically (wired
or wireless) and logically connected to share any kind of data that each process
requires and provides.

The proposed approach, based on the YARP middleware, satisfies these three
aims and has been already tested in simulation and in a preliminary real outdoor
experiment, showing its potentialities, specially in terms of integration.



146 A. Corominas Murtra et al.

References

1. Bruyninckx, H.: Robotics Software: The Future Should Be Open. IEEE Robotics
and Automation Magazine 15, 9–11 (2008)

2. Brugali, D., Schlegel, C., Stumpfegger, T., Tansley, S.: In: Third International
Workshop on Software Development and Integration in Robotics, SDIR 2008,
Pasadena, USA (May 2008)

3. Fitzpatrick, P., Metta, G., Natale, L.: Towards Long-Lived Robot Genes. Journal
of Robotics and Autonomous Systems 56, 29–45 (2008)

4. Makarenko, A., Brooks, A., Kaupp, T.: On the Benefits of Making Robotic Software
Frameworks Thin. In: Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), San Diego, California (October 2007)

5. http://orca-robotics.sourceforge.net/

6. http://www.orocos.org

7. http://playerstage.sourceforge.net/

8. http://eris.liralab.it/yarp/

9. Sanfeliu, A., Andrade-Cetto, J.: Ubiquitous networking robotics in urban settings.
In: Proceedings of the IEEE/RSJ IROS Workshop on Network Robot Systems,
Beijing, China (October 2006)

10. Metta, G., Fitzpatrick, P., Natale, L.: YARP: Yet Another Robot Platform. Inter-
national Journal on Advanced Robotics Systems 1(3), 43–48 (2006)

11. Barbosa, M., Ransan, M.: URUS Communication Protocol. tech. rep. (September
2007)

http://orca-robotics.sourceforge.net/
http://www.orocos.org
http://playerstage.sourceforge.net/
http://eris.liralab.it/yarp/


Knowledge Processing Middleware

Fredrik Heintz, Jonas Kvarnström, and Patrick Doherty

Dept. of Computer and Information Science
Linköping University, 581 83 Linköping, Sweden

{frehe,jonkv,patdo}@ida.liu.se

Abstract. Developing autonomous agents displaying rational and goal-directed
behavior in a dynamic physical environment requires the integration of a great
number of separate deliberative and reactive functionalities. This integration must
be built on top of a solid foundation of data, information and knowledge hav-
ing numerous origins, including quantitative sensors and qualitative knowledge
databases. Processing is generally required on many levels of abstraction and in-
cludes refinement and fusion of noisy sensor data and symbolic reasoning. We
propose the use of knowledge processing middleware as a systematic approach
for organizing such processing. Desirable properties of such middleware are pre-
sented and motivated. We then argue that a declarative stream-based system is
appropriate to provide the desired functionality. Different types of knowledge
processes and components of the middleware are described and motivated in the
context of a UAV traffic monitoring application. Finally DyKnow, a concrete ex-
ample of stream-based knowledge processing middleware, is briefly described.1

1 Introduction

When developing autonomous agents displaying rational and goal-directed behavior in
a dynamic physical environment, we can lean back on decades of research in artifi-
cial intelligence. A great number of deliberative and reactive functionalities have al-
ready been developed, including chronicle recognition, motion planning, task planning
and execution monitoring. Integrating these approaches into a coherent system requires
reconciling the different formalisms they use to represent information and knowledge
about the world. To construct these world models and maintain a correlation between
them and the environment, information and knowledge must be extracted from data col-
lected by sensors. However, most research done in a symbolic context tends to assume
crisp knowledge about the current state of the world while information extracted from
the environment often consists of noisy and incomplete quantitative data on a much
lower level of abstraction. This causes a wide gap between sensing and reasoning.

Bridging this gap in a single step, using a single technique, is only possible for
the simplest of autonomous systems. As complexity increases, one typically requires
a combination of a wide variety of methods, including more or less standard function-
alities such as various forms of image processing and information fusion as well as

1 This work is partially supported by grants from the Swedish Aeronautics Research Coun-
cil (NFFP4-S4203), the Swedish Foundation for Strategic Research (SSF) Strategic Research
Center MOVIII and the Center for Industrial Information Technology CENIIT (06.09).

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 147–158, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



148 F. Heintz, J. Kvarnström, and P. Doherty

application-specific and possibly even scenario-specific approaches. Such integration is
often done ad hoc using a variety of mechanisms within a single architecture, partly by
allowing the sensory and deliberative layers of a system to gradually extend towards
each other and partly by introducing intermediate processing levels.

We propose using the term knowledge processing middleware for a principled and
systematic framework for organizing incremental and potentially distributed processing
of knowledge at many levels of abstraction. Rather than being a robotic architecture it-
self, knowledge processing middleware should provide an infrastructure for integrating
the necessary components in such an architecture and managing the information flow
between these components. It should support incremental processing of sensor data and
facilitate generating a coherent view of the environment at increasing abstraction levels,
eventually providing knowledge at a level natural to use in symbolic deliberative func-
tionalities. It should also support the integration of different deliberation techniques.

In the next section, an example scenario is presented as further motivation for the
need for a systematic knowledge processing middleware framework. Desirable proper-
ties of such frameworks are investigated and a specific stream-based architecture suit-
able for a wide range of systems is proposed. As a concrete example, our framework
DyKnow is briefly described. We conclude with some related work and a summary.

2 A Traffic Monitoring Scenario

Traffic monitoring is an important application domain for autonomous unmanned aerial
vehicles (UAVs), where tasks such as detecting accidents and traffic violations and find-
ing accessible routes for emergency vehicles provide a plethora of cases demonstrating
the need for an intermediary layer between sensing and deliberation.

One approach to detecting traffic violations uses a formal declarative description of
each type of violation. This can be done using a chronicle [1], which defines a class
of complex events using a simple temporal network where nodes correspond to occur-
rences of high level qualitative events and edges correspond to metric temporal con-
straints. For example, to detect a reckless overtake, events corresponding to changes in
qualitative spatial relations such as beside(car1, car2) and on(car, road) might be used.
Creating such representations from low-level sensory data, such as video streams, in-
volves a great deal of work at different levels of abstraction which would benefit from
being separated into distinct and systematically organized tasks. Figure 1 provides an
overview of how this processing could be organized. We emphasize that this is intended
to illustrate one potential use for knowledge processing middleware rather than to pro-
pose a specific robotic architecture to be used in UAV applications.

At the lowest level, a helicopter state estimator uses data from an inertial measure-
ment unit (IMU) and a GPS sensor to determine the current position and attitude of the
UAV. This information is fed into a camera state estimator, together with the current
angles of the pan-tilt unit on which color and infrared cameras are mounted, to deter-
mine the current camera state. The image processing system uses the camera state to
determine where the cameras are currently pointing. The two video streams can then be
analyzed in order to extract vision objects representing hypotheses regarding moving
and stationary physical entities, including their approximate positions and velocities.



Knowledge Processing Middleware 149

Fig. 1. Incremental Processing

Each vision object must be associ-
ated with a symbol for use in higher
level services, a process known as an-
choring [2,3]. Identifying which vi-
sion objects correspond to vehicles is
also essential, which requires knowl-
edge about normative sizes and be-
haviors of vehicles. Behaviors can
be described using formulas in a
metric temporal modal logic, which
are incrementally progressed through
states that include current vehicle po-
sitions, velocities, and other relevant
information. An entity satisfying all
requirements can be hypothesized to
be a vehicle, a hypothesis that may be

withdrawn if the progressor signals that the entity has ceased to satisfy the normative
behavior.

As an example, vehicles usually travel on roads. Given that image processing pro-
vides absolute world coordinates for each vision object, the anchoring process can
query a geographic information system to determine the nearest road segment and de-
rive higher level predicates such as on-road(car) and in-crossing(car). These would be
included in the states sent to the progressor as well as in the vehicle objects sent to
the next stage of processing, which involves deriving qualitative spatial relations be-
tween vehicles such as beside(car1, car2) and close(car1, car2). These predicates, and
the concrete events corresponding to changes in the predicates, finally provide sufficient
information for the chronicle recognition system to determine when higher-level events
such as reckless overtakes occur.

In this example, a considerable number of distinct processes are involved in bridging
the gap between sensing and deliberation and generating the necessary symbolic repre-
sentations from sensor data. However, to fully appreciate the complexity of the system,
we have to widen our perspective. Towards the smaller end of the scale, we can see that
a single process in Figure 1 is sometimes merely an abstraction of what is in fact a set
of distinct processes. Anchoring is a prime example, encapsulating tasks such as the
derivation of higher level predicates which could also be viewed as a separate process.
At the other end of the scale, a complete UAV system also involves numerous other sen-
sors and information sources as well as services with distinct knowledge requirements,
including task planning, path planning, execution monitoring, and reactive procedures.

Consequently, what is seen in Figure 1 is merely an abstraction of the full com-
plexity of a small part of the system. It is clear that a systematic means for integrating
all forms of knowledge processing, and handling the necessary communication between
parts of the system, would be of great benefit. Knowledge processing middleware should
fill this role, by providing a standard framework and infrastructure for integrating im-
age processing, sensor fusion, and other data, information and knowledge processing
functionalities into a coherent system.



150 F. Heintz, J. Kvarnström, and P. Doherty

3 Knowledge Processing Middleware

As stated in the introduction, any form of knowledge processing middleware should
provide a principled and systematic framework for bridging the gap between sensing
and deliberation in a physical agent. While it is unlikely that one will ever achieve
universal agreement on the detailed requirements for such middleware, the following
requirements have served as important guiding principles.

First, the framework should permit the integration of information from distributed
sources, allowing this information to be processed at many different levels of abstrac-
tion and transformed into a suitable form for use by a deliberative functionality. In
traffic monitoring, the primary input will consist of low level sensor data such as im-
ages, a signal from a barometric pressure sensor, a GPS signal, laser range scans, and
so on. There might also be high level information available such as geographical in-
formation and declarative specifications of traffic patterns and normative behaviors of
vehicles. The middleware must be sufficiently flexible to allow the integration of these
sources into a coherent processing system. Since the appropriate structure will vary be-
tween applications, a general framework should be agnostic as to the types of data and
information being handled and should not be limited to specific connection topologies.

Many applications, including traffic monitoring, provide a natural abstraction hierar-
chy starting with quantitative sensor signals, through image processing and anchoring,
to representations of objects with both qualitative and quantitative attributes, to high
level events and situations where objects have complex spatial and temporal relations.
Therefore a second requirement is the support of quantitative and qualitative processing
as well as a mix of them.

A third requirement is that both bottom-up data processing and top-down model-
based processing should be supported. Different abstraction levels are not independent.
Each level is dependent on the levels below it to get input for bottom-up data processing.
At the same time, the output from higher levels could be used to guide processing in a
top-down fashion. For example, if a vehicle is detected on a particular road segment,
then a vehicle model could be used to predict possible future locations, which could be
used to direct or constrain the processing on lower levels.

A fourth requirement is support for management of uncertainty. Many types of un-
certainty exist, at the quantitative sensor data level as well as in the symbolic identity of
objects and in temporal and spatial aspects of events and situations. It should be possi-
ble to use different approaches in different architectures implemented with knowledge
processing middleware, and to integrate multiple approaches in a single application.

Physical agents acting in the world have limited sensory capabilities and limited re-
sources. At times these resources may be insufficient for satisfying all currently execut-
ing tasks, and trade-offs may be necessary. For example, reducing update frequencies
would cause less information to be generated, while increasing the maximum permitted
processing delay would provide more time to complete processing. Similarly, an agent
might decide to focus its attention on the most important aspects of its current situa-
tion, ignoring events or objects in the periphery, or to focus on providing information
for the highest priority tasks or goals. Resource-hungry calculations can sometimes be
replaced with more efficient but less accurate ones. Each trade-off will have effects on
the quality of the information produced and the resources used. A fifth requirement on



Knowledge Processing Middleware 151

knowledge processing middleware is therefore support for flexible configuration and
reconfiguration. This is also necessary for context-dependent processing. For example,
one may initially assume that vehicles follow roads. If a vehicle goes off road, this
simplifying assumption must be retracted and processing may need to be reconfigured.

It should be possible to provide an agent implemented using knowledge processing
middleware with the ability to reason about trade-offs and reconfigure itself without
outside help, which requires introspective capabilities. Specifically, the agent must be
able to determine what information is currently being generated as well as the potential
effects of any changes it may make in the processing structure. Therefore a sixth re-
quirement is for the framework to provide a declarative specification of the information
being generated and the processing functionalities that are available, with sufficient
content to make rational trade-off decisions.

To summarize, we believe knowledge processing middleware should support declar-
ative specifications for flexible configuration and dynamic reconfiguration of context
dependent processing at many different levels of abstraction.

4 Stream-Based Knowledge Processing Middleware

The previous section focused on a set of requirements, intentionally leaving open the
question of how these requirements should be satisfied. We now go on to propose
stream-based knowledge processing middleware, one specific type of framework which
we believe will be useful in many applications. A concrete implementation, DyKnow,
will be discussed later in this paper.

Due to the need for incremental refinement of information at different levels of ab-
straction, we model computations and processes within the stream-based knowledge
processing framework as active and sustained knowledge processes. The complexity of
such processes may vary greatly, ranging from simple adaptation of raw sensor data to
image processing algorithms and potentially reactive and deliberative processes.

In our experience, it is not uncommon for knowledge processes at a lower level to
require information at a higher frequency than those at a higher level. For example,
a sensor interface process may query a sensor at a high rate in order to average out
noise, providing refined results at a lower effective sample rate. This requires knowl-
edge processes to be decoupled and asynchronous to a certain degree. In stream-based
knowledge processing middleware, this is achieved by allowing a knowledge process to
declare a set of stream generators, each of which can be subscribed to by an arbitrary
number of processes. A subscription can be viewed as a continuous query, which cre-
ates a distinct asynchronous stream onto which new data is pushed as it is generated.
The contents of a stream may be seen by the receiver as data, information or knowledge.

Decoupling processes through asynchronous streams minimizes the risk of losing
samples or missing events, something which can be a cause of problems in query-based
systems where it is the responsibility of the receiver to poll at sufficiently high frequen-
cies. Streams can provide the necessary input for processes that require a constant and
timely flow of information. For example, a chronicle recognition system needs to be
apprised of all pertinent events as they occur, and an execution monitor must receive
constant updates for the current system state at a given minimum rate. A push-based



152 F. Heintz, J. Kvarnström, and P. Doherty

stream system also lends itself easily to “on-availability” processing, i.e. processing
data as soon as it is available, and the minimization of processing delays, compared to
a query-based system where polling introduces unnecessary delays in processing and
the risk of missing potentially essential updates as well as wastes resources. Finally,
decoupling also facilitates the distribution of processes within a platform or between
different platforms, another important property of many complex autonomous systems.

Finding the correct stream generator requires each stream generator to have an iden-
tity which can be referred to, a label. Though a label could be opaque, it often makes
sense to use structured labels. For example, given that there is a separate position esti-
mator for each vehicle, it makes sense to provide an identifier i for each vehicle and to
denote the (single) stream generator of each position estimator by position[i]. Knowing
the vehicle identifier is sufficient for generating the correct stream generator label.

Even if many processes connect to the same stream generator, they may have dif-
ferent requirements for their input. As an example, one could state whether new in-
formation should be sent “when available”, which is reasonable for more event-like
information or discrete transitions, or with a given frequency, which is more reasonable
with continuously varying data. In the latter case, a process being asked for a subscrip-
tion at a high frequency may need to alter its own subscriptions to be able to generate
stream content at the desired rate. Requirements may also include the desired approxi-
mation strategy when the source knowledge process lacks input, such as interpolation or
extrapolation strategies or assuming the previous value persists. Thus, every subscrip-
tion request should include a policy describing such requirements. The stream is then
assumed to satisfy this policy until it is removed or altered. For introspection purposes,
policies should be declaratively specified.

While it should be noted that not all processing is based on continuous updates,
neither is a stream-based framework limited to being used in this manner. For example,
a path planner or task planner may require an initial state from which planning should
begin, and usually cannot take updates into account. Even in this situation, decoupling
and asynchronicity are important, as is the ability for lower level processing to build
on a continuous stream of input before it can generate the desired snapshot. A snapshot
query, then, is simply a special case of the ordinary continuous query.

4.1 Knowledge Processes

For the purpose of modeling, we find it useful to identify four distinct types of knowl-
edge process: Primitive processes, refinement processes, configuration processes and
mediation processes.

Primitive processes serve as an interface to the outside world, connecting to sensors,
databases or other information sources that in themselves have no explicit support for
stream-based knowledge processing. Such processes have no stream inputs but provide
a non-empty set of stream generators. In general, they tend to be quite simple, mainly
adapting data in a multitude of external representations to the stream-based framework.
For example, one process may use a hardware interface to read a barometric pressure
sensor and provide a stream generator for this information. However, greater complexity
is also possible, with primitive processes performing tasks such as image processing.



Knowledge Processing Middleware 153

Fig. 2. Before creating vision object Fig. 3. VisionObject#51 linked to CarObject#72

The remaining process types will be introduced by means of an illustrating example
from the traffic monitoring scenario, where car objects must be generated and anchored
to sensor data collected using cameras. This example shows one of many potential
solutions that can be implemented with the help of knowledge processing middleware
and has been successfully used in test flights with an experimental UAV platform [4].

In the implemented approach, the image processing system produces vision objects
representing entities found in an image, having visual and thermal properties similar to
those of a car. A vision object state contains an estimation of the size of the entity and
its position in absolute world coordinates. When a new vision object has been found,
it is tracked for as long as possible by the image processing system and each time it is
found in an image a new vision object state is pushed on a stream.

Anchoring begins with this stream of vision object states, aiming at the generation
of a stream of car object states providing a more qualitative representation, including
relations between car objects and road segments. An initial filtering process, omitted
here for brevity, determines whether to hypothesize that a certain vision object in fact
corresponds to a car. If so, a car object is created and a link is established between the
two objects. To monitor that the car object actually behaves like a car, a maintenance
constraint describing expected behavior is defined. The constraint is monitored, and if
violated, the car hypothesis is withdrawn and the link is removed. A temporal modal
logic is used for encoding normative behaviors, and a progression algorithm is used for
monitoring that the formula is not violated.

Figure 2 shows an initial process setup, existing when no vision objects have been
linked to car objects. As will be seen, processes can dynamically generate new processes
when necessary. Figure 3 illustrates the process configuration when VisionObject#51 has
been linked to CarObject#72 and two new refinement processes have been created.

The first process type to be considered is the refinement process, which takes a set
of streams as input and provides one or more stream generators producing refined, ab-
stracted or otherwise processed values. Several examples can be found in the traffic
monitoring application, such as:

– VoCoLink – Manages the set of links between vision objects and car objects, each
link being represented as a pair of labels. When a previously unseen vision object
label is received, create a new car object label and a link between them. When a
link is received from the VoCoLinkViolations process, the maintenance constraint of



154 F. Heintz, J. Kvarnström, and P. Doherty

the link has been violated and the link is removed. The output is a stream of sets of
links. A suitable policy may request notification only when the set of links changes.

– VoToCo – Refines a single vision object to a car object by adding qualitative infor-
mation such as which road segment the object is on and whether the road segment is
a crossing or a road. Because quantitative data is still present in a car object, a suit-
able policy may request new information to be sent with a fixed sample frequency.
Using a separate process for each car object yields a fine-grained processing net-
work where different cars may be processed at different frequencies depending on
the current focus of attention.

– VoCoLinkMonitor – An instantiation of the formula progressor. Monitors the mainte-
nance constraint of a vision object to car object link, using the stream of car object
states generated by the associated VoToCo. The output is false iff the maintenance
constraint has been violated.

The second type of process, the configuration process, takes a set of streams as input
but produces no new streams. Instead, it enables dynamic reconfiguration by adding or
removing streams and processes. The configuration processes used in our example are:

– CreateVoCoLinkMonitors – Takes a stream of sets of links and ensures VoCoLinkMon-
itor refinement processes are created and removed as necessary.

– CreateVoToCos – Takes a stream of vision to car object links and ensures VoToCo
refinement processes are created and removed as necessary.

Finally, a mediation process generates streams by selecting or collecting information
from other streams. Here, one or more of the inputs can be a stream of labels identifying
other streams to which the mediation process may subscribe. This allows a different
type of dynamic reconfiguration in the case where not all potential inputs to a process
are known in advance or where one does not want to simultaneously subscribe to all
potential inputs due to processing cost. One mediation process is used in our example:

– VoCoLinkViolations – Takes a stream of sets of links identifying all current con-
nections between vision objects and car objects. Dynamically subscribes to and
unsubscribes from monitor information from the associated VoCoLinkMonitors as
necessary. If a monitor signals a violation (sending the value “false”), the corre-
sponding link becomes part of the output, a stream of sets of violated links.

In Figure 2 the VoCoLinkViolations mediation process subscribes to no streams, since
there are no VoCoLinkMonitor streams. In Figure 3 it subscribes to the stream of monitor
results of the maintenance constraint of the new VisionObject#51 to CarObject#72 link.

This example shows how stream-based knowledge processing middleware can be ap-
plied in a very fine-grained manner, even at the level of individual objects being tracked
in an image processing context. At a higher level, the entire anchoring process can be
viewed as a composite knowledge process with a small number of inputs and outputs,
as originally visualized in Figure 1. Thus, one can switch between different abstraction
levels while remaining within the same unifying framework. In previous work it has
been shown how stream-based knowledge processing middleware can provide support
for the different functional levels in the JDL Data Fusion Model [5].



Knowledge Processing Middleware 155

4.2 Timing

Any realistic knowledge processing architecture must take into account the fact that
both processing and communication takes time, and that delays may vary, especially in
a distributed setting. As an example, suppose one knowledge process is responsible for
determining whether two cars are too close to each other. This test could be performed
by subscribing to two car position streams and measuring the distance between the cars
every time a new position sample arrives. Should one input stream be delayed by one
sample period, distance calculations would be off by the distance traveled during that
period, possibly triggering a false alarm. Thus, the fact that two pieces of information
arrive simultaneously must not be taken to mean that they refer to the same time.

For this reason, stream-based knowledge processing middleware should support tag-
ging each piece of information in a stream with its valid time, the time at which the in-
formation was valid in the physical environment. For example, an image taken at time t
has the valid time t. If an image processing system extracts vision objects from this
image, each created vision object should have the same valid time even though some
time will have passed during processing. One can then ensure that only samples with
the same valid time are compared. Valid time is also used in temporal databases [6].

Note that nothing prevents the creation of multiple samples with the same valid time.
For example, a knowledge process could very quickly provide a first rough estimate
of some property, after which it would run a more complex algorithm and eventually
provide a better estimate with identical valid time.

The available time, the time when a piece of information became available through
a stream, is also relevant. If each value is tagged with its available time, a knowledge
process can easily determine the total aggregated processing and communication delay
associated with the value, which is useful in dynamic reconfiguration. Note that the
available time is not the same as the time when the value was retrieved from the stream,
as retrieval may be delayed by other processing.

The available time is also essential when determining whether a system behaves
according to specification, which depends on the information actually available at any
time as opposed to information that has not yet arrived.

5 DyKnow

A concrete example of a stream-based knowledge processing middleware framework
called DyKnow has been developed as part of our effort to build UAVs capable of car-
rying out complex missions [7,8,5]. Most of the functionality provided by DyKnow has
already been presented in the previous section, but one important decision for each con-
crete instantiation is the type of entities it can process. For modeling purposes, DyKnow
views the world as consisting of objects and features.

Since we are interested in dynamic worlds, a feature may change values over time.
To model the dynamic nature of the value of a feature a fluent is introduced. A fluent is a
total function from time to value, representing the value of a feature at every time-point.
Example features are the speed of a car, the distance between two cars, and the number
of cars in the world.



156 F. Heintz, J. Kvarnström, and P. Doherty

Since the world is continuous and the sensors are imperfect the exact fluent of a fea-
ture will in most cases never be completely known, instead it has to be approximated.
In DyKnow, an approximation of the value of a feature over time is represented by a
fluent stream. A fluent stream is a totally ordered sequence of samples, where each sam-
ple represents an observation or an estimation of the value of the feature at a particular
time-point.

To satisfy the sixth requirement of having a declarative specification of the informa-
tion being generated, DyKnow introduces a formal language to describe knowledge pro-
cessing applications. An application declaration describes what knowledge processes
and streams exists and the constraints on them. To model the processing of a dependent
knowledge process a computational unit is introduced. A computational unit takes one
or more samples as inputs and computes zero or more samples as output. A computa-
tional unit is used by a dependent knowledge process to create a new fluent generator.
A fluent generator declaration is used to specify the fluent generators of a knowledge
process. It can either be primitive or dependent. To specify a stream a policy is used.

The DyKnow implementation sets up stream processing according to an application
specification and processes streams to satisfy their policies. Using DyKnow an instance
of the traffic monitoring scenario has successfully been implemented and tested [4].

6 Related Work

There is a large body of work on hybrid architectures which integrate reactive and
deliberative decision making [9,10,11,12,13]. This work has mainly focused on inte-
grating actions on different levels of abstraction, from control laws to reactive behav-
iors to deliberative planning. It is often mentioned that there is a parallel hierarchy of
more and more abstract information extraction processes or that the deliberative layer
uses symbolic knowledge, but only a few of these approaches are described in some
detail [14,15,16].

We now focus on some approaches providing general support for integrating sensing
and reasoning as opposed to approaches tackling important but particular subproblems
such as symbol grounding, simultaneous localization and mapping, or transforming
signals to symbols. With general support we mean that a system explicitly supports at
least a few of the requirements, and does not prevent any of the remaining requirements
from being met. However, the explicit support for the requirements often widely differ.

4D/RCS is a general cognitive architecture which can be used to combine different
knowledge representation techniques [17]. It consists of a multi-layered hierarchy of
computational nodes each containing sensory processing, world modeling, value judg-
ment, behavior generation, and a knowledge database. The idea of the design is that the
lowest levels have short-range and high-resolution representations of space and time
appropriate for the sensor level while higher levels have long-range and low-resolution
representations appropriate for deliberative services. Each level thus provides an ab-
stract view of the previous levels. Each node may use its own knowledge representation
and thereby support multiple different representation techniques. However, the archi-
tecture does not, to our knowledge, explicitly address the issues related to connecting
different representations and transforming one representation into another. These are



Knowledge Processing Middleware 157

fundamental issues which stream-based knowledge processing middleware explicitly
supports. However, it ought to be possible to combine the two approaches and imple-
ment the 4D/RCS architecture using DyKnow.

The CoSy Architecture Schema Toolkit (CAST) built on top of the Boxes and Lines
Toolkit (BALT) is a tool for creating cognitive architectures [18]. An architecture con-
sists of a collection of interconnected subarchitectures (SAs). Each SA contains a set
of processing components that can be connected to sensors and effectors and a working
memory which acts like a blackboard within the SA. A processing component can either
be managed or unmanaged. An unmanaged processing component runs constantly and
directly pushes its results into the working memory. A managed process, on the other
hand, monitors the working memory content for changes and suggests new possible
processing tasks. Since these tasks might be computationally expensive a task manager
uses a set of rules to decide which task should be executed next based on the current
goals of the SA. One special SA is the binder which creates a high-level shared repre-
sentation that relates back to low-level subsystem-specific representations [19]. It binds
together content from separate information processing subsystems to provide symbols
that can be used for deliberation and action.

The BALT middleware provides a set of processes which can be connected either
by 1-to-1 pull connections or 1-to-N push connections. With its push connections and
its support for distributing information and integrating reasoning components it can be
seen as a basic stream-based knowledge processing middleware. A difference is that it
does not provide any declarative policy-like specification to control push connections.
CAST further adds support for a structured way of processing data on many levels
of abstraction and the binder supports an explicit integration of representations from
several SAs. A difference compared to DyKnow is the lack of a declarative specification
of the processing of an architecture.

7 Summary

As autonomous physical systems become more sophisticated and are expected to handle
increasingly complex and challenging tasks and missions, there is a growing need to
integrate a variety of functionalities developed in the field of artificial intelligence. A
great deal of research in this field has been performed in a purely symbolic setting,
where one assumes the necessary knowledge is already available in a suitable high-
level representation. There is a wide gap between such representations and the noisy
sensor data provided by a physical platform, a gap that must somehow be bridged in
order to ground the symbols that the system reasons about in the physical environment
in which the system should act.

When physical autonomous systems grow in scope and complexity, bridging the gap
in an ad-hoc manner becomes impractical and inefficient. At the same time, a system-
atic solution has to be sufficiently flexible to accommodate a wide range of components
with highly varying demands. Therefore, we began by discussing the requirements that
we believe should be placed on any principled approach to bridging the gap. As the next
step, we proposed a specific class of approaches, which we call stream-based knowl-
edge processing middleware and which is appropriate for a large class of autonomous



158 F. Heintz, J. Kvarnström, and P. Doherty

systems. This step provides a considerable amount of structure for the integration of
the necessary functionalities, but still leaves certain decisions open in order to avoid
unnecessarily limiting the class of systems to which it is applicable. Finally, DyKnow
was presented to give an example of an existing implementation of such middleware.

References

1. Ghallab, M.: On chronicles: Representation, on-line recognition and learning. In: Proc. KR
1996, pp. 597–607 (1996)

2. Coradeschi, S., Saffiotti, A.: An introduction to the anchoring problem. Robotics and Au-
tonomous Systems 43(2-3), 85–96 (2003)

3. Heintz, F., Doherty, P.: Managing dynamic object structures using hypothesis generation and
validation. In: Proc. Workshop on Anchoring Symbols to Sensor Data (2004)

4. Heintz, F., Rudol, P., Doherty, P.: From images to traffic behavior – a UAV tracking and
monitoring application. In: Proc. Fusion 2007, Quebec, Canada (2007)

5. Heintz, F., Doherty, P.: A knowledge processing middleware framework and its relation to
the JDL data fusion model. J. Intelligent and Fuzzy Systems 17(4) (2006)

6. Jensen, C., Dyreson, C. (eds.): The consensus glossary of temporal database concepts. In:
Temporal Databases: Research and Practice (February 1998)

7. Doherty, P., Haslum, P., Heintz, F., Merz, T., Nyblom, P., Persson, T., Wingman, B.: A
distributed architecture for autonomous unmanned aerial vehicle experimentation. In: Proc.
DARS 2004 (2004)

8. Heintz, F., Doherty, P.: DyKnow: An approach to middleware for knowledge processing. J.
Intelligent and Fuzzy Systems 15(1), 3–13 (2004)

9. Bonasso, P., Firby, J., Gat, E., Kortenkamp, D., Miller, D., Slack, M.: Experiences with an
architecture for intelligent, reactive agents. J. Experimental and Theoretical AI 9 (1997)

10. Arkin, R.C.: Behavior-Based Robotics. MIT Press, Cambridge (1998)
11. Pell, B., Gamble, E.B., Gat, E., Keesing, R., Kurien, J., Millar, W., Nayak, P.P., Plaunt,

C., Williams, B.C.: A hybrid procedural/deductive executive for autonomous spacecraft. In:
Proc. AGENTS 1998, pp. 369–376 (1998)

12. Atkin, M.S., King, G.W., Westbrook, D.L., Heeringa, B., Cohen, P.R.: Hierarchical agent
control: a framework for defining agent behavior. In: Proc. AGENTS 2001, pp. 425–432
(2001)

13. Scheutz, M., Kramer, J.: RADIC – a generic component for the integration of existing reac-
tive and deliberative layers for autonomous robots. In: Proc. AAMAS 2006 (2006)

14. Lyons, D., Arbib, M.: A formal model of computation for sensory-based robotics. Robotics
and Automation, IEEE Transactions on 5(3), 280–293 (1989)

15. Konolige, K., Myers, K., Ruspini, E., Saffiotti, A.: The Saphira architecture: a design for
autonomy. J. Experimental and Theoretical AI 9(2–3), 215–235 (1997)

16. Andronache, V., Scheutz, M.: APOC - a framework for complex agents. In: Proceedings of
the AAAI Spring Symposium, pp. 18–25. AAAI Press, Menlo Park (2003)

17. Schlenoff, C., Albus, J., Messina, E., Barbera, A.J., Madhavan, R., Balakrisky, S.: Using
4D/RCS to address AI knowledge integration. AI Mag. 27(2), 71–82 (2006)

18. Hawes, N., Zillich, M., Wyatt, J.: BALT & CAST: Middleware for cognitive robotics. In:
Proceedings of IEEE RO-MAN 2007, pp. 998–1003 (2007)

19. Jacobsson, H., Hawes, N., Kruijff, G.J., Wyatt, J.: Crossmodal content binding in
information-processing architectures. In: Proc. HRI 2008, Amsterdam, The Netherlands
(2008)



Towards Automated Online Diagnosis of Robot
Navigation Software

Alexander Kleiner1, Gerald Steinbauer2, and Franz Wotawa2,�

1 Institut für Informatik, Albert-Ludwigs-Universität Freiburg
Georges-Köhler-Allee, D-79110 Freiburg, Germany

kleiner@informatik.uni-freiburg.de
2 Institute for Software Technology, Graz University of Technology

Inffeldgasse 16b/II, A-8010, Austria
{steinbauer,wotawa}@ist.tugraz.at

Abstract. Navigation software of autonomous mobile robots comprises
a number of software modules that typically interact in a very complex
way. Their proper interaction and the robustness of each single module
strongly influence the safety during navigation in the field. Particularly
in unstructured environments, unforeseen situations are likely to occur
causing erroneous behaviors of the robot. The proper handling of such
situations requires an understanding of cause and effect within the com-
plex interactions of the system.

In this paper we present a method for the automatic modeling of
navigation software components and their interactions by observing their
communication patterns. The learned model is used online for model-
based reasoning (MBR) in order to increase system robustness during
runtime.

We evaluated the approach on three different robot systems whose
software components are communicating via the widely used IPC (In-
ter Process Communication) architecture. Our results demonstrate the
systems capability of automatic system learning and diagnosis without
a priori knowledge.

1 Introduction

Control software of autonomous mobile robots comprises a number of software
modules which interact in a very complex manner. With increasing complexity,
design and implementation errors are likely to occur, causing failures during run-
time. Such failures can have different symptoms, such as module crashes, dead-
locks, and misinterpreted data leading to hazardous decisions of the robot. In
order to enable truly autonomous robots long-term operating without or limited
human intervention, such as planetary rovers exploring Mars, and rescue robots
searching for victims in unknown terrain, their navigation software requires the
capability to detect, localize, and to recover failure situations.

� Corresponding author.

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 159–170, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



160 A. Kleiner, G. Steinbauer, and F. Wotawa

In [1,2] the authors presented a MBR (model-based reasoning) framework
for the control software of autonomous robots using consistency-based diagnosis
techniques introduced by Reiter [3]. In this work models were created manually
by humans analyzing the structure of the software. However, for large or partially
unknown systems, manual modeling turns out to be suboptimal. Therefore, the
automatic model creation, either by formal specification or system observation,
is desirable.

In this paper we present an extension of previous work that allows to automati-
cally derive models by observing the communication behavior of component-
orientated navigation software. The basic idea is first, to learn communication
patterns undernormal conditions, and second, todetect and localize failures during
runtime by comparing these patterns to observed communications. The algorithm
generates a communication graph encoding softwaremodules by vertices and mod-
ule interactions by edges. Each edge is defined by a particular message type, e.g.,
reading of a laser range finder, or a position computed by the localization module,
and the condition under which the message occurs, e.g., triggered, sporadic, or pe-
riodic with a specific frequency. From this graph structure, a set of logical clauses
is extracted based on a component-based modeling schema [4]. Furthermore, for
each edge an observer is generated that is parameterized according to the learned
communication behavior of the link. During runtime, observers continuously mon-
itor communications between the modules. If they observe abnormal patterns, the
diagnosis engine is automatically triggered for reasoning the failure.

The model learning approach has been tested with the control software of the
Lurker robots [5] used in the RoboCup Rescue league, a multi-robot team of Zerg
robots [6] used in the RoboCup Rescue simulation league, and the Telemax robot
designed for the TechX challenge [7]. The control software of these systems uti-
lizes the IPC communication framework [8], which is a very popular event-based
communication library used by a number of robotic research labs worldwide.

MBR has been actively studied in the past. The Livingstone architecture by
Williams and colleagues [9] was used on the space probe Deep Space One to
detect failures in the hardware and to recover from them. It has also been suc-
cessfully applied to fault detection and localization in digital circuits and car
electronics, and for software debugging of VHDL [4]. In [10] the authors show
the application of MBR to the diagnosis of a group of robots in the health
care domain. The system model comprises interconnected finite state automata.
In [11] MBR was presented for monitoring component-based software. The be-
havior of software components was modeled by Petri nets, where nodes rep-
resented the state of components, and transitions the interactions. Verma and
colleagues [12] utilized particle filters to estimate the state of the robot and its
environment. These estimates together with a model of the robot were used to
detect failure situations.

The reminder of this paper is structured as follows. In Section 2 the model
learning from observed communication and in Section 3 the model-based diag-
nosis are discussed. In Section 4 we present experimental results and conclude
in Section 5.



Towards Automated Online Diagnosis of Robot Navigation Software 161

2 Model Learning

Systems based on IPC use an event-based communication paradigm, i.e. software
modules provide data by publishing events, and other modules subscribe for
these events in order to receive the data shortly after submission. Typically a
central module is in charge of handling all communication, which can also be
utilized for recording and monitoring events. For example, the central server of
IPC is able to record the type of the event, the time the event was published
or consumed, the content of the event, and the names of the publishing and the
receiving modules. In our implementation we use this data for creating a model
of the system. Please note that if an event is consumed multiple times, each
consumption is separately recorded.

Figure 1 depicts the recorded events while running a simple control software
example that comprises only five modules with a simple communication struc-
ture. In the example there are two data paths, one for processing self-localization,
and another one for object tracking. Whereas the software modules Odometry,
Vision, and SelfLoc provide data on a regular basis, the Tracker module provides
data only if objects have been detected in the data published by the Vision mod-
ule. Figure 1 shows the timing of event publishing, and Figure 2 the extracted
communication graph. Communication graphs are not only useful for diagnosis,
they also expressively visualize the relations between modules of larger or par-
tially unknown software. In the following, the model learning algorithm will be
described based on this example.

2.1 The Communication Graph

At a first step the algorithm extracts a communication graph from the data,
where nodes represent different software modules, and edges different events that
are exchanged between the modules. Each event is represented by at least one

 0

 50

 100

 150

 200

 250

 300

 350

 0  1  2  3  4  5  6  7  8

Time [s]

msg-objects msg-odometry msg-velocities msg-pose

Fig. 1. Recorded communication of the example robot
control software. The peaks indicate the occurrence of
the particular event.

Vision

T r a c k e r

msg-objects @ 2 Hz

U s e r

msg-velocities @ 2 Hz

O d o m e t r y

Selfloc

msg-odometry @ 12 Hz

msg-pose @ 6 Hz

Fig. 2. Communication
graph learned from the
recorded data of the
example control software



162 A. Kleiner, G. Steinbauer, and F. Wotawa

edge, whereas edges can also connect to multiple receiving modules originating
from a single publishing module. Formally, the communication graph can be
defined as following:

Definition 1 (CG). A communication graph (CG) is a directed graph with the
set of nodes M and the set of labeled edges C, where:

– M is a set of software modules sending or receiving at least one event.
– C is a set of connections between modules, the direction of the edge points

from the sending to the receiving module, the edge is labeled with the name
of the related event.

Please note that the communication graph may contain cycles. Usually such cy-
cles emerge from hand shaking mechanisms between two modules. The algorithm
for the creation of the communication graph can be formalized as following:

computeGraph
Input: a set of recorded events E
Output: a set of nodes M and edges C

1. Let M be the empty set.
2. Let C be the empty set.
3. For all e ∈ E:

(a) If p(e) /∈ M add p(e) to M .
(b) If c(e) /∈ M add c(e) to M .
(c) If (p(e), c(e), l(e)) /∈ C add (p(e), c(e), l(e)) to C

4. Return M and C.

The algorithm starts with an empty set of nodes M and edges C and then
iterates trough the set E of all recorded communication events. If either the
sender or the receiver is not in the set of nodes, the sender or the receiver is
added. If there is no edge pointing from the sending to the receiving node with
the proper label, a new edge with the appropriate label is added between the two
modules. The functions p(e), c(e), l(e) return the publisher, the consumer and
the label of an event c. Moreover, we define the two functions in : CO �→ 2C

and out : CO �→ 2C which return the edges pointing to and from a node.

2.2 The Communication Behavior

In a next step the behavior or type of each event connection is determined. For
this purpose we consider the output and input edges of the publishing node, and
the recorded timing of each communication via these edges. We distinguish the
following event types: triggered event connection (1), periodic event connection
(2), bursted event connection (3), and random event connection (4). In order
to describe the behavior of a connection formally, we define a set of connection
types CT = {periodic, triggered, bursted, random} and a function ctype : C �→
CT which returns the type of a particular connection c ∈ C. The type of an
event connection is determined by tests like measurements of the mean and
the standard deviation of the time between the occurrence of the events on the
connection, and comparison and correlation of the occurrence of two events.
The criteria used to assign an event connection to one of the four categories are
summarized below:



Towards Automated Online Diagnosis of Robot Navigation Software 163

Triggered. In order to determine whether an event connection is triggered,
events on connection c ∈ out(m) are correlated to events on the set of input con-
nection of the software module I = in(m). If the number of events on connection
c, which are correlated with an event on a particular connection t ∈ in(m), ex-
ceed a certain threshold, connection t is named as trigger by connection c. The
correlation test checks for the occurrence of the trigger event prior to the ob-
served event. If connection c is correlated with at least one connection t ∈ in(m),
connection c is categorized as a triggered connection. Usually, such connections
are found in modules performing calculations only if new data is available.

Periodic. On a periodic event connection the same event regularly occurs with
a fixed frequency. We calculate from time stamps of event occurrences a discrete
distribution of the time difference between two successive events. If one particular
time difference can be found with low variance, the connection is classified as
periodic and parameterized with the detected frequency. For a pure periodic
event connection one gets a distribution close to a Dirac impulse. Usually, such
connections are found for modules providing data at a fixed frame rate, such as
a module sending data from a video camera.

Bursted. A bursted event is similar to the periodic event, whereas its regular
occurrence can be switched on and off for a period of time. An event connection
is classified as bursted if there exist time periods where the criteria of the peri-
odic event connection holds. Usually, such connections are found with modules
which do specific measurements only if the central controller explicitly enables
them, e.g., the generation of a complete 3d laser scan requiring the motion of an
actuator for some while.

Random. For random event connections none of the above categories match
and therefore no useful information about the behavior of that connection can
be derived. Usually, such connections are found in modules which provide data
only if some specific circumstance occur in the system or its environment.

In the case of the above example, the algorithm correctly classified the event
connections odometry, objects and pose as periodic and the connection velocity
as triggered with the trigger objects.

2.3 The Observers

In order to be able to monitor the actual behavior of the control software,
the algorithm instantiates an observer for each event connection. The type
of the observer is determined by the type of the connection and its parame-
ters, estimated by the methods described before. An observer raises an alarm
if there is a significant discrepancy between the currently observed behavior of
an event connection and the behavior learned beforehand during normal opera-
tion. The observer provides as an observation O the atom ok(l) if the behavior
is within the tolerance and the atom ¬ok(l) otherwise. Where l is the label of the



164 A. Kleiner, G. Steinbauer, and F. Wotawa

corresponding edge in the communication graph. The observations of the
complete control software OBS are the union of all individual observations

OBS =
n⋃

i=1

Oi

where n is the number of observers.
Observers can be instantiated for either triggered, periodic, bursted, or ran-

dom connections. The trigger observer raises an alarm if within a certain timeout
after the occurrence of a trigger event no corresponding event occurs or if the
trigger event is missing prior the occurrence of the corresponding event. In or-
der to be robust against noise, the observer uses a majority vote for a number
of succeeding events. The periodic observer raises an alarm if there is a signif-
icant change in the frequency of the events on the observed connection. The
observer checks if the frequency of successive events does vary significantly from
the specified frequency. For this purpose, the observer estimates the frequency of
the events within a sliding time window. The bursted observer is similar to the
periodic observer. It differs in the fact that it starts the frequency check only if
events occur and does not raise an alarm if no events occur. Finally, the random
is a dummy observer which always provides the observation ok(l). This observer
is implemented for completeness.

2.4 The System Description

The communication graph together with the type of the connections is a sufficient
specification of the communication behavior of the robot control software. This
specification can be used in order to derive a system description for the diagnosis
process. It is a description of the desired or nominal behavior of the system. In
order to be able to be used in the diagnosis process, the system description is
automatically written down as a set of logical clauses. We use Horn-clauses only
for efficiency reasons. This set can easily be derived from the communication
graph and the behavior of the connections. The algorithm to derive the system
description can be formalized as following:

computeSD
Input: the communication graph with nodes M and connections C
Output: a set of clauses

1. Let SD be the empty set.
2. For all c ∈ C:

If host(p(c)) �= host(c(c))
(a) If ctype(c) = triggered add

¬AB(p(c))
∧

t∈trigger(c)∧t∈in(p(c))

ok(t)∧

∧¬AB(host(p(c))) ∧ ¬AB(host(c(c))) → ok(c)



Towards Automated Online Diagnosis of Robot Navigation Software 165

to SD
Else add

¬AB(p(c)) ∧ ¬AB(host(p(c))) ∧ ¬AB(host(c(c))) → ok(c)

to SD

Else
(b) If ctype(c) = triggered add

¬AB(p(c))
∧

t∈trigger(c)∧t∈in(p(c))

ok(t) → ok(c)

to SD
Else add

¬AB(p(c)) → ok(c)

to SD

3. For all m ∈ M :
Add ∧

c′∈out(m)

ok(c′) → ¬AB(m)

to SD

4. Return SD.

Functions p(c) and c(c) return the publishing and receiving module of an event
connection c. Function host(m) returns the host computer on which a particular
module m is executed. The algorithm starts with an empty set SD. For every
event connection, clauses are added to the system description by two steps. In
the first step, a clause for forward reasoning is added. The clause specifies if a
module works correctly and if all related inputs and outputs behave as expected.
Depending on the type of connection, we add the following clause to SD: If
connection c is triggered, we add a clause expressing that if the module and all
related inputs work as expected, also the output works as expected. Otherwise, a
clause expressing that if the module works as expected, also the output works as
expected, is added (see Line 2). The negation ¬AB(m) denotes that module m is
not abnormal, i.e. working as expected, and atom ok(c) denotes that connection
c behaves as expected. Moreover, if the host of the sending and receiving modules
of connection c is different, a fact expressing that the network interfaces of these
modules have to work correctly, is added, e.g., ¬AB(host(p(c)).

In a second step, a clause for backward reasoning is added. The clause specifies
if all output connections c′ of module m behave as expected, the module itself
has to behave as expected (see Line 3).

Figure 3 depicts the system description obtained for the above example con-
trol software. Clauses 1 to 4 describe the forward reasoning. Clauses 5 to 8
describe the backward reasoning. Clause 3 states that the module Tracker works
correctly only if a velocity event occurs exclusively after a trigger event. For in-
stance, Clause 6 states that if all output connections of module Odometry work
as expected, consequently the module itself works correctly.



166 A. Kleiner, G. Steinbauer, and F. Wotawa

1. ¬AB(Vision) → ok(objects)
2. ¬AB(Odometry) → ok(odometry)
3. ¬AB(Tracker) ∧ ok(objects) → ok(velocities)
4. ¬AB(Selfloc) → ok(pose)
5. ok(objects) → ¬AB(Vision)
6. ok(odometry) → ¬AB(Odometry)
7. ok(velocities) → ¬AB(Tracker)
8. ok(pose) → ¬AB(Selfloc)

Fig. 3. The system description automatically derived for the example control software

3 Model-Based Diagnosis

For the detection and localization of faults we use the consistency-based diagnosis
technique of Reiter [3]. In order to be able to detect and localize a fault, the
method needs a model of the correct behavior of the system (the obtained system
description), recent observations of the system, and assumptions whether the
components of the systems work correctly. The basic idea is that if we assume
all components to work correctly (expressed by the according literals ¬AB),
and if the prediction of the (correct) behavior of the model differs from the
actual observations of the system, there is a failure in the system. If the method
discovers such a contradiction, a fault is detected. Formally, we define this by:

SD ∪ OBS ∪ {¬AB(m)|m ∈ M} |=⊥ .

Such a consistency-check for Horn-clauses can be performed in linear time using
the LTUR algorithm [13].

So far we only know that a fault occurred but not which module(s) are its root
cause(s). In order to localize the module(s) responsible for the detected fault, we
have to calculate a diagnosis ∆. Where ∆ is a set of modules m ∈ M we have
to declare as faulty (change ¬AB(m) to AB(m)) in order to resolve the above
contradiction. Formally, we define this by:

SD ∪ OBS ∪ {AB(m)|m ∈ ∆} ∪ {¬AB(m)|m ∈ M \ ∆} �|=⊥ .

This is similar to human reasoning. The algorithm of Reiter implements an ef-
ficient way to manipulate the assumptions in order to calculate the diagnosis.
Intuitively one can say that a diagnosis ∆ is an explanation for an observed
misbehavior. We use our implementation1 of this diagnosis process for the ex-
perimental evaluation of the models. Please refer to [1,2] for more details on the
diagnosis process.

Consider the following simple situation for the example control software. If a
fault occurs in module Vision, the fact that no more events of the type objects
are produced is recognized by an observer. This is expressed by the observa-
tion ¬ok(objects). i If we use the system description of Figure 3, the actual
1 The implementation can freely be downloaded at

http://www.ist.tugraz.at/mordams/.



Towards Automated Online Diagnosis of Robot Navigation Software 167

observations, and the assumption that all modules work as expected, we are
able to derive ok(objects) by the clause 1. This contradiction shows that we
have detected a fault. In order to localize the root cause of the fault we re-
tract assumptions about working modules. For instance, if changing assump-
tion ¬AB(Tracker) to AB(Tracker) it is still possible to derive ok(objects) by
clause 1. Therefore, the set containing only module Tracker does not resolve the
contradiction and is therefore not a diagnosis. Such checks for inconsistencies
are done by a call of a theorem prover, e.g., the LTUR algorithm. But if we
change assumption ¬AB(V ision) to AB(V ision), we can not derive ok(objects)
by clause 1 anymore. Therefore, the set ∆ = {V ision} resolves the contradiction
and is therefore a valid diagnosis. Please note that every superset of a diagnosis
is also a diagnosis.

4 Experimental Results

In order to show the potential of the proposed model learning, the approach has
been tested on three different types of navigation software. We evaluated whether
the approach is able to derive an appropriate model reflecting all aspects of the
behavior of the system. The derived model was evaluated by the system engineer
who has developed the system. Moreover, we injected artificial faults like module
crashes in the system, and evaluated if the fault can be detected and localized
by the derived model.

Autonomous Exploration Robot Lurker. We recorded the communica-
tion of the navigation software of the rescue robot Lurker [5] while it was au-
tonomously exploring an unknown area. The robot is shown in Figure 4 (a).

The control software of this robot is far more complex as in the simple example
since it comprises software modules enabling autonomous exploration of rough
terrain. Figure 4 (a) shows the communication graph derived from the recorded
data. The numbers in the labels of the edges denote the average frequency of
events on the connections. Please note that a frequency of 0 Hz means the ac-
tual frequency is below 1 Hz. From the communication graph and the categorized

(a) (b) (c)

Fig. 4. Three autonomous navigation systems that have been evaluated. (a) The res-
cue robot Lurker, (b) the Telemax robot, and (c) a team of four Zerg robots during
exploration in the USARSim environment.



168 A. Kleiner, G. Steinbauer, and F. Wotawa

(b
)

(a
)

U
S

A
R

_
IP

C
@

z
e

rg
1

S
T

A
T

IO
N

@
st

at
io

n

k
al

m
an

_
p

o
se

@
0

 H
z

V
F

H
@

z
e

rg
1

re
la

ti
v

e_
fr

ie
n

d
_

lo
ca

ti
o

n
s_

2
H

z
rf

id
_

u
se

r_
d

at
a

@
0

 H
z

V
F

H
@

z
e

rg
2

re
la

ti
v

e_
fr

ie
n

d
_

lo
ca

ti
o

n
s

@
1

 H
z

rf
id

_
u

se
r_

d
at

a
@

0
 H

z

V
F

H
@

z
e

rg
3

rf
id

_
u

se
r_

d
at

a
@

1
 H

z
re

la
ti

v
e_

fr
ie

n
d

_
lo

ca
ti

o
n

s
@

1
 H

z

V
F

H
@

z
e

rg
4

re
la

ti
v

e_
fr

ie
n

d
_

lo
ca

ti
o

n
s

@
1

 H
z

rf
id

_
u

se
r_

d
at

a
@

0
 H

z

U
S

A
R

_
IP

C
@

z
e

rg
2

k
al

m
an

_
p

o
se

@
1

 H
z

V
F

H
@

_
ze

rg
1

rf
id

_
u

se
r_

d
at

a
@

0
 H

z

rf
id

_
u

se
r_

d
at

a
@

1
 H

z
rf

id
_

u
se

r_
d

at
a

@
1

 H
z

rf
id

_
u

se
r_

d
at

a
@

1
 H

z
rf

id
_

u
se

r_
d

at
a

@
1

 H
z

V
F

H
@

_
ze

rg
2

rf
id

_
u

se
r_

d
at

a
@

0
 H

z

rf
id

_
u

se
r_

d
at

a
@

0
 H

z
rf

id
_

u
se

r_
d

at
a

@
1

 H
z

rf
id

_
u

se
r_

d
at

a
@

0
 H

z
rf

id
_

u
se

r_
d

at
a

@
0

 H
z

U
S

A
R

_
IP

C
@

z
e

rg
3

k
al

m
an

_
p

o
se

@
0

 H
z

ra
n

g
e

sl
a

m
@

z
e

rg
2

rf
id

_
se

n
so

r
@

0
 H

z

ra
n

g
e

sl
a

m
@

z
e

rg
1

rf
id

_
se

n
so

r
@

0
 H

z

U
S

A
R

_
IP

C
@

z
e

rg
4

k
al

m
an

_
p

o
se

@
0

 H
z

ra
n

g
e

sl
a

m
@

z
e

rg
4

rf
id

_
se

n
so

r
@

0
 H

z

V
F

H
@

_
ze

rg
4

rf
id

_
u

se
r_

d
at

a
@

0
 H

z
rf

id
_

u
se

r_
d

at
a

@
0

 H
z

rf
id

_
u

se
r_

d
at

a
@

1
 H

z
rf

id
_

u
se

r_
d

at
a

@
1

 H
z

ra
n

g
e

sl
a

m
@

z
e

rg
3

rf
id

_
se

n
so

r
@

0
 H

z

V
F

H
@

_
ze

rg
3

rf
id

_
u

se
r_

d
at

a
@

0
 H

z rf
id

_
u

se
r_

d
at

a
@

1
 H

z
rf

id
_

u
se

r_
d

at
a

@
1

 H
z

rf
id

_
u

se
r_

d
at

a
@

1
 H

z
rf

id
_

u
se

r_
d

at
a

@
1

 H
z

X
se

n
se

m
c

C
li

e
n

t

in
e

rt
ia

@
 5

8
H

z

L
u

rk
e

rC
o

n
tr

o
ll

e
r

in
e

rt
ia

@
 2

5
 H

z

lo
ca

li
za

ti
o

n

in
e

rt
ia

@
 3

8
H

z

el
ev

at
io

n

in
e

rt
ia

@
 2

0
 H

z

lu
rk

e
r_

a
rm

_
p

o
s

@
 1

1
 H

z
lu

rk
e

r_
to

u
c

h
_

p
o

s
@

 1
1

 H
z

b
u

m
p

e
r

@
 1

1
 H

z

ti
lt

_
ac

k
@

 3
 H

z

u
rg

L
M

S

p
o

si
ti

o
n

e
r_

a
c

tu
a

to
r

@
 3

H
z

m
o

to
r

@
 0

 H
z

p
o

si
ti

o
n

e
r_

a
c

tu
a

to
r

@
 3

H
z

ra
n

g
e

sc
a

n
_

ra
n

g
e

s
@

 7
 H

z

ra
n

g
e

sc
a

n
_

ra
n

g
e

s
@

 9
 H

z

ra
n

g
e

s
c

a
n

@
 0

 H
z

ti
lt

e
d

_
ra

n
g

e
s

@
 5

 H
z

H
ie

ra
rc

h
y

C
o

n
tr

o
ll

e
r

3
d

sc
a

n
_

re
c

e
iv

e
d

@
 0

 H
z

re
d

o
n

e
@

 5
 H

z

ro
b

o
t_

c
o

n
te

x
t

@
 0

 H
z

ta
sk

_
fi

n
is

h
@

 0
 H

z

k
a

lm
a

n
_

p
o

se
@

 6
 H

z

k
a

lm
a

n
_

p
o

se
@

 6
 H

z

p
o

si
ti

o
n

e
r_

a
c

tu
a

to
r

@
 0

 H
z

p
o

si
ti

o
n

e
r_

a
c

tu
a

to
r

@
 0

 H
z

p
o

se
3

d
@

 1
3

 H
z

h
e

ig
h

tm
a

p
@

 2
 H

z
3

d
sc

a
n

_
re

c
e

iv
e

d
@

 0
 H

z

m
rf

H
e

ig
h

tm
a

p
C

la
ss

if
ie

r

p
a

rt
ia

l_
h

e
ig

h
tm

a
p

@
 0

 H
z

re
d

o
n

e
@

 3
 H

z

3
d

sc
a

n
_

tr
ig

g
e

r
@

 0
 H

z

ta
sk

_
a

ss
ig

n
_

c
li

m
b

in
g

@
 0

 H
z

ro
b

o
t_

c
o

n
te

x
t

@
 3

 H
z

m
rf

_
a

re
a

_
re

q
u

e
st

@
 1

 H
z

R
e

m
o

te
A

u
to

n
o

m
y

h
ie

ra
rc

h
y

_
d

e
b

u
g

@
 3

 H
z

a
c

ti
o

n
_

e
x

e
c

u
ti

o
n

_
d

e
b

u
g

@
 1

8
 H

z
a

u
to

n
o

m
y

_
c

o
n

tr
o

l
@

 0
 H

z

p
a

rt
ia

l_
h

e
ig

h
tm

a
p

@
 0

 H
z

F
ig

.
5
.

T
w

o
le

ar
ne

d
co

m
m

un
ic

at
io

n
gr

ap
hs

.
(a

)
C

om
m

un
ic

at
io

n
gr

ap
h

of
th

e
L
ur

ke
r

ro
bo

t.
(b

)
C

om
m

un
ic

at
io

n
gr

ap
h

of
th

e
ce

nt
ra

l
m

od
ul

e
fo

r
th

e
m

ul
ti

ro
bo

t
sc

en
ar

io
w

it
h

th
e

Z
er

g
ro

bo
ts

.
T

he
na

m
e

of
th

e
ho

st
a

m
od

ul
e

is
ru

nn
in

g
on

is
de

pi
ct

s
in

th
e

la
be

l
of

th
e

no
de

.



Towards Automated Online Diagnosis of Robot Navigation Software 169

event connections, a system description with 70 clauses with 51 atoms and 35
observers was derived. After a double check with the system engineer of the
control software it was confirmed that the automatically derived model maps
the behavior of the system.

Autonomous Exploration Robot Telemax. In this experiment we record
data from the navigation software of the autonomous Telemax robot, shown in
Figurer 4 (b), which has been designed for the TechX Challenge. The commu-
nication was recorded from active software modules for controlling the robot to
detect, enter, and operate an elevator.

The communication graph and the system description were derived from the
recorded data. The communication graph comprises 18 nodes (software modules)
and 51 edges (connections). From the communication graph and the categorized
event connections a system description with 63 clauses with 63 atoms and 51
observers was derived. Due to space limitation we omit the picture of the graph
in this paper. A review of the system engineer confirms that the generated graph
and system description reflect the desired structure and behavior of the system.

Autonomous Exploration with a Group of Zerg Robots. In this exper-
iment we record data during an autonomous exploration run of a group of four
Zerg robots within the USARSim environment used in the RoboCup Rescue
Virtual Robot League [14]. The robots are shown in Figure 4 (c).

A central control station coordinates the exploration of the individual robots.
The central station module and the control software of the robots run on differ-
ent hosts. From the recorded communication of the central software we extract
the communication graph, the categorized event connections and a system de-
scription with 48 clauses with 44 atoms and 36 observers was derived. Figure 4
(b) shows the communication graph derived from the recorded data.

This system description was used in a diagnosis experiment. During an au-
tonomous exploration run we switched-off the network interface of robot 3 and
4. This failure situation was immediately recognized by 3 observers which raised
an alarm. The output of all observers (36 literals) together with the above ob-
tained system description have been insert into the diagnosis engine. Based on
the system description and the observations, the engine concluded the correct
root cause of the problem, i.e., the network interface of robot 3 and 4: AB(zerg3)
and AB(zerg4). It has to be noted that these root causes could not be directly
observed. This result clearly shows the benefit of model-based diagnosis for the
robustness of robot navigation software.

5 Conclusion and Future Work

In this paper we presented an approach which allows the automated learning
of communication models for robot navigation software. The approach is able
to automatically extract a model of the behavior of the communication within
component-orientated navigation software. Moreover, the approach is able to



170 A. Kleiner, G. Steinbauer, and F. Wotawa

derive a system description which can be used for model-based diagnosis. The
approach was successfully tested on IPC-based navigation software like the one
used by the rescue robot Lurker. Since IPC is widely used, our approach is
instantly usable on many different robot systems.

The presented implementation can be extended for model learning on any
component-based system using an event-based publisher-subscriber mechanism
for communication. Currently, we are working on a port for Miro-based sys-
tems. In future work, we will work on methods that also analyze the content of
messages, e.g., methods that are able to distinguish between data under normal
and abnormal conditions. We believe that more context knowledge will further
increase the robustness of model-based reasoning.

References

1. Steinbauer, G., Wotawa, F.: Detecting and locating faults in the control software
of autonomous mobile robots. In: 16th International Workshop on Principles of
Diagnosis (DX 2005), Monetrey, USA, pp. 13–18 (2005)

2. Steinbauer, G., Mörth, M., Wotawa, F.: Real-Time Diagnosis and Repair of Faults
of Robot Control Software. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y.
(eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 13–23. Springer, Heidelberg
(2006)

3. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),
57–95 (1987)

4. Friedrich, G., Stumptner, M., Wotawa, F.: Model-based diagnosis of hardware de-
signs. Artificial Intelligence 111(2), 3–39 (1999)

5. Kleiner, A., Dornhege, C.: Real-time Localization and Elevation Mapping within
Urban Search and Rescue Scenarios. Journal of Field Robotics (2007)

6. Ziparo, V., Kleiner, A., Nebel, B., Nardi, D.: RFID-based exploration for large
robot teams. In: Conference on Robotics and Automation, pp. 4606–4613 (2007)

7. DTSA: Techx challenge (2008),
http://www.dsta.gov.sg/index.php/TechX-Challenge

8. Simmons, R.: Structured Control for Autonomous Robots. IEEE Transactions on
Robotics and Automation 10(1) (1994)

9. Muscettola, N., Nayak, P.P., Pell, B., Williams, B.C.: Remote agent: To boldly go
where no AI system has gone before. Artificial Intelligence 103(1-2), 5–48 (1998)

10. Micalizio, R., Torasso, P., Torta, G.: On-line monitoring and diagnosis of a team
of service robots: A model-based approach. AI Communications 19(4) (2006)

11. Grosclaude, I.: Model-based monitoring of component-based software systems. In:
15th International Workshop on Principles of Diagnosis, Carcassonne, France, pp.
155–160 (2004)

12. Verma, V., Gordon, G., Simmons, R., Thrun, S.: Real-time fault diagnosis. IEEE
Robotics & Automation Magazine 11(2), 56–66 (2004)

13. Minoux, M.: LTUR: A Simplified Linear-time Unit Resolution Algorithm for Horn
Formulae and Computer Implementation. Information Processing Letters 29, 1–12
(1988)

14. Balakirsky, S., Carpin, S., Kleiner, A., Lewis, M., Visser, A., Wang, J., Ziparo,
V.A.: Towards heterogeneous robot teams for disaster mitigation: Results and Per-
formance Metrics from RoboCup Rescue. Journal of Field Robotics 24(11-12), 943–
967 (2007)

http://www.dsta.gov.sg/index.php/TechX-Challenge


A Common Framework for Co-operative
Robotics: An Open, Fault Tolerant Architecture

for Multi-league RoboCup Teams

Lúıs Mota1,2 and Lúıs Paulo Reis2

1 Instituto Superior de Ciências do Trabalho e da Empresa (ISCTE), Portugal
luis.mota@iscte.pt

2 NIADR - LIACC, Universidade do Porto, Portugal

Abstract. Research in the RoboCup domain has grown considerably
since the beginning of this initiative more than ten years ago. Much of
this growth is due to the existence of different leagues, that allow the
focussing of research in specific and heterogeneous issues.

This specialisation of research has, though, proven to have some draw-
backs: research subjects become very specific, and one loses the ability
of properly generalising, and sharing, the obtained results.

This paper presents an architecture that aims at being open, enabling
the development of independent components that can easily be ported
between application environments. This architecture, called Common
Framework, relies on standardised interfaces, protocols and communica-
tion channels between components. Besides allowing the free association
of heterogeneous components, like real and simulated back-ends, it also
considerably eases the introduction of principles of redundancy and fault
tolerance.

1 Introduction

RoboCup is an international initiative to promote Artificial Intelligence, Robotics,
and related fields. It fosters researchby providing a standard problem where a wide
range of technologies can be integrated and examined. RoboCup uses the soccer
game as a central topic of research, aiming at innovations to be applied for socially
significant problems and industries. Research topics include design principles of
autonomous agents, multi-agent collaboration, strategy acquisition, real-time rea-
soning, robotics, and sensor-fusion.

The ultimate goal of the RoboCup initiative is ”By the year 2050, develop
a team of fully autonomous humanoid robots that can win against the human
world soccer champion team.” This is certainly an ambitious goal, but research
in co-operative robotics has been accumulating results that allow the community
to continue believing in this challenge.

The RoboCup initiative has known how to attract research to a wide array
of scientific problems, by creating different leagues that address specific and
multiple questions. In the robotic soccer domain, in brief, there are simulation

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 171–182, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



172 L. Mota and L.P. Reis

leagues (2D and 3D) that abstract from all the hardware-related problems and
allow focussing on higher-level problems; heterogeneous real robot leagues, in
small and middle size, foster research in hardware development and player in-
teraction and coordination; the standard platform league allows different teams
to deploy different strategies in a standardised environment; and, finally, the
humanoid league enables research on questions related to biped movement and
playing skills. Furthermore, other initiatives such as the different Rescue and
RoboCup@Home leagues extend the multi-robot research to domains in search
and rescue and domestic scenarios, allowing the development of work in different,
unrelated domains.

This diversity of application domains has certainly been responsible for at-
tracting a wide and heterogeneous research community for this popular chal-
lenge, but these characteristics, associated with it’s strong competitive side, has
also had some drawbacks. Namely, research teams, in order to stay competitive
in the leagues they participate in, have normally focussed on a single league, try-
ing to exploit it’s prevailing details. This specialization temptation has made it
rare that teams simultaneously maintain competitive teams in different leagues,
such as, e.g., simulation and middle size.

This natural specialisation tendency has brought noticeable drawbacks: teams
achieve results that, though being competitive, are not easily generalisable and
consequently shared between different leagues. E.g., is is not common to see high
level results from the simulation leagues applied to middle size teams, where the
same kind of challenges arise. This is certainly an undesirable result, which we
try to deal with in this paper.

In section 2, a new robotic architecture that intends to be applicable to different
leagues is presented. This architecture, which was named “Common Framework”,
relies on a multi-agent system (MAS) paradigm that is presented in section 3.
The different components taking part in this MAS need to communicate using a
language that is presented in section 4. Finally, some considerations about our
proposed future work and conclusions are presented in sections 6 and 7.

2 Common Framework for Co-operative Robotics

This paper addresses the problem of developing a common approach to co-
operative robotics with applications in domains where complex co-operative
tasks must be performed by autonomous agents, like the different RoboCup
competitions.

2.1 Requirements

The proposed architecture needs to address a set of requirements, in order to
comply with it’s goals, as follows:

Open Architecture. The architecture should be open, allowing the real-time
addition and withdrawal of components without compromising it’s stability;



A Common Framework for Co-operative Robotics 173

General Application. High-level components should be applicable to different
leagues without further customisation;

Redundancy. The architecture should allow the coexistence of redundant com-
ponents, which may be co-ordinated, or selected, by other components.

2.2 Architecture Layout

Since the architecture of the Common Framework is designed to be open and
to include different components in real-time, these components must be able to
communicate through a standardised interface, shared by all. The communica-
tion channels and protocols must also be common among all components.

The Common Framework includes a knowledge representation structure ca-
pable of representing organised information pertaining to the robotic soccer do-
main. In order to control different (simulated and real) robots, the Common
Framework needs specific components that deal with each agent’s perception
and action capabilities. Low-level skills and perception mechanisms will be de-
signed for each type of robot, while high-level actions can be chosen through the
same, league-independent, decision-making component. A general action vocab-
ulary will be developed to enable the low-level action components to understand
high-level decision-making, whereas a perception vocabulary will address the
representation of state-of-the-world information.

In order for the Common Framework to be truly flexible, allowing the integra-
tion and replacement of components in real time, it requires a flexible architec-
ture that can be modified both in real and compile time. It is argued in the next
section that the best way to answer these requirements is through a multi-agent
system.

3 Multi-Agent System Architecture

In this paper, it is proposed to use a multi-agent system (MAS) for the control of
each player. Thus, one team would be a system of multiple multi-agent systems.
In each of the players, the same kind of components will exist (perception, action,
decision, etc.), taking part on a MAS while using standardised communication.
Each component might be implemented using a different programming language,
or even be running in different machines, with distinct operating systems, as
seen on Fig. 1. The components can arbitrarily vary in number, and even be
redundant. This paper presents a proposal of the system to implement, making
possible to exploit a scenario as depicted in this figure.

In order for the different components to interact freely, it is necessary that they
have a way of knowing/discovering each other. With this purpose, there will be a
communication management agent (ComMAg) that will keep information on the
existing components, as seen on section 3. Furthermore, this architecture requires
a standardised communication language, for the expression of perception, action
and state-of-the-world information. This language, described in section 4, will
include basic concepts, such as regions, locations and time, as well as soccer
related items.



174 L. Mota and L.P. Reis

Fig. 1. Proposed architecture: arbitrary services, both in nature and quantity, can
connect to the system

The communication management agent (ComMAg) was designed to keep in-
formation on all the existing agents, namely the addresses where these are ac-
cessible, and the type of service they provide. The agents will be accessible only
through sockets, in order to keep the implementation simple and to allow max-
imum flexibility in the access: thus, these components could be implemented in
any programming language, provided that they respect the communication in-
terface. To achieve interoperability, the address for each agent must be known,
as well as the port where it will be listening to connections, and the type of
Service the agent provides. The necessary information is depicted in Fig. 2.

componentName: String
address: String
port: Integer
providedService[1..*]: Service
launchCommand: Text

Service Registration

Fig. 2. Information needed for registering with the ComMAg



A Common Framework for Co-operative Robotics 175

Service

ActionState of the 
World

Player
Position

Ball
Position

Teammate
Position

Opponent
Position

Dribble

Shoot Move

Kick

Game status

Player status

Player skills

Mark Intercept
Goalie Action

Catch

Turn

Turn Head

Referee
Position

Object
Position

Decision
making

Fig. 3. Proposed hierarchy of soccer-related services

To precisely characterise each agent’s services, a taxonomy of services that
defines the concrete abilities of each agent must be created. Different agents will
be able to supply more general or more specific services, e.g., an agent might be
solely capable of executing a dribble, or of executing any type of physical action.
Thus, the characterisation of the service might be done by a class in an upper
level of the hierarchy (more general service), or further down (more specific).
The proposed service hierarchy is summarised in Fig. 3.

The role of the ComMAg will be vital in the bootstrapping step, when the
players are being launched: each component will register it’s services, and compo-
nents that need other services to operate will look for the necessary components
by querying the ComMAg. After this bootstrapping phase, the ComMAg could
stay inactive, since the other components will be able to communicate directly
among themselves. The ComMAg agent can, however, play another very impor-
tant role, as argued in section 3.1: if, during the game, the ComMAg would keep
track of the functioning of each of the components, it would be able to detect
possible malfunctioning situations. Such an ability could be exploited in order
to make the system fault tolerant.

3.1 Fault Management

In this architecture, where components may be arbitrarily added to the system,
and where redundant components are expected to exist, it is most appropriate
to include a fault management mechanism.

To ensure that the components are behaving properly, the Common Frame-
work expects each component to re-register with the ComMAg on a pre-defined
schedule. If some component fails to do so after the elapsed time has passed,
the ComMAg can assume that the component is malfunctioning, and react by
trying to re-launch the agent using the registered launchCommand, included in
the information sent by the agent for registration (see Fig. 2). If the component



176 L. Mota and L.P. Reis

repeatedly fails to launch, it will simply be withdrawn form the registration di-
rectory. This component will cease to exist, and all interactions will have to be
re-routed to other existing components.

4 Framework Language

The open and flexible architecture of the Common Framework demands that the
various components are able to communicate according to a least commitment
principle, since various components might be programmed in different languages,
or be hosted in different machines. Thus, there has to be a standard interface to
the components, and the exchange of messages also has to be pre-defined and
standardised.

Furthermore, these concepts have to be integrated in a more general frame-
work that allows their meaningful exchange between components. The compo-
nents will need, e.g., to ask for the execution of actions, to demand the answering
of queries, or to subscribe to important information sources. These communi-
cation primitives can be supplied by some agent communication language, like
FIPA-ACL [1], which is an international standard, endorsed by IEEE, and sup-
plies all the necessary primitives.

4.1 Language Requirements

The most fundamental concepts are the ones pertaining to the description of
the world and the possible actions of the players. These concepts should be
modelled in an abstract way that should apply to different leagues and settings.
This conceptualisation is visible in figures 4 and 5. The language underlying the
Common Framework will have to address a set of requirements in order to be
able to fulfil it’s role. These requirements will be described hereafter.

State of the world concepts. The language needs to be able to express information
about all the objects existing on the field, namely physical static objects, such
as flags, the field and it’s regions, as well as dynamic objects such as the ball,
the players and, possibly, a referee.

In the dynamic and fast changing domain of robotic soccer, the perception
is always imperfect and error-prone. Therefore, the expression of locations must
also be able to include information about the related uncertainty.

Robotic soccer actions. There is obviously also the need for the expression of
the actions that can be executed by the agents. Such actions should be modelled
from a high level point of view, and include ball manipulation (kicks, shots),
movement without ball (moving to a position, turn in a direction), as well as
moving of the head, i.e., of the part of the robot where the usually existent
cameras are located.

These requirements were considered closely and the resulting modelling can
be seen in figure 4 (general view of the framework’s contents), figure 5 (close
view of the player’s characterisation and description of the existing actions) and
figure 6 (concepts related to positioning and associated uncertainties).



A Common Framework for Co-operative Robotics 177

Fig. 4. General view of the framework’s contents

4.2 Language Syntax

The model of the Common Frameworks needs its’ concepts to be exchangeable
through messages. Therefore, a syntax has to be defined that allows the different
concepts in the model (instances, actions, access to attributes,...) to be expressed
in a textual format.

The usage of well established agent systems’ content languages, like FIPA-
SL[2] or KIF[3] was considered, but was abandoned due to very different reasons:

– neither SL nor KIF allow the usage of Object Oriented concepts like methods;
– KIF has no support for actions;
– SL has very few available tools, namely a parser for C++.

Therefore, the proposed way to deal with OO-concepts is to create a simple, new
approach to their expression is a textual format, which will now be presented.

Instances of Classes. The different classes in the model will need to have a
way of expressing instances. With this purpose, it is suggested that the instances
are expressed through S-expressions, with the class name as the first element and
every attribute labelled by it’s name following a colon, e.g. ’:name’. Using this
formalism, an example of an Absolute Positioning would be as follows:

(AbsolutePositioning :x 10.3 :y -23.67 :yaw 0.23456)

In terms of FIPA-ACL, these instances can be understood as propositions
representing objects, and can be used, e.g., in the replies to queries.



178 L. Mota and L.P. Reis

Fig. 5. View of the player’s characterisation and description of the existing actions

Access to Class Attributes. When querying parts of the state of the world,
there will be the need to refer specific values of attributes, e.g., the positioning
of a player. This need will be satisfied through a new primitive (val), which will
be followed by the name of the sought class and attribute, and by the primary
key to the class, when needed. As an example, the positioning of player five in
the opponent team would include the player number and the team, since these
are the primary key to this class:

(val Player positioning :playerNumber 5 :whichTeam opp)

To refer to the present time in the game, the expression would be even simpler,
since there is only one game and therefore there is no need for the primary key:

(val Game time)

This attribute access mechanism corresponds to FIPA-ACL’s referential
expressions, and can be used as the content of a query.



A Common Framework for Co-operative Robotics 179

x: Decimal
y: Decimal
z[0..1]: NonNegDecimal
yaw[0..1]: Angle

AbsolutePositioning
theta: Angle
distance: NonNegDecimal
altitude [0..1]: NonNegDecimal
yaw[0..1]: Angle

RelativePositioning

Positioning

targetIdentificationConfidence[0..1]: Decimal
thetaSU[0..1]: NonNegAngle
distanceSU[0..1]: NonNegDecimal
altitudeSU[0..1]: NonNegDecimal
yawSU[0..1]: NonNegAngle

RelativePositioningWithSU
targetIdentificationConfidence[0..1]: Decimal
xSU[0..1]: NonNegDecimal
ySU[0..1]: NonNegDecimal
zSU[0..1]: NonNegDecimal
yawSU[0..1]: NonNegAngle

AbsolutePositioningWithSU

Object hasPosition
0..1

1

1

0..1
observer

Fig. 6. Concepts related to positioning and associated uncertainties

Execution of Methods. The Player class defines methods modelling the pos-
sible actions of a player. These methods will need to be invoked by the high level
decision component. With this purpose, the primitive exec is introduced. This
primitive will need as parameters the name of the class, the primary key to the
instance to which the method should apply, and the method’s arguments. As an
example, in order for player 3 to turn to player 4, the following formulation is
necessary:

(exec Player turnToObject :playerNum 3
:whichTeam our
:obj (Player :playerNum 4 :whichTeam our))

These method execution expressions can be considered action expressions, and
therefore used as the content of FIPA-ACL requests.

5 Related Work

Several authors have dealt with the concept of mobile robotic middleware in
recent years. Some relevant approaches will be described in the current section.

Orocos [4,5] intends to be a middleware for mobile robotics, strictly following
free software best practices. It aims at being general purpose, and replace all
proprietary drivers and control software shipped with the hardware. It also pro-
vides different software patterns to deal with common tasks, such as localisation
determination. This framework has originated in an EU-funded project and has
been developed for several years. The framework is in no way related to robotic
soccer or the RoboCup initiative.



180 L. Mota and L.P. Reis

Miro [6,7] is also a proposal for a middleware for mobile robotics, from a re-
search team that has significant RoboCup experience[8]. The middleware, how-
ever, does not seem to have any specific adaptation for this domain. Similarly
to Orocos, the framework is based on Corba1 principles. General purpose func-
tionalities, such as mapping and localisation, are included in the framework.

Another middleware proposal[9] also originates from a team with RoboCup
experience, but also pays no special attention to the domain, as it intends to be
general-purpose and adaptable to different domains. The framework has three
components, to deal with action and perception primitives, state-of-the-world,
and high-level architectures, such as petri nets and state machines.

These different approaches intend to be of general application, with no specific
support or adaptation for the RoboCup domain. From the point of view of a
team working specifically on the robotic soccer domain, this generality brings
disadvantages: the action and perception primitives are very basic, not covering
essential actions like (different types of) kicks nor concepts like an off-side line,
that become very difficult to deal with.

Moreover, these frameworks are normally extendable, therefore not providing
a fixed set of primitives, nor a standardised soccer-specific vocabulary, as is
the case with the Common Framework. This openness is undesirable, since it
allows teams to develop league and team specific solutions and models, which
will impair the sharing of results between teams and leagues.

Additionally, the reliance of Orocos and Miro on Corba shows that the frame-
works are primarily intended to be used with Java and C++, since Corba of-
fers little or no support for other languages like Prolog. The Common Frame-
work relies simply on sockets, and can therefore be used with any programming
language.

6 Future Work

Having achieved a complete definition of the Common Framework and it’s un-
derlying language, the next step will be to develop a pilot implementation in the
2D-simulation league. We intend to use public available implementations of well
tested teams (e.g. UvA TriLearn [10] and Helios [11]) as our primary code source.
At least two of these teams will be used, in order to show the interoperability
of the architecture. Namely, it will be possible to simultaneously use code from
different sources in the same agent.

Further on, it is intended to use the framework, with exactly the same con-
troller agent, in the scope of the Mixed-Reality league [12] , which uses actual,
micro-sized robots.

As the framework becomes more stable and mature, it will also be used to
control a team of robots in the Mid-size league [13] , where new challenges linked
to the usage of different, possibly failing sensors and actuators will arise, allowing
the architecture to show the whole of it’s potential.

1 http://www.corba.org



A Common Framework for Co-operative Robotics 181

7 Conclusion

This paper has introduced a new architecture, a Common Framework for Co-
operative Robotics, for the development of multi-robot teams. It aims at being
open, flexible, redundant and fault tolerant. These qualities are inherent to the
design of the Framework as a system of multiple multi-agent systems, where the
enrolment of each player’s components is managed by a centralised Communi-
cation Management Agent.

The existing components will communicate among themselves on basis of a
shared modelling of the RoboCup domain, whereas the necessary conversations
will need to comply to well-defined protocols that rule the development of mean-
ingful interactions.

This open architecture allows the implementation of agents with arbitrary, re-
dundant and reusable components. The components’ relative independence also
allows their separate development by diverse programming teams for posterior
integration. Other advantages are the real-time addition and withdrawal of com-
ponents, as well as tolerance to failures, and the usage of the same high-level
agents in different environments (e.g. different leagues or real and simulated
back-ends).

References

1. FIPA Technical Committee: FIPA ACL message structure specification. Technical
report, Foundation for Intelligent Physical Agents (2002)

2. FIPA Technical Committee: FIPA SL content language specification. Technical
report, Foundation for Intelligent Physical Agents (2002)

3. Genesereth, M.R., Fikes, R.E.: Knowledge interchange format, version 3.0 refer-
ence manual. Technical report, Computer Science Department, Stanford University
(1992)

4. Bruyninckx, H.: Open robot control software: the orocos project. In: IEEE Inter-
national Conference on Robotics and Automation (2001)

5. Bruyninckx, H., Soetens, P., Koninckx, B.: The real-time motion control core of
the orocos project. In: IEEE International Conference on Robotics and Automation
(2003)

6. Enderle, S., Utz, H., Sablatnög, S., Simon, S., Kraetzschmar, G., Palm, G.: Miro:
Middleware for autonomous mobile robots. In: IFAC Conference on Telematics
Applications in Automation and Robotics (2001)

7. Utz, H., Sablatnög, S., Enderle, S., Kraetzschmar, G.: Miro—middleware for mobile
robot applications. IEEE Transactions on Robotics and Automation 18(4), 493–497
(2002)

8. Mayer, G., Kaufmann, U., Clauss, M., Hartmann, C., Monsch, M., Ruland, T.,
Seibold, B., Sitter, C., Wolf, F., Palm, G.: The ulm sparrows 2006 - team description
paper. Technical report, University of Ulm (2006)

9. Ramos, N., Barbosa, M., Lima, P.: Multi-robot systems middleware applied to
soccer robots. In: ROBOTICA 2007 - 7th Portuguese Robotics Festival (2007)

10. Kok, J.R., Vlassis, N., Groen, F.: Uva trilearn 2004 team description. Technical
report, University of Amsterdam (2004)



182 L. Mota and L.P. Reis

11. rctools Web Page, http://rctools.sourceforge.jp/akiyama/
12. Gimenes, R., Mota, L., Reis, L.P., Lau, N., Certo, J.: Simulation meets reality: A co-

operative approach to robocup’s physical visualization soccer league. In: Neves, J.,
Santos, M.F., Machado, J.M. (eds.) EPIA 2007. LNCS (LNAI), vol. 4874. Springer,
Heidelberg (2007)

13. Moreira, A.P., Costa, P., Scolari, A., Sousa, A., Marques, P.: 5dpo-2000 team de-
scription for robocup 2006. Technical report, University of Porto (UP) (2006)

http://rctools.sourceforge.jp/akiyama/


Multilevel Testing of Control Software for Teams
of Autonomous Mobile Robots

Sebastian Petters, Dirk Thomas, Martin Friedmann, and Oskar von Stryk

Technische Universität Darmstadt, Department of Computer Science
Hochschulstr. 10, D-64289 Darmstadt, Germany

{petters,dthomas,friedmann,stryk}@sim.tu-darmstadt.de,
http://www.sim.tu-darmstadt.de

Abstract. Developing control software for teams of autonomous mobile
robots is a challenging task, which can be facilitated using frameworks
with ready to use components. But testing and debugging the resulting
system as teached in modern software engineering to be free of errors
and tolerant to sensor noise in a real world scenario is to a large extend
beyond the scope of current approaches. In this paper multilevel test-
ing strategies using the developed frameworks RoboFrame and MuRoSimF

are presented. Testing incorporating automated tests, online and offline
analysis and software-in-the-loop (SIL) tests in combination with real
robot hardware or an adequate simulation are highly facilitated by the
two frameworks. Thus the efficiency of validation of complex real world
applications is improved. In this way potential errors can be identified
early in the development process and error situations in real world op-
erations can be reduced significantly.

1 Introduction

Development of control software for teams of autonomous robots imposes many
challenges on the developer. The software is usually highly complex, containing
modules for very different tasks (like motion generation, sensor data fusion or
behavior control). To ensure operation of such systems, each module of the con-
trol software must (1) be free of errors and (2) tolerate noise and errors from
other sources. A special class of robots targeted at in this paper are “lightweight”
robot systems characterized by inertially stabilized high motion dynamics and
limited onboard sensing and computing capabilities due to payload restrictions
like small humanoid robots, small unmanned aerial or marine vehicles.

As autonomous mobile robots are operated in environments with large uncer-
taines, the software must be tolerant to noise and disturbances. To examine the
abilities of an autonomous robot all individual modules of the control software as
well as the complete system have to be tested extensively. Testing the software
for autonomous mobile robots is a complicated challenge, which can only be met
if the developer is equipped with appropriate tools. One major problem when
testing such software is the fact, that the source of an error is often not obvious.
An error can usually be caused by one of the modules involved, or it can be

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 183–194, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



184 S. Petters et al.

caused by external influences like changing environmental conditions. Errors in
the control software can also be shadowed by such external influences, so that
such an error does not become obvious. E.g. if the tracking of an oject fails, the
reason may be in the vision module, a calculation error in the world model, in
the behavior control or an unexpected input like a falsely recognized new other
object in the scene. It may also be possible that an error exists in the sensor
fusion module which is misinterpreted as an effect of noisy sensor data.

In this paper several ways of ensuring the quality of robot control software
through testing are discussed. These methods include component tests of the
control software before using it, testing the software with software-in-the-loop
(SIL) simulations, monitoring the performance of the control software during
real world operations and using offline evaluation afterwards. Crucial for the
efficiency of such tests is the availability of a robot middleware with potential
capabilities for flexible monitoring and remote debugging as well as simulations
of the robots capabilities for sensing of and interacting with the physical world
on different levels of detail depending on the current SIL test.

For facilitating the testing process, the used software architecture should
therefore in general provide the following features:

– Extendable testing framework to allow implementation of new component
tests,

– modular design to test different parts of the control software independently,
– flexible and easy to use communication mechanisms to enable data exchange

with a remote computer for debugging,
– an extendable graphical user interface for visualization,
– built-in features allowing offline debugging e.g. a recording/playback tool,
– and a simulation framework allowing different layers of realism.

2 Existing Technologies

2.1 Robot Control Software

In the last decades several architectures for robot control software have emerged.
All of them try to facilitate the challenging and thus error-prone task of the
developers by providing solutions for common problems as tested and ready
to use components. Current approaches especially differ in the targeted robot
platforms and the scope, for which components are provided.

Frameworks like Microsoft Robotics Studio [1] and the CORBA [2] based
Miro [3] are focused on systems with a significant amount of computational
power, e.g. multi processor systems, and provide effective communication mech-
anisms. For “lightweight” robot systems with only very limited onboard com-
putational power these frameworks have the disadvantage of a relatively large
overhead which further restricts computational resources available to robot con-
trol software.

Robot device interfaces try to standardize the access to sensors and actors by
providing an easy to use driver layer. CLARAty [4] for example contains reusable



Multilevel Testing of Robot Control Software 185

components which can easily be adapted to different robot platforms but does not
support teams of robots. The Player Project [5] provides an interface to access
different hardware over a network and supports multiple programming languages
i.e. C++, Java and Python. There exists drivers for the simulation frameworks
Stage (2D) and Gazebo (3D) [6], which allows development of robot control
software without the real hardware. URBI [7] follows a similar approach, but only
supports a C++ like scripting language. These device interfaces do not perform
very well in the development of complex robot control applications for teams of
autonomous robots due to the lack of flexible communication mechanisms which
are essential for modular large scale applications.

Integrated robot control software architectures like Webots [8] or Saphira [9] al-
low the development of software for robots like the Pioneer 2DX, Bioloid
(Robotis), AIBO (Sony) and Nao (Aldebaran Robotics), mainly for educational
or research purposes. They contain graphical user interfaces and a simulator and
provide components to construct own robots from commonly used sensors and ac-
tuators. Webots also allows the development of sofware for swarms of robots and
evolutionary algorithms. Due to the focus on a specific plaform, it is not possible
to develop software for teams of heterogeneous robots.

2.2 Robot Simulations

Most existing 3D simulations rely on external packages for physics simulation.
Very often the Open Dynamics Engine (ODE) [10] is used, e.g. in Webots [8],
SimRobot [11] or Gazebo [6]. Other packages used are PhysX [12] by NVIDIA
(used in the Microsoft Robotics Studio [1]) or game engines like the Unreal
Engine [13] (used in USARSim [14]).

Depending on the current testing task, requirements on the robot simulation
vary widely. High physical accuracy may be necessary under some circumstances
(e.g. for motion optimization), but not important for other scenarios (e.g. testing
of team coordination). Also physics-based robot simulation may impact the real
time performance severly. Often there is a tradeoff between accuracy of the
simulation and size of the team.

If a simulation depends on external packages for physics simulation or other
purposes, adjusting the accuracy (and thus the real-time performance) of the sim-
ulation is complicated. One solution to this problem is using different simulations,
e.g. Gazebo [6] for 3D physics simulation and Stage for 2D simulation of large
teams. As long as the simulations provide the same interface to the control soft-
ware (as is given in the Player/Stage/Gazebo project), this approach is practica-
ble. If this precondition is not fulfilled, it becomes necessary to model the robots
and to provide suitable connections to the control software for each simulation.

2.3 Testing Strategies

Automated tests are a widely used tool in software engineering today. In contrast
to formal verification, which is not feasible for complex systems, automated tests
check the correctness of a software component for a predefined set of samples.



186 S. Petters et al.

Testing can only be used to detect the effects of errors, but not the reasons
for the errors. The absence of failed tests is not a proof for the correctness of
the software as long as the perfomed tests do not cover all possible inputs and
internal states.

To ensure a specified functionalityautomatedunit-, regression-, integration-and
stress-tests [15] are used during the development process of software components
and applications. But even if there are many tools available to simplify the process
of testing, studies show their acceptance heavily depends on the time needed to
setup up and perform the tests [16]. As a consequence usefull tools actively have to
support the developers by keeping the efforts of testing to a minimum.

2.4 Summary of Existing Technologies

Existing solutions for robot control software and 3D simulation packages aim at
supporting the developers by providing easy to use components. The process of
testing and validating the resulting system in real world applications is neverthe-
less mostly beyond the scope of the current approaches, especially for scenarios
where multiple heterogeneous robots interact with each other. The capabilities
of first approaches using logfiles and graphical user interfaces for later offline
analysis [17] are quite limited. For a more detailed analysis during runtime, the
debugging mechanisms should be tightly integrated into the whole system, easily
accessible via small interfaces and with a low processing overhead.

The previously mentioned testing strategies from software engineering are only
applicable to the low-level functionality of robot control software. It is impossible
to specify test cases which cover all possible input data which could occur in an
environment which is far from being fully predictable because of the infinite many
situations of sensing of and interaction with the physical world. Due to potential
hardware wearing, numerous automated tests with the real robot system may
not be desired. For this reason the standard strategies of software engineering
are only of limited use to test robot control software.

In situations where multiple components are developed independently, it is
also necessary to enable tests of individual components. Depending on the test
case it may also be desired to simplify the surrounding system by partly re-
placing other components using an adequate simulation matching the current
situation. This approach reduces the overall complexity of the test scenario and
thus facilitates the identification of the source of an error.

3 Developed Technologies

3.1 RoboFrame

RoboFrame [18,19] has been developed in the authors group to meet the special
requirements of heterogeneous teams of lightweight autonomous robots. The
source code is available for non-commercial research and educational usage. It is
implemented in object oriented ANSI C++ and contains a platform abstraction
layer to support Windows 2000/XP/Vista/CE as well as various Linux and Unix



Multilevel Testing of Robot Control Software 187

derivates and Mac OS X as underlying operating system. Due to short develop-
ment cycles of new robot hardware components and fast changing requirements
caused by complex scenarios, RoboFrame provides flexible communication mech-
anisms and easy exchangeable modules, which encapsulate algorithms for image
processing, world modeling, behavior control and motion generation. Modules
can be added to multiple threads, which can be executed at a given frequency
or if new data to process arrives.

For data exchange between the modules in one application a shared memory
can be used. The preferred way of data exchange of smaller data packages is
a message based communication, which allows transparent communication even
via network. Messages can be of arbitrary type or complex data structures to
support any kind of application specific message. To handle application specific
messages advanced serialization mechanisms are provided. Modules can request
messages from other modules without having to worry about the current process
layout. All data packages automatically get a source address to identify the
sender of a message and are timestamped.

For communication via network, both unreliable, but fast UDP and reliable
TCP is supported. Depending from the required reliability and performance, the
appropriate protocol can be selected. Usually the faster UDP is used for team
communication between the robots while TCP is used for debugging or remote
control connections.

For debugging, monitoring and remote control purposes a graphical user in-
terface (GUI) which allows connections to multiple robots is part of RoboFrame.
All messages within an application or additional data for debugging purpose,
which is only generated if requested, can be send to the GUI and can be visual-
ized in their respective context by application specific dialogs. It is also possible
to send data to an application, i.e. to reconfigure the application or a module or
to test certain modules.

The GUI also contains a dialog to record messages sent from the connected
applications. The messages can be replayed for later analysis or can be sent to
the application. This allows repetitive tests with the same data and thus enables
the investigation of changes made to the modules.

In contrast to other existing architectures RoboFrame itself does not make any
assumptions about the applications on top of it. Neither any message types nor
any modules are provided by the framework itself. Instead RoboFrame enforces
the development of components which can be reused in different applications.

3.2 MuRoSimF

The Multi-Robot-Simulation-Framework [20] enables to create simulations for
heterogeneous teams of autonomous mobile robots. A key feature of MuRoSimF
is that algorithms used for the simulation (e.g. simulation of robot motions or
sensors) can be exchanged transparently. As algorithms for the same purpose
exist on different levels of physical detail resp. computational complexity (e.g.
robot motion simulation based on kinematics or multibody system dynamics),
simulations can be tailored to be adequate to a given testing task with respect



188 S. Petters et al.

to the level of detail and precision of simulation as well as number of robots
simulated simultaneously at real-time.

MuRoSimF provides several algorithms for simulation of biped, quadruped and
wheeled locomotion on different levels of detail. Algorithms for the simulation of
external sensors like cameras and laser scanners as well as for internal sensors like
gyroscopes, accelerometers and joint encoders are provided. All can be extended
or replaced.

3.3 Integration of Simulation and Control Software

Simulations created with MuRoSimF can be connected easily to control programs
based on RoboFrame. External software can be connected to the simulation us-
ing serial communication (virtual or real RS232 connections as well as TCP).
MuRoSimF provides so called controllers which are software modules allowing
to communicate with sensor and actuators of the simulated robots. Within the
control application modules exist which can communicate with the respective
controllers of the simulation. When connecting the control software to the simu-
lation instead of the real hardware, only these modules have to be adapted while
the core modules of the application remain the same. In case the real robot is
connected by RS232 to the control computer, the connection to the simulation
will be completely transparent, as RS232 is provided as a way of communication.

Many robot designs (e.g. [21]) incorporate special controller hardware for real
time control of a reflex layer (e.g. gait generation and control for walking robots
or motion control for wheeled vehicles). Such controllers have significant parts
of software of their own. To enable the SIL-testing of this software, it is possible
to recompile the central functions into a dynamic link library and execute these
functions within the simulation.

The simulation framework also provides the capability to extract information
from the scenario like ground truth data of the simulated objects. These informa-
tion can be used to bypass some processing components in the real application
to simplify the complexity of the application for testing purposes.

4 Multilevel Testing Strategies

In this section strategies for testing the control software for teams of autonomous
robots will be discussed. Depending on the abstraction level of the software
modules under consideration of a test, different approaches will be most useful.
The following three testing strategies might all be carried out either without
any hardware, with real robots or with simulated robots: (i) component tests, (ii)
online testing, (iii) offline testing.

Even if these testing strategies are common knowledge in modern software
engineering it may be more or less difficult to perform these tests depending on
the software architecture. The used software architecture and tools can vastly
reduce the required affords to setup different types of test scenarios. Using a
message based communication it becomes very handsome to alter the data flow
of the application and to intercept or inject messages during runtime.



Multilevel Testing of Robot Control Software 189

In the scenario of a team of autonomous soccer playing humanoid robots de-
scribed later on some testing strategies are used as showcases. This scenario
provides many challenges, as (1) noisy off-the-shelf sensors and limited onboard
computation capacity, (2) the software involved has a high degree of complexity
and different levels of abstraction and (3) communication between the robots
is unstable. Similar challenges can be found in many other real world applica-
tions (e.g. cooperative search and rescue, exploration operations). The software
architecture for the example scenario consists of several modules like image pro-
cessing, world modeling, behavior control, motion generation and inter-robot
communication (cf. Fig. 1).

Fig. 1. Software architecture (left) for a team of autonomous soccer playing humanoid
robots (right). Modules are depicted as boxes, messages as ellipses. Inter-robot com-
munication is not stable and may be faulty.

4.1 Component Tests

In a deterministic and finite dimensional world unit tests would have a code
coverage of nearly 100%. However, this is not ture for such a complex, real world
application, since the efforts for creating unit tests for high level functionality
are highly increasing. Therefore it is only applicable to parts of the software.
In general the low level functionality which involves less source code is better
testable using component tests than complex high level functionality.

To ensure the correctness of the message passing system, serialization mech-
anisms and the shared memory subsystem of RoboFrame these parts are covered
by a set of component tests.

A prime example for unit tests in robotics are mathematical operations. Their
tests do not involve any hardware and the functions are easily testable - mostly
even in very small unit, which makes it even simpler to write the component tests.
Since algorithms based on mathematical formulars are also better testable than



190 S. Petters et al.

other high-level functionality, some of the application specific models are also
covered by component tests, e.g. the odometry model accumulates the odometry
of the robot which is measured multiple times per second. Several internal robot
modelings, e.g. the relative ball model and the self localization, are based on
the integrated odometry model which performs the computations required by
other models for different time intervals. A set of unit tests assures its correct
functionality.

But other component tests might utilize simulated robots to assure that e.g.
inter-robot communication of their own localization is working flawlessly. But the
component test is neither implying that there is really any self localization done
nor that the robot is really walking or driving around. Therefore an adequate
simulation, which provides oracle data of exact robot poses and a simplified
odometry reduces the amount of software to be covered by testing enormously
by factoring out the influence of the not used code.

4.2 Online Testing

For several high level components unit testing is not a feasible approach. This
also applies to cases where the data to check vary in a non-trivial matter e.g.
because of noisy input data. A human can easily determine the correctness of the
computed output data, where implementing a unit test would be quite expensive
if not impossible. Therefore the application architecture must provide a rich set
of features to monitor and debug a running application. Especially in mobile
robotics the demand to work remotely is significant.

A good example to demonstrate the online testing capabilities of RoboFrame
is the self localization in the scenario of Fig. 2. The humanoid robot uses an
articulated, directed camera to determine it’s position and orientation on the
soccer field using a particle filter method. The self localization is based on a large
set of input data: on one side the odometry model feed by the internal sensors,
on the other side various objects recognized by an image processor software like
goals, poles, field lines etc. Determining the quality of self localization is not only
a test for correctness but even more a benchmark for accuracy of the localization
method.

A component test can by its definition only detect the effects of an error but
not the reason itself. For this test a different strategy must be used which involve
the judgment of a human. Due to the large amount of data the GUI must be
capable of visualizing these information in a way a human can easily comprehend
any necessary details. These testing strategy allows a human to test a high level
component based on the comprehensive visualization.

4.3 Offline Testing

In some scenarios it is not feasible to do testing online in real time. Even the
best visualization might not be suitable when the state changes frequently. Fur-
thermore it is not possible to use a debugger during online test to track down
the reason of an error. Therefore the third testing strategy involves the logging
and replay capabilities of RoboFrame.



Multilevel Testing of Robot Control Software 191

Fig. 2. Graphical user interface visualizing the detected field lines (white lines), po-
sition and orientation computed by the self localization (blue arrow) and the ground
truth information provided from a ceiling camera or simulator (black arrow)

Any messages saved to a logfile during a former online test can later be re-
played and visualized with the same tools used for the live testing which have
been described before. This allows feeding the application with e.g. saved sensor
messages to repeatedly test the components with the same known input data.

4.4 Software in the Loop Testing

As described in Sect. 3.3 RoboFrame and MuRoSimF provide communication ca-
pabilites allowing SIL-testing of the control software. Depending on what kind

Fig. 3. Data exchange between control application and simulation. Solid lines indicate
data similar to the data exchanged with the real robot. Dashed lines are additional
informations provided by the simulation. The simulation can be extended to teams
of robots by duplicating the robot data models and attaching the new models to the
simulation algorithms used.



192 S. Petters et al.

Fig. 4. Evaluation of a robot’s walking motion. The simulated robot is augmented with
the trajectories of feet and hip.

of SIL-test is to be performed, different information may be transfered from the
simulation to the control application. MuRoSimF is capable of providing adequate
simulations for a wide variety of testing-scenarios. For testing the complete soft-
ware the simulation can act as a replacement for the real robot’s sensing and
motion capabilities, processing motion requests from the control application and
providing camera images in response.

Besides the normal sensor information of the robot, the simulation can pro-
vide any information on the state of the simulation, like position of simulated
robots or ball. This ground truth data can be used in multiple ways. A simplified
structure of robot control software and simulation is shown in Fig. 3.

One possibility is to verify the performance of a robot’s self localization. To do
this a complete robot is simulated and the simulation provides further informa-
tion on the robots current position and orientation. This information is compared
to the output of the self localization modules of the control application.

Another possibility is testing behavior and communication for a team of
robots. In this case, the function of the image processing parts of the robots
are not investigated as their (potentially wrong) output may shadow errors in
the modules under investigation. To perform an adequate test, the simulation
will not provide simulated image data and just propagate position information
to the control software, removing sources of errors not under investigation.

When testing the low level parts of the robot control software, even less infor-
mation must be provided (and thus) simulated. If only the motions of the robot
are of interest, only motion simulation must be simulated. For evaluation of a
robot’s actions it is possible to augment the simulation of the simulation with
additional data, c.f. Fig. 4.

4.5 Selection of Adequate Testing Strategy

The choice to select one of the strategies for a specific test is always left to
the developer of the application. Each and every of the depicted types of test-
ing options have their advantages and disadvantages for a specific purpose as
summarized in Table 1.



Multilevel Testing of Robot Control Software 193

Table 1. The suitability of the test strategies for different test goals. (+) marks good,
(-) marks bad suitability, (o) marks uncertain.

Ensure correct Evaluate algorithms with Track down
Test strategies computations noisy input data source of an error

Component tests + o -
Online test - + o
Offline test - + +

5 Summary and Outlook

Existing approaches used in modern software engineering are only of limited use
for meeting the challenges involved in testing software for a team of autonomous
mobile robots operating in an uncertain environment. They must be extended
by further testing techniques. Depending on the application the developers have
to consider which testing strategy fits each part of the software best.

The software architecture RoboFrame was designed to meet the special re-
quirements stated at the end of Sect. 1. It enables multilevel testing from unit
testing over live testing of heterogeneous teams to offline testing with recorded
real world input data. Due to the message based communication mechanisms
and the dynamic runtime configuration of the framework the efforts to set up a
test environment are highly reduced compared to other approaches. The frame-
work MuRoSimF enables an adequate robot simulation for each different scenario.
The algorithms vary from complex dynamics simulation for testing the motion
generation in the loop to simple kinematics but providing ground truth data
to concentrate on high level team behavior tests. Furthermore, any of the algo-
rithms can be replaced by custom implementations to provide tailored solutions
for any requirement. The source code of RoboFrame and MuRoSimF is available at
no cost for research and educational purposes from the authors. Both developed
software frameworks actively support the developers in testing and debugging
their applications and thus improve the efficiency which speeds up the develop-
ment process and results in a higher reliability of the final application.

References

1. Microsoft Robotics Studio (2007), http://msdn.microsoft.com/robotics/
2. OMG Object Management Group. CORBA - Common Object Request Broker

Architecture (2007), http://www.corba.org
3. Utz, H., Sablatnög, S., Enderle, S., Kraetzschmar, G.K.: Miro – middleware for

mobile robot applications. IEEE Trans. on Robotics and Automation 18(4), 493–
497 (2002)

4. Nesnas, I., Wright, A., Bajracharya, M., Simmons, R., Estlin, T., Kim, W.S.:
CLARAty: An architecture for reusable robotic software. In: SPIE Aerosense Con-
ference, Orlando, FL (April 2003)

http://msdn.microsoft.com/robotics/
http://www.corba.org


194 S. Petters et al.

5. Gerkey, B.P., Vaughan, R.T., Howard, A.: The Player/Stage project: Tools for
multi-robot and distributed sensor systems. In: Intl. Conf. on Advanced Robotics
(ICAR), Coimbra, Portugal, 30 June - 3 July 2003, pp. 317–323 (2003)

6. Koenig, N., Howard, A.: Gazebo - 3D multiple robot simulator with dynamics
(2003), http://playerstage.sourceforge.net/gazebo/gazebo.html

7. Gostai. Urbi - Universal Real-time Behavior Interface (2008),
http://www.urbiforge.com

8. Michel, O.: Cyberbotics ltd. - webots(tm): Professional mobile robot simulation.
Intl. Journal of Advanced Robotic Systems 1(1), 39–42 (2004)

9. Konolige, K.: Saphira robot control architecture. Technical report, SRI Interna-
tional (2002)

10. Smith, R.: ODE - Open Dynamics Engine (2007), http://www.ode.org
11. Laue, T., Spiess, K., Röfer, T.: SimRobot - a general physical robot simulator and

its application in RoboCup. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y.
(eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 173–183. Springer, Heidelberg
(2006)

12. AGEIA PhysX website (2007), http://www.ageia.com/physx/
13. Epic games, unreal engine (2007), http://www.epicgames.com
14. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: a robot

simulator for research and education. In: Proc. of the 2007 IEEE Intl. Conf. on
Robotics and Automation (ICRA) (2007)

15. Ntafos, S.C.: A comparison of some structural testing strategies. IEEE Trans.
Softw. Eng. 14(6), 868–874 (1988)

16. Ng, S.P., Murnane, T., Reed, K., Grant, D., Chen, T.Y.: A preliminary survey
on software testing practices in Australia. In: Proc. Australian Softw. Eng. Conf
(ASWEC 2004), Washington, DC, USA, p. 116. IEEE Computer Society, Los
Alamitos (2004)

17. Figueiredo, J., Lau, N., Pereira, A.: Multi-agent debugging and monitoring frame-
work. In: First Proc. IFAC Workshop on Multivehicle Systems (MVS 2006), Brazil
(2006)

18. Petters, S., Thomas, D., Stryk, O.v.: RoboFrame - a modular software framework
for lightweight autonomous robots. In: Proc. Workshop on Measures and Pro-
cedures for the Evaluation of Robot Architectures and Middleware of the 2007
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, San Diego, CA, USA,
October 29 (2007)

19. Petters, S., Thomas, D.: RoboFrame website (2008), http://www.roboframe.info
20. Friedmann, M., Petersen, K., von Stryk, O.: Scalable and adequate simulation

for motion and sensors of heterogeneous teams of autonomous mobile robots. In:
Carpin, S., et al. (eds.) Proc. 1st Intl. Conf. on Simulation, Modeling and Pro-
gramming for Autonomous Robots (SIMPAR 2008), Venice, Italy, November 2008.
LNCS (LNAI). Springer, Heidelberg (2008)

21. Friedmann, M., Kiener, J., Petters, S., Sakamoto, H., Thomas, D., von Stryk, O.:
Versatile, high-quality motions and behavior control of humanoid robots. Interna-
tional Journal of Humanoid Robotics, pages accepted (to appear, 2008)

http://playerstage.sourceforge.net/gazebo/gazebo.html
http://www.urbiforge.com
http://www.ode.org
http://www.ageia.com/physx/
http://www.epicgames.com
http://www.roboframe.info


S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 195–206, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

ppPDC Communication Framework – A New Tool for 
Distributed Robotics 

Grzegorz Polaków and Mieczyslaw Metzger 

Faculty of Automatic Control, Electronics and Computer Science 
Silesian University of Technology, 

Akademicka 16, 44-100 Gliwice, Poland 
{grzegorz.polakow,mieczyslaw.metzger}@polsl.pl 

Abstract. Parallel processing Producer-Distributor-Consumer (ppPDC) trans-
mission scenario is proposed and developed for improving communication fea-
tures of the Ethernet-based switched industrial networks. First version of 
ppPDC-based communication infrastructure was developed in the LabVIEW 
graphical programming platform as a flexible and low cost framework. Further 
development of the framework turned it into a fully functional real-time mid-
dleware, which has the main advantage of running the message processing in 
the protocol stacks in parallel, thus minimising the impact of nodes processing 
times on network efficiency. The proposed ppPDC-based communication infra-
structure, amongst many other possible uses such as intelligent multiagent  
systems, can be well-suited in distributed robotics. 

Keywords: communication infrastructure, distributed robotics, middleware for 
robotics, producer-distributor-consumer, real-time ethernet. 

1   Introduction 

Nowadays the autonomous, intelligent and networked systems are very essential in dis-
tributed robotics. A distributed robotic system deals with multiple autonomous robots or 
multiple sensor/actuator system under automatic control. Even if each component of 
distributed system can operate autonomously reacting to its local environment the whole 
robots community must cooperate to accomplish some desired tasks. Hence in the dis-
tributed robotic system the reciprocal communication should be treated as a major tasks. 

An overview of problems dealing with Intelligent Autonomous Systems focused on 
industrial robotics and its applications was presented at the beginning of the third 
millennium [1]. A typical representative problem is a combined use of reactive and 
deliberative subsystems in multirobot systems [2] as well as a cooperation through an 
implicit communication in multi robot systems with an application for simulated soc-
cer robot team [3]. An interesting distributed multi robot application is presented  
in [4] for supporting the elderly and disabled people for which is difficult to move 
their body to take some objects. 

Programming multirobot distributed system is a difficult and challenging task. A 
very interesting idea of programming by demonstration lets a robot system to learn 



196 G. Polaków and M. Metzger 

new behaviours from a human operator demonstration [5]. An object-oriented and 
distributed approach for programming flexible manufacturing systems equipped with 
robots is proposed in [6]. In this approach a general framework deals with remote 
access to the robot controller, remote programming and monitoring. Some theoretical 
background for programming software for distribute robotic systems based on team 
formation example was presented in [7]. 

Agent and multi agent systems (AMAS) are strictly connected with distributed ro-
botic system in, for example, soccer league from the one (entertainment) hand and in 
industrial applications from the other hand. Basic notions for AMAS can be found for 
example in [8], [9], [10], and [11], while chosen examples of AMAS applications in 
robotics, manufacturing control and process control was presented in [12], [13], [14], 
[15], [16], [17], [18]. 

The foundation for contemporary automation and robotic systems is the use of com-
munication networks in the distributed systems [19], [20], [21]. While instrumentation 
manufacturers actively promote their own communicational solutions, such as for exam-
ple Fieldbus, Profibus, WorldFIP, Modbus, ControlNet, or DeviceNet standards, there is 
a concurrent tendency to use the widely known Ethernet standard [22], [23], [24] as a 
basis for both horizontal and vertical process data transmission (see for example [25]). 
Newly emerging networking media, ie. wireless communication standards, present even 
more attractive possibilities, also for distributed robotic systems [26]. 

In this paper the Ethernet-based communicational middleware is presented, which 
employs modified producer-distributor-consumer scheme for distributed control of ro-
botic systems. The paper is organised as follows. At first the motivation for developing 
the middleware is stated, and the current technological state-of-art is briefly described as 
a basis for the following presentation of the proposed ppPDC protocol. The methodology 
of ppPDC’s implementation in already existing control systems is also presented. The 
paper is summarised by a concluding remarks and propositions of future work. 

2   Motivation 

The main assumption behind the contribution, introduced by this work, is the exis-
tence of the similarity between classical, known from cybernetics, star topology of 
communicational networks and the internal structure of many of distributed control 
and multirobot systems. This analogy of structures suggests that it may be possible to 
implement communication in such control systems directly as a computer network 
using star topology. Communication in the network can be than performed using 
native low-level protocols specific to the given network standard. Protocols of higher 
layers are to be designed in such case to take specific characteristics of the used 
physical medium into account. 

The idea is presented in the Fig. 1. In nearly all of the robotic environments it is possible 
to distinguish a set of components, distributed spatially and/or logically, which are having 
the same priority, while being controlled by another privileged component. Whether it is a 
manipulator consisting of a set of sensors and actuators controlled by central unit, or a 
manufacturing line employing multiple robots controlled locally, but globally synchronised 
by superior system, or, especially, a team of soccer robots connected to the PC when  
learning or diagnosed – the topology of star can easily be distinguished. 



 ppPDC Communication Framework 197 

Soccer-bots
(distributed intelligence)

Star topology

Manipulator
(multiple sensors and actuators)

Manufacturing line
(multiple robots) Unit for

centralised
processing

Peers (bots, actuators,
manipulators, etc.)

Switched
Ethernet

 

Fig. 1. The main idea of the ppPDC application in a distributed robotics environment 

 



198 G. Polaków and M. Metzger 

Issues considered and described in the literature usually are connected to the high-
est level of inter-robots communication (see e.g. [27, 28]), i.e. swarm intelligence, 
grouping of the units, or positioning. Low level aspect of the physical communication 
is in this context often omitted and treated as implicit, transparent and already exist-
ing; it is high level of communication which is stressed explicitly (as in [29]). How-
ever, it turns out that ensuring properly quick and efficient communication between 
components of the system is not trivial and requires extensive planning. Typically, for 
communication in robotics specialised retail industrial networks are used (e.g. 
Profibus-DP optimised for remote I/O, Swiftnet for aircraft applications, or CANopen 
in automotive industry) [30]. The downside of such products is that they are restricted 
in many ways, including their high price, potential patent claims, and closed stan-
dards. Reconfiguration and adaptation of such network is therefore highly limited, 
which is particularly undesirable in research applications. 

Time determinism and network’s efficiency are guaranteed by the properly de-
signed data exchange scheme. The most popular communication schemes include 
token ring, master-slave, producer-consumer and producer-distributor-consumer [31], 
[32]. Some of the techniques are used in conjunction to ensure some specific network 
propertied (e.g. Profibus uses multi master–slave scheme, where current master is 
designated using the token passing technique). In general however, all of these tech-
niques were designed primarily as the method of multiple access for shared medium, 
implementing the functionality of the data link layer of the ISO OSI model. Mean-
while, networking technologies evolved, and currently the most popular group of 
standards in use is the IEEE802 family working using the star topology implemented 
with the switching technique of IEEE802.1D. The flagship of the IEEE802 is the 
IEEE802.3, widely known as the Ethernet. The Ethernet standard gained bad opinion 
in the industrial networking society due to its CSMA/CD (Carrier Sense Multiple 
Access with Collision Detection) method, which solves collisions in the shared me-
dium using random delays, which effectively makes it impossible to predict transmis-
sion times. However, CSMA/CD method is obsolete since switching technology  
became popular and nowadays Ethernet networks use the star topology. This techno-
logical leap was noticed, and now it is widely considered that transmission times in 
Ethernet networks are determinable [23]. But still, it remains unnoticed, how great is 
the potential of the queuing technology of modern switches, which are specialised fast 
computers designed to fulfil one duty i.e. reliable storing and forwarding Ethernet 
frames [33]. 

The ppPDC proposed protocol bridges the gap as it is designed to work on top of 
the Ethernet network built using the switching technology, and heavily relies on the 
functionality provided by the underlying physical network and its switching device. 
The ppPDC middleware enables time determined communication between spatially 
distributed control system components in agent-systems friendly way, which is espe-
cially well fitted for the distributed robotic systems. Currently, the ppPDC protocol is 
implemented with the visual language of the National Instruments LabVIEW, but its 
thorough documentation and openness allows to implement it with any programming 
language and in any Ethernet-enabled hardware. 



 ppPDC Communication Framework 199 

3   Parallel Processing Producer – Distributor – Consumer 

The parallel processing Producer–Distributor–Consumer communication scheme is 
heavily based on the traditional Producer–Distributor–Consumer scheme used in retail 
FIP, Swiftnet and FF (all standardized in the IEC61158 norm) networks, however it is 
modified to work in star topology based networks, in which a switching device is able 
to relieve network nodes of some of the protocol tasks. 

The middleware consists of: 

• the ppPDC protocol layer which implements the functionality of the distributed 
database of cyclic variables and allows to send and receive acyclic messages; 

• the hardware layer which is supposed to be an Ethernet network working accord-
ing to IEEE802.3 norm with the IEE802.1D switching technology. 

Both layers are connected implicitly due to encapsulation of the ppPDC frames in 
UDP messages and TCP streams, which are transparently encapsulated in IP data-
grams, which at least are passed to the LLC layer of the underlying Ethernet network. 

pp
PD

C
Et

he
rn

et
En

ca
ps

ul
at

io
n

 

Fig. 2. The layer model of the communicational framework using ppPDC communication 
scheme 

3.1   ppPDC Protocol for Distributed Database 

The ppPDC data distribution scheme is the result of works on implementation of the clas-
sical PDC scheme in Ethernet networks. During the development it turned out, that some 
of the functionalities of the PDC scheme are redundant. The PDC scheme fulfils a double 
role in the networking stack. On one hand, it is the internal mechanism of distributed data-
base of variables and messages, and on the other hand it manages the shared physical 
medium to avoid frame collisions. In switched networks functionality of medium access 
control is performed by hardware and it can be dropped from the protocol itself. 



200 G. Polaków and M. Metzger 

BR
O
A
D RP_DAT

distributor

producer 3

producer 2
producer 1

TppPDC

Tpr Ttr Tapp Tque

RP_DAT

distr.

pr. 3

pr. 2
pr. 1

TPDC

Ttr Tapp Tapp Tapp

ID
_D
AT

ID
_D
A
T

Ttr Ttr Ttr Ttr TtrTpr Tpr Tpr

Q802.1D queuingtime

time
 

Fig. 3. Comparison of sequences of transmissions between PDC and ppPDC communicational 
schemes 

The ppPDC scenario keeps the original idea of division of network nodes into two 
groups i.e. producers and consumers, while the communication between all the nodes 
is maintained by the additional privileged node called the distributor. It is the order of 
transmission of frames which was changed in the ppPDC protocol. In the PDC 
scheme, network frames are broadcasted sequentially and all the nodes are only al-
lowed to answer to the explicit commands of the distributor, which asks the producers 
to broadcast values of variables they produce, accordingly to the predefined required 
periods. In the ppPDC there is only one request of the distributor which is common 
for all the producers (Fig. 3). Answers to this request are sent as quickly as possible, 
but with no specific coordination, so in the utmost case the answers can be even sent 
at the same exact time. In networks based on a shared medium it would cause multi-
ple frame collisions. However, when network is switched accordingly to the 
IEEE802.1D standard, all the nodes are located in the separate domains of collisions, 
and messages they send are received by the switching device, stored in its memory, 
queued and orderly and timely delivered (Tque in Fig. 3) to the distributor node. 

Due to this change in the ppPDC scheme, summarised time of network messages 
processing (Tapp and Tpr in Fig. 3) which is the largest element of the total message 
round-trip-time ([23], [24]), is significantly lowered because of the parallel processing 



 ppPDC Communication Framework 201 

of the frames (in contrary to the sequential processing in the PDC scheme). The price 
for the parallel processing capability is the dependence of the high layer protocol on 
the low layer physical infrastructure. 

3.2   Physical Media Supported 

The main requirement of the ppPDC middleware is that the physical layer should be 
based on switching instead of the one of the CSMA family method. Effectively, the 
requirement limits possible physical layer technologies to a subset of Ethernet net-
works working in the full-duplex mode with the hardware switch. Popular solutions 
fulfilling this requirement include amongst others networks built with the 
10/100/1000BASE-T copper cabling and newer 1000BASE-X fibre optic cables. 

All the IEEE802 family standards are encapsulated in such a way, that from the 
higher network layer’s point of view they are seen as a LLC (Logical Link Control) 
interface. Those of IEEE802 standards, which use CSMA access methods are time 
non-determined as the introduce random time delays. Due to the encapsulation, the 
ppPDC protocol cannot determine whether the low level layer is time determined 
(switched) or not. Because of this, it is also possible to implement the ppPDC proto-
col on top of CSMA-based network, and while the main property of determined time 
transmissions will be lost, logical functionality will be still the same. In cases when 
time efficiency is not required, the ppPDC can still be implemented for its distributed 
database capabilities. Such physical layers include older IEEE802.3 cabling standards 
like 10BASE2 working with the CSMA/CD method or modern wireless networks of 
the IEEE802.11 family working according to the CSMA/CA (Carrier Sense Multiple 
Access with Collision Avoidance) method, as in case of soccer robot system in Fig. 1. 

3.3   Methodology for Implementation 

Implementation of the presented ppPDC middleware in an already existing robotic sys-
tem consists of few stages. The first step is an identification of occurrence of the star 
topology in the considered system. Fig. 1. presents examples of systems which are well 
suited to the ppPDC framework. Generally, the protocol may be used in all the systems 
which consist of a set of equally privileged components which should exchange small 
portions of data. The type of exchanged data depends on the characteristics of the specific 
system, it may be simple numerical type as in case of sensors and actuators in the robotic 
manipulator, or it may be advanced AI language as in the case of soccer robots learning. 
Such a wide range of possibilities is achievable due to capabilities of the ppPDC mid-
dleware. On one hand it is able to exchange small portions of information between net-
work nodes in fast, reliable and time determined manner. On the other hand, the principle 
of work of the ppPDC, which employs broadcasting of messages containing values of all 
variables and all messages in the system, corresponds to the well known structure of 
knowledge from multi-agent systems i.e. blackboard system (see [10], [11]). It is very 
advantageous property of the ppPDC, as it makes implementation of the artificial intelli-
gence-based control systems more user-friendly. 

After the identification of star topology in the system, the type of data to be exchanged 
should be determined, so the central table of knowledge of the system can be built using 
this data type. This table, filled with the most recent values, will be cyclically broad-
casted with the ppPDC protocol. 



202 G. Polaków and M. Metzger 

The last stage of the implementation process is ensuring that all the identified star 
nodes have the capability of TCP and UDP communication on top of Ethernet-based 
network. Network connecting all this nodes should be built, and additional node have 
to be connected to the network to fulfil the role of the distributor and control the 
communication process. In the most simple case nodes should be LabVIEW capable, 
so already developed software library could be used, but in general proper program-
ming of the nodes can be done with any programming language (see [16], [17]). 

Proper implementation by following all the above steps results in the fully time  
determined communication between all specified nodes. Achieved cycle times are 
relatively short and depend mainly on the protocol stacks’ processing times in the 
distributed nodes (Tapp in Fig. 3), as the times of physical signal propagation (Ttr in 
Fig. 3) and queing and forwarding (Tque in Fig. 3) are relatively small, and are of order 
of tens of microseconds ([23], [33]). If protocol stacks are programmed efficiently in 
low level programming language, achieved times of ppPDC protocol broadcasting 
cycle are short enough to close control loops and even directly control and position 
motors and manipulators. 

4   Preliminary Tests 

A preliminary experiment was conducted to compare the performance of the two 
specifically implemented protocols – the first based on the classical PDC and the 
second based on the proposed ppPDC communicational scheme. A research setup 
consisted of four typical desktop computers connected to an Ethernet network. All the 
computers had exactly the same hardware configuration (Intel Celeron 2.2GHz, 
256MB RAM, Realtek RTL8139 Ethernet adapter) and worked under the control of 
the Windows XP operating system. A programming environment chosen for the ex-
periment was National Instruments LabVIEW. The Ethernet network was based on 
the cat. 5A cabling, connecting all the computers to the hardware switch (Asmax BR-
604), work modes of all the adapters were set to full-duplex with 100Mbit/s data rate. 
IP addresses of the PCs were set to private ones, router worked as a NAT, while all 
the packet forwarding from/to outside networks were disables, which created the 
model of a typical industrial Ethernet network without any outside traffic. 

A schematic drawing of achieved structure of research setup is presented in the 
Fig. 4. Double connections between the PCs and the router are drawn to underline the 
fact that the network works in the full-duplex mode, which is a requirement for  
the ppPDC scheme to work effectively. 

For this tests, protocols were slightly modified by disabling time synchronisation 
of the beginnings of the cycles. In effect, all the communication performed by the 
protocols was not synchronised according to the control algorithms, but was instead 
performed as fast as it was physically possible. Observation of network traffic al-
lowed to determine achievable times of network cycles durations. The observation 
was done by capturing the traffic and registering the moments when frames starting 
the cycle occurred (ie. ID_DAT #0 for PDC protocol and BROAD for ppPDC proto-
col) - periods between this frames were treated as the cycle duration times. 



 ppPDC Communication Framework 203 

pc1
192.168.2.2

pc2
192.168.2.3

pc4
192.168.2.5

pc3
192.168.2.4

192.168.2.1  

Fig. 4. The research setup for preliminary tests 

The main idea of the test was determining dependence of the cycle duration on the 
number of variables exchanged in the cycle for both classical PDC protocol and the 
proposed ppPDC. Tests were performed for the communication containing 1, 2, 4, 8, 
16, 32, 64, 128 and 256 variables equally distributed amongst the PCs connected with 
the protocol. Each gathered single result was plotted as the data point in the time-
number of variables plane. Resulting clouds of points were fitted to the linear function 
with the least squares method (proof for the fact that expected character of the relation 
is linear was conducted but is not included here due to the limited space). Visualisa-
tion of achieved results is presented in the Fig. 5. 

Coefficients of the formulas describing dependence of cycle times on the number 
of variables are as follows: 

                                           TPDC = 0.001446n - 0.002532 ,                                         (1) 

                                          TppPDC = 0.0002194n + 0.001023.                                      (2) 

0 32 64 96 128 160 192 224 256
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of variables

A
ch

ie
ve

d 
tim

e 
[s

]

 

Fig. 5. Comparison of achieved cycle times of PDC (dots, dashed line) and ppPDC (crosses, 
continuous line) communicational schemes depending on number of exchanged variables 
 



204 G. Polaków and M. Metzger 

It should be noted that the achieved results are heavily influenced by the performance 
of the native Windows XP networking protocol stack. Duration of physical data 
transmission is in this cases only a fraction of total cycle time, as the most time con-
suming part of the communication is the processing of the data in the protocol stacks. 
However, the main idea of the ppPDC communication scheme is the parallelisation of 
the frames processing to minimise the impact of the processing times on the total 
communication cycle duration, and achieved results are a perfect illustration of this 
ppPDC’s property. As it is seen in the formulas (1) and (2) and in the Fig. 5, paralleli-
sation of the processing times in the distributed consumer nodes results in shortening 
total communication times by nearly one order of magnitude. 

5   Concluding Remarks and Future Work 

This paper presents the results of research on the communication middleware for AI-
based control of multi-robot systems. Proposed protocol employs the data distribution 
scheme specifically designed for the star topology-based switched networks and 
proved useful when implemented on top of the popular and cheap Ethernet networks. 
The efficiency of the middleware is comparable with the retail products, while the 
systems using it stay open and highly reconfigurable. Use of the classical TCP and 
UDP protocols allows the ppPDC to be compatible with a great number of already 
existing tools and hardware. 

Preliminary test results and pilot implementation (see [17]) show that the ppPDC 
scheme is very promising. The middleware is currently under further development 
and research. Laboratory tests are being conducted to determine exact efficiency un-
der wide range of hosting operating systems and underlying hardware networks of 
varying standards. Depending on the parameters of switching device (memory, proc-
essing power) used in the physical layer, exact limits of data sizes and cycle times of 
the knowledge table broadcasting are also being determined. 

Acknowledgments. This work was supported by the Polish Ministry of Science and 
Higher Education, grant no. N N514 296335. 

References 

1. Pagello, E., Arai, T., Dillmann, R., Stentz, A.: Towards the Intelligent Autonomous Sys-
tems of the third millennium. Robotics and Autonomous Systems 40, 63–68 (2002) 

2. Carpin, S., Ferrari, C., Pagello, E.: Map focus: A way to reconcile reactivity and delibera-
tion in multirobot systems. Robotics and Autonomous Systems 41, 245–255 (2002) 

3. Pagello, E., D’Angelo, A., Montesello, F., Garelli, F., Ferrari, C.: Cooperative behaviors in 
multi-robot systems through implicit communication. Robotics and Autonomous Sys-
tems 29, 65–77 (1999) 

4. Jia, S., Lin, W., Wang, K., Takase, K.: Network Distributed Multi-Functional Robotic Sys-
tem Supporting the Elderly and Disabled People. Journal of Intelligent and Robotic Sys-
tems 45, 53–76 (2006) 

5. Aleotti, J., Caselli, S., Reggiani, M.: Leveraging on a virtual environment for robot pro-
gramming by demonstration. Robotics and Autonomous Systems 47, 153–161 (2004) 



 ppPDC Communication Framework 205 

6. Pires, J.N., Sa da Costa, J.M.G.: Object-oriented and distributed approach for program-
ming robotic manufacturing cells. Robotics and Computer Integrated Manufacturing 16, 
29–42 (2000) 

7. Hu, X., Zeigler, B.: Model Continuity to Support Software Development for Distributed 
Robotic Systems: A Team Formation Example. Journal of Intelligent and Robotic Sys-
tems 39, 71–87 (2004) 

8. Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. The Knowledge 
Engineering Practice 10(2), 115–152 (1995) 

9. Jennings, N.R., Sycara, K., Wooldridge, M.: A Roadmap of Agent Research and Devel-
opment. In: Autonomous Agents and Multi–Agent Systems, vol. 1, pp. 7–38. Kluwer Aca-
demic Publishers, Boston (1998) 

10. Weiss, G. (ed.): Multiagent Systems. A Modern Approach to Distributed Artificial Intelli-
gence. MIT Press, Cambridge (1999) 

11. Knapik, M., Johnson, J.: Developing Intelligent Agent for Distributed Systems. Mc Graw–
Hill, New York (1998) 

12. Van Dyke Parunak, H.: A practitioners’ review of industrial agent applications. Autono-
mous Agents and Multi-Agent Systems 3(4), 389–407 (2000) 

13. Marik, V., McFarlane, D.: Industrial Adoption of Agent-Based Technologies. IEEE Intel-
ligent Systems, 27–35 (January/February 2005) 

14. Fletcher, M., Brennan, R.W., Norrie, D.H.: Modelling and reconfiguring intelligent holo-
nic manufacturing system with Internet-based mobile agents. Journal of Intelligent Manu-
facturing 14, 7–23 (2003) 

15. Kotak, D., Wu, S., Fleetwood, M., Tamoto, H.: Agent-based holonic design and operations 
environment for distributed manufacturing. Computers in Industry 52, 95–108 (2003) 

16. Polaków, G., Metzger, M.: Agent-Based Approach for LabVIEW Developed Distributed 
Control Systems. In: Nguyen, N.T., et al. (eds.) KES-AMSTA 2007. LNCS (LNAI), 
vol. 4496, pp. 21–30. Springer, Heidelberg (2007) 

17. Metzger, M., Polaków, G.: Holonic Multiagent-Based System for Distributed Control of 
Semi-industrial Pilot Plants. In: Mařík, V., Vyatkin, V., Colombo, A.W. (eds.) HoloMAS 
2007. LNCS (LNAI), vol. 4659, pp. 338–347. Springer, Heidelberg (2007) 

18. Choinski, D., Metzger, M., Nocon, W., Polaków, G.: Cooperative Validation in Distrib-
uted Control Systems Design. In: Luo, Y. (ed.) CDVE 2007. LNCS, vol. 4674, pp. 280–
289. Springer, Heidelberg (2007) 

19. Piper, C., Johnson, A.: From fieldbus to.NET: an overview of today’s network-based 
automation technologies. Hydrocarbon Processing, 37–44 (March 2004) 

20. Lian, F.-L., Moyne, J.R., Tibury, D.M.: Performance evaluation of control networks. IEEE 
Control System Magazine, 66–83 (February 2001) 

21. Husemann, R., Pereira, C.E.: A multi-protocol real-time monitoring and validation system 
for distributed fieldbus-based automation applications. Control Engineering Practice 15, 
955–968 (2007) 

22. Skeie, T., Johannessen, S., Brunner, C.: Ethernet in Substation Automation. IEEE Control 
System Magazine, 43–51 (June 2002) 

23. Lee, K.C., Lee, S.: Performance evaluation of switched Ethernet for real-time industrial 
communications. Computer Standards & Interfaces 24, 411–423 (2002) 

24. Decotignie, J.-D.: Ethernet-Based Real-Time and Industrial Communications. Proceedings 
of the IEEE 93(6), 1102–1117 (2005) 

25. Vitturi, S.: On the Use of Ethernet at Low Level of Factory Communication System. 
Computer Standards & Interfaces (23), 267–277 (2001) 



206 G. Polaków and M. Metzger 

26. Wang, J., Premvuti, S.: Resource sharing in distributed robotic systems based on a wire-
less medium access protocol (CSMA/CD-W). Robotics and Autonomous Systems 19, 33–
56 (1996) 

27. Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE 
Transactions on Robotics and Automation 14(6), 926–939 (1998) 

28. Reynolds, C.W.: Flocks, Herds, And Schools: A Distributed Behavioral Model. Computer 
Graphics (ACM) 21(4), 25–34 (1987) 

29. Fernández-Madrigal, J., Galindo, C., González, J., Cruz-Martín, E., Cruz-Martín, A.: A 
software engineering approach for the development of heterogeneous robotic applications. 
Robotics and Computer-Integrated Manufacturing 24(1), 150–166 (2008) 

30. Felser, M., Sauter, T.: The Fieldbus War: History or Short Break Between Battles? In: 4th 
IEEE International Workshop on Factory Communication Systems, Västerås, Sweden, pp. 
73–80 (2002) 

31. Yang, T.C.: Networked control system: a brief survey. IEE Proceedings: Control Theory 
and Applications 153(4), 403–412 (2006) 

32. Chávez, M.L., Thomesse, J.-P.: Fieldbuses and Real-Time Mac Protocols. IFAC Intelli-
gent Components and Instruments for Control Applications, Buenos Aires, Argentina, 41–
46 (2000) 

33. Loeser, J., Haertig, H.: Low-latency Hard Real-Time Communication over Switched 
Ethernet. In: Proceedings of 16th Euromicro Conference on Real-Time Systems, Catania, 
Sicily (July 2004) 



The Experimental Robotics Framework

João Xavier and Helder Araújo

Institute of Systems and Robotics - ISR, University of Coimbra, Portugal
smogzer@gmail.com, helder@isr.uc.pt

Abstract. In this article is introduced a framework for the development
of reusable software components for Human Robot Interaction (HRI): the
Experimental Robotics Framework. Normally human-robot interfaces are
discarded as they stop being useful and because of that lots of work put
into those architectures is lost. Our software plans to change that, and
provide a platform that will enable interfaces to be reused. We explain
the architecture and design rationale of the framework, and demonstrate
it with some use cases. The developed framework is available on-line with
a LGPL license.

Keywords: OpenGL, GUI, Player, fast prototyping.

1 Introduction

Most human-robot interfaces are discardable and technologically limited (2D,
static, closed source, have steep learning curves, etc) as they serve only to per-
form a single experiment. The software described herein plans to change that sit-
uation and provide a state-of-the-art platform - 3D, dynamic, component based,
open-source - that will enable interfaces to be reused and improved over time by
its users.

In this article we explain the architecture and design rationale of that software
- the Experimental Robotics Framework (ERF) - and demonstrate it with some
use cases. ERF is not only about reusing components, it is also a platform for
creating and exploring new paradigms of interaction; joining researchers from
different domains, even from outside the robotics world, and also from different
robotics middle-ware communities, to do their interaction experiments under a
common platform. We expect that this software will make it easier to perceive
how algorithms work by having a mix of algorithms interacting with the en-
vironment, which can create a fertile environment for creativity, learning and
serendipities. As way of measuring the adoption of the platform, the new users
already developed visualizations for the inner methods of operation of the navi-
gation algorithm VFH and new components for visualizing point clouds.

This article is organized as follows. Section 2 presents the related work.
Section 3 describes the software platform. Experiments demonstrating the con-
cepts used in the article are in 5. Future improvements are suggested in Section 6.
Final remarks are given in Section 7.

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 207–221, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



208 J. Xavier and H. Araújo

2 Related Work

Good practices in usability ensure the users have a good experience with the HRI.
Some articles discussing and evaluating interfaces are [1,2,3,4,5,6,7,8], our work
builds on features that were available on those publications. The advantages of
3D interfaces for controlling robots are discussed in [9], the obvious advantage
are the natural representation in 3d of objects that makes them easier for users
to recognize, and avoiding the need to cast 3d objects as 2d objects that is a
common trend in multi-robot interfaces.

A taxonomy for categorizing human-robot interaction is presented in [10]. Of
the models available in this taxonomy our model would be in the “one operator to
multiple robots”. Both [11,12] have developed 3D HRIs for interfacing of a single
user to multiple robots with support for motion planning and robot trajectory
generation for target tracking. Their interfacing strategy is the following: first the
operator selects which robots to use, then the operator selects which objects to
be acted on, and finally the operator selects a task to perform. A Graphical User
Interface (GUI) to operate GPS-enabled robots is described in [13]. They raise
an interesting issue: the problem of objects appearing twice if sensed by different
robots. To solve it they use heuristics to avoid drawing the same object twice if
observed by more than one robot. While the core ERF library avoids addressing
this issue as it does not have a canonical solution, the Markov Localization
module that is part of PlayerViewer3D chooses as the robot reference frame the
most likely particle from the particle filter set to represent the robot localization
and disambiguate the robot pose. The previous three references use the OpenGL
User Interface library (GLUI) for widgets and the OpenGL C++ Toolkit(GLT)
for loading textures and object interaction or “picking”. In ERF we use the Fast-
Light Toolkit (FLTK) for widgets and implement our own procedures for 3d
model and texture loading. In [14] are studied the conditions under which the
collaborative human involvement in shared HRI will not jeopardize scalability
of a network of robots. In our work this issue is not handled as we consider that
it is a concern of the underlying sensor layer, that in our case is Player [15].

At present the modalities supported by ERF are mouse and keys, and Finite
Stage Grammar (FSG) based ones - like speech or text. Other GUI solutions that
also use multi-modality appeared on the fields of teaching [16] and alternative
interfaces for the handicapped people [17].

Other fields that use HRI are the ones of Virtual Reality (VR) and Augmented
Reality (AR). Multi-robots tele-operation using an intermediate functional repre-
sentation of the real remote world by means of VR are present in [18,19,20,21,22]
A VR-based operator interface was developed by NASA in [23] to remotely con-
trol complex robotic mechanisms. The authors concluded that VR interfaces can
improve the operator situational awareness and provide valuable tools to help
understand and analyze the vehicle surroundings, and plan command sequences.

Ar-Dev [24] is an AR application that superimpose graphics of a robot sensor
readings over a real-world environment in real-time. Due to the modality of ERF
a tool like Ar-Dev is possible to build using ERF, since it is possible to choose



The Experimental Robotics Framework 209

the order by which drawing happens, rendering the camera captured texture first
and then superimposing the robots.

3 Overview of the Software Architecture

ERF provides a shared library that contains a collection of useful C++ classes
(depicted in Fig.1) that enables the user to compose HRI applications by gluing
components together. A composed HRI application is defined in a XML con-
figuration which states what components get loaded into the framework. A full
picture of the layout of the working system is displayed in Fig.2.

Next are described some important functionality blocks of our platform.

3.1 The Managers

These entities are responsible for the bookkeeping of the structures they manage.
They use reference counting techniques so that duplicating instances are avoided
whenever possible to ensure a frugal resource management. Examples of this is
the sharing of access to a Player proxy by more than one plugin, or the reuse of
a single OpenGL display list to draw the same object by multiple components.
All Managers can be created as singletons, which is a software design pattern
that assures they are unique and have lazy initiation (are only instantiated once,
in the first time they are called).

3.2 Multiple Robot Interfacing

Multiple robot interfacing is the ability to tele-operate one or more robots (which
are Player Clients) from a single HRI instance. This feature raises a synchronicity
issue: when to check for new data on every remote robot without wasting precious
CPU cycles ? The obvious solution would be to run all clients on a single thread
and each time check for new data on each proxy, on each client. Experience
demonstrated that this solution does not extend computationally to more than

Fig. 1. A mind-map of the hierarchy of classes in ERF



210 J. Xavier and H. Araújo

3D World
Window_1

Plugin List

Plugin: OpenGL Lights

Plugin: ...

User Input

Deliver Event to the
Active Event Handler

Player Proxies
 on Robot_1

Plugin: Robot Pose

Plugin: Laser

Plugin: Camera

Proxy: Position 2D

Proxy: Laser

Proxy: Camera

Components are specialized reusable Plugins

Algorithm: C++ LibraryConfiguration: XML Author Information

Communications: XML, Direct Memory Acess or Shared OpenGL context

AEH is
set ? yes

      no

Clicked Element
 becomes the AEH

LMB
Click on a 3D

Element that is
 also an

EH ?

          yes

LMB
and more than
 one Object3D

in  Ray ?
User picks

the correct one

          yes

     no

Sensors and actuators Composed Application with GUI World Interactions chain of responsibility

Move OpenGL camera,
 switch fullscreen,
 record movie, etc.

       no

when new data arrives
redraw the window

that contais the plugin

Object 3D

Event Handler

Tags

Real or 
simulated robot

Fig. 2. Layout of a composite application of ERF and the user interaction chain of
responsibility (on the right)

3 robots, so a solution that extends to more robots was devised. This solution
is to make each Player Client run on its own thread and each client signals the
application whenever they have new data on one of its proxies. The application
can then proceed to use the new acquired data to redraw the world.

3.3 Multiple Windows Display

ERF can have each component draw its data on separate windows or combine
them in a single window. A common setup is to have a world window where
everything is displayed, and separate windows for video cameras. From the pro-
grammer point of view, the window is a container of components. In order to
draw the world, the components are visited sequentially and each draws the data
from their sensors.

When accessing multiple sensors from multiple robots the data is produced
at very fast rates. This drawing operation would add up cause the blocking of
the system. This problem makes it far from optimal to draw asynchronously, i.e.
every time that new data arrives. To address this problem the drawing of the
windows is done synchronously, at fixed intervals and only if there is new data
to display. This interval by default is 0.10s but it can be modified by the user,
the option of redrawing when the CPU is idle is also available, and the window
also redraws whenever there is user input that changes the state of the world.

3.4 Inter-component Messaging

In order to remove code redundancies the components are specialized in certain
tasks e.g. the manager of zones that comprises all the methods that can be



The Experimental Robotics Framework 211

applied to polygonal zones. Components can query one another for information
or to execute some method. The queries are XML formatted data, normally in
the form of a question. This message is passed through all components with the
matching ID or library name until a positive reply (error = 0) is reported. The
components reply to queries with both a XML message and an error message -
that reports problems (error < 0), no problems (error = 0), or a component
reserved report message (error > 0).

By using the XML API for messaging and for parsing configuration files we
keep the overall simplicity of the framework API. The XML communication ap-
proach is adequate for rapid prototyping and communication of small structures,
but it is not appropriate for large data sets, like big matrices such as images,
which are better exchanged either sharing the textures in the OpenGL contexts
or accessing the memory of other components directly. Direct memory access if
achieved by querying the manager of plugins for the required plugin and then
casting the plugin to the C++ Class that implements the interface that has the
data and methods that we want to access.

3.5 Awareness and Contexts in ERF

Awareness means to know something or to be aware of a danger. There are two
kinds of awareness that ERF provides, the situational and the spatial. Situational
awareness is important for robots to identify that a certain event is taking place,
normally based on the robot sensor data. An example of this is a person entering
the laser range and being tagged as “person”, which will signal a spatial event.
Spatial awareness is important to identify certain places, like an elevator or
dangerous zones, like stairs. ERF makes this knowledge of the world available
for all the robots so they can cooperate in high level tasks.

Due to the dynamical nature of ERF it is possible to load new components
into the framework or send XML messages between components when awareness
events take place.

A concept that is fundamental for modelling and implementing awareness
is tagging. Tags are the way world entities are identified so robot components
identify and use them. Components can query or monitor the Manager of Objects
for the existence of an Object3D with specific tags - e.g. “is there any person ?”
- and further take actions on the Object3D, e.g. follow the “person”.

3.6 Component System

Components extend the functionality of the application and are identified by
their library name which specifies the type of component and by an id field
defined in the XML configuration, which specifies the unique key that the com-
ponent can be refered to during runtime. As there is a clear and simple interface
for the services that each component implements, the development is possible
without the need to read and understand the source of the rest of the composite
application. Components are provided with default configurations so that they
can run out of the box, imposing a minimal need to know their parameters.



212 J. Xavier and H. Araújo

When the application finalizes, the component states can be serialized again to
the configuration file. Components are free to do anything, like adding widgets
to the HRI, adding new entities to the world, communicating with the Player
server, accessing other component data, etc. From the point of view of the de-
veloper, components inherits from the base Plugin C++ class. Other abilities, like
XML messaging or serialization (saved) also need to be inherited from other base
classes.

The component class can also contain extra information provided by the au-
thor: the author e-mail, the web-page and a description of the component.

During the component lifetime the following methods are called if they are
implemented:

1. initialize - is called after the windows are shown and OpenGL contexts are
created.

2. run - is called at each iteration, the method will draw or process data.
3. clean - is called just before the component is removed from the framework.

3.7 Serialization

Serialization is the process of writing data structures to XML so that they can be
saved to disk or across the network, this procedure allows for the data structures
can be restored again in other initializations. Serialization is implemented by
converting the C++ data to XML and back to C++ by defining correspondences
between the C++ data types and the XML data. The Serialization structure is
also used to convert data to XML so that it can be communicated between
components.

3.8 Multi-modality Interaction

The inputs ERF supports are distincted by those that need to be converted to
finite state grammars (FSG) and those who do not. Speech recognition, text
input either scripted or interactive, are in the class of FSG, while the GUI and
key-combinations do not need to be convert to FSG. All components that must
make use of one of these kind of inputs must implement the rational of the
interactions in their code.

3.9 GUI Interaction with the 3D World

The GUI interaction involves two entities, the Event Handler(EH), and the
Object3D. The Event Handler is a entity that can intercept the chain of in-
put events in order to execute methods. An Object3D is an entity in the world
that is clickable, and that can be an EH.

To make any C++ class an EH the developer only has to inherit from the EH
virtual base class. Then when it becomes the AEH (normally because a user clicked
it when no other AEH was active) the input of the user are then redirected to
the AEH. From the information of the user input - keyboard or mouse - the AEH



The Experimental Robotics Framework 213

Fig. 3. Some generic components. On the right is the item tree that displays possible
actions and data of the components. Of particular interest is the possibility of showing
Latex formulas with the transparent background.

can decide what actions to take. The AEH knows the type of Object3D clicked
by looking at its Tags, which can be either be attributes, names, etc.

An example of an interaction using the mouse is: pressing the Left Mouse
Button (LMB) to select a robot - which is both an Object3D and EH - making
him the Active Event Handler (AEH) and then clicking on a person - that is just
an Object3D - delivers the event to the robot because the robot is the AEH. The
robot EH can then display a pop-up with the options of actions that the robot
can perform on the clicked person. A simplified explanation of how interaction
is processed is demonstrated as the chain of responsibility represented in the
rightmost diagram of Fig.2.

3.10 Item Tree

The item tree shows a hierarchical tree of FLTK item, that represent the loaded
components, like the one depicted in Fig.3. The branches of the tree are the
components and the leafs are their services and data. By clicking in each ser-
vice, a callback can be executed that performs an action, e.g. showing a pop-up
sub-menu of the component or give instructions to a robot.



214 J. Xavier and H. Araújo

3.11 Simplified OpenGL

Some complex OpenGL tasks are made simpler using ERF, like selecting objects
in the world, drawing text and working with textures, applying GLSL shaders
to textures, accessing the Frame Buffer Object (FBO) extension for rendering
to textures, 3d model loading, managing display lists, moving a camera, etc.

3D Model Loading. To better understand what the entities in the robot
world it is very helpful to represent them close to their real appearance. The
pragmatical approach offered in ERF is to model the objects in a software that
is appropriate for 3D modelling such as Wings 3D [25] and load an exported
modeled model in the .obj [26] format into the world.

GPU Kernel Filters. The process of kernel based filtering consists of going
through each pixel on an image and performing some operation on that pixel
that is related to the values of neighbor pixels. These filters are coded in the
OpenGL Shading Language (GLSL) which is a C inspired language specialized
for graphics processing. The filters can then be applied not only to bitmap images
but to robot world maps (grayscale occupancy grids), as they can be casted as
textures and processed on the GPU. An API for loading GLSL kernels and
applying those kernels to textures is provided.

Camera. The camera was idealized for mobile robotics, where we normally view
from the top to give commands and move around the world. The camera has
two view modes: a top orthographic mode and a perspective projection mode.

The center of the screen is common to both views, this means that if the user
moves the scene center while in top view, and then switches to perspective view,
the center of the screen in perspective view is updated to the top view center.
The rationale is that the user uses the top view to navigate quickly around the
world and switches to the perspective view to have a better understanding of
what is in the center of the view, and rotate around it.

4 ERF Configuration Files

Configuration files define which components are loaded into the framework and
their initial parameters. Composing interactions has two major steps: 1) writ-
ing the configuration files that describe the HRI composed application, and 2)
launching the application composer that will glue all the components specified
in the configuration file.

In order to expand our platform so that software developed by third parties
can expand the framework itself (not the components) it is required that those
extensions inform the ERF XML parser how to parse their unique XML entities.

This is accomplished with a “addParser” xml element on top of the config-
uration file. An example of this is the Player Viewer 3d (PV3D) that informs
the XML parser how to parse elements like the “handlers” element. When PV3D
starts it will load a set of plugins from the XML configuration file and associate
them with Player proxies in order to create the final composite application.



The Experimental Robotics Framework 215

To launch ERF the user has to specify one or more configuration files like:

$ erf ground.erf.xml laser.pv3d.xml sonar.pv3d.xml

There are two combinable approaches to write a PV3D configuration file: in
the first approach the user specifies what plugins are loaded and precisely what
Player Devices they will use; in the second approach the user provides device
handlers. The Device Handlers are masks of Player Devices that will establish
correspondence between a range of Player Devices and PV3D plugins. This latter
technique works by specifying a mask using the syntax of a Player device, with
the addition of wild-cards in place of the driver name or interface index; for
selection of multiple devices - e.g. laser:sicklms200:* which means all the
devices with a laser interface, a specific driver called sicklms200 and all possible
indexes. The plugins associated with the handler will be loaded if any devices
with that description are found; then the plugin information is added to a final
XML configuration file with all the plugins that are going to be loaded. This
concept is useful for example to load plugins for a simulator world full of robots.
In Fig. 4 is shown a typical configuration file with handlers; the handler for the
laser device is further exposed in Fig. 5.

<erf XMLns:pv3d="http://miarn.sf.net"
XMLns:xi="http://www.w3.org/2001/XInclude">

<plugin library="libpv3d_glob" id="pv3d">
<playerClient host="localhost" port="6665"/>
<playerDeviceMask interface="laser">

<xi:include href="laser.pv3d.XML"/>
</playerDeviceMask>

</plugin>
<plugin library="libpv3d_lights"/>
<plugin library="libpv3d_ground"/>

</erf>

Fig. 4. A XML file describing the a composite application in the PV3D component

<plugin library="libpv3d_laser" id="laser">
<playerDeviceMask host="localhost" port="6665"
interface="laser" index="0"/>
<parentNode interface="position2d" index="0"/>
<fillLaserCspace>1</fillLaserCspace>
<drawLaserCspace>1</drawLaserCspace>-->
<skinFile>skins/laser_sick.obj</skinFile>

</plugin>

Fig. 5. A XML file describing the visualization of a laser, notice that when called from
inside an handler the playerDeviceMask is replaced by the found device information

The handler approach can still not be enough for specific experiments, so
another option is to make the program output a XML configuration file generated
by the handlers. The user can then further customize this configuration file for
his needs.

ERF avoids the need for users to remember the syntax of configuration files
by providing relax-ng schemas for each individual component type. This way the



216 J. Xavier and H. Araújo

user can use real-time auto-completion and validation using the Emacs editor
in the nXml mode. An example of this feature is provided in a video on the
MIARN site [27].

5 Examples of Composite Applications

This section demonstrates the composing of applications from distinct fields in
robotics. The examples are the following: a) Scene perception; b) Multi-robot
tele-operation; c) Mixing a real and a simulated world; d) Simulation of a camera
projection; e) Sparse 3D reconstruction visualization; f) kernel filters in GLSL
applied to images.

5.1 Example of Scene Perception

This example consists of representing the perception that a robot has of the
world, which is depicted in Fig.6.a. This task requires the visualization of a
laser device, and two scene interpretation components, one for people detection
and another for geometric features. Both scene interpretation components use
the Player Fiducial devices, that communicate the data of the fiducials to the
visualization component. These Player Scene Interpretation plugins for Player
were also developed by the author of this article, in a previous project [28] and are
also on-line. Due to the reusable nature of the ERF framework the components
of this example can be combined with others, like the tele-operation one, which
would allow the robots to navigate while perceiving the scene.

5.2 Example of Tele-Operation

In this example the HRI accesses three mobile robots in the Stage simulator (it
could also have been in the real world), it is depicted in Fig.6.b. Each robot
has either a laser or a sonar sensor on top. Two robots have 3D models, the
Nomad and the Robchair ( a robotic wheelchair); the third robot only shows the
geometry of the robot that is also its collision envelope. Note in this example
the widget for position control, which can establish limits to the velocities of the
robot and a joystick like interface to the robot, which is a customized FLTK [29]
widget. The position component also provides a Event Handler for controlling
the robot in the world, in the form of a target. By dragging the target over the
“ground” Object3D it is possible to give a way-point for the robot to navigate to
(in position mode) or interface with the velocities of the robot in a joystick like
style (in velocity mode).

5.3 Example of Mixing a Real and a Simulated World

Hardware-in-the-loop and human-in-the-loop are two possibilities for experi-
menting and debugging systems that are possible by accessing either real or
simulated devices and combining them together under the same interface. This
is demonstrated in Fig.6.c where a real-world camera is operating in a simulation
environment.



The Experimental Robotics Framework 217

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Experiments from different robotics domains: a) Scene interpretation from laser
data, b) multi-robot tele-operation, c) mixing simulation and a real camera; d) a simu-
lation of a camera, e) sparse 3d reconstruction, f) a tile of different kernels implemented
in GLSL

5.4 Example of Simulating a Camera Projection

In computer vision experiments is hard to work in ideal conditions as cameras
have distortion and are expensive. Simulation offers the advantage of working



218 J. Xavier and H. Araújo

with perfect cameras, not having to deal with noise. In OpenGL is possible to
render the content of a camera to a frame-buffer object (FBO). This FBO result
can then be applied to a texture as seen in Fig.6.d.

5.5 Example of Sparse 3d Reconstruction Visualization

This example serves to demonstrate the visualization of 3d reconstruction and
camera ego-motion from sparse 2d features. The results can be seen in Fig.6.e.

5.6 Example of Kernel Filters in GLSL

The result of application of different kernels implemented as GLSL filters to ERF
logo are depicted in Fig.6.f . The filters were applied individually, screenshots
were of them taken and the resulting mosaic was composed.

6 Future Improvements

The future improvements are:

– Create a component to draw and manipulate bezier curves in OpenGL (useful
for robot path planning).

– Create a component that is a run-time component editor, a loader and can
change the order the components are visited.

– Explore the potential of the GPU in mobile robotics applications that use
grid maps. To explore the potential of algorithms like Voronoi path planning,
Vector Field Histogram, etc.

– Allow for visual programming of components, like connecting outputs to
inputs in a graphical manner, this will need some sort of introspection from
the components.

– Develop more computer vision components and interfaces for exploring the
possibilities offered by OpenCV.

– Integrate with the Open Dynamics Engine (ODE) for starting a robot sim-
ulator based on ERF.

– Develop components for integration with a cognitive platform such as SOAR
[30].

7 Conclusion and Contributions

In this work is contributed an Open Source freely available framework for devel-
oping Human Robot Interfaces - the Experimental Robotics Framework (ERF).
ERF provides a common framework where a community of researchers can share
common interfaces and algorithms. Because the component paradigm is simple
to understand and very expandable the chance their work gets exposed and
continued by others is greater.



The Experimental Robotics Framework 219

The main features of ERF are:

1. It is very adaptable to the user needs, it supports : Multi-robot, multi-
context, multi-modal, multi-windows.

2. It is the start of a full featured package for computer vision using the GPU
and the CPU with interaction and scene interpretation.

3. The approach to graphical user interfacing is abstracted in a way that is very
easy to the developers to create interactions with the entities of the world.

4. In the classroom this software can encourage learning due to its interactivity,
graphics, ease of use and Latex formula display, which can even be used to
present algorithms in an interactive way.

5. Provides a wide selection of components, that can also be used as templates
for devising new ones. The components range from generic ones to computer
vision, to mobile robotics;

6. World awareness is also modeled so that the framework can react to world
events by signaling components that spatial of situational events are taking
place and have the components react to these events.

With the availability of this framework for free on the Internet the process of
designing 3D interactive GUIs for robotics related sciences is now much more
accessible to everybody. The developed software is having wide acceptance and
good feedback by the Player robotics community. Because the developed software
is updated on a regular basis the reader is invited to visit the site [27] for an
updated version.

Acknowledgments

This work is supported by the European Commission grant FP6-IST-2004-
027268 attributed to the POP project.

References

1. Steinfeld, A.: Interface lessons for fully and semi-autonomous mobile robots. In:
IEEE Conference on Robotics and Automation (2004),
citeseer.ist.psu.edu/steinfeld04interface.html

2. Steinfeld, A.M., Fong, T.W., Kaber, D., Lewis, M., Scholtz, J., Schultz, A.,
Goodrich, M.: Common metrics for human-robot interaction. In: Human-Robot
Interaction Conference. ACM Press, New York (2006)

3. Scholtz, J., Antonishek, B., Young, J.: Evaluation of a human-robot interface:
Development of a situational awareness methodology. In: International Conference
on System Sciences (HICSS), vol. 05 (2004)

4. McDonald, M.J.: Active research topics in human machine interfaces. Intelligent
Systems and Robotics Center Sandia National Laboratories, Tech. Rep. (2000)

5. Lakshmi, S.S.: Graphical user interfaces for mobile robots. University of Kansas,
Tech. Rep. (2002), citeseer.ist.psu.edu/612670.html

6. Persson, A.: Multi-robot operator interface for rescue operations. Master’s thesis,
Orebro University (2005)

citeseer.ist.psu.edu/steinfeld04interface.html
citeseer.ist.psu.edu/612670.html


220 J. Xavier and H. Araújo

7. Fong, T.W., Thorpe, C.: Vehicle teleoperation interfaces. Autonomous
Robots 11(1), 9–18 (2001), citeseer.ist.psu.edu/fong01vehicle.html

8. Song, D.: Systems and algorithms for collaborative teleoperation. Ph.D. disserta-
tion, Department of Industrial Engineering and Operations Research, University
of California, Berkeley (2004)

9. Lin, I.-S., Wallner, F., Dillmann, R.: Interactive control and environment modelling
for a mobile robot based on multisensor perceptions. Robotics and Autonomous
Systems 18(3), 301–310 (1996)

10. Yanco, H.A., Drury, J.: Classifying human-robot interaction: An updated taxon-
omy. In: IEEE Conference on Systems, Man and Cybernetics (October 2004),
www.cs.uml.edu/~holly/papers/

11. Clark, C., Frew, E.: An integrated system for command and control of cooper-
ative robotic systems. In: 11th International Conference on Advanced Robotics,
Coimbra, Portugal (June 2003)

12. Jones, H., Hinds, P.: Extreme work groups: Using swat teams as a model for coor-
dinating distributed robots. In: Conference on Computer Supported Cooperative
Work (November 2002)

13. Jones, M.S.H.: Operating gps-enabled robots with an opengl gui. Dr. Dobb’s Jour-
nal, 16–24 (January 2003)

14. Makarenko, A., Kaupp, T., Grocholsky, B., Durrant-Whyte, H.: Human-robot in-
teractions in active sensor networks. In: IEEE International Symposium on Com-
putational Intelligence in Robotics and Automation (CIRA 2003), Kobe, Japan,
July 2003, pp. 247–252 (2003)

15. Gerkey, B., Vaughan, R.T., Howard, A.: The player/stage project: Tools for multi-
robot and distributed sensor systems. In: Proc. 11th International Conference on
Advanced Robotics, Coimbra, Portugal, pp. 317–323 (2003), playerstage.sf.net

16. Ishii, H.S.M.: A step toward a human-robot cooperative system. Artificial Life and
Robotics (1997)

17. Xu, H., Brussel, H.V., Moreas, R.: Designing a user interface for service operations
of an intelligent mobile manipulator. Telemanipulator and Telepresence Technolo-
gies IV 3206(1), 12–21 (1997)

18. Kheddar, A., Coiffet, P., Kotoku, T., Tanie, K.: Multi-robots teleoperation - anal-
ysis and prognosis. In: 6th IEEE Int. Workshop on Robot and Human Communi-
cation, IROS, Sendai, Japan, September 1997, pp. 166–171 (1997),
citeseer.ist.psu.edu/kheddar97multirobots.html

19. Kheddar, A., Fontaine, J., Coiffet, P.: Mobile robot teleoperation in virtual re-
ality. In: IEEE IMACS CESA 1998, Nabeul-Hammamet, Tunisie (April 1998),
citeseer.ist.psu.edu/kheddar98mobile.html

20. Aucoin, N., Sandbekkhaug, O., Jenkin, M.: Immersive 3d user interface for mo-
bile robot control. In: Proc. IASTED Int. Conf. on Applications of Control and
Robotics, Orlando, pp. 1–4 (1996), citeseer.ist.psu.edu/379953.html

21. Stuart, R.E.K., Chapman, G.: Interactive visualization for sensor-based robotic
programming. In: Systems, Man, and Cybernetics, vol. 12(15), pp. 761–766 (1997)

22. Michael Schmitt, F.: Virtual reality-based navigation of a mobile robot. In: 7th
IFAC / IFIP / IFORS / IEA Symposium on Analysis, Design and Evaluation of
Man-Machine Systems, pp. 377–382 (1999)

23. Nguyen, L., Bualat, M.: Virtual reality interfaces for visualization and control of
remote vehicles. In: IEEE Conference on Robotics and Automation (2002)

24. Collett, T., MacDonald, B.: Augmented reality visualisation for player. In: ICRA,
Orlando CA (2006), www.ece.auckland.ac.nz/~robot

citeseer.ist.psu.edu/fong01vehicle.html
www.cs.uml.edu/~holly/papers/
playerstage.sf.net
citeseer.ist.psu.edu/kheddar97multirobots.html
citeseer.ist.psu.edu/kheddar98mobile.html
citeseer.ist.psu.edu/379953.html
www.ece.auckland.ac.nz/~robot


The Experimental Robotics Framework 221

25. Wings 3d modeller, http://wings3d.org
26. Wavefront obj format, csit.fsu.edu/~burkardt/data/obj/obj_format.txt
27. Modules for intelligent autonomous robot navigation, miarn.sf.net
28. Xavier, J., Pacheco, M., Castro, D., Ruano, A., Nunes, U.: Fast line arc/circle and

leg detection from laser scan data in a player driver. In: Proc. IEEE Int. Conf. on
Robotics and Automation, Barcelona (2005)

29. The fast light toolkit, fltk.org
30. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: an architecture for general intelli-

gence. Artif. Intell. 33(1), 1–64 (1987),
http://portal.acm.org/citation.cfm?id=27702

http://wings3d.org
csit.fsu.edu/~burkardt/data/obj/obj_format.txt
miarn.sf.net
fltk.org
http://portal.acm.org/citation.cfm?id=27702


Where Am I? A Simulated GPS Sensor for
Outdoor Robotic Applications

Benjamin Balaguer and Stefano Carpin

School of Engineering
University of California Merced

5200 North Lake Road, Merced CA 95343, USA
{bbalaguer,scarpin}@ucmerced.edu

Abstract. Advances in the field of robotic simulations in general and
the complexity of virtual outdoor environments in particular have cre-
ated a demand for accurate simulated open-air localization devices. In
this paper, we answer this request by presenting the implementation of a
simulated Global Positioning System receiver for the popular USARSim
platform. The engineering tradeoff of speed versus accuracy is encoun-
tered throughout the design process and discussed comprehensively in
the paper. Along the lines of a validation methodology we developed in
recent years, the simulated sensor is implemented and extensively ana-
lyzed in a real/simulated scenario, where data logged from a real robot
is evaluated against the data acquired in simulation.

1 Introduction

With the continuously growing focus on multi-robot cooperation and improve-
ments in computer hardware, algorithmic techniques, and computer animation,
robotic simulators are gaining momentum within the robotics community. In-
deed, robotic simulators are now capable of simulating multiple blocks of an
outdoor urban environment, comprised of a multitude of robots, victims, fires,
collapsed structures, rivers, bridges, and more [1]. The typical assortment of
sensors for robots operating in similar real world environments more and more
often includes a Global Positioning System (GPS) receiver in order to ease the
localization task. Henceforth, in order to create a faithful simulation environ-
ment, we designed a simulated GPS sensor that is, to the best of our knowledge,
the first of its kind in comparable simulation systems. In fact, our goal is not to
merely convert Cartesian coordinates into latitude and longitude components,
but rather produce a realistic sensor that exhibits the same properties of current
GPS receivers.

Even though the paper’s aim is to provide a standard methodology for the
construction of a simulated GPS sensor for outdoor robotic applications, we
implemented our framework inside the Unified System for Automation and
Robot Simulation (USARSim)1. USARSim has become a popular real-time three
1 This system was formerly known as Urban Search and Rescue Simulator. The name

change reflects the much broader applicability it gained through the years.

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 222–233, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Where Am I? A Simulated GPS Sensor for Outdoor Robotic Applications 223

dimensional simulator thanks to widespread validation effort from the com-
munity [2][3][4] and its utilization in the yearly RoboCup Rescue Simulation
League [5][6]. USARSim is an open-source extension to the Unreal Tournament
(UT) game engine that, consequently, only requires a modestly priced UT li-
cense. The game engine takes care of rendering scenes and computing physics
while UnrealScript, an object-oriented programming language similar to C++,
allows for the addition and modification of actors (e.g. robots, actuators, sen-
sors) in the simulation. Since the sensor’s implementation will exclusively be
performed in UnrealScript, it is important to keep some of its drawbacks in
mind; namely its slow computational speed and lack of floating point number
precision.

This paper builds upon a validation methodology we developed for USARSim
in the past and that has proved to be highly effective in order to close the loop
between simulation and reality. In short, our approach consists in performing
the same experiment in simulation and with the real world system, and to quan-
titatively compare the results. This effort may sometimes be costly, because it
entails developing accurate models of the robotic systems at hand, but it has
proved to be a formidable tool in order to assess which conclusions can be extrap-
olated from simulation to reality and which ones do not generalize. Part of the
USARSim success draws from the abundance of these validation efforts, and this
paper, besides illustrating the technical details of GPS simulation, can be read
as a working example of the robot simulators validation process we advocate.

2 Methodology and Implementation

2.1 Satellite Tracking

Since a real GPS module receives signals from satellites, the first cornerstone
to simulate a GPS receiver is to establish a relationship between the GPS sen-
sor and the orbiting satellites. The most realistic method to establish this re-
lationship is by tracking GPS satellites. The three governing North American
aerospace institutions, namely the National Aeronautics and Space Administra-
tion (NASA), the North American Aerospace Defense Command (NORAD), and
the Air Force Space Command (AFSPC), collectively promote the usage of the
Simplified General Perturbations Satellite Orbit Model 4 (SGP4) for satellite
tracking, the details of which are found in [7]. In fact, the SGP4 algorithm has
gained a strong reputation among amateurs and professionals and quickly be-
came the standard satellite tracking model, resulting in sustained research and
constant improvements [8][9].

While the details of SGP4, which can be found in the referenced publications,
are beyond the scope of this paper, we will provide a very brief and high-level
description of the orbital model. The algorithm takes as input a NASA/NORAD
Two-Line Element (TLE) [10], a date, and a time and outputs the location of
the satellite defined by the TLE at the given date and time. Real-time satellite
tracking can consequently be achieved by continuously running SGP4 with the
current date and time. The TLE format, a sample of which is given in Figure 1,



224 B. Balaguer and S. Carpin

Fig. 1. Sample TLE File with Format Descriptions (modified from [10])

provides the orbital information necessary to reconstruct the orbit of a satellite
(see Figure 2) that can then be used to approximate the satellite’s location.
The SGP4 algorithm parses the TLE data and calculates the satellite’s orbital
state vectors, the result of which is usually expressed as latitude, longitude, and
altitude components. Manifestly, the precision of SGP4 is strongly correlated
to the accuracy of the TLE data. To that effect, the AFSPC publishes and
maintains a database of TLE files available to approved users on the space track
website [11].

Even though there already exists a plethora of satellite trackers implemented
with SGP4, available both as online visualization tools [12][13] and compre-
hensive software suites [14][15][16], we constrained our search to user-friendly,
reusable, open-source, and lightweight systems since we were, originally, looking
to port the code to UnrealScript. After experimenting with a multitude of im-
plementations and choosing GLSat [17], we realized that translating the code to

Fig. 2. Reconstructing a Satellite Orbit from a TLE-File



Where Am I? A Simulated GPS Sensor for Outdoor Robotic Applications 225

UnrealScript was impossible due to poor floating point precision. Indeed, the UT
engine is only capable of keeping track of seven decimal places, rendering live
satellite tracking inaccurate. In addition, the amount of time spent calculating
satellite positions took too much time away from other simulated components.

We circumvented the aforementioned problem by switching to an offline ap-
proach for satellite tracking. More specifically, we modified the GLSat program
to take in the following parameters: a TLE file comprised of one or more satellite,
a date, a time, and the amount of time during which satellite positions should
be tracked. The program then computes all the satellite positions, starting from
the given date and time, over the time interval with a pre-defined time step, and
creates a configuration file that can be read by UnrealScript. The configuration
file is then read-in and stored in appropriate data structures when the simulation
starts, effectively yielding a lookup table of satellite positions, based on time.
Even though this method requires greater user interaction and does not reflect
real satellite positions for large time steps, it alleviates computational burden -
a primordial aspect of robotic simulations. It is worthwhile noting that this ap-
proach allows flexible researchers to use any configuration file (for applications
where it does not matter if satellite positions do not reflect the current date and
time), while more stringent researchers can go through the process of generating
their own configuration files (for applications requiring the proper satellite posi-
tions for a given time interval). The reader should observe that in order to render
faithful simulation, the system we have developed does not perform a generic
simulation of a GPS, but rather offers the possibility to locate the simulation in
time, i.e. it extracts the position of the GPS satellites at a given point in time.
In this way the correlation between simulation and real world systems becomes
more binding.

2.2 Signal and Noise Model

With the simulation now capable of determining the satellites’ location, we in-
troduce signal and noise models. Real GPS receiver precision depends on the
number of satellite signals received by the unit (i.e. the more satellites seen by
the receiver, the better the accuracy of the location) as well as the geometric
arrangement of the satellites (i.e. the dilution of precision) [18]. For the purpose
of this paper and due to the additional computational burden of integrating di-
lution of precision calculations, we solely base our noise model on the number
of satellite signals received by the GPS receiver. Consequently, the first step in
our model is to determine the number of satellites observed by the simulated
GPS sensor; a two-step process. First, the angle of elevation between the current
sensor location and each satellite position is calculated. Any satellite yielding
an elevation angle less than five degrees is discarded. The process eliminates all
the satellites that would require sending a signal through the earth’s surface
(i.e. negative elevations) as well as the satellites that are too low to consider
(i.e. elevations between zero and five degrees). Eliminating satellites based on
their elevation, through a set of straightforward equations, is of foremost impor-
tance to guarantee that the next elimination process is computationally friendly.



226 B. Balaguer and S. Carpin

Second, ray tracing is performed from the GPS receiver to each of the satellites’
location to further eliminate some of the observed satellites. If the ray trace hits
an environment entity (e.g. buildings, vehicles) on its way to a satellite then that
satellite is discarded, otherwise it becomes one of the satellites seen by the GPS
sensor. Ray tracing being a computational burden [19], the first elimination
process assures that it will not be used needlessly. The proposed line-of-sight
signal model provides a very crude approximation, but modeling realistic sig-
nal strength taking into account possible deflections would surely result in an
intractable scenario.

As previously discussed, the amount of noise in a GPS sensor measurement
needs to be proportional to the number of satellites available. We, once again,
favor a computationally-friendly modular approach that allows researchers to ef-
fortlessly change the noise function as they see fit. Indeed, the currently imple-
mented noise function, described below, can be swapped by another; thus allowing
improvements or specific noise functions emulating different GPS receivers. Since
experiments have shown GPS noise to have Gaussian distribution [18], we exploit
the Box-Muller method [20] to generate Gaussian-distributed random numbers.
More specifically, we use two configuration variables to dictate the maximum and
minimum amount of localization error, in meters, when four and twelve satellites
are available to the sensor, respectively. The reader shoud note that four is the
minimum number of satellites required for a GPS fix, while twelve is habitually
the maximum. The two configuration variables are especially important for users
looking to effortlessly simulate different GPS receivers without having to change
code or recompile the simulation environment. For example, both Wide Area Aug-
mentation System (WAAS) capable and WAAS-incapable GPS receivers can be
simulated by simply modifying the parameters.

Mathematically, the two configuration variables give the sensor two points on
a curve with respect to the number of satellites observed. Our noise function
linearly interpolates between those two points to create a function of error, in
slope-intercept form, based on the number of satellites seen. First, the slope,
m, of the linear function is calculated, using the two configuration variables
maxNoise and minNoise as shown:

m =
(

maxNoise − minNoise
4 − 12

)
. (1)

Then, the y-intercept, b, of the linear function is derived using the slope:

b = maxNoise− (4 ∗ m). (2)

Finally, Equation 3 calculates a standard deviation, σ, for the Gaussian number
generator by using the current number of satellite seen by the simulated GPS
sensor. More specifically, the Gaussian random number generator is used with
a mean of zero and a standard deviation of a third of the maximum noise,
guaranteeing that, in 99.7% of the cases, the error produced will be within plus
or minus of the maximum error.



Where Am I? A Simulated GPS Sensor for Outdoor Robotic Applications 227

σ =
(

m ∗ SatelliteSeen + b

3

)
(3)

Even though the proposed method might seem simplistic, it is efficient to com-
pute and provides very good results, as will be described in the experimental
section of the paper.

2.3 Implementation Details

The satellite tracker, along with the signal and noise models, encompasses the ma-
jority of the simulated GPS methodology but leaves a few open issues. One of the
main dilemmas when using a GPS sensor in virtual environments is the mapping
of a virtual location to a real one. Since many virtual worlds do not inherently pos-
sess latitude and longitude coordinates, we propose and have implemented three
different methods to allocate a GPS coordinate to a virtual world, each with dif-
ferent levels of precedence. First, world developers can add a specially-created tag
when building the virtual environment and modify its properties to reflect the de-
sired latitude and longitude coordinates. The placement of the tag will define a
reference GPS coordinate that can be used to determine the latitude and longi-
tude of any point on the map. Second, configuration variables can be set inside
the USARSim initialization file to provide the reference GPS coordinate of the
(0,0) Cartesian coordinate in the virtual world. Third, the GPS sensor class can
be modified to link the (0,0) Cartesian coordinate with a GPS coordinate. All of
these methods solve the same problem and have been added for user-friendliness
and backward compatibility with old virtual environments.

Once the amount of noise, in meters, has been established using the aforemen-
tioned techniques, latitudinal and longitudinal components have to be calculated
and returned by the sensor - calculations that require a couple of assumptions.
The first, aimed at lowering computationally intensive instructions, assumes a
flat earth and, consequently, provides a straightforward translation between dis-
tance and degrees, using the surface distance per degree change conversion. In
other words, under the flat-earth assumption, a one degree change corresponds
to a specific change in distance, allowing conversions from meters to degrees. The
second assumption involves the global coordinate frame of the virtual world. We
assume that all X-axis motion is converted to latitude and that all Y-axis mo-
tion is converted to longitude. While, in most cases, the global X-axis points
to the North, it is worthwhile noting that this is not always the case due to
singularities that may occur. Indeed, as shown in Figure 3, the sensor handles
singularities that occur at the earth’s poles (at 90 degree North and 90 degree
South) and on the longitude (at 180 degree West and 180 degree East). In other
words, and as an example, driving along the X-axis at 89 degrees and 59.9 min-
utes will increase the latitude component of the GPS until 90 degree North is
reached. At that point, the latitude component will decrease (meaning that the
global X-Axis now points to the south). These singularities exist and are taken
into account due to the flat nature of virtual worlds and the spherical shape of
the earth.



228 B. Balaguer and S. Carpin

Fig. 3. Singularity Representation with Flat-Earth Assumption

3 Experimental Results

We conducted a set of experiments aimed at validating the simulated GPS sen-
sor by using a real/virtual testbed similar to [21]. More specifically, we teleoper-
ate a real P3AT robot, equipped with a Holux M1000 GPS receiver, at various

Fig. 4. Picture of the real P3AT (left) next to a screenshot of the simulated P3AT
(right) in the experimental environment



Where Am I? A Simulated GPS Sensor for Outdoor Robotic Applications 229

Fig. 5. Plot of GPS latitude and longitude coordinates in Google Earth for three
different runs. Each run is labeled from 1 to 3 and comprised of two paths. The solid
line indicates the path of the real robot whereas the dotted line shows the path of
the simulated robot. Run 1 was performed from North-East to South-West, Run 2 was
performed from South-West to North-East, and Run 3 was performed from North-West
to South-East.

distances from buildings outside the University of California, Merced quad. Dur-
ing each run, lasting between two and ten minutes, data comprised of the lat-
itude, longitude, and number of satellites observed by the receiver is logged to
a file. To facilitate the correspondence between the real and simulated robot
motions, we limited our experiments to straight paths, thus decreasing time-
dependent mechanical differences between the robots. Once the runs were per-
formed using the real robot, they were replicated in simulation, in real-time, with
the extensively-utilized USARSim P3AT, equipped with the simulated GPS sen-
sor. A simplified virtual representation of the UC Merced quad was built to that
effect, only including major landmarks such as buildings and significant ground
slopes. Some of the experimental results are shown in Figure 5, 6, and 7.

As can be seen from Figure 5, the latitude and longitude components reported
by the simulated sensor are very close to those reported by the real receiver.
The difference between the two paths stem from the noise model parameters
used during the experiment. Indeed, the simulated run used a maximum noise
parameter of three meters (the advertised accuracy of the Holux M1000 GPS



230 B. Balaguer and S. Carpin

Fig. 6. Plot of the error, in degrees, between the real and simulated GPS coordinates
for each run presented in Figure 5

receiver with WAAS enabled), but the real receiver actually produced errors, in
our experiments, of up to eight meters. It is worthwhile mentioning that Run 3
is particularly off at the beginning of the experiment due to a cold start from
the receiver; a typical GPS feature (i.e. they take time to initially localize) that
was not modeled in our simulated GPS.

A plot of the error difference, in degrees, between the real and simulated GPS
coordinates is given in Figure 6 for each of the three runs presented in this paper.
Equation 4, exploited for each time step, gives insight into how the plots were
created. The primary insightful result from Figure 6 is the fact that, for each
of the three runs presented, the error between the simulated GPS sensor and
the Holux M1000 GPS receiver did not surpass 0.00014 degrees, a testament
to the accuracy of the simulated sensor. Furthermore, the error for Run 1 and
Run 2 varies the most at the beginning and towards the end of the runs. This
behavior is explained by the inertial difference between the real robot and the
simulated one. Indeed, the real robot requires a lot more time to reach a given
speed than its simulated counterpart. The same behavior is observed at the end
of Run 3. The beginning of Run 3 possesses an unusually high error due to the
previously-discussed cold start.

√(
RealLatitude − SimLatitude

)2 +
(
RealLongitude − SimLongitude

)2
(4)

Figure 7 shows, for each run, the number of satellites seen by the real and
simulated GPS receivers. The significant aspect of the data is that the simu-
lated plot follows, in terms of shape, the real plot. Two additional comments
can be made. First, the simulated sensor sees, in most cases, more satellites



Where Am I? A Simulated GPS Sensor for Outdoor Robotic Applications 231

Fig. 7. Plot of the number of satellites seen as a function of time for each run. The
runs correspond to the ones presented in Figure 5.

than its real counterpart. Second, the simulated sensor is much more linear and
experiences fewer changes in the number of satellites seen. Both of these facts
can be explained by the simplified virtual representation of the environment and
the signal model. Since only major landmarks were included in the virtual world,
small objects (e.g. trees, benches, stairs) interfered with the real receiver but not
the simulated one. Additionally, the line-of-sight signal model does not take into
account signal reflections, i.e. the reason for the oscillating number of satellites
seen by the real receiver.



232 B. Balaguer and S. Carpin

4 Conclusion and Future Work

In this paper, we presented a complete methodology supporting the creation
of a simulated GPS sensor, supplemented by a USARSim implementation and
experimental results comparing real and simulated data. The simulated results
are close to the real receiver, especially when taking into account the assump-
tions made and the focus on computation friendliness over accuracy. In fact,
the USARSim GPS sensor was selected and used in the 2008 RoboCup Rescue
Simulation League in July 2008, where its robustness was successfully put to
the test in a highly competitive scenario. Moreover, a DARPA Urban Challenge
team has expressed the desire to use the sensor along with USARSim.

A few research opportunities stem from this work both in terms of improve-
ments and extensions. Some improvements can be made within the noise and
signal models, provided that they are not too demanding for the engine. More
specifically, a great improvement would be to incorporate the dilution of preci-
sion as part of the noise model. In addition, getting real-time satellite tracking
working, perhaps through the use of C++ dynamic library, would create a bet-
ter all-in-one solution. Alternatively, porting the implementation to a different
simulator, such as the new Microsoft Robotics Studio Simulator, could allow for
more rigorous noise and signal models and the integration of real-time satellite
tracking.

References

1. Balakirsky, S., Scrapper, C., Balaguer, B., Farinelli, A., Carpin, S.: Virtual Robots:
progresses and outlook. SRMED (2007)

2. Carpin, S., Stoyanov, T., Nevatia, Y., Lewis, M., Wang, J.: Quantitative assess-
ments of USARSim accuracy. In: Proceedings of PerMIS (2006)

3. Wang, J., Lewis, M., Hughes, S., Koes, M., Carpin, S.: Validating USARSim for use
in HRI Research. In: Proceedings of the Human Factors and Ergonomics Society
49th Annual Meeting, pp. 457–461 (2005)

4. Pepper, C., Balakirsky, S., Scrapper, C.: Robot Simulation Physics Validation. In:
Proceedings of PerMIS (2007)

5. Balakirsky, S., Lewis, M., Carpin, S.: The Virtual Robots Competition: vision and
short term roadmap. SRMED (2006)

6. Carpin, S., Wang, J., Lewis, M., Birk, A., Jacoff, A.: High fidelity tools for rescue
robotics: Results and perspectives. In: Robocup Symposium (2005)

7. Hoots, F., Roehrich, R.: Spacetrack Report No. 3 - Models for Propagation of
NORAD Element Sets. Project Spacetrack Reports, Peterson (1988)

8. Vallado, D., Crawford, P., Hujsak, R., Kelso, T.: Revisiting Spacetrack Report #3.
In: AIAA/AAS Astrodynamics Specialist Conference (2006)

9. Kelso, T.: Validation of SGP4 and IS-GPS-200D Against GPS Precision
Ephemerides. In: AAS/AIAA Space Flight Mechanics Conference (2007)

10. Definition of Two-Line Element Set Coordinate System,
http://spaceflight.nasa.gov/realdata/sightings/SSapplications/Post/

JavaSSOP/SSOP Help/tle def.html

http://spaceflight.nasa.gov/realdata/sightings/SSapplications/Post/JavaSSOP/SSOP_Help/tle_def.html
http://spaceflight.nasa.gov/realdata/sightings/SSapplications/Post/JavaSSOP/SSOP_Help/tle_def.html


Where Am I? A Simulated GPS Sensor for Outdoor Robotic Applications 233

11. Space Track The Source for Space Surveillance Data,
http://www.space-track.org/

12. NASA Science@NASA J-Track 3D,
http://science.nasa.gov/realtime/jtrack/3d/JTrack3D.html

13. Real Time Satellite Tracking, http://www.n2yo.com/?k=20
14. Magliacane, J.: Portable PREDICT Plus! A Satellite Tracking, Pacsat Yakking,

APRS Hacking, Linux Packing Mini Application Suite You Can Carry with You.
CQ-VHF Magazine (2005)

15. Owen, M., Knickerbocker, C.: Nova for Windows, Real Time Tracking of an Un-
limited Number of Satellites. Northern Lights Software Associates (2006)

16. Stoff, S.: Orbitron - Satellite Tracking System. Quick Starting Guide (2005)
17. Haupt, M.: Applicability of OSS to Space Thermal Engineering Open Source Soft-

ware for Engineering Purposes. In: European Workshop on Thermal and ECLS
Software (2003)

18. Kaplan, E., Hegarty, C.: Understanding GPS: Principles and Applications. Artech
House Publishers, Norwood (2005)

19. Shirley, P., Morley, K.: Realistic Ray Tracing. AK Peters, Wellesley (2003)
20. Box, G., Muller, M.: A Note on the Generation of Random Normal Deviates. The

Annals of Mathematical Statistics 29, 610–611 (1958)
21. Balaguer, B., Carpin, S., Balakirsky, S.: Towards Quantitative Comparisons of

Robot Algorithms: Experiences with SLAM in Simulation and Real World Systems.
In: IROS 2007 Workshop (2007)

http://www.space-track.org/
http://science.nasa.gov/realtime/jtrack/3d/JTrack3D.html
http://www.n2yo.com/?k=20


S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 234–245, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

An Emphatic Humanoid Robot  
with Emotional Latent Semantic Behavior 

Antonio Chella1, Giovanni Pilato2, Rosario Sorbello1, Giorgio Vassallo1, 
Francesco Cinquegrani1, and Salvatore Maria Anzalone1 

1 Dipartimento di Ingegneria Informatica, Università degli Studi di Palermo, Italy 
{chella,sorbello_rosario,gvassallo}@unipa.it 

2 ICAR – Istituto di CAlcolo e Reti ad Alte Prestazioni Italian National Research Council 
(CNR) 

g.pilato@icar.cnr.it 

Abstract.  In this paper we propose an Entertainment Humanoid Robot model 
based on Latent Semantic Analysis, that tries to exhibit an emotional behavior 
in the interaction with human. Latent Semantic Analysis (LSA), based on vector 
space allows the coding of the words semantics by specific statistical computa-
tions applied to a large corpus of text. We illustrate how the creation and the 
use of this emotional conceptual space can provide a framework upon which to 
build “Latent Semantic Behavior” because it simulates the emotional-
associative capabilities of human beings. This approach integrates  traditional 
knowledge representation with intuitive capabilities provided by geometric and 
sub-symbolic information modeling. To validate the effectiveness of our ap-
proach we have simulated an Humanoid Robot Robovie-M on dInfoBots a linux 
based framework developed in our Mobile Robot Lab.  

Keywords: Humanoid Robot Architecture, Entertainment Robot, Machine 
Learning Applications, 3D Robot Simulation, Human Robot Interaction. 

1   Introduction 

The ability Robot environment interaction is one of the most relevant topics for a 
large set of applications in the entertainment field. However the classical rule-based 
models are often too restrictive. To overcome the limitations of totally symbolic 
knowledge representation systems, there has been much research, involving hybrid 
symbolic/sub-symbolic systems. Many attempts have been made to merge connec-
tionist and symbolic approaches [10][11]; some work, often concerning robotics, 
faces the problem of linking a conceptual level to a symbolic one [2]. 

On the other hand, the ability to recognize and understand emotions plays an im-
portant role for a natural and spontaneous human robot communication. The interac-
tion of the entertainment robots with human and the environment should not be  
mechanical and deterministic in order to avoid a predictable and trivial behaviour. To 
reach this goal many approaches try to use ethological or emotional models [15][16]. 

In the last years, many efforts have been made towards the design of knowledge 
representation system providing ‘intelligent’ interaction with the environment [13][14]. 



 An Emphatic Humanoid Robot 235 

Many models try to incorporate ethological or emotional models for use in entertain-
ment robot based on a behavioral system approach [15][16]. 

At the same time, Latent Semantic Analysis (LSA), is a paradigm, extensively used 
in last years, aimed at extracting and representing the meaning of words by statistical 
computations applied to a large corpus of texts [12]. LSA is founded as the vector 
space method: words are coded as vectors in a large dimensional semantic space  
S [8][12] while the semantic similarity between them can be computed using a geo-
metric distance measure between their representative vectors. 

One of the most interesting features of the Latent Semantic Analysis technique is that 
it is capable of simulating several human cognitive phenomena (word-categorization, 
sentence-word semantic priming, discourse comprehension, judgments of essay quality, 
etc.)[8].  

Besides, it has been shown in [3] that it is possible to label the basis vectors of the 
semantic space S generated by using the LSA paradigm. This allows to see this space 
as an entirely data-driven “conceptual space”; hence, it is not necessary introducing 
any hierarchical structure, since orthonormality of basis vectors guarantees independ-
ency between their represented concepts.  

This leads to a technique that allows the building of a data-driven “conceptual space” 
where words, documents, and concepts, represented as their verbal description, can be 
mapped [3]. Besides, using this space it is possible to simulate a set of human psycholin-
guistic cognitive phenomena that involve association capabilities and semantic similarity 
measures [8][12].  

In particular Landauer and Dumais [4][5] assert that behind this paradigm there is a 
fundamental theory for knowledge acquisition and representation. Hence, this choice 
allows also coding, in some way, the intuitive - associative component of human 
brain. Roughly speaking, if it is possible to verbally describe a concept, an object, and 
so on, te concept, the object or whatever can be straightforwardly mapped into S. This 
allows overcoming the limitations of classic rule-based robot behaviors, providing a 
robot architecture of associative operation. 

Objects in the real world, and words in sentences, are usually interconnected by 
complex relations. These relations can be partially captured by complex data struc-
tures and functions. However a more simple way could be let automatically emerge 
these latent associations from data creating a high-dimensional vector space where 
objects can be mapped and relations among them will emerge as geometric distances 
in this space.  

The particular interpretation [3] of the Latent Semantic Analysis methodology 
contributes to better design a humanoid robot equipped with a conceptual space that 
is capable to act and modify his behavior coherently with the perceived world sensa-
tions also when the rule-based knowledge base is not capable to properly manage the  
interaction.  

In this paper we try to merge the use of LSA-based “conceptual spaces” to the ro-
bot behavioral categories. To reach this goal we link a subset of words and sentences, 
coded in this data driven conceptual space, to specific behavioral categories. 

We present a humanoid robot architecture capable to interact with the environment, 
whose input stimuli are coded using an “hidden semantic layer”. Such a layer is usu-
ally not reached by explicit logical relations or predicates of classical rule-based para-
digms and can be modeled as a vector space built using the LSA paradigm [3][8][12] . 



236 A. Chella et al. 

Our aim is to create an empathic robot (EMPYBOT) for an entertainment applica-
tion. Such robot should be  capable to feel emotions triggered by environmental situa-
tions or of other people behaviors. According to an “empathy mechanism” the robot 
may activates a behavior which is related to the inferred emotion.  

As a simple example of this behavior consider a man talking to his robot pet dog 
and saying “I love playing football”, and the humanoid, taking advantage of the hid-
den semantics, associates the sentence of his owner with the triggering of a specific 
behavior, which consists of searching for a ball and carrying it to his owner.  

This kind of behavior may be compared to the Latent Semantic Indexing paradigm, 
where the answer of the system is given by the association of a document whose vec-
tor coding is close to the input stimulus given by the user query. According to the 
Thagard theory about empathy analogies[6], we take the idea to provide the robot, 
during the training phase, with a sub-symbolic encoding about achiveable situations 
and their potential correlated emotions.  

This sub-symbolic encoding allows the construction of an analogical mapping be-
tween the current situation and some aspects of the knowledge gained during previous 
emotional situations.  

Ortony, Clore and Collin’s theory [1] states that emotions are essentially descrip-
tors of the people reaction to some events happened in the environment. Since envi-
ronment can be described by tokens, the use of a technique capable to encode words 
in an emotional space allows inferring emotions not only from verbal communications 
but also from environmental stimuli.  

To reach this goal, we choose a set of words or sentences related to the environ-
ments knowable by the pet robot. Then, the LSA technique with a modified version of 
TSVD is applied [3]. 

We link a subset of words, which represent concepts used for the space creation, 
with a set of behaviors or sequences of desired behaviors. Each time an input stimulus 
arises, it is mapped in the conceptual space. This mapping activates the most suitable 
behavior, which is closely related to the stimulus. If more than one behavior is acti-
vated, only one of them is randomly chosen.  

This last choice has been done in order to implement a non-deterministic mecha-
nism like in chat-bot systems, when a random answer (among a set of possible, coher-
ent answers) is chosen to allow a natural, non trivial, more interesting interaction with 
an user.  

The remainder of the paper is organized as follows: in section 2 it is illustrated a 
conceptual interpretation of data driven semantic space; in section 3 it is described the 
architecture of the emphatic robot; in section 4 is shown the dInfoBots simulator; in 
section 5 the simulated emphatic humanoid robot and the experimental results are 
presented; finally in section 6 conclusions and future work are outlined. 

2   The Data-Driven Semantic Space Creation 

One of the most widespread methodologies for the induction of semantic spaces from 
data is the Latent Semantic Analysis (LSA) approach [5].  

The paradigm is based on the vector space method: given a text corpus of N  
documents and M words, LSA defines a mapping between the M words and the N  



 An Emphatic Humanoid Robot 237 

documents into a continuous vector space S, where each word, as well as each  
document is associated to a vector in S[5].  

Let A be the M × N matrix whose (i, j)-th entry is the square root of the sample prob-
ability of the i-th word belonging to the j-th document. The Singular Value Decomposi-
tion of the matrix A is performed, so that A is decomposed in the product of three matri-
ces: a column-orthonormal M × N matrix U, a column-orthonormal N × N matrix V and a 
N × N diagonal matrix Σ, whose elements are called singular values of A.  

A = UΣVT (1) 

Let us suppose that A’s singular values are ranked in decreasing order. Let R be a 
positive integer with R < N, and let  ˜ U  be the M × R matrix obtained from U by sup-
pressing the last N−R columns, ˜ Σ  the matrix obtained from Σ by suppressing the last 
N−R rows and the last N−R columns and ˜ V  be the N ×R matrix obtained from V by 
suppressing the last N −R columns. Then 

˜ A = ˜ U ̃  Σ ˜ V T  (2) 

is a M ×N matrix of rank R. It can be shown [3][3], that, according to the illustrated 
procedure, ˜ A  is the best rank R approximation of A (among the M×N matrices) with 
respect to the Hellinger distance, defined by 

d H X, Y( ) = x ij − y ij( )
j=1

N

∑
i=1

M

∑
2

 (3) 

which allows to interpret the TSVD technique as a statistical estimator.  
The two matrices ˜ U  and ˜ V  obtained after truncated decomposition reflect a break-

down of the original relationships identified by A into linearly independent vectors. 
The R columns of ˜ U  constitute a basis of a semantic space S, which can be interpreted 
as a “conceptual space”. The term “conceptual space” may be confusing, since it 
recalls the well known Gardenfors conceptual spaces [9]. Gardenfors spaces have to 
be “manually” built by extracting from the knowledge base the quality dimensions, so 
they could be not the optimal choice, for practical reasons, in order to describe the 
knowledge base of a robot. The conceptual interpretation of the semantic space allows 
the automatic building of “conceptual spaces” by sub-symbolic processing of the raw 
sample data, so that the fundamental “latent semantic concepts” rise spontaneously. 
These fundamental co-ordinates will be represented by the orthonormal basis gener-
ated by the application of the LSA methodology, using the Hellinger distance instead 
of the Frobenius distance. 

More formally, the independent R dimensions of the RR space can be labeled, in 
order to characterize the “fundamental” concepts residing in the data driven space. 
The technique is to identify, for each column of the matrix ˜ U  the words associated to 
the components with the highest value these words will constitute a label for each 
axis. Emotional states and external situations can be verbally described and mapped 
into this semantic space. Besides, an associative capability is simulated between a 
generic verbal-coded stimuli si and a generic emotion ej with a closeness geometric 
distance given by the cosine between si and ej. 



238 A. Chella et al. 

3   The Architecture of the Emphatic Humanoid Robot  

The architecture, as shown in figure 1, is organized in three main areas: 

A. The Sub-conceptual Area: which processes perceptual data coming from the 
humanoid sensor; 

B. The Emotional Area: it is a “conceptual space of emotional states” which con-
stitutes the sub-symbolic representation of emotions, acquired during the 
training phase. This area gives to the robot empathic capability; 

C. The Behavioural Area: it activates a non-deterministic behavior related to the 
humanoid emotional state.  

3.1   The Sub-conceptual Areaz 

The sub-conceptual area receives inputs from robot sensors system and sends com-
mands to the robot’s actuators. 

This area is composed of two modules: MotionModule and PerceptualModule.  

A. The MotionModule controls the robot actuators in order to execute the mo-
tion request by Behavioural Area.  

B. The PerceptualModule processes raw sensor data coming from robot sensors 
to obtain information about the environment.  

In order to make the model as similar as possible to an human being, we have considered 
five input channels for the Perceptual Module associable to the five human senses: the sight 
channel, the touch channel, the sound channel, the taste channel and the olfaction channel. 

 
Fig. 1. A snapshot of the Architecture of the Emphatic Humanoid Robot 



 An Emphatic Humanoid Robot 239 

Being a simulated architecture, it will constitute a framework for the future devel-
opment of a real humanoid robot equipped with ad-hoc sensors in order to completely 
simulate human senses. 

The perceptual features extracted through the processing of inputs from the sensing 
channels are subsequently associated to their English description. ( e.g. the recognized 
object teddy-bear corresponds to the description :”I can see a teddy-bear”). The use of 
a verbal description for all the perceptions coming from the external environment 
allows their straightforward mapping into the Emotional Area. The natural language 
descriptions associated to the sense channels are merged together and constitute the 
input for the conceptual area. 

3.2   The Emotional Area 

The emotional area allows the humanoid robot to discover emotional analogies be-
tween the current status and the previous knowledge of the robot; both of them are 
mapped in the “semantic space of emotional state”.  

An ad hoc corpus of documents dealing with emotions has been built and used in 
order to infer a “semantic space of emotional states”. Emotional states have been 
coded in this space using proper subsets of verbal description of emotional situations 
(environmental stimuli, context, spoken message, and so on.) that evoke them. This 
represents the knowledge base of the robot about emotional state. Environmental 
incoming stimuli are encoded in natural language words and subsequently mapped in 
this space in order to find empathic analogies. In the following subsections the  
process of data collection, the space induction, and the inference of emotional state  
process are illustrated. 

The Data Collection 

The set of documents used has been obtained trough an accurate selection of excerpts 
associated to feelings. We have selected the following emotional expressions: sad-
ness, fear, anger,  joy,  surprise, love the neutral state has also been considered. A 
large amount of documents has been selected from several publicly available on-line 
sources. The excerpts have been organized in homogeneous paragraphs both for text 
length and emotion. A matrix has been organized where the 6 emotional states and the 
neutral state have also been coded according to the LSA paradigm. A corpus of 1000 
documents, equally distributed among the seven states, has been built. This set of 
documents represents the affective knowledge base of the system. 

The “Emotional State Space” Creation 

Each document has been processed in order to remove all words in literature named 
“stopwords” that do not carry semantic information like articles, prepositions and so 
on. According to the technique outlined in section two, a 87x1000  terms-documents 
matrix (A) has been created where M=80+7 is the number of words plus the emo-
tional states and N=1000 is the number of excerpts. The generic entry aij of the matrix 
is the square root of the sample probability of the i-th word belonging to the j-th 
document.  The TSVD technique, with K = 150, has been applied to A in order to 



240 A. Chella et al. 

obtain its best approximation according to the Hellinger distance. This process leads 
to the construction of a K=150 dimensional conceptual space of emotions S. The axes 
of S represent the “fundamental” emotional concepts automatically induced by TSVD 
procedure arising from the data. In the obtained space S, a subset of ni documents for 
each emotional state corresponding to one of the six “basic emotion” Ei has been 
projected in S using the folding-in technique[7]. According to this technique each 
excerpt is coded as the sum of the vectors representing the terms composing it. As a 
result, the j-th excerpt belonging to the subset corresponding to the emotional state Ei 
is coded as a vector emj  and each emotional state Ei is represented in S by the associ-
ated subset of ni vectors. 

The Emotional State Inference 

The inputs from the five sense channels are coded in natural language words or sen-
tences describing them and projected in the conceptual space using the folding-in 
technique. At time t, the input from the visual channel is coded as a vector v(t), the 
input from hearing channel is coded as a vector h(t) and the input from touch channel 
is coded as a  vector t(t). These vectors, representative of the inputs from the chan-
nels, are merged together as a weighted sum in a single vector f(t) that synthesizes the 
inputs stimuli from environment at instant t: 

f(t) = α⋅vis(t)+β⋅hea(t)+γ⋅tou(t)+δ ⋅sme(t) +η⋅tas(t) (4) 

where α, β, γ, δ and η are weights that allow assigning different relevance to the spe-
cific inputs coming from each one of the three sense channels. 

The emotional semantic similarity between the vector f(t) and the vectors em1 , 
em2 , …, em7 , that code the six emotions in S, plus the “neutral” state, can be evalu-
ated using the cosine similarity measure between each emj  and f(t): 

;
)(

)(
)),((

j

j
j

emtf

emtf
emtfsim

⋅

⋅
=  (5) 

An higher value of sim(f,emj)  corresponds to an higher value of similarity between the 
emotion evoked from the input f(t) and the emotion Ei associated with the vector emj.  

The semantic similarity measure is calculated between f(t) and each emj
 The vector 

emj which maximizes the quantity expressed in formula (5) will be the inferred emo-
tional state with an associated weight, or intensity.  This emotional state will activate 
a behavioural stimulus with a given intensity given by sim(f(t),emj).  

3.3   The Behavioural Area 

The main functionality of this area is to activate a behaviour, which is coherent with 
the inferred emotional state Ei induced by the humanoid. Behaviour is described by a 
sequence of primitive actions, sent directly to the robot actuators.  

In order to give to the robot a non-monotonous, non-deterministic, and non-boring 
response, each emotional state Ei  is related with a group of possible responses  
according to current information about the environment (for example the perceived 



 An Emphatic Humanoid Robot 241 

object). One of these behaviours is selected evaluating a score wbi  associated to each 
one of them. The score is calculated as: 

wbi= αw r+βw dt; (6) 

where r is a random value ranging from 0 to 1, dt is the time elapsed by the instant at 
which the behaviour bi has been executed and the instant at which this valuation is 
effected; αw  and βw are respectively the weight assigned to the random value and to 
the time. The response with the highest weight is selected.  

Since the stimulus is weighted, also the reaction will be executed with the same in-
tensity. This corresponds to quicker, faster or slower movements of parts of the body. 

If the emotional state is classified as “neutral” a standard behaviour (to lie down, to 
sleep, and so on) is randomly selected. 

4   The Simulated Environment 

The simulator we used for simulating the emphatic humanoid robot is dInfoBots devel-
oped in our lab[17]. dInfoBots does not only provide a simulation environment but it is a 
complete development suite for robot programming using the Orocos framework. 

Orocos library provide many facilities for its modular capabilities, for its real-time 
features and for the simplified support of distributed computing by CORBA stan-
dard[19]. Robots and environments have been simulated on a Linux operative system 
with a customized Scene Graph Library  used as World Modelling Engine tool.  

The system uses Qt3 library for windows management, OpenGL library for the 3D 
rendering and ODE library as physical simulation engine.  

We have decided to implement virtual models of two real different robots used in 
our lab: a small humanoid robot Robovie-M and a four legged Sony Aibo ERS-7 
robot. As shown in figure 2, the system is composed by three main components: the 
simulated world, the robots and the applications.  

The simulated world manages entities which represents robots and physical objects 
in the environment  and progress the simulation time for the physics engine. Develop-
ers can describe the simulated world as a scene graph which enables to represent 
entities in terms of aggregation of simple rigid bodies. All objects are described by 
geometrical, colourmetrical and mechanical properties. Rigid bodies are connected by 
joints  that allow movements via a mechanical constraints.  

 

Fig. 2. A snapshot of the overall System dInfoBots that includes Simulated Environment and 
Simulated Humanoid Robot 

 



242 A. Chella et al. 

It is possible to specify different kinds of joints (hinges or universal joints) and  
each  of them is described by a specific freedom mode. Joints can be controlled either 
by angular velocity or could be free to move affected only by the interaction with 
other objects of the world. The simulator can provide an egocentric view of the scene 
by a simulation of the camera mounted on the robot; in this way the robot control loop 
is closed directly in the simulation.  Applications, as shown in figure 2, are considered 
as a composition of simple Orocos modules. Each module implements a software 
component of the robot control system.  

5   The Simulated Emphatic Humanoid Robot 

The Simulated Emphatic Humanoid Robot is modeled using the virtual model of 
Robovie-M supplied with empathy capability. Emotional robots, as shown in fig. 3, 
follow the emphatic model that is made up by three main components: The Percep-
tual module as Sub-conceptual area, the Emogen module as Emotional Area and the 
Controller as Behavioral Area. 

The Basic humanoid behaviours have been developed and implemented in the 
RobovieMotion module. Once this service is connected to SimJoints, it is capable to 
generate a joint data sequence that the robot has to execute in order to accomplish a 
basic behaviour. Two kinds of behaviours have been implemented: Walk and Action.  

Walk uses inverse kinematics to produce sequences of joints that generate stable 
locomotion. All the Action behaviours are simply skills implemented as interpolation 
of different robot poses. The poses are represented as vectors of joints and their inter-
polation is sent to the joint controller. 

The main basic behaviours implemented are: walking, greeting, clapping, looking 
around and kicking. There are also other behaviours used to express the seven emo-
tions: fear, angry, sadness, joy, love and surprise. 

 
Fig. 3. A snapshot of the Simulated Emphatic Humanoid Robot 

 



 An Emphatic Humanoid Robot 243 

 

Fig. 4. The Simulated Humanoid Robot Robovie-M executes a “Surprise” behavior 

A vision system has been implemented. It uses simulated camera data to recognize 
objects of the world using the colours and geometric features. The objects information 
are used by the Controller module and as verbal description by the EmoGen module. 

A human user can realize an interaction with the robot through an user-friendly in-
terface. It accepts sentences from user by a computer keyboard and send them to 
“EmoGen” module. The EmoGen module elaborates the user sentence and the visual 
information of the camera and generates according with the Emotional Conceptual 
Space the correct emotional state. The emotional state and the Objects information are 
used by the Controller in order to generate the motion command.  The RobovieMotion 
uses the motion command for the activation of the emotional behavior. 

5.1   The Experimental Results on DinfoBots 

As shown in figure 4 we have reproduced various emotive situations. In the figure 4 
the input phrase of the human is “The puppet throw the ball”. The dominant emo-
tional state activated in the Emotional Conceptual Space of the robot  is “Surprise” 
and the robot executes a “Joy” behavior. 

Table 1. The input-stimuli results 

MY SISTER AND MY DOG ARE RUNNING TOGETHER 
SAD 

-0.0098 
ANGRY 
-0.2417 

FEAR 
-0.1077 

JOY 
0.0842

SURPRISE 
-0.1219 

LOVE 
0.0343 

NEUTRAL 
-0.0377 

BROTHER AND SISTER PLAY WITH THE DOG 
SAD 

0.1509 
ANGRY 
-0.0032 

FEAR 
-0.0371 

JOY 
0.1794

SURPRISE 
0.0624 

LOVE 
0.2548 

NEUTRAL 
-0.0962 

THE CHILD IS SAD WHILE HE LOOK AT THE WINDOW 
SAD 

0.4566 
ANGRY 
0.0821 

FEAR 
0.2377 

JOY 
-0.2512

SURPRISE 
0.0481 

LOVE 
0.2366 

NEUTRAL 
-0.0654 

THE PUPPET THROW THE BALL 
SAD 

0.0132 
ANGRY 
-0.0413 

FEAR 
0.0056 

JOY 
-0.0423

SURPRISE 
0.0139 

LOVE 
-0.0259 

NEUTRAL 
-0.0241 



244 A. Chella et al. 

The Robovie-M robot does not have a camera by default, in order to achieve visual 
information, in the robot has been equipped by a camera placed on its head. Table 1 
shows four experiments results. Different sentences are elaborated by the system in 
order to achieve the dominant emotional state. 

6   Conclusions and Future Works 

The results shown in this paper indicate that it is possible to generate a spontaneous 
and non trivial behaviour for an Entertainment Humanoid Robot creating a high di-
mensional sub-symbolic representation of concepts and emotions. The simulation 
environment dInfoBots developed by our lab has been presented. This tool uses the 
Orocos framework as a middleware for an easily code sharing between simulated 
robots and real ones. Orocos used in according with ACE-TAO implementation of 
CORBA assures a transparent communication of components across a network. In 
this way knowledge sharing, multi-robot communication and online debugging are 
allowed. In the future we want to use more advanced humanoid robot equipped with 
more sensor system that can simulate in a more realistic way the five human senses of 
the emphatic model. Nowadays we have considered a second commercial simulator, 
the Microsoft Robotic Studio simulation environment, for building and validating an 
implementation of our Emphatic Robot[18].  

References 

1. Ortony, A., Clore, G., Collins, A.: The Cognitive Structure of Emotions. Cambridge Uni-
versity Press, Cambridge (1988) 

2. Chella, A., Frixione, M., Gaglio, S.: An Architecture for Autonomous Agents Exploiting 
Conceptual Representations. Robotics and Autonomous Systems 25, 231–240 (1998) 

3. Agostaro, F., Augello, A., Pilato, G., Vassallo, G., Gaglio, S.: A Conversational Agent 
Based on a Conceptual Interpretation of a Data Driven Semantic Space. In: Bandini, S., 
Manzoni, S. (eds.) AI*IA 2005. LNCS (LNAI), vol. 3673, pp. 381–392. Springer, Heidel-
berg (2005) 

4. Landauer, T.K., Dumais, S.T.: A solution to Plato’s problem:The Latent Semantic Analy-
sis theory of the acquisition, induction, and representation of knowledge. Psychological 
Review 104, 211–240 (1997) 

5. Landauer, T.K., Foltz, P.W., Laham, D.: Introduction to Latent Semantic Analysis. Dis-
course Processes 25, 259–284 (1998) 

6. Thagard, P., Shelley, C.P.: Emotional analogies and analogical inference. In: Gentner, D., 
Holyoak, K.H., Kokinov, B.K. (eds.) The analogical mind: Perspectives from cognitive 
science, pp. 335–362. MIT Press, Cambridge (2001) 

7. Berry, M.W., Dumais, S.T., Gavin, W.: O’Brien Using Linear Algebra for Intelligent In-
formation Retrieval. SIAM Review 37(4), 573–595 (1995) 

8. Peters, S., Widdows, D.: Word vectors and quantum logic experiments with negation and 
disjunction. In: Mathematics of Language, Bloomington, Indiana, vol. 8 (June 2003) 

9. Gardenfors, P.: Conceptual Spaces. MIT Press, Bradford Books, Cambridge (2000) 
10. Ultsch, A.: The Integration of Connectionist Models with Knowledge based Systems: Hy-

brid Systems. In: Proc. of the IEEE SMC 1998 International Conference, San Diego, Oc-
tober 11-14, 1998, pp. 1530–1535 (1998)  



 An Emphatic Humanoid Robot 245 

11. Zhu, H.: Bayesian geometric theory of learning algorithms. In: Proceedings of the Interna-
tional Conference on Neural Networks (ICNN 1997), vol. 2, pp. 1041–1044 (1997) 

12. Landauer, T.K., Laham, D., Foltz, P.W.: Learning human-like knowledge by Singular 
Value Decomposition: A progress report. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) 
Advances in Neural Information Processing Systems, vol. 10, pp. 45–51. MIT Press, Cam-
bridge (1998) 

13. Dautenhahn, K., Billard, A.: Bringing up robots or psychology of socially intelligent ro-
bots: From theory to implementation. In: Proc. 3rd Int. Conf. on Autonomous Agents, Se-
attle WA (1999) 

14. Fujita, M.: Digital Creatures for Future Entertainment Robotics. In: IEEE International 
Conference on Robotics and Automation, San Francisco, California, pp. 801–806 (2000) 

15. Arkin, R., Fujita, M., Takagi, T., Hasegawa, R.: Ethological Modeling and Architecture 
for an Entertaiment Robot. In: IEEE Int. Conf. on Robotics & Automation, Seoul, pp. 
453–458 (2001) 

16. Lakemayer, G.: On Sensing and off-line interpreting in GOLOG. In: Logical Foundations 
for Cognitive Agents, Contributions in Honor of Ray Reiter, pp. 173–187. Springer, Berlin 
(1999) 

17. Chella, A., Sorbello, R., Anzalone, S.M., Cinquegrani, F., Caccìa, D.: A New Architecture 
Based on a Simulation Environment for Four Legged and Humanoid Robots. In: 13th 
IEEE IFAC International Conference on Methods and Models in Automation and Robot-
ics, MMAR 2007 (August 2007) 

18. Menegatti, E., Silvestri, G., Pagello, E., Greggio, N., Cisternino, N., Mazzanti, F., Sor-
bello, R., Chella, A.: 3D models of Humanoid Soccer Robot in USARSim and Robotics 
Studio simulators. IJHR 2008, International Journal of Humanoid Robotics (2008) 

19. Colon, E., Sahli, H., Baudoin, Y.: CoRoBa, a Multi Mobile Robot Control and Simulation 
Framework. Int. Journal of Advanced Robotic Systems (2006) 



Developing Robot Motions by Simulated Touch
Sensors

Fabio Dalla Libera1, Takashi Minato3, Hiroshi Ishiguro2,3, Enrico Pagello1,
and Emanuele Menegatti1

1 Intelligent Autonomous Systems Laboratory, Department of Information
Engineering (DEI), Faculty of Engineering, University of Padua, Via Gradenigo 6/a,

I-35131 Padua, Italy
2 Department of Adaptive Machine Systems, Osaka University, Suita, Osaka,

565-0871 Japan
3 ERATO, Japan Science and Technology Agency,
Osaka University, Suita, Osaka, 565-0871, Japan

Abstract. Touch is a very powerful but not much studied communi-
cation mean in human-robot interaction. Nonetheless many robots are
not equipped with touch sensors, because it is often difficult to place
such sensors over the robot surface or simply because the main task
of the robot does not require them. We propose an approach that al-
lows developing motions for a real humanoid robot by touching its 3D
representation. This simulated counterpart can be equipped with touch
sensors not physically available and allows the user to interact with a
robot moving in slow-play, which is not possible in real world due to the
changes in the dynamics. The developed interface, employing simulated
touch sensors, allows inexperienced users to program robot movements
in an intuitive way without any modification of the robot’s hardware.
Thanks to this tool we can also study how humans employ touch for
communication. We then report how simulation can be used to study
user dependence of touch instructions assuring all the subjects to be in
exactly the same conditions.

Keywords: touch, robot teaching, motion development, simulation.

1 Introduction

Observing how dance [1] or sport instructors teach motions, we can note that,
with simple touches, the teacher intuitively conveys plenty of information on
how to modify the trainee’s movement. Touch is particularly appealing as an
intuitive method for humans to interact with robots, and has been employed
to program robot arms [2] [3] and humanoid robots [4]. It then seems plausible
to use touch to develop motions for humanoid robots, and we therefore aim at
studying how touch can be employed for human-robot communication. Many
humanoid robots are available on the market for an affordable cost, but usually
these devices are not equipped with touch sensors. The most straightforward so-
lution would then be to customize the robot by covering it with tactile sensors.

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 246–257, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Developing Robot Motions by Simulated Touch Sensors 247

However several difficulties arise, first of all because the humanoids available
on the market are quite small and the wiring becomes complex. If the sensors
provide an analog output, (multiplexed) A/D converters must be employed and
buses with sufficient bandwidth must be designed. These problems had been
tackled in several works, for instance in [5]. If, as in [6] air actuators are em-
ployed it is possible to read the error between the target position and the actual
position to estimate the force applied by the user. Though air actuators are ideal
for the human-robot interaction because of their compliance, their control is very
difficult (the response is highly non-linear) and are not usually available on off-
the-shelf humanoid robots. One alternative solution would be to use a shadow
robot. This technique, [7], consists in having two identical robots, placed in the
same position. The user interacts with one of the two robots, and comparing
the torques with the ones of the second robot it is possible to distinguish the
force applied by the user from the other forces (gravity, friction forces, etc.).
Though interacting with a physical robot is probably more intuitive, simulating
the touch sensors is a very cost effective solution to allow tactile interaction with
a robot. Furthermore, it is possible to simulate sensors not currently available
with the current technology in terms of size, bandwidth, signal to noise ratio,
etc. Then this technique is general, applicable to any kind of robot. Interacting
with a virtual world also allows to view the robot’s movement in slow play or
stop the motion with no effect on the dynamics, something not feasible in the
real world (for instance, slowing down a jump motion in the real world to better
observe the motion execution is not possible). In the simulated world additional
information can be easily displayed, for example the zero moment point [8]. As a
drawback much information measurable by advanced touch sensors, such as the
intensity and the direction of the applied force, cannot be obtained by virtual
touch sensors which are simulated, for instance, by mouse clicks. We therefore
must assume that the user’s touch direction is normal to the touched surface.
In the case a standard mouse is employed the user cannot either touch multiple
sensors simultaneously, as would be possible employing a real robot. We present
here results obtained using simulation at different levels. First we will show how
it is possible to simulate the touch sensors while employing the real robot to
obtain the motion dynamic (therefore preventing any simulation-reality gap).
In this case simulation is used to provide a sort of “augmented reality” that
enhances the existing robot by providing touch sensors and allows us to study
touch interaction. We then show an application of simulation to analyze user de-
pendence of touch instructions in human-robot interaction. The main advantage
in using simulation when studying user dependency is that simulation allows all
the users to be in exactly the same conditions (same robot, same calibration,
same friction of the floor) and to run the experiment in parallel (multiple PCs
are more easily available than multiple robots). Obviously simulation also allows
a safer interaction, both for the user and the robot. In section 2 we introduce
the idea of extending the robot capabilities by creating virtual models equipped
with sensors not available on the real robot, and present in detail the simula-
tion of touch sensors. In section 3 we describe a possible algorithm to develop



248 F. Dalla Libera et al.

motions using touch. In section 4 we present an example of how simulation was
employed to conduct tests on user-dependence of touch instructions. In section 5
we present some preliminary experimental results and in section 6 we conclude
summarizing the ideas presented in the paper.

2 Developing Motions with Virtual Sensors

Recently many robots, and in particular small humanoid robots actuated by ser-
vomotors, are becoming available on the market for a lower and lower cost. One
of the main issues when dealing with these robots is the development of robot
movements, which is difficult given the high number of joints (usually around
20). Robot movements are often developed employing slider-based interfaces that
require the user to define the robot motion as a set of keyframes, that is, a set
of instants in time for which the position of each and every joint is provided.

This approach is very time consuming so many alternatives for automatic mo-
tion generation had been proposed in literature [9,10,11,12, 13,14]. Nonetheless
handcrafted motions are still much diffused [15, 16]. It appears then necessary
to devise intuitive ways to program robot motions by scratch, and we decided
to rely on touch interaction with the robot. Using touch to develop motions has
advantages in terms of intuitiveness for unexperienced users, but obviously for
tasks for which optimization criteria exist specifically devised algorithms can
obtain better performances.

Small humanoid robots available on the market are usually not provided with
touch sensors, but as stated in the introduction, these sensors can be simulated,
and the user can interact with a simulated robot equipped with such sensors. In
detail we can imagine the following development cycle, depicted in figure 1:

1. the robot moves in the real world. Its orientation in the world is captured
with a motion capture system and recorded;

2. users watch the recorded motion evolution in a virtual world.
3. users choose an instant in time where the motion should be modified and

touch the virtual touch sensors to modify the posture at that time.

Fig. 1. Phases of the motion development



Developing Robot Motions by Simulated Touch Sensors 249

4. the motion is modified given the user instructions
5. if the obtained motion is not satisfactory, the development cycle is repeated

The trial and error development process of classical slider-based interfaces is
therefore maintained, but instead of requiring the user to set each joint by a
slider with the proposed approach she/he is able to develop the motion just
by touching the robot. Using simulated touch sensors even eases the task with
respect to an interaction in the real world, since the movement can be watched
in slow-play or stopped. In fact we imagine the user to select an instant in time,
stop the execution, touch the robot, eventually choose other instants where the
motion should be edited, change the posture by touching the virtual sensors
and then play the modified motion on the real robot. In the realized system the
virtual sensors can however be touched during motion playback as well.

As previously stated the robot moves in the real world, and we acquire its
position and orientation by a motion capture system. To acquire this information
three markers placed on the robot’s torso revealed to be sufficient. Given the
position and orientation of the robot in the world we are able to reconstruct
the motion evolution afterwards, since knowing the motion and a model of the
servomotors response it is possible to calculate the angle of each joint. If the
servomotors support position reading, accurate joint angle information could also
be recorded during the motion evolution. However approximated joint angles are
sufficient, since their value is only needed to show the user the robot’s posture
in the virtual world.

Once data are collected they can be used to replay the movement in a vir-
tual world. Using data from execution of the motion in the real world frees us
from the necessity of simulating the robot’s dynamic. Very approximate robot
models can be employed, as long as the simplification does not prevent user-
robot interaction. The capabilities of the robot can be extended in the virtual
world, providing it with touch sensors, noiseless gyroscopes, virtual cameras and
so forth. Additional information can also be displayed, for instance in the de-
veloped interface the projection of the (approximated) center of gravity on the
floor and the velocity vector of the center of gravity are displayed1. Fig. 2(b)
depicts a view of the virtual 3D world as rendered by the interface. The robot
links are simplified by parallelepipeds, and each face simulates a touch sensor.

These simulated sensors can be clicked with the mouse, allowing the user to
“push” the robot links by clicking. Since with conventional devices as mice or
touch screens it is not possible to measure the applied force, the output is binary
and the interpretation of the intensity in the developed interface is based on the
pushing time. Another limitation in employing conventional devices is that just
one sensor at time can be clicked. This problem can be solved assuming that
if the clicks occur when the robot motion is stopped than all clicked parts are
touched together.

1 These visual hints are introduced to allow expert users to improve the motion per-
formance. They are not essential and thus to realize a model for the presented touch
interaction interface no information on the mass distribution is actually required.



250 F. Dalla Libera et al.

(a) (b)

Fig. 2. The robot employed in the experiments and its simplified 3D representation.
The projection of the center of gravity onto the ground (represented by a sphere on the
ground) and its velocity (represented by an arrow) are given as additional information.

To give the user feedback while pushing the robot parts haptic devices could
be employed. While this would probably make the interaction more natural, for
simplicity we chose to provide visual feedback, i.e. the sensors gradually change
color from green to red while being pushed.

3 Interpreting Touch Instructions

Employing touch to develop motions seems straightforward, in particular if we
observe human-human interaction. Nonetheless decoding the meaning of touch
instructions is not trivial. Often no direct mapping from touched part to modified
joint angle is perceived as natural, intuitive by the users. In fact, this one-to-one
mapping would be quite similar to the one used in classic slider-based interfaces.
Furthermore while with existing methods like teaching playback or compliant
joint control the robot moves passively and the user always need to apply forces
to the robot, what happens with humans and what we aim to obtain is to have
the robot gradually interpret touch meaning and understand how to modify its
motion.

One of the issues to be tackled when dealing with touch instructions is the
strong context dependence of the touch meaning. For example if the robot is
standing, touching the upper part of one leg could mean that the leg should
bend further backwards. However if the robot is squatting, the same touch could
mean that the robot should move lower to the ground by bending its knees
(see Fig. 3).



Developing Robot Motions by Simulated Touch Sensors 251

Fig. 3. Context dependence of the meaning of touch instructions. The user touches the
robot in the same way, but the desired posture modification (bend the leg and bend
the knees, respectively) is different because the robot posture is different.

We can then easily imagine user dependence on the meaning of touch instruc-
tions, since if no protocol is fixed different users will tend to touch the robot
differently to give the same instructions. Avoiding to force the user to employ a
certain protocol can enhance the intuitiveness of the interface. Suppose a user
has a desired posture modification she/he would like to apply (for instance, raise
the leg). If the protocol is fixed the user must identify which sensors, according
to the touch protocol, should be pushed to have the desired modification. On the
other hand if the system is capable of adapting to the user and estimate his/her
intention, it is sufficient for the human operator to touch the robot spontaneously
with no mental effort.

One simple way to have an interface which is able to adapt to the user
is to ask the user to provide examples of the mapping between touches and
corresponding posture modifications and use a supervised learning technique.
The role of the learning algorithm is to realize a mapping between the tuple
(touch information, context) and expected intended modification of joint an-
gles. Currently the context consists of the posture of the robot (represented as
the angle of each of the joints) the orientation (roll, pitch and yaw) of the robot’s
torso, and the velocity of the center of gravity. The posture is needed because
the meaning of touches may depend on the posture, as in the provided exam-
ple in which touching the lap means different things depending on whether the
robot is standing or squatting. Likewise, the meaning of the instructions may
vary depending on the orientation, for instance the meaning could be different if
the robot is standing or is lying down. Finally, touch meaning could also depend
on the velocity, especially if the robot is moving fast, for example if it is falling
down.

Given the limited number of examples compared to the dimensions of the
input space, among the numerous available supervised learning algorithms, like
neural networks or Gaussian Mixture Models, we decided to employ k-Nearest
Neighbor with a specifically devised metric. While this paper focuses on the
simulation aspects the details on the metric and how it was derived are provided
in [17]. Briefly each example provided by the user consists of an input Ii and an
associated intended joint modification vector Mi (that we assume to be the class



252 F. Dalla Libera et al.

to which it belongs). Given an input I∗, the system output vector M∗ can be
obtained by weighting the joint modifications present in the collected examples
Mi, with weights ωi calculated employing the distance (in the high dimensional
space) between the system input I∗ and each example coordinates Ii. Concretely,
indicating with E the number of collected examples

M∗ =
E∑

i=1

ωiMi (1)

Directly employing k-Nearest Neighbor with Euclidean or Mahalanobis distance
based weights presents two problems. First of all touch information (pushing
time of each of the sensors) should be prioritized over the context. This is to
avoid the output being determined mainly by the context instead of by the
pushed links, as would happen if touch information is given no priority over
the other features of the input (i.e. if the input vector Ii components are all
treated equally). As a trivial example, suppose the human operator designed
an arm motion and therefore only provided examples involving the arm, then
when she/he will push the legs this will cause the arm to move, while in such
cases of no available knowledge it would be intuitive not to apply any posture
modification.

To solve this problem given an input vector I∗ and in particular the touching
information T∗, the output M∗ is calculated considering only the examples having
a set of pressed sensors (i.e., sensor having a pushing duration greater than
zero) the same set of sensors pressed in T∗ or a subset of them. In other words,
indicating with n the number of sensors and with the notation T∗ [s] and Ti [s]
as the pushing duration of the s-th sensor in the system input T∗ and in the i-th
example touch information vector respectively, the i-th example is considered if
and only if

n∨
s=1

(Ti [s] > 0)) ∧ (T∗ [s] = 0) (2)

is false. In other terms ωi = 0 in equation 1 for the examples in which equation 2
holds.

The second problem arises because every distance function is symmetric. Sup-
pose to have just one training example, where a sensor was pushed for 300 mil-
liseconds, and this corresponded to a desired modification of increasing a certain
joint angle by 40 degrees. A user might naturally expect that pushing for less
time will cause a smaller change in that joint, while a longer press should pro-
duce a larger joint angle change. Nonetheless the system behavior with a distance
based weighting is such that any touch on that sensor with duration different
from 300ms, either longer or shorter, results in a smaller angle change. For ex-
ample if ωi = 1/ (1 + ‖I∗ − Ii‖) is used as a weighting function pressing the
sensor for 200ms or for 400 ms would give the same modification. To avoid this
unnatural behavior the weight ωi (see Eq. 1) is calculated as ωi = αiβi. Given T∗,



Developing Robot Motions by Simulated Touch Sensors 253

the touch information components of the input vector, and the various example
touch information vectors Ti, αi is calculated as

αi =
∏

s:Ti[s]>0

T∗ [s] /Ti [s]

This value keeps increasing linearly as the pushing time increases. The second
factor βi accounts for all information not used in the calculations of αi

– the sensor information T∗ [s] and Ti [s] for the sensors s such that Ti [s] = 0;
– the joint angles of the robot in the system input (P∗) and the angles recorded

in the i-th example Pi;
– the orientation present in the system input O∗ and the one of the i-th ex-

ample Oi;
– the center of gravity velocity vectors V∗ and Vi, relative to the system input

and to the i-th example respectively.

It was chosen to calculate each βi as

βi =
1

1 + di
(3)

where di provides a measure of the diversity of the current input I∗ and the i-th
example input Ii. Denoting the Euclidean norm by ”‖‖”, di is given by

di =
√ ∑

s:Ti[s]=0

(T ∗[s] − 0)2 + ‖P − pi‖2 + ‖O − oi‖2 + ‖V − vi‖2

where each vector component is normalized scaling by its variance in the example
data set since the units are heterogeneous.

The structure of Eq. 3 emerges from practical experiments: several decreasing
functions were tested and the one which appeared to give the most intuitive
behavior, f(x) = 1/(1 + x) was chosen. A deeper and more formal analysis will
be conducted in future works.

It must then be decided how to acquire the examples of the mapping used
by the algorithm. We chose to collect them on-line, during the development of
robot motions. This brings two advantages. First of all no special session where
the user is required to provide how she/he would touch the robot to express
certain pre-defined modifications is required. Secondly the human operator can
identify when the system fails to predict her/his intention, and can provide,
by the shared protocol, the intended joint modification, so that the mapping
between touch instructions and estimated modification intentions can be refined
where it needs to be. Ideally the system keeps improving its knowledge base
during the motion development and users need to teach the meaning of the
touch instructions less and less frequently.

It is therefore required to provide a method for the user to communicate the
desired posture modification when the system does not estimate the intention cor-
rectly. In the current implementation a classical slider based interface was used.



254 F. Dalla Libera et al.

4 Assuring Identical Conditions

As previously stated we can suppose user dependence of the meaning of touch
instructions. In detail the same intended posture modification could be expressed
in with different touch instructions and the same touch could have different
meanings for different users even within the same context. In order to compare
the instruction provided by different users we should put all of them in exactly
the same conditions, otherwise differences in the results could derive by those
factors. In detail we would need the users to employ identical robots, assure
the same servomotor calibration, the same motion capture calibration, the same
friction of the ground surface and so forth. These differences can be overcome
using a simulator. In this case, the behavior of the robot is identical for any
execution and every user. If identical PCs are used the experiment can also be
run in parallel with different users assuring them to be in exactly the same
condition. Even if a simulator is used to replace the real robot, the development
cycle described in section 2 does not need to be altered. In detail, the users keep
developing the motion using exactly the same interface employed for the control
of the real robot and the simulator can provide a virtual motion capture system
that sends the information to the interface simulating an ideal motion capture
system that return the exact position of virtual markers.

5 Experiments

Experiments had been conducted using Vision4G, a humanoid robot produced
by Vstone2. This robot is 445mm high and has 22 degrees of freedom actuated
by DC servomotors (Fig. 2(a)). For capturing the robot’s position we used the
Eagle Digital System developed by Motion Analysis Corp. The robot’s 3D rep-
resentation, used to provide the robot with virtual touch sensors, is presented
in figure 2(b). Strong simplifications had been introduced, for instance parallel
links, present in the robot legs, had been modeled by a single link actuated by
two motors that rotate synchronously. For the reconstruction of the motion the
response of the servomotors had been approximated by a simple delay of 200 ms.
We’d like to recall that the interface does not provide any dynamics simulation,
and the position and orientation of the robot for each time instant is calculated
interpolating the motion capture system data.

As a first validation of the feasibility of the developed interface, a stand up
motion, a jump motion3 and a walking motion were successfully realized. In de-
tail the jump motion was realized both with the touching approach and with a
classical slider-based interface for comparison. Similar motions were obtained,
respectively, in 17 minutes and in over 40 minutes. Though this is just a prelimi-
nary results this can provide support to the thesis that motion development time
can be reduced introducing touch-based interface. The examples of the mapping
2 http://www.vstone.co.jp/
3 To ease the task a rubber-band pulling the robot from the top was employed. Details

and pictures are reported in [17].

http://www.vstone.co.jp/


Developing Robot Motions by Simulated Touch Sensors 255

Fig. 4. Screenshot of the rendering provided by the simulator

between touch instructions and posture modification provided by the user were
studied. Analysis of the collected data is presented in [17].

User dependence was investigated asking six subjects to develop the same
motions (a walking and a kicking motion) using the interface connected to a
simulator. All the subjects are all Italian male computer science students, and
their age is in the range 23-27 (mean 24.5, standard deviation 1.87). The simula-
tor was developed using ODE, an open source library designed to simulate rigid
body dynamics4. Figure 5 shows a screenshot of the rendering provided by the
simulator. The robot had been modeled by 31 rigid bodies, each of which con-
sists of one or more parallelepipeds(totally 39) linked by 34 joints.The number
of joints is higher than the number of DOFs for the presence of parallel links,
which in this case has been modeled directly as free hinge joints. The inertia
matrix of each rigid body was calculated using the following approximations:

– each parallelepiped has uniform density and weights 35g;
– the real position and weight (63g) of the servomotors was identified and the

density inside each servomotor was assumed constant;
– the robot’s weight not accounted in the previous terms was assumed to be

located in the robot’s torso, uniformly distributed.

The main finding is that different users gave different abstraction levels in pro-
viding touch instructions:

– a nearly fixed mapping from a small set of sensors to the joints; the context
has little or no influence

– a mapping based on physical considerations (the joints are imagined to be
“elastic”); in this case, the context, for instance the position of the ground,
becomes crucial

4 See http://www.ode.org/ for more information on this library.

http://www.ode.org/


256 F. Dalla Libera et al.

– a very high level representation of the motion, where for instance just the
limb that should be moved is indicated by touching; at this level of abstrac-
tion a single touch corresponds to a motion primitive.

As previously stated since a simulator was employed the differences in the mean-
ing of touch instruction is guaranteed to be due to the user-dependence of the
mapping, and not by different environmental conditions during the tests.

6 Discussion and Future Works

Touch is a very intuitive mean of communication, and can be used in human-
robot interaction for teaching motions, first of all for tasks like dance or sport
movements for which it is difficult to provide a mathematical definition of the
performance and for which, therefore, a user evaluation and tuning is very impor-
tant. However most of the available robots are not provided with touch sensors.
One cost effective solution, presented in this paper, consists in interacting with
a 3D representation of the robot which extends the robot capabilities simulating
sensors not present on the real one. We then presented an application of simula-
tion on studying user dependence of touch instructions. In this case simulating
the robot allows us to study the differences in the teaching method of differ-
ent users when they interact in exactly the same conditions with a (simulated)
humanoid robot.

Future works will aim at making the interaction more direct and natural.
For instance, we can imagine to employ more advanced virtual reality devices.
Another limitation of the current approach is that touch instructions are inter-
preted just observing the physical context, while we can imagine that knowledge
of the task could be exploited to improve the meaning estimation.

Finally while in this work the user defines the target of the robot’s motion
and the performance of the result is evaluated by the user’s subjective criterion,
to allow a better comparison with other works definition of a set of measurement
other than the development time here employed should be considered.

References

1. Takeda, T., Hirata, Y., Kosuge, K.: Hmm-based error recovery of dance step se-
lection for dance partner robot. In: ICRA, pp. 1768–1773. IEEE, Los Alamitos
(2007)

2. Voyles, R., Khosla, P.: Tactile gestures for human/robot interaction. In: IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (August 1995)

3. Grunwald, G., Schreiber, G., Albu-Schäffer, A., Hirzinger, G.: Touch: The direct
type of human interaction with a redundand service robot. In: IEEE Int. Workshop
on Robot and Human Interactive Communication RO-MAN 2001, Bordeaux/Paris,
France (2001)

4. Yoshikai, T., Hayashi, M., Ishizaka, Y., Sagisaka, T., Inaba, M.: Behavior integra-
tion for whole-body close interactions by a humanoid with soft sensor flesh. In:
IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids 2007), Pittsburg, USA
(December 2007)



Developing Robot Motions by Simulated Touch Sensors 257

5. Ohmura, Y., Kuniyoshi, Y., Nagakubo, A.: Conformable and scalable tactile sensor
skin for curved surfaces. In: ICRA, pp. 1348–1353. IEEE, Los Alamitos (2006)

6. Minato, T., Yoshikawa, Y., Noda, T., Ikemoto, S., Ishiguro, H., Asada, M.: Cb2: A
child robot with biomimetic body for cognitive developmental robotics. In: IEEE-
RAS Int. Conf. on Humanoid Robots (Humanoids 2007), Pittsburg, USA (Decem-
ber 2007)

7. Katsura, S., Ohnishi, K., Ohnishi, E.: Transmission of force sensation by environ-
ment quarrier based on multilateral control 54(2) (April 2007)

8. Vukobratovic, M., Borovac, B., Potkonjak, V.: Zmp: A review of some basic mis-
understandings. Int. J. Human. Robot 3(2), 153–175 (2006)

9. Nakaoka, S., Nakazawa, A., Yokoi, K., Hirukawa, H., Ikeuchi, K.: Generating whole
body motions for a biped humanoid robot from captured human dances. In: ICRA,
pp. 3905–3910. IEEE, Los Alamitos (2003)

10. Okumura, Y., Tawara, T., Endo, K., Furuta, T., Shimizu, M.: Realtime zmp
compensation for biped walking robot using adaptive inertia force control. In:
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2003), vol. 1, pp.
335–339 (2003)

11. Furuta, T., Yamato, H., Tomiyama, K.: Biped walking using multiple-link virtual
inverted pendulum models. Journal of Robotics and Mechatronics 11(4), 304–309
(1999)

12. Iida, S., Kato, S., Kuwayama, K., Kunitachi, T., Kanoh, M., Itoh, H.: Humanoid
robot control based on reinforcement learning. In: Proc. of the 2004 Int. Sympo-
sium on Micro-Nanomechatronics and Human Science and The Fourth Symposium
Micro-Nanomechatronics for Information-Based Society, pp. 353–358 (2004)

13. Peters, J., Vijayakumar, S., Schaal, S.: Reinforcement learning for humanoid
robotics. In: Third IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids 2003),
Karlsruhe, Germany (September 2003)

14. Yamasaki, F., Endo, K., Kitano, H., Asada, M.: Acquisition of humanoid walking
motion using genetic algorithm - considering characteristics of servo modules. In:
ICRA, pp. 3123–3128. IEEE, Los Alamitos (2002)

15. Wama, T., Higuchi, M., Sakamoto, H., Nakatsu, R.: Realization of tai-chi motion
using a humanoid robot. In: Jacquart, R. (ed.) IFIP Congress Topical Sessions, pp.
59–64. Kluwer, Dordrecht (2004)

16. Baltes, J., McCann, S., Anderson, J.: Humanoid robots: Abarenbou and daodan.
In: RoboCup 2006 - Humanoid League Team Description, Bremen, Germany (June
2006)

17. Dalla Libera, F., Minato, T., Fasel, I., Ishiguro, H., Menegatti, E., Pagello, E.:
Teaching by touching: an intuitive method for development of humanoid robot
motions. In: IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids 2007), Pitts-
burg, USA (December 2007)



3D Simulation of a Motorized Operation
Microscope

Markus Finke and Achim Schweikard

Institute for Robotics and Cognitive Systems
University of Lübeck
Ratzeburger Allee 160

23539 Lübeck
Germany

{finke,schweikard}@rob.uni-luebeck.de
http://www.rob.uni-luebeck.de

Abstract. We present a 3D-simulation which is used to develop au-
tomatic applications for a motorized operation microscope. It is im-
plemented using java and java3d and enables a hardware independent
evaluation of the system by the manufacturer as well as the user. An
easy switch-over from simulation to the real system is possible because of
software interfaces which are used to separate input and output methods.
The simulation is also used to specify the parameters of the motorisation
so that the microscope can be positioned accurately.

Keywords: 3D-Simulation, Operation-Microscope, Robotic.

1 Introduction

Robotics is a widespread technology and is primarily used to save money (auto-
mobile industry) or to act in environments that are inapproachable or too dan-
gerous for people (aerospace, deep sea). In medicine, the robotics is meanwhile
used to assist the surgeon doing his work but not to replace him. The experience
and the tactile abilities of a surgeon cannot be substituted by a robot yet.

An essential advantage of a robot is based on the ability to position the
end-effector with high accuracy. Because of that, the DaVinci telemanipulator
(Intuitive Surgical, USA) is used by several surgeons. The surgeon embodies the
master and describes the movements of all instruments and the robot acts as
the slave and performs these movements. In this manner, 3-4 instrument arms
can be served simultaneously. The accuracy of the robot movements is raised by
a tremor filter which filters out the shivering of the human hand and also scales
the described movements.

In the area of the radiotherapy, the Cyberknife (Accuray Inc, USA) is already
used for some years and it enables robotic assisted compensation of the motions
caused by breathing [1]. Thereby, the movement of a set of infrared emitters
which are right on the skin of the patient is measured in real-time. The dis-
placement of the tumour caused by the respiration can be determined and the

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 258–269, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.rob.uni-luebeck.de


3D Simulation of a Motorized Operation Microscope 259

radiation source is moved by the robot in parallel so that the radiotherapy is
limited to the tumour region.

Beyond the real treatment during an operation, the visualisation of the oper-
ation area is always also very important for the surgeon. Therefore, microscopes
are used for the main part because they are also responsible for the illumination
and the enlargement of objects in the operation area.

Although microscopes are very important during operations, they are afflicted
with a central deficit. They can only be controlled manually and the surgeon has
to interrupt his actual work every time he wants to reposition the microscope.
The instruments have to be handed over, the microscope has to be unlocked,
aligned anew, fastened again and only after renewed acceptance of the instru-
ments the operation can be continued. This effort will also come up if the viewing
area should be shifted only a little bit in order to have a look at an object slightly
out of sight.

The motorisation of the microscope supports the surgeon with his actual work
by enabling an easy, very exact and automated positioning of the microscope.
Beyond, new functions can be provided to the surgeon – the pivotation around a
point which maintains the current focus point and moves the microscope on the
surface of a virtual sphere around this point is very time consuming or can not
be realised manually at all. The adaptation of the optical coherence tomography
(OCT) to the camera port of an operation microscope [2] is also a new function
which upgrades a current microscope to a surgical assistance systems.

Automatic positioning of the microscope requires defining joint values to reach
a defined position. Therefore, the forward and inverse kinematics of the micro-
scope have to be determined. Afterwards, a computer-controlled adjustment can
be applied which results in precise positioning of the microscope. The reliability
of the kinematics and the explicit determination of all parameters in every joint
constellation can simply and economically be checked with a simulation.

Simulations are used in the area of the robotics as well as in the medicine,
however, in each case they have another objective. In medicine, they are pri-
marily used for education. Reanimation dolls which are used to train first aid
scenarios are already known in this context. The birth simulator [3] which is a
combination of a haptic device in a body phantom and a software to simulate
biomechanical and physiological functions provides the possibility to practice
births and the handling of suddenly appearing complications. An included 3D
visualization provides further information about the 3D model.

A training simulator for heart operations is introduced in [4]. Students, anaes-
thesiologists and perfusionists are prepared for possible incidents during the
operation using this simulator. The patient’s dummy contains the model of a
cardiovascular system with which a complete heart operation can be simulated.
Problems like bleeding or edemas are defined by a supervisor via a control PC.

In robotics, simulations are used for development and test of systems as well as
to recognise appearing problems early. In [5] the control of a two-legged walking
robot is presented which has been developed using a 3D-simulation. It represents



260 M. Finke and A. Schweikard

a realistic environment to learn and test the synchronous control of the legs. The
realization of a suitable interface makes it easy to port the steering to the real
robot.

The control concept of a motorised fluoroscopic C-Arm has been developed
and tested based on a 3D simulation [6]. This enables a hardware independent
evaluation by the manufacturer and the user as well as the conception of new
applications using motorisation.

The simulation of a motorised operation microscope connects both areas –
medicine and robotics – with each other. The main focus is based on the devel-
opment of a robotic system. The simulation is used for testing the kinematics
and for developing new functions. At the same time, the simulation is used to
explain the microscope’s handling to surgeons who can test the functions and
the new remote control as well as evaluate its suitability in practice.

2 Hardware

The operation microscope HI-R 1000 and the tripod FS4-20 produced by Möller-
Wedel GmbH, Germany (Fig. 1) forms the basis of the simulation. It is a mi-
croscope with six degrees of freedom (DOF) and the last two axes are already
motorised so that the optics can be tilted and shifted to get an overview of the
operation area.

A large counterbalance at the lower end of the parallelogram-arm effects a
balance to the microscope at the upper end of the arm. This simplifies the
positioning of the microscope because the weight does not have to be carried
by the user. The motorisation also profits from it because the effort for moving
single joints is lower so that the engines can be dimensioned smaller.

For safety reasons, the brakes will be released in the manual mode by pressing
a button at the handles and after its positioning they will be fastened immedi-
ately. This function will be maintained and it will have a higher priority than
the motor mode because the engines are ungeared by pressing this button and
can not move the joints anymore. In this manner, a looming collision can be
prevented and the microscope can be pushed aside manually.

Every joint is equipped with an additional encoder. Thereby, it is assured
that all movements can be registered and the microscope always be positioned
exactly. Though, in the manual mode the engines should be ungeared, however,
the encoders remain connected with the joints otherwise a wrong start position
would be assumed for the next movement.

It is very important that the engines can be moved very slowly because only
short distances have to be moved automatically but the defined point must be
reached with high accuracy. This has to be taken into consideration dimensioning
the engines. Additionally, all engines must reach their final position at the same
time in order to make pivotations possible or to move on a previously defined
trajectory. Joints that have to move only a short distance have to shift very
slowly but joints that have to move a large distance in the same time have to
shift fast.



3D Simulation of a Motorized Operation Microscope 261

Fig. 1. HI-R 1000 microscope and the tripod FS4-20 with its six motorised axes (1-3
and 5-7) are presented. An additional joint (4) at the end of the parallelogram-arm
compensates rotations of axes 2 and 3 and keeps axis 5 parallel to axis 1.

3 Interface

Generally, interfaces are defined to be able to communicate with different kinds
of other classes. This enables the easy exchange of these classes. An interface has
been developed because the kinematics is identical for the simulated model and
the real microscope. The interface translates the calculations in corresponding
commands depending on the used output component (microscope or 3D-model).
The kinematics is necessary to calculate the position of the end-effector as well
as the joints’ positions to reach a defined position.

The input of control commands can be done in two different ways, either by a
graphical user interface (GUI) or by a remote control which provides only such
functions that are used frequently during an operation. The surgeon can make
use of these functions easily with the remote control without interrupting his
actual work. This includes small motions parallel to the image plane to have
a look at objects slightly out of sight or pivotations which are very important
to improve diagnose. The interface processes all the information of both input
modules and transfers them to the calculation module.

The class IRobot defines the interface to communicate with the microscope or
the model and it provides methods to control both systems and to read param-
eters directly from both of them. The model is also used to test the elements of
the GUI independently of the microscope.



262 M. Finke and A. Schweikard

Fig. 2. The interface separates input and output level and it provides all information
necessary for the calculation module. This makes the calculation independent of the
used input and output components.

The control of the microscope takes place in several steps (Fig. 2). The class
IRobotController defines the interface to control the motion of the robot. It pro-
vides methods to move the microscope parallel to the current image plane or
along a trajectory as well as to perform a pivotation around a defined point.
Therefore, the kinematics is necessary (kinematic.RobotController). This class
expands the implementation of interfaces.IRobot which is the interface of simu-
lation.SimulationRobot and robot.Robot.

The class robot.Robot supplies methods to move the microscope relatively and
absolutely as well as to set and read parameters like velocity, acceleration, work-
ing distance and position of the joints. This class uses methods provided by
robot.HardwareControlMW and robot.HardwareControlIBG. These two classes
enable the communication with the hardware using a serial interface. The pro-
vided methods correspond to the commands of the controller like getPosition()
or moveAllAxes().

4 Simulation of the Microscope

The class simulation.SimulationRobot is responsible for the simulation of the
microscope. This class implements the interface interfaces.IRobot and reacts just
like the real microscope because all axes are restricted by the mechanical range
of the microscope, axes 1 and 5 are kept parallel to each other and parameters
like velocity, acceleration and step width are identical to the real microscope.

Theclasses simulation.SimulationRobotModeland simulation.SimulationFrame
have been implemented additionally. They are necessary to display a 3D model of
the microscope which is positioned according to the joints’ positions that are spec-
ified in interface.IRobot. Furthermore, this model will also be used to display the
positionof the realmicroscope if its joints’positions are available for the simulation.

The package gui contains all graphical control panels to move the whole mi-
croscope using its kinematics (kinemaic.RobotController) or to move a single



3D Simulation of a Motorized Operation Microscope 263

axis (gui.AxisPanel). The elements of gui are grouped according to their tasks
(pivotation, saving the position of the microscope, etc.) so that a panel is defined
for every task and can be added to other panels or frames easily. These panels
are shown in Fig. 3.

The control panel is used to move the lens parallel to the current image plane.
This is necessary to make an object visible that is slightly out of sight. The
Buttons up and down can be used to increase or decrease the distance between
the lens and the image plane. Therefore, the orientation of the microscope is
not changed. The tissue stays focussed so that it can be observed while the
microscope is moving.

The microscope can be moved around the current focus point using the pivota-
tion panel. Therefore, the working distance is maintained and the lens is moved
on the surface of a virtual sphere around the focus point. In this manner, one
can easily have a look at an object from different directions.

If the surgeon wants to turn the view around but keep the current image
plane, he will move the microscope around the rotational axis defined by the
focus point and the middle of the lens by choosing left or right of the rotation
panel.

The exact position and orientation of the microscope can always be calculated
using the forward kinematics. The panel ”SavedPoints” provides the functions to
save these transformation matrices, which can be used to move the microscope
later again to one of these positions. It can also be moved along a trajectory
which is created combining several saved positions.

All motorised axes of the microscope can also be moved individually as long
as the position fits into the mechanical range of the axis. The according control
panel is shown on the right side of Fig. 3.

All the functions explained above will later also be available for the real mi-
croscope. The surgeon will control these functions during an operation using a
remote control which can easily be fixed to one of his instruments.

4.1 The 3D Model

The simulation is implemented using java and java3d. The model is constructed
by combining all parts loaded from VRML-files and all joints can be moved
in the same way as the real microscope. The effect of movements on parts of
the microscope is simulated with the help of the class simulation.MotionGroup.
This class contains all information about impacts on any part of the microscope
caused by the motion of an axis.

Additional elements like simulation.Table or simulation.Patient can also be
presented in the universe of the simulation. These elements must be available
as a BranchGroup and have to be implemented directly into the universe. The
universe (simulation.SimulationUniverse) has a diameter of 20 metres. One cam-
era (simulation.Cam) is placed on the z-axis 5 metres apart from the origin and
points towards the microscope (Fig. 4a). Another camera is fixed to the last axis
of the microscope and simulates its view (Fig. 4b). The scene is illuminated by
a directional light which is fixed to the first camera.



264 M. Finke and A. Schweikard

Fig. 3. 3D-Simulation. The control panels of automatic movements are places on the
left side and each joint can also be moved individually using the panel on the right
side.

4.2 Kinematics

The kinematics of the microscope is very important because it is used to calculate
the position of the lens as the microscope’s end-effector (forward kinematics) and
to calculate the joint’s angles which are necessary to reach a defined position
(inverse kinematics).

Forward Kinematics: Six of seven joints can be moved independently of each
other. The angle θ4 of joint four depends on the joints two and three: θ4 =
−θ2 − θ3. If the six independent joints are moved individually, it will result in
the following movements of the microscope:

Joint 1: Rotation of the whole system around z0.
Joint 2: Changing the height of the microscope.
Joint 3: Changing the height of the microscope.
Joint 5: Rotation of the microscope around z0.
Joint 6: Rotation around y0.
Joint 7: Rotation around x0.

Each joint i has its own coordinate system. The transformation from coordinate
System i to i + 1 is described by homogeneous matrices



3D Simulation of a Motorized Operation Microscope 265

Fig. 4. a) Main camera view into the universe of the simulation, b) View of the micro-
scope onto its environment

iAi+1 =

⎛
⎜⎜⎝

cos θi+1 − cosαi+1 sin θi+1 sin αi+1 sin θi+1 ai+1 cos θi+1
sin θi+1 cosαi+1 − sinαi+1 cos θi+1 ai+1 sin θi+1

0 sin αi+1 cosαi+1 di+1
0 0 0 1

⎞
⎟⎟⎠ (1)

The coordinates of the end-effector can be calculated by combining all the ho-
mogeneous transform matrices:

0A8 =
7∏

i=0

iAi+1 (2)

The origin of the last coordinate system is located at the lens. 7A8 contains only
a displacement along the viewing direction of the microscope.

Inverse Kinematics: The inverse kinematics is responsible for calculating joint
positions to reach a desired point and defined orientation. The desired position
is determined using e.g. an optical tracking system registered to the microscope
and the necessary calculation will be done by the inverse kinematics. The image
plane can be placed freely in the 3D space because the microscope has six degrees
of freedom. It is only limited by the restrictions of the working space of each
joint.

The rotation matrix of 0A8 depends only on the angles θ1, θ5, θ6 and θ7.
Angles θ2 and θ3, which influence the height of the microscope, can be calculated
using the geometry of the system. A detailed description of the kinematics of
the microscope can be found in [7].

4.3 Test of the Kinematics

When dealing with a motorized (robotic) microscope, a singularity problem must
be taken into consideration. The kinematics of some robots (e.g. six-axes robots)



266 M. Finke and A. Schweikard

will cause singularities easily if the end-effector is positioned overhead and axes
one and six align. Such an overhead positioning of the microscope is not possible
because of the architecture of the parallelogram-arm and its additional joint four
(passive joint). Besides, the parallelogram-arm is constructed in the condition
of ”elbow up” and, thus, avoids ambiguities in positioning the joints. Even if
θ6 = 180◦, there will not be a singularity because z5 and z7 may be parallel but
they are not identical so that a rotation around z5 can not be compensated by
a rotation around z7.

The simulation was used to test whether the joints’ positions can explicitly
be calculated by the kinematics. Therefore, the inverse kinematics of 1.423 ·1019

joint constellations have been calculated. This large amount of constellations is
caused by the limits of the six joints: Axis 1 has no limits and axis 5 can be
moved 540◦. In both cases, angles between −180◦ and 180◦ have been used. The
motion range of the other axes is 80◦, 85◦, 170◦ and 95◦. The constellations were
calculated with a resolution of 0.1◦. The calculation was done with a standard
PC (2.4 GHz) and took several days. The calculation of these constellations did
not deliver any discrepancies.

Actually, there are ambiguities in calculating θ5 because this joint can be
rotated 540◦ so that two different joint positions result in one and the same
position and orientation of the microscope. This problem is solved by using
always that joint position which is closer to the current position of θ5.

Motion tests with the simulation have shown that the current motorisation of
the axes 6 and 7 is far from being satisfactory. Automatic motions like pivotation
or positioning with high accuracy can not be provided. The velocity is limited
to a range from 1.3◦/s to 1.7◦/s so that very slow motions can not be done.
This makes it difficult to move the lens along a defined trajectory or to keep it
focussed on one point. The time delay between sending the command to stop
one of these motors and its actual stopping is relatively large (at least 40ms) and
causes inaccuracies while positioning. The working distance of the microscope
is between 22.4 and 51.0cm. Assuming a time delay of 40ms, the inaccuracy is
between 0.02 and 0.06cm depending on the velocity.

5 Applications

The simulation forms the basis for the development of new functions which are
enabled by the motorisation of the microscope. These functions should support
the surgeon with his work and improve the diagnosis as well as the treatment
of patients. At the same time, the simulation is used to test developed functions
and to verify the practise suitability of new control concepts.

1. Defining the target directly in the presented view of this object is the eas-
iest way to navigate. The surgeon can select a point either from a MRI or
directly in the operation area and the microscope will move to this point
autonomously. An external tracking system is necessary for both variations.
The MRI must be registered to the real patient to be able to transfer the



3D Simulation of a Motorized Operation Microscope 267

Fig. 5. Pivotation around a point on the chest of the patient. The microscope’s view
of three different directions is shown in the upper line and the according alignment of
the microscope is presented in the lower line.

coordinates from the MRI to the microscope. If the target is defined directly
in the operation area using a pointer, the coordinates will be determined
tracking the pointer with a stereo camera. The defined points are used to
centre the current view of the microscope anew.

2. The knowledge of the exact target is also used to verify the work done during
the operation. The position and orientation of the microscope can be calcu-
lated using forward kinematics and the transformation matrix can be saved.
If one wants to have another look at an object, the corresponding matrix
will be selected and the microscope will position itself autonomously. For
example, this makes sense after a tumour have been resected. The periphery
can be examined again and can also be checked whether other tumour tissue
still exists.

3. A diagnosis can usually not be made from one single point of view but
it is necessary to judge the relevant place from different directions. If the
surgeon does this manually, it will be very difficult and time-consuming.
The pivotation around a point will be very simple and fast if the system is
motorised. For this purpose, the current focus point is kept as the target
and the lens is moved around this point with constant distance (Fig. 5).
Therefore, the lens moves on the surface of a virtual sphere whose radius is
defined by the working distance of the microscope. The point does not have
to be focussed anew for every new orientation.

4. A basic idea of the motorisation is, to support the surgeon with the posi-
tioning of the microscope. Therefore, a remote control has been developed
which can be fastened to one of the surgeon’s instruments. The surgeon



268 M. Finke and A. Schweikard

does not have to interrupt the operation any more in order to control the
microscope manually but instead he can control the motion directly. The re-
mote control contains 2 switch-buttons to define the motion’s direction and
4 push-buttons. These buttons can be used to easily switch from pivotating
to moving in the current image plane or to save the current focus point.
Thus, movements which are very small but frequently used can be simplified
and quickened.

6 Summary

The purpose of this work was the development of a simulation of a customary
operation microscope, which was developed for several reasons: 1) The necessary
parameters of the motorisation could be specified using this 3D model to enable a
very accurate positioning. 2) Automatic motions like pivotation can be developed
and tested easily. 3) In the same way, new applications can be added later. 4) The
system can be evaluated by the manufacturer as well as by the user independently
of the hardware.

First, the kinematics of the microscope has been developed to produce the
simulation. The reliability and explicit calculation of all joint positions, which
are possible based on the mechanical limits, has proved by the simulation. In
addition to the model of the microscope a model of a patient is also integrated
to be able to visualise the automatic motion sequences.

Several applications (pivotation, saving target positions and move to them
later again) were developed and tested. A remote control which uses the Blue-
tooth standard has been developed to simplify and to accelerate the handling of
the microscope for the surgeon. Its handling and the reliable working have also
been tested with the simulation.

Some problems positioning the microscope accurately have already been de-
tected with the simulation while the motorisation was still under construction.
Some of these problems could be corrected in the process of construction. The
next step will be to integrate Optical Coherence Tomography (OCT). This en-
ables analyses of tissue using an infrared laser. The surgeon can examine the
tissue during tumour resection and decide immediately whether it is brain tissue
or tumour cells [8]. The combination of OCT and a microscope, which was not
motorized, has already been presented in [2]. A method to automate OCT-scans
will also be developed and tested with this simulation.

Acknowledgement

This project is part of “e-region Schleswig-Holstein plus”, which is a program of
the ministry of science, economy and traffic and of “Innovationsstiftung Schles-
wig-Holstein”. The project is sponsored by ISH and European Union from the
european stocks of regional development (EFRE).



3D Simulation of a Motorized Operation Microscope 269

References

1. Schweikard, A., Glosser, G., Bodduluri, M., Adler, J.R.: Robotic motion com-
pensation for respiratory motion during radiosurgery. Journal of Computer-Aided
Surgery 5(4), 263–277 (2000)

2. Lankenau, E., Klinger, D., Winter, C., Malik, A., Müller, H.H., Oelckers, S., Pau,
H.W., Just, T., Hüttmann, G.: Combining Optical Coherence Tomography (OCT)
with an Operating Microscope. In: Advances in Medical Engineering, pp. 343–348.
Springer, Heidelberg (2007)

3. Sielhorst, T., Obst, T., Burgkart, R., Riener, R., Navab, N.: An augmented reality
delivery simulator for medical training. In: International Workshop on Augmented
Environments for Medical Imaging - MICCAI Satellite Workshop (2004)

4. Dietz, A., Haimerl, G., Moreau, F., Straub, B., Benk, C.: Training simulator for
extracorporeal circulation. Applied Cardiopulmonary Pahtophysiology 10 (2006)

5. Geiger, C., Lehrenfeld, G., Müeller, W.: Virtuelles Prototyping einer Roboters-
teuerung durch interaktive 3D-Simulation. In: Simulation and Visualisierung 1999,
Magdeburg, Germany (1999)

6. Gross, R., Binder, N., Schweikard, A.: Flouroscopic C-Arm Simulator. In: CU-
RAC 2004, Deutsche Gesellschaft für Computer- und Roboterassistierte Chirurgie,
München (2004)

7. Finke, M., Bruder, R., Schweikard, A.: Kinematics of a Robotized Operation Micro-
scope. In: Proc. of the 34th Annual Conference of the IEEE Industrial Electronics
Society (IECON), Orland, USA (2008)

8. Giese, A., Böhringer, H.J., Leppert, J., Kantelhardt, S.R., Lankenau, E., Koch,
P., Birngruber, R., Hüettmann, G.: Non-invasive intraoperative optical coherence
tomography of the resection cavity during surgery of intrinsic brain tumors. In:
Proceedings of SPIE, pp. 495–502 (2006)



Real-Time Least-Square Fitting of Ellipses
Applied to the RobotCub Platform

Nicola Greggio1, Luigi Manfredi1, Cecilia Laschi2, Paolo Dario1,
and Maria Chiara Carrozza1

1 ARTS Lab - Scuola Superiore S.Anna, Polo S.Anna Valdera
Viale R. Piaggio, 34 - 56025 Pontedera, Italy

2 IMT Institute of Advanced Study Via San Micheletto, 3, 55100 Lucca, Italy
nicola.greggio@ieee.org

Abstract. This paper presents the first implementation of a new algo-
rithm for pattern recognition in machine vision developed in our labo-
ratory. This algorithm has been previously presented only theoretically,
without practical use. In this work we applied it to the RobotCub hu-
manoid robotics platform simulator. We used it as a base for a circular
object localization within the 3D surrounding space. The algorithm is a
robust and direct method for the least-square fitting of ellipses to scat-
tered data. RobotCub is an open source platform, born to study the
development of neuro-scientific and cognitive skills in human beings, es-
pecially in children. Visual pattern recognition is a basic capability of
many species in nature. The skill of visually recognizing and distinguish-
ing different objects in the surrounding environment gives rise to the
development of sensory-motor maps in the brain, with the consequent
capability of object manipulation. In this work we present an improve-
ment of the RobotCub project in terms of machine vision software, by
implementing the method of the least-square fitting of ellipses of Maini
(EDFE), previous developed in our laboratory, in a robotics context.
Moreover, we compared its performance with the Hough Tranform, and
others least-square ellipse fittings techniques. We used our system to
detect spherical objects by applying it to the simulated RobotCub plat-
form. We performed several tests to prove the robustness of the algorithm
within the overall system. Finally we present our results.

1 Introduction

The impressive advance of research and development in robotics and autonomous
systems over the past few years has led to the development of robotic platforms of
increasing motor, perceptual, and cognitive capabilities. These achievements are
opening the way for new application opportunities that will require these systems
to interact with other robots or nontechnical users during extended periods of
time. The final goal is creating autonomous machines that learn how to execute
complex tasks and improve their performance throughout their lifetime.

Motivated by this objective the RobotCub (ROBotic Open-Architecture Tech-
nology for Cognition, Understanding and Behavior) project has been developed.

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 270–282, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Real-Time Least-Square Fitting of Ellipses 271

This is a research initiative dedicated to the realization of embodied cognitive
systems [1], [2].

One of the basic assumptions of this project is that manipulation plays a
key role in the development of cognitive capability. A ball is a perfect example
of a very common and simple to manipulate toy every children uses. Fitting a
ball may be very problematic in image processing because of the light, likely
curvatures of the camera’s lens, etc. These phenomena cause a deformation on
the ball, making it look more like an ellipse. In addition, a ball is a particular
case of an ellipse, i.e. when the ellipse has its axes of the same length.

Two main approaches can be considered for circle detection.
The first one is to use the Hough Transform [3], [4]. This approach can be

divided into several steps. Since spatial perspective alters the perceived objects,
the first step is calibrating the camera (in terms of reconstructing the original
image proportions by computing the inverse perspective and the camera’s lens
distortion). By doing this, a ball previously mapped to an ellipse returns to be
drawn as a circle. Subsequently, a pattern recognition algorithm, such as a sim-
ple color detection, can be applied and then the Hough circle transform can be
applied in order to estimate all the ball’s characteristics (e.g. center of gravity
position - COG - within the 2D space and dimension). However, this approach
can be complex to be implemented, and even elevate resource consumption.
First, it requires the camera calibration. Moreover, the Hugh transform needs
to be set well, in terms of the accumulator threshold at the center detection
stage parameter. We will give a full explanation of our experiments later, in sec-
tion 5. Finally, all these mathematical procedures require the implementation of
complex and therefore error-prone functions, likely also resulting in an excessive
computational burden.

The second one is to use ellipse pattern recognition algorithms. We prefer
processing a ball thinking of it as it were an ellipse, in order to overcome these
distortion problems. Circles in man-made scenes are almost always distorted
when projected onto the camera image plane, therefore generating ellipses. The
latter provide a useful representation of parts of the image since 1) they are
more convenient to manipulate than the corresponding sequences of straight
lines needed to represent the curve, and 2) their detection is reasonably simple
and reliable. Thus they are often used by computer vision systems for model
matching [5], [6]. There are many techniques for ellipse detection. Most of thew
work in real-time (even if depending on the image size) [7], [8].

In this paper we implemented for the first time in a real context the Enhance
Direct Fitting of Ellipses (EDFE) technique [8] for the least-square fitting of el-
lipses, previously developed by our group. We implemented this as a continuation
of a work started as a pure mathematical context in our team by Maini et Al [8].
In their first version, the authors implemented and tested their work only with
theoretical simulations, in Matlab. We implemented and tested these techniques
under a robotics context for the first time. We tested our new algorithm and the
previous related existing techniques ([4], [7]) under the same experimental con-
ditions. First, we would check the performance differences among these methods,



272 N. Greggio et al.

intended as produced error. It is worth note we are not interested in the abso-
lute error of each procedure (yet evaluated for each method in [4], [7], and [8]);
nonetheless we are interested in verifying the systems’ execution dissimilarities
under the same situation. Moreover, we are not interested in analyzing these
dissimilarities in terms of mathematical performance, as done by the authors in
[4], [7], and [8], but their usage in practical applications and scenarios instead,
such as finding the position of a target object within the 3D surrounding space.
We used the simulation of a state of art robotics platform, the RobotCub, in
order to test it at best before doing this with the real platform. So far, we not
only improved a growing open project by adding new capabilities to the robot,
but also made our program open-sorce, available to whose need it as tool for
their personal research or for improving our work as well. In fact, RobotCub is a
completely open project, and by adhering to it we made our work fully available
to everybody [9].

This paper is organized as follows. In section 2 we will describe the RobotCub
robotics platform, in terms of its mechanics and the simulator we used. Then, in
section 3 we will discuss the state of the art problem of the least-square fitting of
ellipses. Furthermore, in section 4 we will briefly explore our vision algorithms.
In sec. 5 we will describe our experimental set-up. In section 6 we will discuss our
results. Finally, in section 7 we will conclude our work and explain our projects
as future research.

2 The iCub Robotics Platform

In this section the iCub robotics platforms is described. It is one of the most
advanced state of the art robots. It is dimensionally inspired to be a two-year-old
human being.

2.1 The iCub Mechanics

The robot is composed of 53 degrees of freedom (DOFs). Most of them are
directly actuated, such as the shoulders [10], others are under-actuated, such as
the hands [2]. This has been decided according to the placement of the actuators
which is heavily constrained by the shape of the body. Of course, the shape is
not the only important factor in the robot’s realization.

In Fig. 1 is shown the iCub in its final configuration [9].
In vision the head is of particular interests. The iCub’s head is completely based

on the Faulhaber motors. These are driven by DC micromotors (Faulhaber) with
planetary gearheads. The neck consists of a serial chain of rotations and it has
three DOF, which have been placed in a configuration that best resembles human
movements. The mechanism of the eyes has been developed in order to achieve
three degrees of freedom too. Both eyes can tilt (i.e. to move simultaneously up and
down), pan (i.e. to move simultaneously left and rigth), and verge (i.e. to converge
or diverge, with respect to the vision axes). The pan movement is driven by a belt
system, with the motor behind the eye ball. The eyes’ tilt movement is actuated
by a belt system placed in the middle of the two eyes [10].



Real-Time Least-Square Fitting of Ellipses 273

(a) The whole robot (b) The iCub’s head
without cover

(c) The complete iCub’s head

Fig. 1. The RobotCub. On the left image the whole robot is depicted (a); on the central
image the head without the cover is shown (b) while in the right image the cover is
shown

An exaustive explanation about a kinematic and a dynamic analysis for the
upper body structure can be found in [11].

2.2 The ODE iCub Simulator

There are many reasons for which it is important to test new algorithms within
a simulator in order to debug them safely [12]. Since there have been build only
a few prototypes (less than ten), it is not easy to access the robot. One of these
prototype is in the Italian Institute of Technology, in Genoa, Italy (this is the
center the robot has been developed in). Clearly, this can be very expensive,
especially when more people have to stay abroad for many days in order to
perform their experiments. A simulator solves these problems. Scientists can
perform their experiments without being close and compare the results finally.
Moreover, the iCub platform can be extremely dangerous if not used properly.
The motors torque and power can injury a human being seriously.

Tikhanoff et al. developed a completely open source simulator for the iCub
[13], [14], based entirely on the ODE (Open Dynamic Engine).

We use this simulator in order to test our algorithms.

3 Least Square of Ellipses: The State of the Art

A new interesting LS technique, the Enhanced Least-Square Fitting of Ellipses
(EDFE), has been developed recently by our work team by Maini et Al, and it
was proposed in [15], [8]. This is a LS procedure that improves the work described
in [7]. In this work, Fitzgibbon et al. developed a direct computational method
(i.e. B2AC) based on the algebraic distance with a quadratic constrain. Our new
approach overcomes the state of the art by solving the problems of numerical
instability that can produce completely wrong results, such as infinite or complex
solutions, not reported in the original work [7].



274 N. Greggio et al.

Essentially, it is a upgrade of the Fitzgibbon’s original work, aimed by the idea
of making it 1. faster (in order to use it in real-timeapplications) and 2. more
precise (it works better on noisy data, loosing precision with better data). The
first result has been obtained by using an affine transformation, that recenters all
the points belonging to the ellipse to be fitted within a square of side length equal
to 2 and centered at the origin of the referring cartesian plane. This represents
an ellipse similar to the original but normalized within this square. Clearly,
the ellipses parameters have to be denormalized after having solved the fitting
problem. This overcomes the problem of having huge numbers representing the
ellipse’s points coordinates, due to the fact the frame grabbers and cameras have
ever bigger resolution, therefore making the fitting faster. The second result has
been solved by resampling the ellipse data with perturbations. Specifically, if the
data points lie exactly on the ellipse the eigenvalue corresponding to the optimal
solution is zero thus the original Fitzgibbon’s algorithm [7] does not lead to any
solution. Moreover, this happens even if the data points are close to the ideal
ellipse therefore B2AC performs poorly both when noise is absent and low [15].
The problem has been solved by slightly perturbing the original data by adding
a known Gaussian noise. Therefore, the fitting is performed.

For a more precise analysis of the method one can refer to [15], and [8].
However, the author describes his technique only as a mathematical proce-

dure, without inserting it within an actual robotics context. In fact, the authors
tested its characteristics only in Matlab simulation [15], [8].

We implemented this state-of-the-art pattern recognition algorithm and we
tested it in a real robotics project for the firs time.

4 ExPerCub: The Robot Controlling Tool

We implemented this algorithm as a tool for our research objective. It is com-
prehensive of a more complete project. We have to fulfill the deliverable 3.5 of
the RobotCub project [9], relative to the implementation of the sensorimotor
coordination for reaching and grasping.

4.1 Our Vision Algorithm

The vision module receives the images from the two cameras mounted on the
iCub head. It is responsible for processing these images in order to obtain the rel-
evant information about the object to be grasped. These are: shape, dimension,
orientation, and position within the 3D surrounding environment (this is accom-
plished by triangulating the information received from the binocular vision, the
head and the neck encoders). In our particular case we made our experiments
by using a ball of different colors as test object.

In order to detect the ball, and all its features, we implemented a simple but
efficient image processing algorithm. We identify the ball by means of a color
filter. The object detection is performed by using of a sample color recognition
procedure.



Real-Time Least-Square Fitting of Ellipses 275

(a) The left camera output (b) The object recognized
within the left camera

Fig. 2. The input image, as seen by the robot with the egocentric view (a) and the
same image with the superimposition of an ellipse, drawn by using the characteristic
parameters obtained by computing the EDFE (b)

For the identification of the blob corresponding to the ball, we use a connected
components labeling algorithm. We assume the largest blob is the ball, so we
look for the blob with the largest area. Subsequently, we proceeded by applying
our LS technique [8] to the found blob, in order to detect all the parameters
of the curve that describes the boundary of the blob. We used the iCub ODE
simulator present in the iCub repository. Moreover, we slightly modified the
simulator in order to create different scenarios for our experiments (such as
by changing the color of the ball, by removing the table, etc.). In Fig. 5 an
example of the ball detection algorithm output is shown. In Fig. 2(a) the input
to the left camera is presented, i.e. the experimental scenario, while in Fig. 2(b)
output of the algorithm is presented. These images are the input image as seen
by the robot with the egocentric view (Fig. 2(a)) and the same image with
the superimposition of an ellipse, drawn by using the characteristic parameters
obtained by computing the EDFE (Fig. 2(b)).

In addition, we implemented a tracking algorithm that directly commands the
head of the robot, in order to be able to reconstruct the target object position
(in terms of its centroid) by triangulating the information of the neck and head
encoders.

In Fig. 3 a screenshot is depicted, that shows an operative situation in which
the simulator tracked the ball. The iCub program we implemented is able to
localize the position of the ball (which is the target to be grasped in this case),
in terms of 3D cartesian position. We adopted the same system reference as
the simulator, in order to be fully compatible with the measures and the signs
adopted in the virtual environment1.

Clearly, the simulator information is not exhaustive, but it is a good
approximation for the software debug before using it on the real robot.

1 The reference system is centered on the floor plane, at the center of the pole that
sustains the robot. The x axis evolves along the front of the robot, the y axis runs
along the left of the robot, and the z axis evolves along its height.



276 N. Greggio et al.

Fig. 3. A screenshot depicting the moment in which the simulated robot tracked the
position of the ball in the 3D surrounding environment. Therefore, our program uses
the encoders information to triangulate the position of the centroid of the object within
the simulated space.

5 Experimental Set-Up

We performed three types of experiments, in order to validate the EDFE pat-
tern recognition algorithm [8] compared with the Hough transform and the least
square ellipse fitting algorithm, B2AC [7]. Each of these tests has a well speci-
fied scenario, described in the next section. For each scenario we performed the
same experiments with the Hough transform, the B2AC, and the EDFE algo-
rithms. We used uncalibrated cameras. We tested these techniques under the
same experimental conditions aimed by several reasons. First, we would check
the performance differences among these methods, intended as produced error.
It is worth noticing we are not interested in the absolute error of each pro-
cedure (yet evaluated for each method in [4], [7], and [8]); nonetheless we are
interested in verifying the systems’ execution dissimilarities under the same situ-
ation. Moreover, we are not interested in analyzing these dissimilarities in terms
of mathematical performance, as already done by the authors, but their usage
in practical applications and scenarios instead. The final error is a combination
of all the previous imprecisions. In the next section we will analyze the error
propagation process, and we will quantize it in our specific case.

5.1 Scenarios

At each trial the Hough transform, the B2AC, and the EDFE algorithms are used
in order to evaluate the ball’s center of gravity (COG) within the 2D camera



Real-Time Least-Square Fitting of Ellipses 277

images. Therefore this information is triangulated with the encoders’ values in
order to determine the ball spatial position. For each scenario we performed at
least 30 trials.

Since there is a prospective error, introduced by the spatial perspective, the
ball is not seen as a 2D circle by the two camera.

We made the experiment in the scenario no. 1 by using a cylinder considered
having a a null depth. (hence reducing the prospective effect). In this way we can
test the algorithms by isolating the perspective error, while exploiting them in
a real situation at the same time. The experiment in the scenario no. 2 is quite
similar, but made using a ball instead of the cylinder, and letting it varying its
position not only in the x-axis direction.

1 The robot has to localize a green cylinder in front of it, in terms of 3D
cartesian coordinates. The robot stands up and remains in the same position,
while the cylinder goes away along the x-axis direction at each trial. The error
between the cylinder real coordinates and the evaluated ones is plotted as
function of the distance between the middle point of the eyes-axes and the
cylinder center. In the next section we will reconsider it for a more complete
explanation.

2 The robot has to localize a green ball in front of it, in terms of 3D cartesian
coordinates. The robot stands up and remains in the same position, while
the ball changes its coordinates at each trial. The error between the ball’s
real coordinates and the evaluated ones is plotted as function of the distance
between the middle point of the eyes-axes and the ball’s center. In the next
section we will reconsider it for a more complete explanation.

3 The robot has to evaluate the ball’s radius while an occlusion hides the
object. The robot stands up in front of the ball, which remains in the same
position during all the trials. The ball is occluded by a cube placed in front
of it more and more at each trial. Both the ball and the cube have been
placed over a table, in front of the robot.

6 Results and Discussion

In the scenario 1 and 2 the error between the real and the evaluated cylinder’s
and ball’s position is determined, while in the scenario 3 the error between the
real and evaluated ball’s radius is calculated. The position error is evaluated as
follows:

rmserr =
3∑

i=1

√
(preali − pevali)2 =

√
(xreal − xeval)2 + (yreal − yeval)2 + (zreal − zeval)2 (1)

where the (xreal, yreal, zreal) and the (xeval, yeval, zeval) are the real and evalu-
ated 3D coordinates of the ball’s center, respectively. Indeed, this can be consid-
ered as the root-mean square error. These values are relative to the simulator’s



278 N. Greggio et al.

reference system, which has the origin in the center of the robot’s floor base is
located where. The reference system’s is orthonormal, and its orientation is as
follows:

– the x axis is parallel to the floor plane, and increases with direction orthog-
onal to the eyes’ axis and going away in front of the robot;

– the y axis is parallel to the floor plane, and increases with direction parallel
to the eyes’ axis and going away to the left of the robot;

– the z axis is orthogonal to the floor plane, and increases going away along
the height.

6.1 Error Propagation Evaluation

We evaluated the error propagation for the position detection as follows.
The absolute errors have been evaluated as:

erri−th−axis =
√

err2
pixel + err2

encoders + err2
misure−iCub

err =
√

err2
x−axis + err2

y−axis + err2
z−axis (2)

each of them measured in simulator measure unit (we use the abbreviation SMU).
The errpixel is the absolute error relative to the value of one square pixel. In
order to evaluate it we referred to the known ball’s radius. By knowing it (as a
fixed value, i.e. 0.17 SMU) and by evaluating it at each measure we can estimate
the value of a square pixel in SMU (this is the image resolution at the object
distance) as the ratio between the known radius and the one estimated with each
of the three algorithms considered (i.e. Hough transform, B2AC, and EDFE):

errpixel−x = errpixel−y = 0.17/radiuseval (3)

Therefore, according with the error propagation theory, the error of a square
pixel is:

errpixel =
√

err2
pixel−x + err2

pixel−y =
√

2 · errpixel−x (4)

The errors of the encoders can be considered negligible within the simulator.
Since there is no documentation on the encoders’ resolution within the simula-
tor, we considered the accuracy of their information approximated to their last
digit, wihch is the forth one (therefore negligible). Finally the errors due robot’s
lengths need to be considered. Again, there is no information about the error
the lengths of the robot’s parts have been expressed with. Therefore, in order
to fix their accuracy we analyzed the simulator’s source code. So far, we found
that the lengths of the robot’s parts were expressed with the second digit of
approximation. Hence, we approximated them as 0.01 SMU.



Real-Time Least-Square Fitting of Ellipses 279

(a) Cylinder’s position error (b) Ball Percentage Error on radius

Fig. 4. The Cylinder’s position error as function of the distance while considering the
perspective effect null (a) and the Ball Percentage Error on radius, in % of the radius
value (b)

6.2 Scenarios’ Evaluation

As a first results the object’s position error as function of the distance while
considering the perspective effect null is presented in Fig. 4(a). Here, it is possi-
ble seeing that with exception for the range [2.15 − 2.35] the Hough Transform
gives rise to the highest error. The B2AC algorithm is the most precise in terms
of quadratic error, within the ranges [1.2 − 1.9], and [2.7 − 3.4]. However, it
presents several discontinuities, and a total non-linear characteristic emerges,
even following the Hough Transform approach’s error (but keeping almost low-
est). The EDFE seems to be not the lowest error prone, but it has a very regular
characteristic of the function of the distance. By increasing the distance it fits
the B2AC error curve well, while keeping little bit higher.

The experiment of the scenario no. 3 shows a great linearity between the
occlusion of the ball and the error on its radius evaluation. Fig. 4(b) illustrates
the results of this experiment.

Here, the Hough Transform gets better results within the range [5 % -
20 %] of occlusion (defined as in equation 5, where Pr is the residual num-
ber of pixels, and Pt is the total number of target object pixels, determined with
no occlusion), then almost superimposing with the other two approaches after he
20 % of occlusion. The characteristic is quite linear for all the techniques adopted,
with the exception of the cited range, in terms of a slight decrease from the lin-
ear ideal line for the Hough Transform and a slight increment for both ellipse
detection approaches. Fig. 5(a) shows the target object partially hided by the
occluding object.

occlusion[%] = (Pt − Pr) · 100/Pt (5)

Subsequently, the error introduced by spatial perspective is mapped as a function
of the object’s distance from the eyes axis midpoint. We isolate the perspective
error by comparing the absolute error obtained within the tests in the scenario



280 N. Greggio et al.

(a) The target object partially
hidden by the occluding object

(b) Percentage square error

Fig. 5. The target object partially hidden by the occluding object (a) and the Percent-
age square error, measured in % of the simulator measure unit (b)

no. 1 and in the scenario no. 2, as absolute errors. It is worth noting that in
order to compare these errors, the cylinder and and the ball we used have the
same radius (0.17 SMU) within the trials. Therefore the percentage perspective
error has been evaluated as the ratio between the absolute perspective error and
the module of the distance between the eyes axis midpoint and the object.

Here, it is possible to see that the two ellipse recognition techniques are more
sensitive than the Hough Transform to the spatial perspective. This seems quite
obvious, due to the fact that the latter looks for circles, and the first two for yet
deformed circles, i.e. ellipses. Nevertheless, the Hough Transform smoothes this
artifact by bringing it back as a circle, before evaluating the centroid and radius
parameters. The B2AC and the EDFE algorithms do not.

Finally, the scenario no. 2 is discussed. We keep this as the last discussion
in order to show that, in spite of the fact that the ellipse detection approaches
give rise to a bigger spatial perspective error than the Hough Transform, the
precision given within the overall system is superior than the one obtained with
the Hough Transform. In fact, despite the amount of the perspective error value,
the major precision guaranteed by an ellipse detection rather than a circle one
brings about to a more exact final result in determining the spatial position of
the ball. In Fig. 5(b) this is showed. We did not filter the results, in order to
keep them as natural as possible. By acting in this way, the noise affects the
trend of the curves most. Therefore, we inserted three trend lines (one for each
technique, each of them with exponential characteristic) in order to evidence the
most fruiting approach. Here, the B2AC’s and the EDFE’s trend lines appear
superimpose, so that it is not possible distinguishing them from each other.
However, the Hough Transform’s trend line shows of this technique is the most
error prone for balls’ spatial position detection in image processing. In fact, it is
always higher than the other two.



Real-Time Least-Square Fitting of Ellipses 281

7 Conclusions

In this work we presented the first implementation of the EDFE ellipse square
fitting algorithm, a technique developed by our team by Maini et Al, and we
applied it to a humanoid robotics platform. The task we planned is the spatial
localization of a circular object (i.e. a ball) placed within the surrounding en-
vironment. Therefore, we developed a computer vision algorithms in order to
implement the EDFE technique for the firs time. Moreover, we implemented
a tracking algorithm to localize the object with the Robot’s binocular vision,
and subsequently we triangulated these information in conjunction with those
of the robot’s head encoders to determine the position of the object’s centroid in
the environment, in terms of 3D coordinates with the reference system located
at the base of the robot. Therefore, we performed some experiments in order
to validate the precision of the overall system in presence of induced artifacts
(such as the ball occlusion by another object) and as function of the distance of
the target. We made the same experiments by using the Hough Transform, the
B2AC, and the EDFE under the same assumption, in order to have the fairest
examination as possible. We found that the B2AC and EDFE give rise to a more
precise results in terms of the overall system than the Hough Transform.

7.1 Future Work

In the near future we plan to apply our techniques to the real RobotCub robotics
platform, in order to compare and validate our results with the real robot, and
not only with the ODE simulator.

Acknowledgements

This work has been partially supported by the EU Project RobotCub (European
Commission FP6 Project IST-004370).

References

1. Sandini, G., Metta, G., Vernon, D.: Robotcub: An open research initiative in em-
bodied cognition. In: Proceedings of the Third International Conference on Devel-
opment and Learning (ICDL 2004) (2004)

2. Stellin, G., Cappiello, G., Roccella, S., Carrozza, M.C., Dario, P., Metta, G., San-
dini, G., Becchi, F.: Preliminary design of an anthropomorphic dexterous hand
for a 2-years-old humanoid: towards cognition. In: IEEE BioRob, Pisa, pp. 20–22
(February 2006)

3. Yuen, H.K., Illingworth, J., Kittler, J.: Detecting partially occluded ellipses using
the hough transform. Image Vision and Computing 7(1), 31–37 (1989)

4. Leavers, V.F.: Shape detection in computer vision using the hough transform.
Springer, Heidelberg (1992)

5. Dhome, M., Lapreste, J.T., Rives, G., Richetin, M.: Spatial localisation of modelled
objects of revolution in monocular perspective vision, pp. 475–485 (1990)



282 N. Greggio et al.

6. Forsyth, D., Mundy, J., Zisserman, A., Coelho, C., Heller, A., Rothwell, C.: In-
variant descriptors for 3-d object recognition and pose. IEEE Trans. PAMI 13(10),
971–991 (1991)

7. Fitzgibbon, A., Pilu, M., Fisher, R.: Direct least square fitting of ellipses. IEEE
Trans. PAMI 21, 476–480 (1999)

8. Maini, E.S.: Enhanced direct least square fitting of ellipses. IJPRAI 20(6), 939–954
(2006)

9. RobotCub, http://www.robotcub.org/
10. Metta, G., Sandini, G., Vernon, D., Caldwell, D., Tsagarakis, N., Beira, R., Santos-

Victor, J., Ijspeert, A., Righetti, L., Cappiello, G., Stellin, G., Becchi, F.: The
robotcub project - an open framework for research in embodied cognition. In:
Humanoids Workshop, IEEE –RAS International Conference on Humanoid Robots
(December 2005)

11. Nava, N., Tikhanoff, V., Metta, G., Sandini, G.: Kinematic and dynamic simula-
tions for the design of robocub upper-body structure. ESDA (2008)

12. Greggio, N., Silvestri, G., Antonello, S., Menegatti, E., Pagello, E.: A 3d model
of a humanoid robot for the usarsim simulator. In: First Workshop on Humanoid
Soccer Robots, pp. 17–24 (December 2006) ISBN 88-900426-2-1

13. Tikhanoff, V., Fitzpatrick, P., Metta, G., Nori, F., Natale, L., Cangelosi, A.: An
open-source simulator for cognitive robotics research: The prototype of the icub hu-
manoid robot simulator. In: Performance Metrics for Intelligent Systems Workshop,
PerMIS 2008, National Institute of Standards and Technology (NIST), Gaithers-
burg, MD, 20899, August 19-21 (2008)

14. Tikhanoff, V., Fitzpatrick, P., Nori, F., Natale, L., Metta, G., Cangelosi, A.: The
icub humanoid robot simulator. In: International Conference on Intelligent RObots
and Systems IROS, Nice, France (2008)

15. Maini, E.S.: Robust ellipse-specific fitting for real-time machine vision. In: De Gre-
gorio, M., Di Maio, V., Frucci, M., Musio, C. (eds.) BVAI 2005. LNCS, vol. 3704,
pp. 318–327. Springer, Heidelberg (2005)

http://www.robotcub.org/


An Introduction to a New Commentator for
RoboCup 3D Soccer Simulation

Amin Habibi Shahri

Islamic Azad University (Young Researchers Club), Tehran, Iran
habibiamin@gmail.com

Abstract. This paper describes the concept and the implementation of
Team Assistant 2006 commentary system for 3d soccer simulation. The
idea is to provide a tool that is able to take simulator data as input and
generate appropriate, expressive, spoken commentary in real time. the
publicity that the RoboCup events get from the media provides an ideal
opportunity to show the state of art of these systems during RoboCup
World Cup. Soccer simulation commentary system is a suitable test bed
for exploring real time systems. The rapidly changing simulation environ-
ment requires that the system generates real time comments based on
the information received from the Soccer Server. This commentator to-
gether with other TeamAssistsant 2006 presentation and analysis tools
won the second award in RoboCup 2006 3D Development competition
for making a significant and innovative contribution to RoboCup 3D
Soccer-related research.

Keywords: Soccer Simulation, Commentator, Live Commentary.

1 Introduction

Soccer is an interesting test domain because it provides a dynamic, real-time
environment in which it is still relatively easy for tasks to be classified, moni-
tored, and assessed. Moreover, a commentary system has severe time restrictions
imposed by the flow of the game and is thus a good test bed for research into
real-time systems. Also, using simulated soccer games, makes it possible to take
advantage of high-quality simulator’s logs and allow us to abstract from the
intrinsically difficult task of low-level image analysis. [8]

One advantage of using a live commentator can be observed from organizers’
vision. The running of simulation league in comparison to other RoboCup fields,
is so quiet and therefore it doesn’t have enough visitors. I believe that showing
a better illustration of games and real-time commentating of games makes this
league more attractive to watch for spectators.

In general, once the commentator recognizes the game situation, he has to re-
port it in a small time interval. This is because of the fast rate of situation change
in such environments. In order to have an influence on the audience, the artificial
commentator should speak through the language used by a human commentator
using his common jargon. In addition the more natural voice it has the more accep-
tance it will receive from the audience. To achieve this, it has been decided to use

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 283–292, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



284 A. Habibi Shahri

prerecorded human report statements. It is clear that using natural human voice
has a great impact on the quality of communication with the audience, but the ex-
citement of the game cannot be experienced without the existence of the special
sound effects like chants, applause and referee whistle. Therefore it is important
to generate appropriate sound effects according to the game trend.

In this article TeamAssistant2006 commentary system is presented, including
its subsystems and their functionality.[4] The remainder of this paper is orga-
nized as follows. In the next section a brief review of the related work has been
presented. In section 3, the global architecture of the system is briefly described
and each component is discussed more deeply in later sections, with emphasis on
the Game Analyzer and the Content Selector. In section 7, I present the other
features of the implementation of my commentary system. Finally, in Section 8
conclusions are drawn and future work is discussed.

2 Related Work

For the past 10 years the RoboCup simulation league was two dimensional, all
players and even the ball moved on the ground. During this time numerous tools
and commentary systems were created such as:

1. Rocco from DFKI[11]
2. Byrne from Sony CSL[2]
3. MIKE from ETL[9][10]
4. Caspian Commentary System[7]

The functionality of the these systems is that, after receiving data from the Soccer
Server in each cycle, generate comments to describe the game situation.[1][7] Gen-
erally, the transformation process from the Soccer Server data to an appropriate
report statement is done through the following steps:

1. Game analysis
2. Topic control and content selection
3. Natural language generation

Although MIKE and Rocco produce disembodied speech, Byrne uses a face as
an additional means of communication. Because it is rather tedious to specify
soccer slang expressions in existing grammar formalisms, Rocco uses a template-
based generator instead of fully fledged natural language generation components.
That is, the language is generated by selecting templates consisting of strings
and variables that will be instantiated with natural reference to object deliv-
ered by nominal-phrase generator. To obtain a rich repertoire of templates, 13.5
hours of television soccer reports in English have been transcribed and anno-
tated. Templates are selected considering parameters such as available time,
bias, and report style. For the synthesis of spoken utterances, ROCCO relies on
the TRUETALK text-to-speech software. Figure 1 illustrates an instance of the
text commentary, generated by Rocco.



An Introduction to a New Commentator 285

Fig. 1. An instance of the Rocco’s textual commentary

Byrne uses a content selection module and an emotion generation module in
parallel to animate the face as well as synthesis of speech. Text generation is
also done simply through a set of templates.

MIKE (Multi-agent Interaction Knowledgably Explained) is an automatic
real-time commentary system capable of producing output in English, Japanese,
and French. MIKE uses six SOCCER ANALYZER modules. These modules
demonstrate the general applicability of analyzing the focus of a multiagent sys-
tem and examining the territories established by individual agents.

All the first three systems generate natural-language utterances using a speech
synthesizer. As the generated verbal comments have a noticeable difference from
the human natural voice, these systems could not effectively catch the attention
of the audience.

Caspian commentator uses prerecorded human report statements instead of
generating text and then converting it to speech. It only provides information
about detected actions like passes or shots.

Since its beginning Simulation League is confined to two dimensions in order
to reduce complexity. All of mentioned systems were for 2D soccer where ball has
no height at all. But in 2003, the 3D simulation was introduced including basic
tools to view and replay the simulated game.[5] The tools used in 2D can not
be used in 3D simulations because of the lack of one dimension and a different
format of the logfiles and none of the mentioned tools were extensible enough
for new requirements.

Our vision is to develop a live soccer commentary system for 3D soccer by
using prerecorded human report statements, so that one can hardly recognize an
artificial commentator is reporting the game. Note that a soccer game consists
of many similar situations that can be grouped together. For example many
situations in a game can be described as “A definite chance!” Therefore it is
possible to have some prerecorded report statements for each group of situations.
Not only does it limit the commentator functionality, but it also has an effective
influence on the audience.

3 System Architecture

The automated generation of live reports on the basis of visual data constitutes
a multistage transformation process. In the following subsections, I describe how
the maintainable subtasks transform the input into the final output.



286 A. Habibi Shahri

Fig. 2. System architecture and its interrelated components

A three-layer architecture has been used for the my commentary system. The
Game Analyzer, form the bottom layer of my architecture. Above this layer,
there is Content Selector and Special Sound Effects Manager. Sound Manager
comprises the third layer of the proposed architecture as shown in figure 2.

The Game Analyzer receives information from the Soccer Server and deter-
mines the game status. The Content Selector subsystem takes the game states
from the Game Analyzer and selects an appropriate statement to report the
current situation of the game. Then, it sends a request to the Sound Manager to
play the selected statement. The Special Sound Effects Manager works in paral-
lel with the Content Selector and decides on the suitable environmental sounds
for the current situation, and sends a request to the Sound Manager. Finally
the Sound Manager organizes the submitted requests and plays the sounds in a
consistent way.

4 Game Analyzer

The TA2006 Commentary system is designed to report both live and replayed
games. In order to report a live game, the commentary system connects to the
Soccer Server and receives the same information that the monitor program gets
for updating its visualization. The system uses the log file of the rcssserver3d to
report on a replayed game. The monitor log file is a text file generated by the



An Introduction to a New Commentator 287

Soccer Server during the time that the game is running and contains the data
related to each cycle of the game. As a result, two different sources of data input
have been considered for the Game Analyzer:

1. Soccer Server: to report on a live match.
2. Log File: to report on a replayed match.

No matter which of these two input streams are used, the received information
consists of:

1. players’ locations and orientations
2. ball position and velocity
3. play modes such as goal, throw-in, free kick, and so on

This tool uses four SUB ANALYZER modules, two of which carry out high-level
tasks. Notably, these modules demonstrate the general applicability of analyzing
the focus of a multiagent system and examining the territories established by
individual agents. These analyzers are implemented using a decision tree.

Soccer is a multiagent game in which various events happen simultaneously in
the field. To weave a consistent and informative commentary on such a subject,
an importance score is put on each fragment of commentary that intuitively
captures the amount of information communicated to the audience. The content-
selection module is controlled by such importance scores. From the input sent by
the SOCCER SERVER, this system creates a commentary that can consist of any
combination of the possible repertoire of remarks. The commentary generation is
coordinated by the architecture shown in figure 2, where the gray ovals represent
processes, and the rectangles represent data.

There are four SUB ANALYZER modules, of which two analyze basic events
(shown in the figure as the basic and techniques), and the other two carry out
more high-level analysis (shown as the Voronoi, and statistic processes). These
four processes analyze the information from Soccer Server, and also post propo-
sitions to the proposition pool.

The Voronoi module calculates Voronoi diagrams for each team every 100 mil-
liseconds. Using these partitions, one can determine the defensive areas covered
by players and also assess overall positioning. Figure 3 shows an example of such
a Voronoi diagram (+ and diamond indicate players of each team; box shows
the ball.)

Furthermore, detecting events and the number of their occurrence may be
interesting for the audience. The Statistic module retrieves the statistical infor-
mation based on the current game state. Here are some instances of the statistical
information: successful pass rate, number of shots, number of offsides, ball pos-
session, lost balls, goal shots, etc. By detecting event sequences more information
can be extracted such as lost balls after dribbling. The results show that, the
audience is really interested in hearing of such statistical information, especially
those that cannot be easily retrieved by them. Also it can be used as a reliable
metric to judge about the efficiency of the players skills. For example, an increase
in the successful pass rate shows that the agents pass skill has been improved.



288 A. Habibi Shahri

Fig. 3. An example of a Voronoi diagram

Some of the statistical information like number of offsides can be retrieved by
keeping track of play mode changes (announced by the referee). On the other
hand, there are some items like successful pass rate that should be extracted by
analyzing the game.

5 Content Selector

The Content Selector receives the propositions as an input, and decides on the
statement to be reported. Each proposition has a birthday (the time when it was
entered into the pool), a deadline (a time beyond which it is “old news”), and a
priority. This module selects the appropriate utterance from a set of prerecorded
report statements. Only those statements that satisfy the following criteria are
picked.

1. Concise and Meaningful: Since the commentary system has to keep up
with a rapidly changing environment, it is important to use concise statements to
describe the current situation. In fact, the current situation may change in every
simulation cycle and using long statements may lead to inconsistent commentary.

2. Various and Exciting: A commentator, who always expresses a specific
situation by identical statements, is boring to the audience. For example it is
not pleasing to announce “It is a corner now!” on every corner kick situation.
For this purpose, various statements are considered in the set of prerecorded
statements to report each situation. In addition, each statement is designed to
be exciting so that the audience will experience the fun and excitement of the
game.

3. Impartial: In fact, the commentator should not report biased statements.
Consequently, a set of impartial prerecorded statements have been picked to
achieve this goal.

To establish the relative significance of events, importance scores are put on
propositions. After being initialized in the ANALYZER MODULE, the score



An Introduction to a New Commentator 289

decreases over time while it remains in the pool waiting to be uttered. When
the importance score of a proposition reaches zero, it is deleted from the pool.
Having an integrated set of prerecorded statements, the commentary system
should decide which one is appropriate for the current situation. The selection
procedure is a combination of the Proposition Score Selection and Scheduling
and Interruption mechanisms which are described below.

5.1 Scheduling Mechanism

This mechanism is designed to set a suitable time interval between two successive
report statements. This means that, the commentator may refuse to report a
new state in order to meet time restrictions. But, there are some exceptions for
important events, such as scoring, that should be considered in the design of this
mechanism.

5.2 Interruption Mechanism

As it is mentioned in scheduling mechanism, there are some game states that are
really important (e.g. scoring the goal). Therefore it is worth interrupting the
current reporting statement and announcing the critical event. In other word, it
is required to introduce the Interruption mechanism. Although the interruption
mechanism is necessary for the commentary system, but having several interrup-
tions during the game, makes the audience feel confused! For this reason, the in-
terruption rate during the game should be in an acceptable range. Therefore, the
interruption mechanism is considered only for critical events like scoring the goal.

Applying the described algorithm in the TeamAssistant2006 Commentary sys-
tem results in a consistent report of the game, but it still has some shortcomings
that will be described in Conclusion and Future Work section.

6 Special Sound Effects Manager

Having implemented the commentator, I found out albeit the commentator was
doing well at reporting the game, it couldn’t bring excitement to the audience.
To address these problems, a new module named Special Sound Effects Manager
was introduced which itself is made up of four sub modules.

This module receives the current game state as an input and picks up the ap-
propriate environmental sounds including cheering of spectators, referee whistle,
stadium announcer and ball kicks. Then it submits the sound requests to the
Sound Manager.

This module plays a key role in conveying fun and excitement to the people
who are watching the game.

6.1 Crowd Sound Effect

This is the most effective sound effect among the other ones. In the current
implementation spectators are the soccer fans. They wisely keep track of the
flow of the game, and make critical situations stand out by the sound effects



290 A. Habibi Shahri

associated to them. There are three sound effects implemented into this module,
namely chant, applause, and scream.

6.2 Referee Whistle, Stadium Announcer and Ball Kicks

According to the FIFA rules, there are several kinds of whistle blows for different
events during a game. For example kick off, half time, corner kicks and offside;
each has its own style of blowing. The implemented referee whistle module, fully
complies with the official FIFA rules. The Stadium Announcer announces the
beginning and the end of a match. It also makes an announcement each time a
goal is scored. Ball kicks are also an effective sound for spectators.

7 Additional Features

TeamAssistant2006’s main power lies in its ability to be extended using An-
gelScript plug-ins.[3] To get a glimpse of what can be done within a plug-in, it’s
good to mention that in current release the Commentator itself is a plug-in, all
sound effects are provided by a plug-in, some training/test sessions are written
using plug-ins, the game statistics are both calculated and rendered on screen
by a plug-in. In general, plug-ins can obtain:

– Locations of all objects
– State of the match (play mode, time,...)
– Player actions (requires new server to monitor protocol)
– Some processed values (ball and agents’ speed)

And Can Perform:

– Move agents and ball
– Change play mode of the match
– Control the log player (change playback speed, jump to a specific cycle,...)
– Draw shapes in the field

Fig. 4. Plugins and commentator pseudo code



An Introduction to a New Commentator 291

– Draw markers on the field
– Write/Draw on the screen
– Control the camera
– Play audio file

One of the main features of my commentator is its flexibility. It can be easily
customized, because its a plugin with common scripts. It is also possible to
provide it with different languages. Currently I have provide it with Persian
and English commentations.

8 Conclusion and Future Work

Watching simulated soccer games with a live commentator is far more moti-
vating. The success of commentary systems shows that RoboCup is not just a
robot competition. It is a challenging domain for a wide range of research areas,
including those related to realtime natural language commentary generation.

Team Assistant 2006 Commentator is designed to be an effective means of
communication with the audience, by providing real-time, expressive commen-
tary and reporting the game facts at the right time and in a realistic way. It
has been observed that my commentator has a great impact on conveying the
excitement to the people who are watching the game. More specifically, suc-
cessful implementation of the SUB ANALYZER modules in the Game Analyzer
Module, leads to correct recognition and tracking of the game states. In addition,
utilizing effective scheduling and interruption mechanisms prevents the commen-
tary system to overwhelm the audience with its comments. But it has still some
shortcomings and needs to be improved. One is that the audience is interested in
receiving the meta-information while being informed about the general flow of
the game. Some instances of the meta-information are history of the teams, how
many times they play in front of each other, and what the results of previous
matches were.

Furthermore, the audience is concerned about receiving technical information
such as formation, player skills, and the commonly used strategies in a specific
team. To meet this requirement, the Game Analyzer of the commentary system
should be improved, so that it can retrieve the required information. Considering
that “Team Modeling” is one of the major challenges in the Soccer Simulation
Coach Competitions, it is possible to utilize the research studies in this domain,
to improve the Commentary system’s performance.

Even though my focus has been on the general description of soccer matches,
I am currently working on a three-dimensional visualization component to en-
able situated reports from the perspective of a particular player. Also simulation
league goes toward humanoid robots[6], so a more real commentation is neces-
sary. I hope that improved versions will be shown at future RoboCup events.

Finally Team Assistant 2006 is intended to be a general-purpose, highly cus-
tomizable package. This design required a tremendous amount of flexibility on
the implementation side. I think it has the potential to be used as the primary
analyzer, visualizer, and logviewer for anyone interested in developing agents for



292 A. Habibi Shahri

the RoboCup 3D Soccer Simulator. The presented commentary system along
with the other Team Assistant 2006 presentation tools, won the second place in
RoboCup 3D development competition 2006 in Bremen, Germany.

References

1. Andre, E., Binsted, K., Tanaka-Ishii, K., Luke, S., Rist, T.: Three RoboCup Sim-
ulation League Commentator Systems. AI Magazine, 57–66 (Spring 2000)

2. Binsted, K.: Character Design for Soccer Commentary. In: Asada, M., Kitano, H.
(eds.) RoboCup 1998. LNCS (LNAI), vol. 1604, pp. 22–33. Springer, Heidelberg
(1999)

3. Habibi Shahri, A., Almasi Monfared, A., Elahi, M.: A deeper look at 3D soccer
simulations. In: RoboCup 2007. LNCS (LNAI), vol. 5001, pp. 294–301. Springer,
Heidelberg (2008)

4. Kazemi, V., Habibi Shahri, A., Hosseingholizadehm, A., Nooraei Beidokht, B.:
Team Assistant (2006), http://team-assistant.sourceforge.net

5. Kogler, M., Obst, O.: Simulation League: The Next Generation. In: Polani, D.,
Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI),
vol. 3020, pp. 458–469. Springer, Heidelberg (2004)

6. Mayer, N., Boedecker, J., Silva Guerra, R., Obst, O., Asada, M.: 3D2Real: Simu-
lation League Finals in Real Robots. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G.,
Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI),
vol. 4434, pp. 25–34. Springer, Heidelberg (2007)

7. Nejad Sedaghat, M., Gholami, N., Iravanian, S., Kangavari, M.: Design and Im-
plementation of Live Commentary System in Soccer Simulation Environment. In:
Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004.
LNCS (LNAI), vol. 3276, pp. 602–610. Springer, Heidelberg (2005)

8. Noda, I., Matsubara, H.: Soccer Server and Researchers on Multi-Agent Systems.
In: Proceedings of IROS 1996 Workshop on RoboCup, pp. 1–7 (1996)

9. Tanaka-Ishii, K., Hasida, K., Noda, I.: Reactive Content Selection in the Generation
of Real Time Soccer Commentary. In: COLING 1998, Montreal, Canada (1998)

10. Tanaka-Ishii, K., Noda, I., Frank, I., Nakashima, H., Hasida, K., Matsubara, H.:
MIKE: An Automatic Commentary System for Soccer. In: The 1998 international
Conference on Multi-agent Systems, Paris, France (1998)

11. Voelz, D., André, E., Herzog, G., Rist, T.: Rocco: A RoboCup Soccer Commentator
System. In: Asada, M., Kitano, H. (eds.) RoboCup 1998. LNCS (LNAI), vol. 1604,
pp. 50–60. Springer, Heidelberg (1999)

http://team-assistant.sourceforge.net


Authority Sharing in a Swarm of UAVs:
Simulation and Experiments with Operators

François Legras1, Arnaud Glad2, Olivier Simonin2, and François Charpillet2

1 Institut TELECOM / TELECOM Bretagne, Département LUSSI, France
LabSTICC, UMR 3192, CNRS, France

2 LORIA Laboratoire Lorrain de Recherche en Informatique et ses Applications
UMR 7503, Université Henri Poincaré, CNRS, INRIA, Nancy 2, INPL, France

INRIA Nancy Grand Est, Equipe-projet MAIA, France

Abstract. It is emphasized in numerous prospective studies that the
development of swarms of Unmanned Aerial Vehicules (UAV) should be
important in the next years. However, the design of these new multi-agent
systems involves to take up many challenges. In particular, reducing the
number of operators requires to define new interfaces in order to inter-
act with such autonomous multirobot systems. We present an approach
that allows one operator to control a swarm of UAVs in the context of
simulated patrolling and pursuit tasks. Self-organized control relying on
digital pheromones, as well as authority sharing based on several op-
erating modes are defined. Experiments with human operators on the
simulated system show that the combination of the two approaches is
effective.

1 Introduction

Nowadays several operators (usually one for the platform and another for the
payload, not counting support) are required to supervise the mission of a single
UAV (Unmanned Air Vehicle). Future systems for surveillance are envisioned
using many vehicles that cooperate to perform their mission. In this context
the current ratio between the number of operators and the number of vehicles
will not be sustainable [9]. The existing approaches for monitoring (close to
teleoperation) must be changed to augment autonomy of the system [5] in order
to share the authority on various aspects of the mission.

This paper tackles the problem of the operation of a swarm of UAVs. This
work was carried out within the SMAART project. This project aims at the
surveillance of a military airbase. To perform such a task we consider a sys-
tem composed of a set of UAVs, i.e. of automonous rotary-wing aircrafts (heli-
copters). This system is simulated through a continuous environment where all
UAVs fly at the same altitude. Each of them can perform some simple actions
such as take off, landing or reaching a particular location on the base. They
carry a camera that allows them to perceive their vicinity and to detect some
possible intruders. We also study the coupling of the swarm of UAVs with a
sensor network augmenting the surveillance system.

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 293–304, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



294 F. Legras et al.

Providing autonomy to UAVs is a problem that can be addressed following two
approaches. The first one, the most classical, consists in planning paths and then
setting the UAVs to execute them [11, 14]. On the contrary, the second approach
relies on the self-organization of the UAVs in function of their interaction with
the environment, leading to the emergence of patroling paths [3, 17].

The main disadvantage of the first approach is that it builds a fixed solution,
that makes difficult to adapt online to changes such as the addition or removal
of agents, or to respond to operator commands. Each of these changes implies to
re-plan, which is subject to combinatory explosion when the number of agents
or the environment size grows. At the opposite, the swarm intelligence approach
relies on the autonomy of agents and their indirect cooperation via environment
interactions. In this paper we aim at studying how operators can interact with
such a swarm of UAVs. On the one hand, this approach allows to envision in-
direct interactions with the system. On the other hand, such a self-organized
system naturaly adapts to online changes. We also choose this approach as it is
impossible for an external observer to predict the UAV trajectories. We show in
this paper how an operator can, for instance, control a sub-part of the swarm
without reconsideration of the whole system organization.

The reminder of the paper is organized as follows: section 2 mentions works rel-
ative to multiple UAVs control and supervision. Sections 3 and 4 present swarm
algorithms to deal with patroling and pursuit tasks as well as the associated
operating modes. In section 5 we present and analyze experiments performed
with human operators on a real time simulation of the proposed system. Finally
we conclude in Section 6 by discussing results and proposing some perspectives.

2 Approaches for Multi-UAVs Control

On the one hand, there exists a very large amount of literature in the field of
multi-agent systems devoted to enable a group of artificial agents to accomplish
one or several tasks in cooperation. On the other hand, most of the research
on interaction between human and semi-autonomous system focus on “single
instance” systems like intelligent cockpits, industrial process control system, etc.
But there is few work conducted on the human control of a multi-agent system.
We present here some work related to the domain of multi-UAVs control.

Cummnigs et al. work on human supervisory control of multiple unmanned
vehicles (tomahawk tactical missiles and UAVs [4]). Their work focuses more on
the human factor aspects of this task (workload, number of vehicles, etc.) rather
than on the control aspects proper. In addition, although several vehicles are
involved, they are not interacting, so one cannot speak of a multi-agent system.

A widespread approach to multi-robot control is to endow them with elemen-
tary behaviors (follow a target, go to a point, patrol, etc.) and to allow the operator
to assign behaviors to robots on an individual or group basis. The operator super-
vises the system of vehicles and assign new behaviors according to the context.
Though, behavior-based approaches are useful only if the number of available be-
haviors remains small and if the operator can anticipate their effects [18].



Authority Sharing in a Swarm of UAVs 295

Control by policy can be used in conjunction with other approaches in or-
der to allow an human operator to restrict the activity of the system through
formal constraints [6]. This can be used for example for security reasons (e.g.
avoid certain zones) or in order to help the artificial reasoning by giving partial
solutions.

The playbook metaphor refers to a library of plans of action that are avail-
able for the operator to instantiate at various levels of detail, hence allowing
various levels of autonomy for the agents. This is inspired by football teams’
coaches tactics and was studied for the control of tactical ground robots [16] or
heterogeneous UAVs [8].

The Machinetta framework [15] takes an original stance by assigning a proxy
agent to each operator and each vehicle and include these proxy agents in an
artificial team. Work is being conducted to apply this approach to the control
of large UAV system (dozens of vehicles). But considering a human operator as
“just another agent” raises important human factor issues.

3 Multi-agent Patrolling

3.1 Autonomous Patrolling

Patrolling consists in deploying several agents in order to visit at regular time
intervals some defined places of an area [11]. In this way, we propose a model
relying on digital phermones. They are the computationnal model of chemical
substances (pheromones) dropped by ants which allows them to interact. Even if
ants individual behaviors are very simple, this indirect mean of communication
allows them to self-organize in order to accomplish complex tasks (pathfinding,
sorting, etc. [1, 2, 13]).

Pheromones are bound to two distincts mechanisms. On the one hand, the
evaporation process which realizes a progressive fade of the information. On
the other hand, the diffusion process which propagates the information across
the environment. This process also exhibits the property of building a pheromone
gradient usable by the agents.

In order to realize the patrolling task, we adapt to the UAVs specificities the
EVAP model [3] which only exploits the evaporation process (cf. algorithm 1).
This algorithm is initialy defined for theoretical discrete environments (grid of
cells covering the environment). EVAP relies on the environments marking: an
agent drops a fixed pheromone quantity Qmax when it visits a cell. The evapora-
tion process makes this value decrease so that the remaining pheromone quantity
represents the elapsed time since the last visit of the cell (called idleness of the
cell). So, on the cells set, local gradients appear giving the direction of the highest
idleness cells (i.e. with the lowest pheromone quantity). As a consequence, the
behavior of the agents is defined as a descent of the pheromone gradient. There-
fore, it ensures locally the patrolling of the cells which have not been visited for
the longest time (cf. Fig. 1).

Unlike EVAP agents, SMAART UAVs move in real coordinates according to
a given azimuth and a given speed. So, we keep the cells matrix in overlay of the



296 F. Legras et al.

Fig. 1. 3D illustration of the EVAP algorithm (with only one agent). Pheromone field
altitude represents elapsed time.

Algorithm 1. EVAP Algorithm
EVAP Agent
A) Find a cell y in Neighbors(x) such that q(y) = minw∈Neighbors(x)q(w)
in case of multiple choices do a random choice
B) Move to cell y
C) Set q(y) ← Qmax (drop the Max quantity of pheromone)

EVAP Environment
For every cell x of the environment
If q(x) �= 0 then q(x) ← ρ.q(x)
(ρ ∈]0,1[)

real environment only for the pheromones deposit and perception. Agents can
now perceive the environment through a r radius disk. They are thus able to
choose their destination among the cells that belong to this disk (which defines
Neighbor(x)). The pheromone is dropped on all the cells of Neighbor(x).

Moreover, at the environment level, we add to each cell its own evaporation
rate ρx. It allows us to modify evaporation speed of some cells dynamically,
therefore creating priority zones.

Figure 2 shows how SMAART UAVs patrol over the environment (the sim-
ulator was developped in java using Madkit/Turtlekit framework [12]). Agents
first start an exploration phase of the environment. When all the cells has been

Fig. 2. Base patrolled by a set of UAVs dropping a visit pheromone: initial exploration
phase (left) and stabilized phase (right). Brighter color means more pheromone.



Authority Sharing in a Swarm of UAVs 297

visited once, the system tends to stabilize towards an average performance where
agents are homogenously distributed inside the environment (see EVAP algo-
rithm performances study in [3]). Moreover it was shown in [7] that the system
self-organizes in (sub)optimal cycles of same length. UAVs individual behavior
althought remains unpredictible, which is desirable in the frame of the surveil-
lance of a military area.

3.2 Operating Modes for Patrolling

The main task of the operator in his/her day-to-day activity is to supervise
the surveillance of the airbase by the patrol of the UAVs. The objective is to
make sure that every point of the airbase is regularly scanned by an UAV.
This can be done homogeneously or with some emphasis on certain zones of the
airbase according to the operational context. In this activity, the operator has
to evaluate the state and evolution of the coverage of the airbase (potentially
neglected zones, etc.) and act accordingly on the UAV system. He/she has several
operating modes for this observation task:

– observation of the position of the UAVs across the area;
– reading on the HCI (Human–Computer Interface) of the computed average

and maximum idleness values for particular zones (landing strip, hangars,
tower, etc.);

– analyzing a color-gradient representation of the idleness grid (it can be con-
figured so that only idleness values above a certain threshold are represented,
e.g. show points with an idleness above 3 minutes).

According to the operational context, the operator can assign different pri-
orities to certain zones of the airbase (landing strip, hangars, tower, etc.). If
the operator sets a higher (lower) priority for a zone, the evaporation value is
locally raised (lowered) which leads to a quicker (slower) disappearance of the
pheromone and incites UAVs to visit the zone more (less) often.

The trajectories of the UAVs for patrolling can be determined according to
two operating modes:

– the UAVs can follow the modified EVAP algorithm and decide their direction
according to the local patrol pheromone level (this is their default behavior);

– the operator can assign a subset of the UAVs to a set of positions specified
by the operator on the airbase. In this case, the UAVs are dealt over the
positions and adopt their default behavior once they reach their respective
position.

4 Pursuit

4.1 Autonomous Pursuit

Patrolling the environment is not sufficient to ensure the interception of intrud-
ers. This task aims at carrying on the search over a limited area in the case



298 F. Legras et al.

Fig. 3. Illustration of the use of the alarm pheromone by an UAV

that an intruder has been spotted and contact has been lost. When an UAV
perceives an intruder, it drops a second type of pheromone (alarm pheromone)
which diffuses locally. This diffusion represents a disk of probability of the in-
truder presence which all the UAVs may use in order to find it again (see Fig. 3).
So, as soon as a UAV percieves some alarm pheromone, it climbs its gradient
and consumes it. As a consequence, UAVs move towards the signal origin first
to consume the isolines of the alarm pheromone field.

The propagation of the information throught the environment allows to at-
tract other nearby UAVs towards the search zone. It aims at improving the
interception probability of the intruders before they reach their objective. It is
necessary to tune correctly the diffusion coefficient in order to avoid attract-
ing too many UAVs and letting parts of environment without surveillance (the
diffusion tuning is conducted empirically for each environment).

The evaporation process determines the duration of the signal. If the signal
vanishes before the UAVs have consumed all the pheromone, they revert to the
patrolling task without having taken advantage of the pheromone trace. On the
contrary, it is useless (and even penalizing) to keep obsolete information that
may mobilize some agents to find an already gone intruder. We was able to
establish analytically the Qmax value and the evaporation rate in order to size
up the alarm pheromone propagation.

We define here a second surveillance mode, joint to the UAVs, and based
on the use of a sensor network (as proposed in [10]). In fact, the number of
required UAVs to ensure a good patrolling rate may be important and therefore
too expensive. So, sensors may be placed randomly on the environment or along
the border. Each sensor is able to trigger an alert by dropping a given quantity
of the same alarm pheromone. UAVs can either use their alarms or the sensor
ones for the tracking task.

We do not present here a testbed for the fully autonomous system but rather
focus our attention in the next section on the human–UAVs swarm interaction

4.2 Operating Modes for Pursuit

When an alarm is raised in the perimeter of the airbase, the operator switches
his/her activity: surveillance/patrolling become secondary, while it becomes cru-
cial to intercept the potential intruders that have triggered the alarm(s). An
intruder is considered intercepted if the UAVs manage to detect him/her several



Authority Sharing in a Swarm of UAVs 299

a. b.

Fig. 4. a. An intrusion illustration: the larger the pie part, the more recent the contact.
b. Intrusion scenario.

times in a row (otherwise it gives just another contact and an indication on the
position of the intruder). The role of the operator is twofold:

– he/she has to analyze, identify, interpret and classify the contacts (alarms).
A contact can be a false alarm (animal, malfunction of a sensor) but also
the sign of a well-prepared multiple coordinated intrusion. In such a case, it
is vital to correctly interpret the pattern of contact;

– he/she has to supervise the deployment of the UAVs that have to search and
intercept intruders.

The SMAART HCI assists the operator in these roles. First, in order to avoid
alarm proliferation on the HCI, alarms are aggregated into contacts on a tem-
poral and spatial basis (time and distance thresholds) i.e. alarms that are raised
almost simultaneously at the same location are considered as one contact gen-
erated by the same intruder or group of intruder. That way, if a group of three
intruders are detected by an UAV and a ground sensor at the same time, only
one contact is generated instead of six distinct alarms.

Second, a module in the HCI allows to organize contacts temporally to rep-
resent intrusions i.e. successive contacts can be linked to represent the hypoth-
esis that they have been generated by the same intruder or group of intruder.
Figure 4.a illustrates how this is represented on-screen. Several operating modes
are available to the operator for this task:

– the system can classify a new contact automatically by ranking the different
hypotheses (create a new intrusion for this contact or affect it to an existing
one) and choosing the highest ranked. The ranking is computed by linking
the likelihood of an hypothesis to the speed needed by the hypothetical
intruder;

– the system gives a time delay to the operator to perform the classification
manually before applying the highest ranked hypothesis;

– the operator can perform the classification manually but the system assists
him/her by presenting the hypotheses ranked by likelihood.

Third, the trajectories of the UAVs for patrolling can be determined according
to three operating modes:



300 F. Legras et al.

– the UAVs can follow the modified EVAP algorithm and decide their direction
according to the local patrol or alarm pheromone level (this is their default
behavior);

– the operator can assign a subset of UAVs to a set of positions specified by the
operator on the airbase. In this case, the UAVs are dealt over the positions
and adopt their default behavior once they reach their respective position.

– the operator can also use contacts or intrusions as intermediary objects to
dispatch UAVs rather than to specify positions on the map. UAVs are dealt
over selected contacts or along a selected intrusion (privileging more recent
contacts).

5 Experiments with Operator

5.1 Protocol

In order to evaluate the interaction between human operator and UAV swarm,
that is allowed by the different operating modes of the SMAART HCI, a series
of experiments with human operator were conducted on a simulator.

Subjects. The subjects are eight cadets of the French Naval Academy (École
Navale de Lanvéoc-Poulmic) aged 20-23. They are anonymized and referred to
as X1a, X1b, X2a, X2b, X3a, X3b, X4a, X4b according to the number of their
session (1-4) and their console (a or b).

Scenario. The objective of the experiments is to evaluate the quality of the
SMAART–operator interaction and the usage of the different operating modes
in the context of the two main activities: surveillance and pursuit. The subjects
are confronted with a three-parts fifteen minutes scenario: (1) 20’ of pure surveil-
lance without intrusion; (2) 5’ consisting of a false alarm that allows operators
to become familiar with pursuit operations; and finally (3) 25’ consisting in a
coordinated intrusion by three two-men commandos toward the aircraft hangars,
as shwon in fig 4.b. The airbase is equipped with a linear sensor network along
the border and 10 UAVs with one hour autonomy.

Qualitative Data. After each fifty minutes experiment, the subject is inter-
viewed by the experimenter along a pre-defined questionnaire. This is the occa-
sion to collect information about the subjects (knowledge of different domains
like UAV systems or real-time strategy games) and their evaluation of different
characteristics of the system. Answers to specific questions are coded as a num-
ber between −1 and +1, but all free commentaries and remarks are recorded
and transcribed afterwards. These are precious in human-centered design loop,
but we will not present them in this paper but rather hint at some of them in
section 6.

Quantitative Data. During the operator’s activity within the scenario, several
types of data are logged by the system:



Authority Sharing in a Swarm of UAVs 301

Fig. 5. Surveillance performance with and without operator: thick line was obtained
without human operator (lower idleness values are better)

– IMI (Instantaneous Matrix Idleness) at each step in order to evaluate the
quality of the surveillance;

– actions of the operator on the HCI;
– intruders progress: reaching waypoints and objectives, being intercepted.

In order to evaluate the performance of the operator on IMI and intruders
progress, we averaged the results from 12 runs of the system without opera-
tor with the same scenario.

5.2 Surveillance Performance

Figure 5 shows the relative performance (idleness) of the system in autonomous
mode (thick line) and of the operators (continuous and dotted thin lines).

Two phases appear: (1) during the first 20’ there is no intrusion on the airbase
and the objective is only to optimize the surveillance (minimize idleness); (2)
during the second phase intruders must be intercepted, surveillance becomes
secondary.

During the first phase, we observe that the operators’ intervention does not
improve the surveillance: on the contrary on average operators induce a −3.2%
decrease in performance (individuals vary between +6.5% and −13%). One can
make a striking relation with the following facts from the interviews: (1) the
subjects judge the autonomous system’s performance on surveillance only as
“somewhat good” (+0.5 in a [−1, +1] range); and (2) they are unanimous to
affirm that human intervention is critical for the surveillance, even though on
average it was measured that it had an adverse effect!

In the second phase of the scenario, the intrusions and subsequent alarms
disturb the surveillance, which worsens the idleness. This phenomenon is visible
with or without operator (see Fig. 5). One can note that the deterioration is
much worse for three of the operators (X3a, X4a, X4b, with dotted thin lines on
Fig. 5). These operators have massively dispatched the UAVs for the pursuit.
Even though, the log files show us that while X3a is the best interceptor (he



302 F. Legras et al.

caught all 6 intruders), X4a and X4b are among the worst despite their intense
activity (number of actions on the HCI). It seems that massive intervention by
the operator is not a positive factor, neither for the surveillance nor for the
pursuit of intruders.

5.3 Pursuit Performance

During the sessions with human operators, 2.1 intruders out of 6 (on average,
with a mean deviation of 0.7) reached their objectives. During the 12 runs with-
out operator (autonomous mode) 3.4 intruders out of 6 (on average, with a mean
deviation of 1.1) did the same. This corresponds to a 20% increase in pursuit
performance.

We observe here a very positive effect of the actions of the operator on the
system. The global analysis capabilities of the human make a good combination
with the local processing of the UAVs. The operator is able to act on a strategic
level (affecting UAVs between the intrusions and the patrol task, anticipating
the intruder’s next move, etc.) while the UAVs perform the actual interception
once they are on-site. As a side-note, only two out of the eight operators used
contacts or intrusion objects to dispatch UAVs (see Sec. 4.2), the others specified
positions manually (using the mouse on the map).

6 Analysis and Perspectives

This paper presents only a part of the experimental results obtained in the
SMAART project. Most notably, it lacks a thorough analysis of the individual
interviews. Those gave insight in the human–system interaction and spurred
recommendations and ideas for future systems. Hereafter, we address two broad
topics that arose during these experiments.

6.1 Interpretative Complexity for the Operator

Human operators experience difficulties to judge the performance of the
pheromone-based patrol algorithm. This is clearly shown by the discrepancy
between the performance measured and evaluated by the subjects themselves.
However human operators are needed as they have a very positive impact on pur-
suit, and the algorithm can face some problems e.g. temporary pheromone islets
can appear that could be ignored by the UAVs if the system is not supervised.

These difficulties can likely be lessened by instruction and training of the op-
erators, but the representation gap between a human operator and a pheromone-
based swarm seems to call for new interaction and representation tools for the
HCI, beyond the thresholded view implemented in SMAART.

6.2 Towards an Extension of Control Modes

The human subjects were able to significantly increase interception rates by
positioning UAVs across the airbase, notably on the predicted path of intruders.



Authority Sharing in a Swarm of UAVs 303

But operators experienced frustration due to the default behavior of the UAVs
i.e. upon reaching their designated position, they revert to patrol in the absence
of alarm pheromone. The operators had to resort to repeating the same orders
to keep UAVs on position.

It would be interesting to add the possibility of confining subsets of the UAVs
to specific zones. This would allow a kind of control by policy (see Sec. 2) com-
bined with the current modes. These zones could be manually defined by the
operator, computed based on a contact and on an estimation of an intruder’s
speed, or by a combination of these two modes.

7 Conclusion

This paper dealt with authority sharing between human operator and an UAVs
swarm for patrol and pursuit tasks. The swarm algorithm was based on the
environment marking by digital pheromones (i.e. the EVAP algorithm [3]) and
perceptions were augmented with a sensor network. The EVAP model was ex-
tended (i) to allow an operator to influence the swarm behavior and (ii) to sim-
ulate UAVs in continuous space. Then a number of different operating modes at
various levels of autonomy were implemented as an approach to authority sharing
via adjustable autonomy. Experiments with human operators have shown that
although the human has a positive role to play in the control and supervision of
the automation, the representation gap between human and swarm intelligence
calls for more advanced HCI tools.

This work was conducted in the context of a Exploratory Research and
Innovation contract (Recherche Exploratoire et Innovation: REI) of the French
Defense Procurement Agency (Délégation Générale pour l’Armement : DGA,
Mission pour la Recherche et l’Innovation Scientifique: MRIS).

References

1. Beckers, R., Holland, O.E., Deneubourg, J.-L.: From local actions to global tasks:
stigmergy and collective robotics. In: Artificial Life IV: Proc. of the 4th Int. Work-
shop on the synthesis and the simulation of living systems, 3rd edn. MIT Press,
Cambridge (1994)

2. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York (1999)

3. Chu, H., Glad, A., Simonin, O., Sempe, F., Drogoul, A., Charpillet, F.: Swarm ap-
proaches for the patrolling problem, information propagation vs. pheromone evap-
oration. In: ICTAI 2007 IEEE International Conference on Tools with Artificial
Intelligence, pp. 442–449 (2007)

4. Cummings, M.L., Mitchell, P.J.: Operator scheduling strategies in supervisory con-
trol of multiple UAVs. Aerospace Science and Technology (2006)

5. Dixon, S., Wickens, C.: Control of multiple-UAVs: A workload analysis. In: Pro-
ceedings of the 12th International Symposium on Aviation Psychology (2003)

6. Dorneich, M.C., Whitlow, S.D., Miller, C.A., Allen, J.A.: A superior tool for airline
operations. Ergonomics in Design 12(2), 18–23 (2004)



304 F. Legras et al.

7. Glad, A., Simonin, O., Buffet, O., Charpillet, F.: Theoretical study of ant-based
algorithms for multi-agent patrolling. In: Proceedings of the 18th European Con-
ference on Artificial Intelligence ECAI, pp. 626–630 (2008)

8. Goldman, R., Miller, C., Wu, P., Funk, H., Meisner, J.: Optimizing to satisfice:
Using optimization to guide users. In: Proceedings of the American Helicopter So-
ciety’s International Specialists Meeting on Unmanned Aerial Vehicles, Chandler,
AZ, January 18-20, 2005 (2005)

9. Johnson, C.: Inverting the control ratio: Human control of large, autonomous
teams. In: Proceedings of AAMAS 2003 Workshop on Humans and Multi-Agent
Systems (2003)

10. Kahn, J.M., Katz, R.H., Pister, K.S.J.: Next century challenges: Mobile networking
for “smart dust”. In: International Conference on Mobile Computing and Network-
ing (MOBICOM), pp. 271–278 (1999)

11. Lauri, F., Charpillet, F.: Ant colony optimization applied to the multi-agent pa-
trolling problem. In: IEEE Swarm Intelligence Symposium (2006)

12. Michel, F., Beurier, G., Gouâıch, A., Ferber, J.: The turtlekit platform: application
to multi-level emergence. In: ABS 4 Agent-Based Simulation 4 (2003)

13. Panait, L., Luke, S.: A pheromone-based utility model for collaborative foraging.
In: Proc. AAMAS 2004, pp. 36–43. ACM, New York (2004)

14. Santana, H., Ramalho, G., Bohndana, R., Corruble, V.: Multi-agent patrolling with
reinforcement learning. In: The 3th international Joint Conference on autonomous
Agents and Multi-Agent Systems, pp. 1122–1129 (2004)

15. Scerri, P., Sycara, K., Tambe, M.: Adjustable autonomy in the context of coor-
dination. In: AIAA 3rd “Unmanned Unlimited” Technical Conference, Workshop
and Exhibit (2004)

16. Simmons, R., Apfelbaum, D., Fox, D., Goldman, R., Haigh, K., Musliner, D.,
Pelican, M., Thrun, S.: Coordinated deployment of multiple heterogeneous robots.
In: Conference on Intelligent Robotics and Systems, Takamatsu Japan (2000)

17. Wagner, I., Lindenbaum, M., Bruckstein, A.: Cooperative covering by ant-robots
using evaporating traces. Technical report CIS-9610, Center for Intelligent Systems,
Technion, Haifa (1996)

18. Wilson, M.S., Neal, M.J.: Diminishing returns of engineering effort in telerobotic
systems. IEEE Transactions on Systems, Man and Cybernetics - Part A:Systems
and Humans 31(5), 459–465 (2001); Special Issue on Socially Intelligent Agents -
The Human in the Loop



Rescue Robot Navigation: Static Stability
Estimation in Random Step Environment

Evgeni Magid, Kentaro Ozawa, Takashi Tsubouchi1,
Eiji Koyanagi, and Tomoaki Yoshida2

1 ROBOKEN - Intelligent Robot Laboratory
University of Tsukuba, Japan

{evgeni,ozw,tsubo}@roboken.esys.tsukuba.ac.jp
2 Future Robotics Technology Center
Chiba Institute of Technology, Japan

Abstract. Rescue robotics is the application of robotics to the search
and rescue domain. The goal of rescue robotics is to extend the capa-
bilities of human rescuers while also increasing their safety. During the
rescue mission the mobile robot is deployed on the site, while the human
operator is monitoring the robot’s activities and giving the orders from
a safe place. Thus the operator can not see the robot and the environ-
ment and a decision on the robot’s path selection becomes very hard.
Our goal is to provide a kind of automatic “pilot system” to propose an
operator a good direction or several options to traverse the environment,
taking into account the robot’s static and dynamic properties. In this
paper we present an algorithm for estimating the posture of the robot
in a specific configuration from the static equilibrium point of view. The
results obtained by the simulator agree with our prior expectations and
were successfully confirmed by the set of experiments with a real robot.

1 Introduction

A long standing goal of mobile robotics has been to allow robots to work in en-
vironments unreachable or too hazardous to risk human lives. Urban search and
rescue is one of the most hazardous environments imaginable with victims often
buried in unreachable locations. Rescue robotics is the application of robotics
to the search and rescue domain. The goal of rescue robotics is to extend the
capabilities of human rescuers while also increasing their safety. In particular,
the inside of severe earthquake stricken buildings or underground area should
be investigated in advance of manned rescue operation in order to avoid risk of
suffering from secondary disaster. During the rescue mission the mobile robot
is deployed on the rescue site, while the human tele-operator is monitoring the
robot’s activities and giving the orders from a safe place outside of the site
(fig.1(a)). The system consists of two subsystems: robot control system and re-
mote operation station. They are connected with a wireless LAN.

Currently rescue robots are operated manually by human operators. An oper-
ator can not see the robot and the environment. He/she can only use the data ob-
tained by the robot’s sensors. With that information only, having no grasp of the

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 305–316, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



306 E. Magid et al.

Operator
Wireless

LAN

Earthquake scene

Robot
system

Sensor
readings

Visible part of the
environment

(a) (b)

Fig. 1. (a)Standard framework (b) Random Step Environment (RSE) example

environment, it is very difficult for the human to operate the robot. In the case of
an on-site operator, which stays inside a crawler-type rescue vehicle, the human
can feel the inclination of the vehicle. Using the previous experience, the operator
naturally “feels on sight” the steepness of the environment. Then the decision on
the traversability and path selection becomes more easy. Unfortunately, the off-
site operator can not use any of those natural biological sensors and has to judge
on the next move on the base of the partial available information, taking subjective
and time consuming decisions. Transferring the function of taking such decisions
from a human operator to a computer will decrease the burden on the operator.
Our final goal is to provide a kind of automatic “pilot system” to propose an op-
erator a good direction or several options to traverse the environment, taking into
account the robot’s static and dynamic properties.

To deal with this complicated problem, we must first solve a number of more
simple tasks. The first step toward autonomous navigation is the ability to treat
the information, provided by the robot’s sensors, followed by feature extraction,
environment decomposition and further simplification in order to create an in-
ternal world model. As soon as the internal world model is available, the robot
should take a decision on the path within the internal model and then to apply
this path in the real world scenario. Usually there exist more then just a sin-
gle path, so the path search algorithm needs a good instrument to evaluate the
quality of each path.

This paper deals with the quality estimation of the path. The simulator gen-
erates a discretized path between the via points proposed by a human operator,
predicts the posture of the robot in the discrete points of the path and decides
on the quality of each posture with regard to static equilibrium, which is a
minimal necessary condition for the equilibrium. The results obtained by the
simulator were confirmed with a number of experiments with a real robot in the
environments identical to the simulated ones.

2 The System Framework

The National Institute of Standards and Technology (NIST) has created a set
of reference test arenas for evaluating the performance of mobile autonomous
robots performing urban search and rescue tasks. The arenas are intended to



Rescue Robot Navigation 307

help accelerate the robotic research community’s advancement of mobile robot
capabilities [5,6]. One of the examples, simulating cluttered environment with de-
bris is a so-called Random Step Environment(RSE) or Stepfield, which is widely
used in the RoboCup Rescue competitions and rescue related research[11]. RSEs
are designed to be easily reproduced, and yet behave in a similar way to real
rubble and could be extended to other environments[10]. RSE consists of a final
number of random steps of some minimal size simulating a heavily damaged
environment of the buildings after the earthquake(fig.1(b)).

In our RSE each cell of is a wooden block of size around 100mm × 100mm
and different in height, which may vary from one scene type to another. For our
simulations and experiments we used the two sets of heights: {0,100,200,300}mm
and {0,100,300}mm, where 0mm height corresponds to the ground level around
the RSE-patch.

We assume a simple tractor-like crawler non-reconfigurable robot, correspond-
ing to the main body of “KENAF” robot(fig.2(b)). The main body of “KENAF”
consists of two large tracks with a small gap in between; the main specifications
of “KENAF” without sensors, front and the back pairs of arms, used in exper-
iments and by the simulation “pilot system”, are given in table 1. Further we
plan to extend our work to the full-powered “KENAF” with two pairs of ser-
vice arms(fig.2(a)).As an input for our “pilot system” we use a RSE-map of the
environment and a set of via points.

Table 1. Specifications of “KENAF” in basic configuration

Parameter Measurement

Maximal inclination
dynamic 60 deg
static 80 deg

Main body length 584 mm
Main body width 336 mm
Track width 150 mm
Height 270 mm
Weight 17.8 kg

3 Stability Analysis

Probably, the most important question which the path search algorithm should
be able to answer is if a specific robot configuration is possible or not. This in-
cludes not only collisions with the obstacles of the environment case, but also the
capability of the robot to keep the current configuration.The robot should be able
to stay in the specific configuration without slippering or turning upside-down.
In other words, a safe and reliable motion of an autonomous vehicle requires
continuous satisfaction of static and dynamic constraints. A vehicle in a stable
state can become unstable for several reasons [12]:



308 E. Magid et al.

(a) (b)

Fig. 2. (a)Full KENAF configuration without sensors (b) Main body without service
arms and sensors

1. Large inertial forces arising from rapid acceleration or deceleration, or tight
turns;

2. Gravitational and reaction forces due to complex terrain geometries;
3. Surface conditions;
4. Unexpected external disturbances;

Assuming conditions 1, 3 and 4 are satisfied we deal with the second case.

3.1 Static Stability

Static stability is a minimal necessary condition for the general vehicle stability.
In most papers dealing with the stability and balance issues the authors deal with
a legged robot walking on uneven terrain[1,4,7,8]. Such a robot can avoid falling
only by applying contact forces with its feet on the ground that compensate for
gravity without causing slip (so-called static equilibrium). Assuming robot’s
motion is slow enough to neglect inertia, the robot must always be able to achieve
static equilibrium. While for a flat terrain some simple heuristic tests could be
done for checking the stability, irregular and steep terrain requires to check that
the robot is in equilibrium at every posture.

Existing approaches for a static stability are linear programming and linear
projection. A basic interaction model assumes that the terrain is rigid and that
contact occurs at frictional points. Under this assumption, “no slip” means that
each contact force is restricted to a second-order friction cone, the shape of which
is often approximated by a set of linear inequalities. Likewise, “compensate for
gravity” means that the contact forces and center of mass(CM) positions satisfy
linear force and moment balance equations. So for specific set of contact points,
subject to the above approximation, the set of jointly feasible contact forces and
CM positions is a polyhedron. The support polygon is the projection of this
polyhedron onto CM-space. Using linear programming, we can search explicitly
for a set of contact forces that place a particular CM position in equilibrium
without computing the support polygon. Similarly, using linear projection, we



Rescue Robot Navigation 309

can precompute the support polygon and thus determine whether it is possible to
place a particular CM position in equilibrium without computing contact forces.

Gravity acts at the robot’s center of mass (CM), the position of which may
vary as the robot moves. While the change is significant for a legged robot,
the CM position is constant for a tracked non-reconfigurable vehicle (tank or
tractor) and has slight changes for a reconfigurable1. The properties of each
contact point determine the range of contact forces possible without slip. So,
for specific contact points, static equilibrium jointly constrains both the contact
forces and the CM position. On flat terrain with point contacts, we have an
intuitive notion of what this constraint means. Simply, the robot’s CM must lie
above the support polygon - a polygon with vertices at the contact points. The
vertical prism having this polygon as cross-section is the set of all CM positions
at which static equilibrium is possible. If the robot’s posture places its CM over
the support polygon, then we know contact forces exist that achieve equilibrium
without actually having to compute them.

3.2 Modeling the Constraint of Static Equilibrium

The number of contacts with the ground and their position relative to the center
of mass is well defined for wheeled vehicles or mobile mechanisms with distinct
foot pads. However, in a tracked vehicle there is an uncertainty about the number
of contacts and their location along the track. Theoretically, the weight of the
vehicle is dispersed evenly over the entire contact area of the track with the
ground. Interaction between a track and the ground can vary significantly due
to surface geometry, ground texture, track tension etc. There might be only few
contacts along each track, affecting the vehicle’s response to driving commands
and balance.

In our case, RSE results mainly in the number of contact points, rather then
the entire track contact. The specific features of RSE constrains all contact
points to lie on the edges and at the vertices of the environment cells and on
the perimeter of the robot crawlers. If a cell is completely under the crawler, it
means or that there is no contact between the crawler and this cell at all, or
3 options of the contact: a single point contact at a vertex of RSE cell, a line
contact at an edge of RSE cell or a full-plane contact of the crawler with a cell
in the case that the main body of the robot is parallel to the ground2.

We define the appropriate posture of the robot, based on the literature survey
and our mobility experiments. The requirements on the appropriate posture are:

1. The surface is rigid enough to provide the support to the robot;
2. The contact surface between the robot and the terrain provides the friction

which is enough to prevent sliding forward, backward or aside;

1 CM position relatively to local coordinate frame fixed within the robot’s body.
2 If a cell is partially under the crawler, additional options are a single point contact

at one of the 4 endpoints of the crawler or a line contact at a part of crawler’s
perimeter.



310 E. Magid et al.

3. The robot has contacts with the terrain with both crawlers and no contact
with its main body, thus escaping the situations of getting stuck;

4. The robot has at least three contact points with the terrain;
5. The surface inclination does not result in slippery or turning upside-down;
6. The location of robot’s center of mass prevents the robot from tip over due

to the center of mass displacement;

While we assume the satisfaction of requirements 1 and 2, the satisfaction of
other requirements is checked explicitly within our algorithm.

3.3 Coarse Posture Estimation

The output of our algorithm is an actual evaluation of the robot’s posture in a
specified configuration. Coarse estimation distinguishes three posture types:

Red State:Presents the posture which is impossible or statically unstable.
Fig.3(a) demonstrates an impossible posture, where the robot collides with the
environment. Fig. 3(b) demonstrates a case when the robot is trying to climb to
an impossible steepness, which will result in turning upside down.

Green State: Stands for the statically stable posture, which satisfies all re-
quirements stated in section (3.2). Fig.4(a) demonstrates a green state example.

Orange State: Is something between red and green states. This posture is pos-
sible, but not stable. It does not result in robot’s turning upside down, but does
not guarantee a single stable posture since there exist two options and the real
one will depend on the previous posture, moving direction and other parameters.
Fig.4(b) demonstrates a side view of an orange state with two possible postures.
The orange state is very important, since it affords the robot to lose the bal-
ance on purpose, when for example the robot must traverse the barrier(fig.2(a)).
Traversing the barrier includes climbing up and going down with loosing balance
twice on top of the barrier.

4 The Algorithm

The location of the robot is described with (x,y) coordinates of the robot’s CM
in the horizontal plane of the global coordinate frame. In our model we assume
that CM is located at the physical center of the robot. Orientation θ of the robot
is described by the angle between the robot moving direction and X-axis of the
global coordinate frame XG. Four other parameters (z,ω,ϕ,ψ) describing the pos-
ture of the robot, could be derived from the triple (x,y,θ) and the RSE-map with
our posture search algorithm. Angles (ω,ϕ,ψ) are formed by the normal to the
support plane with global coordinate system axes XG, YG and ZG respectively
and fixed at the robot’s CM.

Given (x,y,θ) at a current configuration, we assume initial posture of the
robot as an input for the contact points search algorithm. As an initial guess,



Rescue Robot Navigation 311

a

ZL

ZG

ZL

ZG

b

Fig. 3. Red state examples a) Pikes appear under the main body of the robot side
view (up) and front/back view (down) b) The robot is trying to climb to an impossible
steepness

ZL

ZG

CM

ZG, ZL

CM

b

ZL

ZGa

Fig. 4. Acceptable states examples a) Green state b) Orange state - two possible
postures

the triple (ω0,ϕ0,ψ0) is passed from the previous posture, assuming initially
that there is no change in the orientation of the support plane in the case of
successful posture. In the case of starting point or unbalanced previous posture
(ω0,ϕ0,ψ0) = (π

2 , 0, π
2 ). Next we build a list of all candidate points, found under

the projection of the robot’s posture (x,y,θ,ω0,ϕ0,ψ0) on the RSE with respect
to the requirements, described in section (3.2). Four service points are added
for creating a 3D convex hull, based on that list. All points, which can not be
contact points are enclosed inside the convex hull. Service facets containing as a
vertex at least one service point and facets, which has all three vertices within
the same crawler, are dropped. In physical world they will refer to impossible
postures(fig.5). Each triangle is marked with the plane equation and then the
facets with the same mark are recursively joined into a single facet in the case
they have two common vertices, forming a set of candidate planes. Among those
candidates only one facet contains a projection of CM and thus provides the
recommended triple (ω,ϕ,ψ) for the next iteration. Since the change in (ω,ϕ,ψ)
may be drastic, the obtained triple provides only the direction for the next



312 E. Magid et al.

Service facets Impossible posture facets

Candidates for support polygon

Fig. 5. Service and impossible facets are dropped. Thick black lines show the bound-
aries of the facets, which may serve as a support polygon.

iteration in (ω,ϕ,ψ). The iterations stop when the recommended values converge
to the previous iteration value.

The obtained facet is checked for its final color. Orange color means that
the CM’s projection belongs to two distinct adjacent facets, both of which are
acceptable postures. A red color facet stands for an impossible posture, while
green means a success. An additional color, which was not explained previously
is magenta; it appears when we can not obtain convergence during the posture
search procedure and means the situation, when between two successive postures
the robot’s CM position changes its Z-coordinate with a leap while it has to climb
a vertical slope of the environment. The magenta posture is also detected between
two successive green postures, when CM position change in Z-coordinate exceeds
the predefined threshold.

4.1 Qualitative Classification of Green State

Since the basic algorithm checks only static stability, the results show that almost
every posture is green - i.e. statically stable. For this reason we provided a more
precise qualitative classification of green posture with regard to static stability.

Throughout the history of walking robots several static and dynamic stability
criteria have been defined. In [2] authors presented a comparative analysis of the
existing stability criteria. Six case studies were considered and a classification
of stability criteria showed that no optimum criterion for static and dynamic
stability exists. Yet all of them showed to be valid and as for static stability
margins only criterion NESM [3] provided the optimal measurements. We applied
this criterion for estimating the quality of the green state posture, substituting
the foot contact points of the walking robot with the distinct contact points of
the robot’s crawlers.

NESM stability measurement criterion originates from the Energy Stability
Margin (ESM) proposed by Messuri in [9], where ESM is defined as the minimum
potential energy required to tumble the robot around the edges of the support
polygon, that is:

SESM =
N

min
i=1

mghi (1)



Rescue Robot Navigation 313

where i denotes the segment of the support polygon considered as rotation axis,
N is the number of distinct contact points of the posture, m is the robot’s weight
and hi is the variation of CM height during the tumble, coming from

h = Ri(1 − cos γi) cos τi (2)

where Ri is the distance from the CM to the rotation axis, γi is the angle that
Ri forms with the vertical axis and τi is the inclination angle of the rotation axis
relative to the horizontal plane. The ESM gives a qualitative idea of the amount
of impact energy supported by the vehicle. Then in [3] the authors normalized the
ESM to the robot weight and propose the Normalized Energy Stability Margin,
NESM , defined as:

SNESM =
SESM

mg
=

N

min
i=1

hi (3)

With the help of eq.(3) we define a new state - yellow; green state turns into
yellow if the SNESM does not exceed a predefined minimum established in the
process of experiment trials with a real robot. As an additional and less impor-
tant criterion for static stability estimation we employ the square of the support
polygon.

5 Simulation and Experiments

The analysis of the proposed algorithm has been performed throughout sim-
ulation, constructed in Matlab environment. The goal of the analysis was to
estimate the path proposed by the human operator in the given environment
with respect to the static stability and to compare with the expected results.

The original map of the RSE is presented with a 2D square grid. While the
final output images are scaled to the real RSE map cell of 100mm×100mm size,
the calculations are conducted within 10mm×10mm cell discretization. A num-
ber of maps were created for the experiments in the real environment and then
stored for simulation use. The operator chooses the map and marks start and
target points of the robot’s CM or a number of via points. The simulator discre-
tises the path, so that we obtain all locations of the CM on the borders of the
10mm×10mm cells of the path and in the middle of each cell; the discretisation
of rotation is 1 degree. Then the path, estimated within the simulator as “pos-
sible” was repeated in our experiments by the operator in a set of environments
identical to the simulated ones.

From our previous experiments and experience of our operator we concluded
that in the cases of straight and diagonal barriers the robot should choose the
course perpendicular to the barrier. In the case of the pike, if the robot will try
to traverse the pike straightly, trying to race through the pike on the high speed,
it may tip over or get stuck on the pike; to prevent such situation, the robot
should traverse the pike-type of the terrain going a roundabout way.

Next we present a short discussion of the simulation and experimental results
and their correspondence for the case of the straight barrier traversing. The



314 E. Magid et al.

0

5

10

15

20

25

30

0

5

10

15

20

25

30

−2

−1

0

1

2

3

4

5

6

X−direction

Original Map

Y−direction

Z
 −

 H
IG

T
H

0 5 10 15 20 25 30
−1

0

1

2

3

4

5

6

7
Original Map

X−direction

Z
 −

 H
IG

T
H

0

5

10

15

20

25

30

0

5

10

15

20

25

30

−1

0

1

2

3

4

5

6

X−direction

Original Map

Y−direction

Z
 −

 H
IG

T
H

0 5 10 15 20 25 30
−1

0

1

2

3

4

5

6
Original Map

X−direction
Z

 −
 H

IG
T

H

Fig. 6. Straight barrier traversing, map resolution 100×100mm, solution resolution
10×10mm. First row pictures show the straight traversing, second row - diagonal
traversing.

height of the bar at each point presents the location of the robot’s CM. For
magenta case there appear two locations, since at that point the robot have
to climb up or down a vertical patch of the RSE cell. For red case there is no
real meaning of the height location, since such posture is impossible in general.
Thus, for the convenience of the reader, in the red case the simulator shows the
previous non-red height and for orange and magenta cases there are additional
signs for paying attention. The reader should keep in mind that our final goal is
to provide an assistant “pilot system” for an operator of a rescue robot which
will search for the good path/paths in the given environment, display it and warn
the operator about possible dangerous segments of the path. In other words, the
output of the simulator, presented here, is an intermediate result, which will not
be completely displayed to the operator.

Fig.6(up) presents the simulation results of the path estimation when the
robot traverses the straight barrier with a course at right angle to the barrier.
Fig.6(down) presents the results of traversing the straight barrier on the diagonal
course. Left figures correspond to 3D view of the barrier and the path, while
right figures show the XZ-view. Figures 7(a) and 7(b) show the scenes from the
corresponding real robot experiments.

In both cases the robot had to loose the balance twice on the top of the bar-
rier - once when it had to switch from climbing up the barrier to moving paral-
lel to the ground level on the top of the barrier and second time when it started
moving down the barrier. In both paths there were detected a number of magenta
cases when the robot had to climb up or down a vertical patch of the RSE cell
and a number of yellow cases when the static equilibrium was not satisfactory.
Even though both paths did not contain any red cases with impossible postures



Rescue Robot Navigation 315

(b)(a)

Fig. 7. Scenes from the experiments: (a) straight barrier, straight traversing (b)
straight barrier, diagonal traversing

and thus were valid, the quality of the paths was significantly different. While the
straight traversal path contained only a small number of yellow points (9 points,
2.45% of the path), the quantity of yellow points gradually increased as the path
deviated from the perpendicular to the barrier. Finally, for the diagonal traver-
sal the path contained a significant number of yellow points (91 points, 13.85%
of the path). Thus we conclude that the straight traversal path’s quality is better
then of the diagonal traversal, which agree with our prior expectations.

This quality difference was well-detected during the experiments with the real
robot. While to traverse the barrier in the straight manner did not take any se-
rious effort from our operator, the diagonal traversal turned to be tricky. In the
yellow points of the path the speed of the vehicle had to be reduced to minimal
and required maximal concentration from the operator. In magenta points, when
the Z-coordinate was changing from lower to higher level, the climbing ability was
not guaranteed and strongly depended on the level change; after some critical
level change the vertical climbing became impossible3. When the Z-coordinate
was changing from higher to lower level, the robot experienced pushes and ham-
mering with a strength depending on the level change. Such hammering may
damage the vulnerable sensors and should be avoided as well.

6 Conclusions and Future Work

The final target of our research is to provide an assistant “pilot system” for an
operator of a rescue robot, decreasing the burden on the human operator. As
soon as a robot obtains data from the environment and creates an internal world
model, a selection on the path within the internal model should be done, followed
by applying this path in the real world scenario. Since usually there exist more
then just a single path, the path search algorithm needs a good instrument to
evaluate the quality of each path.

3 Experiments with a high straight barrier set of {0,100,300}mm cell heights showed
that the robot would climb it only in a full configuration using service arms (fig.2(a)).



316 E. Magid et al.

In this paper we presented the algorithm for estimating the posture of the
robot in a specific configuration from the static equilibrium point of view. The
results obtained by the simulator agree with our prior expectations and were suc-
cessfully confirmed by the set of experiments with a real robot. Our future work
will concentrate on the path planing algorithm, which will utilize the proposed
quality estimation of the posture’s static equilibrium as a part of configuration
evaluation function.

References

1. Bretl, T., Lall, S.: A Fast and Adaptive Test of Static Equilibrium for Legged
Robots. In: ICRA 2006, pp. 1109–1116 (2006)

2. Garcia, E., Estremera, J., Gonzalez de Santos, P.: A classification of stability mar-
gins for walking robots. In: Proc. of 5th Int.Conf. on Climbing and Walking Robots
and the Support Technologies for Mobile Machines, Paris, France, pp. 799–808
(2002)

3. Hirose, S., Tsukagoshi, H., Yoneda, K.: Normalized energy stability margin: gener-
alized stability criterion for walking vehicles. In: Proc. of 1st Int. Conf. On Climbing
and Walking Robots, Brussels, pp. 71–76 (1998)

4. Hong, D.W., Cipra, R.J.: Optimal contact force distribution for multi-limbed
robots. Journal of mechanical design 128, 566–573 (2006)

5. Jacoff, A., Messina, E., Evans, J.: A standard test course for urban search and
rescue robots. Arch. In: Proc. of the 2000 PerMIS Workshop, Gaithersburg, MD
(2000)

6. Jacoff, A., Messina, E., Evans, J.: Experiences in Deploying Test Arenas for Au-
tonomous Mobile Robots. In: Proc. of the 2001 PerMIS Workshop, in association
with IEEE CCA and ISIC, Mexico City, Mexico (2001)

7. Klein, C.A., Kittivatcharapong, S.: Optimal force distribution for the legs of a
walking machine with friction cone constraints. IEEE Trans. on Robotics and Au-
tomation 6(1), 73–83 (1990)

8. Mason, R., Rimon, E., Burdick, J.: Stable poses of 3-dimensional objects. In: IEEE
ICRA 1997, vol. 1, pp. 391–398 (1997)

9. Messuri, D.A.: Optimization of the locomotion of a legged vehicle with respect to
maneuverability. Ph. D. Thesis, The Ohio State University (1985)

10. Poppinga, J., Birk, A., Pathak, K.: Hough based Terrain Classification for Realtime
Detection of Drivable Ground. Journal of Field Robotics 25, 67–88 (2008)

11. Sheh, R., Kadous, M.W., Sammut, C., Hengst, B.: Extracting Terrain Features
from Range Images for Autonomous Random Stepfield Traversal. In: IEEE Int.
Workshop on Safety, Security and Rescue Robotics, Rome, September 2007, pp.
1–6 (2007)

12. Shoval, S.: Stability of a Multi Tracked Robot Traveling Over Steep Slopes. In:
IEEE ICRA 2004, vol. 5, pp. 4701–4706 (2004)



Performance Evaluation of Repeated Auctions
for Robust Task Execution

Maitreyi Nanjanath and Maria Gini

Department of Computer Science and Engineering, University of Minnesota,
Minneapolis, MN 55455

nanjan@cs.umn.edu, gini@cs.umn.edu

Abstract. We present empirical results of an auction-based algorithm
for dynamic allocation of tasks to robots. The results have been obtained
both in simulation and using real robots. A distinctive feature of our
algorithm is its robustness to uncertainties and to robot malfunctions
that happen during task execution, when unexpected obstacles, loss of
communication, and other delays may prevent a robot from completing
its allocated tasks. Therefore tasks not yet achieved are resubmitted for
bids every time a task has been completed. This provides an opportunity
to improve the allocation of the remaining tasks, enabling the robots to
recover from failures and reducing the overall time for task completion.

1 Introduction

We study the problem of distributing tasks among a group of cooperating robots.
We are interested in situations where each task can be done by a single robot, but
sharing tasks with other robots will reduce the time to complete the tasks and
has the potential to increase the success rate in case a robot becomes disabled.
Search and retrieval tasks as well as pickup and deliveries are examples of the
types of tasks we are interested in.

Robots have to physically move to reach the locations of their assigned tasks,
hence the cost of accomplishing a task depends not only on the location of the task
itself but also on the current location of the robot. If a robot bids for the tasks one
at a time, this requires the robot to compute its costs according to the order in
which tasks are to be executed, which can be different from the order in which
tasks have been submitted for bids.

In this paper we present empirical results obtained both in simulation and
with real robots using the algorithm originally presented in [15]. The algorithm,
which is based on auctions, does not guarantee an optimal allocation, but is
specially suited to dynamic environments, where execution time might deviate
significantly from estimates, and where it is important to be able to adapt dy-
namically to changing conditions.

The algorithm is totally distributed, assuming that robots can communicate
with each other. There is no central controller and no central auctioneer, each
robot auctions its own tasks and clears its own auctions. This increases the
robustness and scalability of the approach.

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 317–327, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



318 M. Nanjanath and M. Gini

The auction mechanism we propose attempts to minimize the total time to
complete all the tasks and, at the same time, the total path length for all the
robots. It tries to minimize the total completion time by minimizing the length
of the longest path, and to minimize the total path length for all the robots by
assigning tasks to the nearest robot. With the simplifying assumption of constant
and equal speed of travel for all the robots, the first objective. i.e. minimize the
total time, is equivalent to minimizing the maximum path cost over all the robots
(called miniMAX objective in [17]). The second objective, i.e. minimize the total
path length, is equivalent to minimizing the sum of path costs over all the robots
(called miniSUM objective in [17]).

The algorithm is simple but robust to failures during execution. If a robot finds
an unexpected obstacle, or experiences any other delay, or loses communication,
or is otherwise disabled, the system continues to operate.

In this paper we briefly describe the algorithm, and we report empirical results
obtained both in simulation and with real robots.

2 Related Work

A recent survey [6] covers in detail the state of the art in using auctions to co-
ordinate robots for accomplishing tasks such as exploration [4,11], navigation to
different locations [17], or box pushing [8]. Auction-based methods for allocation
of tasks are becoming popular in robotics [4,9,17] as an alternative to other al-
location methods, such as centralized scheduling [3], blackboard system [7], or
application-specific methods, which do not easily generalize [1] to other domains.

Combinatorial auctions have been tried as a method to allocate navigation
tasks to robots [2] but are slow and do not scale well. Sequential single-item
auctions [12,14,17] can instead be computed in polynomial time and produce
solutions that, when the objective is to minimize the sum of the path costs for
all the robots, are a constant factor away from the optimum.

We also use single item auctions, but we repeat auctions multiple times while
tasks are being executed, so allowing for a better allocation in case of unexpected
problems and increasing robustness in case of robot or communication failures.

Our approach aims at finding a tradeoff between computational complexity,
quality of allocations, and ability to adapt. The major features of our approach
are: (1) the auction can continue even when one or more robots fail to com-
municate. (2) robots estimate their path costs using Rapidly-exploring Random
Trees [13]. RRTs are fast to compute and so are particularly appropriate for
dynamic situations where computing the optimal path to achieve all the tasks
allocated to a robot, as in [14], might not pay off, because tasks are likely to be
reallocated. (3) to deal with cases where completion times had been estimated
incorrectly or a failure occurred, tasks are reallocated during execution. The spe-
cific method we chose for reallocation is to rebid tasks each time a task has been
completed. Compared to continuous auctions, our approach reduces the need for
communication and the time spent in clearing auctions. while still providing the
ability to react to changes in the environment or in robot functioning.



Performance Evaluation of Repeated Auctions 319

Our approach is similar to the method presented in [5] where a group of robots
is given a set of tasks and robots are selectively disabled in different manners, in
order to examine their performance under different conditions. Performance is
measured in terms of percentage of tasks completed. Our approach differs also in
that we assume a time limit for task completion. Additionally the robots we use
are simpler and more prone to errors, hence the ability to change task allocation
is critical.

3 Auction Algorithm

In this work we assume that each robot is given a map that shows its own location
and the positions of walls and rooms in the environment. No information is
given about where the other robots are located and about other moving objects
present in the environment. The map is used by each robot to estimate its cost
of traveling to the task locations, and to compute the path to reach them from
its original location. Each robot is also given a list of all the robots in the team,
that is used for task exchange. However, robots do not know all the tasks, they
are aware only of the ones they have been assigned and discover the other tasks
when they are auctioned. Let’s call R the set of m robots R = {r1, r2, ...rm},
and T the set of n tasks T = {t1, t2, ...tn}, where each task is a location a robot
has to visit. We partition the tasks into m disjoint subsets, such that

T1 ∪ T2 ∪ ... ∪ Tm = T and Ti ∩ Tj = φ ∀i �= j 1 ≤ i, j ≤ m,
and allocate each subset to a robot. Note that a subset can be empty.

The initial task distribution might not be optimal. For instance, some robots
might have no task at all assigned to them while others might have too many
tasks, the tasks assigned to a robot might be spread all over the environment,
or might be within easy reach of other robots, some tasks may be unreachable
by some of the robots.

A robot must complete all its tasks unless it can pass its commitments to
other robots. Since the robots are cooperative, they will pass their commitments
only if this reduces the estimated task completion time. The ability to pass tasks
to other robots is specially useful when robots become disabled since it allows
the group as a whole to increase the chances of completing all the tasks. This
process is accomplished via single-item reverse auctions, in which the lowest bid
wins, that are run independently by each robot for its own tasks.

Each bid submitted by a robot is an estimate of the time it would take for that
robot to reach that task location (assuming for simplicity a constant speed) from
its current location. To generate paths efficiently, robots use Rapidly-exploring
Random Trees (RRTs) [13]. Generation of RRTs is very fast, and scales well with
large environments. Examples of RRTs for our experimental setup are shown in
Figure 2 and Figure 3.

Auctions are parallel, i.e. many auctioneers may put up their auctions at once,
but since each bidder generates bids in each auction independently of the other
auctions, the effect is the same as having each auction done as a single-item
auction that the bidder either wins or loses. Robots compute their bids for all



320 M. Nanjanath and M. Gini

Repeat for each robot ri ∈ R:

1. Activate ri with a set of tasks Ti and a list of the other robots R−i = R - {ri}.
2. Create an RRT using ri’s start position as root.
3. Find paths in the RRT to each task location in Ti.
4. Assign cost estimate cj to each task tj ∈ Ti based on the path found.
5. Order task list Ti by ascending order of cj .
6. Establish communication channels with the other robots and build a list of all the

tasks in the system (system task list) for reference.
7. ri does in parallel:

(a) Auction its assigned tasks:
i. Create a Request For Quotes (RFQ) with tasks in Ti.
ii. Broadcast the RFQ to R−i and wait for a fixed time limit for bids.
iii. Determine the lowest bid bjk among all the bids received for task tj . The

robot that submitted the winning bid is rk.
iv. If bjk < cj then send tj to robot rk, else keep tj . If rk does not acknowledge

receipt, return tj to ri. Mark tj as assigned.
v. Ask rk to update its bids, if any, for the remaining tasks in Ti (rk has now

new tasks). If rk does not acknowledge receipt of the message, return tj

to ri.
vi. Repeat from 7(a)iii until all tasks are assigned. Robots that do not bid on

tasks are ignored in the auction.
(b) Bid on RFQs received from other robots:

i. Find a RRT path for each task tr in the RFQ.
ii. Create a cost estimate cr for each tr to which the robot found a path.
iii. Send the list of costs to the auctioneer that sent the RFQ.

(c) Begin execution of the first assigned task:
i. Start executing the first task tj by finding a path in the RRT and following

it as closely as possible.
ii. If new tasks are added as result of winning new auctions, insert them in

Ti keeping it sorted in ascending order of cost, and repeat from 7(c)i.
iii. If ri is stuck, or does not complete its tasks within a set time limit, start

a new auction to reassign ri’s tasks.
iv. If tj is completed successfully, notify all robots of task completion, update

the system task list, and restart from 4.

until timeout or all tasks are completed.

Fig. 1. Task allocation algorithm

the parallel auctions assuming they start at their current location. This can
results in bids that over- (or under-)estimate the true cost.

The algorithm that each robot follows is outlined in Figure 1. We assume the
robots can communicate with each other, for the purpose of notifying potential
bidders about auctioned tasks, for submitting their own bids, and for receiving
notification when they won a bid. A robot can choose not to bid on a particular
task, based on its distance from and accessibility to that task.

Once the auctioned tasks are assigned, the robots begin to move, attempting
the nearest task first (i.e. the task with the lowest cost).



Performance Evaluation of Repeated Auctions 321

When a robot completes its first task, it starts an auction again for its remain-
ing tasks in an attempt to improve the task allocation. If one or more robots can
do one or more of its tasks at a lower cost the overall task allocation improves.
This is specially useful if the robot got delayed, because this redistribution of
tasks enables it to change its commitments and to adapt more rapidly.

If a robot is unable to complete a task it has committed to, it can also auction
that task. Any task that cannot be completed by any of the robots, for instance
because it is not accessible by any of the robots, is abandoned. We assume that
there is value in accomplishing the remaining tasks even if not all of them can
be completed.

The robots are given a time limit to complete the tasks, so that they do not
keep trying indefinitely. When all the achievable tasks (determined by whether
at least one robot was able to find a path to that task) are completed, the robots
idle until the remainder of the time given to them is over.

The algorithm allows for dynamic addition of new tasks during the execution,
but for simplicity, in the experiments described in Section 4, the set of tasks and
of robots is known at start and does not change during the execution.

4 Experimental Setup

We evaluated our algorithm through experiments done both in simulation and
with real robots. Due to space and equipment constraints, we were limited to
two robots for the real robot experiments, but were able to perform different
and more complex experiments in simulation. Both the simulation and the real
robots used an identical setup and the same environment.

Simulation experiments were performed in the Player/Stage [10] simulator.
Player/Stage has the advantage that implementation details do not change sig-
nificantly when shifting from simulation to real robots, thus making comparison
easier. The experiments performed in our robotics lab used two Pioneer I robots,
each mounted with a laptop and equipped with wireless cards for communica-
tion with each other. Communication was done through Java Sockets, as they
provide features nearest to what the simulated system had.

The main purpose of the experiments we report in this paper was to judge
the differences between simulation and real robots and to evaluate the perfor-
mance of different aspects of the algorithm, such as the auction time and the
communication overhead during execution.

Many separate simulation experiments done earlier have been reported
in [15,16]. Their purpose was to evaluate the effectiveness of our repeated auction
algorithm in comparison to a single initial auction, to measure the impact of loss
of communication and changes in the environment, and to measure the robust-
ness of the algorithm. The earlier experiments used robots with 5 sonar sensors
and differential drives, scattered in the hospital world environment provided by
Player/Stage.

For the real robot experiments, the robots were given a map of the lab which
did not include chairs but included table positions, and also a description of the



322 M. Nanjanath and M. Gini

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

1.1

1.0

0.1

2.0 2.1

0.0

Fig. 2. Experiment I map: robots are cir-
cles and tasks are asterisks. RRTs for run
4 are shown by the lines.

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

2.0 3.0
3.1

0.0 0.1

1.0

1.1

2.1

Fig. 3. Experiment II map: robots are
circles and tasks are asterisks. RRTs for
run 3 are shown by the lines.

team, including wireless ids of the other robots. The robots started at different
locations, and the tasks were scattered randomly in the lab. Tasks were initially
divided equally between the robots. They were given their own approximate
positions in the map.

When one robot had completed all its assigned tasks, the idle robot would
wait a fixed amount of time (usually the amount of time the other robot had
provided as its lowest task bid) waiting for the other robot to start a new auction,
otherwise it would start a new auction on its own.

The two experimental setups are illustrated respectively in Figure 2 and
Figure 3. The figures also show the RRTs formed by each robot for each
experiment.

In Experiment I there were six tasks scattered randomly such that an optimal
task allocation would result in an uneven distribution of the tasks between the
robots. In Experiment II there were eight tasks distributed such that the majority
of the tasks given to Robot 0 was closer to Robot 1 and vice versa. This was
done to examine if the robots exchanged tasks successfully and completed them
correctly.

We performed 5 runs of each experiment type individually in both simulation
and with the real robots. Results are presented in Section 6.

5 Adaptations for Real Robots

There were some non trivial differences we had to deal with between the
simulation and the real robot experiments.

1. Player 2.0 has some significant difference in the way motion is dealt with
in the real robot in comparison to the simulation. The same command in
simulation produced a differing range of motion from when given to the real
robot. Thus, motion commands had to be reconfigured to suit the robots.

2. data for ranges of goals, sonar ranges, and collision ranges had to be modified
to suit the real robots, as the form factor of the real robots was considerably
different from that of the simulation.



Performance Evaluation of Repeated Auctions 323

3. In the simulations, all obstacles were detectable through sonars. In the real
robot experiments however, robots occasionally could not detect obstacles,
such as table legs, because the sonar sensors were too far apart and missed
the obstacle. This resulted in several collisions and near collisions in the real
robot experiments, and far more variability in task completion times than
what we had seen in the simulations.

4. Odometry in the real robots was significantly worse than that accounted
for in the simulations. However, it was better than we had feared: in most
cases, unless there was a tight fit, the robots managed to complete all tasks
without collision. Tasks were considered to be complete when the robots
arrived within 30 cm of the task (i.e. an approximate robot-length away
from the task). Additionally, collisions were tolerated in the simulations; in
the real runs, robots that had collided with obstacles were given one chance
to recover and then shut down, to avoid damage to the robots.

6 Results

The results for the two groups of experiments are summarized in Table 1 and
Table 3. In each case, the robots completed the assigned tasks within 2 minutes,
staying well within the 10 minute time limit provided.

The performance of the real robots in each experiment is shown in Figure 4
and Figure 6. The auctions took a very small percentage of the total time (as
shown by the light grey bands in the figures, and summarized in Table 2 and
Table 4), and caused small delays between one task and the next. This accounted
for less than 1% of the time spent in performing the tasks.

The RRTs for run number 4 in Experiment I are shown in Figure 2. In this
run, since task 0.0 was auctioned first, due to the way the RRT curved, the
estimate for task 2.1 for Robot 0 was very high (it added the cost of going to

0 50 100 150

Robot 0 

Robot 1 

time (sec)

0 50 100 150

Robot 0 

Robot 1 

time (sec)

0 50 100 150

Robot 0 

Robot 1 

time (sec)

Task 0.0

Task 1.0

Task 2.0

Task 0.1

Task 1.1

Task 2.1

Auction

0 50 100 150

Robot 0 

Robot 1 

time (sec)

0 50 100 150

Robot 0 

Robot 1 

time (sec)

Fig. 4. Experiment I real-robot timeline. Runs 1 through 5 (top to bottom). The task
IDs show the task number followed by the number of the robot the task is assigned to.



324 M. Nanjanath and M. Gini

0 10 20 30 40 50 60

Robot 0 
Robot 1 

Robot 0 
Robot 1 

Robot 0 
Robot 1 

Robot 0 
Robot 1 

Robot 0 
Robot 1 

time (sec)

 

 

Task 0.0

Task 1.0

Task 2.0

Task 0.1

Task 1.1

Task 2.1

Auction

Fig. 5. Experiment I simulation timeline. Runs 1 through 5 (top to bottom).

Table 1. Task Completion Times for Experiment I

Task Robot Real Robots Simulation
ID Avg. Comp. time Std. Dev. Avg. Comp. time Std. Dev.
0.0 0 33.478 12.78 13.796 0.75
0.1 1 21.707 3.56 18.755 6.06
1.0 1 35.443 10.82 14.180 2.67
1.1 1 28.041 9.48 7.135 0.62
2.0 1 35.018 5.12 11.828 2.21
2.1 0 17.872 12.28 22.910 2.27

Table 2. Auction Times for Experiment I

Expt Real Robots Simulation
Num Mean (ms) Std. Dev. Mean (ms) Std. Dev.

1 450.2 185.5 514.0 594.4
2 450.3 164.6 507.4 603.7
3 382.6 218.2 522.4 564.9
4 379.8 193.5 657.3 634.7
5 369.7 153.3 566.8 615.6

and returning from task 0.0 to its cost estimate). Robot 1 initially won this task
with a lower cost estimate but Robot 0 won it back after task 0.0 was completed.

In run number 3 in Experiment II (Figure 3), Robot 0 initially got stuck trying
to get to task 2.1, and then completed the remaining tasks, but was much slower
than usual in completing the first two tasks, probably because of low battery.

The simulation experiments in comparison did not show robots getting stuck
as often. The simulation results are shown in Figure 5 and Figure 7.

A significant difference in auction results was a long initial auction time in
simulation as compared to the real robot system - this was likely caused by the
fact that the computers used in the simulation shared a network and hence took
longer to initially establish connections than the robots which had a dedicated
network. This resulted in initial auction times being on the order of 1.6 seconds
in the first auction, dropping to 0.3 seconds subsequently. While the real robots
also had a longer initial auction, such a large drop was not seen in the auction
times.



Performance Evaluation of Repeated Auctions 325

0 20 40 60 80 100 120 140 160 180 200 220

Robot 0 

Robot 1 

time (sec)

0 20 40 60 80 100 120 140 160 180 200 220

Robot 0 

Robot 1 

time (sec)

0 20 40 60 80 100 120 140 160 180 200 220

Robot 0 

Robot 1 

time (sec)

0 20 40 60 80 100 120 140 160 180 200 220

Robot 0 

Robot 1 

time (sec)

0 20 40 60 80 100 120 140 160 180 200 220

Robot 0 

Robot 1 

time (sec)

Task 0.0

Task 1.0

Task 2.0

Task 3.0

Task 0.1

Task 1.1

Task 2.1

Task 3.1

Auction

Fig. 6. Experiment II real-robot timeline. Runs 1 through 5 (top to bottom).

0 10 20 30 40 50 60

Robot 0 

Robot 1 

Robot 0 

Robot 1 

Robot 0 

Robot 1 

Robot 0 

Robot 1 

Robot 0 

Robot 1 

time (sec)

 

 

Task 0.0

Task 1.0

Task 2.0

Task 3.0

Task 0.1

Task 1.1

Task 2.1

Task 3.1

Auction

Fig. 7. Experiment II simulation timeline. Runs 1 through 5 (top to bottom).

Task completion times in the simulation were significantly shorter than the
corresponding times in the real robot experiments, as shown in Table 2 and
Table 4.

The comparative performance between simulation and real robot performance
was as follows:

– Algorithm performance: In simulation, the task allocation found was identi-
cal to that found by the real robot experiments, thus the simulation results
were acceptable. However, the impact of the time taken to perform the auc-
tions was significantly less with the real robots compared to simulation.

– Time: the simulated robots moved faster than the real robots, despite the
fact that we tried to find an equivalent velocity setting; thus, the auctions
took a more significant portion of simulation time than they did in the real
robot experiments. This speed difference also required modifications to the
range parameter settings to get the equivalent settings for the real robots as
compared to simulation.

– Robot performance: The simulation was much more optimistic about the
ability of the robots to detect obstacles and recover from errors; in the real
robots, there was a tendency to get stuck that was not seen as frequently in
simulation.



326 M. Nanjanath and M. Gini

Table 3. Task Completion Times for Experiment II

Task Robot Real Robots Simulation
ID Avg. Comp. time Std. Dev. Avg. Comp. time Std. Dev.
0.0 1 16.771 1.51 7.495 0.39
0.1 1 35.404 9.76 11.004 2.79
1.0 1 29.678 0.47 11.528 1.79
1.1 0 42.060 23.96 8.773 1.81
2.0 0 46.727 3.90 18.478 1.75
2.1 0 36.862 15.44 8.593 3.18
3.0 0 27.470 4.31 29.268 14.08
3.1 1 22.719 3.39 12.610 0.40

Table 4. Auction Times for Experiment II

Expt Real Robots Simulation
Num Mean (ms) Std. Dev. Mean (ms) Std. Dev.

1 419.5 213.1 493.4 478.8
2 402.2 232.6 481.9 502.1
3 473.0 259.3 460.6 506.5
4 445.9 247.2 514.4 543.3
5 425.4 231.2 485.6 518.2

In conclusion, the simulation experiments were good indicators of real world
performance, though some of the problems faced by actual robots were not per-
fectly mirrored in simulation.

7 Conclusions and Future Work

We have presented an algorithm based on auctions for allocation of tasks to
robots. It is robust to robot failure and environmental uncertainty.

The experiments with real robots showed similar performance to the simula-
tion experiments, even if the real robots were slower than the simulated ones and
more prone to delays. In particular, the experiments showed that the task allo-
cations found did not suffer significantly from the change in speed in the robots.
As a side effect, the time for the auctions compared to the time to execute the
tasks improved when experiments were done with real robots.

The robots proved adaptable, tasks were exchanged during execution, and the
final task assignment was close to optimal. The comparison of performance be-
tween simulation and real robots showed that simulation results may be relied on.

Acknowledgements. Work supported in part by the National Science Founda-
tion under grants EIA-0324864 and IIS-0414466, and by the Industry/University
Cooperative Research Center for Safety, Security, and Rescue at the University
of Minnesota.



Performance Evaluation of Repeated Auctions 327

References

1. Agassounon, W., Martinoli, A.: Efficiency and robustness of threshold-based dis-
tributed allocation algorithms in multi-agent systems. In: Proc. of the 1st Int’l
Conf. on Autonomous Agents and Multi-Agent Systems, pp. 1090–1097 (July 2002)

2. Berhault, M., Huang, H., Keskinocak, P., Koenig, S., Elmaghraby, W., Griffin, P.,
Kleywegt, A.: Robot exploration with combinatorial auctions. In: Proc. IEEE/RSJ
Int’l Conf. on Intelligent Robots and Systems (2003)

3. Chien, S., Barrett, A., Estlin, T., Rabideau, G.: A comparison of coordinated plan-
ning methods for cooperating rovers. In: Proc. of the Int’l Conf. on Autonomous
Agents, pp. 100–101. ACM Press, New York (2000)

4. Dias, M.B., Stentz, A.: A free market architecture for distributed control of a
multirobot system. In: Proc. of the Int’l Conf. on Intelligent Autonomous Systems,
Venice, Italy, pp. 115–122 (July 2000)

5. Dias, M.B., Zinck, M.B., Zlot, R.M., Stentz, A.T.: Robust multirobot coordination
in dynamic environments. In: Proc. Int’l Conf. on Robotics and Automation (April
2004)

6. Dias, B., Zlot, R.M., Kalra, N., Stentz, A.T.: Market-based multirobot coordina-
tion: A survey and analysis. Technical Report CMU-RI-TR-05-13, Robotics Insti-
tute, Carnegie Mellon University, Pittsburgh, PA (April 2005)

7. Engelmore, R.S., Morgan, A. (eds.): Blackboard Systems. Addison-Wesley, Reading
(1988)

8. Gerkey, B.P., Matarić, M.J.: Sold!: Auction methods for multi-robot coordination.
IEEE Trans. on Robotics and Automation 18(5) (October 2002)

9. Gerkey, B.P., Matarić, M.J.: Multi-robot task allocation: Analyzing the complexity
and optimality of key architectures. In: Proc. Int’l Conf. on Robotics and Automa-
tion (September 2003)

10. Gerkey, B.P., Vaughan, R.T., Howard, A.: The Player/Stage project: Tools for
multi-robot and distributed sensor systems. In: Proc Int’l Conf on Advanced
Robotics, pp. 317–323 (June 2003)

11. Kalra, N., Ferguson, D., Stentz, A.: Hoplites: A market-based framework for
planned tight coordination in multirobot teams. In: Proc. Int’l Conf. on Robotics
and Automation (2005)

12. Koenig, S., Tovey, C., Lagoudakis, M., Markakis, V., Kempe, D., Keskinocak, P.,
Kleywegt, A., Meyerson, A., Jain, S.: The power of sequential single-item auctions
for agent coordination. In: Proc. of the National Conf. on Artificial Intelligence,
pp. 1625–1629 (2006)

13. Kuffner, J.J., LaValle, S.M.: RRT-connect: An efficient approach to single-query
path planning. In: Proc. Int’l Conf. on Robotics and Automation, pp. 995–1001
(2000)

14. Lagoudakis, M.G., Markakis, E., Kempe, D., Keskinocak, P., Kleywegt, A., Koenig,
S., Tovey, C., Meyerson, A., Jain, S.: Auction-based multi-robot routing. In:
Robotics: Science and Systems, Cambridge, USA (June 2005)

15. Nanjanath, M., Gini, M.: Auctions for task allocation to robots. In: Proc. of the
Int’l Conf. on Intelligent Autonomous Systems, Tokyo, Japan, pp. 550–557 (March
2006)

16. Nanjanath, M., Gini, M.: Dynamic task allocation in robots via auctions. In: Proc.
Int’l Conf. on Robotics and Automation (2006)

17. Tovey, C., Lagoudakis, M., Jain, S., Koenig, S.: The generation of bidding rules
for auction-based robot coordination. In: Multi-Robot Systems Workshop (March
2005)



Conceptual Framework to Maintain Multiple
and Floating Relationship among Coordinate

Reference Systems for Robotics

Itsuki Noda1,2, Hiroki Shimora1, and Hidehisa Akiyama1

1 Information Technology Research Institute, AIST, Japan
{i.noda,h.shimora,hidehisa.akiyama}@aist.go.jp

2 Department of Systems Innovation, The University of Tokyo, Japan

Abstract. A new conceptual framework of management of coordinate
reference systems (CRS) for robotics is proposed. Management of CRS
should be more flexible in robotics than one for traditional GIS (geo-
graphical information systems). In general, all CRS used in GIS (geo-
graphical information systems) is grounded to a certain global CRS. On
the other hand, there are several cases where it is difficult to ground
and fix the CRS in robotics area. Therefore, the robot need to have its
own CRS, which may not be grounded to another stable CRS. In order
to provide a solution to the issue, In the proposal, we propose a new
framework of CRS and transformations. we handle a (user-defined) CRS
as an atomic concept, which can be defined independently with other
CRS. Then relations between two CRS are defined afterword. There-
fore, it is possible to have a CRS that has no relation to the global
CRS. Moreover, it is also possible to define multiple relation between two
CRS. These flexibility enables to bridge GIS and robotic systems for real
applications.

1 Introduction

In the field of geographical information systems (GIS), in general, a coordinate
reference system (CRS) is considered to be well-known, well-defined and fixed.
The most of CRSs used in GIS are grounded to the earth. It means that any
position value belong to any CRS can be transformed another position to an-
other CRS one-by-one uniquely. It is a reasonable assumption for traditional
GIS usages [1,2,3] because origins of each CRSs can be surely maintained by a
certain public organization or system like GPS (Global Positioning System).

On the other hand, in the case of application of location information services
related to robotics [4], the above assumptions of the CRSs for GIS can not be
hold. Because robots and their environment have a limited resource to measure
locations of robots themselves and other objects. their location informations in-
clude significant errors. In addition, the fact that robots are movable objects

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 328–339, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Conceptual Framework to Maintain Multiple and Floating Relationship 329

brings a further issue on the location information: Locomotion of robots is gen-
erally so inaccurate that it it difficult to determine the origin of measurements
by sensors on the robots in a global CRS. And, the robots need to make a plan
of move based on such ambiguous location information.

The difficulty of this issue is clearly illustrated when a robot is switched-on in
an unknown room. Immediately after switching-on, the robot has no knowledge
about geographical relation between the robot itself and the environment. Even
in such case, the robot may need to move to perform a certain task (like escaping
from danger). At the same time, the robot may continuously sense the environ-
ment and get partial location information with a certain error. This means that
the robot is sensing with moving. In order to integrate the sensing data, the
robot need to have its location information in each time position. This means
that the robot need at least a CRS to determine its location. However, as a
supposed condition of this case, the robot does not know the relation between
the environment and the robot itself. This means that the robot must use a CRS
that has no relation to the environment in the beginning. Of course the relation
may become clear after enough sensing done. But, until then, the robot need to
measure its location under the ambiguous CRS.

Such situations are quite common in robotics, especially in researches on
SLAM (Simultaneous Localization and Mapping). Several works on SLAM, espe-
cially for multi-robots [5,6,7], have already been attacking the issue on ambiguous
CRS. These works solve the problem by representing and operating ambiguity
on the CRS in internal structures and procedures of robots.

On the other hand, because application field of robotics becomes wider and
wider, robots need to share location information on such ambiguous CRS with
other systems like sensor-networks. In such cases, the robots should have a way to
interact GIS, which are generally used to exchange location information among
various systems.

Our purpose of this article is to bridge a gap of concepts of CRS between GIS
and robotics by proposing a new concepts of flexible management framework for
ambiguous CRSs and transformations between them. In the rest of this article,
we figure out requirements to management of CRSs for robotic application in
section 2, and propose a formal framework for it in section 3. Also, we show
some examples of usages of the framework in section 4.

2 Requirements to Management of Coordinate Reference
Systems

2.1 Coordinate Reference System for Traditional GIS

In order to refer a spatial point in a space, we are using a coordinate value
(CV)that consists of a tuple of scalar values like (x, y, z) or (r, φ, θ). Usually, the
coordinate value denotes a relative relation from a certain origin point by using
a certain tuple of axes. Generally, the pair of origin point and the tuple of axes is



330 I. Noda, H. Shimora, and H. Akiyama

Fig. 1. Traditional Coordinate Systems used in GISs

called a coordinate reference system (CRS).1 Therefore, strictly saying, a certain
spatial point can be determined by a pair of the coordinate value and a CRS.
We call the pair as a location data (LD).

We can have a multiple CRSs. In such case, we need information about re-
lationships among the CRSs. In the case of GIS field like OGC’s definitions
(ISO/TC211 and ISO 191xx series), a new CRS can be defined by a declara-
tion with a pair of CS and a datum in another existing CRS. This means that
whole relations of CRSs form a tree structure like figure 1. ‘Tr’ in this figure
stands for transformation, and denotes a relationship between two CRSs. By
definition, a declaration of a new CRS (a CS and a datum) implicitly includes a
transformation between the new CRS and a existing CRS.

The tree-structured set of CRS is reasonable and useful because a GIS gener-
ally handle relatively stable objects, whose location can be precisely measured
by global CRS.

2.2 Requirements for Robotic Application

Compared with a case of GIS, a situation of location information processing for
robotic applications is more complicated and includes more uncertainty. As de-
scribed in section 1, a robot switched-on at an unknown place needs to define its
1 In GIS field, coordinate system (CS) means a class of CRS, like Cartesian coordi-

nate system (general (x, y, z)-style), polar coordinate system ((r, φ, θ)-style), geodetic
coordinate system ((latitude, longitude, altitude)-style), and so on. In other words, a
CS is defined as a tuple of types of axes. A CRS can be defined by a pair of a CS
and a datum that consists of information about an origin point and orientation of
axes in the CS.



Conceptual Framework to Maintain Multiple and Floating Relationship 331

own local CRS without any relations to known CRSs in order to handle location
information of the robot itself and other objects detected by its own sensors.
The relations between the local CRS and other CRSs may found afterward by
detecting some landmarks whose locations are known in the other CRSs.

Consider another situation in which multiple robots investigate an unknown
land like Mars. In such case, no existing CRS are given. Each robot may develop
its own map by surrounding on the land, and exchange the map when it meets
another robot. In the exchange, the robots need to define a transformation be-
tween its own and other’s local CRSs. Unlike the definition of a transformation
(implied a given datum) for GIS, the relation between two CRSs is not hierarchal
but mutual. Especially, if there are three or more robots (robotA, robotB, and
robotC) on the land, They may define three transformations between CRSA–
CRSB, CRSB–CRSC and CRSC–CRSA. This means that a relation network of
CRSs by the transformations forms a general network instead of a tree.

The network of CRS may cause further problem. Consider again the above
case of robotA, robotB, robotC and CRSA, CRSB, CRSC . In this case, there
are two paths to transform a location data belongs CRSA into CRSB, that
is, to apply transformation CRSA–CRSB, or to apply transformation CRSA–
CRSC and transformation CRSC–CRSB successively. The two transformation
may answer different coordinate values for CRSB. Such situations can occurs
because of sensing noise and uncertainty of robot locomotion. Even between two
CRSs, there may be multiple transformations because map-matching used to
define the transformation can have various criteria to measure goodness of the
matching.

It is easy to implement a management mechanism of CRS and LD just inside
of a robot or among tightly-coupled robots in order to satisfy the above require-
ments. And, many works [5,6,7] have already realized such mechanisms. But,
as described in section 1, robots will be applied to widely varied services with
various kinds of other information systems like sensor networks. In such case,
robots needs to co-operate with GIS to share location information with these
systems. Unfortunately, GIS’s hierarchical structure of CRSs shown in figure 1
is not suitable to handles the cases of robotic applications discussed above. We
need a new framework of CRS that is compatible to GIS’s formalizations and
also can cover the requirements for robotics. In the next section, we will propose
such a framework CRSs that can handle the above cases flexibly.

3 Robotic Coordinate Reference System

3.1 Coordinate Systems

First of all, we define a concept of coordinate systems in the same way as the
definitions of the GIS field.

A coordinate system (CS) is defined with the following parameters:

– the number of dimensions.
– domain, units and meaning of each dimensions.



332 I. Noda, H. Shimora, and H. Akiyama

Fig. 2. UML Class Diagram of Robotic Coordinate Systems

– relationship between dimensions.
– (optional) relationship to other CSs.

Typical examples of CS will be:

– Cartesian CS (1D: (x), 2D: (x, y), 3D: (x, y, z), and so on)
– 2D polar CS: (r, φ, θ)
– spherical polar CS: (ρ, θ, z)
– geodetic CS: (lat, lon, alt)
– dateTime CS: (t)

3.2 Coordinate Reference Systems

A coordinate reference system (CRS) is defined as an instance of a CS. Multiple
CRSs can be instances of a certain CS. In order to make it possible to identify a
certain CRS, a CRS can have an id that is unique in the world. In other words,
A CRS can be defined as follow:

CRS = 〈id, CS〉
It is important that no relations to other CRSs are included in the primary
definition of a CRS. This makes a structure of the set of CRSs flexible and
dynamic as described below.

3.3 Coordinate Value

A coordinate value (CV) is a tuple of scalars that indicates relative spatial rela-
tion from the origin defined by CRS. Formally, a CV can be denoted as follows:

CV = (scalar, scalar, ...).

The number of scalars in a CV is equal to the number of dimensions of the CS
of a corresponding CRS. Correspondence between a CV and a CRS is specified
by a location data as follows.



Conceptual Framework to Maintain Multiple and Floating Relationship 333

Fig. 3. Example of Networked Relationship of CRS and Tr of the Proposed Framework

3.4 Location Data

A location data (LD) denote a certain spatial point in a space by a pair of a CV
and a CRS.

LD = 〈CV, CRS〉

We say “an LD belongs to a CRS (LD ∈ CRS)” when the LD has the CRS as
a part.

An LD is the atomic location information in this framework. This means
that all location information should be constructed by LDs. For example, a line
strings consists of a list of LDs, and, a polygon consists of a exterior linear ring
and a set of inner linear rings, where each ring consists of a closed line strings.

3.5 Transformation

A transformation (Tr) defines a relation between two CRSs. Here, the ‘relation’
means how to form an LD that belongs to a target CRS and indicates the same
spatial point of a given LD that belong to a source CRS. In other words, a
transformation is a mapping function from a source CRS to a target CRS.

Tr : CRSsource → CRStarget

LDtarget = Tr(LDsource)

where LDtarget and LDsource are supposed to indicate an identical spatial point.
A Trcan be uni-directional or bi-directional transformation between two CRS.



334 I. Noda, H. Shimora, and H. Akiyama

We can define multiple Trs between a certain pair of CRSs. In this case, a
source LD can be transformed to a target LD using one of them specified by a
hypothesis framework described below.2

Relationship Between Transformation and Datum. Tr does not appear
in GIS’s definitions as a primary concept. Instead, GIS uses datum, which defines
relative spatial relation of origins and orientations of two CRSs, as a primitive.
We can derive a Trfrom a given datum. Also, in the most case, we can derive
a datum from a given Tr. But, the Tr notation is more flexible than datum
notation, because Tr can represent analytic continuations of multiple mapping
functions, which is difficult to handle by datum. Also, Tr concepts can be ex-
tended into symbolic representation of location information. In this case, Tr can
be represented as an association function.

Another difference between Tr and datum is in relation to CRS. In GIS’s
concept, CRS is defined using a datum. On the other hand, in our framework,
a definition of a CRS is independent from Tr. Therefore, we can have a CRS
that has no relation to other CRSs, and also can have a CRS that has multiple
relation to another CRS.

3.6 Hypothesis

As described above, two CRSs can have multiple Tr paths between them, where
Tr path means a ordered list of Tr that connect two CRSs. In this case, we can
get multiple transformed LDs in a target CRS from a source LD. And, there are
no way to determine which one is the suitable target one.

In order to avoid such case, we introduce a concept of a hypothesis (Hy). A
Hy consists of a set of Trs that forms multiple tree of CRS and Tr, each of which
never intersects with each other.

Hy = {Tri}

Because the set of Trs forms trees in a network of whole CRS (as a node) and
whole Tr (as a link), there are at most one path between a given pair of CRSs.
Because of this feature, we can guarantee that a transformation under a Hy
generate one or zero target LD from a given LD.

An Hy is a kind of belief of a robot or an application that utilize this frame-
work. ‘Belief’ means that the robot or application suppose the set of Tr provides
suitable transformation for their task. The Hy can be generated, copied, and
modified freely by robots or applications. Also, they can share the same Hy to
exchange location information.

2 We may be possible to utilize multiple Trs to transform an LD. In order to handle
such cases, we need to introduce a mechanism to represent error information into
the proposed framework. If we permit to include the error information, multiple LDs
calculated by multiple Trs can be considered particle set used in particle filters.



Conceptual Framework to Maintain Multiple and Floating Relationship 335

3.7 Illustrated Description of CRS Structure

Figure 2 shows an UML class diagram of the proposed framework. As described
above, the main difference to the CRS definitions in GIS is dependency among
these concepts. Because of this difference, we can realize a flexible manipulation
and maintenance of CRSs for robotic applications. Note that we can convert
the definitions of CRS in GIS to the new CRS automatically using the relation
between datum and Tr.

Figure 3 shows an example of conceptual network of CRSs describe above.
As shown in this figure, the relationship among CRSs according to Trs forms
a complex network, in which, there are multiple path of Trs to reach from a
CRS to another CRS. Also, some subset of CRSs may form a separated sub-
network as shown in the bottom of the figure. This means LDs belong to these
CRSs can be transformed into another CRS in the sub-network, but can not be
transformed into other CRSs in the main network in the middle of the figure. It
is also possible to have standalone CRSs that do not connect to another CRSs
by Trs. This means that LDs belongs to the CRS is closed to the CRS unless a
newly generated Tr connect the CRS to another CRS.

4 Example Operations of Robotic CRS

Figure 4 shows an example of CRS operations for sensing robot behaviors. In
the first frame, a robot is switched-on at unknown places. The robot create its
local CRS and a LD to indicate the initial position of the robot. Because the
robot has no knowledge about this place, the origin of the local CRS may be the
initial position. In such case, the initial LD’s coordinate value consists of zero
(origin) in a Cartesian CS.

In the second frame, the robot move for a while, and estimate the new position
by a certain way like sensing or odometers. Then a new LD for the new position
is registered using the local CRS.

In the third frame, the robot detect an box object, and register a new LD is
created to represent the position of the box under the local CRS.

In the fourth frame, the robot detect a cylinder pillar, which is a well-known
landmark that is registered a database of the robot. The robot register a new
LD for the pillar under the local CRS. In the same time, it also retrieves a LD
of the pillar under a globally well-known CRS.

After then, in the fifth frame. the robot consider the both LDs of pillar’s
position under the local CRS and the global CRS can be unifiable. Then, it
define a new Tr that links the two CRSs. After then, locally-detected position
information like the box’s location can be transformed into the global CRS. In
the same time, other LDs under the global CRS can be transformed to the local
CRS. Therefore, the robot can continue to use the local CRS to navigate itself.

Figure 5 shows another example in the case a robot try to merge location
informations that belong to different CRSs that are declared according to its
movement. In the first frame of the figure, the robot detect three objects by a
sensor and determine their positions (LD1, LD2, and LD3) that belong to CRSa.



336 I. Noda, H. Shimora, and H. Akiyama

Fig. 4. Example of Operation of Robotic CRS: “A robot is switched on in unknown
environment”



Conceptual Framework to Maintain Multiple and Floating Relationship 337

Fig. 5. Example of Operation of Robotic CRS: “A robot merges maps after move”



338 I. Noda, H. Shimora, and H. Akiyama

CRSa already has a transformation Trw to CRSc that has two location data
(LD4, LD5), so that the robot can calculate spatial relations among LD1∼LD5.
Then, in the second frame, the robot changes its position and declare CRSb for
the new position. The robot may define a transition Trz between CRSa and
CRSb using odometer of the movement. Using Trz, the robot can calculate the
relation between new location data (LD6, LD7, LD8) detected from the new
position and the previous location data(LD1∼LD5) (in the third frame). On
the other hand, the robot may perform SLAM using some landmarks to refine
Trz. The fourth frame shows the case when the robot supposes that LD8 and
LD2 indicate an identical position. Trx is defined to realize to unify LD8 and
LD2. Because such unification may be ambiguous, the robot may find another
unifiable pair (LD8 and LD1) and generate another transformation Try. As a
result, there are three possible hypothesis, Hyx = {Trx, Trw}, Hyy = {Try, Trw},
and Hyz = {Trz, Trw} to determine spatial relation among LD1∼LD8.

5 Concluding Remark

We have investigated the requirement of robotic application and the limitation
of traditional framework of coordinate reference systems (CRSs) used in GIS,
and found that the traditional one can not handle issues on CRS for the robotic
applications. Based on the discussion, we design a new framework of the CRSs
that provides flexible and dynamic relationship among CRSs and also can include
the original CRS formalization for GIS.

The proposed framework has the following flexible features for robotics:

– We can have multiple sets of CRSs that are independent with each other.
When a robot is working only in a building that has multiple floors and
rooms, it is useful to have a set of CRSs each of which corresponds to each
floor/room and related with each other. But such CRSs need not to have
relations to global CRSs, because the robot does not care about the outside
of the building.

– We can have ambiguous multiple relations among CRSs. Generally, a mobile
robot try to determine its location by sensing landmarks or using infor-
mation from sensors in its environment. In the determination process, the
robot raises several hypothesis with a certain ambiguity about its locations,
because sensing data is generally incomplete and noisy. It will be easy to
reflect such situations in the proposed framework, because the framework
can accept multiple relations between a certain pair of two CRSs.

There also remain the following open issues in the proposed framework.
– How to represent mobile CRS: When a robot continuously moves, its local

CRS should be dynamically changing through time. In order to represent
such CRS, we need some extension on the proposed framework.

– How to store and retrieve location data under multiple CRSs: Generally,
geospatial database implementation suppose that all location data belong
to the same CRS. Therefore, it is difficult to handle location data under
multiple CRS and multiple hypotheses.



Conceptual Framework to Maintain Multiple and Floating Relationship 339

References

1. OGC: OpenGIS Implementation Specification: Coordinate Transformation Services.
rev.1.00 edn. OGC 01-009 (January 2001)

2. OGC: OpenGIS Location Services (OpenLS): Core Services. rev.1.1 edn. OGC 05-
016 (May 2005)

3. OGC: OpenGIS Geography Markup Language (GML) Encoding Standard. rev.3.2.1
edn. OGC 07-036 (August 2007)

4. Ohno, K., Tsubouchi, T., Shigematsu, B., Maeyama, S., Yuta, S.: Outdoor naviga-
tion of a mobile robot between buildings based on dgps and odometry data fusion.
In: Proc. of IEEE International Conference on Robotics and Automation (ICRA)
2003, September 2003, vol. 2, pp. 1978–1984. IEEE, Los Alamitos (2003)

5. Thrun, S.: A probabilistic online mapping algorithm for teams of mobile robots.
International Journal of Robotics Research 20(5), 335–363 (2001)

6. Thrun, S., Liu, Y., Koller, D., Ng, A., Ghahramani, Z., Durrant-Whyte, H.: Simul-
taneous localization and mapping with sparse extended information filters. Interna-
tional Journal of Robotics Research 23(7-8) (2004)

7. Howard, A.: Multi-robot simultaneous localization and mapping using particle fil-
ters. The International Journal of Robotics Research 25(12), 1243–1256 (2006)



S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 340–351, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Conceptual Design of a Power Distribution Line 
Maintenance Robot Using a Developed CG Simulator and 

Experimental Robot System 

Kiyoshi Tsukahara1, Yorihiko Tanaka1, 
Yingxin He2, Toshihisa Miyamoto2, and Kyouichi Tatsuno2 

1 Chubu Electric Power Co., Inc. Japan 
1, Toushinchou, Higashi-ku, 461-8680 Nagoya, Japan 

2 Department of Electrical and Electronic Engineering, Meijo University, 
1-501, Shiogamaguchi, Tenpaku-ku, 468-8502 Nagoya, Japan 

tatsuno@ccmfs.meijo-u.ac.jp 

Abstract. We have been developing a conceptual design for a power distribu-
tion line maintenance robot system using a CG (Computer Graphics) simulator 
and an experimental robot system. This system is a semi-autonomous robot sys-
tem which performs - tasks with task level instructions. We developed the  
design while during construction of the CG simulator. We believe that we  
demonstrate a possible solution to working up a semi-autonomous robot system.  

Keywords: Robot controller, CG simulation, Power distribution line mainte-
nance robot. 

1   Introduction 

Power distribution line maintenance tasks are presently performed by human workers, 
as shown in Fig. 1. The workers have to work in locations high above the ground and 
near high voltage lines. About 15 years ago, power distribution line maintenance 
robots [1] were developed for maintenance tasks to improve safety and efficiency. 
Those robot systems were remotely operated systems using master-slave manipulators 
or joysticks. It is difficult for the workers to manipulate master-slave arms and joy-
sticks, however, because these apparatuses do not move as dexterously as human 
arms, and visual display systems do not provide wide view ranges. 

To ease the operator's burden, we are investigating a semi-autonomous power  
distribution line maintenance robot system that performs the tasks using task-level 
directions, for example “Install the switch gear.” We developed the CG simulator in 
making a conceptual design for the semi-autonomous power distribution line mainte-
nance robot [2]. The CG for the robot mechanism is shown in Fig. 2. The software has 
been developed on the Windows system, and task instructions are written in Microsoft 
Access. We improved the description format of the task instructions and work objects 
for the conceptual design and changed the OS (Operating System) from Windows to 
Linux. The improvements made it easier to write task instructions and work objects. 



 Conceptual Design of a Power Distribution Line Maintenance Robot 341 

The change in the OS enables direct application of the controller software to the  
experimental robot system. 

 

Fig. 1. Power distribution line maintenance Task performed by human workers 

Vehicle

Boom

Right Arm

Crane

Electric Pole

Approach Arm High-Voltage Insulator

Power Distribution Line

Bolt-nutLeft Arm

Cross Arm

Vehicle

Boom

Right Arm

Crane

Electric Pole

Approach Arm High-Voltage Insulator

Power Distribution Line

Bolt-nutLeft Arm

Cross Arm

 

Fig. 2. CG of a power distribution line maintenance robot 

In this paper, we will describe a general procedure for the robot systems, the con-
ceptual design of the power distribution maintenance robot using the improved CG 
simulator, and a task performance experiment using an industrial robot.  



342 K. Tsukahara et al. 

2   General Procedure for Conceptual Design of the Robot System 

We have been developing the conceptual design according to the procedure shown in Fig. 3. 

1) Function design: 

The functions of the robot are defined by work environments and motions for the task. 
① Definition of work environments: We created 3D-models of the work environ-
ments, which comprise an electric pole, a cross arm, high-voltage insulators, electric 
wire and so on. Work environments define the operating range of the robot. 
② Definition of robot motions for 
the tasks: The motions of the robot 
arm tip perform the tasks. We de-
scribe the motions of the robot arm 
tip with a task instruction sheet. The 
motions specify the actuators of the 
robot arm. 

2) System design: 

The next step in the design is the 
system design. We created a CG im-
age of a robot mechanism and a robot 
controller for execution of the tasks. 
① Drawing of a CG image of the 
robot: Work environments and 
robot motions specify the operating 
range of a robot and actuators of 
arm joints. We constructed 3D-models of the robot mechanism. 
② Construction of the controller: We constructed the hardware and software architecture 
for the controllers. 
3) CG Simulation:  

We developed a CG simulation to evaluate the conceptual design of the robot system. 

3   Conceptual Design of a Power Distribution Line Maintenance 
Robot Using the Improved CG Simulator 

We have been developing a conceptual design of a power distribution line mainte-
nance robot using the procedure described above while concurrently producing the 
CG simulator. Using the CG simulator we have produced, we will evaluate the design 
with the robot. 

3.1   Functional Design 

3.1.1   Definition of Work Environments 
We constructed the 3D-model of the work environments. Figure 4 shows examples 
of these environments. The models are constructed by superimposing the 3D frame 
 

1) Function design 
① Definition of work environments 
② Definition of robot motions for the 

tasks 

2) System design 
① Drawing of a CG image of robot 
② Construction of a controller 

3) CG Simulation 

Fig. 3. Procedure for design of tbe robot 



 Conceptual Design of a Power Distribution Line Maintenance Robot 343 

models of the parts in the work environments on two photographs taken from differ-
ent angles (Fig.4). The 3D frame models of the parts include an electric pole, a cross 
arm, high-voltage insulators, 
a transformer, electric wires, 
and so on. These 3D frame 
models are drawn using ani-
mation software (3ds Studio 
Max). The data in the 3ds 
Studio Max file (.3ds) is 
saved to the “structure.” The 
“Structure” is a word for use 
in C language. Figure 5 
shows the structure format of 
the part objects. The structure 
includes vertices, faces, col-
ors, position/attitude of the 
part object and parent/child 
relation. The work environ-
ment is expressed as a set of 
the structures  named in the 
Work environment database.  

We determined the boom length by drawing the boom link in the CG of the work 
environments. We produced the robot database with the same structures.  

The part objects are not independent in the former Work environment database. 
The work environment is expressed as one object. In new system, the work environ-
ment is expressed as a set of structures of the part objects. We can easily add and 
delete parts in the Work environment database. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Structure format of a part object in the work environment sdatabase 

3.1.2   Definition of the Robot Motions for the Tasks 
The motions of the robot arm tip perform the tasks. We have to describe the motions 
to specify operating area, velocity, torque and so on. We describe these motions using 
 

Fig. 4. an example of 3D model of work  
environments 

typedefstruct{ 
   char ObjectName[32];                          //Object name 
   vector <SVERTEX_L> svertex_L;    //Local coordinate of vertex 
   vector <SVERTEX_W> svertex_W;    //Word coordinate of vertex 
   vector <SFACE> sface;                       //Data of face 
   int vernum;                                              //Number of vertex 
   int facenum;                                          //Number of face 
   SCOLOR scolor;                                     //Data of material 
   double TMatrix_L[4][4];  //T matrix of local position 
   double TMatrix_W[4][4];  //T matrix of word position 
   int drawflag;                               //flag of draw 
 }SWORKENVIRONMENT; 



344 K. Tsukahara et al. 

Fig. 6. Knowledge database for “bolt insertion” task 

natural language and the move command (in other words, robot language). Figure 6 
shows the format of the task instruction, which is a sequence of robot language com-
mands. It is referred to as a task instruction sheet. This sheet is a text file. We can 
easily write these using a text editor. We named a Task knowledge database, which is 
a set of the task instruction sheets. Figure 6 shows a task instruction for the “Bolt 
insertion” task. A motion command is written within a line, and the line is composed 
of a command name and certain parameters. Parameters include position/attitude, 
velocity, coordinates for the position/attitude, and so on. Table 1 shows frequently-
used move commands. The description in natural language is used in design, and the 
description in robot language is used in CG simulation (animation).  

Table 1. List of move commands 

Robot language Content of instruction 

MoveP simple Movement 

MoveJoint rotate command 

MoveFC movement by a force control 

MoveVF movement by a visual feedback

Attach connect command 

Detach decouple command 

The former Task knowledge database is described using Microsoft Access. We do 
not need a complex search method in the Task knowledge database. A simple format 
is better for our Task knowledge database, as shown in Figure 6. We can write the 
task instructions for various tasks using natural language and the move commands for 
the power distribution line maintenance robot. 

3.2   System Design  

3.2.1   Drawing a CG Image of a Robot 
We showed the CG image of the designed maintenance robot in Fig. 2. We  
constructed the CG image by modifying a bucket car [3] for human workers.  



 Conceptual Design of a Power Distribution Line Maintenance Robot 345 

Man-machine interface

Motion planner

Task instruction message

Move command message
(Robot language movement instruction)

The value of position / velocity

Motion sequences
Move command

OpenCV

Input task instruction
•GUI
•Voice command
•Joystick

Task planner
•Search task knowledge database 
•Generate command table 
•Execute the function by Command 
•Generate the movement target of arm 

•Generate motion table

Arm controller

•Inverse kinematics
•Control the angle of arm joint

Tool controller
•Control of tools

Robot database
•3D module of robot
• Link parameter

Environment 
database

•3D module of 
work object

3 dimension 
shape and
position

Task knowledge 
database

•Motion sequences
•Robot language

Task teaching editor

Vision system
•Input 3D work    
environment

•Visual feedback

CG display

OpenGL
(Vehicle, Boom, Approach arm, 
Left/Right arm controllers)

Man-machine interface

Motion planner

Task instruction message

Move command message
(Robot language movement instruction)

The value of position / velocity

Motion sequences
Move command
Motion sequences
Move command

OpenCV

Input task instruction
•GUI
•Voice command
•Joystick

Task planner
•Search task knowledge database 
•Generate command table 
•Execute the function by Command 
•Generate the movement target of arm 

•Generate motion table

Arm controller

•Inverse kinematics
•Control the angle of arm joint

Tool controller
•Control of tools
Tool controller
•Control of tools

Robot database
•3D module of robot
• Link parameter

Robot database
•3D module of robot
• Link parameter

Environment 
database

•3D module of 
work object

Environment 
database

•3D module of 
work object

3 dimension 
shape and
position

Task knowledge 
database

•Motion sequences
•Robot language

Task knowledge 
database

•Motion sequences
•Robot language

Task teaching editorTask teaching editor

Vision system
•Input 3D work    
environment

•Visual feedback

Vision system
•Input 3D work    
environment

•Visual feedback

CG display

OpenGL
(Vehicle, Boom, Approach arm, 
Left/Right arm controllers)

 

Fig. 7. Robot controller architecture for CG simulator 

The vehicle is driven to an electric pole which is to be serviced, the boom is raised 
near a cross arm 12 meters above the ground, and the approach arm rings the left and 
right arms close to the work objects. The left arm and right arms are moved with the 
move commands for the task. 

3.2.2   Construction of a Controller 
1) Controller architecture 

Figure 7 shows the controller architecture of the CG simulator for the power distri-
bution line maintenance robot system. This architecture is based on an “Open Robot 
Controller Architecture” [4] that we have proposed. The “Open Robot Controller 
Architecture” has been proposed for easy constructing of a robot controller. The 
architecture of CG simulator is a multi-agent system composed of eight agents and 
three databases. The eight agents are the Man-machine interface, Task planner, Mo-
tion planner, Arm controller, Tool controller, CG display, Vision and Task teaching 
editor. The three databases are the Task knowledge database, Work environment 
database and Robot database. In this system, the instructions and requests among 
agents are sent with messages in character code. The robot system executes - tasks 
by exchanging messages among the agents. Each agent is activated by the interrup-
tion of socket communications, with agents running the function programs corre-
sponding to the messages. 

2) System operations  

① Vision system 
The function of the Vision system is to input the working environment. The operator 
takes two pictures of the working environment and superimposes a 3D frame model  
 



346 K. Tsukahara et al. 

of the work object on the pictures (Fig. 4). This operation permits a 3D work envi-
ronment model to be constructed in the computer. This 3D work environment model 
is saved in the Work environment database. 

② Task teaching editor 
Task teaching editor is an agent for editing the Task knowledge database. The opera-
tor uses a GUI (Graphical User Interface) for the editor to select the motion com-
mands and input the parameters. When the operator edits the position and attitude of 
the tip of the robot arm in a task instruction sheet, we indicate theses in the CG with a 
joystick. 

③ Man-machine interface 
The function of the Man-machine interface is to input the task instructions. The op-
erator provides instructions for  task sin the GUI by clicking a mouse or using a voice 
input. The man-machine interface recognizes these requests and sends the correspond-
ing task-level instructions to the Task planner as messages in character code.  

④ Task planner 
After the Task planner receives the task instruction from the man-machine interface, it 
reads in the task instruction sheet from the Task knowledge database. The contents of 
a task instruction comprise the sequence of motion commands for the robot arm tip. 
Then the Task planner transforms the positions from the work object coordinates to 
the arm base coordinates by referring to the position/attitude of the robot and the work 
object of the environment database. Finally, the Task planner sends the motion com-
mands to the Motion planner. 

⑤ Motion planner 
The Motion planner generates an S-shaped position trajectory for the arm tip from the 
current position to the target position. The generated time-position table is sent to the 
Arm controller. This table is called the Motion table.  

⑥ Arm controllers 
Arm controllers include the Vehicle controller, Boom controller, Approach Arm con-
troller, and Right and Left Arm controllers. Each controller converts the positions and 
attitudes of the arm tip in the Motion table into joint angles by means of inverse 
kinematics and calculates the T-matrix (Transition matrix). The T-matrix expresses 
the position and attitude of each arm link. Arm controllers update the present  
positions and attitudes of the arm links into the Robot database. 

⑦ Tool controllers 
Tool controllers control tools such as grippers and nut runners used in the power dis-
tribution line maintenance tasks. The gripper grasps insulators and the nut runner 
removes nuts from the high-voltage insulators. 

⑧ CG display 
The CG display reads the data from Robot database and Work environment database 
and draws the shapes of the arm links and the work objects in the environments.  
 



 Conceptual Design of a Power Distribution Line Maintenance Robot 347 

 
 
 
 

(a) Remove the nut of the high voltage 
insulator 

         (b) Install the switch gear 

   (c) Peel off coats of the main cable 

(e) Install the insulation cover           (f) Remove the insulator 

(d) Connect the cable of switch gear 

Fig. 8. CG simulation of the task “install switch gear” 



348 K. Tsukahara et al. 

OpenGL (Open Graphics Library) [5] is used to draw the 3D models of the robot and 
the work objects in the environments. The CG display is the monitor of the robot 
system, helping the operator to move the arm. Using the CG display and the pictures, 
the operator indicates the target position of the arm. 

3.3   CG Simulation 

Using the CG simulator, we conducted teaching and simulation for a maintenance 
task, “Install a switch gear,” for verification of the conceptual design and task per-
formance evaluation of our proposed semi-autonomous power distribution line main-
tenance robot. The task, “Install a switch gear,” is a major task. It takes about half a 
day (4 hours) for a human worker to perform this task. 

Figure 8 shows the continuous images of the CG simulation of the real  
maintenance task, “Install a switch gear.” 

1) Remove the nut of the high voltage insulator. (Fig. 8(a)) 
The part-recovery box is installed on the right work arm and the nut runner tool is 
installed on the left work arm. The nut of the insulator is detached with a nut runner 
tool. The removed nut is deposited in the part-recovery box. 

2) Install the switch gear. (Fig. 8(b)) 
The hook to hang the switch gear is installed on the crane. The switch gear is lifted up 
between the cables with the crane and fixed to the steel cross arm. 

3) Peel off coating of the main cable. (Fig. 8(c)) 
The paring tool is installed on the right work arm. The coating of the cable is peeled 
off with this tool. 

4) Connect the cable of switch gear. (Fig. 8(d)) 
The pressure tool for the terminal is installed on the right work arm. The cable of the 
switch gear is connected to the main line cable with this tool. 

5) Install the insulation cover. (Fig. 8(e)) 
The pressure tool for the insulation cover is installed on the right work arm. The  
insulation cover is installed with this tool. 

6) Remove the insulator. (Fig. 8(f)) 
The cutter tool is installed on the right work arm and the Gripper tool is installed on 
the left work arm. The bypass cable of the insulator is cut with the cutter tool, and the 
insulator is removed with the Gripper tool. 

We have determined that the robot system we have designed can perform the task 
with task-level instructions in an ideal computer world. 

4   “Bolt Insertion” Experiment Using Experimental Robot System 

4.1   Outline of the Experimental Robot System 

We created a CG simulator and investigated the task execution with task-level in-
structions. The CG simulator conducts the task in the computer environment, where 



 Conceptual Design of a Power Distribution Line Maintenance Robot 349 

there is no position error. To perform tasks in the real world, we developed an  
experimental system that performs the tasks in an actual physical environment. This 
experimental system is using the Vision system (Fig.7) to compensate for the position 
differences in the computerized world and the actual world. It also uses the Vision 
system to execute visual feedback to adjust the position of the task objects, using a 
force control to do contact work. 

Work arm

Approach arm

Bolt

Hole

Robot arm

Electric poleMobile vehicle

Camera

Work arm

Approach arm

Bolt

Hole

Robot arm

Electric poleMobile vehicle

Camera

 

Fig. 9. Relation of CG simulator and the experimental robot 

As shown in Fig. 9, the experimental robot system is composed of an industrial ro-
bot arm and a vehicle, and it simulates the approach arm and left work arm in the 
power distribution line maintenance robot. The vehicle is treated as the end of  
the approach arm, and the industrial robot arm is treated as the left work arm set at the 
end of the approach arm. Using the experimental robot system, we first tried to per-
form the basic “bolt insertion” task. This was a simulated “high-voltage insulator 
insertion” task performed because the high-voltage insulator is too heavy. 

We can perform the experiments using almost the same agents for the CG simula-
tor. The computer programs on Linux can execute the task in the experimental  
system. 

4.2   Executing the Task “Bolt Insertion” 

The work sequence of task “Bolt insertion” is as follows: 

1) Finding the hole (Fig.10(a)). 
The operator clicks the hole in the picture.The robot vision then executes measure-
ment of the 3D position of the hole and saves it to the Environment database. 

2) Moving the bolt to a position 2 cm above the hole (Fig.10(b)). 
The system retrieves the hole position from the environment database, then the robot 
arm moves the bolt to a position 2 cm above the hole. 
 



350 K. Tsukahara et al. 

 

Fig. 10. “Bolt insertion” experiment 

3) Finding the bolt (Fig.10(c)). 
The operator clicks the marks on the bolt in the picture. Vision then executes meas-
ures the 3D position of the bolt and saves it to the Work Environment database. 

4) Aligning the bolt tip to the hole using visual feedback (Fig.10(d)). 
The system aligns the tip to the hole by visual feedback. The visual feedback method 
is utilized only to update and track the positions of the hole and the bolt through 
measurements made using the stereo cameras and to correct the trajectory to the  
target hole. 

5) Inserting the bolt into the hole under force control (Fig.10(e)). 
The arm controller measures the contact force between the bolt and the hole using a 
force sensor provided at the arm tip and controls the arm by means of an impedance 
control on which the position control is based. 

Yasukawa Electric Mfg. Co., Ltd. And Kyushu Electric Power Co., Inc. are also de-
veloping a semi-autonomous robot system. They carried the task performance  
experiments, for example “Band attachment” [6] and “sleeve insertion” [7]. 

5   Conclusion 

We have been developing a conceptual design of a power distribution line mainte-
nance robot system using a CG simulator and an experimental robot system. This 

(a) Click the hole using the 
mouse and measure the 
position of the hole 

(e) Insert the bolt into the 
hole using the force 
control 

(c) Click the bolt using the 
mouse and measure the posi-
tion of bolt 

(b) Move the bolt to a 
place which is 2 cm 
above the hole  

(d) Align the bolt tip to 
the hole by visual feed-
back 



 Conceptual Design of a Power Distribution Line Maintenance Robot 351 

system is a semi-autonomous robot system which performs tasks with task level in-
structions. We developed the design while concurrently constructing the CG simula-
tor. We believe that here we demonstrate a possible solution for the development of a 
semi-autonomous robot system for a power distribution maintenance tasks.  

We will improve the functions of the vision system to provide 3D measurement of 
positions of the work target and robot arm tip. 

References 

1. Yasukawa Electric Mfg. Co., Ltd. And Kyushu Electric Power Co., Inc. Development of the 
Power Distribution Line Maintenance Robot. The Robotics Society of Japan 15(1), 47 

2. Sawa, H., He, Y., Tatematsu, H., Kaji, Y., Tatsuno, K.: Computer Graphics Simulator for a 
power Distribution Line Maintenance Robot. In: IEEE/RSJ International Conference on In-
telligent Robots and Systems, p. 194 (October 2006) 

3. http://www.aichi-corp.co.jp/syohin/index_sagyou_01denki.html  
4. Tatsuno, K.: An Example of Open Robot Controller Architecture. Micro-NanoMechatronics 

and Human Science (MHS 2005), pp. 35–40 (2005) 
5. http://www.opengl.org  
6. Mikawa, M., Yoshida, K., Tanno, M., Yoshizawa, N., Matsumoto, M.: Development of Vi-

sion - based Teleoperation System with Application to Band Attachment. Journal of the Ro-
botics Society of Japan 18(4), 529–534 (in Japanese) 

7. Murakami, S., Yano, K., Takaoka, K., Hashiguchi, Y., Irie, T., Goto, J., Wakizako, H., Ha-
segawa, T.: Automatic Insertion Work Based on Visual Measurement and State Transition 
Analysis with Contact Force Estimation. The Transactions of the Institute of Electrical En-
gineers of Japan. C 122(1), 124–132 (in Japanese) 



Author Index

Akiyama, Hidehisa 328
Ando, Noriaki 87
Anzalone, Salvatore Maria 234
Araújo, Helder 207
Awaad, Iman 5, 99

Balaguer, Benjamin 222
Balakirsky, Stephen 111
Balaram, Bob J. 65
Bonsignorio, Fabio 53
Bordignon, Mirko 123
Bruyninckx, Herman 1

Callegari, Massimo 53
Cameron, Jonathan 65
Carca, Enrico 53
Carpin, Stefano 222
Carrozza, Maria Chiara 270
Cesetti, Andrea 17
Charpillet, François 293
Chella, Antonio 234
Cinquegrani, Francesco 234
Corominas Murtra, Andreu 135

Dalla Libera, Fabio 246
Dario, Paolo 270
Doherty, Patrick 147

Finke, Markus 258
Friedmann, Martin 29, 183
Frontoni, Emanuele 17

Gabrielli, Andrea 53
Gini, Maria 317
Glad, Arnaud 293
Greggio, Nicola 270

Habibi Shahri, Amin 283
Hartanto, Ronny 99
He, Yingxin 340
Heintz, Fredrik 147
Herzog, Arthur 41

Ishiguro, Hiroshi 2, 246

Jacobi, Daniel 41
Jain, Abhinandan 65

Kleiner, Alexander 159
Kotoku, Tetsuo 87
Koyanagi, Eiji 305
Kramer, Thomas R. 111
Kropff, Matthias 41
Kvarnström, Jonas 147

Laschi, Cecilia 270
Legras, François 293
León, Beatriz 5, 99
Lim, Christopher 65
Listmann, Kim 41
Longhi, Sauro 17

Magid, Evgeni 305
Mancini, Adriano 17
Manfredi, Luigi 270
Menegatti, Emanuele 246
Metzger, Mieczyslaw 195
Mikkelsen, Lars Lindegaard 123
Minato, Takashi 246
Mirats Tur, Josep M. 135
Miyamoto, Toshihisa 340
Molfino, Rezia 53
Mota, Lúıs 171
Mukherjee, Rudranarayan 65

Nakamura, Yoshihiko 3
Nanjanath, Maitreyi 317
Nayar, Hari 65
Noda, Itsuki 328

Ozawa, Kentaro 305

Pagello, Enrico 246
Pasemann, Frank 75
Peters, Stephen 65
Petersen, Karen 29, 41
Petters, Sebastian 183
Pilato, Giovanni 234
Plöger, Paul 99
Polaków, Grzegorz 195
Pomerantz, Marc 65
Principi, Marco 53
Proctor, Frederick M. 111



354 Author Index

Radkhah, Katayon 41
Reder, Leonard 65
Reinl, Christian 41
Reis, Lúıs Paulo 171

Sandini, Giulio 4
Sandoval, Oscar 135
Sanfeliu, Alberto 135
Schultz, Ulrik Pagh 123
Schweikard, Achim 258
Scrapper, Christopher J. 111
Shaikh, Faisal Karim 41
Shakkottai, Partha 65
Shimora, Hiroki 328
Simonin, Olivier 293
Sorbello, Rosario 234
Steinbauer, Gerald 159
Strobel, Armin 41
Suehiro, Takashi 87

Tanaka, Yorihiko 340
Tatsuno, Kyouichi 340
Thomas, Dirk 183
Tsubouchi, Takashi 305
Tsukahara, Kiyoshi 340

Vassallo, Giorgio 234
von Stryk, Oskar 29, 41, 183
von Twickel, Arndt 75

Wall, Stephen 65
Wotawa, Franz 159

Xavier, João 207

Yoshida, Tomoaki 305

Zahedi, Keyan 75
Zingaretti, Primo 17
Zoppi, Matteo 53


	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talks
	Simulation, Modeling and Programming for Autonomous Robots: The Open Source Perspective
	Studies on Humanlike Robots – Humanoid, Android and Geminoid
	Modeling, Understanding, and Interacting with Humans
	Humanoids, Brain and Cognitive Sciences

	Simulation
	XPERSim: A Simulator for Robot Learning by Experimentation
	Introduction
	Related Work
	Approach
	Implementation
	Actuators and Sensors

	Distributing the Simulation
	XPERSim Server
	TeleSimView Client

	Results
	Discussion
	References

	From Simulated to Real Scenarios: A Framework for Multi-UAVs
	Introduction
	Framework
	Agent Structure
	Helicopter Dynamics Simulation
	Ground Control Station
	Virtual Reality and World Representation

	CAD Modelling
	Test Case: A Leader-Follower Mission
	Validation
	Conclusions and Future Works
	References

	Simulation of Multi-Robot Teams with Flexible Level of Detail
	Introduction
	Requirements for Robot Simulation
	Existing Robot Simulators

	Structure of Simulation in MuRoSimF
	Data Models
	Algorithms
	Controllers
	Execution of Simulations

	Motion Simulation
	Robot Specific Algorithms
	General Algorithms
	Discussion

	Sensor Simulation
	Results
	Applications
	Performance of Simulation

	Conclusions and Outlook
	References

	MM-ulator: Towards a Common Evaluation Platform for Mixed Mode Environments
	Introduction
	Benefits and Challenges of a Common Evaluation Platform
	Benefits of Validation by Using Multi-disciplinary Knowledge
	Basic Requirements

	Related Work
	Proposed Architecture
	Inner Node Architecture
	Inter Node Architecture
	Visualization and Analysis
	First Implementation Steps

	Conclusion
	References

	A Multi-agent 3D Simulation Environment for Clothing Industry
	Introduction
	Cloth Manufacturing Flexibility and Leanness: State of the Art and Trends
	The Reference Environment
	Simulator
	Part Models
	Agent Models
	Agent’s Behaviours

	Tests and Results
	Conclusions
	References

	A Lunar Surface Operations Simulator
	Introduction
	Models
	Vehicle Models
	Habitat Model
	Solar Panels
	Terrain
	Sun Propagation

	Parametric Analysis
	Parameters
	Parametric Analysis Runs

	Conclusions
	References

	YARS: A Physical 3D Simulator for Evolving Controllers for Real Robots
	Introduction
	Approach
	YARS
	Examples
	Outlook
	Discussion
	References


	Programming
	A Software Platform for Component Based RT-System Development: OpenRTM-Aist
	Introduction
	What Is Needed for RT Software Platform
	Code Reusability
	Various Granularity Support
	Active Module
	Realtime Capabilities
	Platform Independency
	Social Requirement

	Component Model
	Metadata Acquisition
	Component Action
	Data Ports
	Service Ports
	Configuration

	Implementation
	OpenRTM-aist
	RTM Based Systems

	Conclusion
	References

	A Software System for Robotic Learning by Experimentation
	Introduction
	Related Work
	Approach
	Architecture
	The XPERSIF Components

	Distributing the Simulation
	Results and Discussion
	Discussion
	References

	A Mobile Robot Control Framework: From Simulation to Reality
	Introduction and Related Work
	Adding an Architecture: MOAST

	Reference Model Architecture
	Generic Module
	RCS Library

	MOAST Provided Functions
	Sensor Processing
	Mobility

	Migration to Real Hardware
	Future Work and Conclusions
	References

	Implementing Flexible Parallelism for Modular Self-reconfigurable Robots
	Introduction
	The ATRON Self-reconfigurable Robot
	The ATRON Platform
	Basic Requirements in Controller Development

	Flexible Concurrency Primitives
	Analysis
	An Extended ATRON Platform
	Augmenting the Event-Driven Model: Stackless Threads
	Java Futures as Concurrency Constructs

	Related Work
	Conclusions and Future Work
	References

	Real-Time Software for Mobile Robot Simulation and Experimentation in Cooperative Environments
	Introduction
	Framework Overview
	KnowledgeBasis
	Processes
	Layer 1: Basic Process Class
	Layer 2: Basic Interface Classes
	Layer 3: Specific Device/Algorithm Classes

	Graphical User Interface
	Real-Time Experiments. Position Tracking Example
	Simulated Experiments
	Real-World Experiments

	Conclusions
	References

	Knowledge Processing Middleware
	Introduction
	A Traffic Monitoring Scenario
	Knowledge Processing Middleware
	Stream-Based Knowledge Processing Middleware
	Knowledge Processes
	Timing

	DyKnow
	Related Work
	Summary
	References

	Towards Automated Online Diagnosis of Robot Navigation Software
	Introduction
	Model Learning
	The Communication Graph
	The Communication Behavior
	The Observers
	The System Description

	Model-Based Diagnosis
	Experimental Results
	Conclusion and Future Work
	References

	A Common Framework for Co-operative Robotics: An Open, Fault Tolerant Architecture for Multi-league RoboCup Teams
	Introduction
	Common Framework for Co-operative Robotics
	Requirements
	Architecture Layout

	Multi-Agent System Architecture
	Fault Management

	Framework Language
	Language Requirements
	Language Syntax

	Related Work
	Future Work
	Conclusion
	References

	Multilevel Testing of Control Software for Teams of Autonomous Mobile Robots
	Introduction
	Existing Technologies
	Robot Control Software
	Robot Simulations
	Testing Strategies
	Summary of Existing Technologies

	Developed Technologies
	RoboFrame
	MuRoSimF
	Integration of Simulation and Control Software

	Multilevel Testing Strategies
	Component Tests
	Online Testing
	Offline Testing
	Software in the Loop Testing
	Selection of Adequate Testing Strategy

	Summary and Outlook
	References

	ppPDC Communication Framework – A New Tool for Distributed Robotics
	Introduction
	Motivation
	Parallel Processing Producer – Distributor – Consumer
	ppPDC Protocol for Distributed Database
	Physical Media Supported
	Methodology for Implementation

	Preliminary Tests
	Concluding Remarks and Future Work
	References

	The Experimental Robotics Framework
	Introduction
	Related Work
	Overview of the Software Architecture
	The Managers
	Multiple Robot Interfacing
	Multiple Windows Display
	Inter-component Messaging
	Awareness and Contexts in ERF
	Component System
	Serialization
	Multi-modality Interaction
	GUI Interaction with the 3D World
	Item Tree
	Simplified OpenGL

	ERF Configuration Files
	Examples of Composite Applications
	Example of Scene Perception
	Example of Tele-Operation
	Example of Mixing a Real and a Simulated World
	Example of Simulating a Camera Projection
	Example of Sparse 3d Reconstruction Visualization
	Example of Kernel Filters in GLSL

	Future Improvements
	Conclusion and Contributions
	References


	Applications
	Where Am I? A Simulated GPS Sensor for Outdoor Robotic Applications
	Introduction
	Methodology and Implementation
	Satellite Tracking
	Signal and Noise Model
	Implementation Details

	Experimental Results
	Conclusion and Future Work
	References

	An Emphatic Humanoid Robot with Emotional Latent Semantic Behavior
	Introduction
	The Data-Driven Semantic Space Creation
	The Architecture of the Emphatic Humanoid Robot
	The Sub-conceptual Areaz
	The Emotional Area
	The Behavioural Area

	The Simulated Environment
	The Simulated Emphatic Humanoid Robot
	The Experimental Results on DinfoBots

	Conclusions and Future Works
	References

	Developing Robot Motions by Simulated Touch Sensors
	Introduction
	Developing Motions with Virtual Sensors
	Interpreting Touch Instructions
	Assuring Identical Conditions
	Experiments
	Discussion and Future Works
	References

	3D Simulation of a Motorized Operation Microscope
	Introduction
	Hardware
	Interface
	Simulation of the Microscope
	The 3D Model
	Kinematics
	Test of the Kinematics

	Applications
	Summary
	References

	Real-Time Least-Square Fitting of Ellipses Applied to the RobotCub Platform
	Introduction
	The iCub Robotics Platform
	The iCub Mechanics
	The ODE iCub Simulator

	Least Square of Ellipses: The State of the Art
	ExPerCub: The Robot Controlling Tool
	Our Vision Algorithm

	Experimental Set-Up
	Scenarios

	Results and Discussion
	Error Propagation Evaluation
	Scenarios’ Evaluation

	Conclusions
	Future Work

	References

	An Introduction to a New Commentator for RoboCup 3D Soccer Simulation
	Introduction
	Related Work
	System Architecture
	Game Analyzer
	Content Selector
	Scheduling Mechanism
	Interruption Mechanism

	Special Sound Effects Manager
	Crowd Sound Effect
	Referee Whistle, Stadium Announcer and Ball Kicks

	Additional Features
	Conclusion and Future Work
	References

	Authority Sharing in a Swarm of UAVs: Simulation and Experiments with Operators
	Introduction
	Approaches for Multi-UAVs Control
	Multi-agent Patrolling
	Autonomous Patrolling
	Operating Modes for Patrolling

	Pursuit
	Autonomous Pursuit
	Operating Modes for Pursuit

	Experiments with Operator
	Protocol
	Surveillance Performance
	Pursuit Performance

	Analysis and Perspectives
	Interpretative Complexity for the Operator
	Towards an Extension of Control Modes

	Conclusion
	References

	Rescue Robot Navigation: Static Stability Estimation in Random Step Environment
	Introduction
	The System Framework
	Stability Analysis
	Static Stability
	Modeling the Constraint of Static Equilibrium
	Coarse Posture Estimation

	The Algorithm
	Qualitative Classification of Green State

	Simulation and Experiments
	Conclusions and Future Work
	References

	Performance Evaluation of Repeated Auctions for Robust Task Execution
	Introduction
	Related Work
	Auction Algorithm
	Experimental Setup
	Adaptations for Real Robots
	Results
	Conclusions and Future Work
	References

	Conceptual Framework to Maintain Multiple and Floating Relationship among Coordinate Reference Systems for Robotics
	Introduction
	Requirements to Management of Coordinate Reference Systems
	Coordinate Reference System for Traditional GIS
	Requirements for Robotic Application

	Robotic Coordinate Reference System
	Coordinate Systems
	Coordinate Reference Systems
	Coordinate Value
	Location Data
	Transformation
	Hypothesis
	Illustrated Description of CRS Structure

	Example Operations of Robotic CRS
	Concluding Remark
	References

	Conceptual Design of a Power Distribution Line Maintenance Robot Using a Developed CG Simulator and Experimental Robot System
	Introduction
	General Procedure for Conceptual Design of the Robot System
	Conceptual Design of a Power Distribution Line Maintenance Robot Using the Improved CG Simulator
	Functional Design
	System Design
	CG Simulation

	“Bolt Insertion” Experiment Using Experimental Robot System
	Outline of the Experimental Robot System
	Executing the Task “Bolt Insertion”

	Conclusion
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




