LNAI 5325

Stefano Carpin Itsuki Noda
Enrico Pagello Monica Reggiani
Oskar von Stryk (Eds.)

Simulation, Modeling,
and Programming
for Autonomous Robots

First International Conference, SIMPAR 2008
Venice, Italy, November 2008
Proceedings

@ Springer




Lecture Notes in Artificial Intelligence 5325
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science



Stefano Carpin Itsuki Noda
Enrico Pagello Monica Reggiani
Oskar von Stryk (Eds.)

Simulation, Modeling,
and Programming
for Autonomous Robots

First International Conference, SIMPAR 2008
Venice, Italy, November 3-6, 2008
Proceedings

@ Springer



Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jorg Siekmann, University of Saarland, Saarbriicken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbriicken, Germany

Volume Editors

Stefano Carpin
University of California—Merced, Merced, CA, USA
E-mail: scarpin@ucmerced.edu

Itsuki Noda
AIST, Information Technology Research Institute, Tsukuba, Japan
E-mail: i.noda@aist.go.jp

Enrico Pagello
University of Padua, Padova, Italy
E-mail: epv@dei.unipd.it

Monica Reggiani
University of Padua, Vicenza, Italy
E-mail: monica.reggiani @unipd.it

Oskar von Stryk
Technische Universitdt Darmstadt, Darmstadt, Germany
E-mail: stryk @sim.tu-darmstadt.de

Library of Congress Control Number: 2008937919

CR Subject Classification (1998): 1.2.9-11,1.2.6, 1.6, F.1.1-2, K.4.3, H.5

LNCS Sublibrary: SL 7 — Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-89075-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-89075-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12561513 06/3180 543210



Preface

The First International Conference on Simulation, Modeling, and Programming
for Autonomous Robots (SIMPAR, 2008) was held during November 3-6, 2008,
in Venice, at Telecom Future Center, with a special session held in Padua, in
the Archivio Antico of the university.

The SIMPAR Conference was promoted to offer to a selected number of re-
searchers the possibility to discuss, in a highly stimulating atmosphere, how to
identify and solve the key issues necessary to ease the development of robot soft-
ware, and boost a smooth shifting of results from simulation to real applications.

Novel robotics applications driven by society and industry call for the devel-
opment of systems of ever-increasing complexity. Systems with sliding autonomy,
humanoid robots, distributed robots, and mobile sensor networks are just a few
examples of this exciting area. But unfortunately, steady improvements in robot
hardware have not been matched by corresponding advancements in robot soft-
ware. Besides fundamental open problems still waiting for sound answers, the
lack of broadly accepted and reusable development tools, libraries, standards,
and algorithms is one of the main technological obstacles towards the efficient
development of this new generation of robotics applications.

Hence, simulation environments able to replicate a robot’s sensing and motion
abilities and their interaction with the physical world are playing an essential role
in reducing the development time and cost of large-scale autonomous systems.
Notwithstanding, their use is still regarded by many as suspicious. Seamless
migration of code from general-purpose simulators to real-world systems is still
a rare circumstance, due to the complexity of robot, world, sensors, and actuators
modeling. The above challenges drive the quest for next-generation development
methods in robotics. We are convinced that SIMPAR has succeeded in giving
a first answer to this search, and it can be followed by proper scientific and
engineering actions in the near future.

This book collects 29 papers that were presented orally in Venice, selected
among a total of 42 that were submitted to the main single-track conference.
Seven papers address methodologies and environments of robot simulation, 11
refer to methodologies about autonomous robot programming and middleware,
and 11 describe applications and case studies. Each submitted paper received at
least two reviews by the members of a carefully selected international Program
Committee.

In addition, to enlarge the scientific attention towards particularly challeng-
ing environments, six workshops were offered: The Universe of RoboCup Simu-
lators; Standards and Common Platforms for Robotics; Omnidirectional Robot
Vision; Mini and Micro UAV for Security and Surveillance; Brain—-Computer In-
terface; and Teaching with Robotics. Papers presented at these workshops were
collected in a CD-ROM edited separately, by Emanuele Menegatti. A Tutorial
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on USARSim/MOAST was kindly offered by Stephen Balakirsky from the Na-
tional Institute of Standards and Technology. Two invited talks were also given
in Venice at the opening, by Herman Bruyninckx and Yoshi Nakamura, while
Hiroshi Ishiguro and Giulio Sandini gave invited talks in Padua, at a special
session organized on New Perspectives on Humanoids Research.

We want to gratefully thank Telecom Future Center for offering such a beau-
tiful ancient location, in the heart of the city of Venice. We also express our
gratitude to the Program Committee members and all other supporters, orga-
nizers, and volunteers who contributed in making SIMPAR, possible. Without
their effort, it would not have been possible to run SIMPAR!

November 2008 Stefano Carpin
Itsuki Noda

Enrico Pagello

Monica Reggiani

Oskar von Stryk
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Simulation, Modeling and Programming for
Autonomous Robots: The Open Source
Perspective

Herman Bruyninckx

Katholieke Universiteit Leuven
Department of Mechanical Engineering
Celestijnenlaan 300B
B3001 Leuven
Belgium
http://people.mech.kuleuven.be/~bruyninc
http://wuw.mech.kuleuven.be/robotics/acm/

Dr. Bruyninckx has been active in open source robot control software devel-
opment since the year 2000, and has created the Orocos project that targets
(realtime) simulation and control of complex robot systems. In this talk, he will
present a broad vision on which software components exist, or have still to be
developed, in open source, in order to reach an all-encompasing, powerful and
vertically integrated software stack that supports all possible aspects of advanced
robotics research and development. The talk gives an overview of current and
future projects that work towards these goals, and of the difficult problem of
having these projects work towards a common set of long-term objectives. The
presentation also indentifies several practical, technical, legal and commercial
hurdles, to be taken by participants (both academic and industrial) that are
part of the current open source ecosystems, or that are interested in becoming
part of such ecosystem.

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, p. 1, 2008.
(© Springer-Verlag Berlin Heidelberg 2008
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Studies on Humanlike Robots — Humanoid,
Android and Geminoid

Hiroshi Ishiguro

Department of Adaptive Machine Systems, Osaka University
ATR Intelligent Robotics and Communication Laboratories
JST ERATO ASADA Synergistic Intelligence System Project
ishiguro@ams.eng.osaka-u.ac.jp
http://www.ed.ams.eng.osaka-u.ac.jp

Why are we attracted to humanoids and androids? The answer is simple. We,
humans, always anthropomorphize targets of interaction. In other words, we
find a human itself in the humanoid. This is the reason why I am studying on
humanoids and androids.

I have encountered the uncanny valley problem when I have developed the
child android. Then, I have developed the female androids for compensating
the problem and studied on human likeness represented with the robot in both
of Robotics and Cognitive Science. However, a more serious problem is that
the android could not naturally talk with people because of lack of the perfect
Al. Therefore, I have developed the geminoid that is a tele-operated android
connected through the Internet and studied on human-like presence.

Recently, I am focusing on the complicated mechanism of the humanlike
robots and origin of the social intelligence that appears among humans and
robots. This talk will introduce the series of the humanlike robot studies and
discusses the fundamental issues.

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, p. 2, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Modeling, Understanding, and Interacting with
Humans

Yoshihiko Nakamura

University of Tokyo
Department of Mechano-Informatics and
Information and Robotics Technology Research Initiative
nakamura@ynl.t.u-tokyo.ac.jp
http://www.ynl.t.u-tokyo.ac.jp

|—=descending pathway | *
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Machines and robots extend their frequency and quality of interaction with hu-
mans. Tools invented by humans have shown evolution in the history. One may
find a similar genealogical tree of tools to the evolution of life. Machines that
interact with humans based on understanding humans are in a sense the ul-
timate tools for humans. The advance of computational algorithms and mod-
eling technology in robotics encourages us making a challenge pursuing such
machines. My talk will highlight and introduce our recent research results on
emulating somatosensory sensation of humans, semiotics of human whole-body
motion patterns, and using them for machines interacting with humans.

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, p. 3, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Humanoids, Brain and Cognitive Sciences

Giulio Sandini

Department of Robotics, Brain and Cognitive Sciences
Ttalian Institute of Technology and
LIRA-Lab, University of Genoa

In the talk I will discuss how research on humanoid robots, cognition and brain
sciences can be seen as parts of a multidisciplinary, coordinated effort aimed at
advancing knowledge on the foundation of human intelligence and at develop-
ing new, human-centered technologies. The rationale stems from the observation
that developing human-like intelligence in artificial systems with human-like mor-
phology (humanoids) requires to address the same questions cognitive neurosci-
entists are asking through experimental investigations. Conversely understanding
human intelligence from all its multifaceted perspective can take advantage of the
realistic simulation allowed by the physical implementation of hardware models.
Within this framework I will present results of projects ongoing at the Depart-
ment of Robotics, Brain and Cognitive Sciences of IIT in the areas of humanoid
cognition, robotic rehabilitation and motor learning, multimodal sensory integra-
tion and brain machine interface.

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, p. 4, 2008.
© Springer-Verlag Berlin Heidelberg 2008



XPERSim: A Simulator for Robot Learning by
Experimentation*

Iman Awaad! and Beatriz Leén?

! Bonn-Rhein-Sieg University of Applied Science
Grantham-Allee 20, 53757 Sankt Augustin, Germany
iman.awaad@fh-bonn-rhein-sieg.de
2 Universitat Jaume I, Castellon de la Plana, Spain
beatriz.leon@smail.inf.fh-bonn-rhein-sieg.de

Abstract. In this paper, we present XPERSim, a 3D simulator built
on top of open source components that enables users to quickly and
easily construct an accurate and photo-realistic simulation for robots
of arbitrary morphology and their environments. While many existing
robot simulators provide a good dynamics simulation, they often lack
the high quality visualization that is now possible with general-purpose
hardware. XPERSim achieves such visualization by using the Object-
Oriented Graphics Rendering Engine 3D (Ogre) engine to render the
simulation whose dynamics are calculated using the Open Dynamics En-
gine (ODE). Through XPERSim'’s integration into a component-based
software integration framework used for robotic learning by experimen-
tation, XPERSIF, and the use of the scene-oriented nature of the Ogre
engine, the simulation is distributed to numerous users that include re-
searchers and robotic components, thus enabling simultaneous, quasi-
realtime observation of the multiple-camera simulations.

1 Introduction

Robot simulators are widely used in the robotics field for different purposes.
They have mainly been used to design and test new robot models as well as
to develop the necessary software for running the robots, such as controllers or
behaviors. The simulation of multi-robot teams, for example, is a vital tool in
fields such as RoboCup [I], where the setting up of a whole team of robots is a
time-consuming task. The simulation can be run for as long as is needed and is
not limited by physical constraints such as battery life. In this way, simulation
also contributes to speeding up the pace of research. Where multi-robot teams

* The work described in this article has been partially funded by the European Com-
mission’s Sixth Framework Programme under contract no. 029427 as part of the
Specific Targeted Research Project XPERO (“Robotic Learning by Experimenta-
tion”). The authors thank Keyan Zahedi, Ronny Hartanto, Karl-Heinz Sylla and
Paul Ploger for their guidance and the researchers in the XPERO project for their
feedback and support.The authors gratefully acknowledge the reviewers’ comments.

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 5 2008.
© Springer-Verlag Berlin Heidelberg 2008



6 I. Awaad and B. Leén

are concerned, a simulator that allows the testing of team behaviours is ideal.
A 2D simulator is often sufficient for this purpose. The field of evolutionary
robotics also relies heavily on simulation, as the time spans used for such pur-
poses are generally very long. In this special case, a fast simulation is the highest
priority.

The quality of a simulation is largely dependent on the physics engine which
calculates the dynamics of the simulation, and the rendering engine which is used
to visualize it. The results of the physics simulation are highly dependent on the
accuracy of the models which are provided by the user. There are many physics
engines available with varying quality and cost. Similarly, a wide variety of 3D
rendering engines also exist. The game industry has helped to advance the quality
of these engines to its current limits; to the point where open-source engines that
provide this exceptionally high-quality visualization are now available.

In the above-mentioned cases, the visualization of the simulation is used by
the researcher to observe the behavior of the robots and is not available to the
simulated robots themselves, e.g. for their vision processes (as is the case in the
XPEROQO project, which deals with robot learning by experimentation and for
which XPERSim was developed). Within the project, the simulation is used by
both the researchers and the robot itself. For the robot to function as expected,
its perception of its environment should be as realistic as possible, both dynam-
ically and visually. The dynamics of its environment must use accurate models
of friction, mass, forces, rigid body collisions, and so on. The dynamics have
to allow for an accurate simulation of the manipulation process itself. Realistic
visualization of this interaction with its environment is vital for the observation
and the perception processes. The robots use a variety of vision techniques and
mechanisms such as focus of attention and novelty detection which allow them
to autonomously find objects to experiment with. In order for these techniques
to be tested and used in a simulated environment, it is necessary that the visu-
alization be as realistic as possible. The use of lighting, shadows, textures and
the ability to simulate optical aberrations contribute to this realism and help
to ensure that the same algorithms which are streamlined in simulation may be
used in real world scenarios.

XPERSim provides a realistic and accurate physics simulation that is also
visually realistic at a reasonable computational cost. It achieves high quality
visualization by using the Ogre 3D engine [2] to render the simulation whose
dynamics are calculated using ODE [3]. In this paper we describe our simulation
of the the Khepera [4] robot and the XPERO environment in which it functions
as created using XPERSim. We will first give a brief overview of 3D robot
simulators. We will introduce the architecture of XPERSim and the contents of
the packages. We then discuss the advantages of using the Ogre 3D engine and
the ODE physics library as well as the challenges and results of integrating these
technologies before presenting the methods used to distribute the simulation to
multiple users simultaneously in a quasi-realtime manner. The results are then
presented. Finally, we conclude with a discussion of the work.
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2 Related Work

There are numerous 3D robot simulators available, such as Gazebo [5], USARSim
[6] and Webots [7]. Many use ODE for their dynamics simulation. ODE is a free,
open-source, high-performance library for simulating rigid body dynamics. It is
stable, mature and platform-independent with an easy to use C/C++ application
programming interface (API). It has advanced joint types and integrated collision
detection with friction. ODE’s major drawback is that of the quality of rendering
done through the DRAWSTUFF library that comes with it. It should be noted
that the DRAWSTUFF library is provided by the authors of ODE for debugging
purposes and is not meant to be used for a simulation. In this section we briefly
survey a number of 3D robot simulators.

Gazebo is part of the Player/Stage project, one of the leading tools in the
robotics field. It comes with a large library of sensors and models of existing
robots. These can be controlled by either the Player server or by controllers
provided by the user. To create one’s own robot requires code-based modeling of
the robot in C [5]. Gazebo’s dynamics simulation is based on the ODE library.

Webots [7] from Cyberbotics is a commercial simulator capable of simulating
many kinds of mobile robots. Features include a complete library of sensors and
actuators, the ability to program the robots in C, C++, Java or third party
software and the use of the ODE library for physics simulation. It also comes
with models of some commercially available robots. In addition, there is a robot
and world editor that enables the user to create the environment and the robot
from the libraries mentioned above.

USARSim is a high fidelity simulation of urban search and rescue robots and
environments intended as a research tool for the study of human-robot inter-
action (HRI) and multirobot coordination [6]. It uses the Unreal game engine
for the dynamics simulation and the visualization. The physics engine used by
Unreal is the Karma engine. During the assessment phase of existing simulators,
it was the case that USARSim and the Karma engine did not allow actuated
entities to manipulate other actuated entities (e.g. a robot manipulator would
not be able to grasp a door handle). This was later enabled in [§]. The Unreal
engine is much more than a rendering engine. It includes not only the physics
and rendering engines, but also sound, networking, Al and even voice support.
These features, while extremely useful to game developers, would be excessive if
all that is required are rendering and physics engines, as is the case with XPER-
Sim. The choice to use the Ogre rendering engine, as opposed to other rendering
engines such as CrystalSpace 3D, was based on the feature set, documentation,
support and the learning curve needed to get projects up and running. Ogre
consistently came out on top in these areas. A detailed comparison of Ogre and
CrystalSpace is found in [9].

The simulator which is closest to the one described here is presented in [10].
It uses the Ogre engine for visualization and the PhysX SDK for the dynamics.
It is built to support human-controlled avatars to enable HRI and collaboration
studies. The similarity between XPERSim and this simulator extends beyond the
use of a the same rendering engine. It is the only other robot simulator, to our
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knowledge, that allows experiments which include users participating from geo-
graphically remote locations. To enable this distribution of their simulation, the
Torque Networking Library was used. A major difference between this simulator
and XPERSim is in the roles of the clients and servers which vary considerably.

3 Approach

To solve the problem of ODE’s limited-quality visualization, the Ogre 3D engine
was chosen to perform the rendering. Ogre is a free, open source 3D engine writ-
ten in C++, which is designed to make it easier and more intuitive for developers
to produce applications using hardware-accelerated 3D graphics. In addition to
the usual feature set found in many other rendering engines, it provides advanced
features which are not present in APIs such as OpenGL [10]. It is important to
note that Ogre is not a complete simulation engine. It performs many tasks, but
most of them are related to 3D computer graphics. It does not, for example,
provide physics, sound, networking, GUIs or artificial intelligence. There are,
however, other libraries from which one can choose to perform these tasks. This
separation provides developers with the flexibility to make the choices on which
packages to use in order to fulfill their requirements which in turn enables them
to keep it simple.

The core concept of Ogre is the “scene”. Within this scene, the “root” object
is the entry point to the Ogre system [2]. It maintains pointers to all objects in
the system, such as scene and resource managers. These give access to individual
entities within a scene. Each entity is attached to a “scene node”. The root object
also contains a method that is in charge of looping to render continuously. A
“scene-graph” (a collection of nodes in a graph or tree structure) is created at the
beginning of a simulation and is maintained throughout. Each frame, this graph
is traversed and the entities rendered, thus producing the simulation. With each
iteration of the simulation loop, the position as well as the orientation of the
entities to be simulated is retrieved from ODE and rendered using Ogre.

XPERSim has a client-server architecture where the client controls the robot
in the simulation which is running on the server-side. The client can be a console
running on Windows or any other platform. The server can be interfaced with a
client in the form of an Al program or a planner which would then control the
robot. The current version of XPERSim implements the Khepera robot.

3.1 Implementation

XPERSim provides a library of model components, written in C++, that are
useful for robot simulation. Its modular architecture also allows for maximum
code reuse and makes it open for expansion. Any simulation requires a robot
and the environment on which it will act. The contents of the simulation are
thus categorized as being either part of the environment or part of the robot.
Setting up the environment requires only very basic knowledge of ODE as a
wrapper encapsulates the ODE function calls necessary for the creation of the
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entities. The same function call stores away information that will be used by
Ogre to render the entities into description arrays. Such information includes
the specific mesh to be used to visualize the object and its parenthood. This
information is then retrieved later on to create the scene-graph that Ogre will
use to render these entities and update them every frame. Joints, while critical
to the physics of the environment (e.g. used to hold together entities - they do
not need to be controlled), it is not desirable to have them rendered or updated
as you would a robot’s actuators. As such, they are not considered entities and
are not saved within any description array.

The robot differs from the environment in that it contains actuators and
sensors in addition to rigid bodies and non-actuated joints. These need their
own descriptions to facilitate retrieving sensor values and sending commands
to the actuators. Two packages have been created specifically for sensors and
actuators. In addition, the method of communication with each embodiment
will differ. For this reason, each Robot contains its own communicate function.

3.2 Actuators and Sensors

The ACTUATOR package contains a number of actuators, namely a differential
drive, the Khepera arm and the gripper have been implemented. The arm, for
example, has been implemented using a hinge joint that connects the arm to
its turret. The joint is parameterized to enable the arm to be moved as per the
specifications of the Khepera. The two grippers are then connected to the arm
via slider joints. Additional joints can be easily added.

The SENSOR package currently implements a number of sensors, such as the
IR proximity sensor, light barrier sensor, touch sensor, wheel encoder and the
camera. The light barrier and touch sensors are simulated using the IR sensor
implementation.

The IR sensors have been implemented using five rays, all with the same start
position. This implementation was provided by [II]. One ray lies in the exact
orientation given. Two of the remaining rays are directed at orientations that
take into consideration a spread angle on the x-axis, while the remaining two
rays take into consideration the spread angle in the y-axis. In this way, a cone
is created that more accurately emulates an IR sensor’s field. The spread angles
are parameters that the user is able to set, as is the length of the ray which
is set to the sensitivity of the IR sensor being simulated. This is an advantage
over other simulators, which use only one ray for an IR sensor. This method of
modeling the sensor with five rays also allows a more realistic sensor model to
be created. The real sensor detects a distant object, if a close object penetrates
the cone less than halfway. If one of the other rays is activated, a weighted sum
could be used to calculate the distance instead of the minimum value [II]. By
varying the spread-angles of the rays, the sensor model can be changed to reflect
a real sensor whose values have been obtained, or to simulate noise. By gradually
changing the parameters, a transition can be made from the idealistic simulated
world to the real world.
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Fig. 1. A screenshot of the XPERSim window running alongside the console

The XPERSim window contains two viewports, each displaying the view from
a specific camera (see Fig. [I). The “overhead” camera is displayed on the right
while the left half of the window displays the “first-person” camera attached to
the robot. Ogre allows the user to add as many viewports as is needed and as
many cameras. This feature can be used to easily simulate stereo-vision. While
the rendering is done in all the viewports, XPERSim currently allows the user
to move the “overhead” camera only. It is possible to save and retrieve rendered
frames to and from a file. This means that it is also possible to apply vision algo-
rithms to these frames, or transmit them over a network to users. A perception
module with basic vision algorithms was implemented for the Logging version of
XPERSim which allowed the frames to be analyzed in an off-line manner. The
process of saving a file to disk is however a costly process as the image must first
be flushed from the GPU (Graphics Processing Unit).

The communication framework enables the simulation running on the server-
side to communicate with a client-side console over TCP /IP. It is robot-specific.
For this reason, the communication for the Khepera robot is included within the
class implementing it.

4 Distributing the Simulation

This section details the efforts made to distribute the simulated images for
tele-observation. Although the implementation is specific to the XPERSim sim-
ulator, the same approach could conceptually be used for other simulators.
XPERSim has been integrated into the XPERSIF framework [12], a component-
based software integration framework which was specified, defined, developed,
implemented and tested by the authors. The framework and architecture com-
prise loosely-coupled, autonomous components that offer services through their
well-defined interfaces and form a service-oriented architecture. The Ice [I3]
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middleware is used in the communication layer. The framework enables com-
ponents (running in a distributed setting) that are responsible for such tasks as
the design of experiments, planning, robot control, motivation, machine learning
and of course feature extraction and vision to be integrated into an architecture
for learning by experimentation. This integration of XPERSim into XPERSIF
enables the simulation of an experiment and the testing and streamlining of the
components mentioned above, thus providing a tool-driven validation process.

While tele-operation and tele-observation of the simulation were previously
implemented, the solution for tele-observation was provided with a focus on
fulfilling a use case for data generation which provided traces for the machine
learning tools. These traces included the simulated image which was requested
and transmitted through a synchronous Remote Procedure Call (RPC). While
this requirement was met, the solution did not enable a frame-by-frame viewing
of the simulation. The specification of new use-cases specified the need for the
architecture to supply quasi-real time observation of the simulated image. The
implementation of the solution is presented in this section.

A number of issues precluded the use of the same method for true real time
tele-observation of the experiment. One is the presence of a bottleneck in ob-
taining the rendered image from the GPU to the CPU which makes the process
of simply obtaining the image a time-consuming affair. Another issue is the
transmission of the image itself takes time.

It should be noted that these issues made infeasible the real time or quasi-
real time tele-observation of the experiment by even one single client. In order
to facilitate scalability, bottlenecks must be avoided.

The solution presented here, which bypasses this bottleneck, uses a proven
methodology (implemented in multi-player games for over a decade) which in-
volves moving the rendering of images from the server-side to the client-side by
sending out a subset of the scene information to ensure that all clients are op-
erating synchronously [I4], thus drastically reducing the amount of data being
transmitted. This is facilitated due to the scene-oriented nature of the XPERSim
simulation. As mentioned previously, the Ogre 3D rendering engine simplifies
the processing of objects or groups of objects by using scene-graphs (a graph of
nodes) to represent hierarchies. If a parent node is translated or rotated, this
transformation is applied to the child scene nodes as well.

The latency resulting from the distributed nature of the application is ame-
liorated by sending the node information from the simulator while the client is
rendering the previous one — i.e. the server does not wait for the client to re-
quest the image but sends it continuously once it has subscribed. The method
described above to distribute a simulation to multiple clients is implemented
here by decoupling the physics and graphics engines of XPERSim to create an
XPERSim Server (calculating dynamics) and a TeleSimView client (rendering
the nodes at their new positions). The XPERSim Server sends out the posi-
tions and orientations of all scene-nodes to the clients that simply transform
the specified nodes to the specified positions and orientations and in so doing
produce the same scene in an efficient and real time manner. In this refactored
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Fig.2. An example setup for a simulation with 15 nodes (4 cubes, and the Khepera
robot). With optimization, only the shaded nodes (8) would need to be published.

implementation of the XPERSim simulator, no distinction is being made between
parent nodes and child nodes. It is recommended however that this distinction
be made as it would reduce the number of nodes whose data needs to be trans-
mitted (transmit parent nodes only and nodes which can be moved separately
from the hierarchy — a gripper for example which, despite being a member of
the robot node, may be moved on its own). This can be seen in Fig. 2l The
implementation details are described below.

4.1 XPERSim Server

As mentioned above, the XPERSim Server is now solely responsible for calcu-
lating the dynamics of the simulation and for their distribution. The separation
of the two engines was straightforward due to the modular structure of the
simulator. Previously, every rendered frame would step the simulation by 0.05
seconds (5 x 0.01 seconds). With this link to the rendering of a frame gone, the
speed at which the simulation proceeded was much faster. Various methods for
transmitting the node information were evaluated.

During the start-up of the simulation and the creation of the ODE bodies,
the information pertaining to the Ogre-scene is accumulated. This information is
stored in a container structure that is requested by the CAMERA subcomponents
as they are the image providers (Fig.[3). The XPERSim server continuously sends
out node positions and orientations in absolute coordinates (i.e. the same node
information is sent to all CAMERA subcomponents). As the robot’s camera is
attached to it, it will automatically be moved when the robot does. If a pan/tilt
camera is used, then its position and orientation could be sent out as a node.

In an effort to further reduce network latency, a one-way invocation is used to
send the new frame. This can in fact be quite expensive when many such small
messages need to be sent. This is because the run time taps into the OS kernel
for each message and because each of these messages is sent out with its own
message header [I3]. To ameliorate this problem, batched one-way invocations
are used. This allows the Ice run time to buffer these small messages until the
XPERSim Server explicitly flushes them.
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Fig. 3. An overview of the system showing the XPERSim Server sending node updates
to the camera subcomponents within XPERSIF. They in turn act as image providers
to the various TeleSimView clients which have subscribed to receive the updates.

Originally, it was envisioned that the parametrization of XPERSim would be
done through an XML file. This would allow the client to send the setup for
a new experiment without necessitating the recompilation of XPERSim. The
limited number of scenarios and the low frequency at which these scenarios are
changed dispenses with the need for the XML parametrization and makes it
equally efficient to choose precompiled setups.

4.2 TeleSimView Client

The TeleSimView client is used to visualize the simulated scene. With the same
node information, the view from both cameras is rendered. The subscription to
receive the node information is made with the XPERSIF components: PERCEP-
TION (robot camera) or OBSERVATION (overhead camera). This provides clients
with the flexibility to choose the cameras they wish to subscribe to.

A two-way invocation to the PERCEPTION (or OBSERVATION) component
fetches the scene which will be created and subsequently updated. The creation
of the scene involves the creation and attaching of nodes, their positioning and
the creation of such basic scene items as the plane, lights, and sky. Once this has
been done, the client uses operations found within the interfaces which are ex-
tended by the PERCEPTION and OBSERVATION components in order to subscribe
as an image-observer. As soon as this is done, the images will be transmitted to
it from the relevant CAMERA subcomponent (as seen in Fig. B ).

The TeleSimView client only requires Ogre (and its dependencies). Ogre has
always been available for all platforms. The source for a project running under
Windows could not previously be compiled and used on other platforms however
due to the use of Windows-specific libraries handling events and key input. With
the release of Ogre version 1.4.6 (a.k.a. ‘Eihort’), this problem is now solved with
the use of the Object-oriented Input System (OIS) platform.

5 Results

The XPERO project has provided XPERSim with an invaluable testing ground.
XPERSim has proven to be highly useful and effective in speeding up the pace of
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research. This has been made even more evident within the distributed research
environment. XPERSim has been successfully used to aid the human researcher
in developing and evaluating concepts as well as providing test data [I5] by using
the initial Logging version of XPERSim and subsequent versions following its
integration via XPERSIF. A perception module has been developed as proof of
concept that allows basic vision algorithms to be performed on the simulated
scene. The Client Console (used with the Logging version) enables tele-operation
of the simulated robot using the same commands that are sent to the physical
robot. In this way, any user with code to control a Khepera can use this code
in XPERSim. Simultaneous multiple camera simulation of the rendered scene is
possible at high frame rates. A library of components that can be parametrized
by the user has been created. This library includes a number of commonly-used
sensors and actuators.

Due to the modular architecture of the simulator, it should be possible to
easily simulate multiple robots by making minor additions to the structure of
XPERSim. The number of simultaneous camera simulations is limited by the
maximum resolution of the screen if real-sized viewports are required for the
“first-person” cameras. The frame-rate is mainly affected by the number of ob-
jects within a scene and the number of triangles in the mesh used to visualize it.
A slowdown in the frame-rate usually occurs when many hundreds of nodes are
being visualized. There are many optimizations that can be made within Ogre
to help in situations where these numbers are very large. Many are available to
download from the Ogre website. A potential bottleneck exists in flushing the
buffer in the graphics card to save the rendered image. If this is done often, for
example for logging purposes, the simulation speed slows down. This is in fact
a focus of graphics-cards manufacturers who are currently establishing two-way
communication to the GPU in order to ease this process.

Distribution of the simulation through its integration via the XPERSIF ar-
chitecture was successfully achieved. The scalability of the implementation de-
scribed above was evaluated by measuring the impact on the quality of the
simulation by varying the number of subscribers to the tele-observation service.
This detailed scientific evaluation validated the use of a batched one-way invo-
cation for distributing the image. Table [I] shows the measurements made when
one, three, five and then ten clients are subscribed to the service. All experi-
ments were repeated three times, measuring the time it took for 60 frames to

Table 1. The time in seconds between receiving two subsequent images (15 nodes)
using the batched one-way invocation method. Optimizing the process by sending only
parent and actuated nodes out (as described in section M) in this scenario would result
in a total of only 8 nodes needing to be published and processed for updating.

Trial 1 client 3 clients 5 clients 10 clients
1 0.0039 s 0.0039 s 0.0219 s 0.0227 s
2 0.0023 s 0.0172 s 0.0128 s 0.0352 s
3 0.0075 s 0.0036 s 0.0120 s 0.0448 s

Mean 0.0046 s 0.0082 s 0.0156 s 0.0342 s
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be delivered to the TeleSimView client. It is worth noting that the size of the
image to be rendered is inconsequential. As nodes are being sent and not an
image, it is the number of nodes within a scene that impacts the time and not
the image size. For the test case above, 15 nodes were transmitted (representing
the Khepera robot and four cubes). Using this information, the scene may be
rendered from the viewpoint of any number of cameras.

6 Discussion

The system presented here has been used successfully, not only in the initial
stages of the project in allowing the researchers to pursue multiple scenarios
simultaneously to develop and evaluate concepts, but also in the later stages
by providing vital traces used for the machine learning process. The initial
results [I5] from the XPERO project support the original assertion that sim-
ulation has indeed enhanced the speed of research within the project.

As robotic vision techniques become more and more sophisticated, any simu-
lation of a robot using these techniques must be as visually realistic as possible.
Given that the technology which enables this is freely available, there is no
barrier to robot simulators taking advantage of these technologies. In addition,
given that robotics is very much a multi-disciplinary field. and that the benefits
of cooperation across these field boundaries are great, tools that facilitate such
cooperation are a necessity. In this context, the distribution of a simulation to
researchers (and their tools) is a valuable feature to have.

XPERSim has the advantages of providing a more realistic camera simu-
lation at over 30 fps and a library of available model components that are
useful for robot simulation and include realistic sensor models. It is modular,
extensible, easy to use and understand and provides logging functionality. It en-
ables distributed work without the need for a physical robot and enables easy
replicability.

We have addressed the problem of tele-observation by decoupling the physics
and rendering components within the simulator in a manner that optimizes
computational power and harnesses the power of node-oriented scene-graphs,
and thus reduced network latency. We have produced a simulation with accurate
physics and high quality graphics that can be used with great ease and without
the use of special hardware.

The extension of the library to include more robot models, sensors and ac-
tuators is a top priority on our agenda. One which is facilitated by the use
of the Ogre 3D engine and ODE as base components in our simulator’s archi-
tecture since many models for these engines already exist within the robotics
community. The current version of the simulator runs on both Windows and
Linux platforms. A port to the Mac platform is well underway. Upgrading the
Ogre engine to the new release will enable cross-platform compatibility of the
same source code. Enabling simulated robots to be controlled though the Player
API [I6] is another goal as this would make available the libraries within (e.g.
landmark tracking and probabilistic localization). Additional optimizations
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which would further reduce the number of nodes being sent out (see
section M) will also be tested.
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Abstract. In this paper a framework for simulation of Unmanned Aerial
Vehicles (UAVs), oriented to rotary wings aerial vehicles, is presented. It
allows UAV simulations for stand-alone agents or multi-agents exchang-
ing data in cooperative scenarios. The framework, based on modularity
and stratification in different specialized layers, allows an easy switching
from simulated to real environments, thus reducing testing and debug-
ging times. CAD modelling supports the framework mainly with respect
to extraction of geometrical parameters and virtualization. Useful appli-
cations of the framework include pilot training, testing and validation of
UAVs control strategies, especially in an educational context, and simu-
lation of complex missions.

Keywords: modelling framework for robots and environments, testing
and validation of robot control software, simulated sensors and actuators,
UAV.

1 Introduction

Nowadays mobile robotics is going through a period of constant growth, producing
tangible results in both scientific and commercial areas. However there is a signif-
icant difference between the results achieved with ground vehicles and aircrafts.
Unmanned Aerial Vehicles (UAVs) represent a challenging research field due, on
one hand, to the complexity of systems and operating environment and on the other
hand to the variety of tasks they can perform. The range of aerial vehicles is ample
(blimps, gliders, kites, planes, helicopters, etc.) and each one has a particularity
that makes the difference in a mathematical description of physical phenomena.
Mathematical models are really complex because an aerodynamic description
has to be taken into account and dynamics is also influenced by turbulence from
rotors and wind. Small-scale helicopters probably represent the most difficult
systems to model because of the complex nature of their dynamics. At the same
time their unique manoeuvrability capabilities (including hovering, vertical take-
off and landing) and multiple flight modes make them able to perform various
tasks, such as surveillance, search and rescue, photogrammetry and mapping.
In many cases, complex missions can be carried out by fleets of cooperat-
ing autonomous and heterogeneous vehicles, hence interaction, cooperation and
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supervision become the main problems. UAV application development is closely
linked to the possibility of exploiting all benefits of simulation: modularity, re-
peatability and low cost. The risks produced from a direct use of real aircrafts
are obvious. The only alternative to a powerful simulation framework could be
the supervision of an expert pilot, but this solution is often quite difficult to
practise. The complexity correlated to today challenges in terms of missions
and tasks sets up the necessity of simulating, debugging and testing. Simulation
activities are essential for testing and validation of control strategies because
different methodological approaches can be easily implemented and evaluated to
reduce developing times [I].

To allow an easy transfer of results from simulated to real applications is
important to design a modular structure in which dedicated modules can be
substituted with real devices.

In the case of ground robots a lot of simulation and test frameworks have
been developed [23]. Player/Stage/Gazebo is actually one of the most complete
framework owing to advanced features like the emulation of 2D-3D environ-
ments, the simulation of sensors (LRF, sonar,...) and the integration with com-
mercial robotic platforms (i.e., MobileRobots, Segway...) [3]. Other simulation
environments are Carmen [4], Microsoft Robotics Studio [5] and USARsim (for
RoboCup) [6]; these are taking the attention of scientific community for the full
integration with a lot of commercial platforms. For the UAV branch of robotics
the state of the art is a bit different.

In this paper a framework for simulation and testing, oriented to rotary wings
aerial vehicles, is presented. The framework allows the simulation of UAVs (as
stand-alone agent or exchanging data for cooperation) owing to a Ground Control
Station (GCS) that supervises the tasks of each agent involved in the mission.
The control of a single agent can be switched between the GCS and a human
pilot using a joystick. The framework, based on modularity and stratification
in different specialized layers, allows an easy switching from simulated to real
environments, thus reducing testing and debugging times. CAD modelling sup-
ports the framework mainly with respect to extraction of geometrical parameters
and virtualization. Useful applications of the framework include pilot training,
testing and validation of UAVs control strategies, especially in an educational
context, and simulation of complex missions.

The paper is organized as follows: next session introduces our framework. The
use of a UAV CAD modelling for parameter extraction and simulation aids is pro-
posed in Section III; the modelling activity is contextualized to the Bergen Twin
Observer Helicopter. In Section IV, a test case involving two helicopters in a leader-
follower mission is presented. Section V presents a methodology to validate the pro-
posed framework. In Section VI conclusions and future works are outlined.

2 Framework

Robotic systems are inherently multi-disciplinary and for such applications soft-
ware aspects are of prime importance. Even a single robot application generally
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implies the use of external hardware and sensors having each their own control sys-
tem and has de facto a distributed architecture. Several research has been devoted
to build simulation frameworks of distributed systems. Two different approaches
have been considered when identifying requirements for a framework. The first ap-
proach takes into account the functionality of typical applications that would be
performed with the framework itself, whereas the second one considers the needs of
potential users. From this analysis we derived the following requirement list for our
framework: integration of different robotic systems, concurrent control of several
robots, platform independent GUI, shared control between several users, easy inte-
gration of user’s algorithms, flexibility (Distribution, Modularity, Configurability,
Portability, Scalability, Maintainability), performance and efficiency. It is obvious
that some requirements conflict with each other: performance and efficiency for
instance have to be traded with flexibility.

Looking at the simulator panorama, game engines and flight simulators are
the only available frameworks to simulate UAVs. Also most of them are devel-
oped for planes and not for helicopter. Game engines (like FlightSimulator [7]
or FMS [g]) are optimal for visualization, while flight simulators (like JSBSim,
YASim and UUIU [9]) are characterized by a high-fidelity mathematical model,
but they are lacking in visualization. A good but expensive exception is the
RotorLib developed and commercialized by RTDynamics [10]; in the helicopter
context, frameworks with good performances are almost absents [I1]. The frame-
work here proposed aims at overtaking this lack. In Fig[lla graphical abstraction
with the main layers of the developed simulator is shown. The stratification of
the framework permits to identify five different modules as Supervision, Com-
munication, Dynamics, Agent, User Interaction.

An interface for sockets allows the data exchange between GCS and agents in
the case of simulated agents, while the communication makes use of a dedicated
long-range radio modem if a real vehicle (e.g., helicopter) is used [12].

All the modules are implemented in Matlab/Simulink; the main motivation of
this choice is the reduced complexity for code development and costs of commer-
cial products. In particular, the end-user of the framework can easily integrate his
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Fig. 1. Structure of the framework for UAV simulation
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code for developing and testing an algorithm, e.g., for obstacle avoidance, with-
out the necessity of re-compiling other activities. An additional motivation for the
adoption of Matlab is the capability to interface the AeroSim toolbox released by
Unmanned Dynamics [I3]. The AeroSim Blockset is a Matlab/Simulink block li-
brary that provides components for rapid development of nonlinear 6-DOF aircraft
dynamic models. In addition to aircraft dynamics the blockset also includes envi-
ronment models such as standard atmosphere, background wind, turbulence, and
earth models (geoid reference, gravity and magnetic field). These blocks can be
added to the basic framework to increase the realism of simulation.

2.1 Agent Structure

In a simulated or real case, the structure of an agent in the context of Unmanned
Aerial Vehicles is based on a complex interaction of different specialized modules. In
the real case, the Flight Management System (FMS) is implemented as real-time
code running on high performance architectures; in the simulation environment,
FMS is a complex set of S-functions to reduce the simulation complexity.

However, in both cases FMS has a series of basic packages as: Communication
Module, Queue of Tasks, Guidance Module, Fast Path Re-planner, Attitude and
Pose Estimator, Auto and/or Semi-Manual Pilot, Obstacle Avoidance, Fault
Diagnosis Identification and Isolation (see Figl2l).

Tasks like take-off, landing, point to point or waypoint navigation are
currently available in the developed framework.

FMS exchanges data continuously with GCS for telemetry and task assign-
ments/supervision. Its Communication Module makes use of sockets or functions
to interface the radio modem.

References about position are generated by the Guidance Module, which de-
cides step by step what references should be passed to the controllers (auto-pilot).
This module takes into account the actual position of the agent with respect to
the local inertial frame and the goal to reach.

Altimeter
GPS
AHRS

Fault Detection Ident

D

Fig. 2. The Avionic and Flight Management Systems
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The Fast Path Replanner (FPR) provides a real-time re-calculation of path
according to information provided by the Obstacle Avoidance package. FPR
provides also for correcting the path if external disturbances (e.g., wind) generate
a high error in position.

The Attitude and Position Estimator, using the inertial data obtained by the
Attitude Heading Reference System (AHRS) and the Inertial Navigation System
(INS) calculates the position and attitude of the vehicle; inertial strapdown
equations are currently implemented and solved [I4]. The Auto and/or Semi-
Manual Pilot is the core of vehicle’s control. The user can control a set of axes
by a joystick/transmitter interface. This feature is especially suitable in the
field of photogrammetry, where the user concentrates only on forward and/or
lateral movements, while the control of altitude and heading (heading lock) is
performed by inline controllers. The adopted philosophy tries to emulate the
training process of a novel-pilot, who usually controls directly only a limited set
of vehicle’s axes, while the teacher supervises the activities.

Controllers can be easily updated or modified by changing their code; no
additional activities are required. Controllers can be simple PID or PID with
gain scheduling and fuzzy logic. Feedback linearization is available in the frame-
work, with some tricks to increase its robustness: computational cost is a major
drawback of this technique. Other control techniques, e.g., based on H., can be
included.

The Obstacle Avoidance module tries to avoid obstacles owing to information
obtained by the avionic system, e.g., by radar and Laser Range Finder (LRF)
sensors; actually, a set of modules (based on fuzzy logic) are available in the
framework to improve the safety of vehicles during navigation.

The Avionic System, in the case of simulated or real vehicles, is formed by actu-
ators and sensors. Actuators are usually analog or digital servos in reduced-scale
helicopters; a second order model to represent the servos dynamics is adopted in
simulated environments. Sensors provide information for a large set of aspects as
navigation, obstacle avoidance, mapping and other. Using a radar sensor new tasks
become feasible, as flight /operate at a given altitude or avoid an unexpected ob-
stacle. In fact, the Radar Altimeter provides the altitude above the ground level,
calculated as the difference between height above the sea level and ground eleva-
tion (Digital Elevation Model maps); geometric corrections, due to pitch and roll
angles, are then applied. Noise is added to make the simulation more realistic; fail-
ure occurrences are also simulated. Simulated sensors as IMU and AHRS are also
available in the framework; in this case an error model of each sensor is implemented
(misalignment, temperature drift, non-linearity and bias).

In a similar way, to emulate the Global Position System (GPS), the geographic
coordinates of the aircraft are computed from the knowledge of data about a
starting point; noise is then added to match the performance of a common GPS
receiver able to apply EGNOS corrections.

An analysis of main differences between the real and simulated case is pre-
sented in Table [T} this table summarizes an analysis of main differences between
real and simulated case.
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Table 1. Many elements (features) are shared between real and simulated scenario.
The main difference concerns the Communication and Avionic System.

ASPECT SIMULATED SCENARIO REAL SCENARIO
Supervision Similar Similar
Communication Socket Radio Modem
Dynamics Blade element, Actuator Disk Real Phenomena
FMS Similar (different control laws) Similar

Avionic System Simulated Sensors & Actuators Real HW

User Interaction Similar Real streaming video

The switch from virtual to real world and vice versa is relatively easy; mainly
FMS is the module that requires different set-up especially for the automatic
control (control laws of each servo installed on the real helicopter).

2.2 Helicopter Dynamics Simulation

The framework is actually provided with a helicopter mathematical model. Em-
ploying the principles of modularity and standardization, the complete model
is broken down into smaller parts that share information and interact among
themselves, as shown in Fig[3l In particular, we identified four subsystems de-
scribing actuator dynamics, rotary wing dynamics, force and moment generation
processes and rigid body dynamics [15].

Actuator Flaﬁﬁ:ﬂgtand F(ig:;guaend Rigid body
equaliche equations equations equaticgy

Fig. 3. Helicopter dynamics

2.3 Ground Control Station

The Ground Control Station has a lot of capabilities among which telemetry
data acquisition and data logger for post flight analysis; in the cooperative con-
text GCS is responsible for mission and task allocation/supervision. Data are
collected and sent using the communication layer. A GUI was developed to ob-
tain a visual feedback of a single agent, all agents, mission status, telemetry. A
screenshot of the developed GCS is shown in Fig[l User can control the mission
of each agent choosing the vehicles; the main panels allow to monitor in real-time
the agent status owing to the Attitude Direction Indicator (ADI); information as
global position (GPS coordinate), status of embedded electronics-batteries, fuel
consumption are currently shown in the GUI. An interesting feature of GUI is
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Fig. 4. A screenshot of developed GCS’ GUI

the capability to control directly a set of vehicle’s axes using a joystick interface;
in this case the interaction between human and machines (remote controlled
vehicles) allows to control the vehicles taking into account the information pro-
vided by ADI indicators. In a simulation context, joystick is interfaced using the
Virtual Reality Toolbox (described below).

2.4 Virtual Reality and World Representation

A synthetic rendering of world and agents is one of the basic module; as men-
tioned in the introduction section, market offers a series of different complex
systems to virtualize world and agents. The choice adopted in the proposed
framework is to integrate the Matlab Virtual Reality Toolbox. A VRML model
of world (environment) and agents (aerial vehicles) can be easily controlled in
a Simulink diagram. Students are often familiar with the Matworks software.
The mission area is represented as a digital grid map or Digital Elevation Model
(DEM). A set of different world scenarios is available in the developed frame-
work. Scenarios are generated considering the DEM of mission area. DEM maps
represent the mission area (real or simulated) as a grid map; a critical parameter
is the cell resolution. The resolution of available maps is usually 10m in the case
of real scenarios. This value is too high in critical mission where an accurate
localization is required. The GUI allows to edit/create a new DEM to overtake
this limitation; data are obtained by exploration of mission area.

Virtual Reality Toolbox is used to present in soft real-time the state of each
vehicle involved in the mission. A VRML world can be customized in terms of
textures, position of camera(s) (attached to vehicle or fixed), light(s). The above
mentioned toolbox is also used to interface a joystick; this kind of device allows
a manual control of the helicopter (user can select the set of axes that wants
to control). This features is really useful for novel pilot(s) during the training
phases. A 3D model of Bergen Twin Observer Helicopter was developed; a more
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Fig. 5. An example of scenario where two UAVs are performing a mission

detailed introduction to 3D CAD modelling is presented in Section Bl In Fighla
basic virtual scenario is presented.

Currently, work is focused on the adoption of other virtual reality environ-
ments inspired to flight simulators games as FlightGear [16] and Microsoft Flight
Simulator [7].

3 CAD Modelling

CAD modelling plays an essential role, supporting the framework mainly with
respect to mathematical model parameterization and virtual reality rendering.
Blocks describing the helicopter simulated dynamics need a set of geometrical
and inertial parameters such as inertia matrix, mass, distances between Centre Of
Gravity (COG) and force attacking points, rotors geometry and leverage gains.

Fig. 6. A view of the CAD model of Bergen Twin Observer; the transparencies allow
to see hidden parts, e.g., avionic box and fuel
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Fig. 7. Diagram of Reverse engineering process

Providing the model with the real parameters of a specific helicopter makes really
useful the simulations, allowing an effective shift of results to real applications.

Because some data are time-variant, due to fuel consumption, not trivial to
be determined, and should be re-calculated at every change of mass disposal like
a new device installation, a detailed 3D CAD model helps to solve the problem,
allowing to simply extract all information needed.

Performing an accurate reverse engineering process on a RC mini helicopter
a model implementation was carried out. The Bergen Twin Observer available
at our laboratory, designed in Solid Edge environment, is presented in Figlal

Solid Edge represents a standard in 3D mechanical modelling. It is a powerful
feature-based CAD software, quite simple to use and available in a cheap academic
license. It allows an accurate and rapid design of the system and its geometric and
inertial characterization. The model can be exported to specific software, saved in
VRML format or merely used for a rendering process. In Fig[[]the whole procedure
is shown.

The obtained digital model can be mostly used to evaluate the effect of cus-
tomization (e.g. addition of payloads, sensors) by simply extracting geometrical
and inertial parameters after any structural or set up variation. It is also func-
tional to visualize the agent in a Virtual Reality environment, allowing a pleasant
and more significant representation of the simulation results.

4 Test Case: A Leader-Follower Mission

In this section, a simulation using the presented framework is reported. This
simulation presents two Bergen Twin Observer helicopters involved in a “leader-
follower mission” [I7J18]. Leader-follower mission belongs to the problem of coali-
tion formation inspired by the motion of bevies; the main objective of coalition
formation is the clustering of a series of agents to reach a target or to cooperate,
extending the capabilities of each agent (“union is strength”) [19120].
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Simulated sensors adopted are AHRS, GPS and Radar. The helicopters are
linked to GCS using sockets for data exchange. Each helicopter has five servos
(digital and analog) and one main engine (piston engine). The simulation time of
reported simulations is strongly close to the real time (simulation is a bit slowly
in particular conditions and the lag depends on the complexity of controllers ).
The GCS and the two instances of helicopters run on three PCs connected by
an Ethernet link.

Leader starts the mission (a simple circular path) and follower tends to main-
tain a fixed distance minimizing the error in terms of the following expression.

P(s)=[z(s)y(s) 2(s)]" |IPs (s7) — Pi (st — k)| < eh,e € R

where subscript [ and f stand for leader and follower, respectively (see Fig. 8);
P is the helicopter position and k£ the distance between helicopters evaluated
along the trajectory.

| = Leader Reference
B Follower
.| === Follower Path

) Leader
Circular Path: low speed = Leader Path

Y[m]

Leader
i Follower

: X[;n] E

Fig. 8. During the flight, the helicopter-follower maintains a fixed distances to leader

Follower estimates leader trajectory using leader position that is obtained by
radar and GCS telemetry. Then, on the base of estimated trajectory, follower
tends to track leader trajectory minimizing the error [2I]. A graphical represen-
tation of simulation is shown in Fig. 8.

5 Validation

According with a principle of modern behaviour-based robotics, an efficient
framework should omit internal representations, centering rather on the direct
relation between stimulus and action. Hence a quality simulator has to implement
accurate models of: robots’ geometry and kinematics, sensors, environment and,
finally, robot-environment interactions. Since all these components work prop-
erly, simulation will provide an adequate model of the process and the results
may be shifted to real applications.

This approach to robotics research, however, depends crucially on validation of
the models used so that researchers have reasonable assurance that the problems
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Fig.9. An approach for fine-tuning of simulation model

they encounter and solutions they devise are representative of actual problems
and solutions in robotics rather than simply artifacts of the simulation.

The level of effort devoted to validation has been a distinguishing feature of
this work, even if in preliminary stage. Each of its major constituents (robot
kinematics, interaction with the environment, sensors and camera video) have
been subjected to ongoing validation testing.

A schematic idea for fine model tuning is shown in Fig. @ An expert pilot
controls the helicopter performing manoeuvres with a high dynamic content. The
actions of pilot are real-time recorded; real and simulated measures of agent state
are compared evaluating the goodness of the simulation model; this methodology
is inspired by adaptive control systems (e.g, Model Reference Adaptive System).

6 Conclusions and Future Works

In this paper a framework for UAV simulation in cooperative scenarios and
testing was presented. The modularity of its architecture permits to update or
rewrite a block in a short time; new controllers can be easily tested. This activity
does not require re-compiling or deep rearrangement of the code.

Adding or changing the mathematical model, different aerial vehicles can be
simulated; actually the research unit is working on simulating a quad-rotor heli-
copter. This kind of vehicle is versatile and useful for short range missions; due
to these characteristics, the quad-rotor is widely used by researchers in the UAV
context. Moreover, the proposed approach allows an easy switching from simu-
lated to real environments; this is possible owing to stratification of functions in
specialized layers. User interaction, e.g., training of novel-pilots, is supported by
GCS, joystick or RC-transmitter interfaces.

Future works will be steered to improve the quality of the VR module for an
easy interaction with vehicles without a video streaming feedback. Integration
of new kind of aerial vehicles will be the main activity. The adoption/integration
of FlightGear or Microsoft Flight Simulator graphical engines will be then inves-
tigated. New robust non-linear control techniques to enhance the performance
(in terms of energy consumption and Time To Task) of agents will be tested.
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At the end of validation phase (introduced in Section V), the simulator will

be relesed to scientific community under the GNU license.
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Abstract. A key methodology for the development of autonomous
robots is testing using simulated robot motion and sensing systems. An
important issue when simulating teams of heterogeneous autonomous
robots is performance versus accuracy. In this paper the multi-robot-
simulation framework (MuRoSimF) is presented which allows the flexible
and transparent exchange and combination of the algorithms used for
the simulation of motion and sensing systems of each individual robot
in a scenario with individual level of realism. It has already been used
successfully for the simulation of several types of legged and wheeled
robots equipped with cameras and laser scanners. In this paper the core
functionalities of MuRoSimF are presented. Existing algorithms for simu-
lation of the robots’ motions are revised. Newly added features including
the execution of the simulation on multi core CPUs and two different
algorithms for the simulation of laser scanners are presented. The per-
formance of these features is tested in an urban scenario using wheeled
robots.

1 Introduction

The development of control software for teams of autonomous robots is a highly
challenging task. Reasons for lack of performance as well as for failure are ex-
tremely difficult to analyze by experimental evaluation only, because an au-
tonomous robot usually consists of a highly interacting set of different software
and hardware modules. Therefore one of the most valuable tools supporting the
development of control software is software in the loop (SIL) testing using simu-
lation of robot hardware under real-time conditions. The benefits of simulation
are manifold, including testing of software under repeatable and controllable
conditions and unlimited availability (compared to real hardware).

The general requirements on the simulation may differ significantly depending
on the scope of the simulation experiment. For example, a high level of detail
in robot motion simulation using multi-body dynamics is important for inves-
tigation of motion control of robots with high motion dynamics and inertial
stabilization like humanoid or flying robots. On the other hand for four-wheeled
robots on even ground usually vehicle kinematics models are sufficient to test
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team cooperation and kinetical models which would need a larger computational
effort are not required. In some cases, even a too realistic robot motion simula-
tion may not be desireable for some tests. E.g., the disturbing effects of a robot’s
motion like sliding or shaking may overshadow other sources of observed errors.

Similar considerations apply to the simulation of sensors: For testing sensor
data processing, it is necessary to have a high fidelity simulation of the sensors,
including simulation of possible sources of errors. If higher levels of abstraction
within the control software (like behavior control) are under consideration, it may
be useful to provide the software with ground truth data from the simulation
skipping sensor simulation and processing completely. The latter kind of tests
are very difficult to conduct on real robots, as ground truth data usually require
additional sensors in the environment and may also suffer from measurement
errors. An obvious tradeoff when creating a robot simulation is fidelity vs. real-
time performance.

1.1 Requirements for Robot Simulation

As mentioned before, the requirements on the simulation of mobile autonomous
robots may differ strongly for different purposes even for the same robot. One
way to handle this problem is to use different simulators on different levels
of detail and realism. Although often practiced, this approach has the major
drawback of multiplying user efforts as well as sources of errors, as each robot
has to be modeled for each simulator and each simulator has to be linked to the
robot control software for specific tests.

Therefore it is highly desirable to use one simulator enabling different levels
of accuracy and realism in robot motion and sensing (sub-)systems. Depending
on the requirements, different simulation algorithms for each robot of a team
within one scenario should be selectable at the same time, e. g., by having a full
multi-body system dynamics simulation for one robot and kinematic models for
other robots. To achieve this flexibility for the simulation setup, the simulator
must provide means to exchange a variety of algorithms with different level of
physical detail for the same robot motion or sensor (sub-)system as well as the
possibility to flexibly combine these algorithms for different robots in the scene.

A second issue for simulation of large robot teams is real-time-performance:
When executing simulations on normal laptop or desktop computers (as in many
cases of research and education), CPU power often is a limiting factor for the
overall performance of a simulation. As the majority of all new laptop and desk-
top computers features at least a dual-core CPU, optimal performance of a
simulation requires support for multi-threaded execution.

1.2 Existing Robot Simulators

USARSim [I] is an open source simulation which supports several different types
of robots (wheeled, legged, tracked robots, submarines, helicopters) and sensors
(cameras, different distance sensors, RFID sensors, odometry, sound, motion
sensors, etc.). Physics simulation and visualization are based on the game engine
Unreal Engine by Epic Games [2].
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Several simulators rely on the Open Dynamics Engine ODE [3] for physics
simulation: Gazebo [] is the 3D simulator of the player/stage project [5] pro-
viding different sensors (cameras, distance sensors, GPS) and several types of
robots (wheeled, legged robots, helicopters). SimRobot [6] is a simulator which
supports wheeled and legged robots which can be equipped with some sensors,
e.g. cameras, distance sensors, and bumpers. Webots [7] is a commercially avail-
able simulator that is able to simulate many different types of robots, including
wheeled, legged and flying robots. It comes up with many configurable sensors,
e.g. cameras, distance sensors, range finders, touch sensors, light sensors, GPS.

Microsoft Robotics Studio [8] is another commercially available simulator. It
also supports many different robots and sensors. Physics simulation is done with
PhysX by NVIDIA [9], which can be accelerated by using special hardware.

Simbad [I0] is an open source simulator written in Java. It supports some
different robot models and sensors like cameras, range sensors and bumpers.
Dynamics are calculated with a simplified physics engine.

To the authors’ knowledge none of these 3D simulators fulfills all requirements
stated before. Most of them depend on external physics engines, restricting them
to a very specific level of accuracy of the algorithms used for simulation of robot
motion dynamics and for the numerical integration of the underlying initial value
problems for ordinary differential equations. If no algorithms on different levels
of accuracy are available, these effects only can be reached by huge efforts like
remodeling parts of the scene on different levels of detail.

Also multi-threading is not available in most of the aforementioned simula-
tions. The Unreal Engine 8 supports the usage of multiple CPUs, but USAR-
Sim is currently based on the Unreal Engine 2 without multi-threading. PhysX,
which is used by the Unreal Engine 3 and by Microsoft Robotics Studio, sup-
ports multi-threading, but it is not stated if Microsoft Robotics Studio makes
use of this functionality. ODE, which is used by Gazebo, Webots and SimRobot
is not multi-threaded.

In this paper the Multi-Robot-Simulation-Framework (MuRoSimF) is presented.
It provides a wide variety of simulation algorithms which can be combined to cre-
ate simulations for autonomous mobile robots on different levels of accuracy. As
the data models describing the robot’s structure and state are separated from
the algorithms used, algorithms can be exchanged transparently. MuRoSimF has
already been used successfully for the simulation of several mobile autonomous
robots (e. g. [I1I12]). Recent developments covered in this paper include algo-
rithms for the simulation of laser scanners and the possibility to execute simu-
lations multi-threaded thus improving scalability on multi-core CPUs.

2 Structure of Simulation in MuRoSimF

2.1 Data Models

The basic building blocks for the data models of robots and environment are
so called objects. An object is a container for a set of properties which can be
constant or variable. Properties can be assigned at runtime to each object.
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It is possible to declare a set of properties of different objects to be explicitly
equal, so that all properties will share the same space in memory thus avoiding
unnecessary copying of data. Due to this feature objects representing sensors
can be attached easily to any other object by simply sharing the properties of
interest, e. g. the object’s position and orientation.

Complex models can be created by joining any number of objects into a
so called compound. Compounds may have arbitrary internal structures and
relations of the single objects.

Robots are special compounds with a tree shaped structure. The basic building
blocks for a robot’s kinematic structure are the robot’s base, forks, fixed trans-
lations and rotations (to represent rigid bodies) as well as variable rotations and
translations (to represent joints). For the sake of simplicity only binary forks are
used.

During model setup the kinematic structure of a robot is created from these
basic blocks. To create a robot model a set of helper functions is provided. These
functions allow creation of the tree in a depth-first manner as well as adding
constant properties to each part of the tree. Currently models are programmed
directly in C++. Readers to load models created with external 3D modeling
tools can be added to MuRoSimF. As the rendering of shapes is based on textured
meshes, this will also improve the quality of the simulation’s visualization.

2.2 Algorithms

To make the simulation do something, simulation algorithms are needed. Algo-
rithms are classes which can be connected during simulation setup to the data
models of a simulation. When an algorithm is connected to an object, the algo-
rithm can add additional variable properties dynamically to the object. Due to
this feature, objects only store variable properties required or calculated by the
algorithms in use.

Externally implemented simulation algorithms can be used within MuRoSimF
based simulations by creating a new algorithm class which will connect to the
required properties of the model. This approach is less efficient than implement-
ing algorithms using the tools provided by MuRoSimF as all required properties
need to be copied between the external algorithm and the rest of the simulation.

2.3 Controllers

Controllers are special algorithms which may change and read variable proper-
ties of an object due to external requests. They are used to interface the sim-
ulation to external control software, thus enabling software in the loop testing.
Controllers can interface to data stream oriented connections like serial ports or
TCP-sockets. As controllers may connect to any property of a simulated robot,
new controllers for arbitrary external control software can be added to MuRoSimF.
Several generic controllers for setting joint values and reading sensors are
provided. For more complex control tasks a controller is provided which can
execute arbitrary control algorithms loadable from a dynamic link library.
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2.4 Execution of Simulations

After setup of the models and algorithms of a simulation, the simulation can be
executed. To do this, all algorithms are registered at a scheduler which will exe-
cute each algorithm at an arbitrary rate, thus allowing algorithms with different
purposes to be run at different speeds (e. g. high rates for robot dynamics and
lower rates for camera simulation). The execution rate can be chosen individu-
ally for each algorithm and each robot, enabling fine tuning of the performance
and accuracy of the simulation.

As the structures required for the exchange of data between the algorithms in
use are created during simulation setup, it is not possible to exchange algorithms
at runtime.

The set of algorithms registered at the scheduler can be structured in two
ways. Sequences of algorithms which have to be executed always in the same
order and at the same rate can be added as one item to the scheduler. It is
possible to execute a set of such sequences in parallel threats. Parallel execution
can be controlled in several ways: It is possible to spawn an individual threat for
each sequence, thus exploiting the maximum number of cores on a CPU present,
but it is also possible to limit the number of parallel threads, e. g. if part of the
CPU time has to be saved for other purposes.

3 Motion Simulation

MuRoSimF provides several modules for robot motion simulation, differing in
levels of accuracy, complexity and generality. The modules can be divided into
two major groups: robot-specific algorithms and general algorithms.

3.1 Robot Specific Algorithms

Two robot specific algorithms are currently provided for kinematic motion sim-
ulation for biped robots and for vehicles with differential drive. Both algorithms
make strong assumptions limiting the motion possibilities as well as the accu-
racy of the simulation. Nevertheless these algorithms have been used successfully
when investigating the high level behavior for homogeneous (e. g. [13]) and het-
erogeneous (e. g. [I12]) teams of robots. Another merit of these algorithms is the
low complexity. It is possible to simulate many robots in real time on a standard
computer.

Kinematic biped simulation. The kinematic simulation for biped robots is based
on the assumption, that the robot places its feet on a plane and that always at
least one foot touches this plane. Using this assumption the robot’s motion is
simulated by calculating the direct kinematics of the robot while keeping one foot
fixed to the ground. Whenever a contradiction occurs (e.g. one foot penetrating
the ground plane), the standing foot is swapped. A feature of this algorithm
is the fact, that the simulated humanoid robot does not suffer from effects like
shaking, sliding or falling over which is helpful for certain SIL tests.



34 M. Friedmann, K. Petersen, and O. von Stryk

Differential Drive. Motion of vehicles with differential drive is simulated under
similar assumptions: Both wheels always touch the ground plane. In this case
the angular and linear velocity of the vehicle’s base can be calculated from the
velocity of the wheels.

3.2 General Algorithms

The algorithms presented in this section do not make any assumptions on the
robot’s structure.

Point Model. The point model is the most simple motion simulation algorithm
available in MuRoSimF. Only motion of the robot’s base is considered (and con-
trolled) externally. If necessary (e. g. when investigating control of articulated
external sensors), direct kinematics relative to the robot’s base can be calcu-
lated to give the position and orientation of the robot’s parts. This algorithm
can be used when investigating large scale scenarios considering problems like
team communication or coordination.

Simplified Dynamics Simulation. The simplified dynamics simulation makes no
assumption on the robot’s kinematic structure. Unlike the algorithms presented
before, the following algorithm considers the dynamics of a robot system. To
allow for real-time simulation of teams of robots, this algorithm simplifies the
simulated robot to a single body with center of gravity (CoG) and inertia tensor
changing due to the motion of the robots joints. All internal motions of the
robot are calculated by direct kinematics. Motions of the robot relative to the
environment are calculated by summing up any external forces and torques (e. g.
caused by friction, collision or gravity) at the current CoG and calculating the
resulting linear and angular accelerations of the CoG. The algorithm does not
consider the forces generated by the servo motors of the robot’s joints. Instead
it assumes that the motors are moving at a given rate or acceleration. Further
the algorithm neglects any effects caused by relative motions of the parts of the
robot like Coriolis forces. Even though these simplifications limit the use of this
algorithm when studying whole body motions of a robot, the algorithm has been
used successfully for several types of wheeled, biped and quadruped robots.

As the algorithm requires the external forces experienced by the robot, detect-
ing and handling of collisions are essential. Detection of collisions is currently
based on primitive shapes (box, sphere, cylinder, plane) assigned to the bod-
ies of the robots. To avoid intersecting each body of each robot with each other
body in the scene, a hierarchy of bounding volumes is used (see [11]). As collision-
detection and -handling are modules separated from the motion simulation, they
can be substituted by other algorithms, e. g. by collision detection using meshes.

3.3 Discussion

The algorithms presented in this section differ in complexity, realism and gener-
ality. Depending on the requirements of a given simulation setting an appropriate
algorithm can be chosen allowing to set up an adequate simulation.
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Due to the modular design of MuRoSimF any other algorithm like full multi-
body system dynamics simulation can be added easily and be exchanged trans-
parently for existing models.

4 Sensor Simulation

Simulation of sensors is performed by algorithms which are connected to the
respective object representing the sensor under consideration. These algorithms
may need further information to simulate the sensor (e. g. rendering information
for the scene in case of camera simulation). In the following subsections the
capabilities of MuRoSimF for simulation of internal sensors and cameras already
presented in [ITI3] are revised. After this the newly developed algorithms for
simulation of laser scanners are discussed in detail.

Internal Sensors. Simulation of internal sensors like joint encoders, gyroscopes
or acceleration sensors is based on respective physical values calculated by the
simulation. Sensor errors like noise, saturation or limited resolution of AD con-
verters can be simulated in a post processing step.

Camera. The camera simulation uses the OpenGL based visualization module of
MuRoSimF which is also used for generating the main view. The scene is rendered
from the camera’s point of view, later it is possible to apply blur using a Gaussian
filter or distortion like it is caused by a lens.

Laser Scanner. MuRoSimF provides two different approaches for simulating dis-
tance sensors like laser scanners. One approach is using the z-Buffer information
generated during OpenGL based 3D rendering. The other approach is calculating
intersections of rays with the objects present in the simulation. The approaches
vary in terms of performance and usability, depending on the configuration of
the laser scanner (2D/3D, resolution) and the structure of the scene (number of
static and dynamic objects and their distance to the sensor).

Using the z-buffer to simulate a laser scanner is similar to the camera sim-
ulation up to the point, that the complete scene is rendered from the point of
view of the laser scanner. As only the depth-information is processed, it suffices
to render the geometry data of all objects omitting lighting, color or texture
information thus improving performance. The depth-information is read back
after rendering and can be used to calculate the orthogonal distance of the de-
picted objects from the viewing plane. Considering the direction of the rays, this
information can be used to calculate the length of the rays (see Fig. ).

Within the standard pinhole model used by OpenGL rendering the view rays
are distributed uniformly on the projection plane yielding a non-uniform angular
distribution of the rays (cf. Fig. [). For a scan of 2n + 1 rays of the range
[—Qmaz - - - @maz|, the i-th ray from the center has the direction

- 1
&; = arctan ( . tan(amaw)) .
n
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Fig. 1. Left: Distribution of the rays and measured distance in z-buffer. Middle: Vehicle
with 3D laser scanner, augmented with visualization of the scan. Right: Depth-image
read from the z-Buffer.

As most real laser scanners have a uniform angular distribution, a mapping
of the distances calculated from the z-buffer to the rays of the simulated scanner
must be performed. This can be done by using interpolation, optionally preceded
by supersampling (that is, rendering at a higher resolution than desired).

As the pinhole projection is limited to aperture angles below 180 deg, the
opening angle for the simulated laser scanner is limited. Due to the non-uniform
distribution of the angles it should be well below this limit. Simulation of laser
scanners with a wider angular range can be done using multiple rendering passes
with different viewing directions.

Simulating a laser scanner by calculating ray intersections may use an ar-
bitrary number of rays with any distribution. To speed up the calculation, a
hierarchy of bounding volumes is used. The same hierarchy already is used for
collision detection (see [13]), so it imposes no extra overhead on the simulation.
The calculation is further sped up exploiting local coherence: If a ray intersects
an object, it is likely, that a neighboring ray will also intersect this object, so
that the search space can be limited further.

To integrate simulated laser scanners with a control application a controller-
algorithm (see Sect. [Z3)) can be attached to the simulated laser scanner. This
controller is used to handle communication with any external application. A
special controller has been developed implementing the SCIP2.0 (see [I4]) pro-
tocol of the widely used Hokuyo URGO04LX laser scanner. Using this controller,
applications can be connected transparently to the real or the simulated device.

5 Results

5.1 Applications

MuRoSimF has been used to create several simulations for a wide range of robots
differing in mode of locomotion as well as simulated sensors. Due to the easy
recombination of the existing algorithms simulations adequate for a given pur-
pose, e. g. by choosing appropriate algorithms for motion or sensor simulation
can be created easily.

Simulation of biped robots has been used successfully for testing several mod-
ules of the control software including image processing, world modeling, behavior
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Fig. 2. Left: Simulation of a team of humanoid soccer playing robots. Middle: Simula-
tion of a newly developed quadruped robot. Right: Simulation of a heterogeneous team
of autonomous robots.

control and motion generation. Beyond biped robots MuRoSimF-based simulations
have been used for several purposes including development of a quadruped robot
and research in the field of cooperation for heterogeneous teams of autonomous
robots (see, e.g., Fig. [2 and [T2J15]).

Most recently a simulation for a newly developed small four-wheeled au-
tonomous offroad vehicle equipped with a laser scanner has been created. This
simulation is used to evaluate high level behavior and sensor processing for con-
trol applications for single vehicles as well as teams of vehicles (cf. Figs. B Hl).
The simulation consists of model data for the environment and for each simu-
lated vehicle. Each vehicle is modeled as a compound object, including a laser
scanner object. Motion simulation is based on the simplified dynamics algorithm
presented in Sect. The laser scanner can be simulated with either algorithm
described in Sect. @

5.2 Performance of Simulation

The performance of the simulation has been measured for the simulation of four-
wheeled vehicles in a simplified urban scenario described above. Measurements
were taken on two laptop computers (cf. Table [Il) equipped with a single resp.
dual core CPU.

Simulation Control-Software

TCP or RS232
Communication

Fig. 3. Structure of the simulation: Vehicle data, motion and laser scanner (LS) simu-
lation and the controllers can be duplicated to simulate more than one vehicle. Arrows
indicate direction of data flow.
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Fig. 4. Simulation of the vehicle (left) connected to a RoboFrame-based control appli-
cation (right). The visualization of the simulation is augmented with the readings from
the vehicle’s laser scanner.

The performance of the motion simulation was measured with disabled laser
scanners. Only the collision detection and the dynamics modules (both running
at 1000 fps) and the controllers were active in this test. Using one core of the
CPU of computer A up to 20 vehicles could be simulated in real time. Using
both cores (parallelizing only dynamics simulation, but not collision detection),
up to 30 vehicles could be measured. On computer B (single core CPU) up to
19 vehicles could be simulated in real time.

The performance of the laser scanner simulation has been measured for several
setups of laser scanners in 2D and 3D configurations (see Table 2)). During these
measurements the motion simulation was running single threaded at 1000 fps.
An interesting result of the measurements is the fact, that simulation of scanners
with many rays is more efficient using the z-buffer method while calculation of
ray intersections is more efficient for scanners with very view rays.

Another result from these measurements is, that the performance of the single
simulation algorithms strongly differs by the hardware used. On computer A the
break even in performance of the two laser-scanner-simulation algorithms was at
much less rays then on computer B. Using the modular approach of MuRoSimF
it is possible to choose an algorithm appropriate for the respective computer.

Table 1. Computers used for performance measurements

Computer A Computer B
CPU Intel Centrino Duo Intel Pentium M

(dual core) (single core)
Speed 1.67 GHz 1.86 GHz
RAM 1 GByte 1 GByte

Graphics-chipset Intel 945GM express ATI Mobility Radeon X700
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Table 2. Measurement of real-time performance of laser scanner simulation

Scanner Vehicles on
Method Resolution FPS Computer A Computer B
z-buffer 10x1 10 7 12
100 x 1 10 7 10
100 x 10 10 5 6
100 x 100 10 2 5
ray-intersection 10 x 1 10 9 16
100 x 1 10 5 10
100 x 10 10 2 2

6 Conclusions and Outlook

In this paper MuRoSimF, a framework capable of creating 3D simulations for
teams of autonomous mobile robots with different modes of locomotion (wheeled,
biped, quadruped) and different sensors has been presented. To the authors’
best knowledge it has the unique feature of enabling a very flexible selection of
simulation methods and algorithms for motion and sensing (sub-)systems with
different levels of realism for different robots in the same scene. Specifically, a
newly developed simulation for teams of wheeled vehicles has been presented
and evaluated in this paper.

Several improvements of the earlier developments described in [TTJT3] have
been achieved: The high performance of MuRoSimF when simulating legged robots
could be transfered to wheeled robots. Two new algorithms for the simulation of
laser scanners were added to the framework. They can be exchanged transpar-
ently allowing to choose the algorithm appropriate for a given simulation task.
It is planned to enhance these algorithms by considering distortions of the scan
caused by the robot’s motion.

First steps were taken to enable the distribution of the simulation to multiple
CPUs. Even though currently only the algorithms used for motion simulation
can be parallelized, by using a dual core CPU the number of vehicles simulated
in real-time could be increased by 50%. The next step in improving the simula-
tion’s performance will be the development and integration of collision-detection
algorithms which can be executed in parallel threads.

To provide more realistic simulations, it is planned to validate motion- and
sensor-simulation algorithms by comparing performace of simulated and real de-
vices and improving model data. One possible way to do this is the iterative
approach presented in [I6] to determine the motor data of a robot motion dy-
namics model.

Even though MuRoSimF is not open source, the source code is available upon
request for research and educational purposes (see www.dribblers.de/murosimf).

Acknowledgment. Parts of this research have been supported by the German
Research Foundation (DFG) within the Research Training Group 1362 “Coop-
erative, adaptive and responsive monitoring in mixed mode environments”.
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Abstract. We investigate the interaction of mobile robots, relying on in-
formation provided by heterogeneous sensor nodes, to accomplish a mis-
sion. Cooperative, adaptive and responsive monitoring in Mixed-Mode
Environments (MMESs) raises the need for multi-disciplinary research
initiatives. To date, such research initiatives are limited since each disci-
pline focusses on its domain specific simulation or testbed environment.
Existing evaluation environments do not respect the interdependencies
occurring in MMEs. As a consequence, holistic validation for develop-
ment, debugging, and performance analysis requires an evaluation tool
incorporating multi-disciplinary demands. In the context of MMEs, we
discuss existing solutions and highlight the synergetic benefits of a com-
mon evaluation tool. Based on this analysis we present the concept of the
MM-ulator: a novel architecture for an evaluation tool incorporating the
necessary diversity for multi-agent hard-/software-in-the-loop simulation
in a modular and scalable way.

1 Introduction

Mixed Mode Environments cover the range from static and structured to highly
dynamic and unstructured environments and consist of a myriad of networked
nodes including sensors, robots and possibly humans-in-the-loop. Further, MMEs
are characterized by different kinds of heterogeneity with respect to the utilized
devices and their capabilities (e.g. communication interfaces, energy resources,
sensor data). The scenarios addressed within MMEs may vary from monitor-
ing and surveillance tasks, using heterogeneous sensors, to the coordination of
autonomous vehicles. Accomplishing these tasks requires knowledge from four
main domains: (1) robotics and control, (2) communication, (3) sensing, and (4)
dependable middleware.

* This research has been supported by the German Research Foundation (DFG) within
the Research Training Group 1362 “Cooperative, adaptive and responsive monitoring
in mixed mode environments”.

S. Carpin et al. (Eds.): SIMPAR 2008, LNAT 5325, pp. 41[52] 2008.
© Springer-Verlag Berlin Heidelberg 2008
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In order to respect the multi-disciplinary issues, a common tool is needed
to examine the various problems and mutual dependencies. Throughout the last
years, the design of such simulation environments has been of significant interest,
particularly to the RoboCup community [3]. To the best of our knowledge, how-
ever, there exists no evaluation tool covering the diversity of the above named
fields. Thus, a concept introducing a holistic validation tool respecting the in-
terdisciplinarity and heterogeneity in MMEs is developed. In the remaining of
the paper, we will refer to this concept as the MM-ulator.

The paper is organized as follows: Next, we highlight the benefits of a common
evaluation tool and define the necessary requirements. In Section [B] we survey
relevant simulation tools and discuss their applicability to relevant scenarios.
The proposed architecture of the MM-ulator is presented in Section [l

2 Benefits and Challenges of a Common Evaluation
Platform

For the purpose of validation and performance analysis, three well known evalu-
ation methodologies can be applied: (1) analytical modeling, (2) simulation, and
(3) real experiments. Since analytical modeling is rather impractical and real
experiments are expensive and time consuming, a valuable approach is to use
simulation. But as only real experiments provide realistic results, they cannot
be neglected in general. Hence, validation techniques giving the opportunity to
incorporate real systems, would be beneficial. To this end, we focus on emula-
tion, a hybrid validation technique combining simulation and real-world experi-
ments, including the known elements of software- and hardware-in-the-loop tests.
Figure [1 highlights the conceptual differences to pure simulation.

Relying on the emulation approach, the developer does not have to cope with
simulation time semantics, and the integration of existing sensor and robot hard-
ware to a certain degree is facilitated. This turns emulation into a suitable tool
for controlled prototype testing and debugging. Figure [I] also indicates that the
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Fig. 1. Emulation as hybrid approach of simulation and real-world experiments
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degree of abstraction depends merely on the modeled building block: Since only
minor parts need to be modeled in detail, the degree of abstraction for the
middleware and communication module is low, whereas the sensing and control
module require a moderate degree of abstraction.

2.1 Benefits of Validation by Using Multi-disciplinary Knowledge

The synergetic benefits of tightly coupled multi-disciplinary knowledge is shown
in Figure 2l The interconnecting arrows indicate the potential decrease in the
level of abstraction regarding the shown dependencies, enabling more realistic
results. To have a more thorough understanding of the highlighted challenges,
let us consider an explosion in a chemical plant and a subsequent spread of fire,
evolving into a toxic environment, inaccessible to human operators. In order to
support the rescue operations, a team of robots starts exploring the environment.
Fundamental tasks are building a map of the environment, locating victims and
marking safe exit pathways or unreachable areas.

In the following, we will point out some sparsely tackled research questions
from the perspective of cooperative control and mobile communicating, as well
as sensing and middleware.

Benefits for Mobile Communicating Teams of Vehicles and Nodes:
In order to use heterogeneous autonomous mobile sensing platforms such as
robots within MMEs, it is crucial to combine their control and coordination
oriented communication. It has been shown that the information flow among
the robots influences the stability of their coordinated movement [10]. Due to
this mutual coupling, the communication properties of the environment and the
robots need to be respected when applicable control algorithms are being de-
signed. These properties include reflections, fading effects, communication range
and packet losses. On the one hand, these effects have a significant impact, e.g.
on close loop stability for cooperative control. On the other hand, distributed
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control may change the network topology, improving routing efficiency or cov-
ering a wider area while remaining connected. This combination is obviously
bidirectional and very important with respect to cooperative control of robotic
groups.

Typically, field data is provided by sensors. Cooperative data gathering based
on aggregated information is closely related to the positions of the robots and
viewing angles of their sensors. Thus, the verification of hypotheses in scene inter-
pretation and object detection can be significantly improved by connecting the
algorithms to the motion control of robots. Realistic simulated sensor outputs,
e.g. including noise, will show the reliability of control algorithms in non-ideal
situations and will give rise to increase the robustness of the applied meth-
ods. Furthermore, visual servoing [8], dynamic acquisition of navigational data,
and distributed cooperative mapping strategies are other representative topics.
They incorporate fundamental issues from sensing and motion control, such as
the amount of necessary information exchange between multiple unmanned vehi-
cles, mission control, or stability of coordination of partially autonomous robots.

Benefits for Sensing and Middleware: In the exemplified scenario, robots
will have to discover services offered by sensor nodes in radio proximity and
therefore, help to re-establish a reliable and efficient communication infrastruc-
ture. This smart behavior still imposes several research challenges on communi-
cation and middleware concepts. Self-description and self-profiling mechanisms
are needed to spontaneously migrate devices into the networked environment,
regardless of the given sensor manufacturer or interface. Middleware simplifies
the interconnections between sensing, communication, and distributed control. A
formal specification of interfaces for these parts leads to an increase of the inter-
operability of different devices. One challenge is to specify a common represen-
tation, to allow hardware independent robot task assignment, actuator control,
interpretation of pre-processed sensor data, and robot capability description.

Dependability supporting approaches like multi-path routing require the spec-
ification of constraints, which can be provided by the middleware if appropriate
interfaces are defined. Finally, several questions in the communication domain
are closely linked to information provided by a well-defined middleware con-
cept. For instance, approaches like efficient semantic addressing and routing of
sensing and actuation data require certain self-description functionalities on the
communication level.

Even by this brief discussion on upcoming research challenges, a fundamental
question arises: How will multi-disciplinary performance metrics look like? We
believe that having a holistic evaluation tool, available solutions for MME prob-
lems can be regarded from new perspectives. For instance, as migrating wireless
network constraints into robot control, new metrics like coordination stability
will emerge.

To our knowledge, these cross-sectional issues are not supported by any of
the existing simulation environments. Based on this analysis we propose the
requirements, which are fundamental for such a holistic evaluation tool.
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2.2 Basic Requirements

The simulation and emulation of a real physical world requires a flexible ap-
proach. A modular architecture is necessary to facilitate scalability and ad-
justable degrees of abstraction. Furthermore, the MM-ulator needs to provide
realistic fault and security models as well as efficient analysis and visualization of
gathered data. Dependability aspects provide different faults and threat models
which can also be considered in the MM-ulator.

Modeling Node Properties: Robots, unmanned vehicles, sensors, actuators,
and main servers require heterogeneous 3D models. Besides, the locomotion
properties, kinematics and motion dynamics of robots and vehicles are essen-
tial to be modeled. Sensor readings, e.g., for laser scanners, cameras, or contact
sensors must be considered with an adjustable accuracy. Specific resources like
processing power (e.g., for on-board image processing), memory, communica-
tion capabilities, energy consumption, and sensing devices with different levels
of accuracy have to be modeled properly and comprehensively.

Modeling Physical Environment Properties: The physical environment
splits up in static and dynamic properties. The static part consists of a realistic
3D model of the environment, including obstacles, buildings, surface proper-
ties, and various objects of interest as well as physical effects like gravity. The
dynamic parts of the physical environment include basic radio frequency propa-
gation models for identifying communication links and specific scenario settings
like mobility patterns of victims and rescue teams, chemical and physical con-
centrations (e.g., radioactivity), diffusion process of (toxic) gas, or the spread of
fire. The dynamic parts need to be modeled thoroughly. Also interactions with
the environment by the nodes, e.g., the distribution of RFID tags, robot driven
installment of sensor nodes need to be incorporated in the model of the physical
environment.

3 Related Work

Currently available simulation environments for testing algorithmic approaches
for the addressed scenarios are either rooted in the area of 3D robot simulation,
Wireless Sensor Networks (WSNs) or in Mobile Ad Hoc Networks (MANETS).

USARSim [6] is a 3D simulator for testing robotic applications, especially for
search and rescue scenarios. It is based on the Unreal Engine by epic games [I],
providing plausible physics simulation and high quality visualization. State infor-
mation is exchanged with the engine using the scripting language Unrealscript.
USARSim supports a variety of robot models, including legged, wheeled and
tracked vehicles, as well as submarines and helicopters, and additionally pro-
vides a wide range of sensor models, including cameras, range, touch or odom-
etry sensors. Based on existing classes and adapted scripts new robots/sensors
can be added, respectively. Robot control can either be performed by sending
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text messages via TCP sockets, or by utilizing wrappers for the middleware
Player [7], Pyro [5] or MOAST [4], that are already available in USARSim. In
most cases, code that was developed within the simulation will also work on the
real robots.

The Multi-Robot-Simulation-Framework (MuRoSimF) [12] (cf. Fig. Bl(left))
can be used to create simulations for cooperating teams of heterogeneous robots
in dynamic environments. MuRoSimF provides models for different legged and
wheeled robots equipped with sensors, like cameras and laser range finders. Its
modular structure facilitates to assign different algorithms to each part in the
simulation (e.g. motion or sensor simulation for individual robots) and provides
the option to be extended by the required inter robot communication mechanism.

Other related robot simulation environments are Webots [24], Gazebo [IT],
Microsoft Robotics Studio [2] and SimRobot [I8]. Common to the named tools
is their focus on detailed 3D models of the environment, surfaces, robots and
physics simulation, while they predominantly lack of components for modeling
wireless multi-hop communication, integration of mediating middleware concepts
or the incorporation of dependability models for realistic scenario test-runs.

A second category of simulation environments evolves from the area of Wire-
less Sensor Networks (cf. Fig. Bright)). TOSSIM [19] is a simulator for wireless
sensor nodes which are running the operating system TinyOS. Its dual mode
functionality allows to run TinyOS code in a controlled simulation mode as well
as on real sensor hardware. In simulation mode TOSSIM models link connectiv-
ity by probabilistic models and provides detailed hardware abstraction effects
including ADC and battery models. A similar approach is the cycle-accurate
instruction level simulator Avrora [26], which operates on sensor node firmware
images and provides simulation of fine grained radio models including detailed
models to evaluate the energy efficiency of different protocols. A two tier form
of WSN heterogeneity is supported by the EMStar framework [I3]. It provides
simulation and emulation capabilities for constrained motes, as well as more
powerful microservers, and therefore focus on middleware mechanisms to pro-
vide interoperability.

The most significant drawback of the presented platforms is that they were
intentionally designed for static, resource constrained nodes. This disallows the
simultaneous integration of more powerful platforms within this setup.

Mobile nodes possessing higher processing/communication capabilities are ad-
dressed in the area of Mobile Ad Hoc Networks. Typical emulation environments
strongly focus on the evaluation of routing protocols for Mobile Ad Hoc Net-
works and are shown in [QTTIT420027122123|25)27]. However, these approaches
address predominantly algorithmic solutions on the network and medium ac-
cess layer, while mobility and network traffic patterns are predefined in ad-
vance of a testrun. As a result, the evaluation of mechanisms for dynamic
and cooperative task assignment, motion control under constraints of network
connectivity or the interaction of heterogeneous groups of mobile robots are
disregarded.
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4 Proposed Architecture

The proposed architecture for the MM-ulator aims to fulfill two main require-
ments: (1) reducing the software re-implementation overhead when switching
from validation by simulation to a real-world test-run and (2) incorporating real
hardware platforms in the evaluation process. To cover a wide range of possible
devices, a generic node architecture is proposed that allows to run the same soft-
ware code either on real embedded systems like robots or sensor hardware, or to
instantiate a pure software entity as a virtual node on a common PC platform
to increase the scalability of a test-run.

4.1 Inner Node Architecture

The inner node architecture describes the functionalities of the node modules
and their interconnecting interfaces. The modularity of the architecture allows
to model a variety of heterogeneous devices. For instance, while the algorithms
encapsulated in the distributed control module model the task planning com-
ponent on a mobile robot, they might be absent in case the instantiated node
entity represents a static, resource limited node, which only supports basic sens-
ing capabilities. The Knowledge Database provides information about the node’s
communication, processing and memory capabilities. It also comprises the node’s
sensing and actuating resources and provides information about the node’s type
of locomotion, allowing to easily configure an autonomous vehicle or a static
sensor node. Moreover, the knowledge database provides details about a node’s
energy source and depletion process during operation.

The Middleware module provides standardized interfaces to bridge the intra
node communication between the sensors, actuators, distributed control- and
communication module. It encapsulates algorithms and protocols to provide se-
mantic node addressing and basic Publish/Subscribe mechanisms, facilitating
efficient group communication among diverse node groups. Furthermore, the
middleware architecture comprises mechanisms for idle sleep cycles to model
energy saving algorithms for wireless sensors. Based on information from the
knowledge database, the middleware module can generate a generic node de-
scription, which can be distributed to neighboring nodes to provide and dis-
cover remote sensing capabilities and to coordinate actuation capabilities for
distributed task planning. Additionally, the middleware module encapsulates
mechanisms for controlling data privacy and security issues.

The Distributed Control module comprises the algorithms for distributed task
planning, coordinated task assignment and mission control. It holds the control
logic for robot movements and deduces possible task goals, depending on the
predefined mission statement or the scene interpretation based on sensing infor-
mation. Predefined mission tasks range from fetching simple sensor readings at
a specific location to more elaborated tasks such as exploring the environment
and finding injured people.

The Communication module encompasses higher level algorithms and proto-
cols for wireless ad hoc communication. To provide an heterogeneous emulation
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Fig. 3. Architecture of the proposed MM-ulator

scenario of virtual and hardware nodes simultaneously, network layer functional-
ities like routing algorithms, service discovery and interface management mech-
anisms are modeled consistently on node level. For modeling further wireless
network mechanisms like the Medium Access (MAC) layer or topology control
algorithms, the communication interface at the adaptation layer provides means
to specify packet based scheduling policies and transmit power adjustments,
which are used in the centralized emulation controller to determine the resulting
packet scheduling and network topology.

The inner node core is enriched by the Dependability module, which provides
the extra-functional abstraction layer (EFAL) for other modules. The EFAL
provides fault modeling and injection of faults to ensure the proper execution of
application code in the face of failures. For secure execution of applications, the
EFAL provides threat modeling and threat injection mechanisms. The EFAL also
enables dependability/security evaluation metrics for comprehensive evaluation
and debugging of inner node interactions.

4.2 Inter Node Architecture

The connection of the nodes to the simulated world, the so called central em-
ulation controller, is crucial to the architecture presented in Fig. Bl Generally,
all node-to-environment and node-to-node interactions are exchanged using this
connection. The connection is mainly supported by the adaptation layer on the
side of the node and by the simulated physical world on the side of the central
emulation controller. The former acts as a filter for the exchanged data such that
only the information relevant to this node is incorporated and passed to the inner
node modules. The latter defines the world model leading to physically correct
information. This world model consists of a 3D model of the environment pos-
sessing real physical properties (e.g. friction, gravity). Moreover, communication
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Fig. 4. Information flow between the node and the central emulation controller

links (basic RF propagation) and scenario settings can be respected. Consider-
ing our interest in search and rescue operations, the spread of substances/fire
needs to be modeled; also an interaction with the environment is necessary. Such
architecture leads to the information flow structure shown in Fig. 4

A state space description of each node is applied which, e.g. for a mobile
robot, describes its dynamical motion. At time ¢ every node computes its own,
desired change of state Z,, using the node’s own state Z,, control variable u and
the relevant parameters 6,,. The relevant information for each node needs to be
filtered out of the world information and adapted according to the properties of
the node. As already mentioned, this adaptation is performed by the adaptation
layer. This layer can work with real hardware or simulated virtual nodes. In the
case of a pure simulation, threat, sensor and actuator models for the virtual node
mimic the features of real sensors or actuators, resulting in a versatile structure
and enabling realistic simulation.

After the computation of Z,, each node transmits its desired change of state
to the world simulation. Here, the desired changes of state of each node are
combined to Z,, the desired change of state of all nodes. Due to the fact that
only local knowledge is available for each node, Z,, is not necessarily reasonable.
Thus, before computing the eventual change of state of each node z,,, feasibility
of Z,, must be checked. The feasibility study is conducted by physical engines,
e.g. PhysX™ by Ageia/nVIDIA or the Open Dynamics Engine ODE. Given
an appropriate interpretation of I, due to environmental properties, these en-
gines can compute i,,, excluding impossible movements this way. Additionally,
a dependability interface provides the system with realistic fault/threat models.
Similar to the inner node architecture, it investigates which, when and where to
inject faults and threats [I5] to influence the system behavior.

Dependability can simulate the probability of specific consequences, such as
catastrophic failures. As simulation progresses, it is possible to observe 1) how
the system evolves, 2) how different failures impact the system, and 3) how well
the protocols handle security threats. Provided that some system properties
are uncertain, the significance of those uncertainties can be determined. To the
authors’ knowledge, these dependability models have not been respected in the
design of multi-robot system simulators before.

The above described inner node architecture enables real change of state of
each node ,,. A standard integration leads to the new state of all nodes x,,.
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Fig. 5. Robot simulation of a wheeled vehicle equipped with a laser scanner exploring
an urban area (left). WSN simulation without locomotion properties (right).

Including the possibly altered parameters of the simulation and the environment
0., the state x,, is subsequently sent back to each node at time ¢y and the
simulation can proceed.

4.3 Visualization and Analysis

In general, efficient tracing, analysis, and visualization of log data is one of the
main and important aspects of a simulation. Since spatial correlation is common
in MMEs, the MM-ulator visualization abstractly presents the regions of interest
instead of single sensor values. Maps are a natural way to describe the physical
real world as well as the network world. The MM-ulator provides a Map-based
World Model (MWM) [I6] consisting of a stack of maps of relevant attributes
(e.g., fault /threat map, connectivity map, residual energy map) (cf. Fig. [)).

The MWM abstracts different levels in MM-ulator such as communication
issues and supports arbitrary applications. It allows efficient event detection,
prediction and querying the network. The analysis based on MWM provides
efficient mechanisms for predictive monitoring, proactive MME reconfiguration,
enhancement of MME functionality, dependability and security.

4.4 First Implementation Steps

The screenshot outlined in the left part of Fig. Bl shows our search and res-
cue benchmark scenario in the MuRoSimF-based simulation [I2] environment.
Although, MuRoSimF with its origin in robot simulation provides detailed in-
formation on the physical environment and on the control/task states during the
exploration phase, the aspects of wireless communication for robot interaction
and remote sensor reading is not fully supported yet.

The right part of the figure shows the simulation of a homogeneous, static
wireless sensor network (e.g. by using [19]) incorporating detailed protocol per-
formance depending on sensor coverage and network connectivity for reliable
event reporting. Based on the design proposed in E1] - it is possible to
integrate the communication characteristics of wireless multi-hop networks to
MuRoSimF’s dynamic environment models, providing more realistic radio prop-
agation models as well as scenario dependent packet flows.
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5 Conclusion

A novel architecture for a simulation environment has been proposed for em-
ulation and validation of fundamental research topics from the diverse fields
involved in using heterogeneous networks of sensors and mobile robots in mixed
mode environments. Motivated by various benefits of such a tool, a modular
architecture has been presented to meet the different requirements and levels of
realism in simulation. The architecture itself is comprised of a central emulation
controller acting as the physical world and independent modules, incorporat-
ing the node specific characteristics, that are connected to this physical world
emulation. Resulting in a highly scalable approach, this architecture respects is-
sues that have not been considered before and is designed such that every node
instance may either be simulated or real hardware equipment.

Future work will primarily deal with the implementation of this architecture
as a stand-alone simulation tool extending existing simulators.

Acknowledgements. The authors thank Johannes Meyer, Paul Schnitzspan,
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discussions.
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Abstract. The clothing artefact business is facing relevant restructuring to be-
come able to produce items with enhanced value as for quality reliability, fash-
ion inventiveness and mass customization. The paper presents a multi-agent
simulation environment developed to assess and virtually check the feasibility
and performances of flexible automation solutions that can help the clothing in-
dustry to overcome the shift towards knowledge driven organizations. It ad-
dresses new options based on distributed intelligence and robotized cooperative
resources including human assisted working.

Keywords: Cloth manufacture, multi-agent simulation, robotics.

1 Introduction

The textile clothing industry characterizes by wit and knowledge driven settings, fol-
lowed by labour intensive shop lay-outs and, so far, to improve effectiveness, produc-
tive break-up is exploited, with advertising and creative firms fed by decentralized
processing sections, to distribute the work according to wages and skills figures. Busi-
ness success is sought, balancing added value and cost reduction, by productive decen-
tralization aiming at preserving quality critical jobs under direct control.

The evolution coherently moves towards new organizations, based on distributed intel-
ligence to grant products quality monitoring, while enabling flexibility by including func-
tional robotic resources and specialized manufacturing cells as well as new production
schedules assuring return on investment following the lean manufacturing concept [1].

The paper addresses innovation based on the development of a simulation environment
able to reconstruct cloth manufacturing processes including traditional and innovative ro-
botized devices. First, basic organizational requirements are outlined, with reference
methods to establish and assess improvements; then, multi-agent simulation aids are re-
viewed [2], with explanatory discussion on cloth manufacturing environments. The simu-
lator is purposely referred to the case of quality man jacket production but, thanks to the
modular architecture it can be used for different garments production. The main scope of
the simulator is to offer to users (garment manufacturers) and to system integrators (manu-
facturing process developers) a mean to assess the value of the adoption of new resources
and new technologies introducing different levels of flexible automation [3].

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 53008‘
© Springer-Verlag Berlin Heidelberg 2008
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2 Cloth Manufacturing Flexibility and Leanness: State of the Art
and Trends

Cloth suppliers are increasingly concerned by quick-response policies, ranking at cus-
tomers driven scopes [4]. These, by the way, presume technological versatility, adap-
tive resources and process schedules, so that effectiveness is directly related with
flexibility issues, to find out better facility lay-outs and production as well as organi-
zation and schedules.

In automotive industries, e.g., integration of flexibility and leanness is recognised
to be winning opportunity and prospected as Toyota paradigm (to replace Ford para-
digm), whenever fast changing product mixes need be processed, to satisfy likes and
tastes of diversified buyers. Very little has been done, so far, in that direction by
clothes industries; labour centred shops are maintained and performance is accepted
to be ranked into non uniform ranges, with quality and price highly dependent on
each other. Indeed, dresses manufacture distinguishes several quality ranks, from
high-standing articles (in the domain of handicraft), down to cheap offers, with stan-
dard attributes whether properly mass produced [5].

Even for mass production, clothes enterprises use loosely connected automation,
bringing about flexibility in job schedules and delivery issues by means of operators
trained skill and decision ability.

In view of intelligent manufacturing, the area peculiarities bring about to re-think
resources and methods, stressing on flexible automation, and process control integra-
tion [6]. The simulation techniques promote betterments, by balancing added value
investments with transparency of the effects. To such a purpose, a multiple-step pro-
cedure should be available, as indicated in Fig. 1.

An intelligent manufacturing solution, on these premises, is more a bet than a chal-
lenge, unless the selected lay-out is made to operate with proper production pro-
grammer and the strategic, tactical or execution flexibility is turn by turn exploited,
with due account of the technological resources versatility [7].

simulation software: computer aids supplying virtual reality
miming the competing resource layouts and processes and
assessment criteria

agents behavioural models
relational description of the
resources dynamics and of

decisions manifold, specifying
the real resources evolution

intelligent control rules at

performance evaluation
metrics tools measuring
performances/costs by refer-
ring to different order mixes

the levels of distributed and production plans
resources, cell modules and

plant governor

Fig. 1. Tools to assess flexibility effects in manufacture

Computer simulation and testing with virtual set-ups should be used as powerful
decision aids, for off- and on-line use to deal with flexibility. The tools are typical is-
sue of the IT, providing: - at the facility design-development stage to select the re-
sources and to set-up the layout configurations: resources setting needs comply with
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enterprise sale policies; agendas are stated for balanced throughput and due time; - at
the facility management-fitting stage to update the plans and to explore the recovery
ability: production schedules are updated by on-process data, to face planned (e.g.
itemization) or unpredictable (e.g. failures) discontinuities. In the first stage simula-
tion will provide a precious demonstration tool for new manufacturing concepts to
establish comparative enterprise forecasts and to anticipate benefits or drawbacks of
the proposed solutions; in the second one simulation will support the plant manage-
ment also in case of unexpected events on the basis of the embedded reference
knowledge.

Simulation codes are, now, standard options, mainly, based on object languages
and modular structures. Modularity is useful, to focus the attention on subsets of
quantities, while leaving unaffected other parameters, drawn out from the facts to be
assessed [8]. The plant effectiveness, actually, depends on a large number of proper-
ties and the investigation should distinguish direct from cross-related effects, so that
the knowledge frame [5] is step-wise built up to the required level of completeness.

The clothing industry benefits move that way; the ‘intelligent factory’ concept is
observed with caution: technology-driven additions, to a labour-intensive environ-
ment, cannot be accepted without fully acknowledging the return on investment. The
throughout testing of achievements and drawbacks of virtual plants offers an afford-
able commitment, making easy to rank competing facilities and/or plans. Multi agent
manufacturing model and simulation allow to reproduce accurately the production
environment including traditional, robotic and human resources in order to make
knowledge based design choices and plant management. A main advantage of multi
agent simulation is in the parallel development of the processes with concurrent ac-
tivities ongoing. Maintenance and upgrading of the simulator including introduction
of new classes of agents for new types of resources are easy.

Ergonomic modules can be used for better definition and utilization of the involved
human resources.

3 The Reference Environment

The reference environment is high quality cloth manufacturing plants where special
attention is devoted to the adoption of new resources developed within the Leapfrog
IP project'. The process flow is sketched in Fig. 2, where the grey boxes represent
the sub-processes for which new resources have been purposely developed and for
which the integration in the overall process has to be virtually assessed through the
simulator. The main new resources are:

e a grasping robotic system for cut parts unloading from the cut table and deliver-
ing to the transport system;

* an intelligent transport system where single part carriers have complete informa-
tion about the part (order, delivery, specific manufacturing operations..);

e a3D sewing robotized system and a 2D sewing autonomous device.

! Leadership for European Apparel Production From Research along Original Guidelines, FP6-
2003-NMP-NI-3, Contract n® 515810-2.
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Fig. 2. Sketch of the cloth manufacturing process and foreseen areas of application of new
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4 Simulator

The system to be designed is a complex multi-agent non linear manufacturing system
where the relation between the design parameters and the constraints cannot be ex-
pressed in a closed form [9]. Therefore this is a typical case where the simulation of
the various alternative solutions can be an effective design support tool: in this case a
DES (Discrete Events Simulation) model® of a whole quality cloth manufacturing
plant has been implemented and analysed. The specific simulation environment pro-
vides both a qualitative (e.g. by means of visual animation) and quantitative (e.g. by
means of performance indices) verification of the possible design choices.

In order to assess the technical feasibility and advantage of introducing new robot-
ized resources for fabric manipulation, transport and joining operations, CAE applica-
tions have been adopted to test in advance the functionality of the innovative resources
and their integration within the overall layout design. To this aims, a 3D physics-based
multibody (PBMS) detailed simulator’ has been developed and integrated with the
DES model under a common simulation framework, as shown in Fig. 3: in the PMBS
simulation the process execution strategies can be tested against realistic metrics of the
production resources and actors, as interactively communicated by DES simulation.
Symmetrically, the modifications on the production agents caused by the process are
scheduled as events influencing the operative strategy of the whole plant.

2 Based on DELMIA Quest package (by Dassault Systemes).
3 Based on DELMIA IGRIP package (by Dassault Systemes).
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Fig. 3. Interaction between continuous time simulation and discrete event simulation (courtesy
Dassault Systemes)

The run-time interfacing of the DES and PBMS models has proven to be very
important for the detection of the functionalities that the control architecture must
provide to make the innovative production agents cooperate. The results of this inte-
grated approach is a realistic simulation model where the flows of materials is gov-
erned by a discrete events logics and the preparation of the list of future events
depends by the results of physics based simulation, mainly in terms of the duration of
processes and the kind of the produced items. In the following a brief overview of the
main objects is given. The process Py is modeled in the PBMB environment and it is
recalled by the discrete events simulation at time t, whose master session freezes
waiting for PBMB Py process end. The process duration is Tx. Then the simulation
control passes to the DES that restarts the simulation clock from t, and updates the list
of future events by considering that the items generated by Py will be available at
time to + Tx.

4.1 Part Models

Parts are passive entities object of the activities of system resources (agents). Parts are
generated by sources, transformed and processed by agents and destroyed by sinks at
the end of their lives. Cloth kinds, cut parts, fabric rolls, cloth finishing accessories
are the main parts considered in the simulator environment. In our case study we con-
sidered formal man jackets and parts are represented in Fig. 4 laying down on a cut-
ting table.

Fig. 4. Man jacket cut parts
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Due to the mass customization and quality clothing production it has been assumed
a single layer cutting [10]. The part models include information about geometry and
fabric physical properties useful for the PBMS software modules. User defined attrib-
utes can be introduced if and when necessary according to the application peculiari-
ties: a meaningful example is the ID that identifies the production batch to which
every part belongs to.

4.2 Agent Models

The productive facilities in cloth manufacturing plants have been classified including
new purposely developed robotic resources: this led to the definition of the corre-
sponding element classes. Each family of entities is displayed through an easily rec-
ognizable 3D mock-up. A survey is hereafter given.

e FabricRollWareHouse (Fig.5a). The formal jacket production orders are generated
by this entity, which acts as a source of the simulation model. The icon of produced
items is a fabric roll. The launch of an order is done in agreement with a Bill of Order,
read from an external text file.

» FeederMachine (Fig.5b). The attributes of this entity reproduce the functions of the
fabric roll spreaders and cloth wrapping.

* CutTable (Fig.5c). The fabric rolls entering this machine are destroyed and substi-
tuted by the parts that belong to the jacket or, in general, to the cloth to be manufac-
tured. To the CutTable are associated different processes and related logics like: the
scanning of the fabric faults, the single-ply cutting, the fusing with application of
stiffening agents and labelling for the future recognition of the parts.

* OperatorLoadingOfInterlining. This resource models the operator loading of inter-
lining on specific cut parts laying down on the cut table. This agent works in tight co-
operation with the CutTable resource.

* FusingPress (Fig.5c). It represents the conventional thermal curing of cut parts as
well as the pre-shaping of fabric shells by mean of new resources for the application
of nano-agents.

e CutTableUnloading robotic system (Fig.5d). This resource class stands for the robot
work-cell deputed to the picking of the cut parts and their loading on the conveyor.
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* Automatic2DSewing. The resources of this family are the fixed automation 2D sew-
ing machines for special sewing operations.

* Manual2DSewing (Fig.5e). This denomination indicates several agent classes that
model the manual sewing stations for particular seams, sleeves or other operations
that cannot be profitably automated. At this detail level the only differentiation be-
tween manual and automatic stations consists on different failure statistics that repre-
sent the workers' daily shifts. The distinction may indeed be useful for to the further
sustainability assessment of the work burden to human operators: software solutions
for the ergonomic analysis of manual tasks could indeed be integrated on the detailed
simulation of these tasks.

* Robot3DSewing (Fig.5.f). This resource models the whole 3D robotized sewing cell;
it is a new concept cloth assembly system that develops a set of actions like the load-
ing and positioning of parts to be joined, the robotic 3D sewing performing and the
unloading of the semi-manufactured items.

* Transport system. Different transport systems have been modelled taking into ac-
count their specific features. The main transport families are: - AGV and Labour:
Mobile storage capacities that are used to model respectively transporters (e.g. fork
lifts), automated guided vehicles, cranes, or hand moving of parts; - Conveyor and
Power and Free (PnF): one-way continuous parts movement units with a fixed spatial
interval between moved parts: they are conceptually identical, but conveyors perform
a simple point-to-point, one-way linear transport, while PnF transportation is based on
carriers travelling along a complex shape, closed loop track.

4.3 Agent’s Behaviours

All elements in the simulator are controlled by built-in behavioural rules, that have a
generic scope. The need for controlling the model behaviour at a very detailed level,
by providing built-in data structure and methods that are specific for the run-time con-
trol and monitoring of any elements, led to write specific behavioural rules, that go
beyond the standard ones: the QUEST's Simulation Control Language (SCL) was
used, that is a Pascal-like, object based programming language.

These rules may be classified into the following categories:

e routing rules or productive parameters of an agent as a function of the char-
acteristics and state of any other agent or process in execution;

e conditional execution of agents’ logics;

* interruptions (e.g. maintenances) or random failures rules;

* unexpected user-driven events management rules.

Each element class has its own procedures that control the behaviour of the agents
in the class. Hereafter the main procedures implemented for the innovative robotic
agents are introduced with reference to the cut table unloading process, see Fig. 6.

The fabric is unwrapped and cut on each cutting table and the cut parts are loaded
with their lining by operators just before entering the fusing. The duration and re-
quirements of all simulated processes were determined in agreement with the indica-
tion suggested by an expert industrial partner. At last the processed parts are removed
from the cutting table’s conveying belt by means of a robotic arm equipped with a
grasping device that clamps the fabric parts to the hangers and puts them into the
Power and Free based internal logistic system.
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Fig. 6. PnF at cut line exit: empty hangers wait into pits, loaded hangers flow along main rail

All parts coming from the same fabric cloth inherit from it a common univocal ID
that allows to recognize and reassemble them in the plant. This ID is coded as a nu-
meric “user attribute”. The process starts when all previous parts have been removed
from the cutting table. Afterwards a suitable command causes a new fabric cloth to
enter the machine and its ID is retrieved. The cutting process is recalled and executed,
the availability status of the machine is changed to busy on processing. After the
process completion, all the parts are selected and labelled with the ID inherited by the
parent cloth.

The Grasping Agent Procedures. The procedure is run by the fingers when the ena-
bling condition holds, otherwise these mechanisms hold on indefinitely. Firstly the
mechanisms back to the initial position, then the grasping device detaches a hanger
from the hanging conveyor, and enables its clamp to follow the fingers. The tips of
the three fingers have turbine fans that lift the fabric by means of vacuum. The fingers
lift up and retract, so that the fabric hems shift between the hanger clamps. After that
the grasping device freezes the hanger and hands the pattern over it. As soon as the
confirmation by the hanger comes, the gripper communicates to the controller that
everything is ready to move towards the loading point in the hanging conveyor. The
resetting of all I/O channels concludes the procedure. The master device must be able
to kill the execution of the procedures associated to the slave devices. The main rou-
tine of the gripper fingers envelops the operative procedure into a while loop: the es-
cape condition is determined by the robot controller.

The Hanger Agent Procedure. The reconfigurable hanger is made up by three pas-
sive fingers attached to the hanger body device that are reconfigured by the gripper in
a two-agents synchronous task. The associated procedure is very simple: each finger
is bound to follow a tag placed on the corresponding grasping device clamp. The in-
verse kinematics settings of the hanger's fingers let them replicate only the position of
the master tags, because the orientation is not an independent parameter for a 2 DOF
mechanism.
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Fig. 7. 3D digital mock-up of the grasping system for cutting table unloading

The Robot Agent Procedure. The main procedure grasp, composed by elementary
action procedures, is recalled each time a carrier is ready to be loaded with a fabric
pattern, and groups the operations related to the hanger's grabbing, reconfiguring,
loading and re-inlet into the inbound logistic system. With its first move, the robot
gets ready to grab an empty carrier, that is always brought at the same point of the
conveyor. The robot controller drives the fingers, so that they can attain the grabbing
points on the current hanger. Once the hanger is secured to the gripper interface, the
robot can move away from the grabbing position to the home position. The tool refer-
ence frame changes to the robot wrist frame: this same frame is indeed used by the
gripper controller as the reference for calculating the fingers displacements and solve
their inverse position kinematics problems. The robot moves the to the goal point and
its controller orders the grasping device to reshape the hanger to the pattern grasping
configuration. Actually, the robot controller is serving as a supervisor of the simulta-
neousness of the grasping device fingers' tasks. When the robot controller receives a
suitable message, it assumes that the pattern has been successfully loaded and gives
its agreement to the reloading of the hanger on the hanging conveyor. The manipula-
tor ends the grasping procedure by moving back home.

5 Tests and Results

The production schedule is generated through a suitable database from realistic pro-
duction information. Thanks to the modularity of this approach a database of all rele-
vant parameters has been set, and specific input masks, as shown in Fig. 8, have been
introduced in order to make the data input more intuitive to the end-users.

In the specific DES simulation environment the quantities and features of resources
in a model can be modified through the batch processing of a configuration file. An
application automates the process, by progressively generating a sequence of configu-
rations that are closer and closer to an optimal solution: the optimization mechanism
relies on the "Scatter Search" meta-heuristic approach and is applied to the output of
each simulation run. The user must input a tentative solution, define the optimization
drivers, the lower and upper bounds for the parameters to be optimized, that can be
either discrete or continuous, and set one or more algebraic constraints on their
values.
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Fig. 8. Extraction of the production bills from a database

An articulated test campaign has been planned and several significant results have
been derived. The amount of jackets produced in 40 hours in steady conditions is the
driver of the layout performance optimization. Here after only some results concern-
ing the influence of the dimensions of the production orders are presented.

The dimensions of lots made up of jackets with the same style and size has a key
influence in product throughput and heavily impacts plant productivity. As an exam-
ple, cut parts have to be sorted along their origin from a common batch before loading
them on the robotized garment assembly cell: the smaller is the mean lot size, the
longer will be the waiting time before a whole set of compatible parts is gathered up
and processed.

The automation in the research of optimal solutions let investigate the plant perform-
ance when processing bills of orders made up of differently sized batches: along with the
extreme conditions of unitary and mass production, the management of lots with mean
dimensions of 2, 5, 10, 20 and 50 items (with 20% standard deviation) was simulated.

The optimization study helps to lay out the most suitable sets of resources for a
certain production type, or even gives indication about the dynamic allocations of the
production agents (i.e. the use of highly skilled human “jolly” resources). In particular
the optimal number of carriers varies with the lot size (see Table 1), so that a dynamic
carrier reservoir system would be implemented to face the variability on the composi-
tion of the order.

Table 1. Optimal number of carriers for several lots mean sizes

Iiban Lot Size (0% st. dev) 1 5 20 B 100
Optimal raraber of carriers 110 129 142 14 147

In the case of unitary-lot production, Fig. 9 reveals the inelasticity of system’s re-
sponse to the increasing of the overall work burden, i.e. there is a maximum launching
rate of new items into production that cannot be exceeded; in case of batch production
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instead, the system succeeds in managing a wider throughput range although increas-
ing the amount of work in progress, and thus the lead time. As a matter of facts, the cut
parts originating from the same batch (style and size) are processed in along parallel
paths have to be re-collected before concurring in the Garment Assembly cell: the
smaller is the mean lot size, the most the production is paced by the parts' sorting proc-
ess, that causes the saturation of the buffering capacity of the conveyor rings.
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3/ —i— all identical items
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Fig. 9. Plant productivity as a function of lots mean size (with optimal number of carriers)

6 Conclusions

The paper introduces a new simulator environment for intelligent clothing manufac-
ture. The competition between enterprises resorts to the process-added value of actu-
ally sold apparel, rather than to large products batches, requiring to run after buyers,
with advertising or lower sale prices. High-standing clothes are noteworthy, as clients
require personalized quality and quick service. The discussion offers hints to look af-
ter the integrated manufacturing approach and the influence on the process efficiency
of new robotized resources developed within Leapfrog Integrated Project is specifi-
cally dealt with. The process description is based on a modular lay-out, to separate the
effect of influence quantities and to investigate details, preserving the overall view of
the process evolution.

One should emphasize the fact that, today, the clothing industries are work-
intensive set-ups and extensively resort to the on-line operators versatility to modify
production, while the process progresses; this possibly hinders the benefit of intelli-
gent manufacturing, based on the concurrent run of the material and the information
flows for adaptive flexibility: - at the organizational range (process-attuned manag-
ers): to select the fabrication agendas; - at the co-ordination range (decentralized con-
trollers): to optimize the cloth bolts choice; - at the execution range (real-time super-
visors): to adapt the material dispatching service.

The example discussion shows that flexible automation can deal with foregoing in-
formation on self-sufficient bases; actually, the benefits depend on a large number of
cross-related facts and actual implementations, hard to be fixed, remain out of the
reach of front-end operators. The area of high-standing garments, satisfying varying
market requests, is exemplary case where automation provides critical support for
quality certification.
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The changes towards flexible lean automation, however, need be investigated in

terms of realistic system behaviour and expected economic returns; simulation studies
that integrate discrete events and 3D physics-based multi-body models are dominant
help, to compare competing alternatives referring to actual production contexts and,
moreover, to provide explanatory examples with training support immediately related
to sets of feasible implementations.
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Abstract. The Lunar Surface Operations Simulator (LSOS) is being developed
to support planning and design of space missions to return astronauts to the
moon. Vehicles, habitats, dynamic and physical processes and related environ-
ment systems are modeled and simulated in LSOS to assist in the visualization
and design optimization of systems for lunar surface operations. A parametric
analysis tool and a data browser were also implemented to provide an intuitive
interface to run multiple simulations and review their results. The simulator and
parametric analysis capability are described in this paper.

1 Introduction

The National Aeronautics and Space Administration (NASA) is leading an interna-
tional partnership to develop and deploy a series of missions to return astronauts to
the moon in 2025 [1]. In addition to habitation on, and exploration of the lunar sur-
face, these missions, developed under NASA’s Constellation Program, will be precur-
sors for subsequent manned missions to Mars. To enable these missions, new launch,
crew transport, lander, and surface mobility vehicles and lunar habitat systems are
being designed. Simulators are playing a vital role in assisting in the mission design
and planning, visualization and design optimization of these systems.

The Lunar Surface Operations Simulator (LSOS) is one of the simulators under
development within the Constellation Program. As its name suggests, it models sur-
face systems, their mechanical properties, dynamic interactions and operations. In
addition to simulating the dynamic interactions during operations, for example, soil
interaction or component motion, LSOS also models associated environmental, and
system mechanical and non-mechanical processes. These include thermal, radiation
and power transients, lighting and shadows, and terrain. LSOS’s integrated architec-
ture allows use of common models and enables interactions between components
operating in different domains to be easily modeled. For example, the illumination,
solar panel power and thermal models use a common sun model and incidence angle.
Simulations and post simulation analyses have been recently performed within LSOS
to show that it can be a powerful tool to assist both in the design and planning of
missions, and in component design optimization.

LSOS has been built on and extended from previous simulation packages developed
at the Jet Propulsion Laboratory. Its core physics simulation engine is the DARTS
package originally developed to simulate the Cassini spacecraft [3]. DARTS is a multi-
body domain-independent dynamics engine. Subsequent development around DARTS

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 65ﬂ 2008.
© Springer-Verlag Berlin Heidelberg 2008
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has led to supporting packages and simulators for a variety of space applications.
These include Dshell [4], SimScape [8], ROAMS [5, 6], and DSENDS [7].

This paper gives an overview of LSOS. We start in the next section with a descrip-
tion of the models that have been developed within LSOS. We have used LSOS in a
batch mode to perform parametric analysis. Procedures developed to enable this ca-
pability are described with an example in the section on Parametric Analysis. We
finally conclude with a description of our current status and future plans.

The results from simulators like LSOS, combined with the analytical approaches
by others [2] are essential for successful and timely development of NASA’s vision
for our return to the moon.

2 Models

Simulations in LSOS are composed from models of many components. Some of the
more important component models are described in this section.

2.1 Vehicle Models

A number of prototype autonomous and teleoperated vehicles are have been devel-
oped for terrestrial demonstration of potential lunar surface operations. As develop-
ment on and demonstrations of these vehicles for Lunar missions continue, they are
being modeled and simulated in LSOS to facilitate visualizing and evaluating their
performance under Earth and Lunar surface environmental conditions and to assist in
design optimization.

The K-10 [9] built at the NASA Ames Research Center (ARC), ATHLETE [10]
built at JPL and Chariot [11] built at the NASA Johnson Space Center (JSC) rovers
are three prototypes being used in a series of field trials to demonstrate lunar opera-
tions capabilities. These vehicles, modeled in LSOS, are shown on Figure 1.

Fig. 1. The K-10 (left), ATHLETE (middle) and Chariot (right) rovers modeled in LSOS

A generalized infrastructure for vehicle modeling in LSOS has led to a streamlined
process for modeling the variety of kinematic, dynamic and constraint properties found
in these vehicles. Re-use of common elements has allowed us to reduce the complexity
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and improve the reliability of the modeling and simulation software. Each vehicle
model is configured by assembling it from a library of components. The use of com-
mon components allows each unique vehicle to inherit many wheeled vehicle proper-
ties, for example, inertial sensors or mobility and navigation yet maintain their unique
properties. The models are composed of detail elements of the vehicle including mass
and inertia tensors of all rigid-body elements and joints, actuators and sensors.

2.2 Habitat Model

The Space Mission Analysis Branch [12] at the NASA Langley Research Center
(LaRC) has been analyzing and developing models and scenarios of lunar surface
systems for the Constellation Program. The development of a Lunar surface system
architecture is a complex problem in which a wide variety of constraints have to be
satisfied. Some design constraints are imposed from interactions with the supporting
systems. For example the size of the habitat modules will have to fit within the space
available in the launch vehicles.

Many other constraints have to be determined by evaluating performance under
simulated operations. For example, the amount of power generated by the habitat
solar panels depends on the location selected on the surface of the moon, the elevation
and topography of the surrounding terrain, the kinematics and control of the solar
panels, the efficiency of the solar panels and so on. In the design of systems as com-
plex as the lunar habitat, the use of a simulator can assist in the design and optimiza-
tion of components and the evaluation of overall performance.

Fig. 2. LSOS visualization of a potential Lunar habitat system from NASA LaRC
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The LSOS team is working with lunar habitat designers at NASA LaRC to support
the development of the lunar outpost. We have modeled the version of the lunar habi-
tat shown on Figure 2 that was released in January 2008. Simulations were performed
with this model for a power analysis assessment of the configuration. The model
implemented in LSOS can place the static elements of the habitat on a terrain model
at any user specified location. The supporting simulation sub-systems that enabled
the power analysis simulation are described in the following sub-sections.

As the habitat design for the Lunar missions evolves, and as analytical and simula-
tion needs arise, we will continue to update our habitat models and perform simula-
tions and analysis to assist in the design of the lunar habitat.

2.3 Solar Panels

The current version of the lunar habitat implemented in LSOS has six solar panels. Each
panel is mounted to a four degrees-of-freedom articulation system. The implementation
of the solar panel system in LSOS used an
existing software component for modeling
robot arms. Six such robot arms with identical
kinematics but placed at the six specified base
attachment points were used for modeling the
solar panel arms and articulation.

The configuration of the arms (shown on
Figure 3) is a yaw joint at its base, a pitch
joint at its elbow, a pitch joint at its wrist and
aroll joint also at the wrist. The LSOS models
derived the kinematics of the arms from the
component graphics models we received from
NASA LaRC. The LSOS models specify
kinematics, and range of motion of the arm
elements.

The objective in the control of the arms is
to maximize the exposure of the solar panels
to the sun while avoiding collisions between
the arms and between arms parts and the habi-
tat. Implicit in the goal of maximizing the
solar panel exposure is the minimization of
self-shadowing of the solar panels.

In our simulations, a simple algorithm was
implemented for control of the solar panel arms.
The motion of the sun with respect to the lunar
habitat at the chosen location at the South Pole
of the lunar surface is to traverse in a counter-
clockwise direction very low on the horizon
(between -3 degrees and +3 degrees) on a 27- Fig. 3. Solar panel articulation in LSOS
day monthly cycle. Consequently, the solar
panels should have their roll-axes vertical and be rotated to face the sun. The other three
joints of the solar panel arms are periodically (four times during each monthly cycle)
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modified depending on the sun azimuth angle to translate the roll joint axis and im-
prove the solar panel exposure to sunlight.

2.4 Terrain

Terrain models are an important component of surface simulations. LSOS uses the
SimScape [8] package to
incorporate terrain models. A
number of terrain models
have been generated for
LSOS simulations. Among
these are analog terrestrial
field-trial locations at Meteor
Crater in Arizona, USA and
versions of lunar terrain mod-
els. Our lunar habitat simula-
tor uses the recently released
Goldstone Solar System Ra-
dar (GSSR) terrain model
[13]. The GSSR terrain cov-
ers an area of about 300km
by 600km at a 40m/pixel
resolution. The terrain model
was generated from radar
images of the moon taken
from the Earth. At the South
Pole of the moon, the planned
location of the lunar outpost,
this terrain dataset is the best
currently available.

Due to the process used in
generating the GSSR terrain
model, regions not viewable from the Earth (because they are obscured by terrain
features) are holes in the terrain. In LSOS, these regions have been filled with interpo-
lated values shown in red on Figure 4. While the 40m resolution of the GSSR terrain
model is adequate for the habitat simulation, the terrain model will have to be en-
hanced to centimeter-level resolution to be good enough for accurate simulation of
vehicle-terrain interactions.

Fig. 4. GSSR model of South Pole region of the moon

2.5 Sun Propagation

LSOS uses the Spacecraft Planet Instrument C-matrix Events (SPICE) database and
toolkit [14] to determine the locations of the moon, the sun and other planetary bodies at
specified times during simulations. This data is used to compute the relative location of
the sun with respect to specified locations on the surface of the moon at specified times.
The sun azimuth and elevation angle derived from the SPICE interface is available
in the simulation environment for use by any algorithm. In the lunar habitat simulation,
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it is used to drive the roll angle value for each solar panel arm and for illumination
modeling. In vehicle simulations, it is additionally used for computing heat radiation to
the vehicle and ground, for solar panel lighting in the vehicle power analysis.

3 Parametric Analysis

One of the most powerful uses of LSOS is in performing parametric analysis to ex-
plore the behavior of systems as simulation parameters are varied. The software infra-
structure to enable this was developed for the ROAMS [15] simulator to vary terrain
and soil parameters and DSENDS [7] simulator to vary atmospheric conditions in
entry, descent and landing simulations. This parametric analysis infrastructure was
adapted for LSOS to orchestrate batch runs of lunar habitat simulations. In addition,
the parametric analysis tools enable specification of parameters to vary the statistics
of parameter variation, and data collection and storage from the simulations.

3.1 Parameters

Two parameters, height of the habitat and location of the habitat, were varied in a
demonstration of parametric analysis applied to the lunar habitat simulation.

The height parameter placed the habitat at the specified height above the local ter-
rain height (see Figure 5). In computing power generation, it was found that, because
the sun is always low on the horizon, surrounding
terrain features often obscure the solar panels from
the sun. An advantage can be gained by increasing
the height of the habitat because it raises the pan- h
els above the terrain shadows. This parameter was
selected to determine the sensitivity of habitat
height to the power generation. During the para-
metric analysis batch simulations, the height pa-
rameter was varied uniformly between 0 and 30m.

Locations at the South Pole of the moon have
been identified as likely landing sites for lunar  Fig. 5. The height parameter is
missions. This is motivated by the possibility that ~ measured from the local terrain
ice may be found close to the surface at the bottom height
of craters and the sun may be visible year-round
from selected locations. For these reasons, Shackleton Crater, located almost exactly
at the South Pole of the moon is an ideal site. Choosing a specific location on the rim
of Shackleton is not as easy a task because surrounding terrain features obscure some
areas, the elevation of the rim and proximity to the South Pole varies at different
locations.

The complex interaction of these properties makes the analytical determination of
the best habitat location complex. Varying the location in multiple simulations and
determining power generation for each location is an alternative approach to deter-
mine ideal locations for the placement of a habitat.

Figure 6 shows the locations around the rim of Shackleton that were selected for the
parametric analysis. Thirty locations, approximately equally spaced, were selected. The
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coordinates for these locations were entered in a table. During the parametric analysis
simulations, an index into the table was uniformly varied to select a particular location
to use for the simulation.

Fig. 6. Locations around the rim of Shackleton Crater varied as a parameter

3.2 Parametric Analysis Runs

A total of 200 simulations were run in the parametric analysis. Each simulation ran a
one-month (720 hours) simulation with time incremented in one hour steps. The start
time use in the simulations was March 7, 2011, GMT 01:00:00.

To illustrate the parametric analysis, a simple power model was implemented in
the simulation runs. At each step, the power generated was computed by multiplying
the exposed solar panel area by 400 Watts/m” to factor the solar power collected and
converted into useful energy. This approximates the solar panel efficiency to be about
thirty percent. A battery model with a capacity of 100000 Watt-hrs was used in the
simulations to store the power generated. A constant drain on the battery of 200 Watts
was also implemented to model power usage during surface operations. The simula-
tions were initialized with the battery at fifty percent charged, i.e. with S0000Watt-hrs
of energy. Data collected during the simulations include the time, habitat height and
location, the sun azimuth and elevation angles, current power, battery charge and total
accumulated power.

Data collected from the simulations was stored in HDF5 format. A browser, devel-
oped to retrieve data from the HDFS store and selectively view the data, provides an
intuitive interface to inspect the results from the simulations.

Screen shots from the data browser display are shown on Figure 7. A scatter plot of
accumulated power versus location index for all the simulation runs is shown on
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Figure 7a). For the simulation conditions used (terrain, habitat model, etc), the results
indicate that locations 1-10 and 20-30 are generally better than locations 11-19. The
browser allows the user to select simulations from the scatter plot to view in detail.
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Fig. 7. Browser display of parametric analysis data: a) scatter plot of accumulated power ver-
sus location for all 200 simulation runs, b) Accumulated power versus height for selected simu-
lation runs at location 9, ¢) Power versus time for selected simulation runs at location 9, and d)
Accumulated power versus time for selected simulated runs at location 9

We can see from Figure 7b) that, not surprisingly, at location 9, increasing height
improves power accumulation. Figure 7a), however, shows that power generation at
some locations are more sensitive to height changes than at other locations. Figure 7¢)
and 7d) show that, at location 9, a terrain feature probably blocks the sun about
1600000 secs (about 444 hours or about 18.5 days) after the start of the simulation.

We used this simulation and parametric analysis example to illustrate the utility of
applying high-quality simulations to assist the design of systems. The capability to
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select and view any parameter or simulation variable plotted against any other pa-
rameter or simulation variable can be used to identify hidden relationships in the data
that may lead to new revelations to optimize designs.

4 Conclusions

We have presented, in this paper, preliminary results from our development of LSOS. It
has been used to demonstrate the simulation of a variety of models and operational sce-
narios. We also describe a parametric analysis package to manage batch execution of
multiple simulations with varying parameters. A demonstration of this capability is used
to illustrate how simulations can be used effectively to aid in the optimization of designs.
Future development plans for LSOS include extensions to handle new lunar vehi-
cle types, simulate more complex operations and scenarios, incorporate models of
other physics-based processes, share models and data with other lunar mission simu-
lators and support design and development activities and field trial planning for
NASA lunar missions. Plans are also underway to generate high-resolution terrain
models using re-construction techniques based on physical process models [16].
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Abstract. This paper presents YARS (Yet Another Robot Simulator),
which was initially developed in the context of evolutionary robotics
(ER), yet includes features which are also of benefit to those outside of
this field. An experiment in YARS is defined by a single XML file, which
includes the simulator configuration, the (randomisable) environment,
and any number of (mobile) robots. Robots are either controlled through
an automatised communication, or by dynamically loaded C++ pro-
grams. Therefore, YARS, although still under active development, is
comparable with commercial and open-source robot simulators which
include a physics engine such as Webots and Breve but with a much
stronger focus on requirements originating from the field of evolutionary
robotics.

1 Introduction

The development of robots is time-consuming and, therefore, often very expen-
sive. Especially in research, where budgets are limited, and various novel ap-
proaches are tested in hardware and software, simulators can play an important
role in reducing development cost and time. Another advantage is that research
groups can cooperate and exchange results, even if the physical robot platform
is not available to all groups. These advantages only hold if the simulator does
not require a high implementation effort for a new experiment and if the results
obtained in simulation are portable to the physical platform.

In the context of evolutionary robotics (ER) [1] additional requirements must
be fulfilled. A simulator is only advantageous if it is much (in the order of ten
times) faster than real-time and if the results do not require additional porting
effort. Another important criterion is the automatic set-up of the experiment
after each evaluation to ensure compatibility of the fitness values.

There is a large number of robot simulators available, emphasising different
aspects of robot simulation. Examples are Khepera 2.0 Simulator, Webots, Dar-
win2k, Adams, Yobotics, Gazebo, Breve, and USARSim [2I34I5I6I7I8I9IT0]. So
why is there a need for Yet Another Robot Simulator? The simulators mentioned
above were reviewed by the authors before work on YARS was initiated, but not

S. Carpin ct al. (Eds.): SIMPAR 2008, LNAT 5325, pp. 75186, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Table 1. Comparison of simulators, evaluated with respect to evolutionary robotics
as it is performed within the presented context (see fig. [[). The simulators listed here
were chosen during the assessment phase of YARS because of their particular emphasis
and as they were the most widely used simulators in the field of robotics. The entries
© and @ refer to a positive or negative evaluation, respectively. Evaluations given in
brackets were not tested by the authors of this work, but obtained through available
documentation. The evaluation of Webots refers to version 3, and might not be true
for the current version 5. As none of the available simulators met all the requirements,
YARS was initiated. Footnotes: 1) Available source refers to the possibility to include
motor and sensor models, 2) Publication [I0] states up to 300 times faster than real-
time. This could not be validated with the examples provided in the evaluation version
(Ver. 5, Mac OS 10.5.4, 2.5GHz Dual Core, 4GB RAM). Achieved maximum was
ca. seven times faster than real-time. 3) Documentation states that Webots can be
started as batch-process, 4) No statements made in the documentation, 5) Supervisor-
concept available, but in Version 3 not well suited for evolution as performed in this
context, i.e. with an external evolution- and evaluation-software, and the requirement
to set and re-set the simulation externally.

Simulator Speed Optional GUI Free Auto. reset Source avail.!

Webots  [O]” ®r o (oL S)
Breve (@1 (D] ® [ D
Adams O S) o [ S
Darwin2k (O] (S) ® © (D]
Yobotics  [O] S o (O S
YARS S S S S S

chosen because of either cost, speed, or restricted usability for ER (for a discus-
sion see tab. [[l). The latter refers to setting up an experiment, and resetting it
automatically after every evaluation of an individual. Additionally, customising
and adding new sensors and actuators is either not possible or requires a high
implementation effort, which excludes corresponding simulators for experiments
such as those presented here. Furthermore, the evolution time can be reduced,
if the evaluation of populations is distributed in a cluster. This is only possible
if the simulator does not require GUI interactions and a running visualisation,
two features which are not widely supported.

An additional feature which supports the distribution of the evaluation is
the possibility to fully configure YARS either via command-line parameters, a
configuration file or through network communication.

These requirements are a few of the features of YARS presented in this paper,
which is organised as follows: the following section covers the approach of YARS
and explains how it is well-suited for both, ER and mobile robot simulation in
general. The third section explains the concept of YARS and describes its most
prominent features. The fourth section introduces RoSiML, the XML description
language of YARS. The fifth section gives an outlook of the future of YARS and
the final section closes with a discussion.
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2 Approach

In the context of ER, a simulator is used for four main reasons: 1. During evolu-
tion, hardware-damaging behaviours are likely to occur. 2. A simulator can run
faster than real-time. 3. The state of the simulator can be precisely set by the
experimenter, increasing the comparability of the fitness values of the individu-
als in a population. 4. For the analysis of the behaviour-relevant dynamics, it is
essential to control all the parameters.

Yet, these reasons only hold if the simulator-reality gap does not lead to
significant behavioural differences. Closing the gap is related to the precision
of the simulator, which stands in contrast to the simulation speed, i.e. there
is a trade-off. The central issue here is how precise must the simulator be to
ensure the portability of the results and still remain fast enough to fulfil the
requirements of ER.

In the approach followed here, it is not important if the characteristic curve
of each motor is identical in simulation and reality, as a robust controller should
compensate for these differences. Hence, the simulator is sufficiently precise if
the observed behaviours in simulation and reality are qualitatively equivalent.

This has implications on the physics engine which is required in a num-
ber of experiments, e.g. walking [TTJT2IT3] and gravity driven [I4/15] machines.
ODE [16] was chosen as the physics engine for YARS, because it is faster than
real-time (depending on the complexity of the simulation, see next section for an
example), numerically stable and well-documented. Numerically stable, in this
case, means that the simulation will not crash, if the internal physics runs into
computational singularities. For evolution, this type of simulator behaviour is
very important. First, the singularities indicate hardware-damaging behaviour,
which can be punished by the fitness-function. Second, for the next individual,
the running simulator is simply reset and does not have to be restarted otherwise.

This advantage comes with a trade-off. ODE uses a first-order Euler integrator
for the physics, a linear force model for the actuators, and only a Coulomb
friction model, which together, result in a fast, numerically stable but not very
precise simulation. In the approach followed here, this is not a drawback, as
robust controllers are generated by including noise, exploiting the sensori-motor
loop, and are evolved on an abstraction of the hardware. A sufficient abstraction
is determined by comparing intermediate results on the simulated and real robot
on the behaviour level. This approach leads to portable controllers, and hence,
validates YARS for ER and robot development. The latter is briefly discussed
in the next section, but the procedure is equivalent, except that the evolution is
exchanged with other controller-generating or learning methods. An example is
the use of YARS to simulate the RunBot [I7] (see fig. [3(d)).

YARS has been used for over five years of research in numerous experiments.
A small overview is presented in figure [3 (a more comprehensive list is given
n [I8]). This is only possible because it was designed to be general, while not
requiring any programming knowledge. The last two statements are discussed in
the following sections.
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3 YARS

YARS was initially designed to connect to ISEE [I819/20], an ER environment.
Therefore, the early application was to connect to an external control program.
For each robot, a UDP socket communication port is opened automatically and
the morphological configuration of the robot is communicated through a hand-
shake mechanism. Each description of a sensor and an actuator includes the
mapping of the values. This can be used to adapt the pre- and post-processing
of the controller automatically. Java and C++ classes are provided to connect
other software by the same mechanism.

A reload mechanism in YARS supports on-line modification of the XML file.
This enables the easy modification of the experiment’s parameters and the ob-
servation of their influence without the need to halt the controller or to restart
the simulation. This is an important feature in closing the simulator-reality gap.
There is also the possibility to send the XML file through a socket communication
port to YARS, which enables the co-evolution of environment, morphology and
controller (see fig. [Il). The same mechanism can be used to externally generate
complex environments.

The properties discussed above, automatic communication and external con-
figuration and control of YARS, enable YARS to connect to existing software

[ Question H Hardware ):t{ Simulator ]

uDP dyn. loading
£

Control- Control-
program plugin
< v
N
@
A N
Environm. )Lgr\[/)IFL’/ l;(?\;_/ Experiment
description descritpion

Extracting
general
principles

Fig. 1. Interactive evolutionary robotics. Left: The experiments begins with the defi-
nition of a question, e.g. insect-locomotion (see Octavio in text below and figure .
From this question, a well-suited hardware platform is defined, built and a simula-
tion capturing the main physical properties is written in YARS. Recurrent neural
networks are evaluated in simulation and the observations are used to modify the evo-
lution parameters. Intermediate results are tested on hardware, and a comparison of
the behaviour of the simulated and physical robot yields to modifications of the sim-
ulation parameters. Final results are extracted, generalised and may also be used as
initial populations in other experiments. Right: YARS offers different possibilities for
its controlled and configured. A control program can connect via a UDP connection
to exchange sensor and motor commands, but can also be loaded dynamically during
runtime. An experiment description is given as a command line parameter, or may be
passed through a UDP port to YARS. The latter can be used to generate complex
environment descriptions by an external tool.
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with little effort, and are features from ER that make YARS attractive for robot
simulation in general.

In ER, a large number of different controllers must be evaluated, until a
good solution is found, i.e. the simulation speed is crucial. Currently, non-trivial
simulations (e.g. Octavio, see fig. run between 10-70 times faster than real-
time on a Pentium M 1.7 GHz. The high values result from the possibility to
start YARS without visualisation or by reducing the refresh-rate of the rendering,
while the lower bound is a consequence of the OpenGL rendering.

In closed-source simulators, actuators and sensors are problematic, as they
can either not be extended at all, or require a large amount of implementation
effort. YARS includes the most common sensors and actuators, which can be
fully configured. Adding a new sensor or actuator is possible, as YARS is open-
source (for details see sec. Bl Sensors)

Essential for the analysis of a controller is the ability to log data from the
simulator. Sensor and motor values are available through the communication
interface, pose of the objects can be written to a text file, and data can be
displayed on-line, currently through a gnuplot interface.

RoSiML. Setting-up an experiment can be a very time-consuming process, and
often requires programming knowledge or knowledge of 3D modelling languages
such as VRML. We chose a different approach and designed our own description
language: RoSiML (Robot Simulation Markup Language) [2T22]. This was done
for one main reason. If the keywords of the description language are chosen with
care, it is human-readable and does not require any programming knowledge.
Standardised 3D description languages, e.g. VRML and X3D, were not chosen,
because they are too extensive in their possibilities, and require advanced pro-
gramming knowledge. Their focus lies on scene descriptions and extending them
to robotics requires heavy modifications, eliminating the advantage of avail-
able graphical development tools. XSLT [23] offers the possibility to convert

<RoSiML> <movable>
<simulator> <body> <!-- twice, for each wheel -->
<!-- simulator configuration --> <compound name="robot"> <objectConnector>
<!-- cam. specification --> <cylinder name="main body"> <hinge type="velocity">
<!-- keyboard commands --> <1--- cylinder definition --> <!-- hinge definition -->
</simulator> </hinge>
<environment> <!-- twice, with different pose --> <source name="wheel left"/>
<box> ... </box> <infraredDistanceSensor> <destination name="main body"/>
<box> <!-- sensor definition --> </objectConnector>
<1-- box definition --> </infraredDistanceSensor> </compound>
<coordinate x="7.5" y="0" z="0.15"> </body>
<randomiseInterval method="global"> <!-- twice, with different pose --> </movable>
<interval> <ldrSensor> </RoSiML>
<min x="6.5" y="-1" z="0.15"/> <!-- sensor definition -->
<max x="8.5" y="1" z="0.15"/> </1drSensor>
</interval> </cylinder>
<probability x="0.5" y="0.5" z="0"/> <!-- twice, for each side -->

</randomiseInterval> <sphere name="wheel right/left"> 7 g
</coordinate> <1-- sphere definition --> L
</box> </sphere> .8. Xz
</environment> .,

Fig. 2. YARS example: This figure shows snippets of RoSiML code and sketches of the
robot. The snippets were taken from the SRN experiment discussed in the text below
and shown in figure An XML file is given to YARS either through command line,
or through a UDP communication protocol (see fig.[l). A proximity sensor is simulated
by five rays.
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description languages, e.g. to convert VRML to RoSiML, but still requires ad-
ditional manual modifications.

The first version of RoSiML was used in the German Research Foundation
Priority Program 1125 as a general simulator description language to make de-
scriptions exchangeable among the program members (e.g. [2122]), independent
of the simulation system.

The description of an experiment in RoSiML is divided into three main sec-
tions, the simulator, the environment and the movables (see fig.[2]). The simulator
section relates to the general configuration of YARS, e.g. update frequency of
the physics and controller, keyboard commands, window size, camera position,
etc. The environment section describes all static objects. Their position can be
randomised at every reset, but remain fixed in their pose throughout the sim-
ulation run. The objects are basic geometric primitives (box, sphere, etc.) that
are also used to define a movable. The movable section includes any number of
movables, which are either controlled (see below) or passive. An example is a
RoboCup [24] scenario in which groups of controlled robots act in a static envi-
ronment interacting with a movable but otherwise passive ball. The concept of
a moveable is detailed below.

Movables. A moveable is a generalised concept of a (mobile) robot. There are
four possible types, active, passive, controlled, and moving, which are distin-
guished by their form of control and whether or not communication is estab-
lished.

For each active movable, UDP socket communication is automatically estab-
lished. Exceptions are passive movables, which do not require any form of control
or communication. Both types are elaborated next.

In ER it is desirable to have a dynamic environment, i.e. other robots that
interact with the robot and controller of interest. An example is an obstacle-
avoidance controller that should not only avoid static but also moving ob-
stacles. In this case, only the obstacle-avoider should be active, i.e. open to
evolution/analysis/development, whereas the behaviour of the other robots re-
main unchanged. This case is covered by the controlled movable. YARS provides
the possibility to dynamically load C++ classes. A string identifier in the XML
file relates to the name of the C++ class, which contains the implementation of
the controller. The moving movable is very similar to the controlled movable. The
difference is that the outputs of the C++ program are forces which are applied
directly to the body. The next paragraphs cover the concept of the morphology,
sensors, and actuators of a movable.

Morphology. The morphology description of a movable is organised in a four-level
tree (see fig. [@). The first-level node is named body, and it includes compounds
and connectors. A compound is a group of connected rigid bodies or compos-
ites of rigid bodies, called objects for short. Connectors are active or passive
joints between two objects. Inter-compound connectors are defined below the
body node, intra-compound connectors within the compound. For each object,
the physical parameters, e.g. weight and friction coefficients, must be specified.
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Composites [16] allow the definition of complex rigid bodies. Trimesh objects
will be included in a future release.

Sensors. Currently, different generic and specific sensors are implemented, both
exteroceptive and proprioceptive. Exteroceptive sensors are attached and posi-
tioned relative to an object. Proprioceptive sensors are included in the actua-
tor definition. The list of exteroceptive sensors includes: generic rotation sensor
(3D compass), generic proximity sensor, two specific Sharp infra-red proximity
sensors (DM2Y3A003KO0F, GP2D12-37), generic light-dependent resistor sensor,
and a generic directed camera sensor. The generic sensors are fully configurable,
including noise. Available proprioceptive sensors are: joint (angular) position,
joint (angular) velocity, joint force/torque, and an energy sensor. A special group
are global sensors, which are not usually available in physical robots and which
are used for the evaluation. Currently included are a global coordinate sensor and
an ambient light sensor. Both were used to calculate the fitness in the examples
discussed below.

Custom sensors can be added through modification of the source code, or
may result from the combination of available sensors, e.g. a laser-scanner can be
simulated by an array of proximity sensors.

Actuators. Actuators connect two rigid bodies, and are positioned relative to
their source. Possible actuators are hinge, hinge2 (combination of two hinges),
slider, ball joint, and a complex hinge. They are configurable in torque/force,
max. deflection, damping and spring properties, and noise.

4 Examples

Aibo. The first example is an evolved neuro-controller for a fast quadrupedal
walking behaviour [I3] (see fig. [3(a)). The experimentation platform is the Sony
Aibo robot [25]. A detailed 3D model of the Aibo is available, which enables the
extraction of the body’s proportions, but there are no specifications available
about the motors and the weight distribution. This increases the difficulty of
evolving a controller in simulation and porting it to the real hardware. Further
challenges were the unknown friction coefficients and the non-trivial shape of the
Aibo legs, which could not be simulated in detail. The solution to these problems
were manifold. First, a few tests were conducted with the actual robot in order
to get rough approximations of the motor torques. The second step was to find
a good approximation for the weight distribution and morphology. The third
step was to test intermediate evolution results on the real hardware, using the
German Team framework [20], until the behaviour was qualitatively equivalent.
With these techniques, the final solution only required minimal changes to a few
synaptic weights in order to run on the physical hardware.

Octavio. Octavio is an example of a complex walking machine where a multitude
of nonlinear mechatronic effects have to be taken into account in simulation to
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(¢) Octavio is a modular eight-legged
walking machine. First different con-
trollers for single-leg control were
evolved [II] and then combined in

(d) RunBot is the fastest two-
legged walking machine [I7]

(robot image was taken from the
BCCN Gottingen site)

a walking machine (left). Right: The
physical platform.

Fig. 3. YARS application examples

enable an efficient transfer of neuro-controllers to the real hardware. Octavio is
a modular four-, six-, or eight-legged machine with autonomous legs with re-
gard to control and energy supply (see fig. . Each leg has three active and
one passive joint of which each active one is equipped with a DC-motor-gear
combination, a spring coupling, a pre-stressed spring, an angle, and a current
sensor. Instead of using the motors as servo motors with the desired positions
as input, controllers may take full advantage of the four states that the motor
offers: forward torque, backward torque, relaxed and brake. Activation ampli-
tude is determined by pulse-width modulation. On the one hand, this gives more
power to the neuro-controller to e.g. save energy by making use of the relaxed
mode; on the other hand it imposes a higher demand on the simulator in terms
of transferability of controllers to hardware because effects like backlash, friction
and inertia have a much more direct impact on performance. This is because
they are not hidden from the neuro-controller by means of a black-box servo
control. For successful transfers of neuro-controllers to hardware the usual strat-
egy of reproducing weight distributions, including sensor- and motor noise etc.
(see e.g. the Aibo example above) was not sufficient and the simulator therefore,
had to be extended in several ways, of which a few examples are given here: sim-
ple models including static and dynamic joint friction which were derived from
experiments, rotor inertia is taken into account as an energy storage that greatly
influences the passive dynamics, pulse-width to maximum no-load velocity and
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maximum stall torque mappings were determined experimentally and backlash
effects were quantified and included in the simulator. Going beyond the trans-
ferability of controllers from simulation to Octavio a comparability of artificial
neuro-controllers with biological controllers in e.g. the stick insects is desired.
To this end, simple muscle models based on biological data are implemented to
take into account the neuro-muscular transform.

A detailed elaboration on the implementation of the neuromuscular transform
will be subject of future publications.

Adaptive Light-Seeker. The adaptive light-seeker with the Self-Regulating Neu-
ron (SRN) model [I827] demonstrates the randomisation possibilities of an envi-
ronment in YARS (see fig.[3(D)]). The SRN model is an extension of the standard
additive neuron model, which is motived by Ashby’s Homeostat [28]. Coupled in
an embodied and situated recurrent neural network, it enables adaptivity within
such structures. To demonstrate this, an environment was chosen in which a
light source has to be found under varying light conditions. The robot cannot
distinguish between a light source and the ambient light in the raw sensor data.
YARS enables the randomisation of the pose of any object in the environment
and the value of the ambient light. The former feature was used to first evolve a
light-seeker without ambient light. The obstacles were randomised such that a
static, non-explorative behaviour, e.g. cyclic movements with increasing radius,
would not lead to a good fitness, as the environment changes from generation to
generation. In the next step, the ambient light was randomised. The result is a
pure feed-forward SRN network that is able to find a light source under varying
ambient light conditions, as a result of the homeostatic properties of the SRN
and the interaction with the environment [I§].

Another example, RunBot [I7], not in the context of evolutionary robotics, is

shown in figure

5 Outlook

The current state of YARS is well suited for experimentation in- and outside
the field of ER (see examples given in figure [B)). With XML as the description
language, researchers who may not be familiar with programming are able to
create their experiments within YARS. The communication is established au-
tomatically, and sources in Java and C++ are available to connect YARS to
other programs. Controllers can also be written directly in C++ and loaded
dynamically during the start-up of YARS. Hence, YARS can also be used with-
out any additional software, such as ISEE. Recompiling YARS to test new con-
trollers/morphologies/environments is not necessary. Nevertheless, there are still
considerable improvements currently under development or in planing phase.

Modularisation/Plug-in Concept. The entire source of YARS is built into one
monolithic executable, with the exception of the C++ controllers which are
loaded dynamically during runtime. The next step of the YARS development
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will split functional subgroups of YARS into shared libraries, which can then be
easily exchanged without the need to recompile the entire system. Such func-
tional groups are the physics engine, the visualisation, sensors, actuators, and
logging. Each of them is discussed in the following paragraphs.

Visualisation. The ODE visualisation engine, drawstuff, was replaced by a faster
OpenGL implementation which also supports multiple cameras. The next step
is to make the visualisation optional at compile-time, and to allow the user to
choose between different visualisations, i.e. none, minimal, such as OpenGL,
or more comfortable such as e.g. wxWidgets. The more comfortable GUI will
also allow graphical, interactive manipulation of the scene. As our focus was on
exploiting the capabilities of simple sensors in the sensori-motor loop, textures
for photo-realistic rendering has, so far, not been included, but will follow with
the refactoring of the visualisation.

Physics. Current developments in the field of open-source physics engines tend
towards impulse-based physics simulation [29]. Physics engines will be added
after evaluation, if they meet the requirements and provide improvements.

Sensors/Actuator. A sensor and an actuator requires almost the same implemen-
tation effort in YARS. At this stage, first the XSD grammar has to be changed,
followed by the parser, the internal representation, the simulation of the sen-
sor/actuator, and finally the communication. Although well-structured, this is
a considerable amount of implementation to add a new sensor/actuator. Under
current planing is a plug-in concept to reduce this effort significantly and to
support dynamic loading.

Logging/Plotting. The possibility to log and plot simulation variables is essential
in order to analyse the quality of a controller or, as in the context in which YARS
was developed, to understand the correlation between the neuro-dynamics and
behaviour, given the sensori-motor loop. A template concept will support logging
of data into any format, such that also exports to e.g. povray [30] will be possible.

Multi-OS. YARS runs on Linux (gee 4.x), and is currently ported to Mac OS X
10.5 and Win32.

6 Discussion

YARS is a very flexible, highly configurable robot simulator. If physics is re-
quired and the on-line visualisation does not need to be highly sophisticated, it
is currently, to the best of the authors’ knowledge, the fastest available simulator.
YARS’ main contribution is simulation speed, but keeping the simulator-reality
gap in mind, ensuring quick portability of simulation results to the physical
platforms. Other contributions of the YARS development are easy integration of
new sensors and actuators, and concerning evolutionary robotics; automating of
communication, randomisation of the environment, and the possibility to reset
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the experiment through a communication channel. The experiment description
file may also be passed to YARS through socket communication, which enables
co-evolution of the environment, morphology and controller and enables gener-
ation of complex environments by external programs. YARS has also proven to
be useful in experiments outside the field of ER, as in e.g. RunBots.

Therefore, YARS already has many desired features for research which is
currently discussed in the field of ER, but also supports robotics development
outside this field.

YARS is open-source and available from sourceforge:
http://sourceforge.net/projects/yars/.
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Abstract. This paper proposes the RT-Middleware for robot system
integration. “RT” means “Robot Technology” which is applied not only
to industrial field but also to nonindustrial field such as human daily
life support systems. We have studied modularization of RT elements
and have developed software platform RT-Middleware which promotes
application of RT in various field. Robotic system development method-
ology and our RT-Middleware concepts is discussed. The RT-Component
which is a basic madular unit of RT-Middleware based system integration
is derived from this discussion. A methodology of system development
with RT-Components, and a framework to make component are shown.

1 Introduction

The progress of robotics research has accumulated vast amounts of knowledge
and technology. Those technologies called “Robotic Technology (RT) [I]” have
begun to be applied to various field including ubiquitous computing, intelligent
room and service robot applications. However the applications of those tech-
nologies are not developed enough, and the system integration issues for those
technologies are receiving increasing attention both by academia and industrial
circles. Especially software takes the lead in robotic system integration method-
ology. As the supportive evidence of it, many software platforms for robots have
been developed in the world in recent years.

We have studied software building block architecture for robot development,
and the RT-Middleware (RTM) and RT-Component (RTC) has been proposed as
the one of solution about it [2]. The purpose of the RT-Middleware is to establish
basic technologies for integrating robot systems with a new function easily by
using modularized software components named RT-Component. If robot systems
with new functions can be constructed more flexibly, it can satisfy every users’
needs individually which cannot be satisfied now. Thus, it is expected that the
conventional robot industry mainly restricted to the manufacturing field will be
expanded to the nonmanufacturing field like support robots for daily life.

The research on software platforms and libraries for robotic systems are per-
formed actively in recent years. “Player/Stage” is a free software project for
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© Springer-Verlag Berlin Heidelberg 2008
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research in robot and sensor systems. The Player, which is a robot server with
robot control interface, and its simulation backends, Stage and Gazebo, are very
widely used especially by mobile robotics researchers [3]. “ORCA” is an open-
source framework for developing component-based robotic systems. It provides
the means for defining and developing the software components as the building-
blocks [4]. “CLARAty” (Coupled-Layer Architecture for Robotic Autonomy) is
an integrated framework for reusable robotic software developed by JPL, Uni-
versity of Minesota and Carnegine Mellon University [5]. It defines interfaces for
common robotic functionality and integrates multiple implementations of any
given functionality. “MSRDS” (Microsoft Robotics Developer Studio) is soft-
ware platform for robotics that is distributed by Microsoft. This platform is
based on DSSP (Decentralized Software Services Protocol) that is SOAP based
application protocol for lightweight services. This platform also provides Visual
Programming Language (VPL) for robot developers.

The main differences between those software platforms and our RT-
Middleware are characterized by the open specification and interoperability.
The RT-Component, which is managed its lifecycle by the RT-Middleware, is
a software component based on the open specification. Since the specification
is opened, any software vendors can implement based on it, and because of the
common specification, different implementation can be interoperable. We also
have implemented RT-Middleware and RT-Component framework based on the
specification, and the implementation named “OpenRTM-aist” is provided as an
open source reference implementation.

In the following, first, the requirement of the software platform for com-
ponent based RT-system development is discussed, and the basic concept of
RT-Middleware is shown. Then, on the basis of the discussion, a component
model of RT-Component is shown. Based on the proposed component model, the
RT-Middleware and RT-Component framework is implemented. Finally, some
RT-Middleware based systems are shown and the discussion and conclusion are
given.

2 What Is Needed for RT Software Platform

In this section, the core architecture of the RT-Componet is discussed. In consid-
eration of RT-specific features for software, the requirement for the component
model for RT systems is clarified.

2.1 Code Reusability

The reusability has two meanings. One is reusability of user’s code, the other
is reusability of components. Users are unwilling to use the component frame-
work which needs to remake all codes. In order to reuse a lot of software library
developed until now, it is necessary to provide the framework for modularizing
the existing software library easily. Therefore, framework needs to support var-
ious operating systems and various programming languages. After modularized
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as an component, the component should be used without any modification and
re-compile of codes.

OpenRTM-aist provides a component framework and template code genera-
tor. User can easily embed their code in it and can make it reusable component.
Since component framework provides various functionality such as lifecycle man-
agement, network communication including data-oriented and service-oriented
interaction and runtime configuration, user can focus on his/her own main logic.

2.2 Various Granularity Support

Various granularity size of modules could be considered, when modularizing an
RT element. A motor, a sensor, and a controller can be a fine granularity com-
ponent respectivly. A vision system with some image processing algorithms, a
several degrees of freedom manipulator arm and a mobile robot with some sen-
sors are example of middle-fine granularity components. An application program
might want to handle a humanoid robot, an intelligent room, etc. as a coarse
grained module respectivly. The software platform needs to support various com-
ponent grain size in the framework.

OpenRTM-aist’s component model provides data-centric interaction method,
which is mainly used for fine grained components, and service-oriented interac-
tion method, which is mainly used for coarse grained components.

2.3 Active Module

Usually, a general distributed object works as a passive object that sends back
return values to a method invocation. In this case, an object is modeled as
interfaces that contain operations with input and output parameters and a return
value. An internal activity model of an object is not considered.

On the other hand, some of modularized RT element has its own tasks like
real-time feedback control in it, and it is necessary to collect required data RT-
element itself, or to notify event to other elements when it happened.

In the RT-Component model, a component’s business logic is associated with
at least one execution entity named Execution Contexts. The Execution Context,
which is a logical thread, executes user’s logic implemented in the RT-Component
framework.

2.4 Realtime Capabilities

Realtime capabilities of module activity are an indispensable function in RT
systems especially in low level control layer. It is necessary not only in one com-
ponent but also in composite component that is composed of some fine-grained
components. For example, in order to make two or more modules cooperate in
the real-time schedule, the time synchronization between modules is needed.
Software platform for RT systems should satisfy these requirements.

Above mentioned Execution Context, which is a logical thread, is associated
with RT-Component in run-time. Replacing by a execution context driven by a
real-time thread, real-time execution of the RT-Component’s can be possible.
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2.5 Platform Independency

Here the platform contains some meanings such as operating systems, program-
ming language, network middleware and communication media. As mentioned
above, it is significant that platform supports multiple operating systems and
languages for code reusability. Generally as for the code of a low level which
controls hardware, C and C++ language are used, and a code of a high level,
such as behavior and judgment of a robot will often be described by Java or
script languages. In many cases, device drivers for robotic devices support a few
operating systems and needs special communication media. Since a device and
its device driver often depend on operating systems and communication media,
the framework for modularizing it should not be dependent on them.

Currently OpenRTM-aist supports C++4, Java, Python and C# languages on
various UNIX, Mac OS X and Windows platforms. OpenRTM-aist’s interoper-
ability among these languages and OSs is realized by CORBA (Common Object
Request Broker Architecture).

2.6 Social Requirement

The software platform has to be stable in the meaning of the quality of software
code itself and the social continuity of the software. Needless to say that the
code quality of the software platform is important. Additionally since many
software components that are developed on the platform depend on the platform,
continual existence of the platform is also important issue. The open source and
copyleft strategy can be one of solution for it, and the open specification is the
other solution.

OpenRTM-aist is an open source project, and it is released under LGPL
license. We also opened its specification including component model and interface
definition. Currently we released C++, Java and Python version of OpenRTM,
and one private company released OpenRTM for C#, which is compatible with
our OpenRTM-aist for C++, Java and Python. Multi-vendor environment gives
the software platform diversity, optionality and continuousness. Additionally the
specification itself has to be stable, so we have standardized the RT-Component
specification in OMG (Object Management Group) [6].

3 Component Model

From the requirements mentioned above, we had studied about appropriate com-
ponent model for RT-systems, and had defined the functionality in the compo-
nent model. We call it RT-Component (RTC). Figure [1l shows the architecture
block diagram of the RT-Component. The functionality of the RT-Component
is as follows:

— Component metadata for dynamic component assembly.
— Component action and execution context for business logic execution.
— Data ports for data exchange between RTCs.
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Fig. 1. The proposed architecture of RT-Component model. The RT-Component has a
component body, common interface for metadata acquisition, component action, data
ports, service ports and configuration interface.

— Service ports for service-oriented communication between RTCs.
— Configuration interface for runtime parameter setting.

3.1 Metadata Acquisition

The metadata acquisition capability, which realize querying and administer-
ing RTCs at runtime, is also known as “Introspection” (Figure 2). RTC has
some interfaces to get metadata including profile, properties about ports. These
capabilities can be used by other RTCs, tools or other application programs
that support dynamic RTC composition. By using these metadata, applica-
tion programs can obtain these metadata from RTC in runtime, and can make
dynamic composition of RTCs in runtime. These metadata is also useful for
components debugging tools and components composition tools. This function-
ality has two features, one is resource data model, the other is stereotype and
interfaces. Resource data, which is a kind of data-only class, describes com-
ponent profiles. Interfaces defines some methods to get or set profiles and
properties.

Name MyManipulator0

ype Periodic execution type
]

port0 Provide: A, Required: B

portaC1—OD portt Provide: C
Port2 DataPort: InPort, velocity, float x6
cO—11 port1 port5|:|—€ E Port3 DataPort: InPort, position, float x6
Porta Provide: D
>1 port2 porté [> Ports Required: E
Porte DataPort: OutPort, status int x1
>1 port3 port7 > Port7 DataPort: OutPort, velocity, float x6

ExecutionContext Period: 10ms

ExecutionContext

Parameter gain0(float x6), flag(int x1), dev_file(string)

Fig. 2. The RTC provides introspection interfaces to obtain metadata of the RTC.
Other RT'C or application can utilize the metadata to make dynamic RTC composition.
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3.2 Component Action

The “Component Action” interface defines callbacks corresponding to the exe-
cution of the lifecycle operations of RTC. These callbacks would be invoked by
the execution entity named “Execution Contexts” that is a logical thread object.

An RTC developer would implement Component Action’s callback operations
that would be invoked in each state of “Execution Context”, in order to execute
RT-component-specific logic. An RTC can participate in Execution Contexts,
and an Execution Context can accept multiple RT'C participants. As shown in
FigureB and d an Execution Context performs a state transition between “Ac-
tive” “Inactive” and “Error” state, and Component Action callbacks is invoked
in appropriate timing in the state transition.

As mentioned above, the logic of an RTC and the logical thread is decoupled
in the RTC model. This model is useful to implement tightly coupled RTCs in a
single (real-time) thread. It is called the synchronous composite RT-Component.

3.3 Data Ports

In the low level real-time control layer, if a component is considered as the
functional unit which consists of inputs, processing, and outputs like a control
block diagram, it will be easy to perform a system configuration (Figure[]). This
input/output model is not suitable for general usage of the distributed object
model. Because an object which sends its data to other objects has to know
all objects’ complete interface definition. On the other hand, in such low level
control layer, data type, number of data and unit of data are more important
than interface definition. As shown in Figure [l RT-Component adopted the
publisher/subscriber model and defines it as InPort/OutPort.

OutPort supports some subscription types, “New”, “Periodic” and “Flush.”
For example, the ”New” subscription type means that an OutPort sends data
to InPorts which subscribe it when a new data come from the Component
Action.



A Software Platform for Component Based RT-System Development 93

[ Data Port
—> Data Flow
Reference
Positi
osition Torque
data
s fplkell —1
‘ = ‘? Buffer =
Sensor [} Actuator
RTC RTC
Position
data DataPorts

Fig.5. A DataPort usage example. Fig. 6. The DataPort provides data-centric port
The DataPort is used for data- for RTCs. The InPort receives data from the
centric communication between QutPort. The OutPort has some subscription
components. types that control data pushing timing.

3.4 Service Ports

The software component should have enough interfaces to access to detailed func-
tionality of the component from outside (Figure[7). The “Service Ports” provide
endpoint to attach provided interfaces and required interfaces on it. Component
developer can provide his/her own defined interface through the Service Port.
The developer also can use provided interfaces by the other components through
the Service Ports, as shown in Figure

3.5 Configuration

The Configuration interface provides interfaces to administrate user defined
RTC’s parameters. As mentioned above, a component should not have the hard-
coded configuration parameters which prevent reuse of the component.

The configuration consists of some configuration parameters as list of values
with name, as shown in Figure[ RTC is able to have some configurations as sets.
This is called the Configuration Set. The Configuration Sets can be replaced in

i Service Port Service Port
MampUIator with Consumer with Provider
Service Port
Service
. Implementation
% ] ervice
S Prox — T
" Actual processing
Manipulator are performed herej
. RTC
Position

data Data Port .
ServicePorts

Fig. 7. A ServicePort usage example. The Fig. 8. The ServicePort provides service-

ServicePort is used for service-oriented oriented communication between RTCs.

communication between components. User defined service objects can be ex-
ported through the ServicePort.
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Fig.9. The Configuration interface allows manipulation of configuration parameters
in runtime. User can define some sets of the configurations.

runtime to adapt the RT'C into the applications. For example, if an RTC realises
PID controller with P-I-D gain as configuration parameters, the configuration
set can be replaced or changed to adapt to the plant.

4 Implementation

4.1 OpenRTM-aist

According to the proposed RTC model, the “OpenRTM-aist (Open RT-
Middleware distributed by AIST)” that is a component framework and mid-
dleware environment for RTCs have been implemented [7]. “OpenRTM-aist”
consists of an RT-Component development frame work, a middleware including
RTC manager and some tools. OpenRTM-aist is implemented on CORBA (Com-
mon Object Request Broker Architecture), because of its network transparency,
0OS/language independency and interoperability. Currently OpenRTM-aist sup-
ports C++, Java and Python languages on Windows, Linux and other UNIX-like
operating systems. An RTC developer can choose appropriate language accord-
ing to granularity, logic abstraction level and preference of language, and RTCs
implemented on different languages are interoperable each other. OpenRTM-
aist is also CORBA independent implementation, so it supports some CORBA
implementation like omniORB, TAO, MICO and ORBexpress.

“OpenRTM-aist” provides a GUI tool to manage and administrate RTC on
the network. The Figure [I0]is the tool named “RtcLink.”

The left side pane is “Name Service View” that show component list on the
specific name server. The center pane is “System Editor” that is editor area to
compose RTCs connection and to activate/deactivate RT'Cs. The right side pane
is “Property View” to show the selected RTC’s profile.

This GUI tool is implemented as an Eclipse plug-in. The Eclipse is a open-
source project, and a lot of third party plug-ins is available. Since the Eclipse is
one of the most widely used integrated development environment now, we have
chosen the Eclipse as a platform of our tools.
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Fig. 10. RtcLink on Eclipse. RT-System online design tool running on Eclipse IDE.

4.2 RTM Based Systems

OpenRTM-aist already has more than 100 users, and some of national robotic
projects in Japan adopts it as official platform. Here some of RTM based systems

are shown.

Force Controled Manipulator. This is an example system, which consists of

a force sensor RTC, a manipulator RTC, a joystick RT'C and a dumper controller

RTC, to show real-time capability of OpenRTM-aist.

As shown in Figure[I[2 these components are associated with same real-time
thread, and each component’s logic are executed synchronously in a 2 ms periodic
task. Table [Il shows task execution time statistics in this experiment. The point
is that these three devices components and one control component are not a

End-effector

force/torque sensor
\ Jostlck

Fig.11. Manipulator system equip-
ment: End-effector force/torque sen-
sor, manipulator, joystick

Force/Torque

End-effector velocity
qtype)|

(TimedFloatSeq type!

Force/Torque
(TimedFloatSeq type)

Controller
(Damping control)

ms

Man

Real-time loop

ipulator

A Synchronous Composite Component

Fig.12. A force controlled manipulator sys-
tem using a synchronous composite compo-
nent. Number in upper left of each block means

execution order.
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Table 1. Execution time of force controlled manipulator system

Task period time 2.00 ms
Maximum execution time 2.01 ms
Minimum execution time 1.99 ms
Mean execution time 2.00 ms
Standard deviation 4.41 ps

monolithic program but programs completely created separately. Furthermore,
the point that these components were executed synchronizing in real-time is
important.

Automatic LRF Calibration System. Sasaki et al. implemented their dis-
tributed LRF (laser range finder) automatic calibration algorithm on OpenRTM-
aist [8](Figure [I4).

This system consists of four type of RT'C: LRF RTC, Tracker RTC, LRF Cali-
bration RTC, Coordination Transform RTC. LRF sensors distributed on network
are integrated by the network transparency capability of OpenRTM-aist.

Other RTCs. The following is an example of the components developed on
OpenRTM-aist by OpenRTM-aist community.

— 3D recoginition and tracking RTCs by AIST and Applied Vision Co.
Ltd.(Figure [T3)

Learning/inference RTCs baed on 8-RNA by AdIn Research, Inc.

LRF based human tracking RT Cs by System Engineering Consultants Co., Ltd.
— Manipulator and bilateral tele-operation RT'Cs by AIST

— Input device RTCs (Game-pad, PHANToM, GUI, etc.) by AIST

— Dynamics simulator: OpenHRP3 by AIST(Figure [16))

Corresponding
—orresponding - @ﬂ

yoints
$v.. points o 5
3 'Q..‘o_. o A 5 Ry

Reference
Coordinate

System
E_Rotation matrix R Calibration
Translation vector T | parameters

Fig. 13. The LRF automatic calibration algo- Fig.14. LRF
rithm. Relative.

automatic calibra-
tion and tracking system based on
OpenRTM-aist
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Fig. 15. 3D recognition and tracking RTCs. This system is based on VVV (Versatile
Volumetric Vision) developed in AIST.
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Fig.16. The OpenHRP3 provides an environment for dynamics simulation for vari-
ous types of robots including humanoid robots, manipulators and mobile robots. The
controller RT-Component that is tested in the OpenHRP3 can be exported to the real
robot without recompiling.

Currently a lot of RT-Components are being developed and circulation in a
user community is also starting.

5 Conclusion

In this paper, we proposed component based robotic system integration
scheme RT-Middleware and RT-Component. The functions required for the
RT-Component which supports robot specific features were discussed and
clarified. To realize component based robotic system development efficiently,
RT-Component and its architecture was proposed. The “OpenRTM-aist”,
which includes RTC development framework, middleware and tools, have been
implemented.
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Abstract. The goal of this work is to develop an integration framework
for a robotic software system which enables robotic learning by experi-
mentation within a distributed and heterogeneous setting. To meet this
challenge, the authors specified, defined, developed, implemented and
tested a component-based architecture called XPERSIF. The architec-
ture comprises loosely-coupled, autonomous components that offer ser-
vices through their well-defined interfaces and form a service-oriented
architecture. The Ice middleware is used in the communication layer.
Additionally, the successful integration of the XPERSim simulator into
the system has enabled simultaneous quasi-realtime observation of the
simulation by numerous, distributed users.

1 Introduction

Software solutions have developed from a simple algorithm to programs that
might contain more than one algorithm, to groups of programs forming an ap-
plication. Nowadays, these solutions might encompass numerous applications
running on a number of machines. More often, these applications are developed
independently and must be integrated into a single architecture. Along with
these developments, the complexity in the task of designing and abstracting (or
architecting) these architectures has also grown. Principles that guide the struc-
turing of such distributed applications are necessary, as is the use of technology
which facilitates their development.

The test bed for the software system presented in this work is the XPERO
project, the goal of which is robot learning by experimentation. The task at
hand is the integration of required applications, such as planning of experiments,
perception of parametrized features, robot motion control and knowledge-based
learning, into a coherent cognitive architecture. This allows a mobile robot to
use the methods involved in experimentation in order to learn about its environ-
ment. The software applications are distributed due to both the processing power
needed and the multidisciplinary cooperation inherent in robotics research.

The results of this work demonstrate that the framework is robust and flex-
ible, and can be successfully scaled to facilitate the complete integration of the

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 99 2008.
© Springer-Verlag Berlin Heidelberg 2008
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necessary applications, thus enabling robot learning by experimentation. The
cognitive architecture is itself beyond the scope of this paper. The design sup-
ports composability, thus allowing components to be grouped together in order
to provide an aggregate service. Distributed simulation enables quasi real-time
tele-observation of the simulated experiment by users and applications.

The following section will discuss and compare related work. Next, the nec-
essary background information on the chosen approach is provided in the form
of an overview of service-oriented architecture (SOA) [I] and component based
software engineering (CBSE). The XPERSIF [2] system architecture and the
component model which forms the basis for all components within the loop is
then presented. An overview of the resulting architecture follows. As simulation
was used from the start to speed up the pace of research [3] the solution used to
distribute the simulation to numerous clients simultaneously is then presented.
The results are presented in section [0l followed by a discussion of the work.

2 Related Work

In this section, we present an overview of robotic software systems (RSS) and
relate them to this work.

As laid out in [4], RSS tend to fall within one of three categories, driver and
algorithm implementations, communication middleware, and robotic software
frameworks. Often, the borders between these categories are blurred. Compar-
isons between RSS within different categories is misleading as each is motivated
differently and serves a different function — i.e. they are simply unlike each other
except in their shared goal of increasing reusability in robotics. An attempt is
made here to present an example RSS from each of the three categories above,
and relate them to this work.

The Player project [5] is an excellent example of the first type of RSS described
above (driver and algorithm implementations). It includes a robot device inter-
face which serves as a hardware abstraction layer (HAL) for robotic devices, as
well as the robot simulators Stage and Gazebo. They are all open source and
free. Player allows the same interface to be used to control the robot by provid-
ing ‘drivers’ which translate the abstract commands available in the interface
into robot-specific commands.

Middleware for Robotics (Miro) [6] is a distributed object-oriented framework
for mobile robot control, based on CORBA. The overhead in terms of memory
and processing power which results from the use of CORBA is a disadvantage of
this solution. In addition, the complexity involved in understanding and learning
to use it is also a hurdle. In comparison, the use of the much simpler and more
efficient Ice middleware [7] by XPERSIF precludes such problems. Miro is an
example of the second type of RSS.

Orca [§] is very much a robotic software framework. It is an open-source
framework for developing component-based robotic systems. It uses a CBSE
approach which allows building-blocks (components) to be developed and used
together to create a more complex robotic system. The main motivation is the
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advancement of robotics research through the reuse of such building blocks.
This is done by providing commonly-used interfaces, libraries and a repository
of existing components. Orca’s successor, Orca2, uses the Ice middleware.

While the use of the Player project would address the issue of robot control
and perhaps simulation, it could not be used for the integration of a complete
robotic system (such as the cognitive architecture presented here). The same
can be said of Miro. Of the three RSS presented above, Orca is most similar
to XPERSIF in that it is also a thin framework which utilizes the Ice middle-
ware, provides a simple component model and uses simple and efficient com-
munications patterns. An added advantage of the XPERSIF framework is its
service-oriented nature. Despite being a mature project, Orca’s repository does
not provide interfaces, components or libraries which offer the more advanced
functionalities relating to cognitive architectures. Section [0] presents the results
of the XPERSIF framework and architecture which highlight the advantages of
its design.

3 Approach

A CBSE approach has been used to encapsulate the functionalities of the robotic
software and hardware systems into components. These components have been
loosely coupled to form a SOA.

“Service-Orientation” is a design paradigm for architecting a distributed ar-
chitecture which centers around loosely-coupled autonomous components and
groups of components providing services in order to carry out a given task. The
principles of this paradigm allow the separation of the business and application
logic domains of an enterprise. They guide their structuring into the layers asso-
ciated with a SOA model. Additionally, they provide tennets for the granularity
and other characteristics towards which individual services should strive. SOAs
are basically a collection of services. A service is well-defined and self-contained,
and does not depend on the context or state of other services [I]. These ser-
vices can be registered with a central registry which allows service requesters to
discover them. This is the essence — the abstract idea of a SOA.

How a SOA is implemented can vary. An implementation approach based on
that of traditional distributed architectures, or alternatively one utilizing “Web
Services” (WS) which takes advantage of the Internet and its proprietary-free
communications network may be adopted. Such a SOA might use document-
style messages which are encoded in protocols such as the Simple Object Access
Protocol (SOAP) to transport, process and route the payload which itself is
represented in the Xtensible Markup Language (XML).

Components can be placed on various computers — dedicated application servers
— to form a distributed architecture. Traditionally, Remote Procedure Calls
(RPCs) are used for communication between components within such a distributed
architecture. This is a point of difference between SOAs based on these distributed
architectures and those based on WS, as the communication between services in
the latter case is accomplished through document-style messages using protocols
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such as SOAP, which are as self-sufficient as possible (containing policy rules,
meta-information and processing instructions for example). This tends to result
in larger messages that are sent and received less frequently in comparison to RPC
communication as used in traditional distributed architectures.

In this work, the traditional distributed architecture is used in the implemen-
tation of a SOA. Additionally, no workflow and orchestration (in the strict SOA
sense) are used. These are not necessary as the architecture presented here has
no need for service discoverability and the use of services within the architecture
is static rather than dynamic. The composability of SOA is achieved through the
use of the CBSE approach. CBSE adopts the doctrine of ‘divide and conquer’
by breaking down a system into functional or logical components. These compo-
nents (and the services they provide) are accessed through their interfaces. The
component model used for this work is defined in the following section.

4 Architecture

Components within the XPERSIF architecture are classified into one of three ba-
sic groups of components, namely basic components, organizational components
responsible for managing a hierarchy of components, and aggregate components
which are organizational components which appear as a single component but
are composed of individual components which cooperate to provide the services
of the aggregate component by using the facade software pattern.

A component’s structure can be summarized by stating that it offers services
as commands and operations (as defined below) and notifies its users of the final
state of the service (Fig.[I]). In order to provide this functionality several abstract
interfaces are specified. Namely, the Operation interface (which provides func-
tionality for component administration), the Subject interface (which provides a
means to subscribe to notifications) and the Observer interface (which provides a
means to receive notifications). The component-specific functionality is specified
within the Component interface. As none of the components within the XPERO
system are hard real-time components, this component model meets the soft
real-time requirements in the simplest way possible. This is not to say that soft
real-time systems are sufficient for robotics in general. Certainly in legged robots
and where coordination between actuators are involved, a hard real-time system
is essential. These three interfaces are thus sufficient for the requirements of the
project.

Operations are used for services which complete q uickly, commands for those
that need more time, and notifications serve to enable a call to a command to
quickly return (thus enabling a non-blocking call) and to provide monitoring
and error handling mechanisms. To prevent components from blocking, while
at the same time allowing for tasks which may have varying duration, a dif-
ferentiation is made between commands and operations. Both commands and
operations return immediately, however, commands will start an asynchronous
process which completes when the component notifies the original caller of the
command’s completion.
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Fig. 1. The XPERSIF component model

Commands are used for tasks which may take time to complete, such as
moving to a position for example or gripping an object. They are implemented
as non-blocking RPCs. From a planning perspective, commands could be seen
as planning operators and as such should have preconditions and effects so that
a planner can make use of this information. These preconditions and effects
may be seen as a contract. Operations, on the other hand, do not start an
asynchronous process. Tasks such as getting the readings from the IR sensors or
setting the maximum velocity are implemented as operations, as they take very
little time to execute and pose no risk of blocking the component when they are
called. This distinction has many effects on the architecture. It is useful to specify
preconditions and effects for operations as well. For example, an operation which
should deliver the shape of an object might specify as a precondition that the
object is in view at a specified distance from the camera. The definition of such
preconditions for operations would then form a contract (as with commands).

4.1 The XPERSIF Components

A component diagram depicting the data flow between the various components
of the loop is shown in Fig.[2l The components here have been grouped according
to their functionality. This diagram does not elaborate on the implementation of
each of these components — for example, it does not mention which are applica-
tions and which are components that are grouped to form an application. They
simply show the components of the loop and the data flowing between them.
The LOOPMODEL component which is the organizational center of the loop is
seen at the center of Fig. [2l It serves as an entry point to the loop for a graph-
ical user interface (GUI) (or a console client as in the current implementation)
which uses it to configure the loop. It is responsible for parametrizing, starting,
monitoring and exiting the necessary components within the loop. For the sake
of simplicity, the flow of the component status information from each component
to the LOOPMODEL is not depicted.

The DESIGNOFEXPERIMENTS component is responsible for designing effective
experiments when the robot is in the experimentation state. The GOALDESIGN
module is responsible for the robot’s actions when it is not in the experimentation
state. Once a goal state for the robot has been formulated, the planner should



104 I. Awaad et al.

<<component>> Notion
Q —O

Machine Learning Knowledge Base Planner
PlexilPlan PlexilPlan
AlPredictions
<<component>> Prediction J GoalConeept
— 'GoalConcept

Prediction
<<component>> @

Goal Design <<component>> {I
<<component>> T )

Design of

Motivation il
PlexilPlan £ >
A XecutionStatus
<<component>> O PlexilPlan
MotivationVector
Surprise
<<component>>
-— <<component>>
<<component>> Execution
Workbench GUI
Novelty
RobotStatus Command &
LoopStatus
<<component>> @ PN {I
Curiosit <<component>>
ty 12 RobotModel
RobotModel
RawData <<component>>
—O— —
AlComponents'Status Relocation
<<component>>
Feature Selection
RawData <<component>>
—
FeaturesToExtract Manipulation
RawData
<<component>>
——O— <<component>> {I
Feature Extraction [
FeatureVector ._@_ Perception
<<components> @ Image Features
Vision Image <<component>> {I
Observation Features
UBES‘C component [ Organizational component U Aggregate component

Fig. 2. A component diagram showing the data flow between XPERSIF components

produce a plan to achieve this goal, and the EXECUTION component should then
execute this plan.

The robotic embodiment is itself represented by a group of components. As
the embodiments are mobile manipulators, the components include a RELOCA-
TION and a MANIPULATION component. In addition, a PERCEPTION component
provides access to the embodiment’s sensors. These components receive com-
mands from the execution component and return monitoring information to it.
A central point to query the embodiment’s state is the ROBOTMODEL compo-
nent. It is part of the organizational layer as it is responsible for starting those
components which make up the robotic embodiment. These components make
API calls to either the physical embodiment or to the simulated embodiment
within the XPERSim simulator, thus, it may be seen as a form of tool-driven
validation.

An overhead camera is often used within the cognitive loop both by the hu-
man researcher to tele-observe the experiment, and by the robot itself to provide
ground truth. In the latter case, the view from the overhead camera is provided
to the robot as a service (by the OBSERVATION component). Both this compo-
nent and the PERCEPTION component are displayed as aggregate components in
Fig. B as they use their own instances of the ROBOTFEATUREEXTRACTION
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meta-component. They are responsible for initializing the instances of this com-
ponent and are the sole users of the interfaces.

The FEATUREEXTRACTION component takes as input the raw sensor data from
the embodiment and the overhead camera, and extracts meaningful features (by de-
fault objects and their poses). Should the FEATURESELECTION component specify
additional features to be extracted, this may be carried out by either the FEATURE-
EXTRACTION component itself or the VISION component. The FEATUREEXTRAC-
TION component generates a feature vector as the output of this process.

Components such as those of the MOTIVATION aggregate component and the
MACHINELEARNING component receive these feature vectors and use them to
generate their own outputs (curiosity and surprise values, a prediction, a notion,
etc). For the sake of simplicity, the diagram in Fig. Plshows only the data flowing
into the knowledge base, although it serves as a central point for all components
to query for data at anytime.

5 Distributing the Simulation

The integration of the XPERSim simulator [9] provided not only the means to
conduct research but a means to validate the software system itself. This sec-
tion details the efforts made to distribute the simulation for tele-observation by
researchers and for processing by individual components. Although the imple-
mentation is specific to the XPERSim simulator, the same approach can concep-
tually be used for other simulators. This integration of XPERSim into XPERSIF
allows the simulation to be run in a distributed setting.

XPERSim is a 3D simulator based on open source components, built by the
authors, that quickly and easily constructs an accurate and photo-realistic simu-
lation for robots of arbitrary morphology and of the environments within which
they function. XPERSim achieves such high quality visualization by using the
Object-Oriented Graphics Rendering Engine 3D (Ogre) engine to render the
simulation whose dynamics are calculated by Open Dynamics Engine (ODE).
Simultaneous multiple camera simulation of the rendered scene is possible at
high frame rates. A library of sensors and actuators commonly-used in robotics
is available.

The solution presented here uses a proven methodology (implemented in
multi-player games for over a decade) which involves moving the rendering of
images from the server-side to the client-side by sending out a subset of the scene
information to ensure that all clients are operating synchronously [10]. This dras-
tically reduces the amount of data being transmitted and is possible due to the
scene-oriented nature of the XPERSim simulation. As mentioned previously, the
Ogre 3D rendering engine uses scene-graphs to represent hierarchies, which sim-
plifies the processing of objects or groups of objects. A scene-graph consists of
nodes (with parent nodes and child nodes). If a parent node is translated or
rotated, this transformation is applied to the child scene nodes as well.

The latency resulting from the distributed nature of the application is ame-
liorated by sending the node information from the simulator while the client is
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rendering the previous one — i.e. the server does not wait for the client to re-
quest the image but sends it continuously once it has subscribed. The method
described above to distribute a simulation to multiple clients is implemented
here by decoupling the physics and graphics engines from XPERSim to create
an XPERSim Server (calculating dynamics) and a TeleSimView client (rendering
the nodes at their new positions). The XPERSim Server sends out the positions
and orientations of all scene-nodes to the clients that simply transform the spec-
ified nodes to the specified positions and orientations and in so doing produce
the same scene in an efficient and real time manner.

In an effort to further reduce network latency, a one-way invocation is used to
send the new frame. This can in fact be quite expensive when many such small
messages need to be sent. This is because the run time taps into the OS kernel
for each message and because each of these messages is sent out with its own
message header [I1I]. To ameliorate this problem, batched one-way invocations
are used. This allows the Ice run time to buffer these small messages until the
XPERSim Server explicitly flushes them.

6 Results and Discussion

The XPERO project has provided XPERSIF with an invaluable testing ground.
The success of the framework lies in whether all the requirements are met effi-
ciently. This has been most clearly demonstrated in the efficient communication
of the outputs from the various components throughout the loop. The most de-
manding of these outputs is the distribution of the simulated scene in a quasi
real-time manner.

The evaluation of the software integration framework is first measured here
qualitatively against various criteria such as flexibility, reusability, scalability,
ease of use, level of documentation, and development time. After this evalu-
ation, empirical results which highlight the success of the distributed simula-
tion solution as tested during the running of the various other components are
presented.

Flexibility of the framework was the core criterion in the development process.
It is manifested not only by the ease of changing implementations independently
of the abstract interfaces (e.g. using different planning algorithms beneath the
same interface) but also by the ease with which components use each other’s
services. Flexibility was enhanced by the use of the organizational components
which centralize the point at which changes might need to be made. Even a
change of interfaces would be simple enough to propagate. The flexibility was
further enhanced through the adherence to the SOA principle of service-stateless.
The services offered through the component interfaces are at a level of granularity
which enables their use under different control flow scenarios which have been
specified within the project.

Reusability has been achieved by allowing various existing implementations
of an application to be reused beneath the interfaces. Numerous instances of
components (such as VISION) also contributed to the reusability of a component.
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Scalability has been ensured through the use of the component-based approach
and through the consistent use of simple and efficient communication patterns.

Ease of development was facilitated by the use of a single basic component
model (augmented as need be for organizational components). The simplicity in
design of this basic component model, which is nonetheless robust and efficient in
propagating information through the various layers, is an achievement in itself.
It allowed the system to be easily debugged and facilitated error handling which
results in a robust system. The implemented base applications also contributed to
the ease of integration of components and applications. This ease of development
also contributed to the extensibility of the architecture. The framework was
designed with future needs in mind (e.g. a workbench for robot learning by
experimentation, the use of stereo vision, of multiple robots, etc). This includes
the facilitation of implementing a change in the experimentation process. The
use of the GOALDESIGN and DESIGNOFEXPERIMENTS modules to orchestrate
the loop allows such changes to be confined to these components. The interfaces
of the remaining components are abstract enough to not need amendments.

The level of documentation is accurate and consistent at a variety of levels
including the source code, installation and user guides for the various versions
which have so far been released to the project partners. This holds for both the
XPERSim and the XPERSIF projects. The Ice middleware too, has a high level
of documentation which is both extensive and easy to reference.

Sliding autonomy [12] is, in the case of this work, a valuable criterion, as the
evaluation of the functional performance of the architecture must be carried out
from the viewpoint of both the researcher and the robot (the two XPERSIF
users), and often must be carried out from both points of view simultaneously.
The ability to use XPERSIF under varying levels of autonomy is a necessity.
The use of the LOOPMODEL component to parametrize the experiment and the
enabling of placeholders for the application (e.g. allowing a pre-generated plan
to be used through the interface) provided this varying degree of autonomy.

With the exception of XPERSim, the framework was evaluated using place-
holder components that were implemented using the various component models
and performed as the components would, observing the relevant components,
publishing their own outputs and receiving notifications. These components
helped validate the XPERSIF specifics as a whole system was tested.

Distribution of the simulation through the integration of XPERSim into the
XPERSIF architecture was successfully achieved. The scalability of the imple-
mentation described above was evaluated by measuring the impact on the quality
of the simulation by varying the number of subscribers to the tele-observation
service during the execution of various other applications. The initial efforts to
distribute the simulation provided the image’s color pixel values, in the BGR
format, as a sequence of integers. In addition to the image itself, the width and
height of the image, as well as the time to which it belongs, were also sent. A
set of experimental evaluations was carried out (Fig. 3] details the experimental
setup) to measure the time in seconds which is needed to receive a new image
of size 416 x 600 pixels. For this set of evaluations, the image was sent from
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Fig. 3. The experimental setup used to obtain the empirical results for distributed
simulation below. Depicted here is the specification for the four nodes along with the
components which ran on them during the measurement process. Nodes 2 and 3 each
ran one TelesimView client while Node 4 ran additional clients as needed.

the machine running at Node 1 to the machine running at Node 3. The round
trip time needed to deliver the image was measured at 9.5346 seconds (i.e. at a
frame rate of <1 fps). Using the approach described above, the time measured
between receiving two subsequent images was 0.0046 seconds (i.e. 217 fps).

Table [1l shows the measurements made when one, three, five and then ten
clients are subscribed to the service. All experiments were repeated three times,
measuring the time it took for 60 frames to be delivered to the TeleSimView
client. It is worth noting that the size of the image to be rendered is inconse-
quential. As nodes are being sent and not an image, it is the number of nodes
within a scene that affects the time and not the image size. For the test case
above, 15 nodes were transmitted (representing the Khepera robot and the four
cubes). Using this information, the scene may be rendered from the viewpoint
of any number of cameras.

A number of issues are currently being addressed. In the current implemen-
tation of the XPERSim simulator, no distinction is being made between parent

Table 1. The time in seconds between receiving two subsequent images using the
batched one-way invocation method

Trial 1 client 3 clients 5 clients 10 clients
1 0.0039 s 0.0039 s 0.0219 s 0.0227 s
2 0.0023 s 0.0172 s 0.0128 s 0.0352 s
3 0.0075 s 0.0036 s 0.0120 s 0.0448 s

Mean 0.0046 s 0.0082 s 0.0156 s 0.0342 s
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nodes and child nodes. It is recommended however that this distinction be made
as it would reduce the number of nodes whose data needs to be transmitted
(transmit parent nodes only and nodes which can be moved separately from the
hierarchy — a gripper for example which, despite being a member of the robot
node, may be moved on its own). In the setup above, for example, the number of
nodes being transmitted would be reduced from 15 to just eight. Additionally,
the TeleSimView client is being upgraded to use the latest version of Ogre.

7 Discussion

The resulting software framework easily and efficiently allows the integration
of components (both software and hardware) with heterogeneous platforms and
languages. The use of CBSE allows the software architecture to maximize con-
currency in the application development process of the various research groups.
The adoption of the SOA approach in the design of the framework has pro-
duced a system which is highly flexible and maintainable. The framework is
data-centric with communication of the data playing a significant role in the de-
sign. The simplicity of the communication patterns contributes to the efficiency
and flexibility of the framework. The data itself which is exchanged between
components is abstracted in such a way as to maintain interfaces which are as
simple as possible. Additionally, the solution for the tele-observation of experi-
ments is a significant contribution to the framework as a whole. The architecture
thus developed has successfully enabled effective, simultaneous, quasi-realtime
observation of the simulation by numerous, distributed users.

The component model and communication patterns on which the framework
is built are basic, lending themselves to providing the base of frameworks for the
design of heterogenous robot systems. The differentiation made between com-
mands and operations and the associated data structures contribute to the value
of the framework. Although the Ice middleware has been used successfully in the
implementation presented here, the component model itself remains independent
of it and this in turn enables users to choose any other middleware. The methods
used to distribute the simulation, although implemented here with XPERSim,
may be adopted by other simulators.

The implementation of additional mechanisms to support real-time are a top
priority in the further development of the framework, for example, implementing
methods to ensure Quality of Service (QoS). Extending the framework to allow
for multiple agents simultaneously is an on-going endeavor. The use of WS SOA
approaches to enable a more loosely-coupled system is under investigation.
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A Mobile Robot Control Framework: From
Simulation to Reality

Stephen Balakirsky, Frederick M. Proctor, Christopher J. Scrapper,
and Thomas R. Kramer
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Abstract. In order to expedite the research and development of robotic
systems and foster development of novel robot configurations, it is es-
sential to develop tools and standards that allow researchers to rapidly
develop, communicate, and compare experimental results. This paper de-
scribes the Mobility Open Architecture Simulation and Tools Framework
(MOAST). The MOAST framework is designed to aid in the develop-
ment, testing, and analysis of robotic software by providing developers
with a wide range of open source robotic algorithms and interfaces. The
framework provides a physics-based virtual development environment for
initial testing and allows for the seamless transition of algorithms to real
hardware. This paper details the design approach, software architecture
and module-to-module interfaces.

1 Introduction and Related Work

The usefulness of simulation for developing control systems is well established.
The role of simulation is to provide convincing sensor measurements in response
to a controller’s actuator outputs in an environment observable to developers.
Ideally the simulation should be accurate enough so that performance parameters
tuned in simulation work as well in the real world. In practice, attaining this
level of simulation is often more costly than real-world testing, and simulators
that respond plausibly if not accurately are acceptable. Plausible simulation
then complements real-world testing to minimize the time and effort needed to
build controllers that work well. Several such simulation systems exist; several
of which are open source, including the Unified System for Automation and
Robot Simulation (USARSim)[l] and the Stage and Gazebo components of
Player/Stage [2].

While the typical simulation system allows one to directly connect and exper-
iment with servo-level controllers, they in general lack any form of intelligence

! No approval or endorsement of any commercial product by the National Institute of
Standards and Technology is intended or implied. Certain commercial equipment,
instruments, or materials are identified in this report in order to facilitate under-
standing. Such identification does not imply recommendation or endorsement by the
National Institute of Standards and Technology, nor does it imply that the materials
or equipment identified are necessarily the best available for the purpose.

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 111 2008.
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or ability to interpret sensor readings and issue meaningful commands. For this
reason, it is necessary to connect the simulation engine to a control framework.
Several such systems exist in the literature and on the web. Perhaps the most
popular of which is the Player portion of Player/Stage.

Player/Stage combines a robot server interface, called Player, with a simu-
lation system, called Stage, so that Player-enabled robots can be easily inter-
changed with each other and their simulated counterparts. The Player interface
is installed on robotic vehicles, providing an interface to the robot’s sensors and
actuators over a TCP/IP network. Stage simulates a population of robotic ve-
hicles and sensors in a 2-D environment. Gazebo is a 3-D counterpart provided
for outdoor simulation. While Player started as a robot interface with drivers
that directly control hardware, it has grown to include several abstract drivers
since then. These abstract drivers use other drivers, instead of hardware, as the
sources for data and the sinks for commands. Several well-known algorithms are
now included with the system thus providing services such as way-point naviga-
tion and obstacle avoidance.

Several component-based architectures have been developed. These include
the middleware project RT-Middleware [3] and the component architecture
OCRA []. These architectures provide a component specification that prescribes
a component’s interfaces, activity, and input/output ports. They do not provide
a functional architecture. In the case of RT-Middleware, a graphical tool may
be used to interconnect various components and create a fully functional robotic
system.

USARSim provides robot and sensor models and a standardized actuator/raw-
sensor level interface for communicating with a physics-based simulation engine.
Many of the robots and sensors have been validated against their real counter-
parts. In addition, USARSim supports a Player driver that allows algorithms
coded to its interface specification to utilize Player to communicate with real
hardware.

A new entry to the robot simulation/control arena is Microsoft Robotics De-
veloper Studio (MSRDS) [5]. MSRDS includes support for simulation and im-
plements services to control robotic platforms. While MSRDS is not as mature
as Player/Stage or USARSim, it promises to build a library of services that will
be available to robot developers.

1.1 Adding an Architecture: MOAST

Player, USARSim, and MSRDS focus on the interfaces to mobile robots that
allow developers to build their own controllers, with portability across robots
that support Player or MSRDS made easier. Rt-Middleware and OCRA provide
a component level specification. None of the systems defines an overall architec-
ture or high-level interface specification that guides the development of robot
controllers. We have found that an architecture is essential to the efficient devel-
opment of intelligent systems. An architecture assigns roles and responsibilities
among controllers and dictates what services are necessary. It defines module
timing, data and control interfaces, and planning extents. An architecture also
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provides the framework in which the rest of the intelligent system resides and
dictates the rules that the modules must follow. For these reasons, we built
the Mobility Open Architecture Simulation and Tools Framework (MOAST).
MOAST begins with a well defined architecture, and adds simulations, services,
and controllers. The entire MOAST framework is intended to provide tools to
lead a researcher through all of the phases of development and testing of an
autonomous agent system.
MOAST is made up of the following components:

1. A reference model architecture that dictates how control responsibilities are
divided between modules.

2. Communication interface specifications that dictate how and what modules
will communicate.

3. Sample control modules for the control of a sample simulated robotic plat-
form. These modules include sensor processing, world modeling, and be-
havior generation for 4 levels of the hierarchical architecture and provide a
complete control system.

4. Validated sensors and robot models in the simulation.

5. Tools to aid in development and debug of the control system.

The remainder of this paper will address the components of MOAST.
Section 2] describes the reference model architecture that is utilized by MOAST.
Section Bl describes the various services and capabilities that are provided by the
framework, Section M describes how MOAST transitions from simulation to real
hardware. Finally, Section Bl describes future work and concludes the paper.

2 Reference Model Architecture

The capabilities of the MOAST framework are encapsulated in components that
are designed based on the 4D/RCS Reference Model Architecture [6][7]. The
RCS reference model architecture is a hierarchical, distributed, real-time control
system architecture that decomposes a robotic system into manageable pieces
while providing clear interfaces and roles for a variety of functional elements.

Figure [Il depicts the general structure of each echelon (level) of the 4D/RCS
hierarchy. Each echelon in 4D/RCS contains a systematic regularity and is com-
posed of control nodes that perform the same general type of functions: sensory
processing (SP), world modeling (WM), value judgment (VJ), and behavior gen-
eration (BG). Sensory processing is responsible for populating the world model
with relevant facts. These facts are based on both raw sensor data and the results
of previous SP (in the form of partial results or predictions of future results).
WM must store this information, information about the system self, and general
world knowledge and rules. Furthermore, it must provide a means of interpreting
and accessing this data. BG computes possible courses of action to take based
on the knowledge in the WM, the system’s goals, and the results of plan simu-
lations. VJ aids in the BG process by providing a cost/benefit ratio for possible
actions and world states.



114 S. Balakirsky et al.

+ Mission (Goal)
SENSORY WORLD MODELING ]
PROCESSING GENERATION
Classification KNOWLEDGE
Computation ’*‘
Grouping ' Planners
Windowing Executors

Internal

External

Fig. 1. Generic 4D/RCS Control Node

The principal difference between control nodes at the same echelon is in the set
of resources managed, while the principal difference between nodes at different
echelons is in the knowledge requirements and the fidelity of the planning space.

This regularity in the structure enables flexibility in the system architecture
that allows scaling of the system to any arbitrary size or level of complexity [§].

2.1 Generic Module

While 4D/RCS provides a reference model for the architecture, MOAST is an
implementation of that architecture. Therefore, specific responsibilities, knowl-
edge requirements, and interfaces have been designed for each control module.
Each control module is based upon a generic core controller that is shown in
Figure 2 The MOAST hierarchical decomposition in terms of its control mod-
ules is depicted in Figure Bl

The control module core has the following flow:

1. Initialize: The initialization opens any communication buffers, places the
system in a safe known state, and initializes any control parameters.

2. Read Command: Command information is received, and the system is
prepared to execute the command. When a new command is received, the
old command is immediately replaced by this command.

3. Read Config: Configuration information is received, and the system is pre-
pared to change its settings. A separate configuration channel is provided to
allow for control parameters to be changed without interrupting the current
controller. For example, a user may want to change a system’s cycle time
without interrupting a complex control function.

4. Handle Command State Tables: All of the modules run on a fixed cycle
time. Therefore, command functions must either guarantee that they fin-
ish in under the cycle time, or provide for being re-entrant. Although this
text refers to the command execution as being finite state machine (FSM)
based, search based planning systems have also been implemented under this
framework.

5. Handle Config State Tables: Requests to change configuration settings
are carried out similarly to handling command state tables.



A Mobile Robot Control Framework: From Simulation to Reality 115

Handle
Initialize Command

State Tables
Handle

— Goll:'aneri:n d Config State
Tables

Write Status

Read,Confiy and Settings

Fig. 2. Generic core of control module

6. Write Status and Settings: The current module status and the configu-
ration’s settings are sent out over communication buffers.

2.2 RCS Library

Support for developing software conforming to the 4D/RCS methodology is pro-
vided by the RCS Library [9]. The RCS library includes portable utilities for
creating and synchronizing real-time tasks following the 4D/RCS architecture.
Code generation and diagnostics tools simplify much of the application setup
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Fig. 3. Modular decomposition of MOAST framework that provides modularity in
broad task scope and time
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and debugging. Communication between RCS control modules is provided by
the Neutral Message Language (NML), a software library for communication
ported to a variety of platforms including Linux, Solaris, VxWorks, LynxOS,
QNX, Windows and MacOS. Applications using NML define a message vocab-
ulary as C++ classes and call C++ methods to open buffers, read and write
messages. Java bindings are also available. NML applications running on one
platform can communicate with ones running on any other platform. The lo-
cation of buffers and processes that connect to them is selected at run time,
and a running application can be extended to communicate with new processes
dynamically. NML source code is freely available at [10] and documented in [9].

3 MOAST Provided Functions

The development and maintenance of an advanced mobile robot require expertise
ranging from sensor processing, path planning, and communications protocols, to
basic auto repair. While many of the algorithms for accomplishing these functions
are well known, freely available code that implements these functions tends to
be incompatible with other code or robotic platforms. This necessitates interface
and functional tweaks before the code modules become useful.

Part of the original design philosophy of MOAST was to provide “out of the
box” functionality that would reduce the breadth of expertise required to con-
duct research with mobile robots. The developers of MOAST have taken many
well known algorithms and implemented them within the 4D/RCS framework.
The result is a fully functional framework that allows researchers and students
to immediately begin to experiment with functional robots in both simulated
and real environments. Researchers are then free to examine the code modules
that address functions in their areas of expertise. The hope is that as improve-
ments are made, the researchers will contribute the improved modules back to
the community. The basic functionality of the mobile robot may be broken down
in the the areas of sensor processing and mobility.

3.1 Sensor Processing

The majority of the sensor processing work performed in MOAST is in the de-
tection of obstacles. The decomposition of this responsibility by echelon in the
MOAST framework is shown in Table [l For the laser scanner, the Primitive
(Prim) Echelon provides a series of data tuples as shown in Figure @l The data
is available over the communications interface and includes the location of the
device when the beam was fired and the beam hit point in vehicle relative coor-
dinates. Under the current system, the laser is constrained to be fixed mounted
and facing straight ahead of the vehicle in a level orientation. While this presents
an instantaneous snapshot of the environment, the data tends to be noisy, and
encompass a very small region.This data is further processed to produce a cel-
lular height map of the environment as shown in Figure[fl Due to the mounting
constraint on the laser, whenever the vehicle is driving on a flat level surface the
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Table 1. Sensor processing requirements and responsibilities

Data Out Description

Primitive Echelon laser scan data Beam start and hit point

Autonomous Mobility Echelon height map Cellular map of 2.5D elevations

Autonomous Mobility Echelon obstacle probabil- Cellular map of obstacle probabili-

ity ties

Vehicle Echelon obstacle map Concave hull of obstacle areas from
AM

height of every cell that has been observed is either the height of the floor or the
height of the laser above the floor.

While the external representation is transmitted as a cellular height map, in-
ternally, the cell’s height, range, hits history, and obstacle probability are stored.
The model for the terrain being observed is like a 3D bar chart, where solid blocks
of various heights extend through cells in the XY plane. The height of each cell
records the estimated distance its block extends above the local XY plane. The
height is negative if the top of the block is below the XY plane. The range of
a cell records the largest distance from which a cell has been seen to contain
an obstacle. Some obstacles are seen only when they are close to the sensor. It
is desired to avoid having the system decide that an obstacle no longer exists
because it is not seen when the system is farther away than its range. It is ex-
pected that if a cell containing an obstacle is viewed from within the cell’s range,
the obstacle will be seen again, but if the cell is viewed from beyond its range,

L L L L L
9.5 18 18,5 11 11.5 12 12.5 13 13.5 14

Fig. 4. Laser range data from Prim includes the start and end of each beam
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Fig. 5. Cellular height map generated from laser data. Yellow represents cells that have
never been seen, and cells that are observed are shown in shades of aqua based on their
height. Due to the mounting configuration of the laser, only heights of “ground,” shown
as very dark aqua (i.e. black), or heights of above the laser, shown as bright aqua, are
displayed (hard copies of this paper should be printed in color).

the obstacle might not be seen. The range is used in setting the hits history, as
described below.

The hits for a cell encodes the seven most recent viewings of the cell. A cell
is regarded has having been viewed whenever a ladar ray passes through it (the
cell is not seen) or bounces off an obstacle in it (the cell is seen).

Obstacle probability is a real number from 0.0 to 1.0. It represents the system’s
best estimate of the chances that the cell is occupied by an obstacle. A separate
map of obstacle probability is exported over a communication channel for use
by other modules.

3.2 Mobility

The mobility functions consist of a family of planning algorithms that are able to
compute obstacle free paths for Ackerman, skid-steered, and omni-drive ground
robot platforms as well as helicopter-like air platforms and sub-like underwater
vehicles. When examining the planning systems, it is useful to note the knowledge

Table 2. Mobility planning requirements and responsibilities

Plan Out Command In Knowledge In
Prim actuator/motor commands Constant curvature arcs ~ Kinematics
AM constant curvature arcs Way-points Dynamics
Vehicle way-points Named location a priori map

Section vehicle actions Behaviors Vehicle Capabilities



A Mobile Robot Control Framework: From Simulation to Reality 119

Fig. 6. Cellular obstacle map generated from obstacle probability data. Yellow repre-
sents cells that are unknown. Green represents free-space, orange represents the edge
of obstacles, and red represents obstacles. The obstacles are grown by half the vehicle
width to allow for the planner to plan on a point-sized robot. The white path represents
the planned path for the platform and the platform’s current location is shown as the
black dot (hard copies of this paper should be printed in color).

required by each module as well as the module’s output format, i.e., the form
the plan takes. This information is represented in Table

At the lowest echelon, the output of the planning system consists of actuator
and motor commands that are sent through MOAST’s generic interface known
as SIMware [I1]. These commands are platform steering type dependent and
consist of such things as left and right wheel velocities for a skid-steered vehicle
or steering curvature and velocity for an Ackerman steered vehicle. This module
requires a series of obstacle free constant curvature arcs as input. In addition
to the command input, the module requires knowledge of the specific robot
kinematics. Item such as wheelbase, tire diameter, and minimum turning radius
must be provided.

An additional way-point interface exists into the planning hierarchy. This in-
terface accepts a series of way-points as its commands and computes a series of
obstacle-free constant curvature arcs as output. This module reads in the obsta-
cle probability map from the sensor processing chain and also has knowledge of
the vehicle dynamics. A graphical example of this module’s output is shown in
Figure
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Fig. 7. Vector-based a priori map used by the a priori planner. The red areas are
obstacle polygons and the white is free space. The computed path is shown in green,
and the robot location is shown with a large green circle. The small green dots represent
the planning horizon of the way-point planning system.

This planning module has two main strengths. It quickly plans realistic smooth
paths with appropriate speeds and curve radii while keeping within the allowed
deviation and avoiding obstacles. Second, it plans paths dynamically in environ-
ments with moving obstacles (such as other vehicles). Weaknesses of this planner
stem primarily from not getting enough sensory information and not attempting
to use all the information available.

If a priori data is available, then a planning module exists to take advantage
of this data. This module ingests a priori vector data and computes a visibility
graph based plan that starts at the way-point planner’s planning horizon and
terminates at a named point (for example an address). This system currently
reads .mif formatted vector data. An example of the plan output is shown in
Figure [[ The system accepts a named point as its input and outputs a list of
way-points for the platform to follow.

Finally, a planning system capable of coordinating groups of vehicles exists.
This planner accepts behavior based commands (i.e. explore, or deliver packages)
and coordinates the actions of several platforms to accomplish the tasks. The
system accepts the behavior command as its input and outputs named points
and tasks for the platforms to accomplish. The system must have knowledge of
individual platform capabilities.

4 Migration to Real Hardware

The Servo Echelon in Figure[3is implemented outside of MOAST by real or simu-
lated vehicles. To limit the spread of vehicle-specific source code into MOAST, an
external middleware layer was built that bridges different controllers to different
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vehicles or vehicle simulations. This Simulation Interface Middleware (SIMware)
defines a software application programming interface (API) based on the notion
of “skins” that customize an environment to particular controllers and simula-
tions or real vehicles [I1I]. Skins are divided into superior skins that interface
SIMware to vehicle controllers, and inferior skins that interface SIMware to sim-
ulations or real vehicles. Programmers build a SIMware middleware layer by
instantiating a particular superior skin that interfaces to a controller, instantiat-
ing a particular inferior skin that interfaces to a robot and sensor environment,
and defining configuration information specific to each skin.

Inferior skins have been created that communicate with the simulator USAR-
Sim, the Player interface library, and directly to smart motor drives. This has
allowed for the direct application of simulated code to real platforms. Since all of
the interfaces above the Servo Echelon do not change, no modifications to the al-
gorithms under test are necessary. In fact, by using a validated simulation engine
such as USARSim, the authors have been able to migrate the entire MOAST
framework from simulation to an ATRV platform without changing any lines
of code. In addition, real/virtual operation is possible where part of the system
operates in simulation while other aspects are run on real hardware. This has
been demonstrated with the use of real mobility and simulated perception. In
this case, mobility planning algorithms are able to take advantage of perceived
attributes that may not be available from the current generation of perception
algorithms.

5 Future Work and Conclusions

The MOAST framework has been used to control virtual robots in both urban
search and rescue environments and manufacturing settings, and physical robots
(automated guided vehicles) on real shop floors. By utilizing the Player inferior
skin of SimWare, identical algorithms that have been tuned in simulation are
being experimented with on real hardware in identical environments. The idea
is to validate performance in both the real and virtual worlds in order to verify
simulated models and control system utility.

In addition, new algorithms are constantly being added to the framework.
Work is progressing on Simultaneous Localization and Mapping (SLAM) as well
as the inclusion of a true 3D world model. The MOAST website highlights the
latest improvements.
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Abstract. Modular self-reconfigurable robots are drawing increasing
interest due to their nature as a versatile, resilient and potentially cost-
effective tool. Programming modular self-reconfigurable robots is how-
ever complicated by the need for closely coordinating the actions of each
module with those of its neighbors. In this paper, we investigate the
need for a flexible set of concurrency primitives with which to express
control algorithms, while respecting the constraints posed by the physical
structure. We present two solutions for the ATRON self-reconfigurable
robot built over TinyOS and the Java Virtual Machine. Both solutions
are based on the principle of split-phase operations, and both address
the need for a structured, language-neutral way to express the desired
control flow, while retaining the flexibility needed to efficiently cope with
the constraints specific to highly physically concurrent robotic systems.

1 Introduction

Modular self-reconfigurable robots are robotic devices capable of changing their
own shape. They are usually built from multiple physically distinct modules that
can manipulate each other in order to perform shape change. Additionally, they
can fulfill a range of other more conventional tasks, like locomotion [TJ2/314lJ5].
Envisioned applications for this kind of system includes space exploration, op-
erations in occluded environments and in general tasks where versatility and
resilience to unanticipated failures can represent key advantages [0].

One of the unique characteristics of this kind of system, which makes it partic-
ularly difficult to program, is the tight coupling of multiple entities within a single
physical ensemble. This coupling imposes a strict coordination among the oper-
ations of single modules, resulting in algorithms that contain detailed sequences
of control steps to be carefully translated by developers into code. We observe
that this issue is particularly acute in many self-reconfiguration sequences. While
a number of conventional programming techniques can be adopted, we in this
paper define more appropriate concurrency primitives by explicitly modeling
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and exploiting specific features of these robotic systems. We show that software
written using such tailored constructs is closer to the original control algorithms
and more time efficient than the counterparts employing traditional methods.
The contribution of our work includes two implementations of programming in-
terfaces (APIs) for modular robots: one built over TinyOS [7] using nesC [g]
and targeting resource-constrained devices, like modular robots equipped with
simple microcontrollers; the other built over Java and providing a suitable al-
ternative for common computing platforms, including those hosting simulation
environments. The APIs are shown to provide an advantage for implementing
common sequences of reconfigurations for the ATRON robot, both in simulation
and on the physical system. Although our work is motivated by and targeted to
modular self-reconfigurable robots, we expect that a similar approach would be
applicable for many other types of robotic systems.

The rest of the paper is organized as follows. First, Sec. 2 describes the
ATRON hardware, and discusses issues in programming the ATRON robot by
means of a few examples. Sec. Bl presents the main contribution of this paper:
a conceptual model suitable for expressing concurrent control and two imple-
mentations of a set of concurrency primitives that enable a direct and efficient
controller implementation. Last, Sec. d presents related work and Sec. [l con-
cludes and outlines directions for future work.

2 The ATRON Self-reconfigurable Robot

2.1 The ATRON Platform

The ATRON self-reconfigurable robot is a 3D lattice-type robot [2I10]. Fig. [
(left) shows an example ATRON car robot built from 7 modules. As a concrete
example of self-reconfiguration, this car robot can change its shape to become a
snake (a long string of modules) capable of traversing obstacles; part of this self-
reconfiguration sequence is illustrated in the rest of Fig. [l ending in an 8-shape
that is easily transformed into the snake shape. An ATRON module has one
degree of freedom, is spherical and is composed of two hemispheres which can
be rotated relatively to each other. A module may connect to neighbor modules
using its four actuated male and four passive female connectors. The connectors
are positioned at 90 degree intervals on each hemisphere. Eight infrared ports,

Fig. 1. Self-reconfiguration on the ATRON robot [9]
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Fig. 2. USSR simulation of a self-reconfiguration step on the ATRON robot [9]

one below each connector, are used by the modules to communicate with neigh-
boring modules and sense distance to nearby obstacles or modules. A module
weighs 0.850kg and has a diameter of 110mm. The single rotational degree of
freedom of a module makes its ability to move very limited: in fact a module is
unable to move by itself. In the current hardware revision a module has 128KB
of flash memory for storing programs and 4KB of RAM for use during execution
of the program. Modules have until now been programmed in ANSI C using a
simple, low-level API that provides non-blocking operations for e.g. controlling
the actuators of each module.

Simulation of the ATRON robot is supported by our simulator for self-
reconfigurable robots, see Fig. [J for an example. This simulator, named the
“Unified Simulator for Self-Reconfigurable Robots” (USSR), is designed to sup-
port a wide variety of self-reconfigurable robots [T1/12], which currently includes
the ATRON, Odin, and M-TRAN systems [2[3/T3]. It is based on a physics en-
gine and hence allows simulation of dynamic interaction with the environment,
such as friction and object manipulation, but is also precise enough to simu-
late self-reconfiguration. The simulator is implemented in Java but provides a
lightweight interface for controllers written in ANSI C. The control API for the
simulated ATRON basically mirrors the low-level C API, except that each mod-
ule can be configured to use blocking or non-blocking operations; as most of the
users found the blocking API easier to use, it is currently the default.

2.2 Basic Requirements in Controller Development

We are interested in providing a flexible means of expressing the actions of a
single module. General approaches to controlling the ATRON self-reconfigurable
robot include, among the others, rule-based techniques [I4], metamodules [I5],
and role-based control [I6]. These approaches however deal with issues like task
selection, distribution of behaviors across the ensemble, and management of the
relationships among modules. We will instead focus on the basic expressive re-
quirements for a single module based on practical experience developing ATRON
controllers.

In order to reason about concrete cases, we now present two examples with dif-
ferent expressive requirements. First, we consider again the self-reconfiguration
sequence depicted in Fig. [Il As is often the case for self-reconfiguration oper-
ations, the control algorithm running on each module resembles a sequence of
steps involving connections and disconnections from other modules, rotations,
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and communication. For example, the start of the self-reconfiguration sequence
causes the module acting as the “front axle” of the car (i.e., the module con-
nected to the two “front wheels”) to perform the following actions:

rotate 90 degrees in clockwise direction

wait for the right wheel to be connected to rest of the structure
disconnect the right wheel

rotate 90 degrees in clockwise direction

wait for the left wheel to be connected to rest of the structure
disconnect the left wheel

O U N

An easily recognizable feature of this kind of control algorithm is the temporal
interdependency among actions involving physical changes: the module cannot
rotate (step 4) before being disconnected from the previously attached left wheel,
otherwise it will collide with the rest of the structure; likewise it has to explicitly
wait (step 5) for a connected module to be ready to be disconnected, otherwise
it will fall due to premature disconnection. This interdependency is implicitly
stated by the algorithm’s progression through subsequent steps, each of them
fully terminating before letting the next one begin. As we elaborate in Sec. [3]
this seems to suggest a natural implementation as a program consisting of a
similar sequence of commands making use of traditional blocking semantics.

As a second example, we consider a subsequence of a controller implement-
ing a two-dimensional surface reconfiguration [9]. The steps under analysis are
depicted in Fig. 2 as a USSR simulation, and the module performing them is
the one starting in the lower portion of the surface (leftmost picture) and end-
ing in the higher one (rightmost picture). Informally speaking, once the module
has received the message triggering the self-reconfiguration behavior it needs
to disconnect from two of the modules it is attached to, then notify a neigh-
bor unit that it is ready to be moved. At this point another module will rotate
so as to move it to the destination position. Disconnecting from the two mod-
ules is ideally done in parallel, since this is more time efficient, but this is not
possible using standard blocking semantics. Conversely, the subsequent rotation
operations must not begin until both disconnections have completed.

3 Flexible Concurrency Primitives

3.1 Analysis

Control algorithms such as the described self-reconfiguration sequences typically
involve operations with inherently different runtime behaviors:

— synchronous commands, immediately completed upon return from execution,
similarly to a standard procedure call;

— asynchronous commands, started by the execution of a synchronous proce-
dure, and completed after a possibly undetermined amount of time upon
the occurrence of a specific condition (analogous e.g. to asynchronous I/0
in standard computer systems);
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— asynchronous events, occurring with a timing possibly independent from the
user defined control flow (similarly e.g. to interrupt requests).

Returning to the running example outlined at the end of the last section, the 2D-
surface reconfiguration subsequence is comprised of the following steps: (1) wait
for a start message to arrive, (2) disconnect from the two modules on the left
side, and (3) send a message to notify the next module. The first step is triggered
by an asynchronous event, as a self-reconfiguration request can arrive at any
time. The second step involves issuing an asynchronous disconnection command,
which as all actuator operations starts by setting a target state and completes
when this state is reached, with a delay determined by physical load, battery
level, etc. The third step can either be performed as a synchronous command
or an asynchronous one, depending on the specific hardware used to send the
message. In the case of the half-duplex infrared channel used for neighbor-to-
neighbor communication in the ATRON it is an asynchronous operation (it starts
with a channel acquisition request and completes after a grant event). Whether
operations execute in sequence or in parallel can have a significant impact on
performance: on the ATRON robot a (dis)connection operation takes about 2.5
seconds, while a 90 degrees rotation can take between 1.5 and 4 seconds [9]. Given
the number of steps involved in a self-reconfiguration sequence (68 for the car-to-
eight sequence of Figure [I), parallelizing temporally unconstrained operations,
like the two disconnections in step no. 2, can bring significant speedups.

A conventional way to ensure that an operation will be performed after the
completion of a previous one is by means of blocking semantics, sometimes also
referred to as synchronous [I7]. An execution environment embodying this se-
mantic paradigm yields control to the statement following a blocking call after
the latter is deemed to be completed, thus making the calling context appear to
block until then. This convenience usually implies that a number of issues, like
for example stack management, are dealt with by the environment, be it an op-
erating system or some programming language facility. Environments providing
a blocking semantics are usually implemented as threaded systems, but such an
implementation can be overly expensive in terms of resources on small embedded
systems like most modular, self-reconfigurable robots. Moreover, although it is
clear that the 2D self-reconfiguration sequence could easily be implemented using
a standard blocking style interface, it is not obvious how to program the parallel
and more time efficient version, even if the blocking API was supplemented by
non-blocking versions of the same procedures.

An alternative approach is to first tackle the need for parallelism, and then to
impose sequentiality constraints. Instead of focusing on self-contained, blocking-
to-completion calls, we can shape the ATRON programming interface after a
non-blocking, split-phase semantics, directly modeling the nature of long
running-operations composed of a start request and a separate completion event.
By exposing both the invocation and the completion phases we allow finer-
grained control over the system’s operations. This makes it possible and rel-
atively straightforward to implement, for example, the parallel version of the
example algorithm.
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3.2 An Extended ATRON Platform

To implement a simple and extendable programming environment for the
ATRON we ported the TinyOS operating system to the ATRON hardware [7].
This not only allows us to program in an event-based fashion using the nesC
language [8], but also provides numerous benefits in terms of stability and mod-
ularity. For instance, compared to our previous ATRON API which performed
most of the operations within interrupt handlers, we can now exploit a mecha-
nism similar to bottom-half handling [I8] in order to keep the system responsive
even under intensive interrupt load. Moreover, by basing our programming en-
vironment upon an event-based system we made it open to extensions: it is
now easy to implement further abstractions over a non-blocking, split-phase se-
mantics as it emulates the behavior of the hardware. This allowed us, as we
will illustrate later, to extend the system in order to support a simple form of
threading, and provides a suitable ground for further experimentation.

Following the TinyOS philosophy our port models the ATRON hardware as a
collection of components, each accessible through interfaces where the comple-
tion of split-phase operations are signalled using events (i.e. callbacks registered
statically at compile time). Component libraries from both the standard TinyOS
distribution and from the contributors’ community can be directly reused on the
ATRON: we were for example able to use a standard sensor network dissemina-
tion protocol in order to diffuse messages within an ATRON ensemble.

Using TinyOS and nesC, we can now precisely express the concurrency we
require for the 2D-metamodule example. The overall control flow is outlined
in Fig. Bl as a finite state machine (FSM) along with the corresponding nesC
implementation. Event handlers are declared using the keyword event, whereas
synchronous operations are executed immediately using the keyword call, or
defined within the body of a task procedure scheduled for later execution with
the keyword post. In the example the overall control flow starts with a message
sparking a Receive.receive event, after which a task is posted that initiates
the disconnection operations. When both operations are done, a notify message
is sent using the task notifyCompletion. Please note how we need to maintain
explicitly shared state information, a side effect known as “stack ripping” [17].

3.3 Augmenting the Event-Driven Model: Stackless Threads

We note that a significant drawback of the purely event-based programming
model is the hard-to-follow control flow. Instead of being linearly expressed
within the body of a single procedure, it is fragmented among several handlers
executed in a reactive fashion upon event occurrences. This well-known problem
forces the code to resemble an FSM (Fig. Bl), where state is explicitly maintained
as global variables, and events can trigger state transitions [I9]. With this pro-
gramming style it is therefore difficult to write the code for even slightly complex
control algorithms, and it is even harder to infer an algorithm’s control flow af-
terwards from the source code, making debugging and maintenance difficult.
As this applies even to experienced programmers, not surprisingly our initial
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event message_t* Receive.receive(...) {
if ((NeighborMsg#)rcvdMsg->info ==
START_RECONFIGURATION) {
if (!reconfigurationStarted)
post startReconfiguration();
Fo...
} task void startReconfiguration() {
reconfigurationStarted = TRUE;

event void Connector4.retractDone(...) {
connectord4retracted = TRUE;
if (connector6Bretracted)
post notifyCompletion();
} event void Connector6.retractDone(...) {
connector6retracted = TRUE;
if (connector4retracted)

post notifyCompletion();
}

call Connector4.retract();
call Connector6.retract(); task void notifyCompletion() {
} event void Send.sendDone(...) { ((NeighborMsg#) sendMsg) ->info
notificationSent = TRUE; = DISCONNECTION_COMPLETED;
i call Send.send(sendMsg, ...);

}
=3 Receive.receive
=3 Connectord.retractDone

reconfigurationStarted = FALSE

Receive.receive enabled connectordretracted = TRUE;

connectorbretracted = FALSE;
Connectoré.retractDone enabled

=3 Connector6.retractDone
=== Send.sendDone

netificationSent = TRUE;

reconfigurationStarted = TRUE
Connectord.retractDone enabled

Connector6.retractDone enabled connectordretracted = TRUE;

connectoréretracted = TRUE;

connectordretracted = FALSE; Send.sendDone enabled

connectorbretracted = TRUE;
Connectord.retractDone enabled

Fig. 3. The purely event-driven nesC code and the corresponding state machine

experience with event-based programming in nesC is that fellow roboticists in
our lab had a hard time producing reasonably bug-free, working codel]

To simplify programming those cases where arbitrary parallelism is inter-
twined with traditional sequential execution, we need to be able to explicitly
block and wait for a condition to be true. This can be the completion of a sub-
routine, the arrival of an event and more generally any boolean condition we
could express. With such a flexible composition system, custom blocking calls
can easily be tailored for the application at hand, or alternatively a single proce-
dure can be written in which operations are started asynchronously but checks
are inserted to enforce the temporal constraints.

We implemented such a paradigm by making use of so-called stackless threads,
also known as protothreads after a popular implementation of this concept [20].
Instead of operating a full context switch every time a thread blocks and yields
control to the scheduler, just the local continuation (see [20]) is saved so that
execution can restart from the yield point the next time the thread is sched-
uled. The advantage of this technique is that all thread-like procedures rely on
a single stack, which is unwound at every task switch. This makes systems with
tight resource constraints able to benefit from blocking-style constructs, as every
thread just requires memory for the local continuation and scheduling informa-
tion (5 bytes, in our current implementation). Conversely, in a full multithreaded

! This observation is based on the implementation effort at USD Modular Robotics
Lab concerning participation in the ICRA’08 Planetary Contingency Challenge.
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blockingTask(reconfigurationSubsequence) { blockingTask(disconnect) {
blockingTaskBegin() ; blockingTaskBegin() ;
/*1%/ blockingWaitUntil(triggerReceived) ; call Connector4.retract();
/*2%/ runBlockingTask(disconnect); call Connector6.retract();
/*3*/ runBlockingTask(notifyDone) ; blockingWaitUntil(call Connector4.get()
blockingTaskEnd () ; == CONNECTOR_RETRACTED &&
¥ call Connector6.get()
== CONNECTOR_RETRACTED) ;
event message_t* Receive.receive(...) blockingTaskEnd () ;
{ }
if ((NeighborMsg*)rcvdMsg->info ==
START_RECONFIGURATION) { blockingTask(notifyDone) {
triggerReceived = TRUE; blockingTaskBegin() ;
e ((NeighborMsg*) sendMsg) ->info
} = DISCONNECTION_COMPLETED;
call Send.send(sendMsg, ...);
event void Send.sendDone(...) { blockingWaitUntil (notificationSent) ;
notificationSent = TRUE; blockingTaskEnd () ;
} }

Fig. 4. The 2D reconfiguration subsequence implemented with stackless threads

system a conservative amount of memory would need to be allocated for each
thread, to prevent the stack from overflowing if the worst-case call sequence hap-
pens during its execution (e.g., because of nested interrupt requests). As many
modular robotic systems, including ours, are designed around simple microcon-
trollers with a very limited amount of RAM (as low as 1 KB []), this solution
represents a viable option. Fig. @ shows the subsequence of Fig. Blreimplemented
with stackless threads: we can easily distinguish the three original control steps
in the main thread reconfigurationSubsequence. To achieve this compact form,
we subsumed the underlying event-based system by explicitly blocking on flags
(triggerReceived) on the components state (call Connector4.get()), and on
the completion of similar constructs (disconnect). Our preprocessor-based im-
plementation automatically saves and restores the local continuation in a way
similar to the original implementation proposed in [20]. Additionally, it transpar-
ently allocates and manages the control structures of the threads and performs
the scheduling as needed, by means of a purposely developed scheduler com-
ponent. The main drawback is dictated by the reliance on a single stack which
must be unwound whenever a thread blocks: this implicitly means that eventual
automatic variables (with procedure scope) are not properly saved and restored
across context switches. A common workaround is to use local variables declared
as static [20], or to simply use global variables.

3.4 Java Futures as Concurrency Constructs

The stackless thread implementation is designed for use in resource-limited sys-
tems. In less constrained ones these primitives can be provided at a higher level
of abstraction. In the case of Java, threads are normally used to express con-
currency. They are however inappropriate for fine-grained parallelism: separate
thread classes and signalling through wait and notify combined with the over-
head of creating a new thread for each operation makes this overly cumber-
some. To provide a higher level abstraction, we encapsulate the concurrency
control primitives using objects. We observe that futures provide a convenient
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interface Future { // sequential
void block(); receive (START_RECONFIGURATION) .block();
boolean isCompleted(); // parallel
void onCompletion(Action a); Futures.waitFor (openConnector(4),
} openConnector(6)) ;
// sequential
interface Action { send(...,DISCONNECTION_COMPLETED) .block();
void execute();
void timeout(); // completion handler
} rotate(90) .onCompletion(
new ActionImpl() {
class Futures { void execute() { ... }
static void waitFor (Future f1, void timeout() { ... }
Future £2) { ... } }
. );
}

Fig. 5. The ATRON future API: definition and examples

abstraction for the concurrent control primitives of the ATRON robot: a fu-
ture is an object that represents the result of an unfinished computation [21].
Concretely, split-phase operations return a future object that can be used to syn-
chronize on whether the operation has completed. The ATRON Java interface
for futures is shown in Fig. [ (left) along with examples of API usage (right). Ro-
tating or actuating a connector returns an object that implements the interface
Future which allows the caller to (1) block waiting for the operation to complete,
(2) query whether the operation is completed, and (3) specify an action to run
when the operation is completed. Synchronizing on the completion of a future
can for example be done using the static method Futures.waitFor that blocks
waiting for the two future arguments to complete. In general, encapsulating the
execution of split-phase operations into futures allows arbitrary dependencies to
be expressed using standard object-oriented programming techniques.

We have implemented a futures-based ATRON API on a prototype Java-
enabled ATRON module as well as in the USSR simulator. The prototype Java-
enabled ATRON module is the result of integrating a Sun SPOT processor
board [22] within a standard ATRON module: the Sun SPOT controls the stan-
dard ATRON electronics over an SPI connection. This “SunTRON” module is
programmed using the CLDC-compliant Squawk Java virtual machine, allowing
the standard Java thread model to be used when programming controllers. Both
implementations of the future-based ATRON API are based on a scheduler that
manages Java threads: each future is represented by a Java thread and the sched-
uler decides which threads to activate based on the state of the hardware. While
the simulator-based implementation provides a futures-based version of the full
ATRON API, the Sun'TRON-based implementation is still preliminary and only
provides an API subset, including e.g. futures-based control of the actuators.

4 Related Work

In order to simplify the programming of modular robots forming highly dis-
tributed and tightly coordinated systems, there is a growing interest in the de-
velopment of high-level languages and programming environments. A principal
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aim of these approaches is to deal with the coordination among the individual
modules in a larger robot, through abstractions like roles [23/24] and localized
spatial pattern matching [25], so as to provide overall control of the robot. Our
work is complementary in that it concerns coordination of actions on a single
module; even if generalized to a distributed setting, our work is complementary
in the sense that we are not concerned with the decision of whether to initiate an
action, only the orchestration of the action once it has been initiated. Similarly,
existing work on software architecture for modular robots [26/27] deals with the
distributed coordination of services, not sequencing of actions.

We use low-level API primitives such as events or threads to implement our
concurrency primitives. Alternatively, a language with explicit concurrency prim-
itives such as occam-m can be used, which allows the programmer to directly
specify whether to perform operations in sequence of concurrently [28J29]. This
approach is however tied to a specific language and virtual machine, whereas
our conceptual approach is more generally applicable and has thus far been
implemented for nesC and Java without the need for language extensions. Nev-
ertheless, we are investigating to what extent similar, more powerful concurrency
primitives can be provided in our implementation framework.

5 Conclusions and Future Work

In this paper we have shown how to design an API that resolves the con-
currency and coordination issues in programming modular self-reconfigurable
robots. Our implementations of this design span from low-end robots with a
minimal TinyOS kernel to high-end robots with a full Java VM. Concretely, we
have both ported TinyOS to the ATRON robot to enable controlled concurrent
programming through a mix of event-driven and threaded semantics and imple-
mented a Java-based version of our API inside the USSR simulator and on the
prototype Java-enabled ATRON modules. In general, although the work pre-
sented in this paper has been instantiated for a specific type of modular robot
(the ATRON), we believe that the challenges that we address are common to
the larger group of systems that we define as physically interlocked systems [24],
meaning systems made of different, independent computational entities whose
behavior is influenced by and closely coordinated with that of their immediate,
physical neighbors.

In terms of future work, we are interested in generalizing our model to a dis-
tributed scenario, such as the one shown in the metamodule self-reconfiguration

Fig. 6. Distributed sequentiality and concurrency in self-reconfiguration
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sequence of Fig. [0l Here, several modules sometimes need to disconnect within
the same time step, and similarly to the case for one module this can be done
either in sequence or in parallel. For this reason, we are interested in providing
a distributed API supporting split-phase operations on local, neighboring mod-
ules. Adding distributed operations naturally necessitates dealing with partial
failures, but would simplify programming self-reconfiguration sequences.
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Abstract. This paper presents the software being developed at IRI (In-
stitut de Robotica i Informatica Industrial) for mobile robot autonomous
navigation in the context of the european project URUS (Ubiquitous
Robots in Urban Settings). In order that a deployed sensor network and
robots operating in the environment cooperate in terms of information
sharing, main requirements are real-time performance and the integra-
tion of information coming from remote machines not onboard the robot.
Moreover, the project involves a group of eleven industrial and academic
partners, therefore software integration issues are critical. The proposed
software framework is based on the YARP middleware and has been
tested in real and simulated experiments.

Keywords: Mobile robot software, real-time, sensor networks.

1 Introduction

Research in robotics is experiencing a steady incoming of new hardware compo-
nents, platforms and devices, with the aim of overcoming perception and actuation
limitations of current robotic systems. These hardware novelties need software to
be operative, but developing such a software is a time consuming and error prone
task. Therefore, good practices in software development are required in robotic
laboratories in order to economize engineering time and share results and mod-
ules between research teams. Also, simulation of robot systems is a generalized
task that saves a lot of power and human energies, but the danger of recoding
algorithms for both simulation and experimentation arises. All these topics have
been recently discussed within the robotic research community [TI2J34].
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In the last years some interesting middlewares have been presented which
can be downloaded as open source software [BI6J7I8]. These projects coincide on
being real-time oriented and based on fully independent processes running in the
same machine or in a network of computers, thus they require a fast and robust
inter-process communication tool to operate.

Our context is that of the URUS european project [9] involving open research
fields such as network robot systems and cooperative robotics. Different exper-
iments, as transport of goods or evacuation of people, are envisaged in outdoor
urban scenarios, involving a camera network recently deployed on the URUS
environment and a team of heteregeneous robots running in it. In order to be
successful with the software integration and experimentation a good software
practice and a process communication approach are mandatory.

In this work we present a software framework based on the YARP middleware
[10]. YARP was initially written for people working with humanoid robots hence
involving a lot of hardware devices to be controlled. We do use YARP in our
context to provide communication capabilities between different processes of the
whole system, whether these processes are running onboard the same robot or
not. Therefore, our framework is developed with the aim of being executed in
a decentralized network of computers, being flexible to accept an heterogeneous
set of devices and algorithms and being independent of whether the data sources
are real or simulated platforms and devices, or files with stored off-line data.

This paper is organized as follows: section 2] overviews the whole software
structure, section [B] presents the knowledge basis of our system while section [
focuses on the involved processes and their designed hierarchy. In section [l the
graphical user interface is presented. Real-time experiments, both simulated and
real, are presented in section [6] validating the operability of the presented soft-
ware. Finally, section [ summarizes the main conclusions of the work.

2 Framework Overview

The proposed software framework has the main goal of providing a mobile robot
with autonomous navigation capability. Moreover, our mobile robot is thought
to be running in a cooperative environment, that is, an area where other mobile
robots are also operating and where a sensor network is deployed. The whole
system should provide a set of services in an urban environment such as trans-
portation of goods and people, cleaning or surveillance. Figure [Il shows the pro-
posed navigation software framework in this context including hardware devices
providing data (grey boxes), processes running concurrently (white boxes), and
YARP connections (black arrows) building a network of processes that exchange
data. This figure also indicates with an asterisc the processes that are running in
a remote machine (not on-board the robot) and, thus, a wireless link is required
to connect them to on-board processes. The running mode variable indicates
if the robot is tele-operated (RM=0), executing a path (RM=1) or following a
visual target (RM=2).
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Fig. 1. Network of processes building up the proposed software framework for au-
tonomous navigation in cooperative environments. Grey boxes are devices while white
boxes are processes. Processes running in a remote machine are marked with *.

Our design divides the proposed software in three parts: knowledge-basis,
processes and graphical user interface. The knowledge basis is a set of classes
implementing the data base and methods to deal with it, representing all that
the mobile robot ’knows’. In our context, this refers to the environment model
(map) and the methods to efficiently operate with it. Process classes implement
the core of this software design. These classes are organized in a three-level
hierarchy in order to exploit C++ modularity and inheritance. This set of classes
implements the basic process loop (layer 1), the process network (layer 2) and
the specific device drivers and algorithms (layer 3). Finally, the graphical user
interface (GUI) provides a mean to display real-time data while allowing the
user to drive the robot in a tele-operation running mode.

3 Knowledge Basis

The set of classes implementing the a priori knowledge of the robot builds up the
knowledge basis. In our map-based navigation case, this a priori knowledge is
given by a map of the environment and different geometric methods to operate
with it. This map could also be implemented off-board, as a data server provid-
ing answers to requests about distances, angles or line-of-sights. However, since
some navigation algorithms perform thousands or even millions of operations
per second related to the map, the “server approach” is unfeasible for real-time
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applications. This fact forces us to load the knowledge basis to the local memory
of the computers where processes requiring it are running.

In the context of our network robot system the map is described in a data
file of about 40K B, using a compatible format with Geographical Information
Systems (GIS). The model represents the environment as a list of obstacles, each
one described with metric and semantic information. When a robot initializes,
it requests the map to a map server. The map server replies sending the map file
and the robot loads it to a program variable, thus the knowledge basis is now in
the local memory and processes requiring it have faster access to their methods.

For other applications this knowledge basis could be a dictionary, as a set
of objects to be identified, or a set of faces to be recognized (parameterized
or not). Obviously, if there were no real-time constraints in our application, we
could implement this knowledge basis as a data base server running in a machine
not onboard the robot.

4 Processes

The hierarchy of the classes implementing processes is organized in three lay-
ers. The first layer defines a basic process class. A second layer implements the
interfaces, defining data packets and connections between processes, thus the
process network is completely stablished. This second layer is based on the com-
munication capabilities of the YARP middleware. Finally, the third layer of the
hierarchy implements specific algorithms and drivers to control devices.

Figure [ shows the C++ class hierarchy for the involved processes in our
framework. In the next subsections we detail each layer of this hierarchy.

4.1 Layer 1: Basic Process Class

This single class defines a generic process as an independent thread. The pro-
tected variables of this class are listed below:

int status; //=0 when process runs ok. Otherwise is an error code
int partnerId; //id of the partner responsible of that process
int machineId; //id of the machine where this process is running
char label[20]; //short label identifying the process

int sleepPeriod; //sleep period [us] to regularize loop period
ofstream logFile; //file to print log messages

ofstream dataFile; //file to print data

timeval timeStamp; //time stamp of the process output data

int processThreadID; //thread id

pthread_t processThread; //thread variable

This variable set has been found as the minimum common set that all our
processes need to be operative. The variable status indicates if a process is running
with no trouble (status=0) or if some error or unexpected situation is encountered
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(status=errorCode). The variable partnerld identifies which partner is responsi-
ble of the process among a group of partners working in the project. The variable
machineld carries the identification of the machine on which the process is run-
ning. The label string is used to shortly define the process as, for instance, 'gps’,
"frontLaser’ or ’obstacleAvoidance’. The sleepPeriod integer, defined in microsec-
onds, is the pause that the process will execute to regularize its output to a given
output frequency, specially for those cases where process stuff is very low and data
output is not required to be fast. Two files are also members of a process, one to
keep log messages during execution and the other to save process data. Both, log
messages and process data are always printed with a time stamp value provided
by the variable timeStamp (TS). Last two variables are needed to run the process
as a separate thread.
For this basic process class, we have the following public member functions:

ClogDataProcess(int ptid, int rid, char *labelStr); //constructor
virtual “ClogDataProcess(); //destructor

int writeLogFile(char *msg);//prints message with TS to logFile
int writeDataFile(char *msg);//prints message with TS to dataFile
virtual void printAlive(); //prints alive message to std output
virtual void process()=0; //Main method processing the data
virtual void printData()=0; //prints data content to dataFile
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virtual void sendData()=0; //sends data content (publish data)
void startRun(); //Throws the thread calling the run() method
void endRun(); //Cancels the run() this process

static void *run(void *thisPnt); //Main loop

The proposed set of public member functions is also designed to satisfy the min-
imum common needs for all the processes. The constructor initializes the status
to —1, sets the variables partnerld, machineld and labelString, and opens the log-
File and the dataFile. Destructor will close these files. We have also the member
functions writeLogFile() and writeDataFile(), that print a given message in the
log/data file with the current time stamp. The virtual member function print-
Alive() prints a basic alive message to the standard output. If desired, it can be
overridden to print a more specific alive message. After that, we find three pure
virtual member functions that are just named in this class but not implemented.
The process() member function will contain all the process work and it will be
implemented in the last layer of the hierarchy, that of the device/algorithm spe-
cific classes. The other two functions will be implemented in the second layer of
the hierarchy: the printData() member function printing the whole data packet
that the process outputs to the dataFile, and the sendData() member function
sending a data packet through a communication channel (publishes data). Fi-
nally, there are three member functions implementing the starting of the thread,
its main loop and its end or cancel condition. The run() member function is the
main loop of the thread and it is detailed in the following code:

while (1)

{
thisProcess->process();//main job of this process
thisProcess->printData();//prints data to data file
thisProcess->sendData();//writes data to output ports
sleep(thisProcess->sleepValue);//adjusts output frequency

Please note that in this basic process class neither the process connections nor
the data packets are still defined, since each process uses a different number of
inputs and outputs and works with different kind of data. The second layer of
the hierarchy will define and manage these issues.

4.2 Layer 2: Basic Interface Classes

Classes in the second layer implement communication between processes, that is,
they define the network connecting processes and data packets passing through
that network. This layer is motivated by the fact that several implementations of
a given algorithm or sensor driver use the same inputs and outputs and manage
the same data packets. The idea within this layer is to define, for each interface
class, which are the required inputs, the provided outputs, and the format of the
data packets going through these inputs and outputs. It is only in this layer where
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Fig. 3. Concept of the localization basic class. Inputs, outputs and data packets are
defined at this basic interface layer.

YARP, the chosen middleware, is used to support the communication network.
Such a layer is critical since we are working in a project involving several industrial
and academic partners, and is in this layer where integration guidelines must be
carefully respected [11]. Only if we faithfully follow these guidelines we will enjoy
the integration work as an assembling of “little black boxes”.

As an illustrative example we show the localization basic class, implementing
the communication layer for all specific localization algorithms. Figure [3] shows
this class as a black box accepting inputs from several real-time observations and
outputing a data packet containing the estimations of the robot pose, velocities
and related uncertainties. Hence, the localization basic class is in charge of putting
a localization specific module in the right place within the network of processes.

To fully implement an interface, we need to define the format of the data
packets provided by each interface. With this aim, we have designed a set of
structs named xPacket for each content format travelling throughout the process
network. Moreover, we have a set of classes inheriting yarp ports, specialized to
send or receive a given data packet. In figure [3 the localization basic class
has, for instance, a laserReceiverPort, an object in charge of receiving real-time
observations from a laser driver process, always storing the last one. In the output
side, the localization process, publishes a localization data packet through a
localizationSenderPort, with the format specified in figure [l

In terms of integration, and following the illustrative localization case, a given
process P requiring real-time localization data only has to incorporate a “local-
izationReceiverPort” object and connect it to the output port of the localization
process. Doing this, the process P has available in its local memory the last
estimation of the robot position, published by the localization process.

However, these interface classes do not implement the process() member func-
tion presented at section [£.]] thus they ’do nothing’, but the robot has to sense
and move. The next section details the third layer of the presented software
framework, where specific algorithms and drivers are implemented.

4.3 Layer 3: Specific Device/Algorithm Classes

This last layer of the hierarchy implements the specific processes of drivers con-
trolling hardware and algorithms for navigation tasks, that is, it implements the
member function process() that remainded a pure virtual function in the first
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Fig. 4. Output data packet for the localization. All specific localization algorithms
publish the same data packet. Grey fields form the common header of all data packets.

and second layers of the hierarchy. It is precisely in this layer where robotic
researchers have to program their own algorithms to solve the different naviga-
tion tasks. The only restriction when programming a specific device or algorithm
class is to agree with the related interface, a fact that appears naturally in object
oriented languages as C++, when class inheritance is used.

For each basic interface related to a device family, we have a class implement-
ing a simulation of that device family, a class reading off-line data for that device
family, and a class for each physical device that we have in our laboratory. For
instance, the basic class being in charge of the acquisition of the platform data
(CplatformAq), has four inherited classes implementing the above mentioned
cases: CplatformAqSim, CplatformAqOffLine, CplatformAqSegwayRMP200,
CplatformAgP3AT (see figure Q).

The key point of the proposed software architecture is that all these four spe-
cific classes inherit the basic CplatformAq class, thus from the point of view
of communications, these four classes have the same interface and manage the
same data packets, and, therefore, for a process requiring platform data it is
completely transparent which kind of platform (simulated, off-line or real) is
currently providing the real-time data. To keep the real-time in off-line exe-
cutions, the sleepPeriod of the process reading a data file is adapted at each
iteration according to the time stamp increment between the two last data rows.

This approach facilitates also the integration work. For instance, a team re-
quiring the localization data for its task allocation research do not worry on
which specific algorithm is performing the localization. This team only needs to
incorporate a localizationReceiverPort to its module and to connect this port to
the output port of the localization process.

5 Graphical User Interface

The developed graphical user interface allows monitoring the navigation exper-
iments. Figure Bl shows a snapshot of this GUI for a simulated case.

On the right side of the screen snapshot in figure Bl we can see a map represent-
ing the 10000m? campus outdoor area where the robots are expected to operate.
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Fig. 5. GUI snapshot

In this map, we can see three robots (R0..R2) as red dots and five fixed cameras
(C0..C4) as black squares. We can also see simulated GPS data for robots RO
and R2 positions as green spots on the map layout (R1 was out of gps coverage),
and how the camera network process is detecting robot R1 with camera C4 and
is sending range-bearing observations, each one depicted as a green segment.

On the left of the snapshot (figure[l), we can see the simulated onboard sensor
data for the selected robot (RO in this case). Leds near each sensor label indicate
whether the status of the sensor driver is ok (green) or if some problem occurs on
providing data (red). In the shown case, the cameraNetwork led is in red since
there are no detections for RO (the selected robot), since it is out of the camera
network coverage. On the bottom left there are also the control buttons to move
the robots and to change the selection of the current robot.

6 Real-Time Experiments. Position Tracking Example

6.1 Simulated Experiments

We first show a simulated experiment on position tracking. The localization fil-
ter is a process fusing data coming from six simulated device processes: platform
acquisition (odometry), front laser, back laser, compass, gps and camera net-
work observations. Moreover, during this execution we have a process moving
the platform and updating the simulated ground truth and the GUI. All these
processes run in real-time, providing and receiving data through the YARP net-
work. The localization filter process do not worry about where are the computers
providing data arriving to its data ports (see figure[3)) and whether these data is
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Fig. 6. Simulation of a position tracking experiment. Red poses are for ground truth.
Blue poses are the output of the filter. Green poses form the odometry path. Little
green dots are GPS data. Green segments are camera detections.

simulated or real. This localization process is completely ready to be exported
to a real experiment with no change on the code. Figure [6] shows the map frame
after the execution of this simulated experiment.

6.2 Real-World Experiments

This experiment is a position tracking experiment of the segway platform RMP-
200 of figure [ (left). This position tracking is processed at real-time, since the
filter output rate was about 3Hz and the maximum robot speed was about
0.5m/s. Since the overall camera network infrastructure and robot detection al-
gorithms are not yet fully operative, the localization filter only fuses onboard
sensor data, coming from a front laser, a back laser and the odometry of the
platform. However, the robot position is sent throughout the ouput port(see
figure [3) and a remote computer connected to this port can see the position of
the robot. In this experiment we have validated that the proposed software is
operative in real conditions, but also we have ascertained that integration of the
provided localization service can be easily done if a receiver process incorporates
a localizationReceiverPort object and connects it to the output port of the lo-
calization process. Figure [ (right) shows the map frame after the execution of
this real experiment.
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Fig. 7. Left: The segway robot with two lasers and one computer onboard. Right:Real
position tracking experiment. Blue poses are the output of the filter. Green poses form
the odometry path.

7 Conclusions

This paper presents a software architecture to solve navigation tasks for au-
tonomous mobile robots operating in cooperative environments. We mean by a
cooperative environment an area where a sensor network is deployed and a team
of robots operates in it. This network robot system is the context of the URUS
european project where eleven industrial an academic partners are developing
joint research. Both engineering and social contexts of this project force to de-
velop software following three main aims: real-time constraints for mobile robot
navigation techniques, easiness on integration software modules and decentral-
ized computing approach.

Real-time constraints in navigation techniques is a mandatory issue if we
want that the robots operate autonomously in such environment. Easiness on
integration is due to the fact that the proposed experiments demonstrating the
validity of the whole project involve several partners and several robotic fields
such as computer vision, data fusion or human-robot interaction. Finally, a net-
work robot system approach implies that a set of computers are physically (wired
or wireless) and logically connected to share any kind of data that each process
requires and provides.

The proposed approach, based on the YARP middleware, satisfies these three
aims and has been already tested in simulation and in a preliminary real outdoor
experiment, showing its potentialities, specially in terms of integration.
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Abstract. Developing autonomous agents displaying rational and goal-directed
behavior in a dynamic physical environment requires the integration of a great
number of separate deliberative and reactive functionalities. This integration must
be built on top of a solid foundation of data, information and knowledge hav-
ing numerous origins, including quantitative sensors and qualitative knowledge
databases. Processing is generally required on many levels of abstraction and in-
cludes refinement and fusion of noisy sensor data and symbolic reasoning. We
propose the use of knowledge processing middleware as a systematic approach
for organizing such processing. Desirable properties of such middleware are pre-
sented and motivated. We then argue that a declarative stream-based system is
appropriate to provide the desired functionality. Different types of knowledge
processes and components of the middleware are described and motivated in the
context of a UAV traffic monitoring application. Finally DyKnow, a concrete ex-
ample of stream-based knowledge processing middleware, is briefly described |l

1 Introduction

When developing autonomous agents displaying rational and goal-directed behavior in
a dynamic physical environment, we can lean back on decades of research in artifi-
cial intelligence. A great number of deliberative and reactive functionalities have al-
ready been developed, including chronicle recognition, motion planning, task planning
and execution monitoring. Integrating these approaches into a coherent system requires
reconciling the different formalisms they use to represent information and knowledge
about the world. To construct these world models and maintain a correlation between
them and the environment, information and knowledge must be extracted from data col-
lected by sensors. However, most research done in a symbolic context tends to assume
crisp knowledge about the current state of the world while information extracted from
the environment often consists of noisy and incomplete quantitative data on a much
lower level of abstraction. This causes a wide gap between sensing and reasoning.
Bridging this gap in a single step, using a single technique, is only possible for
the simplest of autonomous systems. As complexity increases, one typically requires
a combination of a wide variety of methods, including more or less standard function-
alities such as various forms of image processing and information fusion as well as
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application-specific and possibly even scenario-specific approaches. Such integration is
often done ad hoc using a variety of mechanisms within a single architecture, partly by
allowing the sensory and deliberative layers of a system to gradually extend towards
each other and partly by introducing intermediate processing levels.

We propose using the term knowledge processing middleware for a principled and
systematic framework for organizing incremental and potentially distributed processing
of knowledge at many levels of abstraction. Rather than being a robotic architecture it-
self, knowledge processing middleware should provide an infrastructure for integrating
the necessary components in such an architecture and managing the information flow
between these components. It should support incremental processing of sensor data and
facilitate generating a coherent view of the environment at increasing abstraction levels,
eventually providing knowledge at a level natural to use in symbolic deliberative func-
tionalities. It should also support the integration of different deliberation techniques.

In the next section, an example scenario is presented as further motivation for the
need for a systematic knowledge processing middleware framework. Desirable proper-
ties of such frameworks are investigated and a specific stream-based architecture suit-
able for a wide range of systems is proposed. As a concrete example, our framework
DyKnow is briefly described. We conclude with some related work and a summary.

2 A Traffic Monitoring Scenario

Traffic monitoring is an important application domain for autonomous unmanned aerial
vehicles (UAVs), where tasks such as detecting accidents and traffic violations and find-
ing accessible routes for emergency vehicles provide a plethora of cases demonstrating
the need for an intermediary layer between sensing and deliberation.

One approach to detecting traffic violations uses a formal declarative description of
each type of violation. This can be done using a chronicle [1]], which defines a class
of complex events using a simple temporal network where nodes correspond to occur-
rences of high level qualitative events and edges correspond to metric temporal con-
straints. For example, to detect a reckless overtake, events corresponding to changes in
qualitative spatial relations such as beside(cary, cars) and on(car, road) might be used.
Creating such representations from low-level sensory data, such as video streams, in-
volves a great deal of work at different levels of abstraction which would benefit from
being separated into distinct and systematically organized tasks. Figure [Il provides an
overview of how this processing could be organized. We emphasize that this is intended
to illustrate one potential use for knowledge processing middleware rather than to pro-
pose a specific robotic architecture to be used in UAV applications.

At the lowest level, a helicopter state estimator uses data from an inertial measure-
ment unit (IMU) and a GPS sensor to determine the current position and attitude of the
UAV. This information is fed into a camera state estimator, together with the current
angles of the pan-tilt unit on which color and infrared cameras are mounted, to deter-
mine the current camera state. The image processing system uses the camera state to
determine where the cameras are currently pointing. The two video streams can then be
analyzed in order to extract vision objects representing hypotheses regarding moving
and stationary physical entities, including their approximate positions and velocities.
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As an example, vehicles usually travel on roads. Given that image processing pro-
vides absolute world coordinates for each vision object, the anchoring process can
query a geographic information system to determine the nearest road segment and de-
rive higher level predicates such as on-road(car) and in-crossing(car). These would be
included in the states sent to the progressor as well as in the vehicle objects sent to
the next stage of processing, which involves deriving qualitative spatial relations be-
tween vehicles such as beside(cary , cars) and close(cary, cars). These predicates, and
the concrete events corresponding to changes in the predicates, finally provide sufficient
information for the chronicle recognition system to determine when higher-level events
such as reckless overtakes occur.

In this example, a considerable number of distinct processes are involved in bridging
the gap between sensing and deliberation and generating the necessary symbolic repre-
sentations from sensor data. However, to fully appreciate the complexity of the system,
we have to widen our perspective. Towards the smaller end of the scale, we can see that
a single process in Figure[Ilis sometimes merely an abstraction of what is in fact a set
of distinct processes. Anchoring is a prime example, encapsulating tasks such as the
derivation of higher level predicates which could also be viewed as a separate process.
At the other end of the scale, a complete UAV system also involves numerous other sen-
sors and information sources as well as services with distinct knowledge requirements,
including task planning, path planning, execution monitoring, and reactive procedures.

Consequently, what is seen in Figure [Il is merely an abstraction of the full com-
plexity of a small part of the system. It is clear that a systematic means for integrating
all forms of knowledge processing, and handling the necessary communication between
parts of the system, would be of great benefit. Knowledge processing middleware should
fill this role, by providing a standard framework and infrastructure for integrating im-
age processing, sensor fusion, and other data, information and knowledge processing
functionalities into a coherent system.
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3 Knowledge Processing Middleware

As stated in the introduction, any form of knowledge processing middleware should
provide a principled and systematic framework for bridging the gap between sensing
and deliberation in a physical agent. While it is unlikely that one will ever achieve
universal agreement on the detailed requirements for such middleware, the following
requirements have served as important guiding principles.

First, the framework should permit the integration of information from distributed
sources, allowing this information to be processed at many different levels of abstrac-
tion and transformed into a suitable form for use by a deliberative functionality. In
traffic monitoring, the primary input will consist of low level sensor data such as im-
ages, a signal from a barometric pressure sensor, a GPS signal, laser range scans, and
so on. There might also be high level information available such as geographical in-
formation and declarative specifications of traffic patterns and normative behaviors of
vehicles. The middleware must be sufficiently flexible to allow the integration of these
sources into a coherent processing system. Since the appropriate structure will vary be-
tween applications, a general framework should be agnostic as to the types of data and
information being handled and should not be limited to specific connection topologies.

Many applications, including traffic monitoring, provide a natural abstraction hierar-
chy starting with quantitative sensor signals, through image processing and anchoring,
to representations of objects with both qualitative and quantitative attributes, to high
level events and situations where objects have complex spatial and temporal relations.
Therefore a second requirement is the support of quantitative and qualitative processing
as well as a mix of them.

A third requirement is that both bottom-up data processing and top-down model-
based processing should be supported. Different abstraction levels are not independent.
Each level is dependent on the levels below it to get input for bottom-up data processing.
At the same time, the output from higher levels could be used to guide processing in a
top-down fashion. For example, if a vehicle is detected on a particular road segment,
then a vehicle model could be used to predict possible future locations, which could be
used to direct or constrain the processing on lower levels.

A fourth requirement is support for management of uncertainty. Many types of un-
certainty exist, at the quantitative sensor data level as well as in the symbolic identity of
objects and in temporal and spatial aspects of events and situations. It should be possi-
ble to use different approaches in different architectures implemented with knowledge
processing middleware, and to integrate multiple approaches in a single application.

Physical agents acting in the world have limited sensory capabilities and limited re-
sources. At times these resources may be insufficient for satisfying all currently execut-
ing tasks, and trade-offs may be necessary. For example, reducing update frequencies
would cause less information to be generated, while increasing the maximum permitted
processing delay would provide more time to complete processing. Similarly, an agent
might decide to focus its attention on the most important aspects of its current situa-
tion, ignoring events or objects in the periphery, or to focus on providing information
for the highest priority tasks or goals. Resource-hungry calculations can sometimes be
replaced with more efficient but less accurate ones. Each trade-off will have effects on
the quality of the information produced and the resources used. A fifth requirement on
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knowledge processing middleware is therefore support for flexible configuration and
reconfiguration. This is also necessary for context-dependent processing. For example,
one may initially assume that vehicles follow roads. If a vehicle goes off road, this
simplifying assumption must be retracted and processing may need to be reconfigured.

It should be possible to provide an agent implemented using knowledge processing
middleware with the ability to reason about trade-offs and reconfigure itself without
outside help, which requires introspective capabilities. Specifically, the agent must be
able to determine what information is currently being generated as well as the potential
effects of any changes it may make in the processing structure. Therefore a sixth re-
quirement is for the framework to provide a declarative specification of the information
being generated and the processing functionalities that are available, with sufficient
content to make rational trade-off decisions.

To summarize, we believe knowledge processing middleware should support declar-
ative specifications for flexible configuration and dynamic reconfiguration of context
dependent processing at many different levels of abstraction.

4 Stream-Based Knowledge Processing Middleware

The previous section focused on a set of requirements, intentionally leaving open the
question of how these requirements should be satisfied. We now go on to propose
stream-based knowledge processing middleware, one specific type of framework which
we believe will be useful in many applications. A concrete implementation, DyKnow,
will be discussed later in this paper.

Due to the need for incremental refinement of information at different levels of ab-
straction, we model computations and processes within the stream-based knowledge
processing framework as active and sustained knowledge processes. The complexity of
such processes may vary greatly, ranging from simple adaptation of raw sensor data to
image processing algorithms and potentially reactive and deliberative processes.

In our experience, it is not uncommon for knowledge processes at a lower level to
require information at a higher frequency than those at a higher level. For example,
a sensor interface process may query a sensor at a high rate in order to average out
noise, providing refined results at a lower effective sample rate. This requires knowl-
edge processes to be decoupled and asynchronous to a certain degree. In stream-based
knowledge processing middleware, this is achieved by allowing a knowledge process to
declare a set of stream generators, each of which can be subscribed to by an arbitrary
number of processes. A subscription can be viewed as a continuous query, which cre-
ates a distinct asynchronous stream onto which new data is pushed as it is generated.
The contents of a stream may be seen by the receiver as data, information or knowledge.

Decoupling processes through asynchronous streams minimizes the risk of losing
samples or missing events, something which can be a cause of problems in query-based
systems where it is the responsibility of the receiver to poll at sufficiently high frequen-
cies. Streams can provide the necessary input for processes that require a constant and
timely flow of information. For example, a chronicle recognition system needs to be
apprised of all pertinent events as they occur, and an execution monitor must receive
constant updates for the current system state at a given minimum rate. A push-based
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stream system also lends itself easily to “on-availability” processing, i.e. processing
data as soon as it is available, and the minimization of processing delays, compared to
a query-based system where polling introduces unnecessary delays in processing and
the risk of missing potentially essential updates as well as wastes resources. Finally,
decoupling also facilitates the distribution of processes within a platform or between
different platforms, another important property of many complex autonomous systems.

Finding the correct stream generator requires each stream generator to have an iden-
tity which can be referred to, a label. Though a label could be opaque, it often makes
sense to use structured labels. For example, given that there is a separate position esti-
mator for each vehicle, it makes sense to provide an identifier ¢ for each vehicle and to
denote the (single) stream generator of each position estimator by position|[i]. Knowing
the vehicle identifier is sufficient for generating the correct stream generator label.

Even if many processes connect to the same stream generator, they may have dif-
ferent requirements for their input. As an example, one could state whether new in-
formation should be sent “when available”, which is reasonable for more event-like
information or discrete transitions, or with a given frequency, which is more reasonable
with continuously varying data. In the latter case, a process being asked for a subscrip-
tion at a high frequency may need to alter its own subscriptions to be able to generate
stream content at the desired rate. Requirements may also include the desired approxi-
mation strategy when the source knowledge process lacks input, such as interpolation or
extrapolation strategies or assuming the previous value persists. Thus, every subscrip-
tion request should include a policy describing such requirements. The stream is then
assumed to satisfy this policy until it is removed or altered. For introspection purposes,
policies should be declaratively specified.

While it should be noted that not all processing is based on continuous updates,
neither is a stream-based framework limited to being used in this manner. For example,
a path planner or task planner may require an initial state from which planning should
begin, and usually cannot take updates into account. Even in this situation, decoupling
and asynchronicity are important, as is the ability for lower level processing to build
on a continuous stream of input before it can generate the desired snapshot. A snapshot
query, then, is simply a special case of the ordinary continuous query.

4.1 Knowledge Processes

For the purpose of modeling, we find it useful to identify four distinct types of knowl-
edge process: Primitive processes, refinement processes, configuration processes and
mediation processes.

Primitive processes serve as an interface to the outside world, connecting to sensors,
databases or other information sources that in themselves have no explicit support for
stream-based knowledge processing. Such processes have no stream inputs but provide
a non-empty set of stream generators. In general, they tend to be quite simple, mainly
adapting data in a multitude of external representations to the stream-based framework.
For example, one process may use a hardware interface to read a barometric pressure
sensor and provide a stream generator for this information. However, greater complexity
is also possible, with primitive processes performing tasks such as image processing.
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The remaining process types will be introduced by means of an illustrating example
from the traffic monitoring scenario, where car objects must be generated and anchored
to sensor data collected using cameras. This example shows one of many potential
solutions that can be implemented with the help of knowledge processing middleware
and has been successfully used in test flights with an experimental UAV platform [4].

In the implemented approach, the image processing system produces vision objects
representing entities found in an image, having visual and thermal properties similar to
those of a car. A vision object state contains an estimation of the size of the entity and
its position in absolute world coordinates. When a new vision object has been found,
it is tracked for as long as possible by the image processing system and each time it is
found in an image a new vision object state is pushed on a stream.

Anchoring begins with this stream of vision object states, aiming at the generation
of a stream of car object states providing a more qualitative representation, including
relations between car objects and road segments. An initial filtering process, omitted
here for brevity, determines whether to hypothesize that a certain vision object in fact
corresponds to a car. If so, a car object is created and a /ink is established between the
two objects. To monitor that the car object actually behaves like a car, a maintenance
constraint describing expected behavior is defined. The constraint is monitored, and if
violated, the car hypothesis is withdrawn and the link is removed. A temporal modal
logic is used for encoding normative behaviors, and a progression algorithm is used for
monitoring that the formula is not violated.

Figure [2] shows an initial process setup, existing when no vision objects have been
linked to car objects. As will be seen, processes can dynamically generate new processes
when necessary. Figure[Blillustrates the process configuration when VisionObject#51 has
been linked to CarObject#72 and two new refinement processes have been created.

The first process type to be considered is the refinement process, which takes a set
of streams as input and provides one or more stream generators producing refined, ab-
stracted or otherwise processed values. Several examples can be found in the traffic
monitoring application, such as:

— VoCoLink — Manages the set of links between vision objects and car objects, each
link being represented as a pair of labels. When a previously unseen vision object
label is received, create a new car object label and a link between them. When a
link is received from the VoCoLinkViolations process, the maintenance constraint of



154 F. Heintz, J. Kvarnstrom, and P. Doherty

the link has been violated and the link is removed. The output is a stream of sets of
links. A suitable policy may request notification only when the set of links changes.

— VoToCo — Refines a single vision object to a car object by adding qualitative infor-
mation such as which road segment the object is on and whether the road segment is
a crossing or a road. Because quantitative data is still present in a car object, a suit-
able policy may request new information to be sent with a fixed sample frequency.
Using a separate process for each car object yields a fine-grained processing net-
work where different cars may be processed at different frequencies depending on
the current focus of attention.

— VoCoLinkMonitor — An instantiation of the formula progressor. Monitors the mainte-
nance constraint of a vision object to car object link, using the stream of car object
states generated by the associated VoToCo. The output is false iff the maintenance
constraint has been violated.

The second type of process, the configuration process, takes a set of streams as input
but produces no new streams. Instead, it enables dynamic reconfiguration by adding or
removing streams and processes. The configuration processes used in our example are:

— CreateVoCoLinkMonitors — Takes a stream of sets of links and ensures VoCoLinkMon-
itor refinement processes are created and removed as necessary.

— CreateVoToCos — Takes a stream of vision to car object links and ensures VoToCo
refinement processes are created and removed as necessary.

Finally, a mediation process generates streams by selecting or collecting information
from other streams. Here, one or more of the inputs can be a stream of labels identifying
other streams to which the mediation process may subscribe. This allows a different
type of dynamic reconfiguration in the case where not all potential inputs to a process
are known in advance or where one does not want to simultaneously subscribe to all
potential inputs due to processing cost. One mediation process is used in our example:

— VoColinkViolations — Takes a stream of sets of links identifying all current con-
nections between vision objects and car objects. Dynamically subscribes to and
unsubscribes from monitor information from the associated VoCoLinkMonitors as
necessary. If a monitor signals a violation (sending the value “false”), the corre-
sponding link becomes part of the output, a stream of sets of violated links.

In Figure [2] the VoCoLinkViolations mediation process subscribes to no streams, since
there are no VoCoLinkMonitor streams. In Figure3lit subscribes to the stream of monitor
results of the maintenance constraint of the new VisionObject#51 to CarObject#72 link.

This example shows how stream-based knowledge processing middleware can be ap-
plied in a very fine-grained manner, even at the level of individual objects being tracked
in an image processing context. At a higher level, the entire anchoring process can be
viewed as a composite knowledge process with a small number of inputs and outputs,
as originally visualized in Figure[Il Thus, one can switch between different abstraction
levels while remaining within the same unifying framework. In previous work it has
been shown how stream-based knowledge processing middleware can provide support
for the different functional levels in the JDL Data Fusion Model [5]].
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4.2 Timing

Any realistic knowledge processing architecture must take into account the fact that
both processing and communication takes time, and that delays may vary, especially in
a distributed setting. As an example, suppose one knowledge process is responsible for
determining whether two cars are too close to each other. This test could be performed
by subscribing to two car position streams and measuring the distance between the cars
every time a new position sample arrives. Should one input stream be delayed by one
sample period, distance calculations would be off by the distance traveled during that
period, possibly triggering a false alarm. Thus, the fact that two pieces of information
arrive simultaneously must not be taken to mean that they refer to the same time.

For this reason, stream-based knowledge processing middleware should support tag-
ging each piece of information in a stream with its valid time, the time at which the in-
formation was valid in the physical environment. For example, an image taken at time ¢
has the valid time ¢. If an image processing system extracts vision objects from this
image, each created vision object should have the same valid time even though some
time will have passed during processing. One can then ensure that only samples with
the same valid time are compared. Valid time is also used in temporal databases [6].

Note that nothing prevents the creation of multiple samples with the same valid time.
For example, a knowledge process could very quickly provide a first rough estimate
of some property, after which it would run a more complex algorithm and eventually
provide a better estimate with identical valid time.

The available time, the time when a piece of information became available through
a stream, is also relevant. If each value is tagged with its available time, a knowledge
process can easily determine the total aggregated processing and communication delay
associated with the value, which is useful in dynamic reconfiguration. Note that the
available time is not the same as the time when the value was retrieved from the stream,
as retrieval may be delayed by other processing.

The available time is also essential when determining whether a system behaves
according to specification, which depends on the information actually available at any
time as opposed to information that has not yet arrived.

5 DyKnow

A concrete example of a stream-based knowledge processing middleware framework
called DyKnow has been developed as part of our effort to build UAVs capable of car-
rying out complex missions [[7U8L5]]. Most of the functionality provided by DyKnow has
already been presented in the previous section, but one important decision for each con-
crete instantiation is the type of entities it can process. For modeling purposes, DyKnow
views the world as consisting of objects and features.

Since we are interested in dynamic worlds, a feature may change values over time.
To model the dynamic nature of the value of a feature a fluent is introduced. A fluentis a
total function from time to value, representing the value of a feature at every time-point.
Example features are the speed of a car, the distance between two cars, and the number
of cars in the world.
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Since the world is continuous and the sensors are imperfect the exact fluent of a fea-
ture will in most cases never be completely known, instead it has to be approximated.
In DyKnow, an approximation of the value of a feature over time is represented by a
fluent stream. A fluent stream is a totally ordered sequence of samples, where each sam-
ple represents an observation or an estimation of the value of the feature at a particular
time-point.

To satisfy the sixth requirement of having a declarative specification of the informa-
tion being generated, DyKnow introduces a formal language to describe knowledge pro-
cessing applications. An application declaration describes what knowledge processes
and streams exists and the constraints on them. To model the processing of a dependent
knowledge process a computational unit is introduced. A computational unit takes one
or more samples as inputs and computes zero or more samples as output. A computa-
tional unit is used by a dependent knowledge process to create a new fluent generator.
A fluent generator declaration is used to specify the fluent generators of a knowledge
process. It can either be primitive or dependent. To specify a stream a policy is used.

The DyKnow implementation sets up stream processing according to an application
specification and processes streams to satisfy their policies. Using DyKnow an instance
of the traffic monitoring scenario has successfully been implemented and tested [4]].

6 Related Work

There is a large body of work on hybrid architectures which integrate reactive and
deliberative decision making [9U10/11J12/13]]. This work has mainly focused on inte-
grating actions on different levels of abstraction, from control laws to reactive behav-
iors to deliberative planning. It is often mentioned that there is a parallel hierarchy of
more and more abstract information extraction processes or that the deliberative layer
uses symbolic knowledge, but only a few of these approaches are described in some
detail [14/15116].

We now focus on some approaches providing general support for integrating sensing
and reasoning as opposed to approaches tackling important but particular subproblems
such as symbol grounding, simultaneous localization and mapping, or transforming
signals to symbols. With general support we mean that a system explicitly supports at
least a few of the requirements, and does not prevent any of the remaining requirements
from being met. However, the explicit support for the requirements often widely differ.

4D/RCS is a general cognitive architecture which can be used to combine different
knowledge representation techniques [17]. It consists of a multi-layered hierarchy of
computational nodes each containing sensory processing, world modeling, value judg-
ment, behavior generation, and a knowledge database. The idea of the design is that the
lowest levels have short-range and high-resolution representations of space and time
appropriate for the sensor level while higher levels have long-range and low-resolution
representations appropriate for deliberative services. Each level thus provides an ab-
stract view of the previous levels. Each node may use its own knowledge representation
and thereby support multiple different representation techniques. However, the archi-
tecture does not, to our knowledge, explicitly address the issues related to connecting
different representations and transforming one representation into another. These are
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fundamental issues which stream-based knowledge processing middleware explicitly
supports. However, it ought to be possible to combine the two approaches and imple-
ment the 4D/RCS architecture using DyKnow.

The CoSy Architecture Schema Toolkit (CAST) built on top of the Boxes and Lines
Toolkit (BALT) is a tool for creating cognitive architectures [18]]. An architecture con-
sists of a collection of interconnected subarchitectures (SAs). Each SA contains a set
of processing components that can be connected to sensors and effectors and a working
memory which acts like a blackboard within the SA. A processing component can either
be managed or unmanaged. An unmanaged processing component runs constantly and
directly pushes its results into the working memory. A managed process, on the other
hand, monitors the working memory content for changes and suggests new possible
processing tasks. Since these tasks might be computationally expensive a task manager
uses a set of rules to decide which task should be executed next based on the current
goals of the SA. One special SA is the binder which creates a high-level shared repre-
sentation that relates back to low-level subsystem-specific representations [[19]. It binds
together content from separate information processing subsystems to provide symbols
that can be used for deliberation and action.

The BALT middleware provides a set of processes which can be connected either
by 1-to-1 pull connections or 1-to-N push connections. With its push connections and
its support for distributing information and integrating reasoning components it can be
seen as a basic stream-based knowledge processing middleware. A difference is that it
does not provide any declarative policy-like specification to control push connections.
CAST further adds support for a structured way of processing data on many levels
of abstraction and the binder supports an explicit integration of representations from
several SAs. A difference compared to DyKnow is the lack of a declarative specification
of the processing of an architecture.

7 Summary

As autonomous physical systems become more sophisticated and are expected to handle
increasingly complex and challenging tasks and missions, there is a growing need to
integrate a variety of functionalities developed in the field of artificial intelligence. A
great deal of research in this field has been performed in a purely symbolic setting,
where one assumes the necessary knowledge is already available in a suitable high-
level representation. There is a wide gap between such representations and the noisy
sensor data provided by a physical platform, a gap that must somehow be bridged in
order to ground the symbols that the system reasons about in the physical environment
in which the system should act.

When physical autonomous systems grow in scope and complexity, bridging the gap
in an ad-hoc manner becomes impractical and inefficient. At the same time, a system-
atic solution has to be sufficiently flexible to accommodate a wide range of components
with highly varying demands. Therefore, we began by discussing the requirements that
we believe should be placed on any principled approach to bridging the gap. As the next
step, we proposed a specific class of approaches, which we call stream-based knowl-
edge processing middleware and which is appropriate for a large class of autonomous
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systems. This step provides a considerable amount of structure for the integration of
the necessary functionalities, but still leaves certain decisions open in order to avoid
unnecessarily limiting the class of systems to which it is applicable. Finally, DyKnow
was presented to give an example of an existing implementation of such middleware.
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Abstract. Navigation software of autonomous mobile robots comprises
a number of software modules that typically interact in a very complex
way. Their proper interaction and the robustness of each single module
strongly influence the safety during navigation in the field. Particularly
in unstructured environments, unforeseen situations are likely to occur
causing erroneous behaviors of the robot. The proper handling of such
situations requires an understanding of cause and effect within the com-
plex interactions of the system.

In this paper we present a method for the automatic modeling of
navigation software components and their interactions by observing their
communication patterns. The learned model is used online for model-
based reasoning (MBR) in order to increase system robustness during
runtime.

We evaluated the approach on three different robot systems whose
software components are communicating via the widely used IPC (In-
ter Process Communication) architecture. Our results demonstrate the
systems capability of automatic system learning and diagnosis without
a priori knowledge.

1 Introduction

Control software of autonomous mobile robots comprises a number of software
modules which interact in a very complex manner. With increasing complexity,
design and implementation errors are likely to occur, causing failures during run-
time. Such failures can have different symptoms, such as module crashes, dead-
locks, and misinterpreted data leading to hazardous decisions of the robot. In
order to enable truly autonomous robots long-term operating without or limited
human intervention, such as planetary rovers exploring Mars, and rescue robots
searching for victims in unknown terrain, their navigation software requires the
capability to detect, localize, and to recover failure situations.
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In [1I2] the authors presented a MBR (model-based reasoning) framework
for the control software of autonomous robots using consistency-based diagnosis
techniques introduced by Reiter [3]. In this work models were created manually
by humans analyzing the structure of the software. However, for large or partially
unknown systems, manual modeling turns out to be suboptimal. Therefore, the
automatic model creation, either by formal specification or system observation,
is desirable.

In this paper we present an extension of previous work that allows to automati-
cally derive models by observing the communication behavior of component-
orientated navigation software. The basic idea is first, to learn communication
patterns under normal conditions, and second, to detect and localize failures during
runtime by comparing these patterns to observed communications. The algorithm
generates a communication graph encoding software modules by vertices and mod-
ule interactions by edges. Each edge is defined by a particular message type, e.g.,
reading of a laser range finder, or a position computed by the localization module,
and the condition under which the message occurs, e.g., triggered, sporadic, or pe-
riodic with a specific frequency. From this graph structure, a set of logical clauses
is extracted based on a component-based modeling schema [4]. Furthermore, for
each edge an observer is generated that is parameterized according to the learned
communication behavior of the link. During runtime, observers continuously mon-
itor communications between the modules. If they observe abnormal patterns, the
diagnosis engine is automatically triggered for reasoning the failure.

The model learning approach has been tested with the control software of the
Lurker robots [5] used in the RoboCup Rescue league, a multi-robot team of Zeryg
robots [6] used in the RoboCup Rescue simulation league, and the Telemax robot
designed for the TechX challenge [7]. The control software of these systems uti-
lizes the IPC communication framework [§], which is a very popular event-based
communication library used by a number of robotic research labs worldwide.

MBR has been actively studied in the past. The Livingstone architecture by
Williams and colleagues [9] was used on the space probe Deep Space One to
detect failures in the hardware and to recover from them. It has also been suc-
cessfully applied to fault detection and localization in digital circuits and car
electronics, and for software debugging of VHDL [4]. In [T0] the authors show
the application of MBR to the diagnosis of a group of robots in the health
care domain. The system model comprises interconnected finite state automata.
In [IT] MBR was presented for monitoring component-based software. The be-
havior of software components was modeled by Petri nets, where nodes rep-
resented the state of components, and transitions the interactions. Verma and
colleagues [I2] utilized particle filters to estimate the state of the robot and its
environment. These estimates together with a model of the robot were used to
detect failure situations.

The reminder of this paper is structured as follows. In Section [2] the model
learning from observed communication and in Section ] the model-based diag-
nosis are discussed. In Section ] we present experimental results and conclude
in Section Bl
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2 Model Learning

Systems based on IPC use an event-based communication paradigm, i.e. software
modules provide data by publishing events, and other modules subscribe for
these events in order to receive the data shortly after submission. Typically a
central module is in charge of handling all communication, which can also be
utilized for recording and monitoring events. For example, the central server of
IPC is able to record the type of the event, the time the event was published
or consumed, the content of the event, and the names of the publishing and the
receiving modules. In our implementation we use this data for creating a model
of the system. Please note that if an event is consumed multiple times, each
consumption is separately recorded.

Figure [1l depicts the recorded events while running a simple control software
example that comprises only five modules with a simple communication struc-
ture. In the example there are two data paths, one for processing self-localization,
and another one for object tracking. Whereas the software modules Odometry,
Vision, and SelfLoc provide data on a regular basis, the Tracker module provides
data only if objects have been detected in the data published by the Vision mod-
ule. Figure [[] shows the timing of event publishing, and Figure [2] the extracted
communication graph. Communication graphs are not only useful for diagnosis,
they also expressively visualize the relations between modules of larger or par-
tially unknown software. In the following, the model learning algorithm will be
described based on this example.

2.1 The Communication Graph

At a first step the algorithm extracts a communication graph from the data,
where nodes represent different software modules, and edges different events that
are exchanged between the modules. Each event is represented by at least one
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edge, whereas edges can also connect to multiple receiving modules originating
from a single publishing module. Formally, the communication graph can be
defined as following:

Definition 1 (CG). A communication graph (CG) is a directed graph with the
set of modes M and the set of labeled edges C, where:

— M is a set of software modules sending or receiving at least one event.

— C'is a set of connections between modules, the direction of the edge points
from the sending to the receiving module, the edge is labeled with the name
of the related event.

Please note that the communication graph may contain cycles. Usually such cy-
cles emerge from hand shaking mechanisms between two modules. The algorithm
for the creation of the communication graph can be formalized as following;:

computeGraph
Input: a set of recorded events F
Output: a set of nodes M and edges C
1. Let M be the empty set.
2. Let C be the empty set.
3. Foralle € E:
(a) If p(e) ¢ M add p(e) to M.
(b) If c(e) ¢ M add c(e) to M.
(c) If (p(e), c(e),l(e)) & C add (p(e), c(e), l(e)) to C
4. Return M and C.
The algorithm starts with an empty set of nodes M and edges C' and then
iterates trough the set F of all recorded communication events. If either the
sender or the receiver is not in the set of nodes, the sender or the receiver is
added. If there is no edge pointing from the sending to the receiving node with
the proper label, a new edge with the appropriate label is added between the two
modules. The functions p(e), c¢(e), I(e) return the publisher, the consumer and
the label of an event ¢. Moreover, we define the two functions in : CO — 2¢
and out : CO — 2¢ which return the edges pointing to and from a node.

2.2 The Communication Behavior

In a next step the behavior or type of each event connection is determined. For
this purpose we consider the output and input edges of the publishing node, and
the recorded timing of each communication via these edges. We distinguish the
following event types: triggered event connection (1), periodic event connection
(2), bursted event connection (3), and random event connection (4). In order
to describe the behavior of a connection formally, we define a set of connection
types CT = {periodic, triggered, bursted, random} and a function ctype : C —
C'T which returns the type of a particular connection ¢ € C. The type of an
event connection is determined by tests like measurements of the mean and
the standard deviation of the time between the occurrence of the events on the
connection, and comparison and correlation of the occurrence of two events.
The criteria used to assign an event connection to one of the four categories are
summarized below:
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Triggered. In order to determine whether an event connection is triggered,
events on connection ¢ € out(m) are correlated to events on the set of input con-
nection of the software module I = in(m). If the number of events on connection
¢, which are correlated with an event on a particular connection ¢ € in(m), ex-
ceed a certain threshold, connection t is named as trigger by connection c. The
correlation test checks for the occurrence of the trigger event prior to the ob-
served event. If connection c¢ is correlated with at least one connection ¢ € in(m),
connection c is categorized as a triggered connection. Usually, such connections
are found in modules performing calculations only if new data is available.

Periodic. On a periodic event connection the same event regularly occurs with
a fixed frequency. We calculate from time stamps of event occurrences a discrete
distribution of the time difference between two successive events. If one particular
time difference can be found with low variance, the connection is classified as
periodic and parameterized with the detected frequency. For a pure periodic
event connection one gets a distribution close to a Dirac impulse. Usually, such
connections are found for modules providing data at a fixed frame rate, such as
a module sending data from a video camera.

Bursted. A bursted event is similar to the periodic event, whereas its regular
occurrence can be switched on and off for a period of time. An event connection
is classified as bursted if there exist time periods where the criteria of the peri-
odic event connection holds. Usually, such connections are found with modules
which do specific measurements only if the central controller explicitly enables
them, e.g., the generation of a complete 3d laser scan requiring the motion of an
actuator for some while.

Random. For random event connections none of the above categories match
and therefore no useful information about the behavior of that connection can
be derived. Usually, such connections are found in modules which provide data
only if some specific circumstance occur in the system or its environment.

In the case of the above example, the algorithm correctly classified the event
connections odometry, objects and pose as periodic and the connection wvelocity
as triggered with the trigger objects.

2.3 The Observers

In order to be able to monitor the actual behavior of the control software,
the algorithm instantiates an observer for each event connection. The type
of the observer is determined by the type of the connection and its parame-
ters, estimated by the methods described before. An observer raises an alarm
if there is a significant discrepancy between the currently observed behavior of
an event connection and the behavior learned beforehand during normal opera-
tion. The observer provides as an observation O the atom ok(l) if the behavior
is within the tolerance and the atom —ok(l) otherwise. Where [ is the label of the
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corresponding edge in the communication graph. The observations of the
complete control software OBS are the union of all individual observations

OBS = O o

i=1

where n is the number of observers.

Observers can be instantiated for either triggered, periodic, bursted, or ran-
dom connections. The trigger observer raises an alarm if within a certain timeout
after the occurrence of a trigger event no corresponding event occurs or if the
trigger event is missing prior the occurrence of the corresponding event. In or-
der to be robust against noise, the observer uses a majority vote for a number
of succeeding events. The periodic observer raises an alarm if there is a signif-
icant change in the frequency of the events on the observed connection. The
observer checks if the frequency of successive events does vary significantly from
the specified frequency. For this purpose, the observer estimates the frequency of
the events within a sliding time window. The bursted observer is similar to the
periodic observer. It differs in the fact that it starts the frequency check only if
events occur and does not raise an alarm if no events occur. Finally, the random
is a dummy observer which always provides the observation ok(l). This observer
is implemented for completeness.

2.4 The System Description

The communication graph together with the type of the connections is a sufficient
specification of the communication behavior of the robot control software. This
specification can be used in order to derive a system description for the diagnosis
process. It is a description of the desired or nominal behavior of the system. In
order to be able to be used in the diagnosis process, the system description is
automatically written down as a set of logical clauses. We use Horn-clauses only
for efficiency reasons. This set can easily be derived from the communication
graph and the behavior of the connections. The algorithm to derive the system
description can be formalized as following:

computeSD
Input: the communication graph with nodes M and connections C'
Output: a set of clauses

1. Let SD be the empty set.
2. For all ce C:

If host(p(c)) # host(c(c))
(a) If ctype(c) = triggered add

—~AB(p(c)) A ok(t)A

tetrigger(c)Atein(p(c))

A=AB(host(p(c))) A ~AB(host(c(c))) — ok(c)
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to SD
Else add

= AB(p(c)) AN ~AB(host(p(c))) A ~AB(host(c(c))) — ok(c)

to SD
Else
(b) If ctype(c) = triggered add

—~AB(p(c)) A ok(t) — ok(c)
tetrigger(c)Atein(p(c))
to SD
Else add
—~AB(p(c)) — ok(c)
to SD
3. For allm € M:
Add
ok(c') — —AB(m)
c/ €Eout(m)
to SD
4. Return SD.

Functions p(c) and ¢(c) return the publishing and receiving module of an event
connection c. Function host(m) returns the host computer on which a particular
module m is executed. The algorithm starts with an empty set SD. For every
event connection, clauses are added to the system description by two steps. In
the first step, a clause for forward reasoning is added. The clause specifies if a
module works correctly and if all related inputs and outputs behave as expected.
Depending on the type of connection, we add the following clause to SD: If
connection c is triggered, we add a clause expressing that if the module and all
related inputs work as expected, also the output works as expected. Otherwise, a
clause expressing that if the module works as expected, also the output works as
expected, is added (see Line 2). The negation —AB(m) denotes that module m is
not abnormal, i.e. working as expected, and atom ok(c) denotes that connection
¢ behaves as expected. Moreover, if the host of the sending and receiving modules
of connection c is different, a fact expressing that the network interfaces of these
modules have to work correctly, is added, e.g., ~AB(host(p(c)).

In a second step, a clause for backward reasoning is added. The clause specifies
if all output connections ¢’ of module m behave as expected, the module itself
has to behave as expected (see Line 3).

Figure [3 depicts the system description obtained for the above example con-
trol software. Clauses 1 to 4 describe the forward reasoning. Clauses 5 to 8
describe the backward reasoning. Clause 3 states that the module Tracker works
correctly only if a velocity event occurs exclusively after a trigger event. For in-
stance, Clause 6 states that if all output connections of module Odometry work
as expected, consequently the module itself works correctly.
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—AB(Vision) — ok(objects)
—AB(Odometry) — ok(odometry)
—AB(Tracker) A ok(objects) — ok(velocities)
—AB(Selfloc) — ok(pose)

ok(objects) — = AB(Vision)

ok(odometry) — —~AB(Odometry)
ok(velocities) — ~AB(Tracker)

ok(pose) — = AB(Selfloc)

e

Fig. 3. The system description automatically derived for the example control software

3 Model-Based Diagnosis

For the detection and localization of faults we use the consistency-based diagnosis
technique of Reiter [3]. In order to be able to detect and localize a fault, the
method needs a model of the correct behavior of the system (the obtained system
description), recent observations of the system, and assumptions whether the
components of the systems work correctly. The basic idea is that if we assume
all components to work correctly (expressed by the according literals —AB),
and if the prediction of the (correct) behavior of the model differs from the
actual observations of the system, there is a failure in the system. If the method
discovers such a contradiction, a fault is detected. Formally, we define this by:

SDUOBS U {~AB(m)lm € M} = .

Such a consistency-check for Horn-clauses can be performed in linear time using
the LTUR algorithm [13].

So far we only know that a fault occurred but not which module(s) are its root
cause(s). In order to localize the module(s) responsible for the detected fault, we
have to calculate a diagnosis A. Where A is a set of modules m € M we have
to declare as faulty (change —AB(m) to AB(m)) in order to resolve the above
contradiction. Formally, we define this by:

SDUOBSU{AB(m)lm € A} U{=AB(m)|m € M \ A} }~L .

This is similar to human reasoning. The algorithm of Reiter implements an ef-
ficient way to manipulate the assumptions in order to calculate the diagnosis.
Intuitively one can say that a diagnosis A is an explanation for an observed
misbehavior. We use our implementatio of this diagnosis process for the ex-
perimental evaluation of the models. Please refer to [1I2] for more details on the
diagnosis process.

Consider the following simple situation for the example control software. If a
fault occurs in module Vision, the fact that no more events of the type objects
are produced is recognized by an observer. This is expressed by the observa-
tion —ok(objects). i If we use the system description of Figure Bl the actual

! The implementation can freely be downloaded at
http://www.ist.tugraz.at /mordams/.
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observations, and the assumption that all modules work as expected, we are
able to derive ok(objects) by the clause 1. This contradiction shows that we
have detected a fault. In order to localize the root cause of the fault we re-
tract assumptions about working modules. For instance, if changing assump-
tion ~AB(Tracker) to AB(Tracker) it is still possible to derive ok(objects) by
clause 1. Therefore, the set containing only module Tracker does not resolve the
contradiction and is therefore not a diagnosis. Such checks for inconsistencies
are done by a call of a theorem prover, e.g., the LTUR algorithm. But if we
change assumption ~AB(Vision) to AB(Vision), we can not derive ok(objects)
by clause 1 anymore. Therefore, the set A = {Vision} resolves the contradiction
and is therefore a valid diagnosis. Please note that every superset 