

Lecture Notes in Computer Science 5088
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Andy Schürr Manfred Nagl
Albert Zündorf (Eds.)

Applications of
Graph Transformations
with Industrial Relevance

Third International Symposium, AGTIVE 2007
Kassel, Germany, October 10-12, 2007
Revised Selected and Invited Papers

13

Volume Editors

Andy Schürr
TU Darmstadt
Real-Time Systems Group
Darmstadt, Germany
E-mail: schuerr@es.tu-darmstadt.de

Manfred Nagl
RWTH Aachen
Chair of Computer Science III
Aachen, Germany
E-mail: nagl@i3.informatik.rwth-aachen.de

Albert Zündorf
University of Kassel
Software Engineering Research Group
Kassel, Germany
E-mail: zuendorf@uni-kassel.de

Library of Congress Control Number: 2008937922

CR Subject Classification (1998): D.2, F.3, F.4.2, E.1, F.2.1, I.2.8, G.2.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-89019-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-89019-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12550951 06/3180 5 4 3 2 1 0

Preface

This volume compiles all papers presented at the International Symposium on Ap-
plications of Graph Transformation with Industrial Relevance (AGTIVE 2007).
The submissions first underwent a thorough review process before AGTIVE 2007.
A second review round was organized after the symposium for (1) final paper ver-
sions of presented contributions, (2) additional short tool surveys, and (3) the
results of a separate tool competition satellite event.

AGTIVE 2007 was the third practice-oriented scientific meeting of the graph
transformation community. The aim of the AGTIVE series as a whole is to serve
as a forum for all those scientists of the graph transformation community that are
involved in the development of graph transformation tools and the application
of graph transformation techniques—usually in an industrial setting. In more
detail, our intentions were and still are to:

1. Bring the practice-oriented Graph Transformation community together
2. Study and integrate different Graph Transformation approaches
3. Build a bridge between academia and industry

In addition, AGTIVE 2007 laid a special emphasis on the role that graph
transformation techniques play for model-driven system engineering languages,
tools, and methods including the well-known standards of the Object Manage-
ment Group (OMG).

The first AGTIVE symposium took place at Kerkrade, The Netherlands,
in 1999. Its proceedings appeared as vol. 1779 of the Springer LNCS series.
The second symposium, AGTIVE 2003, was held in Charlottesville, Virginia,
USA. The proceedings were published as LNCS 3062. The conference location
for AGTIVE 2007 was a historic site again: the Schlosshotel Bad Wilhelmshöhe,
which is next to the Wilhelmshöhe Palace above the city in the famous Bergpark
of Kassel, right in the center of Germany. Kassel is a very old city that was first
mentioned in 913. In ancient times Castellum Cattorum was a fortification of
the German Tribe of the unusually disciplined and well-organized Chatti (cf.
Tacitus). In the 19th century it was the home town of the Grimm brothers, who
collected and wrote most of their fairy tales in this place. Nowadays it hosts
“documenta”, an exhibition of modern and contemporary art, which takes place
every 5 years during June–September right before AGTIVE 2007.

The symposium’s scientific programme—inspired by the historic environment
—consisted of more than 30 regular research papers, practice reports, position
papers, and system demonstration descriptions. All together these presentations
covered an impressive number of different application areas such as business pro-
cess modeling, ontology engineering, information system design, development of
domain-specific languages and tools, embedded system engineering, model and
program transformation, and so forth. Furthermore, about half of the submitted

VI Preface

contributions proposed new graph transformation concepts and implementation
techniques that are urgently needed to solve real-world problems and to deal
with different kinds of scaleability problems.

In addition, two invited talks presented at AGTIVE 2007 focused on experi-
ences using model transformation techniques in an industrial setting as well as
on the state of the art of the model transformation standard QVT of the OMG.

– J. Koehler (IBM Zuerich): “Combining Quality Assurance and Model Trans-
formations in Business-Driven Development”

– I. Kurtev (University of Twente): “State-of-the-Art of QVT, a Model Trans-
formation Language Standard”

Finally, AGTIVE 2007 had two associated satellite events—one right before
and one right after the conference. The 5th International Fujaba Days 2007
aimed at bringing together developers and users of the graph transformation
tool Fujaba from all over the world to present their ideas and projects and to
discuss them with each other and with the Fujaba core development team.

The other event had a wider scope. It was a Graph Transformation Tools
Contest organized by Gabriele Taentzer and Arend Rensink. The aim of this
event was to compare the expressiveness, the usability, and the performance of
graph transformation tools along a number of selected case studies. It was moti-
vated by the fact that a deeper understanding of the relative merits of different
tool features is urgently needed to further improve graph transformation tools
and to indicate still open problems. The results of the rather vivid competition
are summarized in the form of three contributions in this volume. Furthermore,
the participants of the competition as well as the authors of all other AGTIVE
2007 submissions were asked to submit short descriptions of their tools. The
resulting last section of this volume thus nicely summarizes the state of the art
of today’s available graph transformation environments.

To conclude, the AGTIVE 2007 symposium again fulfilled its function of
bringing together the growing community of graph transformation tool devel-
opers and users to exchange their latest achievements and experiences. The or-
ganization of the whole symposium would not have been possible in this form
without the help of the Deutsche Forschungsgemeinschaft (German Research
Council) DFG. In particular the donations of the DFG allowed 18 young scien-
tists from 8 different countries—in addition to about 70 other participants—to
come to Kassel by partially financing their traveling expenses. Furthermore, the
grants covered part of the organizational costs of the workshop.

Last but not least the conference Co-chairs would like to thank the local
Kassel team, Albert Zündorf and Leif Geiger, for the excellent organization of
the AGTIVE 2007 symposium itself including a never-ending tour through the
Bergpark of Kassel. They really lived up to the standards of their well-organized
Chatti ancestors!

April 2008 Andy Schürr
Manfred Nagl

Organization

Program Co-chairs Andy Schürr, TU Darmstadt, Germany
Manfred Nagl, RWTH Aachen, Germany

Organizing Chair Albert Zündorf, University of Kassel
Publicity Chair Leif Geiger, University of Kassel

Program Committee

Luciano Baresi Politec. di Milano, Italy
Wim Bast Compuware, The Netherlands
Paolo Bottoni University of Rome, Italy
Frank Drewes University of Umea, Sweden
Heiko Dörr CARMEQ, Germany
Gregor Engels University of Paderborn, Germany
Hartmut Ehrig TU Berlin, Germany
Holger Giese University of Paderborn, Germany
Pieter van Gorp University of Antwerp, Belgium
Reiko Heckel University of Leicester, UK
Jens Jahnke University of Victoria, Canada
Gabor Karsai Vanderbilt University, Tennessee, USA
Hans-Jörg Kreowski University of Bremen, Germany
Jochen Küster IBM Research GmbH, Switzerland
Juan de Lara Autonomous University of Madrid, Spain
Tom Mens University of Mons-Hainaut, Belgium
Mark Minas University BW Munich, Germany
Jörg Niere DSPACE, Germany
John L. Pfaltz University of Virginia, Charlottesville, USA
Rinus Plasmeijer University of Nijmegen, The Netherlands
Detlef Plump University of York, UK
Ansgar Radermacher cea, France
Arend Rensink University of Twente, The Netherlands
Leila Ribeiro University of Rio Grande do Sul, Brasil
Gabriele Taentzer TU Berlin, Germany
Hans Vangheluwe McGill University, Canada
Daniel Varro TU Budapest, Hungary
Bernhard Westfechtel University of Bayreuth, Germany
Edward Willink Eclipse GMT Project, UK
Kang Zhang University of Texas at Dallas, USA
Albert Zündorf University of Kassel, Germany

VIII Organization

Additional Referees

Denes Bistray
Pieter De Leenheer
Claudia Ermel
Luciana Foss
Christian Fuß
Leif Geiger
Stefan Henkler
Martin Hirsch
Peter Knirsch
Jun Kong
Rodrigo Machado
Greg Manning
Sonja Maier
Katharina Mehner
Gergely Varró
Robert Wagner
Erhard Weinell
René Woerzberger

Sponsoring Institutions

Deutsche Forschungsgemeinschaft
RWTH Aachen
Technische Universität Darmstadt
University of Kassel

Table of Contents

Graph Transformation Applications

Combining Quality Assurance and Model Transformations in
Business-Driven Development . 1

Jana Koehler, Thomas Gschwind, Jochen Küster, Cesare Pautasso,
Ksenia Ryndina, Jussi Vanhatalo, and Hagen Völzer

Assuring Consistency of Business Process Models and Web Services
Using Visual Contracts . 17

Gregor Engels, Baris Güldali, Christian Soltenborn, and
Heike Wehrheim

Transforming Scene Graphs Using Triple Graph Grammars – A
Practice Report . 32

Nina Aschenbrenner and Leif Geiger

Using Graph Transformation to Support Collaborative Ontology
Evolution . 44

Pieter De Leenheer and Tom Mens

Modelling of Longitudinal Information Systems with Graph
Grammars . 59

Jens H. Weber-Jahnke

Meta-modeling and Domain-Specific Language

A Generic Layout Algorithm for Meta-model Based Editors 66
Sonja Maier and Mark Minas

Domain Specific Languages with Graphical and Textual Views 82
Francisco Pérez Andrés, Juan de Lara, and Esther Guerra

Generating Domain-Specific Model Editors with Complex Editing
Commands . 98

Gabriele Taentzer, André Crema, René Schmutzler, and
Claudia Ermel

Specifying Domain-Specific Refactorings for AndroMDA Based on
Graph Transformation . 104

Gabriele Taentzer, Dirk Müller, and Tom Mens

New Graph Transformation Approaches

Defining Abstract Graph Views as Module Interfaces 120
Ulrike Ranger, Katja Gruber, and Marc Holze

X Table of Contents

Programmed Graph Rewriting with DEVS . 136
Eugene Syriani and Hans Vangheluwe

Relational Growth Grammars – A Parallel Graph Transformation
Approach with Applications in Biology and Architecture 152

Ole Kniemeyer, Günter Barczik, Reinhard Hemmerling, and
Winfried Kurth

Applications and Rewriting of Omnigraphs – Exemplified in the
Domain of MDD . 168

Oliver Denninger, Tom Gelhausen, and Rubino Geiß

Program Transformation Applications

A Single-Step Term-Graph Reduction System for Proof Assistants 184
Maarten de Mol, Marko van Eekelen, and Rinus Plasmeijer

Shaped Generic Graph Transformation . 201
Frank Drewes, Berthold Hoffmann, Dirk Janssens,
Mark Minas, and Niels Van Eetvelde

Code Graph Transformations for Verifiable Generation of SIMD-Parallel
Assembly Code . 217

Christopher Kumar Anand and Wolfram Kahl

Graph Rewriting for Hardware Dependent Program Optimizations 233
Andreas Schösser and Rubino Geiß

Dynamic System Modeling

Transforming Timeline Specifications into Automata for Runtime
Monitoring . 249

Eric Bodden and Hans Vangheluwe

Visualization, Simulation and Analysis of Reconfigurable Systems 265
Claudia Ermel and Karsten Ehrig

Communities of Autonomous Units for Pickup and Delivery Vehicle
Routing . 281

Hans-Jörg Kreowski and Sabine Kuske

Efficient Graph Matching with Application to Cognitive Automation . . . 297
Alexander Matzner, Mark Minas, and Axel Schulte

Model Driven Software Development Applications

Checking and Enforcement of Modeling Guidelines with Graph
Transformations . 313

Carsten Amelunxen, Elodie Legros, Andy Schürr, and Ingo Stürmer

Table of Contents XI

Aspect Diagrams for UML Activity Models . 329
Roy Grønmo and Birger Møller-Pedersen

Model-Driven Software Development with Graph Transformations: A
Comparative Case Study . 345

Thomas Buchmann, Alexander Dotor, Sabrina Uhrig, and
Bernhard Westfechtel

Verification and Synthesis of OCL Constraints Via Topology Analysis:
A Case Study . 361

Jörg Bauer, Werner Damm, Tobe Toben, and Bernd Westphal

Queries, Views, and Model Transformations

State of the Art of QVT: A Model Transformation Language
Standard . 377

Ivan Kurtev

Adaptable Support for Queries and Transformations for the DRAGOS
Graph-Database . 394

Erhard Weinell

New Pattern Matching and Rewriting Concepts

Applying a Grouping Operator in Model Transformations 410
Daniel Balasubramanian, Anantha Narayanan, Sandeep Neema,
Benjamin Ness, Feng Shi, Ryan Thibodeaux, and Gabor Karsai

Modeling Successively Connected Repetitive Subgraphs 426
Anne-Thérèse Körtgen

Simulating Set-Valued Transformations with Algorithmic Graph
Transformation Languages . 442

Christian Fuss and Verena E. Tuttlies

Recursive Graph Pattern Matching: With Magic Sets and Global
Search Plans . 456

Gergely Varró, Ákos Horváth, and Dániel Varró

A First Experimental Evaluation of Search Plan Driven Graph Pattern
Matching . 471

Gernot Veit Batz, Moritz Kroll, and Rubino Geiß

Graph Transformation Tool Contest

AGTIVE 2007 Graph Transformation Tool Contest 487
Arend Rensink and Gabriele Taentzer

XII Table of Contents

Ludo: A Case Study for Graph Transformation Tools 493
Arend Rensink, Alexander Dotor, Claudia Ermel, Stefan Jurack,
Ole Kniemeyer, Juan de Lara, Sonja Maier, Tom Staijen, and
Albert Zündorf

Generation of Sierpinski Triangles: A Case Study for Graph
Transformation Tools . 514

Gabriele Taentzer, Enrico Biermann, Dénes Bisztray,
Bernd Bohnet, Iovka Boneva, Artur Boronat, Leif Geiger,
Rubino Geiß, Ákos Horvath, Ole Kniemeyer, Tom Mens,
Benjamin Ness, Detlef Plump, and Tamás Vajk

Transformation of UML Models to CSP: A Case Study for Graph
Transformation Tools . 540

Dániel Varró, Márk Asztalos, Dénes Bisztray, Artur Boronat,
Duc-Hanh Dang, Rubino Geiß, Joel Greenyer, Pieter Van Gorp,
Ole Kniemeyer, Anantha Narayanan, Edgars Rencis, and
Erhard Weinell

Graph Transformation Tools

The EMF Model Transformation Framework . 566
Enrico Biermann, Karsten Ehrig, Claudia Ermel,
Christian Köhler, and Gabriele Taentzer

GrGen.NET: A Fast, Expressive, and General Purpose Graph Rewrite
Tool . 568

Rubino Geiß and Moritz Kroll

The Modelling Platform GroIMP and the Programming Language
XL . 570

Ole Kniemeyer and Winfried Kurth

Metamodeling with MOFLON . 573
Carsten Amelunxen, Alexander Königs, Tobias Rötschke, and
Andy Schürr

The Graph Rewriting Language and Environment PROGRES 575
Ulrike Ranger and Erhard Weinell

Algorithm and Tool for Ontology Integration Based on Graph
Rewriting . 577

Thomas Heer, Daniel Retkowitz, and Bodo Kraft

Generating Eclipse Editor Plug-Ins Using Tiger . 583
Enrico Biermann, Karsten Ehrig, Claudia Ermel, and
Gabriele Taentzer

Table of Contents XIII

From Graph Transformation to OCL Using USE . 585
Martin Gogolla, Fabian Büttner, and Duc-Hanh Dang

Introducing the VMTS Mobile Toolkit . 587
Tihamér Levendovszky, László Lengyel, Gergely Mezei, and
Tamás Mészáros

Author Index . 593

Combining Quality Assurance and Model
Transformations in Business-Driven Development

Jana Koehler, Thomas Gschwind, Jochen Küster,
Cesare Pautasso, Ksenia Ryndina, Jussi Vanhatalo, and Hagen Völzer

IBM Zurich Research Laboratory
8803 Rüschlikon, Switzerland

Abstract. Business-driven development is a methodology for developing IT
solutions that directly satisfy business requirements. At its core are business
processes, which are usually modeled by combining graphical and textual no-
tations. During business-driven development, business process models are taken
to the IT level, where they are implemented in a Service-Oriented Architecture.
A major challenge in business-driven development is the semantic gap between
models captured at the business and the IT level. Model transformations play a
major role in bridging this gap.

This paper presents a transformation framework for IBM WebSphere Business
Modeler that enables programmers to quickly develop in-place model transforma-
tions, which are then made available to users of this tool. They address various
user needs such as quickly correcting modeling errors, refining a process model,
or applying a number of refactoring operations. Transformations are combined
with quality assurance techniques, which help users to preserve or improve the
correctness of their business process models when applying transformations.

1 Introduction

Traditionally, the models of a business process and its implementation in an information
system are considered separate artefacts. A business process model, in the best case,
serves as documentation for the implemented system. However, as business process
models and their implementation evolve independently, they quickly become inconsis-
tent with each other.

Today, an increasing pressure from regulations combined with opportunities pro-
vided by new technologies such as those related to Service-Oriented Architecture [1]
require models to reflect the reality of the implemented business processes. Further-
more, implementations should be derived more directly from business needs, which
is often referred to as business-driven development [2,3,4]. Consequently, modeling
tools increasingly address the transition from business to IT and vice versa. We observe
two major trends. On the one hand, quality assurance strives to enable users to cre-
ate business process models of higher quality from which correct, executable code can
be obtained in a lean development process. On the other hand, model transformations
aim at automating the transition across the semantic gap between business and IT. Both
trends reflect the need to make modeling a less heavy-weight activity with the vision of
moving towards more agile modeling tools where users can quickly respond to change

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 1–16, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 J. Koehler et al.

in processes and systems, where they obtain immediate feedback on the quality of the
models and receive help to build software from models in shorter iterations.

The need to constantly adapt and revise process models because of unforeseeable
changes leads to an increased interest in providing users with pre-implemented model
transformations that enhance the usability of the modeling tools and the productivity
of the user. For example, many of the business-level modeling tools available today
allow users to generate part of the implementation on the basis of the processes mod-
eled. This comprises the generation of Web service descriptions, usually represented in
the Web Service Description Language (WSDL) [5], and of the corresponding service
orchestrations represented in the Business Process Execution Language (BPEL) [6].
Many process modeling tools give a lot of freedom to business analysts, which may
even include the possibility to define their own extensions to the modeling language.
The interpretation of such extensions often lies with the user and is thus not accessible
to the modeling tool, making code generation difficult or even impossible. Moreover,
technical details that are required at the IT level are usually missing in models drawn
by business analysts.

To address this business-IT gap, modeling tools begin to constrain business users by
imposing a service-oriented and more technical modeling style so that technical details
must be added to the models in a refinement step. Frequently, however, business analysts
have difficulties in providing this kind of information. This requires a tool-supported
hand-shake between business and IT that is not yet very well understood. It seems that
this hand-shake comprises a continuum in which a business process model is refined
from an analysis model to a design model and then further into executable code. To
develop and provide the necessary refinement, refactoring, and abstraction operations
in a modeling tool, a model transformation framework is needed that is seamlessly
integrated into the modeling tool’s architecture.

In this paper, we discuss such a model transformation framework that we developed
for IBM WebSphere Business Modeler [7], an Eclipse-based commercial product for
business process modeling and analysis. In Section 2, we relate this framework to other
frameworks developed in the academic community and discuss our requirements. In
Section 3, an example scenario is introduced and the challenges encountered during the
transition from a business process analysis model via a business process design model
to executable code are reviewed in more detail. Section 4 explains why linking model
transformations with quality assurance is essential for their success in a commercial en-
vironment and gives a short overview on our quality assurance techniques. In Section 5,
the transformation framework is described in more detail. An overview of a selected
set of model transformations that we implemented is given and shortly evaluated in
Section 6. Section 7 concludes the paper.

2 Approaches to Model Transformation

Model transformations are key to success of the Model Driven Architecture (MDA)
initiative [8] by the Object Management Group. Consequently, a considerable amount
of research is devoted to the area of model transformations. Different types of model
transformations are distinguished in the literature [9,10,11]: When the source and target

Combining Quality Assurance and Model Transformations 3

models belong to the same metamodel, one usually speaks of endogenous transforma-
tions, otherwise of exogenous transformations. The former is more relevant in our case,
because our transformations mostly address the transition from the analysis to the de-
sign model of a business process, which we currently consider to be represented by the
same metamodel. Exogenous transformations are typically used when mapping models
across domains, e.g., when generating code from business process models. Endoge-
nous transformations can be further classified depending on whether the source and
target models are physically the same or belong to a separate model. Out-place trans-
formations produce a new target model, whereas in-place transformations modify the
source model. A vertical transformation transforms abstract models into more refined
models or vice versa, whereas a horizontal transformation remains at the same abstrac-
tion level. Typical examples of vertical transformations are refinement and abstraction,
whereas refactoring is a semantics-preserving horizontal transformation. Research has
also distinguished destructive and non-destructive transformations [10]. A destructive
transformation can delete existing model elements, but a non-destructive transformation
can only add elements.

For our work, it is important that all types of transformations can be implemented
using the framework presented in Section 5. However, in-place transformations play a
major role, because they meet our requirements of volatility and rapid execution when
transforming models that share the same metamodel. Rapid execution is important to
provide immediate feedback to users about the results of a transformation. Volatility of
transformation results enables users to quickly undo (completely or partially) a transfor-
mation that was incorrectly applied. Once users are satisfied with the result of a transfor-
mation, they can persist the modified model. A transformation should be applicable to
an entire model or to a part thereof, as indicated by the current user selection. Another
requirement for our framework is its extensibility with new transformations, i.e., adding
new transformations should be easy for developers. The framework should also enable
full integration of the transformations with the modeling environment so that choosing
and running a transformation does not require more than a few mouse clicks and users
perceive transformations as being part of the normal editing flow. Finally, to facilitate
a possible shipping of the framework in a future version of IBM WebSphere Business
Modeler, the product team emphasized the importance of architecting a lightweight
framework that does not significantly extend the tool’s code base.

Several of the Eclipse-based transformation frameworks developed by the academic
community provide features that are relevant to our requirements. These are in particu-
lar approaches that provide the compilation of transformations and combine declarative
with imperative approaches. For example, Biermann et al. [12] present a transforma-
tion framework for defining and executing in-place transformations defined visually
by graph transformation rules. Transformation execution relies on an interpretation by
the AGG graph transformation tool [13] or compilation of the rules into Java. The ATL
approach [14] allows developers of transformations to declaratively specify rules in tex-
tual form. In addition, it provides imperative constructs to specify the control flow of
rule executions. Rules are compiled into byte code for execution on a virtual machine.
Mens [15] describes a refactoring plug-in for the Fujaba environment which allows
users to interactively call refactorings such as pulling up a method. MATE [16], which is

4 J. Koehler et al.

implemented using the Fujaba tool, links model transformations with model analysis to
provide users with repair and beautifier operations for MATLAB, Simulink, and State-
flow models. Furthermore, many frameworks provide debugging support specific to
transformations.

Our transformation framework does not provide a general solution in the sense of
those sophisticated frameworks developed by the academic community, such as for
example ATL [14], VIATRA [17], GreAT [18], ATOM3 [19], BOTL [20], Fujaba [21],
and SiTRA [22]. Our solution only focuses on transforming business process models
given in a specific metamodel used within a specific tool. As such, implementing or
using the QVT standard [23] was also not in our focus.

Our transformations are written by specialized developers and currently cannot be
composed by business users into larger composite transformations. A simple recording
feature that allows them to generate sequences of transformations that require no fur-
ther user input is nevertheless straightforward. However, providing business users with
composition support for iteration and branching as is available in other transformation
frameworks seems to require the exposure of transformation rules at the business level.
An interesting alternative would be the learning of transformations by observing a user
and generalizing her editing operations on a business process model. A first discussion
of such an approach has been described by Varró [24].

The example transformations that we discuss in this paper not only illustrate that the
entire spectrum of transformations is needed during business-driven development, but
also illustrate the necessity to combine model transformations with quality assurance.
Assuring the quality of the model resulting from the transformation is especially im-
portant when transforming models describing complex behavior, because errors such
as deadlocks can only occur in behavioral models, but not in static models such as
class diagrams. This means that the pre- and postconditions of a transformation in-
volve a very elaborate model analysis, see Section 4. Formulating these conditions
declaratively in a transformation framework such as those mentioned above has not
yet been achieved, although it would have significant advantages, e.g., in document-
ing and analyzing transformation code, to study termination and confluence [25,26],
or test transformations [27]. To obtain clarity whether the combination of transforma-
tions with quality assurance would be possible in transformation frameworks, requires
further investigation.

3 A Refinement Scenario

An analysis model of a business process as captured by a business analyst is shown in
Fig. 1. The process model describes the (very simplified) handling of claims by an in-
surance company. First, the claim needs to be recorded, followed by a subprocess during
which the coverage of the claim by the insurance policy of the customer is validated. If
the customer has no coverage, then she is simply notified of this fact. Otherwise, the com-
pany continues to investigate whether the claim can be accepted. If the claim is accepted,
a subprocess to offer a benefit is entered, which leads to the final settlement of the claim. If
the claim is rejected, three activities take place in parallel: information in the Customer
Relationship Management system (CRM) is updated to inform the customer about the
rejection, the decision is documented, and the case is sent to product development.

Combining Quality Assurance and Model Transformations 5

Fig. 1. Analysis model of a simplified claim-handling process in insurance

Fig. 2. BPEL code using “link style” generated from the analysis model

Figure 1 only shows the control flow and omits many details of the process such
as the data that is involved or the organizations responsible for various activities in
the process. We notice that two decisions Covered? and Accepted? lead to exclusive
choices in the process flow. If the claim is covered, but rejected, the process forks into a
parallel process fragment containing three activities. This control flow leads in total to
five branches in the process model, which consist of a mixture of sequential and parallel
execution threads. Each branch ends individually with a single stop node. As soon as
one of these stop nodes is reached, the entire process will terminate immediately. This
can lead to problems for activities in the process that are executed in parallel as they
may not have completely finished when a stop node terminates the process. Although
this termination behavior was probably not intended by the business analysist drawing
the process model, it can often be observed in real-world process models where it is
caused by a modeling practice of not re-joining parallel branches [28].

In the implementing process, this modeling problem should be corrected. The BPEL
process must end with a single reply followed by a single stop node to provide the result
of the process back to the invoking service. Figure 2 shows an example of BPEL code
generated by automatically exporting the process model, i.e., by applying an exogenous
transformation from the business-process metamodel to the BPEL metamodel, which
we do not consider further in this paper.

A link-based flow is used and the five process branches directly enter the ClaimHan-
dlingReply at the end of the process. The join condition that combines these five links

6 J. Koehler et al.

Fig. 3. BPEL code using “block style” generated from the analysis model

at the reply needs to be associated with the correct AND logic for the three right links
combined with the XOR logic for the two left links. Automatically deriving the correct
join condition requires to analyze the control flow of the process model.

The BPEL code in Fig. 3 uses a block style with explicit switch actvities for the two
exclusive decisions and a flow activity encapsulating the three parallel process steps
in case the claim is rejected. This notational variant makes the BPEL flow logic more
readable. In this variant, an analysis of the process model is required that determines
the scope for the switch and flow activities of the process.

Even in this very simplified example, both BPEL versions already show a slightly
changed process model at the IT level, which corrects the termination behavior of the
analysis model. Thus, the analysis model is no longer consistent with its implementa-
tion. Ideally, changes that have been applied during the business-to-IT transition should
be reflected at the analysis level. One possibility is to recompute the analysis model as
an abstract view on the BPEL code. However, this leads to two different process mod-
els, the one drawn by the business analyst and the other generated from the IT process,
which need to be synchronized again. For a general approach to model synchroniza-
tion see for example [29]. Another possibility is to use the analysis model as input to
a business-driven development process in which transformations are applied until a de-
sign model is obtained from which BPEL code can be directly generated [3]. In this
paper, we concentrate on this second scenario and investigate how a tool can support a
user in this activity.

We assume that the user wants to apply transformations to the analysis model of the
business process in order to obtain a process design that reflects the desired BPEL block
structure. Ideally, the tool should inform the user that the model contains sequential and
parallel branches that end in individual stop nodes. Then, it could either automatically
apply transformations to make the model structurally aligned to the future BPEL or
guide the user in applying the appropriate transformations. Figure 4 illustrates a first
possible model transformation that joins the parallel branches of the process model.
It takes the three stop nodes ending the branches in the parallel process fragment and
replaces them by a join followed by a single stop node.

Combining Quality Assurance and Model Transformations 7

invoke
Join stop nodes

on selection

Fig. 4. Joining multiple stop nodes

...

...

...
...

invoke
Merge stop nodes

on selection

Fig. 5. Merging the remaining stop nodes

In a second transformation, the newly introduced stop node is merged with the two
stop nodes ending the exclusive branches, see Fig. 5. A merge is introduced, followed
by a single stop node. This yields the desired BPEL block structure, from which also
the correct join condition for link-style BPEL code can easily be computed.

If the user had applied a join to a larger selection of stop nodes, an incorrect process
model would result that does not terminate correctly. Ideally, a tool should warn or
prevent the user from applying transformations that lead to an incorrect model. In the
following section, we take a closer look at the structural analysis methods that we use
to ensure that users obtain feedback about the correctness of models resulting from a
transformation.

4 Ensuring the Quality of Business Process Models

Business process models were traditionally used mainly for documenting and commu-
nicating a business process. As they were used only by humans, lack of quality of a
model was tolerable to some extent. Today, with the proliferation of business process
management systems, many process models are executed by machines. Errors in those
models can incur substantial costs. A faithful and error-free model is also important
when one tries to obtain realistic business measures from a process model through sim-
ulation or analysis, which is also supported by many tools today.

8 J. Koehler et al.

Obtaining a faithful and error-free executable model can be a difficult and painful
task. Business process models can be quite complex, often comprising a hundred or
more activities with complex interactions between various business partners. Applying
transformations to such a complex model can easily give rise to additional errors when
done manually. It is thus important that a transformation framework can evaluate the
quality, in particular, the correctness of a model before a transformation is applied.
Furthermore, there should be something like a look-ahead: If applying a transformation
to a correct model yields an incorrect model, the user must be alerted of this issue.

Possible errors in business process models include control-flow and data-flow errors.
An example of a control-flow error is a deadlock, i.e., a situation where some part of the
process is waiting indefinitely for another part of the process. A data-flow error occurs,
e.g., when a piece of data is not available when needed. Many of these errors can be
avoided by applying a rigorous modeling discipline, i.e., by using correct modeling
patterns and by avoiding modeling anti-patterns [28].

Control-flow and data-flow errors can also be detected automatically by dedicated
analysis algorithms. Detection of deadlocks or a wider class of errors can be done using
techniques from the area of model checking which can be applied to business process
models [30,31]. In the worst case, these techniques have to build the entire state space
of the process model, the size of which can be exponential in the size of the process
model, a problem that is widely known as state-space explosion. To mitigate the state-
space explosion problem, we use a technique that is known from compiler theory: We
decompose the process model into a hierarchy of single-entry-single-exit (SESE) frag-
ments [32].

Figure 6 shows a process model and its SESE fragments, which are indicated by
dashed boxes. Suppose that this model was derived from the model in Fig. 1 by applying
a stop node transformation to the four topmost stop nodes, which were combined by a
join, then followed by a second transformation that added a merge. The first of the two
transformations introduced a deadlock. For example, if the claim is accepted, the join
in fragment F waits in vain for the other three activities in fragment F to finish.

To check for control-flow errors in the overall process model, it is sufficient to check
each fragment in isolation, i.e., each error is local to some SESE fragment. For example,
the deadlock in Fig. 6 is local to fragment F .

F

Fig. 6. An erroneous process model and its decomposition into SESE fragments

Combining Quality Assurance and Model Transformations 9

A SESE fragment is usually much smaller than the overall process. Its size is mea-
sured as the number of edges between its direct subfragments. As the decomposition
into SESE fragments can be computed in linear time and there are at most twice as
many fragments as there are atomic activities in the process model, the time used for
the control-flow analysis of all the fragments mainly depends on the size of the largest
fragment in the process. In a case study with more than 340 real-world business process
models which had an average size of 75 edges with the maximum being 342 edges, we
measured that the largest fragment of a process on average had size 25 with a maximum
of 82 [32].

As a second technique to mitigate the state-space explosion problem, we use heuris-
tics that can be applied in linear time to sort out many of the error-free and a fair per-
centage of the erroneous fragments before any state-space generation is applied [32].
This is based on the observation that many error-free and some erroneous fragments in
practice have a simple structure that can easily be recognized. For example, the dead-
lock in fragment F in Fig. 6 can be detected by recognizing that the fragment includes
a decision, but no merge [28,32].

Modeling errors are reported to the user, who can then take steps to correct the model
by manually editing the model or applying automatic transformations. When interleav-
ing the analysis with model transformations, the user can be warned that the selected
transformation is not applicable to the set of selected stop nodes without introducing
a deadlock into the model. The decomposition into SESE fragments can also be used
to speed up an automatic computation of a correct stop-node merging based on model-
checking techniques.

5 In-Place Transformation Framework Architecture

IBM WebSphere Business Modeler is built on top of the Eclipse platform, making it
relatively straightforward to plug in custom extensions providing advanced functional-
ity. Whereas a detailed discussion concerning the tool’s extension points would exceed
the scope of this paper, suffice it to say that the tool has been designed using the model-
view-controller pattern and that it is possible to manipulate the model elements using
the command pattern [33]. Unfortunately, the command pattern does not support easy
programmatic access of a model. For every change, a command object has to be set up
with the correct parameters, options and references to the model elements to be modi-
fied. With this approach, most of the transformation code would be dedicated to setting
up commands and pushing them onto the command execution stack, and the logic of
the transformation would become very hard to follow.

Thus, an abstraction layer is needed to enable programmatic access to the in-memory
model so that it can be modified with minimal amount of coding, but still without breaking
the model-view-controller design of the tool. In this way, the results of a transformation
become immediately visible to the user, whereas for the developer the elements of a model
are exposed in such a way that it becomes easy to implement transformations using an
ordinary programming language, i.e., Java in our case. In this approach, transformations
are natively executed because no interpretation is required and the Eclipse infrastructure
is reused to package and ship transformation plug-ins as extensions to the product.

10 J. Koehler et al.

IBM WebSphere Business Modeler

Transformation Programming Interface

Editor
Selection
Access

Model
Editing

Commands

Model
Access

and
Traversal

Model
Element
Creation

and
Removal

Model
Analysis

Model
Element
Property
Editing

Transformation
Palette
Registry

In-place Transformation Framework
Quality

Assurance

A
gg

re
ga

te
 S

to
p

N
od

es

Problem/Warning
Marker Access

R
eo

rd
er

 B
ra

nc
he

s

R
ep

la
ce

 S
ub

P
ro

ce
ss

T
og

gl
e

F
or

k/
D

ec
is

io
n

C
yc

le
 R

em
ov

al

Control Flow
Analysis

Heuristics

SESE Fragments
Decomposition

In-place
Transformation

Plug-ins

...

Fig. 7. Architecture of the transformation framework

The main purpose of our transformation framework is to provide such an abstraction
layer. It supports the execution of automatic refactoring, refinement and abstraction
transformations, and enables their full integration with the existing modeling environ-
ment and the quality-assurance functionality. As shown in Fig. 7, the transformation
framework extends the IBM WebSphere Business Modeler environment, acting as a
container of plug-ins that package the actual transformation code so that the modeling
tool can be customized by activating and deactivating the appropriate transformation
plug-ins.

The challenge of this approach lies in the design of the “transformation programming
interface” (TPI) visible to the developer. It is especially important to add methods to the
TPI that make the model efficiently accessible so that it can be traversed, analyzed, and
modified by the transformation code.

Table 1 summarizes the main features of the TPI that help in the rapid development of
new transformations. Transformations may use the interface to edit models by creating
new elements and removing existing ones. Element properties can be directly modified,
e.g., to rename an element or to reposition an element in the diagram. Furthermore,
the programming interface has been designed to support different patterns of model
traversal. Simple transformations are independently applied once to each target model
element and thus do not require the transformation code to deal with model traversal
issues. Complex transformations may require to filter the elements of a model based on
some criteria. In the simplest case, the filter checks the meta-model element type, for
example to distinguish stop nodes from start nodes. However, also non-trivial conditions
may be required, such as checking whether elements are connected or belong to a SESE
fragment. In general, transformations may traverse model elements in some specific
order, for example, by drilling down the element containment structure or by navigating
through the predecessor/successors elements as linked by the control flow. To support

Combining Quality Assurance and Model Transformations 11

Table 1. Excerpt of the Transformation Programming Interface

TPI Feature Example

Creation of new model elements addStopNode()

addStartNode()

addTask()

addGateway(Type)

addControlEdge()

addDataEdge(Type)

Removal of existing model elements remove(Element)

Editing of model element properties move(Position)

rename(String)

Random access to model elements find(ElementID)

Access to selected model elements selection.getEdges()

selection.getNodes()

selection.getStopNodes()

Traversal of related model elements getInBranch()

getOutBranch()

getPredecessor()

getSuccessor()

getParent()

getChildren()

Analysis of model elements isDisconnected()

isSESE(Fragment)

Transformation palette registration register(Transformation)

unregister(Transformation)

m

complex transformations that do not scan elements in a predefined order, the framework
offers a direct look-up of elements. Finally, transformations can be registered with a
palette or menu of macro-editing buttons displayed to the user, see also Section 6.

To illustrate how the TPI can be used, we show below how to implement the “stop
node aggregation” transformation mentioned in Section 1.

transformation aggregateSelectedStopNodes(gatewayType) (
predecessors = [];
nodes = TPI.selection.getStopNodes();
if (nodes.length > 1) (
foreach (node in nodes) (

predecessors.append(TPI.getPredecessor(node));
TPI.remove(node);

)
gateway = TPI.addGateway(gatewayType, predecessors.length);
stopNode = TPI.addStopNode();
TPI.addControlEdge(TPI.getOutBranch(gateway,0), stopNode);
i = 0;
foreach (pred in predecessors) (

TPI.addControlEdge(pred, TPI.getInBranch(gateway,i));
i++;

)))

This transformation is applied to a set of selected stop nodes and replaces them with
a join or merge depending on the user’s input, recall Figs. 4 and 5. As shown in the
pseudo-code, the transformation first ensures that more than one stop node has been se-
lected. As additional precondition, the transformation could check whether aggregating
the selected nodes would not introduce an error, see the discussion in Section 4. Then,

12 J. Koehler et al.

the transformation iterates over all selected stop nodes, stores their predecessor element
for later use, and subsequently deletes the stop node. Then it adds either a join or a
merge to the model and links its outgoing branch with a new stop node. As a last step,
it connects each predecessor element to a different incoming branch of the newly added
join or merge.

6 Palette-Based Invocation of Transformations

Transformations can be made available to users through a menu or palette. One can
imagine that palettes are provided to users with transformations supporting certain de-
velopment methodologies or industry-specific requirements. Figure 8 shows a possible
design of such a palette-based user interface. Users can invoke transformations via a
menu or by clicking on the palette button showing a mnemonic picture of the trans-
formation. If no model elements are selected prior to invocation, a transformation is
applied to the entire model. An “undo” capability can easily be provided to the user,
because transformations are executed as sequences of editor commands. The history of
transformed models could be maintained by using version management enhanced with
traceability at the model-element level.

Fig. 8. A palette of model transformations

The palette above shows some of the model transformations that we implemented.
Most of these transformations can exist in a simple form without linking to quality
assurance and in a more sophisticated form that links to quality assurance to support
the user in correctly applying a transformation. In the upper row of the palette, we
find (from left to right) the transformations automatically reorder branches, replace
subprocess, and cycle removal. In the lower row, we find the transformations join stop
nodes, merge stop nodes, toggle fork/decision, and assign data container. In addition to
these transformations, many others can be imagined.

Automatically reorder branches is a horizontal, non-destructive, semantics-
preserving transformation that simply cleans up clutter in the diagram, which can occur
when branches are connected to a join or merge. The transformation analyzes the graph-
ical layout and eliminates crossing branches.

Replace subprocess is a horizontal, destructive transformation that replaces a user-
selected subprocess by another user-selected subprocess. It prompts the user to select
the replacing subprocess from a list of subprocesses that the transformation obtains

Combining Quality Assurance and Model Transformations 13

from the workspace. In the current implementation, this transformation connects the
new subprocess only with control-flow edges.

Cycle removal is a vertical, destructive, semantics-preserving transformation that
takes a process model with unstructured cycles, i.e., backward edges added to the flow,
and produces a model with well-structured loops [34]. The transformation leads to a
model with a more technical flavor for many business users—therefore, we consider
it as a vertical transformation. Cycle removal relies on the SESE analysis described in
Section 4. It can happen that it returns an only partially transformed model. In particular,
cycles that spawn parallel branches often cannot be removed.

Join stop nodes and Merge stop nodes are horizontal and destructive transformations
already known to the reader. While Merge stop nodes is semantics-preserving, Join stop
nodes is not due to the semantics of these modeling elements. The two transformations
are implemented, but do not link to the quality assurance yet. Hence, it is under the full
responsibility of the user whether to apply the transformation.

Toggle fork/decision is a horizontal, destructive transformation that simply flips a
selected fork into a decision and vice versa. This version is useful during the editing
process, e.g., when correcting modeling errors. However, it can easily introduce control-
flow errors, as discussed in Section 4. A more sophisticated version would transform
process fragments of sequential branching behavior into fragments of parallel behavior
and vice versa, which requires a combination with quality assurance.

A very interesting challenge is the treatment of data flow in transformations. It can
be studied in the Assign data container transformation, which is a vertical, destructive
transformation that takes a model with control flow and refines it into a model with data
flow. It can also be applied to models with mixed control and data flow. The transfor-
mation leads to a changed interface of model elements.

Several possible solutions exist for how a transformation can modify the interfaces
of activities, e.g., it can add only the newly required inputs/outputs or it can in addition
remove those inputs/outputs that are no longer needed. Existing data-flow edges can
be restored if the old and the new interface of a model element share the inputs and
outputs that are required by the data flow. Otherwise, data maps have to be inserted,
which will remain abstract in most cases, because the transformation cannot determine
what the exact mapping between mismatched data will be. These interface changes
usually affect the consistency of other process models that share the same model ele-
ments. The resolution of possible inconsistencies is a challenging problem, which may
not be amenable to a fully automatic solution and require other transformations to sup-
port the user. In addition, beautifier transformations relying on quality assurance may
be required to eliminate control and data flow edges that are no longer needed in the
transformed models.

At the moment of writing, it is too early to give a comprehensive evaluation of the
framework itself. Concerning the performance of the transformations, following an in-
place approach has shown its benefits in terms of the speed at which transformations are
executed. Users running transformations hardly notice the difference between transfor-
mations and normal editing commands, because they see the result of the transformation
immediately without having the need to persist the transformed models.

14 J. Koehler et al.

In terms of usability, the transformations are easy to apply and significantly reduce
the editing effort for the user. Based on the example scenario in this paper, Fig. 9 shows
that model transformations reduce lengthy and error-prone manual editing operations to
a few clicks. For example, manually performing the join and merge stop nodes transfor-
mations in the example scenario takes 42 mouse clicks. Automating the transformation
still requires the user to select the set of nodes (twice three clicks), but then the model is
updated with a single mouse click. The chart in Fig. 9 shows two more transformations,
assign data container and replace subprocess, in the context of the example scenario.

 3

 9

 3

 72

 4

 21

 4

 21

0 15 30 45 60 75

[mouse-clicks]

Replace
Subprocess

Assign Data
Container

Merge Stop Nodes

Join Stop Nodes
Manual
Automatic

Manual Automatic
Join 6s + 3 s + 1

Merge 6s + 3 s + 1
Assign 8e 3

Replace 2l + 5 3

s . . . No. of stop nodes
e . . . No. of edges
l . . . No. of links connected

to the process

Fig. 9. Usability evaluation of selected in-place model transformations

7 Conclusion

Model transformations help significantly in addressing challenges in the business-IT
gap encountered during business-driven development, which aims at directly taking
business process models to the IT level. In this paper, we report on a transformation
framework that adds a lightweight infrastructure to IBM WebSphere Business Modeler
for the rapid development of model transformations. Using this framework, in-place
transformations are developed that are easily applicable by business users to automate
complicated editing steps. By linking them to quality-assurance capabilities provided in
modeling tools, the transformations can be made “intelligent” and help users to preserve
or re-establish the correctness of their models when going through a sequence of refine-
ment and refactoring operations. The set of transformations implemented significantly
increases user productivity as they raise the abstraction level of the model editing palette
from a “picture-drawing” tool to a level supporting real business-process modeling.

Acknowledgement. The work published in this article was partially conducted within
the EU project Super (www.ip-super.org) under the EU 6th Framework.

References

1. Newcomer, E., Lomow, G.: Understanding SOA with Web Services. Addison Wesley, Read-
ing (2005)

2. Mitra, T.: Business-driven development. IBM developerWorks article. IBM (2005),
http://www.ibm.com/developerworks/webservices/library/ws-bdd

http://www.ibm.com/developerworks/webservices/library/ws-bdd

Combining Quality Assurance and Model Transformations 15

3. Koehler, J., Hauser, R., Küster, J., Ryndina, K., Vanhatalo, J., Wahler, M.: The role of visual
modeling and model transformations in business-driven development. In: Proceedings of the
5th International Workshop on Graph Transformation and Visual Modeling Techniques, pp.
1–12. Elsevier, Amsterdam (2006)

4. Brahe, S., Bordbar, B.: A Pattern-based Approach to Business Process Modeling and Im-
plementation in Web Services. In: Proceedings of Workshop Modeling the SOA - Business
perspective and model mapping, in conjunction with ICSOC (2006)

5. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services description lan-
guage (WSDL) (2001), http://www.w3.org/TR/wsdl

6. Jordan, D., et al.: Web services business process execution language (WSBPEL) 2.0 (2007),
http://www.oasis-open.org/committees/wsbpel/

7. IBM: WebSphere Business Modeler,
http://www.ibm.com/software/integration/wbimodeler

8. Object Management Group: Model driven architecture (2001),
http://www.omg.org/mda

9. Mens, T., van Gorp, P., Karsai, G., Varró, D.: Applying a model transformation taxonomy
to graph transformation technology. In: Karsai, G., Taentzer, G. (eds.) GraMot 2005, Inter-
national Workshop on Graph and Model Transformations. ENTCS, vol. 152, pp. 143–159.
Elsevier, Amsterdam (2006)

10. Mens, T., Gorp, P.V.: A Taxonomy of Model Transformation. Electr. Notes Theor. Comput.
Sci. 152, 125–142 (2006)

11. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM
Systems Journal, special issue on Model-Driven Software Development 45(3), 621–645
(2006)

12. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: Graphical Definition
of In-Place Transformations in the Eclipse Modeling Framework. In: Nierstrasz, O., Whittle,
J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 425–439. Springer,
Heidelberg (2006)

13. Ermel, C., Rudolf, M., Taentzer, G.: The AGG-Approach: Language and Tool Environment.
In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.) Handbook of Graph Gram-
mars and Computing by Graph Transformation. Applications, Languages and Tools, vol. 2,
pp. 551–603. World Scientific, Singapore (1999)

14. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS 2005.
LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

15. Mens, T.: On the use of graph transformations for model refactoring. In: 2005 Summer
School on Generative and Transformational Techniques in Software Engineering, Braga, Por-
tugal, Departamento Informatica, Universidade do Minho, Braga, Portugal, Technical Report
TR-CCTC/DI-35, 67–98 (2005)

16. Stürmer, I., Kreuz, I., Schäfer, W., Schürr, A.: Enhanced simulink/stateflow model transfor-
mation: The mate approach. In: Proceedings of MathWorks Automotive Conference (MAC
2007), MathWorks (2007)

17. Balogh, A., Németh, A., Schmidt, A., Rath, I., Vágó, D., Varró, D., Pataricza, A.: The VIA-
TRA2 model transformation framework. In: ECMDA 2005 – Tools Track (2005)

18. Karsai, G., Agrawal, A., Shi, F., Sprinkle, J.: On the Use of Graph Transformation in the
Formal Specification of Model Interpreters. Journal of Universal Computer Science 9(11),
1296–1321 (2003)

19. de Lara, J., Vangheluwe, H.: AToM3: A Tool for Multi-Formalism and Meta-Modelling.
In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 174–188. Springer,
Heidelberg (2002)

 http://www.w3.org/TR/wsdl
http://www.oasis-open.org/committees/wsbpel/
http://www.ibm.com/software/integration/wbimodeler
http://www.omg.org/mda

16 J. Koehler et al.

20. Braun, P., Marschall, F.: BOTL - The Bidirectional Objekt Oriented Transformation Lan-
guage. Technical report, Fakultät für Informatik, Technische Universität München, Technical
Report TUM-I0307 (2003)

21. Nickel, U., Niere, J., Zündorf, A.: Tool demonstration: The FUJABA environment. In: Pro-
ceedings of the 22nd International Conference on Software Engineering (ICSE), Limerick,
Ireland, pp. 742–745. ACM Press, New York (2000)

22. Akehurst, D.H., Bordbar, B., Evans, M.J., Howells, W.G.J., McDonald-Maier, K.D.: SiTra:
Simple Transformations in Java. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 351–364. Springer, Heidelberg (2006)

23. Object Management Group (OMG): Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification. Final Adopted Specification ptc/05-11-01
(2005)

24. Varró, D.: Model Transformation by Example. In: Nierstrasz, O., Whittle, J., Harel, D., Reg-
gio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 410–424. Springer, Heidelberg (2006)

25. Küster, J.M.: Definition and validation of model transformations. Software and Systems
Modeling (SoSyM) 5(3), 233–259 (2006)

26. Varró, D., Varró-Gyapay, S., Ehrig, H., Prange, U., Taentzer, G.: Termination Analysis of
Model Transformations by Petri Nets. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro,
L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 260–274. Springer, Heidelberg
(2006)

27. Küster, J.M., Abd-El-Razik, M.: Validation of Model Transformations - First Experiences
Using a White Box Approach. In: Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp.
193–204. Springer, Heidelberg (2007)

28. Koehler, J., Vanhatalo, J.: Process anti-patterns: How to avoid the common traps of business
process modeling, part 1 modeling control flow, part 2 modeling data flow. IBM WebSphere
Developer Technical Journal 10(2), 10(4) (2007)

29. Giese, H., Wagner, R.: Incremental Model Synchronization with Triple Graph Grammars. In:
Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp.
543–557. Springer, Heidelberg (2006)

30. van der Aalst, W.M.P.: Workflow verification: Finding control-flow errors using Petri-net-
based techniques. In: Business Process Management, Models, Techniques, and Empirical
Studies, London, UK, pp. 161–183. Springer, Heidelberg (2000)

31. Mendling, J., Moser, M., Neumann, G., Verbeek, H.M.W., Dongen, B.F., van der Aalst,
W.M.P.: Faulty EPCs in the SAP reference model. In: Dustdar, S., Fiadeiro, J.L., Sheth,
A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 451–457. Springer, Heidelberg (2006)

32. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and More Focused Control-Flow Analysis for
Business Process Models though SESE Decomposition. In: 5th International Conference on
Service-Oriented Computing (ICSOC), Vienna, Austria (September 2007) (to appear)

33. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1994)

34. Koehler, J., Hauser, R., Sendall, S., Wahler, M.: Declarative techniques for model-driven
business process integration. IBM Systems Journal 44(1), 47–65 (2005)

Assuring Consistency of Business Process
Models and Web Services Using Visual

Contracts

Gregor Engels1,2, Baris Güldali2, Christian Soltenborn1, and Heike Wehrheim1

1 Institut für Informatik, Universität Paderborn
2 Software Quality Lab (s-lab), Universität Paderborn,

33098 Paderborn, Germany
{engels,baris,christian,wehrheim}@upb.de

Abstract. Business process models describe workflows by a set of ac-
tions together with their ordering. When implementing business processes
within a service-oriented architecture, these actions are mapped to exist-
ing IT (web) services, which are then to be executed in the order specified
by the business process. However, the execution of a web service can re-
quire certain preconditions to be fulfilled. These might not hold at the time
of execution specified in the business process model: it can be inconsistent
with the web service specification.

In this paper we propose a technique for checking consistency of
process models with web service specifications. To this end, both are
equipped with a formal semantics (in terms of graph transformations).
We show how to use an existing model checker for graph transformation
systems to carry out the consistency check.

Keywords: Business processes, web services, UML Activities, visual
contracts, graph transformations.

1 Introduction

A business process is a real-world activity consisting of a set of logically related
actions that, when performed in an appropriate sequence, produces a business
outcome. Business process management (BPM) addresses how organizations can
identify, model, develop, deploy, and manage their business processes. Business
processes can involve IT systems as well as human interactions [1].

Today BPM faces great challenges because of the fast evolving markets. Busi-
ness processes have to adapt to the steadily changing business needs; they have
to be developed efficiently and fast. Service-oriented architectures (SOA) are an
enabling technology which can help in improving BPM in order to cope with
these challenges. In SOA, the IT functionalities are prepared as services which
are accessible over open standards. In an SOA-based BPM the actions of a
business process are realized by the services. Thus the business process can be
adapted to changing requirements just by replacing services with other services
or just by changing the service functionality without changing its interface.

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 17–31, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

18 G. Engels et al.

In this scenario, business processes are (formally or informally) described by
business process models. Such models represent the handling of certain cases:
they determine which actions (or tasks) need to take place in which order to
correctly and efficiently process a case. For specifying process models, several
modeling languages have been proposed, including Petri Nets [2], Event-driven
Process Chains (EPCs) [3], the Business Process Execution Language (BPEL) [4]
and UML Activities [5]. All of these modeling languages support basic features
like decisions or concurrent handling of cases. In SOA, the actions appearing
in the business process model are bound to services (e.g., web services), which
realize the functionality of the actions. However, the services are usually not
independent of one another: a web service might require certain (data) structures
to operate on which might have been build up by a prior invocation of other web
services. The essential question is thus: does the business process model manage
to achieve this, i.e., are all of the service’s preconditions fulfilled when executing
them according to the ordering specified in the business process model? If not,
the execution of the business process fails.

In this paper, we address this question of consistency of business process
models and service specifications. Such a consistency analysis requires two pre-
requisites: we need business process models with precise meanings (to determine
the possible orderings of actions) and we need web service specifications precisely
stating the requirements and warranties of a service. Thus we need specifications
with a formal semantics. Here, we use UML Activities [6] for modelling business
processes and visual contracts [7] for specifying web services. Both allow for
graphical, visual descriptions, and moreover both are equipped with a formal
semantics (in terms of graph transformations). UML Activities have a semantics
based on the concept of dynamic meta modeling (DMM) [8]; visual contracts
(VCs) on the other hand are inspired by the Design by Contract paradigm [9]
and specify every service by its pre- and postcondition (the left- and right-hand
side of a rule, respectively).

In this setting, consistency checking amounts to proving that all action order-
ings specified in the business process model (BP) describe executable sequences
of corresponding web services (WS), where correspondence is given by a bind-
ing b of actions to services. This check is carried out on a graph transformation
system combining the graph transformation systems which describe the seman-
tics of the business process model (GT1) and the web services (GT2): the type
graphs as well as the start graphs underlying both transformation systems are
conjoined (disjoint union), and the rules are partly kept and partly synchronized.
More specifically, the DMM rule describing the execution of an action in a busi-
ness process model has to be synchronized with the VC rule of the corresponding
web service (union of left- and right-hand-side). This gives rise to a new graph
transformation system GT1 ⊕b GT2. In a second step, this new graph trans-
formation system is used to compute a transition system (TS), which is then
analyzed for consistency: we determine whether the end-states of the business
process model can always be reached (and thus whether the execution of web
services in this order is possible). The consistency analysis of business process

Assuring Consistency of Business Process Models and Web Services 19

BP WS

GT1 GT2

TS

TS

GT1 b GT2soundness

consistency

b

Fig. 1. Overall Approach

models and service specifications requires a structurally correct (sound) process
model. Therefore the soundness of the process model must be analyzed before
the combined analysis. The whole approach is illustrated in Fig. 1. The analysis
is carried out fully automatically using the GROOVE model checker [10].

The paper is structured as follows: In Sect. 2, we first introduce the founda-
tions of business process modeling and service-oriented architectures with web
services. We explain the concepts using a small example. On this basis, in Sect. 3
we define our quality criterion of consistency (for bindings of business process
models to web services), and we show how to verify that criterion using model
checking techniques. Section 4 shows the tools used to realize our approach,
and Sect. 5 concludes, points out related work and gives an outlook on future
research.

2 Background

This section explains the concepts which are essential for our approach. The
formal semantics of business process models is defined using DMM (Sect. 2.1).
Using this formalism we can check some quality aspects of the business process
model, e.g. soundness (Sect. 2.2). A sound business process may still have prob-
lems if the actions of the process are automated in an SOA using web services.
Section 2.3 explains the concepts of SOA with web services and visual contracts.

2.1 DMM and UML Activities

The most important prerequisite for automatically analyzing the behavior of
models is that the behavior is specified formally. Moreover, to allow advanced
language users to understand the precise semantics of their models, the spec-
ification should be as easily understandable as possible. Dynamic Meta Mod-
eling (DMM) aims at fulfilling these seemingly contradictory requirements by

20 G. Engels et al.

createCart addToCart

orderCartContent

Online shop – Web services

processOrder

Fig. 2. Sample business process with web service binding

Activ ity

Activ ityExecution

ActivityNode

ActivityEdge

Token

BufferNode

ControlNode DecisionNode

ObjectNode

Action

1
carries

0..1

0..*

0..*

0..*

executes

1
1

source

1

1

target

1

1
carries

0..*

0..*

Fig. 3. Enhanced UML Activity meta model

combining two different approaches into one semantics description technique:
denotational modeling and operational rules.

Before we present more details, we first introduce our running example: The
upper part of Fig. 2 shows a UML Activity modeling a simple workflow in
the context of an online shop. Tasks to be performed are depicted as rounded
rectangles and are called Actions in the UML terminology. The filled circle
marks the start of the workflow (InitialNode), and the dotted circle marks the
end of the workflow (ActivityFinalNode).

DMM is targeted at languages having an abstract syntax which is defined by
means of a meta model as suggested by the OMG. The static semantics of a
language is then specified using Denotational Meta Modeling. This means that
the meta model of the language is mapped to a semantic domain meta model not
only describing the structural, but also the behavioral aspects of the language.
That model will often be an enhanced version of the meta model of the language
itself.

For example, the UML specification states that “the semantics of Activities
is based on token flow”. Consequently, the DMM specification for Activities has
extended the Activity’s meta model with elements like Token. Figure 3 shows an
excerpt of the enhanced meta model (elements depicted in bold are enhancements
to the original meta model). The token concept has been added by means of the

Assuring Consistency of Business Process Models and Web Services 21

dmm action.start()

 : Token

 : Action

 : Token

 : Action : ActivityEdge Objekt6 : ActivityEdge

Fig. 4. DMM rule action.start()

token class, having associations to elements which are supposed to carry tokens.
Instances of this meta model allow to express states of execution of the modeled
Activity.

The dynamic semantics is specified by developing a set of operational rules
which describe how instances of the semantic domain meta model change in
time. For this, the instances are mapped to typed graphs [11], i.e., graphs whose
nodes are typed over the enhanced meta model. The operational rules are then
defined as graph transformation rules, working on the derived typed graphs.

A DMM rule consists of a signature, a left-hand graph, a right-hand graph,
and an optional number of invocations of other DMM rules.

Figure 4 shows an example DMM rule implementing the semantics of the
Action. Note that for simplicity, the presented rule does not have invocations;
in fact, for this paper we have simplified the whole Activity semantics (e.g.,
the concept of traverse-to-completion [6, p. 318] is realized within our Activity
semantics, but the details would be out of the scope of this paper). The rule
matches if all incoming ActivityEdges of an Action carry a token. If this is
the case, all these tokens are deleted, and a new token is created on the Action,
corresponding to the fact that the Action is executed.

Since the typed graphs represent states of execution of the Activity, the de-
scribed specification technique allows for the computation of a transition system
representing the precise behavior of the investigated model. The operational
rules result in transitions between these states. The resulting transition system
can then be verified for certain properties, as we will see in next section.

2.2 Sound Business Processes

When investigating workflow models, one might be interested in properties indi-
cating a certain quality of the models under consideration. Van der Aalst aimed
at identifying generic properties for workflows modeled with Petri Nets. For this,
he investigated typical flaws of workflows, and he claimed the absence of these
flaws to be a sign for good quality [12,13]. In a nutshell, a workflow should always
terminate in a well-defined way, and it should not contain any useless elements.

In [14], we have transferred the idea of soundness into the world of UML
Activities, and have developed appropriate verification techniques (using the
DMM semantics for Activities). A UML Activity is considered to be sound if
the following conditions hold:

22 G. Engels et al.

1. The Activity must have exactly one InitialNode and ActivityFinalNode.
2. Any Action must be executed under at least one of the possible executions

of the Activity.
3. If a token arrives at the ActivityFinalNode, no more tokens are left in the

Activity.
4. A token finally arrives at the ActivityFinalNode.

These requirements put restrictions on both the syntax and the semantics of a
sound Activity: requirement 1 restricts the structure, and the other requirements
restrict how the Activities must behave to be considered sound.

To illustrate the soundness property, let us investigate whether the workflow
shown in Fig. 2 is sound. The structural requirement 1 is obviously fulfilled. Now,
if the Activity is executed, a token is put on its InitialNode. We almost immedi-
ately see that this token will eventually end up at the ActivityFinalNode. Since
the Activity does not contain any concurrency (i.e., at every point in time there
is at most one token), requirement 3 is also fulfilled. Finally, since all Actions of
the Activity sit on the way from the InitialNode to the ActivityFinalNode,
they will all be executed under at least one of the possible executions of the
Activity, which makes sure that requirement 2 is also fulfilled. The Activity of
Fig. 2 is therefore considered to be sound.

2.3 SOA and Web Services

Having defined a formal semantics for business process models in Sect. 2.1, in this
section we show how the business process can be automated using web services
(see Fig. 2). In an SOA, the business functionalities are offered as web services
building a service layer, which are bound to the actions in the business process.
The web services provide well-defined and unambiguous interfaces for accessing
the services. Thus, the business process layer does not have to know about the
underlying application or technology.

The Web Service Description Language (WSDL) [15] is the widely accepted
standard for specifying web service interfaces. Among others, a WSDL descrip-
tion contains information which operations are offered by the web service and
how to bind them. However, WSDL lacks a formal description of the services
behaviour which is needed for our analysis.

In previous research, we proposed to use visual contracts for behavioral desrip-
tion of web services [16]. Visual contracts are based on the idea of Design-by-
Contract [9]. In this technique the requirements and the effects of web services
are specified using pre- and postconditions. Preconditions define the web ser-
vice’s requirements in form of a system state which needs to be present before
the web service can be executed. Postconditions define the effect of the web ser-
vice, again by describing the system state after the execution. The changes in
the system state represent the behavioral effect of the web service. Thus visual
contracts can be used as a behavioral description for web services.

Continuing our running example, the online shop offers some functionalities:
a new shopping cart can be created, products can be added to the shopping
cart, the order can be sent by the customer, and finally the sent order can

Assuring Consistency of Business Process Models and Web Services 23

Cart CartItem Product

Order

OnlineShop

Customer

Inv oiceDeliv eryNote CreditCard

1

0..1

payedWith

0..1

1 controls
0..*1controls

0..*

0..*
controls

1

0..* refersTo 1

0..*
controls

1

0..1

0..1

0..1

0..*1

0..*

Fig. 5. Service level data model for Online Shop

 : OnlineShop : Order

vc processOrder

 : Customer : Invoice

 : OnlineShop : Order

 : Customer : DeliveryNote

Fig. 6. Visual contract for operation processOrder

be processed. These functionalities are offered by the web service operations
createCart, addToCart, orderCartContent, and processOrder. Note that for
simplicity, the names of the operations correspond to the names of the business
process Actions, but this is not a necessary requirement.

Figure 6 shows a visual contract that describes the behavior of the opera-
tion processOrder. Before invocation this operation requires that a customer
registered in the online shop has given an order and the online shop gener-
ated an invoice for this order (precondition). After completion of processOrder
the contract assures that the invoice is replaced with a deliverynote (postcon-
dition). Structurally, a visual contract consists of two graphs, representing pre-
and postconditions. The graphs are visualized by UML object diagrams [6].
Each of the graphs is typed over the service level data model defined as UML
class diagram shown in Fig. 5. The basic intuition for reading a visual contract
is that every model element only present on the right-hand side of the contract
(DeliveryNote) is newly created, and every model element which is only present
on the left-hand side of the contract is being deleted (Invoice). Elements that
are present on both sides are unaffected by the contract. This interpretation is
supported by the semantics of graph transformation systems [17].

As stated above visual contracts specify functional behavior of web services.
Functional behavior is represented by state changes in object structures before
and after the service invocation. For the time being visual contracts can not
specify other service qualities like performance, security etc. A detailed evalution
of visual contracts in a realistic case study can be found in [16].

24 G. Engels et al.

3 Quality Assurance

The last section explained three essential concepts for our approach: Dynamic
Meta Modeling, soundness, and visual contracts. In this section we will show how
to combine these three concepts for checking structural and behavioral properties
of both a business process model (modeled with a UML Activity) and its binding
to web services (specified by visual contracts).

The soundness property introduced in Sect. 2.2 is defined on business process-
es modeled as UML Activities. A sound Activity is guaranteed to terminate in a
well-defined way, and to not contain any useless Actions (i.e., Actions which,
due to the structure of the Activity, can never be executed).

But modeling the business process is just one part of business process man-
agement: the next step is to implement the process by binding the Actions to
services which offer the functionality needed to process the tasks associated with
the Actions. In other words: the business process model defines the possible or-
ders in which these services are called by the workflow engine executing the
process.

As an example, consider again the business process presented in Fig. 2. It con-
tains four Actions which are bound to according services. Therefore, the process
implies two possible orders of execution of the services: createCart–addToCart–
orderCartContent and createCart–addToCart–processOrder.

Now, assume that the workflow engine calls the services, one after the other
and according to the underlying business process model, but reaches a point
where the next service’s precondition is not fulfilled. Assume additionally that
the services as well as their visual contracts are “correct”. It then seems that
the order of the service calls is broken in some sense.

This is exactly the idea of our approach: using the visual contracts, we verify
whether the services bound to the Actions can be called in the order determined
by the business process model. If this is the case, we consider the process and
the services to be consistent ; otherwise, the process and/or the binding needs to
be revised.

Due to the techniques introduced in Sect. 2, verifying the described property
turns out to be relatively straight-forward: Since the DMM dynamic semantics as
well as the visual contracts are given as graph transformation rules, it suffices to
merge the rules representing the execution of an Action (which is part of the se-
mantics specification) with the visual contract of the service the Action is bound
to. The effect is that a merged rule can only match an instance graph if the pre-
conditions of the DMM rule and the according visual contract are fulfilled.

Now for the details: first, we compute the merged graph transformation rules.
To explain this step, we need to get a deeper understanding of our DMM se-
mantics for UML Activities. Obviously, the rules of that specification need to be
generic in the sense that one set of DMM rules suffices to describe the semantics
of all possible UML Activities.

Consequently, our DMM rule set contains a rule action.start() (which we have
already seen in Fig. 4); in Sect. 2.1 we have seen that the execution of this rule
corresponds to the execution of a certain Action.

Assuring Consistency of Business Process Models and Web Services 25

dmm op2.start

vc op2

vcvc RL
vc op1dmm action.start()

merge

vcdmmvcdmm RRLL

vcvc RLdmmdmm RL

merge

WSBP SS

BPS WSS

a b
…

dmm op1.start()

…

GT1 GT2

GT1 b GT2

Start state
for GT1

Start state
for GT2

Start state for
GT1 b GT2

Fig. 7. a) Merging DMM rule action.start() with visual contracts. b) Merging the start
states.

Since the given binding maps every Action to a service equipped with a
visual contract, we now have two graph transformation rules associated with an
Action: the DMM rule action.start() and the visual contract of the service the
Action is bound to.

Now, to compute the combined semantics, we need to perform two steps:

1. For every Action opn of the Activity under consideration, add a merged rule
opn.start() to the DMM rule set (see Fig. 7 a): the left-hand graph of that
rule is the disjoint union of the left-hand graph of rule action.start() and the
left-hand graph of the visual contract describing the service the Action opn

is bound to (right-hand graph accordingly).
2. Remove the generic rule action.start() from the set of DMM rules.

The derived rules behave exactly as described above: They can only be executed
if the precondition of the rule action.start() (i.e., every incoming edge has a token)
and the precondition of the merged visual contract are fulfilled.

Technically, the merged rules work on a graph containing two subgraphs:
one subgraph represents the state of execution of the Activity, and the other
subgraph represents the data state for the services. The merged rules perform
changes on both graphs. Note that the unchanged rules of the DMM specification
only perform changes on the Activity; the data subgraph remains unchanged.
Note also that the disjoint union is only possible if the UML Activity metamodel
and the data model do not have any concepts in common, e.g., all classes have
pairwise different names.

Let us illustrate the merging procedure with our running example: In Sect. 2.1
we have seen the DMM rule action.start() in Fig. 4, and Sect. 2.3 has introduced
the visual contract of the service operation processOrder in Fig. 6. Figure 8 shows

26 G. Engels et al.

 : OnlineShop : Order

dmm processOrder.start()

 : Customer : Invoice

 : OnlineShop : Order

 : Customer : DeliveryNote

dm
m

ac
tio

n.
st

ar
t(

)
vc

pr

oc
es

sO
rd

er

combined precondition combined postcondition

 : Token

 : ActionObjekt6 : ActivityEdge

 : Token

 : Action : ActivityEdge

Fig. 8. Combined rule for the web service operation processOrder

the result of the merging: the resulting rule contains pre- and postcondition of
both the DMM rule and the visual contract.

Recall that we are interested in analyzing the binding of Actions to service
operations. For this, we need to compute the transition system representing the
combined semantics. We have already described how to derive the necessary rule
set (recall Fig. 7 a). It remains to show how to derive a combined state which
can serve as the start state of the transition system (see Fig. 7 b).

The DMM part (GT1) of that combined start state is simple: it is the graph
SBP representing the given Activity (as it would be used for computing the
transition system of the Activity without binding). But this graph will not suffice
as a start state for the combined rule set: We need to enrich it with object
structures (SWS) which (at least) fulfill the precondition of the first service
operation to be executed.

Actually, it is more difficult than that. Assume that the first element of the given
Activity is a DecisionNode, followed by a number of Actions. Which Action to
be executed is then determined at runtime. Therefore, the start graph must be
enriched with object structures fulfilling all these Action’s preconditions.

Additionally, it might be the case that a part of the precondition of some service
operation is not created by another service operation, but needs to be part of the
start state (e.g., some “global” object). In this case, even if our Activity has an
Action to be executed first under all circumstances, it does not suffice to add the
precondition of the service bound to that Action to the start state.

Finding smart ways of computing a precondition for the combined rule set is
therefore not an easy task – in fact, this is one area of our current research (see
Sect. 5). For now, it is up to the modeler to equip her business process with a
global precondition; that condition is then merged with the Activity’s start state
giving a start state (SBP ∪· SWS) for the combined transition system.

Assuring Consistency of Business Process Models and Web Services 27

Having said all that, it remains to precisely define our notion of a proper
binding. For that, we need to know one more rule of our DMM specification: the
semantics of the ActivityFinalNode is represented by rule activityFinalNode-
.acceptToken(), which matches if the incoming edge of the node carries a token.
The rule then just deletes that token.

We are now ready to precisely define consistency of a business process model
and its realization. Let A be a sound Activity describing a business process, let A
be the set of Actions of that Activity. Let V be the set of graph transformation
rules describing the visual contracts of some service operations. Let b : A → V be
the binding of Actions to service operations. Let R be the set of merged rules,
and let s0 be the merged start state as defined above. Let TS = (S, R, s0) be
the transition system computed with that ruleset and start state. A is consistent
with the services described in V iff the following conditions hold:

1. From every state of the transition system, a state can be reached where
DMM rule activityFinalNode.acceptToken() can be executed.

2. For every state s of the transition system: if rule activityFinalNode.accept-
Token() can be executed in s, then s contains exactly one token.

The rationale behind the definition is that if a token gets stuck in front of an
Action (because the precondition of the merged service operation is not fulfilled),
that token will never arrive at the ActivityFinalNode. This means that at least
one of the requirements formulated above is not fulfilled: either no token will
arrive at the ActivityFinalNode at all (violating condition 1), or a token will
arrive at the ActivityFinalNode, but at that moment, the Activity contains at
least one more token (the one being stuck), therefore violating condition 2. Note
that since the Activity itself is sound, the token being stuck must be caused by
the binding to service operations.

It is straight-forward to formulate these requirements as formulas using tem-
poral logic (see e.g. [14] for details). A model checker can then be used to verify
if the conditions hold on the generated transition system (note that the problem
of state space explosion can at least partly be avoided by using decomposition
techniques, as e.g. described in [18]). If this is not the case, the business process
and/or the proposed binding needs to be revised.

Let us now discuss whether our sample business process shown in Fig. 2 is
consistent with the service operations as partly presented in Fig. 6. In Sect. 2.2
we have seen that the business process model itself is sound. Due to space re-
strictions, we cannot provide the reader with all visual contracts involved; thus,
we ask the reader for an intuitive understanding of the services’ meanings by
their names.

According to the business process model, a cart will be created, a product will
be added to the cart, and then either the content of the cart is ordered, or the
order will be processed. This intuitively does not make sense: before an order
can be processed, the customer should place that order. Therefore, the business
process is not consistent with the service operations its Actions are bound to.

Technically, the precondition of service processOrder in Fig. 6 requires that an
object of typeOrdermustbepresent (which is createdby serviceorderCartContent).

28 G. Engels et al.

Therefore, a token reaching the Action bound to that service operation will get
stuck.Consequently, themodel checkerwill report inconsistencyofbusinessprocess
and service operations.

4 Tool Support

Implementing the consistency check as described in the last section requires a
couple of tools. First, the UML Activity representing the business process model
must be modeled such that the model can be processed automatically. Second,
the DMM semantics specification for UML Activities needs to be created. Third,
the visual contracts of the services need to be specified. Fourth, the Activity’s
Actions need to be bound to the appropriate service operations. Fifth, a tool
for model checking needs to be chosen, i.e., a tool which is able to compute a
transition system out of a start graph and a set of graph transformation rules,
and which can perform model checking on the computed transition system. Last,
the described components need to be glued together. Figure 9 shows the tool
environment we use for automating the consistency check.

For the modeling of business processes (BP), we use the Java implementation
of UML2 provided by the Eclipse foundation (UML Activity Editor) [19]. This im-
plementation has a couple of advantages: it is very close to the original UML2 meta
model, has a license which allows to use it cost-free even in commercial products,
and allows to traverse models programmatically using the provided Java API.

The DMM specification as well as the visual contracts have been created
with tools created by our working group (UPB Tool Suite) [14,20]. Based on
some frameworks also provided by the Eclipse foundation (EMF, GEF, GMF),
we have implemented graphical editors for both formalisms. The Web Service
Binding tool is pretty simple: we just bind (giving the binding b, also compare
with Fig. 1 and Sect. 3) Actions to a service operation having the Action’s
name. We plan to use more sophisticated techniques for this in the future.

For the computation of the transition system and for model checking, we use
the GROOVE Tool Suite. It has been developed by Arend Rensink [10] and allows
for generation of transition systems as well as for the verification of properties
on those transition systems. For the latter, GROOVE uses a simple but powerful
concept: it allows for the verification of temporal logic formulas over the applica-
tion of rules. As an example, if the formula AF(activityfinalnode.acceptToken())
holds, we know that on All paths of the transition system under considera-
tion, the rule activityfinalnode.acceptToken() will Finally be executed (which in
our case corresponds to the requirement that a token will finally arrive at the
ActivityFinalNode).

We have then written tools to fill the gaps of our tool chain. First, we have
implemented a transformation (DMM Mapping) from a UML Activity (BP)
into the corresponding GROOVE start graph (SBP). A second tool (Semantics
Merger) does the merging: It merges the DMM rules (GT1) and the visual con-
tracts (GT2) giving the combined rule set (GT1 ⊕b GT2). It also takes care of
the merging of the start states (SBP and SWS) giving the combined start state
(SBP ∪· SWS). While doing this, we also generate the needed temporal logic

Assuring Consistency of Business Process Models and Web Services 29

UML2
Activity Editor

DMM
Semantics

Editor

Web Service
Binding

DMM
Mapping

Visual
Contracts

Editor

Semantics
Merger

GROOVE
Model Checker

GROOVE
Generator

GT1GT2

SBP

SWS

b

Temporal Logic
Formulas

TS

Web Service
Data Model

GT1 b GT2 WSBP SS

BP

Business process consistent

Business process inconsistent

GROOVE
Tool Suite

UPB
Tool Suite

Eclipse
Tool Suite

Fig. 9. Tool chain for consistency checking

formulas. Having done all this, we start the GROOVE Generator and, having
computed the transition system (TS), the GROOVE Model Checker with the
generated formulas. If the outcome of the model checker is positive, then the
business process is consistent with the web service binding. Otherwise it is in-
consistent. Note that GROOVE does not yet provide counter examples in case
the verification of a formula fails.

5 Conclusion

Summary. Aligning business processes with IT services is one of the great chal-
lenges of nowadays IT projects. Service-oriented architectures (SOA) are often
advocated as a possible solution, while concrete techniques are missing how to
glue the business process layer with IT components of a service layer. Our ap-
proach addresses this problem and proposes a solution to bind a business process
with web services. In particular, we offer an approach where both layers are
equipped with a well-defined semantics based on graph transformations. Com-
bining these two graph transformation systems, model checking techniques are
deployed to check the consistency of the business process layer with the bound
web services. The whole approach is supported by a tool chain which combines
editors, transformers and in particular the model checking tool GROOVE.

Outlook. Our approach concentrates mainly on the merging of two sets of graph
transformation rules and the properties to be checked on the resulting transition
systems. One important prerequisite for generating the transition system is the
start state of the combined graph transformation system. Section 3 explained

30 G. Engels et al.

how the start state of DMM is generated from the instance graph of the UML
Activity, and the start state of the service level data model is constructed using a
global precondition. At the moment, we manually create that precondition. How-
ever, it is desirable to automatically create such a start state, e.g. by analyzing
the business process and/or the service descriptions (given as visual contracts).
Having developed such a technique, we will then focus on systematically gener-
ating a number of such start states (e.g., equivalence classes), which we plan to
use for testing of the business process and the services.

In Sect. 4 we explained that the outcome of the verification step is negative, if
the business process is inconsistent with the web service binding. In this case it
would be preferable that the model checker provides a counter example, which
is not given by GROOVE at the moment. If this functionality will be added to
GROOVE in the future, we will be able to use the counter example to easily
localize the cause of the inconsistency. The information supplied by the counter
example can also be used for an automated repair of the inconsistency, e.g. by
suggesting another service with similar effects but with a different precondition.
Later in the development process, the counter example can also be used as a test
sequence by testing the business process deployed in the productive environment.

Related Work. Quality assurance for business process modeling and the applica-
tion of graph transformations for this purpose have been investigated also by other
researchers [21,22,23,24]. The usage of visual contracts for web service specifica-
tions has been successfully evaluated in a realistic case study with an industrial
partner [16]. A continuation of this work within upcoming industrial projects of
the Software Quality Lab (s-lab) at the University of Paderborn is envisaged.

References

1. Newcomer, E., Lomow, G.: Understanding SOA with Web Services. Addison-
Wesley, Reading (2004)

2. van der Aalst, W., Hofstede, A.: YAWL: Yet Another Workflow Language. Tech-
nical report, Queensland University of Technology, Brisbane (2002)

3. Keller, G., Nüttgens, M., Scheer, A.W.: Semantische Prozessmodellierung auf der
Grundlage Ereignisgesteuerter Prozessketten (EPK). Technical Report 1989, Insti-
tut für Wirtschaftsinformatik, Universität des Saarlandes (1992)

4. Andrews, T., et al.: Business Process Execution Language for Web Services version
1.1 (2003)

5. Dumas, M., Hofstede, A.: UML Activity Diagrams as a Workflow Specification
Language. In: UML 2001: Proceedings of the 4th International Conference on The
Unified Modeling Language, Modeling Languages, Concepts, and Tools, London,
UK, pp. 76–90. Springer, Heidelberg (2001)

6. Object Management Group: UML Specification V2.1.1 (2007),
http://www.omg.org/cgi-bin/doc?formal/07-02-05

7. Lohmann, M.: Kontraktbasierte Modellierung, Implementierung und Suche von
Komponenten in serviceorientierten Architekturen. PhD thesis, University of
Paderborn (2006)

8. Hausmann, J.H.: Dynamic Meta Modeling. PhD thesis, University of Paderborn
(2005)

http://www.omg.org/cgi-bin/doc?formal/07-02-05

Assuring Consistency of Business Process Models and Web Services 31

9. Meyer, B.: Applying design by contract. IEEE Computer 25(10), 40–51 (1992)
10. Rensink, A.: The GROOVE Simulator: A Tool for State Space Generation.. In:

Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–
485. Springer, Heidelberg (2004)

11. Corradini, A., Ehrig, H., Löwe, M., Montanari, U., Padberg, J.: The Category of
Typed Graph Grammars and its Adjunctions with Categories. In: Cuny, J., Engels,
G., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1994. LNCS, vol. 1073, pp.
56–74. Springer, Heidelberg (1996)

12. van der Aalst, W., van Hee, K.: Workflow Management – Models, Methods, and
Systems. MIT Press, Cambridge (2002)

13. van der Aalst, W.: Verification of Workflow Nets. In: ICATPN 1997: Proceedings
of the 18th International Conference on Application and Theory of Petri Nets,
London, UK, pp. 407–426. Springer, Heidelberg (1997)

14. Engels, G., Soltenborn, C., Wehrheim, H.: Analysis of UML Activities using Dy-
namic Meta Modeling. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007.
LNCS, vol. 4468, pp. 76–90. Springer, Heidelberg (2007)

15. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.: Web Services Description
Language (WSDL) Version 2.0 Part 1: Core Language (2007),
http://www.w3.org/TR/wsdl20/

16. Engels, G., Güldali, B., Lohmann, M., Juwig, O., Richter, J.P.: Industrielle Fall-
studie: Einsatz visueller Kontrakte in serviceorientierten Architekturen. In: Biel,
B., Book, M., Gruhn, V. (eds.) Software Engineering, GI. LNI, vol. 79, pp. 111–122
(2006)

17. Heckel, R., Ehrig, H., Wolter, U., Corradini, A.: Double-Pullback Transitions and
Coalgebraic Loose Semantics for Graph Transformation Systems. APCS (Applied
Categorical Structures) 9(1), 83–110 (2001)

18. Koehler, J., Gschwind, T., Küster, J., Pautasso, C., Ryndina, K., Vanhatalo, J.,
Völzer, H.: Combining Quality Assurance and Model Transformations in Business-
Driven Development. In: Proceedings of third International Symposium AGTIVE
2007, pp. 1–16 (2007) (Selected and Invited Papers)

19. Eclipse Foundation: The Eclipse project, http://www.eclipse.org/
20. Lohmann, M., Engels, G., Sauer, S.: Model-driven Monitoring: Generating Asser-

tions from Visual Contracts. In: 21st IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE) 2006 Demonstration Session (September 2006)

21. Baresi, L., Denaro, G., Mainetti, L., Paolini, P.: Assertions to better specify the
amazon bug. In: Proc. of the 14th international conference on Software engineering
and knowledge engineering, SEKE 2002, pp. 585–592 (2002)

22. Baresi, L., Heckel, R., Thöne, S., Varró, D.: Modeling and validation of service-
oriented architectures: application vs. style. In: Proc. of the 11th ACM SIGSOFT
Symposium on Foundations of Software Engineering 2003 held jointly with 9th
European Software Engineering Conference, ESEC / SIGSOFT FSE 2003, pp. 68–
77 (2003)

23. Gönczy, L., Kovács, M., Varró, D.: Modeling and verification of reliable messaging
by graph transformation systems. In: Proc. of the Workshop on Graph Transforma-
tion for Verification and Concurrency (ICGT 2006). Elsevier, Amsterdam (2006)

24. Koehler, J., Hauser, R., Sendall, S., Wahler, M.: Declarative techniques for model-
driven business process integration. IBM Systems Journal 44(1), 47–66 (2005)

http://www.w3.org/TR/wsdl20/
http://www.eclipse.org/

Transforming Scene Graphs Using Triple Graph
Grammars – A Practice Report

Nina Aschenbrenner1 and Leif Geiger2

1 University of Kassel, Technische Informatik
2 Software Engineering,

Department of Computer Science and Electrical Engineering,
Wilhelmshöher Allee 73,
34121 Kassel, Germany

n.aschenbrenner@inf.e-technik.uni-kassel.de, leif.geiger@uni-kassel.de
http://www.inf.e-technik.uni-kassel.de/,
http://www.se.eecs.uni-kassel.de/se/

Abstract. This paper shows the usage of Triple Graph Grammars for a
project in the domain of computer graphics. This project aims to specify
a conversion tool for two different computer graphic file formats: FBX
and OSG. Our approach first builds a parse tree of the source file, then
converts this tree into a parse tree of the target format using TGGs and
then dumps the target file. Our approach relies on Java based technolo-
gies like JavaCC, the Fujaba Toolsuite and the MoTE TGG engine. The
paper will show that those tools integrate very well. We will present our
TGG-based approach for file conversion and demonstrate this with the
FBX2OSG case study.

1 Introduction

“There exists more Triple Graph Grammar engines than case studies with
TGGs.” (Andy Schürr, April 2007).

The presented project is a research result of the Fachgebiet Technische In-
formatik at the University of Kassel. The research there focuses on virtual en-
vironments on two different platforms. On the one hand, there are ordinary
desktop computers where the virtual environments should be able to be dis-
played, for example within e-learning applications. On the other hand, there
is the so called CasCave. This is a 3-sided immersive projection environment,
designed and built by the Fachgebiet Technische Informatik. To deploy virtual
worlds for both systems, it is necessary to have a format that can be used in
both cases. Unfortunately most computer graphics applications, which have to
be used to build the scenes have no common file formats. The FBX1 file format
is commonly used to exchange scene data between different applications during
the production process. But as mentioned before, sometimes there is the need
to have the scene saved in another format after production. In contrast to most
desktop applications the CasCave environment requires the scenes to be in OSG2

1 FBX emerged as open file format from the older format FilmBoX.
2 OpenSceneGraph.

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 32–43, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Transforming Scene Graphs Using TGGs 33

file format. Thus, the scene information needs to be converted from FBX to OSG
for displaying them with CasCave.

For conversion of graphics scenes from one format to the other, one has to
figure out how the objects and information are represented in the scene. Each
format has its own way to store data like vertex information and textures, for
example. Writing converters for these formats would traditionally lead to tra-
versing the scene and adding conversion code for each visited nodes type. This
does typically result in a not very modular piece of software that complicates
making changes or adding new functionality. Additionally it would be nice to
avoid manual coding of the whole conversion. Instead one would like to just
specify the correct mapping for each format element and have the converter be
generated. Thus, one would like to take advantage of model transformation tech-
niques. Each file format using scene graphs can of course be described as a graph.
So, graph transformations seems to be a “natural” way to convert scene graphs
of different formats into each other. The graph transformation community offers
Triple Graph Grammars to model bidirectional model mappings. With TGGs
the developer just has to specify mappings for each node type in a graphical
way. Thus, the conversion system is segmented to single rules, which can easily
be changed. Additionally, it is easy to add new node types to this system by
simply adding new rules.

2 Basics

To fully understand our application, we have to clarify some terms. First of all,
we need to know what scene graphs are and what they are used for.

2.1 Scene Graphs

As scene graph we declare an object oriented data structure. This structure
is often used in computer graphics to save two or three dimensional scene de-
scriptions. The advantage of scene graphs is that the objects contained can be
arranged both in logical and spatial order. There is no special way, in which scene
graphs have to be implemented. Much more it is essential to take the basic ideas
and create a data structure that best fits one’s needs. This weak declaration
leads to many different types of scene graphs within different software systems
and thus to many different file formats. One example of building a scene graph
and a discussion on the scene graph features can be found in [Ebe05].

Although scene graphs are graphs, many software systems use trees to repre-
sent them. There is one root node and depending on your file format one or more
direct children of this root node. Normally the root node represents the scene and
its children represent the objects of the scene, whereby these objects can also be
constituted of one or more children. Each node has some transformation data, of-
ten represented as a transformation matrix, where translation, rotation and scale
values relative to the ones in the parent node are saved. Therefore each change to
the transformation values of one node affects each of its children in the same way.
One can easily translate whole branches of a scene graph this way.

34 N. Aschenbrenner and L. Geiger

There is another advantage in using scene graphs which results from the hi-
erarchical description of a scene. When rendering scenes, one can calculate the
area of a scene that can be viewed by a virtual camera. Every object that is not
within this area should not be rendered because this would just waste computing
power. Using scene graphs one can easily exclude objects of the rendering process
because when a parent node is not visible in the virtual camera all children are
also not visible and you can simply exclude the whole branch without testing
every child object for visibility. As you see, scene graphs built a simple and power
saving data structure for scenes used in computer graphics. However, because of
the loose definition of scene graphs, being a hierarchical data structure to store
scenes, they may be represented in many different ways. This means that you
have a dozen of different types of scene graphs in different computer graphic
tools which might need to be translated into each other.

2.2 FBX

FBX is a platform independent 3D data format developed by a company called
Alias. The format emerged from the need to transfer three dimensional data
between different software systems and computer platforms. This transfer is
widely needed within large computer game and cinematic productions. With
FBX it is possible to transfer complex 3D structures like polygons, meshes or
nurbs accomplished by animation data, audio- and video clips as well as cameras
and lights. These extensive potentials of the FBX data format make it possible
to translate whole 3D scenes across computer platforms and software systems
within the production cycle. The ASCII-representation of this format allows the
user to simply read and change settings within the scene file.

A FBX scene graph is a tree but a very flat one. The root node has many
different children, which usually do not have many children themselves. FBX is
not as much hierarchical as scene graphs normally are. Additionally information
about the scene objects are spread in the whole FBX file, which means that there
is not just one node being responsible for one special object. The information
about an object is contained within more than one node in the tree. The nodes
and information of the FBX scene graph are ordered by type not by scene object.
This means, you have a separate branch containing information about animation
data, for example. Besides the areas containing the specific information, you have
a branch where the hierarchical information of the scene is handled and where
the connections between animation, materials and geometry are stored.

2.3 OpenSceneGraph

OpenSceneGraph (OSG) [OSG07] is an OpenSource toolkit for the develop-
ment of top quality graphics applications. OSG is built upon scene graphs and
OpenGL (Open Graphics Library). OpenGL defines a graphics API for plat-
form and programming language independent access of graphic card function-
ality. The application developer is shield from programming close to hardware.
OSG itself defines a programming platform on top of OpenGL. It provides an

Transforming Scene Graphs Using TGGs 35

object oriented way of graphics programming for the developer and includes
scene graphs as data structure. OSG also has an ASCII-representation which
can be read and changed easily. In contrast to FBX, OSG features a hierarchical
scene graph structure. Every node has a transformation matrix containing ob-
ject coordinates. OSG can be seen as a real tree structure, which can delve very
deep down. The root node of an OSG scene graph is not the scene itself. Here
you have a special root node, which forms a group containing the whole scene
as children. Like FBX, OSG has many different kinds of nodes, representing the
different types of scene objects and information. Every advantage listed in the
scene graph section is an advantage of OSG.

3 FBX2OSG

The FBX2OSG project aims to build a conversion tool between the FBX and
OSG file formats which should be bidirectional, easy to extend and to maintain.
Using model-based technologies for this purpose seems to be the right decision for
us. We decided to use Triple Graph Grammars because they offer bidirectional
model transformations and their declarative nature makes them easy to extend.

3.1 Building the Parse Tree

Since TGG rules are specified on graphs, we needed to convert the file format
to a graph representation. For both formats, there exist open APIs to access
model information. But these APIs do not integrate well with existing TGG
engines, are hard to extend or are even incomplete (e.g. the FBX API lacks the
sound nodes). Therefore we created our own graph schema (meta model) for
FBX and OSG. Our approach works on an enriched parse tree. Thus we first
wrote a JavaCC [Ja07] grammar for both formats. In the following example, the
FBX grammar is used. Of course, the same steps also need to be done for the
OSG format. The following simplified rules (plus many more) are used to parse
a FBX file (in EBNF):

FBXFile ::= (Objects | Connections | Takes)+ <EOF>
Objects ::= "Objects:" "{" (Model)+ "}"
Connections ::= "Connections:" "{" (Connect)+ "}"
Takes ::= "Takes:" "{" (Current | Take)+ "}"
Model ::= "Model:" <NAME> ("," <NAME>)? "{" (Type |

Vertices | Edges | PolygonVertexIndex | Points)+ "}"
Connect ::= "Connect:" <NAME> "," <NAME> "," <NAME> (

"," <NAME>)?

One FBXFile contains the components Objects, Connections and Takes and
is always concluded by EOF. Within Objects there are the models our scene is
built of. For this example, we suppose Model to be of such Type, that it contains
the geometrical data of our scene (Vertices, Edges, PolygonVertexIndex,

36 N. Aschenbrenner and L. Geiger

0..n

0..1

Void :)String:prefix(dump

SimpleNode

«reference»

String: name

ASTModel

«reference»

String : name

ASTMaterial

«reference»

ASTConnections

«reference»

String: childName

String: parentName

ASTConnect

«reference»

String : name

ASTFBXFile

«reference»

ASTTakes

«reference»

{ordered}children

Fig. 1. Classes generated by JJTree from the JavaCC grammar shown above

Points). In more complicated FBX files, we can have models of different types,
like cameras, lights etc. Within the Connections node, we have subnodes called
Connect, which describe parent - child links between models in the scene. Takes
nodes at last contain animation informations, they comprise of several Take
nodes, which each contains several independent animation data.

From such a JavaCC grammar we use the JJTree Tool [JJT07] to generate a
parser which is able to build a parse tree. The JJTree tool generates one Java
class for every non-terminal in the grammar. These classes are structured as
a tree using the composite pattern. Now we import these java classes with the
Fujaba Tool Suite [FNT98, Fu07]. The resulting class diagram serves as an initial
graph schema (cf. Figure 1).

The class SimpleNode acts as superclass for all parse tree nodes. It already
implements the composite structure using the children edge. All node classes
generated by JJTree start with the AST prefix. For the grammar above a class
ASTFBXFile, a class ASTModel etc. is created.

To be able to really use the classes generated by JJTree with Fujaba, we had
to make one little change to the SimpleNode class. We added two additional
access methods for the children edge to make the code Fujaba compliant.

3.2 Enriching the Parse Tree

The parsing of a scene graph file results in a parse tree. Typically these trees
represent graphs. Additional edges are modeled by references using an unique
identifier of the referred node. We resolve those references and create real edges
to better fit the graph paradigm of TGG rules. Therefore we use traditional
graph transformations which work on the parse tree. For bidirectional mapping
such transformations have to be specified for both parse trees, FBX and OSG.
Figure 2 shows a transformation rule on the FBX parse tree.

As mentioned in Section 2.2, the FBX format has one container col-
lecting all models and another one collecting the relations between those
models. The node for storing the relation is of type ASTConnect and
has two attributes childName and parentName storing the identifier of
the referred model node. The graph transformation in the first activity

Transforming Scene Graphs Using TGGs 37

]end[

}JavaSDM.stringEquals (model.getName(), connect.getChildName()){

«create»

childchildren

childrenchildren

ASTConnect:connectASTConnections:connections

file

ASTModel:model

]end[

FBXHelper::createAdditionalLinks (file: ASTFBXFile): Void

}JavaSDM.stringEquals (model.getName(), connect.getParentName()){

«create»

parentchildren

childrenchildren

ASTModel:model

ASTConnect:connectASTConnections:connectionsfile

Fig. 2. Transformation rule for creating graph edges and needed objects in the parse tree

of Figure 2 now searches for all (denoted by the doubled border
of the activity) pairs of nodes of type ASTModel and ASTConnect
that fulfill the stated constraint. The constraint {JavaSDM.stringEquals
(model.getName(), connect.getChildName())} ensures that the name at-
tribute of the node model equals the childName attribute of the node connect.
For each of those pairs a new child edge is created. Note, that we use Fujaba
syntax here where left hand side and right hand side of a graph transformation
rule are combined. The next activity does the same for the parent edge.

Note, that this step can result in new edges in the graph schema because we
add edges which are not in the schema of the parse tree. The resulting “extended
parse tree” is then the schema the TGG rules will depend on.

The Fujaba Tool can now generate Java code which performs this transfor-
mation on a parse tree generated by JJTree.

3.3 Triple Graph Rules

Next step is now to specify TGG rules which map the extended parse tree of the
first file format onto the extended parse tree of the second one. We use the TGG
Editor Fujaba plugin and the MoTE [GW06, TGG06] code generation since the
generated code for the TGG rules can then directly be applied on the “extended
parse tree”.

38 N. Aschenbrenner and L. Geiger

«create»
children

«create»
children

«create»

targets
«create»

sources

«create»

fbx.getName():=name

ASTOSGFile:osg

«source»

«map»
}JavaSDM.stringEquals (fbx.getName(), osg.getName()){

«create»

FBX2OSGMapping:map

«map»
«create»

osg.getName():=name

ASTFBXFile:fbx

«target»

«create»

ASTConnections:connections

«target» «create»

ASTTakes:takes

«target»

Fig. 3. Axiom for scene graph converter

Following, we will show some simple rules used in the developed converter
application.

Figure 3 shows the axiomatic rule. It is the starting point of the scene graph
conversion. Note that this rule is separated into three subgraphs. On the left
hand side, the objects marked with a �source� stereotype, in this case the
OSG format, are shown. The objects belonging to the FBX format are marked
as �target�. Triple graph grammars also explicitly model the mapping. This
are the nodes marked with �map�. The starting point in the OSG format is
determined by an object of the class ASTOSGFile. This class is created by the
OSG parser, generated from JavaCC. For the FBX format, starting point is an
object of the class ASTFBXFile. The axiomatic rule converts an existing OSG
file into an FBX file with the same name. For this purpose, the axiomatic rule
defines a mapping node, which forms the mapping between the two file objects.
To achieve equality of names, attribute assertions are added to each file node
that assign the name of the partner file to the own name attribute.

The MoTE engine can generate three different transformations from one TGG
rule. The forward rule which searches the pattern marked as source and cre-
ates the target side, the backward rule which does the same from target to
source and the relational rule that searches for the source and the target pattern
and just creates the mapping nodes where possible. For the last transformation

children

«create»

targets
«create»

sources

«create»

parent

«create»
child

«create»

children

«create»

children

«create»

children

«create»

model.getName():=name

ASTMatrixTransform:mt

«source»

targetssources

«create»

MatrixTransform2ModelMapping:mt2model

«map»

«create»

mt.getName():=name

ASTModel:model

«target»

FBX2OSGMapping:map

«map»
ASTOSGFile:osg

«source»

ASTFBXFile:fbx

«target»

«create»

ASTConnect:connect

«target»

ASTConnections:connections

«target»

«create»

"\"Model::Scene\""==name

"\"Model::Scene\"":=name

ASTModel:m2

«target»

Fig. 4. Rule transforming first object within the scene graph

Transforming Scene Graphs Using TGGs 39

the mapping constraint {JavaSDM.stringEquals(fbx.getName(), osg.
getName())} ensures that only files with the same name are related.

The ASTFBXFile class needs two children, which do not have a counterpart
in OSG. These are Connections and Takes. Within these objects information
about the scene configuration and about animation within the scene are stored.
Because there are no counterparts in OSG, there is no special rule for these
objects and they are created each time an ASTFBXFile is created.

Figure 4 shows the rule, which will mostly be executed after the axiomatic
rule. As one can see, this rule shows not only objects displayed in green and
marked with �create� stereotypes, indicating, that this object will be created.
Additionally there are objects displayed in black, which indicates the precondi-
tion, that has to match before the rule will execute. The objects displayed in
black exactly match the ones which where created within the axiomatic rule.
Again, on the left hand side one can see the OSG classes and on the right hand
side, the FBX classes are shown.

TGG rules specify parallel execution of graph grammar rules. If an
ASTOSGFile is matched to an ASTFBXFile then the rule in Figure 4 can be ap-
plied. If an ASTMatrixTransform object is created, which will be connected to
ASTOSGFile as child then the graph transformation for the target side has to be
executed, too. On the target side, several objects within FBX have to be cre-
ated. First of all, an ASTModel object is created and connected as child to the
ASTFBXFile. Because in FBX every Model is connected to another model, there is
one generic model called Model::Scene. This model also has to be created. These
two objects are connected via one ASTConnect object, which has Model::Scene
as parent and the other model as child. The ASTConnect object itself is connected
to the ASTConnections object, that was created in the axiomatic rule. The model
names again are transferred from one object to the other. Additionally, a mapping
node is created.

children

children

«create»
targets

«create»
sources

«create»

children

«create»

parent

«create»
child

«create»

children

«create»

children

ASTConnections:connections

«target»

targetssources
ASTMatrixTransform:mt

«source»

«create»

model.getName():=name

ASTMatrixTransform:mt2

«source»
«create»

mt2.getName():=name

ASTModel:model

«target»

ASTFBXFile:fbx

«target»

«create»

ASTConnect:connect

«target»

ASTModel:m1

«target»

MatrixTransform2ModelMapping:map

«map»

«create»

MatrixTransform2ModelMapping:map2

«map»

Fig. 5. Mapping ASTMatrixTransform to ASTModel

In OSG there can be more than one MatrixTransform in one scene. On the
other hand, there is only one MatrixTransform acting as root object. This root
object is the one created with the rule shown in Figure 4. The rule for the ad-
ditional ASTMatrixTransform objects is shown in Figure 5. The rule specifies,

40 N. Aschenbrenner and L. Geiger

that if a new ASTMatrixTransform object (mt2) is encountered that is assigned
as child to another ASTMatrixTransform (mt), then a new ASTModel (model)
has to be created in the target graph (FBX). This new model has to be con-
nected to the corresponding parent object. This object can be found by simply
searching the target, to which the ASTMatrixTransform parent is mapped. This
ASTModel is exactly the one, which should be parent of our new ASTModel. As
one can easily see, the rule is much the same, as the rule shown in Figure 4.
But for our application, it is essential to divide this into two rules. On the one
hand, we must only have one ASTMatrixTransform connected as child to our
ASTOSGFile. On the other hand, we have only one ASTModel connected as child
to our Model::Scene within FBX. And additionally, there has to be only one
Model::Scene node in FBX.

«create»
uvs

«create»

targets
«create»
sources

«create»
children

«create»

uvs

parent

matchild

children

children

targetssources

ASTOSGMaterial:material

«source»

ASTGeometry:geometry

«source»

ASTStateSet:stateSet

«source»

«create»

ASTTexCoordArray:texCoords

«source» «create»

CoordHelper.transform2FBXUVs (texCoords):=Vector:fbxUv

«target»

«create»

CoordHelper.transform2FBXUVIndices (texCoords):=Vector:fbxUvIndices

«target»

«create»

uvindex

«create»

UVMapping:uvMap

«map»

«create»

CoordHelper.transform2OSG (fbxUv, fbxUvIndices):=Vector:uvVec

«source»

ASTConnect:connect

«target»

ASTModel:model

«target»

ASTMaterial:fbxMat

«target»

MaterialMapping:map

«map»

Fig. 6. UV coordinate mapping

Figure 6 shows the mapping of the uv coordinates3 from one file format to
the other. This is done by simply assigning the correct vectors containing uv
information to the correct object in the file format we want to convert to. As
you can see from Figure 6 uv coordinates are placed in ASTGeometry objects
on OSG side and in ASTModels on FBX side. Both store uv information in list
like data structures. The main difference is, that OSG stores this information

3 Uv coordinates define the mapping of texture files to three-dimensional objects.
This is done by “unrolling” the surface of the object. The surface is flatten this way
and the two-dimensional representation can be marked with coordinates u and v
for sideways and up. Every vertex contained within the three-dimensional object is
connected to one uv coordinate this way. Since textures are two-dimensional too,
they can easily be applied to objects this way.

Transforming Scene Graphs Using TGGs 41

as a list, where one uv coordinate is stored for each vertex of the associated
geometry. FBX on the other hand saves this information divided into two lists,
where the first one saves the different uv coordinates for the geometry object
and the second one saves a list of indices, which associate uv coordinates with
the geometry vertices. Thus, a coordinate transformation has to be done here.
We do so by specifying constructor expression for the vectors uvVect, fbxUv
and fbxUvIndices. This means, that if one of this objects is created the given
expression is executed instead of the default object creation. We have written a
helper class called CoordHelper which does all the needed coordinate transfor-
mations. Since this transformations are usually mathematical calculations they
can hardly be specified using TGGs or graph transformations. Therefore we
wrote those transformations by hand.

From such rules the MoTE Fujaba plugin is now able to generate Java code
for the forward transformation, the backward transformation and the relational
transformation. These transformations can be applied directly on the extended
parse tree which results from the parsing process. MoTE includes a simple exe-
cution engine which does the rule execution at runtime (choosing the rules which
might be applicable). To perform a conversion of a parse tree, we just have to
include this engine, add the generated rules to it and trigger a forward or a
backward transformation whether we want to convert OSG to FBX or other
way round.

3.4 Dumping the Result Graph

At this point we are able to parse the source file format and map the resulting
parse tree to a parse tree of the target format. Last thing to do is to dump
the target parse tree to a file. Therefor we use a visitor which traverses the
tree top down and prints the textual representation for every node. This visitor
has to be implemented by hand. Since we support bidirectional transformation
in our converter application, one visitor for each of the two formats has to be
implemented.

4 Lessons Learned

We think that using TGGs for the OSG2FBX project was the right solution.
Most of the rules were specified by the first author who had little experience
with TGGs and graph transformation before. But after a short introduction
adding new TGG rules was quite easy. Also, we found that it was quite easy for
us explaining the triple rules to colleagues at the computer graphics department
who did not have any background in graph transformations.

Choosing Fujaba and the MoTE TGG engine seems to be the right decision
since the generated code could be easily used with the one generated by the
JavaCC tool. Also, using Fujaba we were able to do the transformations for
enriching the parse tree as described in Section 3.2 using graph transformations
as well.

42 N. Aschenbrenner and L. Geiger

Fig. 7. The virtual factory used to test the converter

One thing we found that was needed for our approach and is usually not part of
current TGG engines is the possibility to call external procedures. We need that
to preform complex mathematical calculations like coordinate transformations
as described in Section 3.3. The solution we came up with is to use constructor
expressions as shown in Figure 6. This way the coordinate transformations can
be done when constructing the corresponding node.

5 Conclusions

We have shown an approach how file format conversion can be done using triple
graph grammars. We use a JavaCC grammar to build a parse tree, perform graph
transformations with Fujaba on that tree to get a graph and use the MoTE TGG
engine to do the mapping between the source graph and the target graph. Since
the used tools all generate compatible Java code, they can be easily integrated.
The only needed hand-written code are the visitors that dump the parse trees to
a file and maybe complex calculations that can hardly be specified with TGGs
have to be coded by hand. In our case study this complex calculations were the
coordinate transformations mentioned above. These depend on mathematical
algorithms can hardly be specified using graph transformations and therefore
handled in helper classes. We have tested this approach in the OSG2FBX project
where a converter between two scene graph file formats was developed. This
converter has about 480 JavaCC rules and 15 TGG rules. It was tested with a
FBX file of a virtual factory which has about 650 nodes. The conversion of this
file takes a few seconds and the result can then be displayed using a standard
OSG viewer, cf. Figure 7.

Transforming Scene Graphs Using TGGs 43

When thinking about text to text transformations, Pratt’s pair grammars
[Pra71] may be the first transformation technique that comes to mind. As men-
tioned above, the information stored in one node in OSG is spread over several
nodes in FBX. Because of these different structures of the two formats, we think
it would be very hard to model simultaneous text grammar rules like Pratt sug-
gests. Using TGGs searching through graphs is very easy and thus the different
structures are no problem. Another approach might be to write a visitor on the
parse tree that does the transformation. But to get a bidirectional mapping one
has to write two visitors, one for the forward direction and one for the reverse
direction. That causes maintenance problems because when changing one visitor,
one has to change the other correspondingly. We also think that our TGG ap-
proach is better to extend because of its declarative nature. When a new element
has to be converted one can simply add a new rule. We also found that the TGG
rules are relatively easy to understand and to specify even for novices. Thus,
we think that TGGs were an excellent choice for our purpose and we would use
them again for similar projects.

References

[Ebe05] Eberly, D.H.: 3D Game Engine Architecture, Kapitel 3. Morgan Kaufmann,
San Francisco (2005)

[FBX07] FBX Whitepaper (2007), http://images.autodesk.com/emea dach main
germany/files/fbx whitepaper.pdf

[FNT98] Fischer, T., Niere, J., Torunski, L.: Konzeption und Realisierung einer inte-
grierten Entwicklungsumgebung für UML, Java und Stroy-Driven-Modeling
(german), Diploma thesis, Universität-Gesamthochschule Paderborn (1998)

[Fu07] Fujaba Homepage, Universität Paderborn (2007), http://www.fujaba.de/
[GW06] Giese, H., Wagner, R.: Incremental Model Synchronization with Triple Graph

Grammars. In: Proc. of the 9th International Conference on Model Driven En-
gineering Languages and Systems (MoDELS), Genova, Italy (October 2006)

[Ja07] Homepage of JavaCC (2007), https://javacc.dev.java.net/
[JJT07] JJTree Reference Documentation (2007),

https://javacc.dev.java.net/doc/JJTree.html
[Mer06] Merz, A.: JavaCC, JJTree und das Visitor-Pattern (2006),

http://www.alexander-merz.com/print 38.html
[OSG07] OSG Homepage (2007), http://www.openscenegraph.com/
[Pra71] Pratt, T.W.: Pair grammars, graph languages and string-to-graph transla-

tions. Journal of Computer and System Sciences 5, 560–595 (1971)
[Sch94] Schürr, A.: Specification of graph translators with triple graph grammars. In:

Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp.
151–163. Springer, Heidelberg (1995)

[SQ07] Scenegraphs: Past, Present and Future (2007),http://www.realityprime.
com/articles/scenegraphs-past-present-and-future

[TGG06] Incremental Model Transformation and Synchronization with Triple Graph
Grammars (2006), http://wwwcs.uni-paderborn.de/cs/ag-schaefer/
Lehre/PG/Fujaba/projects/tgg/index.html

http://images.autodesk.com/emea_dach_main_germany/files/fbx_whitepaper.pdf
http://images.autodesk.com/emea_dach_main_germany/files/fbx_whitepaper.pdf
http://www.fujaba.de/
https://javacc.dev.java.net/
https://javacc.dev.java.net/doc/JJTree.html
http://www.alexander-merz.com/print_38.html
http://www.openscenegraph.com/
http://www.realityprime.com/articles/scenegraphs-past-present-and-future
http://www.realityprime.com/articles/scenegraphs-past-present-and-future
http://wwwcs.uni-paderborn.de/cs/ag-schaefer/Lehre/PG/Fujaba/projects/tgg/index.html
http://wwwcs.uni-paderborn.de/cs/ag-schaefer/Lehre/PG/Fujaba/projects/tgg/index.html

Using Graph Transformation to Support
Collaborative Ontology Evolution�

Pieter De Leenheer1 and Tom Mens2

1 Vrije Universiteit Brussel, STARLab, Belgium
pieter.de.leenheer@vub.ac.be

2 University of Mons-Hainaut, Belgium
tom.mens@umh.ac.be

Abstract. In collaborative ontology engineering, contexts are key to
manage the complexity of different dependency types between ontolog-
ical artefacts. Instead of being frustrated by out-of-control evolution
processes, proper context dependency management will allow human ex-
perts to focus on the meaning interpretation and negotiation processes.
This requires support for the detection and resolution of meaning ambi-
guities and conflicts. In this article, we explore to which extent the the-
ory of graph transformation can be used to support this activity. More
specifically, we propose the use of critical pair analysis as a formal means
to analyse conflicts between ontologies that are evolving in parallel. We
illustrate this with an example from a realistic case study.

1 Introduction

The World Wide Web caused a shift in the way people collaborate and integrate
within and between communities. A community constitutes a social system,
where action and discourse is performed within more or less well-established
goals, norms, and behaviour [6]. Communication is the primary basis for co-
ordinated action, hence in order to collaborate and integrate between different
and diverse communities, it is important to capture and agree on the seman-
tics of the concepts being communicated, and reify them in so-called ontologies.
Tools and methods for ontology engineering (e.g., [7,8,17]), are rapidly becoming
a high priority for many organisations. Particularly, in a collaborative setting,
mechanisms that support the detection and resolution of meaning ambiguities
and conflicts are urgently needed [3].

In this article we explore to which extent the theory of graph transformation
can be used to support this activity. More specifically, we propose the use of crit-
ical pair analysis [10] as a formal means to analyse conflicts between ontologies
that are evolving in parallel. We will illustrate this by providing a proof-of-
concept through a running example, the ideas of which are based on a realistic

� The research described in this paper was partially sponsored by the EU Leonardo da
Vinci CODRIVE project (B/04/B/F/PP-144.339) and the EU FP6 IST PROLIX
project.

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 44–58, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Using Graph Transformation to Support Collaborative Ontology Evolution 45

case study on competency-driven vocational education that forms part of the
European CoDrive project1.

2 Context Dependency Management

Contexts are key to explicate the relevant commonalities and differences during
real-world, gradual ontology elicitation and application efforts. Context depen-
dencies [15] are constructs that constrain the possible relations between the en-
tity and its context. Many different types of context dependencies exist, within
and between knowledge artefacts of various levels of granularity, ranging from
individual concept definitions to full ontologies. These dependencies can be used
to drive ontology engineering processes tailored to the specific requirements of
collaborative communities.

Figure 1 shows an instance of a context dependency type: the interpretation
of the terms that are applied in the template context (on the right-hand side)
is dependent on their articulation (concept definition) and categorisation in the
taxonomy on the left-hand side. Hence, this context dependency type is called
an application (APP) context dependency.

Educational
Task Quality

exhibiting / exhibited by

Competence

Actor

is an application of
(APP)

TEMPLATE TAXONOMY

Process

ROOT

Quality

Competence

Actor

Educational
Task

performed by / performing

requiring / required for

GLOSS = "a required work
that students must master"

SYNSET= {educational
work}

GLOSS = "a person who
acts and gets things done"
SYNSET= {doer, worker}

Fig. 1. An instance of an application context dependency

In [15], we showed that, when managed consistently and effectively, tracing
context dependencies provides a better understanding of the whereabouts of on-
tological artefacts and their inter-dependencies, and consequently makes negoti-
ation and application less vulnerable to ambiguity, hence more useful in practice.
Instead of being frustrated by out-of-control change processes, proper context
dependency management support will allow human experts to focus on the much
more interesting meaning interpretation and negotiation processes. Automated
support for detecting and resolving meaning ambiguities and conflicts within
and between contexts plays a crucial role here.

1 An EU Leonardo da Vinci Project: http://www.codrive.org

46 P. De Leenheer and T. Mens

3 Running Example: Vocational Competency Ontology

Our running example is based on a realistic case study on competency-driven
vocational education of the European CoDrive project. Competencies describe
the skills and knowledge individuals should have in order to be fit for partic-
ular jobs. In the domain of vocational education, having a central shared and
commonly used competency model is becoming crucial in order to achieve the
necessary level of interoperability and exchange of information, and in order to
integrate and align the existing information systems of competency stakeholders
like schools, job providers, or public employment agencies. The CoDrive project
contributes to this goal by using an ontology methodology and infrastructure in
order to develop a conceptual, shared and formal knowledge representation of
competence domains. Stakeholders include educational institutes and public em-
ployment organisations from various European countries. The resulting shared
“Vocational Competency Ontology” (VCO) will be used by all partners to build
interoperable competency models.

Constructing the VCO is not a sinecure: first, one has to determine what compe-
tency concepts are relevant for the VCO; and second, different stakeholders usually
have overlapping or even contradicting opinions about the intended meaning and
use (read: conceptualisation) of particular concepts. Hence, diverging conceptual-
isations should be anticipated in the ontology engineering methodology. In [4,16],
we developed such a methodology and system for community-based ontology en-
gineering. One key principle is to bootstrap the ontology elicitation process in a
template that describes the relevant properties of the concept in general, abstract
terms. In this template context, the abstract terms are taken from an extendible
repository of reusable competence definitions (RCDs). We adopt here the definition
proposed by the HR-XML consortium: an RCD is a specific, identifiable, definable,
andmeasurable knowledge, skill, ability and/or other deployment-related character-
istic (e.g. attitude, behavior, physical ability) which a human resource may possess
and which is necessary for, or material to, the performance of an activity within a
specific business context2.

In a constructivist fashion, the template is specialised independently by all
participating stakeholders, by replacing the general terms, by one or more con-
crete terms. Conflicts can easily arise when the template starts to evolve in a
way that is incompatible with at least one of the specialisations.

Let us illustrate these ideas by means of an example fragment of the VCO.
Fig. 2 shows an excerpt from the RCD taxonomy. It shows, among others, that
Deliver is some kind of Educational Task, and that Skill is some kind of Com-
petence which, in its turn, is considered to be some kind of Quality.

Figure 3 illustrates the process of using template contexts that can be spe-
cialised according to the needs of different stakeholders (only one such special-
isation is shown, from an educational institute). The template explains how to
define an Educational Task, the specialisation refines this to the subtask De-
liver. The relations between terms in the template and the specialisation are

2 See http://ns.hr-xml.org/2 5/HR-XML-2 5/CPO/Competencies.html

http://ns.hr-xml.org/2_5/HR-XML-2_5/CPO/Competencies.html

Using Graph Transformation to Support Collaborative Ontology Evolution 47

Process

ROOT

Quality

Educational Task Competence

Skill Attitude

Punctual

Deliver

Actor

Student

Fig. 2. Taxonomy of reusable competence definitions (RCD)

denoted by a specialisation (SPE) context dependency in Fig. 3. These context
dependencies constrain the use of concepts, and definition of relations between
concepts. In particular, SPE -dependencies are allowed only between terms that
are in the correct (transitive) taxonomical relationship according to Fig. 2.

Educational
Task Quality

exhibiting / exhibited by

Competence

Actor

TEMPLATE

performed by / performing

requiring / required for

Deliver Skill

exhibiting / exhibited by

Attitude

Student

EDUCATIONAL INSTITUTE

performed by / performing

requiring / required for

Skill

requiring / required for

is a specialisation of
(SPE)

Fig. 3. Example of an ontology, constrained by the RCD taxonomy in Fig. 2. There is
a specialisation context dependency between the template context and the educational
institute context.

Now consider the scenario, depicted in Fig. 4, where two parallel evolutions
occur between the template and (one of) its specialisation(s). Along the hori-
zontal direction, the knowledge engineer administering the templates decides to
specialise a relationship (differentia) in the template. This boils down to replac-
ing Quality with one of its subconcepts Competence (according to the taxonomy
of Fig. 2). In the vertical direction, the domain expert who created the spe-
cialisation decides to revise it: the task Deliver is no longer exhibiting a Skill,
but rather another subtype of Quality, namely Punctual. These two parallel evo-
lutions result in a conflict when trying to combine them: as depicted on the
bottom-right of Fig. 4, Punctual is not a subtype of Competence (as is required
by the SPE -dependency). In the next section, we argue how graph transforma-
tion theory can be used to detect and analyse such conflicts.

48 P. De Leenheer and T. Mens

Educational
Task

Quality

exhibiting / exhibited by

Deliver Skill

exhibiting / exhibited by

Educational
Task

Competence

exhibiting / exhibited by

Deliver Skill

exhibiting / exhibited by

Educational
Task

Quality

exhibiting / exhibited by

Deliver Punctual

exhibiting / exhibited by

changeDifferentiaToSibling

specialiseDifferentia

SPE

SPE

SPE

Educational
Task

Competence

exhibiting / exhibited by

Deliver Punctual

exhibiting / exhibited by

SPE

TEMPLATE

TEMPLATE TEMPLATE

TEMPLATE

SPECIALISATION

SPECIALISATION

SPECIALISATION

SPECIALISATION

Fig. 4. Example of a conflict

4 Formal Representation

In [18,19], we proposed to use graph transformation as a domain-independent
formalism for detecting and resolving merge conflicts during parallel evolution
of formal artefacts in general, and software in particular. The advantage is that
graph transformations provide a domain-independent and formal foundation for
both descriptive and operational aspects. The formalism allows to describe a
possibly infinite collection of graphs in a finite way: by stating a set of initial
graphs and a set of graph transformation rules. Through repeated application of
these rules, starting from one of the initial graphs, new graphs can be generated.

In this article, we apply this idea to the evolution of collaborative ontologies.
Formalising ontology transformations in this way has several advantages: (i) the
ontology engineer does not need to specify this sequence of rules explicitly: he
only needs to specify what the new ontology should look like; (ii) we can rely on
the concrete graphical syntax to which the users are accustomed to; (iii) we can
provide a precise and unambiguous definition of complex context dependency
operators; and (iv) we can formally analyse and reason about meaning conflicts
between multiple parallel contextualisations of the same original ontology.

The main goal of this article is to explore points (iii) and (iv) above, the
remaining claims will be explored in future work. For our experiments, we
have used version 1.6.2 of AGG, a general-purpose graph transformation tool
[27,28].

Using Graph Transformation to Support Collaborative Ontology Evolution 49

4.1 Representing Ontologies

The metamodel that we use for representing ontologies has been formalised by
relying on the notion of a type graph [1]. It is given in Fig. 5. The ontologies
themselves are then specified as attributed graphs that conform to this type
graph. An example of such a graph is given in Fig. 7. It provides the abstract
syntax representation of the ontology that we visualised in Fig. 3. The taxonomy
of Fig. 2 is also formally represented as a graph, depicted in Fig. 6.

One can see that this abstract graph representation looks considerably more
complex than the concrete syntax. In particular, we observe the use of lexons, an
essential notion that is introduced in the DOGMA methodology and framework
for ontology engineering [15]. Lexons are collected in a lexon base, a reusable pool
of possible vocabularies. A lexon is a 5-tuple declaring either (in some context C):

1. a taxonomical relationship (genus), for example
〈C, punctual, is a, subsumes, quality〉

2. a non-taxonomical relationship (differentia), for example
〈C, educational task, exhibiting, exhibited by, quality〉

Fig. 5. Type graph representing the metamodel for ontologies

Fig. 6. Graph representing part of the taxonomy of Fig. 2

50 P. De Leenheer and T. Mens

Fig. 7. Graph representing part of the ontology used as our running example

When trying to formalise this definition of lexon in AGG, we were confronted
with several design choices. Rather than defining a lexon (5-tuple) as a node with
5 outgoing edges, we decided to use three edges only: two hasTerm-edges point to
the Terms involved in the lexon, and a hasType-edge points to a node collecting
the other relevant information (type of relationship, role, and co-role). To achieve
this, we needed to introduce a node type Genus and Differentia in order to
express the fact that lexons represent either a taxonomical relationship or a
non-taxonomical one. To increase genericity of the graph transformation rules,
we wanted to rely on the mechanism of type graph inheritance. As illustrated
in Fig. 8, one can use the generic abstract supertype LexonType if the type of
relationship is not relevant for the rule.

Fig. 8. Part of the type graph showing the use of inheritance for expressing the type
of a lexon

Unfortunately, we could not use this solution, because we also wanted to exploit
AGG’s critical pair analysis functionality (see Sect. 4.3), and this is currently not
supported in combination with type graph inheritance. Therefore, our adopted so-
lution was to implement a mutual exclusion between node types Genus and Differ-
entia. In Fig. 5 it has been expressed as an xor constraint, which we implemented
by defining two additional graph constraints on the type graph.

4.2 Representing Context Dependency Operators

To express context dependency operators as graph transformation rules, we only
need to specify the situation before (left-hand-side or LHS) and after (right-hand-
side or RHS) applying the rule. Because AGG supports conditional graph trans-
formation, we may additionally specify positive application conditions (PAC), or

Using Graph Transformation to Support Collaborative Ontology Evolution 51

negative application conditions (NAC) [9]. A PAC indicates the obligatory pres-
ence of a given graph structure (i.e., a certain combination of nodes and edges)
in order for the rule to be applicable. Similarly, a NAC indicates the required
absence of a graph structure.

PAC LHS RHS

PAC LHS RHS

Fig. 9. Two context dependency operators for evolving ontologies, expressed as graph
transformation rules with positive application condition (PAC)

Figure 9 provides the formal definition of the two operators used in our run-
ning example of Sec. 3. Both graph transformation rules, specialiseDiff and
changeDiffToSibling have been expressed by using a PAC, because this avoids
redundancy between the LHS and RHS, hence making the rules more readable
and less complex. We also specified a third operator dropChildTerm (not men-
tioned in the running example) that can be used to remove terms that are not
related to any other term in the taxonomy. This operator, shown in Fig. 10,
requires the use of a NAC.

4.3 Detecting Conflicts

As explained in Sect. 3, in the context of collaborative ontology engineering we
are confronted with a situation where a given ontology template is specialised and
used by many different organisations. Both the template and the specialisations
can evolve in parallel, which gives rise to many sources of meaning conflicts.

52 P. De Leenheer and T. Mens

Fig. 10. DropChildTerm, another context dependency operator, expressed as graph
transformation rule with NAC

Fig. 11. Results of running AGG’s critical pair analysis algorithm on our transforma-
tion rules

With the mechanism of critical pair analysis, all potential sources of conflicts
can be detected automatically, for each pair of transformation rules. This was
the main motivating reason why we decided to use graph transformation theory
for our experiments. As far as we know, AGG is the only available tool that
implements critical pair analysis.

The use of critical pair analysis proved to be a real iterative “trial and error”
process. The first time we ran the critical pair analysis algorithm on our trans-
formation rules, we were confronted with severe performance problems. After
a couple of hours the algorithm stopped with a sudden out of memory error.
As a first improvement, we computed “essential” critical pairs only, an exper-
imental feature of AGG. This allowed us to obtain some first results, but the
computation still took a very long time, and there was a too large number of
detected critical pairs, making the manual interpretation of the results nearly
impossible. Therefore, as a second improvement we simplified the underlying
graph representation, by replacing all lexons representing a genus (taxonomical
relationship) by a directed genus-edge from the source term to the target term.
This simplified the graph and the graph transformation rules considerably, since
for each occurrence we replaced 2 nodes (Lexon and Genus) and 3 edges (all
outgoing edges from Lexon) by a single genus-edge. We also avoided the use of
PACs in our new version of the transformation rules, since they had a small neg-
ative impact on the computation time of critical pairs3. The number of detected
critical pairs was now reduced to a manageable number, but manual analysis

3 Note that all of these optimisations can be done in an automated way.

Using Graph Transformation to Support Collaborative Ontology Evolution 53

of the results still reveiled many unnecessary duplicates. Therefore, as another
improvement, we added some additional graph constraints to express the ab-
sence of cyclic structures in the genus or SPE edges. This, finally, led us to the
results summarised in Fig. 11. For every pair of transformation rules that was
compared, at most one critical situation was reported, and all such critical pairs
corresponded to what we intuitively expected.

As a first example, consider the critical pair between ChangeDiffToSibling
(first rule) and SpecialiseDiff (second rule). The critical pair reported between
both rules is displayed in Fig. 124. The figure shows a delete-use-conflict for the
SPE -edge with number 7. It arises because both graph transformations modify
this SPE -edge in incompatible ways. ChangeDiffToSibling redirects its source
edge, while SpecialiseDiff redirects its target edge. This potential conflict cor-
responds exactly to the conflict that we encountered in our running example.
Indeed, if we ask AGG to check for actual conflicts in the host graph, it will
report a match that corresponds to the situation of Fig. 4.

Fig. 12. Conflict between the rule ChangeDiffToSibling (first rule) and SpecialiseDiff.
The critical situation is displayed on the left, and the green SPE -edge (number 7)
indicates the source of the problem.

A second, and different, example of a critical pair occurs between rules Drop-
ChildTerm (first rule) and SpecialiseDiff (second rule). It is displayed in Fig. 13.
This time, there is a delete-use-conflict for the Term-edge with number 1. It arises
because DropTerm attempts to remove a Term-node, whereas SpecialiseDiff re-
quires the presence of this node for its proper functioning. Although not explained
in Sect. 3, it is another typical example of a conflicting situation that can arise
when modifying a template ontology and one of its specialisations in parallel.

For our current “proof-of-concept” experiment, one could argue that the use
of critical pair analysis is overkill since one could identify all potential conflict
situations by hand. While this may be true, the point is that the automated
analysis allows us to start using the approach on a much more elaborate set of
4 Observe the use of genus-edges that significantly simplifies the representation of the

graphs and graph transformations.

54 P. De Leenheer and T. Mens

Fig. 13. Conflict between the rule DropChildTerm (first rule) and SpecialiseDiff. The
critical situation is displayed on the left, and the green Term-node (number 1) indicates
the source of the problem.

transformation rules. More importantly, the automated approach allows us to
identify all conflicting situations in any given source graph, by finding a match of
the critical pair in the source graph. Given the size of the ontology models that
one encounters in practice, this is something for which the “manual” approach
would be unfeasible.

5 Related and Future Work

Heer et al. [11] also apply graph transformation technology to support the in-
tegration of ontologies. Their approach differs from ours in various ways. First
of all, they adopt a considerably more restricted notion of ontologies. Their so-
called “lightweight ontologies” only express taxonomical relationships between
concept labels, while ours can handle any other type of relationship5. Another,
and more important, difference is that their approach seems to hard-code the
conflicts that can arise during the ontology merging approach, whereas we rely
on the generic technique of critical pair analysis. This makes our approach more
generic and more tool-independent.

Another example of the use of graph transformation that can be reused for on-
tology engineering is [14], where graph transformation is applied for conducting
quality assurance in business-driven development. For a comprehensive survey
on ontology evolution state of the art and future directions, we refer to [3].

In [18,19], we claimed that graph transformation theory could be used as a
domain-independent formalism for detecting and resolving merge conflicts during
parallel evolution of formal artefacts. These claims seem to correct, since we
have already been able to apply the ideas of critical pair analysis in various
domains. In [21] we applied it to software refactoring, in [23] we applied it to

5 In this article, we only showed the non-taxonomical relationship differentia, but our
approach can be extended in a straightforward way to other types of relationships
as well.

Using Graph Transformation to Support Collaborative Ontology Evolution 55

UML models, and in this article we applied it to ontologies. In [23,22] we even
used the mechanism to detect sequential dependencies between transformations,
and to provide semi-automated support for conflict resolution. The same results
can also be achieved in the domain of ontology engineering. This is a topic of
future work.

In order to make the proposed approach acceptable to our user community, we
need to offer support using the representation that the users are familiar with.
This means that our tools need to make use of the concrete syntax instead of an
abstract graph-based syntax. More in particular, we want to be able to detect,
report and manage conflicts using the concrete syntax of ontologies. We will work
on this aspect in the future. It is worthwhile to note that a lot of progress in this
direction has been made by the graph transformation community. Indeed, many
different researchers have proposed solutions for trying to combine the virtues
of a concrete domain-specific graphical syntax with the underlying mechanism
of graph transformation. Examples of this are Tiger [29], DiaGen [25], DiaMeta
[24], and ATOM3 [2].

The second requirement to make the theory acceptable to our user community
is by integrating it in a seamless manner into the ontology engineering tools
that they are currently using. In particular, we envisage integration of the graph
transformation approach into the DOGMA tool [4]. A natural way to achieve
such integration is by relying on a common underlying development platform.
Given that DOGMA is implemented as an Eclipse plug-in, Eclipse seems to be
the platform of choice. Also for AGG, the graph transformation tool that we
have used for our experiments, various Eclipse plug-ins exist. ROOTS [13] is an
Eclipse plug-in that replaced the default GUI of AGG by an Eclipse-based one.
The Tiger EMF transformation project [5] is another Eclipse plug-in for AGG
that allows to generate domain-specific visual editors. By combining all of these
plug-ins, we aim to develop a domain-specific tool whose underlying foundation
of graph transformation is transparent to the user.

Our running example, although using only a few simple context dependency
operators, already demonstrates the usefulness of graph rewriting for context
dependency management emerging in a typical case of collaborative ontology
engineering. When introducing additional context dependency operators and
types, complexity only grows. Furthermore, we did not consider all primitive
constructs of an ontology. For example, axioms constraining the possible use of
concepts and relationships makes context dependency management even more
difficult.

Finally, we also plan to consider other relevant applications of graph trans-
formation. For example, in [22], we did a formal and static analysis of mutual
exclusion relationships and causal dependencies between different alternative res-
olutions for model inconsistencies that can be expressed in a graph-based way.
Currently, we are adopting these results for the DOGMA meta schema in par-
ticular. Doing so, this analysis can be exploited to further improve the conflict
resolution process, e.g., by detecting possible cycles in the resolution process, by
proposing a preferred order in which to apply certain resolution rules, and so on.

56 P. De Leenheer and T. Mens

6 Conclusion

One of the goals of our work was to bring the research communities of soft-
ware evolution [20] and ontology engineering [12] closer together. It turns out
that both research domains can benefit from the same underlying foundation,
in casu graph transformation theory. Graph transformation rules can be used to
formally represent the evolution operators, and critical pair analysis can be used
to automate the detection of merge conflicts between these operators.

In this article, we relied on graph transformation theory for supporting context
dependency evolution processes, based on the DOGMA framework and method-
ology for scalable ontology engineering. Key notions are a set of transformation
rules expressing context dependency operators, that can be combined to man-
age complex context dependencies like SPE -dependencies, which in turn can
be used in context-driven ontology engineering processes tailored to the specific
requirements of collaborative communities.

The detection of conflicts during ontology evolution was supported by the
technique of critical pair analysis. A proof-of-concept experiment of this tech-
nique has been carried out with AGG, based on a running example of collabo-
rative ontologies for vocational education taken from a European project. While
the results are encouraging, further work is needed to integrate the approach in
contemporary ontology engineering tools (such as DOGMA Studio WorkBench
[26]), and to extend the idea to provide formally founded automated support
for conflict resolution as well. We also need to validate the scalability of our
approach on full-fledged industrial case studies.

References

1. Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informati-
cae 26(3–4), 241–265 (1996)

2. de Lara, J., Vangheluwe, H.: ATOM3: A tool for multi-formalism and meta-
modelling. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306,
pp. 174–188. Springer, Heidelberg (2002)

3. De Leenheer, P., Mens, T.: Ontology Evolution: State of the Art and Future Di-
rections. In: Ontology Management for the Semantic Web, Semantic Web Services,
and Business Applications. Springer, Heidelberg (2008)

4. de Moor, A., De Leenheer, P., Meersman, R.: DOGMA-MESS: A meaning evolu-
tion support system for interorganizational ontology engineering. In: Schärfe, H.,
Hitzler, P., Øhrstrøm, P. (eds.) ICCS 2006. LNCS (LNAI), vol. 4068, pp. 189–203.
Springer, Heidelberg (2006)

5. Ermel, C., Ehrig, K., Taentzer, G., Weiss, E.: Object-oriented and rule-based de-
sign of visual languages using tiger. In: Proc. workshop on Graph-Based Tools
(GraBaTs). Electronic Communications of the EASST, vol. 1 (2006)

6. Falkenberg, E.D.: Frisco: A framework of information system concepts. Technical
report, IFIP WG 8.1 Task Group (1998)

7. Gruber, T.: Cyc: a translation approach to portable ontologies. Knowledge Acqui-
sition 5(2), 199–220 (1993)

Using Graph Transformation to Support Collaborative Ontology Evolution 57

8. Guarino, N.: Formal ontology and information systems. In: Proc. of FOIS 1998,
pp. 3–15. IOS Press, Amsterdam (1998)

9. Heckel, R.: Algebraic graph transformations with application conditions. Master’s
thesis, Technische Universität Berlin (1995)

10. Heckel, R., Küster, J.M., Taentzer, G.: Confluence of typed attributed graph trans-
formation systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G.
(eds.) ICGT 2002. LNCS, vol. 2505, pp. 161–176. Springer, Heidelberg (2002)

11. Heer, T., Retkowitz, D., Kraft, B.: Algorithm and tool for ontology integration
based on graph rewriting. In: Proc. Applications of Graph Transformations with
Industrial Relevance (AGTIVE), Wilhelmshöhe, Kassel, Germany, pp. 484–490
(2007)

12. Hepp, M., De Leenheer, P., de Moor, A., Sure, Y. (eds.): Ontology Management for
the Semantic Web, Semantic Web Services, and Business Applications. Springer,
Heidelberg (2008)

13. Jurack, S., Taentzer, G.: ROOTS: An Eclipse plug-in for graph transformation
systems based on AGG. In: Proc. Applications of Graph Transformations with
Industrial Relevance (AGTIVE), pp. 491–496 (2007)

14. Koehler, J., Gschwind, T., Küster, J.: Combining quality assurance and model
transformations in business-driven development. In: Proc.of Agtive 2007. Springer,
Heidelberg (2007)

15. De Leenheer, P., de Moor, A., Meersman, R.: Context dependency management
in ontology engineering: a formal approach. LNCS Journal on Data Semantics 8,
26–56 (2007)

16. De Leenheer, P., Meersman, R.: Towards community-based evolution of knowledge-
intensive systems. In: Proc.of ODBASE 2007. Springer, Heidelberg (2007)

17. Meersman, R.: The use of lexicons and other computer-linguistic tools in semantics,
design and cooperation of database systems. In: Proc.of CODAS 1999, pp. 1–14.
Springer, Heidelberg (1999)

18. Mens, T.: A Formal Foundation for Object-Oriented Software Evolution. PhD the-
sis, Department of Computer Science, Vrije Universiteit Brussel, Belgium (Septem-
ber 1999)

19. Mens, T.: Conditional graph rewriting as a domain-independent formalism for soft-
ware evolution. In: Münch, M., Nagl, M. (eds.) AGTIVE 1999. LNCS, vol. 1779,
pp. 127–143. Springer, Heidelberg (2000)

20. Mens, T., Demeyer, S. (eds.): Software Evolution. Springer, Heidelberg (2008)
21. Mens, T., Taentzer, G., Runge, O.: Analyzing refactoring dependencies using graph

transformation. Software and Systems Modeling (2007)
22. Mens, T., Van Der Straeten, R.: Incremental resolution of model inconsistencies. In:

Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 111–127.
Springer, Heidelberg (2007)

23. Mens, T., Van Der Straeten, R., D’Hondt, M.: Detecting and resolving model in-
consistencies using transformation dependency analysis. In: Nierstrasz, O., Whit-
tle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 200–214.
Springer, Heidelberg (2006)

24. Minas, M.: Generating meta-model-based freehand editors. In: Proc. Int’l Work-
shop Graph-Based Tools (GraBaTs), Natal, Brazil. Electronic Communications of
the EASST (September 2006)

25. Minas, M., Viehstaedt, G.: DiaGen: A generator for diagram editors providing
direct manipulation and execution of diagrams. In: Proc. IEEE Symp. Visual Lan-
guages, pp. 203–210 (1995)

58 P. De Leenheer and T. Mens

26. Vrije Universiteit Brussel STAR.Lab. DOGMA Studio WorkBench (2007),
http://www.starlab.vub.ac.be/website/dogmastudio

27. Taentzer, G.: AGG: A graph transformation environment for modeling and valida-
tion of software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS,
vol. 3062, pp. 446–453. Springer, Heidelberg (2004)

28. Taentzer, G.: AGG (November 2007), http://tfs.cs.tu-berlin.de/agg
29. Taentzer, G., Schmutzler, R., Ermel, C.: Generating domain-specific model editors

with complex editing commands. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) Pro-
ceedings of AGTIVE 2007: Applications of Graph Transformations with Industrial
Relevance, Wilhelmshöhe, Kassel, Germany (October 2007)

http://www.starlab.vub.ac.be/website/dogmastudio
http://tfs.cs.tu-berlin.de/agg

Modelling of Longitudinal Information Systems
with Graph Grammars

Jens H. Weber-Jahnke

Department of Computer Science
University of Victoria, B.C., Canada

jens@acm.org

Abstract. Longitudinal information systems (LIS) manage and evolve
data over extensive periods of time. Examples are “womb to tomb” elec-
tronic health records. How can we design such systems such that they
are future-proof, i.e., evolvable in step with changing requirements? One
approach that has been advocated is the “two-level modelling” approach,
separating information and knowledge in terms of a small reference model
and a larger archetype model. A textual archetype definition language
has been proposed to define the mapping between these two models. In
this paper, we explore an alternative way to define this mapping using
triple graph grammars. The graph grammar based approach has several
advantages over the textual approach, including better modularity and
tool support.

Keywords:Triple graph grammars, data engineering, longitudinal health
records, two-level modelling, archetypes.

1 Introduction

Longitudinal information systems (LIS) manage data about a population of sub-
jects collected over a long period of time. An increasing number of LIS are being
developed in public and private sectors such as health care, social security, law
enforcement, and insurance. Canada is currently developing a pan-Canadian
Electronic Health Record (EHR) to maintain “womb to tomb” health informa-
tion for all citizens [6]. Similar systems are under development in other countries,
e.g., the British NHS patient record and the French Dossier medical personnel [6].
A common challenge with the long-lived nature of LIS is on making them future
proof. Data requirements change over time, particularly in knowledge-driven do-
mains such as health care. In response to this challenge, Beale has proposed a
two-level modelling approach to developing LIS [2]. He argues that the tradi-
tional single-level approach to coding domain concepts in database and software
models is too rigid, since many concepts change over time. Two-level modelling
addresses this issue by separating domain concepts into a small, stable refer-
ence model (RM) and a larger, more volatile knowledge model (KM). Only RM
concepts are directly coded in the application. KM concepts are not hard-coded
but defined as constraint-based views on (compositions of) RM concepts. These

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 59–65, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

60 J.H. Weber-Jahnke

views are called archetypes. A textual Archetype Definition Language and a cor-
responding semantic object model have been developed for the purpose of for-
malizing archetypes [4]. Learning ADL and implementing ADL semantics is not
a trivial task. As of version 2 of the language specification [4], ADL supports
“pluggable” sub-languages that may replace the default language elements. This
paper utilizes this concept and proposes an alternative, graph-grammar (GG)
based approach to defining archetypes. We argue that the definition of GG based
archetypes holds several advantages. The next section gives a brief introduction
to the two-level modelling approach. Section 3 describes our new approach to
defining archetypes using a GG based language. Section 4 provides a brief dis-
cussion of our results and related work.

2 Two-Level Modelling

The basic idea behind the Two-Level Modelling approach is not new. It is
based on the idea of conceptual “views” applied in data engineering for many
decades. Database languages feature mechanisms to construct virtual data types
(“views”) based on the logical data model defined in the database (“base ta-
bles”). The most important difference between typical database view mecha-
nisms and the ADL as standardized by the OpenEHR foundation is that ADL
has features specific to the health care domain and is not restricted to flat ta-
bles but rather assumes a nested, graph-oriented data model [4]. We illustrate
the two-level modelling approach with the concept of a patient referral. Referral
data may contain entries about the referring health care provider(s), the clinical
issue, the envisioned treatment process, a maximal wait time etc. We show a
simplified example of a referral data form in Fig. 1 and its data model in Fig. 2.

Fig. 1. Example user interface for referral form

Modelling of Longitudinal Information Systems 61

clinical_issue: TEXT
other_details: TEXT

REFERRAL_DATAname: TEXT
role: TEXT
address: TEXT
contact: CONTACT

PROVIDER

Telephone: TEXT
Email: TEXT
Faxsimile: TEXT

CONTACT
urgency: URGENCY
referred: DATE_TIME
first_attended: DATE_TIME
last_attended: DATE_TIME

PROCESS
timing: {emergency, urgent,
 non-urgent}
impact: {low, moderate, high}
max_delay: DELAY

URGENCY
hours: QUANTITY
days: QUANTITY
weeks: QUANTITY
months: QUANTITY

DELAY

value: Real
unit: TEXT

QUANTITY

Fig. 2. Data Model for the referral data example

2.1 Knowledge Model vs. Reference Model

The information associated with a referral is not standardized but is likely to
evolve over time as knowledge develops. Consequently, the referral is an example
for a concept that should not be “hard-wired” in the base schema (RM) of any
LIS. In terms of the two-level modelling approach, the referral is a second level
(KM) concept and should be defined as a view (archetype) based on the concepts
defined in the RM. One of the challenges of two-level modelling is to decide
which concepts are sufficiently stable to warrant their implementation in the RM.
Considering our example data model from Fig. 2, we may decide that concepts
DATE TIME and DELAY are sufficiently stable. The OpenEHR foundation and
other organizations (e.g., HL7) have published recommended RMs and guidelines
for the health care domain. Fig. 3 shows an excerpt of a RM based on the
OpenEHR recommendations. Th RM in Fig. 3 is sufficiently powerful to express
all concepts shown in our referral example in Fig. 2. It implements a generic
hierarchy of data items. Composite items are called clusters while the leaves of
the hierarchy are called elements. Elements have a value according to one of
several possible types. The only data type in Fig. 3 that may require further
explanation is CODED TEXT. It is used to represent values that are taken
from a controlled terminology, e.g., the International Classification of Diseases
(ICD), or a similar ontology. Any item carries a meaning attribute defining its
semantics. In addition, clusters may be associated with coded values, defining
their semantics in terms of a controlled vocabulary.

meaning[1]: TEXT
ITEM

CLUSTER ELEMENT

DATA_VALUE
value 1

items

0..*

value: String
TEXT

terminology: String
code_list: List<String>
code: String

CODED_TEXT
property: String

QUANTITY

magnitude: Interval<Real>
unit: String
value: Real

QUANTITY_ITEM

list
0..*

name

0..1
ORDINAL

key: Integer
value: String

ORDINAL_VALUE

key

value1

value: String
DATE_TIME

Fig. 3. Simplified RM

2.2 Archetype Definition Language

At this point the reader may have an intuitive idea on how KM concepts in our
referral example (Fig. 2) can be represented in terms of concepts in our RM.
Essentially, composite items (e.g., REFERRAL DATA would be represented as
clusters containing primitive elements (e.g., clinical issue), as well as other com-
posite clusters (e.g., PROVIDER). The two-level modelling approach advocated

62 J.H. Weber-Jahnke

CLUSTER[Referral_data] matches {
items existence matches {0..1} cardinality matches {0..*; unordered} matches {

... CLUSTER[Referring provider details] occurrences matches {0..1} matches {
items cardinality matches {1..1; unordered} matches {

ELEMENT[Name of referring provider] occurrences matches {1..1} matches {
value matches {TEXT matches {*}} } }

... CLUSTER[Contact details] occurrences matches {0..1} matches {
items cardinality matches {0..*; unordered} matches {
ELEMENT[telephone] occurrences matches {0..*} matches {

name matches {
CODED_TEXT occurrences matches {0..1} matches {

code_list matches {
[mobile,work,alternative work, direct work line, pager] } } }

value matches {TEXT matches {*} } } } }
... CLUSTER[Process] occurrences matches {0..1} matches {

items cardinality matches {0..*; unordered} matches {
CLUSTER[Urgency] occurrences matches {1..1} matches {

items cardinality matches {0..*; unordered} matches {
... ELEMENT[Maximal delay] occurrences matches {1..1} matches {

value matches {
QUANTITY matches {

property matches "time"
units matches "h"
magnitude matches "|>0.0|" } } }

Fig. 4. Excerpt of a definition section for a referral archetype (simplified)

by the OpenEHR consortium uses a dedicated archetype definition language
(ADL) to formalize this mapping from KM concepts to RM. ADL uses a mix-
ture of pattern matching, constraint-based queries, and path navigation. Its se-
mantics is defined with UML [4]. Fig. 4 shows a simplified example for the
definition section of an archetype defining the KM concept REFERRAL DATA
in our example. Since a detailed introduction to ADL is beyond the scope of
this paper, we will restrict ourselves to an informal explanation. Basically, the
example shows how the data structure for a referral is defined using a hierarchy
of items (clusters and elements) and data types. The semantics of each item is
defined in rectangular brackets ([]) and stored in the meaning attribute of class
ITEM. Each item can be defined mandatory or optional using the occurrences
keyword. Analogously, cardinality and ordering constraints for children of clus-
ters can be expressed using the cardinality keyword. Constraints may also be
defined over the actual values of data types, for instance consider the quantity
value for maximum delay, which is constrained to a positive number of hours
at the end of Fig. 4. As previously mentioned, an archetype defined with ADL
is used similarly to a view in database applications. It is used for information
input as well as for data output. In fact, the referral form shown in Fig. 1 was
generated automatically from the archetype definition.

3 A Graph Grammar-Based Approach to Defining
Archetypes

The OpenEHR’s ADL actually consists of multiple sub-languages. The sub-
language used to define the mapping in Fig. 4 is called cADL (constraint ADL).
The sub-language used to compose new archetypes from existing archetypes
(not shown in this paper) is called dADL (definition ADL). The new version 2

Modelling of Longitudinal Information Systems 63

of OpenEHR’s ADL language specification accommodates language “plug-ins”
to replace the default syntax of cADL or dADL with alternative languages. We
argue that the default cADL shown earlier is difficult to read for more com-
plex examples, which impedes implementation and maintenance. The textual
syntax may be substituted by an alternative graph-grammar (GG) based cADL
language plug-in. We believe that the GG-based cADL will be easier to under-
stand, implement and maintain. Of course, this point of view is debatable and
others may prefer textual languages. However, another, more objective benefit of
a GG-based ADL is the closer connection to the archetype object model (AOM),
which defines the semantics of ADL based on an abstract UML specification [4].
Currently, the textual syntax is “modelled after” the AOM and needs to be up-
dated when the AOM changes, including all its tools, parsers, compilers etc. A
GG-based ADL would greatly decrease this overhead.

Analogously to textual grammars, traditional GGs consist of a set of pro-
duction rules, each with a left-hand side (LHS) and a right-hand side (RHS).
Intuitively, production rules are applied to a graph G by matching the LHS to
elements in G and replacing them with the RHS, while keep the elements that
appear on both sides of the production. Application conditions can be added to
productions to further constrain their application [5]. Special classes of GGs have
been developed for the purpose of relating logically independent graph models.
One such class is called Triple Graph Grammar TGG and has been invented
in the early nineties by Schürr following Pratt’s analogous concept for textual
languages called Pair Grammars [1]. TGGs are very applicable in our problem
context, since the goal of two-level modelling is basically to relate KM concepts
to those concepts implemented in the RM.

A formal introduction to the TGGs is out of scope of this short-form paper
and we refer the reader to [1]. Here, we use our referral application example
to provide an intuitive understanding of the approach. TGG specifications are
rule-based, i.e., a TGG consists of a collection of TGG rules. Therefore, TGG-
based archetype definitions can provide a higher degree of modularity compared
to the heavily nested textual ADL shown in Fig. fig:referralADL. Figure 5 shows
four TGG rules for our example (R1-R4). The right side of each rule contains
instances of the RM (e.g., cluster, element, etc.). The left side contains elements
that belong to our archetype definition (e.g., referral data, provider, etc.). These
concepts belong to our KM. Elements on both sides are related by special graph
nodes labelled MAP. Intuitively, the first rule (R1: Map Referral) defines that
the KM concept Referral Data is represented by a specific combination of RM
concepts (Cluster, Element and Text). Note how the assertions in node 3 and 4
constrain the meaning attribute of these elements to represent the appropriate
value. Further assertions demand that the value of attribute clinical issues in
node 1 be equal to the value of text node 5, i.e., the content of clinical issues
is represented by a corresponding text node in the generic RM. Rule R2 (Map
Provider) extends the definition of the archetype by defining how the KM concept
Provider is mapped to RM-level concepts. The bold graph elements at the top
of R2 define the context in which such an extension is permissible, while the

64 J.H. Weber-Jahnke

{unit=="h"}
{magnitude="|>0.0|"}

12:QUANTITY_ITEM

{property=="time"}
11:QUANTITY

{meaning=="Maximal Delay"}
10:ELEMENT

list

value
6:DELAY 7:MAP

1:REFERRAL_DATA 2:MAP
{meaning=="Referral_data"}

3:CLUSTER

{meaning=="clinical_issues"}
4:ELEMENT

5:TEXT

value

1:REFERRAL_DATA 2:MAP 3:CLUSTER

4:PROVIDER
{meaning=="Referring_provider"}

6:CLUSTER

{meaning=="name of provider"}
7:ELEMENT

8:TEXT

items

items

items
5:MAP

1:PROVIDER 3:CLUSTER2:MAP

{meaning=="contact_details"}
6:CLUSTER

items

{meaning=="Telephone"}
7:ELEMENT

items

value

{code_list==[mobile,...]}
8:CODED_TEXT

value

4:CONTACT 5:MAP

1:PROVIDER 3:CLUSTER2:MAP

{meaning=="Process"}
8:CLUSTER

{meaning=="Urgency"}
9:CLUSTER

items

items

items

4:PROCESS

5:URGENCY

max_delay

R1: Map Referral

R2: Map Provider

R3: Map Contact

R4: Map Urgency

transfer:
1.clinical_issues=5.value

transfer:
4.name=8.value

transfer:
6.hours=12.value

transfer:
4.telephone=8.value

Fig. 5. TGG-based archetype definition

grey elements underneath specify the actual extension. Analogously R3 and R4
further extend the mapping defined by R2 and R3, respectively.

Since archetypes are seen as a way of defining database views, our discussion of
their execution focusses on (1) data input (and validation) and (2) data output
(and queries). The textual ADL as proposed by OpenEHR can be used for
(1) only. The OpenEHR consortium is currently developing a further textual
language for querying. In the following, we explain how TGG-based archetype
specifications can be used for (1) and (2), adding a further advantage to our
approach. The general TGG theory states that three traditional GG productions
can be derived from every TGG rule: a left-right (LR) production, instantiating
KM concepts from RM data, a right-left (RL) production, creating RM instances
based on KM data, and a mapping production, instantiating a mapping between
KM and RM data. We refer to [1] on details on how to derive these productions.
We will only make one comment about the treatment of assertions, since they
are not considered in [1]: Assertions on the right and left side of a TGG rule
become assignments in the derived LR and RL productions, respectively. Let us
now discuss how the generated productions can be used for data input and output
in an LIS. Clearly, we could use the RL productions to generate KM view data
for the entire database content (residing in the RM schema). However, in most
cases we are interested in queries for targeted subsets of the data. We can provide
this functionality by combining mapping productions with RL productions. For
example, if we want to query for all referral data about a specific clinical issue,
say Diabetes, the user may enter “Diabetes” under “Clinical issue” in the referral
form (Fig. 1). As a result of this input, the software can instantiate an instance
of KM node Referral data with attribute clinical issues set to “Diabetes”. We
then apply the mapping production derived from R1 to associate this instance
with an appropriate representation in the RM-based database schema. If such a
representation is found, we can use the RL production of rules R2-R4 to output
the details about the referral. We repeat this process starting with the creation
of another instance of Referral data with clinical issue “Diabetes” to find further
RM-level data that fits the pattern. Note that the TGG mapping production
has to enforce that RM “referral” clusters is only mapped once. LR productions

Modelling of Longitudinal Information Systems 65

are used for data input, i.e., to generate the appropriate RM representation for
the KM-level concepts entered.

4 Conclusions and Related Work

Two-level modelling is an important principle in the design of LIS in general,
and EHRs in particular. Its implementation requires appropriate formalisms to
describe the mappings between KM and RM. OpenEHR’s ADL provides such a
formalism, including a mechanism to replace part of it by other sub-languages.
We have presented an approach to replace cADL with a TGG-based language.
This approach has five main benefits: (1) The GG-based ADL is directly con-
nected to the graph-based semantic model of OpenEHR archetypes (i.e., the
AOM), (2) the GG-based ADL provides a higher degree of modularity (in terms
of rules), (3) the GG-based ADL can be used to generate data input as well as
output operations, (4) the GG-based ADL is easier to comprehend and maintain,
(5) the GG-based ADL is supported by a rich set of tools developed in the GG
community. We are currently evaluating TGG tool support for our application.
Our notion of TGGs slightly deviates from existing tool implementations w.r.t.
our treatment of assertions. We are also currently conducting a formal analysis
about the expressiveness of TGG-ADL vs. the textual cADL. Certain aspects
of cADL cannot be expressed in our current TGG formalism, e.g., cardinality
and ordering constraints. Our approach is related to earlier work in the GG
community on visual query languages [3].

References

1. Specification of Graph Translators with Triple Graph Grammars. In: 20th Intl.
Workshop on Graph-Theoretic Concepts in Computer Science, London, UK.
Springer, Heidelberg (1995)

2. Constraint-based Domain Models for Future-proof Information Systems. In: OOP-
SLA Workshop on Behavioural Semantics (2002)

3. Andries, M., Engels, G.: Syntax and Semantics of Hybrid Database Languages. In:
Proc. of Intl. Workshop on Graph Transformations in Computer Science. LNCS, p.
19. Springer, Heidelberg (1993)

4. Beale, T., Heard, S. (eds.): The openEHR Archetype Model - The Archetype Defi-
nition Language 2. openEHR Foundation (2007)

5. Rozenberg, G.: Handbook of graph grammars and computing by graph transforma-
tion, vol. I. foundations. World Scientific Publishing Co., Inc., River Edge (1997)

6. Weber-Jahnke, J.H.: Achieving interoperability among healthcare information sys-
tems. In: Encyclopedia of healthcare information systems, IGI Global (2007)

A Generic Layout Algorithm for Meta-model
Based Editors

Sonja Maier and Mark Minas

Universität der Bundeswehr München, Germany

Abstract. The diagram editor generator framework DiaMeta utilizes
meta-model based language specifications and supports free-hand as well
as structured editing. This paper describes a generic layout algorithm
that meets the demands of this kind of editors. The underlying concept
of the algorithm is attribute evaluation. An attribute evaluator is best
suited for an unambiguous layout, i.e. the diagram may not be repre-
sented in different ways. Especially in free-hand mode we want to give
more freedom to the user when he edits a diagram, and thus a plain
attribute evaluator is not sufficient. Therefore we combine this approach
with a constraint satisfaction approach in the sense that constraints are
used to activate particular attribute evaluation rules. This gives the lay-
outer the flexibility it needs to deal with the situation in DiaMeta.

1 Introduction

Each visual editor implements a certain visual language. Several approaches and
tools have been proposed to specify visual languages and to generate editors
from such specifications. These attempts can be characterized by the way the
diagram language is specified, and by the way the user interacts with the editor
and creates respectively edits diagrams. Most visual languages have a model as
(abstract) syntax specification. Models are essentially class diagrams of the data
structures that are visualized by diagrams. When considering user interaction
and the way how the user can create and edit diagrams, structured editing is
usually distinguished from free-hand editing. Structured editors offer the user
some operations that transform correct diagrams into (other) correct diagrams.
Free-hand editors, on the other hand, allow to arrange diagram components
from a language-specific set on the screen without any restrictions, thus giving
the user more freedom. The editor has to check whether the drawing is correct
and what its meaning is.

DiaMeta [1] follows the model-driven approach to specify diagram languages.
From such a specification an editor, offering structured as well as free-hand
editing, can be generated. In Fig. 1 we can see an editor that was generated
with DiaMeta. We designed a generic layout algorithm that works for model-
based visual languages. It meets the demands of structured as well as free-hand
editing.

For structured editors, layout algorithms were studied in the past [2]. For free-
hand editors, these layout algorithms cannot be adapted in a straightforward

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 66–81, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Generic Layout Algorithm for Meta-model Based Editors 67

way. The layouter has to deal with the increase of flexibility and should only
restrict the user in a moderate way. In the world of grammar-based editors, some
layout algorithms have been established in the past. Our algorithm operates on
a model instead. We will see how to define a layout algorithm that is specialized
for a certain model, i.e. a certain visual language.

Chok et al. [3] distinguish between the two terms, beautification and layout :
Layout is the general term, and covers the concept of beautification. Beautifi-
cation (sometimes called layout refinement) starts with an initial layout and
performs minor changes to improve it while still preserving the “feel” (or “men-
tal map” [4]) of the original layout. Especially user interaction is considered in
this context. Layout may also position components of the diagram from scratch
without an initial layout. The layout algorithm presented in this paper focuses
on beautification.

Fig. 1. Petri net Editor

One frequently used concept is attribute evaluation. An attribute evaluator
is fast and best suited if the layout is unambiguous. This concept cannot deal
with the situation that the same diagram may be represented in different ways.
Especially in free-hand mode we want to leave more freedom to the user when
he edits a diagram, and thus a conventional attribute evaluator is not sufficient.

Another concept that is frequently used for layout, is constraint satisfaction
[1]. The disadvantages of this concept are that constraint satisfaction is (rather)
slow and its behavior is unpredictable in some situations.

We combine the concepts constraints and attribute evaluation to an algorithm
that is fast, flexible and behaves exactly the way we desire: Assertions ensure the
characteristics of the layout. If they are not fulfilled, a set of attribute evaluation

68 S. Maier and M. Minas

rules is switched on. These rules are evaluated, and the associated attributes are
updated. In terms of constraint satisfaction, these rules act as a relaxationmethod.

Sect. 2 introduces the model of Petri nets, the visual language that is used
as a running example. Sect. 3 explains the generic layout algorithm that we
propose for meta-model based editors. Sect. 4 shows how this layout algorithm
can be used for editors. Sect. 5 summarizes some implementation details, and
gives an overview of DiaMeta, the environment in which the algorithm was
tested. Sect. 6 contains related work, and Sect. 7 concludes the paper.

2 Petri Net Editor

Fig. 2 shows the (simplified) class diagram for Petri nets. It contains the class
Node as an abstract base class of a Petri nets place or transition. Node has a
member attribute label. Edge is the abstract base class of a Petri net’s connec-
tion between places and transitions. Concrete classes of the abstract model are
Place, Transition, PTArrow, TPArrow and Token. Transition-Place relations are
represented by the associations between Transition, TPArrow (TPArrow stands
for Transition-To-Place Arrow) and Place.

CPlace

xPos

yPos

radius

Place

CTransition

xPos

yPos

width

height

Transition

CArrow

xStart

yStart

xEnd

yEnd

PTArrow TPArrow

Edge

Node

label

to

from from

to

CToken

xPos

yPos

Token

component

component

component

component

Fig. 2. Model of Petri nets

Place-Transition relations are represented by the associations between Place,
PTArrow and Token. Place-Token relations are represented by the association
between the classes Place and Transition. The classes CPlace, CTransition, CAr-
row and CToken represent aspects of the concrete syntax.

A Generic Layout Algorithm for Meta-model Based Editors 69

Each diagram consists of a finite set of diagram components. In Petri nets,
these are places, transitions, tokens, and arrows between places and transitions.
Each component is determined by its attributes.

A place is a circle whose top left corner (the corner of the bounding box) is
determined by the attributes (xPos, yPos) and its radius by the attribute radius.
A transition is a square whose top left corner is defined by the coordinate point
(xPos, yPos) and its size by the attributes width and height. A token is a circle
whose top left corner (of the bounding box) is again defined by (xPos, yPos).
Its radius is a fixed value that cannot be modified by the user. PTArrow and
TPArrow are arrows whose position is defined by its two end points, i.e. by the
two coordinate pairs (xStart, yStart) and (xEnd, yEnd)1.

Layouting means updating one or more of these attributes. For example, if an
arrow should always be aligned vertically, then the layouter would give xStart
and xEnd the same value.

3 Layout Algorithm

In this section, we give an overview of the layout algorithm. First, we describe the
input parameters of the layouter.Then we summarize what components the layout
specification consists of. As a last step, we describe the layout algorithm itself.

3.1 Input

The algorithm gets as input one or two sets of values - the old values, the user
desired values, or both. Besides that, the layouter is aware of the current state.
It knows, whether the user is in the process of modifying a component, e.g. is
currently moving a place, or already finished modification. It also knows, which
components the user changed. In addition, the layouter has access to the model
of the visual language.

Attribute Values. The algorithm gets as input the old values, the user desired
values, or both, depending on the kind of user interaction. We have to distin-
guish between three types of user interaction. The user has the possibility to add,
modify or remove components. When the user adds a component at a desired
position, the layouter gets one set of values as input - the user desired values.
When the user modifies a component, e.g. moves a place from the position char-
acterized by xPosold and yPosold to a new position xPosuser and yPosuser , the
layouter has two sets of values as input - the old values and the user desired
values. In case of deletion, the layouter gets only the old values as input.

State. The layouter is automaton-based, and hence aware of the current state
of user interaction. We distinguish between two states, the state during modifi-
cation and the state after modification2 that we treat in different ways. During
1 They can be extended by a list of bends easily.
2 During modification the model is not updated, after modification first the model is

updated and then the layouter is called.

70 S. Maier and M. Minas

modification, some layouting constraints should be satisfied immediately. The
satisfaction of other aspects may be postponed to the end of the user interac-
tion, in order to allow for a fast editor response during interaction. Suppose we
change the position of a place. While we move the component, we also want
the arrows to be updated. As the layouter is responsible for the update of the
attributes, it needs to be called several times during modification of the diagram
via user input in order to update the arrows. For example the satisfaction of the
constraint that arrows must have a minimal length may take place at the end of
user interaction.

Another aspect we take care of is the information, what component, i.e., what
attributes, the user changed. In our example we distinguish between moving
arrows and moving places or transitions. When we move an arrow, we just want
the arrow to be moved. Places and transitions remain unchanged. If we move a
place or transition, we want arrows to stay connected to these components.

3.2 Layout Specification

The layouter uses this information to calculate new values that represent the
updated diagram. To do that, it needs a layout specification. This specification
consists of a set of constraints, each of them associated with classes like Place
or PTArrow. For every constraint a list of attribute evaluation rules must be
defined. Each of the constraints and attribute evaluation rules depend on the
current state.

We may access attributes of the concrete classes. Suppose we have a con-
straint associated with the class Place. Then we may access the attribute xPos
of the class CPlace via component.xPos. As usual, we may also access at-
tributes of other objects. This can be done via the links between the objects
given in the model (Fig. 2.). Suppose we have a rule associated with an ob-
ject of the type PTArrow. Then we may access the xPos attribute of CPlace
in the form from.component.xPos.3 To keep it simple, we will omit the asso-
ciation component in expressions in the following. For example we will treat
the classes Place and CPlace as one component and omit the association be-
tween them. Hence, xPos replaces component.xPos and from.xPos replaces
from.component.xPos.

In contrast to the traditional usage of constraints and attribute evaluation
rules, we do not only have one set of attributes, but three or more sets of values.
We may access the current values of the attributes (the attributes in the current
iteration of the layout algorithm), the old values or the user desired values at any
time. We may also access intermediate results the layouter already has produced.

For example, we may access the (possibly) different values of xPos via

1. xPos: current value
2. xPosold: old value
3. xPosuser : user desired value
4. xPosn: intermediate results (xPos0 is the current value, xPos1 the value of

the previous layout iteration and so on.)
3 The syntax is similar to OCL, as specified in [5].

A Generic Layout Algorithm for Meta-model Based Editors 71

check

semantics

Diagram

[updated]

Diagram

[modified] Layout Algorithm

calculate

new

values

switch on

rules

check

constraints

update

diagram

[otherwise]

[all satisfied] [otherwise]

undo

changes

[semantics

maintained]

user

interaction

update

attribute

values

Fig. 3. Birds–eye view of the Generic Layout Algorithm

Only current values are changed during execution. All other attribute values
remain unchanged. The algorithm presented uses an iterative approach. Inter-
mediate results are created with each layout iteration.

Constraints are responsible for switching on and off attribute evaluation rules,
attribute evaluation rules for calculating the set of new values. E.g., constraint
(1) (that is associated with the class Place) switches on the rule (2) in case
xPos ≤ yPos. If this is not the case, xPos remains unchanged by this rule4.

[after modification]xPos > yPos (1)
xPos ← yPos + 5 (2)

As we explained in the last section, we also know the current state of user
interaction. We may restrict constraints and attribute evaluation rules to be
checked and executed only if we are in a special state (indicated by [state] in
front of the constraint or rule). For example, if we add [after modification] in
front of the constraint, this constraint is checked after modification. Otherwise,
this constraint is checked each time the layouter is called.

We may also add [o1 changed] in front of the constraint. This means that
the constraint is only executed if one of the attributes of the object o1 changed.
Note that an object can be changed by user interaction or by the layouter in the
previous layout iteration. [o1 changed] could be substituted by a constraint. The
corresponding rule(s) is(are) used if the constraint is not satisfied. E.g. for an
object o1 of the class Place, [o1 changed] could be substituted by the constraint
4 This is an example, not used for the layout specified later.

72 S. Maier and M. Minas

xPosold = xPos ∧ yPosold = yPos ∧ radiusold = radius.5 As we will see, the
abbreviatory notation improves readability of the layout specification.

3.3 Algorithm

The algorithm is based on the idea that we do have a set of declarative con-
straints. These constraints assure the characteristics of the layout. If all con-
straints are satisfied, the layouter terminates. If one or more constraints are
not satisfied, the layouter needs to change one ore more attributes to satisfy
the constraints. Therefore it switches on one or more attribute evaluation rules.
These rules in turn are responsible for updating the attributes, i.e., to satisfy
the constraints.

In Fig. 3 we can see a birds–eye view of the generic layout algorithm. This
algorithm is explained in the following. The layouter is called each time the
diagram has been changed via user interaction. When the layouter is called, the
set of current values consists of user desired values for the attributes changed
via user interaction, and old values for attributes the user did not change. When
the layouter is called, all potentially violated layout constraints (that need to
be checked for the current state) are checked, and the rules that were switched
on are collected. Thereafter the new values of the attributes are evaluated via
attribute evaluation.

The current values are substituted by the new values and the constraints are
checked again. (New constraints may have become unsatisfied due to changes the
layouter performed.) If all constraints are satisfied, the layouter has succeeded
and may output the new values. If not, the layouter has to evaluate the rules
again. If the layouter does not succeed after a certain number of iterations (this
number may be user defined), the layouter stops and returns the user values as
result. In this case, the layouter performs no changes.

Each time the layouter produces new values, it is checked whether the layout
algorithm maintained the semantics of the diagram or not. If this is not the case,
it undoes the changes and returns the last set of new values that were computed.

4 Layout Algorithm Used for Petri Nets

We now explore a concrete example, the layout algorithm used for Petri nets.

4.1 Constraints

Arrows, Places and Transitions. We demand that arrows start and end at
the border of transitions and places. In addition, arrows must have a minimal
length. The constraints associated with the classes PTArrow and TPArrow

[from changed] xStart = from.xPos + from.width
2 (C01)

[from changed] yStart = from.yPos + from.height (C02)
[to changed] xEnd = to.xPos + to.width

2 (C03)
[to changed] yEnd = to.yPos (C04)

5 Here we check against the current values, not the user desired values. This includes
the case, that the layouter has changed a component.

A Generic Layout Algorithm for Meta-model Based Editors 73

(xEnd,yEnd)

(xStart,yStart)
x

x

(xPos,yPos)
x

(xPos,yPos)
x

Fig. 4. Location of points

assure that arrows start and end at the top or bottom of a component6. The
point (xPos, yPos) is located in the top left corner of a component, as we can
see in Fig. 4. The points (xStart, yStart) and (xEnd, yEnd) are located at the
start and end of an arrow.

To assure that arrows have a minimal length, we introduce a constraint asso-
ciated with the classes PTArrow and TPArrow.

[after modification] (xEnd − xStart)2 + (yEnd − yStart)2 > 1000 (C05)

Tokens. We claim that tokens are completely inside a place (completely inside
the bounding box). To assure this, we add four constraints to the class Token.

[in changed] xPos ≥ in.xPos (C06)
[in changed] xPos + width ≤ in.xPos + in.width (C07)
[in changed] yPos ≥ in.yPos (C08)
[in changed] yPos + height ≤ in.yPos + in.height (C09)

4.2 Attribute Evaluation Rules

To satisfy constraints (C01-C04), we add the attribute evaluation rules (R01-
R04). These rules update start and end point of the arrow. Rules (R05-R08) are
introduced to satisfy constraint (C05). They update the location of the place or
transition. Rules (R09-R12) are added to satisfy constraints (C06-C09). They
update the position of tokens. We avoid cyclic dependencies as we use the old
values of the attributes xPos and yPos on the right side of the equation.

xStart ← from.xPos + from.width
2 (R01)

yStart ← from.yPos + from.height (R02)
xEnd ← to.xPos + to.width

2 (R03)
yEnd ← to.yPos (R04)

[from changed] to.xPos ← to.xPos1 + to.xPos1−from.xPos
|to.xPos1−from.xPos| (R05)

[from changed] to.yPos ← to.yPos1 + to.yPos1−from.yPos
|to.yPos1−from.yPos| (R06)

[to changed] from.xPos ← from.xPos1 + from.xPos1−to.xPos
|from.xPos1−to.xPos| (R07)

[to changed] from.yPos ← from.yPos1 + from.yPos1−to.yPos
|from.yPos1−to.yPos| (R08)

xPos ← in.xPos (R09)
xPos ← in.xPos + in.width − width (R10)
yPos ← in.yPos (R11)
yPos ← in.yPos + in.height − height (R12)

6 For places, width and height are internally mapped to 2·radius.

74 S. Maier and M. Minas

4.3 Sample Evaluation

In Fig. 5. we see a sample user interaction. The user moves the place from the
top left (Pict. 1 of Fig. 5) to the bottom right (Pict. 2). He does not change the
arrow. During user interaction, the layouter is called several times.

1 2 3 4 5

Fig. 5. Place movement

During movement, constraints (C01) and (C02) are not satisfied. Thus the
attribute evaluation rules (R01) and (R02) are switched on. These rules update
the attributes xStart and yStart of the arrow. The new values are calculated,
and the constraints are checked again. All constraints are now fulfilled, and the
layouter returns the new values (Pict. 3).

After movement the layouter is called again. A last time, constraints (C01)
and (C02) are not satisfied and the attributes xStart and yStart of the arrow
are updated ((R01) and (R02)).

The constraints are checked again, and this time constraint (C05) is not
fulfilled. That means that the attribute evaluation rules (R05) and (R06) are
switched on and all attributes are evaluated. These rules move the transition to
the bottom right (Pict. 4).

The constraints are checked again. Now constraints (C03) and (C04) are not
fulfilled and the values of the attributes xEnd and yEnd of the arrow ((R03) and
(R04)) are updated. All constraints are now fulfilled and the layouter outputs
the new (final) values (Pict. 5)7.

5 Implementation

In this section, we will give an overview of DiaMeta [1], the environment the
algorithm was implemented in and explain how the algorithm was integrated in
the framework. We will then examine the algorithm in terms of usability and
performance.

5.1 Integration of the Layout Algorithm in DiaMeta

DiaMeta provides an environment for rapidly developing diagram editors based
on meta-modeling. Each DiaMeta editor is based on the same editor architecture
7 These are the essential steps. Actually, the layouter needs a certain number of

increments until constraint (C05) is satisfied.

A Generic Layout Algorithm for Meta-model Based Editors 75

which is adjusted to the specific diagram language. This architecture is described
in the following. DiaMetas tool support for specification and code generation,
primarily the DiaMeta Designer are postponed to the next paragraph.

Architecture. Since DiaMeta is actually an extension of the diagram editor
generator DiaGen [6,7], DiaMeta [1] editors have a similar design like DiaGen

editors. Fig. 6 shows the structure which is common to all DiaMeta editors -
editors generated and based on DiaMeta . Ovals are data structures, and rec-
tangles represent functional components. The flow of information is indicated by
arrows. If not labeled, the information flow means reading respectively creating
the corresponding data structures.

The editor supports free-hand editing by means of the included drawing tool
which is part of the editor framework, but which has been adjusted by the Di-

aMeta Designer. With this drawing tool, the user is able to create, arrange
and modify the diagram components of the particular diagram language. Editor
specific program code, which has been specified by the editor developer and gen-
erated by the DiaMeta Designer, is responsible for the visual representation of
these language specific components. The drawing tool creates the data structure
of the diagram as a set of diagram components together with their attributes
(position, size, etc.). The sequence of processing steps necessary for free-hand
editing starts with the modeler and ends with the model checker; the modeler
first transforms the diagram into an internal model, the graph model. The re-
ducer then creates the diagrams instance graph that is analyzed by the model
analyzer. This last processing step identifies the maximal subdiagram which is
(syntactically) correct and provides visual feedback to the user by drawing those
diagram components in a certain color; errors are indicated by another color.
However, the model analyzer not only checks the diagrams abstract syntax, but
also creates the object structure of the diagrams syntactically correct subdia-
gram. For further details on these steps, please refer to [1] and [6,7].

The layouter modifies attributes of diagram components and thus the diagram
layout is based on the (syntactically correct subdiagram’s) object structure. The
layouter is optional for free-hand editing, but necessary for realizing structured
editing. Structured editing operations modify the graph model by the means
of the graph transformer and add or remove components to respectively from
the diagram. The visual representation of the diagram and its layout is then
computed by the layouter.

Framework. This paragraph completes the description of DiaMeta and out-
lines its environment supporting specification and code generation of diagram
editors that are tailored to specific diagram languages. The DiaMeta environ-
ment shown in Fig. 7 consists of an editor framework, the DiaMeta Designer
and the DiaMeta Layout Generator. The Layout Generator is the implemen-
tation of the Generic Layout Algorithm presented in this paper. The framework
that is basically a collection of Java classes, provides the generic editor function-
ality, which is necessary for editing and analyzing diagrams. In order to create
an editor for a specific diagram language, the editor developer has to provide

76 S. Maier and M. Minas

Editor user

selects
operation

reads

reads

adds/removes

modifies reads

Highlights syntactically correct sub-diagrams

Layouter
(optional)

Modeler Reducer Model
analyzer

Graph
transformer
(optional)

Drawing
tool

Diagram Graph
model

Instance
graph

Java
objects

Fig. 6. Architecture of a diagram editor based on DiaMeta

two specifications: First, the abstract syntax of the diagram language in terms
of its model, and second, the visual appearance of diagram components, the
concrete syntax of the diagram language, the reducer rules and the interaction
specification. Besides that, he may provide a layout specification, if he wants to
define a specific layouter.

Editor developer

Diagram editor

DiaMeta
editor
framework

DiaMeta
DesignerDiaMeta

Generated
program
code

EMF
Compiler

operates ECore
Modeller

ECore
Specification

operates

DiaMeta
Layout
Generator

Generated
Program
code

Editor
Specification

Layout
Specification

Fig. 7. Generating diagram editors with DiaMeta

DiaMeta can either use the Eclipse Modeling Framework [8] (DiaMeta EMF
version [1]) or MOFLON [9,10] (DiaMeta /MOF version [11]) for specifying
language models and generating their implementations. Our algorithm imple-
mentation is based on the EMF version. But with minor changes, the algorithm
may also work with the MOF version instead. A languages class diagram is

A Generic Layout Algorithm for Meta-model Based Editors 77

specified as an EMF model that the editor developer creates by using the EMF
modeller (e.g. the built-in EMF model editor of the EMF plugin for Eclipse).
The EMF compiler, being part of the EMF plugin for Eclipse, is used to create
Java code that represents the model. Fig. 2 shows the class diagram as an EMF
model. The EMF compiler creates Java classes (respectively interfaces) for the
specified classes. The editor developer uses the DiaMeta Designer for specify-
ing the concrete syntax and the visual appearance of diagram components, e.g.
places are drawn as circles, transitions as rectangles, and edges as arrows. The
DiaMeta Designer generates Java code from this specification. In addition, he
can provide a layout specification, e.g. he may indicate that arrows must have
a minimal length. The DiaMeta Layout Generator generates Java code from
this specification. This Java code, together with the Java code generated by the
DiaMeta Designer, the Java code created by the EMF compiler, and the editor
framework, implement an editor for the specified diagram language.

5.2 Usability and Performance

In the last section we described how the layout algorithm was integrated in
DiaMeta. We now examine the algorithm in terms of usability and performance.

Usability. Creating an editor with DiaMeta is very simple. The only part
the editor developer had to write by hand was the layouter. With the layout
algorithm presented in this paper, the editor developer is no longer burdened
with this task. He now only has to provide a layout specification.

We recognize that writing such a specification is still rather complicated and
complex. Therefore, we are planning to encapsulate basic functionality, as it is
done in [12], and give the user the opportunity to use these patterns (as they
are called in [12]).

Graph Pattern Containment

Pattern

List Pattern Matrix Pattern List Pattern

& Cont. Pattern

Fig. 8. Graph Pattern, Containment Pattern, List Pattern, Matrix Pattern

Actually, the first patterns have been implemented already, and it is possi-
ble to combine and extend these patterns. We can see four of these patterns in
Fig. 8. The first one is the Graph Pattern that is responsible for layouting ar-
rows, i.e., that they start and end exactly at the nodes, and that they have a
minimal length. The second one is the Containment Pattern, that is responsible

78 S. Maier and M. Minas

for moving components completely inside a surrounding component. The third
and fourth picture show the List Pattern and the Matrix Pattern. They arrange
components as a list or a matrix. The last picture shows the combined usage of
List Pattern and Containment Pattern.

In all these cases, the user simply has to specify what pattern he wants to use
on what part of the model. E.g., for the Graph Pattern, he has to specify what
component plays the role node, and what component the role edge. Of course
he has the opportunity to add some functionality or to adapt these patterns to
his own needs.

If, for any reason, the editor developer wants to use another relaxation method,
he could substitute a subset of the attribute evaluation rules by a traditional con-
straint solver, e.g. by the constraint solver QOCA [13]. He could also use a graph
layouter like yFiles [14]. Due to the modularity of the algorithm implementation
this functionality may be added in a straightforward way.

Performance. In [3], Chok et al. presented an algorithm that is based on
constraint-satisfaction. The algorithm makes use of the constraint solver QOCA
[13]. They mention that the weak point of the algorithm is performance.

Due to the incremental nature of the algorithm, we are calling the layouter
several times during user interaction. This has the consequence that an algorithm
solely based on constraint satisfaction would not be applicable. For this reason we
introduced a new algorithm. In our algorithm we provide the constraints as well
as the solution to these constraints (attribute evaluation rules), and hence layout
computation is less time consuming. Nevertheless, we will have to investigate the
applicability on a larger scale. Up to now, some implementation details result
in a rather bad performance. E.g. constraints and attribute evaluation rules are
parsed each time the layouter is called. The implementation of a “real” layout
generator is up to future work.

6 Related Work

Comparable model-driven tools, like ATOM3 [15,16] or GMF [17], offer the
possibility to use constraints for layout specification. As DiaGen supports QOCA
constraints, we gained some experiences in the past. The layout that was defined
via constraints often did not satisfy our needs. This is the reason why we came
up with a new approach.

ATOM3 introduced Event-Driven Grammars [18]. As a side effect, they can
be used to specify the layout for a visual language. As in our approach, rules in
these grammars are triggered by user actions. New values for attributes are then
calculated via attribute evaluation. Advantage of this approach is the elegant
specification via Triple Graph Grammar rules. Our algorithm is based on a
combination of constraints and attribute evaluation rules, and hence is more
expressive.

Besides the constraint-based approach, it is common to use a standard layout
algorithm, such as Hierarchical Layout or Flow Layout. E.g. the tools ATOM3,

A Generic Layout Algorithm for Meta-model Based Editors 79

GMF and Tiger [19] offer this possibility. This is primarily useful for graph-
based visual languages, such as statecharts or activity diagrams. For other visual
languages, another concept is needed. Standard layout algorithms are best suited
for static layout. Especially for a dynamic layout, which is needed in combination
with structured editing or free-hand editing, this concept is not sufficient. Some
recent work investigated dynamic graph layout. E.g. Castelló et al. presented an
algorithm for the static and interactive visualization of statecharts [20]. Purchase
et al. started to investigate the question of how important it is to preserve the
“mental map” [4], which is also essential for our work.

7 Conclusions and Prospects

The diagram editor generator framework DiaMeta makes use of meta-model-
based language specifications and supports free-hand as well as structured edit-
ing. This paper described a performant and modular layout algorithm that meets
the demands of this kind of editors. The fundamental concept of the algorithm
is attribute evaluation combined with constraint satisfaction in the sense that
constraints are used to activate particular attribute evaluation rules. This com-
bination gives the layouter a lot of flexibility - the flexibility it needs to support
free-hand as well as structured editing. By means of the example we saw that it is
possible to define a layout algorithm for diagrams that supports the user during
user interaction, and meanwhile grants the user plenty of freedom. Furthermore,
a layouted diagram is displayed at any time. The layouter starts with an initial
layout and performs minor changes to improve it. Layouting the diagram from
scratch without an initial layout is also possible, but has not been examined yet.

The next step will be to establish some case studies. Our algorithm is not
restricted to graph-based visual languages. Hence we will examine the applica-
bility of our algorithm to graph-based as well as other visual languages. In this
context we will examine performance in more detail.

Up to now constraints are defined by a very simple syntax. The next step
will be to use OCL constraints instead, as they are defined in [5]. This extension
should be feasible without major changes. Then it will be possible to use the
OCL implementation for EMF [21] and use EMF for both, the model definition
and the layout specification.

For our algorithm, we specify models via EMF. We plan to use the algorithm
for the MOF version [11]. The integration of the layout algorithm into the MOF
version should be straightforward. But as the MOF version of DiaMeta is still
in a rather experimental stage, it was not done yet. We want to benefit from
the additional concepts this version offers, e.g. redefinement of associations [22].
We also plan to include the layout algorithm into other model-driven tools, for
example into GMF [17].

Another challenge we are going to research is the idea that the layouter may
“learn” how to change the diagram in order to fulfill the requests of the user.
This would mean that the specification could be shortened, and the editor would
take care of all remaining matters. But until now, this is just imagination.

80 S. Maier and M. Minas

References

1. Minas, M.: Generating Meta-Model-Based Freehand Editors. In: Electronic Com-
munications of the EASST, Proc. of 3rd International Workshop on Graph Based
Tools (GraBaTs 2006). Satellite event of the 3rd International Conference on Graph
Transformation, Natal, Brazil (2006)

2. Jung, M.: Ein Generator zur Entwicklung visueller Sprachen. PhD thesis, Univer-
sität Paderborn, Germany (2006)

3. Chok, S.S., Marriott, K., Paton, T.: Constraint-Based Diagram Beautification. In:
VL 1999: Proceedings of the IEEE Symposium on Visual Languages, Washington,
DC, US. IEEE Computer Society, Los Alamitos (1999)

4. Purchase, H.C., Hoggan, E., Görg, C.: How Important is the ”Mental Map”? –
an Empirical Investigation of a Dynamic Graph Layout Algorithm. In: Kaufmann,
M., Wagner, D. (eds.) Graph Drawing, Karlsruhe, Germany, pp. 184–195. Springer,
Heidelberg (2007)

5. OMG: Object Constraint Language (OCL) Specification, Version 2.0 (2006)
6. Minas, M.: Concepts and Realization of a Diagram Editor Generator Based on

Hypergraph Transformation. Science of Computer Programming 44(2), 157–180
(2002)

7. Minas, M.: VisualDiaGen – A Tool for Visually Specifying and Generating Vi-
sual Editors. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS,
vol. 3062, pp. 398–412. Springer, Heidelberg (2004)

8. Budinsky, F., Brodsky, S.A., Merks, E.: Eclipse Modeling Framework. Pearson
Education, London (2003)

9. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: MOFLON: A Standard-
Compliant Metamodeling Framework with Graph Transformations. In: Rensink,
A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 361–375. Springer,
Heidelberg (2006)

10. OMG: Meta Object Facility (MOF) Core Specification, Version 2.0 (2006)
11. Minas, M.: Generating Visual Editors Based on Fujaba/MOFLON and DiaMeta.

In: Giese, H., Westfechtel, B. (eds.) Proc. Fujaba Days 2006, Bayreuth, Germany,
pp. 35–42 (2006)

12. Schmidt, C.: Generierung von Struktureditioren für anspruchsvolle visuelle
Sprachen. PhD thesis, Universität Paderborn, Germany (2006)

13. Marriott, K., Chok, S.S.: QOCA: A Constraint Solving Toolkit for Interactive
Graphical Applications. Constraints 7(3-4), 229–254 (2002)

14. Wiese, R., Eiglsperger, M., Kaufmann, M.: yFiles: Visualization and Automatic
Layout of Graphs. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) Graph Drawing,
Vienna, Austria, pp. 453–454. Springer, Heidelberg (2002)

15. de Lara, J., Vangheluwe, H.: AToM3: A Tool for Multi-formalism and Meta-
modelling. In: FASE 2002: Proceedings of the 5th International Conference on Fun-
damental Approaches to Software Engineering, London, UK, pp. 174–188. Springer,
Heidelberg (2002)

16. Dubé, D.: Graph Layout for Domain-Specific Modeling. Master’s thesis, McGill
University, Montréal, Canada (2006)

17. Eclipse Consortium: Eclipse Graphical Modeling Framework (GMF) (2007),
http://www.eclipse.org/gmf/

18. Guerra, E., de Lara, J.: Event-Driven Grammars: Towards the Integration of Meta-
modelling and Graph Transformation. In: ICGT, pp. 54–69 (2004)

http://www.eclipse.org/gmf/

A Generic Layout Algorithm for Meta-model Based Editors 81

19. Ehrig, K., Ermel, C., Hänsgen, S., Taentzer, G.: Generation of Visual Editors as
Eclipse Plug-Ins. In: ASE 2005: Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, pp. 134–143. ACM Press, New
York (2005)

20. Castelló, R., Mili, R., Tollis, I.G.: A Framework for the Static and Interactive
Visualization of Statecharts (2002)

21. Damus, C.W.: Implementing Model Integrity in EMF with OCL. Eclipse Corner
Articles (2007)

22. Amelunxen, C., Bichler, L., Schürr, A.: Codegenerierung für Assoziationen in MOF
2.0. In: Proceedings Modellierung 2004, Bonn, Gesellschaft für Informatik. Lecture
Notes in Informatics, vol. P-45, pp. 149–168 (2004)

Domain Specific Languages with Graphical and
Textual Views

Francisco Pérez Andrés1, Juan de Lara1, and Esther Guerra2

1 Polytechnic School, Univ. Autónoma de Madrid, Spain
{francisco.perez,jdelara}@uam.es

2 Computer Science Department, Univ. Carlos III de Madrid, Spain
eguerra@inf.uc3m.es

Abstract. We show our approach for the definition of Domain Specific
Languages integrating both graphical and textual views. The approach
is based on the meta-modelling concepts provided by the AToM3 tool.
In this way, the language designer starts building the meta-model of the
complete language. Then, he can select (possibly overlapping) submodels
of the meta-model to define the different diagram types (i.e. language
viewpoints). By default, the viewpoint is assigned a graphical concrete
syntax, although a textual one can also be given. This is performed by
selecting (or creating) triple graph grammar rules to translate from the
viewpoint meta-model to a DSL called Textual that contains the most
common elements of textual languages (such as expressions or operators).
From a Textual model, a parser is automatically generated, where the
semantic actions of the EBNF grammar are graph grammar rules, derived
from the viewpoint meta-model. In this way, the parsing results in a
model conformant to the viewpoint meta-model, which can be seamlessly
integrated with other graphical and textual views.

1 Introduction

Domain Specific Languages (DSLs) are becoming increasingly popular in order
to capture high-level, powerful abstractions of well-studied application domains.
They are at the core of recent software engineering paradigms, like Model Driven
Development. In this paradigm, models are the primary asset, from which code
is generated, and DSLs are frequently used in order to configure the variable
part of the final application. Specialized formalisms also proliferate in areas like
modelling and simulation [7].

The increasing complexity of the systems to be described makes a common
practice to split their specification into smaller, more comprehensible parts that
use the most appropriate notation. We call Multi-View DSLs [8] to DSLs which
are made of a family of graphical and/or textual notations each one of them used
to describe the system under a different perspective or viewpoint. A prominent
example of this kind of languages is the UML (but for a broader domain) [23].

In many cases, the multi-view language contains some portions that are more
naturally expressed using text, while some others are inherently graphical. For

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 82–97, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

DSLs with Graphical and Textual Views 83

example the UML meta-model contains parts that are graphical (e.g. the portions
corresponding to state machines or sequence diagrams), while others are more
suitable for a textual representation (e.g. the part dealing with action semantics).
Moreover, UML diagrams are usually enriched with constraints expressed in the
textual language OCL [23], also defined through a MOF compliant meta-model,
which in fact can be thought as a part of the UML infrastructure meta-model.

The meta-modelling tool AToM3 [4] allows the description of Domain Specific
Visual Languages (DSVLs) by means of meta-modelling and their manipulation
by means of graph transformation. It has been recently enhanced in order to
enable the definition of multi-view DSVLs [10]. This is done by first defining
the meta-model of the complete language, and then selecting submodels of it
(i.e. defining projections), corresponding to different viewpoints. The concrete
syntax of the viewpoints (i.e. the visualization) is given by assigning graphical
icons to each element in the meta-model.

In this paper we present an improvement to this approach with the possibility
of defining textual views. Following the meta-model centric approach of AToM3,
this is done by translating the meta-model of the viewpoint into a DSVL that we
call Textual (by means of a Triple Graph Transformation System, TGTS). This
language contains the main concepts for the specification of textual concrete
syntax, such as expressions, operators or functions. From a Textual model, a
parser is automatically derived that, given a textual specification, generates a
model conformant to the original viewpoint meta-model. This is done by means
of semantic actions which are indeed graph transformation rules derived from
the meta-model. This is similar to the classical concept of pair grammars [20].
From these specifications, a customized environment is generated that allows the
creation of instances of the different (graphical or textual) viewpoints. The tool
creates a repository (an instance of the complete language meta-model) in the
background that contains the gluing of all the views the user has created. In this
way, both the textual and the graphical views can be seamlessly integrated for
later manipulations.

Paper organization. Section 2 introduces TGTSs. Section 3 overviews our ap-
proach for the definition of multi-view DSVLs. It introduces an example that is
used throughout the paper, a DSL for object-oriented simulation [7]. Section 4
shows our approach for adding textual concrete syntax to meta-models, and
for adding textual views to multi-view languages. Section 5 enhances the previ-
ous example with textual views. Section 6 compares with related research and
section 7 ends with the conclusions.

2 Triple Graph Transformation

Graph transformation [6] is being intensively used for in-place transformations,
like model animation and refactoring. In model-to-model transformation, a source
model conforming to a source meta-model is transformed into a target model con-
forming to a different meta-model. For this kind of transformation, it is usually
preferred a means to cleanly separate source and target models (as well as the
meta-models), which allows establishing mappings between both models.

84 F.P. Andrés, J. de Lara, and E. Guerra

Triple graph grammars (TGGs) [22] were invented by Andy Schürr as a
means to translate and synchronize two different graphs (called source and
target graphs) related by an intermediate graph (the correspondence graph).
The nodes in the correspondence graph have morphisms to nodes in the source
and target graphs. This structure is called triple graph and is represented as
G = (Gs ← Gc → Gt). TGG rules allow rewriting triple graphs, and are useful
for model-to-model transformation, allowing incrementality and a certain de-
gree of bi-directionality. This is possible as, starting from high-level, declarative
TGG rules (like a creation grammar for a triple graph language) it is possible
to derive so called operational rules with different purposes: source-to-target or
target-to-source translation, incremental updates or model synchronization [15].

In [9] we used the idea of TGGs with a more advanced graph concept, demon-
strating that it forms an adhesive HLR category and thus can be used with the
DPO approach to graph transformation [6]. In particular, we allow morphisms
from nodes in the correspondence graph to reach nodes or edges in the other
two graphs, or to be undefined. We also introduced the concept of meta-model
triple, which allows typing a triple graph. We took advantage of the inheritance
hierarchy (of nodes and edges) in the meta-model triple to define abstract rules,
where an element in a rule can get instantiated with elements in the host triple
graph having a concrete subtype of the original element’s classifier.

In this paper, we use TGG rules, but we are not interested in bi-directionality,
thus we work with operational rules. In order to avoid confusion we call these
systems Triple Graph Transformation Systems (TGTSs). As an example, Fig. 1
shows a TGTS rule. The rule checks for a top-class (i.e. with no superclass,
controlled by NAC1) in one of the graphs of the triple graph. If it is not re-
lated to an Abstract Expression instance in the other graph (NAC2), it cre-
ates one with the same name related with the class through a node of type
Class2AbstractExpression in the correspondence graph.

c:Class

Concrete
Syntax

Corr.
Graph

name = y

c:Class

abstract = true
name = y

c:Class

abstract = true

:Class
name = y

Textual

abstract = true
name = y

c:Class

abstract = true
(Abstract
Syntax)

Model
DSL Meta−

:Class2AbstractExpression:Class2AbstractExpression

NAC

name = y

:Abstract_Expression

name = y

:Abstract_Expression

LHS RHS1NAC 2

Fig. 1. Example TGTS Rule

3 Multi-view DSVLs in AToM3

This section presents an overview of the AToM3 approach for defining multi-view
DSVLs. In the first step, the designer defines the complete language meta-model,
and gives a graphical concrete syntax to its elements (i.e. icon-like appearance
to classes and arrow-like to associations). Then, he defines the different view-
points (diagram types) of the language. For each viewpoint, the multiplicity (i.e.

DSLs with Graphical and Textual Views 85

number of allowed diagrams of this type) as well as the meta-model should be
specified. The latter must be a submodel of the complete meta-model. Thus,
viewpoints are projections of the global meta-model containing a part of the
classes, associations and attributes of classes and associations in it. A differ-
ent concrete syntax (that overwrites the one given when defining the complete
language meta-model) can be assigned to the elements in the viewpoint, and ad-
ditional constraints can be given. Overlapping of different viewpoints is allowed,
and consistency mechanisms based on TGTSs are provided by the tool [8]. A
special viewpoint called “repository” contains the whole meta-model and is used
for consistency checking purposes.

Fig. 2 shows the definition of a multi-view DSVL in the object-oriented contin-
uous simulation domain (i.e. a continuous simulation language, CSL). This kind
of languages is made of classes representing entities in the system under study.
Classes in a CSL may have properties, whose time evolution is specified by some
simulation formalism. Traditionally, this specification has been made with tex-
tual equations. In our example CSL, the evolution is specified by combining state
automata and textual equations. Window 1 at the background in Fig. 2 shows
its complete meta-model, which defines simulation classes (class CSL Class) that
can be connected through binary associations (association CSL association) and
may form inheritance hierarchies (through association CSL parent). Associations
in our CSL have role names and multiplicities for the endpoints. CSL Classes
may have properties (i.e. attributes, class CSL Property) with a name, a type
and an initial value.

The behaviour of classes (abstract class CSL Behaviour) may be represented in
the form of state machines (CSL StateAutomaton) or equations (CSL Equation).
State automata contain states related through transitions that can be fired when
one boolean property of the corresponding class becomes true. Equations are made
of a left and a right hand side, both containing expressions (abstract class CSL
Expression) made of binary operators (CSL BinOperator), functions with two
(CSL Function2Parameters) or three parameters (CSL Function3Parameters),
class properties and numeric values (CSL Value). Operators and functions have an
enumeration attribute value with the possible operators and functions. We have
included common arithmetic binary operators like “+”, “-”, “*” and “/”. For func-
tions with two parameters, we have included as an example the “integral” func-
tion, which takes two expressions representing the initial value and the expression
to be integrated. For functions with three parameters, we have included “instate”,
which returns one of two expressions depending if the class is in a certain state
(defined by a state machine), given by the third parameter.

The tool shown in window 2 of Fig. 2 allows the declaration of the DSVL
viewpoints. For the example, we have declared four viewpoints to describe the
structure (classes, inheritance relations, associations and references to the behav-
iours they implement), the class properties, the state machines and the equations.
Arrows from each viewpoint to the repository viewpoint contain automatically
generated TGTS rules that will be used in order to build the latter from the view-
point instances in the generated environment. Arrows from the repository to the

86 F.P. Andrés, J. de Lara, and E. Guerra

Fig. 2. Defining a Multi-View DSVL

viewpoints contain TGTS rules that propagate changes from the repository to
the views when necessary. Thus, the working scheme of the final multi-view en-
vironment is similar to the model-view-controller pattern. Window 3 shows the
attributes assigned to the structure viewpoint, such as its name and multiplic-
ity (minCardinality and maxCardinality). One of the attributes is the viewpoint
meta-model (shown in window 4), which is a submodel of the whole meta-model
in window 1.

Fig. 3 shows (in window 1) the generated environment from the previous
definition, which allows building instances of the defined viewpoints. For ex-
ample, windows 3 and 4 show the editing of a state machine and an equation,
respectively. Note that in the equation model we use class CSL Property without
attributes pr type and initial value, as these make sense when declaring the prop-
erties but not when using them. Moreover, the name of a property is keyword
(i.e. unique value) in property diagrams but not in equation diagrams or in the
repository. The reason is that the properties of a class are declared in property
diagrams – the fact that only one class can be included is a constraint of the
viewpoint – and names should be unique. On the contrary, in the repository,
different classes may have equal names for attributes. Moreover, in one equation
the name of a property can be referenced several times. Note also that in the
equations viewpoint, we have changed the visualization of states and properties
with respect to other viewpoints.

DSLs with Graphical and Textual Views 87

Fig. 3. Generated Multi-View Environment

Notice that in order to describe an equation a much more natural approach is
to use a textual notation. Next section presents an improvement to the previous
ideas in order to define multi-view DSLs supporting also textual viewpoints.

4 Specifying Viewpoints with Textual Concrete Syntax

This section presents our approach for providing a textual concrete syntax to
meta-models. The overall architecture is shown in Fig. 4. The DSL designer
starts by defining the language structure by means of a meta-model in step 1. If
he wants to assign the DSL (or some of its viewpoints) a textual concrete syntax,
he follows steps 2-9. With this purpose, we have defined a DSL called Textual
with the most common concepts of textual languages (see section 4.1). In order
to create a textual concrete syntax, a model conformant to the Textual meta-
model should be provided (step 4 in the figure), together with a mapping to the
DSL meta-model. This can be seen as annotations (expressed in Textual) for the
DSL meta-model elements in order to produce the parser. This is similar to the
concept of model marking proposed by the MDA [17]. The designer can either
build the Textual model manually (together with mappings to the meta-model)
or it can be automated with the help of predefined transformations (steps 2
and 3 in the figure) in the form of TGTSs (see section 4.2). In both cases,
the target Textual model contains mappings to the DSL meta-model elements
from which the textual elements are derived. For this we use the concept of
TGTS explained before. Once the textual model is obtained, an EBNF grammar
for PLY (a lex-yacc parsing tool for Python)[19] is generated (step 5) using a
code generator we have built (see section 4.3). The grammar contains semantic

88 F.P. Andrés, J. de Lara, and E. Guerra

actions which are graph grammar rules derived from the original meta-model.
From the EBNF specification, PLY generates a parser (step 6). In the generated
environment, a textual program can be input (step 7), and once parsed, a model
is produced (step 9) conformant to the original DSL meta-model by using the
semantic actions (step 8).

Fig. 4. Architecture for Assigning Textual Concrete Syntax to Meta-Models

Rationale of the Approach. The proposed process is very different from
the one for textual languages, where the starting point is the definition of an
EBNF grammar. On the contrary, we follow a meta-model centric approach,
more in the style of the MDA paradigm [17], where the EBNF grammar is
automatically generated from a higher-level model. According to [14], a number
of arguments can be given to support this approach. First, in DSL engineering,
one usually starts by working in the DSL abstract syntax, i.e., the meta-model.
Later, it is decided whether a graphical or textual concrete syntax (or both) is
appropriate. Starting with an EBNF from the beginning means starting from
the concrete syntax. Second, the structure of the abstract syntax tree (AST)
produced from parsing is not usually formally defined. This presents problems if
such AST has to be integrated with a multi-view DSL, where other viewpoints
are conformant to a meta-model. Certainly, we could leave the DSL designer to
write the EBNF grammar (this in fact can be done in our approach by manually
modifying the grammar produced in step 5). However, our aim is to provide
higher-level mechanisms and automate the process, so that ideally, the DSL
designer only has to “push a button” to obtain the textual concrete syntax (i.e.
all steps in the definition of the DSL in Fig. 4 are automatic).

The remaining of this section explains these steps in detail. First, subsec-
tion 4.1 introduces our Textual DSL. Subsection 4.2 explains the automation

DSLs with Graphical and Textual Views 89

of the transformation from a meta-model into a Textual model. Subsection 4.3
explains how the parser is generated. Finally, subsection 4.4 shows how these
ideas have been integrated with our multi-view approach.

4.1 The “Textual” DSL

The main idea for providing a textual concrete syntax to a DSL is to associate
a Textual model to the DSL meta-model. The Textual DSL contains the most
common concepts of textual languages. Its meta-model is shown in Fig. ?? and
also considers the requirements for building a parser, e.g. the need for a grammar
axiom and the representation of the elements making a textual expression (tokens
in the parser), which are instances of Regular Expression subclasses.

Grammar_Specification

−name:string
Sequence

*

{ordered}

Abstract_Expression

−name:string

1..* {ordered}

sentences

*

expressions

Expression

Concrete_Expression type

Operator

−type:{prefix, infix, suffix}

−associativity:{left,right,nonassoc}

Predicate

Function

−position:{in,out}

−args_num:int

{ordered}

args

Unary

Binary

arg2

arg1

arg

*

Precedence

−type:{smaller,equal,greater}

Association associates

Fixed RE

−rexp:regularExpression

−case_sensitive:bool

*

ignored_symbols

seq_delimiter

initial_symbol

final_symbol

oexpression

f_final_symbol

f_delimiter

f_initial_symbol

Regular Expression
1.. pexpression

String RE

Boolean RE

Identifier RE

Integer RE

Real RE

Fig. 5. Meta-Model of the Textual DSL

A valid Textual model consists of a unique instance of class Grammar Specifica-
tion, which specifies a name for the textual syntax, and represents the axiom in
the textual parser; a set of symbols to be ignored in the parsing process such as
spaces or tabs (ignored symbols relation); and an ordered sequence of Sequence
objects. These represent a sequence of expressions detached by a delimiter, given
by a fixed regular expression (Fixed RE, through association seq delimiter). Ex-
pressions can be concrete (Concrete Expression, an abstract class) or abstract
(Abstract Expression). The latter can group different Concrete Expressions un-
der the same type. Concrete Expressions can be Predicates or Operators, and are
always represented by Regular Expressions, but Operators have always a fixed rep-
resentation (Fixed RE). Depending on the number of arguments, an Operator can
be Unary, Binary or Function. Moreover, it is possible to specify the operator’s

90 F.P. Andrés, J. de Lara, and E. Guerra

precedence, associativity (left, right and nonassoc), and its location with respect
to operands (prefix, infix, suffix). Operands are instances of Expression or of its
subclasses. Predicates are represented by one or more predefined Regular Expres-
sions (i.e. concrete subtypes of it). Note that it is a parser requirement that there
is only one instance of each type of Regular Expression, apart from Fixed RE. How-
ever, that does not mean that it is only possible to assign one different subtype of
Regular Expression to each different Predicate.

4.2 Transformation into “Textual”

The process of generating the Textual model associated to the DSL is shown in
steps 2 and 3 of Fig. 4. In step 2 the designer selects a Textual transformation
among the ones predefined in the data-base. This data-base can be extended
with new transformations. These can be adapted to better fit the source meta-
model and consist of a set of TGTS rules, appropriate for different kinds of
languages. In step 3, the application of the transformation results in the Textual
model associated with the DSL meta-model through a correspondence graph.

By now, we have defined two kinds of transformations. The first one is a
generic transformation called Constructor/Connector, which for each class cre-
ates a constructor function with as many arguments as attributes the class has
(the textual language it generates is similar to HUTN-like languages [11], see
section 6). The result of these functions is stored in variables. For each associ-
ation (i.e. connection) another function is created with two arguments for the
source and target and an extra one for each attribute the association has.

The second transformation is specific for languages containing expressions
composed of operands and operators (e.g. mathematical or logical expressions,
like the meta-model of the equation viewpoint in the example). Expressions
can be seen as hierarchical trees, where leaves contain the relevant data in a
particular attribute. In the case of operators, the relevant attribute contains
the allowed operators (a single value or an enumeration type). In the case of
operands, the type of the attribute gives us the kind of operand. These classes
can also have connections with other classes (usually the root expression class),
which determine whether they are considered predicates (zero connections) or
operators (one or more connections).

This way, this second transformation creates Abstract Expressions for each ab-
stract class which is not a leaf of the hierarchical tree, and Predicates, Unary Op-
erators, Binary Operators or Functions, depending on the number of output con-
nections. These languages frequently associate expressions, so we have included
a rule to generate an instance of Association over the main Abstract Expression.

We now show some sample rules for this transformation. For clarity, we have
used a simplified concrete syntax for the DSL meta-model and not the abstract
syntax of the UML meta-model (e.g. we include inheritance relations, instead of
meta-class “generalization” and so forth). The first rule was shown in Fig. 1 and
creates an abstract expression in the Textual model for each abstract class in
the DSL meta-model. The upper rule in Fig. 6 creates a unary operator for each
class in the DSL meta-model which has a unique association (NAC1) and which

DSLs with Graphical and Textual Views 91

is the child of a class related to an abstract expression. The rule at the bottom
creates a semantic action (i.e. a graph grammar rule) for each possible value of
the unary operator (i.e. for each value of its x property). Each semantic action
is associated to the mapping in the correspondence graph, and identified by
attribute order. The rule implementing the action semantics has been depicted
using a compact notation with its LHS and RHS together (the created elements
are marked as “{add}”). It creates an instance of the class “y” (i.e. the class
with role unary operator), and initializes the value of the attribute (named x).
Moreover, the generated semantic action also connects the unary operator to
the appropriate object (an instance of the class connected with class “y”). The
semantic actions, stored in the correspondence graph nodes, will be used to build
the parser. An example of generated semantic action is shown in Fig. 9(b). Note
that in the correspondence graph, we may have nodes with attributes as well
as relations between them. Therefore the implicit mappings of transformation
language proposals like QVT [21] are not enough for us.

name = x

c0:Class

: type
:Unary

Attribute Condition

LHS

proc = p+1

a :Association

name = y

c2:Class

abstract = false

C
o

rr
.

G
ra

p
h

D
S

L
 M

et
a−

M
o

d
el

(A
b

st
ra

ct
S

yn
ta

x)
T

ex
t.

C
o

n
c.

S
yn

ta
x

proc = p

name = v

LHS

name = x

c0:Class

associativity = left

:Unary

type = infix

: type

name = y

c2:Class

abstract = false

RHS

ae:Abstract_Expression

name = y

c2:Class

abstract = false

:Class

name = y

c2:Class

abstract = false

c1:Class

name = x

c1:Class

c0:Class

c1:Class c1:Class

T
ex

tu
al

C
o

n
cr

et
e

S
yn

ta
x

C
o

rr
es

p
.

G
ra

p
h

associativity = left

u :Unary

type = infix

name = x

pr:Property

type = enum
value = w

: attribute
name = y

c1 :Class

abstract = false

name = x

RHS

ae:Abstract_Expression

name = x

associativity = left

u :Unary

type = infix

name = x

pr:Property

type = enum
value = w

: attribute
name = y

c1 :Class

abstract = false

ae:Abstract_Expression

a :Association

name = x

name = z

c2 :Class

name = z

c2 :Class

name = v

GGname = y+str(p)
order = p

:v

Semantic Action
Rule y+str(p)

:z

{add}

:y

p<len(w)

D
S

L
 M

et
a−

M
o

d
el

(A
b

st
ra

ct
S

yn
ta

x)

x = w[p]

proc = 0

:SemanticAction
ConcreteExpression
c2c :Class2

ConcreteExpression
c2c :Class2

ConcreteExpression
:Class2

AbstractExpression
c2a:Class2

ConcreteExpression
:Class2

AbstractExpression
c2a:Class2

AbstractExpression
c2a:Class2

NAC1 NAC2

Fig. 6. Some TGTS Rules for Translating DSLs with Expressions

In general, it is not possible to ensure that the generated Textual model has
all the necessary information to generate the parser. The transformation only
guarantees that a valid instance of the Textual meta-model is created, with valid
mappings to the DSL meta-model. It usually needs to be completed by hand
with some details, e.g. to define the precedence between operators.

4.3 Generating the Parser

We generate a PLY parser specification [19] from the Textual model in three
steps. The first one builds the lexer specification, which recognizes the elements of
the language. It deals with the subclasses of Regular Expression. For each existing
Fixed RE, a token with its regular expression is added to the lexer, except for the
ones connected with an ignored symbols association. Two new tokens with values

92 F.P. Andrés, J. de Lara, and E. Guerra

True and False are created if the Boolean RE class is instantiated. Finally, the
instantiation of the remainder regular expressions generates specific functions to
recognize every token of their respective data types.

The second step generates the EBNF rules for the parser specification. It
starts processing the Grammar Specification object, for which a rule dealing
with the ordered sequence of expressions is produced. Afterwards, sequences are
processed regarding the delimiter symbol between their expressions. These sym-
bols are tokens previously generated in step one. Next, every Abstract Expression
is evaluated taking into account its different types of connections. If it has one
associates relation, it means that the Abstract Expression allows associativity,
so a new rule with the association tokens surrounding the Abstract Expression
is created. If it has a type relation, there is at least one Concrete Expression
associated with this Abstract Expression, and a rule is generated depending on
the type of the Concrete Expression. If it is a Predicate, the token associated
with it (the Regular Expression connected through pexpression relation) is in-
cluded in the rule. If it is an Operator, the rule is composed of the associated
token through the oexpression relation, and the different expressions associated
by means of arg relations. The order of the arguments in the rule depends on
the parameters of the Operator instance.

In the third step, the semantic actions are appropriately invoked. The rules
created for relation type on Abstract Expressions take semantic actions associated
with their execution. The semantic actions are graph grammar rules which were
derived during the transformation into Textual (see section 4.2) and stored in
the correspondence graph. Hence, these graph grammar rules build the abstract
syntax of the DSL when the parser processes a textual program.

4.4 Extending AToM3 to Support Textual Viewpoints

We have integrated the described ideas for adding textual concrete syntax to
meta-models with our multi-view approach. In this way, when defining a multi-
view DSL, we can declare the different kinds of views shown in the meta-model in
Fig. 7: graphical and textual viewpoints and semantic views. The latter are used
as a semantic domain for analysis by defining a TGTS and some analysis meth-
ods [8]. Viewpoints have consistency relations (view consistency association),
usually between each defined viewpoint and a special viewpoint called reposi-
tory (see section 3). In the present work, we have extended the meta-model with
class TextualViewpoint, which adds attributes textualModel and transfGrammar.
The former is a triple graph that relates the viewpoint meta-model and the
textual model. The latter is a TGTS that generates such triple graph.

The “Views” tool shown in window 1 of Fig. 8 has been generated from the
previous meta-model by using the AToM3 code generation capabilities (i.e., the
model in this window conforms to the meta-model in Fig. 7). The generated tool
was completed with hand-made code, and integrated into AToM3 itself.

DSLs with Graphical and Textual Views 93

Viewpoint

+ViewMetaModel:MetaModel

+properties:Attribute[*]

+ViewAppearance:Appearance

+minCardinality:String

+maxCardinality:String

View

+name:String

SemanticView

+ViewMetaModel:MetaModel UNION String

*

*

view_consistency

+name:String

+grammar:TGTS

AnalysisMethodCall

+name:String

+preProcess:Text

+methodCall:Text

+postProcess:Text

+backAnnotation:TriplePattern

+description:String

1..* *

analysis

+name:String

+grammar:TGTS

TextualViewpoint

+transfGrammar:TGTS

+textualModel:TripleModel(ViewMetaModel, Corr, Textual)

GraphicalViewpoint

Fig. 7. Meta-Model with the Different kinds of Views of Multi-View DSLs

Fig. 8. Defining a Multi-View DSL with Graphical and Textual Viewpoints

5 Adding Textual Viewpoints to the Example

In this section, we improve the example of section 3 in order to consider textual
views for the equations and the properties diagrams. Fig. 8 shows a screenshot

94 F.P. Andrés, J. de Lara, and E. Guerra

during the environment definition process. Window 1 at the background shows
the “Views” tool, where two textual views (CSL Properties and CSL Equations)
have been defined. Window 2 shows the attributes defined for viewpoint CSL E-
quations. Window 3 shows the Textual model automatically generated from the
viewpoint meta-model, using the predefined TGTS for expression-like languages.

Fig. 9 shows a small excerpt of the PLY code (generated from the Textual
model of the equations viewpoint), together with the visual representation of
the graph grammar rule associated with the EBNF rule that handles the “+”
binary operator. The semantic action of the EBNF rule contains a call to the
graph grammar rule, which receives two CSL Expression objects (labelled 1 and
2) as parameters. These parameters are assigned the two CSL Expression objects
from the RHS of the EBNF rule (p[1] and p[3]). The EBNF rule returns the
created binary operator by the graph grammar rule (ret[3]).

Finally, Fig. 10 shows a part of the generated environment, in particular the
control dialog associated with the textual view for the equations. It shows the
textual syntax of the model shown in window 4 of Fig. 3.

6 Related Work

This paper greatly improves our previous work in [5], where we proposed a trans-
formation from the DSL meta-model to a much lower-level meta-model than the

...
reserved_map = {}
tokens = ()
INTGRL
tokens+=(’INTGRL’)
t_INTGRL = r’INTGRL’
reserved_map[r’Intgrl’]=’INTGRL’
...
TX_type: TX_Binary
def p_CSL_Expression_3(p):
 ’CSL_Expression: CSL_Expression PLUS CSL_Expression’

 [(1,p[1]), (2,p[3])])
 p[0]=ret[3]
...

 ret=CSL_BinOperator1.exec(at3,at3.ASGroot,

(a)

:CSL_left :CSL_right

:CSL_BinOperator

1 2

:CSL_Expression

3

value = "+" {add}

:CSL_Expression

(b)

Fig. 9. (a) Excerpt of the Generated PLY EBNF Rules (b) “CSL BinOperator1” Rule

Fig. 10. Editing a Textual View in the Generated Environment

DSLs with Graphical and Textual Views 95

one shown in Fig. 5. In the present work, we have different predefined trans-
formations depending on the source DSL. These transformations are expressed
using TGTSs, and the semantic actions are graph grammar rules, automati-
cally derived. Finally, the approach is integrated in a general framework for the
definition of multi-view DSLs with graphical and textual views.

Many researchers have studied the problem of converting programs to models
and vice versa. Note however that most of them are targeted to single-view DSLs.
For example, in [1], an algorithm is given for converting in the two directions,
but it is not adaptable to the source DSL. The work of [12] is similar to ours,
as they define a textual DSL called TCS for defining the concrete syntax of
meta-models. TCS is made of a number of templates, similar to the concepts in
our Textual DSL. Whereas TCS specifications are written by hand, and may get
complicated when the meta-model is not a tree, we provide TGTS rules for the
partial automation of this task. Their approach is bidirectional, while this is up
to future work in our case.

MontiCore [16] allows an integrated definition of abstract and textual con-
crete syntax by textual grammars enhanced with meta-modelling concepts like
associations between nodes and inheritance. This approach does not use explicit
meta-models and, as its target are textual DSLs, it could be difficult to integrate
with languages combining graphics and text.

In [14], the DSL meta-model is transformed into a Parse Model (PM), a lower-
level meta-model that contains auxiliary elements, e.g. to represent references. A
transformation is given to derive EBNF rules from the PM. This transformation
can be tuned by defining a property file. While the approach is similar, the
intermediate model we use is conformant to the Textual DSL, which provides
annotations on the roles the original meta-model elements have to play in the
EBNF grammar. This is partially done in [14] by using the property file. Also,
we provide different TGTSs to handle different kinds of meta-models, depending
also on the intended style of the final textual concrete syntax.

Other approaches [18] are based on the UML Human-Usable Textual Notation
(HUTN) [11]. HUTN was designed to provide a user-friendly textual syntax to
MOF models, and can be configured in a limited way by creating instances of the
HutnConfig meta-model. Our approach is more flexible, allowing a higher degree
of customization to the source DSL by an explicit definition of a TGTS library
from which the Textual models are generated. In fact, one of our TGTSs is able
to generate HUTN-like textual notations. Finally, in [13] an EBNF approach was
used to define both the textual and the graphical views.

A related issue is the consistency of code and models, which is treated using
distributed graph transformation in [3]. In our case, issues regarding the updating
of a textual view, and the subsequent modification of the underlying model (and
the repository) are subject to further investigation.

According to [2], our approach can be seen as a bridge between the modelware
and the grammarware technical spaces. This way, we can see our TGTSs as
projectors at the M3 level, since the transformations are defined at the meta-
metamodel level.

96 F.P. Andrés, J. de Lara, and E. Guerra

A hot topic in Model-Driven Development is the QVT language (Queries/
View/ Transformation) [21]. Instead, we have used TGTSs due to its formal
nature, because it allows more control of the mappings (i.e. the correspondence
graph is a real graph), and also as it allowed to reuse the transformation engine
of AToM3.

7 Conclusions and Future Work

We have presented our approach to the definition of multi-view DSLs with graph-
ical and textual views. A meta-model of the whole language has to be defined,
and then submodels of it have to be selected for the different viewpoints. In
the case of a textual view, the viewpoint meta-model is transformed into a Tex-
tual model, from which a parser is automatically derived and integrated with
the generated multi-view DSL environment. The translation into Textual is au-
tomated using TGTS rules, and later completed by hand. We have illustrated
these concepts with a language in the object-oriented simulation domain.

Our approach is original because: a) provides a library of transformations for
different kinds of DSLs; b) we express the transformation to the textual syntax
by means of TGTSs, which improves understanding and maintainability of the
transformation; c) the semantic actions of the EBNF rules are graph grammar
rules, which also makes them more understandable and maintainable; d) our
approach is integrated in a framework for the definition of multi-view DSLs.

There are some open issues in this approach. For example, a viewpoint meta-
model may include constraints. In this case, when the parser creates the model,
these meta-model constraints should be evaluated, and appropriate errors should
be given in the context of the textual program. This is also an open issue in [12].
We are also working in defining additional TGTSs, applicable to other kinds of
DSLs. By now, our approach works in one direction, from text to models. It is up
to future work to make it bidirectional. By now we obtain view consistency, but
for textual views only at the level of the underlying models. Scalability issues
that may arise with bigger DSLs are also under investigation.

Acknowledgements. Work supported by the Spanish Ministry of Education
and Science, projects MOSAIC (TSI2005-08225-C07-06) and MODUWEB
(TIN2006-09678). We would like to thank the referees for their very useful
comments.

References

1. Alanen, M., Porres, I.: A Relation Between Context-Free Grammars and Meta
Object Facility Metamodels. Tech. Rep. 606, TUCS, Turku, Finland (2004)

2. Bézivin, J., Devedzic, V., Djuric, D., Favreau, J.M., Gasevic, D., Jouault, F.: An
M3-Neutral infrastructure for bridging model engineering and ontology engineer-
ing. In: Proc. INTEROP-ESA, pp. 159–171 (2005)

3. Bottoni, P., Parisi-Presicce, F., Pulcini, S., Taentzer, G.: Maintaining Coherence
between Models with Distributed Rules: from Theory to Eclipse. In: Proc. GT-
VMT 2006 (2006)

DSLs with Graphical and Textual Views 97

4. de Lara, J., Vangheluwe, H.: AToM3: A Tool for Multi-Formalism Modelling and
Meta-Modelling. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306,
pp. 174–188. Springer, Heidelberg (2002)

5. de Lara, J., Guerra, E.: Towards the Uniform Manipulation of Visual and Textual
Languages in AToM3. In: Proc. PROLE 2003, pp. 45–58 (2003)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Heidelberg (2006)

7. Fishwick, P.: Simulation Model Design and Execution: Building Digital Worlds.
Prentice-Hall, Englewood Cliffs (1995)

8. Guerra, E., de Lara, J.: Model View Management with Triple Graph Transforma-
tion Systems. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg,
G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 351–366. Springer, Heidelberg (2006)

9. Guerra, E., de Lara, J.: Event-Driven Grammars: Relating Abstract and Concrete
Levels of Visual Languages. Journal on Software and Systems Modelling 6(3), 317–
347 (2007)

10. Guerra, E., de Lara, J.: Meta-Modelling and Graph Transformation for the Defin-
ition of Multi-View Visual Languages. In: Visual Languages for Interactive Com-
puting: Definitions and Formalization. Idea Group Publishers (2007)

11. HUTN spec., http://www.omg.org/cgi-bin/doc?formal/2004-08-01
12. Jouault, F., Bézivin, J., Kurtev, I.: TCS: A DSL for the Specification of Textual

Concrete Syntaxes in Model Engineering. In: Proc. GPCE 2006, pp. 249–254 (2006)
13. Klein, P., Schürr, A.: Constructing SDEs with the IPSEN Meta Environment. In:

Proc. 8th IEEE Conf. on Software Engineering Environments, pp. 2–10 (1997)
14. Kleppe, A.: Towards the Generation of a Text-Based IDE from a Language Meta-

model. In: Akehurst, D.H., Vogel, R., Paige, R.F. (eds.) ECMDA-FA. LNCS,
vol. 4530, pp. 114–129. Springer, Heidelberg (2007)

15. Königs, A., Schürr, A.: Tool Integration with Triple Graph Grammars - A Survey.
ENTCS 148, 113–150 (2006)

16. Krahm, H., Rumpe, B., Völkel, S.: Integrated Definition of Abstract and Concrete
Syntax for Textual Languages. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F.
(eds.) MODELS 2007. LNCS, vol. 4735, pp. 286–300. Springer, Heidelberg (2007)

17. Mellor, S., Scott, K., Uhl, A., Weise, D.: MDA Distilled: Principles of Model-Driven
Architecture. Addison Wesley, Reading (2004)

18. Muller, P.-A., Hassenforder, M.: HUTN as a Bridge between Modelware and Gram-
marware – An Experience Report. In: Proc. WiSME 2005 at MoDELS 2005 (2005)

19. Web page of PLY Lex-yacc, http://www.dabeaz.com/ply/
20. Pratt, T.W.: Pair grammars, graph languages, and string-to-graph translations.

Journal of Computer and System Sciences 5, 560–595 (1971)
21. QVT specification, http://www.omg.org/docs/ptc/05-11-01.pdf
22. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:

Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–
163. Springer, Heidelberg (1995)

23. UML spec., http://www.omg.org/technology/documents/formal/uml.htm

http://www.omg.org/cgi-bin/doc?formal/2004-08-01
http://www.dabeaz.com/ply/
http://www.omg.org/docs/ptc/05-11-01.pdf
http://www.omg.org/technology/documents/formal/uml.htm

Generating Domain-Specific Model Editors with
Complex Editing Commands

Gabriele Taentzer1, André Crema2, René Schmutzler2, and Claudia Ermel2

1 Philipps-Universität Marburg, Germany
taentzer@mathematik.uni-marburg.de

2 Technische Universität Berlin, Germany
{crema,reneschm,lieske}@cs.tu-berlin.de

Abstract. Domain specific modeling languages are of increasing impor-
tance for the development of software and other systems. Meta tools are
needed to support rapid development of domain-specific solutions. Using
the Eclipse Graphical Modeling Framework (GMF), modeling languages
are defined by providing a meta model using the MOF/EMF approach.
Up to now, GMF provides basic editing commands only. It does not sup-
port the definition of complex editing commands which would allow e.g.
to insert a complex structure into a diagram in one step. As practical
tool support for the design and generation of visual editors with complex
editing operations based on graph transformation, an extended version
of GMF has been developed and is presented in this paper.

1 Introduction

In software system development, domain-specific visual notations are increas-
ingly used and need a tool environment consisting of visual editors, simulators,
model transformers, etc. Several Eclipse projects head for a meta technology to
define domain-specific modeling languages. The Eclipse Modeling Framework
(EMF) [5] can be used to define the underlying models of visual editors. Given
an EMF model, a set of Java classes for manipulating the model and a basic,
tree based editor for model instances are generated. The generated classes pro-
vide CRUD functionality for model elements, i.e. model elements can be created,
read, updated, and deleted. To realize a graphical editor, the editor code may
be hand-coded on the basis of GEF, the Eclipse Graphical Editor Framework
[3], which offers basic and advanced editor functionalities.As another alterna-
tive, a visual editor may be generated using the Graphical Modeling Framework
(GMF) [4] which started recently as Eclipse technology subproject aiming at
providing an infrastructure for generating visual editors in Eclipse. In essence,
GMF forms a bridge between EMF and GEF, whereby a diagram definition is
linked to a domain model which serves as input to the generation of a visual
editor.

GMF-generated editors offer basic editing commands to create, edit, move and
delete single model elements (basic editing). Graph transformation-based editors
(see e.g. Tiger [6]) show that the generation of editors with complex editing

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 98–103, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Generating Domain-Specific Model Editors 99

commands is also possible. Editing e.g. control flow graphs, there might be edit-
ing commands available which insert or delete a complete decision structure in
one step.

In the following, we present how meta model-based editor design and genera-
tion performed by GMF, can be extended by graph transformation concepts to
define and generate complex editing commands to be used in GMF-generated
visual editors.

2 Examples for Complex Editing Commands

Activity diagrams are used to describe the control flow within a system, based
on activities. In the following, we consider the editor generation process for a
simple variant of activity diagrams consisting of start, end, decision and simple
activities.

The visual editor generated by pure GMF (without the extension for complex
editing commands) is shown in Fig. 4 (a). It contains an example for an activity
diagram with different kinds of activities mentioned above. We used the usual
design process for visual editors offered by GMF. Considering the palette on the
right of the generated editor, we notice that creation commands for each of the
model elements are offered. Moreover, the context menus contain commands for
editing and deleting model elements. Up to now, there is no way to design and
generate more complex editing commands.

Complex editing commands for activity diagrams can help to easily edit the
diagrams in mind. For example, a well-formed activity diagram contains at least
one start and one end activity. Moreover, well-formed activity diagrams contain
decision branches which are explicitly merged by a decision activity, only. An
example for a well-formed activity diagram is shown in Fig. 4.

Fig. 1. Specification of complex editing commands

Fig. 1 shows the before and after patterns for sample complex editing com-
mands. We define one editing command CreateStartGraph to generate the start
diagram which consists of exactly one start and one end activity, connected by
a next-relation. This command is executable in the empty editor panel only.
Editing command AddSimple inserts a simple activity after another activity,
where is a symbol for an abstract figure which stands for one of the

100 G. Taentzer et al.

following concrete figures (start activity) or (simple activity).

The name of the new activity is given by input parameter n. Please note that
the source activity of next-relation 2 changes after insertion. Editing command
AddDecision replaces a simple activity by a decision activity with two branches.
Each branch contains one simple activity. The branches are merged afterwards by
another decision activity. The AddDecision command has four input parameters:
two arc inscriptions x and y, and two names n and m for the new simple activities
in both branches.

3 Extending GMF by Complex Editing Commands

In this section, we discuss how GMF-based editor generation can be extended
by graph transformation concepts supporting the specification of complex editor
commands.

3.1 Extension of the GMF Development Environment

A language model is described in GMF by defining an EMF model, the so-called
domain model, while the layout is specified in the graphical definition model. Now,
an additional visual editor for defining complex editing commands is provided,
where EMF transformation rules for complex editing commands can be defined
as transformation rules based on the domain model. This step is optional. The
tooling definition model is used to define the commands for the editor palette.
After having defined all these models separately, the mapping model establishes
a connection between them and is the input for the generation process. Fig. 2
shows an overview of the design workflow in the extended GMF using a dash-
board, where the original GMF workflow is extended by the specification of a
Transformation Rule Model.

Fig. 2. GMF dashboard extended by transformation rule model for editing commands

Generating Domain-Specific Model Editors 101

Fig. 3. Tool environment for EMF transformation

Before discussing the specification of concrete editing commands, we present
the EMF model transformation approach [1] used to manipulate the underlying
EMF models. The transformation concept is closely related to algebraic graph
transformation. The main reason for this design decision is the basic opportunity
to validate EMF model transformations on the basis of graph transformation.
Basically, an EMF transformation is a rule-based modification of an EMF source
model resulting in an EMF target model. Both, the EMF source and target
models are typed over an EMF core model. All modifications are made in-place,
i.e. the source model is not copied before modification. For efficient execution of
model transformations, the rules can be translated to Java code to be integrated
into generated EMF classes. Fig. 3 shows a designer for EMF transformations
where the underlying meta model is depicted at the bottom and one of the
transformation rules, i.e. a rule for inserting a start diagram, is shown at the
top. A negative application condition ensures that this rule is applied only to
the empty activity diagram. After having defined all editing commands needed
analogously, all those which should show up in the palette have to be identified
in the GMF tooling model, and the GMF mapping model is extended by the
definition of the transformation model.

3.2 Extension of the GMF Runtime Environment

The editor generation process in the extended GMF version results in an editor
as shown in Fig. 4 (b) where default editing operations as well as specifically

102 G. Taentzer et al.

Fig. 4. Generated editors for activity diagrams without (a) and with (b) complex
editing commands

Fig. 5. Editing steps using complex editing operations in extended GMF

designed ones are provided by the palette. Please note that the editor designer
selects those commands to be included in the palette.

We describe the usage of the generated editor in the extended GMF version
along our running example. A sequence of steps to create our sample activity
diagram is shown in Fig. 5. In step 1, we start with an empty editor panel and
select command CreateStartGraph from the palette. Immediately, the start ac-
tivity diagram appears in the editor panel. Step 2 selects command AddSimple
to add a simple activity node. This node is added after the start activity, because
the negative application condition of the rule forbids to insert an activity node

Generating Domain-Specific Model Editors 103

after a final node. Since we have only one non-final activity node, the location
to apply this command is unique in the current situation. In Step 3, we select
command AddSimple again, but this time it can be applied at two locations:
the new activity node can be inserted either after the start activity, again, or
after the new simple activity node named “First”. Thus, instead of applying
the rule, the editor now highlights the two possible locations. In step 4, one
of the highlighted nodes is selected per mouse click, and the command is ap-
plied accordingly. Step 5 combines two atomic steps: command AddDecision is
selected, and the activity nodes “First” and “Second” are clicked on to specify
between which two activity nodes the complete decision structure is to be in-
serted. Afterwards, in step 5, command DeleteSimple is selected in the palette.
This leads to two activity nodes being highlighted, which may be deleted by the
rule.

4 Conclusion

In this paper, we presented an approach generating visual editors by GMF ex-
tended by complex editing commands. Thus, using pure GMF, a visual editor
can be generated which offers basic editor commands for each model element
only. For the generation of complex editor commands an additional model is
needed. We use EMF transformation rules to formulate commands based on the
given domain model. To the best of our knowledge, no other meta CASE tool
based on meta models offers the possibility to define complex editing commands.

Besides pure editing commands, also model optimizations such as model refac-
torings, may be realized with the proposed approach. Moreover, simulation of
behaviour models can be defined by this approach. Thus, this work can be consid-
ered as a starting point for the generation of powerful and flexible domain-specific
visual editors in Eclipse.

References

1. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: Graphi-
cal Definition of In-Place Transformations in the Eclipse Modeling Framework. In:
Model Driven Engineering Languages and Systems, 9th International Conference,
MoDELS 2006. LNCS. Springer, Heidelberg (2006),
http://tfs.cs.tu-berlin.de/emftrans

2. Eclipse Consortium, Eclipse (2006), http://www.eclipse.org
3. Eclipse Consortium, Eclipse Graphical Editing Framework (GEF) (2006),

http://www.eclipse.org/gef
4. Eclipse Consortium, Eclipse Graphical Modeling Framework (GMF) (2006),

http://www.eclipse.org/gmf
5. Eclipse Consortium, Eclipse Modeling Framework (EMF) (2006),

http://www.eclipse.org/emf
6. Ehrig, K., Ermel, C., Hänsgen, S., Taentzer, G.: Generation of Visual Editors as

Eclipse-Plugins. In: Automated Software Engineering 2005. IEEE Computer Society,
Los Alamitos (2005), http://tfs.cs.tu-berlin.de/∼tigerprj

http://tfs.cs.tu-berlin.de/emftrans
http://www.eclipse.org
http://www.eclipse.org/gef
http://www.eclipse.org/gmf
http://www.eclipse.org/emf
http://tfs.cs.tu-berlin.de/~tigerprj

Specifying Domain-Specific Refactorings for
AndroMDA Based on Graph Transformation

Gabriele Taentzer1, Dirk Müller1, and Tom Mens2

1 Philipps-Universität Marburg, Germany
{taentzer,dmueller}@mathematik.uni-marburg.de

2 University of Mons-Hainaut, Belgium
tom.mens@umh.ac.be

Abstract. Applying refactoring in a model-driven software engineer-
ing context raises many new challenges that need to be addressed. In
this paper, we consider model-driven software development based on the
code generation framework AndroMDA. Considering the UML profile
for AndroMDA, we come up with a number of domain-specific model
refactorings. In its most recent version, the AndroMDA code genera-
tion can be based on the Eclipse Modeling Framework (EMF) which
has evolved towards the de facto standard technology to specify UML
models. We show how domain-specific refactorings can be specified by
EMF transformation incorporating graph transformation concepts. This
opens up the possibility to reason about domain-specific refactorings in a
formal way.

1 Introduction

In the realm of software engineering, we are witnessing an increasing momen-
tum towards the use of models for developing software systems. This trend, com-
monly referred to as model-driven software engineering, emphasizes on models as
the primary artifacts in all phases of software development, from requirements
analysis over system design to implementation, deployment, verification and vali-
dation. This uniform use of models promises to cope with the intrinsic complexity
of software-intensive systems by raising the level of abstraction, and by hiding the
accidental complexity of the underlying technology as much as possible [6]. The
use of models thus opens up new possibilities for creating, analyzing, manipulating
and formally reasoning about systems at a high-level of abstraction.

To reap all the benefits of model-driven engineering, however, it is essential to
install a sophisticated mechanism of model transformation, that enables a wide
range of different automated activities such as translation of models (expressed in
different modeling languages), generating code from models, model refinement,
model synthesis or model extraction, model restructuring etc. To achieve this,
languages, formalisms, techniques and tools that support model transformation
are needed. Such tools and techniques are starting to emerge.

Model refactoring is a specific kind of model transformation that allows us
to improve the structure of the model while preserving its semantics. In this

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 104–119, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Specifying Domain-Specific Refactorings for AndroMDA 105

paper, we consider refactoring in model-driven software development. In this
context, two aspects of model refactoring are of special interest: (1) Domain-
specific modeling languages or domain-specific extensions of existing modeling
languages (such as UML profiles), are used and lead to new, domain-specific
refactorings. (2) Models are used to generate code where especially the domain-
specific extensions drive the code generation. By code generation, models get
some kind of semantics. Thus, we consider the model semantics to be preserved,
if the behavior of the generated application is preserved. Often, a substantial
part of the source code can be generated automatically from the models, while
other parts still need to be implemented manually. If a model is refactored, how
should the associated hand-written source code be modified accordingly? Vice
versa, if this source code is refactored, how will the models be affected?

In this paper, we concentrate on domain-specific refactorings and report on our
experience with expressing such model refactorings for AndroMDA [2], a state-
of-the-art tool for model-driven software development. The AndroMDA code
generator is a generic code generation engine which can be adapted to certain
domains by so-called cartridges. Pre-existing cartridges enable the generation
of web applications based on open source libraries such as Spring, Hibernate,
and J2EE. We use AndroMDA to generate a simple university calendar as web
application from a UML model.

Since the Eclipse Modeling Framework (EMF) has become a key reference for
UML model specification in the world of model-driven development, we propose to
specify refactorings as EMF model transformations and use a rule-based approach
to EMF transformation based on graph transformation concepts [4]. Although not
shown in this paper, this opens up the possibility for formal analysis of EMF model
refactorings. In [10],we consider the connectionbetweenEMFtransformations and
graph transformations in more detail. In [13], we show how conflicts and dependen-
cies between refactorings can be analysed based on graph transformation.

This paper presents our recent work on refactoring of AndroMDA-generated
applications on the model level. We present our ideas in a tutorial style, due
to the complexity of the AndroMDA-approach and due to space limitations. In
contrast to our previous work, this paper is therefore informal in nature. For a
more comprehensive introduction to AndroMDA the reader is referred to [2].

This paper is structured as follows: In the next section, we give a short intro-
duction to the main concepts of AndroMDA from the modeling point of view
and discuss one concrete model refactoring. In Section 3, we present an overview
on domain-specific refactorings in the AndroMDA context, before some of them
are specified by EMF transformation rules in Section 4. We summarize our work
and conclude with an outline of future work in Sections 5 and 6.

2 Model-Driven Development with AndroMDA

This section presents the model-driven development by AndroMDA, illustrated
by developing a small web application for a simple university calendar. First the

106 G. Taentzer, D. Müller, and T. Mens

Fig. 1. Domain model for a simple university calendar

underlying data model is designed and thereafter, application-specific services
and web presentation features are added in a model-driven way. This means that
use cases are defined and refined by activity diagrams that can use controllers and
services. The resulting application is not hundred percent generated, since service
and controller bodies have to be coded by hand. After this tutorial introduction
to AndroMDA, we discuss a refactoring step useful in this context.

2.1 Developing a Web Application with AndroMDA

AndroMDA is one of the main tools for model-driven software development. Its
transformation engine is driven by so-called cartridges, structuring code genera-
tion. In the AndroMDA framework, a number of cartridges is already available
realizing the generation of web applications based on UML models following a
special profile. Both, the Java and the .NET platforms are supported by existing
cartridges.

The model-driven development process of AndroMDA is based on use cases. A
web application generated by AndroMDA has a three-tier architecture consisting
of a service layer building up on a data base, controllers using the services defined,
and a web presentation.

We illustrate the usage of AndroMDA by a simple university calendar applica-
tion. The underlying data model for this application is shown in the class diagram
in Figure 1, while its services and controllers are presented in the UML class dia-
gram in Figure 2. The basic entities are Rooms that can be occupied for giving a
Lecture or a Seminar. AndroMDA can generate a default web interface for man-
aging lectures, seminars and rooms, just based on this class diagram. Users can
add and delete instances, change attribute values and perform searches [2].

The AndroMDA-profile for UML can be considered to be a domain-specific
modeling language, dependent on cartridges used, mainly dedicated to the gen-
eration of web applications. Stereotypes and tagged values especially guide the

Specifying Domain-Specific Refactorings for AndroMDA 107

Fig. 2. Services and controllers for a simple university calendar

code generation process. We consider stereotypes and tagged values in the An-
droMDA UML profile as far as they are needed to develop our example. For a
complete overview of all available stereotypes and how to use them we refer to [2].

Stereotype �Entity� attached to a class is used to represent a data entity
to be stored in a database. If, additionally, the �Manageable� stereotype is
used, it causes AndroMDA to generate a default web presentation for manag-
ing the corresponding entities. �Service� is a class stereotype used to specify
application-specific services. These services typically use one or more entities
that store the data used by the services. For example, LectureService imple-
ments a service called findLecture() that relies on entities Lecture and Room
for its proper functioning. Note that the implementation of this service needs to
be hand-coded. Because of AndroMDA’s naming conventions, the corresponding
method should be called handleFindLecture().

For the model-driven development of a web presentation, we extend the model
by use cases that are refined by activity diagrams. This model part describes the
web presentation and its usage of controllers based on services. To illustrate
the development of web applications, we develop a specific use case diagram for
lectures (see Figure 3). Use case Search lectures has two stereotypes being
�FrontEndUseCase�, which determines the use case to be visible to the user
in the form of a web page, and �FrontEndApplication�, which defines this use
case to be the starting one.

Use case Edit lectures is refined by an activity diagram in the following. It
defines editing and storing of lectures (see Figure 4). Activity Load Lecture is
an internal activity that calls controller method loadLecture() defined in class
EditController. Again, this method needs to be hand-coded by relying on the
service class LectureService.

108 G. Taentzer, D. Müller, and T. Mens

Fig. 3. Example of a use case model in AndroMDA

Fig. 4. Example of an activity diagram specifying use case Edit lectures

Activity Edit Lecture has stereotype �FrontEndView� implying that this
activity models a web page. Both activities are connected by a transition which
is equipped with signals being used to drive the generation process of web forms.
Triggering signal save activity Save Lecture is performed which calls controller
method saveLecture() using all signal parameters as input. Before saving, this
method should also contain a consistency check for room usage. Thereafter, the
control flow leads back the use case Search lectures. This is also the case if
signal cancel is triggered after having edited a lecture. Both transitions head to
an end activity which is connected to use case Search Lectures and its refining
activity diagram. A connection to another use case is realized by naming the end
activity alike. However, names of end activities are not shown in the diagram
view.

The class model in Figure 1 only shows the data model, but there are also value
object classes for web presentation. To show lectures, a special value object class
for lectures has to be used which is specified by stereotype �ValueObject�.
This makes sense in terms of encapsulation (think of security, extensibility, etc.)
and corresponds to the layered model-view-controller approach. Necessary in-
formation of the business layer is wrapped into so-called “value objects” which
are used for the transfer to the presentation layer. Passing real entity objects
to the client may pose a security risk. Do you want the client application to
have access to the salary information inside a potentially extended Person

Specifying Domain-Specific Refactorings for AndroMDA 109

Fig. 5. Generated web page for editing lectures

entity? Since value objects are used at the presentation layer, the types used
are primitive ones; entity types are not used in that layer.

The model which is shown in the previous figures (except of details and man-
ually written code parts), is used to generate a web application that contains,
among others, the web page shown in Figure 5. Please note that the names used
as page title, in the edit form and for the buttons are specified as class and at-
tribute names as well as signal names and parameters in the model. As a result,
a renaming in the class model will have a direct effect in the web page.

2.2 A Refactoring Example

As an example for domain-specific model refactoring, we discuss the insertion of
a decision structure into an activity diagram. Consider Figure 6 for the refactored
activity diagram in Figure 4. The consistency check which used to be included in
method saveLecture so far, has now been made explicit into the diagram. The
restructuring is useful for further diagram extensions allowing an overview on
available rooms. For explication of the consistency check, a decision structure is
inserted after activity Edit Lecture which calls a new controller method, called
roomFree, and dependent on its result stores the lecture. We assumed that this
consistency check has been included in the controller method before. Now, this
check is made explicit.

Beside model modifications, also hand-written code is affected. Controller
method roomFree is new and has to be implemented. Checking code formerly
integrated in controller method saveLecture has to be extracted and adapted,
as well as method saveLecture itself. After having performed this refactoring,
the web page for editing lectures has not changed, since this modification is
completely internal.

Based on a first analysis of domain-specific model refactorings carried out, we
can derive the following preliminary conclusions:

110 G. Taentzer, D. Müller, and T. Mens

Fig. 6. Activity diagram specifying use case Edit Lecture after renaming

– Generic model refactorings need to be adapted and refined in presence of
domain-specific models.

– Model refactoring may also affect, and require changes to, the hand-written
source code, in order to keep it synchronized with the generated code. This
may require the need to perform code-level refactorings.

3 Domain-Specific Refactoring

In Section 2, a concrete model refactoring has been applied to a sample An-
droMDA model: the insertion of a decision structure in activity diagrams. In
this section, we explore further examples of domain-specific refactorings for An-
droMDA models. Often domain-specific refactorings are deduced from “stan-
dard” model refactorings. As it turns out, most of these refactorings have
observable effects on the generated application, due to the AndoMDA code gen-
erator. It has to be discussed how far these modifications shall be considered as
refactorings. For more information on this topic, see [12]. Next to these “stan-
dard” refactorings, we also require dedicated “domain-specific” refactorings for
AndroMDA models, as shown in the concrete example above. In the following,
we discuss three categories of transformations and classify them as follows:

1. transformations that do not affect the user interface at all;
2. transformations that do affect the user interface with respect to the usability,

but that do not affect the functionality of the application; and
3. transformations that also affect the actual behaviour of the application.

The latter category does not contain real refactorings in the strict sense of
the word, but it is nevertheless useful and necessary to specify such model

Specifying Domain-Specific Refactorings for AndroMDA 111

modifications. As pointed out above, transformations which are perceived as
normal refactorings at the model level, can actually extend the behavior, due to
the code generation process.

Pull up Entity Property. When pulling up an entity property to a superclass,
the code generator will automatically generate a new web page corresponding to
this superclass, with search functionality for each manageable entity. Thus, this
transformation belongs to category (3).

Create Value Object. A domain-specific refactoring for AndroMDA models is the
creation of value objects for entities. Given a class with stereotype �Entity�
(for example, class Lecture), a new class with stereotype �Value Object� is
created and the entity class becomes dependent on this new class. The value
object class is named after its entity class followed by suffix “VO” (for example,
value object class LectureVO). The entity properties are copied to the value
object class, keeping names and types, by default. If internal information needs
to be kept hidden from the client, the corresponding property is not copied.
This refactoring belongs to category (1) and does not affect any other part of
the model, since the value object class is only created without being used yet.

Rename Entity. Renaming a manageable entity class is reflected by a change
in the title of the corresponding web page for manageable entities. In case that
the renamed entity class comes along with a value object class whose name is
derived from the entity class name (e.g. “LectureVO” is derived from “Lecture”
by suffixing “VO”), renaming has to be accompanied by a renaming of its cor-
responding value object class. Furthermore, the renaming has to be propagated
to the hand-written code. This refactoring belongs to category (2). Renaming
an entity property can be handled in a similar way, as shown by an example in
[12]. This renaming concerns not only with entity properties, but also with the
properties of derived value objects.

Rename Use Case. Similar to entities, use cases can be renamed as well. This
might have an effect on activity diagrams, since AndroMDA supports the con-
nection of several activity diagrams via use case names. For example, an end
activity of one activity diagram may be named as a use case, which means that
the control flow would continue at the start activity of the corresponding activity
diagram. (For an example see Figure 4.) In the generated web applications, use
cases are listed on the right-hand side of each web page. Again, a renamed use
case would change the usability of the web application, but not its functionality,
so the refactoring belongs to category (2).

Further domain-specific refactorings for AndroMDA models are e.g., Merge
Services where two �Service� classes are merged into one and all their incom-
ing and outgoing dependencies are adapted, Split Activities where one activity
is split into two consecutive ones, linked by a transition, and Extract Method
which originates from the standard refactoring set, but shows new effects in the
context of model-driven development. Starting with refactoring at source code

112 G. Taentzer, D. Müller, and T. Mens

Fig. 7. Activity diagrams from Figures 4 and 6 as UML2 EMF instance models

level, it may require synchronization of the corresponding model which, after re-
generating the code may involve another modification to the hand-written part
of the code.

4 Specifying Domain-Specific Model Refactorings

To realize tool support for domain-specific model refactoring in the context of
AndroMDA, we propose to consider standard technologies. Since the Eclipse
Modeling Framework (EMF) [1] has become a key reference for model specifica-
tion in the world of model-driven development, we rely our approach to model
refactoring on EMF model transformation.

4.1 AndroMDA Models as EMF Models

As a prerequisite, a specification of the underlying modeling language is needed
which is the UML2 EMF model extended by AndroMDA profiles. The activ-
ity diagrams in Figures 4 and 6 are shown as UML2 EMF model instances in
Figure 7.

4.2 Refactoring as EMF Transformation

EMF model refactoring can be expressed by EMF model transformation as
shown in [4]. This kind of model transformation is based on the algebraic graph
transformation approach [7] and is performed in-place, i.e., the current model is
directly changed and not copied. Each transformation rule consists of a left-hand
side (LHS), indicating the preconditions of the transformation, a right-hand side

Specifying Domain-Specific Refactorings for AndroMDA 113

Fig. 8. EMF model transformation rule InsertDecision for inserting a new decision
structure into an activity diagram

(RHS), formulating the post conditions of the transformations, and optional ne-
gative application conditions (NAC), defining forbidden structures that prevent
application of the transformation rule. Objects that are checked as precondition
preserved during a transformation are indicated by colors. Object nodes of the
same color (and having the same number) present one and the same object in
different parts of a rule. While attributes in the LHS may have constant values
or rule variables only, they are allowed to carry Java expressions in the RHS,
too. If the same variable name occurs at different places in a rule, it has the
same value at all these places.

Simple model refactorings can be specified by just a single rule. In the follow-
ing, we show one refactoring of this kind which specifies the refactoring dicussed
in Section 2.2. Thereafter, we concentrate on refactorings which are described by
one trigger rule applied exactly once in the beginning, and another rule which is
applied afterwards as long as possible, keeping the same parameter setting. This
control flow is directly expressed in Java. It is obvious that also other kinds of
control flow can be specified in this way.

Insert Decision Structure. In Section 2.2, we considered a refactoring of activity
diagrams where a decision structure has been inserted. Figure 8 shows a trans-
formation rule which specifies this kind of structure modification. Here, a special
case is considered where a decision structure is inserted before an action which
is followed by a final node. This model refactoring has to be accompanied by a
refactoring of the corresponding controller method not shown here, due to space
limitations.

Rename Use Case. Figure 9 shows a transformation rule that renames a use
case. Use case names may be used as names of final activities to connect se-
veral activity diagrams. Rule RenameFinalActivity in Figure 10 handles the
case where the use case name is used in some final activity. Thus, its name has

114 G. Taentzer, D. Müller, and T. Mens

Fig. 9. EMF transformation rule RenameUseCase handling the renaming of a use case

Fig. 10. EMF transformation rule RenameFinalActivity handling the renaming of a
final activity

to be updated. This rule has to be applied to all final activities which refer to
the renamed use case. As regular expression, the control flow can be formulated
as follows:

RenameUseCase(n,n2) (RenameFinalActivity(n,n2))*

A graphical way for control flow modeling such as story diagrams in Fujaba
[8], would also be suitable. Directly based on the EMF transformation frame-
work, the following code snippet specifies this control flow in a new method
renameUC(). After automatically generating Java code from transformation
rules, this method is defined manually in plain Java.

public void renameUC(Model model, String useCaseName, String newUCName) {
Boolean triggered = false;
Parameter parameter = new Parameter();
parameter.addParameter("n", useCaseName, "String");
parameter.addParameter("n2", newUCName, "String");
triggered = interpreter.applyRule(model, "RenameUseCase",

null, parameter);
while (triggered)

triggered = interpreter.applyRule(model,"RenameFinalActivity",
null,parameter));

}

Create Value Object. In Figures 11 and 12, two model transformation rules
are shown, which both are needed to perform refactoring Create Value Object

Specifying Domain-Specific Refactorings for AndroMDA 115

Fig. 11. EMF model transformation rule CreateValueObjectClass for creating a value
object

Fig. 12. EMF model transformation rule CreateValueObjectProperty for refactoring
Create Value Object

explained in Section 3. Rule CreateValueObjectClass is applied once, creating a
new value object class and a dependency of the entity class on this new class.
A model with an entity class is needed to create a value object class and a
dependency in between. The name of this new value object class is constructed
by taking the entity class name n and adding suffix “VO”. This rule is applied
only if a value object class of this name has not been created yet.

Thereafter, rule CreateValueObjectProperty is applied for each of the pro-
perties of the entity class that should occur also in the value object class. Each
time it is applied, it copies a property that has not yet been copied into the
value object. This rule execution is summarized in method createVO() which
can be defined similarly to method renameUC() above.

Rename Entity Property. The renaming of an entity property is specified in
Figure 13 by giving the names of the entity and its property to be renamed and

116 G. Taentzer, D. Müller, and T. Mens

Fig. 13. EMF model transformation rule RenameEntityProperty for renaming an en-
tity property

Fig. 14. EMF model transformation rule RenameVOProperty for renaming a value
object property

by determining the new name for this property. Thereafter, we have to check if
this entity has a value object containing a property with the old name. For these
value objects, the rule in Figure 14 is the appropriate one.

The whole control flow is specified similarly to the refactorings above. Note
that renamed properties might be used in hand-written code implementing con-
troller and service methods. That means EMF model refactoring has to be
combined with source code refactoring (here renaming). The development of
corresponding tool support is left for future work.

4.3 Analysis of Refactorings

To open up the possibility for analyzing EMF model refactorings, we translate
EMF transformations to graph transformations. In this way, the formal analysis
for graph transformation becomes available for EMF model refactoring. To give
a flavor of what can be achieved, we refer to [13]. A formal specification of refac-
torings as graph transformation rules allows us to reason about dependencies
between different types of refactorings. Such a static analysis of potential con-
flicts and dependencies between refactorings can be helpful for the user during

Specifying Domain-Specific Refactorings for AndroMDA 117

the interactive process of trying to improve the software quality by means of
disciplined model transformations.

Although EMF models show a graph-like structure and can be transformed
similarly to graphs, there is an important difference between both. In contrast
to graphs, EMF models have a distinguished tree structure that is defined by
the containment relation between their classes. Each class can be contained in at
most one other class. Since an EMF model may have non-containment references
in addition, the following question arises: What if a class, which is transitively
contained in a root class, has non-containment references to other classes not
transitively contained in some root class? In this case, we consider the EMF
model to be inconsistent. A transformation can invalidate an EMF model, if its
rule deletes one or more objects. To ensure consistent transformations only, rules
that delete objects or containment links or redirect them, have to be equipped
with additional NACs. The rules we have shown in this section, do not delete
any object, thus can be easily translated to graph transformation rules.

5 Related Work

Sunyé et al. [17] were the first to apply the idea of refactoring at the level of UML
models. Others like Astels [3] and Markovic and Baar [11] followed. They con-
sidered mainly class models and ported refactoring known from object-oriented
programming to UML class models. With respect to refactoring of behavioral
models, not much work is available. We are only aware of a few approaches that
address the problem of refactoring state diagrams, as presented in [15,16,20]. In
our approach, we consider also the refactoring of use case and activity diagrams.

Various researchers have proposed to use some kind of rule-based approach to
specify model refactorings, so it appears to be a natural choice: Graph transforma-
tion-based approaches are used in [5,9,13]. Porres [15] presents the transformation
language SMW to specify model refactorings. This script language is also rule-
based and resembles the Object Constraint Language (OCL). Van Der Straeten
and D’Hondt [18] use a rule-based approach to apply model refactorings, based on
description logics. We decided for a specification of UML model refactoring based
on EMF model transformation to be compatible with upcoming UML CASE tools
based on EMF.

6 Conclusion and Open Problems

Model-driven software engineering offers automated code generation techniques
which can be used to deal with complex software in a systematic way. The level
of abstraction is raised from code to models. Software refactoring is a proven
technique to improve software in a structured, semi-automated manner. By in-
tegrating the process of refactoring into model-driven software development, we
arrive at what we call model-driven software refactoring. We have chosen An-
droMDA as concrete approach to model-driven development and illustrated it
by developing a simple web application. On this base, we discussed a number

118 G. Taentzer, D. Müller, and T. Mens

of domain-specific model refactorings. Larger applications will certainly lead to
further kinds of domain-specific model refactorings. A catalog of domain-specific
model refactorings for AndroMDA-generated web applications is left to future
work.

We have expressed AndroMDA model refactorings as EMF model transfor-
mations. This approach has the advantage of defining refactorings in a generic
way, while still being able to provide tool support with commonly used modeling
frameworks such as EMF. Since the EMF transformation approach we use is very
close to algebraic graph transformation, it provides a basis for a translation of
model refactorings to graph transformations and thus to formally specify and
analyse model refactorings.

The code generation of AndroMDA is organized in cartridges. Different UML
profiles, also combinations of those, are assigned to cartridges. They are used
for modeling the application and for driving the code generation process. The
model semantics are dependent on the code generation cartridges used. Con-
sidering model refactoring in this context means to take domain-specific model
elements into account and to come up with so-called domain-specific refactoring.
Since code generation is not hundred percent, it might happen that model refac-
torings require code modifications to keep model and code synchronized. The
other way around, refactoring of manually written code might lead to model
adaptation, and after another code generation might cause a further adaptation
of the just refactored code. In future work, the formal specification and analysis
of synchronized model and code refactoring needs to be further investigated.
(For more information on source code-consistent UML refactorings see [19].)

Although the chosen EMF transformation approach is powerful enough to
specify EMF model refactorings, features such as multi-nodes representing sets
of model elements, and optional nodes that do not have to exist, are useful
to allow a more compact notation of refactorings. These features are offered
by graph transformation approaches as used in Fujaba [8] and Moflon [14]. To
further reason about refactorings, the translation of such features to algebraic
graph transformation has to be considered and analysis techniques have to be
extended to cover these features.

We have seen that refactorings in model-driven development may have a high
impact. Due to the fact that the code generator automatically produces new types
of elements based on existing elements, a seemingly simple change might already
propagate to many different places. A tool that implements such model refactor-
ings will therefore need to take these issues into account to ensure that the refac-
toring does not lead to inconsistent models and code. A precise specification of
such refactorings having effect on several model parts is an important first step.

References

1. Eclipse model development tools (2007), http://www.eclipse.org/modeling/mdt
2. AndroMDA (2007), http://www.andromda.org
3. Astels, D.: Refactoring with UML. In: Proceedings of 3rd International Conference

eXtreme Programming and Flexible Processes in Software Engineering, pp. 159–
174 (2002)

http://www.eclipse.org/modeling/mdt
http://www.andromda.org

Specifying Domain-Specific Refactorings for AndroMDA 119

4. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: Graphical
definition of rule-based transformation in the Eclipse Modeling Framework. In:
Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS,
vol. 4199, pp. 425–439. Springer, Heidelberg (2006)

5. Bottoni, P., Parisi-Presicce, F., Taentzer, G.: Specifying Coherent Refactoring of
Software Artefacts with Distributed Graph Transformations. In: van Bommel, P.
(ed.) Handbook on Transformation of Knowledge, Information, and Data: Theory
and Applications, pp. 95–125. Idea Group Publishing (2005)

6. Brooks, F.P.: No silver bullet: Essence and accidents of software engineering. In:
The Mythical Man-Month: Essays on Software Engineering, 20th Anniversary Edn.
Addison-Wesley, Reading (1995)

7. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. In: EATCS Monographs in Theoretical Computer Science.
Springer, Heidelberg (2006)

8. Fujaba (2007), http://www.fujaba.de
9. Grunske, L., Geiger, L., Zündorf, A., Van Eetvelde, N., Van Gorp, P., Varro, D.:

Using graph transformation for practical model driven software engineering. In:
Beydeda, S., Book, M., Gruhn, V. (eds.) Model-driven Software Development, pp.
91–118. Springer, Heidelberg (2005)

10. Köhler, C., Lewin, H., Taentzer, G.: Ensuring containment constraints in graph-
based model transformation approaches. In: Ehrig, K., Giese, H. (eds.) 6. Int.
Workshop on Graph Transformation and Visual Modeling Techniques. Electronic
Communication of the EASST, vol. 6 (2007)

11. Markovic, S., Baar, T.: Refactoring OCL annotated UML class diagrams. In: MoD-
ELS, pp. 280–294 (2005)

12. Mens, T., Taentzer, G., Müller, D.: Model-driven software refactoring. In: Rech,
J., Bunse, C. (eds.) Model-Driven Software Development: Integrating Quality As-
surance. Idea Group Publishing (to appear, 2008)

13. Mens, T., Taentzer, G., Runge, O.: Analysing refactoring dependencies using graph
transformation. Software and System Modeling 6(3), 269–285 (2007)

14. Moflon (2007), http://www.moflon.org
15. Porres, I.: Model Refactorings as Rule-Based Update Transformations. In: Stevens,

P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 159–174. Springer,
Heidelberg (2003)

16. Pretschner, A., Prenninger, A.: Computing refactorings of state machines. Journal
on Software and Systems Modeling (January 2007)

17. Sunyé, G., Pollet, D., Le Traon, Y., Jezequel, J.M.: Refactoring UML models. In:
The Unified Modeling Language, pp. 134–148 (2001)

18. Van Der Straeten, R., D’Hondt, M.: Model refactorings through rule-based in-
consistency resolution. In: Proceedings Symposium on Applied Computing, pp.
1210–1217. ACM Press, New York (2006)

19. Van Gorp, P., Stenten, H., Mens, T., Demeyer, S.: Towards automating source-
consistent UML refactorings. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML
2003. LNCS, vol. 2863, pp. 144–158. Springer, Heidelberg (2003)

20. Van Kempen, M., Chaudron, M., Koudrie, D., Boake, A.: Towards proving preser-
vation of behaviour of refactoring of UML models. In: Proceedings SAICSIT 2005,
pp. 111–118 (2005)

http://www.fujaba.de
http://www.moflon.org

Defining Abstract Graph Views
as Module Interfaces

Ulrike Ranger1, Katja Gruber1, and Marc Holze2

1 RWTH Aachen University
Department of Computer Science 3 (Software Engineering)

Ahornstraße 55, 52074 Aachen, Germany
{ranger,grubi}@i3.informatik.rwth-aachen.de

2 University of Hamburg
Distributed Systems and Information Systems

Vogt-Kölln-Straße 30, 22527 Hamburg, Germany
holze@informatik.uni-hamburg.de

Abstract. Graph transformation languages offer the ability to model
the structure and behavior of a software system visually. While provid-
ing extensive language constructs for specifying in the small, they lack
sophisticated concepts for specifying in the large. In particular, a mature
module concept is still missing. In our project, we develop appropriate
concepts and extend the graph transformation languages PROGRES and
Fujaba for these concepts. By now, we have already included a mecha-
nism for exporting and importing module interfaces consisting of a subset
of specification elements.

In this paper, we extend our module concept for supporting update-
able abstract graph views as module interfaces. These views may abstract
from specification details allowing a convenient usage of modules. For this
purpose, a unique mapping between view elements and specification ele-
ments has to be defined. Exported view elements may be used by other
modules in the same way as locally-defined specification elements.

1 Introduction

Graph transformation languages (GTL), like PROGRES [1] and Fujaba [2], can
be used for specifying complex software systems. Their main advantages are the
mathematical foundation and the possibility to model both the structure and
the behavior of a software system in a visual way. GTLs have been successfully
applied in several software projects, e.g. E-CARES, ConDes, and Fujaba Real-
Time Tool Suite. Although GTLs offer expressive language constructs, they lack
concepts for specifying in the large, including a mature module concept. Addi-
tionally, concepts for specifying distributed systems are missing.

Our project aims at developing concepts for modularization and for model-
ing distributed systems. We do not start the development of the concepts from
scratch, but analyze existing approaches and adopt some aspects. We regard
modules as self-contained software components which are based on separated

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 120–135, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Defining Abstract Graph Views as Module Interfaces 121

specifications consisting of data types and graph transformations. For using mod-
ules’ functionality from the outside, module interfaces are used. These interfaces
abstract from the modules’ internal specifications and define the publicly avail-
able elements. A module can use elements of imported interfaces in the same
way as locally-defined elements, e.g. within visual language constructs.

Our module concept does not only provide a static semantics in terms of sepa-
rated module specifications, but also offers a runtime semantics for the modules.
That is, the division in several software modules is preserved at runtime by using
separated runtime graph for each module. These runtime graphs store the indi-
vidual states of the modules. Thus, both the specification and the runtime graph
of a software system are divided into smaller parts, which improves the main-
tainability and scalability of a complex software system. The runtime semantics
of our module concept also enables the development of distributed systems: The
applications of a distributed system are modeled in the same way as modules of
a local system. Due to their separated runtime graphs, the applications partic-
ipating in the distributed system can be executed on different computers. The
coupling of the applications is defined on top of their interfaces.

We integrate the described concepts into the GTLs PROGRES and Fujaba
with focus on practical usage, so that the concepts can be easily applied in soft-
ware projects. E. g. we test and evaluate our concepts using the project manage-
ment system AHEAD, which is based on a PROGRES-specification consisting
of more than 200 pages. We have divided the complex specification of AHEAD
into several modules with separated responsibilities. These modules are executed
on different computers as independent software applications.

Currently, the module interfaces of our concept reflect either the complete
graph specification or a subset of it. That is, there is always a unique mapping
between the elements of the interface and the elements of the internal specifica-
tion. We refer to these interfaces as simple interfaces. Experiences have shown
that exposing the internal specification details at the interface is often not suit-
able. Instead, the interfaces should hide internal complexity and provide interface
robustness against implementation changes.

In this paper, we extend simple interfaces for offering updateable abstract
graph views as module interfaces. Thus, a module consists of a specification
covering its implementation and an abstract graph view which serves as interface.
Between these two parts, a n-to-m mapping is defined which maps elements of
the view to elements of the internal specification. E. g., a view may export one
combined node type for two node types of the internal specification. For lack of
space, we concentrate on a local software system throughout the paper, although
the concepts can also be used for distributed systems (see Section 7).

The paper is structured as follows: Section 2 introduces a module providing a
list structure, which serves as running example throughout the paper. Section 3
sketches our module concept without the extension for abstract graph views.
The concept of abstract graph views is described in Section 4. Section 5 shows
the realization of abstract views in GTL. In Section 6 we compare our module
concept to related approaches. We conclude with a summary in Section 7.

122 U. Ranger, K. Gruber, and M. Holze

covers
<<e>>
has

<<e>>
contains

<<e>>
next

1 * 1 * 1 1

0..10..1Container

+ string name

<<e>>
List

+ createL(...)
+ insertE(...)

+ string name

<<e>>
Entry

+ changeV(...)

- Date date

<<e>>
Value

+ int val
+ string txt

0..1

Fig. 1. Graph schema of module Data Storage

owns has contains

next

1 * 1 * 1 1

0..10..1CompileJob

+ string name

List

+ createL(...)
+ insertE(...)

+ string name

Entry

+ changeV(...)

Value

+ int val
+ string txt

0..1

Fig. 2. Graph schema of module IDE using a simple interface of Data Storage

2 Example

To illustrate our concepts, we use the simple module Data Storage. It constitutes
an abstract data type (ADT) for managing linear lists, which store entries con-
sisting of integer and string values. Figure 1 depicts the schema of Data Storage,
showing the main attributes and signatures of graph transformations.

Every linear list is represented by an instance of node type List, which offers a
name attribute and graph transformations for creating lists and inserting entries.
Linear lists are managed by instances of type Container. For storing data in a
linear list, node types Entry and Value are applied. Instances of node type Entry
represent the elements of a list and store the date of creation. Entries are used
for managing the list structure by referencing their successors by next edges. To
simplify the example, the list is unordered and new entries are always inserted at
the end. Every entry is associated with an instance of type Value which stores an
integer (val) and a string (txt) for the entry. Due to this separation, the ADT may
be easily extended to store arbitrary data without changing the list management.
For this purpose, only node type Value has to be modified or substituted.

To show the usage of module Data Storage, we introduce a second module IDE
which constitutes a simplified integrated development environment. The main
purpose of IDE is to compile the source code of a software system. If compilation
fails, the module stores all detected errors within failure lists. An error consists
of an error message and the line number, in which the error occurs.

Figure 2 shows the graph schema of IDE. The schema defines the node type
CompileJob, which can be instantiated for compile processes. For storing compile
errors, IDE uses the functionality of Data Storage. Thus, IDE must import the
interface of Data Storage. In Figure 2, a simple interface is used for this purpose,

Defining Abstract Graph Views as Module Interfaces 123

owns has contains

1 * 1 *

CompileJob

+ string name

Collection

+ createCol(...)
+ insertElem(...)

+ string name
+ string project

Element

+ int i
+ string str1 *

Fig. 3. Graph schema of module IDE using an abstract graph view of Data Storage

which consists of the necessary node and edge types of Data Storage (depicted as
gray rectangles and dotted edges). Simple interfaces are introduced in Section 3.

Simple interfaces cannot abstract from specification details. Hence, IDE has to
regard the separation between node types Entry and Value. To provide a conve-
nient usage of Data Storage, a graph schema as depicted in Figure 3 is desirable.
In this case, the imported interface abstracts from the separation of Entry and
Value by offering the abstract node type Element. Additionally, node type Col-
lection abstracts from Container and List. We show how our approach of abstract
graph views can be used to achieve this goal in Sections 4 and 5.

3 Module Concept with Simple Module Interfaces

In this section, we shortly introduce our existing module concept supporting up-
dateable simple interfaces for modules. These interfaces consist of specification
elements that are explicitly marked as to be included in the interface. For mark-
ing, the �e�-stereotype is used within specifications (abbreviation for export).
An interface may cover node types (including public attributes and transforma-
tions), edge types, and type-independent graph transformations. For transfor-
mations, only their signatures are listed in the interface. A valid interface must
contain the source and target node types for every included edge type.

Example. For using module Data Storage in other modules, the main elements
for storing data have to be exported. As shown in Figure 1, the interface consists
of the node types List with the name-attribute and its transformations, Entry with
its transformation, and Value with its attributes. Additionally, edge types has,
next, and contains are exported.

Interfaces may be imported by other modules. We offer use-relations for
import-export relationships between modules. This way, a module imports all
elements contained in a used interface. A module may use imported elements in
the same way as locally-defined elements, but the definition of imported elements
must not be changed, e.g. by adding new attributes. In particular, imported node
types can be related to local node types by defining new edge types between
them. In case of importing several interfaces, name clashes between imported
elements are internally solved by renaming the corresponding elements.

Example. IDE imports the simple interface of Data Storage, which is shown in
Figure 2. IDE defines an edge type owns relating the local type CompileJob and
the imported interface.

124 U. Ranger, K. Gruber, and M. Holze

transformation insertList (CompileJob c, int i, string s) =

c

l : List

c

e : Entry

v : Value
val := i
txt := s

::= owns

has contains

Fig. 4. Graph transformation insertList of module IDE

Imported elements may be used within graph transformations leading to dis-
tributed graph transformations, whose execution affects several modules in par-
allel. Regarding procedural GTLs, a module may call imported transformations
by using their signatures within textual statements. This possibility resembles
(remote) procedure calls of conventional programming languages. Additionally,
imported node and edge types may be used within visual graph transformations,
in which they are depicted as gray rectangles resp. dotted edges.

Example. Figure 4 shows the visual graph transformation insertList, which is
defined in IDE. The transformation creates a new list storing the compile error
of a compile job. The compile job c, the line number i, and the error message s
are given as input parameters. The left-hand side consists of the given compile
job c. The right-hand side of the transformation defines that for c a list l and an
entry e with a corresponding value v have to be created. Additionally, edges are
created which connect the created objects and the compile job.

Due to the runtime semantics, every module stores its own runtime graph. For
accessing data of other modules, a module uses reference objects in its runtime
graph. These objects do not store any data but only the location of the objects
they are pointing to. Thus, for accessing an attribute of a reference node, a query
to the module storing the original node has to be performed. The advantage of
using references is that relations between data of different modules may be man-
aged within the modules’ runtime graphs. Additionally, the data has not to be
replicated in every module, because this would complicate the consistency main-
tenance between all existing copies [3]. In [4], we describe the runtime semantics
and the definition of distributed graph transformations in detail.

Example. Revisiting the graph transformation insertList of Figure 4, the effects
of executing the transformation are shown in Figure 5. The figure depicts the
runtime graphs of Data Storage and IDE before and after the application of in-
sertList. As IDE uses Data Storage, the runtime graph of IDE consists of both local
and reference graph objects. Reference objects are depicted as gray circles resp.
dotted edges. The depicted ids of reference nodes are equal to the ids of the
original nodes. Before applying insertList, IDE holds a list l2 for a compile job cj1
whose actual data l2, e2 and v2 are stored in Data Storage. Besides these objects,
Data Storage stores the objects c1, l1, e1, and v1 which are only used internally
by the module. When executing the transformation, a list, an entry, and a value
are created which affects both runtime graphs: In Data Storage the objects l3, e3,
v3, and edges are created and in IDE appropriate reference objects are inserted.

Defining Abstract Graph Views as Module Interfaces 125

v3

e3

l3

cj1

v2

e2

l2

cj1

v2

e2

l2

Runtime graph of Data Storage Runtime graph of IDE

reference

cj2 cj2

v3

e3

l3

c1

v1 v2

e1 e2

l1 l2

c1

v1 v2

e1 e2

l1 l2

Fig. 5. Executing graph transformation insertList

Integrating modularization in GTLs introduces a significant problem which
is called graph rewriting dilemma [5]. A module’s interface abstracts from the
internal specification by hiding some specification elements. If another module
applies imported schema types within visual graph transformations, this may
cause inconsistencies in the runtime graph of the module providing the inter-
face. For example, the execution of transformation insertList in Figure 5 leads
to an inconsistency in Data Storage, because the new list l3 is not related to a
container although this is required by the internal graph schema of Data Storage
(see Figure 1). For avoiding the graph rewriting dilemma, we provide a runtime
mechanism which adapts a graph transformation (using interface elements) into
module-specific consistent transformations [6]. These adapted transformations
consider all internally imposed constraints of the modules and keep the runtime
graphs consistent. In the example of Figure 5, the adapted transformation would
additionally create an edge of type covers from a container to the list l3.

4 Concept of Abstract Graph Views

Our concept of abstract graph views extends the concept of simple interfaces.
The new concept allows the definition of a view on the graph specification as the
module interface. This view supports the declaration of new types and trans-
formations in the interface, by defining a mapping between the view and the
internal specification. For the mapping between view node types and internal
node types, a n-to-m relationship may be defined. That is, a node type of the
view may be mapped to several node types in the internal specification and vice
versa. At runtime, view types are not instantiated, but objects of view types are
mapped to objects of internal types. Therefore, we call these views abstract.

Like simple interfaces, the definition of a view may not be changed by other
modules. Other modules may only use imported view types in the graph schema
definition and within graph transformations. If such a transformation is executed,
all operations concerning view objects are translated to operations on objects
of internal types. This translation process is automatically derived from the
mapping definition. Similar to simple interfaces, every module currently may
offer only one view, i.e. every module using the interface gets the same view.

126 U. Ranger, K. Gruber, and M. Holze

Abstract graph view

Internal specification

1. Anchor node types

List

...

...

Entry

...

...

Value

...
Cont.

...

Elem.Coll.

List

...

...

Entry

...

...

Value

...

...

Cont.

...

Elem.Coll.

...

...

2. Attributes and graph transformations
concerning anchor node types

Fig. 6. Concept of anchor node types considering the example of Data Storage

The advantage of graph views is the possibility to completely decouple a mod-
ule’s internal specification from its interface. Thus, a module’s internal specifi-
cation can be modified without adapting the modules using its interface. The
decoupling is realized by offering only an indirect access on the internal spec-
ification and on the internal runtime graph from the outside. The mapping of
view elements to the internal specification is completely transparent to module
users. To handle the complexity of views and to support updateable views, we
define the following constraints on the mapping definition1:

Anchor Nodes. For every node type of a view, one node type of the internal
specification has to be determined as anchor node type. This anchor type serves
as main point of reference for the view type. The view type may provide a subset
of the attributes and transformations specified in its anchor type.

As defined above, view types are not instantiated themselves, but are always
mapped to objects of internal types. Thus, reference objects in the runtime
graphs of module users actually point to objects of the anchor type in the mod-
ule’s runtime graph. If an anchor object is deleted in the module’s runtime graph,
all reference objects pointing to it in module users are deleted, too.

The usage of anchor types allows the seamless integration of abstract graph
views into our module concept. We can keep the runtime semantics based on
the reference approach. The usage of concrete objects for view objects as entry
points for the view mapping leads to deterministic results when dealing with view
objects. It must be pointed out that every node type of the internal specification
may serve at most once as anchor node type in the view. Otherwise, modules
would have several reference objects of different view types in their runtime graph
pointing to the same node object. This would lead to confusing and inaccurate
results when using view objects of different view types.

Figure 6 shows the schematic definition of an abstract view considering the
sample Data Storage. The view is modeled according to the aspired view in
Figure 3 consisting of the view node types Coll. and Elem.. In the figure, dots

1 Due to lack of space, a formal description is omitted in this paper, but can be found
in [7].

Defining Abstract Graph Views as Module Interfaces 127

are used as placeholders for attributes and graph transformations. The left part
of the figure illustrates the definition of anchor node types for view node types by
dashed lines. The right part of the figure depicts the relation between attributes
and graph transformations of abstract node types and their anchor node types.

Context Nodes. In addition to its anchor type, several context node types
may be defined for a view node type. In this manner, one view node type may
be mapped on multiple node types of the internal specification. For example,
one view node type may cover attributes and graph transformations defined in
several node types of the internal specification. To relate the context node types
with their corresponding anchor node type, it is required that each context node
type is directly connected to the anchor node type by at least one edge type
of the internal specification. For node types in the view definition, it is then
required to choose exactly one of the edge types for every context node type
as context edge type. Thus, the context objects of a view object can be found
by traversing context edges incident to the anchor object. In contrast to anchor
objects, the deletion of context objects in the module providing the graph view
does not affect the view objects in module users.

Depending on the cardinality of the context edge type, two cases have to be
distinguished: First, the context edge type is of cardinality to-1, i.e. the anchor
object is connected to (at most) one object of the context type. In this case, the
context object of a view object can be easily determined by traversing the context
edge incident to the anchor object of the view object. Thus, the attributes of
view objects which are mapped to attributes of a to-1 context object can be
directly changed from outside. Second, the context edge type is of cardinality
to-n, i.e. the anchor object is connected to several objects of the context type.
In this case, all objects of the context type incident to the anchor object have to
be considered. If the view node type covers an attribute of a context node type,
the value of the attribute is a set consisting of the attribute values of all context
objects. This value set must not be changed by modules using the view object
due to the following reason: Graph transformation systems use a strategy that
searches for objects non-deterministically. Thus, the order of the value set is also
non-deterministic. Therefore, modifications on the set may not be mapped back
on the context objects unambiguously.

The concept of context node types is illustrated on the left of Figure 7. For
the view node types, the context node types and their context edges are defined
by dotted lines. Relations between attributes and graph transformations of view
node types and internal node types are shown as dashed lines.

Aggregated Attributes. We also support the definition of aggregated attri-
butes. These attributes are based on an aggregation function and on an attribute
of a context type which is related to the anchor type by a to-n-edge type. E. g.
if the values of the context objects are added up by the aggregation function,
then the sum of these values constitutes the attribute value of the view object.
Values of aggregated attributes must not be changed by module users as the
modification can not be mapped uniquely back to the individual context objects.

128 U. Ranger, K. Gruber, and M. Holze

Abstract graph view

Internal specification

3. Context node types

List

...

...

Entry

...

...

Value

...
Cont.

...

Elem.

...
Coll.

...

...

4. Edge types

Elem.

...
Coll.

...

...

List

...

...

Entry

...

...

Value

...
Cont.

...

Fig. 7. Concept of context node types and edge types considering the example of Data
Storage

Edges. Besides node types, edge types may be defined in graph views relating
view node types. Every view edge type is mapped to exactly one edge type
(anchor edge type) of the internal specification. This internal edge type has to
relate the anchor node types of the corresponding view node types. In this way,
a unique mapping of view edges is guaranteed. On the right of Figure 7, an edge
type is defined, which connects the two view node types by an anchor edge type.

Our project focuses on and extends the GTLs PROGRES and Fujaba which
do not support attributed edge types. However, our concepts for abstract graph
views allow to define attributed edge types. These may be imported and used
by modules specified in a GTL providing attributed edge types, like AGG [8].

In the above paragraphs, we have defined constraints that apply to the
definition of abstract graph views. These constraints serve as a basis for up-
dateable graph views, thus allowing the module users to modify their view by
modeling graph transformations on imported types. However, for mapping these
view-operations on the internal objects, there are different possibilities shown in
Table 1. There are four possibilities to handle the creation of a view node object:
The creation could not be mapped to internal node objects at all (Nothing), or
internal node objects could be created (Create), or the runtime graph could be
searched for existing node objects that match the properties of the newly created
view node object. If matching node objects were found, they could be used as the
internal node objects for the view node object. Otherwise, the transformation
might fail (Search–Fail), an internal node objects might be created (Search–Create)
or nothing is done (Search–Nothing). For deleting view node objects, there are only
two mapping strategies: the corresponding internal node objects may either be
deleted (Delete) or not (Nothing). It is important to note that different strategies
can be chosen for every internal anchor and context node object. Besides view
node objects, also view edge objects may be created or deleted by module users.
As for view nodes, the semantics of creating a view edge object may be Noth-
ing, Search–Nothing, Search–Create, or Create, and for deleting an view edge object
Nothing or Delete. The change of a view attribute value may be mapped on the
corresponding internal attribute (read/write) or ignored (read only).

Defining Abstract Graph Views as Module Interfaces 129

Table 1. Possible semantics for modifying view objects

Internal node object
Internal edge object Internal attributeAnchor object Context object

Create
view
object

Nothing Nothing Nothing

—
Search–Fail Search–Fail Search–Fail

Search–Nothing Search–Nothing Search–Nothing
Search–Create Search–Create Search–Create

Create Create Create
Delete
view obj.

Nothing Nothing Nothing —
Delete Delete Delete

Modify
view attr.

— — — Read only
Read/Write

For the concept of abstract graph views, on the one hand we explicitly require
the views to be updateable by the module user. Hence, choosing the Nothing
strategy in general (including Search–Nothing) for all node types is not applicable,
because then create/delete operations would have no semantics in the module
providing the view. On the other hand, we want to preserve the flexibility of
the view concept as far as possible. Thus, we have chosen to use the following
combination of the above strategies, which we refer to as the minimal semantics
(depicted by the bold strategies in Table 1): If a view node or edge object is
created, a corresponding anchor object is created internally (Create, but Search–
Create would also be possible). For both nodes and edges, a reference object is
then created in the module user’s runtime graph. Likewise, if the deletion of a
view object is triggered, the reference object and the corresponding anchor object
are deleted (Delete). In contrast to operations concerning anchor objects, the
minimal semantics does not apply to context objects. That is, for every context
node type of a view node type the strategy, which is applied when modifying the
view object, can be specified explicitly. Furthermore, the modification semantics
(read/write or read only) for attributes may also be specified.

5 Realization of Abstract Graph Views

This section describes the realization of abstract graph views in GTLs. For defin-
ing a view, we introduce the view diagram as new diagram type. Based on the
view definition, the implementation of the presented concepts is able to translate
transformations using view types into transformations using internal types.

View Diagram. The abstract graph view is defined in a view diagram which
declares the abstract schema types and graph transformations. For every view
type, its mapping to an anchor and context types of the internal specification
is defined. Additionally, attributes and graph transformations in the graph view
are mapped to the internal specification.

Example. Figure 8 shows the view diagram defining the abstract graph view
on Data Storage. The view consists of the two node types Collection and Element,

130 U. Ranger, K. Gruber, and M. Holze

contains
Anchor: has

1 *

Anchor: List
Context: Container <<preserveCont.>>

with edge type: covers

Collection

+ string name = List.name
+ string project = Container.name
+ createColl(...) = List.createL(...)
+ insertElem(...) = List.deleteE(...)

Anchor: Entry
Context: Value <<deleteCont.>>

with edge type: contains

Element

+ int i = Value.val
+ string str = Value.txt

Fig. 8. Definition of an abstract graph view for module Data Storage

and an edge type has (renamed from contains) connecting both view node types.
For Collection, the internal node type List is chosen as anchor node type and
Container as context node type. The name attributes of List and of Container are
adopted by Collection, where the name attribute of Container is changed to project.
Furthermore, Collection covers the transformations of List which are named to
createColl and insertElem. Module IDE may use node type Collection for managing
the files of software systems. Thus, the name of a software system may be stored
as project attribute and the file may be stored as name attribute of Collection.
Figure 9 depicts the realization of abstract graph views for this example. For
the view object cl2 in IDE, l2 of Data Storage constitutes the anchor object, and
by traversing the covers-edge c1 is obtained as context object. Although view
objects cl1 and cl2 point to different anchor objects in Data Storage (l1 and l2),
their context object c1 is the same. Besides Collection, the view of Data Storage
defines the node type Element, with node type Entry as anchor type and Value as
context type. Thus, Element abstracts from the internal decoupling of a list entry
and its value. In our example, Element is used by IDE to store a compile error for
a certain file. Figure 9 illustrates how the object el2 references the anchor object
e2 in Data Storage with context object v2. This figure also shows that edges of
view type contains have an explicit representation in the runtime graph of IDE.

Stereotypes. For defining the behavioral semantics of context objects, we in-
troduce stereotypes in the view diagram. They determine the strategies from
Table 1 that have to be applied on creating or deleting view objects. For each
context node type, one stereotype for its creation and one for its deletion has
to be set. Currently, we support the creation stereotypes newContext for the Cre-
ate strategy, useExistingOrFail for the Search–Fail strategy, useExistingContext for
the Search–Nothing strategy, and searchExistingOrNewContext for the Search–Create
strategy. The stereotype newContext creates a new context object and automat-
ically connects it to its anchor object by an edge of the context edge type. In
contrast, useExistingOrFail searches the runtime graph nondeterministically for an
appropriate context object. When a match is found, an edge object of the con-
text edge type is created which connects the found object and the new anchor
object. If such an object is not found, the creation of the view object fails. To
avoid this failure, the searchExisting stereotype just ignores the failure and the
searchExistingOrNewContext stereotype creates a new context object. The deletion

Defining Abstract Graph Views as Module Interfaces 131

Runtime graph of Data Storage Runtime graph of IDE

anchor-references

cj1

el1

cl1

cj1

el2el1

c1

v2

e1 e2

l1l2

c1

v1 v2

e1 e2

l1
cl2cl1

v1

Fig. 9. Effects of deleting collection cl2 and element el2 in module IDE

of a context object can be controlled by the deleteContext for the Delete strategy
from Table 1, and the preserveContext stereotype for the Nothing strategy. In our
concept, the deletion of context objects is the only operation that may be defined
to use the Nothing strategy, because – as the following example shows – it may
be important to preserve certain context information for other anchor objects.

Example. Due to lack of space, only the delete stereotypes depicted in Figure 8
are presented here. Two different stereotypes for deletion have been chosen in the
example. preserveContext has been chosen for the context of node type Collection,
leading to the preservation of the context object of type Container when a view
object of type Collection is deleted. The deletion of the context object of view
type Element is specified as deleteContext. Thus, the deletion of a view object of
type Element leads to the deletion of the corresponding list entry and its value.
The top of Figure 10 shows the graph transformation deleteCollectionAndElement,
which deletes a Collection cl and an Element el. Figure 9 shows the effects of
executing this transformation for Data Storage and IDE. Considering the case of
deleting cl2 in IDE: cl2 references l2 in Data Storage. According to preserveContext,
cl2 in IDE and l2 in Data Storage are deleted, but the context c1 in Data Storage is
kept. Considering the case of deleting el2 in IDE: el2 references e2 in Data Storage.
According to deleteContext, el2 in IDE and e2 and v2 in Data Storage are deleted.

Translation. To execute a transformation using view types, it is translated
into a transformation operating on internal types. For the translation, we re-
use our runtime mechanism [6] for solving the graph rewriting dilemma. The
runtime mechanism consists of the following three steps. First, the transforma-
tion is translated into a graph representing the elements and operations of the
transformation. Second, the graph is transformed using adaption transforma-
tions leading to a graph storing appropriate elements and operations of internal
types. [6] describes the adaption transformation approach in general. The adap-
tion transformations are automatically generated from the view definition ac-
cording to the minimal semantics and the stereotypes for context types. Because
of the mapping definition of the view, the generation algorithm for the adaption

132 U. Ranger, K. Gruber, and M. Holze

clecl cle : Collection el ::=
contains

transformation deleteCollectionAndElement (Collection cl, Element el) =

adaption transformations

transformation
graph

c

::=

transformation deleteCollectionAndElement (List l, Entry e) =

ce

le

c : Container ce : Container v : Value

covers

l le : List e
has

covers contains ::= covers

::=
::=

::=

Fig. 10. Translation of graph transformations via adaption transformations

transformation is straight-forward and thus omitted in this paper. In the third
step, the graph is re-translated into a graph transformation which can then be
executed in the runtime graph of the module providing the view.

Example. Figure 10 illustrates the approach by considering the transformation
deleteCollectionAndElement defined in module IDE. The top of the figure shows the
transformation using view types of Data Storage. Then, this transformation is
translated into a graph representation and modified by adaption transformations.
Afterwards, at the bottom of Figure 10, a new transformation is derived from
the modified graph which shows the transformation deleteCollectionAndElement
only using internal specification types of Data Storage. The minimal semantics of
deleteCollectionAndElement is denoted by the bold modeling elements which affect
the corresponding anchor objects of the view objects. By executing this adapted
transformation, l2, e2 and v2 are deleted as shown in Figure 9.

6 Related Work

[9] introduces views in database management systems (DBMS), where every view
is defined as a query over several database tables. Although a view is perceived
as a single database table from the outside, the view columns may actually
be derived from several relations. In general, a database view is read-only for
database users. However, some DBMS offer updateable views [10]. For realizing
these views, the DBMS must be able to determine a unique mapping between the
modifiable columns of the view and the corresponding columns of the affected
database tables. The database approach is comparable to abstract graph views as
proposed in this paper: A database view and its columns correspond to a graph
view type and its attributes. Similar to the unique anchor node type of our
approach, a unique key-element must be defined for each column of a database

Defining Abstract Graph Views as Module Interfaces 133

view. In analogy to aggregated attributes in graph views, aggregated columns of
a database view must not be changed by database users. [10] forbids the union
of tables in updateable views. This restriction is softened in our approach as
we allow to change attribute values of context objects which are obtained by
traversing context edges of cardinality to-1 from the anchor object.

In [11], an approach is presented which offers abstract views on graph speci-
fications. The approach extends triple graph grammars (TGG) for virtual triple
graph grammars (VGTT), such that the abstract view and the correspondence
graph are not materialized. The mapping of the abstract view to the internal
specification is defined by modeling declarative rules. These rules define how
operations concerning view objects are mapped to internal objects. Thus, the
mapping of view operations is explicitly defined by declarative rules. In con-
trast, our approach enables the mapping definition on a more abstract level in
the graph schema. From this mapping definition, the transformations are auto-
matically derived. As views in [11] can not be materialized, the approach can
not be applied for modeling distributed systems.

[5] introduces a package concept for PROGRES which resembles the UML
package concept. As package interfaces are restricted to simple interfaces, the
concept does not provide means for defining abstract graph views. [5] only offers a
static semantics for packages, so that the concept can not be reused for modeling
distributed systems. In contrast to our module concept, [5] supports package
inheritance and tags for restricting the access on interface elements.

[12] presents another module concept for the GTL GRACE. As GRACE mod-
ules are defined over a common graph schema, interfaces only contain transfor-
mation signatures. These transformations may be called within transformation
units of importing modules. Similar to the PROGRES package concept, GRACE
modules do not provide abstract graph views or a runtime semantics.

DIEGO [13] combines the approaches of hierarchically distributed graph
transformations and of encapsulated graph objects. Similar to GRACE mod-
ules, DIEGO modules are based on one common graph schema. Thus, module
interfaces cover only transformation signatures and not abstract graph views.
DIEGO offers a runtime semantics for modules which is based on the synchro-
nous execution of transformations with same names in all modules. In this way,
modules are coupled by a common subset of graph transformations instead of
defining visual graph transformations by applying imported types.

Another approach for coupling modules is presented in [14] in which interfaces
correspond to simple interfaces. [14] provides a runtime semantics for modules
based on rule refinements, so that modules may refine imported graph trans-
formations. Similar to DIEGO, the modules are synchronized by executing the
(possible refined) transformations in parallel. Thus, the coupling of modules is
based on a predefined set of graph transformations.

In [15], another module concept is introduced which offers means for module
inheritance and import-export relationships between modules. This concept pro-
vides a runtime semantics for modules, but module interfaces are restricted to
simple interfaces and do not support abstract graph views.

134 U. Ranger, K. Gruber, and M. Holze

[16] describes open graph transformation systems (OGTS) which enable the
modeling of interaction between design views using a common reference model.
Comparing [16] to our approach, design views correspond to simple interfaces,
but allow a renaming of view elements. In OGTS, schema types may be declared
as open types. Open types provide a loose semantics for creating and deleting
appropriate instances and for manipulating attribute values. In our approach,
interface types are automatically open for both creation and deletion. It is fu-
ture work to extend our concepts for providing open types similar to [16] which
distinguish between a loose semantics for creating and deleting instances of in-
terface types. Similar to schema types, [16] offers a loose semantics for graph
transformations based on subrule relations. The loose semantics of graph trans-
formations can be compared to the minimal semantics of our distributed graph
transformations. The advantage of our approach is the ability to specify new
graph transformations visually instead of having a predefined set of common
transformations as in the reference model of [16].

7 Summary

The introduction of abstract graph views decouples a module’s specification
from its interface. The view declares new schema types and transformations
which are defined by a n-to-m mapping to elements of the internal specification.
To preserve the visual modeling of GTLs, our concepts offer updateable graph
views. For realizing updateable views, the view has to fulfill some constraints,
which allow the unique translation between view objects and internal objects.
For performing an update, we have introduced minimal semantics: All operations
that are performed on view objects are performed on their corresponding anchor
objects. For context objects, the specifier may configure the behavior by using
predefined stereotypes leading to a flexible view concept. According to the view
definition, our implementation translates graph transformations concerning view
objects into transformations concerning internal objects.

The presented approach for abstract graph views can also be applied in distrib-
uted systems, because the runtime semantics of our module concept is preserved.
Thus, the coupling of different distributed applications can be specified by using
their interfaces constituting abstract graph views. Our approach for abstract
graph views is currently tested within a distributed process management system
(resembling AHEAD). The approach has proven to be promising and well suited,
so that we will apply the approach in further projects.

References

1. Schürr, A.: Operationales Spezifizieren mit programmierten Graphersetzungssys-
temen. Deutscher Universitäts-Verlag, Wiesbaden (1991)

2. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: A new graph
rewrite language based on the Unified Modelling Language and Java. In: [17], pp.
296–309

Defining Abstract Graph Views as Module Interfaces 135

3. Tanenbaum, A., Steen, M.V.: Distributed Systems – Pinciples and Paradigms, 2nd
edn. Prentice Hall PTR, Upper Saddle River (2006)

4. Ranger, U., Schultchen, E., Mosler, C.: Specifying distributed graph transformation
systems. In: Zündorf, A., Varró, D. (eds.) GraBaTs 2006. ECEASST, vol. 1 (2006)

5. Winter, A.: Visuelles Programmieren mit Graphtransformationen. Aachener
Beiträge zur Informatik, vol. 27. Wissenschaftsverlag, Mainz (2000)

6. Ranger, U., Hermes, T.: Ensuring consistency in distributed graph transformation
systems. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 368–
382. Springer, Heidelberg (2007)

7. Ranger, U.: Visuelle Modellierung von verteilten Systemen mit Graphersetzungs-
sprachen (to appear, 2008)

8. Ermel, C., Rudolf, M., Taentzer, G.: The AGG approach: Language and environ-
ment. In: [18], pp. 551–603

9. Date, C.J., Darwen, H.: A Guide to the SQL Standard, 3rd edn. Addison Wesley,
Boston (1993)

10. Gottlob, G., Paolini, P., Zicari, R.: Properties and update semantics of consistent
views. ACM Transactions on Database Systems 13(4), 486–524 (1988)

11. Jakob, J., Königs, A., Schürr, A.: Non-materialized model view specification with
triple graph grammars. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L.,
Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 321–335. Springer, Heidel-
berg (2006)

12. Heckel, R., Hoffmann, B., Knirsch, P., Kuske, S.: Simple modules for GRACE. In:
[17], pp. 383–395

13. Taentzer, G., Schürr, A.: DIEGO, Another step towards a module concept for graph
transformation systems. In: Corradini, A., Montanari, U. (eds.) SEGRAGRA 1995.
ENTCS, vol. 2. Elsevier Science Publishers, Amsterdam (1995)

14. Große-Rhode, M., Parisi-Presicce, F., Simeoni, M., Taentzer, G.: Modeling dis-
tributed systems by modular graph transformation based on refinement via rule
expressions. In: Münch, M., Nagl, M. (eds.) AGTIVE 1999. LNCS, vol. 1779, pp.
31–45. Springer, Heidelberg (2000)

15. Ehrig, H., Engels, G.: Pragmatic and semantic aspects of a module concept for
graph transformation systems. In: Cuny, J., Engels, G., Ehrig, H., Rozenberg, G.
(eds.) Graph Grammars 1994. LNCS, vol. 1073, pp. 137–154. Springer, Heidelberg
(1996)

16. Heckel, R., Ehrig, H., Engels, G., Taentzer, G.: A view-based approach to system
modeling based on open graph transformation systems. In: [18], pp. 639–668

17. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.): TAGT 1998. LNCS,
vol. 1764. Springer, Heidelberg (2000)

18. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.): Handbook on Graph
Grammars and Computing by Graph Transformation: Applications, Languages,
and Tools, 1st edn., vol. 2. World Scientific, Singapore (1999)

Programmed Graph Rewriting with DEVS

Eugene Syriani and Hans Vangheluwe

School of Computer Science
McGill University, Montréal, Québec, Canada

Abstract. In this article, we propose to use the Discrete EVent system
Specification (DEVS) formalism to describe and execute graph transfor-
mation control structures. We provide a short review of existing pro-
grammed graph rewriting systems, listing the control structures they
provide. As DEVS is a timed, highly modular, hierarchical formalism for
the description of reactive systems, control structures such as sequence,
choice, and iteration are easily modelled. Non-determinism and parallel
composition also follow from DEVS’ semantics. The proposed approach
is illustrated through the modelling of a simple PacMan game, first in
AToM3 and then using DEVS. We show how the use of DEVS allows for
modular modification of control structure.

1 Introduction

In 1996, Blostein et al.[1] described some issues regarding the, at that time very
sporadic, practical use of graph rewriting. Graphs are a versatile and expressive
data representation, and there are many advantages to the explicit representa-
tion (as opposed to encoding in the form of programs) of graph transformations.
Issues such as expressiveness, scale-ability and re-use of models of graph trans-
formation as well as the ability to integrate such models with traditional software
components were considered critical enablers for wide-spread use of graph trans-
formations. During the last decade, several of these issues have been addressed
and tools have been developed. In particular, tools such as FUJABA [2] allow for
programmed graph rewriting. The purpose of programmed graph rewriting is to
be able to model the control structure of (graph) transformation. This is done
in terms of control flow primitives such as sequence, branching (choice), and
looping (iteration). Hierarchical encapsulation allows for modular construction
(and re-use) of control flow structures. Some tools add expressiveness through
non-determinism and parallel composition. In general, it is also desirable for a
control structure language to be target (programming) language neutral. The
explicit incorporation of time is rare in current tools. The above requirements
were summarized recently in [3].

In our quest for the most appropriate formalism (i.e., which optimally satis-
fies the above requirements) to describe programmed graph transformation, we
now briefly present the features of tools with programmed graph transformation
capabilities, based on [4]. Note that our own AToM3 [5,6], “A Tool for Multi-
formalism and Meta-Modelling” which has very limited (priority-based) control
structuring, will be introduced in section 3.

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 136–151, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Programmed Graph Rewriting with DEVS 137

Graph Rewriting and Transformation (GReAT). [7,8,9] treats the source
model, the target model and the temporary objects created during the transfor-
mation as a single graph using a unified metamodel.

The GReAT graph transformation language uses the Single Pushout algebraic
approach for subgraph matching. Rules consist of a pattern graph described us-
ing UML Class Diagram notation where the elements can be marked to match a
pattern (Bind role), to remove elements (Delete role) or to create elements
(CreateNew role). A guard is associated with each production; this is an OCL
expression that operates on vertex and edge attributes. An attribute mapping
can also be defined to generate values of vertex and edge attributes with arith-
metic and string expressions.

GReAT’s control flow language uses a control flow diagram notation where a
production is represented by a block. Sequencing is enabled by the use of input
and output interfaces (Inports and Outports) of a block. Packets (the graph
model) are fed to productions via these ports. The Inport also provides an
optimization in the sense that it specifies an initial binding for the start of the
pattern matcher. Two types of hierarchical rules are supported. A block pushes
all its incoming packets to the first internal rule, whereas a forblock pushes one
packet through all its internal rules. Branching is achieved using test case rules,
consisting of a left-hand side (LHS) and a guard only. If a match is found, the
packet will be sent to the output interface. Parallel execution is possible when
the Outports of a production are connected to different Inports. There is no
notion of time.
Visual Modelling and Transformation System (VMTS). In VMTS [3,10],
the LHS and right-hand side (RHS) of a graph transformation rule are repre-
sented as two separate graphs. They can be linked (internal causality) by XSL
scripts. These scripts allow attribute operations and represent the create and
modify operation of the transformation step. Also, parameters and pivot nodes
can be passed to a step for optimization.

The programmed graph rewriting system of VMTS is the VMTS Control Flow
Language (VCFL), a stereotyped Activity Diagram. This abstract statemachine
handles pre- and post-conditions of rules. Sequencing is achieved by linking trans-
formation steps; loops are allowed. Branching in VCFL is conditioned by an OCL
expression. In case of multiple branching (step connected to more than one step),
only the first successfully evaluated branch will apply its transformation step. It-
eration is controlled by loops in a sequence of steps. A branch can also be added
to provide conditional loops. Hierarchical steps are composed of a sequence of
primitive steps. A primitive step ends with success if the terminating state is
reached and ends with failure when a match fails. However, in hierarchical steps,
when a decision cannot be found at the level of primitive steps, the control
flow is sent to the parent state or else the transformation fails. Parallelism is
not yet implemented in VCFL. VMTS is language-oriented towards the .NET
framework. There is no notion of time.

PROGReS, FUJABA and MOFLON. The PROgrammed Graph REwriting
System (PROGReS) [11,12] was the first fully implemented environment to allow

138 E. Syriani and H. Vangheluwe

programming through graph transformations. It has very advanced features not
found inother tools suchasback-tracking. Insightsgainedthroughthedevelopment
of PROGReS have led to FUJABA (From UML to Java and Back Again) [2,13], a
completely redesigned graph transformation environmentbased onJava andUML.
FUJABA’s programmed graph rewriting system is based on Story Charts, a com-
bination of Story Diagrams [13] and Statecharts. An activity in such a diagram
contains either graph rewrite rules, which adopt Collaboration Diagram-like rep-
resentation, or pure Java code. The graph schemes for graph rewriting rules exploit
UML class diagrams. With the expressiveness of Story Charts, graph transforma-
tion rules can be sequenced (using success and failure guards on the linking edges)
along with activities containing code. Branching is ensured by the condition blocks
which act like an if-else construct. An activity can be a for-all story pattern, which
acts like a while loop on a transformation rule.

FUJABA’s approach is implementation-oriented. Classes define method sig-
natures and method content is described by Story Chart diagrams. All models
are compiled to Java code. There is no notion of time.

The MOFLON [14] toolset uses the FUJABA engine for graph transforma-
tion, since the latter already features UML-like graph schemata. It provides
an environment where transformations are defined by Triple Graph Grammars
(TGGs) [15]. These TGGs are subsequently compiled to Story Diagrams [13].
This adds declarative power to FUJABA similar to that of the OMG’s QVT
(Query/View/Transformation – www.omg.org).

In the sequel, we propose the Discrete EVent system Specification (DEVS)
formalism [16] to describe transformation control structures. Using DEVS gives
us sufficient expressiveness to match that of the tools described above, thus
satisfying the requirements for transformation control structure description lan-
guages listed before. Furthermore, as with the adaptation of known formalisms
such as Activity Diagrams in tools such as FUJABA, using DEVS means that
no new formalism needs to be invented (and its properties investigated). Also,
existing tools for analysis, simulation, and code synthesis may thus be re-used
for the control structure part of a graph transformation model.

The remainder of this paper is structured as follows. Section 2 describes the
DEVS formalism. Section 3 describes PacMan, a small case study, and how it is
modelled in AToM3. Section 4 describes how the priority-based graph rewriting
semantics of AToM3 can be modelled using DEVS. The combination of DEVS
with Graph Rewriting rules is very elegant and orthogonal. It is shown how the
modularity of DEVS allows for easy modification of the transformation control
structure. This modification includes the specification of real-time user interac-
tion. Section 5 describes the advantages of using DEVS for programmed graph
transformation and section 6 summarizes and concludes.

2 Discrete Event System Specification (DEVS)

This section introduces the Discrete EVent system Specification (DEVS) formal-
ism. In the rest of the paper, it will be shown how the modularity and expressive-
ness of DEVS are well suited to encapsulate graph rewriting building blocks.

Programmed Graph Rewriting with DEVS 139

The DEVS formalism was introduced in the late seventies by Bernard Zeigler
to develop a rigorous basis for the compositional modelling and simulation of
discrete event systems [16]. The DEVS formalism has been successfully applied
to the design, performance analysis and implementation of a plethora of complex
systems.

A DEVS model is either atomic or coupled. An atomic model describes the
behaviour of a reactive system. A coupled model is the composition of several
DEVS sub-models which can be either atomic or coupled. Submodels have ports,
which are connected by channels. Ports are either input or output. Ports and
channels allow a model to receive and send signals (events) from and to other
models. A channel must go from an output port of some model to an input port
of a different model, from an input port of a coupled model to an input port of
one of its sub-models, or from an output port of a sub-model to an output port
of its parent model.

An atomic DEVS1 model is a tuple (S, X, Y, δint, δext, λ, τ) where S is a
set of sequential states, one of which is the initial state. X is a set of allowed
input events. Y is a set of allowed output events. There are two types of
transitions between states: δint : S → S is the internal transition function,
δext : Q × X → S is the external transition function, Associated with each
state are τ : S → �

+
0 , the time-advance function and λ : S → Y , the output

function. In this definition, Q = {(s, e) ∈ S × �
+ | 0 ≤ e ≤ τ(s)} is called

the total state space. For each (s, e) ∈ Q, e is called the elapsed time. �+
0

denotes the positive reals with zero included.
Informally, the operational semantics of an atomic model is as follows: the

model starts in its initial state. It will remain in any given state for as long as
the time-advance of that state specifies or until input is received on some port. If
no input is received, after the time-advance of the state expires, the model first
(before changing state) sends output as specified by λ, and then instantaneously
jumps to a new state specified by δint. If input is received however before the
time for the next internal transition, then it is δext which is applied. The external
transition depends on the current state, the time elapsed since the last transition
and the inputs from the input ports.

The following definition formalizes the concept of coupled DEVS models. A
coupled DEVS1 model named D is a tuple (X, Y, N, M, I, Z, select) where X is
a set of allowed input events and Y is a set of allowed output events. N is a set
of component names (or labels) such that D ∈ N . M = {Mn | n ∈ N, Mn is a
DEVS model (atomic or coupled) with input set Xn and output set Yn} is a set of
DEVS sub-models. I = {In | n ∈ N, In ⊆ N ∪{D}} is a set of influencer sets
for each component named n. I encodes the connection topology of sub-models.
Z = {Zi,n | ∀n ∈ N, i ∈ In.Zi,n : Yi → Xn or ZD,n : X → Xn or Zi,D : Yi → Y }
is a set of transfer functions from each component i to some component n.
select : 2N → N is the select or tie-breaking function. 2N denotes the powerset
of N (the set of all sub-sets of N).

1 For simplicity, we do not present a formalization of the concept of “ports”.

140 E. Syriani and H. Vangheluwe

The connection topology of sub-models is expressed by the influencer set of
each component. Note that for a given model n, this set includes not only the ex-
ternal models that provide inputs to n, but also its own internal sub-models that
produce its output (if n is a coupled model.) Transfer functions represent output-
to-input translations between components, and can be thought of as channels
that make the appropriate type translations. For example, a “departure” event
output of one sub-model is translated to an“arrival” event on a connected sub-
model’s input. The select function takes care of conflicts as explained below.

The semantics for a coupled model is, informally, the parallel composition of
all the sub-models. A priori, each sub-model in a coupled model is assumed to
be an independent process, concurrent to the rest. There is no explicit method
of synchronization between processes. Blocking does not occur except if it is ex-
plicitly modelled by the output function of a sender, and the external transition
function of a receiver. There is however a serialization whenever there are multi-
ple sub-models that have an internal transition scheduled to be performed at the
same time. The modeller controls which of the conflicting sub-models undergoes
its transition first by means of the select function.

We have developed our own DEVS simulator called pythonDEVS [17], grafted
onto the object-oriented scripting language Python. In a recent M.Sc. thesis [18],
a compiler for Modelica (www.modelica.org) textual representations of DEVS
models as well as a visual modelling environment were developed.

3 A Small Case Study: PacMan in AToM3

In this section, we describe the simple priority-based graph rewriting in our
meta-modelling and model transformation tool AToM3 [5,6]. In the next section,
this hard-coded control structure will be modelled explicitly using DEVS. As an
example, we use a simplified version of the PacMan video game used in Heckel’s
tutorial introduction of graph transformation [19].

3.1 The PacMan Language (Abstract and Concrete Syntax)

The PacMan language has five distinct elements: PacMan, Ghost, Food, GridNode
and ScoreBoard. Fig. 1 shows the meta-model (model of the abstract syntax) of
this modelling language in AToM3. PacMan, Ghost and Food objects can be linked
to GridNode objects; note the use of associations. This depicts that these objects
can be “on” a gridNode. The self-association between GridNode objects represents
the geometric organization of the game area, similar to the classical PacMan video
game. At a semantic level, this will also denote that PacMan and Ghost “may
move” to a connected gridNode. A Scoreboard object holds an integer valued at-
tribute score. The reason for having different associations from the classes to the
GridNode class is for concrete visual syntax purposes. AToM3 allows one to as-
sociate a visual representation to each class and association. Associations can be
concretely represented visually by means of arrows or by a geometric/topologi-
cal constraint relation, such as a PacMan being centered over a GridNode. Note
how in this example there are no restrictions on the number of instances of each
element, nor on the number of links to a GridNode instance.

Programmed Graph Rewriting with DEVS 141

Fig. 1. The PacMan Meta-Model

3.2 The PacMan Semantics (Graph Grammar)

The operational semantics of the PacMan formalism is defined in a Graph Gram-
mar model which consists of a number of rules. In the rules in the following
figures, concrete syntax is used. this is a useful feature for domain-specific mod-
elling unique to AToM3. Dashed lines were added to explicitely show the “on”
links. Rule 1 in Fig. 2 shows killing: when a Ghost object is on a GridNode
which has a PacMan object, the PacMan is removed. Rule 2 in Fig. 3 shows
eating: when a PacMan object is on a GridNode which has a Food object, Food
is removed and the score gets updated (using an attribute update expression).
Rule 3 in Fig. 4 expresses the movement of a Ghost object to the right and rule

Fig. 2. PacMan Semantics: Ghost kills PacMan rule

142 E. Syriani and H. Vangheluwe

Fig. 3. PacMan Semantics: PacMan eats Food rule

Fig. 4. PacMan Semantics: Ghost moves right rule

8 in Fig. 5 the movement of a PacMan object to the left. Similar rules to move
Ghosts and PacMan objects up, down, left and right are part of the grammar but
are not shown. Rules 1 and 2 have priorities 1 and 2 respectively. All remaining
rules have the same priority 3.

3.3 AToM3’s Graph Grammar Semantics

AToM3’s graph rewriting engine supports priority-based execution of rewrite
rules. Rules are grouped based on their priority. Rewriting starts with the
highest-priority group of rules. If for at least one of the rules in the group, a match
if found in the host graph, one of those rules is chosen non-deterministically. Sub-
sequently, the re-write is performed on the host graph and control goes back to
the group of rules with the highest priority. If none of the rules in the group

Fig. 5. PacMan Semantics: PacMan moves left rule

Programmed Graph Rewriting with DEVS 143

match, control goes to the group of rules with the next lower priority, and so
on. If no groups of rules are left (even the lowest-priority rules do not yield a
match), the transformation terminates. In AToM3, execution can be done step-
by-step (for simulation purposes) or in continuous mode (useful for terminating
model-to-model transformations). Note that AToM3 allows the specification of
(real-)time taken by each rule-rewrite. The time may be extracted from model
attributes. This allows for meaningful simulation animation.

4 Programmed Graph Rewriting Using DEVS

Fig. 6. The overall coupled DEVS model

The purpose of programmed
graph rewriting is to explic-
itly model the control flow
of (graph) transformation. This
is done in terms of control
flow primitives such as se-
quence, choice, and looping. Hi-
erarchical encapsulation allows
modular construction (and re-
use) of control flow structures.
Some tools increase expressive-
ness through constructs such
as non-determinism and paral-
lelism. Rather than inventing a
new language for control struc-
ture description, we propose to
use the DEVS formalism, with
its precisely defined syntax and
semantics, presented above.

As an illustration of how this
approach satisfies the require-
ments stated earlier, we ex-
plicitly model AToM3’s Graph
Transformation execution en-
gine described above. The start-
ing point of our approach is to
encapsulate to-be-transformed graphs in DEVS events. These events will be sent
between the DEVS building blocks encoding graph transformation rules. Addi-
tionally, events may encode control signals which can be sent to designated ports
of DEVS building blocks. Only atomic DEVS models perform actual transfor-
mations. Coupled DEVS models allow one to hierarchically construct complex
transformation models. Atomic DEVS models are highly encapsulated (they can
only communicate via their input- and output-ports) and can be used to repre-
sent a variety of models in different formalisms, ranging from code (in the target
language of the DEVS simulator used – Python in our case) to Statecharts. The

144 E. Syriani and H. Vangheluwe

only constraint is that building blocks need to accept graphs on their input port
and, after transformation, produce graphs on their output port. The topology of
the coupled DEVS models encodes the control structure. As a result of the DEVS
semantics, the flow of events (graphs) through a DEVS coupled model resembles
data flow more than control flow. In the construction which follows, we will only
allow one model to flow through the network at any time. This effectively makes
data flow and control flow identical. In the future, we will however exploit the
data flow nature of DEVS networks, in particular for parallel implementations.

Fig. 6 shows the overall structure of the DEVS model for AToM3-style graph
transformation. Each block is shown with its ports along with the connections.
Execution (transformation) is triggered by some user control. User intervention
(such as a possible interruption of a running simulation) is modelled in the
UserInput block. Note that the DEVS formalism allows one to specify external
pre-emptive interrupts through the external transition function. The Controller
block acts as the interface of the transformation system to the user: it receives
user inputs and informs the user of the status of the execution. It also models
the transformation steps management. The GGRules block receives the host
graph from the Controller and returns the transformed graph. The Python code
below (synthesized from the control flow model given in Fig. 6) shows a small
part of the pythonDEVS representation of the overall model. Instances of atomic
DEVS building blocks corresponding to the control flow model building blocks
are connected. Note that in our implementation, we have added a Trace atomic
DEVS block to log all transformation steps.

1 class PacManGGExec(CoupledDEVS):
2 def __init__(self, graph, steps):
3 self .USERINPUT = self.addSubModel(UserInput(graph=graph, steps=steps))
4 self .CONTROLLER = self.addSubModel(Controller())
5 self .RULES = self.addSubModel(GGRules())
6 self .TRACE = self.addSubModel(Trace())
7 self .connectPorts(self .USERINPUT.g_out, self.CONTROLLER.g_init)
8 self .connectPorts(self .USERINPUT.out_step, self.CONTROLLER.in_step)
9 self .connectPorts(self .CONTROLLER.done_send, self.USERINPUT.done_rcv)

10 self .connectPorts(self .CONTROLLER.g_out, self.RULES.g_in)
11 self .connectPorts(self .RULES.trace, self.TRACE.in_rule)

4.1 The User Input Block

UserInput is an atomic DEVS block that sends graphs and “steps” control sig-
nals and receives termination events. The graphs are Abstract Syntax Graphs
(ASGs), AToM3’s basic internal data structure, of models in the PacMan lan-
guage. Steps represent the number of steps the user requests the simulator to
perform in a row. 0 ends the simulation. ∞ runs the simulation in continuous
mode, executing till termination (or until interrupted by an external signal).
The reception of a Termination event means that either the requested number
of steps have been performed or that the execution has reached its end. In the
latter case, no more transformations can be applied to the graph. The inports
and outports of the UserInput block are connected to the Controller block.

Programmed Graph Rewriting with DEVS 145

Fig. 7. Managing priorities

4.2 The Controller Block

The Controller atomic DEVS block encodes the coordination logic between the
external input and the transformation model. It is the control that receives the
graph to transform and the number of steps to be applied. It also notifies the user
about termination. The Controller sends the graph to the transformation model
and waits for a graph in return. The returned graph may or may not be modified.
This is repeated depending on the “steps” requests received. Note that the system
could in principle receive multiple graphs at any time (thanks to the data flow
nature of DEVS). Also, the user could request more “steps” even when there are
some steps left in the running transformation.

4.3 The Graph Grammar Rule Blocks and Priority

The graph rewriting rules presented in section 3.2 including the semantics of pri-
oritized rewriting, are encoded in the transformation block GGRules. GGRules
is a coupled DEVS model which receives a graph and outputs a graph. GGRules
is composed of one or more GGRule blocks. Each GGRule satisfies certain prop-
erties. There is at most one rule that is applied per step. If a rule fails, the graph
is sent to the next rule until the last rule is reached. If the last rule also fails,
then no rules have been applied in this step, hence GGRules sends back its input
graph. Otherwise it is the newly transformed graph that is sent back, directly
from the rule where the match occurred.

The AToM3 graph rewriting system allows assigning priorities to rules to order
their execution. If multiple rules happen to have the same priority, AToM3 non-
deterministically chooses one of those yielding a match. A Synchronizer block is
introduced to model this situation in our DEVS model. This is depiced in Fig. 7.

146 E. Syriani and H. Vangheluwe

All rules with the same priority (also known as a layer) will receive their input
in parallel from the previous layer. A failed matching of a rule is notified to the
Synchronizer. If it has received failure notices from all rules in the layer, it passes
the input to the next layer. On the other hand, as soon as one rule has successfully
executed, it notifies the Synchronizer which, in turn, aborts the execution of the
remaining rules. It then sends the output to GGRules. As long as the content of
a GGRule block is a valid atomic DEVS and it accepts and returns ASGs, it can
be arbitrary (hand-coded, compiled or interpreted from some specification). In
the case of this example, we compile each AToM3 PacMan rule into an execute
method used inside an atomic DEVS external transition. A small excerpt of the
code synthesized from the rule to match the LHS of the Kill rule is given below:

1 class Kill (Rule):
2 def execute(self , graph):
3 # Find matching subgraph #
4 match = 0
5 try:
6 for ghost in graph.listNodes[’GhostV3’]:
7 for ghostLink in ghost.out_connections_:
8 if ghostLink.__class__.__name__ == ’GhostLinkV3’:
9 for pacman in contains.out_connections_:

10 if pacman.__class__.__name__ == ’PacmanV3’:
11 for pacLink in contains.out_connections_:
12 if pacLink.__class__.__name__ == ’PacLinkV3’:
13 match = 1 # First occurence of the subgraph
14 break
15 if match: break
16 if match: break
17 if match: break
18 except:
19 return None
20 if not match:
21 return None
22 # Transform subgraph #
23
24 return graph

4.4 Extending the Model

To illustrate the power of this formalism to describe control flow of graph rewrint-
ing systems, we now extend the previous model. Consider the PacMan formalism
described in section 3 and the graph grammar that described its behaviour. Sup-
pose we would like more interaction with the user. In the model used before, the
simulation could be triggered by the user specifying the numbers of steps to be
performed or continuous execution (till termination). We will now allow user
control of PacMan movement to more closely mimic the behaviour of the classic
PacMan video game. Fig. 8 shows the extended model. The UserInput block re-
mains unchanged, with an outport added. The user can now send a pressed Key
code to the Controller block. This enables us to simulate the user interrupts to

Programmed Graph Rewriting with DEVS 147

move the PacMan up, down, left or right. The behaviour of the Controller block
is the same as long as no Key is recieved. If this event occurs however, the Con-
troller waits for the reception of a graph from the transformation block(s) and
then sends the Key and the Graph to the UserControlledRules block. Otherwise,
graphs are always sent to the AutonomousRules block. The AutonomousRules
encapsulates all the rules that do not need user intervention: PacMan eating,
Ghost killing PacMan and Ghost moving. The structure of this block is exactly
the same as the original GGRules block.

Fig. 8. The Extended DEVS model

The UserControlledRules
model consists of the re-
maining rules, those resposi-
ble for PacMan movement
(left, right, up, down). This
coupled DEVS block re-
cieves a Key and an in-
put graph and outputs a
graph that has undergone
the requested transforma-
tion. Fig. 9 presents the
content of this block. The
received Key goes through a
Dispatch block. This block
choses where to send the
graph depending on the
key pressed. The graph is
sent to at most one of
the Up, Down, Left and
Right blocks. These blocks
have the exact same struc-
ture as their counterpart in
the original GGRule model.
Note that event-based selec-
tion of rules has previously been called “Event-driven Graph Rewriting”.

With the first model, we showed how to model a simulator for graph grammar
execution to mimic the AToM3 behaviour. Then, we showed how to extend con-
tinuous execution with user control over the execution. Note how the extension
of the former model needed very little effort thanks to the modularity of DEVS
blocks and the ability of DEVS to represent interrupts. Only adding blocks and
connections but no modification of any original blocks was needed.

5 Advantages of Using DEVS

The approach described above elegantly satisfies all the requirements enumerated
at the beginning of this paper.

148 E. Syriani and H. Vangheluwe

Fig. 9. The User-controlled Rules block

The Power of DEVS. The transformation language used in the PacMan exam-
ple emulates AToM3’s rewriting semantics. In fact, we could have used another
graph transformation semantics (such as unordered or layered graph rewriting).
Note that the approach has the potential to support features such as backtrack-
ing as in PROGReS. We could even have combined different transformation
specification languages. As such, DEVS acts as a “glue” language.

The power of DEVS lies in the ability to express the control flow of the
transformation. Each rule is represented in an atomic-DEVS block (this is com-
parable to the atomicity of the rules in PROGReS). Blocks receive graphs and
sends graph through their ports. Other ports can be added to for example send
optimization hints (such as pivot nodes in GReAT and VMTS) or to pass some
information on the flow of the rule set (like the Key in the extended PacMan
model). DEVS allows modularity. Indeed, coupled DEVS blocks can be treated
as black boxes. The use of DEVS allows for multi-level hierarchies in models.
Sequencing is treated as in GReAT by simply connecting block ports. Iteration
and loops can thus be modelled. A given block can be a test block for branch-
ing if we give it such a semantics (i.e., no transformation occurs). This is what
the Dispatch block in the PacMan example depicts. Parallel execution is pro-
vided by the DEVS formalism when an output port is connected to many input
ports. If execution (not simulated) parallelism is needed, the parallel DEVS [20]
formalism can be used.

Using the DEVS formalism as a control flow language for graph rewriting en-
abled us to not only model the AToM3 simulator for graph grammar execution
but also to provide an improved version of it which combined continuous exe-
cution and user interaction. Note that we are thus modelling control structures
supporting step by step simulation, continuous simulation and user controlled
simulation which are not in the system under study, but rather in the execution
environment.

Programmed Graph Rewriting with DEVS 149

Scalability and Multi-Formalism Modelling. The beauty of DEVS models
lies in the modularity of its building blocks. In fact, each block performs an action
given some input and can produce outputs. This modularity trivially supports
the combination of building blocks specified using multiple formalisms. Hence,
we may combine graph grammars with for example Statecharts and code. This
is the key to scaling up (graph) transformation modelling to arbitrarily more
complex models, far beyond the limits of pure graph grammar systems.

Modelling Time. Timed Graph Transformation, as proposed by Gyapay,
Heckel and Varró [21] integrates time in the double push-out approach. They
extend the definition of a production by introducing, in the model and rules, a
chronos element that stores the notion of time. Rules can monotonically increase
the time. DEVS is inherently a timed formalism, as explained in section 2. In
contrast with [21], it is the execution of a rule that can increase time and not the
rule itself. Hence, the control flow (of the graph transformation) has full access
to it. As pointed out in [21], time can be used as a metric to express how many
time units are consumed to execute a rule. Having time at the level of the block
containing a rule rather that in the rule itself does not lose this expressiveness.
Also, providing time to the control flow structure can enhance the semantics
of the transformation. AToM3 for example provides control over execution time
delay for animation (see section 3). In the PacMan example, when modelling the
user we can give meaning to the time delay between the execution of different
rules. As an example, the autonomous rules may take more time than the user
controlled rules moving PacMan. This gives more time for the user to “interrupt”.
But if, for instance, the ghost-moving rules take less time, then the user needs
to interrupt faster to move PacMan. This becomes closer to a game especially if
a real-time simulator such as RT-DEVS [22] is used.

6 Conclusions and Future Work

In this article, we have introduced the Discrete Event system Specification
(DEVS) formalism to describe and execute graph transformation control struc-
tures. We provided a short review of existing programmed graph rewriting sys-
tems, listing the control structures they provide. As DEVS is a timed, highly
modular, hierarchical formalism for the description of reactive systems, con-
trol structures such as sequence, choice, and iteration are easily modelled. Non-
determinism and parallel composition also follow from DEVS’ semantics. The
proposed approach was illustrated through the modelling of a simple PacMan
game, first in AToM3 and then with DEVS. We showed how the use of DEVS
ultimately allows real-time simulation/execution.

We plan to further investigate the use of DEVS. This will include various
types of code synthesis from rules on the one hand and visual control structure
specifications on the other hand, beyond our current non-optimized prototype.
We also consider mapping our control flow formalism onto formalisms other than
DEVS, more suited for real (as opposed to simulated) parallel execution.

150 E. Syriani and H. Vangheluwe

We plan to completely model our AToM3 environment in DEVS. We will then
be able to explicitly model users interacting with a transformation environment.
This will allow for automated testing of interactive transformations as well as
for optimization of transformation models for different types of users.

As consistency is a very important issue in modelling, we plan to integrate
Triple Graph Grammars [15] in our DEVS framework. This will allow model
synchronization and bi-directional transformations.

Acknowledgments

The authors thank the participants of the 2007 Bellairs CaMPAM workshop for
stimulating discussions on programmed graph rewriting as well as the AGTIVE
conference attendees for insightful comments. The Natural Sciences and Engi-
neering Research Council (NSERC) of Canada is gratefully acknowledged for
partial support of this work.

References

1. Blostein, D., Fahmy, H., Grbavec, A.: Issues in the practical use of graph rewriting.
In: Selected papers from the 5th International Workshop on Graph Grammars and
Their Application to Computer Science, pp. 38–55. Springer, Heidelberg (1996)

2. Nickel, U., Niere, J., Zündorf, A.: Tool demonstration: The FUJABA environment.
In: ICSE 2000: Proceedings of the 22nd International Conference on Software En-
gineering, pp. 742–745. ACM Press, New York (2000)

3. Lengyel, L., Levendovszky, T., Mezei, G., Charaf, H.: Control flow support in
metamodel-based model transformation frameworks. In: EUROCON 2005 Inter-
national Conference on “Computer as a tool", pp. 595–598. IEEE, Los Alamitos
(2005)

4. Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovszky, T., Prange, U.,
Taentzer, G., Varró, D., Varró-Gyapay, S.: Model transformation by graph trans-
formation: A comparative study. In: MTiP 2005, International Workshop on Model
Transformations in Practice (Satellite Event of MoDELS 2005), Montego Bay, Ja-
maica (2005)

5. de Lara, J., Vangheluwe, H.: AToM3: A tool for multi-formalism and meta-
modelling. In: Kutsche, R.-D., Weber, H. (eds.) ETAPS 2002 and FASE 2002.
LNCS, vol. 2306, pp. 174–188. Springer, Heidelberg (2002)

6. de Lara, J., Vangheluwe, H., Alfonseca, M.: Meta-modelling and graph gram-
mars for multi-paradigm modelling in AToM3. Software and Systems Modeling
(SoSyM) 3, 194–209 (2004)

7. Vizhanyo, A., Agrawal, A., Shi, F.: Towards generation of high-performance trans-
formations. In: Karsai, G., Visser, E. (eds.) GPCE 2004. LNCS, vol. 3286, pp.
298–316. Springer, Heidelberg (2004)

8. Agrawal, A.: Metamodel based model transformation language. In: OOPSLA 2003:
Companion of the 18th annual ACM SIGPLAN Conference on Object Oriented
Programming Systems Languages and Applications, pp. 386–387. ACM Press, New
York (2003)

Programmed Graph Rewriting with DEVS 151

9. Agrawal, A., Karsai, G., Kalmar, Z., Neema, S., Shi, F., Vizhanyo, A.: The design of
a language for model transformations. Software and Systems Modeling (SoSyM) 5,
261–288 (2005)

10. Lengyel, L., Levendovszky, T., Mezei, G., Charaf, H.: Model transformation with a
visual control flow language. International Journal of Computer Science (IJCS) 1,
45–53 (2006)

11. Blostein, D., Schürr, A.: Computing with graphs and graph rewriting. Proceedings
in Informatics, 1–21 (1999)

12. Schürr, A., Winter, A.J., Zündorf, A.: Graph grammar engineering with progres. In:
Botella, P., Schäfer, W. (eds.) ESEC 1995. LNCS, vol. 989, pp. 219–234. Springer,
Heidelberg (1995)

13. Fischer, T., Niere, J., Turunski, L., Zündorf, A.: Story diagrams: A new graph
grammar language based on the Unified Modelling Language and Java. In: Ehrig,
H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764,
pp. 296–309. Springer, Heidelberg (2000)

14. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: Moflon: A standardcompliant
metamodeling framework with graph transformations. In: Rensink, A., Warmer, J.
(eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 361–375. Springer, Heidelberg (2006)

15. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–
163. Springer, Heidelberg (1995)

16. Zeigler, B.P.: Multifacetted Modelling and Discrete Event Simulation. Academic
Press, London (1984)

17. Bolduc, J.S., Vangheluwe, H.: The modelling and simulation package Python-
DEVS for classical hierarchical DEVS. MSDL Technical report MSDL-TR-2001-01,
McGill University (2001)

18. Song, H.: Infrastructure for DEVS modelling and experimentation. MSc disserta-
tion, McGill University (2006)

19. Heckel, R.: Graph transformation in a nutshell. In: Proceedings of the School
on Foundations of Visual Modelling Techniques (FoVMT 2004) of the SegraVis
Research Training Network. Electronic Notes in Theoretical Computer Science
(ENTCS), vol. 148, pp. 187–198. Elsevier, Amsterdam (2006)

20. Chow, A.C.H.: Parallel devs: a parallel, hierarchical, modular modeling formalism
and its distributed simulator. Transactions of the Society for Computer Simulation
International 13, 55–67 (1996)

21. Gyapay, S., Heckel, R., Varró, D.: Graph transformation with time: Causality and
logical clocks. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.)
ICGT 2002. LNCS, vol. 2505, pp. 120–134. Springer, Heidelberg (2002)

22. Hong, J.S., Song, H.S., Kim, T.G., Park, K.H.: A real-time discrete event system
specification formalism for seamless real-time software development. Discrete Event
Dynamic Systems 7, 355–375 (1997)

Relational Growth Grammars – A Parallel
Graph Transformation Approach with

Applications in Biology and Architecture

Ole Kniemeyer1, Günter Barczik2, Reinhard Hemmerling1,
and Winfried Kurth1

1 Brandenburgische Technische Universität Cottbus, Department of Computer
Science, Chair for Practical Computer Science/Graphics Systems,

Ewald-Haase-Straße 12/13, 03044 Cottbus, Germany
2 Brandenburgische Technische Universität Cottbus, Department of Architecture,

Chair for Contextual Building, Design and Construction,
Konrad-Wachsmann-Allee 8, 03046 Cottbus, Germany

Abstract. We present the formalism of relational growth grammars.
They are a variant of graph grammars with a principal application for
plant modelling, where they extend the well-established, but limited for-
malism of L-systems. The main property is the application of rules in
parallel, motivated by the fact that life is fundamentally parallel. A fur-
ther speciality is the dynamic creation of right-hand sides on rule appli-
cation. Relational growth grammars have been successfully used not only
for plant modelling, but also to model general 3D structures or systems
of Artificial Life. We illustrate these applications at several examples, all
being implemented using our programming language XL which extends
Java and provides an implementation of relational growth grammars.

1 Introduction

The field of applications where graph transformations today are most often used
is the construction of models for software systems [1]. In this paper we will in-
troduce a variant of parallel graph grammars which was designed with another
sort of applications in mind, namely, the short and unobscured specification
of multiscaled functional-structural models of growing organisms, particularly
plants [2]. There is evidence that this class of rewriting systems, which we have
called relational growth grammars in view of the intended principal application, is
well-suited to model the dynamics of complex arrangements of three-dimensional
components. These 3D structures can be living (e. g., plant organs) or artificial
(e. g., buildings, in this case the dynamics corresponds to the design process and
the final result is the actual blueprint). In computer science as well as in bioin-
formatics and systems biology there is significant interest in models describing
dynamical systems with a dynamical structure [3], and relational growth gram-
mars seem to be a good candidate for a formalism capable to express such models
in a quite intuitive way [4].

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 152–167, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Relational Growth Grammars 153

Until now, true graph grammars were seldom applied for dynamical simu-
lations of the 3D structure of plants. Instead, other concepts were used for
this purpose: L-systems (string grammars with parallel replacement) [5,6], fi-
nite automata [7], Markov chains [8,9], cellular automata [10], or the paradigm
of object-oriented programming (OOP) [11,12,13]. The latter is especially use-
ful when a linkage between structures and processes (implemented as methods)
is intended, and the combination of L-systems and an object-oriented language
(C++) led to the language L+C [14]. In fact, the automata-based approaches from
the above list can principally be translated into grammars of L-system type
(see, e. g., [15]), and the same holds for Markov chains if stochastic grammars
are allowed – hence, all can be roughly subsumed under L-systems and OOP.

However, in their nearly 40 years of use in plant modelling, L-systems have
shown some deficiencies (see also [16]):

– Structures have to be serialized into strings of symbols in order to make them
representable by an L-system. This is acceptable for tree-like structures, but
it hinders the modelling of more complex topologies.

– The strings produced by an L-system have to be interpreted geometrically,
usually by turtle geometry [17], which implies a sort of semantic gap and
an extra step of processing between the rewriting formalism and the 3D
structures, in contrast to modern data structures for 3D worlds (e. g., scene
graphs) where information is more directly represented.

– L-systems give no support for calculations involving the whole created struc-
ture (e. g., determination of total available carbon in a plant).

– In a structure generated by an L-system with turtle interpretation, basically
only two relations can be modelled: ‘direct successor’ and ‘branch’. In many
applications, particularly for multiscaled models, it is desirable to have more
relations at hand, like in semantic networks.

It is somewhat astonishing that true graph transformations were so rarely
used in plant modelling (with some exceptions in the wake of the evolution
of L-systems, see, e. g., [18]), given the fact that graphs appear in prominent
roles throughout biology: graphs can, e. g., represent biochemical and regulatory
networks, phylogenetic descent, structures of macromolecules, the architecture of
cell layers and tissues, transportation networks in cells and in organisms, neural
networks, and the arrangement of components of an organism at different levels
of resolution (multiple-scaled tree graphs, [19]). Furthermore, system dynamics,
which is a paradigmatic notion for a host of biological phenomena, is often
modelled in graphical form (e. g., [20]). Hence it seems that graph rewriting has
a great future in biological applications. However, in our work not all of these
potential applications of graphs are already taken into account.

We will first present the theoretical background of relational growth grammars,
then the programming language XL for which this formalism was implemented,
and finally its application. Plant models obtained with our software GroIMP
(Growth grammar related Interactive Modelling Platform) will be shown. We will
also show some first results of a students’ course where GroIMP was employed for
architectural design, and we will discuss future perspectives.

154 O. Kniemeyer et al.

2 Relational Growth Grammars

In this section, we define the formalism of relational growth grammars (RGG for
short) as a special kind of graph grammars based on the algebraic single-pushout
approach [21]. Section 3 presents the XL programming language, a concrete
programming language for which the RGG formalism can be implemented easily.
The intent of the following discussion is to clarify the formal basis of relational
growth grammars, although we cannot present every detail.

2.1 Graph Model

A seamless integration of an imperative object-oriented programming language
requires a typing system for graphs which reflects the principles of inheritance
and polymorphism. In order to generalize parameterized symbols of paramet-
ric L-systems and to represent properties of objects, attributed graphs are the
natural choice. Both inheritance and attribution can be combined, resulting in
typed attributed graphs with inheritance [22]. Our definition of graphs is that of
[22] with the restriction to acyclic inheritance graphs (so that the induced inher-
itance relation is a partial order) and with an exception regarding the treatment
of edges: since the semantics of edges within the RGG formalism is to stand
for plain relationships between their incident nodes, we exclude the possibility
of edge attributes, and parallel edges of the same type are not allowed. The
latter means that the edges of a graph G are simply represented as a subset of
GV ×ΛE×GV , where GV denotes the nodes of G and ΛE is the set of edge types.

In order to instantiate the single-pushout (SPO) approach for RGG graphs,
we have to define a corresponding category of graphs and their homomorphisms
[21]. The single-pushout approach works with partial homomorphisms, i. e., graph
homomorphisms G → H which are defined on some subgraph of their domain
G. In order to integrate the inheritance relation in the notion of a graph ho-
momorphism, we use a technique based on [23] instead of the approach of [22].
This means that a graph homomorphism f : G → H is a structure-preserving
mapping such that for every object (node or edge) x ∈ G the type of its image
f(x) is a subtype of the type of x (with the convention that a type is a subtype
of itself). Having specified graphs and their homomorphisms, we can define the
category of relational growth grammars:

Definition 1 (category RGGGraph). Let type graph and inheritance rela-
tion be fixed. The set of RGG graphs together with their partial homomorphisms
defines the category RGGGraph.

We do not give the complete definitions of the graph model here since they
are quite technical and not new in themselves, they can be found in [24]. But
from the previous remarks and the cited literature, the main features should be
sufficiently clear for the sequel.

Relational Growth Grammars 155

2.2 Rules

The rules are the central part of the RGG formalism, since they define how
graphs are transformed. The application of a rule shall remove the match of its
left-hand side (LHS, the predecessor) from the host graph and insert its right-
hand side (RHS, the successor) at the same place. The exact definition is based
on an SPO production [21]. However, a rule is not an SPO production, it rather
generates such a production dynamically on the basis of a match. This is very
useful in practice: think of a growth rule of a plant where the number of generated
plant segments (i. e., nodes of the graph) within a fixed time step depends on
the local vitality of the plant. If we were constrained to conventional static
productions, we would have to either specify several productions (one for each
possible number of generated segments) or to use several derivation steps (with
the complicating possibility of different numbers of steps at different locations
of the plant). Both solutions are not feasible from a practical point of view. The
dynamic generation of a production provides a solution to this problem of a
dynamic RHS and formally captures the introduction of the repetition operator
in growth grammars [6], the dynamic generation of the successor in L+C [14]
and the theoretical approach in [25] which defines the successor of an L-system
production to be given by a mapping of the predecessor and its parameters. In
practice, the mapping from a match to the RHS can be conveniently specified
by imperative control structures enclosing parts of the RHS (see Sect. 3).

As part of the dynamic generation of a production, we may also extend the
match by further objects of the host graph. This is used if one wants to establish
an edge to some distinguished, previously existing node n (e. g., the closest node
to some other node in 3D space), but n is not yet part of the original match.
There are cases where such a situation cannot be handled by the inclusion of n
in the original match together with a suitable application condition, e. g., if n is
needed only conditionally on the right-hand side. Since the intent of additional
objects in the match is exactly to be able to reference them on right-hand sides
for edge creation purposes, we demand their appearance on right-hand sides. As
a consequence within the SPO approach, they may not be deleted.

Let Hom(L, ·) denote the set of all total graph homomorphisms with domain
L and MonP (·, ·) the set of all partial, injective homomorphisms, then we define
a simple RGG rule as follows:

Definition 2 (simple RGG rule). A simple RGG rule r = (L, c, p) is given
by a graph L, an application condition c (i. e., a predicate on the set Hom(L, ·)),
and a mapping p : Hom(L, ·) → MonP (·, ·), such that the image of m : L →
G ∈ Hom(L, ·) is an SPO production M(m)

p(m)−−−→ R(m) whose domain (in the
categorical sense) M(m) is a subgraph of G and a supergraph of m(L), and which
is defined (as a function) for objects (i. e., nodes, edges) not in m(L).

Definition 3 (RGG match). A match for a simple rule r = (L, c, p) in a host
graph G is a total graph homomorphism m : L → G such that the application
condition c is fulfilled.

156 O. Kniemeyer et al.

Definition 4 (simple RGG derivation). Let m : L → G be a match for a
simple rule r = (L, c, p). A direct derivation using r via m, denoted as G

r,m
==⇒ H,

is given by a direct SPO derivation using M(m)
p(m)−−−→ R(m) via the inclusion

M(m) ↪→ G, i. e., by the following commutative diagram in the category RGG-
Graph, where the square is a pushout:

L

m
���������������������� ����� m(L) � � �� M(m)

p(m) ��
��

��

R(m)

��
G �� H

The following is an example for a simple RGG rule which moves some sort of
animal (A-typed node) along a path of X-typed nodes if its energy is above the
threshold 1 and creates some children at the left location, the number depending
on the energy. (The reduction of energy on movement and the initial energy of
children are omitted for the sake of simplicity.)

L =

a
�

�

�

�
A

x
�

�

�

�
X ��

���
�

y
�

�

�

�
X

, c = (a.energy > 1) , p(m) = m(L) → R�a.energy−1�

with R0 =

a
�

�

�

�
A

x
�

�

�

�
X ��y

�

�

�

�
X

���
� , R1 =

�

�

�

�
A a

�

�

�

�
A

x
�

�

�

�
X ��

���
�

y
�

�

�

�
X

���
� , R2 =

�

�

�

�
A

�

�

�

�
A a

�

�

�

�
A

x
�

�

�

�
X ��

���
�

���
�

�
y
�

�

�

�
X

���
� , . . .

Here, nodes are represented as oval boxes around their type, node identifiers
are placed in front of the upper left corner. a.energy refers to the value of the
energy attribute of the A-typed node a, and �x� denotes the integral part of x
(floor function). The mapping p(m) is indicated by the reuse of node identifiers
of the LHS within the RHS.

Motivated by the fact that a living system is parallel, it has to be possible to
apply RGG rules in parallel. While a parallel mode of rewriting can be easily
defined for strings – in this case we obtain L-systems –, the situation is intricate
for general graphs. Relatively simple cases like the independent (parallel) move-
ment of animals on a grid can be solved by parallel derivations of the generated
SPO productions [21] since the grid plays the role of a fixed context for gluing.

Definition 5 (simple parallel RGG derivation). Let G be a graph, I a
finite index set, r = (ri)i∈I a family of simple rules with ri = (Li, ci, pi),
and m = (mi)i∈I a family of finite sets of corresponding matches, i. e., every
f ∈ mi is a match for ri in G. A direct parallel derivation using r via m is
given by a direct parallel SPO derivation using

∑
i∈I,f∈mi

pi(m) via the match∑
i∈I,f∈mi

(dom pi(f) ↪→ G).

The following shows the parallel RGG derivation using the single example rule
from above as singleton family via the two obvious matches, if we assume that
the energy of node a is 1.5 and that of b is 4.1.

Relational Growth Grammars 157

a
�

�

�

�
A b

�

�

�

�
A

�

�

�

�
X ��

�

�

�

�
X ��

���
�

�

�

�

�
X ��

���
�

� �

�

�

�
X ��

�

�

�

�
X

=⇒

�

�

�

�
A

�

�

�

�
A a

�

�

�

�
A

�

�

�

�
A b

�

�

�

�
A

�

�

�

�
X ��

�

�

�

�
X ��

�

�

�

�
X

���
�

�

��� � � � �

���
�

�
��

���
�

�

�

�

�
X

���
�

�
��
�

�

�

�
X

Unfortunately, this straightforward parallelism fails if successors of neighbour-
ing parts shall be connected by edges, which is a very important case and needed
by the embedding of L-systems in the RGG formalism. Several connection mecha-
nisms were studied in [18] to address this problem, of which the operator approach
[26,27] turns out to be a suitable technique for relational growth grammars. In our
variation of the operator approach as an addition to the SPO approach, the appli-
cation of a rule to a match also establishes connection transformations which can
be imagined as special temporary edges from nodes of the old host graph to nodes
of the derived graph, attributed by an operator, a direction flag (“in” or “out”)
and an edge type. An operator A yields for every node n of the host graph G a set
AG(n) of related nodes of G (e. g., its neighbours).

Definition 6 (RGG rule, match). An RGG rule r = (L, c, p, z) is a simple
RGG rule (L, c, p) together with a mapping z which assigns to each match m :
L → G for the simple rule a set of connection transformation edges (s, (A, d, γ), t)
with s ∈ M(m) (domain of p(m)), t ∈ R(m) (codomain of p(m)), an operator
A, a direction d ∈ {in, out} and a concrete edge type γ. A match for an RGG
rule is given by a match for the corresponding simple rule.

If a node t of the derived graph H is the target of a connection transformation
edge with source s, operator A, direction d and edge type γ, an additional γ-
typed edge between t and all those nodes t′ ∈ H is created which either are
targets of connection transformation edges (A′, d′, γ), d′ = d with source s′ such
that the old nodes are mutually contained in the sets yielded by the operators,
i. e., s′ ∈ AG(s) and s ∈ A′

G(s′), or which have already existed as s′ in the
host graph, have no connection transformation edge (A′, d′, γ), d′ = d and fulfil
s′ ∈ AG(s). t is the source of the new edge if d = out, otherwise t is the target.

Definition 7 (parallel RGG derivation). Let G be a graph, I a finite index
set, r = (ri)i∈I a family of rules with ri = (Li, ci, pi, zi), and m = (mi)i∈I a
family of finite sets of corresponding matches. A direct parallel derivation using
r via m is given by the graph which results from the parallel derivation of the
corresponding simple rules and which contains additional edges as prescribed by
the connection transformations (see above, a complete definition is given in [24]).

As an example, consider the rules (in a simplified notation)

r1 = α
�

�

�

�
A → α

�

�

�

�
A ��

�

�

�

�
C , r2 = β

�

�

�

�
B → λ

�

�

�

�
D , r3 = γ

�

�

�

�
B → µ

�

�

�

�
E ��ν

�

�

�

�
F

where r2, r3 are additionally equipped with orientation-preserving connection
transformations of depth 1 (i. e., their operators yield adjacent nodes; see [26]):
r2 has transformations in both directions from β to λ, r3 has a transformation
with d = in from γ to µ and with d = out from γ to ν. Then the derivation is a

158 O. Kniemeyer et al.

d
�

�

�

�
A

a
�

�

�

�
A ��b

�

�

�

�
B ��

������
c
�

�

�

�
B

=⇒

�

�

�

�
C

�

�

�

�
E ��

�

�

�

�
F ��

		�
��

�
d
�

�

�

�
A

a
�

�

�

�
A ��

�� ������ �

�

�

�
D ��

��				 �

�

�

�
D

parallel RGG derivation where r1 has been applied to a, r2 to b and c, and r3

to b. Note that r1 is a pure SPO production, while r2 and r3 can be seen as
representatives of L-system productions, translated to graph grammars by the
additional connection transformations.

Sequential derivations are a special case of RGG derivations if the family m
contains only a single match. On the other hand, the simulation of an L-system is
obtained if every rule is applied via every possible match within a single parallel
derivation and suitable operators establish the connections [24]. Generalizations
like table L-systems [28] divide the set of productions into subsets such that,
depending on the current state, only productions from one subset are active
within a derivation. Similar regulations of active productions have also been
defined for graph grammars, a review is contained in [29]. All these mechanisms
can be captured by a control flow which selects rules and sets of matches for
them based on the current state which is taken here to be the host graph.

Definition 8 (control flow). Let r be a family of rules as before. A control
flow ϕ for r is a mapping which assigns to each graph G a family of finite sets
of matches for r in G, ϕ : G �→ (mi)i∈I with mi ⊆ Hom(Li, G). The derivation
G

ϕ
=⇒ H according to ϕ is the parallel RGG derivation using r via ϕ(G).

Definition 9 (relational growth grammar). A relational growth grammar
is given by a family r of rules with a control flow ϕ and a start graph α. The
sequence of generated graphs Gn is given by α

(
ϕ
=⇒

)n

Gn. The language generated
by the grammar is the set of all generated graphs,

⋃
n∈IN0

Gn.

As a simple example for a relational growth grammar, consider the Sierpinski
grammar [30]. If we use a node type V for vertices and three edge types e0,
e120, e240 which stand for edges at 0◦, 120◦, 240◦, respectively, in the usual 2D
representation of a Sierpinski triangle and which are drawn as solid, dashed, or
dotted arrows, the single RGG rule is

r =

(
L =

c
�

�

�

�
V

a
�

�

�

�
V ��b

�

�

�

�
V

��

 , true, m �→

(
m(L) →

c
�

�

�

�
V

���

�

�

�
V

��
�

�

�

�
V

���
�

��
a
�

�

�

�
V ��

�

�

�

�
V ��

���
�

b
�

�

�

�
V

���
�

)
, m �→ ∅

)
.

The complete grammar has r as a singleton family of rules. The start graph has
the same structure as the left-hand side of r, and the control flow has to apply
r in parallel at every possible location:

α = L, ϕ : G �→ (Hom(L, G)) .

Then the language of this relational growth grammar consists of all finite ap-
proximations of the Sierpinski graph.

Relational Growth Grammars 159

3 The XL Programming Language

Relational growth grammars are a theoretic formalism, not a concrete program-
ming language. The XL programming language is a concrete textual (non-visual)
programming language which extends Java in such a way that an RGG-compliant
system for use within XL can be easily implemented. We cannot give a complete
specification of XL here, but some examples should illustrate syntax and seman-
tics (see also Sect. 4). The following rules implement the examples of Sect. 2:

x:X [a:A] y:X, (a.energy > 1) ==>>
x for(int i = 2; i <= a.energy; i++) ([A]) y [a];

a:V -e0-> b:V -e120-> c:V -e240-> a ==>>
a -e0-> ab:V -e0-> b -e120-> bc:V -e120-> c -e240-> ca:V -e240-> a,
ca -e0-> bc -e240-> ab -e120-> ca;

a:A ==>> a C; B ==> D; B ==> E F;

The LHS of the first rule is a graph of three nodes of Java classes X, A with
identifiers x, a and y, together with an application condition separated by a
comma. From x to a there is an edge of the standard type ‘branch’, from x to y
there is an edge of the standard type ‘successor’ which is the implicit edge type
if nodes are separated by whitespace and complete bracketed sequences only.
The treatment of square brackets follows the convention of L-systems which use
them to enclose branches. The RHS changes the edges according to the example
of Sect. 2. Namely, if for example a.energy is 4.1, the RHS is expanded to
x [A] [A] [A] y [a]. Since A is no node identifier, it is interpreted as the
Java expression new A(), and three new A-typed nodes are added as branches
to x. The edge from x to y is reproduced, and finally a ‘branch’-edge from y to a
is established. Like for, every control-flow statement of Java can be used, blocks
of conventional Java-code can be included in braces. Thus, the graph of the RHS
and the whole SPO production p(m) dynamically depend on the match m.

The second rule for the Sierpinski grammar shows how model-specific edge
types can be used. A comma between node expressions serves to separate the
nodes, i. e., no implicit edge is created between comma-separated nodes.

Besides the rule arrow ==>>, also ==> can be used. Then the RGG implemen-
tation automatically adds connection transformations to the otherwise simple
RGG rule so that the effect of its application corresponds to that of an L-system
production, i. e., there are direction-preserving connection transformations of
depth 1 from the textually leftmost (rightmost) node of the LHS to the first
(last) produced node of the RHS. This is used for the last list of three rules.

The left-hand sides of the presented rules are examples for queries. Queries
may also use complex path patterns as in x:A (-(branch|successor)->)* y:B
which represents a pattern of two nodes of types A and B, respectively, to-
gether with the application condition that the node y can be reached from x
by traversing an arbitrary number of edges of type ‘branch’ or ‘successor’ (i. e.,
the transitive and reflexive closure of the relation “there exists a ‘branch’- or
‘successor’-edge”).

160 O. Kniemeyer et al.

In order to implement these rule-based features for XL, two main parts are
necessary: the query syntax has to be completed by the implementation of the
corresponding semantics which actually finds matches in the host graph, and
given a match m for a rule, the RHS syntax has to be translated into the con-
struction of the production p(m). Queries locate all matches in the host graph;
the underlying pattern matching algorithm is implemented in a depth-first man-
ner as part of a run-time library, including, e. g., the computation of transitive
closures. The algorithm heuristically chooses a search plan for matching using a
cost model similar to [31]. Then it accesses the graph via a general data model in-
terface so that it can operate on basically any structured data, e. g., XML DOM
trees, component trees of GUI frameworks, scene graphs of 3D frameworks.

The way how the semantics of RHS of XL rules is defined is very general
and not in itself related to relational growth grammars: it is solely defined by
operator overloading. The mere adoption of C++-like overloading to XL (operator
overloading is not defined for Java) would not result in a convenient syntax for
RHS, so we designed a special syntax and translation scheme for this purpose. For
example, the RHS x y -branch-> a becomes translated to the Java expression

producer.operator$space(x).operator$space(y).operator$arrow(a, branch)

where producer is an instance provided by the used implementation of the data
model interface. Its methods like operator$space and operator$arrow have
to be suitably implemented. Their RGG implementation precisely does what
is specified by the definitions of the RGG formalism in Sect. 2 [24], but the
general approach via operator overloading also allows to implement other rule-
based formalisms like, e. g., a rule-based variant of vertex-vertex algebras for the
specification of surface subdivision algorithms [32,24].

For every sort of modification in parallel, the run-time system of XL manages
a set of queues : as an extension of Java, XL in itself executes statements sequen-
tially. So if modifications shall take place as if they were executed in parallel, their
actual execution has to be deferred by means of a corresponding queue entry until
all modifications which shall be executed in parallel have been collected this way.
For the RGG implementation, the content of the queues represents the current
result of the sum of the applied SPO productions (

∑
i∈I,f∈mi

pi(m) in Def. 5)
together with all connection transformations, namely a set of queue entries of
the form “create/delete an edge of type γ from s to t” and “use connection
transformation (s, (A, d, γ), t)”. So the application of an RGG rule within XL
does not directly modify the graph but only creates a number of queue entries
which can be applied afterwards by draining the queues.

The current RGG implementation for XL leads to a control flow according
to Def. 8 which is governed by the control flow of XL as an extension of Java.
When a rule is encountered, either a single sequential RGG derivation (with a
pseudorandomly chosen match) or a parallel RGG derivation via all matches is
performed, depending on the current choice of derivation mode. Strictly speak-
ing, the derivations are not directly performed, just the queues are filled with
modification entries whose later execution completes the parallel derivation of
all collected rule/match pairs. This execution is triggered by a special method.

Relational Growth Grammars 161

4 Applications

In this section, we will present applications of (the XL implementation of) the
RGG formalism. The main part describes applications within our open-source
modelling platform GroIMP which includes a subset of the following and some
further examples [33]. GroIMP provides a rich set of geometric objects such as
cylinders, boxes, spline surfaces and transformations which can be used directly
as nodes in the graphs. Visible nodes are equipped with attributes controlling
their appearance (e. g., colours, texture images). Thus, there is no semantic gap
between the graph and its three-dimensional representation.

4.1 Artificial Life

Conway’s famous Game of Life [34] as a representative of cellular automata can
be implemented easily within XL. The following source code is complete except
for the initialization of the universe. The universe consists of a number of Cell
nodes connected by edges of type neighbour, the latter representing the Moore
neighbourhood (eight neighbours) of a cell.

import de.grogra.rgg.*; // for classes RGG, Cell (provided by GroIMP)
import static de.grogra.xl.lang.Operators.sum; // for aggregate method sum

public class GameOfLife extends RGG { // RGG is base class for RGG models
... // initialization of (finite) universe
public void run() [

x:Cell, (x[state] == 1), // living cells
(!(sum((* x -neighbour-> Cell *)[state]) in (2 : 3)))

==>> x {x[state] := 0;}; // death due to loneliness/overcrowding
x:Cell, (x[state] == 0), // dead cells

(sum((* x -neighbour-> Cell *)[state]) == 3)
==>> x {x[state] := 1;}; // cell comes to life

]
}

As can be seen, blocks of rules are enclosed in brackets. Here, the complete
method run has a single such block as body which contains the two transition
rules of the Game of Life. Both rules utilize queries within their application
condition: (* x -neighbour-> Cell *) is a query which finds all Cell nodes
which are connected with x by an edge of type neighbour. The method sum is
an aggregate method which computes the sum of a sequence of values, in this
case of the states of neighbours. The states are represented as properties of Cell
nodes. For the access of properties, XL uses a bracket syntax as in x[state].
The main advantage of properties over Java fields is that they can be used with
parallel assignments :=. These are deferred by means of a queue and actually
performed together with graph modifications at the end of a parallel derivation.

XL has been used for the implementation of a number of additional models of
Artificial Life, among them virtual ants [35] and biomorphs [36,37]. In the latter
model, genetic operations like crossing-over and mutation were easily specified
as graph productions, while growth was implemented in an L-system style.

162 O. Kniemeyer et al.

(a)

(b)

(d)

(c)

(e)

Fig. 1. RGG plant models within GroIMP: (a) wild type of ABC model [35]; (b) loss-
of-B mutant of ABC model; (c) young spruce tree [38]; (d) a barley individual; (e)
barley individuals competing for light, increased spacing from left to right [39]

4.2 Biology

This section outlines some biological applications in the field of plant modelling.
They have been published previously, so we do not go into the details. Figure 1(a)
and (b) show the outcome of the ABC model of flower morphogenesis [35], based
on [40]. A gene regulatory network was implemented as a graph, its dynamics
of transcription factor concentrations governs flower growth. The wild type (a)
shows the usual final shape, the mutant (b) results from a modified network: due
to the differing dynamics of concentrations, not all flower organs were created.

Figure 1(c) shows a model of a young spruce tree which is a translation of an
L-system model presented in [38] to XL. Figure 1(d) shows an individual barley,
(e) three sets of nine competing individuals [39]. The L-system like growth is
controlled by metabolic networks, implemented by RGG rules, which in turn are
regulated by the local light quality. The quality decreases with increasing plant
density, this leads to a reduced growth for dense spacings as shown in the figure.

Relational Growth Grammars 163

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Application of relational growth grammars to architecture

4.3 Architecture

Compared to many structures found in nature, especially living structures like
plants and animals, buildings, indeed most objects and structures conceived and
built by men, appear somewhat primitive. One reason for this might lie in the
fact that plants and animals grow, and grow quite differently than anything
man-made. Designing and educating architects are interested in what might be
learnt from such growth processes in nature for architectural design. For this
purpose, relational growth grammars, embedded in GroIMP, might be helpful.

In a seminar “Artificial Growth Processes”, students of architecture created
RGGs to grow buildings by rules. The first task assigned to them was to create

164 O. Kniemeyer et al.

a staircase. An example of the results can be seen in Fig. 2(a). Later on more
advanced buildings were created like a meeting centre (Fig. 2(f), human figures
added afterwards) or a city centre (Fig. 2(d)). Further results were “Waterworld”
(Fig. 2(e), balloon and boats added afterwards) and showrooms (Fig. 2(b) and
(c)). All these examples represent their geometry directly by nodes of the graph,
and appearance is controlled by visual attributes. E. g., the “Waterworld” rule
Sphere(r) ==> RL(random(-90,90)) [M(r/2) Sphere(r/2+random(-0.5,0.5))]

[M(r/2) RL(90) Sphere(r/2)];

uses Sphere nodes for houses, RL nodes for rotations and M nodes for translations.
Thus, graph grammars are utilized as a versatile means to create geometry for a
prototype architecture. It is not the intent to specify or consider the functional
structure of buildings. This can of course also be described by graphs [41,42].

For most of the students this was their first experience of programming, this
demonstrates how easy and intuitive relational growth grammars can be. Incor-
porating randomness (for instance by varying angles) allowed them to create
prototype architecture that looked more natural than before. From an artistic
view, these prototypes conserve enough structure to enable a viewer to feel that
an algorithm was used to create the buildings, while hiding the actual rules.

4.4 Usage of XL within Commercial 3D Modellers

The usage of RGG and XL is not confined to the GroIMP platform. By imple-
menting the data model and run-time interfaces, every data structure can be
the target of rules specified within XL. This has been done as part of bachelor
theses for the commercial 3D modellers Cinema 4D (René Herzog), Maya (Udo
Bischof) and 3ds Max (Uwe Mannl), the target being their 3D scene graph. The
examples of Fig. 3 have been modelled by Udo Bischof using his Maya plugin.

(a) (b)

Fig. 3. Using XL within Maya: (a) city generator on a curved landscape with (invisible)
bounding object; (b) creeping ‘plants’ on a head-shaped surface

Relational Growth Grammars 165

5 Discussion

As an extension of L-systems and graph grammars, relational growth grammars
and their implementation for the language XL generalize the notion of rule appli-
cation. The programmer can combine rule-based with imperative programming,
making use of the best of both worlds. Nevertheless, the language is easy to learn
and to apply to specific problems, as was shown, e. g., by the architects.

The parallelism of relational growth grammars makes them very suitable for
the modelling of living systems. We have started investigation in this direction
with the implementation of paradigmatic models of Artificial Life, and with the
implementation of plant models whose growth is modelled in an L-system style
from a macroscopic point of view, but with internal processes at a microscopic
point of view which could not have been modelled as easily using L-systems
alone. Research in this field of application is ongoing, inspired by the increasing
biological knowledge. Of particular interest is to refine spatial resolution by the
modelling of cellular structures and their geometric shape.

Acknowledgements. We thank Udo Bischof and the students of architecture
Manuela Fritzsche, Christopher Jarchow, Jennifer Koch, Liang Liang and Simon
Winterhalder for their examples. This research was funded by the DFG under
grant Ku 847/5-1 and Ku 847/6-1. All support is gratefully acknowledged.

References

1. Baresi, L., Heckel, R.: Tutorial introduction to graph transformation: A software
engineering perspective. In: [43], pp. 431–433

2. Buck-Sorlin, G., Kniemeyer, O., Kurth, W.: Barley morphology, genetics and hor-
monal regulation of internode elongation modelled by a relational growth gram-
mar. New Phytologist 166(3), 859–867 (2005)

3. Giavitto, J.L., Michel, O.: MGS: a rule-based programming language for complex
objects and collections. Electronic Notes in Theoretical Computer Science 59(4)
(2001)

4. Kurth, W., Kniemeyer, O., Buck-Sorlin, G.: Relational growth grammars – a
graph rewriting approach to dynamical systems with a dynamical structure. In:
Banâtre, J.-P., Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS,
vol. 3566, pp. 56–72. Springer, Heidelberg (2005)

5. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer,
New York (1990)

6. Kurth, W.: Growth grammar interpreter GROGRA 2.4 – a software tool for
the 3-dimensional interpretation of stochastic, sensitive growth grammars in the
context of plant modelling. Introduction and reference manual. Berichte des
Forschungszentrums Waldökosysteme, B 38, Göttingen (1994)

7. Barczi, J.F., de Reffye, P., Caraglio, Y.: Essai sur l’identification et la mise en oeu-
vre des paramètres nécessaires à la simulation d’une architecture végétale. Le logi-
ciel AMAPSIM. In: Bouchon, J., de Reffye, P., Barthélémy, D. (eds.) Modélisation
et Simulation de l’Architecture des Végétaux, pp. 205–254. Science Update, INRA,
Paris (1997)

166 O. Kniemeyer et al.

8. Maillette, L.: The value of meristem states, as estimated by a discrete-time Markov
chain. Oikos 59, 235–240 (1990)

9. Renton, M., Guédon, Y., Godin, C., Costes, E.: Similarities and gradients in
growth-unit branching patterns during ontogeny in fuji apple trees: A stochastic
approach. Journal of Experimental Botany 57(12), 3131–3143 (2006)

10. Sonntag, M.: Effect of morphological plasticity on leaf area distribution, single
tree, and forest stand dynamics. Bayreuther Forum Ökologie 52, 205–222 (1998)

11. Breckling, B.: An individual based model for the study of pattern and process in
plant ecology: An application of object oriented programming. EcoSys. 4, 241–254
(1996)

12. Perttunen, J., Sievänen, R., Nikinmaa, E., Salminen, H., Saarenmaa, H., Väkevä,
J.: Lignum: A tree model based on simple structural units. Annals of Botany 77,
87–98 (1996)

13. Eschenbach, C.: Emergent properties modelled with the functional structural tree
growth model ALMIS: Computer experiments on resource gain and use. Ecological
Modelling 186, 470–488 (2005)

14. Prusinkiewicz, P., Karwowski, R., Lane, B.: The L+C plant modelling language.
In: [47], 27–42

15. Françon, J.: Sur la modélisation informatique de l’architecture et du
développement des végétaux. Document R90/12, Université Louis Pasteur, Stras-
bourg, Département d’Informatique (1990)

16. Kniemeyer, O., Buck-Sorlin, G., Kurth, W.: GroIMP as a platform for functional-
structural modelling of plants. In: [47], 43–52

17. Abelson, H., diSessa, A.: Turtle Geometry. MIT Press, Cambridge (1982)
18. Lindenmayer, A., Rozenberg, G. (eds.): Automata, Languages, Development.

North Holland, Amsterdam (1976)
19. Godin, C., Caraglio, Y.: A multiscale model of plant topological structures. Jour-

nal of Theoretical Biology 191, 1–46 (1998)
20. Renton, M., Thornby, D., Hanan, J.: Canonical modelling. In: [47], 151–164
21. Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.:

Algebraic approaches to graph transformation II: Single pushout approach and
comparison with double pushout approach. In: [46], ch. 4, pp. 247–312

22. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, New York (2006)

23. Parisi-Presicce, F., Ehrig, H., Montanari, U.: Graph rewriting with unification and
composition. In: Ehrig, H., Nagl, M., Rosenfeld, A., Rozenberg, G. (eds.) Graph
Grammars 1986. LNCS, vol. 291, pp. 496–514. Springer, Heidelberg (1987)

24. Kniemeyer, O.: Design and Implementation of a Graph Grammar Based Language
for Functional-Structural Plant Modelling. PhD thesis, BTU Cottbus (forthcom-
ing, 2008)

25. Chien, T.W., Jürgensen, H.: Parameterized L systems for modelling: Potential
and limitations. In: Rozenberg, G., Salomaa, A. (eds.) Lindenmayer Systems, pp.
213–229. Springer, Berlin (1992)

26. Nagl, M.: On a generalization of Lindenmayer-systems to labelled graphs. In: [18],
pp. 487–508

27. Nagl, M.: Graph-Grammatiken: Theorie, Anwendungen, Implementierungen.
Vieweg, Braunschweig (1979)

28. Rozenberg, G.: T0L systems and languages. Information and Control 23(4), 357–
381 (1973)

29. Schürr, A.: Programmed graph replacement systems. In: [46], ch. 7, pp. 479–546

Relational Growth Grammars 167

30. Taentzer, G., Biermann, E., Bisztray, D., Bohnet, B., Boneva, I., Boronat, A.,
Geiger, L., Geiß, R., Horvath, Á., Kniemeyer, O., Mens, T., Ness, B., Plump, D.,
Vajk, T.: Generation of Sierpinski triangles: A case study for graph transformation
tools. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088.
Springer, Heidelberg (2008)

31. Batz, G.V., Kroll, M., Geiß, R.: A first experimental evaluation of search plan
driven graph pattern matching. In: [45], pp. 468–483

32. Smith, C., Prusinkiewicz, P., Samavati, F.F.: Local specification of surface sub-
division algorithms. In: [48], pp. 313–327

33. Kniemeyer, O., Kurth, W.: The modelling platform GroIMP and the programming
language XL. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS,
vol. 5088. Springer, Heidelberg (2008)

34. Gardner, M.: Mathematical Games: The fantastic combinations of John Conway’s
new solitaire game Life. Scientific American 223(4), 120–123 (1970)

35. Kniemeyer, O.: Rule-based modelling with the XL/GroIMP software. In: Schaub,
H., Detje, F., Brüggemann, U. (eds.) GWAL-6, pp. 56–65. Akademische Verlags-
gesellschaft, Berlin (2004)

36. Kniemeyer, O., Buck-Sorlin, G., Kurth, W.: Representation of genotype and phe-
notype in a coherent framework based on extended L-systems. In: Banzhaf, W.,
Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS
(LNAI), vol. 2801, pp. 625–634. Springer, Heidelberg (2003)

37. Kniemeyer, O., Buck-Sorlin, G., Kurth, W.: A graph-grammar approach to arti-
ficial life. Artificial Life 10, 413–431 (2004)

38. Kurth, W.: Die Simulation der Baumarchitektur mit Wachstumsgrammatiken.
Wissenschaftlicher Verlag, Berlin (1999)

39. Buck-Sorlin, G., Hemmerling, R., Kniemeyer, O., Burema, B., Kurth, W.: A rule-
based model of barley morphogenesis, with special respect to shading and gib-
berellic acid signal transduction. Annals of Botany (in press, 2008)

40. Kim, J.T.: transsys: A generic formalism for modelling regulatory networks in
morphogenesis. In: Kelemen, J., Sośık, P. (eds.) ECAL 2001. LNCS (LNAI),
vol. 2159, pp. 242–251. Springer, Heidelberg (2001)

41. Szuba, J., Ozimek, A., Schürr, A.: On graphs in conceptual engineering design.
In: [48], pp. 75–89

42. Heer, T., Retkowitz, D., Kraft, B.: Algorithm and tool for ontology integration
based on graph rewriting. In: [45], pp. 484–490

43. Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.): ICGT 2004. LNCS,
vol. 3256. Springer, Heidelberg (2004)

44. Schürr, A., Nagl, M., Zündorf, A. (eds.): AGTIVE 2007. LNCS, vol. 5088.
Springer, Heidelberg (2008)

45. Schürr, A., Nagl, M., Zündorf, A. (eds.): Proceedings of the International Work-
shop on Applications of Graph Transformations with Industrial Relevance, Octo-
ber 10-12, 2007. University of Kassel, Kassel (2007)

46. Rozenberg, G. (ed.): Handbook on Graph Grammars and Computing by Graph
Transformation. Foundations, vol. I. World Scientific, Singapore (1997)

47. Vos, J., Marcelis, L.F.M., de Visser, P.H.B., Struik, P.C., Evers, J.B. (eds.):
Functional-Structural Plant Modelling in Crop Production, International Work-
shop. Wageningen UR Frontis Series, vol. 22. Springer, Heidelberg (2007)

48. Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.): AGTIVE 2003. LNCS, vol. 3062.
Springer, Heidelberg (2004)

Applications and Rewriting of Omnigraphs –
Exemplified in the Domain of MDD

Oliver Denninger, Tom Gelhausen, and Rubino Geiß

Institute for Program Structures and Data Organization (IPD)
University of Karlsruhe (TH), Germany
http://www.ipd.uni-karlsruhe.de/

Abstract. Graph rewrite systems provide only elementary primitives –
many applications require more complex structures though. We present
a rewrite system for omnigraphs, a formal extension of hypergraphs with
the ability to connect multiple nodes and edges with a single edge. We
exemplify the adequacy of this approach in the domain of Model Driven
Development (MDD): Using our system trivializes the representation and
transformation of advanced UML structures that are awkward to handle
with common approaches.

Keywords: Graph rewriting, hypergraph, omnigraph, supergraph.

1 Introduction

Graph rewrite systems elegantly handle various tasks; they have sound and con-
cise fundamentals and their computational power is Turing equivalent. But the
operational primitives of current graph rewrite systems are quite elementary,
quite assembler-language-like. Several application domains demand more pow-
erful primitives. One example for such a domain is the representation and trans-
formation of UML within MDD.

UML class diagrams allow n-ary associations which are de facto hyperedges [1]
(cf. Fig. 2 for example). Furthermore, they allow relations between associations
(cf. Fig. 3). In order to express these relations directly, we would need to ad-
ditionally allow edges to be end points of edges – and that is precisely what
omnigraphs1 are about.

In 1998, Minas showed the advantage of hypergraphs over traditional graphs
for representing various kinds of diagrams [9], but no available graph rewrite
system has support for hypergraphs so far, not to mention omnigraphs. There-
fore, we developed languages for model definition, graph definition and rewrite
specifications for omnigraphs. Compilers [18] translate these languages into se-
mantically equivalent definitions for a traditional graph rewrite system. In this
paper, we present these languages (Section 2), their theoretical fundamentals
(Section 3), and the functionality of the compilers (Section 4).
1 In previous work [5,7], we referred to ‘omnigraphs’ as ‘supergraphs’, but we changed

the name in order to avoid further confusion with the antonym of ‘subgraphs’.

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 168–183, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.ipd.uni-karlsruhe.de/

Applications and Rewriting of Omnigraphs 169

2 Omnigraphs in Use – A Problem-Oriented Introduction

Before giving a formal definition of omnigraphs in the next section, we will intro-
duce omnigraphs by means of their application to a specific problem: represen-
tation and transformation of UML. We thereby demonstrate how the concepts
of omnigraphs ease the handling of advanced UML structures.

2.1 UML Models as Omnigraphs

We show how to represent UML class diagrams using the syntax of our custom-
made graph rewrite system Ogre (OmniGraph REwriting2). For the complete
syntax of Ogre, please refer to [18]. We have taken all examples from the “UML
Superstructure Specification” version 2.1.1 [12].

A
endA

*
B

endB

*

Fig. 1. Simple association, Fig. 7.19 from the UML Superstructure Specification

Defining a Model. Figure 1 shows a simple association between two classes A
and B with multiplicities and the roles endA and endB. Listing 1 shows the def-
inition of an accordant model for omnigraphs: Ogre provides nodes, omniedges,
and roles as graph primitives. A definition starts with the type of the primitive,
so line 1 defines a type for nodes named Class. Line 4 defines a type for omni-
edges named Association. Constraints for omniedges (in parentheses) specify the
allowed types of roles. The constraint in line 4 states that the omniedges need a
least one (+) end point of role type AssociationEnd. In line 5, this class of roles is
defined with the constraint that it is only applicable on nodes of the type Class.
An AssociationEnd has two attributes: name and multiplicity. Please note that
already managing these two attributes is cumbersome in graph rewrite systems
that do not support attributed endpoints on edges.

� �

1 node C l a s s {
2 name : string;
3 }
4 omniedge A s s o c i a t i o n (Assoc i a t i onEnd +);
5 role Assoc i a t i onEnd (C l a s s) {
6 name : string;
7 m u l t i p l i c i t y : string;
8 }

� �

Listing 1. Model for UML classes and associations

2 Previous name: SUGR – SUperGraph Rewriting [5].

170 O. Denninger, T. Gelhausen, and R. Geiß

Instantiation. Having defined the model, we will now set up an instance of
this model – an omnigraph representing the UML class diagram depicted in
Figure 1. Let’s begin with the one line statement depicted in Listing 2: The graph
definition starts with an omniedge of the type Association. Inside the body of
the omniedge we define two new nodes of type Class. Their corresponding roles
(AssociationEnd in both cases) follow, separated by vertical bars. The two nodes
with their roles form the end points of the surrounding omniedge. In general,
nodes and omniedges are declared by an optional identifier (before) and a type
(after the colon). The declaration of an omniedge additionally has a body (in
square brackets) defining its end points. As we will not refer to any of the declared
graph elements again in the code snippet in Listing 2, we omit the identifiers here.
But what we effectively lack in this declaration are attributes!

� �

1 : A s s o c i a t i o n [: C l a s s |Assoc i a t i onEnd : C l a s s |Assoc i a t i onEnd]
� �

Listing 2. Graph definition for a simple association

Now we define a new graph with attributes (cf. Listing 3). This time we also
show how to declare identifiers and how to reference graph elements. In line 1
and 2, the required Class nodes are defined. They have identifiers (a and b) and
attributes to hold the names “A” and “B”. In line 4 and 5, a and b are referenced
(indicated by the @ character). By this means, they are defining end points. The
nodes take the role AssociationEnd as above, but this time we additionally define
attributes for the end points: “endA” respectively “endB” as value for the name
attribute, and “*” as value for the multiplicity attribute of the respective ends
of the association. Now we have completely represented the association from
Figure 1.

� �

1 a: C l a s s (%name=”A”)
2 b: C l a s s (%name=”B”)
3 : A s s o c i a t i o n [
4 @a|Assoc i a t i onEnd (%{name=”endA”, m u l t i p l i c i t y =”∗”})
5 @b|Assoc i a t i onEnd (%{name=”endB”, m u l t i p l i c i t y =”∗”})
6]

� �

Listing 3. Graph definition for a simple association (with attributes)

Ternary Associations. UML enables the declaration of n-ary associations
which are not directly expressible by simple binary associations. The ternary
association in Figure 2 is an example.

Binary as well as ternary edges are only special cases of omniedges; we do not
need to extend the previous model from Listing 1: It already accepts an arbitrary
number of AssociationEnds for each Association. So we can immediately denote
the example as an omnigraph definition as shown in Listing 4. We simply define
a third end point inside the Association omniedge. The Class nodes are defined
within the omniedge body.

Applications and Rewriting of Omnigraphs 171

Team
team

*

Year
season *

Player

goalie

*

Fig. 2. Ternary association, Fig. 7.21 from the UML Superstructure Specification

� �

1 : A s s o c i a t i o n [
2 : C l a s s (%name=”Team”)|Assoc i a t i onEnd (%{name=”team”, m u l t i p l i c i t y =”∗”})
3 : C l a s s (%name=”Year”)|Assoc i a t i onEnd (%{name=”sea son ”, m u l t i p l i c i t y =”∗”})
4 : C l a s s (%name=”P l a y e r ”)|Assoc i a t i onEnd (%{name=”g o a l i e ”, m u l t i p l i c i t y =”∗”})
5]

� �

Listing 4. Graph definition for the ternary association

Higher Order Predicates. Figure 3 shows an example for a second order pred-
icate in UML class diagrams: The {xor} constraint is a predicate over two asso-
ciations which are predicates over (Class-) nodes themselves. Omnigraphs remove
the restriction of hypergraphs by allowing higher order predicates. To express this
UML constraint, our model needs an extension: a new type of omniedge named
Constraint and a new role ConstraintEnd. We only want omniedges of the type As-
sociation to take this role, so we restrict the role to this type. The complete model
definition is shown in Listing 5. The graph definition in Listing 6 consists of two
associations (line 1 and 4). The constraint is an additional omniedge with the two
associations as end points (line 7). The two associations share a common node, so
this node is identified by a (line 2) and referenced (line 5).

Account

Person

Corporation

{xor}

Fig. 3. {xor} constraint, Fig. 7.34 from the UML Superstructure Specification

2.2 Transforming UML with Ogre

After having shown how to represent a UML class diagram as omnigraph, we will
showhowtodefineanelementary transformation:Wewantto transformthe ternary
association form the preceding example (cf. Figure 2 and Listing 4) into adequate
binary associations.This transformation is an inevitable step in everymodel driven
process;we repeat it every timewedecompose ourmodel to obtain executable code.
The rule according to this transformation demonstrates the pragmatical simplifi-
cation of writing rules the omnigraph approach has been designed for: no need to
think about any extra nodes and edges, their names, types, and directions – simply
because we have omniedges with attributed end points.

172 O. Denninger, T. Gelhausen, and R. Geiß

� �

1 node C l a s s {
2 name : string;
3 }
4 omniedge A s s o c i a t i o n (Assoc i a t i onEnd +);
5 role Assoc i a t i onEnd (C l a s s) {
6 name : string;
7 m u l t i p l i c i t y : string;
8 }
9 omniedge Con s t r a i n t (Cons t ra i n tEnd +) {

10 t ype : string;
11 }
12 role Cons t ra i n tEnd (As s o c i a t i o n);

� �

Listing 5. Model for UML classes, associations, and constraints

� �

1 a1: As s o c i a t i o n [
2 a: C l a s s (%name=”Account ”)|Assoc i a t i onEnd
3 :C l a s s (%name=”Person”)|Assoc i a t i onEnd]
4 a2: As s o c i a t i o n [
5 @a|Assoc i a t i onEnd
6 :C l a s s (%name=”Co rp o r a t i o n”)|Assoc i a t i onEnd]
7 : Con s t r a i n t [@a1|Cons t ra i n tEnd @a2|Cons t ra i n tEnd](% type=”xo r ”)

� �

Listing 6. Graph definition for the {xor} constraint

Transforming Ternary Associations. The rewriting rule in Listing 7 decom-
poses ternary associations into adequate binary associations. The left-hand side,
the pattern graph, matches an omniedge a of type Association with three end
points c1, c2, and c3 of type Class and with roles ae1, ae2, and ae3 of type Associ-
ationEnd. The syntax is similar to graph definitions: we use an identifier followed
by a colon and a type. The role type is separated by a vertical bar; in contrast to
graph definitions we can use identifiers for roles. On the right-hand side of the
rule, the modify graph, we first delete the ternary association a (line 9) and cre-
ate a new node c4 of type Class (line 10) – serving as new connection node. Then
we create three new associations between the connection node and the former
end points of the ternary association. Finally, we have to set the attributes for
the new graph elements, which is done in the eval section. Line 15, for example,
sets the name for the newly created class c4: It consist of the names of the classes
c1, c2, c3 and the suffix “Triple”.

Team
team

1

Year
season 1

Player

goalie

1
TeamYearPlayerTriple

*

*

*

Fig. 4. Ternary Association after the transformation by the rule

Applications and Rewriting of Omnigraphs 173

� �

1 pattern {
2 a:As s o c i a t i o n [
3 c1: C l a s s | ae1:Assoc i a t i onEnd
4 c2: C l a s s | ae2:Assoc i a t i onEnd
5 c3: C l a s s | ae3:Assoc i a t i onEnd
6];
7 }
8 modify {
9 delete(a);

10 c4: C l a s s ;
11 :A s s o c i a t i o n [c4| ae11:Assoc i a t i onEnd c1| ae21:Assoc i a t i onEnd];
12 :A s s o c i a t i o n [c4| ae12:Assoc i a t i onEnd c2| ae22:Assoc i a t i onEnd];
13 :A s s o c i a t i o n [c4| ae13:Assoc i a t i onEnd c3| ae23:Assoc i a t i onEnd];
14 eval {
15 c4.name = c1 .name+c2 .name+c3 .name+”T r i p l e ”;
16 ae11. m u l t i p l i c i t y = ae1 . m u l t i p l i c i t y ;
17 ae21. m u l t i p l i c i t y = ”1”; ae21.name = ae1 .name;
18 ae12. m u l t i p l i c i t y = ae2 . m u l t i p l i c i t y ;
19 ae22. m u l t i p l i c i t y = ”1”; ae22.name = ae2 .name;
20 ae13. m u l t i p l i c i t y = ae3 . m u l t i p l i c i t y ;
21 ae23. m u l t i p l i c i t y = ”1”; ae23.name = ae3 .name;
22 }
23 }

� �

Listing 7. Rule for processing ternary associations

Figure 4 shows the ternary association after transforming it into an extra class
and appropriate binary associations. The rule also changed all multiplicities as
necessary for a correct transformation.

The Rewriting Semantics of Ogre. In Ogre, rules consist of a pattern
graph and a replace or a modify graph. Each element of these graphs has a
name, either user defined or internally defined. Consider a graph element defined
in the pattern part: If its name is used in the replace graph, the denoted
graph element will be kept during the execution of the rule. Otherwise the graph
element will be deleted from the host graph. A graph element is created in the
host graph by defining a name in the replace graph. Anonymous graph elements
in a replace graph always create new elements in the host graph. Using a name
multiple times has the same effect as a single occurrence.

The modify variant is syntactic sugar for copying the pattern graph to the
replace graph – in this case deletions from this replacement graph are triggered
by the delete keyword; additions work the usual way. In case of a conflict
between deletion and preservation, deletion is prioritized. It is convenient to use
the modify variant for modifying only small parts of a large pattern graph.

For a proper graph rewriting system, we need a sound approach on how in-
cident objects are treated when other objects are deleted. Traditional graph
rewrite systems can be classified according to SPO or DPO, but both approaches
are obviously not applicable for omnigraphs. Our definition of omnigraphs (cf.
Section 3.2) allows edges to have an arbitrary number of end points, including
zero. Deletion of an incident node of an omniedge just reduces the number of
end points of that omniedge. Deletion of an omniedge always requires an explicit
statement, and removing it does not bother the objects it connected any further.
Thus deletion can never lead to a data structure that is not an omnigraph.

174 O. Denninger, T. Gelhausen, and R. Geiß

2.3 Advanced UML Structures in Practice

The UML structures we are referring to in this publication are surprisingly un-
common and many software engineers are unfamiliar with these features of UML.
Nevertheless, one may have a hard time trying to encode their semantics with-
out these structures. In our opinion, this already justifies their existence and
their use – leading to the necessity for their support in modelling tools. Some
more structures of UML that lend themselves to be realized via omniedges are
attributed associations, qualified associations, fork-, join, merge- and decision
nodes, or duration constraints.

3 Formal Definition of Omnigraphs

Before we present the formalism we discuss some issues regarding our approach
of generalizing “direction”. This discussion should explain our perspective on
hypergraphs and demonstrate that the given definition is adequate.

3.1 Roles

In a traditional (directed) graph, each edge has a direction, a point of origin and an
aiming point. But how can we specify something comparable for omnigraphs with
arbitrary numbers of end points? The following paragraphs present an approach
that renders the ordinary directed edge a special case of a more general concept.

Every formalism – every way of representing information – provides certain
primitives to store pieces of information and other primitives to relate these
fragments. The available primitives determine the semantics that can be encoded
directly with this formalism. Graphs, too, are just a special way of representing
information. Their primitives are usually nodes and edges with labels. We use the
labels to store pieces of information. Contiguity relates the information stored
in a graph.

On closer inspection, one can see that there is a third primitive in graphs
that allows information storage: the direction of edges. Direction enables us to
store several extra bits per edge – one extra bit if only unidirectional edges are
permitted, two extra bits if multidirectional edges are permitted, and no extra
bits if only undirected edges are permitted in the graph. Initially, these bits
encode the direction of an edge. Additional information, for example “who loves
whom” or “which code block precedes another”, is an interpretation that has
been agreed on. This agreement constitutes which bit-value represents which role
in the relation. Thus, we are effectively interested in the roles an edge assigns
and not in its direction.

Taking into account that we are interested in roles rather than directions, we
could as well provide roles immediately in our way of representing information.
Instead of storing one direction per edge, each end of an edge is assigned a role.
The advantage of this approach is that it scales a lot better: Now, it is irrelevant
how many ends (these “ends” are called “tentacles” in hypergraphs) an edge
has, including the special cases “one” and “zero”.

Applications and Rewriting of Omnigraphs 175

Another conclusion we can draw from the above consideration is, that the
roles we are effectively interested in are seldom “source” and “target”. We would
rather allow arbitrary roles. Accordingly, the number of available roles does not
need to be limited to two.

For these reasons, our omniedges do not have a direction and no inherent order
or numerical limitations of their tentacles. Instead, each tentacle is assigned a
role out of an arbitrary, finite set of roles. Initially, the combinations of roles
within one omniedge are unrestricted. One might want to impose constraints
about the legal role sets per omniedge, though.

A classic approach to assign meaning to the tentacles of a hyperedge (or the
components of a tuple) is position: Any term-based syntax for the declaration of
hyperedges imposes a sequence of tentacle declarations, and the position within
this sequence assigns its meaning to a tentacle. The downside of this approach is
that the sequence always needs to be specified completely and in order, and that
no meaning can be assigned to additional tentacles. In programming languages
like Eiffel or Visual Basic, some of these drawbacks can be resolved by named
function arguments. The role-based approach is a generalization thereof.

For illustration, we show that an ordinary (directed, two-ended) edge can be
expressed immediately in terms of this approach: It is an omniedge with two
tentacles of which one has the role “source” and the other has the role “target”.
A traditional graph is thus completely representable as omnigraph. As also om-
nigraphs are representable via traditional graphs (cf. Section 4) both formalisms
are theoretically equally expressive. Yet the practical expressiveness of omni-
graphs is more suitable for certain applications as we show in this publication.

3.2 Definition

Definition 1 (Omnigraph). Let N, O, T, R be arbitrary finite pairwise dis-
joint3 sets, C := N ∪ O, and src, tgt , and rol total but not necessarily injective
or surjective functions with

src : T −→ O

tgt : T −→ C

rol : T −→ R

then the 7-tuple G = (N, O, T, src, tgt , R, rol) is an omnigraph.

Explanation and Implications. We call N the nodes, O the omniedges, T
the tentacles, and R the roles of an omnigraph. C = N ∪ O is the set of all
connectable objects. The tentacles link the elements of C to their connections
o ∈ O; these links are denoted by the src and tgt functions assigning the obvious
direction4 to the tentacle. It is specific to omnigraphs that the tentacles can
3 For clearness we require N, O, T, R to be pairwise disjoint. Formally it is only nec-

essary that N ∩ O = ∅ holds.
4 Please note that only the tentacles but not the omniedges themselves are directed.

176 O. Denninger, T. Gelhausen, and R. Geiß

only start at omniedges but end at omniedges and nodes. So by definition, no
node can have an outgoing tentacle whereas incoming tentacles are allowed. Each
tentacle linking a connectable object c ∈ C to an omniedge o ∈ O also specifies
a role r ∈ R that c takes in o. This is denoted by the rol function.

As omniedges may connect other omniedges, the tentacles are directed to
make clear which omniedge establishes the connection between the other ones.
It is only usual to utilize the concept of ‘direction’ here – but it is not necessary:
It is sufficient to somehow distinguish which tentacles belong to which omniedge.
Accordingly, it is irrelevant which direction the tentacles exactly have, as long
as it is consistent for all omniedges.

Multigraphs are defined by their allowance for multiple edges between two
distinct nodes. For omnigraphs this property is obtained by our function-based
definition instead of the commonly used tuple-based definition. Thus an arbi-
trary number of omniedges can occur between every set C′ ⊆ C. Furthermore,
this property allows multiple tentacles of the same or different roles between
an omniedge and one connected object c ∈ C. Moreover, if not every node or
omniedge has an incident tentacle, src and tgt are not surjective. We require src
and tgt to be total such that no dangling tentacles can occur.

Omnigraphs as defined here have two properties that may appear strange, but
are harmless consequences of the generality of the concept: (a) Omniedges may
have one or zero tentacles and (b) omniedges may connect to themselves.

Discussion. Our definition is rather close to the function-based definition of or-
dinary hypergraphs. One could picture the set T as “edges” and C as “vertices”.
But this picture is only half true, because the set C has an internal structure:
The “edges” can only start at elements o ∈ O ⊆ C and end at any element
c ∈ C = O ∪N . This way, the property of being representable as bipartite graphs
(like ordinary hypergraphs) is lost. Clearly, every omnigraph G can be turned into
an omnigraph G′ without nodes by turning every node into an omniedge not hav-
ing any outgoing tentacles (“virtual nodes”). Yet in this case, certain runtime
checks and validation procedures on the graph and its model must be put into
place if we want to distinguish omniedges and (virtual) nodes in a typesave way.
We chose the intuitive and computationally cheaper alternative, namely to enforce
this distinction by the formalism and in the Ogre language.

Formally speaking, our definition is a direct extension of hypergraphs. But we
define names and interpretations of the sets C, O, N , and T to suit our need for
a vocabulary of concepts on a higher level of abstraction.

3.3 Examples

We will present two of the examples from Section 2 as formal omnigraph de-
finitions. The first example is the formal definition of the hyperedge depicted
in Figure 2. The second example is the formal definition of the constraint edge
between two association edges depicted in Figure 3.

The ternary association from Figure 2 has three nodes: Team, Year, and
Player. They respectively take the roles team, season, and goalie in the omniedge
Association.

Applications and Rewriting of Omnigraphs 177

N =
{
Team, Year, Player

}
O =

{
Association

}
T =

{
t0, t1, t2

}
R =

{
team, season, goalie

}
src(t0) = Association tgt(t0) = Team rol (t0) = team
src(t1) = Association tgt(t1) = Year rol (t1) = season
src(t2) = Association tgt(t2) = Player rol (t2) = goalie

The formal definition of the {xor} constraint has three nodes: Account, Person,
and Corporation, and three omniedges: Association0, Association1, and Constraint.
Each omniedge has two tentacles, so that we have in total six tentacles, but only
two different roles associationEnd and constraintEnd. An illustration of the formal
definition is shown in Figure 5.

N =
{
Account, Person, Corporation

}
O =

{
Association0, Association1, Constraint

}
T =

{
ta0, ta1, ta2, ta3, tc0, tc1

}
R =

{
associationEnd, constraintEnd

}
src(ta0) = Association0 tgt(ta0) = Account rol (ta0) = associationEnd
src(ta1) = Association0 tgt(ta1) = Person rol (ta1) = associationEnd
src(ta2) = Association1 tgt(ta2) = Account rol (ta2) = associationEnd
src(ta3) = Association1 tgt(ta3) = Corporation rol (ta3) = associationEnd
src(tc0) = Constraint tgt(tc0) = Association0 rol (tc0) = constraintEnd
src(tc1) = Constraint tgt(tc1) = Association1 rol (tc1) = constraintEnd

Account

Person

Corporation

ta0 : associationEnd

ta1 : associationEnd

ta2 : associationEnd

ta3 : associationEnd

tc0 : constraintEnd

tc1 : constraintEnd

Fig. 5. Formal graph for the {xor} constraint (names of omniedges omitted)

3.4 Extensions

For an efficient use of a graph rewriting tool we need (a) labels on nodes, edges,
and roles, and want (b) these labels to obey certain constraints, i. e. typing.
Furthermore, (c) inheritance relations among these types are needed for an easier
declaration of rules. Accordant extensions to the formal basis of omnigraphs can
be defined the usual way without difficulty.

Ogre implements these features. It seamlessly incorporates them from the un-
derlying graph rewrite system (cf. Section 4). In contrast to some formalizations
of hypergraphs, we assign the type of an omniedge directly to it and do not
derive it from the number or types of tentacles. In particular, omniedges of a

178 O. Denninger, T. Gelhausen, and R. Geiß

certain type may have arbitrary numbers of tentacles. However, Ogre supports
constraints about the legal role types for each omniedge type.

4 Implementation

To avoid developing a graph rewrite system from scratch, we chose to decom-
pose omnigraph model-, rule-, and graph-definitions to model-, rule-, and graph-
definitions for the traditional graph rewrite system GrGen.NET [6]. Ogre provides
three compilers for this task. As the space in this paper is limited, we only give a
rough outline of these transformations. Details can be found in [5], the compilers
including source code are available from [18].

4.1 Mapping Ogre Definitions to GrGen.NET Definitions

As GrGen.NET has no support for omniedges and roles, we need a mapping to
translate omniedges and roles into nodes and edges, the primitives provided by
GrGen.NET. We map omniedges by introducing an additional interconnection
node. As a consequence, each tentacle becomes an independent edge between
the interconnection node and the node connected by the tentacle; the role of
the tentacle is mapped to the type of the according edge. This approach is
quite obvious and well-known from treating hyperedges as bipartite graphs. But
in the context of omniedges we have to pay special attention to the direction
of decomposed edges: their tentacles are directed, as discussed in Section 3.2.
Correspondingly, we realize tentacles with directed edges. Figure 6 shows the
mapping for the {xor} constraint example from Figure 3.

:Class

:Class

:Class

:Association

:Constraint

:Association

Fig. 6. Mapping of the {xor} constraint

Mapping Models. Listing 8 shows the result of mapping our model from
Listing 1 to GrGen.NET syntax. We can see that the omniedge type Association
has become a node type (line 9) and the role type AssociationEnd has become an
edge type (line 4). Line 5 shows a GrGen.NET constraint defining the allowed
source and target types for this edge type.

Figure 7 shows the visualization of the mapped model for the ternary associ-
ation. We can clearly see the interconnection node with the omniedge type and
the edges with the role types.

Applications and Rewriting of Omnigraphs 179

� �

1 node class C l a s s extends NODE {
2 name : string;
3 }
4 edge class Assoc i a t i onEnd extends ROLE
5 connect As s o c i a t i o n [1:∗] -> C l a s s [∗] {
6 name: string;
7 m u l t i p l i c i t y : string;
8 }
9 node class A s s o c i a t i o n extends OMNIEDGE;

� �

Listing 8. Model from Listing 1 after translation in GrGen.NET syntax

:Class

:Class

:Class:Association
:AssociationEnd

:AssociationEnd

:AssociationEnd

Fig. 7. Mapping of the model for the ternary association

Mapping Graphs. Listing 9 shows the ternary association from Listing 4 after
the mapping to GrGen.NET syntax. The omniedge Association is decomposed
into an interconnection node (line 1) and edges representing the tentacles (line 3,
5, and 7). In GrGen.NET edges are denoted by an arrow from the source to the
target node. Identifier, type and attributes of the edge are stated between begin-
ning and end of that arrow. The dollar sign is a build-in attribute of GrGen.NET
keeping the identifier of the graph primitive for debugging purposes. The Class
nodes and their declared attributes are preserved during the mapping.

� �

1 new s 3 : As s o c i a t i o n ($=”s 3 ”)
2 new n 0: C l a s s ($=”n 0”, name=”Team”)
3 new s 3 −:Assoc i a t i onEnd (name=”team”, m u l t i p l i c i t y =”∗”)−> n 0
4 new n 1: C l a s s ($=”n 1”, name=”Year ”)
5 new s 3 −:Assoc i a t i onEnd (name=”sea son ”, m u l t i p l i c i t y =”∗”)−> n 1
6 new n 2: C l a s s ($=”n 2”, name=”P l a y e r ”)
7 new s 3 −:Assoc i a t i onEnd (name=”g o a l i e ”, m u l t i p l i c i t y =”∗”)−> n 2

� �

Listing 9. Graph from Listing 4 after translation in GrGen.NET syntax

This listing shows how the concept of omnigraphs disburdens the user from the
necessity to fragment his or her thoughts for the input into a traditional graph
rewrite system. Besides this semantic advantage, the Ogre syntax eliminates the
need to constantly repeat identifiers for miscellaneous nodes and edges. This is
not so much a quantitative but a qualitative alleviation, as repeating numerous –
only technically induced – identifiers is an error prone work. However, an IDE or
a graphical notation could alleviate this work, while the model and its instances
will still be polluted with artificial entities.

Mapping Rules. Basically, rules are processed by treating the left-hand and
right-hand side patterns individually as graph definitions and mapping them

180 O. Denninger, T. Gelhausen, and R. Geiß

separately. As the syntax for patterns is quite similar to graph definitions we
reuse the mappings for graph definitions with some minor changes. Listing 10
shows the rule from Listing 7 after mapping to GrGen.NET syntax. The content
of the eval section can just be copied as it is, because it does not need to be
changed by the mapping.

� �

1 pattern {
2 a: As s o c i a t i o n ;
3 a −ae1:Assoc i a t i onEnd−> c1: C l a s s ;
4 a −ae2:Assoc i a t i onEnd−> c2: C l a s s ;
5 a −ae3:Assoc i a t i onEnd−> c3: C l a s s ;
6 }
7 modify {
8 delete(a);
9 c4: C l a s s ;

10 x2: As s o c i a t i o n ;
11 x2 −ae11:Assoc i a t i onEnd−> c4;
12 x2 −ae21:Assoc i a t i onEnd−> c1;
13 x5: As s o c i a t i o n ;
14 x5 −ae12:Assoc i a t i onEnd−> c4;
15 x5 −ae22:Assoc i a t i onEnd−> c2;
16 x8: As s o c i a t i o n ;
17 x8 −ae13:Assoc i a t i onEnd−> c4;
18 x8 −ae23:Assoc i a t i onEnd−> c3;
19 eval {
20 c4.name = c1 .name+c2 .name+c3 .name+”T r i p l e ”;
21 ae11. m u l t i p l i c i t y = ae1. m u l t i p l i c i t y ;
22 ae21. m u l t i p l i c i t y = ”1”; ae21.name = ae1.name;
23 ae12. m u l t i p l i c i t y = ae2. m u l t i p l i c i t y ;
24 ae22. m u l t i p l i c i t y = ”1”; ae22.name = ae2.name;
25 ae13. m u l t i p l i c i t y = ae3. m u l t i p l i c i t y ;
26 ae23. m u l t i p l i c i t y = ”1”; ae23.name = ae3.name;
27 }
28 }

� �

Listing 10. Rule from Listing 7 after translation in GrGen.NET syntax

Obviously, the semantics of our rules are derived directly from the semantics
of GrGen.NET rules [2]. GrGen.NET implements closely the SPO semantics, so
deleting an incident node of an edge will also delete that edge. This behaviour
is well suited for our needs: If we want to delete an omniedge, we can just delete
the interconnection node. The SPO semantics will lead to the deletion of edges
representing its tentacles. As we allow omniedges to have an arbitrary number
of tentacles (including zero), deleting an incident connectable object (and thus
‘losing’ a tentacle) cannot lead to an invalid omnigraph (cf. Section 2.2).

5 Related Work

Graph rewrite systems have been under research for several decades. Research
in Model Driven Development has lead to a strong demand for model transfor-
mation technology. This has brought graph rewriting – as one possible solution
for model transformation – to industrial relevance.

In this paper, we discuss omnigraph rewriting. To the best of our knowledge,
no system with this capability has been published, yet. In Ogre, omniedges– and

Applications and Rewriting of Omnigraphs 181

Table 1. Overview Graph Rewriting Tools

Fujaba GReAT VIATRA GrGen.NET Ogre

Typed Domain yes yes yes yes yes

Type Inheritance single multi multi multi multi

Node Attributes Java types simple types,
enumerations

simple and
complex types

simple types,
enumerations

simple types

Edge Attributes same as nodes no same as nodes same as nodes same as nodes

Role Attributes no no no no yes

NACs yes yes yes yes yes

Hyperedges no no no no yes

Omniedges no see text see text no yes

Rule Definition programmed programmed declarative declarative declarative

Rule Notation graphical graphical textual textual textual

Parameterization all types no all types graph entities no

Rule Scheduling story diagrams sequence dia-
grams

state machine similar regular
expressions

similar regular
expressions

Rule Iteration loop loop, recursion loop, recur-
sion, fix point
iteration

loop, fix point
iteration,
transaction

loop, fix point
iteration,
transaction

thus also hyperedges – are first-class citizens among the graph primitives: They
are quasi materialized in the graph and can seamlessly be used in search and re-
placement patterns. Thus Ogre is also a hypergraph rewriting system. But even
for hypergraph rewriting5, there is no comparable system available. A property–
besides allowing edges to be endpoints of edges– that distinguishes our notion of
omnigraph rewriting from the usual theoretical notion of hypergraph rewriting
is that omniedges have no fixed number of tentacles defining their type. Further-
more, the tentacles of omniedges have no inherent order. Both properties are by
design, as we discuss in Section 3.

The Graph eXchange Language (GXL) supports omnigraphs using rel- and
relend-elements. But as already suggested by its name, GXL is not a rewrite
system but an exchange format and only serves to store graphs – it can neither
store rules nor rewrite sequences. For solely exchanging omnigraphs, GXL would
suit very well, but we could not find a tool to exchange omnigraphs graphs with:
Holt [8] gives an overview of GXL capable tools, namely GRAS [15], DiaGen [10],
Fujaba [13], GenSet [14] and PROGRES [19]. Except DiaGen6, all these systems
ignore rel tags, they have no support for hyper- or omniedges. The same holds
for GROOVE [17].

AGG-graphs [3], a variant of ALR-graphs and the formal basis of AGG, ex-
plicitly enable edges between edges. But these edges are only binary, hyperedges
are not first-class citizens in AGG-graphs. Instead, AGG-graphs come with a
direct support for ‘abstractions’ which in turn are not first-class citizens in omn-

5 Please note that ‘hypergraph rewriting’ and ‘hyperedge replacement’ [11] are dif-
ferent things: In hyperedge replacement, hyperedges are only special left-hand side
patterns of replacement rules. Our concept of hypergraph rewriting is much broader.

6 DiaGen is a tool for generating diagram editors based on hypergraphs. We aim to
develop a general purpose graph rewrite system.

182 O. Denninger, T. Gelhausen, and R. Geiß

igraphs. So AGG-graphs and omnigraphs are skew to each other. However, AGG
(the tool) has no support for edges between edges.

GReAT [16] and VIATRA [20] partially support edges between edges: GReAT
can define edges between edges in models, but has no possibility to use them in
graphs or rules. VIATRA can use edges between edges in graphs and rules, but
cannot define them in models. In both systems, edges are always binary.

Apart from the support for omniedges, we regard Ogre as ordinary general
purpose graph rewrite system. Table 1 compares the features of Ogre with those
of Fujaba, GReAT, VIATRA and GrGen.NET [6], some of the most popular gen-
eral purpose graph rewriting tools today. The criteria are adopted from Czarnecki
and Helsen [4].

6 Conclusion

We presented omnigraphs together with an appropriate rewrite system called
Ogre. Omnigraphs are an extension of the well known hypergraphs, enabling the
attachment of multiple nodes and edges to edges. In this paper, UML structures
like n-ary associations and constraints between associations served as examples
for the usefulness of omnigraphs. Besides model transformations, we use omni-
graphs for the representation of natural language [7]. In this domain, hyper- and
omniedges are essential as natural language includes complex sentence struc-
tures with higher order relations. Bond angles are an example from the domain
of chemistry where one would like to declare edges between edges.

The rewrite system Ogre provides custom-made languages for the definition
(i. e. typing) and instantiation of omnigraphs as well as the declaration of rules
for their transformation. As the implementation of Ogre is based on a traditional
graph rewrite system, we provide compilers [18] and can thus incorporate many
features from our underlying system.

The reduction to normal graph rewrite systems is straight forward, but the
provided abstraction eases the task of specifying transformations and graphs.
The automatic transformation unburdens the user from consistently and contin-
uously regarding auxiliary nodes and edges. Instead, the user can directly express
his intention. This makes omnigraphs and Ogre practically more expressive than
common approaches – and thus well suited to simplify model transformation for
advanced UML structures.

References

1. Berge, C.: Graphs and Hypergraphs. Elsevier Science Ltd., Amsterdam (1985)
2. Blomer, J., Geiß, R.: The GrGen.NET User Manual. University of Karlsruhe, Tech-

nical report, ISSN1432-7864 (2007)
3. Conrad, M., Gajewsky, M., Holl-Biniasz, R., Rudolf, M., Demuth, J., Weber, S.,

Heckel, R., Müller, J., Taentzer, G., Wagner, A.: Graphische Spezifikation aus-
gewählter Teile von AGG – einem algebraischen Graphgrammatiksystem, Techni-
cal report, no. 95-07, TU Berlin (1995)

Applications and Rewriting of Omnigraphs 183

4. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3) (2006)

5. Denninger, O.: Erweiterung des Kantenkonzepts deklarativer Graphersetzungssys-
teme von Einfachkanten über Hyperkanten zu, Superkanten. Diplomarbeit, Uni-
versität Karlsruhe (2007)

6. Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.M.: A Fast SPO-Based
Graph Rewriting Tool. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L.,
Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 383–397. Springer, Heidel-
berg (2006)

7. Gelhausen, T., Tichy, W.F.: Thematic Role based Generation of UML Models from
Real World Requirements. In: First IEEE International Conference on Semantic
Computing (ICSC), pp. 282–289 (2007)

8. Holt, R., Schürr, A., Elliott, S., Winter, A.: GXL: A graph-based standard exchange
format for reengineering. Science of Computer Programming (2005)

9. Minas, M.: Hypergraphs as a Uniform Diagram Representation Model, TAGT. In:
Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS,
vol. 1764, pp. 281–295. Springer, Heidelberg (2000)

10. Minas, M.: Concepts and realization of a diagram editor generator based on hy-
pergraph transformation. Science of Computer Programming 44, 157–180 (2002)

11. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation. Foundations, vol. 1. World Scientific, Singapore (1997)

12. OMG: Unified Modeling Language: Superstructure, version 2.1.1 (2007)
13. Fujaba Tool Suite. University of Paderborn Software Engineering Group
14. GenSet: Design Information Fusion. University of Oregon
15. GRAS – A graph oriented database system for (software) engineering environ-

ments. Lehrstuhl für Informatik 3, University of Technology Aachen (RWTH)
16. GReAT – Graph Rewrite and Transform System. Institute for Software Integrated

Systems, Vanderbilt University, Nashville
17. GROOVE – GRaphs for Object-Oriented VErification. University of Twente
18. OGRE – OmniGraphREwriting System. Institute for Program Structures and Data

Organization (IPD), University of Karlsruhe (2007)
http://sf.net/projects/ogre-system/

19. PROGRES – A Graph Grammar Programming Environment. Lehrstuhl für Infor-
matik 3, University of Technology Aachen (RWTH)

20. VIATRA – Visual Automated model Transformations. Dept. of Measurement and
Information Systems, Budapest University of Technology and Economics

http://sf.net/projects/ogre-system/

A Single-Step Term-Graph Reduction System
for Proof Assistants

Maarten de Mol, Marko van Eekelen, and Rinus Plasmeijer

Department of Software Technology, Nijmegen University, The Netherlands
maartenm@cs.ru.nl, marko@cs.ru.nl, rinus@cs.ru.nl

Abstract. In this paper, we will define a custom term-graph reduction
system for a simplified lazy functional language. Our custom system is
geared towards flexibility, which is accomplished by leaving the choice of
redex free and by making use of single-step reduction. It is therefore more
suited for formal reasoning than the well-established standard reduction
systems, which usually fix a single redex and realize multi-step reduction
only. We will show that our custom system is correct with respect to the
standard systems, by proving that it is confluent and allows standard
lazy functional evaluation as a possible reduction path.

Our reduction system is used in the foundation of Sparkle. Sparkle

is the dedicated proof assistant for Clean, a lazy functional program-
ming language based on term-graph rewriting. An important reasoning
step in Sparkle is the replacement of an expression with one of its
reducts. The flexibility of our underlying reduction mechanism ensures
that as many reduction options as possible are available for this reasoning
step, which improves the ease of reasoning.

Because our reduction system is based on a simplified lazy functional
language, our results can be applied to any other functional language
based on term-graph rewriting as well.

1 Introduction

Clean[1] and Haskell[2] are lazy functional programming languages that have
a semantics based on term-graph rewriting. Due to their mathematical nature,
functional programming languages are well suited for formal methods. Industry
is beginning to acknowledge the importance of formal methods for verifying
safety-critical components of both hardware and software (for instance, see [3]).
Consequently, functional languages are being used increasingly often in industrial
practice (for instance, see [4]).

The distribution of Clean was extended with the dedicated proof assistant
Sparkle[5,6] in 2001. A proof assistant is a tool that supports formal reasoning
about programs. Since its introduction, Sparkle has been used in practice for
various purposes. It has been used for proving properties of I/O-programs by
Dowse[7] and Butterfield[8]. An extension for dealing with temporal properties
has been proposed for it by Tejfel, Horváth and Koszik[9,10]. It has been used
in education at the Radboud University of Nijmegen. Furthermore, support for
class-generic properties has been added to it by van Kesteren[11].

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 184–200, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Single-Step Term-Graph Reduction System for Proof Assistants 185

A very important reasoning step in the library of Sparkle is ‘Reduce’, which
makes use of the operational semantics of Clean to replace an expression with
one of its reducts. The usefulness of ‘Reduce’ depends on the reduction options
that are made available by the underlying formal reduction system, which must
therefore be sufficiently flexible. Of course, it also has to support lazy evaluation,
graphs and sharing. Normally, the natural choice would be the well-established
system of Launchbury[12]. This system, however, is geared towards evaluation:
it uses multi-step reduction and fixes a single redex. Therefore, both partial and
inner reductions are not elements of its reduction relation and are not provided
as reduction options, which is undesirable for formal reasoning.

In this paper, we will define a custom and flexible reduction system for a lazy
functional language. Our system is based on Launchbury’s, but uses single-step
reduction and leaves the choice of redex free. The formalized reduction relation
therefore contains partial and inner reducts as well, which makes our system
suited for formal reasoning. We will show that our system is confluent and that
the standard lazy functional reduction path is allowed by it. This ensures that
our system behaves correctly with respect to Launchbury’s system.

An extended version of our reduction system is used in the full mathematical
foundation of Sparkle, which is described in [13]. There are two main differences
between this paper and the extended version. Firstly, this paper uses a simplified
generic expression language, which makes our reduction system applicable to
other functional languages as well. Secondly, this paper improves on the handling
of sharing, by explicitly enforcing it for function arguments beforehand and by
not making use of external environments. This makes unsharing in our system
much easier, and allows for local confluence as well.

This paper is structured as follows. In Section 2, we examine the desired level
of flexibility. We introduce our expression language in Section 3, and describe
our reduction system in Section 4. We show how to express standard reduc-
tion paths in our system in Section 5, and we prove confluence of our system
in Section 6. Finally, we discuss related work in Section 7 and draw conclusions in
Section 8.

2 Desired Level of Flexibility

Replacing expressions with reducts is a very natural and intuitive reasoning
step. The flexibility of the underlying reduction system determines the number
of reduction options that are available for this step. In principle, having more
reduction options increases the power of reasoning. This reasoning power is only
useful, however, if the options can intuitively be recognized as reducts.

In the introduction, two factors were mentioned that influence flexibility: the
granularity of the reduction relation (single-step vs multi-step), and the freedom
of choice of redex (fixed redex vs free redex). In the following sections, we will
examine the precise effect of these factors on formal reasoning more closely.

186 M. de Mol, M. van Eekelen, and R. Plasmeijer

2.1 Granularity of Reduction Steps

On the intuitive level, reduction is mainly considered to be defined by means of
the reduction steps, and only secondary by means of the overarching reduction
relation. On the reasoning level, the reduction options that are offered to the
proof builder should therefore include the results of partial reductions as well. To
formalize this, a single-step reduction system is needed, in which the reduction
relation is defined in terms of single applications of individual reduction steps.

Example: (proof that requires intermediate reducts)
Assume that the following property has been proved:

‘∀b[not (not b) = b]’.
Using this property, assume that we now want to prove the following:

‘not (id (not X)) = X ’ (where X is some complex computation)
On the intuitive level, this is a trivial proof: simply replace ‘id (not X)’
with ‘not X ’, and then apply the assumed property. QED.
This intuitive proof, however, relies on single-step inner reduction. If no inner
reduction is available, then ‘id (not X))’ cannot be selected as redex; if no
single-step reduction is available, then the reduction of ‘id (not X))’ cannot
be stopped after the first step and ‘X ’ will be evaluated unnecessarily.

2.2 Choice of Redex

Because lazy functional languages are referentially transparent, it is always safe
to apply reduction to an inner redex. Formally, however, referential transparency
has to be proved too. This proof can be constructed in two different ways:

1. Start with a reduction system that allows leftmost-outermost reduction only.
Define semantic equality on top, and prove that it is referentially transparent.

2. Start with a reduction system that allows arbitrary redexes to be reduced.
Prove that this system is confluent, define a semantic equality on top of it,
and let referential transparency follow from the already shown confluence.

Because semantic equality needs to cope with infinite reductions (bisimulation),
the second approach is much easier to carry out. Therefore, in this paper we will
allow the redex to be chosen freely, and we will explicitly prove confluence.

3 The Expression Language

Our expression language models the core of an arbitrary lazy functional language.
The basic components of our language are variables, functions, applications and
let expressions. Without loss of generality, we assume that each function symbol
has a fixed arity, and we abstract from constructors and cases, which can be
added without difficulties. We represent function definitions in a constant exter-
nal environment, and do not use lambda expressions. We consider sharing to be
a basic component of any lazy functional language.

A Single-Step Term-Graph Reduction System for Proof Assistants 187

Notations: (variables, function symbols and lists)
Let V denote the set of variable names, F the set of function symbols, and
Arity : F → N the function that obtains the arity of a function symbol.
Let Vars and Bound denote the functions that obtain the free and bound
variables of an expression respectively. Let ‘〈’ and ‘〉’ denote lists, #xs the
length of a list xs, and xs!i the i-th element of xs , if it exists. Let Unq(xs)
denote that all elements in xs occur only once.

Notation: (construction of sets)
In this paper, sets will be denoted by means of {O(xi) | xi ∈ Xi | P (xi)},
in which O(xi) describes the syntactical shape of the set elements, xi ∈ Xi

describes the domains of the variable placeholders, and P (xi) describes the
condition that all elements of the set must adhere to.

Definition 3̂.1: (set of expressions)
The set E of expressions is defined recursively by:

E = {var x | x ∈ V}
∪ {fun f on xs | f ∈ F , xs ∈ 〈V〉 | Arity(f) ≥ #xs}
∪ {app e to x | e ∈ E , x ∈ V}
∪ {let xs =es in e | xs ∈ 〈V〉, es ∈ 〈E〉, e ∈ E | #xs = #es ∧ Unq(xs)}

Example: (term-graph expression with cycles)
Our representation of expressions allows cycles to be represented by means
of recursive lets. For instance, assuming the availability of a function symbol
F (arity 2) and a variable x, and assuming that the leftmost occurrence of
F is the root, the following graph and expression are equivalent:

F F

x

let 〈a, b, c〉 = 〈 fun F on 〈var c, var b〉
, fun F on 〈var c, var a〉
, var x
〉

in (var a)

Assumption 3̂.2: (programs)
Assume the function Body : 〈V〉 × 〈V〉 × F → E , which models the program
context and binds function symbols to fresh copies of their function bodies.
Assume that Body(xs , ys , f) denotes the body of f in which the arguments
have been replaced by xs and the bound variables have been replaced by ys .

Example: (use of the program function)
Assume that the function f is defined as follows:

f x = let y = x+x in y+y
Formalized by means of the Body-function, this becomes:

Body(E, z, f) = (let z = E+E in z+z)
The Body-function therefore expands a function on given arguments, using
the argument variables to create a fresh instantiation of the function body.

188 M. de Mol, M. van Eekelen, and R. Plasmeijer

Note that there are two different alternatives for application in our language.
The ‘fun’-alternative is used for lifting function symbols to the expression level,
and for gradually collecting function arguments. The ‘app’-alternative is used for
applications of expressions that still have to be reduced to function symbols.

Note further that the arguments of both kinds of applications must always be
variables. Because of this convention (which we borrow from [12]), expressions
need to be converted before they can be represented in our language. Each
application that occurs in the expression has to be transformed as follows:

Transform(fun f on es) = let xs =es in (fun f on xs)
Transform(app e1 to e2) = let 〈x〉=〈e2〉 in (app e1 to x)

This transformation has to be carried out recursively, and the variables that
are created must be fresh. We do not lose expressiveness, because each expression
can be transformed this way. The advantage of this convention is that function
arguments can be duplicated without loss of sharing. This makes our function ex-
pansion rule much easier, as it is no longer necessary to create fresh variables (for
sharing function arguments) within the rule itself.

Note that the transformation can never be reversed, because the result would
be an expression that cannot be represented in our system. This is not a problem,
because reduction never requires the transformation to be reversed.

4 Reduction System

In the following sections, we will introduce our reduction system step-by-step.
First, we introduce our approach to handling sharing in Section 4.1. Then, we
describe the individual rules of our system in Sections 4.2(applications), 4.3(lets)
and 4.4(unsharing). By combining individual rules, head reduction is formalized
in Section 4.5. Finally, locations are introduced in Section 4.6, and they are used
to upgrade head reduction to inner reduction in Section 4.7.

4.1 Graphs as Self-contained Expressions

Sharing is handled in our reduction system in a way that is not standard. We do
not use an external environment for storing graph nodes, and we do not have a
reduction rule that removes let bindings from an expression and transfers them
to an external environment. Instead, we store graph nodes within the expression
by means of lets and use a let-lifting mechanism.

The goal of our method is get rid of external environments completely, which
normally have to be dragged along continuously. By maintaining graph nodes
internally, expressions become self-contained; they can be reduced and given a
meaning without pairing them to an external object. This makes handling ex-
pressions more transparent, and makes subsequent definitions and proofs easier.

The disadvantage of our method is that additional functionality is needed for
maintaining let definitions internally. Two tasks have to be performed:

A Single-Step Term-Graph Reduction System for Proof Assistants 189

– If reduction requires a subexpression at a specific location to be in a certain
form, then it must be possible to remove a leading let from that location.

Example: ‘app (let 〈x〉=〈e〉 in (fun f on 〈x〉)) to y’. (arity of f is 2)

Reduction should first join the outer app and the inner fun, adding y to the
argument list 〈x〉. Then, reduction should expand f .

Unfortunately, the let expression in the middle prevents the contraction
rule from matching immediately. Normally, this would not be a problem,
because reduction would be able to move the inner let to an external envi-
ronment. In our case, the inner let cannot be removed, and another solution
is needed.

– If reduction requires a variable to be unshared, then an explicit link has to be
created to the corresponding let binding.

Example: ‘let 〈x〉=〈e〉 in (app (var x) to y)’. (assume that e is in nf)

Reduction should now replace the inner ‘var x’ with e. This requires the
inner reduction of ‘var x’ to know about the external binding of x to e.

Normally, reduction of the expression as a whole would introduce x = e
into the external environment, by means of which the information would be
made available. Because we do not use external environments, we have to
find another way of passing down this information.

Fortunately, solutions to the issues above can be realized easily, see Sections 4.3
and 4.4 respectively. Overall, our reduction system remains very simple.

4.2 The Reduction Rules for Applications

In our system, applications are contracted from initial sequences of app-nodes
into fun-nodes. When sufficient arguments have been collected, the function is
expanded. This process can be realized by the following two reduction rules:

– The collect-rule accumulates function arguments into a central fun-node by
removing them from surrounding app-nodes. This process is repeated until
the fun-node is filled and contains as many arguments as its arity describes.

– The expand-rule replaces a filled fun-node with (a fresh copy) of the body of
the function (obtained with Body , see Assumption 3̂.2). Additional context
information is required in the form of a list of fresh variables, which are used
as instantiation for the bound variables of the body.

In this paper, we will formalize reduction by means of deterministic functions,
because this makes proving confluence much easier. If additional information is
required to accomplish deterministic behavior, then it is assumed to be available
by means of input arguments. In the later stages of the formalization of reduction,
it will be described how this information is obtained.

190 M. de Mol, M. van Eekelen, and R. Plasmeijer

The reduction rules collect and expand are formalized as follows:

Definition 4.2̂.1: (the realization of the collect-rule)
The function Collect : E → E is defined by:

Collect(e) =

⎧⎨
⎩

fun f on 〈xs :x〉 if e = (app (fun f on xs) to x)
∧ Arity(f) > #xs

e otherwise

Definition 4.2̂.2: (the realization of the expand-rule)
The function Expand : 〈V〉 × E → E is defined by:

Expand(ys , e) =

{
Body(xs, ys , f) if e = (fun f on xs) ∧ Arity(f) = #xs
e otherwise

Note that, as a consequence of allowing only variables at argument positions, the
reduction rules for function application do not have to take sharing into account
in any way. Instead, sharing is preserved automatically.

4.3 The Reduction Rules for Let Lifting

For the administration of sharing, our reduction system maintains lets within
expressions, instead of moving them into an external environment. This means
that lets may get in the way of reduction: when a subexpression has to be
brought into a certain form, it is possible that a let is created on its outer level.
For reduction to continue, it must be possible to remove this hindering let.

Our basic idea is to move lets upwards until they are no longer in the way.
This approach works, because: (1) lets at the outermost level can never be in
the way; and (2) upward moves can be achieved easily at all relevant locations.
We will call the upward move of a let a let lift; our alternative for external
environments is therefore the process of let lifting.

In our system, there are two places where a let must be lifted upwards:

– On the left-hand-side of an application.
The expression on the left-hand-side of an app-node must be reduced to
a fun-node in order for reduction to continue by means of an application
of the collect-rule. If a let expression appears at the outermost level of the
left-hand-side of an application, it therefore has to be moved out of the way.

– On the right-hand-side of a let binding.
An important step in the functional reduction strategy is the unsharing of a
stored let binding. This is only allowed if the binding is in a certain form; in
particular, it may not be a let expression. If a let expression appears at the
outermost level of the right-hand-side of a let binding, it therefore has to be
moved out of the way.

The two reduction rules that perform let lifting are lift app and lift let. They are
formalized by means of the functions LiftApp and LiftLet . The function LiftApp
does not require additional context information, but LiftLet requires the index
of the let binding to be lifted for reasons of disambiguation.

A Single-Step Term-Graph Reduction System for Proof Assistants 191

Definition 4.3̂.3: (the realization of the lift-app-rule)
The function LiftApp : E → E is defined by:

LiftApp(e) =

⎧⎨
⎩

let xs =es in (app e′′ to x) if e = (app e′ to x)
∧ e′ = (let xs =es in e′′)

e otherwise

Definition 4.3̂.4: (the realization of the lift-let-rule)
The function LiftLet : N × E → E is defined by:

LiftLet(i, e) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

let 〈xs1 :ys :xi :xs2〉
= 〈as1 :bs :b :as2〉
in a

if e = (let 〈xs1 :xi :xs2〉 =
〈as1 :ai :as2〉 in a

∧ #xs1 = #as1 = i − 1
∧ ai = (let ys =bs in b)

e otherwise

Note that LiftLet joins two let expressions into a single new one. The argument
i determines which inner let should be lifted. It is required, because multiple
inner bindings may be a let itself. The bindings of the inner let are inserted
in the outer let just before the original binding. This ensures that the order in
which inner lets are lifted does not matter; the result will always be the same.

Example: (example of the lift-app-rule)
In Section 4.1, the following example of a hindering let was given:

‘app (let 〈x〉=〈e〉 in (fun f on 〈x〉)) to y’. (arity of f is 2)
By applying LiftApp, this expression can now be transformed to:

‘let 〈x〉=〈e〉 in (app (fun f on 〈x〉) to y)’.
Reduction can now continue on the inner let by means of a collect.

Example: (example of the lift-let-rule)
In the following expression, both the inner lets can be lifted:

‘let 〈x : y〉=〈let xs =as in a : let ys =bs in b〉 in e’.
Lifting the second inner let (using LiftLet on index 2) leads to:

‘let 〈x : ys : y〉=〈let xs =as in a : bs : b〉 in e’.
Lifting the remaining inner let (using LiftLet on index 1) leads to:

‘let 〈xs : x : ys : y〉=〈as : a : bs : b〉 in e’.
First lifting index 1 and then index 2 would have given the same result.

4.4 The Reduction Rule for Unsharing

The last remaining task for which a reduction rule has to be defined is the
task of unsharing. This is the process of replacing variables with the expressions
that they are associated with by means of a let binding. We will model one
single unshare at a time. Note that cyclic let definitions are allowed; therefore,
the process of repeated unsharing does not always terminate. A single unshare,
however, always terminates.

Because efficiency is important even when building proofs, we do not allow
duplication of unfinished computations. Therefore, an expression may only be

192 M. de Mol, M. van Eekelen, and R. Plasmeijer

unshared if it can statically be determined that it does not contain any redexes.
In our language, this is only the case for partial applications. Chains of variables
(x=y, y= . . .) cannot be unshared immediately. Instead, the final binding has to
be reduced to a partial application first, after which the chain can be collapsed.

The rule for unsharing is called unshare, and its function is Unshare. The
function can only be applied to a variable, and takes the binding as additional
input. It is assumed that the binding occurs in the context of the redex.

Definition 4.4̂.5: (the realization of the unshare-rule)
The function Unshare : E × E → E is defined by:

Unshare(x, u, e) =

⎧⎨
⎩

u if e = (var x) ∧ u = (fun f on xs)
∧ Arity(f) < #xs

e otherwise

Note that this unshare can replace a variable x with any expression u that it is
given as additional argument. On this level, there is no verification that x = u
actually appears in the context of the redex. This verification is performed later,
on the level of inner reduction (see Section 4.7).

4.5 Head Reduction

Head reduction is the combination of the five reduction functions defined in the
previous sections. It operates on a rule selector and an expression. Based on
the rule selector, one of the five reduction functions is selected, which is then
applied to the expression. A rule selector is an artificial identifier that denotes
one of the five reduction rules. For simplicity, we incorporate the additional input
arguments of the individual rules into the rule selectors defined below:

Definition 4.5̂.6: (set of rule selectors)
The set R of rule selectors is defined by:

R = {collect, lift app}
∪ {expand xs | xs ∈ 〈V〉}
∪ {lift bind i | i ∈ N}
∪ {unshare x to u | x ∈ V , u ∈ E}

The head reduction function is simply a case distinction on the rule selector:

Definition 4.5̂.7: (head reduction)
The function HeadReduce : R × E → E is defined by:

HeadReduce(collect, e) = Collect(e)
HeadReduce(expand xs, e) = Expand(xs , e)
HeadReduce(lift app, e) = LiftApp(e)
HeadReduce(lift bind i, e) = LiftLet(i, e)
HeadReduce(unshare x to u, e) = Unshare(x, u, e)

A summary of the total system of reduction rules is given in Table 1.

A Single-Step Term-Graph Reduction System for Proof Assistants 193

Table 1. The reduction system as a whole

name rule conditions

collect
app (fun f on xs) to x

fun f on 〈xs :x〉 Arity(f) > #xs

expand ys
fun f on xs

Body(xs , ys, f)
Arity(f) = #xs

lift app
app (let xs =es in e) to x

let xs =es in (app e to x)
−

lift bind i
let 〈x1 . . . xn〉= 〈e1 . . . en〉 in e

let 〈x1 . . . xi−1 : ys : xi : xi+1 . . . xn〉
= 〈e1 . . . ei−1 : as : a : ai+1 . . . an〉 in e

1 ≤ i ≤ n,
ei = (let ys =as in a)

unshare x to u
var x

u
u = (fun f on xs),
Arity(f) < #xs

4.6 Locations

All the reduction functions that have been defined so far can only be applied to
the head of an expression. In order to lift these function to inner reduction, we
will use the concept of locations. A location is an artificial identifier that points
to a specific subexpression within a compound expression. The basic operations
on locations are Get and Set . For a full formalization of locations we refer to
the technical report [14]. Here, we introduce locations informally only:

Notation 4.6̂.8: (locations and operations on locations)
Let L denote the set of available locations, Get : L×E ↪→ E the function that
gets the subexpression from an indicated location, and Set : L × E × E ↪→ E
the function that sets the subexpression at an indicated location.

Note that both Get and Set are partial functions; they fail when the location is
not valid within the indicated expression.

4.7 Inner Reduction

The final step in defining our custom reduction system is the upgrade of head
reduction to inner reduction, which allows reduction to take place on an arbitrary
redex. Inner reduction is represented by a function that operates on a location,
a rule selector and an expression. It selects the redex at the indicated location,
and applies head reduction to it using the given rule selector as argument.

Inner reduction performs partial verification of the incoming rule selector as
well. It checks two conditions, namely: (1) whether the variables of an expand
are indeed fresh with respect to the expression that is reduced; and (2) whether
the binding of an unshare is indeed available in the context of the redex. These
conditions are checked using a combination of the redex location and the expres-
sion as a whole. The other reduction functions operate on the redex alone, and
can therefore not perform these verifications themselves.

194 M. de Mol, M. van Eekelen, and R. Plasmeijer

The verification of the freshness of an expand-rule is formalized by means of
the relation Fresh. It simply extracts the variables from the rule and checks
whether there is an overlap with the bound variables of the expression.

Definition 4.7̂.9: (verification of an expand-rule)
The relation Fresh ⊆ R × E is defined by:

Fresh(r, e) ⇔ ∀xs∈〈V〉[r = (expand xs) ⇒ ¬∃x∈V [x ∈ xs ∧ x ∈ Bound(e)]]

The verification of an unshare-rule is formalized in two steps. First, an auxiliary
function Defs is defined which collects all let bindings within an expression.
Then, the relation Occurs extracts the binding from an unshare-rule and checks
whether it is an element of Defs . Because reduction is only allowed on wellformed
expressions (i.e. they must be closed and they must have unique variables), being
an element of Defs automatically ensures the validity of a let binding.

Definition 4.7̂.10: (let bindings within an expression)
The function Defs : E → ℘(V × E) is defined recursively by:

Defs(var x) = Ø
Defs(fun f on xs) = Ø
Defs(app e to x) = Defs(e)
Defs(let〈x1 . . . xn〉=〈e1 . . . en〉 in e)= ∪n

i=1[{(xi, ei)} ∪ Defs(ei)] ∪ Defs(e)

Definition 4.7̂.11: (verification of an unshare-rule)
The relation Occurs ⊆ R × E is defined by:

Occurs(r, e) ⇔ ∀x∈V∀u∈E [r = (unshare x to u) ⇒ (x, u) ∈ Defs(e)]

The verification of a rule selector can now be formalized by means of the relation
Valid , which is simply a conjunction of Fresh and Occurs:

Definition 4.7̂.12: (verification of a rule selector)
The relation Valid ⊆ R × E is defined by:

Valid(r, e) ⇔ Fresh(r, e) ∧ Occurs(r, e)

Inner reduction is formalized by means of the total function InnerReduce. This
function acts as the identity if the input arguments are not wellformed, or the
reduction rule cannot be applied successfully. The input is wellformed if: (1) the
location is valid; (2) the rule selector is valid; (3) the expression is closed; and
(4) the bound variables within the expression are unique. The explicit conditions
(3) and (4) restrict reduction to wellformed expressions only.

Definition 4.7̂.13: (inner reduction)
The function InnerReduce : L × R × E → E is defined by:

InnerReduce(l, r, e) =

⎧⎪⎪⎨
⎪⎪⎩

Set(l,HeadReduce(r, e′), e)
if Get(l, e) = e′ ∧ Valid(r, e)
∧ Vars(e) = Ø ∧ Unq(Bound(e))

e otherwise

Note that the result of reduction is always a wellformed expression itself. This
property can be verified easily; therefore, its proof is omitted here.

A Single-Step Term-Graph Reduction System for Proof Assistants 195

5 Correctness of Let Lifting

Our system is non-standard only in the handling of sharing. Other than that,
it can be regarded as a simplification of a single-step version of [12]. It is easy
to see, however, that our approach with let lifting is equivalent to the standard
approach which makes use of external environments:

– Suppose that R is our reduction system, and that R′ is obtained out of R
by replacing the let-lifting mechanism with a usual external environment
mechanism. That is, R′ is obtained out of R by:

• leaving out the rules lift app and lift let;
• introducing external environments Γ ⊆ V × E ;
• changing the signature of reduction from E → E to Γ × E → Γ × E ;
• adding a rule introduce let that removes a let expression and moves the

let bindings in the external environment; and
• altering the rule unshare to use the external environment.

– Then, all reduction paths of R′ can be transformed to R by:
• leaving out external environments and all applications of introduce let;
• inserting as many lift app’s before each application of collect as there are

inner lets in the application node;
• inserting as many lift let’s before each application of unshare as there are

inner lets in the binding to be unshared; and
• augmenting each unshare with the let binding used.

This simple algorithm maps any traditional reduction path into an equivalent
reduction path in our system. Because R′ can be considered as an extension of
Launchbury’s system, this means that all reduction paths of Launchbury have
an equivalent in our system. The reverse does not hold, however, because our
paths do not always choose the left-most outer-most redex, and do not always
end with a normal form. Due to confluence (see next section), however, the paths
in our system that cannot be converted to Launchbury’s system are equivalent
to the paths that can be converted.

6 Confluence

Confluence is a well-known property of rewrite systems. It is important for our
system, because it ensures that all possible reductions preserve the meaning of
an expression, and can therefore safely be applied in the context of reasoning.

In our reduction system, confluence only holds modulo α-conversion, because
no explicit α-conversion rule is available. Therefore, if two expands are carried
out on the same redex, or two expands are carried out on different redexes but
there is an overlap in the variables that they introduce, then the reduction results
cannot be brought together. This precondition of confluence is formalized by the
relation Joinable. Furthermore, Joinable also excludes the irrelevant and trivial
case that the two reductions are identical.

196 M. de Mol, M. van Eekelen, and R. Plasmeijer

Definition 6̂.1: (precondition of confluence)
The relation Joinable ⊆ L × R × L × R is defined by:

Joinable(l1, r1, l2, r2) ⇔ ¬(l1 = l2 ∧ r1 = r2)
∧ ∀xs,ys∈〈V〉[(r1 = expand xs ∧ r2 = expand ys) ⇒

(l1 = l2 ∧ ¬∃x∈V [x ∈ xs ∧ x ∈ ys])]

Below we present the proofs of confluence, which are built incrementally. First,
we prove confluence for two single head steps, then for one head step and one
inner step, and then finally for two inner steps. Without loss of generality, we
present simplified proofs and abstract from wellformedness altogether.

Lemma 6̂.2: (confluence - head/head version)
∀e∈E∀r1,r2∈R[Joinable(〈〉, r1, 〈〉, r2)

⇒ ∃r3,r4∈R[HeadReduce(r3,HeadReduce(r1, e)) =
HeadReduce(r4,HeadReduce(r2, e))]]

Proof
Assume e ∈ E , r1, r2 ∈ R and [1]Joinable(〈〉, r1, 〈〉, r2).
As can be seen in Table 1, on each kind of expression there is only one kind
of reduction rule available. Therefore, r1 and r2 must be of the same kind.

Due to assumption [1], r1 and r2 cannot be the same and cannot be
expand’s. Therefore, r1 and r2 can only be different applications of lift bind:

Assume [2]r1 = (lift bind i), [3]r2 = (lift bind j), [4]i = j.
[5]e = (let xs =bs in e1),
[6]1 ≤ i < j (if i > j then simply swap them),
[7]xs = 〈xs1 :xi :xs2 :xj :xs3〉 (with #xs1 = i-1 and #xs2 = j-i-1),
[8]bs = 〈bs1 :bi :bs2 :bj :bs3〉 (with #bs1 = i-1 and #bs2 = j-i-1),
[9]bi = (let ys =gs in g) and [10]bj = (let zs =hs in h).

The basic idea is that the let lifts can simply be swapped. However, the index
of the binding in r3 has to be increased, because the let lift performed by r1

has pushed additional bindings upwards. This is not necessary in the reverse
case, because the lift of j takes place behind the lift of i.

Choose [11]r3 = (lift bind j + #ys) and [12]r4 = (lift bind i).
Now, using HR as abbreviation for HeadReduce, the following holds:
HR(r3,HR(r1, e)) {2,5}
= HR(r3,HR(lift bind i, let xs =bs in e1)) {11,HR,7,8,9}
= HR(lift bind j+#ys , let 〈xs1 :ys :xi :xs2 :xj :xs3〉

= 〈bs1 :gs :g :bs2 :bj :bs3〉in e1)
{12,HR}

= (let 〈xs1 :ys :xi :xs2 :zs :xj :xs3〉=〈bs1 :gs :g :bs2 :hs :h :bs3〉 in e1).
Again using HR as abbreviation for HeadReduce, the following also holds:
HR(r4,HR(r2, e)) {3,6}
= HR(r4,HR(lift bind j, let xs =bs in e1)) {12,HR,7,8,10}
= HR(lift bind i, let 〈xs1 :xi :xs2 :zs :xj :xs3〉

= 〈bs1 :bi :bs2 :hs :h :bs3〉 in e1)
{11,HR}

= (let 〈xs1 :ys :xi :xs2 :zs :xj :xs3〉=〈bs1 :gs :g :bs2 :hs :h :bs3〉 in e1).
Therefore, HR(r3,HR(r1, e)) = HR(r4,HR(r2, e)). QED.

A Single-Step Term-Graph Reduction System for Proof Assistants 197

Lemma 6̂.3: (confluence - head/inner version)
∀e∈E∀r1,r2∈R∀l∈L[Joinable(〈〉, r1, l, r2)

⇒ ∃r3,r4∈R∃l′∈L[InnerReduce(l′, r3,HeadReduce(r1, e)) =
HeadReduce(r4, InnerReduce(l, r2, e))]]

Proof
Assume e ∈ E , r1, r2 ∈ R, l ∈ L and Joinable(〈〉, r1, l, r2).
If l = 〈〉, then the previous Lemma can simply be applied.
If l occurs within a free expression variable of the left-hand-side pattern of
r1 (i.e. no overlap with r1), then the following arguments hold:
• Rule r2 on a modified l′2 is applicable on HeadReduce(r1, e).

All expression variables that are used in the left-hand-side of a reduction
rule occur unchanged in the right-hand-side. In other words: r1 moves the
redex of r2 around, but does not change it.

• Rule r1 is applicable at the head of e2.
The reduction r2 only changes the contents of an expression variable in
the left-hand-side pattern of r1. If r1 matches on e, it therefore also syn-
tactically matches (at the head) on e2. Furthermore, note that it is not
possible that the conditions of r1 are falsified by r2, or vice versa.

• The reductions r1 and r2 can be swapped, without changing the result.
This follows from the two arguments above.

This only leaves a partial overlap between r1 and r2 to be considered. An
inspection of Table 1 reveals that there are two such cases: either r1 is a ‘lift
app’ and r2 is a ‘lift bind’; or r1 is a ‘lift bind’ and r2 is an inner ‘lift bind’.
In both cases, r1 and r2 can be swapped, similarly to Lemma 6̂.2. The full
proof is omitted here, but it can be found in [14]. QED.

Theorem 6̂.4: (confluence)
∀e∈E∀r1,r2∈R∀l1,l2∈L[Joinable(l1, r1, l2, r2) ⇒

∃r3,r4∈R∃l′1,l′2∈L[InnerReduce(l′1, r3, InnerReduce(l1, r1, e)) =
InnerReduce(l′2, r4, InnerReduce(l2, r2, e))]]Proof

Assume e ∈ E , r1, r2 ∈ R, l1, l2 ∈ L and Joinable(l1, r1, l2, r2).
Assume that l1 is at least as close to the root of e as l2. If otherwise, then
simply swap l1 and l2. We distinguish two cases:
• Case 1: l2 is a sublocation of l1. Now, r1 is a head reduction of Get(l1, e),

and r2 is an inner reduction of Get(l1, e). By applying Lemma 6̂.3, r1

and r2 can be brought together in the context of Get(l1, e). Because a
reduction of a subexpression is always also a reduction of the expression
as a whole, r1 and r2 can be brought together in the context of e as well.

• Case 2: l2 is not a sublocation of l1. In this case, r1 and r2 are completely
disjoint. Their redex transformations therefore do not interfere with each
other at all, and can be swapped leading to the same single result. QED.

7 Related Work

Our reduction system is based on reduction as proposed by Launchbury in [12],
which has since 1993 been used as the de facto standard for evaluating lazy

198 M. de Mol, M. van Eekelen, and R. Plasmeijer

functional programs. Several systems have been derived from Launchbury’s, but
none that we know of leaves the choice of redex free. Derived systems of interest
are [15], which defines an operational semantics specifically for Clean, and [16],
which defines a single-step reduction system for parallel evaluation. Both systems
fix a single redex, however, and are therefore less suited for formal reasoning.

In [17] the authors describe a single-step reduction system based on a call-
by-need extension of the lambda calculus, which fully supports lazy evaluation
and sharing. It is both single-step and leaves the choice of redex free. The disad-
vantage of this system, however, is the syntactical distance between the lambda
calculus and (the core of) a lazy functional programming language. This distance
is most apparent in the representation of functions and applications. Due to this
distance, the system of [17] is not suited for dedicated formal reasoning on the
level of the program, which is one of the trademark features of Sparkle.

Related more generally is the ρg-Calculus[18], which integrates term-rewriting
with lambda-calculus, expressing sharing and cycles. It uses both unification and
matching constraints, leading to a term-graph representation in an equational
style. This calculus is more general than classical term graph rewriting[19,20],
which can be simulated in it. We feel that our work can serve as a first basis for
creating a reduction system for a proof assistant based on the ρg-calculus.

Another future issue concerns the addition of tactical support for equiva-
lency of cyclic graphs. This may be based upon the work of [21], which es-
tablishes the bisimilarity of different proof systems for equational cyclic graph
specifications.

8 Conclusions

We have defined a term-graph reduction system for a simplified lazy functional
language. Our system uses single-step reduction and leaves the choice of redex
free. This offers a degree of flexibility that is not available in the commonly
used reduction systems for functional languages. Due to this degree of flexibility,
our system is much better suited for the foundation of formal reasoning. Our
reduction system is used in the foundation of Sparkle, Clean’s proof assistant.

Our system maintains sharing within expressions and does not use external
environments. This offers the advantage of orthogonality: expressions can be
given a meaning as they are, whereas in the common reduction systems they
have to be combined with an environment first. The internal maintenance of
sharing does not make the reduction system more complicated; it suffices to add
two additional rules for let-lifting . All in all, our system consists of five reduction
rules only, and is very simple.

All common reduction paths can be expressed in our system. Furthermore,
we have proved that our system is confluent. This implies that our system
is equivalent to the standard systems: there is at least one reduction path
that corresponds to normal reduction, and all other paths can be converged
to it.

A Single-Step Term-Graph Reduction System for Proof Assistants 199

References

1. van Eekelen, M., Plasmeijer, R.: Concurrent CLEAN language report (version 1.3).
Technical Report CSI–R9816, Radboud University Nijmegen (1998)

2. Hudak, P., Jones, S.L.P., Wadler, P., Boutel, B., Fairbairn, J., Fasel, J.H., Guzmán,
M.M., Hammond, K., Hughes, J., Johnsson, T., Kieburtz, R.B., Nikhil, R.S., Par-
tain, W., Peterson, J.: Report on the Programming Language Haskell, A Non-strict,
Purely Functional Language. SIGPLAN Notices 27(5), R1–R164(1992)

3. Brim, L., Haverkort, B.R., Leucker, M., van de Pol, J. (eds.): FMICS 2006 and
PDMC 2006. LNCS, vol. 4346. Springer, Heidelberg (2007)

4. Moran, A.: Report on the First Commercial Users of Functional Programming
Workshop. SIGPLAN Notices 39(12) (2004)

5. de Mol, M., van Eekelen, M., Plasmeijer, R.: Proving properties of lazy functional
programs with SPARKLE. In: Horváth, Z. (ed.) 2nd Central-European Functional
Programming School, CEFP 2007, Cluj-Napoca, Romania. LNCS Tutorial Series.
Springer, Heidelberg (to appear, 2008)

6. de Mol, M., van Eekelen, M., Plasmeijer, R.: Theorem proving for functional pro-
grammers - SPARKLE: A functional theorem prover. In: Arts, T., Mohnen, M.
(eds.) IFL 2002. LNCS, vol. 2312, pp. 55–72. Springer, Heidelberg (2002)

7. Dowse, M., Butterfield, A., van Eekelen, M.C.J.D.: Reasoning About Deterministic
Concurrent Functional I/O. In: Grelck, C., Huch, F., Michaelson, G.J., Trinder, P.
(eds.) IFL 2004. LNCS, vol. 3474, pp. 177–194. Springer, Heidelberg (2005)

8. Butterfield, A., Strong, G.: Proving Correctness of Programs with I/O - a paradigm
comparison. In: Arts, T., Mohnen, M. (eds.) IFL 2002. LNCS, vol. 2312, pp. 72–88.
Springer, Heidelberg (2002)

9. Tejfel, M., Horváth, Z., Kozsik, T.: Extending the sparkle core language with object
abstraction. Acta Cybern. 17(2) (2006)

10. Horváth, Z., Kozsik, T., Tejfel, M.: Proving invariants of functional programs. In:
Kilpeläinen, P., Päivinen, N. (eds.) SPLST, University of Kuopio, Department of
Computer Science, pp. 115–126 (2003)

11. van Kesteren, R., van Eekelen, M., de Mol, M.: Proof support for general type
classes. In: Loidl, H.W. (ed.) Trends in Functional Programming 5: Selected papers
from the 5th Int. Symposium on Trends in Functional Programming, TFP 2004,
München, Germany, Intellect, pp. 1–16 (2004)

12. Launchbury, J.: A natural semantics for lazy evaluation. In: Conference Record
of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Charleston, South Carolina, pp. 144–154 (1993)

13. de Mol, M., van Eekelen, M., Plasmeijer, R.: The mathematical foundation of
the proof assistant sparkle. Technical Report ICIS–R07025, Radboud University
Nijmegen (2007)

14. de Mol, M., van Eekelen, M., Plasmeijer, R.: Proving confluence of term-graph re-
duction for sparkle. Technical Report ICIS–R07012, Radboud University Nijmegen
(2007)

15. Barendsen, E., Smetsers, S.: Graph rewriting aspects of functional programming.
In: Handbook of Graph Grammars and Computing by Graph Transformation, pp.
63–102. World Scientific, Singapore (1999)

16. Hall, J.G., Baker-Finch, C.A., Trinder, P.W., King, D.J.: Towards an operational
semantics for a parallel non-strict functional language. In: Hammond, K., Davie,
T., Clack, C. (eds.) IFL 1998. LNCS, vol. 1595, pp. 54–71. Springer, Heidelberg
(1999)

200 M. de Mol, M. van Eekelen, and R. Plasmeijer

17. Ariola, Z.M., Maraist, J., Odersky, M., Felleisen, M., Wadler, P.: A call-by-need
lambda calculus. In: POPL 1995: Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pp. 233–246. ACM
Press, New York (1995)

18. Baldan, P., Bertolissi, C., Cirstea, H., Kirchner, C.: A rewriting calculus for cyclic
higher-order term graphs. Mathematical Structures in Computer Science 17(3),
363–406 (2007)

19. Sleep, M.R., Plasmeijer, M.J., van Eekelen, M.C.J.D. (eds.): Term graph rewriting:
theory and practice. John Wiley and Sons Ltd., Chichester (1993)

20. Barendregt, H.P., van Eekelen, M.C.J.D., Glauert, J.R.W., Kennaway, R., Plas-
meijer, M.J., Sleep, M.R.: Term graph rewriting. In: de Bakker, J.W., Nijman,
A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 259, pp. 141–158. Springer,
Heidelberg (1987)

21. Grabmayer, C.: A duality between proof systems for cyclic term graphs. Mathe-
matical Structures in Computer Science 17(3), 439–484 (2007)

Shaped Generic Graph Transformation

Frank Drewes1, Berthold Hoffmann2, Dirk Janssens3,
Mark Minas4, and Niels Van Eetvelde3

1 Ume̊a universitet, Sweden
2 Universität Bremen, Germany

3 Universiteit Antwerpen, Belgium
4 Universität der Bundeswehr München, Germany

Abstract. Since the systematic evolution of graph-like program mod-
els has become important in software engineering, graph transformation
has gained much attention in this area. For specifying model evolution
concisely, graph transformation rules should be as expressive as possi-
ble. The generic rules proposed in this paper may contain placeholders
for graphs of varying number and shape. Expansion of these placehold-
ers by graphs yields the actual transformation rules to be applied. Even
rather complex transformations occurring in real-life applications, such
as the Pull-Up-Method refactoring operation, can be specified by a single
generic rule.

1 Introduction

The systematic transformation of models and programs has become an impor-
tant issue in the world of software engineering. On the one hand, the general
idea of model-driven engineering has attracted a lot of attention from both the
academic and the industrial communities, and on the other hand the need for
better support of software evolution has become clear. In the model-driven ap-
proach, a software system is seen as a cluster of models, on various levels of
abstraction and with various characteristics. Each of these models captures cer-
tain features or aspects of the systems, allows its own kind of analysis, and has
its own tools available. In this way one may apply the many sophisticated tools
and theories that have been developed for particular models by the research com-
munity. It is clear, however, that this will not work unless one develops powerful
tools for integrating the various models, transforming them into one another,
generating code from them, and keeping them consistent. Thus model transfor-
mation is a key issue here. In the area of software evolution, a lot of attention
has been devoted to refactoring: the stepwise modification of programs, aimed
at improving their internal organization, but preserving their behavior. The list
of refactoring operations published by Fowler [12] is a well-known example. In
order to get to a precise and manageable definition of what constitutes a model
(or program) transformation, it is quite natural to view a model or program as a
graph, and to describe large transformation processes as being compositions of
“small” transformations – and thus, to describe model transformations by graph
transformation systems.

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 201–216, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

202 F. Drewes et al.

Unfortunately, the rules of classical graph transformation formalisms are
rather restricted. E.g., double pushout (DPO) rules [10] just allow to remove
a constant subgraph from a host graph, and insert another constant graph for
it. For describing the behavior of complex real-life systems, one needs a large
number of such rules, and may have to program their application using control
structures. In this paper, which continues [17], we pursue another idea: we make
rules generic by introducing (i) multiple nodes that represent sets of nodes and
(ii) placeholders for subgraphs of various shapes. A shape is a set of graphs
that may be assigned to a given placeholder. A generic transformation rule
abstracts from a (possibly infinite) set of ordinary graph transformation rules,
one for every assignment of node sets and subgraphs to its multiple nodes and
placeholders, respectively. Thus graph transformation is a two-level process: it
first instantiates a generic rule, and then applies the resulting ordinary rule to
the host graph afterwards.

To define the shapes that may replace the placeholders in generic rules, we
use adaptive star grammars. These have been introduced in [9], partly motivated
by earlier research on modeling and refactoring of object-oriented programs [21].
A first issue to be addressed was the specification of the set of graphs represent-
ing programs. Being context-free devices with nice computational properties,
hyperedge and node replacement grammars [14,8,11] have proven particularly
useful for defining graph languages. Unfortunately, these types of graph gram-
mars turned out to be too weak to generate program graphs in a reasonable way.
Therefore, we have proposed the adaptive star grammar as an extension which
is able to generate languages of this type. The rules of an adaptive star grammar
have a context-free flavor: each of them replaces a so-called star (a nonterminal
node and its incident edges) with another graph.

The remainder of this paper is structured as follows. In the next section, we
recall basic notions regarding graphs and graph transformation, and discuss how
refactoring can be modeled. It turns out that we need a grammatical mechanism
to specify the shape of graph models, and generic rules to specify their trans-
formation in a concise way. In Section 3, we define adaptive star grammars and
show as an example how they can be used to define the shape of method bodies,
a part of program graphs. Section 4 constitutes the main part of this paper. Here
we introduce generic rules, and define how placeholders are expanded by shaped
graphs, before the resulting rule is applied. We also sketch how expansion and
cloning can be done by incrementally matching of a generic rule to a host graph.
Section 5 discusses related work. Finally, we summarize our results, and indicate
future work in Section 6.

2 Graph Transformation

In this section, we recall standard notions of graphs and graph transformation,
and check how useful they are for model transformation, by discussing a case
study on refactoring.

Shaped Generic Graph Transformation 203

Graphs. Graph-like diagrams have become very popular for representing arte-
facts that describe software in all its development phases, especially after the
Unified Modeling Language (Uml) emerged. We recall a general notion of graphs,
and show how it is used for a language-independent representation of object-
oriented programs, called program graphs.

Throughout the paper, we let S be our universe of symbols to be used as
labels. It is the union of two disjoint infinite sets Ṡ and S̄ of node and edge
labels, resp. For S ⊆ S, we let Ṡ = S ∩ Ṡ and S̄ = S ∩ S̄.

Definition (Graph). A graph G = 〈Ġ, Ḡ, sG, tG, �̇G, �̄G〉 consists of disjoint
finite sets Ġ of nodes and Ḡ of edges, of two functions sG, tG : Ḡ → Ġ defining
the source and target nodes of its edges, and of two functions �̇G : Ġ → Ṡ and
�̄G : Ḡ → S̄ that assign labels to its nodes and edges.

If all labels of nodes and edges in G are in S ⊆ S, then G is a graph over S.
Let GS denote the set of all graphs over S.

We use common terminology regarding graphs. For instance, an edge is said to
be incident with its source and target nodes, and makes these nodes adjacent to
each other. G ⊆ H denotes that G is a subgraph of H , and G�H is the disjoint
union of G and H . If a graph G contains a node y, the subgraph G(y) consisting
of y, all its incident edges, and all its adjacent nodes is called the neighborhood
of y. Finally, G \ {y} denotes G without the node y, and without the edges of
G(y). A pair g = 〈ġ, ḡ〉 of bijective functions ġ : Ġ → Ḣ and ḡ : Ḡ → H̄ that
preserve sources, targets and labels is called an isomorphism; it makes the graphs
G and H isomorphic, written G ∼=g H .

Example 1 (Program Graphs). In the case study [21] of refactoring, program
graphs have been proposed as a language-independent representation of object-
oriented programs. Fig. 1 shows two subgraphs of a class of program graphs.

The labels {B, C, E, M, V} classify nodes as program entities: bodies of meth-
ods, classes, expressions, method signatures, and variables, respectively. The la-
bels {a, ap, c, e, fp, i, l, m, u, val} represent relations between entities: access, actual
parameter, call, element, formal parameter, inheritance, lookup, membership, up-
date, and value.

A graph must satisfy certain constraints in order to be a valid program graph.
The following are typical examples of constraints:

– Incidence: An i-edge (modeling inheritance) must be incident with C-nodes
(representing classes) only.

– Cardinality: An E-node (representing an expression) may have at most one
outgoing edge labeled a or u (modeling access resp. update).

– Structure: The i-edges must induce a partial order on classes.
– Context : An E-node may access a variable (via an a-edge) only if that variable

is visible in the context to which the E-node belongs.

In Section 3, we propose graph grammars for specifying the shape of graphs,
which comprises structural and contextual constraints, e.g., of program graphs,

204 F. Drewes et al.

in an intuitive way. Incidence or cardinality constraints can be inferred automat-
ically from the definition of such a grammar. Note also that such constraints can
be specified by meta-models (like Uml class diagrams or type graphs [4]) along
with certain well-formedness constraints (expressed, e.g., by Ocl formulas), too.
However, we prefer graph grammars for the following reasons:

– Using graph grammars is not only elegant, but also provides a sound foun-
dation for parsing and analysis, as witnessed by the well-developed theory
of graph transformation.

– We aim at graph languages like the language of program graphs. Graph gram-
mars are particularly well suited for specifying such recursive (graph) lan-
guages which are not that easily specified by meta-models with constraints.

Graph transformation. Since software models can be represented as graphs,
graph transformation is a natural candidate for specifying the evolution of mod-
els. We use a simple form of DPO graph transformation with injective occur-
rences. [10].

Definition (Graph Transformation). A (graph transformation) rule r =
L/R consists of two graphs L and R so that the nodes İ = L̇ ∩ Ṙ define a
discrete interface graph L ⊇ I ⊆ R.

Consider a graph G and a rule r = L/R. A subgraph O ⊆ G is an occurrence
of r in G if O ∼=g L for some isomorphism g so that no node in Ȯ\g(İ) is incident
with an edge in Ḡ \ Ō. Then r transforms G (via the isomorphism g) to a graph
that is denoted as G[L /g R] and is obtained from the disjoint union G�R by (i)
removing Ō and Ȯ \ ġ(İ) from G, and (ii) identifying every interface node x ∈ İ
with ġ(x) ∈ Ġ.

Example 2 (Pull-Up-Method). Pull-Up-Method is a refactoring used when each
subclass of a class A defines a method with the same signature and behavior.
These methods are then removed from each subclass of A and replaced by a
single, equivalent method in A. In the following, we assume that equivalence of
different methods has been checked before Pull-Up-Method is applied.

C
1

V

m

B

M

i

fp

2 3 45
C

i

l l
m

7

C

m

C

i

V
9

EapE

 E

a

e

e

a

a

u

c

M

E

l

e

a E

ap

C

V

B

M

i

fp

C

i

l

mCC

i

V

8

M

B B
6

1

2 3 45

7

9

8

6

c

Fig. 1. A concrete rule for Pull-Up-Method

void m5(v7) {
v9 := v7;
m8(v9);

}

void m5(v7) {
m8(v7);

}

Fig. 2. Pseudo code for
the method bodies in
Fig. 1

Shaped Generic Graph Transformation 205

Fig. 1 shows a rule implementing a specific case of a Pull-Up-Method refac-
toring for program graphs. The interface nodes of the rule are specified by an-
notating them with the same number in L and R.

The C-nodes represent a class (4) with its superclass (1) and two sibling
classes (2, 3). A method signature (5) with one parameter (7) has overloaded
bodies (B-nodes) in the sibling classes (2, 3); both implementations make a call
to another method (8). The one of class (3) uses the formal parameter (7) as
its actual parameter, whereas the other assigns this parameter to a variable (9)
first, and calls method (8) with this variable afterward (cf. Fig. 2). Obviously,
these implementations have the same semantics but differ syntactically.

The implementations of method (5) in the sibling classes (2, 3), which are
emphasized in gray, are removed on the right-hand side of the rule, and its
body (6) is moved to the superclass (1). The expressions defining the body (6)
need not be mentioned in the rule as they are not changed by the refactoring.

This rule does not define Pull-Up-Method in general, however, as it only applies
to particular situations:

– Here the class (4) has two sibling classes (2, 3); the method (5) has one
parameter, and its bodies in the sibling classes use two and three visible
names, respectively. In general, there can be any number of sibling classes,
parameters, and names.

– The syntactic structure of the method bodies in this example is fixed, but a
general rule should be applicable to bodies of different forms. However, the
graph of a method body is not just an arbitrary graph, but must have the
shape of a method body.

Note that several transformation rules would be needed in order to express the
general Pull-Up-Method refactoring in the usual graph transformation systems:
some for checking that the method is implemented in all sibling classes, others
for removing all but one of its implementations, and finally a rule pulling up
the remaining implementation. The applications of these rules would have to be
controlled in a non-trivial way, and it might not be easy to see that they do what
they should, let alone to prove it. As an alternative, we propose to define this
refactoring by a single generic rule that is expanded w.r.t. the form of certain
subgraphs. Section 4 describes this generic graph transformation approach.

Example 3. As a running example – besides Pull-Up-Method in Example 2 –
let us consider a graph transformation as shown in Fig. 3: An S-node is con-
nected to several M-nodes that point to linear lists of Q-nodes being connected
by next-edges. Each Q-node is connected to each V-node by a var-edge. The
transformation removes one of the M-nodes and its list of Q-nodes, and “bends”
the m-edge to the remaining M-node. Fig. 3 shows the case where a list of two
Q-nodes is removed. The following sections introduce the concepts of shaped
graphs and generic rules which allow to specify this transformation for Q-node
lists of arbitrary length.

206 F. Drewes et al.

m

var

var

next

m

next

next

var

var
var

var

var

var

mm

next

S

V

M

Q

V

V

M

Q

Q

M

Q

S

V

Fig. 3. A sample transformation

3 Shapes

The shape of (a class of) graphs, i.e., their structural and contextual constraints
can be specified by graph grammars, like Chomsky grammars specify languages
of strings. For describing software models like the program graphs of Example 1,
we propose adaptive star grammars [9], which combine star replacement, a very
simple way of graph transformation, with an operation called cloning.

Star Replacement. A star replacement replaces a node with its incident edges
and adjacent nodes by a graph. Later on, the replaced nodes will be considered
to be nonterminals.

A star X is a graph that consists of a center node y, n � 0 border nodes, and
n edges making y adjacent to all border nodes.

A rule X/P is a star rule if X is a star and the interface graph I consists
of the border nodes of X ; star rules are denoted as X ::= P to emphasize that
they are used to generate languages, like context-free Chomsky rules.

According to the definition of graph transformation, a star X̃ ⊆ G is an
occurrence of a star rule X ::= P if X̃ ∼=g X and X̃ is the neighborhood of its
center node in G. Then star replacement via g yields the graph G[X /g P].

Cloning. Star replacement is closely related to hyperedge replacement [14,8].
For grammars based on star replacement, this implies certain limitations. For
instance, the maximal number of border nodes in the left-hand sides of a gram-
mar restricts the connectivity of the generated graphs, so that star replacement
cannot generate the class of all graphs, or the class of all complete graphs, over
any set S of labels (provided that Ṡ = ∅ = S̄).

To overcome these limitations, we introduce multiple nodes that are place-
holders for any number of nodes. The latter are called clones because each of
them has the same incident edges, and is adjacent to the same nodes as the
multiple node.1

1 Note that cloning is not “deep copying” of subgraphs; it just copies a single node
with its incident edges. Deep copying can be achieved by cloning placeholders of
subgraphs (see Section 4).

Shaped Generic Graph Transformation 207

We designate multiple nodes by a special set of multiple node labels S̈ ⊂ Ṡ.
The remaining node labels Ṡ \ S̈ are called singular. We further assume that
there is a bijection :̈ Ṡ \ S̈ → S̈ that maps every singular label s to its multiple
counterpart s̈. A node is called singular or multiple depending on its label. The
set of multiple nodes in a graph G is denoted by G̈. In figures, we draw multiple
nodes as circles or boxes with a “shadow”, e.g., the V-nodes in Fig. 4.

The cloning operation turns a multiple node into any number of singular
and multiple clones: we define G x

(m,k) to be obtained from G by replacing the
multiple node x with m + k clones whereof m are multiple, and k are singular.

Formally, for a graph G with a multiple node x ∈ G̈, and m, k ≥ 0, the graph
G x

(m,k) is constructed as follows. Let G′(x) be obtained from the neighborhood
G(x) by replacing the label s̈ of x by the singular label s. Then take the disjoint
union of the graph G \ {x} with m copies of G(x) and k copies of G′(x). Finally,
identify the m + k + 1 copies of each node in Ġ(x) \ {x} with each other.

As an example, consider Fig. 10 with its multiple V-node in the left-hand
side G. The left-hand side of the rule shown in Fig. 11 is G 3

(0,2) , i.e., the multiple
node 3 is turned into two singular nodes and no multiple node.

Obviously, G x
(m,k) is defined only up to isomorphism. Note that cloning is

closely related to node replacement. It cannot be specified by finitely many
graph transformation rules in the sense of Definition 2, because a multiple node
x may have a neighborhood G(x) of arbitrary size.

Although distinct multiple nodes may be adjacent to each other, cloning
is commutative: For a graph with distinct multiple nodes x, x′, and numbers
m, k, m′, k′ � 0,

(
G x

(m,k)

)
x′

(m′,k′)
∼=

(
G x′

(m′,k′)

)
x

(m,k) . We can thus define an
operation that clones all multiple nodes in a graph G. The number of de-
sired clones is indicated by a so-called multiplicity function µ : G̈ → N2. If
G̈ contains n multiple nodes x1, . . . , xk, the µ-clone of G is defined as Gµ =(
· · ·

(
G x1

µ(x1)

)
· · · xk

µ(xk)

)
.

Adaptive Star Replacement. Star replacement is made adaptive by cloning the
star rule and the graph to be transformed before performing the replacement.
Let G be a graph containing a star X̃ , and consider a star rule X ::= P . We
assume without loss of generality that the nodes of G and P are disjoint.

A multiplicity function µ : G̈∪ P̈ → N2 is an adapter of X/P and X̃ if Xµ ∼=g

X̃µ for some isomorphism g. Then, the adaptive replacement of X̃ by P using µ
is defined as G[X µ/g P] = Gµ[Xµ /g Pµ].

It is straightforward to show that adaptive star replacement is commutative
and associative. We note this result, but leave out the proof:

Lemma 1 (Commutativity and Associativity). If H = G[X µ/g P][X̃ µ̃/̃g P̃]
for some graph G, star rules X/P , X̃/P̃ , adapters µ, µ̃, and isomorphisms g, g̃,
then, for suitable adapters µ′, µ̃′ and isomorphisms g′, g̃′,

1. H = G[X̃ µ̃′
/̃g′ P̃][X µ′

/g′ P] if the center of the occurrence g̃(X̃ µ̃) is in G
(commutativity), and

208 F. Drewes et al.

2

head

var

next

var

1

2

var

head

::=
var

next

11

2V

MM

Q

V

L L

M

Q

V

Fig. 4. Adaptive star rules gener-
ating linear Q-node lists of arbi-
trary length

var

next

var

head
head

next

var

next

varvar

Q

M

L

M M

V

LQ Q

VV

Fig. 5. A derivation of a list of two Q nodes
using the adaptive star rules in Fig. 4

2. H = G[X µ̃′
/̃g′ P [X̃ µ′

/g′ P̃]] if the center of the occurrence g̃(X̃ µ̃) is in P
(associativity).

We can now define adaptive star grammars and the graph languages they
generate. We write G⇒P H if H ∼= G[X µ/g P] for some adapter µ, isomor-
phism g, and rule p = X ::= P from a set P of star rules, and G⇒∗

P H if
G ∼= G0 ⇒P · · ·⇒P Gn

∼= H for n � 0; thus ⇒∗
P is the transitive-reflexive clo-

sure of ⇒P .

Definition. An adaptive star grammar is a tuple Γ = 〈S, N, P , Z〉 consisting of
a finite set S ⊆ S of terminal labels, a finite N ⊆ Ṡ \ Ṡ of singular nonterminal
labels, a finite set P of star rules X ::= P , where X and P are graphs over S∪N ,
and an initial star Z over S ∪ N .

For Z as well as the left- and right-hand sides of rules in P , we require that
the neighborhoods of all nonterminal nodes are stars with terminal border nodes
(where a node is called terminal or nonterminal according to its label). Moreover,
the center nodes of Z and all left-hand sides are required to be nonterminal. Stars
of this kind are called N -stars.

The language generated by Γ is defined as

L(Γ) = {G ∈ GS\S̈ | Z
∗⇒
P

G}.

Note that, in an adaptive star grammar (and in the graphs they generate),
nonterminal nodes cannot be adjacent to each other.

As an example, consider the language introduced in Example 3. Fig. 4 shows
the adaptive star rules of the adaptive star grammar that generates this lan-
guage. L is the only nonterminal label (note that nonterminal nodes are drawn
as rectangles whereas terminal nodes are drawn with round corners). The com-
mon left-hand side of both rules is the initial star Z. Fig. 5 shows a derivation
of a graph consisting of a Q-node list of length two. Note that the derived graph
does not belong to the generated language, because it still contains a multiple
V-node that has to be turned into an arbitrary number of singular V-nodes.

Adaptive star grammars generate languages that cannot be generated by node
replacement [11], like the class of all graphs, or classes of graphs defined by
contextual constraints such as the program graphs from Example 1.

It should be mentioned that the variant of adaptive star grammars origi-
nally introduced in [9] is more general than the one considered here, because

Shaped Generic Graph Transformation 209

stars with parallel edges (being incident with the same border node) and rule
application using non-injective occurrences are considered. In [9], the resulting
type of adaptive star grammar is shown to generate all recursively enumerable
string languages (represented as chain graphs), whereas the one considered in
the present paper is shown to have a decidable membership problem.

Example 4 (Adaptive Star Rules for Method Bodies). The rules in Fig. 6 generate
simple method bodies for the program graphs discussed in Example 1 if the left-
hand side of the rule for the nonterminal ST* is the initial star. A method body
has a root labeled B pointing to E-nodes representing the assignments and calls
in the body; the right-hand sides of assignments, and the actual parameters of
calls may again be calls. All stars in these rules have a def-edge to a singular
node representing the subgraph generated by the star, and vis-edges to multiple
or singular nodes representing the methods (labeled M) and variables (labeled V)
that are visible in these subgraphs. A call to a method, or an access or update
of a variable within an expression is represented as an edge to one of these
nodes. The rules for ASS, CALL, and ACC introducing these edges apply only if
corresponding nodes are visible. Thus every entity used in the body is a clone
of the multiple border nodes of the initial star. This expresses the contextual
constraint that every used entity should have a declaration. In the complete
program graph grammar given in [27], these entities are generated as members
of the class hierarchy that are visible in the context of the method body. There,
method bodies may also contain control structures and local declarations.

In the rules for ST* and CALL, we introduce a useful shorthand for star rules,
somewhat similar to the use of the Kleene star in the right-hand side of a context-
free Chomsky rule. The shaded subgraphs on the right-hand sides of these rules
are called iterated subgraphs. As this name suggests, an iterated subgraph may
be copied any number of times, the copies sharing the nodes on its border. To
emphasize this, we draw the nodes to be copied similarly to multiple nodes and
annotate their “shades” with a common index (k and n, resp.). Iteration can

V

def

::=

a

visvis

1 1

def

vis

def

vis

1

def

vis

::=

1 1

def

vis

c

vis

def

::=

1

2 3

1

vis

::=

1

2 3

vis

def def

1

2

::=

def defdef

vis vis vis

1 1 1

def

vis

::=

u

vis

val

def

vis

1 1

vis

vis

eB B E E E E EE

EEEE

M

E

M

E VE V

V

M VM VM VM VM VM VM

VM VM VM VM VM

visvis vis vis vis

VM VM

ASS

ACC

CALL

EX

EX

CALL ACC

vis vis vis

ST*

vis

CALL

vis
3 32 32 32 32 32

2 3 2 32 3 2 3 2 3 2 3

4

VASS vis
4 4

4 4

ST

vis

E k

EX n

ST k

vis

E n
ap

Fig. 6. Adaptive star rules defining the structure of method bodies

210 F. Drewes et al.

ap

def

vis

::=

def def

vis vis

1 1 1
EEE

VM VM VM

 n n EX

vis vis vis

2 3 2 3 2 3

E

Fig. 7. Adaptive rules for Subgraph Iteration

obviously be implemented by adding a star rule that differs from the given one
in that its right-hand side contains an additional star, isomorphic to the left-
hand side and connected to the nodes on the border of the shaded part. The star
rules generating the iterated subgraph in the rule for CALL in Fig. 6 is shown in
Fig. 7.

4 Generic Transformation Rules

This section contains the main contribution of the paper. We extend the transfor-
mation rules of Section 2 so that they become generic: their graphs may contain
multiple nodes and nonterminal nodes. Multiple nodes are cloned, as in adaptive
star grammars, and nonterminal nodes are expanded to graphs before a generic
rule is applied.

Shaped Expansion. Shaped expansion allows for graphs (in transformation rules)
that contain N -stars as placeholders. These can be expanded to graphs generated
by an adaptive star grammar, where isomorphic stars are expanded to isomorphic
graphs. For this, and throughout the rest of this paper, let Γ = 〈S, N, P , Z〉 be
an adaptive star grammar. In the following, we will only consider graphs over
S ∪ N .

A set σ of star rules is a substitution if (i) the left-hand sides of rules in σ
are pairwise nonisomorphic N -stars, (ii) the right-hand sides of rules in σ are
terminal, and (iii) each rule X/P ∈ σ satisfies X ⇒∗

P P . A graph G is covered
by a substitution σ if, for every N -star G(x) in G, there is a star rule X/R ∈ σ
with G(x) ∼= X .

Intuitively, expanding a graph G means to apply the rules of a substitution
σ to all N -stars in G. To make this precise, consider a graph G whose (pairwise
distinct) N -stars are G(x1), . . . , G(xn), and let σ be a substitution that covers
G. A σ-expansion Gσ of G is a graph of the form

G[X1 /g1 P1] · · · [Xn /gn Pn] where Xi/Pi ∈ σ and G(xi) ∼=gi Xi, for 1 � i � n.

Since star replacement is commutative, the order of the replacement steps is
irrelevant. However, as the isomorphisms gi : Xi → X̃i need not be uniquely
determined, there may be several σ-expansions of G.

Shaped Generic Graph Transformation 211

head

m

1

2

m

1

2
mm

var

3
3

S

M

L

V

M

M

S

V

Fig. 8. The generic rule r used for
the transformation in Fig. 3

var

next

var

head
head

next

var

next

varvar

Q

M

L

M M

V

LQ Q

VV

Fig. 9. The derivation of Fig. 5, using the adap-
tive star rules in Fig. 4 for specifying a substi-
tution σ

next

var

1

2

3

m m

1

2
mm

next

3
var

M

M

V V

Q

S

Q

S

M

Fig. 10. σ-expansion Lσ/Rσ of r
in Fig. 8 using substitution σ in
Fig. 9

1

m m

3 4

2
mm

next
next

varvar
var var

3 4

1

2

Q

M

VV

S

M

V V

Q

S

M

Fig. 11. The ordinary transformation rule
(Lσ)µ /g(Rσ)µ obtained from Lσ/Rσ in Fig. 10
by multiplicity function µ : 3 �→ (0, 2)

Generic Transformation. Generic graph transformation is plain transformation
with transformation rules that have been expanded and cloned. More precisely,
let us call a transformation rule r = L/R generic if its interface nodes are
terminal. A multiplicity function µ : G̈ → N2 is singular if µ(x) = (0, k) with
k � 0 for every x ∈ G̈.

Now, let G, H be graphs, r = L/R a generic rule, and σ a substitution covering
L ∪ R. Consider a σ-expansion Lσ/Rσ of r, consisting of σ-expansions Lσ and
Rσ of L and R, resp. Then r transforms G into H , written G=⇒r,σ,µ H , if
H = G[(Lσ)µ /g(Rσ)µ] for some singular multiplicity function µ : L̈σ ∪ R̈σ → N2,
and an isomorphism g.

Fig. 8 shows the generic rule r = L/R that is used for the transformation
shown in Fig. 3, i.e., that removes an M-node together with its list of Q-nodes.
The contained L-star is the placeholder for an arbitrary list of Q-nodes pointing
to all V-nodes. This graph language is specified by the adaptive star rules in
Fig. 4. The transformation shown in Fig. 3 uses the ordinary transformation rule
shown in Fig. 11 that is generated by first substituting the L-node by substitution
σ specified in Fig. 9, yielding Lσ/Rσ (Fig. 10), and then choosing a multiplicity
function µ : 3 �→ (0, 2) for turning the multiple V-node into two singular V-nodes,
yielding (Lσ)µ /g(Rσ)µ (Fig. 11).

Example 5 (A Generic Rule for Refactoring). The general Pull-Up-Method rule
is specified in Figure 12. The rule applies to a class (3) with its superclass (1),
and a set of other subclasses (2); the method signature (5) has parameters (6),
and is implemented by bodies that may refer to variables (7) and methods (8).

212 F. Drewes et al.

kC

1

kB

m

B

i

fp

2 3

4

5 C

i

l l m

def

vis

6

7
vis vis

M

k ST*

C

kC

1

B

i

fp

2 3

4

5 C

i

l m

6

7

M

8 8vis

V

M

V V

M

V

C

Fig. 12. The generic rule for the Pull-Up-Method refactoring

The sibling classes (2) are represented by an iterated subgraph (designated
by the nodes with index k). The nonterminal ST* in the iterated subgraph is
a placeholder for the method bodies for the signature (5). These bodies are re-
moved by the transformation rule since they do not appear on its right-hand side.
The node (4) is the root of the method body that will be moved to its super-
class (1). No variable is needed for the body itself, because only its membership
(the m-edge) is changed.

The ST*-star is a placeholder for method bodies. Thus, the expansions of
these stars are shaped according to the method body grammar. Recall that the
iterated subgraph is a shorthand for a star which can be turned into any number
of copies of the given subgraph, using iteration rules added to Γ , as described in
Example 4. Here, a minor technical complication is caused by the fact that one
of the nodes (2) of the iterated subgraph is an interface node. The (intuitively
obvious) meaning of this is that all copies of this node are intended to belong to
the interface as well.

In a generic rule, all occurrences of a nonterminal n are expanded to isomorphic
subgraphs; having several occurrences ofnon the left-hand side thusallows to check
equality of subgraphs of the host graph, whereas having several occurrences of n
on the right-hand side allows one to make so-called deep copies of the expansions.

Goal-Oriented Matching. The definition of generic transformation is not oper-
ational: In order to transform a graph with a generic rule, we cannot generate
all its expansions, and choose one of them for application, because generic rules
usually have infinitely many expansions.

However, the instantiation of a rule (i.e. expansion and cloning) can be done
in a more goal-oriented fashion. In order to apply a generic rule r = L/R to a
graph G, one may proceed as follows:

– Find a kernel occurrence O of the constant subgraph L of L in G.
– Match the stars and multiple nodes in r one after another, by expanding and

cloning them, respectively, so that O is gradually extended to a complete
occurrence O of the instantiated left-hand side L.

Shaped Generic Graph Transformation 213

– Instantiate the right-hand side R according to the substitution and multi-
plicity function found in the matching process, and insert the instantiated
right-hand side for O. If, for every star X in R, there is an isomorphic star
X ′ in L, the instantiation is uniquely determined.

Moreover, the matching of a star can be done incrementally, applying one of the
star rules defining the shape of a star at a time.

Since adaptive star grammars are parseable, it is decidable whether an expan-
sion exists. Parsing may be complex in general. However, for grammars occurring
in practice, like those for method bodies, and for program graphs as a whole,
we expect parsing to be reasonably efficient. Experiments with an implementa-
tion of a star grammar parser suggest the parsing time for such grammars is
polynomial [22].

For the intended application area of software refactoring (and certainly many
other application areas as well), it must be pointed out that the matching process
sketched above should be coupled with user interaction to resolve the inherent
nondeterminism. Obviously, there may be many generic rules that can be applied,
at many different places in the host graph, and with many different expansions.
Thus, a reasonable implementation must present the different possibilities to the
user, and let her choose the one that reflects her refactoring intentions.

5 Related Work

Generic rules have been proposed quite early for string languages, e.g., Van Wijn-
gaarden grammars [28]. A precursor of the generic graph transformation rules
described in this paper has been investigated in [23], where the placeholders
are stars with a fixed number of adjacent nodes (called hyperedges). Substitu-
tions shaped according to hyperedge replacement grammars have been proposed
in [16]. Path expressions specifying implicit edges, as known in programmed
graph transformation [26], can be considered as a special case of substitutions
shaped according to the path expression. The set nodes in that work have been
the model for our multiple nodes. In fact, cloning concepts have become quite
popular. Apparently, sesqui-pushout rewriting [6] and Kahl’s approach [18] sup-
port cloning as well. In a recent paper, Lindqvist et al. have proposed the star
operator that is motivated by the Kleene star [20]. Patterns are generated from
generic patterns by deep copying and chaining of so-called star regions.The graph
transformation language GReAT used for model transformation also allows to
specify patterns containing multiple objects that can be single nodes or compound
patterns containing subgraphs [1]. Several graph transformation tools have been
further extended by “set” operators: Viatra2 allows to match graph patterns
recursively, which allows for dealing with set-valued patterns [29]. A grouping op-
erator has been introduced to GReAT [2]. This operator allows to simultaneously
operate on the set of all isomorphic matches of a single pattern. And Progres has
been extended by two such operators: A new language construct has been intro-
duced to specify and operate on successively connected repetitive subgraphs [19],
and the extension for set-valued transformations [13] is very similar to [17].

214 F. Drewes et al.

Finally, amalgamated graph transformations (e.g., [3]) are related to set nodes.
This approach does not introduce multiple objects, but it provides a formalism
to generate ordinary transformation rules from rule templates by applying these
templates in parallel. This allows to specify the cloning of set nodes presented
in this paper or in previous papers [9,17].

However, apart from our previous work [17], we are not aware of any kind
of graph transformation that combines cloning with expansion, i.e., with the
instantiation of placeholders by subgraphs that are shaped according to graph
grammars.

6 Conclusions

Being a formalism that allows a direct manipulation of the diagrammatic repre-
sentations of programs, graph transformation is a natural candidate to be used
as the formal foundation for tools supporting program transformations. Such
transformations are at the heart of the model-driven approach to software de-
velopment, and also of so-called refactoring techniques, where the structure of
existing software is improved through the application of certain precisely speci-
fied operations. Modeling such operations by graph transformation rules requires,
however, that these rules are sufficiently expressive, so that they can be consid-
ered to be at the same level of abstraction as the operations one wants to model.
If the rules lack expressive power, one is forced to govern their application by
more complicated control programs, and the result may be that much of the
inherent complexity of the operations to be modeled is reflected in this control
structure rather than in the graph rewriting.

In order to improve the expressive power of graph rewriting rules so that
the complexity of control programs is reduced, we have proposed generic graph
transformation rules wherein placeholders are expanded to graphs, and multiple
nodes are cloned as often as necessary. Expansions of placeholders are shaped,
i.e., the placeholders are nonterminal stars whose possible expansions are de-
fined by an adaptive star grammar. This allows for structural and contextual
constraints on graphs to be described. The concept makes it possible to specify
complex transformations, e.g., the Pull-Up-Method refactoring [12], by a single
generic rule in an intuitive manner. The parsing algorithm for adaptive star
grammars opens the door to a goal-oriented matching algorithm that will be an
essential part of a forthcoming implementation of generic rules.

The work on shaped generic graph transformation rules and their properties
is not finished. As a first step toward extending the results for DPO graph
transformation to generic rules, a parallel independence theorem has been shown
in [15], for generic rules wherein stars have a fixed rank, unshaped substitutions,
and are not cloned. This work shall be extended to the study of critical pairs,
for the generic rules defined here.

For practical use, we need graphs with attribute values, and rules that specify
attribute evaluation. For instance, signature nodes in program graphs could have
an attribute counting its parameters, and transformation rules would update this

Shaped Generic Graph Transformation 215

value when necessary. In [24], attribute values are (additional) labels, and rules
are labeled with expressions specifying computations on these values. This fits
well with the variable concept in generic rules. The values and expressions could
be taken from some host language, but they could also be defined by (nested)
graphs and transformations, as in [16].

Adaptive star grammars fail to describe some contextual constraints of pro-
gram graphs, like the correspondence of formal to actual parameters of a method.
However, these properties can be specified with pre- or post-conditions of the
star rules, sacrificing neither commutativity nor associativity. For practical ap-
plications, like the definition of software models, one should focus on grammars
generating connected, or tree-like graphs with “cross-links” (like the program
graphs). This will not only make parsing more efficient, but is also supposed to
be useful in order to establish a static type discipline as in [16]: If the rules, and
the contexts of their application are “shaped” like the substitutions, it can be
shown that transformations preserve the shape of the graphs being transformed.
In other words: such transformation rules can be guaranteed to preserve the
integrity of a model.

References

1. Agrawal, A., Karsai, G., Neema, S., Shi, F., Vizhanyo, A.: The design of a language
for model transformations. J. Software and System Modeling 5(3), 261–288 (2006)

2. Balasubramanian, D., Narayanan, A., Neema, S., Ness, B., Shi, F., Thibodeaux, R.,
Karsai, G.: Applying a grouping operator in model transformations. In: Schürr, A.,
Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088. Springer, Heidelberg
(2008)

3. Boehm, P., Fonio, H.-R., Habel, A.: Amalgamation of graph transformations: A
synchronization mechanism. J. Computer and System Sciences 34, 377–408 (1987)

4. Corradini, A., Ehrig, H., Montanari, U., Padberg, J.: The category of typed graph
grammars and its adjunction with categories of derivations. In: [7], pp. 56–74

5. Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.): 3rd
Int. Conf. on Graph Transformation (ICGT 2006). LNCS, vol. 4178. Springer,
Heidelberg (2006)

6. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
[5], pp. 30–45

7. Cuny, J.E., Ehrig, H., Engels, G., Rozenberg, G. (eds.): Graph Grammars 1994.
LNCS, vol. 1073. Springer, Heidelberg (1996)

8. Drewes, F., Habel, A., Kreowski, H.-J.: Hyperedge replacement graph grammars.
In: [25], pp. 95–162

9. Drewes, F., Hoffmann, B., Janssens, D., Minas, M., Van Eetvelde, N.: Adaptive
star grammars. In: [5], pp. 77–91

10. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. In: EATCS Monographs on Theoretical Computer Science.
Springer, Heidelberg (2006)

11. Engelfriet, J., Rozenberg, G.: Node replacement graph grammars. In: [25], ch. 1,
pp. 1–94

12. Fowler, M.: Refactoring—Improving the Design of Existing Code. Object Technol-
ogy Series. Addison-Wesley, Reading (1999)

216 F. Drewes et al.

13. Fuss, C., Tuttlies, V.E.: Simulating set-valued transformations with algorithmic
graph transformation languages. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AG-
TIVE 2007. LNCS, vol. 5088. Springer, Heidelberg (2008)

14. Habel, A.: Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643.
Springer, Heidelberg (1992)

15. Habel, A., Hoffmann, B.: Parallel independence in hierarchical graph transforma-
tion. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004.
LNCS, vol. 3256, pp. 178–193. Springer, Heidelberg (2004)

16. Hoffmann, B.: Shapely hierarchical graph transformation. In: Proc. IEEE Symposia
on Human-Centric Computing Languages and Environments, pp. 30–37 (2001)

17. Hoffmann, B., Janssens, D., Van Eetvelde, N.: Cloning and expanding graph trans-
formation rules for refactoring. Electronic Notes in Theoretical Computer Sci-
ence 152(4), 53–67 (2006); Proc. GraMoT 2005

18. Kahl, W.: A relation-algebraic approach to graph structure transformation, 2001.
Habil. Thesis, Fak.für Informatik, Univ. der Bundeswehr München, TR 2002-03

19. Körtgen, A.-T.: Modeling successively connected repetitive subgraphs. In: Schürr,
A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088. Springer, Hei-
delberg (2008)

20. Lindqvist, J., Lundkvist, T., Porres, I.: A query language with the star operator. In:
Proc. 6th Int. Workshop on Graph Transformation and Visual Modeling Techniques
(GT-VMT 2007). Electronic Comm. of the EASST, vol. 6 (2007)

21. Mens, T., Demeyer, S., Janssens, D.: Formalising behaviour-preserving transfor-
mation. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT
2002. LNCS, vol. 2505, pp. 286–301. Springer, Heidelberg (2002)

22. Minas, M.: Parsing of adaptive star grammars. In: Proc. GraMoT 2006. Electronic
Comm. of the EASST, vol. 4 (2006)

23. Plump, D., Habel, A.: Graph unification and matching. In: [7], pp. 75–89
24. Plump, D., Steinert, S.: Towards graph programs for graph algorithms. In: Ehrig,

H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS,
vol. 3256, pp. 128–143. Springer, Heidelberg (2004)

25. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation. Foundations, vol. I. World Scientific, Singapore (1997)

26. Schürr, A.: Introduction to the specification language PROGRES. In: Nagl, M.
(ed.) IPSEN 1996. LNCS, vol. 1170, pp. 248–279. Springer, Heidelberg (1996)

27. Van Eetvelde, N.: A Graph Transformation Approach to Refactoring. Doctoral
thesis, Universiteit Antwerpen (May 2007)

28. van Wijngaarden, A., Mailloux, B.J., Peck, J.E.L., Koster, C.H.A., Sintzoff, M.,
Lindsey, C.H., Meertens, L.G.L.T., Fisker, R.G.: Revised report on the algorithmic
language ALGOL 68. Acta Informatica 5, 1–236 (1975)

29. Varró, G., Horváth, A., Varró, D.: Recursive graph pattern matching with magic
sets and global search plans. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE
2007. LNCS, vol. 5088. Springer, Heidelberg (2008)

Code Graph Transformations for Verifiable
Generation of SIMD-Parallel Assembly Code�

Christopher Kumar Anand and Wolfram Kahl

Software Quality Research Laboratory
Department of Computing and Software, McMaster University

{anandc,kahl}@mcmaster.ca

Abstract. The Coconut code generator produces highly efficient assem-
bly code, targeting signal processing applications such as Magnetic Res-
onance Imaging. It takes advantage of SIMD-parallelism, and captures
as patterns assembly language “tricks” that produce very efficient, but
highly convoluted code — the motivation is to beat the expert assem-
bly tuner, while producing reliable output and maintainable input. On
a growing set of benchmarks, it produces code with peak or near-peak
efficiency.

To facilitate formal verification of the resulting code, the intermediate
languages used in compilation are all variations on term hypergraphs
(jungles) that we call “code graphs”. To verify the results of compilation,
schedulable code graphs containing hyperedges labelled by instructions
operating on vectors of components are transformed by replacing SIMD
instructions with non-vector instructions, applying simplification rules,
and comparing the result to specifications.

1 Introduction

Many medical imaging applications, e.g, Magnetic Resonance Imaging (MRI),
rely on highly efficient signal processing software, and with the invention of
new algorithms and new clinical applications, some applications are growing
faster than the growth of conventional microprocessors. Successful treatment
often depends on timely diagnoses, which puts performance requirements on im-
age reconstruction and processing. The state of the art in the development of
such software is that a scientist co-develops a mathematical model and signal
processing algorithm; this algorithm is translated into a prototype program (of-
ten in a “matrix manipulation” environment), with reasonable confidence in its
correctness, but not its completeness. This is then checked for completeness and
augmented by informal specifications by a software engineer. In performance-
critical cases, the prototype and specification are then turned over to a “digital
signal processing guru” who applies — manually! — different kinds of code trans-
formations and optimisations, including (1) translation between languages, (2)
parallelisation, (3) implementation of non-garbage collected memory manage-
ment, and (4) hand-tuned assembly language, with the extent of optimisation
indicated by a performance analysis or benchmarking.
� The authors thank CFI, OIT, NSERC and IBM Canada for financial support.

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 217–232, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

218 C. Kumar Anand and W. Kahl

Such a process is prone to error, given that it is often necessary for perfor-
mance experts to modify small parts of larger software systems whose complete
specification is outside their area of expertise. Given the safety issues, consider-
able care is taken in testing, but defects can still go undetected. It is easy for
low-level optimisations to interact with high-level specifications in complicated
ways, resulting in mis-sequenced images, images with incorrect orientation, or
scale, or locally distorted to be unusable. Some of these errors will prevent a
diagnosis from being made in a timely manner. Others, if used for surgical plan-
ning, could be fatal. It is the experience of the first author that defects arising
from such incorrect “optimisations” can persist in commercial software through
several lifecycles including extensive black-box testing by professional testers.

The Coconut project aims to produce a system that provides a coherent
and consistent path from a mathematical specification of signal processing prob-
lems to verified and highly optimised machine code. Our targets are vectorised
and pipelined CPUs that are commonly used in signal processing applications;
currently we are targeting, in particular, the Cell Broadband Engine.

To encapsulate low-level assembly language patterns, we produced a domain-
specific language (DSL) embedded into the purely functional programming lan-
guage Haskell. This provides a convenient language for domain experts to specify
both efficient code fragments and generators, and increases reliability by making
specifications smaller, but it does not make complicated instruction sequences
any easier to understand [1]. Therefore transformation from SIMD to scalar code
graphs first of all helps the designer understand code which does not work, and
also provides support for formal verification against scalar specifications, which
is vital for high-reliability applications.

To this end, we have developed a transformation framework which makes it
easy to specify simple transformations, and possible to express more compli-
cated transformations. Correctness of individual rules is often easy to establish
(although depending on the correctness of the hardware); some can even be
verified by exhaustive testing.

Decades of work on compilers have resulted in large sets of code transformations
incorporated into different optimisation phases. Users can turn them on or off, but
usually cannot contribute new transformations. The interaction of these transfor-
mations can make it difficult to diagnose compiler defects, and some transforma-
tions change the semantics in unacceptable ways. This is a particular problem for
floating-point computations in which even moving a variable from memory to a
register (to eliminate loads and stores) can change the accuracy of the result.

In some application domains with high performance requirements, such
generic code optimisation is not sufficient, and developers will either transform
compiler-produced assembly code by hand, or will write assembly coded func-
tions from specifications. As hardware has evolved to include features not re-
flected in the semantics of C (notably SIMD parallelisation in a register), ways
of including small sections of assembly code in C source files have evolved, but
there is, as yet, no safe way of modifying control flow in this way. Loops in im-
perative languages and higher-order functions like map in functional languages

Code Graph Transformations for Verifiable Generation 219

must be translated into assembly language, and the resulting code can usually
be made much more efficient if the context of the control flow, or the special
hardware features of the processor, are taken into account when making the
transformation.

In addition to control flow, array structures in source languages do not exist
in machine languages. In Sect. 4, we show that even in the very simple case
of a loop mapping a function over an array, modern hardware features enable
complicated performance-enhancing code graph transformations.

2 Overview of SIMD and the SPU ISA

Single Instruction Multiple Data (SIMD) instructions operate on more than one
data element in parallel. Current implementations, which were developed to sup-
port multi-media applications, are much more flexible than the first generation
designed for fast linear algebra. Efficient code is often difficult to develop, and
also hard to follow.

The instruction set architecture (ISA) of the “synergistic processing units”
(SPUs) of the Cell Broadband Engine [9] uses 128-bit operands. It contains a
rich set of operations formed by dividing the 128-bit operands into 8-, 16-, 32- or
64-bit quantities and performing the usual scalar operations independently on
each. See Fig. 1 for an example 32-bit add instruction operating on four elements.

Fig. 1. fma, a 32-bit add operating on two 128-bit wide operands

This results in a useful level of parallelism, but introduces alignment issues in
data. To be able to handle arbitrarily-structured data (necessary if you want
to be able to insert SIMD-optimised functions into existing applications) all
SIMD instructions have some instructions to rearrange data. Two approaches
are possible, a large set of instructions with specific functions (e.g. unpacking
pixel data into vectors by component), or a small set of software-controllable
instructions. All ISAs follow a middle path, with VMX/SPU ISA being the more
generic. The instructions of most use in synthesising loop overhead are the byte
permute instruction shufb (analogous to VMX’s vperm), shown in Fig. 2, and
quadword rotate instructions, including rotqby shown in Fig. 3. As shown in
the figures, SPU byte permutation can be used to move 32-bit components from
one slot to another one (useful for transposing single-precision floating point
matrices, for example), or duplicate bytes.

220 C. Kumar Anand and W. Kahl

0
0

0
1

0
2

0
3

1
5

1
6

1
7

1
8

1
9

1
4

0
3

0
4

0
5

0
6

0
7

Fig. 2. shufb byte permutation taking
two 128-bit source operands (coloured)
and a control operand of 16 byte indices

Fig. 3. rotqby, a 16-byte register byte
rotate, using a run-time value from a
second operand

It can rotate bytes through cycles, which can be used to count through loop
induction variables when the loop sizes are known at compile time. Unlike the
vperm instruction of VMX, shufb can also insert three special byte values (zero,
minus one, and high-bit set) if it encounters special byte values in the index
quadword, see byte b in the figure. Byte and bit rotate instructions (like rotqby
in Fig. 3) take both immediate counts and counts from operand registers.

To make the paper self-contained, we include in Table 1 a description of the
most important machine instructions we use in the paper.

Table 1. Summary of SPU instructions used in this paper

Instruction Description
selb bits in third argument select corresponding bits in first or second argu-

ment
shufb bytes in third argument index bytes to collect from first two arguments
fma, fm, fa 32-bit floating point fused multiply-add, multiply and add
a, ai 32-bit integer add and add with immediate
rotqbii rotate whole quadword up to 7 bits left, number given by immediate
rotqbyi rotate whole quadword left in byte increments, number given by imme-

diate
shli shift each 32-bit word left by an immediate constant number of bits

3 Code Graphs

Term graphs are usually represented by graphs where nodes are labelled with
function symbols and edges connect function calls with their arguments [15].
We use the dual approach of code graphs which are directed hypergraphs where
nodes are only labelled with type information, function names are hyperedge
labels, and each hyperedge has a sequence of input tentacles and a sequence of
output tentacles (each incident with a node):

Code Graph Transformations for Verifiable Generation 221

Definition 3.1. A hypergraph H = (N , E , src, trg, nLab, eLab) over a node label
set NLab and an edge label set ELab consists of
– a set N of nodes and a set E of hyperedges (or edges),
– two functions src, trg : E → N ∗ assigning each hyperedge the sequence of its

source nodes and target nodes respectively, and
– two functions nLab : N → NLab and eLab : E → ELab assigning labels to

nodes and hyperedges.

We use the naturally arising definition of hypergraph homomorphisms, i.e., pairs
consisting of a total node mapping and a total edge mapping, preserving src, trg,
nLab, and eLab, and thus obtain a category of hypergraphs.

Definition 3.2. A primitive hypergraph has only one edge, and all nodes are
connected to that edge.

A hypergraph alphabet is a hypergraph where the labelling functions nLab
and eLab are the identities on the respective label sets.

A typed hypergraph is a hypergraph together with a homomorphism into a
hypergraph alphabet.

We will restrict our attention to typed hypergraphs with an implicitly given
alphabet; this guarantees that hyperedges with the same label have the same
numbers of input and output nodes, and the same type sequences on their input
and output nodes.

The category of hypergraphs is essentially the common substrate on top of
which all the other necessary concepts can be defined, but we rarely deal directly
with hypergraphs. Instead, we deal with hypergraphs that represent programs
in a certain sense, with an input/output interface:

Definition 3.3. A code graph G = (H , In, Out) over a node label set NLab and
an edge label set ELab consists of
– a hypergraph H = (N , E , src, trg, nLab, eLab) over NLab and ELab, and
– two node sequences In, Out : N ∗ containing the input nodes and output nodes

of the code graph.

Code graph homomorphisms are hypergraph homomorphisms that also preserve
input and output sequences — since this makes the code graph category CG of
limited use for code graph transformation, we will normally use the hypergraph
category HG.

In Coconut, node labels are types. We occasionally draw nodes with type
information omitted; output tentacles are arrows from hyper-edges to nodes,
and input tentacles are arrows from nodes to hyperedges — the ordering relation
between in- resp. output tentacles incident with the same hyperedge is not always
made explicit in drawings, but is part of the graph structure.

Since some operations produce more than one result, our hyperedges can
have multiple output tentacles. For example, in the PowerPC ISA, most arith-
metic instructions can produce both a value and a condition code placed into
a named condition register; on all architectures, load, store and synchronisa-
tion instructions produce and/or consume state, which we represent by separate

222 C. Kumar Anand and W. Kahl

nodes; on most architectures, floating-point exceptions are generated without
having named outputs in the machine language instructions. We treat all these
side-effects uniformly using explicit nodes.

4 Code Graph Generators

The declarative patterns we have abstracted as generators (up to now), fall into
three classes: synthetic control flow, support for actual control flow (e.g. loop
overhead), and support for linear algebra.

In this section we present, as a “simple” example, the loop overhead for map-
ping a function over an array. The complexity of this example also serves to mo-
tivate the particular need for verification based on code graph transformations
for code which exercises the more powerful SIMD features available in current
processors. To specify correct iterator code, it is necessary to understand loop
software pipelining and keep track of several details. To hide these intricacies at
the application site, the loop overhead is turned into a code generator wrapping
an arbitrary data-flow function. This also simplifies the verification process, since
the generator can be verified using a dummy body, and any errors will be easy
to detect.

Since execution of branch instructions is expensive, and getting more expen-
sive as processor clock rates increase, and pipeline depth lengthens, avoiding
branches is a key step in performance tuning on all recent microprocessors. Syn-
thetic control flow is the use of architecture-specific support for predicates and
value selection, or the generic transformation of nested if-then-else patterns into
integer and logical machine instructions.

For example, z := max (x, y) can be implemented as z = selb x y (fcgt y x),
in which fcgt compares the four float values in x pairwise to the four float val-
ues in y and produces a vector of four logical values, each either 0 x00000000 or
0 xFFFFFFFF according to the result of the individual comparison. This is used as
the third argument of selb to have each bit from the comparison result select the
corresponding bit of either x or y. Therefore, these two instructions implement the
calculation of four independent max results without a single branch instruction.
Although synthetic control flow can dramatically improve performance, it can ob-
fuscate underlying semantics by “reusing” the same code paths for multiple types
of data. Code transformation normalizes these implementation differences so that
they can be verified against generic code graph representations.

Control flow, per se, is outside of the scope of this paper, but in our approach,
already the declarative code graphs contain significant complexity.

A recurring pattern in signal processing is the map of a function over a list
of values stored in an array, with the output written to the same array or a
different array. An optimized library of procedures which map standard math
functions (addition, complex multiplication, sine, etc.) over arrays is called a
vector library, and the importance of this mapping pattern is underlined by the
fact that hardware manufacturers still provide such libraries written in assem-
bly language. Because this pattern is so common, small performance increases

Code Graph Transformations for Verifiable Generation 223

justify complicated code transformations, especially in the loop overhead (the
assembly instructions implementing the counting and pointer moving common
to all instances of the pattern).

This is our smallest non-trivial example. It contains a small code fragment
which is difficult to verify by inspection. We will go through all of the loop over-
head, in which a single arithmetic instruction is sufficient to move two pointers,
update a counter and calculate the branch address for the loop. This imple-
mentation is difficult to understand, because it uses a range of instructions in
uncommon ways. It underlines both the need for automatic verification and the
need for a pattern interface, so that such complicated patterns need only be
understood by the original developer.

We will show it for the case of mapping a function, body :: REG → REG, with
one input and one output. There is one unused word in our control quadword,
so this approach works just as well for three-pointer maps (one input and two
outputs, or two inputs and one output)1.

To understand this example, consider a C version

for (i = 0; i < N; i ++) { out[i] = body(in[i]); }

which applies a function body, e.g., cosine, to the elements of an array. Note that
even at the C level, array indexing is only syntactic sugar for pointer calculations,
so the above turns into:

for (i = 0; i < N; i ++) { *(out + i) = body(*(in + i)); }

A compiler must translate this into assembly code. Assuming a RISC-like proces-
sor, like the Cell BE, this involves loads to registers and saves from registers,
assigning the index variable i to a register, including a register addition or in-
crement instruction, a compare and a branch when the condition i < N is no
longer true. A typical implementation requires three registers assigned to the
input and output pointers and the index variable, assuming that the compiler
recognizes the continuous array access pattern and replaces the array index cal-
culations with fixed pointer increments. Another common optimization applied
by compilers is to unroll the loop, for example, unrolling by a factor of two:

for (i = 0; i < N; i += 2)
{ *(out + i) = body(*(in + i));

*(out + i + 1) = body(*(in + i + 1)); }

In addition, the compiler must insert instructions to appropriately initialize the
registers used in the loop body, and, for unrolled or more complex loops, in-
structions to handle exceptional cases and store state. These instructions form
the loop prologue and epilogue — in the above example, the following epilogue
would be sufficient to deal with the possibility of N being odd:

if (i < N) { *(out + i) = body(*(in + i)); }

1 Less obvious is that the same idea works for up to seven-pointer cases, if the pointer
arithmetic is performed using 16-bit integers. If the ranges permit, the 16-bit integers
can be used as-is, but in general it is necessary to put addresses modulo 16 in the
control quadword, and shift the result by four bits before extracting pointers.

224 C. Kumar Anand and W. Kahl

Looking at the last C loop again, it is obvious that some additions can be
shared, but in every iteration, at least three additions still have to be done: one
for the iteration count N, and one each for the input and output pointers in and
out. Using further transformations, this can be reduced to two additions, but it
is in general not obvious how to reduce this further.

On the SPU, additions are executed in the arithmetic pipeline, which is the
bottleneck for most mathematical functions. The loop overhead we present in
the following moves the three additions into a single SIMD instruction a, and
uses instructions executing in the non-arithmetic pipeline to move the individual
vector components around so they can be used as addresses for load and store in-
structions, and trigger loop termination. An additional complication arises when
N is not divisible by the unroll factor; we deal with this by having the second
iteration repeat some of the work of the first iteration, without introducing any
(expensive) branches for this (further explanation below).

In Fig. 4, we (schematically) show the four instructions of loop overhead
for such loops (this is not a code graph); we explain this now in detail. The
control quadword (1) contains the input and output pointer and the counter
(and one unused 32-bit word), saving two registers over a non-SIMD version.
A single SIMD add instruction (2) updates the two pointers and the counter
by the increments in the register constant (3), again saving additional register
constants. Single-word add is an arithmetic instruction and slants to the right.
All other instructions are non-arithmetic and slant to the left.

vector n

16 unroll -4 unroll 16 rem unusedpIn count pOut unused a (int add)

rotqbyi 8

store(s)

load(s)

rotqbii 2

rotqby

pIn countpOut unused

2 bits

unusedloop: exit:
hint /

branch

(1) (2) (3)(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

shufb

(4)

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
0

0
1

0
2

0
3

0 0 0 0

body

vector 2
vector 1

vector n

vector 2
vector 1

Fig. 4. Overhead for a map loop

If the loop count is 0 modulo unroll (which is always the case if no unrolling
is done), the increments (3) are constant, and the shufb (4) can be ignored.
Otherwise, the first increment of the output pointer is by the remainder, rem =
count mod unroll, after which the shufb (4) copies the increment used for the
input pointer to the output pointer. To handle the case that count < unroll
requires changes to the prologue and epilogue.

All non-immediate load/store instructions take the first word in a register
quadword as their address, so the loads (5) use the control word as an argument.
The stores (6) need their argument (7) rotated (8) by two words, i.e., 8 bytes.

Code Graph Transformations for Verifiable Generation 225

The branch address (9) used by the branch and the hint instructions is cal-
culated via a byte rotation count (10) which is calculated by shifting (11) the
two high-order bits from the count word into the low-order bits of the first word.
Since loads and stores are 16-byte aligned, the four low-order bits of pOut will
always be zero, so the only significant bits of the rotation count (10) are the two
bits shifted in from the count word. If the count is initialized to the number of
elements to be mapped, then the first count times through the loop, those two
bits are zero, but on iteration (count + 1), the count becomes negative and the
high bits are set. So the rotation count is either zero (initially) or three (on the
ultimate iteration). The count is used to rotate (12) a quadword (13) composed
of the addresses of the top of the loop and the loop exit. If the function ends
with the loop doing the mapping, and no non-volatile registers are used in the
body, then the exit address for the loop can be the address in the link register.
In this case the function return is hinted and the total number of branches is
equal to the number of values mapped divided by the unroll factor.

Developers of high-performance numerical software are conservative, and re-
quire strong reasons to change design methods and tools. Before making ar-
guments about productivity, safety and maintainability, performance questions
have to be answered, which we do by comparing measured performance with the
lower bound given by dividing the number of instructions of each type by the
number of instructions of that type which can be executed, and (to verify that
the graph model faithfully reflects the machine architecture) with the estimated
number of cycles per iteration calculated by the scheduler, see Fig. 5.

Fig. 5. Timing for the same code scheduled with Coconut near optimal

The code graphs tested calculate the elementary functions listed in the figure
mapped over arrays of 32-bit floating point numbers, and are benchmarked using
standard methodology [4]. Coconut functions are in-lined by the higher-order
DSL function mapTicker presented above, and scheduled using Explicitly Staged
Software Pipelining [17].

226 C. Kumar Anand and W. Kahl

A compiler using a conventional loop overhead and scheduling it equally ef-
ficiently would still require an extra cycle per loop. On all the loops in this
benchmark, this one cycle still means a speed-up of between 1% and 2.5%.

5 Code Graph Transformation

The code graphs produced by our generators for Cell SPU code contain SIMD
instructions as their hyperedge labels, connecting nodes labelled with either the
type “REG” for SPU registers, or a state type (displayed as “<>”).

For verification, we need to extract the action of the generated code on indi-
vidual vector components; we represent this as code graphs with nodes labelled
with component types, like FLOAT, INT32, UINT8, etc., and with edge labels
representing primitive operations on these types. (For convenience, we largely
use the same labels as for the vector instructions; for example, we will use “fm”
as the display form of the edge labels both for multiplication of REGs considered
as four-element vectors of FLOAT values, and “fm” for multiplication of FLOAT
values.) For moving between the two worlds, we use mixed type code graphs that
can be labelled with both kinds of types and instructions, and include also ad-
ditional “adaptation” edge labels representing, for example, the composition of
a REG from four FLOATs, and the corresponding decomposition. Semantically,
these adaptations represent natural isomorphisms between different interpreta-
tions of bit-vectors of the same length.

The first step of mapping an assembly graph to a more direct symbolic repre-
sentation of its semantics involves, after converting the graph into mixed type,
expanding each hyperedge representing a SIMD-parallel instruction into a graph
consisting of decomposition edges for each of the arguments, composition edges
for each of the results, and, in-between, component-level operations (drawn
in non-bold) connecting the corresponding argument components with result
components. For the ternary floating-point multiply-and-add SIMD instruction
“fma” of Fig. 1, this produces the following code graph transformation rule,
which produces four non-SIMD multiplication edges “fma” on the type FLOAT:

REG

fma
0

REG
1

REG
2

REG

1

12 3

→
REG

128
32

REG

128
32

REG

128
32

REG

1

FLOAT

fma

0
FLOAT

fma
0

FLOAT

fma
0

FLOAT

fma

0
FLOAT

1

FLOAT
1

FLOAT

1

FLOAT

1

FLOAT

2

FLOAT

2

FLOAT

2

FLOAT

2

FLOAT

32
128

0

FLOAT
1

FLOAT

2

FLOAT

3

1 2 3

01
2

3
0

12

3

01
2

3

The so-called “quadword rotations” are not typical SIMD instructions since
they move data across all vector component boundaries; since they involve only
vector-internal data movement, they can be represented in terms of decomposi-
tion and composition alone, with appropriate permutation of the intermediate

Code Graph Transformations for Verifiable Generation 227

REG

frsqest

fi
0

fm
0

fm
0

REG

1

REG

1

fnms
1

fm
0

fma
2

REG
0

REG
2

REG
0

REG

1

REG

1

REG

1

REG

1

1

f32
1.0
1.0
1.0
1.0

f32
0.5
0.5
0.5
0.5

REG

128
32

REG

1

FLOAT

frsqest

fi

0

fm
0

fm
0

FLOAT

frsqest

fi
0

fm
0

fm
0

FLOAT

frsqest

fi
0

fm

0

fm

0

FLOAT

frsqest

fi

0

fm
0

fm

0

FLOAT
1

FLOAT
1

FLOAT
1

FLOAT
1

FLOAT
1

fnms

1

fm
0

fa

1

FLOAT
1

fnms

1

fm
0

fa

1

FLOAT

1

fnms

1

fm
0

fa 1

FLOAT
1

fnms
1

fm
0

fa
1

FLOAT
0

FLOAT
0

FLOAT

0

FLOAT
0

FLOAT

fm

0
FLOAT

fm

0
FLOAT

fm
0

FLOAT

fm
0

FLOAT

1

FLOAT

1

FLOAT

1
FLOAT

1

FLOAT
1

FLOAT
1

FLOAT

1

FLOAT

1

FLOAT

32
128

0

FLOAT

1

FLOAT

2

FLOAT

3

FLOAT

2
2 2

2

FLOAT

1
1 1 1

FLOAT
0

FLOAT
0

FLOAT
0

FLOAT
0

1

0
1

2
3

f32 1.0

f32 0.5

Fig. 6. Square root calculation: SIMD instructions (left), component expansion (right)

tentacles. In cases where, for example, the arguments of one floating point oper-
ation have been produced by another, the adjacent composition and decompo-
sition edges can be eliminated.

Formally, these transformations are morphism equations in the monoidal code
graph category CGM; their application as graph transformation is easily under-
stood as applying double-pushout rules in the hypergraph category HG, where
the rule is a span in HG underlying a span in the code graph category CG,
typically with a discrete gluing graph with disjoint input and output nodes.

For the implementation, the replacement mechanism is not a problem, but,
among other reasons since rule schemas involving vector constants have on the
order of 2128 instances, sometimes with significantly different right-hand sides,
matching and rule identification are best performed by a programmed solution
instead of a generic matching mechanism. Code graphs also have a natural con-
cept of “garbage”, which is slightly complicated by the fact that hyperedges can
have multiple result nodes; we are able to perform full transforming graph tra-
versals with limited rule sets between garbage collections without the danger of
performing unnecessary work. We also implement maximal unification; this is par-
ticularly useful for some rules involving partial interaction between composition
and decomposition edges, since it allows us to formulate these situations as rules
with a single sink edge (i.e., without successor edges), and automatically share

228 C. Kumar Anand and W. Kahl

the common parts of the right-hand sides. Maximal unification also automati-
cally shares constants, as in Fig. 6 which shows the SPU function for calculating
square roots (involving a square root estimation instruction frsqest).

6 Verification of Loop Overhead

The map ticker pattern presented in Sect. 4 takes care of address computations
for load, store, and branch instructions, and packages the result plus the func-
tion body and load/store into a schedulable nested code graph representation.
Constants and offsets are generated based on the amount of unrolling and stag-
ing, and all of these constants and operations on them mix pointers for loads
and stores and the branch counter. It is very difficult to follow the SIMD code
because the components of a single register are used for different purposes, and
are not even associated with the same logical iteration. In Fig. 7, five iterations
of the loop body of the map of a function “BODY” are shown, with the prologue
cut off at the top.

Along the left you see the control state, which takes a list of branch addresses
from the prologue above, and indexes into the list from the main development
to the right. Then each of the loop bodies processes the result of a load, lqd 0
and its output is processed by a store stqd 0. The 0 is an immediate index,

0:REG

a
0

rotqbyi 8rotqbii 2 lqd 0
1

1:REG

a
0

rotqbyi 8rotqbii 2 lqd 0
1

2:REG

1 shufb

0 1
3:<>

hbr jump 0
0

stqd 0

0

4:REG
1

rotqbyi 0

5:<>
0

6:<>

stqd 0

0

rotqby
0

rotqby
0

rotqby
0

rotqby

0

rotqby

0

8:REG

2

shufb
2

shufb
2

shufb

2

shufb

2

26:REG

bi jump

1
28:REG

1

29:<>30:<>

hbr jump

0

31:<>

3

32:<>

33:REG

1

34:REG

bi jump
1

35:REG

stqd 0

1

36:REG

BODY

39:<>

0

40:<>

lqd 0

0

41:REG

hbr jump
1

rotqbyi 0

42:<>
0

43:REG

a

1 01
44:REG

0

rotqbyi 8

rotqbii 2
1

45:<>

6

46:<>

5

47:REG

4

48:<>
0

49:REG

2

50:REG

2

51:REG

1

53:<>

54:REG

1

55:REG

bi jump

1

56:REG

stqd 0

1

57:REG

BODY

60:<>

0

61:<>

lqd 0

0

62:REG

hbr jump
1

rotqbyi 0

63:<>
0

64:REG

a

1 01
65:REG

0

rotqbyi 8rotqbii 2
1

69:<>

0

70:REG

2

74:<>

75:REG

1

76:REG

bi jump
1

77:REG

stqd 0

1

78:REG

BODY

81:<>
0

82:<>

lqd 0

0

83:REG

hbr jump
1

rotqbyi 0

84:<>
0

85:REG

a 1

01
86:REG

0

rotqbyi 8

rotqbii 2
1

90:<>
0

91:REG

2

95:<>

96:REG

1

97:REG

bi jump
1

98:REG

1

99:REG

BODY

111:<>
0

112:REG

2

113:REG

1

114:REG

BODY

123:REG

1
rotqbyi 0

124:<>

0

125:REG

2

126:REG
1 0 1

0C 0D
0E 0F

0
1

0
1

01

1 0

0
1

10

0
1

1 0

1
0

1 0

Fig. 7. Map ticker loop developed over five iterations

Code Graph Transformations for Verifiable Generation 229

REG

rotqbii 2

REG

rotqbii 2lqd 0
1

<>

hbr jump
00

stqd 0
0

REG
1

bi jump
1

<>

lqd 0 0

<>

stqd 0
0

REG

rotqby
0

rotqby
0

rotqby
0

rotqby
0

rotqby
0

128
32

128
32

REG

128
32

REG
128
32

128
32

REG

1

<> <>

hbr jump
0

<>

3

<>

REG

1

REG

hbr jump
1

bi jump
1

REG

stqd 0

1

REG

BODY

<>

0

<>

lqd 0
0

<>

0

REG

rotqbii 2

<>

6

<>

5

REG

4

<>
0

REG

1

<>

REG

1

REG

hbr jump
1

bi jump
1

REG

stqd 0

1

REG

BODY

<>

0

<>

lqd 0
0

<>
0

REG

rotqbii 2

<>
0

<>

REG

1

REG

hbr jump
1

bi jump
1

REG

stqd 0

1

REG

BODY

<>

0

<>

lqd 0 0

<>

0

REG

rotqbii 2

<>

0

<>

REG

1

REG

1

bi jump
1

REG

1

REG

BODY

<>

0

REG

1

REG

BODY

<>

0

REG

2

UINT32

a

0

UINT32

a
0

andi 0

UINT32

a
0

UINT32

a
0

32
8

UINT32

a

0

32
8

UINT32

a 0

32
8

UINT32UINT32 UINT32

UINT32

shli 4

UINT32

1

INT32

cgti 1

INT32

cgti 1

INT32

cgti 1

INT32

cgti 1

INT32

32
32

INT32

32
32

INT32

32
32

INT32

32
32

UINT32

selb

0

UINT32

selb

0

UINT32

selb
0

UINT32

selb
0

1

UINT32

2

UINT32

2

UINT32

2

UINT32

2

UINT32

32
128

0

UINT32

1

UINT32
2

UINT32

3

UINT32

a

0

UINT32

32
128

0
a 0

1

UINT32

1

a

0

UINT32

2

a 0

2

UINT32

3

a
0

UINT32

32
128

0
a

0 1

UINT32

1

a

0

UINT32

2

a
0

2

UINT32

3

a 0

UINT32

32
128

0

a 0

1

UINT32

1

a

0

UINT32

2

a
0

2

UINT32

3

a
0

UINT32

32
128

0
a

0 1

UINT32

1
a

0

UINT32

2

a
0

2

UINT32
3

a
0

UINT32

32
128

0

UINT32

1

UINT32
2

UINT32

3

UINT8

8
128

8
8

128

0

UINT8

9 1

UINT8

10 2

UINT8

11 3

UINT8

12
4

UINT8

13
5

UINT8

14

6

UINT8

15

7

UINT8

0 8

UINT8
1 9

UINT8

2 10

UINT8

3 11

UINT8

4
12

UINT8
5 13

UINT8

6

14
UINT8

7
15

UINT32

1

1

1

UINT32

1

11

UINT8 UINUINT32 UINT32

UINT32 UINT32 UINT32UINT32

1
1

1 1 1

1 1 1

11 1

1 1 1

UINT32

1

1

1

1

1

1

5

6

0

1

0 1

10

1 0

10

1 0

0 1

2
3 0

1
2

3

0
1

2

3

u32 0 u32 loop

0
1

23
0

1
2

3 0
1
2

3

0
31

2

01 23

0 1

0
1

0 1

1 0

u32 16 u32 -1

Fig. 8. Map ticker loop developed over five iterations, SIMD expanded

and takes nonzero values in unrolled cases of the loop body. The base addresses
for the loads and stores come from the string of as (four-way, 32-bit integer
add) near the right of the code graph. This single register value is consumed
by the loads and indirectly by the stores and the branch logic. The increments
are not constant but updated by the shufb instructions along the right of the
code graph. For determining whether the graph is consistent with the normal
understanding of the loop, it is necessary to track individual vector components
within register values.

The expanded graph, Fig. 8, makes the role of these component 32-bit inte-
gers clear by expanding SIMD operations into their constituents and recognising
applications of shufb and rotqbyi which can be reduced to graph operations
statically — this turns an essentially opaque instruction (shufb) into transpar-
ent structure in the code graph. The chain of “add” instructions at the heart
of the loop is now shown as four separate chains of component “add”s, which
makes clear which component is used for the load and which for the store. The
component used for the branch calculation is not resolved, because it does not

230 C. Kumar Anand and W. Kahl

have a SIMD interpretation, and so is not recognised by rules in the existing
schema. When a rule is added to handle this case, the 32 → 128 node conversion
would be garbage collected.

For verification, we now have the following options, which are however not
yet fully automated:

– Correctness of the unrolling aspect is verified by simply matching the ex-
pansion of an unrolled graph against the expansion of a non-unrolled graph,
with “decided control flow” edges, i.e., branch and branch hint instructions,
eliminated.

– Correctness of the software pipelining (staging) aspect is verified by match-
ing the expansion of a development of the staged graph against the expansion
of the corresponding development of the non-staged version. This will leave
unmatched portions in the prologues of both, which must then be proven
equivalent, either by partial evaluation, or by exporting them as proof oblig-
ations which then can be discharged in a complete theory of the semantics.

– Some loop bodies, for example the one for matrix multiplication, also make
use of shuffles in very intricate ways; in such cases the expansion of the
loop body can be compared with a trusted version that can frequently be
programmed in a straight-forward manner.

In many of these cases, some additional partial evaluation may be required to
enable the matching. Nevertheless, the graph transformation approach still has
advantages over trying to prove correctness of the code generator using a proof
assistant:

– The verification process, including the partial evaluations, can be automated,
and changes to the generator only require incremental changes to the “veri-
fication script”.

– A fully formal proof would frequently boil down to large case analyses, where
some of the cases may never be needed in practise.
The verification will be run only on the instances which meet performance
and code size requirements.

– The graph transformation approach affords much better traceability than di-
rect generation of proof obligations in theorem provers. This significantly aids
development and debugging, and also has advantages for possible certification.

7 Related Work

Pnueli et al. introduced in 1998 the approach of “translation validation” which
adds, for example, to a compiler, an a posteriori “validation” pass that automati-
cally verifies that input and output are semantically equivalent [12]. Necula applied
this approach to several optimisationpasses of the GNUC compiler [10]. Leviathan
andPnueli apply the translation validation approach to software pipelining optimi-
sations [8] in the context of an architecture with a rotating register file, but without
specific use of SIMD instructions, and using symbolic evaluation of machine state
transitions. Tristan and Leroy report an application of the translation validation
approach to instruction scheduling optimisations [19].

Code Graph Transformations for Verifiable Generation 231

The way we target the translation validation approach differs from all these
in performing the semantic equivalence proof at a higher level of abstraction,
significantly simplifying the modeling of machine state by incorporating it into
a syntactic framework based on data flow graphs. Our code graphs are a gener-
alisation of Hoffmann and Plump’s jungles [5,11], corresponding to Ştefănescu’s
“flow graphs” [16], and use a functorial semantics, described in [7], which follows
the approach of Corradini and Gadducci [3].

However, this happens to be dual to the conventional view of intermediate
representations in compilers where operations are node labels. For that dual
view of SIMD instructions, Schösser and Geiss use graph transformation with
exhaustive search of SIMD-ification rule applicability for remarkably successful
automatic vectorisation [14]. This is in some sense the converse to the SIMD
expansion presented in Sect. 5; our approach of Sect. 6 is aimed at the verification
of transformations that an automated pass would be unlikely to identify, but is
equally applicable to the verification of automated transformations.

The SPIRAL project [13] of Moura and Püschel uses the computer algebra
system GAP [18] to verify rules and formulae used in its search-based approach
to generation of efficient SIMD implementations of signal processing transforma-
tions. SPIRAL apparently generates very simple SIMD code which, by construc-
tion, implements a linear function, such that testing on a basis of the relevant
vector space would be sufficient to prove correctness (numerical concerns aside);
the SPIRAL system currently only provides for automated systematic and ran-
dom testing. This apparent restriction to strict SIMD instructions insulates the
SPIRAL project from the complexities of the more complex vector manipula-
tions that are the key to the efficiency of the loop overhead of Sect. 4 and of
many other code generators we have developed [1].

8 Conclusion

We have demonstrated the feasibility of using code graph transformations to ver-
ify the correctness of complicated SIMD assembly code, and equally importantly,
to understand developmental versions (before they are correct).

These graph transformation capabilities are a key feature enabling us to pro-
duce special-purpose code generators from which we obtain assembly code run-
ning at or near the theoretical peak performance of the hardware. Previously this
would have only been possible for experienced assembly code tuners, at great
expense in terms of implementation effort, necessarily expensive testing and pro-
hibitively expensive maintenance. Our approach is more flexible, not limited by
human understanding, and in addition affords high confidence in correctness.

The simple DPO graph transformations discussed in this paper are sufficient
for SIMD expansion and partial evaluation; for larger-scale transformation like
the transformations that enable software pipelining [2,17], we employ higher-level
graph transformations in the context of nested code graphs; for full formalisation
of this we will need an approach like that of [6] to deal with graph variables that
can be duplicated.

232 C. Kumar Anand and W. Kahl

References

1. Anand, C.K., Kahl, W.: A Domain-Specific Language for the Generation of Op-
timized SIMD-Parallel Assembly Code. SQRL Report 43, McMaster University
(2007), http://sqrl.mcmaster.ca/sqrl reports.html

2. Anand, C.K., Kahl, W.: MultiLoop: Efficient Software Pipelining for Modern Hard-
ware. In: CASCON 2007: Proc. 2007 Conference of the Center for Advanced Studies
on Collaborative Research, pp. 260–263. ACM, New York (2007)

3. Corradini, A., Gadducci, F.: An Algebraic Presentation of Term Graphs, via GS-
Monoidal Categories. Applied Categorical Structures 7(4), 299–331 (1999)

4. Enenkel, R.: A Comprehensive Test Environment for Mathematical Functions. IBM
Technical Report TR-74.200, IBM Corp. (2004)

5. Hoffmann, B., Plump, D.: Jungle Evaluation for Efficient Term Rewriting. In:
Gabrowski, J., Lescanne, P., Wechler, W. (eds.) ALP 1988. Mathematical Research,
vol. 49, pp. 191–203. Akademie-Verlag (1988)

6. Kahl, W.: A Relation-Algebraic Approach to Graph Structure Transformation.
Habil. Thesis, Informatik, UniBw München, Techn. Ber. 2002-03 (2001)

7. Kahl, W., Anand, C.K., Carette, J.: Control-Flow Semantics for Assembly-Level
Data-Flow Graphs. In: MacCaull, W., Winter, M., Düntsch, I. (eds.) RelMiCS
2005. LNCS, vol. 3929, pp. 147–160. Springer, Heidelberg (2006)

8. Leviathan, R., Pnueli, A.: Validating Software Pipelining Optimizations. In: Com-
pilers, Architecture, and Synthesis for Embedded Systems, CASES 2002, pp. 280–
287. ACM, New York (2002)

9. IBM Corp. Synergistic Processor Unit Instruction Set Architecture. IBM Systems
and Technology Group, Hopewell Junction, NY (2006)

10. Necula, G.C.: Translation validation for an optimizing compiler. In: Programming
Language Design and Implementation (PLDI 2000), pp. 83–95. ACM, New York
(2000)

11. Plump, D.: Term Graph Rewriting. In: Ehrig, H., Engels, G., Kreowski, H.J.,
Rozenberg, G. (eds.) Handbook of Graph Grammars and Computing by Graph
Transformation. Applications, Languages and Tools, ch. 1, vol. 2, pp. 3–61. World
Scientific, Singapore (1999)

12. Pnueli, A., Siegel, M., Singerman, E.: Translation Validation. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998)

13. Püschel, M., Moura, J.M.F., et al.: SPIRAL: Code Generation for DSP Transforms.
Proc. IEEE, Program Generation, Optimization, and Adaptation 93(2), 232–275
(2005) (special issue)

14. Schösser, A., Geiss, R.: Graph Rewriting for Hardware Dependent Program Op-
timisations. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS,
vol. 5088. Springer, Heidelberg (2007)

15. Sleep, M., Plasmeijer, M., van Eekelen, M. (eds.): Term Graph Rewriting: Theory
and Practice. Wiley, Chichester (1993)

16. Ştefănescu, G.: Network Algebra. Springer, London (2000)
17. Thaller, W.: Explicitly Staged Software Pipelining. Master’s thesis, McMaster Uni-

versity, Department of Computing and Software (2006),
http://sqrl.mcmaster.ca/∼anand/papers/ThallerMScExSSP.pdf

18. The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4.10
(2007), http://www.gap-system.org/

19. Tristan, J.B., Leroy, X.: Formal Verification of Translation Validators, A Case
Study on Instruction Scheduling Optimizations. In: Principles of Programming
Languages, POPL 2008, pp. 17–27. ACM, New York (2008)

http://sqrl.mcmaster.ca/sqrl_reports.html
http://sqrl.mcmaster.ca/~anand/papers/ThallerMScExSSP.pdf
http://www.gap-system.org/

Graph Rewriting for Hardware Dependent
Program Optimizations

Andreas Schösser and Rubino Geiß

Universität Karlsruhe (TH), 76131 Karlsruhe, Germany
{andi,rubino}@ipd.info.uni-karlsruhe.de

Abstract. We present a compiler internal program optimization that
uses graph rewriting. This optimization enables the compiler to auto-
matically use rich instructions (such as SIMD instructions) provided by
modern CPUs and is transparent to the user of the compiler. New in-
structions can be introduced easily by specifying their behaviour in a
high-level programming language. The optimization is integrated into
an existing compiler, gaining high speedup.

1 Introduction

Current programming languages don’t pay much attention to rich instructions
provided by recent CPUs. By rich instruction we mean a small program imple-
mented in hardware, consisting of several conventional instructions and capable
of operating on multiple data in parallel. For example, SIMD1 instructions fall
in this category. Rich instructions are applied to benefit from shorter execu-
tion time compared to executing conventional instructions. Programmers have
different options to take advantage of rich instructions:

Using assembly language. This option can quickly lead to a huge program-
ming effort and maintenance overhead.

Using compiler specific intrinsics. Requires adaptation of a program when
changing the target architecture or the compiler. Moreover, existing pro-
grams can only be optimized if their source code is rewritten manually.

Using a compiler internal optimization. Transparent to the programmer;
the compiler decides automatically when to use a rich instruction instead of
several basic instructions, depending on the target architecture.

Assembly language and intrinsics are not applicable since we want to keep
the source code portable. Most compilers currently available don’t fully sup-
port optimizations mentioned above. Some compilers use a so-called Vectorizer
to vectorize loops but don’t optimize programs outside loops and fail for rich
instructions which are more complex than pure vector instructions.

To overcome these limitations we present a new approach to implement such
an optimization. Optimizations are usually done on a compiler internal inter-
mediate program representation (IR). Modern IRs are graph based, consisting
1 Single Instruction Multiple Data.

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 233–248, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

234 A. Schösser and R. Geiß

of nodes representing operations and edges representing data and control flow.
Since an IR needs to be hardware independent, it does not initially contain node
types for hardware specific rich instructions. Instead, we can find rich instruc-
tions as subgraphs of an IR graph. These subgraphs are composed of several
basic instructions. To perform an optimization, we transform the original graph
by replacing these subgraphs by a single corresponding, hardware specific node2.

Figure 1 shows a small example of how such an optimizing transformation
looks like. The graph shown on the left—executing two Load operations on
consecutive storage locations starting at a base address Base—is replaced by
the graph shown on the right, which executes both Load operations at once
by using a rich instruction named VectorLoad. VectorLoad delivers the same
results as the graph we replaced. To distinguish the two partial results of the
VectorLoad instruction, we use edge types Result 1 and Result 2. Note that data
dependency edges instead of data flow edges were used in this example. That is,
to get the execution order of the statements you have to read the dependency
edges backwards.

Load

Base

Usage 1

Add

Load

1

Usage 2

Base

Usage 1 Usage 2

optimize

Vector Load

R
es

ul
t 2

R
es

ul
t 1

Fig. 1. Optimizing transformation of an IR graph

This paper presents new techniques to perform such a transformation:

– In the field of compiler construction it’s common to do graph transformations
manually. Though, finding a pattern graph in a host graph and replacing it
by a replacement graph are tasks that can be delegated to a graph rewrite
system (GRS) (Section 2). Doing this allows us to specify graph transforma-
tions in an abstract way.

– Up to now, pattern graphs had to be specified manually. This method is very
time consuming and error-prone (Section 2). Our idea is to generate the
pattern graphs from a specification that describes the behaviour of a rich
instruction in a standard programming language (Section 3).

– We show how to automatically generate and apply graph rewrite rules to
perform program optimization (Section 4).

2 Therefore, we require that the IR is extendable and especially enables the introduc-
tion of hardware specific nodes after high level optimizations are completed.

Graph Rewriting for Hardware Dependent Program Optimizations 235

– We provide benchmark results to show the benefit gained by our optimization
and that it is performed by the GRS in admissible time (Section 6).

2 The Problem

Our first problem to solve is choosing a graph rewrite system suitable for our
needs. We use GrGen [1,2] which is a well-known and fast graph rewrite tool.
It features an extensive specification language and can operate directly on our
compiler’s IR [3]. We don’t want to search and replace patterns manually because
pattern graphs can grow huge in our case. This is because of the complexity of
rich instructions on the one hand and the complexity of the IR on the other
hand.

2.1 The Complexity of Rich Instructions

We already presented a rather simple VectorLoad instruction, but also more
complex instructions, e.g. incorporating forked control flow, are possible. For
example, the following C code calculates the Sum of Absolute Differences (SAD)
of two vectors and could be replaced by a rich instruction named psadbw taken
from the Intel SSE2 instruction set [4].

unsigned char a[16], b[16];
int result = 0, i;
...
for(i = 0; i < 16; i++) {

if(a[i] > b[i])
result += a[i] - b[i];

else
result += b[i] - a[i];

}

When applying rich instructions, we have to take into account that they often
handle vectors instead of scalar values and can operate on special vector register
sets.

2.2 The Complexity of an IR

The complexity of rich instructions together with the complexity of an IR makes
it very difficult to integrate new rich instructions manually, even for experts. For
example, one of the main problems when creating pattern graphs is program
variation, i.e. pattern graph and host graph may differ even though both have
equivalent semantics. Since the problem of proofing the equivalence of two pro-
grams is undecidable in general, it’s not possible to find every subgraph having
the same semantics as the pattern graph. Yet, we can try to find as many sub-
graphs as possible by applying special techniques like normalization and creating
variants. Figure 2(a) shows an example pattern graph for a VectorLoad instruc-
tion which differs significantly from the host graph given in figure Figure 2(b).
Both graphs are variants of the code fragment

236 A. Schösser and R. Geiß

Load

Proj M

Load

Proj M

Base

Add

Proj Int

Proj Int

4

(a) Pattern graph of a VectorLoad in-
struction

4

Add

Load

Load

Base

Proj MProj Int

Proj MProj Int

(b) Host graph containing a Vector-
Load subgraph

Fig. 2. Difference between pattern graph and host graph

int a, b, c[2];
...
a = c[0];
b = c[1];
...

transformed to our IR called Firm [5]. To help you understand this example, we
have to provide you with some technical details about Firm:

Firm is a graph based IR which satisfies the SSA3 property [6,7]. Most opera-
tions in Firm are self-explanatory, yet there are some node types to be explained
more closely. Nodes of type Proj are used to simulate edge types, a concept with
doesn’t exist in Firm. Hence, they won’t produce any assembler code. Edges of
type memory (denoted as memory edge in the following) are used to serialize
memory operations in order of appearance in the source code. They are marked
with a Proj M node and drawn as a dotted line for clarity. Edges of type in-
teger, marked with a Proj Int node, represent an integer result. In Firm, Proj
nodes are omitted if the edge type is non-ambiguous, that is, if the edge type is
implicitly given by the result type of the edge’s target node.

The difference between the pattern graph in Figure 2(a) and the host graph
in Figure 2(b) is that the Load operations are serialized in a different order
by memory edges. Other differences not shown here may occur in arithmetic
expressions, which is important especially in the context of address calculation.
For example, the simple expression a + b + c can be scheduled as (a + b) + c
or a + (b + c). Note that it depends on the programming language whether
re-ordering of arithmetic expressions is allowed.
3 Single Static Assignment.

Graph Rewriting for Hardware Dependent Program Optimizations 237

In general, the patterns are much more complex, including several basic blocks
and forked control flow (not modelled here for conciseness). By creating pattern
graphs manually, it’s easy to make mistakes due to the complexity of the IR,
even for experts. Therefore, introducing new rich instructions to the compiler is
very time consuming this way. Moreover, changes made to the IR require the
patterns to be rewritten. We’re heading for a solution to generate graph rewrite
rules automatically.

2.3 Inserting Rich Instructions

Further questions arise when it comes to create the replacement graph which
is used to insert the new rich instruction. At first, we have to decide where
to schedule the rich instruction. Secondly, it’s important to connect the new
instruction to the right operands. Moreover, we have to investigate a way to
make the result of the rich instruction public so that up-following instructions
are able to use it. This is not trivial because rich instructions may save their
results in vector registers, which conventional instructions cannot access. We
therefore have to find a way to transport data to those vector registers and
back.

After graph rewrite rules have been created, we need a method to decide which
rules we shall apply. This is especially interesting when different subgraphs to
be replaced overlap. In some cases, we’re not allowed to replace a subgraph due
to constraints of the IR in order to keep the semantics of the rewritten program
exactly as it was before the rewrite. Hence, we have to analyze the host graph
carefully before replacing.

A solution to these problems is presented in the following sections.

3 Using GrGen for Program Optimization

As described in Section 2, creating pattern graphs by hand is an arduous task,
especially for complex rich instructions. Our solution is to specify the behaviour
of rich instructions in a standard programming language and generate the graph
rewrite rules automatically. In the following, we present an instruction specifica-
tion language based on the programming language C and show how to integrate
such an optimization into an existing compiler. The optimization is divided into
two steps described in the following sections.

3.1 Generating Graph Rewrite Rules

The first step is to generate graph rewrite rules to be used for optimization. The
pattern and replacement graphs are derived from specifications of the behaviour
of a rich instruction stated in the programming language C. Thus, the instruc-
tion specifications can easily be drawn from pseudo code descriptions of CPU
instructions used in reference manuals (cf. [4,8]).

238 A. Schösser and R. Geiß

Listing 1. Example specification of a rich instruction

1 void VectorAdd(void)
2 {
3 /* Definition part */
4 double *a = Operand_0("vector", "memory", "gp");
5 double *b = Operand_1("vector", "register", "xmm");
6 double *res = Result("vector", "register", "in_r1");
7 Emit("addpd�%S0,�%S1");
8

9 /* Behaviour of the instruction */
10 res[0] = a[0] + b[0];
11 res[1] = a[1] + b[1];
12 }

Instruction Specification. Listing 1 gives an example of how such a specifi-
cation looks like: It consists of one or more functions, each function describing
the behaviour of a rich instruction. In this example, the instruction VectorAdd
is specified. Each function consists of a definition part and a behaviour part.

In the definition part, a call of the function Operand n or Result defines a
variable the rich instruction operates on. Operand n means that the variable
represents the nth operand of the instruction, Result means that the variable
represents it’s result. Each variable has additional attributes, which are set by
passing parameters to those functions. These attributes specify the kind of data
the variable represents (vector or scalar), the location of the data (register
or memory) and the name of the register class in which the data is passed. Beyond
variable definition, the assembler code to emit has to be specified here, using the
function Emit(char *assembler template). Our example uses the Intel SSE3
instruction set and emits the instruction addpd which adds two vectors of two
double precision floating point components. The wildcards %S0 and %S1 stand for
source register 0 and 1, in which the operands 0 and 1 are passed. The compiler
backend replaces these wildcards by the actual registers it allocated.

The behaviour part describes the exact behaviour of the rich instruction in
plain C, using the variables defined in the definition part. The instruction pre-
sented in this example performs a vector addition of two vectors given by the
variables a and b, and writes the result to the location represented by the variable
res.

Note that the specification uses plain C syntax for the definition and behaviour
part. We just added some extra semantics. The elements used in this example
can be used to specify a wide range of rich instructions. Yet, the specification
language can be enhanced easily (see sections 4.4 and 4.7).

Integration. Figure 3 shows how we integrate the rule creation step into an
existing compiler (marked dark and light grey): We use the unmodified compiler
frontend to transform the instruction specification to an IR graph (called initial
pattern). This is possible because the specification consists of plain C code. The

Graph Rewriting for Hardware Dependent Program Optimizations 239

database
Rule

Optimization step

Both steps

Rule creation step

Rule generator

IR

Backend

Frontend

GRS

optim
izations

O
ther

Instruction specification Source code

Optimized assembler code

C
om

piler

Fig. 3. Compiler integration

initial pattern is analyzed and then transformed to the pattern and replacement
graph by the rule generator. The generated graph rewrite rules are saved in an
appropriate format in a rule database to be used by the GRS in the optimiza-
tion step. In addition, we need to tell the compiler backend about the newly
introduced instruction. Therefore, we also generate annotations for the backend
in order to be able to produce the right assembler code. All information needed
is found in the initial pattern.

This rule creation step has to be performed only once when new rich instruc-
tions are introduced. After the rule database has been filled, it can be used to
perform the optimization step.

3.2 Performing the Optimization

In the second step, we use the rules saved during the first step to perform the
actual optimization (marked white and light grey in Figure 3). First we use the
compiler frontend to transform the source code to an IR graph, on which we can
perform pattern matching using the GRS. A subgraph found, representing a rich
instruction, is called a match. Beyond pattern matching and replacement, there
are further tasks to perform during the optimization step. Because we generate
the pattern graph as general as possible to avoid being too restrictive, we have to
test whether we’re really allowed to replace a match before actually replacing it.
During the rewrite, a new node representing the rich instruction is introduced.
We have to schedule this node correctly, e.g. put it in the right basic block and
serialize it correctly with regard to its memory dependency. We will discuss this
more closely in Section 4.

240 A. Schösser and R. Geiß

4 Implementation

In this section, we present an outline of our implementation.

4.1 Preliminary Transformations

Before our optimization is launched, other graph transformations are performed
in order to reduce program variation. These transformations are standard opti-
mizations common in modern compilers, but also special normalizing transfor-
mations are applied:

Lowering. Our optimization is performed after the Firm graph has been low-
ered. That means high-level constructs to access array components have been
replaced by pointer arithmetic. This way, we can handle direct array access
as well as array access by pointer arithmetic in the source program.

Removing critical edges. Removing critical edges saves us from doing nor-
malization in special cases when control flow is forked.

Loop unrolling. We might not find many rich instructions in ordinary pro-
grams since the access of vector components is hidden behind different loop
iterations. Unrolling inner loops n times while n being the maximal vector
size might reveal those hidden instructions.

Load-Store optimization. An optimization which uses information returned
by an alias analysis to eliminate unnecessary Load operations and de-
serializes memory accessing operations if possible. Therefore, a good alias
analysis is essential for our needs. We use a so-called memory disambiguator
built into our compiler [9].

Special normalizations. For example, arithmetic expressions used for address
calculation are brought to a consistent form. Hofmann presented a way to
normalize generic arithmetic expressions [10].

4.2 Matching

In this paragraph, we describe the pattern creation and pattern matching process
more closely. We start with the initial pattern delivered by the compiler front-
end. The initial pattern contains the operations of the specification’s definition
and behaviour part, whereas, for the pattern graph only the behaviour part
is needed. We designed the instruction specification language in the way that
all information the user specified can be regained from the initial pattern. To
generate the pattern graph, we first extract all important information the user
specified in the definition part and then clip the initial pattern by the nodes not
needed any more.

The pattern graph now consists of the nodes representing the behaviour part.
The names of the variables defined in the instruction specification are not impor-
tant any more, because Firm graphs satisfy the SSA property. That means each
data flow edge represents a value and by matching the dataflow edges exactly
we make sure that matches found in the host graph have identical behaviour as
the pattern graph.

Graph Rewriting for Hardware Dependent Program Optimizations 241

Matching the exact dataflow must not be confused with matching the
statement-level control flow. We do not match the statement-level control flow
because only the control flow between basic blocks is represented in Firm. All
possible control flows inside a basic block are implicitly given by the dataflow.
This makes the pattern graph more general with regard to the source program
to be optimized.

In section 2 we stated that we want to deal with program variation shown
in Figure 2. The problem is the serialization of memory operations by memory
edges. Our solution is not to match the memory dependency at all. Instead, we
check the memory dependencies for consistency after finding a match. To do so,
we take advantage of a feature of GrGen to be able to insert processing between
matching and rewrite.

The initial pattern may contain Load and Store operations which represent an
access to a vector register instead to a memory location, depending on the user
specification. To insert this information explicitly into the graph, we introduce
a new node type VProj representing a specific component of a vector register.
The component number is given by a node attribute.

In general, edge positions are important in Firm. That’s because nodes rep-
resent operations and the operand order is very important for example for a Sub
operation. Hence, we check edge position numbers exactly except for commuta-
tive operations like Add or Mul of integer type.

4.3 Replacement

At first glance, it seems obvious that inserting a new rich instruction after finding
a match allows us to delete all the basic operations contained in that match.
On closer examination we recognize that executing the basic operations might
produce intermediate results not produced by the rich instruction. If operations
outside the match use those intermediate results, the code that calculates them
must not be deleted. Therefore, the nodes contained in the pattern graph are
also included in the replacement graph, except for the end results also produced
by the rich operation. Unnecessary basic instructions are deleted in a later step,
when it turns out that their result is not used. This is done by standard compiler
optimizations like the Dead Node Elimination, the Control Flow Optimization
and Load-Store Optimization [11].

Figure 4 shows how the replacement works in general. The left hand side
represents a match we found. It uses n operands—Op 1 to Op n—and a set of
basic operations to calculate a result vector of m components—Res 1 to Res
m. Now we want this match to be rewritten so that the corresponding new rich
instruction is inserted and the program uses the result of the rich instruction.

This is shown on the right hand side which corresponds to the host graph after
the rewrite. The rewrite step inserts a new node representing the rich instruction.
The operands of the new instruction are already contained in the found match, so
the rewrite step also connects the rich instructions to it’s operands. The number
of usages is not known at pattern creation time. In order to connect the results
of the rich instruction, we would have to reroute an unknown number of edges,

242 A. Schösser and R. Geiß

Rich instr.

Proj Data

Op nOp 1

Res m

Proj M

Match found Result of rewrite

Op 1Op n

VProj 1 [Res 1] VProj m [Res m]Res 1

Operations Operations

Fig. 4. Match found (left) and result graph (right)

which is hard to express with one single graph rewrite rule. To avoid this problem,
we retype the previous result nodes to VProj k nodes, which indicate that this
node represents the k′th component of the result vector. Also, the retyped nodes
are disconnected from their previous operands and connected with the result
of the rich instruction. This way each node that previously used an end result
calculated by basic instructions now uses an end result calculated by the rich
instruction. A VProj node indicates, that the result of the rich instruction is
passed in a vector register and if basic instructions want to use the result, some
kind of code which transfers the results to general purpose registers has to be
inserted.

After rewriting is finished, we have to perform further transformations which
can not be expressed through the graph rewrite rule. At first, the new rich
instruction has to be inserted into a certain basic block. We insert the rich in-
struction in the basic block which dominates all other basic blocks contained in
the match because we want to make the results of the rich instruction available
as soon as possible. This can not be done by the GRS since we can’t know the ex-
act basic block layout of the host graph at pattern creation time. It’s important
that the operands of the rich instruction are available before the rich instruc-
tion is scheduled. Otherwise a deadlock occurs which means that an operation
was scheduled without its operands being available. We prevent deadlocks by
analysing the host graph before rewriting and only apply a rule if it’s safe to
rewrite.

Secondly, we have to insert the rich instruction into the memory dependency
chain. Again, to make the results of the rich instruction available early, we place
it before any memory operation contained in the match. Please note, that this
method prevents deadlocks but also introduces further issues: If the rich opera-
tion writes to a memory location it has already read by a Load node, then this
Load is not allowed to have usages outside the match. The node that uses the
Load ’s result would receive an invalid value. To recognize this and similar cases,
detailed analysis is necessary.

Graph Rewriting for Hardware Dependent Program Optimizations 243

4.4 Priorities

Introducing VProj nodes makes graph rewrite rules dependent on each other.
Consider, for example, rules for a VectorLoad and a VectorStore instruction. We
assume that the VectorStore expects data located in a vector register, represented
by several VProj nodes in the Firm graph. The VProj nodes are not initially
in the Firm graph, they are produced by the VectorLoad graph rewrite rule.
That’s why the VectorLoad rule has to be applied before the VectorStore rule.
To specify that, we introduce priorities. The user can assign a priority class to
each rule and put rules depending on each other into ascending priority classes.
Rules not depending on each other may remain in the same priority class. The
syntax to assign an instruction to a priority class—e.g. 5—is

Priority(5);

4.5 Variants

As a result of loop unrolling, the values of vector components are often dependent
on one or more induction variables which do not occur in the specification of
the rich instruction. In this case, one or more additional summands have to be
added to all parts of the pattern which calculate a memory address. We create
variants for each additional summand. This way, we can even handle access to
vector components which are located in multi-dimensional arrays.

4.6 Replacement Strategies

Having several graph rewrite rules at stock, the optimization has to apply these
rules automatically. We want to apply the rules resulting in the maximal saving
of costs according to a cost model. The saving of costs for each replacement can
be pre-calculated by taking the costs of the operations to replace and the costs
of the rich instruction into account. Dynamic costs occur when matched nodes
can not be deleted because they deliver an intermediate result (see Section 4.3).
The most problematic situation we have to deal with is overlapping matches.

Unfortunately, we can not locally decide which match to choose for replace-
ment because we don’t know which subsequent matches will follow and in which
saving of costs this will result. One approach would be to replace one of the
overlapping patterns and determine its cumulative costs and then use a roll-
back function to re-establish the graph to try out the second pattern. Seeing
how subsequent matches depend on VProj nodes, our approach is not to replace
overlapping matches at first but only insert all the corresponding VProj nodes
into the graph in parallel. Thus, subsequent matches can also be found in parallel,
making a cost intensive rollback function unnecessary. This approach completely
separates the pattern matching step from the rewrite step. All matches that can
be found in an IR graph and their savings of costs are represented in a so-called
search tree. A walk over the search tree selects all matches to be rewritten, thus
resulting in an optimal solution according to our cost model. One problem when
applying this explorative approach is that search trees can grow big. To reduce

244 A. Schösser and R. Geiß

the size of the search tree, it’s possible to build a search tree for each priority
class only (see Section 4.4). This works fine for all our test programs and covers
most, but not all, dependencies between rich instructions. Therefore, our current
research is to use a heuristic PBQP4-solver for rule selection [12,13].

4.7 Clean-Up Operations

It might occur that there are still VProj nodes in the graph but no subsequent
match can be found. The compiler backend however, cannot select code for VProj
nodes. A solution to the problem is to perform an undo-operation which rolls
back the last replacement(s) until no VProj nodes are present in the graph any
more.

The other possibility is to convert the VProj nodes. This is not trivial because
the value represented by a VProj node has to be extracted from a vector register
and copied to a general purpose (GP) register. Some processor architectures (like
SSE2) don’t have dedicated instructions to do so5.

This means that two instructions have to be performed: shifting and copying.
This can easily be done using our specification language by declaring both in-
structions in the Emit statement separated by a line break. This way, a virtual
instruction node is created representing both operations:

Emit(".�psrldq�$8,�%S0\n.�movq�%S0,�%D0");

This virtual instruction not only destroys the value contained in the destina-
tion register, but also the one contained in the source register. Therefore, the
user can specify

Destroys(Operand);

to indicate that an operation also destroys the register which contains Operand
besides the register where the result is stored.

5 Related Work

5.1 Algorithm Recognition

Metzger and Wen extensively present an approach to recognize algorithms in
the so-called computational kernel of a program and replace them by a call to
an optimized library function, thus saving execution time [14]. The optimization
is carried out on an IR that has tree shape and which was used in the Convex
Application Compiler [15]. Data structures used are the control tree containing
the statements and the control flow. Expression trees are used to represent ex-
pressions and the i-val tree representing the dependencies of induction values
of loops. Also the statement-level data flow graph is computed. To speed up

4 Partitioned Binary Quadratic Problem.
5 Only extracting single-word integer values is possible with SSE2 by using the pextrw

instruction. A pextrd instruction is planned to be introduced with SSE4.

Graph Rewriting for Hardware Dependent Program Optimizations 245

1 unsigned int sad(int test_blockx, int test_blocky, int *best_block_x,
2 int *best_block_y, unsigned char frame[256][256])
3 {
4 int i, x, y, blocky, blockx;
5 unsigned tmp_diff, min_diff = 0xFFFFFFFF;
6

7 // Iterate over whole frame; x,y=coords of current block
8 for(x = 1; x < 256 - 16; x++)
9 for(y = 0; y < 256 - 16; y++) {

10 tmp_diff = 0;
11 // Compare current block with reference block
12 for(blocky = 0; blocky < 16; blocky++) {
13 for(blockx = 0; blockx < 16; blockx++)
14 if(frame[blocky][blockx] > frame[blocky + y][blockx])
15 tmp_diff += (frame[blocky][blockx] - frame[blocky + y][blockx]);
16 else
17 tmp_diff += (frame[blocky + y][blockx] - frame[blocky][blockx]);
18 }
19

20 // Check if the current block is least different
21 if(min_diff > tmp_diff) {
22 min_diff = tmp_diff;
23 *best_block_x = x;
24 *best_block_y = y;
25 }
26 }
27 }
28 return(min_diff);
29 }

pattern matching the control tree, expression trees and the i-val tree are con-
verted into a canonical form. This is especially useful for handling commutative
operators. The reordering of the tree is based on an encoding of nodes of the
control tree. Metzger and Wen also explain how to extract subprograms from the
computational kernel and select the best feasible replacement to gain maximal
benefit.

We share the same idea that a database of pre-created patterns has to be
maintained and even that these patterns should be created by specifying an
algorithm in a high-level language. This makes it easy for the end-user to add
new patterns and optimizations can be performed without modifying the source
code. Reducing program variation to keep the number of patterns to maintain
small using standard compiler optimizations amongst others is an idea found in
both approaches. We also seek a (good or even the best) selection of replacements
for the patterns we found in order to accelerate the program.

We differ in the form of IR we use: A graph-based IR with integrated data
and control flow, instead of a tree based IR. Metzger and Wen claim to find and
replace complete algorithms including loops while we want to find DAGs (direct
acyclic graphs) representing the behaviour of rich instructions. They have to

246 A. Schösser and R. Geiß

extract subprograms for comparison by reordering the statements in the control
flow tree as allowed by the dataflow. We don’t have this problem, because we
don’t consider the statement-level control flow. Our optimization is more back-
end oriented since we don’t replace patterns by function calls but by hardware
dependent assembler instructions. Hence we have to deal with hardware specific
features like register classes when specifying new patterns. We use a modern GRS
to match patterns instead of transforming IR programs to a canonical form and
comparing patterns node by node. Finally, Metzger and Wen only implemented
the normalization process and did not implement the pattern matching process.

5.2 Previous Implementations

Hofmann implemented an early version of the optimization presented in this
article [10], which was mainly a proof of concept of how automatic pattern cre-
ation works. This first implementation wasn’t able to optimize realistic programs
automatically, and hence no serious run-time tests were possible.

6 Benchmarks

We have tested our implementation on a Pentium 4 (Prescott), 3.2 GHz, which
features the Intel SSE3 instruction set. The system has 2 GB main memory and
runs Suse Linux 9.3.

Our test program implements a block-matching algorithm to perform motion
estimation used for MPEG compression in video codecs [16]. The block-matching
algorithm operates on a frame of 256x256 bytes size and is performed 100 times.

The changes made to the host graph during optimization are presented in Ta-
ble 1(a). The patterns found, and the assembler instructions applied, are shown

Table 1. Benchmark results

(a) Execution time and graph statistics

standard opt. rich instructions opt. factor
nodes 2392 680 3.52
edges 5324 1480 3.60

running time 13.55 s 420 ms Speedup: 32.26

(b) Rich instructions applied

pattern applied instructions # nodes # edges

VectorLoad 16b v1 1x lddqu 82 96
VectorLoad 16b v3 1x lddqu 84 128

psadbw
SAD 16b 1x pshudf 289 461

paddd
Component 0Iu 1x movd 3 2

Graph Rewriting for Hardware Dependent Program Optimizations 247

in Table 1(b). Compared to compiling the program with conventional optimiza-
tions, we gain a maximal speedup of 32.26. Compared to programs compiled
by the Intel C compiler, which also does hardware-specific optimizations, we
still gain a speedup of 9.52. The whole optimization process took 1.2 seconds.
GrGen spent only 40ms for matching 4480 nodes and 17853 edges and rewrit-
ing 4 matches. The rest of the time was spent for additional analysis and node
elimination.

7 Conclusion

We have presented a novel optimization framework to speed up programs by
using rich instructions. Our optimization works on the compiler internal IR and
uses a GRS to find patterns representing rich instructions and automatically re-
places them by a corresponding rich assembler instruction. The rules for the GRS
are created automatically using a specification of the rich instruction’s behav-
iour, based on the programming language C. Rules are selected automatically to
receive the most efficient program according to a cost model. The optimization
is integrated into an existing compiler.

The advantage is that source programs can be optimized without modification.
Therefore, a source program stays portable and changing the compiler or the
target architecture is still possible. In addition, the user can easily introduce
new patterns for rich instructions without being a compiler engineer, because he
can specify graph rewrite rules indirectly in a familiar language.

Validating our implementation with different test programs covering the fields
video processing, sound processing and numerical calculations, showed that it
outperforms traditional compilers, gaining speedup ranging from 1.05 to 32.
Therefore, there is potential to optimize programs using rich instructions. The
pattern matching core of the optimization, performed by the graph rewrite sys-
tem GrGen, takes only milliseconds.

We haven’t addressed rich instructions which require data to be specially
aligned in memory, so far. When using such instructions, we have to test whether
the data they access is aligned [17]. Additionally, we also need a good alias analy-
sis. There are ways to support the alias analysis manually. E.g. the programmer
could use the C qualifier restrict (C99) to indicate that a pointer has no alias.
We’re using an explorative algorithm to control rule application but are also
researching on how a PBQP-solver could solve the problem more efficiently.

Acknowledgments. We thank all co-workers and students at the IPD, Univer-
sität Karlsruhe for their support and proof-reading, especially Christian Würdig,
Christoph Hermann Mallon, Edgar Jakumeit, Gernot Veit Batz, Matthias Braun,
Michael Beck, Moritz Kroll, and the anonymous reviewers. Also we thank
Prof. Dr. Gerhard Goos for the generous support he provides at his chair.

248 A. Schösser and R. Geiß

References

1. Geiß, R., Kroll, M.: GrGen.NET: A Fast, Expressive, and General Purpose Graph
Rewrite Tool. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS,
vol. 5088. Springer, Heidelberg (2008)

2. Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.: GrGen: A Fast SPO-
Based Graph Rewriting Tool. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro,
L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 383–397. Springer,
Heidelberg (2006)

3. Batz, G.V.: Graphersetzung für eine Zwischendarstellung im Übersetzerbau. Mas-
ter’s thesis, Universität Karlsruhe (2005)

4. Intel Corporation, O. Box 5937, Denver, CO 80217-9808: Intel 64 and IA-32 Ar-
chitectures Software Developer’s Manual – Instruction Set Reference (2007)

5. Trapp, M., Lindenmaier, G., Boesler, B.: Documentation of the Intermediate Rep-
resentation FIRM. Technical Report 1999-14, Universität Karlsruhe, Fakultät für
Informatik (1999)

6. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
Computing Static Single Assignment Form and the Control Dependence Graph.
ACM Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

7. Cooper, K.D., Torczon, L.: Engineering a Compiler. Morgan Kaufmann Publishers
Inc., San Francisco (2004)

8. Motorola Phoenix, AZ, USA: AltiVec Technology Programming Environments
Manual (1998)

9. Ghiya, R., Lavery, D., Sehr, D.: On the Importance of Points-To Analysis and
Other Memory Disambiguation Methods for C Programs. In: Proceedings of the
ACM SIGPLAN 2001 PLDI, pp. 47–58 (2001)

10. Hofmann, E.: Regelerzeugung zur maschinenabhängigen Codeoptimierung. Mas-
ter’s thesis, Universität Karlsruhe (2004)

11. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading (1986)

12. Eckstein, E., König, O., Scholz, B.: Code Instruction Selection Based on SSA-
Graphs. In: Krall, A. (ed.) SCOPES 2003. LNCS, vol. 2826, pp. 49–65. Springer,
Heidelberg (2003)

13. Jakschitsch, H.: Befehlsauswahl auf SSA-Graphen. Master’s thesis, Universität
Karlsruhe (2004)

14. Metzger, R., Wen, Z.: Automatic Algorithm Recognition and Replacement: A new
Approach to Program Optimization. MIT Press, Cambridge (2000)

15. CONVEX Computer Corp. O. Box 5937, Denver, CO 80217-9808: CONVEX Ap-
plication Compiler User’s Guide, 2nd ed. (1992)

16. Intel Corporation: Block-Matching In Motion Estimation Algorithms Using
Streaming SIMD Extensions 3. Technical report, Intel Corporation, O. Box 5937,
Denver, CO 80217-9808 (2003)

17. Pryanishnikov, I., Krall, A., Horspool, N.: Pointer Alignment Analysis for Proces-
sors with SIMD Instructions. In: 5th Workshop on Media and Streaming Processors
(2003)

Transforming Timeline Specifications into
Automata for Runtime Monitoring�

Eric Bodden and Hans Vangheluwe

School of Computer Science
McGill University, Montréal, Québec, Canada

Abstract. In runtime monitoring, a programmer specifies code to ex-
ecute whenever a sequence of events occurs during program execution.
Previous and related work has shown that runtime monitoring techniques
can be useful in order to validate or guarantee the safety and security
of running programs. Those techniques have however not been incor-
porated in everyday software development processes. One problem that
hinders industry adoption is that the required specifications use a cum-
bersome, textual notation. As a consequence, only verification experts,
not programmers, can understand what a given specification means and
in particular, whether it is correct. In 2001, researchers at Bell Labs pro-
posed the Timeline formalism. This formalism was designed with ease
of use in mind, for the purpose of static verification (and not, as in our
work, for runtime monitoring).

In this article, we describe how software safety specifications can be
described visually in the Timeline formalism and subsequently trans-
formed into finite automata suitable for runtime monitoring, using our
meta-modelling and model transformation tool AToM3. The synthesized
automata are subsequently fed into an existing monitoring back-end that
generates efficient runtime monitors for them. Those monitors can then
automatically be applied to Java programs.

Our work shows that the transformation of Timeline models to au-
tomata is not only feasible in an efficient and sound way but also helps
programmers identify correspondences between the original specification
and the generated monitors. We argue that visual specification of safety
criteria and subsequent automatic synthesis of runtime monitors will help
users reason about the correctness of their specifications on the one hand
and effectively deploy them in industrial settings on the other hand.

1 Introduction

Static program verification in the form of model checking and theorem proving
has in the past been very successful, however mostly when applied to small em-
bedded systems. The intrinsic exponential complexity of the involved algorithms
makes it hard to apply them to large-scale applications. Runtime monitoring or
runtime verification tries to find new ways to support automated verification
� An extended technical report version [1] of this paper is available at http://www.
sable.mcgill.ca/

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 249–264, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.sable.mcgill.ca/
http://www.sable.mcgill.ca/

250 E. Bodden and H. Vangheluwe

of such applications. This is done by combining declarative safety specifications
with automated tools that allow verification of these properties, not statically
but dynamically, when the program under test is executed. Research has pro-
duced a variety of such tools over the last years, many of which have helped
find real errors in large-scale applications. Yet, those techniques have not yet
been able to make the transition to everyday use in regular software develop-
ment processes. This is due to two reasons. Firstly, many of the existing runtime
monitoring tools cause a significant runtime overhead, lengthening test runs un-
duly. Secondly, the kind of specifications that can be verified by such tools often
use a quite cumbersome notation. This leads to the fact that only verification
experts, not programmers, can understand what a given specification means and
in particular, whether it is correct.

The first problem of generating efficient runtime monitors has been addressed
extensively in previous [3,4,5] and related [6,7] work. In particular, our research
group maintains an efficient implementation of tracematches [8], an implemen-
tation of runtime monitoring that allows specifications to match on the dynamic
execution trace, using regular expressions with free variables than can bind ob-
jects. For instance, a pattern of the form File f: open(f) dispose(f) over
the alphabet Σ = {open,dispose} could denote disposing a file that is cur-
rently open. Such a specification might seem easy to read, but sometimes subtle
problems can arise. For example, the aforementioned pattern would also match
the event sequence open(f1) close(f1) dispose(f1), where a file f1 is prop-
erly closed before it is disposed. In order to fix the pattern, one would have to
change the alphabet of the regular expression to Σ = {open,close,dispose}.
We strongly believe that such subtle difficulties with existing specification for-
malisms are among the main reasons why formal verification techniques such as
runtime monitoring have, despite their effectiveness and efficiency, not yet found
widespread industry adoption.

In 2001, Smith et al. from Bell Labs proposed the Timeline formalism as
a way to ease the specification of temporal properties [9]. They presented a vi-
sual tool to design Timeline specifications. The tool converts those specifications
into Büchi automata, suitable for static verification. However, this translation is
done in code, and hence it is hidden from the user. We believe that the Time-
line formalism is indeed much more comprehensible than many other temporal
specification formalisms. However, we also believe that a tool can and should
benefit from explicit visual graph rewriting techniques. Implementing formalism
(such as Timeline) semantics via visual graph transformations allows (1) to eas-
ily experiment with different semantics by altering transformation rules and (2)
once the semantics is fixed, to easily reason about its correctness. Hence, in the
following, we propose an explicit visual graph transformation using the AToM3

tool [10], that rewrites specifications in the Timeline formalism to corresponding
finite state machines suitable for runtime monitoring. Those state machines can
then be fed into our tracematch-based back-end, which generates an equivalent
and efficient runtime monitor. This monitor can be applied to arbitrary Java
programs through compilation.

Transforming Timeline Specifications into Automata 251

It is also noted that Smith et al. did not take into account per-object specifi-
cations such as the per-file specification mentioned above. In this work we show
how the Timeline formalism can be used for such specifications as well. The
generated Java monitors automatically take into account the necessary object
bindings, exploiting our performance optimizations from previous work.

The remainder of this paper is organized as follows. In Section 2 we introduce
the Timeline formalism, its visual concrete syntax, and its semantics. The visual
specification of transformation into finite automata is described in Section 3. In
Section 4, we sketch how the resulting automata can be used in our runtime
monitoring back-end. Finally, we conclude and state future work in Section 6.

2 The Timeline Formalism

Each Timeline specification consists of a single time line, which is independent
of all the others. This is important, as it enabled modular reasoning. A time line
makes sense in its own right and its truth value does not depend on the presence
of other time lines.

Each time line represents an ordered sequence of events. The first event is a
distinguished start event, representing the time of start-up of the application. All
events but this start event are associated with a label and one of the following
three event types.

regular event. Such an event may or may not occur. It imposes no requirement
and is only used to build up context for a complete pattern match. Regular
events are denoted with the letter e.

required event. A required event must occur, whenever its left-context on the
time line was matched. Required events are denoted with the letter r.

fail events. A fail event must not occur after its left context has matched. Such
an event is denoted with the letter X.

Along with those events, a time line can be augmented with constraints, re-
stricting the matching process. A constraint holds a Boolean combination of
propositions and may include or exclude the start and/or end event it is at-
tached to.

While Smith et al. used a motivating example [9] specifying a dial-tone feature
used at Bell labs, we here use a running example motivated by our own work.
Fig. 1 shows an extension of the aforementioned file/dispose example. We wish
to specify that a file must not be disposed as long as it is open. Furthermore, we
would like to make sure that any open file is closed at some point in time, before
the program exits. The Timeline specification directly states both requirements
together : After seeing a regular event open, we require an event close (in the
end of the time line) and in between we state that no dispose event may occur
(excluded event, marked with an X). A constraint between the open and dispose
events is used to state that those requirements only apply if the file has not been
closed already prior to disposal. A second constraint on the left states that we are
only interested in the last open event, as our translation will assure that former

252 E. Bodden and H. Vangheluwe

Stage:

start e

open

X

dispose

r

close

!closeincl incl

!openincl excl

Fig. 1. Timeline specification stating that any opened file should be closed and should
not be disposed before closing it

events were already handled once we get to this stage of evaluation. Fig. 1 shows
the Timeline specification as it is denoted in a modelling environment built
using AToM3 [10]. This environment uses the following abstract syntax in order
to represent such specifications.

2.1 Timeline Abstract Syntax in AToM3

We model an event as an object with a string label and one of five types: start,
regular, required, fail and end. The “end” event is artificial. It cannot be specified
by the user and is only used within the translation to finite automata.

A time line consists of a sequence of events. The sequence is established via
an ordering relation. A further relation between events describes the constraints
among them. Each constraint is modelled as an edge between two events. It can
include or exclude the event at its start and/or end. Furthermore it is labelled
with a string label, stating the actual constraint expression.

Fig. 2 shows the class diagram for the abstract syntax of Timeline in AToM3.
In addition to the aforementioned entities, it shows a Stage class. As we will
explain in Section 3, we use a singleton object of this class for each Timeline
specification to be able to implement its translation in a stateful way. This is a
workaround because the version of AToM3 used did not yet support programmed
graph rewriting.

The static semantics of the Timeline formalism imposes the following type
checks on correct Timeline specifications. (see [9] for details)

1. Each time line must be fully connected by the Order relationship. In partic-
ular, this order is anti-symmetric, transitive and total.

2. In each time line, the smallest event in this relationship must be of type
“start”.

3. Each event must have at most one immediate predecessor and successor in
this relationship.

Transforming Timeline Specifications into Automata 253

Attributes:

 - type :: Enum

 - label :: String

Cardinalities:

 - From Order: 0 to N

 - To Order: 0 to N

 - From Constraint: 0 to N

 - To Constraint: 0 to N

Event

Attributes:

 - stage :: String

 - stageNum :: Integer

Stage

Constraint

Attributes:

 - label :: String

 - start :: Enum

 - end :: Enum

Cardinalities:

 - To Ev: 0 to N

 - From Ev: 0 to N

Order

Cardinalities:

 - To Ev: 0 to N

 - From Ev: 0 to N

Fig. 2. Abstract syntax of the Timeline formalism in AToM3

4. When a constraint relation starts at an event e1 and ends at e2, then e1

must be smaller than e2 in the Order.
5. There must not exist any two subsequent fail events.
6. A constraint may not begin or end at a fail event, unless the fail event is the

first event or last event of the time line.

The translation we give in Section 3 is based on the above assumptions. They
can relatively easily be verified in the AToM3 modelling tool, at design time.

2.2 Timeline Concrete Syntax in AToM3

Each abstract syntax entity is given a concrete visual representation. Events are
represented by vertical lines, while the temporal order relation between them is
drawn as a directed edge. Constraints are undirected edges with labels. As Fig. 1
shows, AToM3 has built-in support for displaying attribute values of entities in
a text box as of its visual representation.

3 Transformation into Finite Automata

We assume a given time line t which fulfils the constraints mentioned in Sec-
tion 2.1. Further, we formally denote t by t = (E, O, C) with:

– E, a finite set of events;
– O ⊂ E × E, a total order, the temporal order relationship;
– C, a finite set of constraints.

Each event e ∈ E is of the form e = (le, te) with le a string label and

te ∈ {start, regular, required, fail, end}.

We then transform each Timeline specification into a finite state machine,
using eight transformation stages that are executed in sequential order. In our
model-driven approach, each of those stages is explicitly modelled by one or
more graph grammar rules. In the following, we explain each stage in detail.

254 E. Bodden and H. Vangheluwe

Stage 1 - Add an end event. For the subsequent transformation stages it will be
useful to have an additional end event, which marks the last event in the time
line. Hence, our first rule adds such an event to the one and only event of the
time line which has no outgoing edge in the temporal order relation. Note that
there can only be one such event because the temporal order, being a total order
on a finite number of elements, has a unique largest element. The graph rewriting
rule stating this transformation is depicted in Fig. 3. The left-hand side of this
rule is annotated with an additional matching condition, stating that there may
be no outgoing edge in the Order relation:

matchcond(e) := ¬∃e′ ∈ E . (e, e′) ∈ O

Note how number labels on left-hand side (LHS) and right-hand side (RHS) of
rules allow one to relate nodes on both sides. Labels present on both sides denote
retained nodes, labels present only on the LHS denote deleted nodes, and labels
present only on the RHS denote created nodes. On the LHS, <ANY> matches any
attribute value. On the RHS, the notation <COPIED> denotes attribute copying
from the LHS, <SPECIFIED> denotes an explicitly computed attribute.

<ANY>

<ANY>

1

<COPIED>

<COPIED>

end

end

1 3

2

Fig. 3. Adding the artificial end event

Stage 2 - Add states. For each event we then generate a state which reflects the
point in time immediately before the associated event occurs. We do so by using
four different transformation rules, one each for regular, required and fail events
plus one for the end event. We use multiple rules here, because the kind of state
we generate depends on the event type.

The rules are shown in Fig. 4. For a regular event (marked with an e), we
simply generate a non-final state. We add a generic edge between the event and
the state to be able to relate them to each other in later transformation stages.
AToM3 allows generic edges to connect any kind of nodes. Other connections are
constrained by the formalism’s meta-model. For a required event we generate a
final state accordingly. This is because the generated state machine is meant
to accept an input stream of events if and only if it violates the specification.
Hence, in case the monitor has not seen a required event yet, it has to be in an
accepting state. Similarly, for a fail event we actually add two states. The first
one is non-final and reflects the point in time before the event occurs. The second

Transforming Timeline Specifications into Automata 255

e

<ANY>

1

False

False

initial:

final:

<COPIED>

<COPIED>

3

1

2

r

<ANY>

1

False

True

initial:

final:

<COPIED>

<COPIED>

3

1

2

end

<ANY>

1

False

False

initial:

final:

e

3

1

2

X

<ANY>

1

False

False

initial:

final:

False

True

initial:

final:

<COPIED>

<COPIED>

3 5

1

8 <SPECIFIED>

7

true

6

Fig. 4. Adding states

one is final and contains a true loop. This “sink” state has special semantics in
the sense that it allows for early error detection: once it is visited, we know
that the property is violated no matter what suffix of the trace will follow. The
incoming transition to this state is labelled with le, the label of the matched
event. We copy the value from the event label. Finally, the end event is treated
as a regular event.

Stage 3 - Marking the initial state. In order to construct a valid finite automaton,
we have to mark its initial state as initial. We identify this initial state as the
unique state that is associated with the unique successor of the start event in
the temporal order relation. The corresponding rule is shown in Fig. 5.

<ANY>

<ANY>

initial:

final:

start

<ANY>

<ANY>

<ANY>

4

1 2

3

5

<SPECIFIED>

<COPIED>

initial:

final:

<COPIED>

<COPIED>

<COPIED>

<COPIED>

4

1 2

3

5

Fig. 5. Marking the initial state

256 E. Bodden and H. Vangheluwe

<ANY>

<ANY>

initial:

final:

<ANY>

<ANY>

initial:

final:

<ANY>

<ANY>

<ANY>

<ANY>

4 5

1 2

3

6 7
<SPECIFIED>

<SPECIFIED>

<COPIED>

<COPIED>

initial:

final:

<COPIED>

<COPIED>

initial:

final:

<COPIED>

<COPIED>

<COPIED>

<COPIED>

8

9

4 5

1 2

3

6

7

Fig. 6. Creating transitions

Stage 4 - Adding transitions. This step adds the necessary transitions between
the states. For any two states belonging to two events ei, ei+1 where ei+1 follows
ei in the temporal order, we add a transition between those states, labelled with
lei , simply because we want to move from the state representing “before ei” to
its successor, when lei occurs. We also add a loop to the state associated with
ei, holding the label !lei (read “not lei”), so that we do not discard a partial
match only because lei has not been seen yet. Fig. 6 shows our rule for creating
transitions.

Stage 5 - Folding constraints. The automaton we now have associated with the
original time line is already a valid finite automaton, equivalent to the time line,
not taking constraints into account. Hence, the constraints are handled next.
The idea is to copy constraints over from the time line onto the transitions of
the resulting automaton. However, one problem still exists: a constraint may be
linked to two states which are not immediate successors in the temporal order,
i.e., between events ei, ej with j − i > 1. In such a case, the constraint also takes
effect at all events ei+1, . . . , ej−1, even though those are not directly connected to
the constraint. In [9], Smith et al. propose a tableau based approach in order to
calculate the constraints which apply to each single transition. We rather opted
for a visual approach, which we find easier to understand and implement.

The rule we describe here resolves the transitive notion of a constraint by
connecting all the intermediate events explicitly to an equivalent constraint. This
is depicted in Fig. 7 and makes the above observation explicit: whenever we see
two events ei, ej with a constraint between them and there exists an event ej−1

preceding ej in the temporal order, then we split the constraint into two, one
covering the region between ei and ej−1 and one covering the step from ej−1 to
ej . Note that the first of those two constraints might still reach over multiple
events. In the general case, where δ := j−i, we hence have to apply this rule δ−1
times until the fixed point is reached. This is automatically performed by virtue
of AToM3’s graph transformation semantics. When folding the constraints in this
way, we also have to make sure that the first constraint includes its starting event
only when the original constraint did so. Similarly, the second constraint must
include its end event only if the original constraint did so. We hence copy over

Transforming Timeline Specifications into Automata 257

<ANY>

<ANY> <ANY>

<ANY>

<ANY>

<ANY>

5

1

2

3

<ANY>
<ANY> <ANY>

6

<COPIED>

<COPIED> <COPIED>

<COPIED>

<COPIED>

<COPIED>

5

1

2
3

<SPECIFIED><SPECIFIED> incl

8

<SPECIFIED>
incl <SPECIFIED>

9

Fig. 7. Folding constraints

those properties. Fig. 7 reflects this by showing <SPECIFIED> at the appropriate
labels. For the intermediate events it is clear that those have to be included.
Hence, we set this property explicitly to that value.

Stage 6 - Applying the constraints. After having folded the constraints, we can
safely assume that constraints only exist between immediate successor events
ei, ei+1. This assumption provides us with a direct and local mapping between
any two events, their associated constraints and states. In the following, we
explain three different rules which are used to propagate the constraints onto
the related transitions of the finite automaton.

Applying a constraint at its start point. The first rule is shown in Fig. 8(a) (we
only show the left-hand side here, as the right-hand side has the same struc-
ture). Its purpose is to propagate a constraint from an included start event of
a constraint to the corresponding transition. If a starting event e is included in
a constraint c this means that we only accept this event (i.e., make progress in
the automaton) if c holds when e occurs. Consequently, we propagate c from the
left event onto the transition connecting the two associated states — the label
of that transition changes from l to (l and c). We remind the reader that the left
state of the two reflects the point in time before e was read and the right one
the point in time after e was read. Also, we should mention that we made the
rule match only if the constraint does not already exist at the target transition.
This prevents AToM3 from applying the same rule repeatedly.

Applying a constraint at its end point. Similarly, we have to handle cases where
the end point of a constraint is included. The rule in Fig. 8(b) shows how we

258 E. Bodden and H. Vangheluwe

<ANY>

<ANY>

nitial:

final:

<ANY>

<ANY>

initial:

final:

<ANY>

<ANY>

<ANY>

<ANY>

5 8

1 2

3

6 9

<ANY>incl <ANY>

4

<ANY>

10

(a) Applying at start points

<ANY>

<ANY>

initial:

final:

<ANY>

<ANY>

initial:

final:

<ANY>

<ANY>

<ANY>

<ANY>

5 8

1 2

3

6

<ANY>
<ANY> incl

4

<ANY>

9

(b) Applying at end points

Fig. 8. Applying constraint start and end points (left-hand sides)

<ANY>

<ANY>

initial:

final:

<ANY>

<ANY>

<ANY>

<ANY>

5

1 6

3

2

<ANY>

7

<ANY>
<ANY> <ANY>

4

Fig. 9. Applying constraint bodies to the loops (left-hand side)

propagate the constraint label onto any transition moving out of the end state
of the constraint, in case the right event is included in the constraint.

Applying a constraint to an interval. The “body” of the constraint, i.e., the part
between its start point and end point finally has to be applied to the corre-
sponding loop, since the loop — as is the case with the constraint — describes
what behaviour is allowed before the next event occurs. The left-hand side of
the equivalent transformation rule is shown in Fig. 9. For each such match we
add the negation of the label of the constraint onto the label of the loop, which
means that whenever the constraint is violated, we may not return to this state,
i.e., in the absence of other matching transitions, the partial match is discarded.

Stage 7 - Implement semantics of fail events. The way we generated states for
fail events does not yet exactly reflect the semantics given in [9]. In the current
state machine, the scope of a fail event would extend until the end of the input
instead of only until the event following the fail event. This means that we would
falsely detect a violation if the fail event occurs anywhere on the remaining path.

Transforming Timeline Specifications into Automata 259

However the semantics state that it only must not occur until the next regular
(or required) event occurs. The rule shown in Fig. 10 depicts the appropriate
change to implement the correct fail event semantics.

<ANY>

<ANY>

nitial:

final:

<ANY>

<ANY>

initial:

final:

<ANY>

<ANY>

initial:

final:

<ANY>

True

initial:

final:

<ANY>

<ANY>

X

<ANY>

<ANY>

<ANY>

4 5 6

10

1 2 3

7 8 9

<ANY>

11

<ANY>

12

<ANY>

13

<COPIED>

<COPIED>

nitial:

final:

<COPIED>

<COPIED>

initial:

final:

<COPIED>

<COPIED>

initial:

final:

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<COPIED>

4 6

10

1 2 3

7 9

17

<SPECIFIED>

15

<SPECIFIED>

16

Fig. 10. Correcting the semantics of fail events

Assume that e is a fail event. We eliminate the state qe, changing its incoming
transition to have qe+1 as target state. The transition from qe to the failure state
q′e is changed to start at qe+1.

We wish to remind the reader that each state qe in the automaton models the
point in time right before event e was seen. Taking this into account, we can now
see that after the transformation, the semantics are implemented correctly: when
reading the event preceding e, we move to the state associated with the event fol-
lowing e directly, because this is the next event on our “progress path”. Should in
the meantime however, the fail event occur, then we move to the failure state.

Stage 8 - Removing the events. After all the previous steps we now have a finite
automaton model which encodes the semantics of the original Timeline model.
Hence, we can remove all event information. Here, it suffices to remove the events
alone, because AToM3 automatically removes all (dangling) associated relations
automatically. Consequently, we can simply implement this step by means of a
rule with an unspecified event on the left-hand side and an empty right-hand
side. Fig. 11 shows the result of the complete translation (steps 1 through 8) of
our example from Fig. 1.

Stateful transformations, termination and correctness. In order to prevent un-
wanted recursive application of the different transformations, we had to make
parts of the graph transformation model stateful, which means that we carry
around an explicit state, giving information about what rule was last applied.
This prevents for instance the rule for “adding transitions” being applied again
after transitions have been removed by the correction step for the fail event se-
mantics. We store the state in a visual label called “stage” as shown in Fig. 11.
Future versions of AToM3 will support programmed graph rewriting, allowing

260 E. Bodden and H. Vangheluwe

False

False

initial:

final:

False

True

initial:

final:

True

False

initial:

final:

False

True

initial:

final:

Cleanup events

Stage:

!open

!close

!close && open

close

true

dispose && !clos

Fig. 11. Example - resulting automaton

for the elegant and explicit description of transformation stages. Each stage
terminates due to implicit or explicit termination conditions. The folding of
constraints, for instance, automatically reaches a fixed point when there is no
constraint any more that spans more than two events. The propagation of con-
straint values, however, uses a hand-coded check as described above. With re-
spect to correctness it is noted that a formal proof of transformation properties
such as termination is out of the scope of this paper. Nevertheless, such a proof
by structural induction over the different Timeline language constructs is quite
straightforward.

4 Applicability to Runtime Monitoring

As mentioned earlier, the generated finite state machines can be used for the
purpose of runtime verification. While Büchi automata, which are used for static
verification, read an input of infinite length, the automata we use here accept a
finite input. This is because in runtime verification a program is indeed executed
and hence, every event sequence is terminated as the program shuts down.

As described in [8], our current implementation of tracematches generates
finite-state monitors from regular expressions with free variables, where each
variable is bound to matching objects at runtime. Hence, it is relatively easy
to modify the back-end in such a way that it does not generate the finite state
monitor from a given regular expression but instead reads it in directly. In trace-
matches, abstract events are mapped onto concrete events in the code via point-
cuts in the aspect-oriented programming language AspectJ [11]. A pointcut in
this setting is a predicate over runtime events.

Fig. 12 shows what such a state-based tracematch syntax could look like for
our file example (automatic generation of this textual representation is future
work). In its header in line 1, the tracematch declares to reason about a single
file f. Lines 2-4 hold two user-defined symbols based on AspectJ pointcuts. The
transition table for the tracematch automaton follows in lines 6-7. This part of
the specification can be directly generated from the visual state machine model.

Transforming Timeline Specifications into Automata 261

1 tracematch(File f) {
2 sym close after returning: call(∗ File.close ()) && target(f);
3 sym write before: call(∗ File.write (..)) && target(f);
4 sym dispose before: call(∗ File.delete ()) && target(f);
5

6 initial state 0; final state 1; final state 2; //define states
7 (0,open,1); (1,dispose ,2); //define transitions
8 { System.err.println(”State violation on file ”+f+”.”); }
9 }

Fig. 12. Automaton-based tracematch checking for writes to closed files

Note that unreachable states do not show up. This is because we remove un-
productive states from the automaton, still in the visual model. We refer to our
technical report [1] for further details. Also, certain negated labels on transi-
tions do not need to be copied due to the event-based semantics of tracematch
automata. Line 8 finally holds the body of code that is to be executed on each
single match. Note that this body has access to the bound variable of f, an
important feature of tracematches.

5 User Experience with AToM3 Suggested Improvements
of the Tool

In this section we briefly summarize our experience with using AToM3 as a tool
for visual specification of modelling languages and model transformations. We
highlight what worked for us but also needs for further improvements.

5.1 What Worked Well

The following worked very well.

Modelling with concrete syntax. The ability to describe both models and trans-
formations, in concrete syntax is useful for domain experts. Indeed, we identified
this as the number one reason for using visual graph transformations opposed to
hand written code. With concrete syntax, the transformation becomes visually
explicit to the modeller. It is straightforward to picture the effects of a transfor-
mation in one’s mind, because this transformation can directly be seen already
in the transformation rules themselves.

Large productivity increase. In [9] the original creators of the Timeline formal-
ism reported that they spent about one month on implementing a modelling
environment for Timeline. Using AToM3 we were able to achieve the same task
in less than three days. A more experienced user of AToM3 would probably
have been able to finish the implementation in an even smaller amount of time.
Furthermore, because in AToM3 the semantics are implemented via visual graph
transformation rules, this implementation will easily allow us to experiment with
different semantics, by just modifying the rewrite rules accordingly.

262 E. Bodden and H. Vangheluwe

5.2 Suggestions for Improvements

We believe that although our overall user experience with AToM3 was highly
satisfying, the following issues remain.

Negative application conditions. In many instances negative application condi-
tions (NACs) would have been very useful to prevent a rule from applying in
certain situations. The Montréal version of AToM3 we used allowed such condi-
tions only in hand coded form, via inserting Python code. Note that the Madrid
version of AToM3 does have support for NACs.

Programmed graph rewriting was lacking. In addition, we had to insert the afore-
mentioned “Stage” label into each of our visual specifications. This label was
then used to keep track of the current rewriting phase in order to schedule the
rewriting correctly. The actual scheduling was again written in Python code.
Programmed graph rewriting is a solution to this problem as put forward by the
PROGRES [12] model transformation tool. Recent AToM3 developments [13]
presented at AGTIVE do support programmed graph rewriting.

Copying/computation of labels not visually explicit. We further found that the
way in which labels are copied from one model object to another should be more
visually explicit. As our figures show, AToM3 currently only shows <SPECIFIED>
at labels where values are explicitly specified. In our opinion it would help if the
labels that are specified to be copied there were displayed. A color-coding scheme
could enhance user experience further.

Static semantics were hard to specify. Often the programmer of a graph trans-
formation might wish to specify rules that check the static semantics of a given
visual model. For instance in our case we wanted to make sure that the “Order”
relationship is a total ordering, without cycles. In AToM3 we had to program
this check manually in Python code. However for future versions we envision a
more explicit mechanism in the form of negative application conditions that are
evaluated not at transformation time but rather when the model is saved. In
our particular case, the user could draw a circular dependency with the “Order”
relation. The semantics would then demand that this pattern may not match
when the validity of a given model is evaluated. Note that PROGRES [12] has
some limited support for static checks of that kind.

Layouting not yet optimal. We found the layout algorithms in AToM3 to be
suboptimal. Although in general best effort is made by the AToM3 modelling
environment, it still happens that nodes or edges overlap. Even in cases where
no overlapping occurs, objects might be arranged in a way that to the tool user
hardly makes sense. For instance in the case of Timeline, the time line should
really be a line, with arrows starting on the left and ending to the right. There
should be layout algorithms available which take such constraints into account.
Maier and Minas have devised a generic layout algorithm for meta-model based
editors [14] which promises to mitigate some of those problems.

Transforming Timeline Specifications into Automata 263

6 Conclusion and Future Work

In this work we have shown that it is feasible to visually specify the transfor-
mation from the Timeline temporal specification formalism to finite automata
suitable for runtime monitoring. The resulting automata can directly be used
to generate efficient finite-state monitors for Java programs using an existing
back-end for tracematches [8].

We believe that this explicit way of transforming specifications to monitors
facilitates reasoning about and debugging of specifications. In particular, our
translation is completely visual and provides a one-to-one mapping between
entities in the Timeline specification and the resulting finite automaton. We
plan to express this bi-directional relationship (i.e., backward trace-ability) be-
tween Timeline and finite automata in the form of Triple Graph Grammars [15].
These allow for the declarative specification of consistency relationships between
graphs. This will enable us to easily relate errors at execution level to constraints
in the original Timeline specification. We believe that our approach is yet an-
other stepping stone on our path to bringing temporal specifications and runtime
monitoring closer to widespread industry adoption.

In future work, we also plan to give a formal description of the actual trace-
match code and how it is generated from the obtained finite state machines.
We also wish to study the scalability of temporal specification formalisms with
respect to the size of the pattern that needs to be specified. Last but not least,
we want to apply our approach to real-world applications, for instance parts of
the DaCapo benchmark suite [16].

Acknowledgements. We wish to thank the anonymous reviewers for their per-
tinent comments. Further we thank the organizers of AGTIVE for making this
symposium an unforgettable event. Last but not least, the first author wished
to express his gratitude towards the Deutsche Forschungsgemeinschaft (DFG)
and the AGTIVE steering committee for the awarded travel grant. The sec-
ond author acknowledges partial support of this work by the Canadian National
Sciences and Engineering Research Council.

References

1. Bodden, E., Vangheluwe, H.: Transforming Timeline specifications into automata
for runtime monitoring (extended version). Technical Report SABLE-TR-2008-1,
Sable Research Group, School of Computer Science, McGill University, Montréal,
Québec, Canada (February 2008)

2. 1st to 7th Workshop on Runtime Verification (RV 2001 - RV 2007) (2001-2007),
http://www.runtime-verification.org/

3. Avgustinov, P., Tibble, J., Bodden, E., Lhoták, O., Hendren, L., de Moor, O.,
Ongkingco, N., Sittampalam, G.: Efficient trace monitoring. Technical Report abc-
2006-1 (March 2006), http://www.aspectbench.org/

4. Avgustinov, P., Tibble, J., de Moor, O.: Making trace monitors feasible. SIGPLAN
Not. 42(10), 589–608 (2007)

http://www.runtime-verification.org/
http://www.aspectbench.org/

264 E. Bodden and H. Vangheluwe

5. Bodden, E., Hendren, L.J., Lhoták, O.: A staged static program analysis to improve
the performance of runtime monitoring. In: Ernst, E. (ed.) ECOOP 2007. LNCS,
vol. 4609, pp. 525–549. Springer, Heidelberg (2007)

6. Martin, M., Livshits, B., Lam, M.S.: Finding application errors using PQL: a pro-
gram query language. In: Proceedings of the 20th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages and Applications,
pp. 365–383 (2005)

7. Fink, S., Yahav, E., Dor, N., Ramalingam, G., Geay, E.: Effective typestate veri-
fication in the presence of aliasing. In: ISSTA 2006: Proceedings of the 2006 inter-
national symposium on Software testing and analysis, pp. 133–144. ACM Press,
New York (2006)

8. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding Trace Matching with
Free Variables to AspectJ. In: Object-Oriented Programming, Systems, Languages
and Applications, pp. 345–364. ACM Press, New York (2005)

9. Smith, M.H., Holzmann, G.J., Etessami, K.: Events and Constraints: A Graphical
Editor for Capturing Logic Requirements of Programs. In: Proceedings of the 5th
IEEE International Symposium on Requirements Engineering, pp. 14–22 (2001)

10. de Lara, J., Vangheluwe, H.: AToM3: A tool for multi-formalism and meta-
modelling. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306,
pp. 174–188. Springer, Heidelberg (2002)

11. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–353. Springer, Heidelberg (2001)

12. Schürr, A.: Developing Graphical (Software Engineering) Tools with PROGRES.
In: International Conference of Software Engineering, pp. 618–619 (1997)

13. Syriani, E., Vangheluwe, H.: Programmed Graph Rewriting with DEvS. In: Schürr,
A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088. Springer, Hei-
delberg (2008)

14. Maier, S., Minas, M.: A Generic Layout Algorithm for Meta-model based Edi-
tors. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088.
Springer, Heidelberg (2008)

15. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–
163. Springer, Heidelberg (1995)

16. Blackburn, S.M., Garner, R., Hoffman, C., Khan, A.M., McKinley, K.S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.,
Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D., VanDrunen, T.,
von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks: Java benchmarking
development and analysis. In: OOPSLA 2006: Proceedings of the 21st annual ACM
SIGPLAN conference on Object-Oriented Programing, Systems, Languages, and
Applications, pp. 169–190. ACM Press, New York (2006)

17. Schürr, A., Nagl, M., Zündorf, A. (eds.): AGTIVE 2007. LNCS, vol. 5088. Springer,
Heidelberg (2008)

Visualization, Simulation and Analysis
of Reconfigurable Systems�

Claudia Ermel1 and Karsten Ehrig2

1 Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany

claudia.ermel@tu-berlin.de
2 Department of Computer Science

University of Leicester, UK
karsten@mcs.le.ac.uk

Abstract. Meta-modeling is well known to define the basic concepts
of domain-specific languages in an object-oriented way. Based on graph
transformation, an abstract meta-model may be enhanced with informa-
tion on concrete visualization of objects and relations, and the language
syntax is defined by a graph grammar. Moreover, graph transformation
can also formalize the semantic aspects of models, thus providing a basis
for model validation by simulation.

Apart from editing and simulating the behavior of a system, there may
be necessary reconfiguration operations which change the underlying sys-
tem structure at runtime. In this paper, we focus on the interrelation of
simulation and reconfiguration operations using formal verification tech-
niques based on graph transformation. Our approach is demonstrated
by the definition of a domain-specific language for building, simulating
and reconfiguring small railway systems, using the Tiger tool environ-
ment. For further verification, we define a model transformation from
the railway domain to Petri nets.

Keywords: Graph transformation, model transformation, reconfigurable
system, visualization, simulation, analysis.

1 Introduction

Domain-specific modeling (DSM) aims to model a system at the same level of
abstraction with the domain itself. This reduces mental mapping by moving the
modeling language closer to the domain as perceived by designers, and improves
the model quality compared to using generic modeling languages. The disadvan-
tage of DSM is that for each domain a different visual modeling tool is needed.
Here, meta CASE tools can help (like e.g. MetaEdit+ [1]), which generate e.g. a
visual editor on the basis of a definition of the visual domain-specific language.

� This work has been partially sponsored by the IST-2005-16004 Integrated Project
SENSORIA (Software Engineering for Service-Oriented Overlay Computers).

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 265–280, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

266 C. Ermel and K. Ehrig

Two main approaches to visual language definition can be distinguished:
grammar-based approaches or meta-modeling. Using graph grammars [4], multi-
dimensional representations are described by graphs. This allows not only a
visual notation of the concrete syntax, but also a visualization of the abstract
syntax. While the concrete syntax contains the concrete layout of a visual no-
tation, the abstract syntax abstracts from the layout and provides a condensed
representation to be used for further processing, e.g. behavior simulation or
system reconfiguration. Graph rules are used to manipulate the graph represen-
tation of a language element. Meta-modeling (see e.g. [2]) is also graph-based,
but uses constraints instead of a grammar to define a visual language. While
visual language definition by graph grammars can borrow a number of concepts
from classical textual language definition, this is not true for meta-modeling.

Graph transformation can also formalize the semantic aspects of models.
There are numerous formal graph-transformation-based semantics definitions
[3]. In this paper, we use graph transformation not only to construct and visual-
ize domain-specific visual models, but also to simulate dynamic model behavior.
Apart from operations for editing, there may be necessary operations to change
the underlying system structure at runtime (i. e. during simulation). Systems
allowing to be changed have become an important topic in recent years since the
adaption of a system to a changing environment plays a significant role e. g. in
computer supported cooperative work, multi agent systems or mobile networks.
In our approach, such reconfiguration operations are modeled by reconfiguration
rules, and the corresponding systems are called reconfigurable systems.

As running example, we model a toy railway system. The visualization shows
different kinds of tracks and switches which can be glued at connection points.
Simulation rules allow to move a train to an adjacent track, respecting the switch
modes. Reconfiguration rules allow to toggle between two modes of a switch.
Graph transformation as a formally defined calculus [4] offers well-founded theo-
retical results that support the formal reasoning about graph-based models at all
levels. We apply formal graph transformation techniques to reason about the in-
dependence of simulation and reconfiguration steps. For further verification, we
define a model transformation from the railway system language to Petri nets.
We apply the Tiger environment [5] for generating visual editor plug-ins in
Eclipse [6] from graph grammars. Tiger is based on the graph transformation
engine and analysis tool Agg [7].

The paper is structured as follows: Section 2 reviews the concepts for the
graph-grammar based definition of visual languages, demonstrated by a domain-
specific language to model small railway systems. In Section 3, concepts for
simulation and reconfiguration of discrete-event systems by graph transformation
are discussed, and the railway system is coming to life by operations for moving
trains and changing switch modes. Section 4 applies verification techniques to
analyze the interrelation of reconfiguration and simulation steps. Furthermore,
a model transformation to Petri nets is defined, which allows to verify further
dynamic system properties.

Visualization, Simulation and Analysis of Reconfigurable Systems 267

2 Defining Visual Domain-Specific Languages

Meta-modeling uses UML class diagrams to model a visual languages abstract
syntax (see e.g. the MOF approach by the OMG [2]). While class diagrams
appear to be more intuitive than graph grammars, they are also less expres-
sive. Therefore, meta-modeling additionally uses context conditions to overcome
the weaker expressive power. In the MOF approach, for instance, the Object
Constraint Language (OCL) is used for this purpose. The advantage of meta-
modeling is that UML users, who probably have basic UML knowledge, do not
need to learn a new external notation to be able to deal with syntax definitions.
Graph grammars are more constructive, i.e. closer to the implementation, and
provide a formal basis for visualizing, validating and verifying model behavior.
Hence, in our Tiger approach, we combine the visual definition of domain-
specific languages by meta-modeling, and the definition of editing operations by
graph transformation rules.

2.1 Graph Transformation

The main idea of graph grammars and graph transformation is the rule-based
modification of graphs where each application of a graph transformation rule
leads to a graph transformation step. Graph grammars can be used on the one
hand to generate graph languages, and on the other hand to model state changes
(operational behavior). Meanwhile, graph transformation has been investigated
as a fundamental concept for programming, specification, concurrency, distrib-
ution, visual modeling and model transformation [4,8].

The core of a graph transformation rule (LHS
p−→ RHS) is a pair of graphs

(LHS, RHS), called left-hand side and right-hand side, and an injective (partial)
graph morphism p : LHS → RHS. Applying the rule (LHS

p−→ RHS) means
to find a match of LHS in the source graph and to replace this matched part
in the source graph by the corresponding RHS, thus transforming the source
graph into the target graph of the graph transformation.

Especially for the application of graph transformation techniques to visual
language (VL) modeling, typed attributed graph transformation systems [4] have
proven to be an adequate formalism. A VL is modeled by a type graph capturing
the definition of the underlying visual alphabet, i.e. the symbols and relations
which are available. Sentences or diagrams of the VL are given by graphs typed
over (i.e. conforming to) the type graph. Such a VL type graph corresponds
closely to a meta model. In order to restrict the visual sentences to valid visual
models, a syntax graph grammar is defined, consisting of a set of language-
generating graph transformation rules, typed over the abstract syntax part of
the VL type graph. The rules describe editing operations which lead to the
construction of valid visual models only.

Intuitively, the application of rule p to graph G via a match m from LHS
to G deletes the image m(LHS) from G and replaces it by a copy of the right-
hand side m∗(RHS). Note that a rule may only be applied if the so-called gluing
condition is satisfied, i.e. the deletion step must not leave dangling edges, and

268 C. Ermel and K. Ehrig

for two objects which are identified by the match, the rule must not preserve
one of them and delete the other one.

Definition 1 (Graph Transformation). Let (LHS
p−→ RHS) be a typed

graph transformation rule and G a typed graph with a typed graph morphism
LHS

m−→ G, called match. A graph transformation step G
p,m
=⇒ H from G to

a typed graph H via rule p, match m, and co-
match m∗ is shown in the diagram to the right.
The rule r may be extended by a set of negative
application conditions (NACs) [9,4]. A match
LHS

m−→ G satisfies a NAC with the injective
NAC morphism n : LHS → NAC, if there is
no injective graph morphism NAC

q−→ G.

NAC

q
|����

����
���

LHS
r ��

m

��

n�� RHS

m∗

��
G �� H

A sequence G0 ⇒ G1 ⇒ ... ⇒ Gn of graph transformation steps is called graph
transformation and denoted as G0

∗⇒ Gn.

The language of a graph grammar consists of the graphs that can be derived
from the start graph by applying the transformation rules.

Although we do not define the attribution concept for graphs formally in this
paper (see [4] for a complete definition of the theory), we use node attributes in
our examples, e.g. text for the names of nodes, or integers for their positions.
This allows us to perform computations on attributes in our rules and offers a
powerful modeling approach.

2.2 Type Graph and Syntax Rules for a Railway System

Using graph transformation, a type graph defines the visual alphabet, i.e. the
symbols and symbol relations of a visual language. Layout information is inte-
grated in the type graph by special shape types connected to symbol nodes, and
by constraints on the relations of visual representations. The shape types include
information about the symbol’s shape (any kind of graphical figure or line), and
the constraints establish certain visual relations (like “The shape for this symbol
type is always glued to the shape for another symbol type,” or “The shape for
this symbol type has always a minimal size of ...”).

Fig. 1 shows the definition of the type graph of our domain-specific language
for building railway systems (without trains so far) in Tiger (Transformation-
based Generation of Environments) [5,10], a visual editor generation tool. In the
upper editor, we see the abstract syntax type graph with symbol types like Track,
End and Buffer. For each type variant, a child inheriting from the corresponding
abstract type is added to the type graph (e.g. StraightH for a horizontal straight
track, Bend1 for a bend which is curved up-left/right-down, and HL for a track End
which is the gluing point gluing two tracks at the first track’s horizontal-left side.
Note that the nodes in the abstract syntax type graph contain layout positions
(x, y: int) allowing the editing rules to set the position of the corresponding figures
in the editor accordingly. In the lower part of Fig. 1, editors for shape types are
shown, depicting the visualization of different track types and the Buffer type.

Visualization, Simulation and Analysis of Reconfigurable Systems 269

Fig. 1. Type Graph for the Domain-Specific Railway Language

A type graph together with a syntax graph grammar is used as high-level
visual specification mechanism for VLs. The grammar restricts the allowed vi-
sual sentences conforming to the type graph to the meaningful ones. Grammar
rules define syntactical editing operations. Such an operation is modeled as a
graph rule typed over the VL type graph being applied to the syntax graph of
the current diagram. Thus, only such syntactical changes are allowed which are
described by a syntax rule and which result again in a valid VL diagram. An
editing operation (i.e. the application of a syntax rule) results in a correspond-
ing change of the internal abstract syntax graph of the diagram and the layout
positions of the corresponding symbols.

Fig. 2 shows four of the syntax rules for the railway VL. Rule newStraightH
produces an unconnected track, the other rules add tracks, switches and buffers
by gluing them to tracks which already exist in the model. Numbers (m = ..)
at objects indicate mappings from a rule’s LHS to its RHS. Input parameters
(objects to be identified for the match by mouse click) are indicated by numbers
(in = ..) in a rue’s LHS. NACs (not depicted) forbid gluing tracks to tracks
at endpoints where already other tracks are glued. Positions relating objects to
each other are defined in each rule’s properties view.

A visual language (VL) definition based on a type graph and a set of syn-
tax rules is used in Tiger to generate a corresponding visual editor. Tiger

combines constructive VL specification using graph transformation with sophis-
ticated graphical editor development features offered by the Eclipse Graphical
Editing Framework (GEF) [11]. The execution of editor commands available in
the generated editor correspond to the application of syntax rules to the under-
lying abstract syntax graph of a diagram. The rule application is performed by
the graph transformation engine AGG [7]. Tiger extends AGG by a concrete
visual syntax definition for flexible means for visual model representation. From

270 C. Ermel and K. Ehrig

Fig. 2. Syntax Rules for the Railway Language

Fig. 3. Tiger-generated Visual Editor for the Railway Language

the definition of the VL, the Tiger Generator generates Java source code. The
generated Java code implements an Eclipse visual editor plug-in based on GEF
which makes use of a variety of GEF’s predefined editor functionalities. Layout
information (e.g. color, shape, and size, ..) are coded in the corresponding GEF
editor classes. Fig. 3 shows the graphical user interface of the railway editor
generated by Tiger from the VL specification consisting of the railway type
graph similar to the one in Fig. 1, but now also allowing to edit train symbols
(light-blue rectangles), and a railway syntax grammar. Basic editor operations
are available in the tool palette on the left-hand side, or by the context menu
which offers a list of operations depending on the selected symbol type.

Visualization, Simulation and Analysis of Reconfigurable Systems 271

3 Validation by Simulation

If a visual language models dynamic aspects of systems, visual simulation is inter-
esting. Usually, a prerequisite for simulation is a (slight) extension of the visual
language such that different execution states can be distinguished. In the case of
our railway system, this is the addition of trains. Simulation then is specified by
a set of simulation rules, typed over the extended VL type graph. The simulation
rules specify the possible simulation steps (e.g. train movements) which do not
change the underlying system structure. A sequence of simulation steps is called
simulation run or simulation scenario. In general, we have non-determinism in
simulation in the sense that there are more than one rules applicable at more
than one possible matches. Up to now, Tiger supports stepwise simulation
only, i.e. the user selects an applicable rule from the rule palette, and defines the
match by clicking on relevant objects in the editor panel.

Fig. 4 shows the abstract syntax of the railway simulation rules. The first rule
allows to add a train to a track, thus determining how many trains are distributed
initially on which tracks in the railway system. The NAC (drawn as crossed-out
part in the LHS) specifies that there must not be another train on this track. The
second rule has to be applied after the first one, and models the movement of a
train to the next track. Note that using the abstract nodes of type Track and Train,
we only need one abstract rule for moving trains. Again, the NAC makes sure that
the rule is only applied if there is not yet another train on the target track.

Fig. 4. Simulation Rules for Initial Train Distribution and for Train Movements

In railway simulation not only the position of trains is changing, but also
the underlying net topology is adapted when a switch is changing its mode.
In our approach, such reconfiguration operations are modeled by reconfiguration
rules. Simulation and reconfiguration rules may be applicable to the same system
states. In our railway system, changing the modes of switches is realized by
applying a reconfiguration rule. A switch consists of two tracks (one bend and
one straight track) and may be crossed by a train in only one way. The directions
a train is allowed to go are modeled by the glue edges connecting track end points.
The reconfiguration rule switch is shown in the top row of Fig. 5, and the effect
of its application (a transformation step changing the mode of a sample switch)
is shown in the bottom row of Fig. 5, where the match mapping of the track end
points is indicated by corresponding numbers. In the concrete syntax, a green
arrow indicates the current switch mode.

272 C. Ermel and K. Ehrig

Fig. 5. Reconfiguration Rule realizing Switch Modes

4 Analysis

The aim of analyzing the railway specification is to avoid unsafe states in the
simulation. For example, we would like to be sure that

(i) there are never more than one trains on a track,
(ii) a switch can only change its mode when there is no train on it.

In order to check condition (ii), we have to relate a reconfiguration opera-
tion (changing the switch mode) and a simulation operation (moving a train).
We consider this relation in Section 4.1. Moreover, we are interested in safety
properties like deadlocks which can best be analyzed using Petri net tools (see
Section 4.4). Hence, we define a model transformation from the railway VL into
the semantic domain of Petri nets (Sections 4.2 and 4.3).

4.1 Relation of Reconfiguration and Simulation

When reconfiguration of the system structure is allowed during runtime, the
question arises under which conditions a simulation step is independent of a
reconfiguration step, i.e. can the two transformations starting from the same
system state be applied in any order, leading to the same result. The Local
Church-Rosser Theorem for graph transformation systems [4] states that, for two
parallel independent graph transformations G

p1,m1=⇒ H1 and G
p2,m2=⇒ H2, there is

a graph G′ together with graph transformations H1
p2,m′

2=⇒ G′ and H2
p1,m′

1=⇒ G′. In
our case, we need to analyze the parallel independence of rules belonging to two
different rule sets (simulation and reconfiguration rules). To this end, we use the
automatic critical pair analysis offered by Agg, where rule pairs are analyzed to
find out critical pairs of rule matches. Each parallel dependent transformation is
an extension of a critical pair. The result of the critical pair analysis applied to
the reconfiguration rule switch and the simulation rule go yields e.g. the critical
pair shown in Fig. 6.

Analyzing this pair, we see that reconfiguration rule switch cannot be applied
if simulation rule go has been applied before and has been moving a train onto

Visualization, Simulation and Analysis of Reconfigurable Systems 273

Fig. 6. Critical Pair Analysis of Railway Simulation and Reconfiguration

a track which is part of the switch, because the NAC of rule switch forbids to
reconfigure switches with trains on it. Here, we have a so-called produce-forbid
conflict, where one rule produces an object which is forbidden in the match of
the other rule. Applying critical pair analysis to the reconfiguration rule switch
and the other simulation rule init yields a similar conflict. Both conflicts together
confirm that condition (ii) is valid for all possible railway models. Here, conflict
detection is used to analyze safety conditions. Analogously, critical pair analysis
of both simulation rules can be performed to check condition (i).

4.2 Model Transformation from Railway Models to Petri Nets

In this section we present a model transformation from the railway system to
Petri nets with the aim to use Petri net analysis and verification techniques to
analyze the railway behavior. Surely, only a limited class of simulation problems
is sufficiently ”Petri net like” to allow transformation of the more powerful
graph rewriting model into Petri nets. Here, the distinction of simulation rules
and reconfiguration rules helps to find the part of the system which behaves
”Petri net like” (e.g. the trains moving along the tracks), and which can be
analyzed using Petri net techniques. The other parts describe reconfiguration
operations (e.g. adding tracks or changing switches) and rather correspond to
changes of the Petri net structure, but not to Petri net firing behavior.

Model transformations between visual languages is defined in our approach
by graph transformation rules, as well. We transform the abstract syntax graph
of a source model (e.g. a railway system state) by applying transformation rules
resulting in the abstract syntax graph of the target model (e.g. a state of a
Petri net). The abstract syntax of source and target models are specified by
the type graphs TGS and TGT . A model transformation is defined by a graph
transformation system GTS = (TG, P) consisting of type graph TG and a set

274 C. Ermel and K. Ehrig

TGS
� � incS �� TG TGT

� �
incT��

GS

typeGS

��

p1 �� ... pn �� Gn

typeGn

��

GT

typeGT

��

��

Fig. 7. Typing in the Model Transformation Process

Fig. 8. Type Graph for the Model Transformation Railway2Petri

of TG-typed model transformation rules P , where both type graphs TGS and
TGT have to be subgraphs of TG (see Fig. 7). The model transformation starts
with the abstract syntax graph GS of the source model. As TGS is a subgraph
of TG, GS is also typed over TG. Please note that TG may contain not only
TGS and TGT , but also additional types and relations which are needed for the
transformation process.

After application of all model transformation rules P as long as possible, the
resulting graph Gn is typed over TG, but not yet over the type graph TGT of
the target language. In order to delete all items in Gn which are not typed over
TGT we apply a restriction construction, which restricts Gn to those objects
typed over TGT . The model transformation process is visualized in Fig. 7.

Fig. 8 shows the type graph TG for the model transformation from railway
systems to Petri nets. TG relates elements of the source type graph for railway
systems (see Fig. 1) to elements of the target type graph for Petri nets, consisting
of symbol types for Places, Transitions and Arcs in two directions. Tokens are
modeled by an integer attribute of the Place type.

Visualization, Simulation and Analysis of Reconfigurable Systems 275

Fig. 9. Two Rules for the Model Transformation Railway2Petri

Fig. 10. Petri Net Obtained by Model Transformation of the Railway System in Fig. 3

Two of the model transformation rules are shown in Fig. 9. Obviously, tracks
are mapped to places (see rule createPlace), and trains to tokens (see rule cre-
ateToken). Here, the possibility to use abstract types like Track or End in the
rules proves to be very useful, since we do not have to relate e.g. all different
types of tracks to places. When mapping connections between tracks to arcs and
transitions in the Petri net, the gluing of ends must be considered to determine
the direction of Petri net arcs. (Rule createTransition is not shown explicitly.)

Model transformations based on graph transformation have been investigated
e.g. in [12], where also techniques are presented to show that a model transforma-
tion has functional behavior, and is syntactically correct, i.e. for each diagram in
the source language we obtain in a finite number of steps in a unique well-defined di-
agram in the target language. To execute model transformation rules and to check
functional properties of model transformations (termination and confluence), the
graph transformation engineAgg [7,13] canbe used.Furthermore,Tiger [10] also
offers tool support for model transformation by graph transformation between

276 C. Ermel and K. Ehrig

two generated Eclipse editor plug-ins. Fig. 10 shows the Petri net resulting
from the model transformation of the train system depicted in Fig. 3 using the
Railway2Petri model transformation rules.

4.3 Correctness of the Model Transformation

Apart from syntactical properties of a model transformation, we can argue about
its semantical correctness if both the source and the target language have a
semantics. In our case, the behavioral semantics of railway systems is given by
the simulation rules, and the semantics of Petri nets is the well-known Petri net
firing behavior. We have to show that for each simulation step in the source
railway model, there is a corresponding simulation step in the target model,
i. e. a firing step in the corresponding Petri net. Using formal properties of
model-and-rule-transformation based on graph transformation [14,15], we argue
as follows: we perform a rule transformation of the simulation rules using the
Railway2Petri model transformation rules. Basically, the model transformation
rules are applied to the LHS, RHS and NACs of each simulation rule. This
results in a transformed simulation rule consisting of the translated LHS, RHS
and NACs. Applying such a rule transformation to the railway simulation rule
go, we obtain the rule go’ shown at the bottom of Fig. 11 which models the firing
behavior of a transition with exactly one pre-domain place and one post-domain
place which is enabled only if the post-domain place is unmarked.

Fig. 11. Rule Transformation of the Railway simulation rule go in Fig. 3

All Petri nets which are results of a railway model transformation, have only
transitions of that type. So, the firing rule go’ in Fig. 11 describes the firing
behavior for all possible resulting railway nets, provided that we assume ele-
mentary Petri nets (or condition-event (C/E) nets [16]) as underlying semantic
domain, a restricted kind of place/transition nets where place capacity and arc
weights are always one. The semantics of general place/transition nets would
not correspond to the firing rule in Fig. 11, since in place/transition nets more
than one token may be put to a post-domain place. In the case of C/E nets,
each simulation step in the railway model (a train movement from one track to
the next) corresponds to a transition firing step of the transition between the

Visualization, Simulation and Analysis of Reconfigurable Systems 277

places corresponding to the two tracks, and we have the situation depicted in
the following commuting correspondence diagram:

G1

Railway simulation step

��

model trafo ∗�� N1

C/E net simulation step

��
G2

model trafo ∗�� N2

In this diagram, we start with a graph G1 of the railway domain, such that
the model transformation G

∗=⇒ N1 yields the Petri net N1, where a transition
can be fired, leading to the Petri net N2 with a different marking. Then, there
exists a simulation step in the railway domain G1 → G2 such that the model
transformation of G2 yields the same Petri net N2. In fact, we have that the
source railway simulation model and the target Petri net are always bisimilar.
The model transformation establishes one equivalence relation relating railway
graphs and marked C/E nets, and another one relating railway simulation rules
and Petri net transitions. Then, given a railway graph G1 and a corresponding
Petri net N1 resulting from the model transformation of G1, i.e. G1 ∼ N1, the
equivalence is a bisimulation since for rule r used in the transformation step

G1
r−→ G2 there exists a transition t with r ∼ t and N1

[t〉−→ N2 and N2 ∼ G2.

4.4 Analysis in the Petri Net Domain

Now the resulting Petri net can be analyzed using Petri net techniques, e.g. for
liveness (any transition can fire eventually), for place invariants (sets of places
where the sum of tokens remains constant), transition invariants (sets of transi-
tions the firing of which does not change the marking), deadlocks (sets of places
that will never be marked again, once they are empty) or traps (sets of places
that will never loose their tokens). An example is the trap in the net in Fig. 10,
consisting of the places corresponding to the horizontal tracks from A to B in
Fig. 3, since in the current switch mode, the train will never leave those tracks.

An interesting aspect in model transformation for analysis is the back-anno-
tation of analysis results to the source model. In our case, places can be traced
back to the corresponding tracks easily, as we have a one-to-one correspondence
between them (see Fig. 8 and rule createPlace in Fig. 9). Thus it is possible to
visualize e. g. deadlocks in the railway system by highlighting the corresponding
tracks in a certain color. Other interesting properties concern path finding (the
shortest connection from point A to point B), and collision detection.

All these properties of reconfigurable systems should be analyzed having in
mind the possible reconfiguration operations. For instance, more interesting than
knowing whether there is a deadlock considering a fixed switch mode is it to know
whether there are deadlocks independent of all possible switch modes. In order to
obtain all possible switch configurations, we can apply the Railway2Petri model
transformation not only to the simulation rules but also to the reconfiguration
rule. This results in a Petri net transformation rule which allows the modeler to

278 C. Ermel and K. Ehrig

change the Petri net structure corresponding to a change of a switch mode in
the railway system. Thus, Petri nets for different switch modes can be obtained
and analyzed without performing the complete model transformation all over
again for each different switch mode. In [17,18], an Eclipse plug-in is described
for modeling, simulating and analyzing such reconfigurable Petri nets [19].

5 Related Work

While Petri net modeling and analysis tools like Netlab [20] and CPNTools
[21], are well known and frequently used, domain specific modeling languages as
supported by Tiger may be generated using meta CASE tools like DiaGen [22]
and AtoM3 [23]. Those tools have no direct support for model driven analysis
techniques and do not support reconfiguration of systems during runtime. Petri
net transformations that aim at changing the net in arbitrary ways have been
described in [24], and runtime system reconfiguration has been investigated in
[25], but a user friendly, graphical environment for the design and analysis of
reconfigurable systems is still missing.

Model transformations are supported from various tools like VIATRA2 [26],
GrEAT [27], and tools from the Eclipse Generative Modeling Tools (GMT)
project [28]. In most cases these transformations have to be described textually,
and user friendly support for visual analysis and testing is generally missing.

6 Conclusion

This paper gives an example for using the unifying approach of graph transfor-
mation to define the syntax and semantics of a domain-specific visual modeling
language. The language models a small railway system, and from the graph-
transformation based language definition, a visual editor is generated as Eclipse

plug-in. The type hierarchy used for syntax definition provides a good basis also
for describing the semantics of the system in terms of simulation rules, and for
a model transformation from the domain-specific language into Petri nets. Since
many systems have to be reconfigurable during runtime, we have investigated
the relation of reconfiguration operations (e.g. changing the mode of a switch)
and simulation operations (e.g. move the train to the next track) by analyzing
rule dependencies. Tool support for language definition, visualization and visual
editor generation is available by the Tiger tool environment and the graph
transformation engine Agg, providing support to analyze termination, conflicts
and dependencies in graph transformation systems.

Using graph transformation for modeling and analyzing reconfigurable sys-
tems has shown to be a solid basis to reason about system properties in different
reconfiguration modes. In this context, interactions between simulation states
and structure should be investigated in more detail, since reconfiguration is of-
ten triggered by certain system state changes [29].

As future we envisage an extension of Tiger ’s editing and simulation fea-
tures. We intend to provide basic syntax-oriented operations automatically

Visualization, Simulation and Analysis of Reconfigurable Systems 279

instead of requiring the language designer to specify them manually for each
VL element. For simulation, we aim at structuring simulation rules into units
using control structures. Abstract rules and rule structuring techniques are the
basis of a scalable approach usable for modeling and analyzing also larger case
studies.

Acknowledgements

The authors would like to thank Szilvia Varró-Gyapay and the anonymous ref-
erees for their useful comments.

References

1. Tolvanen, J., Rossi, M.: MetaEdit+: Defining and Using Domain-Specific Modeling
Languages and Code Generators. In: Proc. Conf. on Object-oriented programming,
systems, languages, and applications (OOPSLA 2003), pp. 92–93. ACM Press, New
York (2003)

2. Object Management Group: Meta-Object Facility (MOF), Version 1.4 (2005),
http://www.omg.org/technology/documents/formal/mof.htm

3. Kreowski, H.J., Hölscher, K., Knirsch, P.: Semantics of visual models in a rule-
based setting. Electr. Notes Theor. Comput. Sci. 148(1), 75–88 (2006)

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. In: EATCS Monographs in Theor. Comp. Science. Springer, Hei-
delberg (2006)

5. Ermel, C., Ehrig, K., Taentzer, G., Weiss, E.: Object Oriented and Rule-based
Design of Visual Languages using TIGER. In: Proc. Workshop on Graph-Based
Tools (GraBaTs 2006), Electronic Communications of the EASST, vol. 1 (2006)

6. Eclipse Consortium: Eclipse – Version 3.2.1 (2007), http://www.eclipse.org
7. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Val-

idation of Software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003.
LNCS, vol. 3062, pp. 446–456. Springer, Heidelberg (2004)

8. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.): Handbook of Graph
Grammars and Computing by Graph Transformation. Applications, Languages and
Tools, vol. 2. World Scientific, Singapore (1999)

9. Habel, A., Heckel, R., Taentzer, G.: Graph Grammars with Negative Application
Conditions. Fundamenta Informaticae 26(3-4), 287–313 (1996) (special issue)

10. Tiger Project Team, Technical University of Berlin: Tiger: Generating Visual En-
vironments in Eclipse (2005), http://www.tfs.cs.tu-berlin.de/tigerprj

11. Eclipse Consortium: Eclipse Graphical Editing Framework (GEF) – Version 3.2
(2006), http://www.eclipse.org/gef

12. Ehrig, H., Ehrig, K.: Overview of Formal Concepts for Model Transformations
based on Typed Attributed Graph Transformation. In: Proc. Workshop on Graph
and Model Transformation (GraMoT 2005). ENTCS, vol. 152. Elsevier, Amster-
dam (2005)

13. AGG Homepage, http://tfs.cs.tu-berlin.de/agg
14. Ermel, C., Ehrig, H., Ehrig, K.: Semantical Correctness of Simulation-to-Animation

Model and Rule Transformation. In: Proc. Workshop on Graph and Model Trans-
formation (GraMoT 2006). EC-EASST, vol. 4 (2006)

http://www.omg.org/technology/documents/formal/mof.htm
http://www.eclipse.org
http://www.tfs.cs.tu-berlin.de/tigerprj
http://www.eclipse.org/gef
http://tfs.cs.tu-berlin.de/agg

280 C. Ermel and K. Ehrig

15. Ermel, C., Ehrig, H.: Behavior-preserving simulation-to-animation model and rule
transformation. In: Proc. of Workshop on Graph Transformation for Verification
and Concurrency (GT-VC 2007). ENTCS (to appear, 2008)

16. Reisig, W.: Systementwurf mit Netzen. Springer, Heidelberg (1985)
17. Biermann, E., Ermel, C., Hermann, F., Modica, T.: A Visual Editor for Reconfig-

urable Object Nets based on the Eclipse Graphical Editor Framework. In: Proc.
Workshop on Algorithms and Tools for Petri Nets (2007)

18. Biermann, E., Modica, T.: Independence Analysis of Firing and Rule-based Net
Transformations in Reconfigurable Object Nets. In: Proc. 7th Workshop on Graph
Transformation and Visual Modeling Techniques. EC-EASST (to appear, 2008),
http://tfs.cs.tu-berlin.de/gtvmt08/GTVMT-program.htm

19. Ehrig, H., Hoffmann, K., Padberg, J., Prange, U., Ermel, C.: Independence of
net transformations and token firing in reconfigurable place/transition systems.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 104–123.
Springer, Heidelberg (2007)

20. RWTH Aachen: Petrinetz-Tool Netlab (Windows) (2007),
http://www.irt.rwth-aachen.de/typo3/index.php?id=101\&L=0

21. CPN Group, University of Aarhus, Denmark: CPN Tools: Computer Tool for
Coloured Petri Nets (2005), http://wiki.daimi.au.dk/cpntools/cpntools.wiki

22. Minas, M., Viehstaedt, G.: DiaGen: A Generator for Diagram Editors Providing
Direct Manipulation and Execution of Diagrams. In: Proc. IEEE Symp. on Visual
Languages, pp. 203–210 (1995)

23. de Lara, J., Vangheluwe, H., Alfonseca, M.: Meta-Modelling and Graph Grammars
for Multi-Paradigm Modelling in AToM3. Software and System Modeling 3(3), 194–
209 (2004)

24. Padberg, J., Urbášek, M.: Rule-Based Refinement of Petri Nets: A Survey. In:
Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri Net Technology for
Communication-Based Systems. LNCS, vol. 2472, pp. 161–196. Springer, Heidel-
berg (2003)

25. Matevska-Meyer, J., Hasselbring, W., Reussner, R.: Software architecture descrip-
tion supporting component deployment and system runtime reconfiguration. In:
Proc. Workshop on Component-Oriented Programming (WCOP 2004) (2004)

26. Csertán, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., Varró, D.: VIATRA:
Visual automated transformations for formal verification and validation of UML
models. In: Proc. Automated Software Engineering, pp. 267–270. IEEE Press, Los
Alamitos (2002)

27. Narayanan, A., Karsai, G.: Towards Verifying Model Transformations. In: Proc.
Graph Transformation and Visual Modeling Techniques. ENTCS. Elsevier, Ams-
terdam (2006)

28. Eclipse Generative Modeling Tools (GMT) (2007), http://www.eclipse.org/gmt
29. Wikipedia: Reconfigurable computing (accessed 28-August-2007) (2007)

http://tfs.cs.tu-berlin.de/gtvmt08/GTVMT-program.htm
http://www.irt.rwth-aachen.de/typo3/index.php?id=101&L=0
http://wiki.daimi.au.dk/cpntools/cpntools.wiki
http://www.eclipse.org/gmt

Communities of Autonomous Units for Pickup
and Delivery Vehicle Routing�

Hans-Jörg Kreowski and Sabine Kuske

University of Bremen, Department of Computer Science
P.O. Box 330440, D-28334 Bremen, Germany
{kreo,kuske}@informatik.uni-bremen.de

Abstract. Communities of autonomous units are being developed for
formal specification and semantic analysis of systems of interacting and
mobile components. The autonomous units of a community are rule-
based, self-controlled, goal-driven, and operate and move in a common
environment. We employ communities of autonomous units to model the
dynamic pickup and delivery problem with the general idea to demon-
strate their suitability for a range of logistic tasks.

1 Introduction

Many recent approaches in computer science like, communication networks,
multi-agent systems, swarm intelligence, ubiquitous, wearable, and mobile com-
puting involve widely spread autonomous components that interact and commu-
nicate with each other, move around or connect themselves to other components
to form networks. To cover such new programming and modeling paradigms
in a formally well-founded and visually well-describable way we proposed au-
tonomous units, as a rule-based, self-controlled, and goal-driven concept (see,
e.g., [1]).

A system of autonomous units forms a community provided with a com-
mon environment where the units interact and may have an overall goal. The
autonomous units of a community apply transformation rules to the common
environment in a self-controlled and goal-driven manner. A transformation rule
application may modify the environment, send messages to other autonomous
units, react to received messages or to environment modifications performed by
other units, connect and disconnect the unit to and from other units, or move
the unit around the environment.

For this purpose an autonomous unit is composed of a set of transformation
rules, a control component to regulate its rule application process and a goal
that the unit tries to achieve. Moreover, a unit has a private state in which the
unit can store private data and which can only be transformed by the unit itself.
A transformation rule r may simultaneously transform the common environment
� Research partially supported by the Collaborative Research Centre 637 (Au-

tonomous Cooperating Logistic Processes: A Paradigm Shift and Its Limitations)
funded by the German Research Foundation (DFG).

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 281–296, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

282 H.-J. Kreowski and S. Kuske

and the private state of the unit. This means that r is a product rule consisting
of two transformation rules: one for the common environment and the other for
the private state (cf. [2]).

In order to keep the rule set of an autonomous unit readable and small, it can
be structured hierarchically into transformation units each of which consists of
a set of transformation rules and a control condition. These reusable transfor-
mation units perform actions that require the controlled application of several
rules (cf. for example [3] and [4]).

In general, autonomous units can work in parallel. The operational semantics
of a community consists of (perhaps never-ending) sequences of states such that
every state is composed of the current common environment plus all current
private states. A transformation from one state to the next happens if some
or all units of the community apply one or more rules in parallel. Hence, state
transformation consists of the parallel application of a set product rules.

Since environments can often be modeled and visualized as graphs, since
graphs can be modified in a straightforward way by graph transformation rules,
and since graph transformation has a precisely defined semantics [5] it seems to
be natural to specify the actions of autonomous units with graph transformation
rules. However, the concept of autonomous units is not restricted to the graph
transformational approach.

The aim of this paper is to illustrate and demonstrate the potential of au-
tonomous units to model logistic applications by presenting a case study that
models the basic operations of the dynamic pickup and delivery problem (see e.g.
[6,7,8]) by a community of autonomous units. To keep the paper technically sim-
ple, we introduce autonomous units in a rather informal way. Formal descriptions
can be found in [4,9]. Nevertheless, it is worth noting that autonomous units as
presented in the following are more sophisticated than those of previous papers
because private states have not been considered before.

The development of autonomous units has its origin within the Collaborative
Research Centre Autonomous Cooperating Logistic Processes: A Paradigm Shift
and Its Limitations in which we investigate in an interdisciplinary way how self-
controlled units can be successfully employed for logistic applications with the
aim to get better results concerning time, costs and robustness (see also [10]).
The central idea of autonomous units is to introduce self-control explicitly into
the modeling of (logistic) processes in order to create a semantically well-founded
framework in which different self-control-based mechanisms become comparable
(cf. [1]).

The paper is organized as follows. Section 2 briefly recalls basic concepts, like
graphs, graph transformation rules, graph class expressions and control condi-
tions. Section 3 is dedicated to the private states and common environments of
communities. In Sections 4 it is shown how the behavior of autonomous units
can be modeled with product rules. Section 5 illustrates how the actions and in-
teractions occuring in the dynamic pickup and delivery problem can be modeled
with a community. Section 6 presents the semantics of autonomous units based

Communities of Autonomous Units for Pickup and Delivery Vehicle Routing 283

on which some correctness results concerning the case study are formulated.
Section 7 discusses related work. The paper ends with the conclusion.

2 Basic Concepts

The basic components of autonomous units, namely graphs, graph transforma-
tion rules, graph class expressions, and control conditions are taken from an
underlying graph transformation approach. In this section we present an in-
stance of a graph transformation approach that will be used throughout this
paper. Further examples and formal definitions can be found in e.g. [5,3].

Graphs. A graph consists of a set of labeled or unlabeled nodes and a set of
labeled or unlabeled edges such that every edge connects two nodes. An edge can
be directed or undirected. Nodes may be depicted in different shapes illustrating
in this way the entities they represent. Fig. 5 shows an example of a graph where
the houses, trucks, and rectangles are the nodes and the arrows are the directed
edges. The houses are labeled with letters, the rectangles and the edges between
houses with natural numbers whereas the trucks and the edges from rectangles
to houses are unlabeled.

20
A

B

E

F
7

2

10

3
8

4

D C

5

7

40

8

7

15

120

8

4

Fig. 1. Example of a graph

Graph transformation rules. A graph transformation rule consists of three
graphs: a left-hand side, a right-hand side and a common part. An example
of a rule is depicted in Fig. 2. The left-hand side is a house and the right-hand
side consists of the same house, a rectangle labeled with m and an edge pointing
from the rectangle to the house. The common part is the house, because it has
the same number in the left- and the right-hand side of the rule. Often, the num-
bers of common nodes are not depicted. In this case the common items of a rule
consist of the nodes and edges that occur in the left- as well as in right-hand side
in the same relative positions. Please note that if the label m of the right-hand
side is a variable of type N the rule represents a set of rules: one for each value
in N. These so-called parameterized rules will be often used in the following.

The application of a rule to a graph comprises the following steps: (1) Choose
an image of the left-hand side in the graph. (2) Delete everything of this im-
age that does not belong to the common part. (3) Glue the right-hand side into

284 H.-J. Kreowski and S. Kuske

m

1 1

Fig. 2. Example of a rule

20 20 5

Fig. 3. A rule application

the graph such that the items of the common parts are identified with their
images. Fig. 3 shows the application of the above rule after having substituted
the variable m with the number 5. The rule is applied to a graph consisting of
two houses that are connected by a directed edge labelled with 20, and a truck
that is connected to the right house. The application of the rule adds a rectangle
labeled with 5 to the right house. Clearly, the rule could also be applied such
that the rectangle would be connected to the left house.

Graph class expressions. A graph class expression specifies a set of graphs. We
use as graph class expressions graphs with variables of type N as node labels
and a special form of graph grammars. More precisely, a graph with variables
of type N as node labels specifies the set of all graphs that can be obtained by
substituting each variable with a value of N. For example, the right-hand side
of the rule in Fig. 2 is a graph class expression of this kind. A graph grammar
is a pair GG = (S, P) where S is a graph called the start graph and P is a set
of graph transformation rules. The set of graphs specified by GG consists of all
graphs that can be generated by applying rules of P in a successive way starting
from the start graph S.

Control conditions. A control condition is any expression that specifies a set of
sequences of graphs. In this paper we use priorities and the special condition
free. Given a set P of rules, a priority is a partial order ≤ on P and it specifies
all sequences s of graphs such that for i = 1, . . . , n if s = (G1, . . . , Gn) and for
i ∈ N if s is infinite, Gi is obtained from Gi−1 by applying a rule p ∈ P and
there is no rule p′ ∈ P with p′ > p that is applicable to Gi−1. In other words,
this control condition allows to apply a rule to the current graph whenever there
is no rule of a higher priority applicable. The condition free is the special case
where all rules have the same priority.

3 Common Environments and Private States

Autonomous units act and interact within a common environment. In many cases
an environment can be modeled as a graph in which certain nodes represent in-
stances of autonomous units. In our case study of the pickup and delivery problem

Communities of Autonomous Units for Pickup and Delivery Vehicle Routing 285

the environment contains nodes representing trucks, customers and packages and
the behavior of each of these nodes is specified by an instance of an autonomous
unit.

Every community starts to work in an initial environment specified by a graph
class expression. If one takes houses as customers and rectangles as packages, the
graph in Fig. 1 is an initial environment of our case study. The set of all initial
environments of the case study can be visually specified in a rule-based form
by the graph grammar consisting of the rule set in Fig. 4 plus the empty graph
(containing neither nodes nor edges) as start graph. The first rule generates
customers. It contains a negative application condition [11] in its left-hand side
which means that an A-labeled customer can only be generated if there doesn’t
exist one with the same label. In this way we make sure that all generated
customers have different labels. The second rule connects different customers by
edges labeled with a distance d of type N. The application condition A = B below
the arrow requires that d-labeled edges be inserted between different customers,
i.e. it avoids the insertion of loops at customers. The label d represents the time
it lasts to move from the source customer to the target customer. If one wants to
generate environments without parallel edges between customers, a convenient
negative application condition could also be added to the second rule. The third
rule inserts trucks and the fourth packages so that every truck is in the location
of some customer and every package is offered by some customer. The label m
is some natural number representing the weight of a package.

m

d
A B A B

A A

BA

Fig. 4. Specification of the initial common environments

Obviously, trucks, customers and packages behave differently. Trucks, for ex-
ample, can move, transport packages, plan their tours, etc. Packages select trucks
for their transport, enter trucks and get out of them. Customers may offer or
demand packages. As mentioned before, the behavior of these components is
modeled with autonomous transformation units. Hence, after generating an ini-
tial environment, every truck node, every package node and every customer
node is associated with (an instance of) the autonomous unit that specifies its

286 H.-J. Kreowski and S. Kuske

behavior. Technically, this can be achieved by adding a loop to every node v
that is associated with a unit type(v) and labeling this loop with type(v). In the
following every environment node v that is associated with an autonomous unit
type(v) is called the local node of type(v).

Additionally to the common environment which can be transformed by all
autonomous units of the community, every unit may have its own private state
that can only be modified and seen by the unit itself. In this first approach, this
private state contains the local node of the unit plus some additional information.
For example, the private state of the autonomous unit truck stores its capacity,
the weight of its current load and the weight of all packages which it has accepted
to pickup later. Initially the latter two values are set to zero. The specification
of the initial private states of the unit truck is depicted in Fig. 5 where the max -
edge points to the capacity of the truck, the w-edge to the weight of the current
load and the r- edge to the weight reserved for accepted packages. The reserved
weight means the following. When a package asks a truck for being picked up
the truck can accept this. In this case it reserves some weight (or place) in it for
the package until the package enters the truck or until the truck starts to move.

0

r

w

0

c
max

Fig. 5. Initial private state of truck

The common environment together with the private states form a set of graphs
where each local node occurs in two copies: one in the common environment and
one in the private state of the corresponding autonomous unit.

4 Modeling the Behavior of Autonomous Units

The autonomous units of a community may interact by transforming the environ-
ment, i.e. a change of the environment may be noticed by other units (re-)acting
in the same community. Every autonomous unit aut that is associated with a
node v in the environment specifies the behavior of v by means of some graph
transformation rules, used transformation units, a control condition, a goal, and
a private initial state containing the local node v plus some further private data.
The rules of aut are split into common and private ones for transforming the
common environment and the private state, respectively. Every rule r of aut that
contains the node v in its left- and right-hand side should be applied in such a
way that v is matched to the local node in the environment if r is a common rule
and to the local node in the private state if r is private. In the following, every
occurrence of v in a rule of aut is drawn with thick lines. In the rest of this sec-
tion we show how autonomous units may communicate and change the common
environment and private states with the use of graph transformation rules.

Communities of Autonomous Units for Pickup and Delivery Vehicle Routing 287

4.1 Interaction of Autonomous Units

A special form of interaction frequently used is message sending. This is modeled
by the insertion of an edge labeled with the message content and going from the
sender to the receiver. For example, if a package wants to enter into a truck it
sends the message enter? to the truck. This can be modeled with the rule in
Fig. 6 which belongs to the package-unit. It inserts an edge labeled with enter?
from the local package to some truck that is at the same location and that will
pass through the destination of the package. (Further details of the rule will be
explained below.)

u u m

enter?

m
dem dem

B B

B in u

Fig. 6. Message sending

m m
 ok

enter? k

n

r

w n

r

w

k+mn+m+k <=c

c c
max max

Fig. 7. Accepting a package

After receiving the enter? -message the truck can accept or reject to pickup
the package. In case of acceptance the truck sends an ok -message to the package.
This reaction is modeled with the left rule in Fig. 7. As one will see in Section 5,
the truck changes its private state, simultaneously.

4.2 Modeling Behavior by Product Rules

Every autonomous unit can modify the environment by applying a graph trans-
formation rule to it. Simultaneously, it can transform its private state to modify
private data. This is achieved with the concept of product rules [2,12]. For our
purpose we use a special form of product rules consisting of a pair (com, priv) of
rules which are applied simultaneously so that com modifies the common envi-
ronment and priv the private state. In more detail, the application of (com, priv)
of a unit aut to a pair (env, prist) consisting of a common environment env and
a private state prist yields a pair (env′, prist′) if env′ can be obtained from
env by applying com, and if the application of priv to prist yields prist′. As
explained above, the rules must be applied in such a way that the local nodes be
matched to the nodes associated with aut . This can be achieved with particular
loops at the local nodes in rules, private states, and the common environment.

For example, if a truck accepts a package p, it reserves some of its capacity
for this package. Hence, it applies the rule in Fig. 7 to the common environment
and simultaneously, it adds the weight of the package to its reserved weight

288 H.-J. Kreowski and S. Kuske

by applying the right rule in Fig. 7. This rule (and hence the whole product
rule) can only be applied if the transport of the package can be realized without
exceeding the maximal capacity i.e. if n +m + k ≤ c where n is the current load
of the truck, k is the reserved load, m is the weight of the package that is going
to be accepted, and c is the maximal capacity of the truck. This application
condition is denoted below the arrow of the private rule. Please note that c, n
and k are variables that should be substituted with values when applying the
rule.

It is worth noting that every product rule (com, priv) of this special kind can
be regarded as a triple graph transformation rule (com, cp, priv) [13] where the
left- as well as the right-hand side of the correspondence rule cp consists of the
local node. One main difference between product rules and triple rules is that
the former are approach independent while that latter are defined over a specific
graph transformation approach. Moreover, product rules may have an arbitrary
number of components rather than three ones as triple rules.

5 Pickup and Delivery with Autonomous Units

In this section, we describe how the basic operations of the dynamic pickup and
delivery problem can be modeled with a community of autonomous units. The
pickup and delivery problem consists of a set of customers, a set of vehicles (here
trucks) and a set of packages. Basically, trucks move around in an environment
to pickup and deliver packages thereby satisfying transport requests. Packages
select trucks which they ask for being picked up and in case of acceptance they
may enter into a truck and get out at their destination. Customers may offer
or demand packages. In order to model the pickup and delivery problem conve-
niently, certain contraints must be satisfied such as time contraints or simply the
requirement that the capacity of trucks should never be exceeded. The goal of
every component (i.e. of every truck, customer, and package) is some objective
function, like minimization of route length, costs, time, etc (cf. [6]).

The aim of this first approach towards modeling the pickup and delivery prob-
lem with autonomous units is to show how the basic operations of the dynamic
pickup and delivery problem can be modeled based on graph transformation, so
that trucks, packages and customers behave as autonomous entities in a com-
mon transport network where central control is dropped. A case study where the
pickup and delivery problem is modeled with a single hierarchically structured
transformation unit is presented in [14].

We assume in this stage of the case study that the goal of every autonomous
unit is some objective function but we do not yet consider how it can be formu-
lated in a graph transformational way and how control conditions can become
goal driven. This will be studied in future work.

The basic behavior of the autonomous unit truck is specified in Fig. 8 where
the parts com and priv of every product rule (com, priv) are drawn side by side
and with a dashed vertical line between them. As mentioned before the bold

Communities of Autonomous Units for Pickup and Delivery Vehicle Routing 289

r

w 0

0

enter?
m m ok

m m

m m
enter?

(accept, reject, pickup, deliver,annul) > moveconds:

w n

w n w n

c
max

c
max

c
max

uses: timetable(), move()

initial:

truck()

accept:

pickup:

reject:

m m

deliver:

out

w n w n−m

annul:

m m
ok r k r k−m

n+m+k <=c r k+m

rules:

r k

entered
r k r

w

k−m

n+m

Fig. 8. The unit truck

nodes in the rules represent the local nodes of the unit. When applying a rule,
these nodes must always be matched to the node associated with the unit which
contains the rule.

The rules of the unit truck model interaction between trucks and packages
from the point of view of the truck. As already explained in the previous section,
the product rule accept can be applied if the truck has got a message enter?
from some package. The application of the rule accept sends a message ok to
the package and adds the weight of the package to the reserved load of the
truck represented in the private state. Alternatively, the truck may reject the
package by applying the second rule that deletes the enter? -edge. This rule does
not modify the private state of the truck, i.e. the private part of the product
rule is the empty rule and hence not depicted. The third product rule pickup
can be applied when the truck receives an entered -message from a package. The
edge from the truck to the package in the right-hand side models the fact that
the package is in the truck. In the private rule of pickup the current weight of
the truck is updated. The forth rule deliver can be applied if the truck has got an
out -message from some package. When applying this rule, the truck deletes the
out -egde and updates its current load. With the rule annul the truck can cancel

290 H.-J. Kreowski and S. Kuske

1
B 1

B

u

Bu

d>1
B

d

u

B
d

d−1

d>1

u

B
d

d2−1

B
d

u

d2

MOVE()

rules:
Bu

d>1

u

B
d

B
d

u

1

one−step:

start:

drive:

arrive:

Fig. 9. The transformation unit move

m B

A
dementer?

u

m
arrivedout

entered
m

package()

rules:

enter:

enter?:

m Bu
dem

out:

A

m

m
demok

B in u

Fig. 10. The unit package

reservations. The imported unit timetable is not presented in detail. It links a
node to the truck that is lableled with a string of customer names and which
represents the tour the truck is going to move along. More precisely, a tour is a
word x0 · · · xn of customer names such that for i = 1, . . . , n the customer xi−1

is connected to xi through an edge.
The autonomous unit truck uses the transformation unit move depicted in

Fig. 9. It models the movement of a truck from one customer to the next in the
tour of the truck. The movement lasts exactly d steps (i.e. rule applications) if
the edge has distance d.

The unit package is shown in Fig. 10. It contains three rules that modify
the common environments. In the first rule the package wants to enter into a

Communities of Autonomous Units for Pickup and Delivery Vehicle Routing 291

truck which is at the same location as the package’s owner A, provided that the
package is demanded (denoted by the label dem at the edge from the package to
A), and that the customer B who demands the package occurs in the route u of
the truck. If the package gets an ok -message from a truck the former can decide
with the second rule to enter the truck provided that the latter has not yet moved
away. The application of the rule deletes the dem-edge from the package’s owner.
Hence, this rule can only be applied if the package is not on another truck. With
the last rule a package can send an out -message to the truck provided that the
package is in the truck and arrived at the customer who demanded it.

Please note that in this simplified case study the unit package has no private
state. But in a further step we plan to include also a private state for packages
that stores relevant information to choose a good truck (a cheap and fast one
that transports the package safely within certain prescribed time windows) and
not an arbitrary one.

m

mm

offer:

mm

hide:

mm
arrived

initial:
start: rule:

customer()

rules:

demand:

m m
dem

offer−arrived:

Fig. 11. The unit customer

The autonomous unit customer is depicted in Fig 11. It may offer and demand
packages and in its private state it stores private packages that are not offered
to the community. If a customer wants to offer a private package, it applies the
product rule offer that inserts it into the common environment. On the other
hand, it can hide offered packages with the rule hide. With the rule demand
the customer demands a package p that is offered by another customer A. This
is modeled by inserting a new edge from the customer to p and labeling the
edge from A to p with dem representing in this way the fact that p cannot
be demanded anymore. Finally, with the rule offer-arrived , the customer can
convert a recently obtained package into an offered one.

292 H.-J. Kreowski and S. Kuske

The community for the basic operations of the pickup and delivery problem
can now be defined as pdp = (ini, {truck, package , customer}, goal) where ini is
the grammar of Fig. 4, and the goal could be specified in this first approach such
that all environments are accepted.

6 Semantics

In this section we describe the semantics of communities. In [4] a sequential se-
mantics is given, but it is not fully adequate for the pickup and delivery problem
because several trucks may move simultaneously and several packages may be
loaded and reloaded at the same time. Hence, we adopt the parallel semantics
introduced in [9]. But since private states and used transformation units were
not considered in [9], we have to generalize the parallel semantics.

The operational semantics of communities consists of a set of transformation
processes which are sequences of states where a state is a tuple (ce, ps1, . . . , psk)
of graphs such that ce is the current common environment and ps1 . . . , psk are
the current private states occuring in the community. A state transformation
transforms one state into another by applying product rules of autonomous units
in parallel. More precisely, let COM be a community consisting of a set AUT
of autonomous units, a graph class expression ini specifying all possible initial
environments and a common goal goal. Let ce be a graph specified by ini. Let
v1, . . . , vk be the nodes of ce the behavior of which is modeled by the autonomous
units type(v1), . . . , type(vk), respectively. Moreover, let ps1, . . . , psk be graphs
such that for j = 1, . . . , k, psj is a private initial state of type(vj). Then the
tuple (ce, ps1, . . . , psk) is an initial state of COM . A sequence s = (M0, M1, . . .)
of states with Mi = (cei, psi,1, . . . , psi,k) is a transformation process of COM if

1. M0 is an initial state of COM ,
2. for i = 1, . . . , n if s = (M0, . . . , Mn) and for i ∈ N if s is infinite, Mi+1 is

obtained from Mi as follows: There are r1, . . . , rk such that for j = 1, . . . , k,
rj is a (parallel) product rule of type(vj), or a product rule of some used
transformation unit of type(vj), or the empty product rule the application
of which has no effect, such that
– cei+1 is obtained from cei by applying the common parts of r1, . . . , rk in

parallel so that the local nodes are matched as required (see Section 4);1

– for j = 1, . . . , k the graph psi+1,j is obtained from psi,j by applying the
private part of rj so that the local nodes are matched as required;

3. for j = 1, . . . , k the sequence ((ce0, ps0,j), (ce1, ps1,j), . . .) is allowed by the
flattened2 control condition of type(vj).

Please note that the semantics of control conditions introduced in Section 2
must be generalized here to product rules, i.e. every control condition specifies
1 In general, for applying rules in parallel, certain independence criteria must be sat-

isfied (see e.g. [9]).
2 We require that every autonomous unit can be flattened without changing its se-

mantics (see also [3]).

Communities of Autonomous Units for Pickup and Delivery Vehicle Routing 293

sequences of pairs of graphs. This generalization can be done for the consid-
ered control conditions in a straightforward way. Moreover, the priority con-
trol conditions as used in this paper can be flattened as follows. Let aut be
a unit with (N, ≤aut) as control condition, i.e. N is composed of rules and
used units of aut . Clearly, if N consists of rules only, its flattened condition
(flat(aut),flat(≤aut)) is equal to (N, ≤aut). Otherwise, for every used unit t ∈ N
with control condition (Nt, ≤t) let its flattened condition (flat(t),flat(≤t)) be
already defined; and for every rule r in N , let flat(r) = {r} and flat(≤r) = ∅.
Then the flattened control condition of aut is equal to (flat(aut), f lat(≤aut))
where flat(aut) = �n∈Nflat(n)3 and flat(≤aut) is the reflexive and transitive
closure of⋃

n∈N

flat(≤n) ∪ {r1 ≤ r2 | r1 ∈ flat(i), r2 ∈ flat(j), i ≤aut j, i, j ∈ N}.

This means that the rule set flat(aut) of the flattened condition of aut consists
of all rules occurring in N and in the flattened conditions of the used units in
N . The priority relation consists of the priority relation between the rules in
the flattened conditions of the used units. Additionally, for two rules r1 and r2

in flat(aut) we have that r1 is of a higher priority than r2, if t1 >aut t2 in the
control condition of aut where for i ∈ {1, 2}, ti is either equal to the rule ri or
ti is a used unit and ri is a rule of the flattened condition of ti.

Every finite transformation process is successful if its last state is specified by
the goal of the community. Every infinite transformation process is successful if
it contains infinitely many states that satisfy the goal (see [9] for more details).

The formal framework of communities of autonomous units based on graph
transformation does not only allow one to model interacting logistic processes,
but provides also means for their analysis.

One important aspect is the possibility of correctness proofs which are usu-
ally done by induction on the lengths of derivation sequences. With respect to
our case study, many properties which one would expect of a solution of the
pickup and delivery problem can be verified. The following observation lists a
few explicit examples of such properties.

Observation 1. For every state in the operational semantics of the community
pdp the following holds.

– The current load of every truck is equal to the sum of the weights of all
packages in the truck.

– The maximal capacity of every truck is not smaller than its current load.
– A truck only moves (i.e. the move unit is only applicable) if there are no

incoming messages left.
– A package can only enter into a truck if both are at the same location.
– A package is never in two trucks.
– A package can only get out of a truck if the truck has reached the customer

who demanded the package.
3 	 denotes the disjoint union.

294 H.-J. Kreowski and S. Kuske

– Every package cannot be demanded by more than one customer at the same
time.

The proof is omitted because it is beyond the scope of this paper.
Another matter is the parallelism analysis. There is some machinery available

in the area of graph transformation (see e.g. [5,15]) to find out which rules can be
applied in parallel. This is very helpful with respect to any case study, because
our semantics embodies parallelism explicitly. Unfortunately, there is not enough
space for a more detailed consideration.

7 Related Work

In the literature there are some approaches that focus on modeling multi-agent
or agent-oriented systems based on graph transformation. These approaches are
closely related to our approach because of the special features inherent to agents
such as autonomy or reactivity (cf. [16] where autonomous units are related to
the VSK model of multi-agent systems, see e.g., [17]).

In [18] an approach for modeling agent-oriented systems is proposed that is
based on UML and typed graph transformation. It concerns mainly the modeling
process which consists of three stages (requirement specification, analysis, and
design) where the second and the last stages are refinements of their predeces-
sors. The relations between the distinct stages are formalized using typed graph
transformation systems and graph processes. In the last stage, every agent corre-
sponds to an active class where operations are modeled as graph transformation
rules and the control component as a state chart.

In [19] an approach to model and verify multi-agent systems is given that
is also based on typed graph transformation and UML. A complete system is
composed of communities that can be entered or left by agents. A community is
obtained by associating a culture specification with an environment specification
where the former specifies social components such as roles and intentions and
the latter specifies (physical) entities, agents as well as sensors and effectors. The
whole system can be formalized as a graph transformation system.

Communities of autonomous units are also closely related to [20] where dis-
tributed systems are modeled by graph grammars that modify distributed graphs
via distributed graph productions. Distributed graphs are network graphs with
local graphs as node labels and graph morphisms as edge labels.

All three approaches are based on particular graph transformation approaches
(single- and double-pushout) while our framework is independent of a particular
graph transformation approach. Similarly, we employ a quite generic concept
of control conditions while the other three approaches use particular control
concepts or none at all. Moreover, in [18] and [19] certain types of multi-agent
systems are formalized by graph transformation while autonomous units can
be considered as an operational model of an axiomatic notion of multi-agent
systems.

Communities of Autonomous Units for Pickup and Delivery Vehicle Routing 295

8 Conclusion

In this paper we have demonstrated that the basic operations of the pickup and
delivery problem can be visually modeled in a rule-based way by means of a com-
munity so that central control is omitted, but spread over a set of autonomous
units each of which specifies the behavior of a component occurring in the pickup
and delivery problem, such as trucks, customers, and packages. The autonomous
units communicate and interact in a common environment consisting of roads,
customers, trucks, and packages and the actions of a unit comprise the controlled
application of parallel product rules which modify the common environment of
the community and the private state of the unit simultaneously and in a con-
trolled way. Moreover, in order to keep large rule sets manageable, they can be
divided into smaller transformation units. Semantically, a community specifies
possibly infinite sequences of states consisting of the current common environ-
ment and the current private states of the units.

The presented case study points out that the private states and the use of
product rules constitute an adequate and useful generalization of the hitherto
defined autonomous units with parallel semantics [9]. Moreover, the case-study
stresses that operations of logistic processes can be visually and easily modeled
by graph transformation-based autonomous units, i.e. these operations which
include message sending, moving around the environment, entering or leaving
other units can be visually represented by means of small graph transformation
rules.

In order to be able to present this case study within the scope of this paper we
have simplified it w.r.t. various aspects. In an extended study we will investigate
how the following aspects can be solved in a graph-transformational way. (1) A
more detailed communication concerning prices, tours, etc. between the different
units; (2) routing algorithms for the truck units; (3) capability of packages to
change trucks; and (4) different behaviors of units of the same type.

Acknowledgement. We are very grateful to the anomymous reviewers of this
paper for their helpful comments.

References

1. Hölscher, K., Klempien-Hinrichs, R., Knirsch, P., Kreowski, H.J., Kuske, S.: Au-
tonomous units: Basic concepts and semantic foundation. In: [10], pp. 103–120

2. Klempien-Hinrichs, R., Kreowski, H.J., Kuske, S.: Typing of graph transformation
units. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT
2004. LNCS, vol. 3256, pp. 112–127. Springer, Heidelberg (2004)

3. Kreowski, H.J., Kuske, S.: Graph transformation units with interleaving semantics.
Formal Aspects of Computing 11(6), 690–723 (1999)

4. Hölscher, K., Kreowski, H.J., Kuske, S.: Autonomous units and their semantics—
the sequential case. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozen-
berg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 245–259. Springer, Heidelberg
(2006)

296 H.-J. Kreowski and S. Kuske

5. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation. Foundations, vol. 1. World Scientific, Singapore (1997)

6. Savelsbergh, M., Sol, M.: The general pickup and delivery problem. Transportation
Science 29(1), 17–29 (1995)

7. Nagy, G., Salhi, S.: Heuristic algorithms for single and multiple depot vehicle rout-
ing problems with pickup and deliveries. European Journal of Operational Re-
search 162(1), 126–141 (2005)

8. Fabri, A., Recht, P.: On dynamic pickup and delivery vehicle routing with several
time windows and waiting times. Transportation Research Part B: Methodologi-
cal 40(4), 335–350 (2006)

9. Kreowski, H.J., Kuske, S.: Autonomous units and their semantics - the parallel
case. In: Fiadeiro, J., Schobbens, P. (eds.) Recent Trends in Algebraic Development
Techniques, 18th International Workshop, WADT 2006. LNCS, vol. 4408, pp. 56–
73. Springer, Heidelberg (2007)

10. Hülsmann, M., Windt, K. (eds.): Understanding Autonomous Cooperation & Con-
trol in Logistics The Impact on Management, Information and Communication and
Material Flow. Springer, Heidelberg (2007)

11. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundamenta Informaticae 26(3,4), 287–313 (1996)

12. Klempien-Hinrichs, R., Kreowski, H.J., Kuske, S.: Rule-based transformation of
graphs and the product type. In: van Bommel, P. (ed.) Transformation of Knowl-
edge, Information, and Data: Theory and Applications, pp. 29–51. Idea Group
Publishing, Hershey (2005)

13. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995)

14. Klempien-Hinrichs, R., Knirsch, P., Kuske, S.: Modeling the pickup-and-delivery
problem with structured graph transformation. In: Proc. APPLIGRAPH Workshop
on Applied Graph Transformation, pp. 119–130 (2002)

15. Ehrig, H., Kreowski, H.J., Montanari, U., Rozenberg, G. (eds.): Handbook of Graph
Grammars and Computing by Graph Transformation. Concurrency, Parallelism,
and Distribution, vol. 3. World Scientific, Singapore (1999)

16. Timm, I.J., Knirsch, P., Kreowski, H.J., Timm-Giel, A.: Autonomy in software
systems. In: [10], pp. 255–273

17. Wooldridge, M., Lomuscio, A.: A logic of visibility, perception, and knowledge:
Completeness and correspondence results. In: Proc. Third International Conference
on Pure and Applied Practical Reasoning, London, UK (2000)

18. Depke, R., Heckel, R., Küster, J.M.: Formal agent-oriented modeling with UML
and graph transformation. Science of Computer Programming 44, 229–252 (2002)

19. Giese, H., Klein, F.: Systematic verification of multi-agent systems based on rig-
orous executable specifications. International Journal on Agent-Oriented Software
Engineering (IJAOSE) 1(1), 28–62 (2007)

20. Taentzer, G.: Parallel and Distributed Graph Transformation: Formal Description
and Application to Communication-Based Systems. PhD thesis, TU Berlin. Shaker
Verlag (1996)

Efficient Graph Matching with Application
to Cognitive Automation

Alexander Matzner1, Mark Minas2, and Axel Schulte1

1 Institute for Flight Dynamics & Flight Guidance
2 Institute for Software Technology

Universität der Bundeswehr München, Germany
{alexander.matzner,mark.minas,axel.schulte}@unibw.de

Abstract. Cognitive automation has proven to be an applicable ap-
proach to handle increasing complexity in automation. Although fielded
prototypes have already been demonstrated, the real time performance
of the underlying software framework COSA is currently a limiting factor
with respect to a further increase of the application complexity. In this
paper we describe a cognitive framework with increased performance for
the use in cognitive systems for vehicle guidance automation tasks. It uses
a combination of several existing graph transformation algorithms and
techniques. We show, that for our approach, the incremental rule match-
ing that we propose yields a performance gain over the non-incremental
algorithm and a large increase over the existing generic cognitive frame-
work COSA for a typical application.

1 Introduction

The demand for tasks to become automated in vehicle guidance and process
control tasks, e.g., in the domain of uninhabited aerial vehicles (UAVs) is con-
tinuously increasing. The performance provided by conventionally automated
systems has its advantages, but the associated increase in complexity becomes
a challenge for system designers and the human operator as well (see e.g., [21],
[1]). The approach of Cognitive Automation is a contribution to cope with this
complexity. Core features of this approach are machine capabilities such as a
comprehensive situation understanding and decision making based upon explicit
goals for acting. The dynamic knowledge about the situation is kept in a cen-
tral situation representation and modified either by external events or by the
application of stored behavior rules, the so called a-priori knowledge. In our im-
plementation of the so called Cognitive Process we use a host graph to represent
the current situation representation and a knowledge base consisting of two types
of rules that are applied to this host graph. The two types are (i) inference rules
that cause a reversible modification of the host graph which is retracted, once
the rules left hand side does not match anymore and (ii) graph transformation
rules that cause persistent modifications of the host graph, i.e. used to mimic
long term memory. Independent of its type an efficient graph pattern matching

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 297–312, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

298 A. Matzner, M. Minas, and A. Schulte

Environ-
ment

PlanningPlan

Plan Execution

Instructions

Environment
Models

Instruction Models

Desires

Goals

Input
Interface

Output
Interface

Input Data

situational
knowledge

a-priori-
knowledge

Goal
Determi-
nation

Belief

C
P

 b
eh

av
io

ur
=

A
C

U
be

ha
vi

ou
r

Interpretation

Models of Action
Alternatives

Environ-
ment

PlanningPlan

Plan Execution

Instructions

Environment
Models

Instruction Models

Desires

Goals

Input
Interface

Output
Interface

Input Data

situational
knowledge

a-priori-
knowledge

Goal
Determi-
nation

Belief

C
P

 b
eh

av
io

ur
=

A
C

U
be

ha
vi

ou
r

Interpretation

Models of Action
Alternatives

Fig. 1. Model of the Cognitive Process by Onken [15]

for the left hand side of the rule is the key to performance of such an implemen-
tation. To achieve this, we developed an incremental pattern matching approach
that is the focus of this paper.

In chapter 2 we describe our specific application domain and how graphs
and graph transformations are used to implement the Cognitive Process. Chap-
ter 3 gives a very brief overview of related work, from which the algorithms
and techniques in our approach were derived. Chapter 4 describes the two re-
lated approaches that we developed and evaluated. The benchmarking scenario
and the results of this evaluation are described in chapter 5. Finally we conclude
the paper with chapter 6 and give an outlook on our future work.

2 Problem Representation

Over the last decade the increasing challenge for human operators to handle com-
plexity in automation led to several approaches to apply methods and techniques
of Artificial Intelligence to automation problems to overcome the limitations of
conventional automation. Our work is based on the Cognitive Process (CP) by
Onken [15] that proposes a generic model of information processing, based upon
findings on human behavior and cognition. The Cognitive Process shall be and
has already been used as central knowledge-processing entity within so called
artificial cognitive units (ACU), performing co-operative guidance of multiple
uninhabited aerial vehicles and within so called assistant systems. A main fea-
ture of such an ACU is to solve complex automation tasks while generating
transparent behavior that is consistent with the overarching goals. It has been
implemented in the framework COSA (Cognitive System Architecture) [19] that
is based on Soar [11]. COSA has already been widely used for application de-
velopment in the UAV guidance domain and proven its productivity (see e.g.,
[14][15]).

Efficient Graph Matching with Application to Cognitive Automation 299

Input
Inference
update

Operator
selection

Graph
trans-

formation

Inference
update

Output

Fig. 2. Implemented automaton controlling the application of inference and graph
transformation rules to implement the Cognitive Process

Figure 1 shows the Cognitive Process as proposed by Onken. Information that
entered the system via the input interface (sensors) is interpreted using environ-
ment models to derive an internal situation representation of the environment
(Beliefs). Effective Goals for further action are determined using this representa-
tion and the overarching hypothetical goals, here called desires. Based on models
of action alternatives, sequences of actions are assembled to Plans that are ex-
pected to achieve the determined goals, and the generated plans are executed by
translating them into specific Instructions that are sent to the systems output
interface (actuators). All these processes run simultaneously.

To implement this model a rule based approach was chosen in the architecture
COSA using a simple automaton as depicted in Figure 2 that operates on the
working memory representing the systems state. The knowledge required to ap-
ply the modifications in the Cognitive Process is encoded in inference and graph
transformation rules and the working memory is implemented as a state graph
representing the current internal situation representation.

After reading the input the automaton updates the inference rules by firing the
newly applicable ones and retracting the invalidated ones. In this phase all firings
occur in parallel until no inference rule is applicable. This state
is referred to as quiescence. Inference rules can propose the creation operator
nodes that enable graph transformation rules by generating operator proposal
nodes in working memory. During operator selection the automaton selects one
of the operator proposal nodes and creates an operator node from it (the se-
lection algorithm is beyond the scope of this paper). This operator serves as a
pre-condition for the graph transformation rules that are then applied. In the
next step the inference rules are again updated to incorporate the modifications
of the graph transformation rules and the operator node created during operator
selection is deleted. Finally the automaton generates the output and starts over
again.

This way the automaton provides the flow control required by the Cognitive
Process that (i) separates the parallel execution of the inference rules from the
sequential execution of the graph transformation rules and (ii) allows priority
based decisions on the order of the application sequence of the latter (see [11]
for an in depth description of this concept).

COSA, as an operational framework, implements this model using the rule
based architecture Soar [11] as its processing kernel. The Cognitive Process itself
is implemented using a the Cognitive Programming Language (CPL) that is an
enhanced version of the Soar language enabling basic object oriented principles

300 A. Matzner, M. Minas, and A. Schulte

Destination
Non-cooperative
airborne vehicles
Cognitive vehicle

Terrain obstacle

Home base

Fig. 3. Typical Situation from the scenario of the benchmark application: The cognitive
vehicle is on its way from its home base to the destination and encounters a terrain
obstacle

like instantiation, inheritance, and structuring the situational knowledge using
namespaces. It is implemented using a library of Soar rules that among other
tasks prioritize the knowledge rules or create and maintain the model of the
Cognitive Process in the working memory.

The COSA implementation approach has been extensively used in a complex
application in the field of multiple co-operating semi-autonomous aerial vehicles
[14]. A respective prototype has been demonstrated in a collaborative simulation
environment with great success [18]. With respect to forthcoming field experi-
ments including the use of COSA on embedded platforms the observed runtime
performance of the existing system is not sufficient. We are therefore reimple-
menting the system – customized to the structure of the Cognitive Process – to
achieve the mandatory significant performance enhancement in terms of process-
ing speed an memory demands. While there are many relevant performance is-
sues to be addressed in our re-implementation, in this paper we will only focus
on our approach to the graph matching problem that builds the foundation for
the cognitive behavior and consumes most of the systems resources.

To validate the aspired performance increase and the adequate behavior, we
compare the performance of our new approach to the existing system in a typi-
cal benchmark application. As mentioned, cognitive automation and COSA are
currently used in the domain of knowledge based assistant systems and semi-
autonomous flight [15], the much simplified but typical benchmarking application
has therefore been chosen from this area: An uninhabited helicopter is tasked
to take off at its home base with a payload of supplies, fly to a predefined des-
tination while avoiding terrain obstacles and non-cooperative airborne vehicles,
deliver the supplies and return home safely. As it implements basic cognitive
behavior we refer to the protagonist of our application as cognitive vehicle.

The base on which the considerations and actions of a cognitive system are
founded, is a comprehensive internal representation of the relevant parts of its
external world. We use directed graphs consisting of typed nodes with attributes
and typed edges for this representation – the so called instance graph.

Efficient Graph Matching with Application to Cognitive Automation 301

Myself

.position

.speed

Deliver
supplies

Target

.position

Home Base

.position

Obstacles

.position

.threatring

Obstacle

.position

.threatring

threatens

distance

distancedistance

to

Fly around

threat

Reach
targetprecond

Return to
base

Accomplish
mission

precond

precond

Course to
target

Avoid
threat

threat

effects

effects

Vehicles

.position

.speed

distance

distance

target

Instances representing
physical objects (Beliefs)

Instances of goals

Edges

Instances of plans

.xx Attribute

Fig. 4. Simplified snapshot of the instance graph representing the situation depicted
in Figure 3

The instance graph can store sensor data generated by real or simulated sen-
sors like the position information of a terrain obstacle, but also abstract instances
like the goal to deliver supplies to a target destination. Abstract instances are
generated in the Cognitive Process using the knowledge the application developer
defined at design time.

A typical situation of the benchmark is illustrated in Figure 3. The cognitive
vehicle started at its home base and was tasked to deliver the supplies to the
destination. En route it encounters an obstacle that initiates the cognitive prob-
lem solving by firing inference and graph transformation rules. In this process
it will choose one of the available action options – in this case to fly around
the obstacle. Figure 4 shows the simplified instance graph of this situation. The
boxes are nodes in the instance graph representing the current situation as per-
ceived by the ACU. The white boxes represent physical objects, gray boxes the
current goals and the black boxes the plans, the ACU chose to execute, in order
to achieve its goals.

The edges in this graph specify the relations between the objects. The ACU
believes that the left ”Obstacle” instance ”threatens” the ”MySelf” instance.
The goal ”Avoid threat” was therefore instantiated and the plan ”Fly around”
was instantiated to achieve this goal.

The knowledge used for the manipulation of the instance graph is stored in
inference and graph transformation rules consisting of a left hand side (LHS)
with preconditions for the rule, negative application conditions (NAC) [8] that
can eliminate matches and a right hand side (RHS) with the transformations,
that are applied to the instance graph after the rule was activated (fired). Figure
5 depicts a typical rule stating the following:

”IF there is an instance of type MySelf that is at the home base and has the
goal to deliver supplies AND there is an instance of type Target that requires more
than 5 units of supplies (LHS) AND the Target is NOT already the destination

302 A. Matzner, M. Minas, and A. Schulte

Fig. 5. Example of a typical rule creating a ’to’-edge in the instance graph to indicate
where the supplies shall be delivered to

to which the supplies will be delivered (NAC), THEN let the Target be the
destination to which they will be delivered (RHS).”

Every pattern node of the LHS has a unique identifier (indicated by the num-
bers in Figure 5). The NACs and the RHS use these identifiers to determine
which of the LHS nodes their nodes refer to.

Our experimental results show, the graph transformation, currently done by
the Soar-kernel, is the bottleneck in the COSA implementation of the Cognitive
Process - more than 90% of the runtime is spent in this phase. Therefore we espe-
cially focus on using findings from research in the field of graph transformation
to increase performance.

Additionally to the complex graph matching problem itself the performance
of COSA is influenced by a couple of architectural performance issues. The main
ones are the required emulation of object oriented features on top of a non-
object-oriented Soar-kernel, many expensive string operations within Soar and
translation of data from one representation to another at the interface between
the surrounding framework and the Soar-kernel. While all these issues are rele-
vant to our re-implementation, in this paper we will only focus on our approach
to the graph matching problem.

3 Related Work

As mentioned, each graph transformation rule consists of an LHS represented
by a model graph (pattern) that has to be matched by the instance graph for
the rule to be fired. A pattern is represented by several typed nodes and edges.
The pattern matching algorithm tries to find all nodes from the instance graph
that have the required type and are linked with the required edges as defined by
the pattern.

This pattern matching is generally done either by a graph pattern matching
algorithm that is based on constraint satisfaction ([12], application e.g., in AGG

[5]), local searches (e.g., FUJABA [6] or [4]) or a combination of both (e.g.,
PROGRES [22]). An overview of pattern matching methods is given in [16].

Efficient Graph Matching with Application to Cognitive Automation 303

Conventional pattern matching algorithms however share the same handicap:
they omit their results after the graph transformation cycle has been finished. In
our application, we have many consecutive decision cycles. Within every cycle, a
part of the graph is changed by the application of inference and graph transforma-
tion rules and after every decision cycle the instance graph is updated to reflect
changes in the environment. Even though these changes to the instance graph can
be significant, it would be more efficient to store and re-use at least some of the
results in order to avoid recalculating them again from scratch in every cycle.

There are several approaches to this problem and some incremental approaches
have already been successfully applied in various graph transformation engines
such as the RETE algorithm ([2], [7]) used in Soar [11] or attribute updates [9]
in PROGRES.

The RETE algorithm is the incremental approach used in Soar, being part
of COSA. In the initialization phase it stores intermediate matching results in
its alpha-network and updates the contents of this network incrementally with
the occurring changes in the consecutive cycles. It is therefore well suited for
problems with large instance graphs that are only affected by minor changes in
every transformation cycle and for rules which patterns do not overlap. A lot of
research has been done on optimizations of the RETE algorithm (i.e. [2], [3]).
One of the most important optimizations is Doorenbos proposal of left and right
unlinking [3] by which the propagation of a change through the RETE network
is stopped when it becomes obvious, that no further changes will occur.

As the algorithm stores all the intermediate results, it carries the burden of a
large administrative overhead, especially in environments with an ever changing
instance graph. Additionally it does not support attributes, instantiation and
inheritance, which are core features of the COSA framework and that must be
emulated by COSA using additional graph transformation rules.

The TREAT algorithm [17] is an adaption of the RETE algorithm to re-
duce the administrative overhead in cases with many changes to the graph. To
achieve this, it trades reduced administrative overhead in the update phase with
reduced efficiency in the matching phase by only storing the intermediate results
and omitting the final results. Like the RETE algorithm it does not support at-
tributes, instantiation and inheritance.

Lately, Varró, Varró and Schürr proposed an incremental approach that sup-
ports attributes [20] and uses cached queries to store intermediate results similar
to the RETE algorithm. It also introduces new ideas like notification arrays to
speed up updates.

4 Approach

In our approach we use three techniques to improve the performance of the
algorithm: (i) Host graph nodes are cached in filtered type caches for each unique
pattern node, (ii) the LHS of each rule is split in its independent sub patterns
(the maximally connected sub-graphs) that are then shared between rules and
(iii) a tree-formed match-cache is maintained for each sub pattern and each rule
to incrementally generate and maintain the matches.

304 A. Matzner, M. Minas, and A. Schulte

To do so, we separate the rule matching process in three subsequent stages:
(1) domain reduction: reduction of the number of host graph nodes (instances)
that are potential candidates for a pattern node using the filtered type caches,
(2) incremental sub pattern matching: incremental creation of the valid sub-
pattern matches using the mentioned incrementally updated sub pattern match-
caches, (3) rule matching: creation of the rule matches and validation of the NAC
using incrementally updated rule match-caches. The actions commanded by the
firing of the activated rules are collected and applied as a batch after the match-
ing has finished.

(1) Domain reduction. The time required for a pattern matching largely
depends on the size of the search space. We reduce the size of the search space
for each pattern by two relational consistency algorithms for domain reduction
that were proposed by McGregor and others [13]:

First we filter out single instances by requiring them to be of a certain type
and their attribute values to be in a specified range.

Secondly we use the edges that are linked to a node in the pattern representa-
tion (see Figure 5) as a means for forcing ’weak’ arc consistency. A pattern node
can filter out single host graph nodes from its domain by requiring the existence
of directed edges of a certain type and with a specified direction (inbound or
outbound). In contrast to true arc-consistency at this point we do not make sure
that the host graph node at the end of this edge is part of the linked pattern
nodes domain.

To store these results, we maintain a cache, called filtered type cache for every
unique node v in the host graph. This cache stores the references to the host
graph nodes that compose the domain D of v, i.e., that satisfy all of the pattern
nodes requirements regarding the existence of defined edges and the allowable
range for defined attributes. If a node is deleted from the host graph, it has to be
removed from the caches that contain its reference. If it is updated by changing
the value of an attribute or linking with a new edge, the caches that contain
a reference are notified to test if the instance still meets their requirements.
Additionally and for all new instances all the caches that allow instances of the
respective type are asked to test if the instance meets their requirements. If it
does, the instance is added to the cache. Every cache provides information on its
added and changed references which is used to update the match-cache in the
incremental pattern matching in the next stage.

Caching allows for faster access to potential candidates for the pattern nodes
and sharing them between patterns. In return we incur a little administrative
overhead for updating the caches after adding and deleting instances, changing
values of node attributes or adding and removing edges.

If the content of a cache and therefore the list of candidates for a pattern node
was changed, the node notifies all patterns that use it and the notified patterns
request to be recalculated. (Similar to the notification arrays proposed in [20]).

(2) Incremental sub pattern matching. A sub pattern consists of a set of n
connected pattern nodes vi that each have their domain Di of host graph nodes

Efficient Graph Matching with Application to Cognitive Automation 305

(instances), and a set of edges that specify required relations between them. To
obtain the set of valid matches for a pattern we initially build a tree of the depth
n with one level for each pattern node vi. The tree nodes on each level i represent
the host graph nodes that are valid candidates for the respective pattern node
after a host graph node was selected for every pattern node v1 . . . vi−1 (Figure 6).
Starting with the host graph nodes in the domain of the first pattern node in
the search path1 we extend each branch with only those instances in the domain
of the next pattern node that satisfy all relations imposed by the instances
previously bound in this branch. This extension is repeated until the last pattern
node in the search order is reached or no matching instances for a pattern node
are found. In the latter case the algorithm tracks back to the previous pattern
node and tries to extend with the next instance in the nodes domain. The sub
pattern matches can easily be generated from this tree by traversing from the
leaves to the root.

The tree itself is stored for each pattern and maintained incrementally. If
an instance is added to the domain of a pattern node, a new sub tree and
potentially a new match is extended. If an instance is deleted from the domain,
the corresponding sub tree with the corresponding match is removed. If the
attribute of an instance in the tree is changed, the algorithm tests whether the
instance and the related matches still satisfy the patterns conditions and removes
the respective sub tree if required. Information on added and deleted matches
for the pattern are provided by each pattern for use in the incremental rule
matching in the next stage

If the new set of matches differs from the old set, the pattern notifies all rules
that use it either as a LHS condition or as a NAC and the notified rules request
to be recalculated.

(3) Rule matching. A rule consists of a LHS pattern which consists of a
set of n independent LHS sub-patterns pi that each have to have at least one
valid match Mi in their set of matches, and a (possibly empty) set of NAC
sub-patterns Nj none of which may have a valid match for the rule to fire and
apply the RHS. To obtain the valid rule matches we calculate the set of valid
matches Mpot = M1 × . . . × Mn excluding those matches that would be a valid
match for at least one of the NAC and store the results in a tree. Similar to
the pattern matching, the matching tree is updated whenever at least one of the
rules sub-patterns matches changed. In this case not only the new ones but also
all existing rule matches are checked against the NAC to ensure that they are
still valid.

The rule is then fired meaning the actions in its RHS are collected for every
rule match. Only for inference rules a simple control structure ensures, that each
rule is only fired once for the same match and that productions are retracted
in case the match that caused the productions is no longer valid. Finally the
collected actions are applied in a batch.

1 Currently the search path is defined by the knowledge engineer at design time. The
use of more elaborate search plans is part of our future work.

306 A. Matzner, M. Minas, and A. Schulte

Fig. 6. Example pattern and example host graph to illustrate the filtered type caches
and the pattern match tree

The matches on each stage – patterns or rules – are not recalculated from
scratch every time, but are updated using the old set of matches and information
on changes from the previous stage (the patterns use changes to their nodes
domains, the rules use changes to their patterns matches). We therefore refer to
this approach as the incremental approach.

To examine the effect of the incremental approach we implemented a sec-
ond system without using the match-caches for sub patterns and rules. In this
approach, the pattern and rule matching is done from scratch when triggered.
We refer to this as the non-incremental approach. No additional administrative
overhead for the update of pattern matches is required.

5 Experimental Evaluation

To validate the effect of the incremental optimization on performance, we spec-
ified a relevant benchmarking task that was solved by the three frameworks:
Our newly developed framework with (i) the non-incremental algorithm, (ii)
the incremental algorithm and (iii) to compare overall system performance, the
existing COSA using Soar.

5.1 Benchmarking Application

In our scenario, the cognitive vehicle, i.e. the rescue helicopter, is controlled
by one of the three competing frameworks, while the environment, including
the non-cooperative vehicles and the cognitive vehicles movement, are simulated

Efficient Graph Matching with Application to Cognitive Automation 307

separately. The resulting status updates to the instance graph, containing the
situation representation, are performed after each decision cycle.

The simulated scenario, depicted in Figure 3, consists of 20 physical ob-
jects, including the home base, the destination, the cognitive vehicle itself, two
non-cooperative airborne vehicles, and 15 terrain obstacles that are represented
through their center location and a ring indicating the safe distance. In addition
to that there are up to 50 abstract objects, like distance relations, goals, and
plans that are generated by rule application. In total up to 70 instances are
considered during reasoning. Figure 4 illustrates the simplified internal repre-
sentation of the situation.

The cognitive vehicle encounters several typical situations for which we require
a defined, very simple behavior. In total there are 37 rules defined, consisting of
79 sub patterns. Some examples of these rules2 are:

– IF supplies not yet delivered THEN activate goal to deliver supplies (implies
setting target as current destination)

– IF supplies are delivered THEN activate goal to return home (implies setting
the home base as current destination)

– IF not threatened and destination exists THEN set heading to fly directly to
the destination

– IF collision with terrain impending THEN change heading to fly around the
encountered obstacle in the shorter direction to the current destination until
a safe distance is reached

– IF collision with non-cooperative airborne vehicle impending THEN change
heading to fly away from the vehicle while leaning toward the current desti-
nation and accelerate until a safe distance is reached

– IF collision with terrain impending while avoiding a vehicle and vice versa
THEN change heading to fly away from the vehicle and the obstacle until a
safe distance is reached

External state changes caused by the simulation or the environment have to be
interpreted all the time. However, actions are required in the specified situations
only. In our case 19 of the 37 rules fire in every decision cycle. They update e.g.,
the distance-relations after position changes or evaluate whether the cognitive
vehicle is within a threat-ring of an obstacle.

The duration of the decision cycle from sensory input at ti to output via the
actuators at ti+1 is called the decision cycle time tci = ti+1 − ti and is a key
performance indicator for the cognitive system. It is a measure for the speed,
the system can react on external state changes. Its reciprocal is the decision
frequency. In real world application the system will generally receive data at
a certain sampling frequency fs, meaning a new sample needs to be processed
every ts = 1/fs. Therefore the minimum time between data samples at which the
system can process every sample without delay is tsmin = tcmax . Its reciprocal is
the maximum sampling frequency fsmax .
2 The depicted rules were implemented as graph transformation rules in the benchmark

application.

308 A. Matzner, M. Minas, and A. Schulte

The systems behavior can be affected if ts is smaller than tcmax , meaning, the
system can not react on every state change. This would cause that the decision
cycle times at the same decision cycle would not be comparable anymore between
systems with differing performance. The faster system would have reacted in an
earlier cycle, this might lead to subsequent changes in flightpath and therefore
different situations. In order to ensure comparable behavior in the benchmarking
application, therefore we eliminate the effect of the system reaction time by
selecting the simulation sample time ts much longer than the longest decision
cycle time tcmax , in our case 1 second. With this adaption the systems using
the different approaches show the same behavior and require the same amount
of decision cycles for completing the task. This does not preclude the designer
of a real world application from running the cycles without this artificial delay,
but in our comparison this ensures the same behavior and therefore comparable
measurements for every decision cycle.

All measurements were conducted on a 1.6 MHz Intel Centrino processor with
1GB RAM.

5.2 Results

Figure 7 illustrates the situations encountered in the benchmark in a typical
simulation run. The dashed line indicates the trajectory of the cognitive vehicle
(i.e., the rescue helicopter), the solid line indicates the trajectory of a non-
cooperative airborne vehicle.

At the start of the simulation the cognitive vehicle recognizes the target, takes
off and sets course to the destination. At point (1) it encounters a terrain obsta-
cle that it avoids (avoiding the obstacle is controlled by firing the corresponding
rules which causes the peaks in decision cycle time that can be seen in Figure 8
between decision cycles 128-180). It then finds itself too close to an airborne ve-
hicle at (2) and changes its course to avoid it (cycles 221-321). Shortly after the
initial heading change it encounters another obstacle while flying away from the

Fig. 7. Typical simulation run of the benchmark application

Efficient Graph Matching with Application to Cognitive Automation 309

1

10

100

1.000

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Decision Cycle

C
yc

le
 t

im
e

[m
s]

COSA

Non-incremental

Incremental

Fig. 8. Decision frequency of decision cycle for COSA, non-incremental and incremental
algorithm (logarithmic scale)

vehicle which leads to an additional heading change (cycle 238). At point (3) it
reaches the destination and delivers its payload (cycle 366). Now it re-determines
its goals, sets the home base as the new destination and returns home. The peaks
between cycle 406-475 are due to a last terrain avoiding maneuver, not depicted
in Figure 7. From here the cognitive vehicle does not encounter another obstacle
until reaching its home base. This is clearly illustrated by the short cycle time
of the incremental algorithm in Figure 8. The non-incremental algorithm how-
ever shows some fluctuations in cycle time because of recalculations of pattern
matchings.

The duration of the simulation tsim is 727 cycles at 1 second simulated time
each summing up to 12 minutes and 7 seconds. The average of the decision cycle
times tcavg is used to approximate the maximum number nmax of decision cycles,
nmax = tsim/tcavg , that would have been possible within the simulated time, if
run continuously and not limited to the simulation sample frequency.

Table 1 shows a significant decrease in decision cycle time from COSA to the
newly developed frameworks. These results do not necessarily show an advantage
of our matching algorithm over the RETE algorithm but depict the performance
increase of the complete new framework compared to the existing one. This
is mainly due to two reasons: (i) the support for the object oriented features
is now part of the pattern matching algorithm which reduces the number of
rules to be handled as the administrative rules are not needed anymore, (ii)
the data representation was optimized, largely reducing the number of string
operations and data translations.

Table 1 shows that resulting peak times of the non-incremental and the in-
cremental approach are nearly the same. The incremental approach looses its
advantage in situations with many affected rules. At the same time, the mini-
mum time spent per cycle, i.e., the time used for state interpretation without

310 A. Matzner, M. Minas, and A. Schulte

Table 1. Decision cycle time in milliseconds, minimum sample frequency and maximum
number of decision cycles (37 rules, an average of 60 instances in the graph). Memory
shows the average memory consumption.

Framework
Decision cycle time [ms]

fsmin nmax Memory [kB]Min Average Max Variance
COSA 161.7 217.7 334.1 226.1 3.0 Hz 3,339 6,196
Non-incremental 9.7 16.0 41.8 51.2 23.9 Hz 45,321 5,848
Incremental 1.9 5.4 39.2 16.3 25.5 Hz 134,643 5,564

any requirements to act, is reduced to 20% of the non-incremental approach, due
to the incremental recalculation of the affected patterns. Overall this leads to
a reduction of the average cycle time to 34% of the non-incremental approach.
Without the artificial delay, introduced for generating comparable results, the
incremental system could execute three times the cycles of the non-incremental
system and fourty times the cycles of COSA.

The impact on average memory consumption3 when switching from the non-
incremental to the incremental approach is determined by two counteracting
effects. In the later additional memory is required for storing current, added
and deleted matches of every pattern. However, less memory is required because
of less pattern matches and less subsequent rule matches. Overall the memory
consumption therefore slightly decreases from the non-incremental to the in-
cremental approach as Table 1 depicts. The memory consumption of COSA is
added for completeness and is not directly comparable to the other results as it
uses different libraries.

6 Conclusion

The performance of the examined system does not depend on the domain it is
used in, but on the way the knowledge is encoded, i.e. size of the LHS and the
amount of rules that fire each cycle, and the amount of knowledge in the knowl-
edge base (the amount of rules). The rules used in the benchmark application
used to compare COSA and our implementations are very similar to those in the
previously developed COSA applications but the number of rules in the simple
benchmark application is significantly lower. Therefore a next step will be to
examine the results for significantly larger knowledge bases.

For the selected benchmark our experimental results show that performance
is improved by our incremental rule matching approach compared to the non-
incremental approach. The small additional overhead incurred through main-
taining the filtered type caches and generating the notification arrays, is more
than compensated by the gain due to less pattern matchings. The magnitude of
this effect depends on the amount of changes to the instance graph per decision
cycle, the amount of common nodes, the sub patterns share, and the number of
rules fired every decision cycle.
3 Average memory consumption was measured with the UNIX standard tool top for

COSA and ProcessExplorer for the new implementations.

Efficient Graph Matching with Application to Cognitive Automation 311

In our benchmarking application, despite the fact that about 50% of the rules
are fired in each decision cycle for situation interpretation, a significant reduction
in average cycle time could be observed. We expect this effect to be even larger
with a larger knowledge base and a resulting lower share of rules that are fired
in each decision cycle.

Compared to the existing framework COSA, the same behavior could be
achieved at an average decision cycle time that was reduced by 97.5%. As men-
tioned, this is mainly due to the implementation being customized for the cog-
nitive model used and the more efficient data representation.

In our future work we will examine the effect of the complexity of the envi-
ronment and the number of rules in the rule base on performance. Also the use
of search plans as applied e.g., in PROGRES and further optimization of the
rule matching algorithm could further improve performance.

With a reliable implementation of the optimized framework we will prove the
concept in a real world application using a real, uninhabited helicopter platform
under development [10].

References

1. Billings, C.E.: Human centered automation: A concept and guidelines (1991)
2. Bunke, H., Glauser, T., Tran, T.-H.: An efficient implementation of graph grammar

based on the RETE-matching algorithm. In: Ehrig, H., Kreowski, H.-J., Rozenberg,
G. (eds.) Graph Grammars 1990. LNCS, vol. 532. Springer, Heidelberg (1991)

3. Doorenbos, R.B.: Combining Left and Right Unlinking for Matching a Large Num-
ber of Learned Rules. School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA (1994)

4. Dörr, H.: Efficient Graph Rewriting and Its Implementation. LNCS, vol. 922.
Springer, Heidelberg (1995)

5. Ermel, C., Rudolf, M., Taentzer, G.: The AGG-approach: Language and tool envi-
ronment. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) Handbook
on Graph Grammars and Computing by Graph Transformation, vol. 2. World Sci-
entific, Singapore (1999)

6. Fischer, T., Niere, J., Torunski, L.: Story diagrams: A new graph rewrite language
based on the unified modeling language. In: Ehrig, H., Engels, G., Kreowski, H.-
J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 296–309. Springer,
Heidelberg (2000)

7. Forgy, C.L.: RETE: A fast algorithm for the many pattern/many object match
problem. Arificial Intelligence (1982)

8. Habel, A., Heckel, H., Taentzer, G.: Graph grammars with negative application
conditions. Fundamenta Informaticae 26(3/4), 287–313 (1996)

9. Hudson, S.E.: Incremental attribute evaluation: an algorithm for lazy evaluation
in graphs. Technical Report, 87-20, University of Arizona (1987)

10. Kriegel, M., Meitinger, C., Schulte, A.: Operator assistance and semi-autonomous
functions as key elements of future systems for multiple UAV guidance. In: 7th
Conference on Engineering Psychology and Cognitive Ergonomics, in conjunction
with HCI International, Beijing, China (2007)

11. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An architecture for general intel-
ligence. Arificial Intelligence 33, 1–64 (1987)

312 A. Matzner, M. Minas, and A. Schulte

12. Larrosa, J., Valiente, G.: Graph pattern matching using constraint satisfaction. In:
International Workshop on Graph Transformation, Berlin, pp. 189–196 (2000)

13. McGregor, J.J.: Relational consistency algorithms and their application in finding
subgraph and graph isomorphisms. Information Sciences 19, 229–250 (1979)

14. Meitinger, C., Schulte, A.: Cognitive machine co-operation as basis for guidance of
multiple UAVs. In: NATO RTO HFM Symposium on Human Factors of Uninhab-
ited Military Vehicles as Force Multipliers, Biarritz, France (2006)

15. Meitinger, C., Schulte, A.: Human-centered automation for UAV guidance: Oxy-
moron of tautology? The potential of cognitive and co-operative systems. In: 1st
Moving Autonomy Forward Conference, Grantham, UK (2006)

16. Messmer, B.T.: Efficient Graph Matching Algorithms for Preprocessed Model
Graphs. PhD thesis, Universität Bern (1995)

17. Miranker, D.P.: TREAT: A better match algorithm for AI production systems. In:
AAAI 1987 Sixth National Conference on Artificial Intelligence, Los Altos, CA,
vol. 1, pp. 42–47 (1987)

18. Platts, J.T.: Final report of the GARTEUR flight mechanics (FM) AG-14. Auton-
omy in UAVs (in press, 2007)

19. Putzer, H., Onken, R.: COSA - a generic cognitive system architecture based on
a cognitive model of human behavior. In: 8th European Conference on Cognitive
Science Approaches to Process Control CSAPC 2001, Universität der Bundeswehr,
München (2001)

20. Varró, G., Varró, D., Schürr, A.: Incremental graph pattern matching. Electronic
Communications of the EASST: Graph and Model Transformation 2006 4 (2006)

21. Wiener, E.L.: Human Factors in Aviation. Academic Press, San Diego (1993)
22. Zündorf, A.: Graph pattern matching in PROGRES. In: Cuny, J., Engels, G., Ehrig,

H., Rozenberg, G. (eds.) Graph Grammars 1994. LNCS, vol. 1073, pp. 454–468.
Springer, Heidelberg (1996)

Checking and Enforcement of Modeling
Guidelines with Graph Transformations

Carsten Amelunxen1, Elodie Legros1, Andy Schürr1, and Ingo Stürmer2

1 Darmstadt University of Technology, Real-Time Systems Lab
{amelunxen,legros,schuerr}@es.tu-darmstadt.de

http://www.es.tu-darmstadt.de
2 Model Engineering Solutions, Berlin

stuermer@model-engineers.com
http://www.model-engineers.com

Abstract. In the automotive industry, the model driven development
of software for embedded controller units evolves to become the standard
paradigm. In this domain, the development is based on executable block
diagrams and StateCharts which are provided by the commonly used
tool MATLAB Simulink/Stateflow. Huge catalogues with hundreds of
modeling guidelines have already been developed to increase the quality
of models and ensure the safety and reliability of the generated code.
Checking these guidelines and eliminating detected violations manually
during audits is a tremendous amount of boring work. In this paper, we
show how graph transformations can be used to automate the process
of guideline checking and the execution of repair actions. Based on our
experiences in an industrial context, we discuss the pros and cons of
graph transformations compared to other specification approaches and
we finally present a proposal how to combine graph transformations with
other modeling paradigms as the most promising approach.

1 Introduction

Nowadays, model-driven development is common practice within a wide range of
automotive embedded software development projects. In this domain, the stan-
dard modeling language UML still plays a neglectible role and the MathWorks
MATLAB Simulink/Stateflow (MATLAB SL/SF) [MAT] environment is used
as a de facto standard. Simulink supports a block-oriented style of modeling
that combines the data-flow programming paradigm with differential equation
solvers; Stateflow adds a discrete event and state-oriented style of modeling based
on Harel’s concepts of hierarchical automata (StateCharts).

Embedded controller software is either manually developed by programmers
using Matlab SL/SF models as executable requirements specifications or gen-
erated automatically by code generators which translate Matlab SL/SF models
into rather efficient C code. In both cases the reliability, robustness, and effi-
ciency of the developed code heavily depends on the quality of the specified
models.

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 313–328, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.es.tu-darmstadt.de
http://www.model-engineers.com

314 C. Amelunxen et al.

Therefore, generally accepted modeling guidelines – such as the MathWorks
Automotive Advisory Board (MAAB) guidelines – are usually adopted. These
modeling guidelines are either manually or automatically checked during audits
using tools like the Mathworks Model Advisor. However, for huge models, this
can add up to a few hundreds or even thousands of violations that must be
corrected manually by the modeler.

A recent in-house study at DaimlerChrysler showed us that automated and
partly interactive model corrections can reduce the effort of model refactoring
activities up to 70 percent. Nevertheless, we are not aware of any tool support in
this direction except of our Matlab SL/SF Model Analysis and Transformation
Environment MATE. MATE has been developed in a joint effort of four universi-
ties and two companies [SDG+07]. The main motivation for starting the MATE
project was our observation that the implementation of modeling guidelines to-
day takes place on a very low level of abstraction using imperative programming
languages. Therefore, the realization of really complex checks is almost infeasible
as well as the development of even more complex model transformations that
eliminate identified guideline violations automatically. It is our impression and
the intention of this paper to show that, in general, graph transformations offer
significantly better support for the specification and implementation of model-
ing guidelines and refactorings. Furthermore, we will discuss the pros and cons
of graph transformations compared to a limited number of other specification
paradigms. We will conclude the paper with a proposal how to extend graph
transformations to overcome some limits that still impact their usefulness in
this application domain.

The rest of this paper is, therefore, organized as follows: section 2 discusses
the motivations for this work and the MATE project in general, whereas sec-
tion 3 compares the MATE environment with other MATLAB SL/SF guideline
checking frameworks and points out the highlights of a graph transformation
based approach. Section 4 then introduces a representative set of guidelines
as running example and explains the overall structure of MATLAB Simulink
models. Afterwards, section 5 discusses the specification of some guidelines us-
ing a mixture of regular expressions and 1st order logic expressions, whereas
section 6 then presents some graph transformations that specify the selected
guidelines and appropriate repair actions where possible. Finally, section 7 sum-
marizes the results of the comparison of different specification paradigms and
discusses our plans for future work concerning the design and implementation
of a more powerful graph transformation environment.

2 The MATE Project

The MATE project [SDG+07] provides support for semi-automatic checking and
enforcement of modeling guidelines as well as for version management, design
pattern instantiation, and interactive model refactoring and beautifying opera-
tions. It is a joint project of two companies (DaimlerChrysler, Model Engineering
Solution) and four universities (Technical University of Darmstadt, University

Checking and Enforcement of Modeling Guidelines 315

of Kassel, University of Paderborn, University of Siegen). This project was born
out of an urgent need of the automotive industry for more sophisticated tool
support in this area. Automotive software developers using MATLAB SL/SF
are confronted with the same well-known and ordinary maintenance and qual-
ity assurance problems of everyday life programming. Due to the fact, that the
main application domain of MATLAB SL/SF models is the simulation and code
generation for safety-critical embedded systems, the importance of quality as-
surance becomes even more significant. A MATLAB SL/SF code generator may
only produce high quality C code if its input models are of high quality, too.

Therefore, rigorous model audits (review processes) play an important role
for a model-driven automative software development process. The significance
of model reviewing is supported by a case study [SCFD06] which presents 146
critical model changes due to findings from a multi-iterative reviewing process
on a model of 9308 blocks. All in all, the reviewing took a netto time of 1600
minutes, nearly 27 hours. Since, reviewing is a time-consuming and thus cost-
intensive process, it is a highly desirable task to ensure the quality of a model
already during its creation and, thereby, reduce the efforts of reviewing. This can
be done by formulating a set of modeling guidelines that are checked continuously
and automatically earlier on during the model development process.

Therefore, modeling guidelines for MATLAB SL/SF are very popular in the
automotive industry. There are e.g. modeling guidelines provided by the Math-
Works Automotive Advisory Board (MAAB) [MAA]. These guidelines focus on
several aspects like naming and graphical layout conventions, tool and model
configurations, logical errors, forbidden design anti-patterns and recommended
design pattern, and so on. In fact, most of these guidelines imply one or more
repair actions, which often can be executed automatically or semi-automatically
with some degree of user feedback. We expect, based on practical experiences,
that from all captured guideline violations approximately

– 45% can be eliminated automatically
– 43% can be fixed with additional user input
– 4% can only be removed manually
– 8% are not classified yet

Analysis as well as refactoring of MATLAB SL/SF models demands full access
to MATLAB’s model repository. Such an access is provided by an API written
in M-Script, a proprietary script language. Both the used C-like scripting lan-
guage and the tool’s API evolved over many years. As a consequence, it takes
quite some time and efforts to learn how to program reliable model checks and
transformations using this approach. The MATE project overcomes these prob-
lems by providing a layer of uniform API adapters on top of which visual graph
queries and transformations can be developed on a considerably higher level of
abstraction. First experiences indicate that encoding new guidelines on this new
level of abstraction reduces the needed efforts up to a factor of four and results
in definitely more readable code as you will see later on.

The MATE project right now uses the Fujaba graph transformation tool [Fuj]
and its meta-modeling plug-in MOFLON [MOF] to specify the needed graph

316 C. Amelunxen et al.

queries and transformations. Generated Java code either directly manipulates
MATLAB SL/SF models via the tool’s API or works on an offline model repos-
itory. Both solutions have their specific pros and cons: working directly on the
tool’s API is the preferred solution, when interactive model refactoring and beau-
tifying operations have to be implemented. Working with an offline repository
with special indexes has some advantages, when complex analysis operations
have to be executed. A more detailed description of the MATE system’s archi-
tecture and its functionality as well as its integration with the MathWorks tool
suite is out-of-scope of this paper.

3 Related Work

Well-known examples of other MATLAB SL/SF analysis tools are MathWork’s
own Model Advisor [MAT] and MINT [Min]. Both tools rely on the execution
of MATLAB M-Scripts to identify modeling rule violations within Simulink and
Stateflow models. As already mentioned, this approach requires intimate knowl-
edge of a tool API that has been developed over a period of many years always
having backward compatibility in mind. Furthermore, a concise description of
the abstract syntax and (static) semantics of manipulated modeling language
instances does not exist and has to be inferred step by step by testing the func-
tionality of one API operation after the other. Furthermore, M-Script developers
have to use imperative programming constructs for data flow analysis, pattern
matching and rewriting activities – a very error-prone and time-consuming task.

Therefore, the MESA project [FR07] started to develop an own meta model
for the modeling languages Simulink and Stateflow that captures the abstract
syntax and part of the static semantics of these two languages. This meta model
is used to generate an offline model repository for guideline checking purposes (as
we do in the MATE project). Guidelines are specified in the logic-based Object
Constraint Language OCL of the OMG. The specification of refactoring opera-
tions is still out-of-scope due to the fact that OCL does not offer any support
for modifying models. Similarly, the GME/GReAT team developed a MATLAB
SL/SF meta model with the intention to specify model/graph transformations
that either create or translate MATLAB SL/SF models [NKS+05]. As far as we
know, guideline checking and repair actions have not yet been addressed. Fur-
thermore, the experiment reported in [MSD06] describes a successful use of graph
transformations for the detection and resolution of UML model inconsistencies.

Despite of the obvious deficiency of OCL compared to graph transformation
languages, it is not clear whether a logic-based textual language like OCL or a
visual rule-based approach as offered by Fujaba/MOFLON or GReAT is more
appropriate for the specification of modeling guidelines. It is the main purpose
of this paper to start a systematic comparison of both specification paradigms.
We will see later on that both approaches have their pros and cons and should
be combined with other concepts to obtain a more powerful (meta) modeling
and specification language.

Checking and Enforcement of Modeling Guidelines 317

4 Modeling Guidelines for MATLAB Simulink

This section introduces our running example, four different guidelines for MAT-
LAB Simulink models. These examples constitute a representative set and are
well-suited for the comparison of different specification paradigms. Furthermore,
we present a considerably simplified meta model of MATLAB Simulink.

4.1 Guidelines

In the following, we discuss guidelines that involve string pattern matching,
calculation of complex arithmetic expressions as well as local and global pattern
matching operations. Aspects concerning a proper model layout are out of scope
of this paper, but can be handled in similar ways.

Guideline 1: Naming of Subsystems. Usually modeling guideline catalogues
list quite a number of naming conventions that impose certain restrictions on
the name/identifier of a single modeling element. Often these restrictions are
intended to increase the readability of a model or to forbid the usage of identifiers
that are known to cause troubles during code generation. We have selected a
typical naming convention for Simulink subsystems. The name of a subsystem
may consist of lower and upper case alphabetic characters, including numeric
characters and underscore. There must neither be more than one consecutive
underscore nor an underscore at the beginning or the end of a subsystem’s name.
Number are also forbidden as first character of a subsystem’s name.

Guideline 2: Naming of Enable Port block. The second modeling guideline
concerns the naming of Enable Port blocks. An enable block of a subsystem
permits or blocks its execution depending on the signal that is processed by this
block. In order to be able to identify enable port blocks immediately, a guideline
demands that the Enable block’s name matches the name of the corresponding
enable signal of the regarded subsystem (cf. Fig. 1).

Fig. 1. Naming restrictions for Enable Port block

Guideline 3: Unconnected signals. This guideline ensures that every element
of a Simulink model is connected. Unconnected subsystems, basic block inputs,
outputs or unconnected signal lines are not allowed. Thus, this rule is rather
important for the structural correctness of a model. A violation of this rule
inevitably leads to an erroneous model (cf. Fig. 2). Nevertheless, a violation of
this guideline is quite easy to fix by connecting the unconnected inputs to ground
blocks and the unconnected outputs to terminator blocks (if affected inputs and
outputs are not needed during model execution).

318 C. Amelunxen et al.

Fig. 2. Restrictions concerning unconnected signals

Guideline 4: Numerical and Dataflow Analysis. It is possible to design
control and signal processing systems that will be implemented using fixed-
point arithmetic. Two drawbacks must be considered, when using fixed-point
arithmetic [Soh06]. The first one is the risk to introduce new sources of over-
flow/underflow (compared to a floating point arithmetic execution of the same
model). An overflow/underflow occurs, when a calculation produces a result
greater/smaller than the number that can be stored in the specified fixed-point
format. The fixed-point representation is defined by the number of bits used
and the scale factor which corresponds to the least significant bit in base 2. A
number x in fixed-point arithmetic with n bits and a scale factor Sx must be a
value in the range of

− 2n−1 · Sx ≤ x ≤ (2n−1 − 1) · Sx (1)

if signed or in the range of

0 ≤ x ≤ (2n − 1) · Sx (2)

if unsigned. In case of overflow or underflow, the signal is distorted, the error is
propagated to the output without the user knowing it.

The other drawback are new rounding errors due to the loss of precision and
the quantification error caused by fixed-point arithmetics. A small output error
usually can be ignored, but further processing and propagation of numerical
errors often leads to problems. That is why we need analysis rules that compute
lower and upper bounds for computed fixed-point arithmetic values as well as
conservative estimates for rounding errors using interval arithmetic. In some
cases precision problems can be easily fixed automatically by increasing the
scale factors of affected blocks. In other cases, complete subsystems have to
be restructured manually. Furthermore, it is possible to automatically rewrite
Simulink models such that they are able to handle overflows and underflows
either by simply truncating output values using SaturateBlocks or creating
signals that trigger later on manually added error-handling computations.

Checking and Enforcement of Modeling Guidelines 319

4.2 MATLAB Simulink Metamodel

In the past quite a number of meta models for MATLAB Simulink have already
been developed. Most of them are quite simple and introduce a rather generic
abstract syntax model with a small number of concepts. A Simulink model is
a System that may contain a hierarchy of Subsystems with Blocks as leafs.
Blocks are the atomic processing units. They are connected to each other by
connecting their Outports and Inports via Lines. Furthermore, blocks have
attributes in the form of PropertyName pairs that are either atomic or consist
of properties in turn.

Fig. 3. Simplified metamodel of Matlab Simulink

Such a meta model does not contain any information about required or op-
tional properties of certain types of blocks. It simplifies the development of im-
port and export functions for a model repository or the implementation of an
API considerably, but it is not very useful for the specification of guideline checks
and repair actions for the following reasons: accessing specific property values of
blocks of specific types is very awkward and error-prone. To solve this problem a
meta model must be introduced, where each block type is defined as a separate
meta class with its properties listed as (meta) attributes of this meta class. Fur-
thermore, we often have to navigate from one Block to another one identifying
first the right Inport or Outport, following then a list of Lines to the opposite
Outport or Inport, and finally traversing the link from this element to its own
Block. Last but not least, when writing analysis rules, we often have to identify
patterns, where a block has a certain combination of property values or a certain
number of outgoing or incoming connections.

For these purposes we have added another meta model layer on top of the
generic Simulink meta model, where we introduce specific block types like

320 C. Amelunxen et al.

SaturateBlock with specific properties like lower/upperLimit (cf. Figure 3).
These model elements represent derived data that is automatically computed
using the generic meta model elements as input. In fact they are a kind of updat-
able view that can be used to specify rather compact and readable model queries
and transformations. A transformation that creates e.g. a single virtually exist-
ing SaturateBlock object with appropriate property values in reality creates a
generic Block object with two associated Property objects for its two attributes
lower/upperLimit.

Furthermore, we are using derived attributes and associations that are needed
for data flow analysis purposes or simplify navigation between connected blocks.
As far as we know this is the first time that a MATLAB SL/SF processing tool
combines in this way a simple generic meta model with a rich meta model that
lists all needed types of blocks with their specific properties. Right now, Java
code is used to implement the derivation rules that keep both meta modeling
layers in a consistent state. We are planning to use a language like OCL for that
purpose for reasons that will be explained later on and to develop in general more
sophisticated support for the definition of updatable views on models (graphs)
as discussed in [JKS06].

5 Guideline Specification without Graph Transformations

It is state of the art that MATLAB SL/SF modeling guidelines are imple-
mented using the imperative scripting language M-Scripts. Furthermore, in the
model-driven software engineering community an increasing number of projects
is starting to use OMG’s logic-based language OCL for the definition of integrity
constraints and static semantics rules for models and meta models. Therefore,
we will present in this section one example of an M-Script implementation as
well as a number of examples of OCL specifications of the selected modeling
guidelines. In the following section we will then present graph transformation
specifications of the same set of guidelines for comparison purposes.

5.1 M-Script

Today almost all modeling guideline checks are implemented using the program-
ming language M-Script that is part of the MATLAB SL/SF tool suite – on a
very low level of abstraction. In the following we present the M-Script imple-
mentation of the analysis of guideline 2 as an example. We skip the detailed
explanation since the example is serving its purpose of giving an impression of
what M-Script checks are suffering from.

In fact, the implementation of model guidelines with M-Script is nothing
else than traversing graph structures and implementing graph pattern matching
operations with an imperative language. Thus, implementing guidelines with M-
Script is rather a task of programming skills and detailed API knowledge than
a task of a conceptual and well structured conversion of an informal description
into a formal one.

Checking and Enforcement of Modeling Guidelines 321

function f_block_h = guideline_2(system, cmd_s)
top_h = get_param(bdroot,’Handle’);
f_block_h = [];
subsys = get_param(get_param(find_system(top_h, ’BlockType’,

’EnablePort’), ’Parent’), ’Handle’);
for k=1:length(subsys)
subsys_handle = get_param(subsys{k},’Handle’);
porth = get_param(subsys{k},’PortHandles’);
enable_port_name = get_param(porth.Enable,’Name’);
enableh = find_system(subsys{k},’SearchDepth’,1,

’BlockType’,’EnablePort’);
enable_block_name = get_param(enableh,’Name’);
if ~(strcmp(enable_port_name, enable_block_name))

f_block_h = [f_block_h;subsys_handle];
end

end % for
end % function

5.2 Regular Expressions

Since consistent naming is a very important feature of high quality MATLAB
SL/SF models, an approach replacing M-Script as first choice approach has to
provide regular expressions for the description of string restrictions. Regular
expressions provide a technique to describe legal sets/languages of strings based
on syntactical rules only. Thus, regular expressions cannot act as a substitution
of M-Script. They rather provide a powerful addition to an existing guideline
implementation approach. In the following, we demonstrate the usefulness of
regular expressions by the implementation of guideline 1.

The pattern which is intended by guideline 1 is formulated in the syntax of
regular expressions. Then, the negation of this pattern is used to detect guideline
violations. Since the name of a subsystem can neither start with an underscore
nor a number, the name must start with an alphabetic character, which is rep-
resented by the term [A-Z a-z]. Furthermore, the rest of a subsystems’s name
consists of an arbitrary number of alphabetical characters and numbers which
must not be separated by more than one consecutive underscore and must not
end with an underscore. Thus, the following regular expression matches a correct
subsystem name:

[A-Z a-z](([A-Z a-z 0-9]*)(_?)([A-Z a-z 0-9]+))*

5.3 The Object Constraint Language

The application of the Object Constraint Language (OCL) provides an approach
which could in general act as a basis for the formalization of all kinds modeling
guidelines. OCL is a precise logic-based language which provides constraint and
object query expressions on MOF/UML compliant models or meta models. Since
modeling guidelines represent constraints on model elements or relations between
model elements which have to be respected, OCL can be used for a formal

322 C. Amelunxen et al.

description of such rules. In the following, we demonstrate the application of
OCL by the implementation of guideline 2 and 3. In case of guideline 2, the two
different cases of unconnected lines and unconnected ports have to be considered.
Both can be covered by OCL invariants in different contexts. First of all, the
following invariant applies in the context of a line, stating that a line must have
one source and one target block.
context Line
inv: (srcBlock != null) and (targetBlock != null)

Furthermore, a port has to be connected to a line. Since the classes Inport
and Outport are connected to the class Line by different associations, we have
to write two different constraints for the two regarded classes. Both invariants
are listed in the following.
context Inport context Outport
inv: targetLine != null inv: sourceLine != null

As a consequence guideline 3 is formalized by a set of three OCL invariants.
In fact, all three invariants are quite trivial and a tremendous improvement
compared to the corresponding M-Script implementation presented above. The
presented OCL specification has only one drawback: a single modeling guideline
is translated into three different constraints instead of being a single piece of
code. If a one-to-one correspondence of guidelines and constraints is an issue
(e.g. for reasons of maintainability of guideline implementations) then we can
resort to the following solution, where a single more complex OCL constraint
enforces the same guideline.
context Block
inv: incomingLine->forAll(srcBlock != null) and

outgoingLine->forAll (targetBlock != null) and
inport->forAll(targetLine != null) and
outport -> forAll(sourceLine != null)

The OCL expressions presented above probably give the reader the impression
that it is straight-forward to produce and to understand logic-based specifica-
tions of modeling guidelines. But this is no longer true, when more complex
patterns have to be specified. Let us consider our modeling guideline 2. This
guideline requires that the enable block name matches the name of the signal
enabling the subsystem. The class SubsystemBlock that contains both the re-
garded block and its corresponding signal is an obvious choice as context for the
to be defined OCL expression.

First of all, we have to check that the regarded subsystem contains an
EnableBlock. Then two elements of the subsystem must be determined and
compared: the name of the enabling signal and the name of the corresponding
enable block. To compute the name of the enabling signal, we must match that
instance of the class Line, whose value of PropertyName “DstPort” is equal to
“enable” and return its name (cf. subexpression starting at label (1) below). To
find the name of the enable block, we must select the block instance of the class
EnableBlock contained in the subsystem and return its name (cf. subexpression
starting at label (2) below).

Checking and Enforcement of Modeling Guidelines 323

Please note that a subsystem neither may contain more than one enable block
or more than one enabling signal. That means that the intersection of the com-
puted sets of signal and block names is either the single common name (the
guideline is respected) or empty (a violation of the guideline).

if self.containedBlock

->exists(b:Block | b.oclIsTypeOf(EnableBlock))

then

(1) self.containingSubsystemBlock.incomingLine

->select(line | line.dstPort = "enable")

->collect(qualifiedName)

-> intersection (self.containedBlock

(2) ->select(b:Block | b.oclIsTypeOf(EnableBlock))

->collect(qualifiedName))

-> notEmpty()

endif

This example clearly shows that OCL is not very well-suited for the speci-
fication of complex patterns, where we have to navigate along different paths
through a model and to compare their results. Even worse, it is almost un-
feasible to encode guideline 1 or guideline 4 using OCL. In the first case the
pattern matching facilities of regular expressions are missing, in the second
case we are running into problems, when we have to compute intervals of possible
value ranges as well as upper bounds for rounding errors. OCL offers some basic
operators on integers and reals for that purpose, but does not directly support
more complex arithmetic operations like the calculation of two to the power of
a negative value. It is, therefore, necessary to delegate these computations to a
host programming language via method calls embedded in OCL expressions. As
a consequence, we will not present a specification of guideline 4 here.

6 Analysis and Refactoring with Graph Transformations

In this section we finally present graph transformation specifications of our guide-
lines. For this purpose the visual SDM (story driven modeling) diagram syntax
is used [Fuj] that is supported by the graph transformation tool Fujaba and our
plug-in MOFLON [MOF]. Each of these specifications relies on the existence of
a context/parameter object (as the OCL expressions presented before) and it is
evaluated for all objects of the regarded context class.

The first specification presented in Fig. 4 consists of four different SDM ac-
tivity diagram nodes: a start node follwed by a pattern node containing a single
object with a complex attribute condition, followed by an action node with a
piece of Java code and a terminate node. The presented graph pattern checks the
qualifiedName attribute of a given SubsystemBlock using a regular expression.
The check either succeeds and the execution of the small SDM activity diagram
terminates or it fails. In the latter case an external Java method is called that
logs the detected modeling guideline violation. Please note that SDM diagrams

324 C. Amelunxen et al.

Fig. 4. Graph query for the analysis of guideline 1

Fig. 5. Transformation that checks and fixes violations of guideline 2

right now do not directly support regular expression checking as suggested in
Fig. 4. The actual specification uses a work-around based on regular expression-
handling mechanisms that are available in the Java programming language. For-
tunately, SDM diagram nodes may contain an arbitrary piece of Java code such
as the logging method logError used in the regarded diagram.

Fig. 5 simultaneously checks and fixes violations of guideline 2. It matches any
occurrence of a pattern, where an EnableBlock and an EnableSignal object,
which belong to the same Subsystem, do not have the same qualifiedName
attribute. The grey/green line inside the enable object rectangle assigns the
name of the matched enableSignal to the regarded enable object.

Please compare this specification of the guideline check with an incorporated
repair action and the M-Script implementation and the OCL specification pre-
sented beforehand. It clearly shows the advantage of graph transformations, when
more complex object/link patterns have to be found and modified – at least when
we use derived elements to hide certain details of the “real” object structure. In
our example, both qualifiedName and dstPort are derived but nevertheless up-
datable attributes that are internally represented as separate PropertyName ob-
jects with a name and a value attribute. The pretty straight-forward code needed
for the construction of these updatable views is still hand-coded in Java. We are

Checking and Enforcement of Modeling Guidelines 325

Fig. 6. Transformation that checks and fixes violations of guideline 3

working on a new specification approach for updatable views that relies on a spe-
cial variant of triple graph grammars [JKS06].

The specification of the third guideline is also rather straighforward. It first
checks whether the given inport object does not have an associated Line object.
If this check fails (and a Line object does exist) it then goes ahead and checks
for the non-existence of an Outport object of the line associated with the
regarded inport. Finally, the programmed graph transformation rule creates
the missing objects and links (depicted as grey/green objects and links with
stereotype create).

The specification of this guideline is more complex than its OCL counterpart
presented beforehand for the following reasons: if we want to create missing
objects, which is outside the scope of the OCL expression, then we have to
distinguish whether just a Ground object or a Ground object together with an
associated Line object is missing.

Finally, we have to translate guideline 4 into an SDM diagram specification,
which is the most complex of the selected guidelines. Standard data flow analy-
sis is used to compute lower and upper bounds for block outputs as well as
upper bounds for numerical errors. For this purpose derived attributes are used,
whose evaluation functions are implemented in Java and not in OCL as originally
planned for reasons discussed beforehand. The Java code is a straightforward
translation of the directed equations presented in [Soh06] and will be omitted
due to lack of space here. The graph transformation program presented in Fig. 7
accesses the derived attribute overflowed that signals a potential overflow of the
output of the regarded block. It then eliminates the detected numerical problem
as follows: first of all the bit size of the directly affected block output is increased
and then a so-called SaturationBlock is introduced that simply restricts the
upper and lower boundaries of the computed value range such that we don’t have
to modify those blocks that process the regarded output as input. For that pur-
pose the direct connection between aOutport and aInport is deleted (objects

326 C. Amelunxen et al.

and links with label destroy) and replaced by a new SaturateBlock object
together with one Inport and one Outport.

This is – of course – just one possible solution how fix the reported problem. In
other cases it is sufficient and feasible to increase the block sizes of all following
blocks appropriately. Furthermore, sometimes overflows and underflows have to
be detected and reported to error handling submodels. And in some cases, large
parts of the affected MATLAB Simulink model must be rewritten. The MATE
environment, therefore, offers its users a number of alternatives how to fix an
underflow/overflow problem that must be selected interactively. Problems with
the precision of computed fixed-point values may be solved in a similar way.

Fig. 7. Graph query for the analysis and reparation of overflows

7 Conclusion

In this paper we have presented specifications of model guideline checking and
refactoring operations using a variety of different approaches. In the related
discussions we pointed out that neither the logic-based language OCL nor the
graph transformation rules of Fujaba/MOFLON are well equipped for handling
all sorts of modeling guidelines. In principle, SDM diagrams together with their
option to insert arbitrary pieces of Java code where needed are an excellent choice
for the specification of model analysis and refactoring operations as discussed in
this paper.

Checking and Enforcement of Modeling Guidelines 327

But, our daily work with the specification of a comprehensive set of model
analysis and transformation operations in an industrial setting revealed some
important still existing deficiencies of the MOFLON/FUJABA model transfor-
mation language and environment.

First of all some of us are not convinced that the usage of a visual notation
has significant advantages compared to a textual notation as supported by other
declarative model transformation languages. A textual notation is more compact,
simplifies all kinds of version and configuration management tasks and does not
force its users to spend hours beautifying the layout of huge diagrams. Therefore,
we are planning to develop an alternative concrete textual syntax for MOF 2.0
class diagrams and SDM graph transformation diagrams as a new front-end for
Fujaba/MOFLON.

Furthermore, we have made the experience again and again that graph trans-
formation rules are very useful for the specification of structural model prop-
erties and transformations, but shouldn’t or even can’t be used for purposes
such as regular expression checking, complex mathematical computations, or
navigation along complex paths through a network of linked objects. As a con-
sequence, Fujaba/MOFLON already offers means to combine SDM diagrams
with pure Java code, OCL expressions, and a small proprietary path expression
language. All these three extensions have serious draw-backs: OCL and path ex-
pressions are not expressive enough, whereas programming in Java requires in-
timite knowledge of the environment’s code generator backend. Therefore, we are
just designing a Java-like action language for Fujaba that extends the Java pro-
gramming language conservatively with a small number of urgently needed con-
structs and hides any details concerning e.g. the design of the API of our model
repository.

Finally, we are still looking for more appropriate solutions how to write re-
usable pieces of graph queries and transformations. Right now concepts are
missing for the definition of generic queries or transformations that are parame-
trizable with names of attributes, associations (association ends), and classes.
Furthermore, support for the definition of user-defined constructors and destruc-
tors is missing that are automatically called when graph transformation rules
create or destroy objects. In this way, it would be possible to encapsulate han-
dling of auxilary objects and object properties at well-defined places in a graph
transformation specification.

There are further issues that cannot be explained here due to lack of space
which may be summarized as follows: declarative graph/model transformation
languages support — compared to standard imperative programming or scripting
languages — the specification of model analysis and transformation operations
on a considerably higher level of abstraction. But all graph transformation lan-
guages we are aware of have quite a number of deficiencies as explained above.
They still need careful fine-tuning of their design (but not the development of
yet another completely new transformation language). Otherwise, industry will
still continue to use existing imperative (object-oriented) languages to solve their
model analysis and transformation problems in the future.

328 C. Amelunxen et al.

References

[FR07] Farkas, T., Röbig, H.: Automatisierte, werkzeugübergreifende Richtlin-
ienprüfung zur Unterstützung des Automotive-Entwicklungsprozesses. In:
Rumpe, B., Conrad, M., Giese, H., Schätz, B. (eds.) Dagstuhl-Workshop
MBEES: Modellbasierte Entwicklung eingebetteter Systeme III, Infor-
matik Bericht TU Braunschweig, vol. 2007-01. Institut für Software Sys-
tems Engineering, Technische Universität Braunschweig, Germany (2007)
(in German)

[Fuj] Fujaba Homepage, http://www.fujaba.de
[JKS06] Jakob, J., Königs, A., Schürr, A.: Non-materialized Model View Specifi-

cation with Triple Graph Grammars. In: Corradini, A., Ehrig, H., Monta-
nari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178,
pp. 321–335. Springer, Heidelberg (2006)

[MAA] MAAB Homepage,
http://www.mathworks.com/industries/auto/maab.html

[MAT] MATLAB Homepage, http://www.mathworks.com/products/
[Min] Mint Homepage, http://www.ricardo.com/engineeringservices/

controlelectronics.aspx?page=mint
[MOF] MOFLON Homepage, http://www.moflon.org
[MSD06] Mens, T., Van Der Straeten, R., D’Hondt, M.: Detecting and resolving

model inconsistencies using transformation dependency analysis. In: Nier-
strasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS,
vol. 4199, pp. 200–214. Springer, Heidelberg (2006)

[NKS+05] Neema, S., Kalmar, Z., Shi, F., Vizhanyo, A., Karsai, G.: A visually-
specified code generator for simulink/stateflow. In: VLHCC 2005: Pro-
ceedings of the 2005 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC 2005), Washington, DC, USA, pp. 275–277.
IEEE Computer Society, Los Alamitos (2005)

[SCFD06] Stürmer, I., Conrad, M., Fey, I., Dörr, H.: Experiences with Model and
Autocode Reviews in Model-based Software Development. In: Salzmann,
C., Rappl, M., Pretschner, A., Stauner, T. (eds.) Proc. of 3rd Intl. ICSE
Workshop on Software Engineering for Automotive Systems (SEAS 2006).
ACM Press, New York (2006)

[SDG+07] Stürmer, I., Dörr, H., Giese, H., Kelter, U., Schürr, A., Zündorf, A.: Das
MATE Projekt-visuelle Spezifikation von MATLAB Simulink/Stateflow
Analysen und Transformationen. In: Rumpe, B., Conrad, M., Giese, H.,
Schätz, B. (eds.) Dagstuhl-Workshop MBEES: Modellbasierte Entwick-
lung eingebetteter Systeme III, number, 2007-01 in Informatik Bericht
TU Braunschweig, Institut für Software Systems Engineering, Technische
Universität Braunschweig, Germany (2007) (in German)

[Soh06] Sohn, M.: Korrektheitsbegriffe für modellbasierte Codegeneratoren. Mas-
ter’s thesis, Martin Luther University of Halle-Wittenberg (June 2006)

http://www.fujaba.de
http://www.mathworks.com/industries/auto/maab.html
http://www.mathworks.com/products/
http://www.ricardo.com/engineeringservices/
controlelectronics.aspx?page=mint
http://www.moflon.org

Aspect Diagrams for UML Activity Models

Roy Grønmo1,2 and Birger Møller-Pedersen1

1 Department of Informatics, University of Oslo, Norway
2 SINTEF Information and Communication Technology, Oslo, Norway

{roygr,birger}@ifi.uio.no

Abstract. Aspect-orientation has gained increasing popularity, espe-
cially within the programming domain, with textual-based approaches
such as AspectJ. Aspect-orientation provides an approach to the orga-
nization and management of code that cross-cut elements of the base
program or library. Cross-cutting aspects is also an issue within the
modeling domain, and it is therefore likely that modeling languages can
benefit from the aspect-oriented approach. This paper proposes activity
aspect diagrams for UML 2 activity models. Activity aspect diagrams
are defined directly in the concrete syntax of activity models in order to
enable a user-friendly way of specifying aspects. The activity aspect dia-
grams and base activity models are transformed into the abstract syntax
of algebraic graph transformation systems, where the model weaving is
carried out using the well-established AGG tool. The approach is demon-
strated by two examples and a proof-of-concept aspect diagram editor
has been implemented.

1 Introduction

Activity models [12] is a popular tool to model workflow systems, service-oriented
models and business processes. An activity model consists of activities that are
connected/linked by means of control -and data flows in a graph-layout. An ac-
tivity may range from a human step such as contact-the-boss to an automated
service such as a call to a Web service. Control flow includes support for sequen-
tial, choice, parallel and events. Activities may be grouped in subactivities and
can be nested at arbitrary levels.

In aspect-oriented programming the base program is the main program upon
which one or more aspects may define some cross-cutting code as additions or
changes. An aspect is defined by a pair (pointcut and advice), where the pointcut
defines where to affect the base program and the corresponding advice defines
what to do in the places identified by the pointcut. Analogously we term our
main activity diagrams as the base models, and we define an aspect diagram
to consist of a pointcut diagram and an advice diagram, both based upon the
concrete syntax of activity models. From the base model and an aspect, an aspect
weaver can produce a woven result in the form of a new model.

We have chosen to use the aspect terminology instead of the more general
model transformation terminology. This is because our aspects, the source mod-
els and the target models are all based upon the same language (activity models),
and because we define a transformation as a pair of pointcut and advice.

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 329–344, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

330 R. Grønmo and B. Møller-Pedersen

The need to transform activity models include model refactoring, model check-
ing, quality-of-service aggregation [5] etc. Another important application of as-
pects at the model level is to achieve good separation-of-concern. A base model
may for instance model the functional parts, while a set of aspect models may
define non-functional aspects such as exception handling, security and quality-
of-service properties. In many situations the updated model or aggregated result
shall be viewed by the modeler. In other cases the transformation may only sim-
plify or restructure the model so that the model can be interpreted by other
processing tools that require a specific structure. Assume there is a transforma-
tion script that can produce BPEL code [14] for execution, but it requires that
subactivities are not used. In such a case, we may define a first transformation
which removes all subactivities to a collapsed structure, and which preserves the
execution semantics.

Traditional model transformation approaches suffer from being either tex-
tual and/or working at the abstract syntax also known as the metamodel level.
With our proposed activity aspect diagrams, the modeler can define the model-
to-model transformation rules directly upon the already familiar environment of
the graphical, concrete syntax of activity models. The hypothesis is that defining
graph-based transformation rules operating directly on concrete syntax would
provide the transformation modeler with a better tool for defining model trans-
formations.

The base models upon which aspects can be applied, cannot in general predict
the aspects that one wants to apply. Thus, the base model specification should
be independent of the aspect model specification. This is called obliviousness
and is one of the key factors behind the success of AOP. We want to apply
the same principle to our activity aspect diagrams. Furthermore, the aspect
models should be easy to specify and understand, so that many typical cross-
cutting properties are expressible in a simple manner. We propose to introduce
high-level operators to be able to express transformation needs using a single
rule, where multiple rules otherwise needs to be defined within traditional graph
transformation approaches.

2 Examples

We will demonstrate our approach by two examples. In the first example we
assume that the base activity model has been used to model a Web service
composition [16]. In a service composition there are several calls to distributed
services, in general provided by external parties. In such a scenario it is a typical
problem that individual services become temporarily (or permanently) unavail-
able due to network problems, server problems etc. A service composition will
fail if any of its individual services fail.

We propose an exception handler aspect, based on timeouts, to improve the
reliability of the service composition. It is assumed that it is more reliable to
terminate with a proper timeout message instead of being a non-responding ser-
vice which only hangs. For all the services we specify a timeout value indicating

Aspect Diagrams for UML Activity Models 331

timeout_B

wait(20)

interruptible
region

”A” 10
ThrowException

B

timeout_A

”B” 20
ThrowException

timeout_B

timeout_A

wait(10)

interruptible
region

A

A
{timeout=10}

B
{timeout=20}

[v=”a”]
[c=1]

[c=2]

A

B

C

A

B

C

[v=”a”]

[v<>”a” and c=1]

[v<>”a” and c=2]

[v<>”a”]

Fig. 1. Examples: Exception handler (left) Redundant DecisionNode (right)

unreasonable long time to process the service. If no timeout value is defined we
may use a default value such as 20 seconds. The timeout value is specified by a
tagged value (tagged value is a name-value pair which is used to extend the
UML metamodel to make user-defined UML profiles). Notice that by omitting
all the timeout annotation and applying default timeouts to all the services, we
will achieve full obliviousness if desired.

An activity model uses rounded rectangles to represent activities, diamond
symbols to represent DecisionNodes (or-split) and MergeNodes (or-join), bars to
represent parallel flow (and-split/and-join), a filled circle represents InitialNode,
a circle with a smaller filled circle inside represents FinalNode, and directed
edges represent control flow.

The left part of Figure 1 shows the proposed transformation to be applied
on the base model which consists of two activities. Each time an activity is
executed (call to a Web service in this case) a timer (displayed as hourglass) is
started in parallel, with the timeout value taken from the activity. There is now
a racing condition between these two actions, where the first one to terminate
should enforce the termination of the other. This is achieved by placing an
InterruptibleRegion (dashed rounded rectangle) around these two parallel
activities. An interrupt control flow leaves the ordinary activity and will by
definition terminate all other flows inside the InterruptibleRegion. The timer
activity is immediately followed by a send timeout signal.

The timeout signal is received by a global acceptEventAction. One accept-
EventAction is produced for each activity. This is to make the exception message
specific to the activity which had the timeout. Thus, the acceptEventAction
can be immediately followed by ThrowException activity which reports back
the name of the activity and associated timeout value that caused the exception.
The ThrowException activity is followed by a FinalNode which will terminate
all other flows within the entire activity model.

In this example the resulting model will be very cluttered and hard to read
if the timeout exception is included. In this case, the new model should not be
used for viewing, only as an intermediate step prior to execution.

The second example is a model refactoring example taken from Eder et al.
[6] who present a number of model refactoring rules for workflow models. We
have adopted his WFT-JC1 example as our second example for activity models.
The right part of Figure 1 shows an example base model before the rule is

332 R. Grønmo and B. Møller-Pedersen

applied (top part), and after the rule has updated the model (bottom part). The
rule expresses that two consecutive DecisionNodes can be merged into one by
combining the guards of the first and second DecisionNodes. The result of the
transformation is that the inner pair DecisionNode/MergeNode is removed and
the guards are joined by an AND-operator.

The example is shown using two alternative paths inside the inner Decision-
Node, but a solution should be capable of handling an arbitrary number of alter-
native paths. We do however restrict the example, so that only a single activity
is allowed within each alternative path of the inner DecisionNode/MergeNode
pair.

3 Architecture of the Approach

Figure 2 shows the architecture of our approach. The base model is specified
within an existing UML 2 activity modeling tool. Our proposed graphical lan-
guage, called activity aspect diagrams, define aspects to be applied on activity
models. To support the approach we need to develop a new editor for the activity
aspect diagrams. One or more activity aspect diagrams may apply to the same
base model. An activity aspect diagram uses the concrete syntax, in this case
activity models, and it is based upon algebraic graph transformation.

Since both the base model and the transformation rules are defined using a
concrete syntax, one cannot directly use existing graph transformation tools, as
these are based upon transformations on abstract syntax. So, in order to perform
rule analysis (correctness, termination, confluence) and the actual weaving, we
must either implement all this from scratch, or provide a mapping between the
concrete and abstract syntax. We choose the latter to benefit from existing well-
established graph transformation tools.

We need to transform UML 2 activity models into graph representation and
back again. The graph representation will be a typed attributed graph, where
nodes and edges are assigned to types, and the nodes and edges can have associ-
ated attributes. Similarly the aspect diagrams need to be transformed into graph
transformation rules. The transformations from the concrete syntax of base mod-
els and aspect model should be fully automatic, and the modeler should not need
to see or worry about the graph transformation tool operating on the abstract
syntax.

Activity Model

Graph
Graph

Transformation
Tool

(AGG etc.)

Graph
Transformation

Rules

Activity Aspect
Diagrams

input
input

output

Graph

Activity Model

Aspects Base model Weaved model

transformation/
weaving

concrete
syntax

abstract
syntax

Fig. 2. Approach: From aspect diagrams to graph transformation rules

Aspect Diagrams for UML Activity Models 333

The graph transformation tool performs the weaving by applying the gener-
ated transformation rules on the generated abstract syntax representation of the
base model. The result is an abstract syntax representation of the new activity
model. The new model will be translated back to concrete syntax and presented
to the user in a UML modeling tool.

4 Activity Aspect Diagrams

The activity aspect diagram consists of two parts: pointcut diagram and ad-
vice diagram. The pointcut diagram is shown on the left hand side and the
advice digram is shown on the right hand side. The weaving semantics of the
aspect diagram follows the basic principles of a traditional graph transformation
system, where the pointcut diagram models an activity fragment for which we
are looking for potential matches (often referred to as a morphism within graph
theory) within the base model. The advice diagram instructs how a base model
shall be changed relative to the match. We require that matches of the pointcut
are injective, meaning that every separate element defined in the pointcut needs
to be mapped to separate elements in the match.

Elements appearing in the pointcut and not in the advice, are to be deleted,
while elements appearing only in the advice, are to be added. Elements appearing
in both the pointcut and advice are to be unchanged or they may change their
properties or relationships to other elements. Furthermore we adopt the double-
pushout approach which excludes application of rules deleting nodes that are
attached via edges to nodes in the remaining graph. The precise meaning of this
depends on the mapping from concrete syntax to abstract syntax (section 6).

Elements will only be matched if they have the exact same context in the base
model as within the pointcut diagram. Thus all relations need to be present also
in the base model. Assume that the pointcut diagram defines an activity with
an attached note and a single outgoing control flow reaching the finalNode. In
such a case both these relations need to be associated with the matching activity
within the base model. The base model element may however have additional
relations and still be a match, such as incoming control flow (most likely) and
data flow leading into its input pins.

Both the pointcut and advice modeling languages build upon activity models.
In the sequel of this paper we will use the shorter term ’aspect diagram’ for
’activity aspect diagram’ as the context is given to be activity models.

In the simplest form a pointcut diagram is an ordinary activity model frag-
ment. A pointcut diagram extends activity models with property matching
expressions. The property matching expression goes into the exact same place
as the corresponding property of an ordinary activity model. Properties in an
activity model include names, stereotypes, tagged values, guard expressions etc.
Each property matching can use any legal Java string expression combined with
the two wildcards (*,?). The star matches an arbitrary sequence of characters
and the question mark matches any single character.

334 R. Grønmo and B. Møller-Pedersen

Identifiers are defined with a question mark prefix and may be used to iden-
tify both elements and properties. The identifiers and property matching are
combined in a syntactic pair such as ?actId <*Service> placed in the name
property of an activity. actId will be the identifier of a matching activity that
has a name ending with Service. Identifiers in the name position is by default
an element identifier.

Property assignment is available to update the property values in the ad-
vice. A property assignment is defined directly at the value place of the the
property, and it can be any legal Java expression that evaluates to a string. The
Java expression can use the identifiers as variables holding the value of properties
matched by the pointcut. An identifier will be bound to the matched property
value (the name in case of an element identifier).

We extend the pointcut modeling language with boolean operators (not
applicable to the advice diagram). All selection elements in the pointcut model
are implicitly joined by and-operators. In addition there are or-, xor- and not-
operators available to use in other cases. These are displayed as {operator} and
are attached to its operands via dotted lines. The not-operator has one or more
operands, while the others have two or more operands. One element can only be
an operand of one operator.

The boolean operators may also be used as part of the property matching
expression. Example: We want to match all Activities with stereotype Service or
Webservice. This can be expressed as «Service» {or} «Webservice».

In order to make the aspect diagrams better suited to specify transformation
rules in a simple manner, we propose to introduce a few, but powerful high-
level operators. We will see in the transformation section that the use of
high-level operators typically needs to be translated into a set of basic graph
transformation rules. This also motivates the use of such high-level operators,
because the rule modeler can define a single rule using a powerful, but intuitive
high-level operator instead of defining several basic transformation rules. Due
to limited space, we will only present one high-level operator, the collection
operator, in this paper.

An aspect model consists of a set of aspect diagrams which can be non-
deterministically applied or they may be applied according to some rule control
structure. To define the control structure of the rules, one alternative is to use
activity models.

5 Aspect Diagram Examples

After having introduced the aspect diagram language, we will now show how
aspect diagrams can solve the two examples from section 2. Before solving the
timeout exception handler case, we assume for simplicity that an activity can
have at most one incoming control flow and at most one outgoing control flow.
This is without loss of generality, since many incoming control flows represent an
implicit join node, while many outgoing control flows represent an implicit fork
node. Thus, any activity model can be translated into a semantically equivalent

Aspect Diagrams for UML Activity Models 335

?S

Pointcut: Advice:

?C1

?M1

?M2

?C2

[?guard1]

[?guard2]

?S

?C1

?M1

[?guard1 ”and”
?guard2]1..*

1..*

Pointcut: Advice:

?s
{timeout=?time}

{not}

?outermost

{not}

?out

?in

”timeout_” + ?s

wait(?time)

?outermost

”timeout_” + ?s

ThrowException
?s ?time

?s

?out

?in

interruptible region

”timeout_” + ?s

{not}

Fig. 3. Aspect diagrams: Exception handler (left) Redundant DecisionNode (right)

activity model with our proposed restriction. In fact, the modeler may quite
easily use aspect diagrams to define such a translation.

We also assume that each activity has an associated tagged value, timeout,
indicating the timeout of the service it invokes. Again, an aspect diagram could
easily introduce this tagged value with a default value for all activities without
such annotation.

The left-most aspect diagram in Figure 3 shows the proposed solution. For
each activity with incoming and outgoing control flow and a timeout value
(shown at the top of the pointcut), we add all the structure necessary to intro-
duce the exception handling. The pointcut definition includes the usage of two
not-operators attached to control flows of the activity identified as ?outermost,
which ensure that no incoming and no outgoing control flow is associated with
the outermost activity. This condition will only hold for the outermost activity.
By placing all the exception handlers in the outermost activity we will terminate
all flows within the entire activity model when we go to the finalNode.

We need to ensure the aspect is only applied once for each activity. The
throw event signal named timeout_+?S (?S is bound to activityName) is added
by the advice. The same signal is therefore added to the pointcut with a not-
operator attached to it, meaning that it cannot be present for the aspect to be
applied. The aspect should only apply to activities that are leaf activities and not
subactivities. For simplicity we assume that only leaf activities have the timeout
values. If this condition does not hold, we could strengthen the aspect diagram
by inserting an initialNode connected to a not-operator inside the ?s-activity.

In the second example we introduce the high-level collection operator. Re-
member that in the example there is an inner, redundant decisionNode,
which can have an arbitrary number of alternative paths. The right-most aspect
diagram in Figure 3 shows usage of the collection operator, where the dotted
rectangle surrounds the collection elements and a cardinality is provided next

336 R. Grønmo and B. Møller-Pedersen

A

B

A

B

A

B

A

B
...

A

B

A A... A

B

A

B

A

B
...

a) b) c)
pointcuts matches

a) b) c)

Fig. 4. Semantics of the collection operator

to it. The cardinality has the same form as ordinary UML cardinalities. The
elements inside the rectangle of the collection operator indicate that there may
be an arbitrary (cardinality in this case is 1..*) number of matches for this part.
Each match however, needs to be linked to the rest of the graph exactly as spec-
ified by the relationships to the parts outside of the collection rectangle. This
means that the same DecisionNode C2 is linked to all the matches within the
collection operator.

If the collection operator had been extended to include the DecisionNode C2,
then we would have had distinct DecisionNodes for all our matches (remem-
ber that the matches are injective, which also applies to the collection operator
matches). Identifiers inside the collection pattern denote different elements or
properties for each match, such as the guard in the example. The collection op-
erator is normally used also in the advice to indicate the changes to the matches
in the collection. If the collection operator is absent in the advice, it implies a
request to delete all the collection elements. No boolean operators are allowed
inside the collection operator. Within this paper we also assume that only a
single collection operator is used within the same aspect diagram. By this we
avoid a lot of complexity which we do not have space to cover here.

Figure 4 shows the relationship between the collection operator in the point-
cut and possible matches. For the illustration only we use a circle to denote
some element A and B (eg. InitialNode, DecisionNode, JoinNode) that can
be the source or target of a control flow edge. In case a) only the edge is in-
side the collection while the source and target elements are outside the col-
lection operator. This means that possible matches will have a set of edges
between the same A and B elements. In case b) the source A is also inside
the collection which means that a match will contain a set of distinct A ele-
ments with edges leading to the same B target element. In case c), both the
source and target is inside the collection, which means that a match will contain
a set of distinct A and B elements each having their own control flow. We re-
quire that a collection match shall be maximal, meaning that the largest set of
elements, limited by the upper bound cardinality, must be gathered before the
advice is applied to the match.

6 Transformation between Concrete and Abstract Syntax

The AGG tool [18] is chosen as the graph transformation tool, and parts of the
mapping is tailored for this purpose. We need to transform both ways between
the concrete syntax of activity models and the abstract syntax of graphs. For

Aspect Diagrams for UML Activity Models 337

this purpose we define a one-to-one correspondence, which is quite straightfor-
ward for activity models since they are very close in nature with graph repre-
sentation.

Activity, InitialNode, FinalNode, DecisionNode, MergeNode, ForkNode,
JoinNode and data objects appear as nodes in the activity model and we choose
to represent these as nodes (with different types) also in the graph representation.
The control and data flow edges of activity models are also represented as nodes
(with different types), in the graph representation, with two directed outgoing
edges labelled src and trg. By this circumstantial mapping of the activity model
edges, missing edge sources or targets, at the concrete syntax, will be translated
into rules where the source and target of an edge are always present at the
abstract syntax. We discuss this further in section 7 after all the transformation
rules are presented.

Properties of the different UML types are mapped to node attributes of the
corresponding graph node. An activity name is mapped to a name attribute
belonging to the activity graph node, while a control flow guard is mapped to
a guard attribute of the control flow graph node. The definition below provides
the one-to-one relation between Activity model and graph representation.

The operator ↔ defines the one-to-one relation between Activity model el-
ements and graph elements. It uses an overloaded mapping function φ which
is either φ : Id → Id or φ : Attrs → Attrs, to map from activity element
ids/properties to graph ids/attributes. To the left we show the Activity ele-
ments and on the right we show the corresponding graph elements. Nodes are
given by a triple (Id, Type, Attrs) and edges are given by a quintuple (Id, Type,
src, trg, Attrs):

Activity(aId, attrs) ↔ node(φ(aId), "Activity", φ(attrs))

cF low(cId, AId︸︷︷︸
srcId

, BId︸︷︷︸
trgId

, attrs) ↔

⎧⎨
⎩

node(φ(cId), "cF low", φ(attrs))
edge(genId(), "src", φ(cId), φ(AId), ε)
edge(genId(), "trg", φ(cId), φ(BId), ε)

The mapping of InitialNode, MergeNode, ForkNode, JoinNode,
DecisionNode and FinalNode is similar to the Activity mapping, and the
mapping of dFlow is similar to the cFlow mapping. ε denotes an empty set of
attributes, Ids are suffixed by Id, and genId() makes a new id. Due to lim-
ited space, we do not present a full mapping of the activity models as graph
representation within this paper.

We define a one-way transformation from the aspect diagrams to graph trans-
formation rules in the abstract syntax. Often a single aspect diagram will be
mapped to several graph transformation rules. Since the aspect diagrams are
designed as extended activity models, the mapping concerning the activity mod-
els can follow the mapping defined by ↔. In an aspect diagram without high
level operators, the pointcut diagram will be mapped to the left part(s) of one
or more graph transformation rule(s), and the advice diagram will be mapped
to the right part(s).

338 R. Grønmo and B. Møller-Pedersen

For the property matching and assignment, the identifiers are mapped to
AGG identifiers and variables, while Java string expressions can be read directly
by AGG. We omit wildcard expressions (*,?) since it is not supported by AGG.

We need to map the boolean operators of the pointcut language. All ele-
ments not explicitly defined as an operand, will implicitly belong to the global
and-operator. This is directly supported by normal graph transformation rules,
and no additional mapping is needed.

Each not-operator will be mapped to a Negative Application Condition (NAC)
associated with the corresponding mapped rule of the aspect diagram. The oc-
currence of a matching negative application condition in combination with left
part matches of the rule, prevents the application of the rule. Algorithm 6.1
shows pseudocode on how to map a single not-operator into a NAC. The not-
operands will be removed from the pointcut and inserted into a NAC rule instead.
If the not-operand is an edge, then its source and target nodes (retrieved by the
directAssoc method) will be copied into the NAC rule (and not moved from the
pointcut). The rules left, right and NAC definitions are finalised by translating
to abstract syntax with the toAbsSyntax method.

Algorithm 6.1: TransformNotOper(AD : aspectDiagram)

notExpr = AD.getNotExpr; NAC = new NACRule
for i ← 1 to notExpr.numOperands

do

⎧⎨
⎩

notElem = notExpr.operand(i)
AD.pointcut.remove(notElem)
NAC.add(notElem + notElem.directAssoc)

NewRule = new Rule; NewRule.left = AD.pointcut.toAbsSyntax
NewRule.right = AD.advice.toAbstSyntax
NewRule.addNAC(NAC.toAbsSyntax)

The three not-operators in the exception handler aspect diagram of Figure 3
will be mapped to three different NAC rules associated with a single graph
transformation rule. The first NAC will ensure that the rule is only applied once
(timeout signal as not-operand), and the latter two not-operands ensure that
the outermost activity will not have incoming nor outgoing control flow.

The or-operator leads to several copies of the rule, one for each operand of
the or-operator. Algorithm 6.2 shows pseudocode for an aspect diagram with a
single or-operator. outsideOrExpr retrieves all elements that are not part of the
or-expression.

An xor-operator will be mapped in the same way as an or-operator with a
special metanode to be produced by each rule generated by the xor-expression.
The metanode acts as a flag to indicate that one of the rules has been applied.
The metanode is added as a NAC rule associated with each of the rules generated
for the xor-expression, which ensures that at most one of the xor-rules will be
performed.

Aspect Diagrams for UML Activity Models 339

Algorithm 6.2: TransformOrOper(AD : aspectDiagram)

orExpr = AD.pointcut.getOrExpr
for i ← 1 to orExpr.numOperands

do

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

NewRule = new Rule
NewRule.left = orExpr.operand(i).toAbsSyntax +

AD.pointcut.outsideOrExpr.toAbsSyntax
NewRule.right = AD.advice.toAbsSyntax
AllRules.addRule(NewRule)

Now we map the high-level collection operator. For simplicity we as-
sume that only two cardinalities are available for the collection operator: 0..*
or 1..*. The collection operator can be represented by an ITER-rule and a
FINAL-rule.

ITER-rule. Intention: The iteration rule shall be applied to a single match
in a collection of matches and it shall be applied for as long as possible. That
means that it shall be applied the same number of times as there are individual
matches of the collection pattern. Mapping: Simply remove the collection opera-
tor marking (the rectangle and cardinality) in the pointcut. Construct the advice
by combining the outside of the collection operator from the original pointcut
with the inside of the collection operator of the original advice. This will ensure
that the necessary changes are applied to each match of the collection. At the
same time we preserve the elements outside the collection rectangle, so that all
individual collection matches get an equal chance to be matched. To preserve
the intended semantics at the end, we let the FINAL-rule sort this out.

FINAL-rule. Intention: The final rule shall be applied only once after all
matches in the collection have been applied with the ITER-rule. Mapping: Both
the pointcut and advice is constructed by removing both the collection operator
(the rectangle and cardinality) including its inside content. This will result in
a rule that finally does all the adding and deletion of elements outside of the
collection part. These changes cannot take place before all possible applications
of the ITER-rule.

The transformation of the collection operator can be summarized by the
pseudocode of algorithm 6.3. The algorithm assumes there is exactly one collec-
tion operator in the input. The toAbstractSyntax method will transform from
concrete to abstract syntax. In this step the inside of the collection operator
will contain all node elements resulting from any elements inside the collection
of the concrete syntax. The removeCollOper method will remove the Collec-
tion operator but keep all the elements inside and outside of the collection. The
outsideCollection and insideCollection will keep only elements outside or in-
side the collection operator. The + operator produces a new graph where the
node/edge set is the union of the nodes/edges of the operands.

340 R. Grønmo and B. Møller-Pedersen

Algorithm 6.3: TransformCollOper(AD : aspectDiagram)

AD = AD.ToAbsSyntax; Iter = new Rule ; Final = new Rule
Iter.left = AD.pointcut.removeCollOper
Iter.right = AD.pointcut.outsideCollection +

AD.advice.insideCollection
F inal.left = AD.pointcut.outsideCollection
F inal.right = AD.advice.outsideCollection

Attempt
ITER-rule

<<loop>>

<<loop>>

Attempt Remove Redundant Decision Node

[rule applied]
[rule applied]

[rule not
applied]

[rule not
applied]

Attempt
FINAL-rule

ITER-rule FINAL-rule

Fig. 5. Aspect diagram of redundant decisionNode example mapped to AGG rules

Figure 5 shows the result of transforming the redundant DecisionNode aspect
diagram into AGG graph transformation rules. An aspect diagram may have an
arbitrary number of potential matches in the base model. We need to ensure
that all these matches are found by forcing the ITER-rule and FINAL-rule
to be repeated as long as possible. By doing so we will achieve the desired
behavior as if the pointcut had a maximal matching (section 5) upon which the
advice was applied. The top of Figure 5 shows how the rule control structure
can be defined using activity models. AGG does not support all the control
structure power of activity models, so in general we need a scheduler component
on top of AGG. The AGG layered approach will however support the two paper

Aspect Diagrams for UML Activity Models 341

examples. Notice that the gluing condition (double-pushout) ensures that the
example FINAL-rule is applied after all corresponding ITER-rule applications
are finished, but this is not the general case.

7 Discussion

An activity model looks quite like an abstract syntax graph representation with
nodes and directed edges, and one could question if the abstract syntax could
directly represent the concrete syntax. However, since activity models have el-
ements that contain other elements (e.g. subactivity, expansionRegion and
interruptibleRegion), this is not possible. In addition, activity inputPins and
outputPins pose a problem as they have a specialized notation in that they are
displayed on the border of the owning activity.

Representing control flows as edges also in the abstract syntax would make
things much more difficult. It would not be possible to define a rule without
the source or target of a control flow edge. In the aspect diagram, however, we
use explicitly that a missing source or target expresses a wildcard node. With-
out this possibility in the exception handler example, we would have to explic-
itly express all the different node options to be source of the ?in-labeled edge,
and similarly for the target of the ?out-labeled edge. We could at least have
the options of IntialNode/FinalNode (?in/?out), activity, subactivity,
ForkNode/JoinNode (?out/?in) and DecisionNode/MergeNode (?out/?in). To
cope with all combinations we would have to make 25 (5x5) different graph trans-
formation rules.

An interesting question is to what extent our approach can be generalized: Is
the approach also appropriate for other kinds of models than activity models, so
that we could introduce the same kind of aspect diagrams for UML sequence dia-
grams, class diagrams etc.? This remains to be investigated, but an observation
is that the closer the modeling language concrete syntax is to a typed attributed
labelled graph, the easier it will be to follow the graph transformation approach.
Class diagrams are close to such graphs, while sequence diagrams are different
kinds of graphs. In a mapping from the concrete syntax of a sequence diagram
into an abstract syntax as graphs, we get an explosion in the number of ele-
ments. This means that it is highly questionable if the approach, presented in
this paper, is suitable for sequence diagrams.

The property matching, property assignment, boolean operators and rule con-
trol structure are general mechanisms and should be applicable to other kinds
of models. The generality of high-level operators, and which high-level operators
are needed, may vary with the kind of model. To achieve an intuitive and easy
to comprehend aspect diagram language, we believe it should be tailored to the
actual source and target modeling language.

We have developed a proof-of-concept Eclipse GMF-based [3] editor for the
aspect diagrams. It currently supports Activity, DecisionNode and MergeNode
of Activity models, in addition to the use of single collection operator, which
was enough to successfully demonstrate the redundant DecisionNode example.

342 R. Grønmo and B. Møller-Pedersen

The transformation from aspect diagrams to AGG rules has been implemented
using the MOFScript language ([11]). For other examples, including the second
paper example, we have manually followed the mapping definitions described
between abstract and concrete syntax, and tested the graph transformations in
AGG upon several base activity models with successful results.

8 Related Work

Several approaches (QVT [13], Zhang et al. [20], graph transformation approaches
such as AGG [18], Ehrig et al. [4] and PROGRESS [15]) provide model transfor-
mation languages and tools that can define transformations between general
source and target modeling languages, and where one transformation may oper-
ate on different source and target modeling languages. In cases where the source
and target languages are both activity models, they suffer from using abstract
syntax instead of the more intuitive concrete syntax on which our aspect dia-
grams are defined.

Lindqvist et al. [9] propose the star operator which can be used in a point-
cut language to find repetitive occurrences of a specific modeling pattern and
is complementary to our collection operator. The star operator is limited to
repetitive occurrences that constitute a sequential path, and is thus not strong
enough to model the collection operator. It is only proposed within a pure query
part (like our pointcut), and has no associated advice part as we have defined.
Furthermore, the star operator is presented on abstract syntax only. However,
the authors share our opinion with respect to concrete syntax: In a tool envi-
ronment, however, creating the queries using the concrete syntax of the modeling
language can be beneficial.

Aspect-oriented behavior modeling approaches so far have been dominated by
UML sequence diagram attempts [19] [1] [2] [17]. Solberg et al. [8] and Whittle
and Araújo [19] perform weaving at the model level as in our approach. Deubler
et al. [2] and Stein et al. [17] use sequence diagrams to model the aspects at
a conceptual level to be mapped to some aspect programming language such
as AspectJ [7]. Stein et al. [17] focus only on the conceptual modeling of the
pointcut, and do not cover advice modeling.

Klein et al. [8] propose semantic-based weaving of Hierarchical Message Se-
quence Charts (close to UML sequence diagrams). Their approach focuses on the
weaving algorithm that takes the execution semantics into account in the weav-
ing process. This is a benefit compared to our approach since the aspect diagrams
and the graph transformation system performs pure syntax-based weaving. To
illustrate the aspect definition, they provide an example of a pointcut and advice
which is similar to the graph transformation principle aspect diagrams are built
upon. However, the aspect definition given only explains the example, and no
further attempt to define an aspect-oriented modeling specification language is
given.

Mehner et al. [10] analyzes if a set of aspects may be properly woven with
the base model by considering possible conflicts and dependencies. Pre- and

Aspect Diagrams for UML Activity Models 343

post-conditions expresses the effects of each activity in the AGG tool where
automated analysis is carried out. The aspect definitions proposed in their paper
are limited to inserting an entire new use case before, after or as a replacement
of some previous activity. None of our two example aspects are expressible with
this definition.

9 Conclusions and Future Work

We have proposed activity aspect diagrams as a way to define aspects upon
activity models. The approach is built upon transformation of both activity -
and activity aspect diagrams in concrete syntax to an abstract syntax of a graph
transformation tool, which then performs the weaving. A major benefit is that
the aspect modeler can operate directly within the familiar syntax of activity
models instead of the more general graph transformation rules of traditional
graph transformation approaches. At the same time we can benefit from analysis
of confluence and termination in the graph transformation tool.

Transformation approaches have been dominated by textual languages, even
though the source and target languages may be graphical languages. One rea-
son is that textual programming languages have been widely used for decades
with lots of practical experience and improvements. While the earlier attempts
used low-level, non-comprehensible constructs, todays textual programming lan-
guages use several high-level constructs (eg. while-loops, inheritance, recursion)
to allow for user-friendly programming. By introducing high-level operators also
for graphical transformation languages, we believe that the graphical languages
can learn from the history of textual programming language development. One
such high-level operator, the collection operator, has been introduced in this
paper to demonstrate the principle.

As future work we may look into nested collection operators, and investi-
gate more practical examples to see if we need additional high-level operators.
We would also like to explore the relationship between termination and conflu-
ence criteria at the concrete vs. the abstract representation of the transformation
rules.

Acknowledgment. The work reported in this paper has been funded by The
Research Council of Norway, grant no. 167172/V30 (the SWAT project).

References

1. Clarke, S., Walker, R.J.: Composition Patterns: An Approach to Designing
Reusable Aspects. In: Proceedings of the 23rd International Conference on Software
Engineering (ICSE), Toronto, Ontario, Canada (2001)

2. Deubler, M., Meisinger, M., Rittmann, S., Krüger, I.: Modeling Crosscutting Ser-
vices with UML Sequence Diagrams. In: Briand, L.C., Williams, C. (eds.) MoDELS
2005. LNCS, vol. 3713, pp. 522–536. Springer, Heidelberg (2005)

3. Eclipse Consortium. Eclipse Graphical Modeling Framework (GMF) (2007),
http://www.eclipse.org/gmf

http://www.eclipse.org/gmf

344 R. Grønmo and B. Møller-Pedersen

4. Ehrig, K., Ermel, C., Hänsgen, S.: Towards Model Transformation in Generated
Eclipse Editor Plug-Ins. Electr. Notes Theor. Comput. Sci. 152, 39–52 (2006)

5. Grønmo, R., Jaeger, M.C.: Model-Driven Methodology for Building QoS-Optimised
Web Service Compositions. In: Kutvonen, L., Alonistioti, N. (eds.) DAIS 2005.
LNCS, vol. 3543, pp. 68–82. Springer, Heidelberg (2005)

6. Eder, J., Gruber, W., Pichler, H.: Transforming Workflow Graphs. In: Proceedings
of the First International Conference on Interoperability of Enterprise Software
and Applications (INTEROP-ESA 2005), Geneva, Switzerland (February 2005)

7. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An Overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072.
Springer, Heidelberg (2001)

8. Klein, J., Hélouët, L., Jézéquel, J.-M.: Semantic-based weaving of scenarios. In:
Proceedings of the 5th International Conference on Aspect-Oriented Software De-
velopment, Bonn, Germany (2006)

9. Lindqvist, J., Lundkvist, T., Porres, I.: A Query Language With the Star Operator.
In: Proceedings of the 6th International Workshop on Graph Transformation and
Visual Modeling Techniques, Braga, Portugal (April 2007)

10. Mehner, K., Monga, M., Taentzer, G.: Interaction Analysis in Aspect-Oriented
Models. In: 14th IEEE International Conference on Requirements Engineering (RE
2006), Minneapolis/St.Paul, Minnesota, USA (2006)

11. Oldevik, J., Neple, T., Grønmo, R., Aagedal, J.Ø., Berre, A.-J.: Toward standard-
ised model to text transformations. In: Hartman, A., Kreische, D. (eds.) ECMDA-
FA 2005. LNCS, vol. 3748, pp. 239–253. Springer, Heidelberg (2005)

12. OMG. UML 2.0 OCL Specification, OMG Adopted Specification ptc/03-10-14 (Oc-
tober 2003)

13. OMG. MOF QVT Final Adopted Specification, OMG Document: ptc/05-11-01
(November 2005)

14. Tatte, S. (ed.): Business Process Execution Language for Web Services Version 1.1
(February 2005)

15. Schürr, A.: Introduction to PROGRESS, an Attribute Graph Grammar Based
Specification Language. In: Nagl, M. (ed.) WG 1989. LNCS, vol. 411. Springer,
Heidelberg (1989)

16. Skogan, D., Grønmo, R., Solheim, I.: Web Service Composition in UML. In: Pro-
ceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf
(EDOC 2004), Monterey, California (September 2004)

17. Stein, D., Hanenberg, S., Unland, R.: Join Point Designation Diagrams: a Graphi-
cal Representation of Join Point Selections. International Journal of Software En-
gineering and Knowledge Engineering 16(3), 317–346 (2006)

18. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Val-
idation of Software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003.
LNCS, vol. 3062, pp. 446–453. Springer, Heidelberg (2004)

19. Whittle, J., Araújo, J.: Scenario modelling with aspects. IEE Proceedings - Soft-
ware 151(4), 157–172 (2004)

20. Zhang, J., Lin, Y., Gray, J.: Generic and Domain-Specific Model Refactoring using
a Model Transformation Engine. In: Model-driven Software Development, ch. 9,
pp. 199–218 (2005)

Model-Driven Software Development with Graph
Transformations: A Comparative Case Study

Thomas Buchmann, Alexander Dotor, Sabrina Uhrig, and Bernhard Westfechtel

Lehrstuhl Angewandte Informatik 1, University of Bayreuth
D-95440 Bayreuth

firstname.lastname@uni-bayreuth.de

Abstract. Significant achievements have been made in the design and imple-
mentation of languages and tools for graph transformation systems. However,
many other competing approaches have been developed for model-driven soft-
ware development. We present a case study in which we applied different mod-
eling approaches in the construction of a tool for software process management.
We compare these approaches with respect to the respective levels of abstraction
on which models are defined, the language concepts offered, and the resulting
modeling effort. The case study identifies the benefits and shortcomings of the
selected modeling approaches, and suggests areas of future improvement.

1 Introduction

Model-driven software development promises to increase the productivity of software
developers significantly with the help of high-level, executable models. In many appli-
cation areas, the data maintained by the system to be developed may be represented as
graphs in a natural way. Furthermore, graph modifications may be described declara-
tively by graph transformation rules. Thus, model-driven software development can be
supported by generating executable code from graph transformation rules.

To date, several languages and tools for developing graph transformation systems
are available and have been applied in diverse application domains (e.g., PROGRES
[1], Fujaba [2], MOFLON [3], AGG [4], GenGed [5], DiaGen [6], VIATRA [7], and
GReAT [8]). Significant advances have been achieved in language and tool develop-
ment. Moreover, graph transformations have been applied successfully in various do-
mains [9,10]. On the other hand, dispersal of the graph transformation approach outside
the graph transformation community seems to have taken place only to a limited extent.

This paper presents a case study for the application of graph transformations. The
subject of our study is a software process management system based on dynamic task
nets (Sect. 2). We have realized this application with the help of three systems (Sect. 3):
(1) GMF/EMF, i.e., a combination of the Graphical Modeling Framework for graphical
editors and the Eclipse Modeling Framework, which both are not based on graph trans-
formations; (2) PROGRES, a system for specifying programmed graph transformation
systems; and (3) Fujaba, an object-oriented system where graph transformation rules
have been incorporated into the UML. These solutions are evaluated and compared
against each other in Sect. 4.

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 345–360, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

346 T. Buchmann et al.

Speaking in terms of the well-known model-view-controller design pattern, we fo-
cus exclusively on the model, i.e., the application logic. Furthermore, we study model-
driven software development from the perspective of the user of the respective modeling
language. Thus, we are interested in the language concepts, the levels of abstraction at
which models are defined, expressiveness of the modeling languages, model size, read-
ability, modeling effort, and efficiency of the code generated from the model.

An important issue addressed by our case study is the significance and role of graph
transformations: We consider GMF/EMF to be a framework of industrial relevance
which does not make use of graph transformations. Thus, it is fair to ask for the added
value of graph transformations. We hope that this case study contributes to answering
this question and thus to the mission of this workshop (applications of graph transfor-
mations with industrial relevance).

2 Dynamic Task Nets

Dynamic task nets represent software processes which evolve during execution. They
were described earlier, e.g. in [11]. For this case study, we considered a “light” ver-
sion of dynamic task nets which comprises only some of the core concepts. The case
study goes beyond previous work only inasmuch as inconsistencies with respect to the
underlying process meta model can be tolerated.

Figure 1, a screenshot taken from one of the prototypes which we constructed for
this case study, shows an example of a task net. Each task is represented by a box
containing its name (A . . . G) and its state of execution. States and transitions are defined

Fig. 1. Dynamic task net

Model-Driven Software Development with Graph Transformations 347

InDefinition Waiting Active

Suspended

Done

Failed

Define

Redefine

Start

Suspend Resume

Commit

Abort

Delete

Delete

Abort

Fig. 2. State diagram

by the state diagram in Fig. 2. In Fig. 1, states are shown as icons (paper and pencil:
InDefinition, sand-glass: Waiting, gearwheels: Active, tick: Done). Tasks
are arranged in a hierarchy via composition relationships (dotted lines). Control flows
(solid lines), which resemble precedence relationships in project plans, constrain the
order of task execution. Finally, feedback flows (dashed lines) represent feedback to
earlier steps in the process. Further concepts of dynamic task nets, e.g., data flows and
task versions, are not covered here to keep the case study small.

The process meta model defines constraints for dynamic task nets which may be
classified in two orthogonal dimensions: (1) Static constraints are defined as invariants
which have to hold for each task net. Dynamic constraints are pre- and postconditions
of operations which cannot be expressed as invariants. (2) Structural constraints define
the rules which have to be followed when constructing task nets via edit operations. In
contrast, behavioral constraints are concerned with state restrictions which have to be
obeyed for the execution of tasks.

The following static structural constraints have to be satisfied1: (1) Each task must
have a globally unique name. (2) Composition relationships must be free of cycles
(likewise for control flows and feedback flows). (3) Each task may be contained in at
most one parent task. (4) Each control flow must be either local, i.e., source and target
must have the same parent, or balanced, i.e., the parents of source and target are different
and are connected by a control flow (likewise for feedback flows). (5) Each feedback
flow must be oriented in the opposite direction of a control flow, i.e., there must be a
path of control flows from the target of the feedback flow back to the source.

All static behavioral constraints can be expressed via compatibilities of states of ad-
jacent tasks. For each type of task relationship, a corresponding compatibility matrix
is defined (see [12], pp. 91). Here, we discuss only compatibilities of states of tasks
connected via a control flow. There are three types of control flows: If a control flow
is sequential, the successor may start only after termination of the predecessor. A stan-
dard control flow is used to express that the successor can be terminated only after
its predecessor. In the case of a simultaneous control flow, the successor may be acti-
vated only after its predecessor, and it may also be terminated only after its predecessor.
These rules can be translated into legal and illegal state combinations. For example, the
combination Active→ Done is illegal for all types of control flows.

The state diagram of Fig. 2 defines dynamic behavioral constraints for state transi-
tions: Each transition may be performed only in its source state and moves the task to
which it is applied into its target state. In addition, there are some state constraints on

1 There are no dynamic structural constraints.

348 T. Buchmann et al.

edit operations. In general, dynamic task nets allow for seamless interleaving of editing
and execution. However, tasks and their contexts (e.g., incoming control flows) must
not be modified after termination, i.e., the history must not be changed.

In the screenshot of Fig. 1, inconsistencies are marked in red color2. The tasks on the
left and on the right are marked as inconsistent because both have the same name (G).
The composition relationships ending at B (bottom middle) violate the task hierarchy.
The control flows connecting B, F, and G form a cycle (bottom right). The composi-
tion relationship from E (top) to D is behaviorally inconsistent: a child task must not
be activated before its parent. Similarly, the control flow from G to C (bottom left) is
inconsistent because the states of source and target are not compatible (C cannot termi-
nate before G). Finally, the feedback flow from B to C is structurally consistent (e.g., it
is balanced by the feedback flow from A to D), but behaviorally inconsistent: B cannot
raise feedback even before it has started execution3.

The following requirements have to be met by the process management tool to be
constructed: The user is supplied with a graphical view of the task net which signals all
inconsistencies. Edit operations are offered to build up and modify task nets by creat-
ing/deleting tasks and relationships and by changing task names. Execution operations
are used to perform state transitions (Start, Suspend, etc.). With respect to con-
straint checking, the tool has to provide two working modes: In enforcing mode, the
task net must not contain any inconsistency, and each command violating a static or
dynamic constraint is rejected. In permissive mode, constraint violations are tolerated
and marked (as shown in the screenshot above). The markings are updated after each
command to provide immediate feedback to the user. Dynamic constraints are simply
ignored in this mode.

In this case study, the commands for editing and execution perform rather simple
transformations (insertion/deletion of tasks and relationships, changes of attribute val-
ues). The main challenge lies in the validation of constraints, which can be realized in
different ways: In the case of global validation, constraints are checked on the whole
graph (representing a task net). Since the user has to be provided with feedback on each
command, global validation causes performance problems in the case of large graphs.
In contrast, incremental validation checks only those parts of the graph which are af-
fected by a change. The requirements of our case study call for incremental rather than
global validation.

3 Models

In this section, we present alternative models used for the development of a process
management tool based on dynamic task nets. Please recall that we are concerned with
the model only and ignore the view and controller part of the application. The models
are evaluated and compared against each other in Sect. 4.

2 In gray-scale reproduction, dark boxes indicate inconsistent tasks, but inconsistent relation-
ships are hard to identify.

3 Feedback flows are inserted only on demand.

Model-Driven Software Development with Graph Transformations 349

3.1 GMF/EMF

The Eclipse Graphical Modeling Framework (GMF [13]) supports the generation of a
graphical editor for a custom model. The model is defined with the help of the Eclipse
Modeling Framework (EMF). This way each model is based on the Ecore (EMOF) meta
model (a UML dialect and a variant of the OMG proposal for Essential Meta Object
Facility[14]). Various ways exist to define an Ecore model: UML class diagrams, Java
interfaces or directly via Ecore-XML (analogous to XMI). Please note that this paper
deals only with the semantic model and not with the notational model, which is also
required for building a graphical tool with GMF.

Figure 3 shows a UML diagram of the dynamic task net model. Each instance
of DTNDynamicTaskNet consist both of DTNConnection and DTNTask ob-
jects. Each DTNConnection has one source and one target DTNTask object.
DTNConnection is specialized to distinguish between the three types of connections
in our dynamic task net case study: DTNSubtaskFlow, DTNFeedbackFlow and
DTNControlFlow.

To deal with constraints, GMF supports audit rules which are based on OCL 2.0
[15]. Each static constraint of a task net (see Sect. 2) is defined by a corresponding
audit rule. Figure 4 shows the OCL statement of the audit rule for detecting control flow
cycles. First we select the targetTask of the connection for which the constraint is
evaluated (self). Then we select the set that is reached via transitive closure of all
tasks that can be reached via a connection (outgoingEdges) of type control flow
(oclIsTypeOf(DTNControlFlow)). This set must not contain the source task of
the connection (excludes(self.sourceTask)) – or the connection is part of a
cycle. The closure operator, which is not included in the OCL standard and has been
added in EMF as an extension, is indispensable for declaratively specifying some of the
constraints defined for dynamic task nets. Note that the rule is declared as invariant, i.e.
it is true iff the task net is cycle free.

In addition, GMF partially supports the specification of dynamic constraints. OCL
constraints may be defined as preconditions of commands for creating relationships;
thus, they are called link constraints in GMF. For example, there is a link constraint
which forbids the insertion of an incoming control flow of a terminated task. For other

Fig. 3. EMF class diagram of the DTN-Model

350 T. Buchmann et al.

self.targetTask
->closure(t|t.outgoingEdges
->select(e|e.oclIsTypeOf(DTNControlFlow)).targetTask)
->excludes(self.sourceTask)

Fig. 4. OCL expression for checking control flow cycles

types of commands, we wrote Java code for checking dynamic constraints (e.g., in order
to preserve the history of task executions, a terminated task must not be deleted).

GMF supports the following mechanisms for validation: Audit rules for static con-
straints may be declared for batch validation, which has to be invoked explicitly by the
user. All of these rules are checked on the complete model instance, and model elements
are marked with constraint violations. In between two batch validations, rules declared
for batch validation are not checked, and the markings are not updated.

Audit rules for static constraints may also be declared for live validation. These rules
are checked immediately after each command execution; when some constraint viola-
tion is detected, the command is rolled back. Please note that live validation operates
incrementally. Finally, link constraints are checked as preconditions before a command
is executed. When a link constraint is violated, the respective command cannot be exe-
cuted.

It is important to note that the validation mechanisms offered by GMF do not ade-
quately support the validation modes required for our case study (see end of Sect. 2).
We used batch validation for partially realizing the permissive mode. However, batch
validation does not provide immediate feedback, and if it did, it would not provide fast
responses when working on large model instances (due to global rather than incremen-
tal validation). Furthermore, live validation and link constraints cannot be used because
constraint violations are not tolerated.

Likewise, we realized the enforcing mode only partially with live validation and link
constraints. The audit rules for live validation were created by copying and modifying
the rules for batch validation (the modifications are necessary to ensure that the rules are
evaluated only when the enforcing mode is active). Unfortunately, live validation works
incrementally, but not correctly: We would have had to customize the live validation by
hand (by writing Java code) to make sure that all constraints on model elements affected
by a change are actually re-evaluated. Furthermore, we defined link constraints in OCL
for those commands which insert relationships, but we had to write Java code for those
dynamic constraints which apply to other kinds of commands.

To conclude this subsection, let us briefly discuss how we realized the state machine
of Fig. 2. Unfortunately, EMF does not provide modeling support for state machines.
To improve maintainability (design for change), we applied the state pattern [16] and
implemented state transitions in Java.

3.2 PROGRES

PROGRES [1], a specification language for programmed graph rewriting systems, sup-
ports a wide variety of language features for defining classes of attributed graphs,
consisting of typed and attributed nodes which are connected by directed, binary re-
lationships (edges) without attributes. Language features include multiple inheritance

Model-Driven Software Development with Graph Transformations 351

node class + CONTROL_FLOW is a TASK_RELATIONSHIP
...
derived
BalancedControlFlow : boolean

= card (self.((-ToSource->
& <=Contains=
& <-ToSource-
& instance of CONTROL_FLOW)

and (-ToTarget->
& <=Contains=
& <-ToTarget-
& instance of CONTROL_FLOW))) >= 1;

...
end;

Fig. 5. Textual specification of node class CONTROL_FLOW

on node classes, a stratified type system (nodes are instances of node types which are
in turn instances of node classes), definition of derived attributes and relationships (the
latter of which are called paths), graph transformation rules with flexible graph pat-
terns, and control structures supporting non-determinism and transactional behavior.
Some specification elements such as derived attributes and relationships may be speci-
fied both textually and graphically.

In our case study, constraint checking plays a crucial role. In the specifications we
prepared for the case study, constraint checking is realized with the help of derived at-
tributes. The user of the PROGRES language may define constraints in a declarative
way with the help of equations. The underlying runtime system, including the data-
base management system GRAS [17], provides for incremental evaluation of derived
attributes. Thus, the user of the PROGRES language does not have to take care of the
maintenance of the values of derived attributes.

The textual definition of derived attributes is illustrated in Fig. 5, which shows an
excerpt of the declaration of the node class CONTROL_FLOW. The derived attribute
BalancedControlFlow is used to check whether a control flow is balanced, and
is defined by a textual expression in a similar way as an OCL constraint. Starting from
the current flow, a navigation is performed to the source, the parent, and to its adja-
cent control flows on the next layer upward the task hierarchy; likewise for the target.
The resulting sets of control flows are intersected. The control flow is balanced if the
cardinality of the intersection is greater than 0, i.e., the intersection set is not empty.

Alternatively, constraints may be defined graphically rather than textually. In par-
ticular, a rule for a derived attribute may refer to a graphical restriction, i.e., a unary
relation on nodes of a certain class. A node meets the restriction if it is part of a graph
pattern defined in the body of the restriction. Figure 6 shows a graphical restriction for
the balancing of control flows. We consider the graphical restriction easier to read than
the corresponding textual expression shown in Fig. 5. Since textual and graphical no-
tations are both offered by PROGRES, the user may select the notation which is more
appropriate for the problem at hand.

In the specifications of the case study, we separated graph transformations from con-
straint checking. An example is given in Fig. 7. Tasks and their relationships form an
overall process which is represented by a node of class PROCESS. All elements of
some process are connected to the process node by Has edges (declared outside the

352 T. Buchmann et al.

restriction + BalancedControlFlowRestriction : CONTROL_FLOW =
‘1 in

‘3 : TASK‘2 : TASK

ToSource ToTarget

‘1 : CONTROL_FLOW

Contains Contains

‘5 : TASK
Precedes

‘4 : TASK

end;

Fig. 6. Graphical specification of control flow balancing

node class + PROCESS is a NODE
intrinsic
InconsistenciesAllowed : boolean := true;

redef derived
Consistent = for all element := self.Has ::

element.Consistent
end ;

methods
...
transformation + EditCreateControlFlow

(sourceTask, targetTask : TASK ;
controlFlowType : type in CONTROL_FLOW ;
out taskRelationship : controlFlowType)

=
self.CheckPreconditionOfEditOperation (targetTask)

& self.AuxCreateTaskRelationship
(sourceTask, targetTask, controlFlowType,

out taskRelationship)
& (self.InconsistenciesAllowed or self.Consistent)

end
...

end

Fig. 7. Creation of a control flow

class PROCESS). The process node carries an intrinsic attribute for controlling whether
inconsistencies are allowed, and a derived attribute which evaluates to true when all
elements are consistent. The derived attributes attached to the process elements refer to
other derived attributes such as e.g. BalancedControlFlow (Fig. 5).

All operations for creating or deleting process elements are attached as methods
to the node class PROCESS. For example, when a control flow is created, the graph
transformation rule which actually inserts the control flow is embraced by actions dedi-
cated to checking constraints. The transformation EditCreateControlFlow is an
atomic transaction, i.e., either all of its steps succeed, or it fails and leaves the host graph
unchanged. CheckPreConditionOfEditOperation checks a dynamic precon-
dition: The target task of the control flow would be affected by this edit operation. If
inconsistencies are not allowed and the target task has already terminated, the check

Model-Driven Software Development with Graph Transformations 353

fails, and the transaction is rolled back. Please note that this check cannot be post-
poned: It cannot be recognized after the fact that the in-context of a terminated task
was modified after termination. In the next step, the control flow is created by a graph
transformation rule which simply creates the control flow node and its adjacent edges
without performing any further constraint checking. Finally, after the control flow has
been inserted, it is checked whether inconsistencies are allowed. If this is not the case,
it has to be checked whether any inconsistencies have been introduced into the process.
Please note that access to the derived attribute triggers all necessary re-evaluations at
runtime. If the overall process is no longer consistent, the check fails, and the transac-
tion is rolled back.

The PROGRES specification meets all of the requirements imposed by the case
study. In particular, it realizes both the permissive and the enforcing mode with incre-
mental validation. From the specification, executable code is generated which is hooked
into the UPGRADE framework [18] to produce a graphical tool for software process
management. The screen shot of Fig. 1 was taken from this tool.

So far, we have not discussed how we realized the state machine of Fig. 2. Unfor-
tunately, PROGRES does not provide modeling support for state machines. We simply
added a state attribute to the TASK and wrote methods for the state transitions which
check their preconditions (legal source state) and invariants (compatibility with states
of neighbor tasks).

3.3 Fujaba

Fujaba [19] is an environment for developing executable models with the help of class,
story, and state diagrams. It is being developed jointly at multiple sites and has been
used in numerous research projects. Fujaba strongly supports graphical modeling, while
PROGRES offers a mix of graphical and textual modeling elements. Fujaba’s most dis-
tinctive feature are the so called story diagrams, a combination of activity and com-
munication diagrams, from which Fujaba is able to generate executable code. We used
the CASE tool Fujaba in our case study to design and implement the application logic
of our process management tool. Fujaba has been integrated into various user interface
tool kits such as GEF, GMF, and UPGRADE, but user interface issues go beyond the
scope of this paper.

While Fujaba does not support OCL constraints, constraints may be expressed graph-
ically by story patterns with embedded path expressions. With the help of story patterns,
constraints may be written in an intuitive way; in some cases, they are much easier to
understand than OCL constraints. An important difference to the OCL constraints as sup-
ported in GMF/EMF consists in the use of story patterns: In Fujaba, story patterns are
embedded in story diagrams and thus belong to the dynamic rather than the static model.

In the case of Fujaba, we fully realized both the permissive and the enforcing mode
of operation required for the process management tool. We prepared two versions of
the Fujaba model: The first one performs incremental validation, the second one resorts
to global validation. In contrast to PROGRES, Fujaba does not support incremental re-
evaluation of derived data. Thus, the user of Fujaba must explicitly program incremental
validation. The additional modeling effort can be determined by comparing the model
versions with incremental and global validation, respectively.

354 T. Buchmann et al.

]success[

getRepo().startTransaction("add ControlFlow"):= transaction

controlFlow

null

]failure[
1: rollback()transaction

]success[

1: commit()transaction

]failure[

null}checkModifiability(target){

}checkPreconditionBeforeCreatingConnection(DTNConstants.DTNControlFlow, source, target){

}this.isAllowInconsistencies() || this.isConsistent(){

«create» hasElem

hasElem

hasElem

«create»
toTarget

«create»

toSource

«create»

type:=type

DTNControlFlow:controlFlow

target

source

this

1: validate()2: checkForUnbalancedControlFlows(controlFlow, true)

3: revalidateFeedbackFlows(source, target)

DTNDynamicTaskNet::createControlFlow (type: String, source: DTNTask, target: DTNTask): DTNControlFlow

Fig. 8. Story diagram for creating a control flow

Figure 8 shows the story diagram for creating a control flow in the case of incremen-
tal validation. The story diagram is structured in a similar way as the corresponding
PROGRES transaction (see Fig. 7). First, it is checked whether insertion of the con-
trol flow would result in a duplicate relationship and whether the dynamic constraint
of this operation is violated (the in-context of a terminated task must not be modified).
Next, a transaction is started, making use of the Coobra repository services (in PRO-
GRES, the compiler inserts this step automatically due to the transactional semantics
of programmed transformations). The story pattern following the start of the transac-
tion inserts the control flow and triggers the required re-validations. Subsequently, it is
checked whether inconsistencies have been introduced in enforcing mode. In this case,
the transaction is rolled back; otherwise, it is committed.

In the case of incremental validation, it has to be decided for each change which
constraints on which graph elements have to be re-evaluated. The story pattern for

Model-Driven Software Development with Graph Transformations 355

]failure[

false:=balanced
false:=local

this

]success[

false:=balanced
true:=local

this

]failure[

toSource

toSource

toTargettoSource

DTNTask:commonParent

toTarget

toTarget

DTNSubtaskHierarchy:targetParentConn

source DTNSubtaskHierarchy:sourceParentConnthis

target

]success[

toSource

toTarget
toTargettoSource

toTarget

toSource

to a gettoSou ce

DTNControlFlow:parentCF DTNTask:targetParent

DTNSubtaskHierarchy:targetSTDTNSubtaskHierarchy:sourceST

target

false:=local
true:=balanced

this

DTNTask:sourceParent

source

]success[

«destroy» hasCycles

DTNCycle:cycles
true==cycleFree

this

]failure[«destroy» hasCycles
net «destroy

cycle

]end[

hasCycles

DTNControlFlow:aControlFlowcycle

hasElem

oSource

DTNTask:source

create»
asCycles

«create»
DTNCycle:cycle

DTNDynamicTaskNe:net

true:=cycleFree
true:=local

false:=balanced

this

«create» hasCycles

cycle

rojector/model/task/DTNControlFlow].target)*
Flow].target)*.outgoing[instanceof_de/ubt/ai1/projector/model/task/DTN

false:=cycleFree

DTNControlFlow:invalidConnection

source

DTNControlFlow::validateStructure (): Void

Fig. 9. Story diagram for validating a control flow

creating a control flow triggers validation of all constraints for the new control flow
(1). In addition, it has to be checked whether any previously unbalanced control flows
are balanced by the new control flow (2). Likewise, feedback flows which did not have
a path of opposite control flows have to be re-validated (3). This control logic makes the
model for incremental validation both larger (model size) and more difficult to program
(modeling effort) than the model for global validation.

For the case of incremental validation, Fig. 9 shows the story diagram for validating
static structural constraints for a control flow. The story patterns at the bottom check
whether the control flow is local or balanced; they are the same as for global valida-
tion. However, the check for cyclic control flows is more complicated than for global
validation since it requires the maintenance of auxiliary data structures for efficient re-
validation: Control flows which are part of a cycle are attached to a cycle object. When
a control flow is inserted, the cycle check is invoked on the new control flow. A cycle
object is created tentatively, and control flows on a cycle are attached to the new cycle

356 T. Buchmann et al.

object. If no cycle has been found, the cycle object is removed again. Otherwise, it per-
sists in the graph, and the cycleFree attributes of all control flows on the cycle are
set to false. When a control flow is deleted, the same check is invoked on all control
flows of all cycles to which the deleted control flow belongs. If a control flow turns out
to be cycle free, it is removed from all cycles it was attached to.

The Fujaba model for global validation is structured similarly, but it is smaller and
simpler to program. After each change, a global validation is trigged for all constraints
on all graph elements — independently of the type of the change and the elements to
which the change has been applied. Here, the cycle check does not require an auxiliary
data structure: Control flows located on a cycle are marked by setting their cycleFree
attribute to false. However, this brute force method of validation runs into perfor-
mance problems when applied to large graphs.

To conclude this subsection, let us briefly discuss the use of Fujaba‘s state diagrams,
which are not available in GMF/EMF and PROGRES. In a previous version of the Fu-
jaba model for dynamic task nets [20], we mapped the state diagram of Fig. 2 onto a
Fujaba statechart. However, Fujaba supports behavioral rather than protocol state ma-
chines. In dynamic task nets, state machines are used to define the life cycle of tasks
from creation to termination. Thus, state machines describe only in which state some
operation may be invoked and which target state is reached after the operation has com-
pleted. In contrast, behavioral state machines as supported by Fujaba describe which
events an object may receive in which state, which actions are performed in response to
an event, and which operations are performed while the object resides in a certain state.
The underlying programming model takes care of concurrency (an inherent feature of
statecharts) and deals with sending/receiving of events, event queues, etc. This stands
in contrast to ordinary sequential programming based on method invocations. Since the
Fujaba state machines did not match our intents, we stopped using them and decided to
implement the state machine ourselves using the state pattern as described in [16] in a
similar way as in the GMF/EMF solution.

4 Evaluation

Below, the modeling approaches applied in the case study are evaluated with respect
to the language features offered, expressiveness of the modeling language, model size,
readability, modeling effort, and efficiency. In the latter category, we are interested only
in the support for incremental validation — which is crucial for interactive tools with
immediate constraint checking. Please note that the evaluation is performed with respect
to the case study only. Thus, the findings can be applied only to applications of the same
profile as the case study.

Table 1 attempts to collect information on the model sizes in terms of the number
of model elements classified into different categories. The PROGRES column refers to
the specification where derived attributes are defined textually rather than graphically.
Furthermore, the Fujaba numbers refer to the models realizing incremental and global
validation, respectively (i/g). When a category is not applicable, the table contains the
entry “–”. Constraints refer to OCL constraints in GMF/EMF, and to evaluation rules for
derived attributes in PROGRES. For GMF/EMF, we counted the Java methods which

Model-Driven Software Development with Graph Transformations 357

Table 1. Model size (number of model elements)

GMF/EMF PROGRES Fujaba (i/g)

Classes 15 12 18/16
Attributes 7 5 21/19
Associations 5 6 19/16
Inheritance rel. 10 11 17/15
Constraints 24 15 –/–
Methods 8 34 31/28
Control structures 13 35 36/30
Graph transformation rules – 5 90/66

were required for implementing the model. For Fujaba, this category refers to story
diagrams. In PROGRES, we counted both transactions and functions. In the last row, we
counted graph transformation rules in PROGRES and story diagrams in Fujaba (even if
they merely describe a graph test rather than a graph transformation). Elementary story
patterns (containing one object only) were not included in the numbers.

4.1 GMF/EMF

Language features. GMF/EMF supports the rapid generation of graphical editors from
class diagrams and OCL constraints.

Expressiveness. Class diagrams and extended OCL constraints are powerful means for
the static model. The dynamic model is not supported at all. In the case study, this
restriction was not a severe problem, but it did require to write some Java code.

Model size. The model consists of two small class diagrams, and OCL constraints cov-
ering a few pages. In addition, we had to write 8 Java methods covering about 2 pages
of source code. Thus, the size of the model is pretty small.

Readability. Class diagrams are widely accepted for the static model. OCL constraints
tend to be hard to read and write as soon as complex structural conditions need to be
expressed.

Modeling effort. The modeling effort is low as far as it concerns the static model being
defined by class diagrams and OCL constraints.

Incremental validation. Basic support for incremental validation is provided, but the
set of elements to be re-evaluated is not determined correctly in some cases.

4.2 PROGRES

Language features. PROGRES offers a wide variety of language concepts, but the
language does not support state machines. In the case study, we made extensive use of
derived attributes and incremental attribute evaluation for checking constraints. Graph
transformation rules do not play a dominant role in the case study. Transactions are
primarily used for wrapping graph transformations with consistency checks.

358 T. Buchmann et al.

Expressiveness. As far as the static model is concerned, PROGRES and GMF/EMF are
comparable with respect to expressiveness. PROGRES provides comprehensive and
high-level support for specifying graph transformations, but the capabilities of PRO-
GRES have not been exploited fully in the case study (only five graph transformation
rules were required in the case study).

Model size. The model is larger than the GMF/EMF model, but moderate in size. The
variant of the specification where we used textual notation for constraints comprises 13
pages (printed in 10 pt font). The increase of model size compared to GMF/EMF is pri-
marily due to the fact that all operations (create/delete tasks and relationships, perform
state transitions, etc.) have to be specified explicitly (while basic operations are gener-
ated automatically in GMF/EMF). This explains the number of methods (transactions
and functions) plus graph transformation rules (about 40 altogether).

Readability. PROGRES specifications are rather difficult to read (and write) for two
reasons: First, PROGRES does not use standard notation the user may be familiar with
anyway. Second, the language is complex and offers lots of language constructs. Apart
from that, the readability depends on the style in which the specification is written.
In particular, we consider graphical notation for constraints easier to read than textual
notation in most cases.

Modeling effort. For an experienced user of PROGRES, the modeling effort is mod-
erate. It is possible to write specifications at a high level of abstraction without dealing
with operational issues such as pattern matching, consistency maintenance, and rollback
of failing transactions.

Incremental validation. PROGRES supports incremental evaluation of derived at-
tributes and relationships.

4.3 Fujaba

Language features. In Fujaba, models are defined in terms of class diagrams, state
diagrams, and story diagrams. Fujaba strongly supports graphical modeling and uses
textual notation only to a limited extent (e.g., in path expressions).

Expressiveness. By and large, class diagrams, story diagrams, and state diagrams are
powerful means for graphical modeling. However, the state diagrams provided by Fu-
jaba were not adequate for our case study. Furthermore, constraint checking has to
be performed in a procedural way. The Fujaba models are less declarative than their
counterparts.

Model size. The Fujaba model is much larger than the PROGRES model. As in the case
of PROGRES, all operations have to be modeled explicitly, while basic operations are
generated in GMF/EMF. Constraint checking requires a lot of story patterns, even in
the case of global validation.

Readability. Fujaba uses intuitive graphical notation. Therefore, Fujaba models are
quite easy to read — as long as they remain small enough. In particular, story diagrams
should be decomposed into methods of manageable size and complexity. Otherwise,
the reader may easily lose orientation.

Model-Driven Software Development with Graph Transformations 359

Modeling effort. Among the approaches investigated in the case study, Fujaba required
the highest effort of modeling. This is due to the size of the model and the handling of
algorithmic aspects (which in particular applies to the model for incremental validation).

Incremental validation. Since Fujaba does not support incremental evaluation of de-
rived data, the respective algorithms have to be designed by the Fujaba user for each
application anew.

5 Conclusion

In our case study, we have compared GMF/EMF against Fujaba and PROGRES, which
are both based on graph transformations, with respect to language features, expressive-
ness, model size, readability, modeling effort, and efficiency. Since the requirements im-
posed by our case study match fairly well the support offered by GMF/EMF, a process
management tool was developed with the help of GMF/EMF rapidly with small model-
ing effort. PROGRES is able to compete with GMF/EMF and adds incremental attribute
evaluation as a distinctive feature. Finally, the Fujaba model is larger and more proce-
dural than its competitors.

The modeling support by GMF/EMF is confined to graphical editors with basic com-
mands. Further extensions of the case study— e.g., process patterns or data flows—
would go beyond the modeling support of GMF/EMF. Please note that building a
full-fledged process management system considerably goes beyond building a simple
graphical editor. A modeling language like Fujaba provides much more comprehensive
modeling support in a single language, but requires further improvements, e.g. with re-
spect to constraint checking and state diagrams. We hope that this case study provides
some useful hints and suggestions for further improvements. Graph transformation rules
do not play a dominant role in this case study, but they constitute an important building
block of a language for model-driven development.

References

1. Schürr, A., Winter, A., Zündorf, A.: The PROGRES approach: Language and environment.
In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.) Handbook on Graph Gram-
mars and Computing by Graph Transformation: Application, Languages, and Tools, vol. 2,
pp. 487–550. World Scientific, Singapore (1999)

2. Burmester, S., Giese, H., Niere, J., Tichy, M., Wadsack, J.P., Wagner, R., Wendehals, L.,
Zündorf, A.: Tool integration at the meta-model level: the Fujaba approach. International
Journal on Software Tools for Technology Transfer 6(3), 203–218 (2004)

3. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: MOFLON: A standard-compliant
metamodeling framework with graph transformations. In: Rensink, A., Warmer, J. (eds.)
ECMDA-FA 2006. LNCS, vol. 4066, pp. 361–375. Springer, Heidelberg (2006)

4. Taentzer, G.: AGG: A graph transformation environment for modeling and validation of soft-
ware. In: [10], pp. 446–453

5. Bardohl, R., Ermel, C., Weinhold, I.: GenGED - A visual definition tool for visual modeling
environments. In: [10], pp. 413–419

6. Minas, M., Köth, O.: Generating diagram editors with DiaGen. In: [9], pp. 433–440

360 T. Buchmann et al.

7. Csertán, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., Varró, D.: VIATRA - visual auto-
mated transformations for formal verification and validation of UML models. In: 17th IEEE
International Conference on Automated Software Engineering (ASE 2002), pp. 267–270.
IEEE Press, Los Alamitos (2002)

8. Agrawal, A.: Graph rewriting and transformation (GReAT): A solution for the model inte-
grated computing (MIC) bottleneck. In: 18th IEEE International Conference on Automated
Software Engineering (ASE 2003), pp. 364–368. IEEE Press, Los Alamitos (2003)

9. Münch, M., Nagl, M. (eds.): AGTIVE 1999. LNCS, vol. 1779. Springer, Heidelberg (2000)
10. Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.): AGTIVE 2003. LNCS, vol. 3062. Springer, Heidel-

berg (2004)
11. Heimann, P., Joeris, G., Krapp, C.A., Westfechtel, B.: Graph-based software process manage-

ment. Journal of Software Engineering and Knowledge Engineering 7(4), 431–455 (1997)
12. Krapp, C.A.: An Adaptable Environment for the Management of Development Processes.

Aachener Beiträge zur Informatik, vol. 22. Augustinus Buchhandlung, Aachen, Germany
(1998)

13. Eclipse Foundation: GMF - Graphical Modeling Framework (2006) (last visited,
21/03/2007), http://www.eclipse.org/gmf

14. Eclipse Foundation: The Eclipse Modeling Framework (EMF) Overview (2005) (last visited,
27/10/2006),
http://dev.eclipse.org/viewcvs/indextools.cgi/checkout/
org.eclipse.emf/doc/org.eclipse.emf.doc/references/overview/
EMF.html

15. Warmer, J., Kleppe, A.: The Object Constraint Language, 2nd edn. Addison Wesley, Boston
(2003)

16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional Computing Series. Addison-
Wesley, Reading (1994)

17. Kiesel, N., Schürr, A., Westfechtel, B.: GRAS: a graph-oriented software engineering data-
base system. Information Systems 20(1), 21–51 (1995)

18. Böhlen, B., Jäger, D., Schleicher, A., Westfechtel, B.: UPGRADE: A framework for building
graph-based interactive tools. Electronic Notes in Theoretical Computer Science 72(2), 113–
123 (2002)

19. Zündorf, A.: Rigorous object oriented software development. Technical report, University of
Paderborn, Germany (2001)

20. Buchmann, T., Dotor, A.: Building graphical editors with GEF and Fujaba. In: FUJABA
Days 2006, Paderborn, Germany, University of Paderborn, pp. 47–51 (2006)

http://www.eclipse.org/gmf
http://dev.eclipse.org/viewcvs/indextools.cgi/checkout/org.eclipse.emf/doc/org.eclipse.emf.doc/references/overview/EMF.html
http://dev.eclipse.org/viewcvs/indextools.cgi/checkout/org.eclipse.emf/doc/org.eclipse.emf.doc/references/overview/EMF.html
http://dev.eclipse.org/viewcvs/indextools.cgi/checkout/org.eclipse.emf/doc/org.eclipse.emf.doc/references/overview/EMF.html

Verification and Synthesis of OCL Constraints
Via Topology Analysis�

(A Case Study)

Jörg Bauer1, Werner Damm2, Tobe Toben2, and Bernd Westphal2

1 Technical University of Munich, 85748 Garching, Germany
joerg.bauer@in.tum.de

2 Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
{damm,toben,westphal}@informatik.uni-oldenburg.de

Abstract. On the basis of a case-study, we demonstrate the usefulness
of topology invariants for model-driven systems development. Consider-
ing a graph grammar semantics for a relevant fragment of UML, where a
graph represents an object diagram, allows us to apply Topology Analy-
sis, a particular abstract interpretation of graph grammars. The outcome
of this analysis is a finite and concise over-approximation of all possible
reachable object diagrams, the so-called topology invariant. We discuss
how topology invariants can be used to verify that constraints on a given
model are respected by the behaviour and how they can be viewed as
synthesised constraints providing insight into the dynamic behaviour of
the model.

1 Introduction

The Unified Modeling Language (UML) [1,2] is widely employed for model-
driven development of systems. A fundamental strategy of UML is to support
a separation of concerns by different diagram types, in particular to separate
structural from behavioural aspects. By means of classes and associations, class
diagrams determine structural aspects as possible connections (or links) between
system objects. By means of states and transitions, state machine diagrams
determine behavioural aspects of system objects, in particular modifications of
current links.

In this article, we address the following problem. Given an executable UML
model in form of a class and a state machine diagram, compute (an approxima-
tion of) all possible system states (or object diagrams) reachable during system
run-time. Knowledge about these object diagrams is crucial, because class and
state-machine diagrams often allow too many, thus many unintended, object di-
agrams. Even if one is lucky to have a further annotated model, e.g., annotated
by OCL constraints, many unintended object diagrams may arise.
� This work was partly supported by the German Research Council (DFG) as part

of the Transregional Collaborative Research Centre “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS).

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 361–376, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

362 J. Bauer et al.

Therefore, we propose a new methodology for computing an over-approxi-
mation of all reachable object diagrams. While it combines well-established
techniques like UML graph grammar semantics and static analysis of graph
grammars in a novel manner, it gives the following benefits, on which we shall
elaborate in Section 6.

– a pictorial overview of all possible object diagrams, whose graphical appeal
is one of the major benefits of all graph-based techniques

– the (formal) validation of possibly existing OCL constraints for every possible
run-time behaviour

– the synthesis of OCL constraints, even for non-annotated models (though in
few specialised cases only)

– excellent, automatically derivable documentation

We shall now briefly illustrate the problem of unintended object diagrams and
its non-triviality with an example. The same example will be used throughout the
paper in order to demonstrate the feasibility and usefulness of our methodology.

Car leader
0, 1

followers
∗

(a) Class Diagram.

Free
agent Leader

Follower

request(id)/add(followers,id)

car ahead(id)/
set(leader,id);
leader .send(request(self))

car ahead(id)/set(leader,id);
followers.send(new leader(leader))

request(id)/
add(followers,id)

new follower(id)/
add(followers,id)

new leader(id)/set(leader,id); leader .send(new follower(self))
(b) State Machine Diagram.

Fig. 1. Structural and Behavioural model of Car Platooning

The Problem Illustrated. Consider the task to design a class structure that de-
scribes the associations of cars participating in car platooning, i.e. driving in
dynamically established convoys (cf. Section 3 for details). In car platooning, a
car assumes one of three roles.

(a) It may be part of the tail of a convoy, a so-called follower, then having a link
to the platoon leader,

(b) it may be the first car in a convoy, the so-called leader, then having at least
one follower, and

(c) it may drive freely as a so-called free-agent, then having neither followers
nor leaders.

Verification and Synthesis of OCL Constraints Via Topology Analysis 363

:Car
[Free agent] leader

(a)

:Car :Car
leader

leader
(b)

Fig. 2. Unintended topologies

A viable solution is the class diagram shown in Figure 1(a), as it supports all of
the just named three cases. As cars execute concurrently, we’ve got to employ
two unidirectional links to faithfully model transitional situations. For example,
during a merge, a follower may have established the link to its leader while the
leader has not yet updated its followers.

What the class diagram doesn’t say is that these three cases should be the
only ones. For example, both object diagrams in Figure 2 are legal according to
the class diagram but unintended, as a car shall not be its own leader, and cars
shall not consider each other to be the leader. Note that from the behavioural
model as given by the tiny state machine shown in Figure 1(b), it is neither
obvious whether the system remains in the three cases (a)–(c) nor whether the
system reaches one of the particular errors shown in Figure 2.

The issue that the class diagram doesn’t precisely say which object diagrams
are wanted can be solved by adding constraints to the class diagram, most nat-
urally in the form of OCL constraints. For example, the constraint

Car
(Free agent)

implies (leader->isEmpty and followers->isEmpty)
(1)

formalises case (c) named above, the remaining cases have similar constraints.
But the core problem remains: to analyse whether the system adheres to

these constraints at run-time. For example, a simple copy-and-paste error during
the construction of the state machine could cause self to be assigned to the
leader link in the transition from state Free agent to state Follower.In this small
example, such kind of errors may be excluded by closely considering the actions,
but violations of requirements are in general not that obvious.

UML model UML−−−−−−−→
semantics

Reachable object diagrams

Section 4 ↓ ⊇ Section 6

Graph grammar
Topology Analisis−−−−−−−−−−−−→

Section 5
Abstract clusters

Fig. 3. Approach. A set of abstract clusters is an abstract description of (a superset
of) all reachable object diagrams of a UML model. It is obtained by Topology Analysis
from a graph grammar representation of the UML model.

The New Methodology. Our proposal is, assuming a graph grammar UML se-
mantics, to employ a technique called Topology Analysis [3] which computes, for
a given graph grammar, a concise, finite, abstract description of all graphs pos-
sibly reachable by applying the rules of the grammar. The result is, due to the

364 J. Bauer et al.

employed abstractions, in general not exact, i.e. it may consider graphs reach-
able which actually aren’t, but it is safe (or sound), i.e. if a graph is reachable
in the concrete, then the result of Topology Analysis covers it (cf. Figure 3). As
OCL is based on first order logic, most decision problems for OCL are undecid-
able. On a finite characterisation of the reachable object diagrams however, a
large fragment of OCL invariants can be evaluated automatically. This does not
contradict with the undecidability of OCL as Topology Analysis in general does
not compute an exact approximation of the runtime behaviour. Note that nei-
ther Topology Analysis nor the specific choice of graph grammar semantics are
novel contributions. Rather, our combination and usage of them is unique and
beneficial, in particular, in the context of UML/OCL verification. We underpin
the usefulness of our methodology by conducting a complex case study.

Structure. Our presentation is structured as follows. Employing the more de-
tailed discussion of the case study in Section 3, we equip a small but relevant
fragment of UML with a graph grammar semantics in Section 4. The system de-
scribed by a UML model is basically a transition system whose states are node
and edge-labelled graphs. Objects are nodes which are labelled with the valua-
tion of their attributes and links are edges which are labelled with the association
name. The remaining step is then to express actions and event communication
in terms of graph grammars. Section 5 recalls the necessary parts of Topology
Analysis, in particular the formal definition of topology invariants.

The main contribution of this work is given in Section 6 where we connect
topology invariants back to UML models by interpreting them as descriptions
of the possible object diagrams. Thereby we gain four things. Firstly, we may
evaluate OCL expressions in topology invariants, that is, given a UML model
comprising OCL constraints, we can verify that they are satisfied at run-time.
Secondly, we can interpret the obtained topology invariant as synthesised con-
straints. A topology invariant may thirdly, in its entirety, provide the developer
with an impression of how the system behaves at run-time by giving a con-
cise pictorial overview of reachable object diagrams. This shall in many cases
be sufficient to point out subtle design errors. Finally, a subset of the topology
invariants may serve for automatically derived documentation. Understanding
the intention of data-structures employed in a system necessarily requires object
diagrams once a certain model complexity is reached. Generating them auto-
matically eliminates the errors possibly introduced in manual creation of such
diagrams. Section 7 concludes and points out further work.

2 Related Work

As far as we are aware, no other abstract interpretation based approach that
aims at solving the problem of computing all possible reachable object diagrams
exists. There are formal verification techniques like [4,5,6] that are able to prove
that a given behavioural UML model always adheres to properties specified
in variants of temporal logic. Due to the complete nature of that approach, it

Verification and Synthesis of OCL Constraints Via Topology Analysis 365

often becomes infeasible in practice. Moreover, it works on symbolic represen-
tations of the reachable object diagrams and does not provide direct, graphical
access to them; despite the fact that all of these approaches assume finite upper
bounds on the number of objects alive at one point in time, that is, only con-
sider under-approximations of the whole system. Abstract interpretation based
methods using aggressive abstractions might be a way out. Besides our and the
aforementioned methods, there exist tools like UMLAUT [7], VIATRA [8], and
USE [9], which allow the interactive or semi-automatic construction of object
diagrams from models. However, this exploration is typically not exhaustive.

Apart from computing reachable object diagrams, we are interested in the
verification of OCL formulas. USE and VIATRA may be used for evaluating
OCL formulas on class and object diagrams, too. However, they are not able to
consider all possible diagrams for OCL verification. While exhaustive verification
techniques are able to do so, they have the well-known scalability issues.

So far, we have summarised related work aiming at the same goal. Below,
we take a more technique-centered approach. There is numerous work on graph
grammars semantics for UML. The research around the USE tool and graph
grammar based UML semantics by Gogolla and others [9,10] is the one we follow
for obtaining a graph grammars semantics. Other approaches might be equally
well-suited. The technique of Topology Analysis [3] we employ here, has orig-
inally been applied in the context of so-called Dynamic Communication Sys-
tems [11], which are basically the essence of object-oriented systems, covering
dynamic creation and destruction of objects, dynamically changing topology, and
asynchronous communication. Just like in the case of UML graph grammar se-
mantics, we have chosen one approach to graph grammars applications. Related
to the abstract rule matching in [3], the authors of [12] describe transformation
rules for summary nodes (which however do not stem from graph abstraction).

It may be worthwhile to investigate the applicability of other methods to the
problemofapproximatingobjectdiagrams, e.g., [13,14,15], or eventhe three-valued
logic based techniques employed for the analysis of heap manipulating programs,
which originate from [16]. Although we will prove the appropriateness of Topology
Analysis in this work, the named approaches may be candidates to replace it.

3 Case Study: Car Platooning

We demonstrate our approach on the notably small, but non-trivial and relevant
case study of car platooning (cf. Figure 4). Since the late 80’s of the last century,

| {z }

z }| { z }| { z }| {

platoon

follower leader free agent

→

Fig. 4. Car Platooning. A disappearing car and a platoon/free agent merge.

366 J. Bauer et al.

people have investigated systematic ways to improve the throughput of highways
and to reduce energy consumption [17]. One particular approach is the so-called
car platooning. It assumes that cars are provided with communication equipment
supporting a kind of ad-hoc network. Cars are notified about other cars driving
in front of them which they may then ask, via the communication network,
to form a platoon. If the car in front agrees, the back car becomes a follower
in the platoon and reduces the safety distance to a minimum. To remain safe,
in particular in case of braking manoeuvres, each platoon has a leader which
is responsible for notifying its followers about upcoming braking manoeuvres.
In the original design [17], communication happens only between a leader and
its followers, but not among followers. We adopt this star-like communication
structure in our work.

On a more abstract level, a car can fulfill one of three roles. It can be a free
agent, a follower, or a leader. Initially, that is, when entering the highway, a car
is a free agent. The roles change along three basic manoeuvres, namely merge
to join cars into a platoon, split to split platoons in half, and change lane. In
the following, for simplicity, we shall concentrate on the merge manoeuvre; the
implementation follows the proposal of [18]. The simplest case of merge involves
two cars in role free agent, one approaching the other from the back. If the back
car is notified about a car driving in front, it requests a merge by sending an
according event with its own identity attached, and accepts the car in front as
leader. Its role then changes to follower. On receiving the request, the front car
assumes the sender as a follower and changes role to leader. In general, both
the front and the back car may actually already be platoons, thereby merging
free agents into existing platoons or two platoons into a larger platoon. In case
there is a whole platoon in the back instead of only a free agent, the protocol
is slightly more complicated as the followers of the back platoon have to change
their leader and the new leader has to become acquainted with all new followers.
To this end, the back leader sends an event announcing the identity of the new
leader to all of its followers. These followers in turn update their leader to the
new one and announce themselves as new followers by sending an event carrying
their identity to the front leader.

We can capture car platooning on this abstract level in form of UML diagrams
as follows. Figure 1(a) shows the rather simple class diagram, comprising only a
single, active class Car with a possible association leader to the leader car and
an unbounded, possibly empty association followers to the follower cars. The
behaviour is given by the state machine shown in Figure 1(b). A newly created
car starts off in state Free agent, with no links. The identification of cars driving
in front is abstracted to reception of an event car ahead carrying the identity
of the identified car as parameter. Reception of this event causes a state change
to Follower after the leader link has been assigned the received identity and an
event request with the own identity self has been sent to the leader, thereby
requesting a merge. A request is accepted in state Free agent and Leader. In
both cases, the state changes to Leader and the received identity is added to
the followers. In state Leader, an event new follower announces a new follower

Verification and Synthesis of OCL Constraints Via Topology Analysis 367

when a whole platoon approached from the back and requested a merge. The
parameter carried by these events is added to the set of followers. If a platoon
approaches a car or platoon in front, this is also announced by the environment
with a car ahead message. The back leader changes state to Follower after it
has set its leader link and notified all of its followers of the new leader. Here we
assume that the send method sends a message to all objects linked as followers.
Being a follower, the only expected event is new leader which announces a new
leader. The state remains Follower after the leader link has been changed to
the received identity and the new leader has been sent a new follower event
announcing the own identity as a new follower.

Note that in the following, we assume an environment which non-deterministi-
cally chooses to create instances of class Car or to destroy them unless they are
in state Leader. This models that cars may freely enter and leave the highway. In
addition, the environment may send car ahead events to the present instances
announcing one of the other present instances as having appeared in front of
another car. This can explicitly be added to the model in form of an additional
class.

4 Ad-Hoc Graph Grammar Semantics of UML

Our approach as sketched in the introduction is based on abstract interpretation
of graph grammars, thus we need a graph grammar semantics for a fragment of
UML sufficient to cover our case-study.

Using graphs and graph grammars as a semantical domain for UML as such
is not new and rather well-studied, cf. for instance the work summarised in [10]
and also [19], which is more focused on agents than on UML.

In fact, we employ a simplistic variant of the approach proposed in [10]. It
demonstrates that the particular choice of semantics is not the limiting factor of
our approach as we discuss the most relevant features of UML. The semantics
is ad-hoc in the sense that it is a minimal setting which is suited to present our
approach and we don’t intend to provide a formal semantics for each and every
syntactical feature of the UML 2.0 standard.

UML Model. Principally following [20], for the scope of this paper a UML model
is a quadruple U = (E, C, L, M) comprising a finite set E of events, a finite set C
of classes, all active, and functions L and M providing classes with associations
and state-machines. For each event from E we assume that we’re given the
information whether it may be sent by the environment or whether it is only
used internally in the system, and whether it carries a parameter or not. Given a
class c ∈ C, its set of associations L(c) = {l1, . . . , ln}, n ∈ N0, is finite and may
be empty. Its state machine M(c) is a quintuple (S, S0, SΩ, R, A) comprising a
finite set of states S, sets of initial and fragile states S0, SΩ ⊆ S, a transition
relation R ⊆ S × S, and a transition labelling A assigning each transition r ∈ R
a trigger, a trigger/action pair, or only an action. For the scope of this article,
we assume that a trigger is simply an event from E not carrying a parameter,

368 J. Bauer et al.

that a trigger/action pair is an event carrying a parameter and an action which
manipulates associations and may refer to the parameter, and that plain actions
at least comprise association manipulation and event sending. Note that the
notion of fragile states is not standard UML, but encodes that cars may non-
deterministically be destroyed by the environment we assume (cf. Section 3).
For convenience, we assume that states of state machines are disjoint, that is,
S(M(c1)) ∩ S(M(c2)) = ∅ for classes c1 = c2, which is easily established for any
UML model via renaming.

For example, consider the formal representation of the UML model shown in
Figure 1. The set of events is E = {car ahead, request,new follower,new leader},
all carrying parameters and all but car ahead are only used internally. The
set of classes is C = {Car}. The associations of the only class are L(Car) =
{leader, followers}. Its state machine M(Car) is (S, S0, SΩ, R, A) with states

S ⊇ {Free agent,Leader,Follower}, (2)

initial state S0 = {Free agent}, and fragile states SΩ = {Free agent,Follower}.
The semantics of a UML model U is an infinite-state transition system where

each state is an object diagram, that is, a set of object instances connected via
links. In addition, each object has a sequence of events as event queue. Two
such states are in transition relation if and only if the destination state is the
outcome of applying an action of an according transition in a state machine of
U to a single object in the source state. That is, for convenience we consider a
strict interleaving semantics as all classes are active (see above).

As discussed in more detail in [20], this simplistic notion of UML models is
not a severe restriction of generality of our proposal as it already captures many
essential features by appropriate encodings.

In order to fit into our restricted set of actions, the actual set of states is larger
than the ones occurring in Figure 1(b) because the sequential compositions of
actions has to be split into atomic actions. For example, the transition from
Free agent to Follower would be split into two transitions by adding an auxiliary
state to S (cf. Figure 5). The transition to the auxiliary state is annotated by
a trigger/action pair, the action assigns the received identity to the leader asso-
ciation. The transition from the auxiliary state is annotated by a plain action,
which sends an event to the object denoted by the leader association. Note that
such operations are semantics preserving in the sense that they neither affect the
reachability of non-auxiliary states nor liveness, that is, whether non-auxiliary
states are finally reached. The operations only increase the number of transitions
taken during a run-to-completion step.

Furthermore, hierarchical state machines unfold into the flat ones consid-
ered here following the well-known procedures (for an example, consider [20]).
Attributes of finite domains can directly be encoded in an enlarged state set.

Free
agent Aux Follower

car ahead(id)/set(leader,id) /leader .send(request(self))

Fig. 5. Splitting transitions with auxiliary states

Verification and Synthesis of OCL Constraints Via Topology Analysis 369

Similarly, events carrying data of finite domains can be encoded by enlarging
the set of events. Methods, unless recursive, can be encoded by “inlining” them
into transition annotations. Finally, inheritance can be translated into one class
per feature added in a specialisation and a new one-to-one association pointing
to the superclass (cf. [20]).

Graphs and Graph Grammars. A graph is a quintuple (V, E, s, t, l) featuring sets
V and E of nodes and edges, source and target functions s and t, and a labelling
function l. Source and target functions map edges to their respective source and
target nodes, the labelling function l maps both, nodes and edges, to a label
from a finite set of labels.

A graph grammar G is a finite set of graph transformation rules. A graph
transformation rule consists of two graphs, a left graph L, a right graph R,
and a relation between them indicating which nodes and edges in L and R
correspond to each other. In the rule shown in Figure 6, this correspondence
is given implicitly by graphical position. A rule can be applied to a graph G
if L is a subgraph of G. The result of an application is the replacement of L’s
occurrence in G with R. For more details, we refer to the textbook [21].

Graph Grammar-based UML Semantics. According to the paragraph above, a
state of the UML model is an object diagram, where each object is addition-
ally equipped with an event queue. That is, states are graphs where each node
represents either an object or an event and each edge a link or possession of
an event. Object nodes are labelled with the object’s state, event nodes with
the event name. Recall from above, that we consider attribute valuations to be
encoded into state machine states. Edges to object nodes are labelled by associa-
tion names, edges to event nodes by the special label µ. Note that, on the level of
graphs and within the graph transformation rules, there is no explicit distinction
between objects and events, they’re both nodes. That is, if we were after an even
smaller formal representation of UML models than the one presented above, we
could even encode events by having a class for each category of events; sending
and receiving events would then correspond to creating and destroying instances
of these artificial classes.

The graph grammar of U is then the set of graph transformation rules obtained
for the state machine transitions in U . For example, the rule shown in Figure 6
is actually the rule corresponding to the second half of the transition from state
Free agent to Follower. If there are objects in state Aux and Free agent and if
the former knows the latter by link leader, then an event node request carrying
the identity of the former object as a parameter may be sent to the latter. Note
that the latter link is labelled with µ as it points to an event, that is, it can be
read as pointing to the head of the message queue.

Aux

request

Fa
leader

→
Flw

request

Fa
leader

µid

Fig. 6. Graph transformation rule

370 J. Bauer et al.

5 Topology Analysis

The technique we employ to compute the possible object diagrams for a given
UML model is called Topology Analysis (TA) [3]. The subject of TA are graph
grammars for directed node- and edge-labelled graphs, that is, finite sets of
graph transformation rules. For a given graph grammar, TA yields a finite over-
approximation, called topology invariant, which (abstractly) describes all graphs
possibly generated by the graph grammar when applied to a finite set of ini-
tial graphs. Technically, topology invariants are obtained by an abstract inter-
pretation [22] of graph grammars in the abstract domain of abstract clusters.
An instance of an abstract cluster is any graph that can be abstracted to it
by partner abstraction. Partner abstraction of a graph in turn is the quotient
graph with respect to partner equivalence. Intuitively, two nodes of a graph
are partner equivalent if and only if they are similar and if they have similar
edges to (sets of) similar nodes, where being similar means having the same
label.

More formally, let G = (V, E, s, t, l) be a graph. Two nodes v1, v2 ∈ V are
partner equivalent if and only if they have the same label, i.e. l(v1) = l(v2), and
if for all edge labels a, the nodes reachable from v1 and v2 via an edge labelled
with a and the nodes reaching v1 and v2 via an edge labelled with a have the
same label, i.e.

outG(a, v1) = outG(a, v2) and inG(a, v1) = inG(a, v2) (3)

where

outG(a, v) = {l(v′) | ∃ e ∈ E : (s(e), t(e)) = (v, v′) ∧ l(e) = a} (4)

and analogously for incoming edges.
Based on partner equivalence, the partner abstraction α(G) of G is obtained

in two steps. Firstly, for each connected component C of G, compute the quotient
graph with respect to partner equivalence. Doing so, mark equivalence classes
containing more than one node as summary nodes. Secondly, summarise isomor-
phic quotient graphs, that is, keep only one of them. The quotient graphs are
called abstract clusters.

As mentioned above, Topology Analysis is an abstract interpretation of a
given graph grammar G in the domain of abstract clusters. Beginning from the
empty abstract cluster, G is applied iteratively until a fix-point is reached, which
is guaranteed to exist as the abstract domain is finite (cf. [3]). The fix-point is
called topology invariant of G and denoted by GG.

Lemma 1 (Soundness of TA [3]). Let G be a graph grammar. If graph G is
obtained from the empty graph by applying G, then α(G) ⊆ GG.

Figure 7 shows four abstract clusters of a topology invariant for a graph grammar
G. By Lemma 1, they indicate that the graphs obtainable from the empty graph
by applying G iteratively may comprise any number of instantiations of abstract

Verification and Synthesis of OCL Constraints Via Topology Analysis 371

C�
1

Fa

C�
2

Ldr

Flw

followersleader

C�
3

Ldr

Flw

followersleader

C�
4

FaLdr

Flw

followersleader

leader

Fig. 7. Abstract clusters. Doubly outlined nodes are summary nodes.

clusters and any combination thereof. An instantiation of an abstract cluster
is a concretisation in the sense of abstract interpretation, that is, any graph
abstracted to the respective abstract cluster. For example, Figure 7 indicates
that there may be any number of nodes labelled “Fa” (by abstract cluster C	

1),
and any number of connected components with two nodes, one labelled “Ldr”
and the other one “Flw” (by abstract cluster C	

2), and any number of connected
components with one node labelled “Ldr” and at least two nodes labelled “Flw”
and connected as indicated by abstract cluster C	

3, etc. That is, a topology
invariant is an over-approximation. It is an abstract description of the set of
all possible graphs obtainable from G, which doesn’t miss an obtainable graph
but possibly covers more. This kind of approximation is an inherent feature of
abstract interpretation based methods and is the price to pay for efficiency. Due
to the high complexity of the original problem, we must lose some information
somewhere.

6 Reachable Object Diagrams

The abstract clusters shown in Figure 7 are actually a fragment of the topol-
ogy invariant of the graph grammar representation of the UML model shown
in Figure 1. While the graph grammar has been obtained (and improved) man-
ually for this case study, the computation of topology invariants is completely
automatic [3]. To keep the number of abstract clusters well manageable, we’ve
assumed a maximal event queue length of 1 during the analysis, which is not a
principal restriction of the approach (cf. [3]).

Recall from Section 4 that graphs are used to represent object diagrams, and
a topology invariant is an over-approximation of the reachable object diagrams
of the UML model we started from. The information represented by a topology
invariant can be exploited in many ways, most prominently the following.

6.1 Constraints Verification

The most sophisticated use is to give OCL expressions a semantics on abstract
clusters. As abstract clusters are basically graphs, the starting point for such a
semantics will be an OCL semantics on graphs as provided by [9]. The problem
with abstract clusters is that they abstract from certain information in order to
remain finite, first of all the number of instances. For example, abstract cluster
C	

3 doesn’t indicate the number of followers a leader may have. That is, one has
to be careful when evaluating collection comprehension expressions of OCL, for

372 J. Bauer et al.

example self.followers which yields a set. The size of this set has to evaluate
to the indefinite value oclUndefined to remain sound, while notEmpty evalu-
ates definite on the same set, i.e. a constraint requiring that an object in state
leader has at least one follower holds in all abstract clusters shown in Figure 7.
That is, the information lost by the abstraction has the effect that some expres-
sions evaluate to oclUndefined, while some remain definite values. As OCL is
a three-valued Kleene logic, the indefinite value is correctly treated through all
arithmetical and logical expressions. Table 1 sketches the treatment of OCL con-
cepts; the only untreatable feature are time expressions (see discussion below).

A system-wide OCL expression like (1) from the introduction is then evaluated
for all abstract clusters in the topology invariant. For the considered model,
we’ve established constraint (1) by (manual) evaluation in all abstract clusters.
In contrast, the following constraint, which explicitly excludes the unintended
topology from Figure 2(b), cannot be excluded by topology invariants.

Car
(Leader) implies (leader->leader <> self)

(5)

Close inspection of the model unveils that the state machine is too simple to
ensure this property. The reason is that two cars may subsequently be announced
to each other as driving in front. As there is no further negotiation, they both
continue to set their leader link to each other, ending up in the object diagram
shown in Figure 2(b). The error can be eliminated by adding further negotiation
employing additional acknowledge events. For the corrected version, the topology
invariant, and thus the corrected model, satisfies constraint (5).

Given such an interpretation of OCL in abstract clusters, the constraint ver-
ification can be conducted automatically for the constraints found in the model
as well as for interactive query of constraints.

However, we cannot prove arbitrary properties to hold for any model. This is
related to the property preservation properties of Topology Analysis. A property
is preserved by an analysis, if the fact, that it evaluates to true on every con-
crete model, implies that it holds true of any abstract model as well. Property
preservation is often used to exclude undesired behaviour by applying it in its
counterpositive form. Whenever something does not hold for a topology invari-
ant, it will not hold for any object diagram of the model. Topology Analysis, for
instance, “preserves graphs”. If the abstraction of a certain graph does not occur

Table 1. Abstract semantics of OCL constructs

attribute access (‘.’) node label
association
navigation (‘.’)

possibly
undefined

collection compre-
hension (‘collect’)

possibly
undefined

collection operations
(‘->count’)

possibly
undefined

arithmetic expressions
(‘+’, ‘-’)

possibly undefined
(indirect)

logical expressions
(‘<>’, ‘and’)

possibly undefined
(indirect)

typing, meta-level
(‘oclType’)

only implicitly

time expressions (‘@pre’) not considered

Verification and Synthesis of OCL Constraints Via Topology Analysis 373

in the topology invariant, then it will not occur in any object diagram. Topology
Analysis doesn’t preserve all properties. This is the case for all temporal proper-
ties, that is, it won’t be possible to support the OCL time expression @pre, but
also for others. A detailed account of property preservation can be found in [23].

6.2 Constraints Synthesis

In addition to evaluating given OCL expressions in abstract clusters, we can in
some cases translate abstract clusters back to OCL. This is tightly related to
the property reflection properties of the underlying Topology Analysis. Often,
property reflection is much harder than property preservation. A property is
reflected, if the fact that it holds on a topology invariant implies that it holds
on every object diagram represented by it.

Topology analysis reflects only few properties. Again, we refer to [23] for a
detailed account. Among the reflected properties are, for instance, edges that
do not exclusively involve summary nodes. For example, the abstract clusters in
Figure 7 indicate that

Car
(Follower) implies (leader->followers->includes(self))

(6)

might be a valid constraint of the considered model.
If some additional and automatically checkable technical requirements are

fulfilled as well, then such a constraint can be synthesised (automatically). Con-
straints obtained by this approach may yield valuable, highly condensed insights
into the behaviour of the model, comprehensible for every developer trained
in OCL. And even hardly comprehensible constraints, for example due to size
or nesting, may serve as indicators for regression if they become violated after
changes to the model.

Again, we must stress, that only few properties are reflected and, often, it will
not be possible to synthesise constraints. However, the fact that is is possible—
sometimes even automatically—seems like an important contribution.

6.3 Graphical Appeal for Debugging and Documentation

One of the major benefits of a graph-based approach like Topology Analysis, is
its graphical appeal. Our method lends itself for two major purposes: early error
detection (debugging) and documentation.

Given the developer’s intuition of how the expected object diagrams look, it
should in many cases be possible to identify unwanted object diagrams. Experi-
ence with implementing our case study shows, that running Topology Analysis
already at early design stages, often reveals subtle mistakes. This is mainly owed
to the graphical nature of the outcome.

Finally, abstract clusters could give hints for good object diagrams to be used
in a system’s documentation. As obvious with the minimal UML model example,
the class diagram alone is typically not sufficient to understand a model’s behav-
iour at run-time. To this end, good documentation typically comprises charac-
teristic object diagrams. Given a set of good candidates, the only remaining task

374 J. Bauer et al.

is to show that they’re not spurious, as Topology Analysis is in general not exact
(cf. Section 5). We’re confident that this task can efficiently be automated em-
ploying formal verification techniques. The observation with formal verification
tools, in particular the ones employing search-based techniques similar to the
SPIN model-checker [24], is that they’re in average orders of magnitude faster
for so called “drive to configuration” tasks than for verification tasks. Tasks of
the former kind confirm the reachability of certain “good”, or desired system
states, while verification establishes satisfaction of temporal properties or the
absence of “bad” states for the whole state space. Applying SPIN to UML has
been demonstrated, for instance, by Schaefer and others in [25].

7 Conclusion

We have proposed a new methodology for approximating all possible object di-
agrams given a structural and behavioural UML model. Our methodology relies
on well-established techniques from the areas of UML graph grammar semantics
and graph graph grammar verification. It combines these approaches in a novel
fashion. On top of a graphical overview of all possible object diagrams, we expect
benefits like OCL constraint verification and synthesis, early error detection, de-
bugging and automated documentation. In fact, the case study presented in this
work shows the general feasibility and relevance of the application of Topology
Analysis to UML models and fully meets our expectations. Moreover, most of
the results were obtained automatically.

As the results presented here are only a case-study, further work clearly con-
sists of fully elaborating this approach. This involves further case studies, thus
more experimental results, more automation, and, perhaps, the exploration of
other available graph grammar UML semantics and other graph grammar verifi-
cation methods. In more detail, the formal connection between the specific UML
semantics chosen and the specific graph grammars serving as input for Topol-
ogy Analysis must be established more formally. This may give rise to more
automation, too. Furthermore, the abstract interpretation of OCL expressions
on abstract clusters has to be fully elaborated. Our first approach as reported
in Section 6 clearly indicates the feasibility, but also shows that there is work to
be done in order to pass all information from the abstract clusters through to
the level of OCL, that is, to obtain a best abstract interpretation.

While we did not experience any scalability problems during our case study,
Topology Analysis might be rather costly or imprecise in general, which is not
surprising given the complexity of the task. It may thus be beneficial to abstract
as early as possible, that is, on an as high language level as possible, for instance,
on model level directly rather than on graph grammar level as we propose in our
methodology. That is, one should investigate whether there are possibilities to
abstract from behaviour of the UML model, for example, certain arithmetics on
attributes that don’t affect the topology. This will improve the overall scalability
of the methodology considerably.

Finally, a promising idea to improve precision was outlined in Section 6: em-
ploy formal verification technology but only for the limited (and typically orders

Verification and Synthesis of OCL Constraints Via Topology Analysis 375

of magnitude less expensive) use-case of falsification to confirm the validity of
each abstract cluster. This could be conducted after termination of Topology
Analysis, on the final topology invariant, or possibly even during the iterative
computation constituting the analysis itself. Complementary, the existing crite-
ria for exactness given in [23] can possibly be lifted to the level of UML models.

References

1. OMG: Unified Modeling Language: Superstructure, Version 2.1.1. Technical Report
formal/07-02-05 (February 2007)

2. OMG: Unified Modeling Language: Infrastructure 2.1.1. Technical Report
formal/07-02-06 (February 2007)

3. Bauer, J., Wilhelm, R.: Static Analysis of Dynamic Communication Systems. In:
14th International Static Analysis Symposium. Springer, Heidelberg (2007)

4. Xie, F., Levin, V., Browne, J.C.: Model Checking for an Executable Subset of UML.
In: Feather, M., Goedicke, M. (eds.) Proceedings of ASE-2001: The 16th IEEE
Conference on Automated Software Engineering, November 2001. IEEE Computer
Society Press, Los Alamitos (2001)

5. Knapp, A., Merz, S., Rauh, C.: Model Checking Timed UML State Machines
and Collaborations. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS,
vol. 2469. Springer, Heidelberg (2002)

6. Schinz, I., Toben, T., Mrugalla, C., Westphal, B.: The Rhapsody UML Verification
Environment. In: Cuellar, J.R., Liu, Z. (eds.) Proc. SEFM 2004, Beijing, China,
September 2004, pp. 174–183. IEEE, Los Alamitos (2004)

7. Jézéquel, J.M., Ho, W.M., Guennec, A.L., Pennaneac’h, F.: UMLAUT: an Ex-
tendible UML Transformation Framework. In: Hall, R., Tyugu, E. (eds.) Proc.
ASE 1999. IEEE Computer Society, Los Alamitos (1999)

8. Csertán, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., Varró, D.: VIATRA
- Visual Automated Transformations for Formal Verification of UML Models. In:
Emmerich, W., Wile, D. (eds.) 17th IEEE International Conference on Automated
Software Engineering (ASE 2002), Edinburgh, Scotland, UK, 23-27 September
2002. IEEE Computer Society, Los Alamitos (2002)

9. Gogolla, M., Richters, M.: Development of UML descriptions with USE. In:
Shafazand, H., Tjoa, A.M. (eds.) EurAsia-ICT 2002. LNCS, vol. 2510, pp. 228–
238. Springer, Heidelberg (2002)

10. Hölscher, K., Ziemann, P., Gogolla, M.: On Translating UML Models into Graph
Transformation Systems. Journal of Visual Languages and Computing 17(1), 78–
105 (2006)

11. Bauer, J., Schaefer, I., Toben, T., Westphal, B.: Specification and Verification of
Dynamic Communication Systems. In: Sixth International Conference on Appli-
cation of Concurrency to System Design, 2006. ACSD 2006, pp. 189–200. IEEE
Computer Society Press, Los Alamitos (2006)

12. Drewes, F., Hoffmann, B., Janssens, D., Minas, M., Eetvelde, N.V.: Shaped Generic
Graph Transformation. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) Proc. AGTIVE
2007, pp. 197–212 (October 2007)

13. Rensink, A., Distefano, D.: Abstract Graph Transformation. Electr. Notes Theor.
Comput. Sci. 157(1), 39–59 (2006)

14. König, B., Kozioura, V.: Counterexample-guided Abstraction Refinement for the
Analysis of Graph Transformation Systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920. Springer, Heidelberg (2006)

376 J. Bauer et al.

15. Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic invariant verifica-
tion for systems with dynamic structural adaptation. In: Osterweil, L.J., Rombach,
H.D., Soffa, M.L. (eds.) ICSE, pp. 72–81. ACM, New York (2006)

16. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. 24(3), 217–298 (2002)

17. Varaiya, P.: Smart cars on smart roads: problems of control. IEEE Transactions
on Automatic Control 38(2), 195–207 (1993)

18. Hsu, A., Eskafi, F., Sachs, S., Varaiya, P.: The Design of Platoon Maneuver Pro-
tocols for IVHS. PATH Research Report UCB-ITS-PRR-91-6, Institute of Trans-
portation Studies, University of California at Berkeley (April 1991) ISSN 1055-1425

19. Depke, R., Heckel, R., Küster, J.M.: Formal agent-oriented modeling with UML and
graph transformation. Science of Computer Programming 44(2), 229–252 (2002)

20. Damm, W., Josko, B., Pnueli, A., Votintseva, A.: A discrete-time UML seman-
tics for concurrency and communication in safety-critical applications. Science of
Computer Programming 55(1–3), 81–115 (2005)

21. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformations. Foundations, vol. 1. World Scientific, Singapore (1997)

22. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Los Angeles, California, pp. 238–252. ACM Press,
New York (1977)

23. Bauer, J.: Analysis of Communication Topologies by Partner Abstraction. PhD
thesis, Universität des Saarlandes (2006)

24. Holzmann, G.J.: The Model Checker SPIN. IEEE Transactions on Software Engi-
neering 23(5) (May 1997)

25. Schäfer, T., Knapp, A., Merz, S.: Model Checking UML State Machines and Col-
laborations. Electr. Notes in Theor. Comput. Sci. 55(3) (2001)

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 377–393, 2008.
© Springer-Verlag Berlin Heidelberg 2008

State of the Art of QVT: A Model Transformation
Language Standard

Ivan Kurtev

Software Engineering Group, University of Twente, The Netherlands
kurtev@ewi.utwente.nl

Abstract. Query/Views/Transformation (QVT) is the OMG standard language
for specifying model transformations in the context of MDA. It is regarded as
one of the most important standards since model transformations are proposed
as major operations for manipulating models. In the first part of the paper we
briefly summarize the typical transformation scenarios that developers encoun-
ter in software development and formulate key requirements for each scenario.
This allows a comparison between the desirable and the formulated require-
ments for QVT. Such a comparison helps us to initially evaluate the adequacy
of the QVT language.The second part of the paper focuses on the current state
of the standard: the language architecture, specification, paradigm, and open is-
sues. The three QVT sublanguages Operational Mappings, Relations, and Core
are briefly described. Special attention is given to the currently available and
expected tool support.

Keywords: Model transformations, QVT, MDA, MDE.

1 Introduction

Model Driven Engineering (MDE) is an emerging approach for software development
gaining more and more attention by the industry and the academia. MDE emphasizes
the need for thorough modeling of software systems before they are implemented.
The implementation should be derived from the models by applying model transfor-
mations, possibly in a fully automated way.

MDE principles may be applied by using different modeling languages, transfor-
mation languages, and tools. One example of such an approach is Model Driven Ar-
chitecture (MDA) initiative proposed by OMG. MDA distinguishes between platform
independent models (PIMs) and platform specific models (PSMs). This classification
is motivated by the constant change in implementation technologies and the recurring
need to port software from one technology to another. Furthermore, MDA proposes
its set of modeling standards: (i) to define models and modeling languages (UML
[12], UML profiles, MOF [14]); (ii) to represent and exchange models (XMI) [11];
(iii) to define model constraints (OCL) [16]; (iv) to specify transformations on mod-
els. The last operation is proposed as the main way to manipulate models in MDA.
The important role of model transformations motivates the effort that OMG took to
define a standard language for model transformations aligned with the rest of OMG

378 I. Kurtev

standards. The result of this effort is the standard QVT MOF 2.0 language [17] which
at the time of the writing of this paper is in the final standardization phase.

Transformation technologies are not something new in software engineering. A
compiler is actually a transformer that produces an artifact at a lower level of abstrac-
tion from another artifact at a higher level of abstraction, possibly expressed in a lan-
guage that matches the problem domain better. The standardization of XML as an
exchange data format gave birth to XSLT, a standard transformation language for
XML documents. A similar effort is observed in the domain of Semantic Web. Many
more examples may be given from the domain of data engineering, a discipline that is
facing hard interoperability and data heterogeneity problems and approaches them by
applying data transformations.

In software engineering we witness a stable progress in at least two fields: program
transformations and graph transformations. This gives us a valuable insight about the
problems we need to tackle and about the advantages and disadvantages of the avail-
able techniques.

In the light of this discussion an interesting question emerges. How does OMG de-
rive the QVT standard? What are the transformation scenarios that will be addressed
and what kind of properties the language will possess? Unfortunately, a quick look at
the QVT Request for Proposals [13] (QVT RFP) document shows that the most im-
portant requirements for the language concern its alignment to the existing OMG
standards and the software engineering qualities of the language take the role of non-
mandatory requirements.

The purpose of this paper is twofold. First we would like to outline a set of trans-
formation scenarios commonly found in software and data engineering. Each scenario
naturally poses a set of requirements. They can be compared to the requirements and
rationale behind QVT. Second, we present an overview on QVT and the current tool
support for this language.

The paper is organized as follows. Section 2 gives a larger context for discussion
by considering several well-known transformation scenarios. Section 3 presents the
requirements for QVT as described in the QVT RFP. Section 4 explains the overall
architecture of the QVT language and briefly describes the three QVT sublanguages:
Relations, Core, and Operational Mappings (OM). Section 5 lists the currently available
tools for specifying and executing QVT transformations. Section 6 concludes the paper.

2 Transformation Scenarios in Software and Data Engineering

The previous section mentioned that transformations are applied to solve problems in
many domains. Those problems, however, generally differ and may pose a set of
different requirements. These requirements should be the starting point for the devel-
opment of a transformation language. In this section we analyze two domains of ap-
plication of transformations: software development based on the principles of MDE
and heterogeneous data translation.

2.1 Model Driven Software Development

Model Driven Software Development (MDSD) applies the principles of MDE in the
development of software systems. A system is specified as a set of models that are

 State of the Art of QVT: A Model Transformation Language Standard 379

repetitively refined until a model (models) with enough details to implement the sys-
tem is obtained. The implementation step should be automated as much as possible by
code generation from the models.

When applied in practice, this general scheme of MDSD processes should follow
and address some stable general principles and scenarios of software development
such as separation of concerns, iterative development, refactoring, reverse engineer-
ing, and others. These principles and scenarios take a concrete shape in the context of
MDSD and put forward requirements and open questions. In this section we focus on
the role of model transformations related to various aspects of MDSD.

Refinement Steps in MDSD. Regardless of the actual development methodology an
MDSD process can be seen as a series of refinement steps. More abstract models are
transformed into more detailed ones being closer to the actual system. The most
important requirement for this refinement process is the semantics preserving
property of transformations. Fig. 1 illustrates the process of refinement and the
relations of the models to the system.

Fig. 1. Refinement of models in MDSD and their relation to the system to be implemented

The vertical dimension denotes the refinement from more abstract to more concrete
models. Since all models are representations of the same system every transformation
step should preserve the intended meaning of the source model and eventually bring
new details. The refinement steps may encode useful design knowledge based on
design and architectural patterns, idioms related to a particular implementation tech-
nology, and standard transformations such as UML to Java or UML to J2EE. Seman-
tics preservation should ensure that the produced system will behave as it is specified
in the models.

Separation of Concerns. The principle of separation of concerns helps in managing
the complexity in development of large software systems. The application of this
principle in MDSD leads to more than one model of the system developed from
different points of interest. These models may be refined independently from each other
along a single track as shown in Fig. 2. At a certain moment these models (or code)
must be integrated to obtain a complete system.

380 I. Kurtev

Fig. 2. Refinement and composition of models representing different concerns

Fig. 2 shows an example organization of models in a two-dimensional space. The
vertical dimension indicates the level of abstraction of models. The horizontal dimen-
sion indicates that the models may be separated according to the problem they solve
or the point of interest taken to develop a model. Such points of interest are known as
concerns. Fig. 2 shows a horizontal dimension with four concerns: A, B, C, and D. At
a certain stage models of different concerns may be composed. Composition of mod-
els is treated as a transformation that takes at least two input models and generates an
output model. Both the refinement and composition transformations must be seman-
tics preserving since the resulting models represent the same system as the source
models.

Two issues arise in relation to the principle of separation of concerns. The first one
is the consistency between models belonging to various concerns. Models of different
concerns should be treated separately but ultimately they represent the same underly-
ing system. Therefore, the independent changes over the models should not produce
inconsistent results.

The second issue is the composition of models which is a special kind of transfor-
mation with at least two input models. The composition problems may expose speci-
ficities that may require a specialized language optimized for composition tasks [3].

Iterative Development and System Evolution. Contemporary software development
methods promote iterative processes to manage complexity and to deal with
identification of system inadequacy at an earlier stage of development. Every new
iteration changes (adds to) the functionality of the system. Changes may also occur
when the system evolves due to changed requirements during the maintenance phase.
The impact of a change on a system developed according to the MDE principles

 State of the Art of QVT: A Model Transformation Language Standard 381

requires changes to the existing models and integration of the newly developed
models with existing ones. Since the system is developed as a series of
transformations over models a change in one model must be propagated through the
rest. The propagation may be in two directions: to models derived from the changed
model and to models from which the changed model is derived.

Fig. 3. Evolution and change propagation in MDE

Fig. 3 shows three moments in which models sequentially evolve. After the initial
transformation is executed at moment t1, subsequent changes of the source and target
models (at moments t2 and t3) may require forward and backward change propaga-
tion. Two problems arise here: how to identify the required changes and how to apply
them on existing models at a low cost.

The first problem is known as traceability problem. A trace allows a software arti-
fact to be related to its predecessors that were developed during earlier phases of
development. For example, a Java class may be traced back to its design class, analy-
sis class, and ultimately to the requirement that motivates its presence in the system.
In the case of model transformations a trace would relate elements in the source
model to the created elements in the target model. By transitivity, traces may be de-
tected over the chain of transformations. If a model element is changed, traces help in
detecting the changes in the model elements derived from it and ultimately in the
system code. Traceability support may not be a property of a transformation language.
It may be provided by the transformation engine or the developer may take care of
creating and using traces.

The second problem is how to apply the identified changes. One naive solution is
to execute again the transformation on the modified model. However, for large mod-
els this may be time consuming, especially when there is a long chain of model re-
finements and compositions. A more efficient solution is to transform only those
elements that are modified and to do only incremental changes at the target models.

It should be noted that this scenario does not necessarily call for bidirectional
transformation programs. The two directions may be supported by two different trans-
formation programs.

382 I. Kurtev

2.2 Data Translation Problems in Data Engineering Domain

Data translation, data mapping, and data integration are among the important sub-
fields in data engineering. In this section we consider a real-life scenario that requires
solving data translation problems. The scenario is generalized and it is shown that
conceptually it exemplifies the classical data and schema translation problem.

The most important and challenging problem in data translation is the problem of
heterogeneity. Data come from various sources, they are usually autonomous (con-
trolled by different organizations) and distributed, structured according to different
data models. To illustrate the complexity of the problem we give a list of some data
formats used in practice: ER, Relational Model, Object-Relational Model, XML,
SGML, comma-separated data, Excel sheets, Latex documents, Word documents, etc.
Even relational data stored in systems coming from different vendors expose some
differences.

Consider a scenario in which geographically distributed development teams work
on a common product. Teams use different tools for bug tracking. One team uses
Mantis, the second team uses Bugzilla, and the third team uses simple Excel spread-
sheets to describe bugs. Teams are at different levels of maturity and may use differ-
ent development processes. There is a need for exchanging information about bugs
among the teams. However, every tool uses its own data format for bug description.
Moreover, the conceptual models behind every tool used to describe bugs may also
differ.

The scenario is illustrated in Fig. 4.

Fig. 4. Tool interoperability problem in bug management

Fig. 4a shows one possible way for interoperability in which there are bridges for
every couple of tools. If a new team joins the project a potential new bug tracking
system will be used. Then bridges must be built from the new tool to the existing
tools. Fig. 4b shows a second way to handle the interoperability: a pivot model is
defined that unifies the models used by the tools. Then a bridge is defined between
the pivot model and every tool.

The scenario shown above may be generalized to the well known problem of
schema and data translation [1]. It is illustrated in Fig. 5. We intentionally use termi-
nology specific to the data engineering domain. We have three levels: database,

 State of the Art of QVT: A Model Transformation Language Standard 383

conformsTo

M1

S2

M2

S1 T1

(a)

conformsTo conformsTo

ERModel

OO
schema

OOModel

ERschema T1

(b)

conformsTo

Models

Schemas

conformsTo

D2D1 T2

conformsTo conformsTo

OOdataERdata T2

conformsTo

Databases

Fig. 5. Schema and data translation problem in data engineering

schema, and model. Databases conform to schemas and schemas conform to models.
This three-level organization corresponds to the three levels of model, metamodel, and
metametamodel.

The schema and data translation problem is formulated as follows. Given two
models M1 and M2, a source schema S1 conforming to M1, and a source database D1
conforming to S1, find a translation T1 that generates a target schema S2 conforming
to the model M2, and a translation T2 that translates the database D1 to a database D2
conforming to S2. Fig. 5a diagrammatically shows the problem and Fig. 5b gives a
concrete example. An interesting question is if it is possible to automatically derive
T2 from T1.

The main observation on this problem is that it may involve a large degree of het-
erogeneity. We also have two possibilities for translations between a pair of models:
lossless and lossy transformations. This depends on the level of compatibility between
the schemas/models. In data translation we are interested in preserving the informa-
tion as much as possible across models and schemas. This requirement is known as
preservation of information capacity [7, 8].

3 QVT Requirements

After the presentation of two problem domains and the requirements they pose to
model transformation systems we present the QVT standard proposed by OMG.

The requirements for the QVT language are described in the formal QVT Request
for Proposals (QVT RFP) [13] issued by OMG. Here we briefly summarize the re-
quirements without repeating them in full. QVT requirements are divided into manda-
tory and optional requirements.

384 I. Kurtev

Mandatory requirements:

• Query language: Proposals shall define a language for querying models;
• Transformation language for MOF models: Proposals shall define a lan-

guage for transformation definitions. Definitions describe relationships be-
tween source and target MOF metamodels;

• QVT abstract syntax in MOF: The abstract syntax of the QVT languages
shall be described as MOF 2.0 metamodel;

• Declarative language: The transformation definition language shall be de-
clarative in order to apply incremental updates done on the source model im-
mediately to the target model;

• MOF 2.0 model instances: All the mechanisms defined by proposals shall
operate on models instances of MOF 2.0 metamodels;

Optional requirements:

• Bidirectional transformations: Proposals may support transformation defini-
tions that can be executed in two directions (either through a symmetric defini-
tion or through a couple of definitions);

• Traceability between source and target models: Proposals may support
traceability between source and target model elements after transformation
execution;

• Reusable transformations: Proposals may support mechanisms for reuse of
transformation definitions;

• In-place updates: Proposals may support execution of transformations where
the source and target models are the same;

It should be noted that not all the requirements are listed here. For example, the re-
quirement for view definition is skipped since it is not implemented in the proposed
standard.

We also give the definitions of the three concepts that are used in the name of the
QVT language (Query, View, and Transformation) as defined by OMG documents.

Query: A query is an expression that is evaluated over a model. The result of a query
is one or more instances of types defined in the source model, or defined by the query
language.

View: A view is a model which is completely derived from another model (the base
model). There is a ‘live’ connection between the view and the base model.

Transformation: A model transformation is a process of automatic generation of a
target model from a source model, according to a transformation definition.

An analysis of the requirements shows that main attention is paid to the alignment
of QVT to the rest of the OMG standards, most notably MOF2.0. On the base of the
mandatory requirements we may infer the following operational context of the QVT
language (Fig. 6).

The operational context is based on the three-level MOF metamodeling archi-
tecture. The QVT abstract syntax is defined as a metamodel (QVT). QVT trans-
formations are models conforming to the QVT metamodel. Fig. 6 shows an
example transformation Tab. It is based on the input and output metamodels MMa
and MMb. In general, QVT allows more than one input and output models and their

 State of the Art of QVT: A Model Transformation Language Standard 385

QVT MMb

Mb

conformsTo

conformsTo

based on

conformsTo

conformsTo

MOF

MMa

Ma

conformsTo

conformsTo

conformsTo

M1

M2

M3

Tab

based on

input output
executed

Fig. 6. QVT operational context

corresponding metamodels to be used. For simplicity, we show only single input and
output models/metamodels. QVT transformations are executed by taking input mod-
els (Ma) and producing output models (Mb).

The optional requirements correspond to some well-known software quality prop-
erties. The RFP does not give any domain analysis and in-depth coverage of possible
scenarios in which QVT will be used.

4 QVT Languages

According to Fig. 6, the abstract syntax of QVT is defined as a MOF 2.0 metamodel.
This metamodel defines three sublanguages for transforming models. They rely on
OCL 2.0 as navigation and query language for models. Creation of views on models
is not addressed in the proposal.

4.1 QVT Architecture

QVT languages are arranged in a layered architecture shown in Fig.7. The languages
Relations and Core are declarative languages at two different levels of abstraction.
The specification document defines their concrete textual syntax and abstract syntax.
In addition, Relations language has a graphical syntax. Operational Mappings is an
imperative language that extends Relations and Core languages.

Relations language provides capabilities for specifying transformations as a set of
relations among models. Core language is a declarative language that is simpler than
the Relations language. One purpose of the Core language is to provide the basis for
specifying the semantics of the Relations language. The semantics of the Relations
language is given as a transformation RelationsToCore. This transformation may be
written in the Relations language.

Sometimes it is difficult to provide a complete declarative solution to a given trans-
formation problem. To address this issue the QVT proposes two mechanisms for
extending the declarative languages Relations and Core: a third language called Op-
erational Mappings and a mechanism for invoking transformation functionality im-
plemented in an arbitrary language (Black Box implementation).

386 I. Kurtev

Fig. 7. Layered architecture of QVT languages

Operational Mappings language extends the Relations language with imperative
constructs and OCL constructs with side effects. The syntax of Operational Mappings
language provides constructs commonly found in imperative languages (loops, condi-
tions, etc.). The QVT specification indicates a relation between Operational Mappings
and Core. However, such a relation cannot be identified after inspecting the meta-
models of these languages.

Black Box mechanism allows plugging-in and executing external code during
transformation execution. This mechanism allows complex algorithms to be imple-
mented in any programming language and enables reuse of already existing libraries.
This makes some parts of the transformation opaque, which brings a potential danger
since their functionality is arbitrary and is not controlled by the transformation engine.

Fig. 7 does not suggest any particular implementation of a QVT transformation en-
gine. Tool vendors may choose different strategies. For example, the Core language
may be supported by an execution engine and the Relations transformations may be
transformed to equivalent programs written in Core language. In that way the engine
is capable of executing programs written in both languages. Another possibility is that
only the Relations and Operational Mappings are supported by a tool.

These implementation options may produce tools with different capabilities. To
denote the capabilities of tools, the QVT proposal defines a set of QVT conformance
points for tools. Conformance points are organized along two dimensions and form a
grid with 12 cells. Table 1 shows the dimensions and the possible conformance
points.

The Language Dimension defines three levels corresponding to the three QVT lan-
guages. If a tool conforms to a given level this means that it is capable of executing
transformation definitions written in the corresponding language.

Table 1. QVT conformance points for tools

 Interoperability Dimension

 Syntax
Executable

XMI
Executable

Syntax
Exportable

XMI
Exportable

Core

Relations L
an

gu
ag

e
D

im
en

si
on

Operational
Mappings

 State of the Art of QVT: A Model Transformation Language Standard 387

The Interoperability Dimension is concerned with the form in which a transforma-
tion definition is expressed. It defines four levels:

• Syntax Executable. A tool can read and execute transformation definitions writ-
ten in the concrete syntax given in the QVT proposal;

• XMI Executable. A tool can read and execute transformation definitions serial-
ized according to the XMI serialization rules (recall that transformation defini-
tions conform to the QVT metamodel and therefore are XMI serializable);

• Syntax Exportable. A tool can export transformation definitions in the concrete
syntax of the corresponding language;

• XMI Exportable. A tool can export transformation definitions in XMI format;

A requirement states that if a tool is SyntaxExecutable or XMIExecutable
for a given language level, it should also be SyntaxExportable or XMIExportable
respectively.

It should be noted that the QVT specification does not define the term “QVT com-
pliant transformation language”. This term tends to be more and more used. However,
its meaning is not clear. It is an attractive possibility to attach a standard label to an
existing transformation language. The specification gives us only the possibility to
claim compliance for tools and not for languages.

4.2 Relations Language

Transformations written in the Relations language consists of declarations of relations
among metaelements. Relations are based on an arbitrary number of domains. When a
relation is specified no execution direction is assumed. When a transformation is
executed an execution direction is chosen. This opens the possibility to specify bidi-
rectional transformations if their logic permits so. The following transformation sce-
narios are supported by the Relations language:

• Check-only: transformation execution checks if given models satisfy the re-
lations specified in the transformation definition. No new models/model
elements are created and no changes are made to the existing models. The
answer is yes or no depending if the relations hold;

• Unidirectional transformation: the transformation is executed in a given
direction. The target model is created according to the relations in the trans-
formation definition. After the transformation execution, the input and output
models satisfy the relations in the transformation definition;

• Model synchronization: the transformation engine checks if the relations in
a transformation definition hold for a given set of models. If a relation is not
satisfied the engine makes changes in the models in order to satisfy the rela-
tion. This may lead to creation of new elements, deletion, and update of ex-
isting elements. This scenario is motivated by the need for handling model
updates in an incremental fashion;

• In-place update: in this scenario there is only one model that may be
changed according to the specified relations;

388 I. Kurtev

Every relation contains a set of object patterns. These patterns can be matched
against existing model elements, instantiated to model elements in new models, and
may be used to apply changes to existing models. The language handles the manipula-
tion of traceability links automatically and hides the related details from the devel-
oper. The code snippet below gives an example relation.

1. relation AttributeToColumn {
2. checkonly domain uml c:Class {};
3. enforce domain rdbms t:Table {};
4. primitive domain prefix:String;
5.
6. where {
7. PrimitiveAttributeToColumn(c, t, prefix);
8. ComplexAttributeToColumn(c, t, prefix);
9. SuperAttributeToColumn(c, t, prefix);
10. }
11. }

In a hypothetical transformation that transforms UML class models to relational
schemas there is a relation between UML attributes and columns of relational tables.
The relation AttributeToColumn specifies this. It consists of three domains: uml (line 2),
rdbms (line 3), and one primitive domain that allows passing strings to the relation in
the form of a parameter (line 4). In order to hold, the relation must satisfy the object
patterns in the domains and to have the condition in the where clause (lines 6-10) evalu-
ated to true. The where clause illustrates the possibility for invoking one relation from
another one.

The keywords checkonly and enforce play an important role for the semantics of
the transformation. Checkonly indicates that the domain elements (in this case UML
classes) cannot be changed (i.e. they are read-only) by the transformation execution.
Enforce indicates that the engine should change the elements of the domain to ensure
the relation. On the basis of the concrete transformation scenario these keywords have
different effect on the domains. For example, if a unidirectional transformation is
executed from classes to tables then the uml domain will be used for matching and the
rdbms domain will be created. In this scenario the meaning of enforce is creation of
new elements. If two models already exist and the transformation is executed to syn-
chronize them, changes are allowed only in the enforced domains.

4.3 Core Language

Core language is a declarative language that is simpler than the Relations language.
Transformation definitions written in it tend to be longer than the equivalent defini-
tions written in Relations language. Traceability links are treated as ordinary model
elements. The developer is responsible for explicitly creating and using the links.
Both languages support the same set of transformation scenarios. The rationale behind
Core is to support bidirectional incremental transformations. An ideal execution en-
gine for Core should be event-based: every modification in one model is immediately
handled and the required modifications in the other models are performed. The fol-
lowing is a snippet taken from a Core transformation specification.

 State of the Art of QVT: A Model Transformation Language Standard 389

map attributeColumns in umlRdbms {
 check enforce rdbms (t:Table) {
 realize c:Column|
 c.owner := t;
 c.key->size()=0;
 c.foreignKey->size()=0;
 }
 where (c2t:ClassToTable| c2t.table=t;){
 realize a2c:AttributeToColumn|
 a2c.column := c;
 c2t.fromAttribute.leafs->include(a2c);
 default a2c.owner := c2t;
 }
 map{ check enforce rdbms (ct:String) {c.type := ct;}
 where (p2n:PrimitiveToName){
 a2c.type := p2n;
 p2n.typeName := ct;
 }
 }
 map {……………………………………………………………………………………}

A transformation in Core is a set of mappings. Mappings roughly correspond to re-
lations in the Relations language. Mappings can be nested. The concepts of enforced
and check domains are also available.

4.4 Operational Mappings

Operational Mappings language extends the Relations language with imperative con-
structs and OCL constructs with side effects. The basic idea in this language is that
the object patterns specified in the relations are instantiated by using imperative con-
structs. In that way the declaratively specified relations are imperatively implemented.
The syntax of Operational Mappings language provides constructs commonly found
in imperative languages (loops, conditions, etc.). Transformations are always unidi-
rectional.

1. transformation SimpleUML2FlattenSimpleUML(in source : SimpleUML,
2. out target : SimpleUML);
3. main() {}
4.
5. ...helpers...............
6. ...mapping operations....
7. mapping Class::leafClass2Class(in model : Model) : Class
8. when {not model.allInstances(Generalization)->exists(g | g.general
9. = self)}
10. {name:= self.name;
11. abstract:= self.abstract;
12. attributes:= self.derivedAttributes()->
13. map property2property(self);
14. }

A transformation in Operational Mappings always has an entry point from which
the transformation execution starts. This is the mapping called main (line 3). From
main other mappings may be invoked. The body of the transformation definition con-
tains mappings and helper operations. An example of a mapping is called leaf-
Class2Class (lines 7-14). This mapping creates an UML class from every UML class
that satisfies the guarding condition specified in the when clause (lines 8-9). The
properties of the created class are assigned with values in the body of the mapping
(lines 10-13). It is possible to invoke other mappings from the body of the current one

390 I. Kurtev

(the keyword map in line 13). In that way the execution order among the mappings is
imperatively specified.

4.5 Discussion

In section 2 we outlined several transformation scenarios. We observe a diversity of
transformation problems that may require different transformation techniques. A
logical question is if it is possible to handle these scenarios by a single transformation
language in a satisfactory way. The answer is probably no. This is implicitly sup-
ported by the fact that QVT is not a single language. It is a suite of three languages
that covers both the imperative and declarative paradigm, and addresses several trans-
formation scenarios. Here we discuss briefly every scenario and how it can be han-
dled by the QVT languages.

Regarding the semantics preservation property of model refinement, the QVT
specification and the RFP do not require support for checking this. It is not clear yet
what type of reasoning may be performed over QVT programs. We expect that a
meaningful reasoning would require a limited version of the languages.

Model composition may be regarded as a transformation from at least two input
models to a composed model. From that point of view, QVT supports model composi-
tion in general. There are proposals for model composition languages [3] specialized
in model composition only.

Performing incremental bidirectional transformations is one of the scenarios in
QVT Relations. It is somehow unclear how this scenario is implemented in the cur-
rent engines. The approach suggested in the specification is to execute the transforma-
tion afresh by performing the required pattern matching and to execute only the re-
quired changes in the models. More experience is needed to judge if this approach
provides satisfactory performance results.

QVT specification does not address data translation problems. Historically, the
language is proposed as a solution to software development-related problems. The
need for information capacity preservation is not analyzed. Due to the alignment of
QVT to the OMG standards we may claim that from the data format point of view
QVT transformations operate on XMI data. QVT is applicable in data engineering if
suitable translators from and to XMI are available.

We may speculate about the need for domain-specific transformation languages
adapted to a specific problem. From that point of view OMG proposes QVT as a
general purpose transformation language similar to the role that XSLT plays in the
XML domain. Some of the scenarios described in section 2 may require a specialized
and eventually less expressive transformation language.

5 QVT Tools

Current tool support for the QVT languages is in its infancy. This is due to several
reasons. First, the specification is not officially finalized and still unstable. Second,
providing a mature tool requires time and efforts. Most tools do not support all the
features of the languages. Once a tool is made available, the feedback from the user
community is crucial. Practically all the current tools are dealing with bug fixes and

 State of the Art of QVT: A Model Transformation Language Standard 391

are gaining experience from real life usage. Regardless the stability of the language
specification many pragmatics issues are involved ranging from syntax-highlighting
and visual syntax editors to the availability of comfortable debug facilities. All these
make the current description of the tool support valid for a limited period of time. In
this section we report on the tools available at the time of the writing of this paper.

Table 2 summarizes the currently available QVT tools. It is followed by more in-
formation on every tool.

Table 2. Tool support per QVT language

QVT Tools per Language

Core • A commercial add-on to OptimalJ

Relations

• IKV++ medini QVT

• Tata Consultancy ModelMorf

• MOMENT-QVT

• Eclipse M2M Relations2ATLVM

Operational
Mappings

• Borland Together Architect 2006

• SmartQVT

• Eclipse M2M OM2ATLVM

Core Language
The Core language is supported by an add-on to the commercial tool OptimalJ pro-
vided by Compuware. However, OptimalJ is now in maintenance phase and its future
development is questionable. It is expected that an open source implementation of a
Core engine may be provided.

Relations Language
Relations currently enjoys the largest tool support. The medini QVT [5] developed by
IKV++ is an Eclipse based interpreter with syntax highlighting editor, code comple-
tion, and debugging facilities. It is available as a part of a commercial suite and as a
free downloadable distribution for non-commercial purposes.

One of the original contributors to QVT that proposed the Relations language is
Tata Consultancy. They provide a Java-based engine known as ModelMorf [9]. Cur-
rently ModelMorf is a command line tool. The web site indicates the plan to provide a
commercial tool for Relations that implements both textual and visual syntax.

MOMENT-QVT [10] is an MDE project that is based on the term rewriting for-
malism MAUDE. It plans to provide implementation of OCL and QVT Relations.

Operational Mappings Language
Borland provides both an interpreter and a compiler to Java for one of the earlier QVT
OM specifications. It is a part of Borland Together Architect 2006 for Eclipse. 15
days trial is available for download.

SmartQVT [18] is an open source Eclipse-based compiler for QVT Operational
Mappings provided by France Telecom, the original initiator of QVT OM.

392 I. Kurtev

Both Together Architect and SmartQVT provide a front-end for Operational Map-
pings that can be used to parse transformation programs and obtain a model conform-
ing to the QVT abstract syntax.

Eclipse M2M Project
M2M [4] is an open source project under Eclipse that aims at providing implementa-
tions for QVT and ATL [6]. M2M consists of three components: Procedural QVT
(Operational Mappings), Declarative QVT (Relations and Core), and ATL. The com-
mitters in this project are: INRIA, Borland, and Compuware. The ATL Virtual Ma-
chine is adopted as a basic infrastructure for the project. Compilers from QVT OM
and Relations to ATL VM code are under development. This effort is led by Obeo
under the umbrella of the ATL industrialization project [1].

6 Conclusions

In this paper we presented QVT – the OMG standard language for model transforma-
tions in MDA. QVT is closely integrated with the existing suite of OMG standards,
most notably with MOF 2.0 and OCL 2.0.

We believe that the standardization of QVT is a step in the right direction. A soft-
ware standard has a high chance to attract the attention of a larger user community.
This should open the possibility to gain experience with the model transformation
technology in real life industrial projects. There are also risks, however. A standard
lacking formal ground (as the current QVT specification), not supported by tools with
industrial quality may compromise the whole idea behind model transformations. This
should encourage the communities working on various transformation technologies to
stress the importance of transformation problems in current software engineering
practices and to promote alternatives to QVT.

References

1. ATL Pro web site, http://www.atl-pro.com/
2. Atzeni, P., Cappellari, P., Bernstein, P.A.: Model-Independent Schema and Data Transla-

tion. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm,
K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 368–385.
Springer, Heidelberg (2006)

3. Bézivin, J., Bouzitouna, S., Del Fabro, M.D., Gervais, M., Jouault, F., Kolovos, D., Kur-
tev, I., Paige, R.: A Canonical Scheme for Model Composition. In: Rensink, A., Warmer,
J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 346–360. Springer, Heidelberg (2006)

4. Eclipse M2M Project, http://www.eclipse.org/m2m/
5. Medini QVT, http://www.ikv.de
6. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS

2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)
7. Miller, R., Ioannidis, Y., Ramakrishnan, R.: The Use of Information Capacity in Schema

Integration and Translation. In: Agrawal, R., Baker, S. (eds.) VLDB 1993, pp. 120–133.
Morgan Kaufmann, San Francisco (2003)

 State of the Art of QVT: A Model Transformation Language Standard 393

8. Miller, R., Ioannidis, Y., Ramakrishnan, R.: Schema equivalence in heterogeneous sys-
tems: bridging theory and practice. Inf. Syst. 19(1), 3–31 (1994)

9. ModelMorf: A model transformer, http://www.tcs-trddc.com/ModelMorf/
10. MOMENT Project, http://moment.dsic.upv.es/
11. OMG/XMI XML Model Interchange (XMI) OMG document ad/98-10-05 (1998)
12. OMG. OMG Unified Modeling Language Specification v. 1.4. OMG document (2001)
13. OMG. MOF 2.0 Query/Views/Transformations RFP. OMG document ad/2002-04-10

(2002)
14. OMG. Meta Object Facility (MOF) Specification. OMG document formal/02-04-03 (2002)
15. OMG. MDA Guide version 1.0.1. OMG document omg/2003-06-01 (2003)
16. OMG. Object Constraint Language (OCL), OMG document ptc/03-10-14 (2003)
17. OMG. MOF QVT Final Adopted Specification. OMG document ptc/05-11-01 (2005)
18. SmartQVT Project, http://smartqvt.elibel.tm.fr/

Adaptable Support for Queries and
Transformations for the DRAGOS

Graph-Database

Erhard Weinell

RWTH Aachen University of Technology, Department of Computer Science 3,
Ahornstrasse 55, D-52074 Aachen, Germany

Weinell@cs.rwth-aachen.de

Abstract. The DRAGOS database eases the development of graph-
based applications by providing a uniform graph-oriented data storage
facility. In this paper, we extend the existing database by a basic Query
and Transformation Mechanism, which facilitates the construction of
graph transformation systems. Users can therefore access the database
by applying structured rules instead of using atomic operations provided
before. As result, the development of graph transformation tools is eased
by providing a mapping of specific graph languages to the Query and
Transformation Language, instead of developing interpreters or code gen-
erators. In addition, structured rules offer more optimization potential
in the underlying graph storage, which is beneficial for existing graph
transformation systems. The presented approach is especially designed
for extensibility, so its functionality can be adapted corresponding to the
demands of the respective application domain.

1 Introduction

During the past decades, graph transformations have evolved to a mature and
well-defined formalism to carry out operations on graph-like data structures.
Based on different formal backgrounds, many tools and languages emerged in
the community using graph transformations in various application areas. A graph
transformation tool (GTT) usually comprises a graph storage facility and a code
generator or an interpreter to execute the declarative rules.

Despite all previous standardization efforts, unfortunately, these tools rarely
rely on a common basis. Instead, they typically use very different data represen-
tation, moreover, both the semantics of their graph transformation language and
their execution strategy have differences. As result, developers of GTTs have to
implement the required functionality anew for each tool. Furthermore, GTTs
are hardly able to interact, e.g. by operating on a common host graph using
different specification paradigms.

Graph-oriented database management systems (graph-databases for short)
may provide a solution for uniform data representation as they allow to store
complex data structures directly in the form of graphs. In contrast, relational

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 394–409, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Adaptable Support for Queries and Transformations for the DRAGOS 395

Fig. 1. Applying DRAGOS in graph transformation systems

or object-oriented databases usually require technical helper elements, e.g. addi-
tional tables to store many-to-many relations. DRAGOS1 [1] is the latest repre-
sentative of this class of databases developed at our department, which supports
various back-end databases and model representation formalisms.

However, supporting the interaction between different GTTs is a more diffi-
cult challenge, due to semantic mismatches between the languages used by these
tools. Exchange formats like GTXL [2] provide a common syntactical represen-
tation, but fall short in describing the meaning of a graph transformation rule.

This paper proposes an approach to provide a universal platform which eases
the development of GTTs. A coarse-grained overview on the architecture is given
in Figure 1. By providing a universal Rule Processing Engine, GTTs can rely on
the offered functionality, instead of providing an own code generator or inter-
preter. The engine is fed by a Rule Repository, which stores the modeled graph
transformation system (GTS) in a specialized, low-level graph language. The
rule repository actually is a regular DRAGOS instance which stores the GTS in
a graph-based form. Graph Transformation Tools transform a GTS modeled in their
own respective language into the language provided by the processing engine.
This transformation step actually maps the semantics of the GTT’s language
onto the language of the processing engine.

At runtime, the Rule Processing Engine accesses (possibly multiple) DRAGOS
instances acting as Data Repository to query and transform the stored graphs.
Although, conceptually, this engine acts like a rule interpreter, it might apply
code generation techniques internally, depending on its implementation. A UI
Framework, which provides a comprehensible representation to the user, selects
processing rules from the rule repository, and updates its view structure from
the data repositories. Each graph-database uses its own storage backend, which
might vary between fast in-memory solutions and relational databases, including
transaction support. Providing a graph-based interface to existing applications

1 Database Repository for Applications using Graph-Oriented Storage, previously
Gras/GXL.

396 E. Weinell

by implementing a corresponding storage wrapper would be feasible as well.
Note that the multiple database instances depicted in the figure only illustrate
the openness of the framework. They might collapse into a single database in
practice. However, the ability to access multiple data storages by a single rule
processor is especially useful in the area of data-oriented tool integration, where
existing tools are coupled by data translation.

Neither DRAGOS nor its predecessors offer such a processing engine, but only
provide atomic retrieval and update operations through an API. Therefore, we
currently develop a Query & Transformation Mechanism (QTM) which is able
to represent a GTS using a basic Query & Transformation Language (QTL).
In contrast to common GTTs, we do not provide a closed system, but strive
for an open and extensible architecture to support a wide range of existing
graph models and corresponding languages. The QTM yields several advantages
from which both existing and newly developed graph transformation tools may
benefit:

– Development effort for deriving executable GTS from a declarative specifi-
cation is reduced, as the “semantic gap” between the specification and the
corresponding execution framework is decreased: Instead of generating code
based on atomic graph operations, the target domain becomes the DRAGOS
QTL, which is considerably closer to a declarative modelling language. Fur-
thermore, the required translation can be conducted based on the abstract
syntax graphs of the application-specific graph language and the QTL, es-
sentially making this a matter of model transformation.

– The effort is also reduced for adding additional language constructs to an
application-specific graph language, as the QTL is prepared for extensibil-
ity itself. Furthermore, such constructs can be transferred to other graph
languages by developing an extension of the DRAGOS QTL.

– In case of DRAGOS, evaluating complex queries is significantly more efficient
compared to the processing of atomic operations, as conducted by generated
code. We will outline this issue towards the end of this paper.

– The set of graph transformation rules can be extended and changed even at
runtime of the GTS, thus supporting ad-hoc queries as well.

This paper presents the QTL currently being developed, and discusses its
interaction with existing graph languages. In the following Section 2, relevant
aspects of the DRAGOS system are introduced. Afterwards, Section 3 introduces
the QTL by means of an example. Section 4 then presents the embedding of
the QTM into the DRAGOS architecture. Relations to existing approaches are
discussed in Section 5 followed by a conclusion in Section 6.

2 DRAGOS Architecture and Graph Model

Unlike its predecessors, DRAGOS does not provide an own graph storage facil-
ity. Instead, only a common interface, the so-called core graph model, is defined.
Several implementations of this interface exist, which use existing database man-
agement systems as storage facility. Implementations are available for various

Adaptable Support for Queries and Transformations for the DRAGOS 397

databases accessible through JDBC and for the Java Data Objects framework.
For testing purposes, an in-memory storage is provided. Database-specific im-
plementations initialize connections to the database and perform queries and
updates corresponding to the operations invoked on the core model.

Figure 2 shows a coarse-grained overview of the DRAGOS architecture. In
the middle, the DRAGOS Kernel encapsulates the core graph model and a set
of basic services. The responsibility of services include opening and closing of
databases as well as transaction and event management.

Fig. 2. DRAGOS architecture

Graph model. DRAGOS offers a rich graph model originally inspired by the
Graph eXchange Language (GXL) [3]. The model supports hierarchical graphs
including graph-crossing connections and n-ary edges (i.e. relations). Nodes,
graphs, edges and relations are treated as first-class citizens, and thus can be
identified and attributed. This enables flexible connections between entities,
e.g. edges connecting edges and the attribution of all entities. All entities need to
be typed by some graph entity class. Type hierarchies are supported, including
multiple inheritance. As discussed in Section 3, the graph model’s overall flexibil-
ity however complicates the development of a QTL, as all expressible constructs
need to be covered appropriately.

3 Query and Transformation Language

As announced in Section 1, the intended use of the DRAGOS QTL is to provide
tool support for existing and novel graph languages. Therefore, the QTL has
to be able to cover different graph language approaches appropriately, and to
enable an easy translation of the corresponding rules. Furthermore, the QTL
should be suited to use the entire DRAGOS graph model, e.g. querying nested
graph structures and hyperedges should be supported. This section first examines
a transformation rule from an application-specific language, and introduces the
QTL by means of this example.

3.1 Application-Specific Graph Language: An Example

Figure 3a shows a transformation rule modeled using the PROGRES graph
transformation language. A transformation rule describes a graph structure to

398 E. Weinell

(a) Concrete syntax (b) Abstract syntax

Fig. 3. Example transformation rule in application-specific language

be found in the runtime graph on its left-hand side (LHS, upper part). In this
case, two nodes of type A and one node of type B connected by edges of type
e are queried. If this pattern is found in the graph storage, it is transformed
corresponding to the rule’s right-hand side (RHS, lower part). Here, nodes as-
signed to ‘1 and ‘3 are preserved, as corresponding variables (1’ resp. 3’) are
present on the RHS. The node assigned to ‘2 is deleted in the course of the
transformation, whereas a new node of type C is created and assigned to 4’.
As edges are neither identified nor attributed in the PROGRES graph model,
they do not need to be preserved explicitly: Removing all edges of the LHS and
inserting edges corresponding to the RHS has the same effect as preserving edges
if possible.

Figure 3b shows the same transformation rule represented in the abstract syn-
tax model of PROGRES. Objects of type OblNodeDecl and EdgeDecl represent
entities to be retrieved from the database, with the required type stored in the
type attribute. The class OldOblNodeDecl represents objects on the RHS which
retain a node during the transformation. Consequently, they have a OblNodeDecl
assigned via an old node edge. Nodes assigned to an OblNodeDecl without such
an edge are deleted during the transformation process. NewEdgeDecl represents
an edge on the RHS. As explained above, there is no explicit correspondence to
edges of the LHS. To process this query by the QTM, it needs to be translated
into the QTL.

3.2 Language Structure

The Query & Transformation Language should be able to concisely represent
rules modeled in an arbitrary application-specific language, and therefore re-
quires a universal basis. We identified the principle of constraint satisfaction as
such a basis, as it allows a clear distinction between the queried entities, and
their desired properties. This idea has been introduced previously, e.g. for effi-
ciently implementing pattern matching algorithms [4] or search-plan generation
[5]. As result, distinct properties such as containment within a graph or restric-
tion to a specific type can be modeled by attaching constraints to a variable.

Adaptable Support for Queries and Transformations for the DRAGOS 399

Fig. 4. Core language meta-model (excerpt)

These properties can be neglected by not adding these constraints, e.g. to query
connections of an arbitrary type between graph entities.

Figure 4 shows an excerpt of the meta-model of the generic core language. A
Pattern contains a set of PatternElements, i.e. Variables, Constraints and Operators.
Variables are placeholders for entities found during pattern matching. Constraints
restrict legal assignment of entities to Variables. Among others, Constraints restrict
entities to a specific type, check connectivity between entities, or containment
within a graph. The role attribute of the Restricts association distinguishes be-
tween Variables a Constraint restricts. For example, the ContainmentConstraint needs
to distinguish between Variables holding the parent graph and the child entity,
as both may refer to graphs.

An assignment of graph entities to Variables of a Pattern not violating any of its
Constraints is called a Match. Each Match aggregates a set of Assignments, which
relate a Variable to exactly one GraphEntity. We require that each Variable with
an attached Constraint has to be present in a Match, so partial matches are not
allowed. Unconstrained Variables are not bound during pattern matching.

Operators define how entities bound to a Match should be transformed. Each
Operator effects exactly one entity assigned to a Variable. To do so, the Opera-
tor may Requires values of other variables as parameter. Required variables are
distinguished by a role name. Creation and deletion of an entity extend and re-
duce the match by the effected variable, respectively. Operators can be executed
only if all required Variables are bound. This indirectly imposes an order on the
operator’s execution, as required variables need to be bound in advance.

In general, the execution order of operators might influence the result of the
transformation. To avoid ambiguities, we require that variables are either bound
to an entity, or a new entity is created by a transformation rule. Furthermore,
only entities bound to a variable may be deleted. In addition to these restrictions,
all operators must act in a single-step manner, i.e. only results of the pattern
matching phase may be taken into account when modifying graph entities. For
example, computing an attribute value may only be based on the attribute values
before the first operator invocation. Therefore, the computed result does not
depend on other attribute updates within the same transformation.

400 E. Weinell

Fig. 5. Example transformation rule in the DRAGOS core language

Figure 5 shows the transformation rule from Figure 3 after translation to
the DRAGOS core language. Circles represent Variables for each node or edge
queried or created by the transformation rule. Rhombs depict constraints which
a value of a variable has to fulfill. Dashed lines relate constraints to variables, e.g.
the IncidenceConstraint puts three variables into relation as source, target
and connector. The IsomorphismConstraint ensures that different entities are
bound to the attached variables. TypeConstraints restrict the variables’ values
to entities of the type denoted by the type attribute. Hexagons represent oper-
ators which denote modifications of the matched graph entities. Here, the entity
assigned to the third NodeVariable is deleted and removed from the match.
The deletion of an entity also causes the deletion of incident edges and relation
ends to prevent dangling connections. Therefore, explicit deletion of the retrieved
edge is not required. In contrast, newly created entities are assigned to the two
variables on the right, with their type passed via the type attribute of the oper-
ator. The variable effected by an operator is attached using a solid line, whereas
required variables are connected by a dashed line. To create an edge, its source
and target entities are required. The right-most variable is not connected to
any constraint, so it is not bound during pattern matching. Hence, creation of
the edge is postponed until its designated source node has been created, as the
corresponding variable is bound to the new entity afterwards.

This basic representation of the example rule does no longer contain any
specifics of the PROGRES language. For example, the implicit condition that
distinct entities have to be assigned to the node variables of Figure 3 is explicitly
expressed by an IsomorphismConstraint. LHS and RHS are condensed into a
single pattern, using operator nodes to express actions. Note, that this pattern
could be changed easily to query connections between edges instead of nodes,
by changing the variables’ sorts. Such queries are not possible in common graph
transformation languages.

Adaptable Support for Queries and Transformations for the DRAGOS 401

4 Query and Transformation Mechanism

In this section, we clarify how GTS access the Query & Transformation Mecha-
nism and how the QTM is embedded into the DRAGOS architecture.

4.1 Application Integration

Figure 6 shows how GTS modeled in an application-specific language interact
with the DRAGOS QTM. As mentioned in Section 1, the corresponding rules
are converted to the DRAGOS core language. This can be achieved by import-
ing the corresponding rules’s ASGs into the graph-database, e.g. by parsing a
textual representation. Furthermore, we currently implement an import mecha-
nism to access EMF-based model repositories. The translation results in a graph
structure representing a set of QTL rules, which are processed by the QTM’s
language implementation.

In order to map the application-specific graph language to the QTL, a set of
model transformation rules translate the increments of the GTS’ rules to pat-
terns of the QTL. By this translation, the respective language’s semantics are
mapped to the core language. For example, the two graph transformation lan-
guages PROGRES and GROOVE treat rules differently regarding isomorphism:
In PROGRES, each node may be bound to only one variable during pattern
matching, but allows exceptions using folding groups. The default treatment is
the other way around in GROOVE, where exceptions are specified using merge
embargo edges. To cover the former case, an isomorphism constraint is con-
nected to all variables whose values should be pairwise disjoint. For the latter,

Fig. 6. Application integration with the DRAGOS QTM

402 E. Weinell

isomorphism constraints are simply added between those variable connected by
a merge embargo edge.

As the model transformation process operates on the graph-database exclu-
sively, its corresponding rules can again be specified using the QTL. Therefore,
a convenient representation of these rules is desirable, which can be achieved by
an own application-specific language. Its purpose is to allow a convenient devel-
opment of application-specific language mappings. Such an integration language
is currently being developed, which naturally profits from existing work in the
field of model transformations.

4.2 Embedding into the DRAGOS Architecture

The fact that DRAGOS can utilize relational databases as storage backend sug-
gests that the QTM should use their sophisticated query functionality to enable
efficient execution. Regarding SQL databases, rules modeled in the QTL can be
translated into corresponding SQL queries and update operations, as indicated
in the lower part of Figure 6. This transition is currently implemented based on
templates. Basically, they create increments in the FROM part of the SQL query
for each variable, and increments in the WHERE part for each constraint.

As not all available backend implementations provide database-like function-
ality, a backend-independent solution is required, too. As the DRAGOS graph
model is the common interface of all available implementations, we provide a rule
interpreter based on this model. This interpreter is called the Generic Implemen-
tation in Figure 7, where the architecture of the QTM is depicted. Gray arrows
indicate the approach of processing QTL rules using the Generic Implementation,
White arrows show the processing by a backend-specific language implementa-
tions, such as by deriving SQL code. Although the latter choice allows a more
efficient processing, it can only be used if a corresponding language implementa-
tion is available for the applied DRAGOS backend. The Controller Service therefore
selects the appropriate processing path at runtime.

Although it might appear questionable why not all existing backend imple-
mentations can be augmented with an appropriate QTL implementation, this
approach is especially necessary for adding language extensions. Also note that
the chosen processing step, e.g. rule interpretation or query generation, is com-
pletely independent of the actual application-specific language. Therefore, the
two transitions shown in Figure 6 can be combined arbitrarily. In this sense, the
QTL acts as an interface separating backend functionality from the application-
side GTS.

4.3 Adding Language Extensions

The mapping of rules from an application-specific language to QTL usually can-
not be represented directly, causing the required mapping to become complex
and hard to read. Although this might be acceptable for supporting a single
graph language, the developed mapping cannot be re-used for other application-
specific languages. Therefore, we offer to extend the core language by additional

Adaptable Support for Queries and Transformations for the DRAGOS 403

Fig. 7. Extended DRAGOS architecture

language constructs by defining new constraint classes or operator classes. How-
ever, the core graph model cannot be extended by additional variable classes, as
this would require adaptations to existing constraints and operators. In contrast,
constraints and operators only refer to their attached variables, so new types of
these elements can be added without effecting existing ones.

Basically, we offer two options to implement added constraint and opera-
tor classes: First, an extension of the existing backend-specific implementation
of the QTL can be provided, e.g. by generating fragments of SQL code. This
choice generally yields the more efficient implementation, as backend function-
ality can be utilized directly. Regarding the architecture in Figure 7, another
column is added which allows to bypass the basic QTL and the DRAGOS graph
model. However, this approach would require to implement each language exten-
sion for all existing storage backends. Even worse, supporting additional storage
backends would, the other way around, require to provide variants for all QTL
extensions. Obviously, this tight interrelation is not desirable.

As solution for this dilemma, we provide a second option for implementing
language extensions, which is split into two variants: A QTL extension should ad-
ditionally be implemented by extending the existing Generic Implementation, thus
combining the two approaches of Figure 7: If the utilized storage backend does
not provide a corresponding extension implementation, the extension’s Generic
Implementation can always be used. Nevertheless, the backend-specific QTL im-
plementation can be used to process the remaining parts of the query.

In addition, extended language constructs can be reduced to basic QTL con-
structs by providing a corresponding transformation rule. Using this approach,
constructs can be implemented in a transformation-based way, in contrast to the
programmed approach discussed above. The strictly graph-based representation
of query and transformation rules provide a sound basis for such a high-level
extension mechanism. As we cannot introduce this aspect of the QTL in detail
here, the reader is referred to [6], where the model-based extension mechanism
is elaborated in detail.

404 E. Weinell

4.4 Experimental Evaluation

To conclude the presentation of the QTM, we present initial performance com-
parison against DRAGOS and its predecessor, GRAS [7]. The original GRAS
(GRAph Storage) database had been developed at our department since the
late eighties. A replacement of the GRAS system became necessary because its
tight platform dependency and severe restrictions on both the number of man-
ageable graph entities and the total amount of stored attribute values. As DRA-
GOS relies on existing solutions like relational databases as graph storage, the
amount of manageable data is only limited by the underlying storage backend.
This limit is sufficiently high in common relational databases, e.g. PostgreSQL
restricts tables to 32 terabytes.

The obvious disadvantage of the DRAGOS approach is the immanent perfor-
mance penalty, as each atomic graph operation is implemented by at least one
SQL statement. Comparisons of real-world examples indicate a factor of around
1 : 12 relating GRAS to DRAGOS operating only on the in-memory storage,
which does not provide transactions support. Using PostgreSQL as transactional
storage backend, the factor increases up to 1 : 120. The reason for this massive
overhead is that the DRAGOS architecture does not allow the adequate use
of complex query mechanisms, such as SQL. In fact, only a limited amount of
simple statements are used to query the storage facility.

The QTM introduced in this paper, however relieves this architectural dis-
advantage, as complex graph patterns can be transformed into backend-specific
queries. Initial experiments underline this thesis, as shown in Figure 8: We mea-
sured the required time to test for circles of a given size (3 resp. 10) in an
n-complete graph, comparing the SQL code generated from the QTM, DRA-
GOS operating on PostgreSQL, and GRAS. All tests were run on a 3 GHz Intel
CPU and 2 GB of main memory, showing the median of several test runs.

We can conclude that GRAS outperforms DRAGOS and the QTM for small
queries, although results become less clear for larger ones. Interestingly, although
DRAGOS and GRAS are controlled by comparably generated (and optimized)
code, time consumption behaves differently for these systems: For small queries,
the required time remains almost constant with larger graphs for GRAS, whereas

Fig. 8. Timings for querying n-complete graphs (microseconds, logarithmic scale)

Adaptable Support for Queries and Transformations for the DRAGOS 405

it noticeably increases for DRAGOS. The QTM approach performs quite good,
given its early stage of development. For larger queries, the PostgreSQL query
optimizer does not seem to derive optimal search plans, which needs to be ad-
dressed to improve the QTM performance. It should be noted that the specific
results of GRAS varied significantly for the large query, so the overall result is
less reliable.

Unfortunately, the generation of SQL-code from the QTL is not fully im-
plemented up to now, so that standardized comparisons, e.g. presented in [8],
could not be performed. Once the implementation reaches a proper level, we
will also evaluate the performance impact on real-world scenarios, such as model
transformations.

5 Related Work

This section covers comparisons to existing work, considering model repositories,
graph transformations, and related optimization techniques.

Model repositories. Besides being designed as graph-oriented database, DRA-
GOS can be considered a model repository or data binding tool as well. Both
aspects are covered by a wealth of existing standards and tools. An example for
such a tool is the Universal Data Model (UDM) [9]. In contrast to DRAGOS,
which uses a complex core graph model for data representation, UDM relies on
a limited set of base classes. However, UDM is able to generate APIs from pro-
vided metadata, such as UML class diagrams, to allow convenient and type-safe
use by developers. Such functionality is currently not provided for DRAGOS,
although code-generating graph transformation tools can be applied for this
purpose. Similar to DRAGOS, the UDM environment provides persistent stor-
age using databases through the Generic Modeling Environment (GME) [10].
UDM does not incorporate a model processing engine, but can be used by the
GReAT transformation engine [11].

Graph transformations on relational databases. Implementing GTS on estab-
lished relational databases has been presented initially by the authors of [12].
Basically, the authors transform a graph schema to a set of database relations,
and implement pattern matching by deriving views on these tables. One dif-
ference to our approach is the applied meta-level (M 1), as the DRAGOS graph
model constitutes a common meta model for all applications (thus M 2). Further-
more, we apply the basic idea of generating SQL code in a language-independent
environment, with the QTL forming a common basis. The separation between
variables, constraints, and operators applied in the QTL is indeed closer to the
SQL than traditional graph languages considered by [12], which simplifies the
translation process for us.

The authors also mention a specialized query optimizer developed for the
applied relational databases, which, unfortunately, is not discussed any further.
We agree that an optimizer specialized on graph queries is indeed necessary.

406 E. Weinell

Inspection of the internal search plans of the database backend showed that
the standard optimizer already prefers table joins with small result sets, e.g.
traversing edges instead of global searches over the graph. However, the order of
edge traversal is not optimized effectively, which causes inefficient behavior for
the larger query discussed above. To relieve this drawback, a specialized query
optimizer should adapt results from search-plan driven code generation found in
common graph transformation tools.

Optimization techniques. Traditionally, code generated for graph transformation
rules is optimized using search plan techniques to find an efficient order of vari-
able assignments. Among others, PROGRES and Fujaba apply this technique in
a static environment, i.e. code is generated once before the system is run. This
only allows to optimize according to the graph schema, as the actual host graph
structure is unknown during code generation. Recently, the authors of [13] pro-
posed an approach to generate differently generated variants of code. Depending
on the host graph, an appropriate variant is chosen at runtime.

Our approach is not tied to a code generation step, as transformation rules are
stored in the database and executed in a backend-specific way. Storage solutions
may decide whether to interpret these rules (e.g. the generic implementation
follows this approach) or to generate implementation-specific code (e.g. SQL
statements). Nevertheless, our approach still requires search-plan based opti-
mization techniques, as common SQL query optimizers do not recognize incident
structures.

Graph transformations based on constraint satisfaction. The DRAGOS Query
& Transformation Language is based on the theory of constraint satisfaction
problems (CSP) known from the area of artificial intelligence. CSPs are well-
suited to model graph pattern matching by solving the subgraph-isomorphism
problem [14]. In our work, we aim to implement the Query & Transformation
Language based on existing systems, and therefore extensive development of a
basic constraint solver is not of crucial importance. This would only improve
the generic implementation based on the core graph model, which should be
considered as fallback solution only. Instead, we focus on implementations based
on sophisticated storage backends like databases.

CSP-like representations of graph transformation rules have also been applied
in [5], where search-plan optimization is discussed for such a rule model. As this
approach is not concerned with the evaluation of expressions, dynamic aspects
such as matches need not to be considered. In contrast, our approach also in-
corporates matches to model the result of a query. Furthermore, the cited work
includes negative application conditions directly into the language, which are
treated differently in the QTL [6].

Model transformations. As mentioned in Section 4.1, model transformations are
used to map an application-specific language to the DRAGOS Query & Transfor-
mation Language. A wide range of languages and tools for model transformations
have already been presented in the literature, several of which are compared in

Adaptable Support for Queries and Transformations for the DRAGOS 407

[15]. Available approaches differ with regard to expressiveness, concrete repre-
sentation (textual vs. visual), usage (batch vs. user-interactive), traceability, and
directness (uni- vs. bidirectional).

Currently, we investigate in how far existing solutions can be applied in the
DRAGOS system. For our purposes, a very simple batch-oriented uni-directional
system suffices. However, we did not collect experiences on the required language
constructs yet. In the future, commonly required constructs will form a language
specifically tailored for modeling language mappings.

Graph transformations for visual programming. Graph transformation languages
like PROGRES and Fujaba provide functionality similar to the presented QTL.
In fact, both systems can already generate code to store the runtime data persis-
tently using DRAGOS. As discussed in Section 1, this approach leads to ineffi-
cient applications because it is only based on atomic operations. In our approach,
DRAGOS executes transformation rules itself, either by interpreting or backend-
specific code generation.

Projects at our department recently encountered the need for more advanced
language constructs in the PROGRES language. However, extending PROGRES
not only requires a visual representation, but also an enhanced code genera-
tion. Shortcomings in the architecture of the PROGRES environment caused
the authors of [16] to embed new language constructs in a pre-processing phase
generating the actual PROGRES specification. Again, executing transformation
rules inside DRAGOS and embedding language extension therein would lead to
a more concise application development.

In contrast to common graph transformation languages, the DRAGOS core
language is not feasible for direct use by a specificator. Due to the very low level
of abstraction, even simple queries tend to become quite large and hard to read.
Therefore, the presented language should not be considered as competitor to
existing languages, but as a common core for existing and new ones to build on.

Unified graph languages. Besides the GRAph and Rule CEntered specification
language (GRACE) [17] and the Graph Transformation eXchange Language
(GTXL) [2], little work can be found on providing a common platform for graph
transformations. Probably this is caused by the need to establish a standardized
unified language, and persuade tool developers to achieve compliance. We there-
fore do not try to establish such a standard, but offer a flexible and extensible
base layer. Graph languages are integrated by transforming the rules’ ASGs,
which allows to use concepts independent from the QTL.

6 Conclusion

In this paper, we motivated the need for a QTM in the graph-oriented database
DRAGOS. Benefits gained from this mechanism comprise easier use by applica-
tion developers, a high-level integration of application-specific languages, and a
more efficient execution.

408 E. Weinell

The newly developed language is especially designed for extensibility regard-
ing two aspects: First, the core language can be extended by adding new language
constructs in the form of constraints or operators. Second, the implementation
of the core language may use storage-specific functionality for selected language
constructs, and refer to a generic implementation otherwise. Therefore, the lan-
guage’s implementation is extensible, too.

Current and Future Work

The core language’s expressiveness is currently restricted to graph patterns
with a fixed size, hindering its use e.g. for matching path expressions with the
Kleene star operator. We therefore offer to dynamically expand a pattern using
a template-based mechanism, allowing for recursive queries.

In order to model large-scale graph transformation systems, the interaction
between different transformation rules needs to be captured. For this purpose,
the introduction of control structures is necessary, e.g. for iterations or condi-
tional branching. Currently, a minimal amount of control structures is being
integrated into the core language to support arbitrary graph transformation sys-
tems. This is inspired by the results of [18], where the authors show that a very
small set of structures suffices. Extended control structures can be supported by
a language extension or by a proper mapping of application-specific languages
to the core QTL.

In the future, we will investigate how existing approaches to graph transforma-
tions can be mapped to the DRAGOS language, such as the algebraic approach
or hyper-edge replacement grammars. This way, DRAGOS can serve as a plat-
form to develop new constructs for graph transformation languages by offering
a high-level extension mechanism.

Acknowledgements. I thank Dániel Varró for his many helpful remarks and sug-
gestions during the preparation of the final version of this paper. Thanks also
go to the anonymous reviewers for constructive criticism and your ideas for
improvement.

References

1. Böhlen, B.: Specific graph models and their mappings to a common model. In:
Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 45–
60. Springer, Heidelberg (2004)

2. Lambers, L.: A new version of GTXL. In: Graph-Based Tools (GraBaTs 2004).
Elec. Notes in Theoretical Comp. Sci., vol. 127. Elsevier Science, Amsterdam (2004)

3. Holt, R., Winter, A., Schürr, A.: GXL: Towards a standard exchange format. In:
Proc. of the 7th Working Conference on Reverse Engineering (WCRE), pp. 162–
171. IEEE Computer Society Press, Los Alamitos (2000)

4. Rudolf, M.: Utilizing constraint satisfaction techniques for efficient graph pattern
matching. In: [19], pp. 238–251

Adaptable Support for Queries and Transformations for the DRAGOS 409

5. Horváth, Á., Varró, G., Varró, D.: Generic search plans for matching advanced
graph patterns. In: Ehrig, K., Giese, H. (eds.) Graph Transformation and Visual
Modeling Techniques. ECEASST, vol. 6, pp. 57–68 (2007)

6. Weinell, E.: Extending graph query languages by reduction. In: Proc. of the 7th
Intl. Workshop on Graph Transformation and Visual Modeling Techniques (GT-
VMT) (to appear, 2008)

7. Lewerentz, C., Schürr, A.: GRAS, a management system for graph-like documents.
In: Proc. of the 3rd International Conference on Data and Knowledge Bases, pp.
19–31. Morgan Kaufmann, San Francisco (1988)

8. Varró, G., Schürr, A., Varró, D.: Benchmarking for graph transformation. In: Proc.
of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pp. 79–88. IEEE Computer Society Press, Los Alamitos (2005)

9. Magyari, E., et al.: UDM: An infrastructure for implementing Domain-Specific
Modeling Languages. In: 3rd OOPSLA Workshop on Domain-Specific Modeling
(2003)

10. Davis, J.: GME: the generic modeling environment. In: Companion of the 18th
annual ACM SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications (OOPSLA), pp. 82–83. ACM, New York (2003)

11. Agrawal, A., et al.: The design of a language for model transformations. Software
and Systems Modeling 5(3), 261–288 (2006)

12. Varró, G., Friedl, K., Varró, D.: Implementing a graph transformation engine in
relational databases. Journal on Software and Systems Modeling 5(3), 313–341
(2006)

13. Varró, G., Friedl, K., Varró, D.: Adaptive graph pattern matching for model trans-
formations using model-sensitive search plans. ENTCS 152, 191–205 (2006)

14. Larrosa, J., Valiente, G.: Constraint satisfaction algorithms for graph pattern
matching. Mathematical Structures in Computer Science 12(4), 403–422 (2002)

15. Taentzer, G., et al.: Model Transformation by Graph Transformation: A Compar-
ative Study. In: Proc. of the Intl. Workshop on Model Transformations in Practice
(MTiP 2005) (2005)

16. Fuss, C., Tuttlies, V.: Simulating set-valued transformations with algorithmic
graph transformation languages. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AG-
TIVE 2007. LNCS, vol. 5088. Springer, Heidelberg (2008)

17. Kreowski, H.J., Busatto, G., Kuske, S.: GRACE as a unifying approach to graph-
transformation-based specification. In: Ehrig, H., Ermel, C., Padberg, J. (eds.) UN-
IGRA 2001: Uniform Approaches to Graphical Process Specification Techniques.
ENTCS, vol. 44. Elsevier Science, Amsterdam (2001)

18. Habel, A., Plump, D.: A core language for graph transformation. In: Proc. of the
APPLIGRAPH Workshop on Applied Graph Transformation, pp. 187–199 (2002)

19. Ehrig, H., et al. (eds.): Theory and Application of Graph Transformations, 6th
Intl. Workshop (TAGT). LNCS, vol. 1764. Springer, Heidelberg (2000)

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 410–425, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Applying a Grouping Operator in Model
Transformations

Daniel Balasubramanian, Anantha Narayanan, Sandeep Neema, Benjamin Ness,
Feng Shi, Ryan Thibodeaux, and Gabor Karsai

Institute for Software Integrated Systems, 2015 Terrace Place, Nashville, TN 37235
{Daniel,Ananth,Sandeep,BNess,FengShi,RThibodeaux,

Gabor}@isis.vanderbilt.edu

Abstract. The usability of model transformation languages depends on the level
of abstractions one can work with in rules to perform complex operations on
models. Recently, we have introduced a novel operator for our model transfor-
mation language GReAT that allows the concise specification of complex model
(graph) rewriting operations that manipulate entire subgraphs. In this paper we
show how the new operator can be used to implement non-trivial model manipu-
lations with fewer and simpler rules, while maintaining efficiency. The examples
were motivated by problems encountered in real-life model transformations.

Keywords: Model Transformation, Graph Transformation.

1 Introduction

Model-based development necessitates the use of model transformations. The cost of
setting up a model-based development tool chain depends on how economical it is to
implement possibly complex yet necessary model transformations on an ad hoc basis,
and whose correctness is often essential for the usability of the toolchain. Thus,
higher-level techniques for specifying model transformations have been proposed,
and one promising conceptual framework for specifying model transformations is
based on graph transformations [1].

The practical application of graph transformation-based model transformation ap-
proaches [10] has shown that while the high-level nature of the graph rewriting rules
is very powerful, sometimes writing common operations is very tedious. Commonly,
graph rewriting operations match a subgraph of a host graph and then create (or re-
move) nodes and edges in the model graph and possibly modify attributes. Due to the
difficulty of performing equivalent operations using Java methods over some primi-
tive graph API, using the graph-based specification has clear advantages.

A matched subgraph typically has a simple structure (pattern nodes and pattern
edges are bound to host graph nodes and host graph edges), and it is hard to form
closures over such subgraphs. The closure would group together multiple matches of
pattern nodes and edges into a graph that is treated as a unit in the context of some
subsequent operation, typically un-gluing or gluing this graph with other nodes, copy-
ing the graph, or removing the group altogether.

 Applying a Grouping Operator in Model Transformations 411

In our graph transformation-based model transformation tool, GReAT [1], we have
introduced support for such closures over pattern matches. We call it the ‘grouping
operator’, and we extended the semantics of our graph transformation rules with this
new operator. This work has been reported in [3]. In this paper we briefly review the
semantics of the operator and then give a number of examples —derived from real-
life applications— that illustrate the use of the operator. The paper concludes with a
review of related approaches and a summary.

2 Recap of Group Operator

In this section we briefly review the fundamentals of GReAT, highlighting the fea-
tures of the grouping operator, first introduced in [3].

The Graph Rewriting and Transformation Language (GReAT) is a graphical lan-
guage used for the specification and execution of model transformations defined using
elements from the meta-models of the source and target languages. The entire lan-
guage consists of three sub-languages: a pattern specification language, a transforma-
tion rule language, and a control-flow language. The pattern specification language is
used to define the patterns matched in the host graph. The transformation rule lan-
guage allows the creation and deletion of objects in the host graph, along with the
modification of object attributes. Finally, the control-flow language allows a trans-
formation to be explicitly sequenced.

The basic rewriting unit of a transformation is a Rule that contains two pieces: 1) a
pattern to match with the host graph (defined using the pattern specification lan-
guage), and 2) an action to perform after the matches are found (defined using the
transformation rule language). When a Rule executes, it first finds all valid matches
of the specified pattern in the host graph. After all matches are found, the rule actions
are executed. These rule actions can include deleting and creating new elements in
the host graph, as well as modifying attributes. Finally, user selected elements are
passed to the next rule in the sequence (specified using the control-flow language).

2.1 Motivation for the Group Operator

As described above, the result of the first stage of a rule execution is a set of matches,
where each match is a unique binding for the pattern variables in the rule. The limita-
tion with this is that all the matches (of a single pattern) are isomorphic. In other
words, all the matches have the same, predetermined number of nodes and edges. It
would be useful to form closures over such unique matches, such that more complex
sub-graphs can be matched and manipulated using the same rule.

For instance, consider a chain of nodes of arbitrary length, as shown in the graph in
Fig. 1. Suppose that we wish to select such chains of arbitrary length and move them
to a different container. The pattern shown in Fig. 2 matches two connected nodes at a
time. This will result in the matches (a—b), (b—c) and (c—d). While it is possible to
use these matches to move the chain to a new container, the description would be
cumbersome (especially since moving it in parts would create dangling edges). The
group operator allows us to group all these matches together, so that the selected sub-
graph is the entire chain, as opposed to pairs of nodes. Using the group operator, the
entire chain can be selected and copied in a single rule.

412 D. Balasubramanian et al.

Fig. 1. A chain of arbitrary length

Fig. 2. Graph rule for matching a connection

Consider a container that contains a number of nodes, with a “name” attribute as-
sociated with each node. Multiple nodes are allowed to have the same “name”, and
the container can have any number of nodes, with any number of different “name”
attributes. Fig. 3 (a) shows such a container. Suppose that we wish to sort the nodes
with the same “name” into a single container, as shown in Fig. 3 (b). This involves
creating an arbitrary number of containers (depending upon how many different
“name” values are present), and moving an arbitrary number of nodes into each con-
tainer. The group operator allows us to accomplish this in a single rule, when we use
the “name” attribute as the grouping criterion. For the example shown in Fig. 3, the
rule produces four matches of different sizes (one match containing four nodes, one
with three, and two matches containing two nodes).

Fig. 3. Sorting items into containers

As shown above, it is useful to specify queries that can produce matches of differ-
ent, arbitrary sizes in a single rule. The group operator is a new construct introduced
into the GReAT language to allow the results of multiple matches to be combined so
that larger graph patterns could be specified in a compact manner. In comparison,
queries in PROGRES[12] allow the use of complex logic statements to construct a

 Applying a Grouping Operator in Model Transformations 413

result set, which can contain elements of different and arbitrary sizes. Our approach
provides a graphical abstraction that is easier to visualize and use. Similar to GReAT,
AGG[14] allows the specification of additional conditions on the attributes of pattern
objects in a rule, but the matches are still isomorphic.

In general, a transformation can benefit from the group operator if the user must
have the ability to specify a pattern that will match a variable number of objects. This
often includes chains of objects with connections between them, such as the first
example above, or large groups of objects that need to be separated into smaller
groups based on common attributes, as in the second example given above. Also, a
group operator should be used if sub-graphs (composed of multiple matches) need to
be moved or copied into different containers, as these patterns can be difficult to spec-
ify in GReAT without this construct.

Specifying a rule with a group operator is relatively simple. The user adds one
group operator to the rule, and then specifies two additional items:

1) Which elements of the overall pattern will be used to form the subgroups that
are the subgraphs formed from the individual matches. For instance, in Fig. 2,
Connection, Node1 and Node2 must be selected. The purpose of the rule
should make the selection of which pattern objects are needed obvious.

2) The Boolean expression that will determine when two matches should be
placed into the same subgroup (we use the prefixes “the_” and “other_” to iden-
tify the matches). In Fig. 2, this would simply be true, since all the connections
form a single group. In Fig. 3, we would use “the_Node.name() ==
other_Node().name”. This step is the crucial part of using the group op-
erator. Matches from individual rules are often inserted into subgroups based
on an attribute value of one of the objects, as in the second example above. In
cases such as these, the Boolean expression is quite simple, and can even be
written by novices who have limited experience with GReAT. Examples of
both simple and complex Boolean expressions for subgroup formation are
given in the following sections. Detailed information about subgroup formation
can be found in [3].

After all matches are found, each match is placed into precisely one subgroup by
evaluating the Boolean expression using this match and the matches already placed in
subgroups. If the expression evaluates to true, then the current match is placed into
the subgroup against which the Boolean expression was evaluated. If the expression
yields a “false” for all of the matches in existing subgroups, then the current match is
placed in a newly created subgroup. Finally, the rule’s action is performed on a per-
subgroup basis instead of a per-match basis. In this manner, one can effectively com-
bine several matches into one “larger” match and then perform actions on that larger
match. Additionally, the user can also choose to move or copy the elements of the
subgroups to another parent container.

The next several sections give examples of the use of the group operator. The ex-
amples presented here were derived from actual experience with real-life modeling
and model transformations. However, for the sake of brevity they have been simpli-
fied to a presentable form. Note also that model transformations are often applied to
legacy modeling paradigms that are imperfect, yet cannot be discarded because of the
investment in the models.

414 D. Balasubramanian et al.

3 Separating a System into Its Subsystems

A system may be comprised of various subsystems which share common components.
For instance, in a building, the electrical, plumbing, and networking subsystems all
use rooms as a common component for distribution hubs and endpoints. Because of
this, a model for such a system will necessarily have all subsystems represented, over-
lapping one another on top of their common components. However, at some point it
may be necessary to separate the individual subsystems for the purposes of verifica-
tion, construction, or clarity. GReAT, with its group operator, can be used to specify
such a transformation compactly. To demonstrate this, both a “building” meta-model
and a building model based on this meta-model, are presented, along with a GReAT
transformation rule that makes use of the group operator to separate the model-
building’s electrical subsystem from its other subsystems.

Fig. 4. Building Meta-Model

Fig. 4 shows a meta-model for buildings with electrical, plumbing, networking,
and room-connectivity (i.e., door) subsystems. Room is the component they share as
their infrastructural basis. For instance, Electrical connections are between rooms, i.e.
between the rooms’ sockets and switches, as are Network connections, for example,
between a server room and other rooms’ network ports. Note also that the meta-model
has components (DoorGroup, NetworkGroup, ElectricalGroup, and PlumbingGroup)
that can contain copies each of these subsystems in isolation.

The left side of Fig. 5 shows a simple model based on the building meta-model of
Fig. 4. Electrical connections are drawn with dashed lines, while the solid connections
represent other types of connections. As can be seen, multiple subsystem types are
represented and are overlapping on top of their common Room components. For the
purposes of building construction, it would be of great utility to be able to separate
out these subsystems. For instance, the electrical subsystem (ElectricalGroup) in
isolation could be given to an electrician for wiring purposes. Similarly, the room-
connectivity (DoorGroup) subsystem could be presented to an inspector or put
through a model checker to make sure the building conforms to certain safety codes.

 Applying a Grouping Operator in Model Transformations 415

Fig. 5. Building Model (left) and Grouping Rule to Isolate the Electrical Subsystem (right)

The right side of Fig. 5 shows a rule in a GReAT transformation that uses the
group operator to separate out the electrical subsystems of the model to its left. The
rule creates a new ElectricalGroup model that will hold a copy of this subsystem.
The group operator contains any Electrical connections matched by the rule, along
with the rooms connected by these connections. The Boolean expression the group
operator uses to group matches together is trivial: it is simply the value “true”, indi-
cating that any and all Electrical connections and their associated rooms should be
included -- this results in a single group that is the entire electrical subsystem. For a
more complex setup, the grouping rule could group electrical connections based on
the breaker from which they originate, or based on the voltage they carry. Rules for
isolating other building subsystems are similar.

Fig. 6 shows the results of applying the GReAT transformation rule in Fig. 5 to the
model on its left. The electrical subsystem is successfully separated from the other
subsystems. Such a diagram could be useful for an electrician or inspector.

Plumbing
Hub

Conference
Room

Bathroom

Office One

Office Two

Electrical
Hub

Server
Room

Fig. 6. Building Model's Electrical Subsystem

4 Creating Proxies for Distributed Communication

Models of control systems often consist of dataflow blocks representing mathematical
functions that manipulate data obtained from the environment or other input sources
to achieve some desired output effect on the controlled system. Control designers
initially formulate their controllers with no concern regarding the eventual deploy-
ment architecture; however, the implementation is commonly distributed over

Plumbing
Hub

Conference
Room

Bathroom

Office One

Office Two

Electrical
Hub

Corridor

Server
Room

416 D. Balasubramanian et al.

separate physical nodes (called ‘components’) that must pass data between their con-
tained functions over a bus infrastructure in a timely and predictable manner to
achieve the desired controlled outputs. To facilitate software abstraction and reusabil-
ity [13][7], direct dataflow connections between functional blocks deployed on
different components are often managed using a proxy on the component hosting the
receiver blocks. The bus implementation and the proxy are responsible for marshal-
ling and transferring data between components, thereby allowing the receiver blocks
to interact with the proxy through an interface identical to that of the original sender
without concern of how to access data from the bus.

Assume we have a system deployed across a set of distributed nodes called Com-
ponents. Each component contains a dataflow graph consisting of Functions that pass
data to and from each other through Ports. A connection between two ports is called a
Dataflow, and it connects only one sending port to one receiving port. Still, one port
can send data to multiple receiving ports through multiple dataflows from the port to
each receiver. Dataflows can also connect ports of two functions deployed on separate
components.

To implement a modeled distributed system described previously, a Proxy for a
function should be created in all components that receive input from that function.
The sending function should be connected to receiver functions through its proxy
instead of direct dataflows to the receivers’ ports. The Group operator provides a
means to perform this operation within GReAT by creating a single proxy of a func-
tion on other components that use the function’s output within their respective
dataflow graphs. The proxy inserted into a component will have an input port and an
output port for each output port in the sending function connected to inputs of receiv-
ing functions on one component. This implements a mirroring of the interface of the
sender’s ports that concern the functions on the target component.

Fig. 7 shows the Group rule in GReAT for starting this transformation. It is respon-
sible for creating a single proxy for Function1 within Component2 if output ports of
Function1 are connected to input ports of Function2 within Component2. The rule
takes in the top-level System object as its input. The rule first finds all the component
objects in the system, and the Guard condition code, Component1.uniqueID() !=
Component2.uniqueId(), removes matches where Component1 and Component2
are the same component. Now, the rule returns the set of dataflow connections between
function ports within these unique components. Once the dataflows, DataflowFF, that
connect ports of Function1 and Function2 are matched, the subgroups consisting of the
sending functions’ output ports, F_Output, must be formed. The grouping criterion of
the group operator restricts membership to a subgroup to unique F_Output objects in
the same function, Function1. A single subgroup holds the output ports needed by a
single proxy on a component. According to the Group rule execution semantics, ob-
jects with the CreateNew action (marked with a checkmark) will be created for each
subgroup. This creates a single Proxy object within Component2 for each subgroup,
and the Group action of copy will copy the ports in the subgroup into the proxy. The
output packets of the rule will consist of the ports holding the dataflows across separate
components and the components where these ports are located. All Component2 ob-
jects found in the match will now contain appropriate proxies, and each proxy will
contain the output ports copied from its representative function, Function1.

 Applying a Grouping Operator in Model Transformations 417

Fig. 7. Group Rule for Creating Proxies with Ports

For each proxy, direct dataflow connections from the original sending function to
the receiving functions need to be replaced by the appropriate connections from the
proxy to the receiving functions. Also, the same output ports of the sending function
must be connected to appropriate input ports of the proxy. The rules to create these
dataflows and the input ports of the proxy are shown below in Fig. 8, and they can be
executed in parallel.

The left rule of Fig. 8 creates the dataflow connections from a proxy’s output ports to
the receiver functions’ input ports. The output packets from the rule in Fig. 7 contain all
of the dataflow connections between Function1 and Function2. The Guard condition
restricts found matches to those where the output port of the proxy, P_Output, has the
same name as the output port of Function1, F_Output. The resulting matches are the
correct ports since the output ports copied into the proxy were the output ports of Func-
tion1 in the previous rule, i.e., they will have the same name. Once matched correctly,
the connection from the F_Output to the input port of Function2, F_Input, is replaced
by the connection from the output of the proxy, P_Output, to F_Input through a data-
flow, Dataflow_PF. The procedural code (contained in AttributeMapping) renames the
proxy object to be “P” plus the name of its corresponding function, Function1, to make
it identifiable in the resulting model.

The right rule in Fig. 8 matches the sending function’s output ports, F_Output, to
their copied instances within a proxy on another component. The Guard condition
restricts found matches to those where the output port of the proxy, P_Output, has the
same name as the output port of Function1, F_Output. For each match, a new input
port, P_Input, is created within the proxy. This provides an input interface in the proxy
that mirrors its output ports. Each output port of the sending function, F_Output, is
then connected to its corresponding proxy input port. The procedural code (Attribute-
Mapping) renames a created input port to be “In_” followed by the name of the output
port, F_Output, it is now connected to through a dataflow, Dataflow_FP.

Fig. 9 shows an example input model that needs proxies included in the compo-
nents. The boxes labeled C1, C2, and C3 represent components, those labeled F1,
F2… F9 represent functions, and arrows within functions represent ports. The arrow
indicates the directional flow of data, and directed lines between ports are dataflow

418 D. Balasubramanian et al.

Fig. 8. Rules for Creating Connections to/from a Proxy

connections. The circles represent system inputs and outputs and are of no concern
regarding the transformation. The functions F5 and F7 appear twice in components
C2 and C3, respectively, as unique instances of the same function block.

Looking at the input model, we see that functions F2 and F3 are the only functions
with connections across different components; therefore, proxies must be created for
these functions.

Fig. 10 shows the resulting output model of the system after the rules above are
applied. During the execution of the first rule, a total of three subgroups would be
created for the entire system model. Each subgroup has a corresponding proxy, PF2
and PF3 in this model, where the number identifier for each proxy matches the num-
ber identifier for its corresponding function, e.g., PF3 F3.

Fig. 9. Sample Input Model

Fig. 10. Sample Output Model

 Applying a Grouping Operator in Model Transformations 419

Notice that the proxies’ port interfaces are not the same on different components,
e.g. PF2 in C2 has a two port interface whereas PF2 in C3 has a one port interface.
This occurs since the ports copied into a proxy are the ones explicitly needed by func-
tions on the same component and not the entire set of output ports of the sending
function.

5 Shared Variables in a Dataflow Model

A dataflow model consists of Blocks, which are connected through Ports. Connec-
tions between these ports are called Lines, which represent flow of data between the
blocks through their ports. While the ports may be classified as input and output ports,
the flow of data may be from one input port to another (or one output port to another),
as in the case of a hierarchical block, where a top level input port may be passing
information along to the lower level blocks.

A single port may be connected to multiple ports through multiple lines. In gener-
ating code from such models, we would like to use a single shared variable to repre-
sent all such lines. We would also like to make a temporary ‘cross-link’ association
between each line and its shared variable, for specific purposes necessary later in the
code generation. The Group operator offers a convenient way to achieve this in
GReAT. We will see how a Group rule can be used to identify groups of such lines
and create a new variable for each such group, and generate the cross-links.

Fig. 11. Group Rule for Creating a Shared Variable

Fig. 11 shows the Group rule in GReAT for creating a single shared variable for a
group of lines. For each block, we take the ports contained in that block and group the
lines originating from that port. Note that the port may be connected to other ports
which are not contained in the same block. Port1, Port2 and Line are added to the
Group object, and the grouping criterion is set as: the_Port1 == other_Port1.
This results in multiple lines originating from a single Port object in a Block being

420 D. Balasubramanian et al.

grouped together. A new variable is then created inside Program. Since this is a
Group rule, the CreateNew action fires once for each subgroup that has been created.
This means that a single variable will be created for each set of lines that have been
grouped together.

After creating the new variable, we associate it with its Line, using a cross-link.
This is indicated by the line with the role names ref and sharedVar. Since the cross-
link is a simple association, it will be created for each match, between the Line in that
match, and the StateVar created for the group that this match is placed in.

Fig. 12 shows a section of a dataflow diagram. The port Res has three Lines and the
port Con has two Lines coming from it. Let the Line connected to port Pi be called Li.
Then, L1, L2, L3 will be in one subgroup, and L4 and L5 will be in another subgroup.

The group rule creates a new shared variable Var1 for the subgroup {L1, L2, L3},
and another shared variable Var2 for the subgroup {L4, L5}. The output packets gen-
erated from the group rule are {L1, Var1}, {L2, Var1}, {L3, Var1}, {L4, Var2} and
{L5, Var2}.

Fig. 12. Sample Dataflow Diagram

6 Ordered Binary Decision Diagram Reduction

Ordered Binary Decision Diagrams (OBDDs) [4] are used for representing and evalu-
ating Boolean functions. Arbitrary OBDDs can often be reduced, using algorithms
such as those described in [9], to a more compact representation. This example de-
scribes how the group operator simplifies the specification of a transformation that
performs this reduction algorithm.

An OBDD can be thought of as a rooted tree consisting of nodes that have variable
assignments. A node whose variable is 0 or 1 is called a terminal node, and is called a
non-terminal node otherwise. Each non-terminal node contains two outgoing connec-
tions: one “low” connection and one “high” connection. If a node’s variable is as-
signed a value of 0, then the low connection tells which node to evaluate next, and if a
node’s variable is assigned a value of 1, then the high connection tells which node to
evaluate next. The value of the function for a particular assignment of values to vari-
ables is given when a terminal node is reached.

The reduction algorithm in [9] begins by assigning an integer label to each of the
nodes in the diagram in the following manner. The first 0-node that is encountered
receives the first label (for instance, #0). All of the other terminal 0-nodes have the
same value, so they also received the same label. In the same way, all of the terminal

 Applying a Grouping Operator in Model Transformations 421

1-nodes receive the next label (#1). Next, we define two terms: given a non-terminal
node n, lo(n) is defined to be the node pointed to by the low connection from n
(drawn here using dashed lines), and hi(n) is defined to be the node pointed to by the
high connection from n (drawn here using solid lines).

The rest of the algorithm proceeds in a bottom-up manner as follows. To assign a
label to each of nodes at level i, we assume that we have already assigned a label to
all of the nodes at all levels j such that j > i. That is, we assume that all of the nodes
on levels below the current level have been labeled. A node n at level i receives its
label in one of the following three ways:

1. If the label of the node lo(n) is equal to the label of the node hi(n), n also re-
ceives this same label

2. If there is another node m such that n and m have the same variable xi, and
the labels of lo(n) and lo(m) are equal and the labels of hi(n) and hi(m) are
equal, n receives the same label as m.

3. Otherwise, n receives the next unused integer as its label.

0 1 0 0

z z z

y y

x

z

11 10
#0 #0 #0 #0#1 #1

#3 #3 #2 #2

#4#5

#6

#1 #1

0 1 0 0

z z z

y y

x

z

11 10

Fig. 13. Unlabeled OBDD (left) and Labelled OBDD (right)

Fig. 13 shows an example OBDD both before and after the labeling algorithm has
been applied. In the rest of this example, we assume that the input to our transforma-
tion rules is the labeled OBDD on the right of Fig. 13.

After the labeling of the OBDD, the next step of the reduction algorithm of [9], and
the transformation we will describe below, removes redundant nodes based on their
labels. That is, for each group of nodes with the same label, it creates one new node
with that same label and creates the connections between these “reduced” nodes ap-
propriately.

There are two re-writing rules we must write to perform this transformation:

1. Determine which nodes are equivalent based on their labels, and for each set
of equivalent nodes, create a new node.

2. Create the low and high connections between the newly created nodes based
on the low and high connections that exist between the old nodes.

Fig. 14 shows a rule that performs the first step of our transformation. The incom-
ing context for the rule (the objects bound to the input ports) are the diagrams in
which the nodes are found. The diagram named OldDiagram is the non-reduced
OBDD, and the diagram named Diagram will be the reduced OBDD. This rule first
finds all of the nodes in OldDiagram. A group operator is present, and contains as its

422 D. Balasubramanian et al.

only members the nodes found in OldDiagram. The subgroups are formed by
iterating over each match (which each consist of a single node found in OldDiagram)
and evaluating the user-specified grouping criteria against matches already in sub-
groups; in our case, two matches should be inserted into the same subgroup if the
values of their labels are equal.

Fig. 14. Rule to Create Nodes

The grouping criteria code that will accomplish this is: the_OldNode.Label()
== other_OldNode.Label(). After subgroup formation, new objects are created
on a per subgroup basis, and new associations are created on a per match basis. Thus,
our rule creates one new node in our reduced OBDD (Diagram) for each group of
nodes that have the same label in the unreduced OBDD, and also creates a temporary
association between the newly created nodes and the node in the unreduced OBDD to
which the new node corresponds; this temporary association will be matched in the
next rule to connect the new states together. Finally, the procedural code (Attribute-
Mapping) takes care of setting the values of the attributes (the label and variable val-
ues) of the newly created nodes.

The next rule in the sequence, shown in Fig. 15, is responsible for connecting the
nodes of the reduced OBDD. The incoming context consists of two elements: a node
from the unreduced OBDD (labeled OldNode) and the corresponding node in the
reduced OBDD (labeled NewNode). The rule finds all of the connections in the unre-
duced OBDD such that OldNode is the destination of the connection; it then finds the
node in the reduced OBDD that corresponds to this “source” node in the unreduced
OBDD by matching the association created in the previous rule (labeled with the
rolenames src and dst in both places). Remember that NewNode is already the node in
the reduced OBDD corresponding to OldNode because they are passed from the pre-
vious rule together. The AttributeMapping block takes care of setting the connection
to the proper type, low or high, with the following code: NewConnection.Type()
= OldConnection.Type().

 Applying a Grouping Operator in Model Transformations 423

Fig. 15. Rule to Connect States in the Reduced OBDD

The resulting connected and reduced OBDD is shown in Fig. 16.

0 1 0 0

z z z

y y

x

z

11 10
#0 #0 #0 #0#1 #1

#3 #3 #2 #2

#4#5

#6

#1 #1

z

y y

x

z

10
#0

#3 #2

#4#5

#6

#1

Fig. 16. Connected and (Partially) Reduced OBDD

7 Related Work

Hoffman et al. [5] introduced transformations on frame bounded subgraphs which re-
strict graph edges from crossing frame boundaries. The copying of such a delimited
subgraph permits copying only the nodes and edges contained within a frame. The
group operator uses a similar idea when performing actions on grouped objects: only
user selected nodes and edges that belong to a group under the membership criterion
will have the group action (bind, move, or copy) performed on them. Following the
application of the action specified for the group, all edges with an endpoint outside of a
subgroup, including those to other formed subgroups in the same rule, will be removed.

Van Gorp et al. [11] implemented the copying of subgraphs in the MoTMoT pro-
ject [8] using the “copy” and “onCopy” operators. The “copy” and “onCopy” opera-
tors provide means to perform deep copies on models and/or copying specified nodes
and edges within a rule; however, it is not obvious how a user could implement in
MoTMoT transformations presented above using the group operator within the
GReAT language. The difficulty for MoTMoT to recreate the same transformations
in an equally small number of rules would arise because it does not appear to have the

424 D. Balasubramanian et al.

ability to subdivide the set of all matches in a rule based on a conditional expression
and perform actions only on the formed subgroups instead of every match. The group
operator extends the normal rule execution semantics in GReAT by allowing the
application of copying, or other actions, on a per set/group basis.

As alluded to previously, the ability to handle and manipulate matched objects as
sets is a prerequisite to match the capabilities of the group operator. Even though
they rely on textual specification of transformations, ATL [2] and VIATRA2 [15] do
not appear to be less expressive or powerful than graphical languages such as
GReAT. VIATRA2 explicitly uses an Abstract State Machine (ASM) based language
and ATL matches many of the ASM constructs; therefore, it is no surprise that both
languages provide a data type for handling sets and other mathematical multi-object
types, and providing a grouping criterion as a Boolean expression would require no
extension to the languages. Also, performing actions on a per group basis would
involve using the “foreach” command, common to both languages.

8 Summary and Conclusions

This paper has shown examples for the practical application of a high-level grouping
operator in a graph-transformation based model transformation language. The examples
provided were derived from practical problems and clearly show the use of the operator
to allow more abstract and concise descriptions of complex transformation steps. This
simplifies the transformation specification, making it easier to write and maintain.

We have implemented the operator in the GReAT interpretive transformation en-
gine (GRE), and we have a prototype implementation of a code generator that com-
piles the rules with the group operator into executable code. However, it is the topic
of further research how to generate efficient executable code from such rewriting
rules. Another research topic is related to the restrictions we have placed on the group
operator: these restrictions make the implementation of the group-rules straightfor-
ward, but it is not clear how well they stand up in practice. We plan to investigate
how these restrictions can be weakened while maintaining the powerful properties of
the grouping operator.

Acknowledgements

The research described in this paper has been supported by a grant from NSF/CSR-
EHS, titled "Software Composition for Embedded Systems using Graph Transforma-
tions", award number CNS-0509098, and by NSF/ITR, titled "Foundations of Hybrid
and Embedded Software Systems", award number CCR-0225610.

References

1. Agrawal, A., Karsai, G., Neema, S., Shi, F., Vizhanyo, A.: The Design of a Language for
Model Transformations. Journal on Software and System Modeling 5(3), 261–288 (2006)

2. ATL Project. An ECLIPSE GMT Subproject,
http://www.eclipse.org/m2m/atl/

 Applying a Grouping Operator in Model Transformations 425

3. Balasubramanian, D., Karsai, G., Narayanan, A., Shi, F., Thibodeaux, R.: A Subgraph Op-
erator for Graph Transformation Languages. In: GT-VMT 2007 Workshop at ETAPS
(2007), http://www.cs.le.ac.uk/events/GTVMT07/

4. Bryant, R.E.: Graph Based Algorithms for Boolean Function Manipulation. IEEE Transac-
tions on Computers C-35(8), 677–691 (1986)

5. Drewes, F., Hoffmann, B., Plump, D.: Hierarchical Graph Transformation. Journal of
Computer and System Sciences 64, 249–283 (2002)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Trans-
formation. Series: Monographs in Theoretical Computer Science. Springer, Heidelberg
(2006)

7. Farcas, E., Farcas, C., Pree, W., Templ, J.: Transparent distribution of real-time compo-
nents based on logical execution time. In: Proceedings of the 2005 ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and Tools For Embedded Systems,
LCTES 2005, Chicago, Illinois, USA, June 15-17, 2005, pp. 31–39. ACM Press, New
York (2005)

8. Van Gorp, P., Schippers, H., Jannsens, D.: Copying Subgraphs within Model Repositories.
In: 5th International Workshop on Graph Transformation and Visual Modeling Techniques
(GT-VMT), Vienna, Austria (2006)

9. Huth, M., Ryan, M.: Logic in Computer Science: Modeling and Reasoning about Systems.
Cambridge University Press, Cambridge (2000)

10. Personal communications with developers and researchers from industrial labs
11. Schippers, H., Van Gorp, P.: Model Driven, Template Based, Model Transformer (MoT-

MoT) (2005), http://motmot.sourceforge.net/
12. Schürr, A., Winter, A., Zündorf, A.: Graph grammar engineering with PROGRES. In: Bo-

tella, P., Schäfer, W. (eds.) ESEC 1995. LNCS, vol. 989, pp. 219–234. Springer, Heidel-
berg (1995)

13. Silva, A.R., Rosa, F.A., Gonalves, T., Antunes, M.: Distributed Proxy: A Design Pattern
for the Incremental Development of Distributed Applications. In: Emmerich, W., Tai, S.
(eds.) EDO 2000. LNCS, vol. 1999, pp. 165–181. Springer, Heidelberg (2001)

14. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Validation of
Software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062.
Springer, Heidelberg (2004)

15. VIATRA2 Framework. An ECLIPSE GMT Subproject,
http://www.eclsipse.org/gmt

Modeling Successively Connected Repetitive
Subgraphs

Anne-Thérèse Körtgen

RWTH Aachen University, Department of Computer Science 3,
Ahornstrasse 55, D-52074 Aachen, Germany
koertgen@i3.informatik.rwth-aachen.de
http://se.rwth-aachen.de/koertgen

Abstract. In this contribution, we introduce an extension of the graph
transformation language PROGRES that allows to specify repetitive
subgraphs in a compact and comprehensible way. They can be pattern-
matched as well as created. Unlike other approaches, the extension
supports specifying successively connected repetitive subgraphs, i.e. inter-
connections among the repeated instances of the subgraphs are expressed
by edges in the graph pattern. The need for this modeling feature arose
during a case study with the software company innotec developing tools
for data handling in chemical engineering development processes. In this
paper, we introduce syntax and semantics of the extension by giving
a translation of extended PROGRES transformations into plain PRO-
GRES. Furthermore, we show the application of this modeling feature
within our project dealing with consistency maintenance.

1 Introduction and Motivation

Model transformation is needed in development processes where a large number
of dependent models are created. For example, our research activities are con-
cerned with model transformations in development processes within the chemical
engineering domain where flow sheets act as central models. Flow sheets of the
chemical plant to be built differ in their level of abstraction and are refined
stepwise. Keeping models consistent is a demanding task because of their large
number and the iterative character of the development process.

Models can usually be seen as graphs which consist of nodes representing
objects and edges representing relationships between these objects. Graphs are
well-suited for representing complex data with manifold relationships in a natural
way. Model transformations can be applied to graphs using graph rewriting rules.
A graph rewriting rule describes in a left-hand side graph pattern (LHS) how a
specific subgraph in a host graph is to be transformed into another subgraph
described in a right-hand side graph pattern (RHS). Examples for graph rewriting
systems are PROGRES[1], GReAT[2] and AGG[3].

In most graph rewriting systems it is possible to specify graph patterns with
set semantics, e.g. single nodes or even subgraphs which form a subpattern repre-
senting node sets or sets of subgraphs, respectively. The latter pattern construct

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 426–441, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://se.rwth-aachen.de/koertgen

Modeling Successively Connected Repetitive Subgraphs 427

A1:A B1:B C1:C D1:Da bc

<<3>>

(a) Pattern with set-valued sub-
graph

A1:A

B1:B C1:C

B2:B C2:C

B3:B C3:C

D1:D

a

a

a

b

b

b

c

c

c

(b) Host graph with repetitive sub-
graphs

Fig. 1. Example of set-valued subgraphs

Cooling water,
15 ° C

Cooling water,
15 ° C

Cooling water,
15 ° C

105 ° C

Fig. 2. Example of successively connected repetitive heat exchangers in a flow sheet

is called set-valued subgraph in the sequel. For example, in Figure 1(a) a pattern
with a set-valued subgraph which contains nodes B1 and C1 is depicted. The size
of the set of subgraphs is stated by 3 displayed above the grouping. In addition
to the set-valued subgraph, the graph pattern contains nodes A1 and D1 which
are connected to the nodes of the set-valued subgraph by edges of type a and b.
A host graph matching the pattern from Figure 1(a) is depicted in Figure 1(b).
While nodes A1 and D1 appear once, there are three subgraphs matching the
set-valued subgraph of the pattern. The subgraphs are surrounded by dashed
boxes for illustration purposes. Specified edges of type a and b connecting outer
nodes (which are not part of the set-valued subgraph) and inner nodes (which
are part of the set-valued subgraph) exist for each instance of the inner node. In
Figure 1(b), the nodes A1 and D1 are connected to each of the three subgraphs
by a respective edge.

In practice, models often contain objects repetitively which are successively
connected. To give an example from chemical engineering, to optimize the costs of
a cooling process, material is cooled down by the use of multiple heat exchangers.
Figure 2 shows a flow sheet with three heat exchangers successively connected by
a stream which transfers the material. Each of them receives cooling water with
an average temperature which is cheaper than to use one heat exchanger which
receives extreme cooled down water. The number of heat exchangers depends
on the temperature of the material that flows through the heat exchangers, the
flow rate, and the aimed temperature. Thus, the number can be determined by
computing a formula.

The necessity of modeling successively connected subgraphs is not restricted
to the chemical engineering domain. Another example which appears in many

428 A.-T. Körtgen

domains is searching for paths restricted to certain subgraphs, i.e. paths which
consist of repetitively connected subgraphs.

One problem in specifying graph transformations is the lack of a possibility to
specify successively connected repetitive subgraphs (SCORE subgraphs) as the
sequence of heat exchangers in the example or an arbitrary path consisting of
repetitive subgraphs. More precisely, the ability to specify edges between set-
valued subgraphs is missing.

Up to now, to specify SCORE subgraphs one has to specify one rewriting rule
for each possible number of repetitive subgraphs, which leads to unnecessarily
many rules with redundancy among these rules and thus causes maintenance
problems. Furthermore, the number of repetitive subgraphs is often bound to
some attribute value from related objects. Also possibilities to model path ex-
pressions are restricted to textual representations of alternatives and quantifi-
cation. A graphical representation of complex path expressions would facilitate
the modeling process.

In other approaches, matching and creation of SCORE subgraphs may be
simulated by the application of several rules, e.g. first match or create the sub-
graphs and second match or create relations between the graphs. This solution
requires the specification designer to model exactly these rules, which makes the
modeling process more complicated. From the point of view of the specification
designer the internal execution should be hidden. Therefore, there is a need for
further language constructs.

In this paper, we present a formal but intuitive language construct for graph
patterns of PROGRES production rules called inter-connected set-valued sub-
graphs (ICONS subgraphs). In Section 2, the syntax and semantics of ICONS
subgraphs are introduced. Section 3 shows how the language construct is trans-
lated into plain PROGRES syntax. To show the applicability of the construct,
we present several practical example transformations in Section 4. In Section 5,
we discuss and compare related work in detail. Besides a short summary, Sec-
tion 6 gives an outlook to future work in our project also concerning graphical
modelling of alternations.

2 Syntax and Semantics of ICONS Subgraphs

A graph pattern may contain, besides nodes and edges, set-valued subgraphs.
A set-valued subgraph describes the pattern of subgraphs, which exist repeti-
tively in the host graph. To define SCORE subgraphs, i.e. to define connecting
edges between nodes of repetitive subgraphs, the set-valued subgraph is displayed
three times. This leads to another pattern item, the so-called ICONS subgraphs.
Figure 3(a) shows an example pattern with an ICONS subgraph. Each subgraph
of an ICONS subgraph contains the same graph pattern1. In the figure, two
nodes of type B and C are connected by an edge of type et. Edges between
subgraphs define the connections of two successive subgraphs. Note that edges
1 Please note that redundant pattern elements are accepted due to have an appropriate

representation of sequences for engineers.

Modeling Successively Connected Repetitive Subgraphs 429

´1 : A ´2.1 : B ´2.3 : B ´2.5 : B

´2.2 : C ´2.4 : C ´2.6 : C

a aet et et

c

b

d

condition ´2.iterations := 4;

lastmiddlefirst

(a) Pattern with inter-connected set-valued subgraph

a1 : A b1 : B b2 : B b4 : B

c1 : C c2 : C c4 : C

a aet et et

c

b

d

b3 : B

c3 : C

a et

b
b

b

(b) Host graph with SCORE subgraph

Fig. 3. Example of ICONS subgraphs

between the first and the middle and edges between the middle and the last
subgraph define the same connections, e.g. edges of type a in the figure.

The cardinality of the ICONS subgraph is determined by its attribute iter-
ations. In the example, the attribute is set to the constant 4, but it can be set
to any numerical expression. A match of the described pattern of Figure 3(a) is
shown in Figure 3(b). While the node a1 appears once, there are four subgraphs
matching the pattern of the ICONS subgraphs. The subgraphs are surrounded
by dashed boxes for illustration. Two successive subgraphs are connected by an
edge of type a as specified in the ICONS subgraph.

Edges from nodes outside an ICONS subgraph to nodes of the middle sub-
graph have the same semantics as in conventional set-valued subgraphs. In Fig-
ure 3(a), the edge of type b connects the outer node ’1. It defines edges between
the instance of the outer node and each instance of the inner node in the host
graph. In the match shown in Figure 3(b), there exists four edges of type b
connecting the node a1 to the respective node of type B of a subgraph.

As in SCORE subgraphs there are two subgraphs which constitute the endings
of the sequence, connections between the host graph and these two subgraphs
can be specified. For this purpose, the first and the last subgraph of the ICONS
pattern play each a role of an ending, the first and the last subgraph of the
sequence, respectively. In a pattern, the ability to connect an outer node to a
node of the first or the last subgraph of an ICONS subgraph leads to two further
edge semantics. In the example of Figure 3(a), edges of type c and d are specified
connecting the node ’1 with nodes of the subgraphs. The corresponding match
depicted in Figure 3(b) contains these edges only once (in contrast to the edges
of type b) connecting the node a1 with the one ending, particularly the node b1

430 A.-T. Körtgen

with edge c, and connecting the node a1 with the other ending, particularly the
node c4 with edge d.

3 Implementation

This section describes the implementation of the new language construct in
PROGRES. More precisely, as depicted in Figure 4 we transform PROGRES
production rules that contain ICONS subgraphs into several plain PROGRES
transformations to simulate the creation and matching of SCORE subgraphs.
This is done with the help of internal nodes defined in LoopScheme which are
presented in the next subsection. A PROGRES transformation containing an
ICONS subgraph on either its LHS or RHS is transformed into a PROGRES
transformation with the same name which calls several transformations to sim-
ulate matching (if the ICONS subgraph is on the LHS) and to simulate creation
(if the ICONS subgraph is on the RHS). The generated transformations for the
creation of SCORE subgraphs is explained in Subsection 3.2 and the matching
is outlined in Subsection 3.3.

PROGRES
enriched with
helper nodes

PROGRES
with ICONS

LoopScheme

Transformator transformation XY

transformation XY transformation XY
 xy_Match_init
 xy_Match_next
 …
end;

transformation XY
 xy_Create_init
 xy_Create_next
 …
end;

Fig. 4. Overview of the transformation process

The main reason we chose to simulate the new construct and not to really
extend the language PROGRES is the pragmatic fact that PROGRES is not
easy to extend. A possible performance gain the extension would imply is not
focused. The PROGRES implementation of our approach in maintaining consis-
tency of models serves as evaluation environment for our new developed concepts.
Furthermore, our PROGRES specification is completely generated whereby no
additional effort is caused by the transformation step from enriched PROGRES
to plain PROGRES.

3.1 Internal Nodes Used for Matching SCORE Subgraphs

We extended the graph scheme with three node types and several edge types
depicted in Figure 5 that mark nodes of a matching subgraph. To group the
nodes of a repetitive subgraph, they are referenced by an Iteration node. As
subgraphs can be successively connected, an Iteration node refers to a suc-
cessive grouping by the edge nextIteration to another Iteration node. All

Modeling Successively Connected Repetitive Subgraphs 431

SPECIFICATION LoopScheme

Node

hasIteration

[1:1]

[0:n]

nextIteration

[0:1]

[0:1]

includes

[0:1] [0:n]

Iteration

hasRole
[0:1] [0:n]

Loop

attachedNode

[0:1]

[1:1]

Role

Fig. 5. Graph scheme used for matching repetitive subgraphs

Iteration nodes referring to the same SCORE subgraph are grouped by a refer-
encing edge hasIteration to a Loop node. As matching and creation is divided
into multiple steps, it is necessary to add Role nodes to refer to nodes which are
considered in later execution steps, e.g. nodes of the host graph which are con-
nected to nodes of a SCORE subgraph. How these nodes are applied, is explained
in more details in the following subsections.

3.2 Transformation of ICONS Subgraphs on RHS to Create
SCORE Subgraphs

In case the ICONS subgraph exists only on the RHS, the generated transfor-
mation calls several transformations to iteratively create the subgraphs and af-
ter that create the connections between nodes. To illustrate the transformation
process, we transform an example PROGRES transformation called BC example,
which contains an empty LHS and which contains on his RHS the pattern from
Figure 3(a), into the transformation which is shown in Figure 6. The transfor-
mations listed there are explained in the following with help of the example.

At first, an initial transformation (CreateSCORE Init) is executed which cre-
ates all normal nodes and edges specified on the current RHS. For the example,
this is the case for node 1’. Additionally, the transformation creates a loop node
and, to identify the node which is to be connected to nodes of the SCORE sub-
graph, a role node is created which refers to this node. The role node has an
attribute roleName which is set to the name of the attached node. Its attribute
value is determined by the node id of the input transformation. The loop node is
returned. In the following, a transformation (CreateSCORE Next) which creates
a SCORE subgraph according to the specified pattern is iteratively executed
until the cardinality which is specified by the iterations attribute is reached.
It gets the loop node as input parameter to find the right application point.

In Figure 7, the corresponding transformation BC Example CreateSCORE Next
is shown. In addition to the loop node, its LHS contains an iteration node ’2.
The attached restriction of this node ensures that the last created iteration node
(which was actually created during the previous execution of this transformation)

432 A.-T. Körtgen

transformation + BC_Example () [1:1] =
use loopNode : Loop
do

BC_Example_CreateSCORE_Init (out loopNode)
& loop

when (card (loopNode.-hasIteration->) < 4)
then

BC_Example_CreateSCORE_Next (loopNode)
end

& BC_Example_CreateSCORE_EdgesToFirst (loopNode)
& BC_Example_CreateSCORE_EdgesToLast (loopNode)
& BC_Example_CreateSCORE_EdgesToAll (loopNode)
& BC_Example_CreateSCORE_EdgesBetweenIterations (loopNode)

end
end;

Fig. 6. Generated transformation to simulate the transformation BC example

transformation + BC_Example_CreateSCORE_Next (nLoop1 : Loop) [1:1] =

1' = ´1

´2 : Iteration

4' : B

5' : C

et

nextIteration

::=

´1 = nLoop1
hasIteration

2' = ´2
hasIteration

3' : Iteration

hasIteration

6' : Role

7' : Role

includes

includes

hasRole

hasRole

attachedNode

attachedNode

(valid(self.position = card(´1.-hasIteration->))

transfer 3’.position := card (’1.-hasIteration->) + 1;
6’.roleName := "2.3’";
7’.roleName := "2.4’";

end;

Fig. 7. Transformation to create a SCORE subgraph

is matched. The node is declared as an optional node if the transformation
is executed for the first time. On the RHS of the transformation the SCORE
subgraph consisting of the nodes 4’ and 5’ is present. The nodes are referenced
by an iteration node 3’ to identify their affiliation with a specific subgraph.
The iteration node is connected with the previous iteration node by an edge of
type nextIteration and its attribute position is set to the number of existing
iteration nodes belonging to the current loop node increased by one. Additionally,
two role nodes refer to the nodes of the subgraph. The role names are set to the
node ids of the input transformation, 2.3’ and 2.4’, respectively.

The next transformations create edges according to the different edge seman-
tics mentioned in the previous section, namely edges which are to connect nodes
of the host graph with nodes of the first subgraph, of all subgraphs, and of the
last subgraph, and edges which exist between two successive subgraphs. Note
that these transformations are only generated in case an edge with the corre-
sponding semantics is specified on the current RHS.

Modeling Successively Connected Repetitive Subgraphs 433

transformation + BC_Example_CreateSCORE_EdgesBetweenIterations (nLoop1 : Loop) * [1:1] =

´2 : Iteration

::=

´1 = nLoop1

hasIteration

´3 : Iteration

hasIteration
nextIteration

´7 : B´6 : C

includesincludes

´4 : Role ´5 : Role

hasRole hasRole

attachedNode attachedNode

2' = ´2

1' = ´1

hasIteration

3' = ´3

hasIteration
nextIteration

7' = ´76' = ´6

includesincludes

4' = ´4 5' = ´5

hasRole hasRole

attachedNode attachedNode

a

condition ’4.roleName := "2.4’";
’5.roleName := "2.3’";

end;

Fig. 8. Transformation to create edges between two successive subgraphs

The transformation (CreateSCORE EdgesBetweenIterations) that adds ed-
ges between SCORE subgraphs of the current example is depicted in Figure 8.
It gets the loop node as input parameter like the other transformations. On
the LHS, two iteration nodes affiliated with the loop node that are connected
by an edge of type nextIteration are present. As only specific nodes of two
successive SCORE subgraphs are to connect, only these have to be obtained.
Thus, the example transformation in the figure contains only the nodes ’6 and ’7
of the preceding and the succeeding subgraph, respectively, which are explicitly
matched by role nodes referencing them. The RHS differs from the LHS only in
one edge which is added, namely the edge a between the nodes 6’ and 7’ of two
successive subgraphs. As the transformation is to be applied to all subgraphs of
this kind and not only to one occurrence, the transformation is applied in parallel
to all application points matching the LHS. Parallel execution is achieved by the
additional * in the signature of the transformation.

To add edges to all subgraphs, a transformation (EdgesToAll) is applied in
parallel. Like the previous transformation, it is specified with an additional *
and it gets the loop node as input parameter. To add an edge between a specific
node of the host graph and a node of a SCORE subgraph, the LHS has to obtain
these nodes. They are explicitly matched by role nodes referencing them. The
RHS differs from the LHS only in one edge which is added between the nodes.

The transformation to induce edges from the overall graph to the first sub-
graph (EdgesToFirst) is applied only once. For this purpose, the specific nodes
of the first subgraph (the position number of their connected iteration node
equals one) and the nodes of the overall graph are considered on the LHS and
are connected by the edges specified on the RHS. The transformation to induce
edges from the overall graph to the last subgraph (EdgesToLast) is analogously
generated. In this case, the specific nodes of the last subgraph are obtained.

434 A.-T. Körtgen

3.3 Transformation of ICONS Subgraphs on LHS to Match SCORE
Subgraphs

In case the ICONS subgraph exists on the LHS and on the RHS of a transforma-
tion, the generated transformation with the same name calls several transforma-
tions to iteratively match the subgraphs. The structure of such transformations
is always identical. As an example, the corresponding transformation is shown in
Figure 9 which matches SCORE subgraphs specified in the pattern of Figure 3(a).
The transformations listed there are explained in the following with help of the
example.

At first, an initial transformation (MatchSCORE Init) matches all normal
nodes and edges of the input transformation and additionally matches a first
subgraph corresponding to the ICONS subgraph. The transformation creates a
loop and an iteration node and several role nodes to be able to recover the sub-
graph’s nodes and the involved normal nodes. In Figure 10, the corresponding
transformation for the example is depicted. The role nodes’ roleName attributes
are set to the node ids of the pattern, namely ’2.3, ’2.4 and ’1. Note that
this transformation is executed in parallel and thus is applied to each applica-
tion point in the host graph. The application points are obtained from the loop
nodes which are returned by the transformation.

The next step considers each loop node returned by the initial transformation.
Starting with a matched subgraph, the transitive closure of SCORE subgraphs is
matched recursively. For this purpose, a transformation (MatchSCORE NextRecur)
shown in Figure 11 invokes recursively a transformation (MatchSCORE Next)
which matches a successive subgraph until the specified cardinality is reached.
Then the last subgraph which is especially connected with outer nodes is matched
(MatchSCORE Last).

Figure 12 shows the transformation (MatchSCORE Next) generated for the ex-
ample transformation. On the LHS, the attached restriction of the iteration node
8 ensures that the last subgraph of the loop node is obtained. With the help of
the role nodes 4 and 5, nodes of this subgraph and the host graph specific to this
loop node can be obtained. The successive subgraph is match by the nodes 6
and 7 which are currently not used. On the RHS, a new iteration node 9’ refers

transformation + BC_Example () [1:1] =
use loops : loop [0:n]
do

BC_Example_MatchSCORE_Init (out loops)
& for_all nloop : Loop [1:1] := elem (loops)
do

choose
BC_Example_MatchSCORE_NextRecur (nloop)

else
GEN_deleteLoop (nloop)

end
end

end
end;

Fig. 9. Generated transformation to simulate the matching of ICONS subgraphs

Modeling Successively Connected Repetitive Subgraphs 435

transformation + BC_Example_MatchSCORE_Init (out nLoop1 : Loop [0:n]) * =

::=

4' : Loop

2' = ´2

3' = ´3

et 5' : Iteration

hasIteration

6' : Role

7' : Role

includes

includes

hasRole

hasRole

attachedNode

attachedNode

´1 : A ´2 : B

´3 : C

et

c

b

1' = ´1
c

b

8' : Role

hasRole attachedNode

transfer 6’.roleName := "’2.3";
7’.roleName := "’2.4";
8’.roleName := "’1";

return nLoop1 := 4’;
end;

Fig. 10. Initial transformation to match SCORE subgraphs

transformation + BC_Example_MatchSCORE_NextRecur (nLoop1 : Loop [1:1]) [1:1] =
BC_Example_MatchSCORE_Next (nLoop1)
& choose

BC_Example_MatchSCORE_NextRecur (nLoop1)
or BC_Example_MatchSCORE_Last (nLoop1)

end
end;

Fig. 11. Intermediate transformation

to this successive subgraph matched on the LHS. In the succeeding application
of this transformation, this subgraph is obtained as the last found. Additionally,
two role nodes 10’ and 11’ are existent which refer to the nodes of the subgraph.

Sometimes, the last mentioned transformation cannot be applied any further,
i.e. another subgraph cannot be found. The number of repetitive subgraphs spec-
ified in the ICONS subgraph of the input transformation is checked against the
number of subgraphs found. If they are not equal, all transformations applied
previously for the current loop node are backtracked. This is a feature of PRO-
GRES. The generic transformation (GEN deleteLoop) which is not restricted to
a specific ICONS subgraph deletes all loop, iteration and role nodes that were
created in the initial transformation (MatchSCORE Init).

4 Application

This section is devoted to give application examples of the ICONS subgraphs.
In the first subsection, we will give an outlook how to model graphically path
expressions with this construct. The second subsection introduces in short our
approach using triple graph grammars.

436 A.-T. Körtgen

transformation + BC_Example_MatchSCORE_Next (nLoop1 : Loop [1:1]) [0:1] =

::=

6' = ´6

7' = ´7

et

9' : Iteration

10' : Role

11' : Role

includes includes

hasRole

hasRole

attachedNode

´1 : A

´6 : B

´7 : C

et

b

´2 : Loop

´3 : C

´8 : Iteration

hasIteration

´5 : Role

a

hasRole

attachedNode

attachedNode

´4 : Role

hasRole

1' = ´1

b

2' = ´2

3' = ´3

8' = ´8

hasIteration

5' = ´5

includes

hasRole

attachedNode

attachedNode

4' = ´4

hasRole

includes

hasIteration

attachedNode

a

(valid(self.position = card(´2.-hasIteration->))

roleUnused(´2)

roleUnused(´2)

nextIteration

condition 8.position < 4;
5.roleName := "’2.4";
4.roleName := "’1";

transfer 10’.roleName := "’2.3";
11’.roleName := "’2.4";
9’.position := card(2.-hasIteration->) + 1;

end;

Fig. 12. Transformation to match a connected subgraph

4.1 Application in PROGRES Paths

Modeling alternatives and transitive closures in path expressions is up to now
only provided by a textual representation in PROGRES. A visual representation
would facilitate the modeling step. The concept of ICONS subgraphs could be
used in paths expressions to provide at least the latter.

Figure 13 shows an example of a path expression containing an ICONS sub-
graph. It computes the set of all successor places ’3 of a place ’1 in a Petri
net. The complex subgraph that can occur repetitively on this path consists of
a transition and another place. As this subgraph is part of a path the inter-
connections among the repetitive subgraphs have to be specified. Therefore, an
ICONS subgraph is suitable.

However, the feature’s implementation is ongoing. Furthermore, we plan to
add also an alternative construct for LHS of transformation rules as well as for
path expressions.

4.2 Application in Triple Graph Grammar Rules

We developed an approach for the realization of consistency maintaining tools
which are currently being used in the chemical engineering domain. In this sub-
section, we only give a short summary of the approach to be able to show how
ICONS subgraphs are used within our project. In [4], a more detailed description

Modeling Successively Connected Repetitive Subgraphs 437

path successor: PLACE [0:n] -> PLACE [0:n] =
’1 => ’3 in

´4 :
TRANSITION

flow

lastmiddlefirst

´3 :
PLACE

´2.6 :
PLACE

´2.4 :
PLACE

´1 :
PLACE

´2.2 :
PLACE

´2.1 :
TRANSITION

´2.3 :
TRANSITION

´2.5 :
TRANSITION

flow flow flowflow flow flow flow

end;

Fig. 13. Example of an ICONS subgraph used in a path expression

pfd (source)

PfdHex:
HEX

I1:
ComosInConnector

O1:
ComosOutConnector

PIHex1:
PipeBundleHEX

L1: HeatExchangerLink

p&id (target)

SL2: ComosPortMapping

SL1: ComosPortMapping

P_I1:
ComosInConnector

P_O1:
ComosOutConnector

Integration Document

PIHex2:
PipeBundleHEX

P_I2:
ComosInConnector

P_O2:
ComosOutConnector

PIHex3:
PipeBundleHEX

P_I3:
ComosInConnector

P_O3:
ComosOutConnector

(a) Mapping one to exactly three heat exchangers

pfd (source)

PfdHex: HEX

I1:
ComosInConnector

O1:
ComosOutConnector

PIHex:
PipeBundleHEX

L1: HeatExchangerLink

p&id (target)

SL2: ComosPortMapping

SL1: ComosPortMapping

I2:
ComosInConnector

Integration Document

PIHex1:
PipeBundleHEX

P_I1:
ComosInConnector

P_O1:
ComosOutConnector

PIHex2:
PipeBundleHEX

P_I2:
ComosInConnector

P_O2:
ComosOutConnector

PIHex3:
PipeBundleHEX

P_I3:
ComosInConnector

P_O3:
ComosOutConnector

first middle last

O2:
ComosOutConnector

iterations :=PfdHex.number -1

(b) Mapping one to arbitrary many heat exchangers

Fig. 14. Example of a rule mapping a heat exchangers

of the approach can be found. Further implementation details of our tools are
sketched in [5].

The approach is based on Triple Graph Grammars (TGG) [6]. The core idea
is to define graph-based rules which specify the relationships that have to be
established or maintained between graph patterns of source and target models.
Relationships are also based on a graph model and are described by a third graph
pattern within a rule. To edit such rules, we introduced in [7] the underlying rule
model based on UML object diagrams and a rule editor.

As an introducing example, we pick up the example from Figure 2 showing
three successively connected heat exchangers. A rule specifying the correspon-
dence of a single heat exchanger modeled in a pfd (process flow diagram) and
three connected heat exchangers modeled in a p&id (piping and instrumentation
diagram) is depicted in Figure 14(a). The integration document part shows the
pattern describing the relationships of the source and the target model pattern.
The heat exchangers on the right side are inter-connected by edges between their
out and in connectors. The in and out connectors of the single heat exchanger on

438 A.-T. Körtgen

the left side are mapped to the in connector of the first and to the out connector
of the last heat exchanger from the heat exchanger sequence on the right.

To be able to specify sequences of heat exchangers of variable length within
rules, we use ICONS subgraphs. Figure 14(b) shows a rule using ICONS sub-
graphs according to the above example on the right side. The syntax and seman-
tics of ICONS subgraphs in object diagrams are equally defined as in enriched
PROGRES transformations. Therefore using enriched PROGRES, the adaption
of the transformation process from object diagrams to PROGRES transforma-
tions implied only little changes. To retrieve plain PROGRES transformations,
we use the generator described in this paper.

5 Related Work

In this section, similar modeling constructs for the specification of repetitive
subgraphs in related work are discussed. The graph transformation languages
PROGRES [1,8] and Fujaba [9] allow the specification of node sets in production
rules. Only the matching of node sets is supported, thus, only the left hand sides
of production rules may contain sets in their graph patterns. The right hand
sides may copy node sets defined on the left hand sides of the production rule.

An extension of the PROGRES language for a language construct that al-
lows to specify set-valued graph patterns in production rules, is presented in
[10] and was implemented by [11]. The ideas follow the theoretical results of
[12]. As with node sets, only the matching of set-valued subgraphs is supported
and maximal matches are considered. Such specifications are internally trans-
lated to common PROGRES specifications. The core idea is that productions
with set-valued patterns define equivalence classes of common production rules
which obtain explicitly different numbers of equal subpatterns. Dependent on the
number of matches in a working graph, a common production rule is selected
at runtime and executed. It is not possible to specify edges between set-valued
graph patterns, i.e. it is not possible to match successive subgraphs. Further-
more, creation of repetitive subgraphs is not implemented. Our extension of the
PROGRES language is based on the extending strategy of this project.

Another possibility to address the matching of repetitive subgraphs are amal-
gamated graph transformations [13] introduced for the tool AGG [3]. At runtime
productions are constructed by merging previously defined subproductions. The
construction is dependent on a specific application point in the working graph.
Repetitive subgraphs may be matched by specifying the subpattern in a sub-
production. As in [10], matching successive subgraphs and creation of repetitive
subgraphs are not implemented.

In [14], extended UML object diagrams are introduced to specify mappings
between UML models, establishing automatic model transformations. Within
this extension, repetitive object models may be specified for creation purposes
during the transformation step. A stereotype for packages named ForEach is
developed. Such stereotyped packages may contain parameterized object models,
which may be linked to other objects outside the package. For this kind of link,

Modeling Successively Connected Repetitive Subgraphs 439

each repetitive object created during transformation will be linked to the outer
object. However, relations between instances of repetitive object models cannot
be specified or created.

The graph transformation language GReAT is enriched with constructs in
[2] to establish matching and creation of set-valued subgraphs. For this pur-
pose, subpatterns grouping nodes may be used in larger patterns. Edges from
nodes outside of the subpattern to nodes which are included in the subpattern
are allowed. Additionally, the subpatterns have cardinalities, i.e. the cardinal-
ity determines the number of created or matched subgraphs according to the
subpattern. However, edges between instances of repetitive subgraphs cannot be
specified or created.

With shaped generic graph transformations [15] a compact notation of com-
plex graph transformations is introduced. Placeholders for node sets as well as
subgraphs can be added to graph transformations. At runtime complex transfor-
mations are evaluated and equivalent ordinary transformations are constructed
and applied. However, the syntax of the complex graph transformations is not
intuitive. But simplicity is a hard requirement in our transfer project which aims
to transfer our solutions into practice.

6 Conclusion and Future Work

We presented a new language construct, the inter-connected set-valued (ICONS)
subgraphs, for the specification of successively connected repetitive (SCORE)
subgraphs. The need for this new language construct arose while doing a case
study with the software company innotec developing tools for data handling in
chemical engineering development processes. In a previous section, we showed
the application of ICONS subgraphs in our project which is concerned with
incremental model transformation to establish model consistency.

Future work will further investigate the case study, and when needed, we will
define the semantics of edges between ICONS subgraphs and their generation
in plain PROGRES transformations. Additionally, we would follow up variants
of the specification of the cardinality of ICONS subgraphs, e.g. the parame-
trization of transformations such that the cardinality of subgraphs to create or
match is determined at runtime by user input. As in our scenario the integrated
application is able to determine attribute values by the evaluation of complex
expressions, we will not follow up evaluation of complex expressions and hold on
using constants or attribute values.

As explained by innotec, the need for fuzzy rules which do not precisely state
certain structures is given. Particularly, it is often the case that the detailed
structure of a subgraph is queried. Therefore, similar to regular expressions we
plan to support basic operations like alternatives and quantification of graph
patterns in order to restrict the set of possible matches. Quantification is already
realized by the concept of ICONS subgraphs.

Furthermore, our project is a two-year transfer project which aims at trans-
ferring the achieved results in document integration into practice. As PROGRES

440 A.-T. Körtgen

transformations as well as UML object diagrams are not suitable for engineers,
we are currently working on a user-friendly transformation rule editor which
provides ICONS subgraphs.

Acknowledgments

This work was in part funded by the CRC 476/TC 61 of the Deutsche Forschungs-
gemeinschaft (DFG). Furthermore, the author gratefully acknowledges the fruit-
ful cooperation with innotec.

References

1. Schürr, A.: PROGRES: A Visual Language and Environment for PROgramming
with Graph REwrite Systems. In: Aachener Informatik Bericht 94-11, RWTH
Aachen University, Germany, Fachgruppe Informatik (1994)

2. Agrawal, A., Karsai, G., Shi, F.: Graph Transformations on Domain-Specific Mod-
els. Technical report, Vanderbilt University, Institution for Software Integrated
Systems, Nashville, Tennessee (2003) ISIS-03-403

3. Taentzer, G.: AGG: A Tool Environment for Algebraic Graph Transformation.
In: Nagl, M., Schürr, A., Münch, M. (eds.) AGTIVE 1999. LNCS, vol. 1779, pp.
481–488. Springer, Heidelberg (2000)

4. Becker, S.M., Haase, T., Westfechtel, B., Wilhelms, J.: Integration tools supporting
cooperative development processes in chemical engineering. In: Proc. of the 6th
World Conf. on Integrated Design & Process Technology (IDPT 2002), SDPS, p.
10 (2002)

5. Körtgen, A., Becker, S.M., Herold, S.: A Graph-Based Framework for Rapid Con-
struction of Document Integration Tools. In: Proc. of the 11th World Conf. on
Integrated Design & Process Technology (IDPT 2007), SDPS, p. 13 (2007)

6. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Proc. of the 20th Intl. Workshop on Graph-Theoretic Concepts in Computer Sci-
ence (WG 1994), Herrsching, Germany. LNCS, vol. 903, pp. 151–163. Springer,
Heidelberg (1995)

7. Becker, S.M., Westfechtel, B.: UML-based Definition of Integration Models for
Incremental Development Processes in Chemical Engineering. In: Proc. of the 7th
Intl. Conf. on Integrated Design and Process Technology (IDPT 2003), SDPS, p.
10 (2003)

8. Schürr, A., Winter, A.J., Zündorf, A.: Visual Programming with Graph Rewriting
Systems. In: Proc. of the 11th Intl. IEEE Symposium on Visual Languages (VL
1995), Washington, DC, USA. IEEE Computer Society Press, Los Alamitos (1995)

9. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A new Graph
Rewrite Language based on the Unified Modeling Language. In: Ehrig, H., Engels,
G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 296–
309. Springer, Heidelberg (2000)

10. Fuss, C., Tuttlies, V.E.: Simulating Set-Valued Transformations with Algorithmic
Graph Transformation Languages. In: AGTIVE 2007. LNCS, p. 16. Springer, Hei-
delberg (2008)

11. Tuttlies, V.E.: Further Language Constructs for Rule-based Model Transformation.
Diploma Thesis, Department of Computer Science 3, RWTH Aachen University
(2006)

Modeling Successively Connected Repetitive Subgraphs 441

12. Speulmanns, A.: Visuelles Programmieren mit Graphersetzungsregeln. Diploma
Thesis, Department of Computer Science 3, RWTH Aachen University (1995)

13. Taentzer, G., Beyer, M.: Amalgamated Graph Transformations and Their Use for
Specifying AGG - an Algebraic Graph Grammar System. In: Proc. of the Intl.
Workshop on Graph Transformations in Computer Science, London, UK, pp. 380–
394. Springer, Heidelberg (1994)

14. Milicev, D.: Automatic Model Transformations Using Extended UML Object Dia-
grams in Modeling Environments. IEEE Trans. Softw. Eng. 28(4), 413–431 (2002)

15. Drewes, F., Hoffmann, B., Janssens, D., Minas, M., Van Eetvelde, N.: Shaped
Generic Graph Transformation. In: AGTIVE 2007. LNCS, p. 16. Springer, Heidel-
berg (2008)

Simulating Set-Valued Transformations with
Algorithmic Graph Transformation Languages

Christian Fuss and Verena E. Tuttlies

RWTH Aachen University, Computer Science 3 (Software Engineering)
Ahornstr. 55, 52074 Aachen, Germany

{fuss,verena}@i3.informatik.rwth-aachen.de

Abstract. PROGRES is one of the most mature graph transforma-
tion languages currently available. It offers many language features, also
some for non-homomorphic transformations, e.g. set-nodes. Nevertheless,
the language does not offer a comfortable possibility to work with com-
plex set-valued structures. However, these are often useful when mod-
eling complex systems, e.g. simulation systems, models-of-computation,
or product lines using multiplicity variation points. We introduce the
notion of set-valued transformations to PROGRES, define their syntax
and semantics and show how they can be simulated using basic language
constructs offered by most algorithmic graph transformation languages
with a rich set of control structures.

1 Introduction

Today’s model-driven development processes require the transformation of one
model into another along the process. Most up-to-date models, like all MOF
(Meta Object Facility) models, have an underlying graph structure, and thus
model transformations are only a special form of graph transformations. The
recent standardization of QVT (Query, View, and Transformation), a transfor-
mation language for the MOF, endorses this need and has brought much new
attention to the field of graph transformations. Graph transformation languages,
e.g. PROGRES, AGG, GReAT, or Fujaba can offer good means to define model
transformations as rule-based automated or semi-automatic tasks [24]. Applying
graph transformation languages to real life model-driven development of com-
plex systems, e.g. simulation systems, models-of-computation, or product lines,
demands easy handling of complex graph structures.

The above mentioned graph transformation languages all compete in their
means to specify inherently difficult and complex transformation rules as easy
as possible. PROGRES [20] is an algorithmic approach and one of the most
mature and feature-rich graph transformation languages currently available, it
is being developed since the early 90s and offers many language features not
offered by other languages (comprehensive comparisons of the languages can be
found in [4,12,25]). Although PROGRES offers some language features for non-
homomorphic transformations, e.g. set nodes, it lacks a comfortable possibility

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 442–455, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Simulating Set-Valued Transformations 443

to work with complex set-valued structures. In order to be applicable to the
above-mentioned domains.

In this paper, we will introduce a language feature for complex set-valued
transformations in PROGRES. The problem solved is that of defining an intu-
itive and comprehensive language feature, that fits into the paradigm of sequen-
tial graph rewriting lanuages. We also outline the implementation by simulation,
using existing control structure language features. This approach of using exist-
ing constructs, which are also available in other languages, makes the concept
also applicable to algorithmic graph transformation approaches offering a rich
set of control structures and underlines their expressive power.

The remainder of this work is structured as follows: Section 2 describes related
work. Section 3 gives an outline of existing possibilities to deal with set-valency
in PROGRES. Section 4 introduces syntax and semantics of the new language
element set-valued transformations. Section 5 sketches the implementation us-
ing existing PROGRES language elements and outlines how the results can be
transferred to other algorithmic graph transformation languages. Section 6 sum-
marizes the results and gives an outlook, how the approach could be extended,
e.g. for recursive transformations.

2 Related Work

The topic of set-valued transformations is not new to graph transformation ap-
proaches, but got a lot new attention lately. At a recent workshop three publi-
cations were presented covering some form of set-valued graph transformations.
[17] proposes a star operator similar to the star operator in Kleene Algebra
for a model query language. Actually, the proposed operator resembles the star
operator long-known from PROGRES path queries, which does not suffice to
transform complex set-valued graph structures, as will be shown in the next sec-
tion. [13] establishes means to define recursive rules within the double pushout
approach [6]. Although this problem is related to set-valued structures as well,
the semantics and concepts are different to the ones behind parallel graph trans-
formations. In Section 6 we give an outlook, how our simulation approach could
be used for recursive rule definitions. [3,2] defines a subgraph operator for the
GReAT language [14]. Motivated by the demand to apply the same action across
multiple matches, the papers introduce a notion of a group operator, which can
be assigned one of four group actions (bind, move, copy, or delete). There is
previous work on set-valued transformations related to GReAT; [1] states some
common problems encountered when working with set-valued graph patterns,
e.g. the issue of set- or tree-like semantics, which will be discussed in Section 4.2.

Most influences on the ideas in this paper have come from another concept
developed for the double pushout approach, namely amalgamated graph trans-
formations [23,21]. Amalgamated rules are used in AGG [22] to define paral-
lely executed synchronized rules very similar to our understanding of set-valued
transformations. Using amalgamated transformations, one can construct a so-
called operational production set by amalgamating the elementary production

444 C. Fuss and V.E. Tuttlies

and the given subproductions. The amalgamated production can finally be ap-
plied just like a regular production.

3 PROGRES and Set-Valued Rule Elements

PROGRES [20] is a rule-based graph transformation language that uses a for-
malism very similar to algebraic approaches like [5,7] to define a sequential graph
rewriting system similar to algorithmic graph rewriting approaches like [19,9,16].
The calculus used to describe the language formally is based on first order logic;
it allows the specification of a graph transformation system as a set of logic for-
mulae. The formalism is explained in more detail only as necessary. For detailed
definition of the calculus see [20, Ch. 3] and for detailed definition of the basic
language constructs see [20, Ch. 4].

From the user perspective, simple PROGRES rules, so-called productions,
look very similar to single-pushout rules or double-pushout rules when omitting
the common interface part. Figures 2 and 3 show examples of PROGRES rules.
They consist of a left-hand side (LHS, above the ::=) and a right-hand side
(RHS, below the ::=), each defining a subgraph, and a morphism between both
(mappings are denoted in the RHS, e.g. by 2’=’2). During rule execution, nodes
and edges from the working graph are matched to the LHS subgraph. If all
rule elements can be matched (and all other conditions evaluate to true), the
matching elements are replaced by the according elements of the RHS. The
standard matching is injective, i.e. one node from the working graph can only
be mapped to one LHS node, but with the folding construct one working graph
node can be matched to multiple rule nodes.

With set nodes and star qualifier PROGRES productions also offer some
possibilities to handle set-valency, i.e. non-homomorphic matching of multiple
working graph nodes to one rule element. But these means are not sufficient to
handle complex set-valued structures, as we will show for the following simple
example: We want to specify a production for firing an arbitrary transition in an
arc-constant Petri Net. The net is modeled by nodes of type Place, Transition
and Token, and edges of type arc and placedAt (pointing to the place of a token).
For the sake of brevity we leave out the edge labels (edge types can be inferred
from the connected nodes). Fig. 1 shows a small Petri Net model using this
schema with transitions T1 to T3, places P1 to P6 and some tokens.

For firing a transition, we have to match an enabled transition, i.e. a transition
where all places in the preset have at least one token. When executing, we have
to delete one token from each place in the preset and create a new token for each
place in the postset. Preset and postset of the transition may be empty.

Set Nodes
Set nodes, available as obligatory and optional set nodes, offer non-homomorphic
matching, i.e. multiple nodes from the working graph can be mapped to a single
set node from the production. Set nodes are sufficient, if only one element in a
rule is set-valued, but fall short with complex set-valency, where relationships

Simulating Set-Valued Transformations 445

T1

P6

P5

P4

P3

P2

P1
T2

T3

Fig. 1. Petri Net modeled according to the simple graph schema

‘1: Token

5’: Token

‘2: Place

2’ = ‘2

‘4: Place

4’ = ‘4

‘3: Transition

3’ = ‘3

not (hasEmptyPresetPlace)

transformation fireTransition =

end;

Fig. 2. Modeling the firing rule for an arbitrary transition using set nodes (invalid
syntax elements are highlighted)

between sets of nodes have to be expressed, because there is no general and
intuitive way to define edges between sets. Fig. 2 shows an imaginable way to
declare a production for firing a transition, using only set nodes. The transition
(node ’3) is restricted to enabled transitions by the application restriction not
(hasEmptyPresetPlace), which is declared outside the production. Additionally,
it contains sets for preset and postset places as well as tokens.

But this declaration is not valid. Invalid elements are highlighted: PROGRES
cannot match edges between set nodes, thus the edge between node ’1 and ’2
is invalid. Also it cannot create sets of nodes, hence node 5’ is marked invalid.
PROGRES can create edges between sets of nodes, but it creates an edge from
each node of the source set to all nodes of the target set. Of course, this is not
desired for the relation between places and tokens.

Star Qualifier
Another possibility to cover set-valency with productions is the star qualifier,
which was introduced into PROGRES to execute productions in parallel. All
PROGRES productions have a qualifier, determining the number of potential
matches expected for this rule, nevertheless, the rule is executed only once.
The star qualifier breaks this convention and causes the left-hand side to be
matched to all potential matches in the working graph in parallel. The matching
is then followed by (sequential) application of the right-hand side to all matches.

446 C. Fuss and V.E. Tuttlies

‘1: Token ‘2: Place ‘4: Place‘3 = choice

transformation fireTransition (choice: Transition) * =

end;

5’: Token2’ = ‘2 4’ = ‘43’ = ‘3

not (hasEmptyPresetPlace)

Fig. 3. Modeling the firing rule for an arbitrary transition using the star qualifier

Conflicting matches that are destroyed by execution of the rule at a previous
match are simply ignored.

Fig. 3 shows a transformation with a star qualifier, which comes pretty close
to the desired behavior, but one cannot easily distinguish set-valued regions from
common regions and one has to determine the transition by hand. Additionally,
this solution does not work for more complex rules, containing nested set-valued
regions. How star-qualified rules can be used in combination with programmed
rules to define complex patterns is described in Section 5.

Programmed Rules
However, besides productions, PROGRES offers programm d rules1, so-called
transactions2. For the programming of sequential or pseudo-parallel rules execu-
tion, one can use many different control structures. Besides conditional
statements, there are loop statements (for all and while) suited to deal with
set-valency. Applying these statements allows complete handling of complex set-
valued structures. Nevertheless, programming seemingly simple and intuitive
rules containing set-valued structures, e.g. the firing of Petri Nets, turns out to
be a complex and consequently error-prone task.

Thus when discussing about a specification, we ended up drawing rules like
Fig. 4 by hand, using a notation resembling set nodes, but with internal struc-
ture. The meaning, denoting a production with arbitrary big sets of the marked
structures, could be grasped easily as illustrated in Fig. 5. However, we always
had to specify complicated transactions, which simulated the matching and par-
allel execution of the sketched rule.

Knowing amalgamated rules from algebraic approaches and the power of al-
gorithmic transformation languages with a rich set of control structures, we will
define a language construct similar to amalgamated transformations, which can
be simulated with existing language elements.
1 Programmed rules gave PROGRES its name: PROgrammed Graph REwriting

System.
2 The execution of programmed rules is transactional, hence their name.

Simulating Set-Valued Transformations 447

Fig. 4. Hand-drawn rule from our discussions about a set-valued transformation,
sketching the firing of a Petri Net transition

‘1a: Token

5a’: Token

‘1b: Token

5b’: Token

5k’: Token

‘1c: Token

‘1n: Token

‘2a: Place

2a’ = ‘2a

‘2b: Place

2b’ = ‘2b

‘2c: Place

2c’ = ‘2c

‘2n: Place

2n’ = ‘2n

‘4a: Place

4a’ = ‘4a

‘4b: Place

4b’ = ‘4b

‘4k: Place

4k’ = ‘4k

‘3: Transition

3’ = ‘3

not (hasEmptyPresetPlace)

transformation fireTransition =

end;

Fig. 5. Meaning of the rule from Fig. 4 with set-valued regions expanded

4 Syntax Definition and Semantics

In this section, we will introduce the notion of set-valued transformations, like
the one presented in Fig. 4. A set-valued transformation defines an infinite set of
productions that share some commonalities. The commonalities and differences
should be easily identifiable.

4.1 Syntax

The syntax should allow easy and compact declaration of set-valued transfor-
mations in a production-like manner as sketched in Fig. 4. The new syntax

448 C. Fuss and V.E. Tuttlies

Fig. 6. Graphical syntax elements for obligatory and optional set-regions

element for set-valued transformation resembles a production, but can contain
set-regions. Fig. 6 shows the graphical elements for obligatory and optional set-
regions. Fig. 7 gives the extension of the context-free syntax, which comprises
four new elements for obligatory and optional set-regions on a production’s left-
hand and right-hand side. Additionally, all syntactical elements from standard
PROGRES that can contain the four new elements have to be redefined to re-
flect the addition. As the syntax definition implies, set-regions can be nested
arbitrarily deep, but may not be overlapping.

The main syntactical difference of set-valued transformation declaration SVT-
Decl lies in the context-sensitive syntax; many new restrictions apply to the usage
of nodes and edges within a set-region, as well as to elements referencing them.
As described above, the new syntax element describes an infinite set of produc-
tions. In order to be comprehensive and unambiguous, the following additional
restrictions apply to elements known from simple productions, when used within
a set-region.

Nodes within a set-region must be handled as sets of nodes outside the region,
thus a parameter or variable referencing such a node, must be set-valued. In
addition, two RHS node constructs referencing LHS node constructs contained
in the same LHS set-region, must be grouped in one RHS set-region.

Edges must belong to a production part, which contains either source or target
node. If both nodes do not belong to the same part, the part containing one
node, must also (possibly indirectly) contain the set-region containing the other
node. I.e., edges may only cross borders of set-regions, which are nested within
each other. Standard PROGRES also allows edges between two set-nodes, but
only on the RHS, creating edges from each node of the one set to all nodes of
the other set (yielding an unambiguous set semantics according to [1]). Such a
definition is not (yet3) supported by our implementation and prohibited with
this constraint. Nevertheless, this constraint still allows the definition of tree
structures using nested set-regions, which are unambiguous due to the concrete
nesting.

3 We have considered edges between hierarchically not related sets of nodes and
it would be possible to define unambiguous (nevertheless non-deterministic) set-
semantics for these edges and implement that with our simulation approach. But the
semantics would not be intuitively understandable and the structure of the (non-
deterministically) matched set of nodes, would be very dependent on the chosen
matching strategy. Thus we decided to prohibit this kind of edges.

Simulating Set-Valued Transformations 449

OblSetRegionDecl ::= ”set region” ”=”
OptSVTLeftSideList

”end” ”;” ;
OptSetRegionDecl ::= ”opt set region” ”=”

OptSVTLeftSideList
”end” ”;” ;

OblOldSetRegionDecl ::= ”set region” ”=”
OptSVTRightSideList

”end” ”;” ;
OptOldSetRegionDecl ::= ”opt set region” ”=”

OptSVTRightSideList
”end” ”;” ;

SVTDecl ::= ”setvalued transformation” DeclSVTId FormParPart ”=”
SVTBody

”end” ”;” ;
SVTBody ::= [SVTGraphPart] [OptAttCondList] [OptEmbList]

[OptAttTransferList] [OptReturnList] ;
SVTGraphPart ::= OptSVTLeftSideList ”::=” OptSVTRightSideList ;

OptSVTLeftSideList ::= {SVTLeftSideClause} SVTLeftSideClause ;
SVTLeftSideClause ::= NodeDecl | EdgeDecl | SetNodeDecl | · · ·

| OblSetRegionDecl | OptSetRegionDecl ;
OptSVTRightSideList ::= {SVTRightSideClause} SVTRightSideClause ;
SVTRightSideClause ::= OldNodeDecl | NewNodeDecl | NewEdgeDecl

| OblOldSetRegionDecl | OptOldSetRegionDecl ;

Fig. 7. Context-free syntax extension for set-valued transformations

4.2 Semantics

A set-valued transformation describes a set of productions that can be con-
structed from the description by extending the minimal contained production
by arbitrarily multiplying the set-regions. We will not formally define the con-
struction of this set, because the set is infinite and thus cannot be constructed
in advance; we will only outline the construction.

A PROGRES specification is formally defined by a set of first order logic
formulae, which can be divided into subsets belonging to different syntactical
regions according to the syntactical element defining the formulae, i.e. if a syn-
tactical element is internally structured by other syntactical elements, the set of
formulae can be divided into subsets according to the syntactical structure.

In order to construct a production from the set, the formulae from the set-
regions can be multiplied. While multiplying the formulae, the ones defining
the element names have to be rewritten to give each element a distinct name.
The edges crossing region borders are called the region’s interface. In addition
to the elements from the set-region, the formulae for the region’s interface also

450 C. Fuss and V.E. Tuttlies

have to be multiplied, obeying the above mentioned renaming of the elements
within the region.

The execution semantics of a set-valued transformation is defined as the se-
mantics of the maximum production applicable to a subgraph containing a non-
deterministically chosen match of the minimum production.

The maximum production out of the set is defined as follows: The production
P ∈ SVT is maximal with respect to an initial match M, if P matches a subgraph
covering M and if there is no other matching production in SVT covering M,
which can be constructed out of P using the extension from SVT.

This definition is quite similar to the semantics definition of the existing PRO-
GRES set nodes and guarantees a maximum match while maintaining the desired
non-determinism. E.g., when firing a Petri Net transition, the expected behavior
of the transformation is to remove a token from each place in the preset and
put a new token into each place of the postset for a non-deterministically chosen
enabled transition, thus the defined execution semantics.

5 Implementation

Because the set of productions defined by a set-valued transformation is infinite,
the set cannot be generated completely in advance. Instead, the adequate max-
imum production has to be generated at execution time according to the initial
match for the minimal production. Once the maximum production is generated
according to the description from Section 4.2, it can be applied just like a reg-
ular production. This idea is very similar to the concept of amalgamated graph
transformations as proposed for double-pushout approaches in [21].

This approach can be implemented for the PROGRES interpreter fairly
straight-forward, but on the one hand is the monolithic PROGRES application
not well extensible and on the other hand adapting the interpreter would leave
most prototype editors specified with PROGRES without the new construct,
because they run on generated code.

Thus we decided to implement the new construct with the help of a preproces-
sor, which converts a PROGRES specification containing the new construct for
set-valued transformations into a specification using only standard constructs.
As proclaimed in Section 3, PROGRES with its rich set of control structures, has
already all language features to handle set-valency sufficiently. Hence it should
be possible to replace each set-valued transformation by a transaction, which
simulates the desired behavior.

The transactions simulating set-valued transformations all work in two phases,
in a first phase, the matching of a maximum production is simulated, in the
second phase the rule application is simulated.

Matching
The matching is done by marking partial matches for the nodes within set-
regions. New markers are inserted, until no more extending partial matches can
be found. The markers are structured according to the nesting structure of the

Simulating Set-Valued Transformations 451

T1

P6

P5

P4

P3

P2

P1
T2

T3

M1

M2a M2b M2c M3a M3b

Fig. 8. Matching structure of the set-valued transformation from Fig. 4 applied to the
Petri Net example from Fig. 1

‘1: Token

‘4 = parentMarker

‘2: Place ‘3: Transition

transformation markSetRegion1 (parentMarker: MatchMarker) =

end;

2’ = ‘21’ = ‘1

4’ = ‘4

‘5: MatchMarker

7’: MatchMarker

‘6: MatchMarker

3’ = ‘3

Fig. 9. Marking production for the left set-region from Fig. 4

set-regions. Fig. 8 shows an example matching of the set-valued transformation
from Fig. 4 applied to the Petri Net example from Fig. 1.

For the sake of an easy and well-understandable implementation, we insert
the markers temporarily into the working graph. For this we have to amend
the graph schema and introduce a MatchMarker node type. In order to avoid
changing the working graph, one would have to create a data structure for the
matches, which is local to the generated transaction and supports the desired
injective matching.

For each set-region we have to create one marking rule. The marking rules
can easily be extracted from the set-valued transformation. Fig. 9 shows the
marking rule for the left set-region from Fig. 4. Besides the contents of the
set-region itself, it contains the nodes belonging to the regions interface (edges
crossing the regions borders) and the marker of the embedding transformation
part, which is inserted as input parameter to the matching production. This rule
is applied within a loop until no more matches can be found.

452 C. Fuss and V.E. Tuttlies

Rule Application
Similar to the matching procedure, we have to create subproductions for each
set-region. Within the generated transaction, the different subproductions have
to be executed sequentially; in order to simulate parallel rule execution of all
subproductions, the execution has to be guarded against unwanted attribute
modifications before attributes are read by other subproductions. Thus all nodes
that are referenced across set-region borders and are modified or deleted have
to be temporarily duplicated and added to the according match marker. New
nodes that are referenced across set-region borders also have to be created in
advance.

It is not possible to use the star-qualifier for this, because the execution of
star-qualified rules in PROGRES is only pseudo-parallel and previously found
matches that are altered by the execution of the rule for another simultaneous
match are simple eliminated from the set of matches. Additionally, usage of the
star-qualifier would limit the approach to graph rewrite systems, which already
provide this feature.

Once the above-mentioned special cases are handled, the extraction of the
modifying subproductions is straight-forward. The subproductions contain a
rule element for the marker as input parameter. The marker and all duplicated
nodes are deleted during rule execution. The remainder of the generated pro-
ductions reflects the changes, which can be extracted from the differences of the
LHS/RHS-pair of the set-region. Fig. 10 shows the rule that is called for each
marker marking the left set-region.

‘1: Token ‘2: Place

transformation modifySetRegion1 (marker: MatchMarker) =

end;

2’ = ‘2

‘3 = marker

Fig. 10. Production executing the modifications for the left set-region from Fig. 4

A similar implementation could be used to implement a language construct
for set-valued transformations in other graph transformation languages offering
a rich set of control structures, e.g. Fujaba [10,11].

The above preprocessor implementation together with analyzes for the syntax
directed editor is not yet incorporated into the standard PROGRES application,
but can be run externally. The resulting specifications look very similar to the
previous specifications, which contained hand-coded set-valued transformations.
The performance of the generated transformations could be improved by not

Simulating Set-Valued Transformations 453

changing the working graph for the matching procedure, but rather generating
a local data structure to hold the match. In a similar way it would be possible
to eliminate the temporary duplication of modified nodes, which are referenced
external to the modifying region. With this implementation the simulation ap-
proach would perform similar to a native implementation in the PROGRES
interpreter and generator. Because we use PROGRES mainly for the specifi-
cation of complex editing commands in interactive model editor prototypes,
performance is not really an issue. Thus we settled for the better understand-
able solution, rather than the better performing one. The main drawback of
the simulation approach at the moment is, that it is not seamlessly integrated in
the PROGRES specification editor and that debugging a generated specification
using the interpreter is not well supported.

6 Conclusion

We have introduced a notion of set-valued transformations for algorithmic graph
transformation languages by defining their syntax and semantics. The syntax
was chosen to be very similar to that of simple productions. But a set-valued
transformation can contain a new syntax element, set regions that mimic the use
of set nodes, known from the PROGRES syntax, but have an internal structure.
The semantics was defined as infinite set of simple productions, which can be
constructed from the transformation definition by arbitrarily multiplying the set
regions. We also showed, how this behavior can be simulated by a PROGRES
transaction generated from the transformation definition.

The approach proved to be viable and should also be applicable to other algo-
rithmic graph transformation languages that offer a rich set of control structures.
An implementation for Fujaba should be possible without many problems.

As future extension, a region construct solely for a rules right-hand side,
comparable to a NewNodeDecl, creating a new set-valued pattern could be in-
teresting, but the binding of the set size remains an issue. Also the definition of
a general region construct seems interesting, it could then be easily used for fur-
ther extensions like recursive transformation rules, that are urgently required in
related fields [15]. Since PROGRES already offers recursive transformation calls
within transactions, it would be no problem to simulate the semantics of a new
syntactical element for recursive transformations very similar to the approach
shown in this paper.

References

1. Agrawal, A., Karsai, G., Neema, S., Shi, F., Vizhanyo, A.: The design of a language
for model transformations. Journal on Software and System Modeling 5(3), 261–
288 (2006)

2. Balasubramanian, D., Narayanan, A., Neema, S., Ness, B., Shi, F., Thibodeaux, R.,
Karsai, G.: Applying a grouping operator in model transformations. In: Schürr, A.,
Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088. Springer, Heidelberg
(2008)

454 C. Fuss and V.E. Tuttlies

3. Balasubramanian, D., Narayanan, A., Neema, S., Shi, F., Thibodeaux, R., Karsai,
G.: A subgraph operator for graph transformation languages. In: Margaria, et al.
(eds.) [18], pp. 95–106

4. Bardohl, R., Taentzer, G., Minas, M., Schürr, A.: Application of Graph Trans-
formation to Visual Languages, vol. 2, pp. 105–180. World Scientific, Singapore
(1999)

5. Bauderon, M., Courcelle, B.: Graph expressions and graph rewritings. Technical re-
port, University Bordeaux, Department of Mathematics and Informatics, TR 8525
(1985)

6. Corradini, A., Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner,
A.: Algebraic Approaches to Graph Transformation – Part I: Basic Concepts and
Double Pushout Approach, vol. 1, pp. 163–245. World Scientific, Singapore (1997)

7. Courcelle, B.: A representation of graphs by algebraic expressions and its use for
graph rewriting systems. In: Ehrig, et al. (eds.) [8], pp. 112–132

8. Ehrig, H., Nagl, M., Rosenfeld, A., Rozenberg, G. (eds.): Graph Grammars 1986.
LNCS, vol. 291. Springer, Heidelberg (1987)

9. Engels, G., Lewerentz, C., Schäfer, W.: Graph grammar engineering: A software
specification method. In: Ehrig, et al. (eds.) [8], pp. 186–201

10. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A new graph
rewrite language based on the Unified Modeling Language. In: Ehrig, H., Engels,
G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 296–
309. Springer, Heidelberg (2000)

11. Fujaba – From UML to Java and Back Again (1999), http://www.fujaba.de/
12. Fuss, C., Mosler, C., Ranger, U., Schultchen, E.: The jury is still out: A comparison

of agg, fujaba, and progres. In: Margaria, et al. (eds.) [18], pp. 183–195
13. Guerra, E., de Lara, J.: Adding recursion to graph transformation. In: Margaria,

et al. (eds.) [18], pp. 107–120
14. Karsai, G., Agrawal, A., Shi, F., Sprinkle, J.: On the use of graph transformation

in the formal specification of model interpreters. Journal of Universal Computer
Science 9(11), 1296–1321 (2003)

15. Körtgen, A.-T.: Modeling successively connected repetitive subgraphs. In: Schürr,
A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088. Springer, Hei-
delberg (2008)

16. Lewerentz, C.: Interaktives Entwerfen großer Programmsysteme. PhD-Thesis,
RWTH Aachen, IFB 194 (1988)

17. Lindqvist, J., Lundkvist, T., Porres, I.: A query language with the star operator.
In: Margaria, et al. (eds.) [18], pp. 69–80

18. Margaria, T., Padberg, J., Taentzer, G. (eds.): Proc. of the 6th International Work-
shop on Graph Transformation and Visual Modeling Techniques (GT-VMT 2007),
Braga, Portugal. Electronic Communications of the EASST, vol. 6 (March 2007)

19. Nagl, M.: Graph-Grammatiken: Theorie, Anwendungen, Implementierung. Vieweg
Verlag (1979)

20. Schürr, A.: Operationales Spezifizieren mit programmierten Graphersetzungssys-
temen. Deutscher Universitätsverlag, Wiesbaden, Doctoral Dissertation (1991)

21. Taentzer, G.: Parallel and distributed graph transformation: Formal description
and application to communication-based systems. Doctoral dissertation, Technis-
che Universität Berlin (1996)

22. Taentzer, G.: AGG: A tool environment for algebraic graph transformation. In:
Münch, M., Nagl, M. (eds.) AGTIVE 1999. LNCS, vol. 1779, pp. 481–488. Springer,
Heidelberg (2000)

http://www.fujaba.de/

Simulating Set-Valued Transformations 455

23. Taentzer, G., Beyer, M.: Amalgamated graph transformations and their use for
specifying agg - an algebraic graph grammar system. In: Dagstuhl Seminar on
Graph Transformations in Computer Science, pp. 380–394 (1993)

24. Taentzer, G., Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovszky, T.,
Prange, U., Varró, D., Varró-Gyapay, S.: Model Transformation by Graph Trans-
formation: A Comparative Study. In: Proceedings of the International Workshop
on Model Transformations in Practice, MTiP 2005 (Satellite Event of MoDELS
2005), Montego Bay, Jamaica (2005)

25. Varró, G., Schürr, A., Varró, D.: Benchmarking for graph transformation. In:
2005 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pp. 79–88. IEEE Computer Society, Los Alamitos (2005)

Recursive Graph Pattern Matching�

(With Magic Sets and Global Search Plans)

Gergely Varró1, Ákos Horváth2, and Dániel Varró2

1 Department of Computer Science and Information Theory
Budapest University of Technology and Economics

gervarro@cs.bme.hu
2 Department of Measurement and Information Systems

Budapest University of Technology and Economics
{ahorvath,varro}@mit.bme.hu

Abstract. We present core data structures and algorithms for matching graph
patterns with general recursion. Our approach uses magic sets, a well-known
technique from deductive databases, which combines fixpoint-based bottom-up
query evaluation with top-down handling of input parameters. Furthermore, this
technique is enhanced with the global search plans, thus non-recursive calls are
always flattened before elementary pattern matching operations are initiated in
order to improve performance. Our approach is exemplified using VIATRA2.

1 Introduction

Graph transformation (GT) [1] is a frequently used means to capture model transfor-
mations in the context of model-driven software development. Graph transformation
rules provide a declarative, rule and pattern-based language for specifying both inter-
language and intra-language model manipulations for model analysis, refactoring or
simulation.

GT rules consist of a left-hand side (LHS) and a right-hand side (RHS) graph pat-
tern. The LHS specifies contextual conditions which should hold as a precondition for
applying the rule, which is checked by graph pattern matching. Then the model is ma-
nipulated by calculating the difference of the RHS and the LHS in the model.

However, in order to design complex transformations, the core GT formalism has
been extended to address reusability or maintainability. For instance, graph transforma-
tion units [2], modules [3] or programs [4, 5] have been introduced where elementary
GT rules are enriched with control structures.

An alternate, and more declarative way for reusability has also been introduced (in
systems like VIATRA2 [6] or Tefkat [7]) where graph patterns are stand-alone con-
cepts, which can be assembled into more complex patterns and/or transformation rules
by pattern composition (or pattern call). This concept is quite similar to other popular

� This work was partially supported by the SENSORIA European IP (IST-3-016004), the Hun-
garian National Research Fund and the National Office for Research and Technology (grant
No. 67651, OTKA), and the János Bolyai scholarship.

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 456–470, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Recursive Graph Pattern Matching 457

declarative formalisms in logic programming or deductive database systems (like Pro-
log or Datalog), where basic facts and complex predicates are treated identically when
evaluating a query. A key performance issue when matching graph patterns in case of
pattern composition is to generate a single global search plan for the flattened pattern,
which is discussed in [8].

A natural extension for pattern-level reuse is to allow recursive calls in case of pat-
tern composition, i.e., when a predefined graph pattern may call itself or other patterns
recursively. Investigating recursion in graph transformation rules has recently become
very popular with several approaches [9, 10] targeting mainly its specification aspects.
However, these approaches mostly assume simple recursion where a pattern may call
itself only once in a single execution branch.

In the current paper, we make only a single, very general assumption on recursion,
namely, parameters of negative application conditions must be bound at the time of their
invocation , but otherwise arbitrary recursive calls are allowed. As the main contribu-
tion, we define data structures and sketch core algorithms how recursive graph patterns
can be matched based upon magic sets [11], a well-known technique from deductive
databases, which combines fixpoint-based bottom-up query evaluation with top-down
handling of input parameters. Furthermore, this technique is enhanced with the global
search plans of [8, 12] thus non-recursive calls are always flattened before elementary
pattern matching operations are initiated to improve performance.

The remainder is structured as follows. First, Section 2 briefly introduces a combined
graph-based representation for models and metamodels used in the paper (and in the
VIATRA2 framework). Then Section 3 describes the overview of our approach, while
Section 4 and Section 5 propose our data structures and algorithms used in the com-
pile and run-time phases of the recursive pattern matcher, respectively. Related work is
discussed in Section 6, while Section 7 concludes our paper.

2 Background

First we informally introduce models, metamodels and graph patterns used in the paper,
using the object-relational mapping defined in the model transformation contest of [13]
as a running example. This transformation was captured by graph transformation rules
using recursive patterns in [7, 14].

2.1 VIATRA Models and Metamodels

Metamodeling provides the structural definition (i.e., abstract syntax) of modeling
languages.

In the paper, we use a unified directed graph representation [6] which stores meta-
models and models in a combined model space. Intuitively, the morphisms from in-
stance nodes (and edges) to their respective node (edge) types are stored explicitly in
our graph model. As a summary, nodes represent basic concepts of a (modeling) do-
main, while edges represent the relationships between model elements. This unified
graph representation serves as the underlying model of the VIATRA2 framework.

This way, graph nodes (called entities in VIATRA2, depicted as a rectangle in Fig. 1)
uniformly represent MOF packages, classes, or objects on different metalevels, while

458 G. Varró, Á. Horváth, and D. Varró

graph edges with identities (called relations in VIATRA2, depicted as a solid line in
Fig. 1) denote MOF association ends, attributes, link ends, and slots in a uniform way.
Nodes are arranged into a strict containment hierarchy to denote model element con-
tainment either on the metamodel or model-level.

Example 1. Figure 1 presents the joint representation of a simplified UML metamodel
and an instance model. The metamodel is depicted on the right side. Both the classes of
the metamodel (such as cls, assoc, etc.) and the objects of the instance model (such
as car, plt) uniformly appear as nodes (entities), while relations between nodes are
illustrated by solid edges.

Fig. 1. Sample instance model and metamodel

2.2 Graph Patterns

Graph transformation (GT) is a rule and pattern-based paradigm frequently used for de-
scribing model transformations. A graph transformation rule contains a left-hand side
graph LHS (or graph pattern) and a right-hand side graph RHS, and (one or more) neg-
ative application condition graphs (NAC) connected to LHS. Graph patterns (precon-
dition pattern) consist of the LHS pattern, the NAC pattern, and the mapping between
them. They are describe by pattern bodies consist of a set of constraints that have to
be fulfilled by a model to apply graph transformation rule. In order to define recursive
pattern we allow alternate (OR) pattern bodies for a pattern, with a meaning that the
pattern is fulfilled if at least one of its bodies is fulfilled.

As different graph transformation languages allow different language constraints
(e.g., containment between model elements), in the following we use the constraints of
the VIATRA2 framework containing (i) structural constraints prescribing the existence
of nodes and edges of a given type, (ii) check constraints capturing term evaluation
over the attributes of the matched elements (using the check keyword), and (iii) pat-
tern invocation constraints allowing pattern composition (invocation) of other patterns
supported in a declarative way (using the find keyword). The semantics of this refer-
ence is similar to that of the declarative Horn clauses, where the caller pattern can be
fulfilled only if their local constructs can be matched, and if the pattern invoked with
the actual parameters is also fulfilled.

Recursive Graph Pattern Matching 459

Example 2. The graphical and VIATRA2 textual representation of the graph patterns of
the object-relational mapping are depicted in Fig. 2, 3, and 4. Both classHasAttr
and classHasIncludedAttr contain all recursive features offered by VIATRA2,
from which we use classHasAttr as our running example. The meaning and pur-
pose of the classHasAttr that a Cls ”has” an Attr for the purpose of the mapping
if, (i) it is directly owned and a primitive type, or (ii) a referenced Cls (via an Attr
or an Assoc) ”has” the Attr, or (iii) the children of the Cls ”have” the Attr. In-
formally the meaning of the classHasIncludedAttr to map additional attributes
along references and inheritance, while classHasReference is a helper pattern for
matching ”references” (attributes and associations) between classes.

The pattern classHasAttr contains three formal parameters: Cls, Attr
and Key, and it consists of three pattern bodies. The first body prescribes that
there exists a Cls class with an Attr attribute, which has a Boolean value
Key denoting whether attribute Attr is a primary key. The second prescribes the
classHasIncludedAttr pattern invocation with formal parameters (Cls, Attr,
Key) of the caller pattern as actual parameters (depicted by grey boxes on the invoked
pattern). The last body prescribes three constraints: (i) there exists two classes SubCls
and Cls with a parent relation between them, (ii) the classHasAttr pattern invoca-
tion where the first parameter is the local SubCls element (depicted by dashed line),
while the two other (Attr and Key) are the formal parameters of the caller pattern,
and (iii) that the value of Key is false.

pattern classHasIncludedAttr(Cls, Attr, Key) =
{cls(Cls);
find classHasReference(Cls, Type);
find classHasAttr(Type,Attr, KeyForType);
cls(Type);
cls.persistent(Type, B);
Boolean(B);
Boolean(Key);
Boolean(KeyForType);
check(value(B) == "true" &&
value(Key) == "true" &&
value(KeyForType) == "false");

}or{
cls(Cls);
find classHasReference(Cls, Type);
find classHasAttr(Type, Attr, KeyForType);
cls(Type);
cls.persistent(Type, B);
Boolean(B);
check(value(B) == "false");
Boolean(Key);
Boolean(KeyForType);
Key = KeyForType;

}

Fig. 2. classHasIncludedAttr pattern

2.3 Graph Pattern Matching

The most critical step of graph transformation is graph pattern matching, i.e., to find
a matching of the LHS pattern in the model, that is not invalidated by a matching of
the negative application condition graph NAC, which prohibits the presence of certain

460 G. Varró, Á. Horváth, and D. Varró

pattern classHasAttr(Cls, Attr, Key) =
{cls(Cls);
cls.attrs(Cls, Attr);
attrib(Attr);
attrib.primary(Attr, Key);
datatypes.Boolean(Key);

}or{
find classHasIncludedAttr(Cls, Attr, Key);
}or{
cls(SubCls);
cls.parent(SubCls, Cls);
cls(Cls);
find classHasAttr(SubCls, Attr, Key);
datatypes.Boolean(Key);
check(value(Key) == "false");

}

Fig. 3. classHasAttr pattern

pattern classHasReference(SrcC, DstC) =
{cls(SrcC);
cls.attrs(SrcC, A);
attrib(A);
attrib.type(A, DstC);
cls(DstC);

}or{
assoc(Assoc);
cls(SrcC);
assoc.src(Assoc, SrcC);
cls(DstC);
assoc.dest(Assoc, DstC);

}

Fig. 4. classHasReference pattern

combinations of nodes and edges. Thus we restrict our investigations only to graph
patterns and graph pattern matching for the current paper.

During pattern matching each variable of a graph pattern is bound to a node in the
model such that this matching (binding) is consistent with edge labels, and source and
target nodes of the model.

Traditional model transformation approaches handle recursive invocation in a top-
down imperative way, usually integrated into the control flow rather than the patterns
themselves. We propose a fixpoint-based bottom-up evaluation approach combined
with a top-down handling of input parameters following deductive database techniques.
As [11] states, such a technique benefits from the advantages (e.g., convergence de-
tection, strong focus on relevant facts) of both the semi-naive bottom-up and the tradi-
tional top-down style, queue-based rule/goal tree expansion methods. Furthermore, it
terminates after the same number of iterations (up to a constant factor), and it provenly
produces [11] the same results as the others.

3 Overview of the Approach

The proposed workflow of implementing recursive graph pattern matching is summa-
rized in Fig. 5.

Recursive Graph Pattern Matching 461

Fig. 5. Overview of the recursive pattern matching approach

We separate compile time parts from run-time parts, where each part consists of the
following steps:

– At compile time each step is calculated once for each pattern description.
• First, for each pattern description a call tree is generated capturing how patterns

call other patterns.
• Then for each call tree flattened patterns are generated. The use of flattened

patterns allows the optimization of pattern matching in a global scope (e.g.,
edges that are defined in different patterns can be traversed one after the other).

• For each flattened pattern a corresponding search graph is generated. The
search graph is glued from the patterns of the flattened pattern body accord-
ing to the passed parameters of the calls.

– After initializing the previous data structures at compile time, run-time steps have
to be calculated for each separate pattern invocation.

• Search plan is generated from the search graph based on the parameter binding
to drive the pattern matching process.

• Then matchings are calculated by an iterative bottom-up recursion evaluation
using magic sets, helping the pattern matcher to focus only on matches relevant
to the input parameter binding.

4 Compile Time Steps of the Recursive Pattern Matcher

Fig. 6. Call tree of the classHasAttr graph
pattern

In this section we briefly introduce the
data structures and algorithms needed for
the compile time tasks of the recursive
pattern matcher.

4.1 Call Tree

A call tree is a directed bipartite tree de-
scribing the structural dependencies of a
given pattern. It is constructed by a tra-
versal process, which explores the pos-
sible body alternatives of a pattern and
all the pattern invocations in a depth first
manner.

462 G. Varró, Á. Horváth, and D. Varró

Nodes on the odd levels of the call tree represent pattern heads (denoted as simple
rectangles) and (pattern) references (illustrated by grey rectangles), while nodes on the
even levels denote (pattern) bodies (symbolized with numbered circles). The fact that a
body is a disjunctive alternative of a pattern head is expressed by an edge connecting
the corresponding pattern head to the body. Edges connecting bodies to pattern heads
and references represent non-recursive and recursive pattern invocations, respectively.

Example 3. The call tree of pattern classHasAttr of Fig. 3 is illustrated in Fig. 6.
TheclassHasAttr pattern (head) has three pattern bodies depicted by circles with

numbers 1, 2 and 3. Pattern body 2 invokes the classHasIncludedAttr pattern
head which has pattern bodies4 and5. Both of these bodies have similar sub-trees, as they
differ only in the check constraint. The classHasReference contains two pattern
bodies, and contained twice in the call tree as it is invoked separately from 4 and 5.

4.2 Flattening

In order to provide better performance for pattern matching, we use search plan op-
timization techniques, where optimization can be considered as a process that orders
constraints to provide an efficient evaluation plan for their run-time execution.

As current optimization techniques [4, 12, 8] have been developed for non-recursive
use, they operate on the scope of pattern bodies, which means that a separate opti-
mization procedure is executed for the set of constraints defined by a given body. This
approach often results in poor search plans for a recursive pattern matcher due to the
lack of global view for the optimizer on the overall set of structural constraints.

In order to get better search plans, the operation scope of the optimizer module is
increased by flattening the call tree and by merging pattern bodies and recursive invo-
cations resulting in a larger set of constraints to be processed by the optimizer.

In the flattening process each pattern body or pattern reference node is recursively
merged to the closest ancestor pattern body and mapped to flattened pattern bodies
(FPB). As a result, a flattened call tree is obtained in which the new flattened pattern
bodies are direct children of the root pattern head node.

Example 4. The flattened version of the call tree of Fig. 3 is depicted in Fig. 7. The
classHasAttr pattern has six flattened pattern bodies denoted by vectors, contain-
ing the numbers of the constituting body nodes. The flattened pattern bodies (#246O,
#247O, #258O, #259O and #3O) are recursive as depicted by grey square with circle,
while flattened pattern body #1 is non-recursive.

Fig. 7. Flattened patterns

For example the #246O flattened pattern is constructed
by starting from the root (disjunctive) node selecting the
pattern body 2. From 2 the classHasIncludedAttr
pattern head is traversed and the pattern body 4 is selected.
The traversal continues on both branches of body 4 adding
pattern body 6 and classHasAttr pattern call to the
flattened pattern.

Recursive Graph Pattern Matching 463

4.3 Search Graph

Informally a search graph is a common representation of constraints (e.g., there is a
relation between two elements) that drives the pattern matching process. For each flat-
tened pattern body a separate search graph is generated, where a search graph is built by
merging the constraint of the contained pattern bodies of a flattened pattern body, i.e.,
all formal parameters of the invoked pattern head are substituted with the corresponding
actual parameters of the caller.

Example 5. For easier readability an extract of the search graph — without all con-
straints — of #246O from Fig. 7 is depicted on the left side of Fig. 8, with the simplified
VIATRA2 textual representation on the right hand side.

The search graph created from the combination of pattern bodies 2, 4, 6 and
the pattern reference classHasAttr contains 7 entities all denoted as rectangles.
Relations are captured by solid lines (e.g., attrs relation source is Cls), while
binding between the actual and formal parameters of the recursive invocation are high-
lighted by dashed lines between the corresponding elements (e.g., Type is the actual
parameter of the Cls formal parameter). While passing the formal parameter Attr of
the caller pattern is denoted by a dotted box.

classHasAttr_2460(Cls,Attr,Key) ={
//Local goal
Boolean(Key);
Boolean(KTF);
Boolean(B);
cls(Cls); cls.attrs(Cls,A);
attrib(A); attrib.type(A,Type);
cls(Type); cls.persistent(Type, B);
check(value(Key) == "true" &&
value(B) == "true" &&
value(IKTF) == "true"); //TERM
//Remote goal
find classHasAttr(Cls,Attr,KTF); }

Fig. 8. Search graph of classHasAttr flattened pattern #246O

In order to present our concepts, we use an intuitive database like notation, where
search graphs are defined as a set of natural joins over tables formed by the structural
and invocation constraints of the FPB, while check constraints are mapped to filters on
matching candidates. Tables defined for entities and relations (structural constraints)
are illustrated with tables of one and two columns, respectively, while pattern refer-
ences and heads are captured by tables containing a column for each formal and actual
parameter of the pattern. Note that, pattern references and heads of the same pattern are
mapped to the same table.

This representation allows to define the matching process as a least-fix point evalua-
tion (tableofmatchings = lfp(structuralconstraints �� patternreference)) over
the joined tables, where the tableofmatchings holds the matchings of the invoked
pattern head.

As a result this representation pin-points the crucial parts of recursive pattern match-
ing, namely (i) optimized ordering of natural joins, and (ii) effective evaluation of least-
fix points for which our solutions are introduced in Sec. 5.

464 G. Varró, Á. Horváth, and D. Varró

Example 6. The extract database like representation of Fig. 8 is depicted in Fig. 9.
Structured constraints (boxed in dashed line) are illustrated by tables of one and two
columns, where the first row holds the type of the element, while the second represents
the corresponding name of the involved search graph elements (e.g., the attrs table
with two columns represent the attrs relation between the Cls and A entities). While
the classHasAttr pattern recursive invocation is captured by a table of rows Type,
Attr, and KFT. Finally, the search graph described as a least-fix point evaluation is
classHasAttr = lfp(structuralconstraints �� classHasAtrr).

Fig. 9. Natural join representation of the classHasAttr pattern

5 Run-Time Behavior of the Recursive Pattern Matcher

After calculating and initializing the previous data structures at compile time, the rest
of the recursive pattern matching process is carried out at run-time.

5.1 Ordering Constraints of the Flattened Pattern Body

When a pattern matching process is initiated for a given pattern at run-time, a user may
supply input parameters. Depending on the binding of the formal parameters of the
pattern head we define an adornment which denotes if the pattern parameter is bound
(B) or free (F).

For an efficient query evaluation process, the execution order of natural joins should
be determined by sequencing its constituting constraints. This sequence of constraints
in a flattened pattern body is called a search plan, and it is produced by the algorithms
of [12, 8], which also use the adornment information during the generation process.

5.2 Recursion Evaluation Techniques

Approaches for efficiently calculating the fix-point for the table of matchings can be
categorized as follows.

The queue-based top-down recursion evaluation technique performs a breadth-first
traversal for collecting matchings by alternately using the flattened call tree and nav-
igating along pattern invocation constraints to explore the recursion in depth. As an
advantage, this technique is able to focus only on exactly those “relevant” matchings
that can provide solution for the actual binding of the pattern head at the topmost recur-
sion level. On the other hand, as the matchings found in a deeper level of recursion are
always immediately propagated upwards by performing a series of natural joins, this
approach requires the proper maintenance of the pattern heads that have actually been
invoked during the traversal including one local copy for their actual bindings and one
for their matchings resulting in a decentralized solution.

Recursive Graph Pattern Matching 465

The bottom-up recursion evaluation technique directly follows the fixpoint calcula-
tion approach, and in this sense, it iteratively extends one global table of matchings by
repeatedly evaluating the query of each flattened pattern body. As a consequence, com-
pared to the top-down approach, queries are executed fewer times and on larger blocks
of data resulting in a faster solution. On the other hand, the bottom-up technique al-
ways calculates all matchings independently of the initial bindings, which unavoidably
produces a table of matchings that is significantly larger than the final result set.

5.3 Magic Sets

In order to preserve the fast and centralized bottom-up evaluation technique and to si-
multaneously minimize the gap between the number of calculated matchings and the
size of the final result set, the concept of magic sets is introduced, which helps avoiding
the generation (and temporary storage) of irrelevant matchings by restricting calcula-
tions only on such input parameters that might be produced during the actual pattern
matching process.

For each pattern head, a magic set (MS) table is allocated, which stores such tuples
of the bound parameters of the pattern head that have ever been passed downwards (i.e.,
to a deeper level of recursion) as input parameters during the evaluation. Note that the
adornment (or binding pattern) of the pattern head determines, which columns must be
contained by the magic set.

A magic set transformation is performed to introduce the MS table in the query
calculation by placing it into the first (i.e., leftmost) position. Additionally, queries for
extending the MS table are defined. As it is difficult to give a short and intuitive explana-
tion for specifying these queries, the process of MS table extension is only exemplified
in the current paper.

5.4 Execution

Recursive graph pattern matching is an iterative process, in which a fix-point is calcu-
lated for each MS table and each table of matchings.

Tuples can be classified based on the number of iterations passed since they got into
a given table. Based on this categorization, tuples that joined just before the current
iteration are called recent. All other tuples already contained by the tables are referred
as old. Tuples being calculated in the current iteration are called new.

The exact process of fix-point calculation is as follows.

– Initialization. The table of matchings is initially empty, and the MS table is ini-
tialized with a single recent tuple containing the input parameters of the original
pattern invocation.

– Calculation tasks of each iteration. In each iteration, all queries are executed
once to possibly generate new tuples for the MS table and the table of matchings,
which, in turn, represent new input parameters passed downwards and new match-
ings passed upwards, respectively. In order to avoid unnecessary recalculations on
old tuples, only recent tuples of the MS table and the table of matchings are in-
volved in the natural joins. The tuples calculated by the natural joins are filtered

466 G. Varró, Á. Horváth, and D. Varró

by check constraints. If all the constraints are fulfilled, then the result tuple is pro-
jected on the formal parameters of the pattern head, and scheduled to be added to
the corresponding table as a new tuple.

– Synchronization after each iteration. Synchronization is performed after each
iteration by an ageing process, which (i) keeps old tuples, (ii) makes all recent
tuples old, (iii) collects new tuples from flattened pattern bodies, (iv) adds these
new tuples to the corresponding table, if they are not yet contained, and (v) marks
all the collected new tuples recent.

– Termination. Pattern matching is terminated when neither the MS table, nor the
table of matchings is extended during an iteration. Based on analogy to [15], ter-
mination can be guaranteed, if negative application condition checks are invoked
only with bound parameters, which is typically fulfilled in graph transformation
approaches.

– Postprocessing. Finally, in a postprocessing phase, the table of matchings is filtered
by checking whether the result tuples in the bound parameter positions match the
input parameters passed at the original pattern invocation.

Example 7. The iterative pattern matching process is illustrated in Fig. 10. It calculates
such matchings for pattern head classhasAttr, in which formal parameters Cls
and Key are bound to car and true, respectively.

Each subfigure shows (i) the table of matchings for the pattern head
classhasAttr in its top-right corner together with the corresponding MS table be-
neath, (ii) the detailed search plans of flattened pattern bodies #1 and #246O in the
middle, and (iii) the flattened pattern bodies (#3O, #259O, #258O and #247O) not
involved in the calculations on the left.

Fig. 10(a) illustrates the state of the runtime execution after the calculation tasks
of the first iteration, during which (i) the MS table is initially loaded with recent tuple
(car,true), (ii) the query of non-recursive flattened pattern body #1 is evaluated by
natural joining all its tables to the recent tuple (car,true) of the MS table producing
a new matching (car,nplt,true), and (iii) a new tuple (plt,true) of input
parameters to be passed downwards later is generated by calculating natural joins of
tables up to (but excluding) the recursive invocation constraint in flattened pattern body
#246O.

At the second iteration in Fig. 10(b), the previously matched tuples (car,nplt,
true) and (plt,true) appear as recent tuples in the table of matchings and the MS
table, respectively. In this iteration, the query of flattened pattern body #1 produces
a new matching (plt,nbr,true) for the pattern head classHasAttr, while
queries of flattened pattern body #246O fail on checking constraints as the natural
joins produce such results by starting from either recent tuple, in which the value in
column B is false.

In the third iteration (shown by Fig. 10(c)), the table of matchings for pattern
head classHasAttr is extended by a new matching (plt,nbr,true) pro-
duced by the query of flattened pattern body #246O, which uses the recent tuple
(plt,nbr,true) for performing the natural joins.

The fixpoint calculation algorithm terminates after the fourth iteration (depicted in
Fig. 10(d)) as neither the MS table, nor the table of matchings is further extended.

Recursive Graph Pattern Matching 467

(a) First iteration

(b) Second iteration

(c) Third iteration

(d) Fourth iteration

Fig. 10. Runtime iterations of the classHasAttr pattern

468 G. Varró, Á. Horváth, and D. Varró

Finally, in the postprocessing phase, matching (plt,nbr,true) is filtered out as
it does not have value car in its column Cls as it would have been required by the
initial binding of input parameters. However, matchings (car,nplt,true) and the
(car,nbr,true) remain in the final result set.

6 Related Work

The concept of recursion has already been used by several powerful, graph transfor-
mation related algorithms, tools, and approaches including [9], which presents valu-
able theoretical foundations of handling recursion in graph transformation. Since our
approach focuses on the implementation of a pattern matching engine, only practical
considerations are examined in the following.

Many advanced graph transformation tools support recursion in their control flow
language (like GReAT [16] and VMTS [17]) or use it in the control structure imple-
mentation (like MOLA [18]). In all these approaches, recursion appears in the imper-
ative control flow part of the graph transformation engine, in contrast to our approach,
in which fully declarative and recursive pattern specifications are given to the pattern
matching module as input.

In the following, only such pattern matchers are surveyed in the order of increasing
expression power of their specification language, which are able to handle recursive pat-
terns. PROGRES [4] and Fujaba [5] use the concept of path conditions and expressions,
which can be considered as a form of recursion, as a path can define a set of connected
edges of arbitrary length. Paths are computed only in forward direction in PROGRES,
which may cause performance degradation when the end point of a path condition is
fixed as reverse path navigation is not part of the otherwise, highly sophisticated search
plan generation algorithm. The expression power of path conditions is strongly lim-
ited by their nature due to the fact that only linear graph structures are allowed to be
repeated.

A recent paper [10] presents the concept of star regions for expressing repetitive
graph structures, which can be considered as an alternative representation of recursion.
The authors provide a valuable and detailed description of their algorithm, which eval-
uates recursion in a top-down manner, in contrast to our approach, which performs
bottom-up evaluation. Since arbitrary graph structures can be contained by star regions
(undoubtedly providing support for any form of simple recursion) this indicates a more
expressive language compared to the ones that only handle path conditions. However,
e.g., mutual recursion is still an unsupported feature.

From a graph transformation point of view, the implementation of Tefkat [7] shows
the largest similarity to our approach. Both are able (i) to handle complex forms of
recursion (providing a stronger expression power compared to all the previous ap-
proaches), and (ii) to reorder terms (i.e., search plan constraints) for efficiency and
on semantic correctness backgrounds. Tefkat uses the technique of top-down recursion
evaluation with memoing, while our approach performs a magic set transformation fol-
lowed by a bottom-up evaluation. Additionally, our approach provides support for flat-
tening, which allows an inter-pattern search plan optimization for such patterns that can
be evaluated by a single non-recursive pattern matching algorithm.

Recursive Graph Pattern Matching 469

The technique of combining bottom-up evaluation with magic set transformation
[11] is well-known in the knowledge-base system community for over a decade. This
technique is intentionally used by our approach as several important theorems (includ-
ing statements about algorithm termination) have already been proven. Arguments for
preparing an own implementation include (i) the lack of support for flattening by any
existing general-sense knowledge-base systems, and (ii) a vision to build further run-
time optimizations by using graph pattern matching specific knowledge.

The popularity of recursive graph pattern matching has been demonstrated at the
AGTIVE workshop by several contributions discussing its specification issues. [19] pro-
posed query support for the DRAGOS graph database, and mentioned the handling of
recursive queries by nested subgraph as future work. [20,21] examined different aspects
of set-valued graph transformation by using the PROGRES tool. Note that these con-
tributions can be considered as application domains for our approach as it (over)fulfills
their specification criteria by providing a larger expression power.

7 Conclusion

In the current paper we proposed a pattern matching framework for matching recursive
patterns by using fixpoint-based bottom-up query evaluation with top-down handling of
input parameters. The essence of the matching process is to flatten non-recursive pattern
compositions for global optimization and execute recursive invocations in an iterative
manner by using magic set transformation.

Finally, it is worth pointing out that the proposed approach has been fully imple-
mented, and it will be part of the upcoming VIATRA2 release.

References

1. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transforma-
tion. Foundations, vol. 1. World Scientific, Singapore (1997)

2. Kreowski, H.J., Kuske, S.: Graph transformation units and modules. In: Ehrig, H., Engels,
G., Kreowski, H.J., Rozenberg, G. (eds.) Handbook of Graph Grammars and Computing
by Graph Transformation. Applications, Languages and Tools, vol. 2, pp. 607–638. World
Scientific, Singapore (1999)

3. Heckel, R., Ehrig, H., Engels, G., Taentzer, G.: Classification and comparison of module
concepts for graph transformation systems (1999)

4. Zündorf, A.: Graph pattern-matching in PROGRES. In: Cuny, J., Engels, G., Ehrig, H.,
Rozenberg, G. (eds.) Graph Grammars 1994. LNCS, vol. 1073, pp. 454–468. Springer, Hei-
delberg (1996)

5. Nickel, U., Niere, J., Zündorf, A.: The FUJABA environment. In: Proc. of the 22nd Interna-
tional Conference on Software Engineering, pp. 742–745. ACM Press, New York (2000)

6. Balogh, A., Varró, D.: Advanced model transformation language constructs in the VIATRA2
framework. In: Proc. of the 21st ACM Symposium on Applied Computing, Dijon, France,
pp. 1280–1287. ACM Press, New York (2006)

7. Lawley, M., Steel, J.: Practical declarative model transformation with Tefkat. In: Bézivin,
J., Rumpe, B., Schürr, A., Tratt, L. (eds.) Proc. of the International Workshop on Model
Transformation in Practice (MTiP 2005), October 3rd (2005)

470 G. Varró, Á. Horváth, and D. Varró

8. Horváth, Á., Varró, G., Varró, D.: Generic search plans for matching advanced graph patterns.
In: Proc. of the Sixth International Workshop on Graph Transformation and Visual Modeling
Techniques (GT-VMT 2007). March 31- April 1 2007, Braga, Portugal, March 31- April 1
2007. Electornic Communications of the EASST, pp. 57–68 (2007)

9. Guerra, E., de Lara, J.: Adding recursion to graph transformation. In: Proc. of the Sixth In-
ternational Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT
2007), Braga, Portugal, March 31- April 1 2007. Electornic Communications of the EASST,
pp. 107–120 (2007)

10. Lindqvist, J., Lundkvist, T., Porres, I.: A query language with the star operator. In: Proc. of
the Sixth International Workshop on Graph Transformation and Visual Modeling Techniques
(GT-VMT 2007), Braga, Portugal, March 31- April 1 2007. Electornic Communications of
the EASST, pp. 69–80 (2007)

11. Ullman, J.D.: Principles of database and knowledge-base systems, vol. II. Computer Science
Press, Inc., New York (1989)

12. Varró, G., Varró, D., Friedl, K.: Adaptive graph pattern matching for model transformations
using model-sensitive search plans. In: Karsai, G., Taentzer, G. (eds.) Proc. of Int. Workshop
on Graph and Model Transformation (GraMoT 2005), Tallinn, Estonia. ENTCS, vol. 152,
pp. 191–205 (September 2005)

13. Bézivin, J., Rumpe, B., Schürr, A., Tratt, L.: Challenge of the model transformations in prac-
tice workshop (October 3rd 2005)

14. Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovszky, T., Prange, U., Taentzer, G.,
Varró, D., Varró-Gyapay, S.: Model transformation by graph transformation: A comparative
study. In: MTiP 2005, International Workshop on Model Transformations in Practice (Satel-
lite Event of MoDELS 2005) (2005)

15. Ullman, J.D.: Principles of Database and Knowledge-Base Systems. The New Technologies,
vol. II. Computer Science Press (1989)

16. Agrawal, A., Vizhanyo, A., Kalmar, Z., Shi, F., Narayanan, A., Karsai, G.: Reusable idioms
and patterns in graph transformation languages. In: Mens, T., Schürr, A., Taentzer, G. (eds.)
Proc. of the International Workshop on Graph-Based Tools, Rome, Italy. ENTCS, vol. 127,
pp. 181–192. Elsevier, Amsterdam (2004),
http://tfs.cs.tu-berlin.de/grabats/

17. Lengyel, L., Levendovszky, T., Mezei, G., Charaf, H.: Model transformation with a visual
control flow language. International Journal of Computer Science 1(1), 45–53 (2006)

18. Kalnins, A., Celms, E., Sostaks, A.: Model transformation approach based on MOLA. In:
Bézivin, J., Rumpe, B., Schürr, A., Tratt, L. (eds.) Proc. of the International Workshop on
Model Transformation in Practice (MTiP 2005) (October 2005),
http://sosym.dcs.kcl.ac.uk/events/mtip05/

19. Weinell, E.: Adaptable support for queries and transformations for the DRAGOS graph-
database. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) Proc. of the 3rd International Workshop
and Symposium on Applications of Graph Transformation with Industrial Relevance, Kassel,
Germany (October 2007)

20. Fuss, C., Tuttlies, V.E.: Simulating set-valued transformations with algorithmic graph trans-
formation languages. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) Proc. of the 3rd Interna-
tional Workshop and Symposium on Applications of Graph Transformation with Industrial
Relevance, Kassel, Germany (October 2007)

21. Körtgen, A.T.: Modeling successively connected repetitive subgraphs. In: Schürr, A., Nagl,
M., Zündorf, A. (eds.) Proc. of the 3rd International Workshop and Symposium on Applica-
tions of Graph Transformation with Industrial Relevance, Kassel, Germany (October 2007)

http://tfs.cs.tu-berlin.de/grabats/
http://sosym.dcs.kcl.ac.uk/events/mtip05/

A First Experimental Evaluation of Search Plan
Driven Graph Pattern Matching

Gernot Veit Batz, Moritz Kroll, and Rubino Geiß

Universität Karlsruhe (TH), 76131 Karlsruhe, Germany
batz@ira.uka.de, {moritz,rubino}@ipd.info.uni-karlsruhe.de

Abstract. With graph pattern matching the field of graph transforma-
tion (GT) includes an NP-complete subtask. But for real-life applica-
tions it is essential that graph pattern matching is performed as fast
as possible. This challenge has been attacked by the approach of search
plan driven, host-graph-sensitive (also known as model-sensitive) graph
pattern matching. To our knowledge no experimental evaluation of this
approach has been published yet. We performed first experiments re-
garding the runtime performance using the well-known GT benchmark
introduced by Varró et al. as well as an example from compiler construc-
tion. Moreover we present an improved cost model and heuristics for
search plans and their generation.

Keywords: Graph transformation, graph pattern matching, subgraph
isomorphism problem, search plan driven, host-graph-sensitive, model-
sensitive, heuristic optimization, experiment.

1 Introduction

In graph transformation (GT) [1] declarative rules are used to specify the alter-
ation of graphical structures. The application of those transformations requires
graph pattern matching1 which is an NP-complete problem (see Garey and John-
son [2], problem GT48). However, real-life applications demand that transforma-
tion steps are done within a reasonable amount of time. For this reason efficient
graph pattern matching is one of the important issues in GT.

This challenge has been attacked by the heuristically optimizing approach of
search plan driven, host-graph-sensitive2 graph pattern matching [3,4,5,6,7]. The
key idea of this method is to represent possible matching strategies by so-called
search plans, which are sequences of primitive matching operations dealing with
single graph elements. A cost model assigns costs to all matching operations
and search plans. This makes search plan generation an optimization problem
and allows the generation of matching strategies at runtime depending on the
current host graph. The required statistical information about the host graph can

1 Also known as “subgraph matching” or the “subgraph isomorphism problem”.
2 In the following, we omit the term “host-graph-sensitive” (which is also referred to

as “model-sensitive”) for conciseness.

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 471–486, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

472 G.V. Batz, M. Kroll, and R. Geiß

be obtained by an analysis of the host graph in linear time. The actual graph
pattern matching is performed by executing the generated search plan.

However, no experimental evaluation of this approach has been published
yet. In this paper we present a first experimental case study on search plan
driven graph pattern matching using our GT tool GrGen.NET [8,9,10,11] (see
Section 3). As test cases we utilize the well-known GT benchmark invented by
Varró et al. [12] (see Section 3.1) as well as an example taken from compiler
construction (see Section 3.2).

Additionally we present an improved version of cost model and heuristics
(Section 2): The old cost model and heuristics only consider the backtracking
that might occur during the execution of the primitive operations. The new cost
model and heuristics deal with the effort raised by the operations themselves as
well. So, in our experiments we evaluate the old cost model and heuristics as
well as the new ones. At least for our two test cases it becomes apparent that

– the execution times of the possible search plans vary greatly (otherwise, there
would be no room for optimization at all),

– the new cost model yields a reasonable picture of the real execution times,
– the search plans generated by the improved heuristics are quite good,
– the old cost model and heuristics perform partly worse (but still tolerable).

2 Search Plan Driven Graph Pattern Matching

In this section we give a brief introduction to search plan driven graph pattern
matching. Other and partly more detailed discussions that describe different
flavors of the approach have been provided by Batz [4], Varró et al. [5], and
Horváth et al. [7]. Here, we present an improved version of the approach, which
has not been published before.

Given a GT rule L � R and a host graph H , we want to find a match (i.e. an
occurrence) of L in H . We do this in three major steps:

1. To obtain the statistical information needed by the cost model we perform an
analysis of the host graph H (this might be avoided by using domain-specific
knowledge).

2. Using the information provided by the analysis, we generate a search plan
P of preferably low cost.

3. We perform the actual graph pattern matching by executing P .

2.1 Search Plans and Their Execution

Primitive Matching Operations. A search plan P = 〈o1, . . . , ok〉 is a se-
quence of primitive matching operations oi, which are atomic search actions
binding exactly one pattern element to an appropriate3 unbound element of the
host graph. We distinguish five kinds of primitive matching operations:
3 In this context “appropriate” means that nodes are bound to nodes, edges to edges,

and that the types of the participants are compatible.

A First Experimental Evaluation 473

a : A b1 : B b2 : B
g : γ h : η

Fig. 1. A simple pattern graph

1. A lookup operation lkp(x) binds the pattern element x to any appropriate
element of the host graph.

2. An incoming edge operation in(v, e) binds the pattern edge e, that must be
an incoming edge of the already bound pattern node v, to an appropriate
unbound edge of the host graph, that is incoming on the current host graph
partner of v.

3. An outgoing edge operation out(v, e) works analogously to in(v, e) but deals
with an outgoing edge.

4. A get source operation src(e) binds the source node of an already bound
pattern edge e to the source node of the current host graph partner of e.

5. A get target operation tgt(e) works analogously to src(e) but deals with the
target node.

Search Plans. Now we are able to give an exact definition of search plans:
A sequence P = 〈o1, . . . , ok〉 of primitive matching operations is called a valid
search plan for L if the following two conditions hold:

1. Every element of the pattern graph L is treated exactly once.
2. If an operation oi requires, that a pattern element is already bound, then

this element must be bound by one of the preceding operations o1, . . . , oi−1.

Consider, for example, the small pattern graph shown in Figure 1. Then the
operation sequences

P1 :=
〈
lkp(b2), in(b2 , h), src(h), in(b1 , g), src(g)

〉
,

P2 :=
〈
lkp(h), tgt(h), src(h), lkp(a), out(a, g)

〉
are valid search plans for this pattern graph.

Executing a Search Plan. Given a valid search plan P = 〈o1, . . . , ok〉, we can
perform the actual graph pattern matching by executing P . This means, that a
match of L in H is stepwise constructed by executing one primitive operation of
P after another. Whenever a primitive operation oi is executed successfully, the
current partial match is extended by a new binding of the pattern element the
operation oi refers to. When the whole search plan P is executed successfully, a
full match of L in H is found.

When we execute a primitive operation that deals with a pattern element x,
it might happen that x can be bound to more than one appropriate element of
the host graph. In this case we choose only one of the possible elements. The
alternatives can be processed later by backtracking, if necessary. This, of course,
may lead to an execution time that is exponential in the number of pattern
elements.

474 G.V. Batz, M. Kroll, and R. Geiß

A

A

B

B

B

B

γ

γ

γ
γ

γ
η

η

Fig. 2. A simple host graph

Implicit Checks. Consider, for example, the following two operation sequences,
which are—according to the above definition—both valid search plans:

P3 :=
〈
lkp(b2), in(b2 , h), lkp(b1), lkp(a), lkp(g)

〉
P4 :=

〈
lkp(a), lkp(b2), out(a, g), in(b2 , h), src(h)

〉
While executing P3 the operation lkp(b1) is performed after h is already bound
by a previous operation. As a consequence, the only remaining choice to bind
b1 is the source node of the current host graph partner of h. But as a lookup
operation chooses any appropriate element, a chosen node is probably not that
very same source node. Thus, an appropriate check must be performed implicitly
during the execution of a lookup operation. This applies analogously to the
operation src(h) in P4 as well as to edge lookups like lkp(g) in P3. More precisely,
if a primitive operation binds a pattern element x to a partner y in H , it must
be checked implicitly, whether the current partners of all already bound pattern
elements incident to x are correctly linked to y4.

2.2 The Cost Model

As exponential execution time is a consequence of backtracking, the cost model
must assign a higher cost to a search plan whose execution requires more back-
tracking. But in some cases the running time of an operation (without consid-
ering backtracking) may be even more siginficant.

The Cost of Primitive Matching Operations. For a primitive operation o
we define two different cost measures b(o) and t(o) that estimate the backtracking
and the execution time raised by o itself, respectively. Backtracking is caused by
primitive operations that involve multiple possible bindings. Accordingly, b(o)
estimates the number of choices that are possible during the execution of o.
4 Of course, P3 and P4 are quite stupid search plans. But allowing such awkward

situations and performing implicit checks simplifies the theory a lot in the sense
that the set of valid operation selections directly corresponds to the set of directed
spanning trees (DSTs) in the plan graph and in the sense that all enumerations of
such a DST are valid search plans (see Section 2.3).

A First Experimental Evaluation 475

To predict the time spent during the execution of o itself, t(o) estimates the
number of host graph elements processed during the execution of o. Both mea-
sures should reflect the underlying data structures, of course. In this paper we
define b and t in a way that they are suited to the implementation provided by
our tool GrGen.NET. Note that in the following b(o) ≤ t(o) always holds for
any operation o by definition.

Before going on we define some notation first: For any pattern element x let
#x be the number of elements in H having a type compatible with x. For a
pattern edge e, let Me be the number of edges in H having a compatible edge
type as well as compatibly typed source and target nodes. Lastly, let Se and Te be
the number of edges in H having a compatible edge type as well as a compatibly
typed source node or target node, respectively (thus, in case of Se and Te “the
other” node may have an incompatible type). Of course, #e ≥ Se ≥ Me and
#e ≥ Te ≥ Me always holds.

Node Lookups. Consider an operation lkp(v) for a pattern node v. Then the
number of choices raised by lkp(v) as well as the number of host graph elements
processed during the execution of lkp(v) is at most #v. Accordingly, we assign
t(lkp(v)) := b(lkp(v)) := #v as costs. For the pattern graph of Figure 1 and the
host graph of Figure 2 we have t(lkp(b1)) = b(lkp(b1)) = 4, for example.

Edge Lookups. An edge lookup lkp(e) for a pattern edge e works analogously to
a node lookup lkp(v). But sooner or later, the source and target node of e must
also be matched. This further reduces the number of possible choices for e. For
example, if an edge f in H has a compatible edge type, but an incompatible
typed source node, an appropriate operation lkp(e) will be executed successfully
but a subsequent operation src(e) will fail. So, we assign t(lkp(e)) := #e and
b(lkp(e)) := Me. As a consequence src and tgt should occur as early as possible
in a search plan of course.

Incoming and Outgoing Edge Operations. We define b(out(v, e)) := Me/#v,
which is the average number of appropriate incident to the current host graph
partner of v. In contrast, we set t(out(v, e)) := Se/#v, which is the average
number of outgoing edges incident to the current host graph partner regard-
less whether they are appropriate or not. Analogously, we assign b(in(v, e)) :=
Me/#v and t(in(v, e)) := Te/#v. So, for the pattern graph of Figure 1 and the
host graph of Figure 2 we have b(in(b1 , g)) = 5/4 = 1.25 and t(in(b1 , g)) =
7/4 = 1.75, for example.

Get Source and Get Target Operations. Primitive Operations of the form src(e)
and tgt(e) do not raise multiple choices during the matching process and process
exactly one graph element during their execution. So, we assign t(src(e)) :=
t(tgt(e)) := b(src(e)) := b(tgt(e)) := 1 as costs.

The Cost of a Search Plan. The cost model should estimate the time needed
for the execution of a search plan P = 〈o1, . . . , ok〉. So, we use the cost function

t(P) := t1 + b1t2 + b1b2t3 + · · · + b1 · · · bk−1tk (1)

476 G.V. Batz, M. Kroll, and R. Geiß

with bi := b(oi) and ti := t(oi). This is in fact a weighted sum of the estimated
execution times t1, . . . , tk of the operations o1, . . . , ok. The weights b1 · · · bi−1

with 2 ≤ i ≤ k multiplicatively accumulate the estimated backtracking that
arises during the matching process. So, under the assumption that b1, . . . , bi−1, ti
are stochastically independent5 for 1 < i ≤ k, the expected execution time is
in O(t(P)). In the context of our second experiment (see Section 3.2) the cost
function t(P) does a far better job than the “traditional” cost function b(P) that
is defined as

b(P) := b1 + b1b2 + · · · + b1 · · · bk (2)

and only estimates the backtracking raised by P . So, we claim that with the cost
function t(P) we have an improved cost model.

2.3 Generating a Search Plan

As we do not know efficient algorithms that construct search plans that are
optimal according to t(P) or b(P), we have to settle for heuristic methods.
Here, we consider two heuristic methods which we call BacktrackingOnly

and BacktrackingLookup. The first of the two only minimizes the back-
tracking, which actually addresses the cost function b(P). The second tries to
minimize the backtracking and the execution time of the operations themselves
and, hence, addresses the cost function t(P). However, the second one works
exactly as the first one except for a little modification. So, we firstly describe
the BacktrackingOnly heuristics and characterize the modifications done by
BacktrackingLookup afterwards.

2.4 The BacktrackingOnly Heuristics

The BacktrackingOnly heuristics works in two phases: the operation selection
and the operation ordering. But before these two phases can be performed, we
have to generate a structure that we call plan graph first.

The Plan Graph. For a pattern graph L the plan graph L̃ is defined as follows:

1. For every element x of L the plan graph L̃ contains a node vx representing
x. All these nodes are labeled with the name of the pattern element they
represent. Additionally, L̃ contains a special root node.

2. For every element x of L the plan graph L̃ contains an edge fx that leads
from the root node to the node that represents x in L̃. It is labeled with lkp
and represents the operation lkp(x).

3. For every edge e in L let ve be the node representing e in L̃. Then L̃ contains
four further edges incident to ve:
– An edge labeled with tgt leading from ve to the node representing the

target node t of e and an edge in reverse direction labeled with in. These
edges represent the operations tgt(e) and in(t, e), respectively.

5 Stochastic independence might not hold, but it provides a good intuition of what is
happening.

A First Experimental Evaluation 477

root

a g b1 h b2

lkp
/2

tgt/1src/1

in/1.25

src/1

out/2.5

tgt/1

out/0.5 in/0.5

lkp/2

lkp/5

lk
p/

4

lkp
/4

Fig. 3. The plan graph for the pattern graph of Figure 1 with estimated backtracking
costs induced by the host graph of Figure 2. A multiplicative MDST is denoted by
thick edges. It has a total cost of 2 ∗ 1 ∗ 1 ∗ 1.25 ∗ 1 = 2.5.

– An edge labeled with src leading from ve to the node representing the
source node s of e and an edge in reverse direction labeled with out.
These edges represent the operations src(e) and out(s, e), respectively.

As every edge of the plan graph represents a primitive matching operation o,
we can assign the estimated backtracking b(o) as a cost to the corresponding
edge. In this way the plan graph becomes a weighted directed graph. Figure 3
shows the plan graph for the pattern graph of Figure 1 while the edge weights
represent the estimated backtracking induced by the host graph of Figure 2.

Operation Selection. Looking at the cost function b(P) in equation (2) we see
that b1b2 · · · bk is the most significant term. By minimizing this term, the Back-

trackingOnly heuristics tries to minimize b(P). As every cost bi appears in
b1b2 · · · bk exactly once, this corresponds to finding a minimal operation selec-
tion6 S = {o1, . . . , ok}. This is not a trivial task but luckily there is a one-to-one
correspondence between the set of valid operation selections and the set of di-
rected spanning trees (DSTs) in the plan graph7. Moreover, the corresponding
DST of a minimal operation selection is just a minimum directed spanning tree
(MDST) according to multiplicatively8 computed total costs. Such an MDST can
be computed in polynomial time by the Edmonds/Chu-Liu algorithm [13,14]. In
Figure 3 an example of a multiplicative MDST is denoted by thick edges.

Operation Ordering. Having found a minimal operation selection S we have
to build a valid search plan from the operations in S. This can be done very
simply by traversing9 the corresponding MDST starting from the root node.
6 Minimal in terms of the backtracking.
7 This has been shown by Batz [4].
8 Typically, the cost of a MDST is computed in terms of a sum, but it can also be

computed in terms of a product. As logarithms are strictly increasing functions from
R>0 to R and log(ab) = log a+log b holds, the computation of a multiplicative MDST
can be reduced to the computation of an additive MDST using the logarithm.

9 A traversal of a directed graph is an enumeration of its edges where an edge must
not be visited unless its source node is a given start node or the target node of an
already visited edge.

478 G.V. Batz, M. Kroll, and R. Geiß

root

a g b1 h b2

lkp
/2

tgt/1src/1

in/1.25

src/1

out/2.5

tgt/1

out/0.5 in/0.5

lkp/2

lkp/5

lk
p/

4

lkp
/4

Fig. 4. The same plan graph as the one of Figure 3. But here another multiplicative
MDST which involves edge costs between 0 and 1 is shown. Its total cost is computed
by 5 ∗ 1 ∗ 1 ∗ 0.5 ∗ 1 = 2.5.

During the traversal we successively emit the operation represented by each
edge. All operation sequences generated in this way are valid search plans.

However, we do not only want some valid search plan but a “good” one.
Therefore, we traverse the plan graph in a best-first manner. That means that we
prefer edges of minimal cost. To understand this, look at equation (2). Obviously
an operation has more impact on the overall cost the earlier it occurs in a search
plan. So, we place the cheap operations possibly early and the expensive ones
possibly late. Moreover, all operations of kind src and tgt are placed as soon as
possible. This is because src and tgt operations rise costs next to no expense but
a pretended match might be exposed earlier.

Non-Forgetful Operation Selection. As the cost of an operation selection
S = {o1, . . . , ok} we could assign the product b1b2 · · · bk. However, this would
make the selection process “forgetful”: As a plan graph may contain edge costs
between 0 and 1 and as the total cost of a DST is computed in terms of a prod-
uct10 each such edge reduces the total cost of a DST. As a result, information
about intense intermediate backtracking may be destroyed. Consider for exam-
ple, the MDST shown in Figure 4: Though the cost b(lkp(g)) = 5 indicates that
intense backtracking may arise, the cost b(out(b1 , h)) = 0.5 taints the result as
5 ∗ 0.5 = 2.5 holds. So, we assign

BO∗(S) :=
∏
o∈S

max{1, b(o)} (3)

as the cost of an operation selection S. If we use this “non-forgetful” cost func-
tion, the DST shown in Figure 4 has no longer minimal cost.

Varró et al. [5] use a different cost function for the operation selection, namely

BO+(S) :=
∑
o∈S

b(o) . (4)

10 In the context of the corresponding, additive MDST problem, we obtain by logarith-
mizing, a multiplicative edge cost between 0 and 1 becomes a negative edge cost.

A First Experimental Evaluation 479

Obviously, BO+ is also a “non-forgetful” cost function minimizing backtracking.
But using BO+ the operation selection does not directly minimize the product
b1 · · · bk anymore, which might distort the result. On the other hand, by BO+

costs between 0 and 1 are not lifted to 1. In this way the first-fail principle is
included in the operation selection, which is the pro of this technique.

So, there are two variants of the BacktrackingOnly heuristics: The first
one uses the function BO∗ on the operation selection and the second one BO+

instead.

2.5 The BacktrackingLookup Heuristics

Unlike BacktrackingOnly, the BacktrackingLookup heuristics not only
minimizes backtracking but also deals with estimated execution times. This is
achieved only by a little modification of BacktrackingOnly: Go back to the
plan graph as defined in Section 2.4 and consider all edges that correspond to an
operation o := lkp(e) for a pattern edge e. For all these edges replace the cost b(o)
by t(o). Having done this we proceed exactly as in case of BacktrackingOnly

with cost function BO∗. So, the operation selection of BacktrackingLookup

minimizes a cost function BL(S) which is a modified version of BO∗(S): For edge
lookups we minimize the estimated execution time instead of the backtracking.
At least for our second test case (see Section 3.2) this is a real step forward. For
our first test case (see Section 3.1) both methods behave similar well.

3 Experimental Results

The essential idea of our experiments is to generate all search plans possible for
a pattern graph L while measuring the execution time for each search plan. This
way we experimentally validate our cost model and our heuristics. Additionally
we consider the heuristics proposed by Varró. As test cases we use the well-
known STS Mutex benchmark introduced by Varró et al. [12] (see Section 3.1)
as well as an example taken from compiler construction (see Section 3.2). All
measurements are carried out using our GT tool GrGen.NET [9,10,11], which
implements the BacktrackingLookup heuristics described in Section 2, as
well as our benchmarking tool spBench which is included in the 1.3 release
of GrGen.NET. The underlying platform is an AMD Athlon XP 3000+ with
1 GByte main memory that runs with Windows XP and .NET 2.0.

Displaying the Results. In each diagram we relate the different cost measures
(b(P), t(P), BO∗(S), BO+(S), and BL(S)) with the execution time each. On the
horizontal axis we display the cost, on the vertical axis the detected execution
time. Note that we use a logarithmic scale for both axes; for technical reasons
both axis show the logarithmized values.

However, some points occur in the data set very often. Under these circum-
stances scatter plots loose very much of their expressiveness. For this reason, we
do not chart every single point. Instead, we divide the plane into hexagons and
draw only those hexagons that contain at least one point. The more points a
hexagon contains, the darker we draw it.

480 G.V. Batz, M. Kroll, and R. Geiß

p : Process

r : Resource

r : requestt : token

p1 : Process p2 : Process

r : Resource

rel : release

n : next

Fig. 5. The pattern graph of the takeRule (left) and the giveRule (right)

Goal. We are primarily interested in the quality of a heuristics: It is good, if
and only if plans with low costs actually have low execution times, i.e., we want
to see that the leftmost points in the diagram have low execution times. Besides
this primary goal it would be nice to have a good overall correlation between
costs and execution time—both for a heuristics and for a cost model.

3.1 First Experiment: The STS Mutex Benchmark

Background. The STS Mutex benchmark models a mutual exclusion scenario
of N processes trying to access a single resource (in this experiment we choose
N = 10, 000). The N processes are represented by N nodes of type Process, which
are connected by N edges of type next such that the processes form a ring. The
single resource is represented by a node of type Resource. This structure is built
first by certain rules. Afterwards other rules insert and delete edges of different
types all over the graph. More details can be found in a technical report by Varró
et al. [12].

Experimental Setup. In this experiment we perform an exhaustive explo-
ration of all search plans only for the takeRule and the giveRule. Figure 5 shows
the pattern graphs of these rules.

In a first pass we execute the whole benchmark for every search plan that
is possible for the takeRule and measure the execution time with a timeout of
10 seconds each. For the giveRule we use a fixed search plan, namely the one
provided by the heuristics. The results are displayed in Figure 6. The plot on the
right, which relates BL(S) with the execution time, shows the desired behavior:
Points in the far left have low execution time. Hence, BacktrackingLookup

chooses one of the most fast executing plans possible. In the plot on the left we
see that the actual cost function t(P) shows a little more diversified behavior
than BL(S). However, due to the very simple structure of the STS benchmark
the figures only show a simple level-wise distribution.

In a second pass we performed the analogous experiment by checking all
possible search plans for the giveRule. The resulting plots are similar and hence
omitted.

3.2 Second Experiment: Finding Loop Counters

Background. In compiler construction internal intermediate representations
(IRs) are used for programs. Modern IRs are graph based and represent programs

A First Experimental Evaluation 481

2 4 6 8

1

1.5

2

2.5

3

3.5

4

costs t(P), log_10, uncut

ex
ec

ut
io

n
tim

e,
 lo

g_
10

 [m
se

c]

0 2 4 6 8

1

1.5

2

2.5

3

3.5

4

Backtracking−Lookup, log_10, uncut
ex

ec
ut

io
n

tim
e,

 lo
g_

10
 [m

se
c]

Fig. 6. Plotted results for all search plans possible for the takeRule

p : Phi

x : Node a : Add

c : Const

e3 : dde1 : dd e2 : dd

e4 : dd

Fig. 7. A pattern graph that specifies data dependencies typical for a loop counter

as dependency or flow graphs. In this experiment we use an adoption of an IR
called Firm [15] for our GT tool GrGen.NET. Firm uses dependency graphs, and
fulfills the so-called SSA11 property. IRs with this property represent programs
in a way that each variable has exactly one occurrence as a left-hand-side of
an assignment. This requires the so-called Φ-operation that models alternative
dataflows as they occur in the context of conditions and loops, for example.

Experimental Setup. The essential idea of this second experiment is to find
loop counters in C programs. As a host graph we use the IR graph of the
C function RenderTiles() in RenderWorld.c (revision 1328) taken from the
open source project Jagged Alliance 2 – Stracciatella [16]. The function
RenderTiles() has 1,418 lines of code; the corresponding IR graph consists
of 4,705 nodes and 16,714 edges. As a pattern graph we use the one shown in
Figure 7, which shows a pattern typical for a loop counter. To understand this,
consider the following code fragment written in C:
11 SSA stands for static single assignment.

482 G.V. Batz, M. Kroll, and R. Geiß

Table 1. Number of search plans with at most N lookup operations for the pattern
graph of Figure 7. The middle row contains the numbers of all such search plans, the
lower row the numbers when src and tgt operations appear as soon as possible.

N 1 2 3 4 5 6 7 8
all SPs 1,408 56,448 460,544 1,592,192 3,084,032 4,078,592 4,401,152 4,441,472

ASAP SPs 160 3,424 25,000 83,312 152,464 192,768 204,216 205,488

int i;
for(i = x; i < 100; i = i + 3) { /*...*/ }

The initial value x of the loop counter i is represented by the pattern node x.
The pattern node c represents the constant used to increase i, which is 3 in the
example. The pattern node a of type Add denotes the operator ‘+’ in i = i + 3.
The loop counter i has no corresponding node in the pattern graph12. The
pattern node p of type Phi denotes the Φ-operation mentioned above. It is needed
because a loop induces alternative control paths: When the loop is entered for
the first time, i has the initial value x. This is what the edge e1 stands for.
At the beginning of each subsequent iteration the loop counter i is incremented
by c, which is expressed by the edge e2 .

The pattern graph used in this second experiment has far too many search
plans to execute them all. In fact, there are exactly 4,441,472 search plans.
With a timeout of, for example, 5 seconds (and under the assumption that
most search plans need 5 seconds or more) the execution of the search plans
would take about 250 days (without the compilation time needed for the search
plans) which is far too long of course. However, we reduce the set of search
plans dramatically by restricting ourselves to search plans where src and tgt
operations are scheduled as soon as possible—every sensible search plan should
be like that (see Section 2.3). Moreover, we only consider search plans with a
limited number of lookup operations. Table 1 shows the number of search plans
with at most N lookup operations for N ∈ {1, 2, . . . , 8}—as the pattern graph
has eight elements, at most eight lookups are possible.

In this experiment we choose N ≤ 2 and perform an exhaustive search for
all matches for each of the 3,424 search plans (repeated a 50 times each). The
timeout in this second experiment is also 10 seconds. The results are displayed
in Figure 8. The two plots at the top show the behavior of b(P) and t(P). Both
cost functions exhibit a visible correlation between costs and execution time.
However, b(P) reveals a great weakness: Several search plans with low cost have
comparatively high execution time. At this regard t(P) is much better. This
is also reflected by the corresponding heuristic methods (see the two plots in
the middle): In the plot on the left (BacktrackingOnly) there are leftmost
points with comparatively high execution times, too. In contrast, the plot on the
right (BacktrackingLookup) shows the desired behavior that minimal cost
corresponds to quite low execution times.
12 In graph based SSA, variables have no explicit representation in general.

A First Experimental Evaluation 483

2 3 4 5 6 7

0

1

2

3

4

costs b(P), log_10

ex
ec

ut
io

n
tim

e,
 lo

g_
10

 [m
se

c]

3 4 5 6 7 8

0

1

2

3

4

costs t(P), log_10
ex

ec
ut

io
n

tim
e,

 lo
g_

10
 [m

se
c]

3 4 5 6 7

0

1

2

3

4

Backtracking−Only, log_10

ex
ec

ut
io

n
tim

e,
 lo

g_
10

 [m
se

c]

3 4 5 6 7 8 9

0

1

2

3

4

Backtracking−Lookup, log_10

ex
ec

ut
io

n
tim

e,
 lo

g_
10

 [m
se

c]

2 2.5 3 3.5

0

1

2

3

4

Backtracking−Only (Varro), log_10

ex
ec

ut
io

n
tim

e,
 lo

g_
10

 [m
se

c]

3 4 5 6 7 8 9

0

1

2

3

4

Backtracking−Lookup, log_10, uncut

ex
ec

ut
io

n
tim

e,
 lo

g_
10

 [m
se

c]

Fig. 8. Plotted results for our second test case “Finding Loop Counters”

484 G.V. Batz, M. Kroll, and R. Geiß

The two plots at the bottom are included mainly for completeness. The left
of the two shows the variant of BacktrackingOnly that uses Varró’s cost
function BO+(S). It shows a similar behavior as BO∗(S) and—this is most
important—those undesirable leftmost points with high execution times are also
present. The bottom right plot actually shows the same as the plot directly
above—with only one difference: In all plots of this second test case we omitted
the points belonging to search plans that yielded a time-out (i.e., that needed
10 seconds or more). In this single plot we did not. It shows that BL(S) does
really not assign low costs to very slow search plans.

4 Related Work

The concept of search plans is not new in GT. It has already been used by
Zündorf [17] in context of the early GT tool Progres. But, although he defines
a sophisticated cost model, the actual search plan generation works with a rather
coarse grained cost model. Moreover, the cost of a primitive operation is derived
from assumptions as well as static connection assertions and not from the current
host graph. Also, his approach is greedy except for the choice of the start node.

To our knowledge Dörr [18] was the first in GT who suggested a preparatory
analysis of the present host graph for bunches of appropriate edges to prevent
backtracking. He also suggests an approach to operation selection that is based
on the computation of a DST. However, Dörr does not use a cost model. For this
reason he is only able to generate a linear time search plan or no search plan
at all. Moreover, lookup operations are only allowed as the first operation of a
search plan. Lookups of edges are not supported at all.

Search plan driven, host-graph-sensitive graph pattern matching has originally
been presented independently by Batz [3] as well as by Varró et al. [5]. Varró et al.
coined the term model-sensitive search plans to emphasize that the search plan is
generated depending on the present host graph. However, there are application
domains, where the term “model” is not common. So, we propose the more
general term “host-graph-sensitive”. When search plan driven graph pattern
matching arose, it did not include lookup operations for edges. This has been
suggested a little later by Geiß, Batz et al. [6,4]. The latter paper also contains
a proof of the one-to-one correspondence between the set of operation selections
and the set of DSTs of the plan graph.

Recently, Horvath et al. [7] suggested a generalization of plan graphs as they
are defined here. Here, binding constraints on in and out operations are expressed
by the direction of the corresponding edges in the plan graph. Horvath et al.,
in contrast, use so called adornments. These are annotations that relate binding
constraints with costs. In this way an additional kind of primitive operations
can be handled: It enables a more direct binding of a pattern edge that connects
already bound pattern nodes. The authors announce that their approach will be
implemented in the next release of Viatra2 which is a GT based framework for
model transformations.

An implementation of the BacktrackingLookup heuristics as described in
Section 2 is included in our GT tool GrGen.NET [9,10,11].

A First Experimental Evaluation 485

5 Conclusions

In this paper we presented a first experimental evaluation of search plan driven
graph pattern matching (using our GT tool GrGen.NET) as well as an im-
proved cost model and heuristics. As test cases we used the well-known GT
benchmark introduced by Varró et al. as well as an example taken from com-
piler construction. At least for the two test cases it became apparent that

– the execution times raised by the possible search plans vary greatly, so there
is room for optimizations,

– the improved cost model reasonably reflects the real execution times,
– the search plans generated by the improved heuristics are quite good,
– the old cost model and heuristics perform partly worse.

For the future it is interesting whether better heuristic methods for the gen-
eration of search plans can be developed and how we can deal with NACs13.
Moreover, the development of more GT benchmarks—particularly with bigger
pattern graphs—would be highly desirable.

Acknowledgements. We want to thank all the students and researchers at IPD
Goos for the creative atmosphere. Especially we want to thank Christoph Mallon.
Also we want to thank Jakob Blomer, Edgar Jakumeit, Jens Müller, and Katja
Weisshaupt who helped us on the preparation of this work. Moreover we thank
our Professors Gerhard Goos and Peter Sanders for supporting this work. Last
but not least, we want to thank the anonymous reviewers for their useful hints
and suggestions.

References

1. Heckel, R.: Graph Transformation in a Nutshell. In: Bézivin, J., Heckel, R. (eds.)
Language Engineering for Model-Driven Software Development. Dagstuhl Seminar
Proceedings, Internationales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Schloss Dagstuhl, Germany, vol. 04101(2004)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

3. Batz, G.V.: Graphersetzung für eine Zwischendarstellung im Übersetzerbau. Mas-
ter’s thesis, Universität Karlsruhe (2005)

4. Batz, G.V.: An Optimization Technique for Subgraph Matching Strategies. Tech-
nical Report 2006-7, Universität Karlsruhe, Fakultät für Informatik (2006)

5. Varró, G., Varró, D., Friedl, K.: Adaptive Graph Pattern Matching for Model
Transformations using Model-sensitive Search Plans. In: Karsai, G., Taentzer, G.
(eds.) Proc. of Int. Workshop on Graph and Model Transformation (GraMoT 2005),
Tallinn, Estonia. ENTCS, vol. 152, pp. 191–205. Elsevier, Amsterdam (2005)

13 A negative application condition (NAC) is a graph associated with the pattern graph.
An appropriate occurrence of a NAC in H prevents the application of a GT rule.

486 G.V. Batz, M. Kroll, and R. Geiß

6. Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.M.: GrGen: A Fast SPO-
Based Graph Rewriting Tool. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro,
L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, p. 383. Springer, Heidelberg
(2006)

7. Ákos Horváth, G.V., Varró, D.: Generic Search Plans for Matching Advanced
Graph Patterns. In: Proc. of the Sixth International Workshop on Graph Transfor-
mation and Visual Modeling Techniques (GT-VMT 2007), Braga, Portugal, Elec-
tornic Communications of the EASST, pp. 57–68 (2007)

8. Geiß, R., Kroll, M.: GrGen.NET: A Fast, Expressive, and General Purpose Graph
Rewrite Tool. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS,
vol. 5088. Springer, Heidelberg (2008)

9. Kroll, M.: GrGen.NET: Portierung und Erweiterung des Graphersetzungssystems
GrGen, Studienarbeit, IPD Goos, Universität Karlsruhe (2007)

10. Geiß, R.: GrGen.NET homepage (2008), http://www.grgen.net
11. Blomer, J., Geiß, R.: The GrGen.NET User Manual. Technical Report 2007-5,

Universität Karlsruhe, IPD Goos (2007)
12. Varró, G., Schürr, A., Varró, D.: Benchmarking for Graph Transformation. Tech-

nical report, Department of Computer Science and Information Theory, Budapest
University of Technology and Economics (2005)

13. Edmonds, J.: Optimum Branchings. J. Res. Natl. Bureau Standards 71B, 233–240
(1967)

14. Chu, Y.J., Liu, T.H.: On the shortest arborescence of a directed graph. Science
Sinica 14, 1396–1400 (1965)

15. Trapp, M., Lindenmaier, G., Boesler, B.: Documentation of the Intermediate Rep-
resentation FIRM. Technical Report 1999-14, Universität Karlsruhe, Fakultät für
Informatik (1999)

16. Mallon, C., Gantert, W.C.: Jagged Alliance 2 - Stracciatella (A port of the game
Jagged Alliance 2 using SDL) (2007), http://ja2.dragonriders.de/

17. Zündorf, A.: Graph Pattern Matching in PROGRES. In: Cuny, J., Engels, G.,
Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1994. LNCS, vol. 1073, pp. 454–
468. Springer, Heidelberg (1996)

18. Dörr, H.: Efficient Graph Rewriting and Its Implementation. LNCS, vol. 922.
Springer, Heidelberg (1995)

http://www.grgen.net
http://ja2.dragonriders.de/

AGTIVE 2007 Graph Transformation Tool Contest

Arend Rensink1 and Gabriele Taentzer2

1 University of Twente, The Netherlands
rensink@cs.utwente.nl

2 Philipps-Universität Marburg, Germany
taentzer@mathematik.uni-marburg.de

Abstract. In this short paper we describe the setup and results of a new initia-
tive to compare graph transformation tools, carried out as part of the AGTIVE
2007 symposium on “Applications of Graph Transformation with Industrial Rel-
evance”. The initiative took the form of a contest, consisting of two rounds: the
first round was a call for cases, the second round a call for solutions. The re-
sponse to both rounds was very good, leading to the conclusion that this is an
initiative worth repeating. There are, however, a number of lessons to be learned;
these are summarised here, in order to improve the organisation and the eventual
benefits of this type of contest.

1 Introduction

Tools are crucial for the promotion of graph transformation in industry. It is only with
the ready availability of reliable, easy-to-use tools that the attractions and benefits of
graph transformation can ever become clear to anyone not having a prior education in
this field. Furthermore, given the inherent complexities of the method, tool performance
is an important issue. As a community we should be constantly working to improve tool
support in all these aspects.

A variety of tool environments exists, supporting different graph transformation ap-
proaches and to some degree serving different purposes. There are some examples of
tool comparisons, e.g., [5, 3, 2]; furthermore, Varro et al. [9] propose some benchmarks
to be used for such purposes. Nevertheless, having a certain application in mind, it is
difficult for newcomers to decide the right graph transformation tool to use. Moreover,
even for most of the tool experts it is true that they know much about one or two tools
but little about the others.

To stimulate both the continued improvement of tools and the wider dissemination of
knowledge about existing tools, we have organised a tool contest as part of the AGTIVE
2007 symposium. The aim of this event was to compare the expressiveness, the usability
and the performance of graph transformation tools, along a number of selected case
studies. The desired outcome was twofold:

– To learn about the pros and cons of each tool considering different applications. A
deeper understanding of the relative merits of different tool features will help to
further improve graph transformation tools and to indicate open problems.

– To instill a sense of challenge and competition that will motivate tool developers
to continue their efforts. There is nothing like seeing, and being inspired by, the
features supported by other tools to stimulate progress in one’s own development.

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 487–492, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

488 A. Rensink and G. Taentzer

The case studies were selected from the entries received after an open call for cases,
which was distributed among the graph transformation tool providers. The call and se-
lection procedure are outlined in Sect. 2. This was followed by a call for solutions,
distributed more widely through the usual channels for calls for papers. Since the re-
sponse exceeded our expectations, it was not possible to demonstrate all solutions at
the contest session, as we had originally planned. The setup eventually chosen for this
session is described and evaluated in Sect. 3. In Sect. 4 we draw conclusions from the
experience gained in this way, and we give recommendations for next instances of the
contest.

As a final word, let us repeat the motto that we stated on the call for solutions.
Tool improvement is what we seek, and this contest was a means of achieving it. To
paraphrase a famous saying (see [7]):

’t Is better to have competed and lost, then never to have competed at all.

2 Call for Cases

Although the idea for the tool contest has arisen at ICGT 2006, in September 2006,
it took some time to put it into practice. The call for cases (constituting, in fact, the
first announcement of the tool contest) was issued only three months in advance of the
event, and contained a deadline of a mere two weeks for case descriptions. The call
was very broad, merely asking for case studies of any kind, from which a “small but
representative” subset was to be selected.

The response far exceeded our expectations: we received 13 case descriptions, of
varying size and amount of detail. Since we wanted to select at most 3, we had to set up
a ranking system. The following criteria were used:

Nature. What is being modelled; in other words, what is the application area? Among
the cases received, the application areas were: real-world systems (a game and a bi-
ological system, respectively), semantics, model transformations of various kinds,
and algorithms.

Size. What is the expected size of the solution? This can be expressed in terms of the
expected number of rules (order of magnitude), the expected complexity of the
meta-model and the rules. In general, the best measure is the effort to create a
correct solution.

Challenge. What is (or are) the core problem(s) in solving the case? Some of the more
specific challenges identified were: showing confluence and termination, verifying
correctness, offering sufficient (space and time) performance, allowing human in-
teraction. For most of the cases, however, the main challenge was to come up with
a “good” model – where, of course, it is not at all easy to define the “quality” of a
model in the first place.

Detail. What is the detail of the case description? Some of the submissions were quite
detailed, clearly constituting cases that had already been carried out by the submit-
ters — which is in fact something we very much encouraged in our communica-
tions, believing it to be the only way to ensure fast response. Clearly, a fair amount
of detail is an advantage in a case description, in particular if this includes a good

AGTIVE 2007 Graph Transformation Tool Contest 489

indication of the challenges (see above). On the other hand, a too precise descrip-
tion of the case runs the danger of leaving too little room for different solutions and
creativity. In particular, a case description should describe what is to be done, and
not how.

On all these dimensions, the submissions received were quite diverse. In the end we
identified a partitioning from which we selected three representative cases:

Category. On a certain level of abstraction, the following three categories could be
distinguished (as a mixture of the nature and the challenge of the case):

1. General graph transformation cases. These are real world applications, as well
as algorithms, for which the main challenge lies in actually providing a model.

2. Model transformation cases. This is a very important application area on its
own, to which much tool development has been devoted.

3. Performance cases. These are cases inspired by algorithms and decision prob-
lems in which the speed of transformation and/or memory consumption are the
main challenges.

In each of these categories there were case submissions with a sufficient amount of
detail to be usable. In the end we made the following selection:

1. Ludo game. This case was actually submitted by two teams, in slightly different
form. It involved modelling a (fairly simple) board game, i.e., a real-world appli-
cation. The challenges of this game are in modelling, visualisation and (human)
interaction, and to a minor degree in analysis. This case is reported in [4].

2. UML-to-CSP model transformation. This is a non-trivial model transformation
case, which had in fact already been studied before (see [1]). The challenges are
the ease of definition and understandability of the rules, as well as the ability to
read and write models in common formats. This case is reported in [8].

3. Sierpinski triangles. This case involves the fast and efficient generation of very
large graphs, based on a simple transformation. Challenges are time and memory
performance. This case is reported in [6].

It should be noted that none of these categories addresses analysis or verification issues,
and indeed this was perceived as an omission in the contest. Similarly, the chosen case
studies have little or no need for backtracking — which is an important element when
modelling NP-complete problems using graph grammars. We will come back to this in
Sect. 4.

3 Solutions

The call. The call for solutions was issued just before the summer holidays, two-and-a-
half months before the workshop. The deadline for submissions was one month before
the event, with notification promised ten days later. The danger with such tight deadlines
obviously is that attendance may depend upon acceptance, and so late notifications can
give rise to late registrations.

http://gtcases.cs.utwente.nl/wiki/Ludo
http://gtcases.cs.utwente.nl/wiki/UMLToCSP
http://gtcases.cs.utwente.nl/wiki/SierpinskyTriangles

490 A. Rensink and G. Taentzer

In the call for solutions, we merely asked that submissions should

– Contain a description of the chosen case study variant (if any);
– Present the chosen solution, including a discussion of design decisions.

As a guideline this is rather weak. In response to queries we added that submissions
should

– Not exceed 5 pages in length;
– Include enough information so that readers should be able to reconstruct the solution.

As with the call for cases, the response was very good: we received 30 solutions alto-
gether, reasonably well divided over the cases:

Case Solutions
Ludo 8
UML-to-CSP 11
Sierpinski triangles 13

Given the absence of strict guidelines, submissions were quite diverse and, as a con-
sequence, hard to judge and compare. For that reason we accepted all of them to the
contest session. In turn, this meant we could not allow all solutions to be demonstrated
during the workshop, as we had originally planned: not only would the available time
be too short, but also an over-long demonstration session would not be attractive.

The event. Because of the relatively large number of submissions, the actual contest
session was held in two stages, the first of which was split in three parallel meetings,
one for each case. During these case meetings, a small number of submissions were
demonstrated; these were selected by the organisers on the basis of the diversity of the
approaches involved. The demonstrations were followed by a discussion on the aspects
identified in the case, and the various solutions offered for those aspects by the different
tools.

In the second (plenary) stage, after a brief report on the case meetings, a more global
discussion took place on the setup and principles of the contest, the manner in which
the outcome was to be published, suggestions for case studies and recommendations
for future editions. For inspiration to future organisers, we include the outcome of this
discussion in the form of a list of suggestions.

– Distinguish between the transformation language and the transformation tool. Cri-
teria for the language are (among others): naturality for the domain, ease of mod-
elling. Criteria for the tool are (among others): efficiency, usability.

– Include test suites in the case description.
– Ideas for types of case studies:

• Large matches in irregular graphs (e.g., compiler construction problems). The
main challenge is performance.

• Refactoring. An important challenge in this context if copying graphs (in par-
ticular trees).

• Comparison of different matching strategies, along the lines of the benchmarks
provided in [9].

AGTIVE 2007 Graph Transformation Tool Contest 491

• Algorithmic problems with well-known solutions, involving backtracking
• Complex text-to-model and model-to-text transformations. A challenge is the

flexibility and adaptability of the tools for this (important, and often ignored)
type of transformation.

• Cases involving formal analysis/correctness proofs. Challenges are the power
to address certain types of problems, and the performance in producing results.

– Ideas for organisation:
• Throw a bunch of students at a problem, using different tools
• Present all solutions and let the audience judge them, using a questionnaire
• Set up a central server for a fair comparison of execution performance
• Produce solutions under time constraints

– Set up a repository of case studies and solutions. (This has in the meanwhile been
put into practice: see gtcases.cs.utwente.nl.)

4 Evaluation and Recommendations

In the following, we draw some conclusions from the past tool contest and give recom-
mendations for the next contest round.

4.1 Evaluation

Strong points. The response to this tool contest far exceeded our expectations. It shows
us that the time is ripe to initiate competition for graph transformation tools. Each part
of this contest was borne by a remarkable enthusiasm of the participants. In the run-up
of the tool contest, there was already remarkable stimulus for further tool development.
The positive experience with this tool contest leads to enough excitement for a next
edition of such a contest.

Weak points. However, the first round of this tool contest had less contest character,
since we did it without any ranking. Although general challenges have been identified,
they were not precisely given and could not be used to judge and to rank. Furthermore,
we did not have enough time for everyone to demonstrate their solution. The tool contest
could have been a workshop by its own. The time restriction led to a shift of discussions
among tool builders into the preparation phase of papers [4, 6, 8] which report on the
tool contest in detail.

4.2 Recommendations

For the next round of tool contests we like to give some recommendations. For truly
creating a contest, a ranking should be possible. This starts with the identification of
case categories and the submission of cases within these categories. Besides categories
mentioned in Section 2, further categories are needed to cover all kinds of challenges
for graph transformations tools. For example, a category “NP-complete problem” could
be an interesting new category to test the efficiency of rule matching. Furthermore,
verification issues should be covered by case studies.

http://gtcases.cs.utwente.nl/wiki/

492 A. Rensink and G. Taentzer

All challenges should be included in case descriptions. They need to be formulated
precisely enough to allow comparison. Performed experiments should be repeatable by
outsiders. This requirement includes a detailed experiment description mentioning all
tool specialities used. In general, the comparability of solutions has to be increased such
that a ranking system can be set up.

Assuming the enthusiasm for graph transformation tool contests will hold on, the
next contests should be organised as some kind of workshop which offer enough
time for demonstrating all solutions, including live-demos of experiments. Since tool
contests are an important incitement for tool improvements, deadlines should be less
tight. Continuous comparisons and improvements of tools should be possible and sup-
ported, to keep the lively contest going on. A wiki for this purpose has been set up at
gtcases.cs.utwente.nl

References

[1] Engels, G., Heckel, R., Küster, J.M.: The Consistency Workbench: A tool for consistency
management in UML-based development. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML
2003. LNCS, vol. 2863, pp. 356–359. Springer, Heidelberg (2003)

[2] Fuß, C., Mosler, C., Ranger, U., Schultchen, E.: The jury is still out: A comparison of AGG,
Fujaba, and PROGRES. In: Graph Transformation and Visual Modeling Techniques (GT-
VMT). Electronic Communications of the EASST, vol. 6 (2007)

[3] Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.: GrGen: A fast SPO-based graph
rewriting tool. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.)
ICGT 2006. LNCS, vol. 4178, pp. 383–397. Springer, Heidelberg (2006)

[4] Rensink, A., Dotor, A., Ermel, C., Jurack, S., Kniemeyer, O., de Lara, J., Maier, S., Staijen,
T., Zündorf, A.: Ludo: A case study for graph transformation tools. In: Schürr, A., Nagl, M.,
Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088. Springer, Heidelberg (2008)

[5] Rensink, A., Schmidt, V.D.: Model checking graph transformations: A comparison of two
approaches. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004.
LNCS, vol. 3256, pp. 226–241. Springer, Heidelberg (2004)

[6] Taentzer, G., Biermann, E., Bisztray, D., Bohnet, B., Boneva, I., Boronat, A., Geiß, R., Hor-
vath, Á., Kniemeyer, O., Mens, T., Ness, B., Plump, D., Vajk, T.: Generation of Sierpinski
triangles: A case study for graph transformation tools. In: Schürr, A., Nagl, M., Zündorf, A.
(eds.) AGTIVE 2007. LNCS, vol. 5088. Springer, Heidelberg (2008)

[7] Tennyson, A.: In memoriam (1850)
[8] Varró, D., Asztalos, M., Bisztray, D., Boronat, A., Dang, D.H., Geiß, R., Greenyer, J., Van

Gorp, P., Kniemeyer, O., Narayanan, A., Rencis, E., Weinell, E.: Transforming UML models
to CSP: A case study for graph transformation tools. In: Schürr, A., Nagl, M., Zündorf, A.
(eds.) AGTIVE 2007. LNCS, vol. 5088. Springer, Heidelberg (2008)

[9] Varró, G., Schürr, A., Varró, D.: Benchmarking for graph transformation. In: IEEE Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC), pp. 79–88. IEEE
Computer Society, Los Alamitos (2005)

http://gtcases.cs.utwente.nl/wiki/

Ludo: A Case Study for Graph Transformation Tools

Arend Rensink1, Alexander Dotor2, Claudia Ermel3, Stefan Jurack4, Ole Kniemeyer5,
Juan de Lara6, Sonja Maier7, Tom Staijen8, and Albert Zündorf9

1 Universiteit Twente, The Netherlands
rensink@cs.utwente.nl

2 Universität Bayreuth, Germany
alexander.dotor@uni-bayreuth.de

3 Technische Universität Berlin, Germany
Claudia.Ermel@tu-berlin.de

4 Philipps-Universität Marburg, Germany
sjurack@Mathematik.Uni-Marburg.de

5 BTU Cottbus, Germany
okn@informatik.tu-cottbus.de

6 Universidad Autónoma de Madrid, Spain
juan.delara@uam.es

7 Universität der Bundeswehr München, Germany
sonja.maier@unibw.de

8 Universiteit Twente, The Netherlands
staijen@cs.utwente.nl
9 Universität Kassel, Germany
zuendorf@uni-kassel.de

Abstract. In this paper we describe the Ludo case, one of the case studies of the
AGTIVE 2007 Tool Contest (see [22]). After summarising the case description,
we give an overview of the submitted solutions. In particular, we propose a num-
ber of dimensions along which choices had to be made when solving the case,
essentially setting up a solution space; we then plot the spectrum of solutions ac-
tually encountered into this solution space. In addition, there is a brief description
of the special features of each of the submissions, to do justice to those aspects
that are not distinguished in the general solution space.

1 Introduction

The field of graph transformation was set up over 30 years ago, but the development of
supporting tools started with considerable delay. Currently, a number of tool environ-
ments for different graph transformation approaches is available and the activity in tool
development has increased considerably. Thus, a comparison of tools with respect to
both functional and non-functional issues is becoming more and more important.

This paper describes one of the three case studies chosen for the tool contest outlined
in [22], based on a (children’s) game that in English goes under the name Ludo. The
motivation for choosing this case was that it provides the following tool challenges:

1. Modelling the rules of the game in an easy and understandable way;
2. Allowing the specification of different player strategies;

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 493–513, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

494 A. Rensink et al.

3. Simulating, storing and replaying different games in a flexible manner;
4. Visualising the game and allowing user interaction;
5. Offering high performance in simulating games.

The case was actually proposed by two different parties: Hölscher [14] and Kroll and
Geiß [19], with somewhat different emphases: the former stresses the issue of different
player strategies, the latter concentrates on some modelling aspects. The case descrip-
tions are combined and summarised in Sect. 2 below.

The case received 8 solution submissions, with a fair diversity of approaches and
choices for the different aspects of the case. In the remainder of this paper, after de-
scribing the case itself, in Sect. 3 we propose a number of dimensions or criteria along
which one can distinguish solutions, and we match the submitted solutions against those
criteria, thus setting up a solution space. Subsequently, Sect. 4 contains a short descrip-
tion for each of the submitted solutions, highlighting those aspects that are insufficiently
covered by the general criteria. Sect. 5 ends with a conclusion, evaluation and recom-
mendation for future cases.

2 Ludo Case Description

In this section we describe the original case, by combining the original descriptions in
[14, 19] and clearing up some ambiguities.

The goal of this case is to model the “Mensch ärgere dich nicht” game, the German
variant of the Ludo game. The following is adapted from Wikipedia:

“Mensch ärgere dich nicht” is a German board game, by Joseph Friedrich
Schmidt (1907/1908). It is a Cross and Circle game, similar to the Indian game
Pachisi, the American game Parcheesi, and the English game Ludo, though as
with Ludo the circle is collapsed onto the cross.

2.1 The Game

The Ludo board consists of a directed 40 field ring in form of a cross (see Fig. 1).
The rules are as follows:

1. There are four players: traditionally, red, blue, yellow and green. Every player has
four pawns, which are not in the game initially (they are “at home”).

2. Every 10th field serves as entry field for a player. Note that this imposes a cyclic
order over the players. In addition, directly preceding each entry field is a junction
to four consecutive goal fields of the same player.

3. At every point in time, it is the turn of one of the players. Turns rotate according to
the cyclic order of players.

4. The player whose turn it is throws a six-sided die, and moves one of his pawns
according to one of the following rules, if any is applicable. If no rule is applicable,
no pawn is moved.

Entry: If the die shows a six and the player still has pawns at home, and the
player’s entry field is not already occupied by a pawn of his own, he must
put one pawn from his home to his entry field.

Ludo: A Case Study for Graph Transformation Tools 495

Fig. 1. The Ludo playing board

Forward: If no entry move is possible, the player must select one of his pawns
on the board and move it forward by the exact number of eyes on the die. In
doing so he may not pass (i.e., overtake) or end on his own entry field (instead
he must take the junction to his goal fields) and may not end on a field that is
already occupied by a pawn of his own. Moreover, a forward move may not
pass any pawn already on a goal field.

If there is already a pawn (of another player) on the target field of a move, then this
pawn is kicked and returns to the other player’s home.

5. If the die roll was a six, the same player takes another turn; otherwise, the next
player (in the given order) gets his turn.

The game ends when one of the players has occupied all his goal fields. This player
has won the game.

2.2 Strategies

As with any game, an interesting question from the point of view of formal analysis
is to determine strategies for playing that are likely to win the game. Without going
into game theory, for the particular case of Ludo one can easily identify several global
strategies (global in the sense that they do not change during the game).

Aggressive: Give preference to a move that kicks a pawn;
Cautious: Give low priority to a move that kicks a pawn (so as not to anger the other

player);
Defensive: Give preference to a move to a target field where the pawn cannot be

kicked;
Move-first: Give preference to moving the foremost pawn;
Move-last: Give preference to moving the hindmost pawn.

More sophisticated strategies can be defined by taking the moves (or the strategies) of
other players into account.

496 A. Rensink et al.

0..1

0..1

4 1 belongsTo isOn

0..1has

next
0..1

16

4

1

eyes: int

56

1

4

1

1

belongsTo

belongsTo

goal0..1

0..1

Goal
Strategy

Player

Die

Pawn

Board

Field

Entry

Fig. 2. Expalantory type graph for the Ludo case

3 Solution Space

In this section, we discuss some dimensions along which choices have to be made while
modelling the game, and which therefore serve as a basis for distinguishing solutions.
We end with a table in which all the solutions received are positioned along those di-
mensions.

3.1 Elements of the Model

First of all, let us describe the essential elements of any graph transformation-based
Ludo model. This comes down to selecting the concepts from the case description that
are turned into node and edge types. The concepts are collectively displayed in Fig. 2
in a simple type graph. (Note that this was not part of the case description and does
not necessarily have any connection with the type graphs or meta-models used in the
solutions; it is just provided for explanatory purposes.)

Player. This is modelled by a node type. Players can have an identifier or colour to dis-
tinguish them. The cyclic order of players is typically modelled explicitly (through
edges).

Pawn. This is modelled by a node type. Each pawn belongs to a certain player; this is
typically modelled by an edge, or in some cases by an attribute.

Field. This is modelled by a node type. Entry and goal fields are special kinds of fields,
typically modelled by subtypes, or in some cases marked by special self-loops. The
same may be done for home fields, although these are not essential for the game
(we left them out of Fig. 2). Entryand goal (and home) fields belong to a player;
this is typically modelled by an edge. The position of a pawn (on a field) is likewise
modelled by an edge.

Board. This consists of all the fields and their interconnections, i.e., the next fields and
the junctions to the goal fields. The interconnections may be turned into nodes, but

Ludo: A Case Study for Graph Transformation Tools 497

typically will be modelled by edges. The board itself does not necessarily need a
special node, since all fields already implicitly belong to it.

Die. This is modelled by a (singleton) node, possibly of a special type but optionally
integrated with some existing node. The outcome of a die roll is then typically an
attribute of the die node.

Strategy. This is modelled by a node or an attribute value; a player can then be assigned
a strategy by adding an edge or attribute.

3.2 Game Rules

It is natural to turn the game rules into graph transformation rules. An important issue
here is the granularity of the transformation rules: a rule can capture either a small part
of a turn, on the level of a single step in the description of Sect. 2.1 or even smaller, or
combine several such steps into an atomic whole.

The game rules impose restrictions in selecting the pawn to move, and also in execut-
ing the move. Some of these restrictions, such as the one that forbids passing a pawn on
a goal field, are not straightforward to specify. An important choice is therefore whether
the Ludo model indeed enforces all the game rules. There are at least the following four
options:

– A priori enforcement. In this case, only moves that are according to the rules are
ever enabled. This typically requires that the move itself is modelled by a single
rule, which moves the pawn immediately to the target field.

– A posteriori enforcement. In this case, a move is tried out, and discarded if it leads
to an illegal state, either by backtracking or marking the pawn als immovable. The
actual move is then selected among the pawns that are not immovable.

– No enforcement. Depending on the underlying graph transformation tool, game rule
enforcement may be out of scope altogether. In particular, this may be true of the
solutions based on diagram editor generators: although they may offer complex
editing operations that actually model a valid move, the simpler operations that
result in “cheating” cannot always be turned off.

3.3 Modelling Choices

The description above already indicates that there are a number of choices to be made
in the model. We list the most interesting choice points and the possible options, below.

Randomness. Die rolls are supposed to be random, but graph transformation rule ap-
plication is deterministic by design (once a rule match is established). It is therefore a
choice point how to obtain the non-determinism, and even more difficult, the random-
ness needed here. On the other hand, the Ludo case is relatively benign in that there
is an a priori fixed, small number of outcomes. (This would even allow an exhaustive
enumeration of all possible outcomes using 6 different rules. However, none of the sub-
mitted solutions took this “ad hoc” approach.)

Options for implementing die rolls are:

– Calling a system function for a random number. This means that the graph transfor-
mation is not “pure” any more, but, on the other hand, randomness is guaranteed
(insofar the underlying system guarantees it). The solution also works for more
general random selections.

498 A. Rensink et al.

– User query for the outcome. Rather than asking the underlying system, a graph
transformation rule may ask the user for a “random” value. This does result in non-
determinism, but not in randomness (humans are notoriously bad at randomness).
Since at the point of interaction all values are still possible, a case can be made that
this solution is more “pure” than the first. It also works for more general random
selections.

– Match selection. This solution also relies on human selection of a value, but here the
potential outcomes are pre-determined as part of the start graph, resulting in six dif-
ferent matches; a choice among the resulting rule applications is offered to the user.
This has the same disadvantages as the previous solution regarding randomness, and
will only work as long as the number of values is finite (and preferably small); on
the other hand, it falls entirely within the graph transformation formalism.

– Random exploration. In this solution, like the previous, all potential rule applica-
tions are pre-computed; one is then automatically chosen, as part of the state space
exploration. In this case, randomness is once more guaranteed, but like the previous
solution, it will only work if the outcomes can indeed be pre-determined.

In the solutions we have seen that the first option is favoured, whereas the last option
also occurs once. The second and third do not occur.

Counting. The forward move involves counting fields. In other words, the length of the
path that a pawn has to traverse is determined by a number in the graph itself, namely,
the outcome of the die roll. There is a choice point in how to achieve this. Additional
difficulties are: (i) the pawns must go to the goal fields rather than pass again to the
entry field; and (ii) pawns on the goal field may not be overtaken. Leaving aside the
obvious ad hoc solution of specifying one rule per die roll, which was (fortunately) not
chosen in any of the solutions, viable options are:

– Numbering the fields. By numbering the fields consecutively, the target field of a
pawn can be calculated by addition modulo the number of fields. In order to ensure
the additional constraints, however, quantification is needed over the intermediate
fields, which requires a more powerful notion of transformation rule.

– Single-step rules. The granularity of the rules can be made smaller, so that each
rule application only moves the pawn by one step, at the same time decreasing a
counter. There are then distinct rules for intermediate steps and for the last step
(when the counter decreases to zero): only in the last case a test has to be included
for the presence of pawns on the target field. Since the legality of a move can
sometimes only be decided later on (for instance, a move is not legal if its final
field is occupied by a pawn of the same player), this solution also requires some
form of backtracking.

– System functionality for determining the correct target location. This means that the
rules interact with the underlying system to invoke dedicated code; in other words,
this part of the problem is not solved within the graph transformation formalism.

Strategies. To implement a player strategy, one has to select between allowed moves on
the basis of a ranking: first try out the best (kind of) move, then (if that is not possible)

Ludo: A Case Study for Graph Transformation Tools 499

a less preferable one, etc. Ideally, this selection should be orthogonal to the moves
themselves, i.e., the rules describing the moves should not have to be adapted in order to
take strategies into account. This, however, is not easy to realise, given the fact that the
strategies impose a complex ranking. In fact, there are two types of ranking: position-
based and result-based.

The foremost and hindmost strategies are position-based, in that they select a move
on the basis of the position of the pawn that moves. Note that it is not enough to simply
require that the fore- or hindmost pawn must move, since if this pawn cannot move
(because one of the other constraints would be violated) then the next one (from the
front or back) should be selected instead, and so forth.

The aggressive, cautious and defensive strategies are result-based, in that they select
a move on the basis of the outcome. This is in a sense easier than the former type of
ranking, since such a condition on the outcome is essentially a right application con-
dition in the rule, which can typically also be translated to a left application condition.
In combination with rule priorities or some other form of control, this has the desired
effect.

3.4 Graph Formalism

Regarding the graph transformation formalism, we distinguish the following dimen-
sions of choice. (Note that these choices are made on the level of the graph transforma-
tion tool, and not the Ludo model.)

– The typing available for the graphs. All but one of the tools have a built-in notion
of typing, which usually is given in the form of a type graph. In some cases these
type graphs conform to an existing (standardised) meta-model, namely EMF. In one
case the typing is actually determined by the underlying programming language.

– The language in which the rules are formulated. For most (in fact all but one)
submissions this is a visual format; only one submission requires a textual input of
the rules. If rules are specified visually, there is still a choice between the abstract
graph or concrete syntax level; see Sect. 3.5 below.

– The control that is imposed on top of the graph transformation rules. The amount of
control that a tool offers is an important factor in the ease with which complex game
rules can be easily specified and enforced (see above). Control can range from none
to a full-fledged language in which rule applications can be specified, including
hints about their matchings. An intermediate option is prioritised, meaning that
the rules have fixed global priorities. In practice we have encountered two kinds
of control languages: imperative (programming language-style) and storyboarded,
which is the FuJaBa speciality (see Sect. 4.1).

3.5 Visualisation

From a “lay user’s” (rather than a tool developer’s) perspective, one of the most impor-
tant features of a graph transformation tool is surely its ability to show the graphs in
a nice, easily comprehensible manner. There is a wide range of capabilities among the
submitted solutions.

500 A. Rensink et al.

– Plain graphs. The base level, which all tools offer, is to show the abstract graphs
that constitute the model. This means, for instance, that the order of the players,
the numbering of the fields, etcetera, which are only there for the model and do not
provide useful information for the game player, are nevertheless visible. Typically,
moreover, on this level no extensive layouting support is available — and even if
available, the layout information is not considered to be part of the model.

– Concrete syntax. A much more sophisticated visualisation is achieved if a concrete,
domain-specific syntax can be defined on top of the abstract graphs. This makes for
solutions that really offer something looking like a Ludo game board.

– 3D Rendering. By far the most attractive visualisation, which only one of the so-
lutions can offer, is a 3D view of the board. This requires a rendering mechanism
that is much more sophisticated even than the concrete syntax solution described
above.

3.6 Interaction

The unit of interaction between user and Ludo model is in principle a single rule appli-
cation — which is indeed the obvious choice given the setting of graph transformation.
However, the way applications are selected can differ, as well as the degree to which
rule selection can be automated. Possible options are:

– GUI-based interaction. If the visualisation offers a concrete, Ludo-specific GUI
view, then it may also offer functionality for selecting moves by interacting directly
with this view, meaning that the rules become completely invisible. In other words,
the model can have the look-and-feel of a mature game application.

– Match selection. Most of the tools work on the basis of pre-computed matches.
The interaction is then typically through a user-guided selection of the rule to be
applied, including the match if there is more than one (which is the case if there is
more than one pawn that can move, or in some cases also in order to select the die
roll, see Sect. 3.3).

– Match construction. For tools that do not rely on pre-computed matches, the user
must construct the match by hand. A rule is executed once a legal match has been
selected.

– Partially automatic. If there is only a single applicable rule, and the tool is able
to detect this (meaning that it does not rely on user-guided match construction),
then there is the possibility of executing this rule straight away, without requiring
user interaction. Alternatively, some rules may always be executed automatically,
whereas others (the human player’s moves) always wait for user input.

– Fully automatic. A further step towards automation consists of automatic rule se-
lection and execution even in the case of non-determinism. This means that a tool
can play a game all on its own, without user interaction.

3.7 Analysis

A final choice point in the solutions is the amount of analysis that has been done regard-
ing different player strategies. In particular, by letting different strategies play against
one another, one may attempt to determine the best strategy experimentally. For this to
be possible, the tool must first of all support fully automatic game play (see Sect. 3.6),
and secondly have a performance good enough to play a reasonable number of games.

Ludo: A Case Study for Graph Transformation Tools 501

Table 3. Solution space

FuJaBa
FuJaBa/GMF

DiaMeta

XL
AGG/ROOTS

AToM3

Groove

Tiger

G
am

e
ru

le
s

A
 p

rio
ri

X
X

X
X

X
A

 p
os

te
rio

ri
X

X
C

he
at

s
po

ss
ib

le
X

X
X

G
ra

nu
la

rit
y

T
T

P
T

P
P

P
S

T
ur

n
/ P

ha
se

 /
S

m
al

l s
te

p
R

an
d

o
m

n
es

s
S

ys
te

m
 fu

nc
tio

n
X

X
X

X
X

X
X

E
xp

lo
ra

tio
n

X
C

o
u

n
ti

n
g

N
um

be
re

d
fie

ld
s

X
X

X
S

m
al

l s
te

ps
X

X
X

X
S

ys
te

m
 fu

nc
tio

n
X

X
S

tr
at

eg
ie

s
P

os
iti

on
-b

as
ed

X
X

X
X

X
R

es
ul

t-
ba

se
d

X
X

X
X

X
X

F
o

rm
al

is
m

T
yp

in
g

T
M

M
P

T
T

T
T

yp
e

gr
ap

h
/ M

et
am

od
el

 /
P

ro
gr

am
 ty

pe
s

R
ul

e
la

ng
ua

ge
A

A
A

T
A

C
A

C
C

on
cr

et
e

vi
su

al
 /

A
bs

tr
ac

t v
is

ua
l /

 T
ex

tu
al

C
on

tr
ol

S
S

I
I

P
P

P
rio

rit
is

ed
 /

S
to

ry
bo

ar
de

d
/ I

m
pe

ra
tiv

e
V

is
u

al
is

at
io

n
R

en
de

re
d

X
C

on
cr

et
e

sy
nt

ax
X

G
M

F
X

P
yt

ho
n

X
A

bs
tr

ac
t s

yn
ta

x
X

X
X

In
te

ra
ct

io
n

G
U

I-
ba

se
d

X
X

X
M

at
ch

 s
el

ec
tio

n
X

X
X

M
at

ch
 c

on
st

ru
ct

io
n

X
X

P
ar

tia
lly

 a
ut

om
at

ic
X

X
F

ul
ly

 a
ut

om
at

ic
X

X
X

X
X

X
A

n
al

ys
is

P
er

fo
rm

an
ce

50
50

26
00

29
0

15
00

m
s/

ga
m

e,
 r

ou
gh

 a
ve

ra
ge

E
xp

er
im

en
ts

X
X

502 A. Rensink et al.

3.8 Overview

In Table 3 we show the resulting table of choice points for the solutions received; see
also [8, 10, 20, 17, 15, 5, 2, 1].

4 Individual Solutions

4.1 Fujaba

Fig. 4. Example storyboard

At the University of Kassel we use the
Ludo game as an exercise for our courses
in object oriented modeling with Fu-
jaba (see [13]) for about 4 years now.
We have also used it within highschool
courses in computer science as an exam-
ple for beginners. Thus, we have many
experiences with this example and it was
easy for us to come up with a case
study for the Agtive tool contest. Our
case study addresses all the topics men-
tioned in the Ludo tool contest: we have
modeled the game rules. We have devel-
oped a graphical user interface for in-
teractive playing. For this contest, we
have developed automatic player strate-
gies and a driver for automatic simula-
tions. Note, seeding our random number
generator results in deterministic game
simulations.

The first part of the challenge is the
modelling of the rules of the game. For
instance, Fig. 4 shows the move method
of class Stone which is invoked when
the user clicks on a pawn during the
game. This kind of diagram is called a
storyboard. The activity comment starts
with an identifer that we use for ref-
erence. Activity A1 uses a reaches
link to look up the target field that is
reached in the current situation. Note,
if method getReaches returns null,
this lookup fails and accordingly, activ-
ity A1 would fail. The rest of the story-
board implements the complete move. As a simple GUI framework we use the White-
Socks library, cf. [9]; see Fig. 5. This is created by turning the Ludo model elements
into WS objects, and by assigning appropriate icons and labels. One may play the game

Ludo: A Case Study for Graph Transformation Tools 503

Fig. 5. Ludo game built with Fujaba and Whitesocks

by clicking on the die; this will compute a new die value and update the die icon, ac-
cordingly. Then, the player may click on one of his pawns. This will move the icon
above the reached field and the die will be forwarded to the next player.

To simulate and rerun games, one may just store the start situation and then start
the game with automatic players on. If one seeds the die correctly, the game will rerun
similar to previous runs with the same seed.

As an example for a simulation, we have run 100 games with 2 level 7 automatic
players positioned at 12 and at 3 o’clock at the board. As expected, the player at 3
o’clock has a little disadvantage because pawns waiting at the entry field of the 12
o’clock player may kick his pawns just before they enter the last lane before its goal
fields. However, it was 57 wins for the 12 o’clock player and 43 for the 3 o’clock player.
To simulate one game we need about 50 milliseconds where 60% of the time is devoted
to the computation of priorities for the automatic players.

From our point of view, Fujaba is well suited for modelling the rules of the Ludo
game and for the development of automatic player strategies. With the help of the White-
Socks framework, it was easy to build a graphical user interface for the game. There
may be multiple human and or automatic players at one computer or with the help of
the Coobra environment mutliple player may play over the net. While the simulation
performance is reasonable, we have once again recognized that our intensive usage of
Java exceptions is a bottleneck for the generated code. We plan to improve this soon.

4.2 Fujaba and GMF

The following solution uses Fujaba [13] as well as the Eclipse Modelling Framework
(EMF) [11] and the Graphical Modelling Framework (GMF) [12] to generate an auto-
matic Ludo player and a Ludo editor to create, display and play the game.

504 A. Rensink et al.

First the structure of Ludo is modelled as UML class diagram. Second the behav-
iour is modeled with story diagrams, a combination of activity and communication dia-
grams, from which Fujaba is able to generate executable code. Fujaba is able to map the
Fujaba-Metamodel onto Ecore and to inject the story diagram based methods into the
EMF code generation [3]. The result is Ecore-compliant executable code which serves
as input for the GMF to generate a Ludo editor [4]. This editor is used to create the
initial board setup (see Fig. 6).

The basic editor commands allow playing Ludo but they do little to enforce valid
moves. Buttons and context menus are added to execute the story diagram based meth-
ods which allow valid moves only. Furthermore the figures of colored game elements
have to be enhanced in order to color them in dependency of their owner [12]. Both
enhancements do not require manipulation of the generated code but are loaded in a
separate plugin.

Highlights: Fujaba allows to model the behavior graphically in story diagrams which
increases the readability. The generation of the editor by GMF reduces the implemen-
tation of a sophisticated GUI tremendously. As GMF is designed for extensibility the
editor can be enhanced easily. As an Eclipse plugin the solution can be deployed plat-
form independently. See [4] for more details.

Open issues: The Ludo editor intermingles both editing the game board and playing
the game, so it is possible to cheat by editing the board during play. Also the mapping
between Ecore-model and graphical model is limited and requires manual coding (in
case of the colored elements). The missing backward trace from compiler (and runtime)
errors to Fujaba diagram elements makes debugging a tedious task.

4.3 DiaMeta

We used the diagram editor generator framework DIAMETA [21] to specify the board
game Ludo. The generated editor offers the possibility to specify a board and to play
the game.

Specification. To create an editor for a specific diagram language with DIAMETA [21],
the editor developer has to provide two specifications: First, the abstract syntax of the di-
agram language in terms of its model (EMF model). Second, the Designer specification
that primarily contains the visual appearance of diagram components, the interaction
specification and the structured editing operations. Additionally, a layouter had to be
programmed since DiaMeta does not yet support automatically generating a layouter.

Functionality. The generated editor makes it easy to create different boards, e.g., vary-
ing the number of fields or pawns. Fig. 7 shows a board that was created with the editor.
A board consists of a die and some connected fields. For each player, we need a certain
number of pawns, home fields, entry fields and goal fields.

To play the game, the editor offers two possibilities: Having a human player that rolls a
die and then moves a pawn by hand, or choosing a strategy to play the game automatically.

A human player can either operate in free-hand editing mode, or in structured editing
mode. In the first case, the editor user rolls the die and then grabs a pawn with the mouse
and moves it somewhere on the board. It is not checked whether the move is allowed or

Ludo: A Case Study for Graph Transformation Tools 505

Fig. 6. GMF Ludo editor with initial board setup

Fig. 7. Ludo board created with DiaMeta

not. In the second case, he rolls the die and then moves the pawn by clicking a button.
In this case, it is checked whether the move is allowed or not.

Besides that we have the option to use a strategy, either for a single step, or to play
the complete game. We can move the pawn that is nearest to the goal fields (Move-last),
or we can move the pawn that is farthest from the goal fields (Move-first). Another
criterion is to choose whether a player always tries to kick other players’ pawns when

506 A. Rensink et al.

possible (Aggressive), or if the player only kicks other players’ pawns if left with no
other choice (Cautious).

Challenges. Most of the editor specification was easy to write. Two parts were
challenging:

– First, DIAMETA uses a very simple language to specify structured editing rules and
operations that have been used to specify strategy.

– Second, we had to write some parts by hand: the visualization of some components
and accessors to attributes that are used in the interaction specification. Fortunately,
DIAMETA offers the possibility to include self-written code, and hence made it easy
to complete the editor.

4.4 Solution Using XL and GroIMP

This solution benefits from several XL features like iterated patterns (subsets of tran-
sitive closures) and optional patterns, and from the built-in 3D visualization and inter-
action of GroIMP [18]. Assuming that our graph of fields has the suggested structure
of the Karlsruhe case study [19] (i.e., the edges between fields indicate the legal paths
for each individual player), and that pawns of each player form a circular list linked by
next edges, the pawn movement for the Karlsruhe variant can be implemented by a
single rule:

(* d:Die < p:Player *) -tryNext-> (* Pawn *)(-next->){0,3}:
(

(* f:Pawn [-next-> n:Pawn] *)
<+ (* a:Field *) (-edges[p.index]->){d.score()} b:Field
(? +> g:Pawn(gp,h)), ((g == null) || (gp != p))

)
==>> b [f], if(g != null) (h [g]), p -tryNext-> n;

It makes use of an iterated pattern (-next->){0,3} : (...) which traverses
0 to 3 next edges (but as few as possible) to find the actually moved pawn f,
starting at the pawn indicated by a tryNext edge. The second iterated pattern
(-edges[p.index]->){d.score()} traverses exactly as many edges of the dis-
tinct edge type of the player as the score prescribes (where the implementation of
the random number generator is very easy as XL extends Java). The optional pattern
(? +> g:Pawn(gp,h)) tests if there is some other pawn on the potential new field
b. For a match of the whole left-hand side, i.e., if there is a legal move, the rule is ap-
plied and moves f to b, g to its base field, and marks the next player to be tried. On a 3
GHz computer using an initial seed of 98754321, the complete sequence of 460 moves
takes about 290 milliseconds.

A visualization can be obtained easily within GroIMP by using predefined geometric
classes as superclasses for our nodes:

module Field extends Cylinder(0.001, 0.4);

For the pawns, we may also use an interactively modelled spline curve to create a sur-
face of revolution. As each field defines its own local coordinate system, a pawn is

Ludo: A Case Study for Graph Transformation Tools 507

Fig. 8. 3D Visualization using GroIMP, rendered by integrated raytracer

automatically moved in 3D space from one field to another by simply redirecting its
incoming edge as it is done by the movement rule. If we interactively design shaders
(definitions of optical properties), we arrive at Fig. 8.

The extension of the rules to the complete set of Sect. 2.1 was also done with the ex-
ception of the interdiction to pass pawns at goal fields (but the latter could be integrated
as a condition in the iterated pattern). Likewise, several strategies as well as human
players were implemented. The latter can be controlled by hot-keys, but a mouse-based
selection of the pawn to be moved would be possible without great effort, too.

4.5 ROOTS

The Rule-based Object-oriented Transformation System (ROOTS) is a plug-in for
Eclipse, which is based on the graph transformation engine AGG following the alge-
braic approach. For further information on this tool see [16]. The basis of this Ludo im-
plementation is a type graph including all elements of the game, e.g., pawn, die, fields,
strategies etc. These are represented in an object-oriented manner i.e. by attributed
classes, associations and inheritance. The virtual game board (clipping shown on the
left of Fig. 9) is constituted by an instance of this type graph arranged analogously
to the original board layout. In contrast to other solutions presented in this volume,
ROOTS does not generate/compile any concrete syntax editors but directly shows the
abstract syntax and allows detailed tracing of graph transformation steps.

The implemented rules define the game rules. They can be distinguished according to
three different concerns: (1) starting phase e.g. negotiating the first player, (2) general
game play e.g. moving a pawn, and (3) strategy-specific decisions (e.g., which pawn
to move). The rule ‘Roll Die’ related to the first concern is exemplarily depicted on
the right of Fig. 9. It demonstrates the capability of exploiting Java expressions, in
particular in this case to throw the die at random. Since the strategy-relevant decisions
are separated, common operations benefit from reuse and flexibility in strategy usage
(during game play), by simply associating a strategy object (cp. game board graph in
Fig. 9), or even omitted enabling a human player. Four different automated strategies

508 A. Rensink et al.

Fig. 9. ROOTS game board detail and two rules

are realized: Pacifist, Shepherd, Runner and Aggressor. The rule ‘Aggressor: Mark valid
move’ is shown in the right corner of Fig. 9.

Our solution is purely rule-based, i.e. we use graph elements and especially attributes
to control the application of rules. To support a good understanding ROOTS provides
the possibility to put descriptions on almost every element.

4.6 AToM3

AToM3 [7] is a tool for the generation of modelling environments for Domain Specific
Visual Languages (DSVLs). It allows describing the DSVL abstract syntax by means of
a meta-model with constraints (specified in Python). The concrete syntax is specified by
assigning icon-like entities to classes and arrow-like elements to associations. It is pos-
sible to define model manipulations by graph transformations. These can be customized
to work under the double or single pushout approaches [23]. Rules may use the inher-
itance relations defined in the meta-model [6], can have application conditions of the
form p → q and have a priority, so that these with higher priority are tried first. Trans-
formations can be executed in interactive mode (the user chooses the match), or batch
(rules are executed until the grammar finishes). A delay can be assigned to the rules so
that the rule execution can be animated. Starting from the meta-model and the concrete
syntax specifications, AToM3 generates a customized modelling environment for the
DSVL. The user interface of the environment is also a model, and can be customized,
e.g. adding buttons to execute transformations.

A generalization of the Spanish Ludo (called Parchis) has been modelled, allowing
some degree of parameterization regarding the board topology, and the number of: play-
ers and their colours, pawns per player, fields to be counted when kicking pawns, and
when a pawn reaches the finish. The resulting environment is shown in Fig. 10.

The game dynamics were specified using Double Pushout rules. A button was added
in the final user interface to execute the transformation. The grammar runs in interactive
mode, so the user selects a match for a rule if more than one is available (thus he
selects the pawn to be moved). The rules moving the pawns of computer players usually
produce unique matches, so no decisions have to be made (however sometimes two
“equivalent” moves have to be chosen, e.g., when two pawns are the first ones, or when

Ludo: A Case Study for Graph Transformation Tools 509

Fig. 10. The AToM3 Generated Environment

several pawns can be eaten). Regarding the visualization, rules moving pawns take care
of placing them inside the target cells by means of Python code.

4.7 GROOVE

Our solution of the Ludo case is a specification of the game using the Groove tool
set. Groove is a tool for graph transformations that uses directed, edge labelled simple
graphs and the SPO approach. Given a graph grammar (G, P), composed of a start
graph G and a set of production rules P , the tool allows to compute a labelled transition
system (LTS) corresponding to all possible derivations in this grammar.

For the Ludo case, a graph is specified that models the Ludo board and the four
players with their pawns. The actions of the players, including the constraints imposed
by the rules of the game, are modelled as a set of nine graph transformation rules. These
rules are applied in four steps: rolling the die, moving a pawn, kicking another players’
pawn and selecting the player to have the next turn.

While modelling the game, we tried to keep the graph as simple and straightforward
as possible (for both memory and visualisation reasons) while still being able to specify
pawn-movement in a single rule, to minimize the size of the generated transition system.
This is achieved by flagging the player nodes with a colour. Fields are either connected
by next edges or by edges labelled with these colours, indicating which players are
allowed to move between the fields. Groove’s feature to match regular expressions (over
labels on edges connecting nodes) allows to simply specify rules that move pawns into
the players home and that disallow pawns to stay on the board more then a single lap.

One of the challenges was to have random results for rolling a die. The die-
roll rule always has six possible derivations: one for each possible value of the die.
We use Groove’s barbed exploration strategy to achieve randomness. For a given
state in the LTS, this strategy determines all possible rule applications and adds

510 A. Rensink et al.

Fig. 11. Partial state space in
GROOVE

them (and the resulting target graphs) to the LTS.
It then randomly selects one of the unexplored tar-
get graphs (through a random generator built into the
barbed strategy) and continues the barbed exploration
from that graph. This is shown in Fig. 11, which dis-
plays a fragment of the explored part of the LTS. The
“broomsticks” where 6 possible die rolls are evalu-
ated are clearly visible, as is the fact that only one of
the choices is eventually taken.

Simulation of the grammar in Groove generates an
LTS in which each path represents a possible Ludo
game. The barbed strategy typically explores one path
of the full LTS until a final graph — whenever a
player has won the game — has been found. We
found that these paths often start with a cycle, rep-
resenting a round where none of the players have
thrown a six yet, and thus end in the same graph as
they started.

Player strategies are implemented by adding
strategy-rules with a higher priority than the move
rule, replacing it in specific cases. Example strate-
gies implemented in this way are foremost and ag-
gressive as discussed in Sect. 2.2. To apply a strategy
to a player, the Player node can be tagged with the
name of the strategy, which is required by the rule.
This allows different players to use distinct strategies.

4.8 Tiger Plays Ludo

The TIGER project (transformation-based generation
of environments) [24] aims at generating visual edi-
tors as plug-ins for ECLIPSE from a visual language
specification which is based on a typed graph gram-
mar. The TIGER Designer allows a language designer
to define concrete visual graphics for language ele-
ments and to use this concrete syntax to define editor
operations as graph rules.

The TIGER Generator generates visual editors
where all defined editor operations are provided in the
palette. In order to perform an editor operation (e.g.
insert a symbol), the user has to select a rule from
the palette, and, if required, to click on match objects
in the editor panel where the rule should be applied.
Since editor usage is highly interactive (i.e. each editor operation is an action evoked
by the user), TIGER does not provide means to control rule applications.

Ludo: A Case Study for Graph Transformation Tools 511

In our Ludo specification, the board with tokens in their initial position
was defined as a start graph. Each graph rule for game simulation represents
a phase in the game, like selecting the first player, throwing the die,
moving forward, or kicking out another player’s token (see the rule
palette of the generated Ludo tool to the right). The only strategic
choices we allow the player to make are the following: who will be the
first player of the game, which token shall move (in case there is more
than one token of the player’s color on the field), and which token shall
go to the start place (if a six has been thrown). Hence, strategies are in-
teractive user decisions, e.g., selecting from different applicable rules
or choosing one of several possible matches. In the cases where there
is no choice left, only one rule will be applicable at one match to go on with the game.
Due to TIGER’s nature, this rule still has to be selected from the palette instead of being
applied automatically.

Specifying Ludo using the TIGER Designer, rules are edited using the concrete syn-
tax, see e.g. rule moveOneStep in Fig. 12 (a). Note that this rule has a set of negative
application conditions (not depicted), forbidding e.g. that the next field is the entry field
of the active player. Fig. 12 (b) shows the generated Ludo game environment with the
Ludo board in the editor panel besides the game rule palette. The four colored fields
around the die control the turns of the players. The current player and his currently se-
lected pawn are marked by colored rings around the respective fields. Please note that
due to TIGER being an editor generator, the palette may easily be extended by editing
rules for drawing the game board, thus adding a flexibility of designing user-specific
Ludo boards as part of the game simulation.

Fig. 12. TIGER rule moveOneStep (a) and Ludo Game Environment (b)

5 Conclusions

The response to the Ludo case has been a quite diverse set of solutions. We refer again
to Table 3 for an overview and comparison along the established choice points. This

512 A. Rensink et al.

multitude of solutions is, of course, very positive: clearly, many tool developers have
been challenged to show what they can achieve when modelling this well-known appli-
cation. Indeed, the Ludo case descriptions have left a lot of room for different interpre-
tations and special features.

The same observation also has a negative connotation: given this diversity, there is
no very objective basis for comparing, let alone ranking, the submissions. Although in
Table 3 we did manage to set up a number of “choice dimensions”, largely inspired
by the solutions that we actually received, it would in fact be preferable to identify
beforehand what the expected modelling challenges are, and in some cases perhaps
also how we want them to be addressed. An example of one aspect that, in our opinion,
could have been worked out to greater effect, is the analysis of the player strategies.

We recommend that a next tool contest again includes a case that is essentially about
modelling a system, with at least the complexity of the Ludo game. In fact, we would
favour another game-related application, since, as we have seen, this offers scope for
many different tool approaches. However, we also recommend that a list of case aspects
is provided beforehand, with for each aspect a description of what should be addressed.
Example aspects can be found among the choice dimensions in Table 3:

– Modelling. This concerns particular game characteristics that are expected to be
hard to model.

– Analysis. This concerns investigating actual game runs, comparing player strate-
gies, etc. Possibly some performance criteria could be identified. Alternatively, cor-
rectness issues such as termination may be identified.

– Visualisation. This concerns creating an appealing or understandable visual model
environment for the game application.

– Interaction. This is about creating a playable game. It might be worthwhile trying
to get different graph transformation engines to play against one another.

– Other. In order to prevent restricting the creativity of submitters, the list of aspects
should not be closed.

Submitters can select those case aspects that they will concentrate on. In this way each
submission can display its own strengths, on the basis of a common, shared application,
and yet comparisons can be made, along lines that were set out and known beforehand.
Thus, the advantages of Ludo are kept, but we will be able to draw more value out of it.

References

[1] Biermann, E., Ermel, C.: Tiger plays Ludo (2007),
http://gtcases.cs.utwente.nl/wiki/Ludo

[2] Boneva, I., Kastenberg, H., Staijen, T., Rensink, A.: The Ludo Game with the Groove Tool
Set (2007), http://gtcases.cs.utwente.nl/wiki/Ludo

[3] Buchmann, T., Dotor, A., Geiger, L.: Emf codegeneration with fujaba. In: FujabaDays 2007
conference (submitted, 2007)

[4] Buchmann, T., Dotor, A., Westfechtel, B.: Model driven development of graphical tools:
Fujaba meets gmf. In: Proceedings of the 2nd International Conference on Software and
Data Technologies (ICSOFT 2007), INSTICC, pp. 425–430 (July 2007)

http://gtcases.cs.utwente.nl/wiki/Ludo
http://gtcases.cs.utwente.nl/wiki/Ludo

Ludo: A Case Study for Graph Transformation Tools 513

[5] de Lara, J.: Generating a Tool to Play Ludo with AToM3 (2007),
http://gtcases.cs.utwente.nl/wiki/Ludo

[6] de Lara, J., Bardohl, R., Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Attributed graph
transformation with node type inheritance. Theoretical Computer Science 376, 139–163
(2007)

[7] de Lara, J., Vangheluwe, H.: Atom3: A tool for multi-formalism modelling and meta-
modelling. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 174–188.
Springer, Heidelberg (2002)

[8] Diethelm, I., Geiger, L., Zündorf, A.: Implementing Ludo with Fujaba (2007),
http://gtcases.cs.utwente.nl/wiki/Ludo

[9] Diethelm, I., Jubeh, R., Koch, A., Zündorf, A.: Whitesocks - a simple GUI framework for
Fujaba. In: International FujabaDays 2007, Kassel, Germany (2007)

[10] Dotor, A., Buchmann, T.: Building Ludo with Fujaba and the Graphical Modeling Frame-
work (GMF) (2007), http://gtcases.cs.utwente.nl/wiki/Ludo

[11] Eclipse Foundation: The Eclipse Modeling Framework (EMF) Overview. (2005),
http://www.eclipse.org/modeling/emf

[12] Eclipse Foundation: GMF - Graphical Modeling Framework (2006),
http://www.eclipse.org/gmf

[13] The fujaba toolsuite (2006), http://www.fujaba.de
[14] Hölscher, K.: Case proposal: Don’t get angry (2007),

http://gtcases.cs.utwente.nl/wiki/uploads/ludo bremen.pdf
[15] Jurack, S., Taentzer, G.: Realizing Ludo by ROOTS (2007),

http://gtcases.cs.utwente.nl/wiki/Ludo
[16] Jurack, S., Taentzer, G.: ROOTS: An Eclipse Plug-in for Graph Transoformation Sys-

tems based on AGG. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS,
vol. 5088. Springer, Heidelberg (2008)

[17] Kniemeyer, O.: Ludo — Solution using XL (2007),
http://gtcases.cs.utwente.nl/wiki/Ludo

[18] Kniemeyer, O., Kurth, W.: The modelling platform GroIMP and the programming language
XL. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088. Springer,
Heidelberg (2008)

[19] Kroll, M., Geiß, R.: A Ludo Board Game for the AGTIVE 2007 Tool Contest (2007),
http://gtcases.cs.utwente.nl/wiki/uploads/ludo karlsruhe.pdf

[20] Maier, S., Minas, M.: Ludo meets DiaMeta (2007),
http://gtcases.cs.utwente.nl/wiki/Ludo

[21] Minas, M.: Generating meta-model-based freehand editors. In: Proc. of 3rd Intl. Workshop
on Graph Based Tools. Electronic Communications of the EASST (2006)

[22] Rensink, A., Taentzer, G.: AGTIVE 2007 graph transformation tool contest. In: Schürr, A.,
Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088. Springer, Heidelberg (2008)

[23] Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transfor-
mations. Foundations, vol. 1. World Scientific, Singapore (1997)

[24] Tiger Project Team, Technical University of Berlin: Tiger: Generating Visual Environments
in Eclipse (2005), http://www.tfs.cs.tu-berlin.de/tigerprj

http://gtcases.cs.utwente.nl/wiki/Ludo
http://gtcases.cs.utwente.nl/wiki/Ludo
http://gtcases.cs.utwente.nl/wiki/Ludo
http://www.eclipse.org/modeling/emf
http://www.eclipse.org/gmf
http://www.fujaba.de
http://gtcases.cs.utwente.nl/wiki/uploads/ludo_bremen.pdf
http://gtcases.cs.utwente.nl/wiki/Ludo
http://gtcases.cs.utwente.nl/wiki/Ludo
http://gtcases.cs.utwente.nl/wiki/uploads/ludo_karlsruhe.pdf
http://gtcases.cs.utwente.nl/wiki/Ludo
http://www.tfs.cs.tu-berlin.de/tigerprj

Generation of Sierpinski Triangles: A Case
Study for Graph Transformation Tools

Gabriele Taentzer1, Enrico Biermann2, Dénes Bisztray3, Bernd Bohnet4,
Iovka Boneva5, Artur Boronat3, Leif Geiger6, Rubino Geiß7, Ákos Horvath8,

Ole Kniemeyer9, Tom Mens10, Benjamin Ness11, Detlef Plump12,
and Tamás Vajk8

1 Philipps-Universität Marburg, Germany
taentzer@mathematik.uni-marburg.de

2 Technische Universität Berlin, Germany
enrico@cs.tu-berlin.de

3 University of Leicester, UK
{dab24,aboronat}@mcs.le.ac.uk
4 Universität Stuttgart, Germany

bohnet@informatik.uni-stuttgart.de
5 University of Twente, The Netherlands

bonevai@cs.utwente.nl
6 Kassel University, Germany
leif.geiger@uni-kassel.de

7 Universität Karlsruhe, Germany
rubino@ipd.info.uni-karlsruhe.de

8 Budapest University of Technology and Economics, Hungary
ahorvath@mit.bme.hu, tamas.vajk@aut.bme.hu

9 BTU Cottbus, Germany
okn@informatik.tu-cottbus.de

10 University of Mons-Hainaut, Belgium
tom.mens@umh.ac.be

11 Vanderbilt University, US
bness@isis.vanderbilt.edu

12 The University of York, UK
det@cs.york.ac.uk

Abstract. In this paper, we consider a large variety of solutions for the
generation of Sierpinski triangles, one of the case studies for the AGTIVE
graph transformation tool contest [15]. A Sierpinski triangle shows a
well-known fractal structure. This case study is mostly a performance
benchmark, involving the construction of all triangles up to a certain
number of iterations. Both time and space performance are involved.
The transformation rules themselves are quite simple.

1 Introduction

The field of graph transformation was set up over 30 years ago, but the develop-
ment of supporting tools started with considerable delay. Currently, a number of

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 514–539, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Generation of Sierpinski Triangles 515

(a) (b)

Fig. 1. Initial and first generation of the Sierpinski triangle

tool environments for different graph transformation approaches is available and
the activity in tool development has increased considerably. Thus, a comparison
of tools with respect to both functional and non-functional issues is becoming
more and more important.

Graph transformation tools can serve very different purposes. The case study
we consider in this paper allows us to compare the efficiency of graph represen-
tations and the performance of repeated rule applications. For this comparison
we have chosen the generation of Sierpinski triangles. Due to its exponential na-
ture, the problem involves graphs which are getting huge within a few generation
steps. Theses graphs need not be typed and attributed; hence very simple graph
models may be used. Furthermore, the generation process is very regular and
can be performed with only a few rules.

In the context of the AGTIVE tool contest, the response to the call for this
case study has been impressive. Twelve solutions with variants have been sub-
mitted, differing heavily in the underlying graph transformation approaches and
tools, the graph representation, and the application control for rules. At the
end of this paper, we categorize the given solutions and compare their runtime
performance.

This paper is structured as follows: The case study used for competition is pre-
sented in Section 2. It comprises the generation of Sierpinski triangles. Section 3
gives an overview on the dimensions of solutions, while Section 4 presents a vari-
ety of concrete solutions. In Section 5, we briefly compare the presented solutions
and draw some conclusions.

2 Case Study “Generation of Sierpinski Triangles”

The goal of this case study is to measure the performance of graph transforma-
tion tools constructing Sierpinski triangles. The Sierpinski triangle is a fractal
named after Waclaw Sierpinski who described it in 1915. Originally constructed
as a mathematical curve, this is one of the basic examples of self-similar sets,
i.e. it is a mathematically generated pattern that can be reproduced at any
magnification or reduction.

An algorithm for obtaining arbitrarily close approximations to the Sierpinski
triangle is as follows:

516 G. Taentzer et al.

1. Start with an equilateral triangle with a base parallel to the horizontal axis.
2. Shrink the triangle by 1

2 , make two copies, and position the three shrunk
triangles so that each triangle touches each of the two other triangles at a
corner.

3. Repeat step 2 with each of the smaller triangles.

(a) (b)

(c)

Fig. 2. Second generation of the Sierpinski triangle

2.1 Sierpinski Triangle as a Graph

For the purpose of the case study the Sierpinski triangle has to be represented as
a (mathematical1) graph, and the construction rules have to be restated in the
context of graph transformation. As an initial step a triangle has to represented
as a graph: Three nodes connected by three edges (see Figure 1(a)).

Next, an elementary “Sierpinski step” is defined: On every edge of a triangle
a node is placed. These new nodes are connected by edges (see Figure 1(b) in
comparison to 1(a)). This forms a triangle consisting of four smaller triangles.
The inner of the four triangles is considered “dead” and no further “Sierpinski
steps” will be performed there. The other three triangles are candidates for fur-
ther steps. (See Fig. 2 for the next elementary Sierpinski steps.) If all elementary
steps are done for a certain graph (without reconsidering newly created trian-
gles), we call this a generation (Figure 1(a) shows generation zero, Figure 1(b)
shows generation one, and Figure 2(c) shows generation two). It is required for
this case study that a generation is completed before any transformation for the
next generation takes place.
1 A mathematical graph has no immediate representation on a two dimensional

plane—though embeddings may be computed.

Generation of Sierpinski Triangles 517

2.2 Goals of the Case

This case study is pretty easy to implement: It uses only small pattern graphs,
simple graph rewrites, and only a few rules. The generated graphs get huge fast.
The number of nodes is equal to 3

2 (1+3n) and the number of edges is 3(n+1) with
n being the number of generations. So it tests the ability of a tool to represent
large graphs efficiently, and to perform simple rewrites, fast. With growing num-
ber of generations it is possible to sample memory usage and computation time.
Last but not least, we can see how the tools are capable of enabling adequate
meta models, rule sets, and rule applications.

3 Overview on Solutions

The solutions presented in the following differ heavily. For getting a better
overview, we discuss those dimensions of modelling that play a role for this
case study.

3.1 Modelling Choices

The solutions presented below differ heavily concerning the representation of
graphs and modelling of Sierpinski steps. In the following, we list the main
alternatives.

Graph representation. In most solutions, graph nodes and edges are typed and
carry information important for the generation process, i.e. they mostly guide
the generation process. Some solutions also use additional nodes or edges to
store data about intermediate steps of the Sierpinski triangle generation. More-
over, also node attributes are used for storing additional information. Clearly,
additional graph elements and attributes may affect the efficiency of graph rep-
resentation.

Modelling of Sierpinski steps. All solutions contain one or more rules for per-
forming an elementary Sierpinski step. All generation steps, except the first one,
consist of several applications of the elementary step. The solutions show differ-
ent kinds of controlling rule applications. Basically, we can distinguish parallel
from sequential rule application.

The generation of Sierpinski triangles is well suited for parallel rule application
and means that the basic Sierpinski step is performed on all triangles being
”alive” simultaneously (compare Sec. 2.1).

Sequential rule application necessarily leads to intermediate graphs where
some atomic triangles of the current generation step are already refined, while
others still have to be considered. For not refining an already refined triangle
again in the same generation step, some application control has to be added
which can be done in different ways. Some solutions add further graph elements
holding information about the generation process and/or add application con-
ditions to their generation rules or even add further rules, while others rely on

518 G. Taentzer et al.

external control which is formulated by e.g. regular expressions. Besides just
controlling the selection of rules, some solutions even control the rule matching
explicitly and thus eliminate any kind of non-determinism in rule application.

3.2 Graph Transformation Approaches

A number of different graph transformation approaches are used to perform the
generation of Sierpinski triangles. The solutions proposed differ also according
to offered graph transformation features. In the following, we sketch the most
important features for this case study:

– Nearly all solutions use typed graphs, sometimes even with node type inher-
itance.

– Some solutions are based on attributed graphs. In these cases simple at-
tribute computations are performed only.

– The approaches differ in the ability to visually or textually represent graph
rules.

– While most approaches offer sequential rule application only, there are some
approaches which support parallel rule application (in addition). Here, a rule
is applied to all possible matches in parallel. Note, that parallel refers to
simultaneous rewriting semantics; it has not necessarily to be implemented
by parallel threads of any kind. In fact almost all tools do not support
thread-based or distributed rewriting.

– To further control sequential rule application, additional application con-
ditions for rules are offered by several approaches. These include negative
application conditions, attribute conditions, and type conditions.

– Another form of application control is to put control on top of rules by
using concepts from regular expressions, abstract state machines, activity
diagrams, Java programs, and recursive rule application. Some of these forms
allow to control rule matches in addition.

4 Solutions

In the following, twelve different graph transformation solutions for the gener-
ation of Sierpinski triangles are presented. These solution are available with all
details at the following newly created Web site for graph transformation cases:
http://gtcases.cs.utwente.nl/

4.1 Tiger EMF Transformation Framework

The Tiger EMF Transformation Framework (EMT) [16] is a tool for modeling
and applying graph transformation rules. The solutions consist of a set of graph
transformation rules on EMF [8] models, that are designed using the Visual
Editor of EMT. The production rules are defined by rule graphs, namely a
left-hand side (LHS) and a right-hand side (RHS). The rule set is compiled
to Java code and run by the Eclipse development platform [7]. This enables the
implementation of control structure to perform the specified changes to the given
model instance.

Two solution were implemented, a deterministic and a non-deterministic one.

http://gtcases.cs.utwente.nl/

Generation of Sierpinski Triangles 519

Deterministic solution. This solution uses a programmed control flow to
apply rules.

For our solution we first de-
fine an EMF model and an initial
Sierpinski triangle as shown on
the right. This can be defined by
using any editor for EMF models,
for example the EMF tree editor.

Afterwards we define two rules
for transforming a Sierpinski in-
stance such that we reach a new
Sierpinski generation. This can
be done by using the graphical
rule editor which is part of EMT.
The defined rules are translated
to Java code that changes a given
Sierpinski triangle as described
by the rules AddTriangle1 and
AddTriangle2. In our case we
need two rules because EMF re-
quires a containment hierarchy
between all classes and a class
can only be contained in exactly
one other class. Rule AddTrian-
gle1 refines left triangles where
the upper vertex contains both
lower vertices, while AddTrian-
gle2 refines right triangles. Here,
the upper vertex contains the
lower right vertex only.

In the next step we define a control structure for the application of our two
rules. AddTriangle1 should be applied to the uppermost vertex and if possible to
all left children. AddTriangle2 should be applied to all right children if possible.
Both rules are no longer applicable when attempting to apply AddTriangle1 or
AddTriangle2 to the vertices at the bottom of the containment hierarchy. After
the control structure terminates, the resulting model instance is a new Sierpinski
generation.

Non-Deterministic Approach. The non-deterministic solution uses the al-
gorithm from [12] to generate the Sierpinski triangles.

The metamodel shown in Figure 3 was used. There are two types of nodes. The
NormalNode is an ordinary node in the Sierpinski structure, while the CentralNode
is used to mark those triangles that needs unfolding in the next Sierpinski step. The
Alive property of CentralNode indicates if that triangle is alive in that step.

The Sierpinski step is implemented with the rule depicted in Figure 4. A
triangle that has an alive CentralNode gets unfolded. The generated triangles

520 G. Taentzer et al.

Fig. 3. Metamodel

Fig. 4. Sierpinski Step

are not alive. When all alive triangles have been unfolded, a second aliveRule
revives them for the next step. These two phases form the Sierpinski step.

4.2 Graph Transformation Using Two Tapes

Using two tapes in graph transformation has many advantages since the rule
interpreter can apply rules in parallel. During the rule application, the input
graphs stay unchanged while the rule interpreter builds up new graphs. There-
fore, rules can access the input graphs as well as the graphs created so far. In
the case that rules need the result of other rules they form a sequence. Later
applied rules might apply in parallel with other rules in the same state. The
context (conditions) determines the application order of these rules and not an
explicit specification of the order.

Generation of Sierpinski Triangles 521

We originally developed the approach for Natural Language Processing (NLP)
where we use it for instance to generate texts by mapping text plans to semantic
graphs, semantic graphs to syntactic graphs, and syntactic graphs to topological
graphs, cf. [5]. The demands for the graph transformation language come from
the area of NLP where the rule interpreter can do much in parallel because of
the nature of the application, but not everything. An example for this is the
mapping of syntactic graphs to topological graphs that we apply to determine
the word order. The words for example of all noun phrases (such as ’the blue
car’) can be ordered independently of other noun phrases and therefore in parallel
whereas distinct complete phrases of German sentences are ordered depending
on the position of the main verb. These rules determine first the position of the
verb and depending on the result, the position of the other parts. Within the
same graph transformation approach, we could easily describe the mapping of
the Sierpinski triangle with one rule. The rule interpreter applies rules in four
steps. (1) First, it searches with a parallel matching algorithm all occurrences
of the left-hand side in the input graph and evaluates the conditions. (2) Then
the rule interpreter clusters the rules, which are applicable together. In the case
of the Sierpinski triangle, the rule interpreter builds only one cluster since no
alternative rules are specified. (3) After that, the rule interpreter creates the
right-hand sides of the rules for each matched rule in parallel. (4) Finally, the
rule interpreter glues the graph fragments together.

The approach works very well and fast for the problem of the Sierpinski tri-
angle. It builds the thirteenth generation with one core of a CPU in 18.9 seconds
and the speed nearly doubles to 10.3 seconds with four cores of the same CPU.
Looking at the figures, the question comes up, why does the processing speed not
increase even more? Partially essential is that the gluing step is not performed
in parallel and compared with the gluing the parallel matching works in this
application on a three times smaller data set, therefore it contributes much less
to the processing time. Another part of the answer seems related with the used
CPU itself due to a test, which identified the memory bandwidth as a problem.
The cause could be that the CPU is a first generation quad core, which is blamed
as a not ’native’ quad core. Nevertheless, the parallel approach is very promising
since in future CPUs with many more cores will become standard and many
applications such as the evolution of plants or Natural Language Processing fits
very well to parallel approaches, which are capable to compute, like our brain,
solutions in parallel.

4.3 The Groove Tool

Groove is a graph transformations tool-set based on the SPO approach for un-
typed, edge-labelled, simple graphs. The tool-set comes with a GUI allowing to
easily define transformation rules and graphs, and to apply graph transforma-
tion either interactively, or automatically using so called exploration strategies.
Strategies can also be used without the graphical interface. Although Groove is
a general purpose graph transformation tool, it is optimised for generating (a
finite portion of) all possible derivations in a graph grammar and allows to verify

522 G. Taentzer et al.

properties on the set of derived graphs and on the derivation paths. Groove is
Java-based, so platform independent. The tool, as well as the solution presented
here, can be downloaded at [1].

Let us now explain the main characteristics of our modelling of the Sierpinski
triangles in the Groove framework.

Modelling the triangles and the rules. Fig. 5 represents an intermediary
graph met while computing the second generation.2 The bottom part represents
the Sierpinsky fractal itself encoded by a set of triangles in a very straightfor-
ward way. The top part is additional control structure present in the graph.
It is composed by generation nodes numbered from 0 to 4 (for computing the
fourth generation), and a ”current” marker indicating the currently computed
generation. Each elementary triangle ”belongs” to the generation on which it
was constructed, encoded as an additional edge from its top node to the corre-
sponding control node. On Fig. 5, the two big elementary triangles belong to the
first generation, and the three small elementary triangles belong to the current,
second generation. This is used to ensure that a particular generation is com-
pleted before the computation of the next one starts. Transformation is ensured
by two small and simple rules. The first one performs an elementary step: a
triangle belonging to the previous generation is replaced by three new triangles
of the current iteration. On Fig. 5, such elementary step was just performed on
the bottom right triangle. The second rule is with lower priority, thus applicable
only if the first one does not match. It simply moves the ”current” marker to
the control node corresponding to the next generation. None of the rules uses
negative application conditions.

Fig. 5. Intermediary graph while computing the second iteration

Computing the fractal. Transformations in Groove are fully non-determinis-
tic, on purpose. However, in the case of the Sierpinski triangles, rule applications
are confluent. We used the existing Linear exploration strategy to ensure that

2 Node labels on that figure are just another representation of self-edges.

Generation of Sierpinski Triangles 523

only a single derivation path is computed, thus avoiding superfluous rule trans-
formations. Moreover, the tool allows to specify in which order edge labels should
be matched, thus guided finding of matches. In the case of the Sierpinski triangles
this allowed to avoid the computation of any superfluous matches.

Performance. Memory is a critical resource in Groove. As mentioned previ-
ously, the tool computes the set of all graphs derivable in a graph grammar
and stores all intermediate results. Different memory-saving mechanisms are in
place, as for instance sharing nodes and edges between graphs. They showed
quite efficient, as we managed to compute the twelfth iteration of the Sierpinski
fractal on a desktop machine with 1,5 GB of memory and in 45 seconds.

Alternative solution using quantified transformations. Since its last ver-
sion, Groove implements so called quantified transformation rules. Roughly
speaking, and among other things, quantified rules allow to make atomic the
application of a rule for all of its matches in the host graph. In the case of
the Sierpinski triangles, one can define a single, quite compact rule that is re-
sponsible for the computation of one generation. This results in slightly better
performance, but the main improvement is the increased expressiveness of trans-
formation rules. More information on quantified transformations can be found
in the Groove documentation accessible at [1].

4.4 MOMENT2-GT

MOMENT2-GT is a graph transformation tool based on the SPO approach.
Graphs are provided as EMF-based models so that their nodes are attributed
and typed, taking inheritance into account. Graph transformation definitions
are constituted by a set of production rules, which are defined in a QVT-based
textual format, where OCL expressions can be used either as guards in (possibly
negative) application conditions or as attribute value manipulation expressions.
In MOMENT2-GT, a graph transformation definition is compiled into a rewrite
theory in Maude [6]. MOMENT2-GT permits defining production rules as de-
terministic (production equations) or non-deterministic (production rules). The
inclusion of this explicit difference allows performing model checking of graph-
based systems where states are algebraically defined by means of a metamodel
and production equations, and transitions between such states are defined as
production rules. In EMF, bidirectional and containment edges can be defined.
MOMENT2-GT takes into account such features to avoid the generation of in-
consistent EMF models with dangling edges. This consistency checking can be
disabled if dangling edges are explicitly avoided in the transformation definition.
The tool and the solution presented here are available at [3].

In this solution, we have based ourselves on the transformation that is pro-
vided in [12], also implemented with the Tiger EMF Transformer (see the non-
deterministic solution in Section 4.1). Our transformation definition consists in
two simple rules: a) a first rule computes the division of a triangle and b) a
second rule ensures that the following iteration in the fractal generation process

524 G. Taentzer et al.

is not performed until all triangles have been split. The second rule contains a
negative application condition.

In MOMENT2-GT, the input graph is represented as a term of a specific sort
that is defined in a rewrite theory, and the execution of a graph transformation
is handled by Maude’s algorithm for term rewriting modulo associativity and
commutativity. Maude finishes the graph rewriting process when it achieves a
normal form. The resulting term is parsed by MOMENT2-GT and projected as
an EMF model again.

Although our tool is based on the reuse of Maude’s term matching algorithm
without taking into account optimized rewriting strategies, we have shown that
MOMENT2-GT can be used to rewrite reasonably big graphs but efficiency
needs to be improved still. The advantage of our approach relies on the reuse
of Maude-based formal verification techniques [6] for graph transformations to-
gether with modeling standards.

4.5 Fujaba Solution

This section reports on our case study with the Fujaba environment, cf. [2], on
building Sierpinsky triangles. It turned out, that the key bottleneck for build-
ing Sierpinski triangles is the memory usage. Thus, we exploited Fujaba’s code
generation features for the implementation of unidirectional to-one associations.
Our model uses objects for the vertices of triangles with only three unidirectional
to-one associations to refer to the horizontal right neighbor and to the vertical
left and right neighbor. This models the triangles, appropriately, with a small
memory footprint. Actually, we found out that two outgoing edges per node are
sufficient. Thus, our model can even be reduced by one edge. But the rules for
this solution are a bit more complex, so we won’t explain this solution here due
to space constraints.

We have decided to use a recursive approach for building the triangles.
Figure 6 shows that recursive rule. The rule has to be executed on the top node
of a triangle. This node is represented by the this node in our rule. From that
node the left edge is traversed to get the left node of the triangle and the right
edge to get the right node. To represent the triangle structure the horizontal
edge is checked as well. Note, this could be omitted for further performance tun-
ing. Now a new triangle is created into the one found before. This is indicated by
the elements marked with �create�. Since we use to-one links creating a new
link automatically destroys the old link. So we left out the �destroy� markers
for performance reasons. When the current triangle has been refined, we initiate
the refinement of the left and the right underlying triangles. This is specified
using a recursive call on the left and the right object. Note that, if the lookup
for the triangle in this rule is not successful, the modifying operations are not
executed. That results in termination of the recursion if the bottom triangles
have been refined.

To initialize the algorithm an initial triangle has to be created. On the top
node of the triangle the refine method described above can be called sev-
eral times depending on the number of iterations one wants to calculate. This

Generation of Sierpinski Triangles 525

«create»
horizontal

«create»
left

«create»
right

«create» horizontal«create» horizontal

«create»
Vertex:middle

«create»

left

«create»

left

«create»

right

«create»

right

rightleft

horizontal

this

Vertex:left Vertex:right

«create»
Vertex:mRight

«create»
Vertex:mLeft

2: refine()1: refine ()

Vertex::refine (): Void

Fig. 6. Refining Rule for Sierpinski triangles

execution is modeled by a second rule not shown here. From these rules Fujaba
now generates standard Java code which can be used for performance measuring.

Measurement Data. We have done our measurements on a 64-bit quad core
AMD processor with 32GB memory using Java6. 15 iterations take about 1.4
seconds. Each additional iteration takes about three times longer until the mem-
ory is full. On our machine this works up to iteration 17 (12 seconds). We found
that in our model the runtime consumption for graph pattern lookup is ne-
glectable since we use a recursive approach that passes the important handle
elements to the next rule application. Thus runtime is dominated by creating
new objects and assigning pointer values. Since our approach seemed fast enough
for us, we tried to optimize the memory footprint to be able to do some more
iterations. Fujaba uses objects to represent nodes and fields of those objects to
represent edges. So only the objects need memory. On a 32-bit machine, each
of our nodes has three pointers which take 4 bytes each. A Java object has an
additional pointer to its class and a unique ID which are both again 4 bytes each.
So one node costs 20 bytes. On our 64-bit system the memory usage doubles.
To get rid of the 16 bytes of Java internal memory usage, we wrote a C++ code
generation for Fujaba. C++ objects do not have the unique ID and if all methods
are declared final also no pointer to their class. That way we were able to reduce
the memory usage to 12 bytes per node. So, using C++ one more iteration fits
into our memory. But the generated C++ code was a bit slower than the Java
code. 17 iterations took 22 seconds and 18 took 1:08 minute. Using the algorithm
mentioned above which needs only two pointers per node, we were even able to
reduce the memory footprint to 8 bytes per node for the C++ code. The rules
needed here just need one additional distinction of cases which does not make
them measurably slower.

526 G. Taentzer et al.

4.6 GrGen.NET

In contrast to semi-automatic tools like Fujaba, that require the user to specify
the starting points of pattern matching, GrGen.NET—using the search plan
driven approach to graph pattern matching [4]—can compute this information
on its own. Hence the solution for GrGen.NET (version 1.3.1) does not involve
predefined matches, although the tool supports rules with parameters (for more
information on the tool see [10]).

The meta model:

node class A;
node class B;
node class C;

node class AB extends A,B;
node class BC extends B,C;
node class CA extends C,A;

edge class E0;
edge class E1;

The rules:

rule init {
pattern {
}
replace {
a:A -:E0-> b:B -:E0-> c:C -:E0-> a;
}
}

rule gen0 {
pattern {
a:A -:E0-> b:B -:E0-> c:C -:E0-> a;
}
replace {
a -:E1-> ab:AB -:E1-> b -:E1-> bc:BC
-:E1-> c -:E1-> ca:CA -:E1-> a;

ab -:E1-> ca -:E1-> bc -:E1-> ab;
}
}

rule gen1 {
pattern {
a:A -:E1-> b:B -:E1-> c:C -:E1-> a;
}
replace {
a -:E0-> ab:AB -:E0-> b -:E0-> bc:BC
-:E0-> c -:E0-> ca:CA -:E0-> a;

ab -:E0-> ca -:E0-> bc -:E0-> ab;
}
}

Fig. 7. The meta model and all rules for the GrGen.NET-based solution

As a first step we generate an initial triangle with the rule init (see Figure 7).
Afterwards we use two almost identical rules (gen0, gen1) in an alternating
fashion. Each rule is applied as long as possible, thus computing a whole genera-
tion. The graph rewrite sequence init & (gen0* gen1*)[5]+ produces the 10th
generation (see [10]).

The edge types E0 and E1 are used for distinction of generations, i.e. the rule
gen0 replaces E0 edges with E1 edges and vice versa. The node types together
with the orientation of the edges ensure that only appropriate (not dead) trian-
gles are matched; in particular node types encode the positions. We use multiple
inheritance to cope with the situation, where one node occurs in two triangles
in different positions.

We also experimented with parallel rewriting semantics. This way only one
rule is needed to refine the initial triangle, because the interlocking of steps
is done automatically. Analogous to the graph rewrite sequence above, we get

Generation of Sierpinski Triangles 527

init & [gen][10]. Due to the overhead of temporarily storing all matches, this
approach takes 20% more time.

Because GrGen.NET always supports all features like multi-edges, complex
type hierarchies as well as attributed nodes and edges, performance-wise subop-
timal code is produced. Note that the information present in a meta model (like
connection assertions) is rich enough to automatically generate a stripped down
and therefore more efficient implementation (see LIMIT in Section 5.2).

4.7 Viatra2

The current section highlights the concepts used to implement the Sierpinski
triangles example in the Viatra2 [9] (VIsual Automated model TRAnsforma-
tions) framework. Viatra2 is a general-purpose model transformation engineer-
ing framework that aims at supporting the entire life-cycle, i.e. the specification,
design, execution, validation and maintenance of transformations within and
between various modeling languages and domains in the MDA.

Metamodel and Transformation. From the programmers point of view, the
most difficult part of implementing the Sierpinski triangle generator is to create
the correct triangle ”finder mechanisms”. In our solution, we tried to adhere to
the typing scheme found in the problem description by taking advantage of the
multiple-inheritance support of the Viatra2 framework resulting the metamodel
depicted in Fig. 8.

Fig. 8. The metamodel of the Sierpinski triangles

This representation allowed us to create a very simple and elegant pattern –
used in Viatra2 to describe the precondition (LHS and the NACS) of a GT
rule – illustrated in Fig. 9, where the right and left side describe the Viatra Tex-
tual Command Language (VTCL) representation and the graphical notation,
respectively. Capital letters stand for variables, normal letters denote direct ref-
erences to modelspace elements. For instance the expression a(A) declares that
the variable A is of type a. On the other hand, the expression node.e(ECA,C,A)
means that the variable ECA refers to an edge of type node.e that points from
the entity in C to A. The pattern in Fig. 9 matches a triangle with vertices type
a,b,c, respectively. The order is granted by the direction of the arrows.

As for the model manipulation part, instead of using GT rules for the triangle
generations we were utilizing graph patterns to match the corresponding model
parts and then performing the model manipulation by built in ASM rules. This
resulted in overall better memory consumption and a slightly faster runtime
performance.

528 G. Taentzer et al.

pattern triangle(A,B,C,EAB,EBC,ECA) =
//Nodes
a(A); b(B); c(C);
//Edges
node.e(EAB,A,B); node.e(EBC,B,C);
node.e(ECA,C,A);

Fig. 9. Sierpinski pattern

Conclusion. Note that, we also used the example for profiling the upcoming
Viatra2 release and it pointed out that the most critical part in the pattern
matching process is the model manager as it took more than 99 percent of the
total execution time. As for the overall performance, we were happy to see that
our current interpretation based engine can handle up to 800000 model elements
(level 11) within reasonable time.

4.8 Solution Using XL

The XL solution [11] is very simple as rules are applied in parallel by default,
which exactly matches the Sierpinski construction. The complete rule is:

a:LLVertex -e0-> b:Vertex -e120-> c:Vertex -e240-> a ==>>
a -e0-> ab:LLVertex -e0-> b -e120-> bc:Vertex -e120-> c

-e240-> ca:LLVertex -e240-> a,
ca -e0-> bc -e240-> ab -e120-> ca;

The class Vertex represents vertices, its subclass LLVertex those vertices which
are the lower left vertex of a black triangle in the usual 2D representation.
Furthermore, we use edge types e0, e120, e240 where the number is the angle
of the edge in the 2D representation. Using LLVertex speeds up matching since
a match for the pattern exists if and only if a is a lower left vertex of a black
triangle. Thus, we exclude dead ends of pattern matching as soon as possible.

We tested the performance of our solution in four different settings. The sim-
plest one uses the graph model of the modelling environment GroIMP [11]. This
introduces some amount of memory overhead as nodes store additional book-
keeping information and all changes to the graph are logged in a protocol. On
a 3 GHz computer with 2 GB RAM we were able to execute 13 steps, the last
step took 17.3 seconds on average. But logging can be deactivated which is our
second setting and allowed an additional step. This setting is also used for the
benchmark in Figure 15. A significant improvement concerning memory con-
sumption and speed (roughly factor 3 in both respects) is achieved by the third
setting where we use our own minimal graph model whose nodes only store three
pointers to adjacent nodes, thus indirectly representing the edges (which can no
longer be traversed bidirectionally). On 32-bit Java virtual machines, such a
node requires 20 bytes. We were able to execute 15 steps, the last step took
54.7 seconds on average. The fourth setting reduces the memory consumption to
8.25 bytes (66 bits) for lower-left vertices and 0 bytes for the other ones on both
32- and 64-bit machines: at first, we dispense with the e120 edge so that only

Generation of Sierpinski Triangles 529

a subgraph of the Sierpinski graph is generated (but which can be extended to
the true graph by local operations). Furthermore, we address vertices by unique
long values which in case of lower-left vertices are indices into a list of pairs of
33-bit values which hold the addresses of the neighbours. 33 bits are sufficient
for up to 20 steps, the final graph then consumes nearly 27 B of memory. On
a 2.6 GHz computer with 32 GB RAM (thanks to Andreas Hotho, University
of Kassel) we were able to execute 20 steps where the last step took 2 hours on
average, resulting in a graph with 5,230,176,603 nodes and 6,973,568,802 edges.

Being able to use XL for any given graph structure, even exotic ones as in the
last setting, is certainly a highlight. We have to admit that the last setting is very
tricky and requires temporary proxy objects in order to be accessible for XL.

4.9 AGG

The graph transformation tool AGG was developed at TU Berlin to explore ad-
vanced graph transformation properties for doing formal analysis. Performance
was not one of its main design criteria. AGG can be used in two different modes:
(a) via its built-in GUI to specify and execute graph transformations visually;
(b) via its API to write Java programs that use AGG’s underlying graph trans-
formation engine. We explored both ways to implement the Sierpinski triangle.

GUI with rule sequences and NACs. Our first implementation resorts to
AGG’s ability to define rule sequences, i.e., a predefined composition of graph
transformation rules. We used the following rule sequence:

(FindMatch{*} ApplyToMatch{*}){n}
where integer value n represents the desired number of iterations, and {*} de-
notes that each rule is applied as long as possible. The two transformation rules

Fig. 10. Implementation of Sierpinski in AGG with NACs and rule sequences

530 G. Taentzer et al.

in this rule sequence are shown in Figure 10. FindMatch identifies and annotates
all triangles that need to be expanded. It uses a negative application condition
to avoid applying the rule more than once to the same occurrence. ApplyMatch
performs the actual transformation on the found matches. This solution has two
shortcomings. First, it requires an auxiliary, somehow artificial, node X. Second,
the timing results are not very promising.

GUI with parallel matching. To improve performance, Olga Runge extended
the AGG engine with a mechanism of parallel matching, enabling the computa-
tion of all possible matches of a given rule at once, and then repeatedly applying
the desired transformation to all of these matches. For the Sierpinski example,
this feature allowed us to simplify the solution by using only one rule (Figure 11),
while simultaneously improving the timing results.

Fig. 11. Implementation of Sierpinski in AGG using parallel matching

API-based solution. For our third and final implementation, we wrote a simple
Java program that calls AGG’s API to execute the graph transformations. This
solution also relied on a single rule (Figure 11) using parallel matching, but was
more complex to implement since one needs to write a Java program and know
how the API works.

Timing results. We compared performance of the above three solutions.We
observed that the GUI-based solution relying on parallel matching, as well as
the API-based equivalent are the most performant. Still, even if the results are
visualised on a logarithmic time scale to account for the fact that Sierpinksi
generation is an inherently exponential problem, the curves remain exponential,
whereas we would have expected a (theoretically) linear increase instead. It is
therefore clear that the performance of AGG can still be increased considerably.

4.10 GReAT Solution

One solution was developed using GReAT, a meta-model based model transfor-
mation tool. GReAT, along with the Generic Modeling Environment, GME, are
well-suited for this application because GME allows one to quickly implement
domain-specific languages, and GReAT supports the quick implementation of
model transformations in the form of graph transformations.

The overall process we used was the following. We started by defining a meta
model in GME to describe models of Sierpinski Triangles. Next, we created

Generation of Sierpinski Triangles 531

an instance model of this meta-model that contained one triangle. We then cre-
ated a GReAT transformation that performed the Sierpinski Triangle-generation
algorithm on this instance model using simple graph rewriting rules that are ex-
plicitly sequenced.

The meta model consisted of a base object, SierpinskiTriangleModel. This
object serves as the root container of the model as well as the container for all
other objects. The “Generations” attribute on this object indicates the num-
ber of times the Sierpinski algorithm is to be performed on the input graph.
The “DecrementGeneration” attribute is used during the transformation to de-
termine when the “Generations” attribute is ready to be decremented. ”Node”
objects are used to represent triangle vertices, and ”Connection” objects are
used to represent the edges between triangles.

Using GReAT, a simple graph transformation was written to generate the
Sierpinski triangle graph. The transformation takes an input graph containing a
single triangle and produces the corresponding Sierpinski generation as a sepa-
rate output file.

Fig. 12. GReAT rules

The transformation consists of several simple rules that are organized into
hierarchical blocks. The first rule, “GetFirstTriangle” (see Figure 12), locates the
triangle in the input model. The next block, “SierpinkiGeneration”, is a sequence
of rules that, when executed, will rewrite the graph into the next Sierpinski
generation. “DecrementRule” (a rule contained inside the “CreateGeneration”
block) is executed once per generation rather than once per triangle. After every
execution of the “CreateGeneration”, the number of generations remaining is
compared to zero in the Verify test case. Once the “Generations” attribute equals
zero, the Verify test case will fail, and the transformation will end.

532 G. Taentzer et al.

Using GME and GReAT to perform this transformation provided a very sim-
ple, graphical approach that was very easy to implement and execute while still
achieving an acceptable level of performance. In addition, smaller generations
are very easy to visualize using the GME interface.

4.11 Generating Sierpinski Triangles with GP

The graph programming language GP is based on conditional rule schemata
[14]. The program in Figure 13 consists of three rule-schema declarations and
the main command sequence following the key word main. It expects as input
a graph consisting of a single node labelled with the generation number of the
Sierpinski triangle to be produced.

main = init; (inc; expand!)!.

init (x: int) inc (x,y: int)

x

1

=⇒
1

x 0 1

0 0

0 1

2

x y

1

=⇒ x y+1

1

where x > y

expand (u,v,x,y: int)

1 2

3 4

x y y

u v

0 1

2

=⇒

1 2

3 4

x y y+1

u v

y+1 y+1

0

0

0 0

1

1 1

2

2 2

Fig. 13. GP program

The rule schema init creates the Sierpinski triangle of generation 0 and turns
the input node into a unique “control node” whose label is of the form x y. The
underscore operator allows to hold the required generation number x and the
current generation number y in a common node.

After init has been applied, the nested loop (inc; expand!)! is executed.
Intuitively, the operator ! executes a subprogram as long as possible. In each
iteration of the outer loop, the rule schema inc increases the current generation
number if it is smaller than the required number. The latter is checked by the
condition where x > y. If the test is successful, the inner loop expand! performs
a Sierpinski step on each triangle whose top node is labelled with the current
generation number: the triangle is replaced by four triangles such that the top
nodes of the three outer triangles are labelled with the next higher generation

Generation of Sierpinski Triangles 533

number. The test x > y fails when the required generation number has been
reached. In this case the application of inc fails and hence the outer loop ter-
minates and returns the current graph. The resulting graph is the Sierpinski
triangle of the required generation.

The GP compiler translates the program of Figure 13 into bytecode that can
be executed by the York abstract machine [14]. The execution times shown in
Figure 15 have been obtained on a PC with an Intel Pentium 4 processor with
a clock rate of 2.80GHz and 512MB of main memory. For these executions, the
backtracking mechanism of the abstract machine has been switched off because
the program’s input/output behaviour is deterministic.

Most of the execution time is used to create the elements of the triangles while
matching the left-hand sides of the rule schemata is fast due to the uniqueness
of the control node labelled with x y. In general, matching starts at the rarest
node or edge and then proceeds to find other elements of the left-hand side of
the rule schema. In the case of expand, clearly the rarest element is the control
node. Next the variable y is bound, and so the root of the triangle labelled with y
is found. Matching then extends over the 1- or 2-edge outgoing from the y-node,
and finds the remainder of the structure in a unique way.

4.12 VMTS Solution

In Visual Modeling and Transformation System (VMTS) [18], we have created
a metamodel that defines two types; the Vertex type is used to represent the
nodes of the Sierpinski triangle, while the DepthLimit node helps to set the
actual magnification (the depth level used in the transformation). The edges
of the triangles are represented at meta level by a loop edge connected to the
Vertex. Both types have an attribute Level. In case of a Vertex the attribute
shows on which level (in which generation) the vertex has been created, while
in case of the DepthLimit, Level means the depth that we would like to reach
during the transformation.

The main idea behind our transformation is that at every step, we match
all possible triangles in the complete Sierpinski triangle and we transform each
triangle into four sub-triangles. There is only one exception: we do not process
triangles in which the Level attributes of the forming nodes are equal. This

Fig. 14. Control flow diagram of the transformation in VMTS

534 G. Taentzer et al.

exception is required to skip the inner triangles. There are two important com-
ments on the procedure: (i) We do not match triangles for which the vertices are
not direct neighbors; (ii) on the first (0th) level, when we have only one triangle,
the Level attributes of the nodes are the same. We can handle this as an initial
step and avoid applying the exception rule in this case. The transformation stops
if there is a node in the triangle for which the Level attribute is equal to the
level set by the DepthLimit object. The input model of the transformation is an
initial triangle having three vertices and a DepthLimit object.

In VMTS, we use an activity diagram-like specification [13] to define the steps
of graph transformations. Our Visual Control Flow Language supports processes
(transformation rules), start/end states, decisions, fork and join constructs. The
utilized control flow, shown in Fig. 14, forms a pretest loop, which is executed
until we reach the configured depth limit. The loop consists of two rewriting rules
and a decision node. The first rule, named LoopCountRule in the control flow
model, references the GraphTrafoLoop transformation which checks whether the
Level attribute of DepthLimit is 0. If so, the rule deletes the object, which makes
the decision element select the end state of the transformation. Inside the loop,
the main transformation rule is executed (MainRule, GraphTrafoRule). Matching
is based on graphical rule definition, while rewriting uses Imperative OCL [17]
code. The main rule is set to apply matching in a MultipleMatch mode, thus,
the matching algorithm finds not only the first match, but all possible matches.
This means that rewriting is applied once on the complete list of matches, which
can dramatically improve performance according to our experiences. Moreover,
this way the rule is executed only once for each iteration, which makes handling
the Level attribute much simpler.

Our initial solution matched each triangle three times with different orienta-
tion and the filtering was applied after the matching process. With an improved
matching which checks for multiplicity, we have achieved processing times of
23220ms on the 9th level and 211750ms on the 10th. It is important to note that
our transformation framework applies the transformation steps in a strict order,
defined by the control flow, and it does not compile control flows, but interprets
them. Therefore, the processing times achieved can be considered as raw values
without any optimization specific to this task.

5 Lessons Learned

For a rough comparison of the solutions presented, we give some key charac-
teristics in the following subsection. They are meant to provide a basis for the
subsequent performance comparison. Although concrete numbers are set into
relations, this comparison is supposed to give just a rough idea of runtime per-
formances. The reader has to keep in mind that these performance tests have
been executed on different computers and within different settings.

5.1 Approaches and Features

Even for a rough performance comparison of graph transformation tools it is im-
portant to know the degree of non-determinism used within the given solution.

Generation of Sierpinski Triangles 535

We distinguish the following kinds of rule matching and application to charac-
terize the given graph transformation solutions:

1. Selection of rules and matches by the tool
2. The order of rule application is (partly) given, but matches are selected by

the tool.
3. The order of rule application as well as their matches are (partly) given.
4. The order of rule application is (partly) given and rules are allowed to be

matched and applied as often as possible in parallel.

In addition, we provide some information on the kind of graph representation
used within the presented solutions. Some tools allow a custom graph represen-
tation to perfectly adapt to the case. In certain cases, graph features such as
attributes, are not needed. Custom graph representations allow to adapt to such
special cases.

To get a rough idea of the graph size in memory, we collected figures for the
size of one elementary triangle, i.e. the size of three nodes glued together to a
triangle produced in an elementary step of the Sierpinski generation.

A further information which seems to be significant for performance compar-
isons of graph transformations is the representation of edges. Here we look for
double linked edges such that it is possible to traverse the edges in O(1) in both
directions by just knowing an adjacent node. (Note: This feature has nothing to
do with directed or undirected edges in the meta model.)

Table 1. Some special solution characteristics

tool kind custom graph size of triangle edges doubly linked
Tiger EMF 1/3 no
MOMENT2-GT 1 no no
Groove 1 no yes
Two Tapes 1 partially 240 bytes yes
Fujaba 3 yes 60 bytes no
GrGen.NET 2 in v2.0 312 bytes yes
Viatra 2 yes yes
XL (GroIMP graph) 1 possible 336 bytes yes
AGG 1/4 no yes
GReAT 2
GP 2 no 410 bytes yes
VMTS 2 no 3396 bytes yes
LIMIT 3 yes 6 pointers no

5.2 Runtime Performance

Comparing the performance of the solutions we can see a widespread distribution
from milliseconds to hours for the same task—even spreading over several com-
plexity classes (see Figure 15). To investigate how fast the fastest solutions really
are, Mallon and Geiß developed a hand-coded solution called LIMIT. This artifi-
cial solution is roughly 2.6 times faster and 2.5 times more memory efficient than

536 G. Taentzer et al.

1

10

100

1000

10000

100000

1000000

10000000

0 2 4 6 8 10 12 14 16 18
generation

ru
nn

in
g

tim
e

[m
s]

LIMIT
Fujaba
GrGen.NET
XL
Two Tapes
Groove
GP
Viatra
GReAT
Tiger EMF (3)
VMTS
AGG
MOMENT2-GT
Tiger EMF (1)

Fig. 15. Running times of the solutions shown in logarithmic scale. All measurements
were carried out on different machines, so this figure has a deviation of a factor of about
3. The line style is selected according to the kind of matching and rule application of
the solution: Kind 1 ⇒ solid line, kind 2 ⇒ dash-dot line, kind 3 ⇒ dotted line, and
kind 4 ⇒ dashed line.

the fastest semi-automatic tool (Fujaba)(kind 3). The fastest fully automatic
tools, i.e. GrGen.NET (kind 2) and parallel tools (XL, Two Tapes)(kind 4),
are even two orders of magnitude slower than LIMIT. One of the differences
between semi and fully automatic tools is that the semi-automatic ones require
the developer to specify the starting points of pattern matching, whereas auto-
matic tools can compute this information on their own. However, LIMIT uses
only knowledge automatically deducible from a meta model. Hence it should be
possible to tune tools to generate such efficient code automatically.

LIMIT is based on a compressed memory representation. Each node is rep-
resented by its (at most two) outgoing edges; the node itself uses no memory.
The edges are stored in, and refer to, a single array. The Sierpinski triangles
can be generated using only few types. Therefore, LIMIT uses a few bits of the
indices to encode the types of the respective nodes. This way edges can only
be traversed in one direction with O(1) the other direction possibly needs the
inspection of the whole graph. The pattern matching is done by extracting just
the right edges with the right direction from memory. The rewrite step just adds
more nodes, i.e. edges.

5.3 Concluding Remarks

The generation of Sierpinski triangles is well suited to measure the memory
footprint of a solution approach and therefore, well suited for tuning tools with

Generation of Sierpinski Triangles 537

respect to graph representation. It is pleasant to note, that there are tools ca-
pable of handling millions of nodes and edges in very little time; reasonable
hand-coded solutions are only one order of magnitude faster and more memory
efficient. Tools which allow custom graph representations can be well adapted to
given problems which leads to usually better runtime performances than built-
in representations. However, it would be preferable to deduce a very efficient
host graph implementation directly from the meta model. Considering Table 1
again, we have to stress that the motivations for building graph transformation
tools have been very diverse. Dependent on intended application domains, qual-
ity criteria such as performance, usability, correctness, validation facilities, etc.
are considered with intensity of varying degree. Hence, only some tools allow for
custom graph representations.

In the process of preparing contest solutions, a large part of the tool builders
started to improve the performance of their tools. For several tools this case study
has been the first application which creates huge graphs. That quickly showed
that graph representations have to be very economic regarding memory. Some
tool builders immediately started to reduce memory consumption significantly,
others will follow in the next time. Improvements regarding time seem to be
possible concerning the graph matching algorithms used. Often, simple patterns
can be handled more efficiently than currently done.

The considered tools offer a wide range of features enabling developers to
provide elegant solutions. However, although the case study is pretty small,
missing features have been identified. E.g. the graphical layout of Sierpinski
triangles was often not optimal. Furthermore, this case study led the interest
especially to parallel matching and application of rules.

All solutions of kinds 1 and 2 allow some kind of non-determinism in the selec-
tion of matches and/or rules. However, this case study does not need any kind of
non-determinism and Fig. 15 shows that solutions of kinds 3 and 4 tend to show a
better performance. Due to this diversity of solution approaches, Figure 15 does
not really provide an objective comparison of the tools’ runtime performance.
Note that many participants did provide more than one solution, in order to
provide more elegant and more performant solutions. For more precise measure-
ments, it would be preferable to choose one solution approach beforehand. Even
if doing so, this case study does not measure well the matching time for patterns,
since the patterns used are small. Moreover, the (non-deterministic) application
of many different rules and rule interaction are not considered. Hence, further
case studies need to be considered in future.

References

1. Graphs for Object Oriented Verification, http://groove.cs.utwente.nl/
2. Fujaba-Homepage (2007), http://www.fujaba.de/
3. Boronat, A.: The MOMENT2-GT web site (2008),

http://www.cs.le.ac.uk/people/aboronat/tools/moment2-gt

http://groove.cs.utwente.nl/
http://www.fujaba.de/
http://www.cs.le.ac.uk/people/aboronat/tools/moment2-gt

538 G. Taentzer et al.

4. Batz, G.V., Kroll, M., Geiß, R.: A First Experimental Evaluation of Search Plan
Driven Graph Pattern Matching. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AG-
TIVE 2007. LNCS, vol. 5088. Springer, Heidelberg (2008)

5. Bohnet, B.: Textgenerierung durch Transduktion linguistischer Strukturen. In:
DISKI 298, AKA, Berlin (2006)

6. Clavel, M., Durán, F., Eker, S., Meseguer, J., Lincoln, P., Mart́ı-Oliet, N., Talcott,
C.: All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007)

7. Eclipse Consortium. Eclipse – Version 3.3 (2007), http://www.eclipse.org
8. Eclipse Consortium. Eclipse Modeling Framework (EMF) – Version 2.3 (2007),

http://www.eclipse.org/emf
9. VIATRA2 Framework. An Eclipse GMT Subproject,

http://www.eclipse.org/gmt/
10. Geiß, R., Kroll, M.: GrGen.NET: A Fast, Expressive, and General Purpose Graph

Rewrite Tool. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007, vol. 5088.
Springer, Heidelberg (2008)

11. Kniemeyer, O., Kurth, W.: The modelling platform GroIMP and the programming
language XL. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS,
vol. 5088. Springer, Heidelberg (2008)

12. Kreowski, H.-J., Klempien-Hinrichs, R., Kuske, S.: Some essentials of graph trans-
formation. In: Esik, Z., Martin-Vide, C., Mitrana, V. (eds.) Recent Advances in
Formal Languages and Applications. Studies in Computational Intelligence, vol. 25,
pp. 229–254. Springer, Heidelberg (2006)

13. Lengyel, L., Levendovszky, T., Mezei, G., Charaf, H.: Control Flow Support in
Metamodel-Based Model Transformation Frameworks. In: EUROCON 2005, Pro-
ceedings of the IEEE, Belgrade, Serbia and Montenegro, pp. 595–598 (2005)

14. Manning, G., Plump, D.: The GP programming system. In: Proc. Graph Trans-
formation and Visual Modelling Techniques (GT-VMT 2008). Electronic Commu-
nications of the EASST (to appear, 2008)

15. Rensink, A., Taentzer, G.: AGTIVE 2007 Graph Transformation Tool Contest. In:
Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088. Springer,
Heidelberg (2007)

16. Tiger Developer Team. Tiger EMF Transformer (2007),
http://www.tfs.cs.tu-berlin.de/emftrans

17. Vajk, T., Levendovszky, T.: Imperative OCL Compiler Support for Model Trans-
formations. In: 7th International Symposium of Hungarian Researchers on Com-
putational Intelligence, Budapest, Hungary, pp. 166–178 (November 2006)

18. VMTS website (2007), http://vmts.aut.bme.hu/

http://www.eclipse.org
http://www.eclipse.org/emf
http://www.eclipse.org/gmt/
http://www.tfs.cs.tu-berlin.de/emftrans
http://vmts.aut.bme.hu/

Generation of Sierpinski Triangles 539

A
p
p
en

d
ix

T
ab

le
2.

C
om

pa
ri
so

n
of

th
e

di
ffe

re
nt

ap
pr

oa
ch

es
re

ga
rd

in
g

th
e

ru
nn

in
g

ti
m

e.
P

le
as

e
no

te
,

th
at

al
l

m
ea

su
re

m
en

ts
w

er
e

co
nd

uc
te

d
on

di
ffe

re
nt

co
m

pu
te

rs
;h

en
ce

on
ly

th
e

te
nd

en
cy

of
th

e
fig

ur
es

is
si
gn

ifi
ca

nt
(s

ee
F
ig

ur
e

15
).

T
o

m
ak

e
th

e
fig

ur
es

m
or

e
ac

ce
ss

ib
le

,
w

e
or

de
re

d
th

e
co

lu
m

ns
co

m
pa

ri
ng

th
ei

r
ru

nn
in

g
ti
m

es
re

fe
rr

in
g

to
th

e
hi

gh
es

t
co

m
m

on
av

ai
la

bl
e

ge
ne

ra
ti
on

.

T
oo

l
→

L
IM

IT
Fu

ja
ba

G
rG

en
X

L
T

w
o

G
P

G
ro

ov
e

V
ia

tr
a

V
M

T
S

T
ig

er
G

R
eA

T
A

G
G

T
ig

er
M

O
M

E
N

T
G

en
.
↓

.N
E

T
T
ap

es
E

M
F

(3
)

E
M

F
(1

)
2-

G
T

0
7

4
1

12
3

10
16

50
16

42
2

14
1

16
63

15
14

4
3

13
1

3
33

29
0

62
11

1
24

45
3

4
14

8
7

12
5

62
40

6
16

20
4

22
4

91
1.

47
5

5
14

3
15

17
17

2
10

8
92

0
62

62
4

72
9

90
6

4.
92

8
6

18
12

32
43

26
5

14
1

2.
45

0
25

0
2.

68
8

3.
78

8
9.

87
0

22
.2

84
7

2
27

27
63

13
0

37
5

38
8

7.
63

0
2.

00
0

6.
34

4
34

.7
24

16
2.

42
7

17
2.

86
8

8
10

77
62

12
5

39
0

65
6

1.
41

3
23

.2
20

16
.5

00
43

.9
06

49
5.

05
9

1.
51

1.
66

8
9

29
20

6
16

9
33

4
1.

18
3

1.
54

7
9.

47
4

21
1.

75
0

22
7.

25
0

37
3.

78
1

10
78

74
9

48
9

90
7

3.
52

0
4.

00
0

67
.5

93
36

4.
98

4
11

10
4

1.
93

0
1.

54
2

2.
60

0
10

.6
19

11
.9

69
56

8.
58

9
12

13
8

5.
87

6
5.

25
2

6.
70

0
31

.4
71

43
.6

72
13

23
8

20
.8

72
17

.3
21

18
.9

00
96

.4
74

14
17

0
53

7
49

.9
19

68
.0

61
15

53
1

1.
41

7
16

1.
56

2
4.

02
2

17
4.

68
7

11
.7

78
18

14
.0

15

Transformation of UML Models to CSP:
A Case Study for Graph Transformation Tools

Dániel Varró1, Márk Asztalos1, Dénes Bisztray2, Artur Boronat2,
Duc-Hanh Dang3, Rubino Geiß4, Joel Greenyer5, Pieter Van Gorp6,

Ole Kniemeyer7, Anantha Narayanan8, Edgars Rencis9, and Erhard Weinell10

1 Budapest University of Technology and Economics, Hungary
varro@mit.bme.hu, asztalos@aut.bme.hu

2 Leicester University, UK
{dab24,aboronat}@mcs.le.ac.uk
3 Universität Bremen, Germany

hanhdd@informatik.uni-bremen.de
4 Universität Karlsruhe, Germany

rubino@ipd.info.uni-karlsruhe.de
5 University of Paderborn
jgreen@uni-paderborn.de

6 University of Antwerp, Belgium
pieter.vangorp@ua.ac.be
7 BTU Cottbus, Germany

okn@informatik.tu-cottbus.de
8 Vanderbilt University, TN, USA
ananth@isis.vanderbilt.edu
9 University of Latvia, Latvia
Edgars.Rencis@lumii.lv

10 RWTH Aachen University of Technology, Germany
Weinell@cs.rwth-aachen.de

Abstract. Graph transformation provides an intuitive mechanism for
capturing model transformations. In the current paper, we investigate
and compare various graph transformation tools using a compact practi-
cal model transformation case study carried out as part of the AGTIVE
2007 Tool Contest [22]. The aim of this case study is to generate formal
CSP processes from high-level UML activity diagrams, which enables to
carry out mathematical analysis of the system under design.

1 Introduction

Graph transformation provides an intuitive graphical mechanism for capturing
model transformations. Many tools have been developed in the past which im-
plemented different graph transformation principles and introduced new exten-
sions to address specific practical requirements. For example, some tools allow to
specify a control structure over their transformation rules whereas others remain
purely declarative. Also, different tools provide a different degree of expressive
power in what kind of graph structures and attribute values they can handle. In

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 540–565, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Transformation of UML Models to CSP 541

the AGTIVE Tool Contest [22], 17 different tools participated and competed on
problems of different nature in order to document and classify their strengths
and weaknesses.

This case study represents a typical (exogenous) model-to-model transforma-
tion from UML activity diagrams [21] to Communicating Sequential Processes
[17]. As the de-facto standard for software design, UML [21] activity diagrams
are used to describe low level behavior of software components or to represent
business-level workflows. In both cases, verification of the behavior can be im-
portant to guarantee the quality of service for the components. The purpose of
verification can run from a simple liveness or termination check to the verifica-
tion of refinement between model instances of different levels of abstraction. To
verify any aspect of behavior, the activity diagrams have to be provided with a
formal semantics. We are using CSP as a semantic domain, defining the mapping
from activity diagram to CSP by means of graph transformation.

In this case study, the transformation tools shall support metamodel-based
transformation or any equivalent notion of type graphs. Also, support for at-
tribute handling is required, the various names and properties of elements should
be dealt with. The ability to define any kind of control structure for rule ap-
plication and attribute conditions may be an important issue to guarantee that
the transformation is deterministic or to improve its performance. However, the
transformation problem also gives space to purely declarative solutions. Due to
the large variety of solutions, these solutions will now be compared based upon
the model transformation-specific features provided by their corresponding tools.

The rest of the paper is structured as follows. Section 2 provides a brief
introduction to the model transformation problem serving as this case study.
In Sec. 3, we discuss which criteria are important for specifying and executing
transformations of UML models to CSP. Moreover, we overview what kind of
tools are used to perform the case study, and in what dimensions the solutions
differ from each other. Section 4 presents a one-page summary for each individual
solution. Finally, Section 5 provides a high-level comparison of the solutions.

2 Case Study “UML to CSP Transformation”

2.1 Metamodels

First, we introduce the source and target metamodels of the UML2CSP problem.
A metamodel formalizes the abstract syntax of a modeling language in the form
of UML class diagrams. Classes of the metamodel capture the main concepts of
the language together with its attributes. The interrelation of such concepts are
captured by associations. Finally, classes can be arranged into a generalization
(inheritance) hierarchy.

UML Activity Metamodel. The source language is captured by a simplified
metamodel for activity diagrams based on [21] (shown in Fig. 1).

Figure 2 shows a simple example activity diagram (taken from [16]) containing
two ActivityEdges which connect an InitialNode with an Action and an Action

542 D. Varró et al.

Fig. 1. Activity Diagram Metamodel

Fig. 2. Simple Activity Model (Concrete and abstract syntax)

with a FinalNode. The object diagram on the right shows how this concrete
syntax is represented according to the metamodel shown in Fig. 1.

CSP metamodel. The metamodel for CSP, as far as required for the case
study, is shown in Figure 3. A Process is the behavior pattern of an object
with an alphabet of a limited set of events. Processes are defined using recursive
process equations (ProcessAssignment) with guarded expressions.

The syntax of the process equations is the following.

P ::= F | event → E | E || F | E \ F | E ≮ b ≯ F | SKIP | STOP

The abstract class ProcessExpression represents a guarded expression. It can
be either a simple Process P , a Prefix operator, a BinaryOperator combining
two expressions or can be associated with a set of events (ProcessWithSet).

The interpretation of the process expressions is as follows. The Prefix operator
x → E performs an Event x and then behaves like expression E. If E and
F are expressions, Concurrency yields their synchronous parallel composition
E ‖ F (performing E and F simultaneously by synchronizing of shared events).
According to [17], the operator E ≮ b ≯ F is a Condition operator, which means,
if the boolean expression b is true then it behaves like E, else it behaves like

Transformation of UML Models to CSP 543

Fig. 3. CSP Metamodel

Fig. 4. Simple CSP Model (Concrete and abstract syntax)

F (if b then E else F). If F is a set of Events and E is an expression, Hiding
E \ F behaves like E except that all occurrences of events in F are hidden.
Finally SKIP represents successful termination, while the STOP process is a
deadlock.

Figure 4 (from [16]) shows an example CSP document containing two process
assignments. The object diagram on the right shows how the abstract syntax
graph of the two statements is built up according to the CSP metamodel show
in Fig. 4. In particular, note that there is a Process object for every occurrence
of a process in the CSP text.

2.2 Overview of the Transformation

In this section, we provide an overview of the transformation by showing in-
tuitive correspondences between UML and CSP models. The idea behind the
mapping is to relate an Edge in the activity diagram to a Process in CSP. The
correspondences are the followings.

1. An ActivityEdge corresponds to a ProcessIdentifier while an Action to an
Event. Without loss of generality we restrict Action nodes to have only one
incoming and one outgoing edge.

544 D. Varró et al.

2. InitialNode corresponds to the first process assignment.

3. An FinalNode is a successful termination, thus it corresponds to a SKIP
process.

4. A DecisionNode corresponds to embedded Condition operators with the
guards as their condition expressions.

Note that this correspondence, which creates non-determinism at the syn-
tactic level, leads to semantically equivalent processes. According to [21],
the order in which guards are evaluated is undefined and the modeler should
arrange that each token only be chosen to traverse one outgoing edge, oth-
erwise there will be race conditions among the outgoing edges. Hence, if
guard conditions are disjoint, syntactically different nestings are semanti-
cally equivalent.

5. The MergeNode is mapped to an equation identifying the processes corre-
sponding to the two incoming edges.

Transformation of UML Models to CSP 545

6. The ForkNode corresponds to the Concurrency binary operator. Since P ‖
(Q ‖ R) = (P ‖ Q) ‖ R, the different possible matches are equivalent.

7. JoinNode represent the most complex cases. Before describing the mapping,
we discuss some observations. If in an activity diagram the names of Ac-
tion nodes are unique, the intersection of the alphabets of the corresponding
processes is empty. This is partly intended because in this way the processes
will not get stuck while waiting for some random other process that acci-
dentally has events with similarly names. On the other hand we need syn-
chronization points in order to implement the joining of processes. Thus we
add an event processJoin to the alphabet of every participating processes.
Since events that are in the alphabets of all participating processes require
simultaneous participation, this fact is used to join concurrent processes by
blocking them until they can perform the synchronization event.

In the concrete mapping the first edge that meets the JoinNode is chosen
to carry the continuation process, while the others terminate in a SKIP .
The choice of the first node to be processed in a JoinNode is arbitrary, thus
we can create multiple, but semantically (i.e. trace, failure and divergence)
equivalent set of CSP expressions.

A sample activity diagram and its CSP equivalent (up to process equivalence)
is presented in Fig. 5, which was used as a test case for validating the solutions.

The scenario captured by the UML activity diagram describes an autonomous
service reacting to an alert issued in case of a car accident. First the driver’s cell
phone is called to ask if any help is required. If the alert is confirmed by the
driver, then the location of the accident (and other service-specific parameters)
are sent to the appropriate service provider (e.g. ambulance or tow truck service).
This automotive case study is taken from the SENSORIA European Project [25].

2.3 Challenges for the Approach

In this case study, transformation tools should support metamodels or any equiv-
alent notion of type graphs for model management. Metamodels (or type graphs)

546 D. Varró et al.

S1 = serverReceiveAlert → S2

S2 = getDriverPhoneData → S3

S3 = callDriver → S4

S4 = M1 ≮ nohelp ≯ (D2 ≮ askhelp ≯ D1a)

M1 = C1

D2 = DM

D1a = assessDescription → D1b

D1b = DM

DM = D3 ≮ real ≯ M2

M2 = C1

C1 = cancelAlert → C2

C2 = SKIP

D3 = F1 || F2 || F3

F1 = getMapLocation → J1

F2 = processAlert → J2

F3 = getServiceFormat → J3

J1 = processJoin → E1

J2 = processJoin → SKIP

J3 = processJoin → SKIP

E1 = createServiceDescription → E2

E2 = SKIP

Fig. 5. Sample source and target models

should also provide support for attribute handling. Control structures and con-
trol conditions may provide significant help in specifying the transformation,
although their use is not explicitly required.

While performance was not the critical aspect for this case study, it is very im-
portant from a practical point of view that a transformation should be executed
preferably in a few seconds so that transformation designers may immediately
observe and validate the result of their transformation.

Finally, the use of some validation techniques is also desirable, although not re-
quired. More specifically, termination and determinism up to process equivalence
are probably the most relevant questions to be verified for this transformation.

3 Overview on Solutions

In this case study, our primary focus was put on assessing the expressiveness of
different transformation languages including the expressiveness of the rule lan-
guage itself, as well as the richness of control structures, which aim at restricting
the applicability of the transformation rules.

Furthermore, solution providers also presented those advanced features of their
tools, which significantly improved their productivity when creating the solutions.
These features included advanced graphical user interface functionality (e.g.

Transformation of UML Models to CSP 547

graphical rule editors) as well as advanced model transformation features (such
as higher-order transformations, or bidirectionality). Various solution providers
highlighted analysis capabilities of their tools to pinpoint flaws in the models or the
transformation itself. Finally, most of the solutions relied upon an advanced un-
derlying metamodeling framework supporting model manipulation and language
design.

While the actual solutions were quite different, we identified common sub-
problems for all solutions. One subproblem is how different solutions prevent the
applicability of a transformation rule on the same match multiple times. This is
a typical problem in many model transformations, thus it offers some compari-
son specific to the graph transformation problem itself. Another interesting case
is the proper handling of outgoing ActivityEdges on Decision and ForkNodes,
since in the CSP domain, the outgoing ActivityEdge handled last would cause
the recursive nesting of Condition/Concurrency-expressions to be ended. In the
current paper, we will put more emphasis on the former subproblem as all the
different solutions demonstrate this issue in a compact way.

The UML2CSP case study has been solved altogether by 11 tools, which are
categorized (and then presented) below by the overall nature (strategy) of the
solution.

– Pure GT solutions. Some solutions (like Tiger/EMF in Sec. 4.1 and TGGs
in Sec. 4.2) build purely upon core graph transformation formalism with
implicit (or minimal) control structure. These solutions demonstrate how
model transformations can be formulated in a purely declarative way using
graph transformation.

– Solutions with control structures. However, most of the solutions rely upon
the use of some control structures to restrict the non-determinism of trans-
formations. The underlying tools offer either some textual language (like in
case of PROGRES in Sec. 4.3 or GrGen.NET in Sec. 4.4), or some graphi-
cal syntax, typically with a UML flavour as in case of VMTS (Sec. 4.6), USE
(Sec. 4.7), MoTMoT (Sec. 4.8), and GrTP (Sec. 4.9). In GReAT (Sec. 4.5),
the control language is mostly dataflow based.

– Solutions with a host framework / language. There are two solutions, which
rely upon a host framework not particularly designed for model / graph
transformations. In the solution developed in MOMENT2-GT (Sec. 4.10),
the transformation rules are translated into the Maude rewriting framework
[11], while XL (Sec. 4.11) uses native Java as its control language.

4 Solutions

In this section, each solution individually describes the principles of the approach
with the main settings and highlights of the used tool. Each solution is demon-
strated by an example, which gives a brief insight to the look-and-feel of the
transformation language or the tool itself.

548 D. Varró et al.

4.1 Solution Using Tiger EMF Transformer

The solution is a set of graph transformation rules on EMF [12] models, that are
designed using the Visual Editor of Tiger EMF Transformer [26], and run in the
Eclipse development platform. The production rules are defined by rule graphs,
namely a left-hand side (LHS), a right-hand side (RHS) and possible negative
application conditions (NACs).

Transformation Mechanics. As the case study is presented with a list of intuitive
correspondences between the source and target metamodels, the transformation
rules are also in groups that resemble the correspondences. These rules are the
implementation of the transformation concept introduced in [10].

Fig. 6. Correspondence Metamodel

The rules also use a third, correspondence metamodel shown in Figure 6.
For example the corresponding element between an Edge of activity diagram
and a Process of CSP is the ProcEdge. The role of this metamodel is similar to
correspondence structures used by Triple Graph Grammar [23] rules.

The benefits of using it are twofold. Firstly, it is used to mark the procession of
the nodes in the source model. This way, we refrain from deleting any nodes in our
rules. Secondly, all the possible NACs refer to elements from the correspondence
model, as these elements are created during the transformation, never deleted.
In [10] it is shown that these properties are important to make the transformation
compositional.

The transformation consists of 11 rules within 7 groups. To show the back-
ground mechanics of the transformation, we introduce one rule in detail, the
transformation of an Action.

Rule Descriptions. The transformation starts with the application of the Ini-
tial rule that transforms the InitialNode. The rule processes the only outgoing
edge from the InitialNode by creating an empty process assignment, and also a
corresponding ProcEdge, to track that this edge has been processed. The NAC
guarantees that no edge has been processed in the model before.

The Action Rule depicted in Figure 7 is the essential transformation rule.
The definition of the previously processed edge A is completed, and the new

Transformation of UML Models to CSP 549

Fig. 7. Action Rule

edge C is indicated as processed and an empty definition is opened for it. The
definition of process A is a prefix operator from Event B to target process C.

Remaining Rules. The Final rule processes a FinalNode and fills the previous
empty process definition with a SKIP process. Merge1 and 2 rules process
the MergeNode and connect the empty process definitions with the process that
corresponds to the outgoing edge of the MergeNode. Fork1 and 2 transform
the ForkNode to a 2-regular tree of Concurrency operators the similar way the
DecisionNode tree is built. And finally Join1 and 2 process the JoinNode by
creating the synchronization event and related processes. The entire set of rules
is available in [9].

4.2 Solution Using Triple Graph Grammars

The transformation from UML Activity Diagrams to CSP given in this case
study is a typical application for Triple Graph Grammars (TGGs) [23]. Their
main advantage over other (single) graph rewriting approaches is that TGG rules
reflect the relation between model patterns. This relation can be interpreted in
different ways: To translate models in a forward or backward direction, or to
maintain their consistency.

The representation of corresponding model patterns is furthermore quite in-
tuitive. In fact, the transformation rules can often be derived from examples in
the transformation specification, such as given for this case study. Fig. 8 shows
how rules are derived from the information that an ActivityEdge corresponds
to a Process in a ProcessAssignment (i) and that an Action relates to a Prefix-
Expression (ii), compare the specification given in Sec. 2. The elements marked
green (and with ++) are those essentially related by a rule. Their relationship
holds when a certain structural context (b/w nodes) is given. This context im-
plies dependencies to other rules. For example, the second rule in Fig. 8 requires

550 D. Varró et al.

Fig. 8. Two TGG rules derived from specification examples

two ActivityEdges to previously be translated by another rule, e.g. the rule in
(i). This principle of TGGs is very similar to the declarative languages specified
by the OMG’s model transformation standard QVT [20] as pointed out in [15].

Our solution is realized with a TGG interpreter plug-in for Eclipse which
transforms EMF models. The rules can be modeled in a graphical editor gener-
ated with GMF. For details of our solution, refer to [16]. For this example and
many others, the interpreter performs very well. For bigger models, the match-
ing algorithm could still be improved, or we would want to compile the rules
into executable code. This is done in other TGG transformation engines, like
implemented in Fujaba [28] or MOFLON [4].

Concluding, we see the particular advantage of our solution in the straight-
forward and declarative way of specifying a transformation. We require no ad-
ditional control structure nor priorities on rules. This greatly improves the
maintainability and comprehensibility of the transformations. Furthermore, it
is possible to bidirectionally interpret the relational rules.

4.3 Solution Using PROGRES

The Programmed Graph REwrite System [24] is a general-purpose graph rewrit-
ing language. Its expressive graph language and the mature environment (includ-
ing static analyzers, a debugger and code generator) encouraged its application
in the tool contest. However, PROGRES does not explicitly support model trans-
formation features like automated traceability management or bidirectionality.

The PROGRES-based solution comprises a single graph schema for both
meta-models, plus a single interconnecting edge type to store traceability links.
Model transformation rules are roughly structured as follows: The left-hand side
(LHS) queries subgraphs of both (source and target) models connected by trace-
ability edges, forming the transformation’s context. In addition, an increment of
the source model, which should be transformed by the current rule, is connected
to the LHS’s context. Non-recursive processing is guaranteed by negative ap-
plication conditions (NAC s), which ensure that no element in the target model
exists for the given source increment. On the right-hand side (RHS) of rules,
a corresponding element is created in the target model and connected to the
processed source increment.

Transformation of UML Models to CSP 551

Fig. 9. PROGRES transformation rule & textual path expression

Special handling is required for correspondences mapping n-ary source incre-
ments to binary target increments. As an example, the handling of DecisionNodes
is split into two. First, an initial transformation rule maps their respective else-
branch and an arbitrary other branch to a corresponding Condition. Afterwards,
the rule depicted in Figure 9 is applied as long as possible to remove the Condi-
tion (‘4) of ProcessAssignment from its container and to add it as right child to a
newly created Condition (6’). The termination of the transformation is guaran-
teed in this case by the negated path condition contains. This condition (depicted
textually in the figure) ensures that the candidate Process ‘5 is not reachable
from node ‘4 via left or right edges.

The PROGRES-based solution does not explicitly model control-flow, but
relies on a non-deterministic rule application following an as-long-as-possible
manner. Therefore, no dataflow passing “current” elements along with rule in-
vocations is necessary. Termination is guaranteed by the guards discussed above,
and by the fact that a traceability link is created by each rule application.

From the created specification, an executable prototype can be generated
which is able to visually present UML activity diagrams and the resulting CSP
expressions. Besides, GXL-based graph exchange and a textual output for CSP
expressions is available. Activity diagrams can be edited using a set of consistency-
preserving graph transformation rules.

4.4 Solution Using GrGen.NET

The basic idea of our approach is to process the UML graph in a topological
order. The working set is determined by specially marked edges (by type) and
negative application conditions (NACs). During the transformation process each
piece of the UML graph is removed as the according CSP graph elements are
created.

As GrGen.NET provides all the necessary primitives, the UML and CSP
meta models can be expressed directly (see [13]). Especially the ActivityEdge
can be modeled by an edge type (as opposed to nodes in the given UML meta
model) because the type system allows attributed edges.

Moreover, GrGen.NET provides basic support for the transformation of
models to text (unparsing). However, more expressive support could alleviate
the user from the overhead of specifying rules and control flow for unparsing.

552 D. Varró et al.

<<_node0>>
$F:InitialNode

$15:Action
name = getDriverPhoneData

<<tgt>>
$1B:Action

name = serverReceiveAlert

$27:Process
name = S1

<<_node1>>
$28:CspContainer

$29:Process
name = SKIP

<<pa>>
$2A:ProcessAssignment

$1C:ActivityEdge
name = S2

<<a>>
$10:ActivityEdge

name = S1
<<_edge2>>

$2B:tempProcess
<<_edge1>>

$2C:processIdentifier

<<_edge0>>
$2D:processAssignments

Fig. 10. The TFInitial rule applied to the example graph

Figure 10 shows a screenshot of the debugger of GrGen.NET during a rewrite
step, which removes UML elements and builds up the according CSP elements.
The red (dark grey) graph elements have just been created, whereas the light
grey graph elements will be deleted. The names of the rule elements are given
in angle brackets.

Using the standard settings of GrGen.NET, the transformation including
the text output only takes about 100 ms. This even includes the overhead for
just-in-time compilation, which accounts for about 99% of the execution time.

4.5 Solution Using GReAT

GReAT [3] is a metamodel based transformation tool implemented within the
framework of GME [19]. GReAT offers several features that make designing
and implementing transformations intuitive and simple. The metamodels of the
source and target languages are specified using UML class diagrams, with the
additional capacity to define cross metamodel entities and temporary global
objects which can be accessed in any rule of the transformation. A data-flow
like model is used for sequencing transformation rules, added with conditional
execution of rules (using a boolean Guard condition) and conditional branching.
The GReAT solution for this case study illustrates the use of some of these
options.

An interesting part of the UML to CSP case study was the transformation of
Decision and Fork nodes. The challenge was to construct a binary tree structure
from a list of arbitrary length, such that the last Condition node has two Process
type children. The strategy adopted for transforming Decision nodes is: (1)
When encountering a Decision node, take the first outgoing edge. Create a
Condition, whose lhs is the associated Process, and the rhs is a new Condition;
(2) For the next Activity Edge, create an lhs for the associated Process on the
last Condition, and a new Condition as rhs. This is repeated for all the edges
that are not marked “else” in the Decision node; (3) Finally, when only the
edge marked “else” is left, the last remaining empty rhs Condition is replaced
with a Process corresponding to the last edge. This requires collecting all the
Decision nodes in the input model, and performing a sequence of operations for

Transformation of UML Models to CSP 553

Fig. 11. Rule Sequencing and Rule Detail in GReAT

each Decision node. The layout of the transformation rules in GReAT is shown
in Figure 11.

The rule CreateConditions is executed conditionally, for Activity Edges that
do not have an “else” guard. This creates a binary tree of Condition nodes
in the output, with each node having a Process as its lhs child, and another
Condition node as its rhs child. When the “else” edge is encountered, the last
rhs Condition node child is replaced with a Process. This is done by the rule
CreateLastCondition as shown in Figure 11. CurrItem is a global object, which
is used to track the last Condition node in the current binary tree. The rule
CreateLastCondition deletes the last rhs Condition and creates a new Process
in its place.

In addition to these features, GReAT comes with a code generator to generate
more efficient transformations in C++, and an interactive debugger. A complete
overview of the GReAT toolkit can be found in [7].

4.6 Solution Using VMTS

In VMTS environment [1], we have created the metamodels of the activity di-
agrams and the CSP diagrams according to the specification of the case study.
Metamodel based modeling and validation is supported: metamodels are used
during the whole transformation process to describe models and to validate them
in each transformation step.

The transformation is defined with a control flow (using the notation of the
UML activity diagrams), which consists of separate transformation steps as de-
picted in Fig. 12.

Each transformation step is a graph rewriting rule defined with a left hand side
and a right hand side graph. The transformation control flow describes the order
of the transformation steps with directed edges between the nodes; it receives
an input model (an instance of the activity diagram metamodel) and produces
a newly created output model (an instance of the CSP metamodel). The most
important properties of the transformation control flow are the following:

1. Some rules are exhaustive rules, which means that before we proceed to the
next rule, we apply the current rule repeatedly while the input model can
be matched.

554 D. Varró et al.

Fig. 12. The control flow of the transformation in VMTS

2. By changing the value of a special attribute (IsProcessed) owned by each el-
ement belonging to the input activity diagram, we guarantee to process each
element at most once during the transformation rules, hereby the transfor-
mation process surely terminates.

3. Each branch node of the control flow is left by two edges, the processing flow
follows one of them if the previous rule was successfully applied, or the other
one if the previous rule could not be applied.

4. With internal causalities, it is possible to identify an element on the left
hand side of a rule with an element on the right hand side of the same rule.

5. With external causalities (also known as parameter passing), we can identify
an element on the right hand side of a rule with the element of the left hand
side of the next rule in the control flow.

The Traversing Processor (TP) is part of VMTS tool. In the first step, it
generates a C# API based on a chosen metamodel. Using TP we can execute
the code by providing an instance model of the current metamodel as an input.
By modifying the generated source code, any processing algorithm can be easily
realized. In this case we use TP to produce the CSP expressions in a plain text
format from a successfully created CSP model.

The result of the transformation is deterministic and the termination of the
transformation process is guaranteed, because of the special attributes that en-
sure that each rule can be applied only finite number of times during the trans-
formation.

4.7 Solution Using USE

This section presents a solution with USE (UML-based Specification Environ-
ment) [14], which combines UML and OCL for specifying transformations.

Transformation of UML Models to CSP 555

action

A

B

A = action B

rule TransformAction
left
-- UML
theActivityEdgeA : ActivityEdge
theActivityEdgeB: ActivityEdge
action: Action
(theActivityEdgeA, action): ConnectsTo
(theActivityEdgeB, action): ConnectsFrom

-- CSP
theProcessA: Process

-- Preconditions
[Process.allInstances ->forAll(p|

p.name <> theActivityEdgeB.name)]
[theProcessA.name=theActivityEdgeA.name]

right
--- UML
theActivityEdgeA : ActivityEdge
theActivityEdgeB: ActivityEdge
action: Action
(theActivityEdgeA, action): ConnectsTo
(theActivityEdgeB, action): ConnectsFrom

--- CSP
theProcessA: Process
-- new
assignment: ProcessAssignment
theEvent: Event
theProcessB: Process
prefix: Prefix
(prefix, theEvent): Performs
(prefix, theProcessB): Becomes
(assignment, prefix): AssignsRight
(assignment, theProcessA): AssignsLeft
-- postconditions
[theEvent.name = action.name]
[theProcessB.name = b.name]

end

[theProcessB.name = theActivityEdgeB.name]
[theEvent.name = action.name]

[theProcessA.name=theActivityEdgeA.name]
[Process.allInstances ->forAll(p|

p.name <> theActivityEdgeB.name)]

L R

Fig. 13. Realizing the rule TransformAction with USE

For the case study, the metamodels of UML activity diagrams and CSP
processes are directly expressed in USE as class diagrams attached with OCL
invariants. The host graphs are presented as object diagrams.

The figure 13 shows a formulation of the rule TransformAction with USE.
Matching a rule is carried out by evaluating OCL queries on the source ob-
ject diagram. These queries are captured by the precondition of the operation
corresponding to the rule. In this case, we obtain objects for the nodes on the
left-hand side as the input of the operation. Applying the rule by USE com-
mands realizing the rule, we create objects and links for the right-hand side.
After each rule application, one may check the postconditions of the rule for an
on-the-fly verification of the transformation. The sequence of rule applications
can be presented by a sequence diagram.

Rules in USE are captured in a dedicated language, which are then automati-
cally translated into USE command sequences and OCL pre- and postconditions
by the OCL generator of USE.

The example transformation is always checked after each rule application.
By that, USE detects that the original metamodels from the case study had to
be adjusted: some composition relationships had to be changed to aggregation
relationships. Otherwise the object diagram representing the CSP process of the
case study is not a well-formed instance of the CSP metamodel. In addition, our

556 D. Varró et al.

approach allows to integrate OCL invariants on the metamodels, which can be
checked after each transformation step. For example, the following OCL invariant
expressed that “the assignments have pairwise distinct left hand sides in a CSP
container ”:

context CspContainer
inv distinctProcessNames:
processAssignment->forAll(p1,p2| p1<>p2 implies p1.left.name <> p2.left.name)

4.8 Solution Using MoTMoT

MoTMoT is a tool that transforms UML models of controlled graph transfor-
mations into executable Java code that can access model repositories in a JMI
or XMI standard compliant way. It has been designed to illustrate how several
model transformation problems of the Fujaba tool can be solved.

MoTMoT enables one to specify primitive graph transformation rules (so-
called Story Patterns) and control structures (so-called Story Diagrams) with
any UML 1 standard-compliant modeling tool, instead of forcing transformation
writers/maintainers to use the dedicated Fujaba editor. UML-to-CSP case study
has been solved for mapping input activity diagrams from off-the-shelf UML 2
editors such as MagicDraw 10. Note that other submissions force the use of
an ad-hoc (i.e., case-study specific) UML editor for producing input activity
diagrams [27].

Figure 14 (a) presents an example rewrite rule in MoTMoT/Fujaba syntax.
Remark that �bound� node variables either represent nodes that have already
been bound by previously executed rules (e.g., topProcess), or nodes that are
available as method parameters (e.g., fork, out). Node and edge variables marked
with �create� are created by the rewrite rule. Finally, nodes and edges without
such markers need to be matched in the host graph. With this semantics in mind,
Figure 14 (a) shows the rule for mapping an input Fork node to an output CSP
expression.

Figure 14 (b) shows how the MoTMoT transformation ensures that each in-
put node is transformed exactly once: the Story Diagram models that after the
creation of the output CSP container, the transformation should match each in-
put node exactly once (using the iterative �loop� construct). For each match,
a transform(inputElement, outputContainer) method is called. This method is
implemented for each type of activity node and is modeled by diagrams such as
Figure 14 (a).

A first strength of the MoTMoT submission is the utilization of colors and
layout patterns to improve the readability of a transformation model. Secondly,
complex transformation rules are decomposed into manageable units by means
of views on such rewrite rules. For example, Figure 14 (a) only shows the core
mapping concerns for mapping a UML Fork node to a CSP Process Assigment.

More technical concerns are modeled by another view on the same rewrite rule.
A third strength of MoTMoT is its conformance with OMG’s MDA standards.
For the UML-to-CSP case study specifically, we have illustrated how input from

Transformation of UML Models to CSP 557

(a) Out-place rewrite rule for Fork nodes (b) Control flow: transform each input node

Fig. 14. Story Driven Modeling: Story Pattern and Story Diagram examples

non-standard tools can be consumed as well, using in-place transformation rules.
Finally, the submission illustrates MoTMoT’s extensibility by applying language
constructs that are realized by means of higher-order transformations.

The first drawback is the limited “out-of-the-box” usability: when only spe-
cializing a generic UML editor with the UML profile for Story Diagrams, some
domain-specific editor features (such as advanced auto-completion) are not avail-
able. In practice, one may therefore want to extend one’s favorite UML tool
with a (small) plugin for such features. As a second drawback, the submission
illustrates that some platform specific details cannot (yet) be hidden from a
MoTMoT transformation model.

4.9 Solution Using GrTP

The aim of this case study is to build a model transformation which takes a UML
activity diagram as an input and gives a list of CSP processes as an output.
The initial activity diagram can be produced by means of transformation-based
Graphical Tool-building Platform called GrTP [8]. The platform (regardless of
other facilities) allows users to make an activity diagram based on the UML
activity diagram meta-model and execute the transformation called UMLtoCSP
which transforms the UML model to a CSP model and then verifies it upon
termination and determinism up to process equivalence.

The result of the transformation consists of several parts:

1. a CSP model - an instance of the CSP meta-model;
2. a text file containing the list of CSP processes together with their assign-

ments according to the textual syntax of CSP;
3. an answer to the question “Does the CSP model execution terminate?”;
4. an answer to the question “Is the CSP model deterministic?”.

For the GrTP platform to be able to work efficiently, a novel model transfor-
mation language L0 [2] has been implemented with a highly efficient compiler.
The transformation UMLtoCSP is also written in the language L0. The language
L0 is very simple and completely procedural, and it has only a textual syntax.

558 D. Varró et al.

The solution of the problem is mainly based on rules given in Section 2. In
addition, a rule containing information about conditions without an else branch
is added (Figure 15). The termination is verified partly - it is only possible
to assure the CSP model execution terminates if it contains no cycles. The
CSP determinism in this case is defined in this manner - the CSP model is
deterministic if and only the following condition holds for each process expression
starting from the initial process:

1. every symbol of the given alphabet leads to at most one process from a given
state;

2. if some symbol of the alphabet leads to more than one process, then bisim-
ulation holds between such processes.

Fig. 15. Extra rule - a condition without an else branch

The advantage of the tool used to solve the task is in its simplicity from the
view point of an end user: no installation is required, no complicated instructions
need to be learned, — although, obviously, a new language has to be learned.
However, since the tool allows user to make arbitrary UML activity diagrams, the
result of the UMLtoCSP transformation cannot be predicted in some (erroneous)
cases.

4.10 Solution Using MOMENT2-GT

MOMENT2-GT [5] is a graph transformation tool where graphs are provided
as MOF-based models and production rules are defined in a QVT-based textual
format. In MOMENT2-GT, a graph transformation definition is compiled into a
rewrite theory in Maude [11], the input graph is represented as a term of a specific
sort that is defined in this theory, and the execution of a graph transformation
is handled by Maude’s algorithm for term rewriting modulo associativity and
commutativity. Graph transformations are performed by following the Single
Pushout approach.

In our solution, we process the objects that constitute the input activity model
generating objects in the resulting CSP model. The idea behind the transforma-
tion definition is to delete activity nodes whenever they have been processed. We
have studied two solutions for the case study by taking into account dangling
edges implicitly or explicitly. In the first case, MOMENT2-GT takes care of
possibly generated dangling edges. In the second case, the user must avoid their
generation in the transformation definition. Both solutions can be downloaded
from [5].

Transformation of UML Models to CSP 559

Fig. 16. Production rule in MOMENT2-GT and Tiger

We provide an average of the time measurements that have been obtained
during 10 experiments1. The transformation that can produce dangling edges
was performed in an average time of 1431.2 ms by Maude. The transformation
that was designed to avoid dangling edges was performed in an average time of
885.4 ms by Maude.

MOMENT2-GT is based on a Maude algebraic specification of Essential MOF
that is provided as a plugin to EMF. This means that EMF models can be
directly used as formal entities in the algebraic framework, where they can be
treated as graphs or as terms. Therefore, we can apply Maude-based formal
analysis techniques [11], such as model checking of invariants or LTL model
checking, to model-based systems in a straightforward way.

A disadvantage in our approach is that it lacks of graphical concrete syntax.
Comparing a production rule in Tiger and in MOMENT2-GT (as illustrated in
Fig. 16) shows, at a first glance, that our approach is not the most appropriate
for communication purposes. However, for expert users, a textual-based syntax
may offer editing facilities that are difficult to achieve in a graphical approach:
copy & paste, text replacement, etc. In addition, MOMENT2-GT constitutes a
framework that is defined at a high level of abstraction in Maude. Therefore it
is ideal for experimenting with new model transformation features, keeping in
mind a realistic approach in terms of efficiency.

4.11 Solution Using XL

The case study can be implemented easily using the textual programming lan-
guage XL on the basis of the graph of GroIMP [18]. At first, we have to translate

1 The experiments have been performed on a Core DUO 2Ghz with 2Gb RAM, using
Ubuntu 7.04.

560 D. Varró et al.

the meta models to a Java class hierarchy which can be done as part of the XL
code as in

abstract module ActivityNode extends Node;

Secondly, we have to instantiate the meta model with the source UML graph.
Ideally, we would use a graphical editor or some common graph exchange format
which can be imported into our system. Unfortunately, this is not yet possible
so that we have to input the source graph as part of the XL code, too:

Axiom ==>> ^ InitialNode
-ActivityEdge("S1")-> Action("serverReceiveAlert") ...;

Thirdly, we have to specify the transformation rules and to control their ap-
plication. For the rules we make use of the fact that UML activity edges play the
role of CSP processes and UML actions play the role of CSP events. Thus, we
can keep these nodes in the graph as context for the gluing of the SPO approach,
perform all transformations as if these nodes were both UML and CSP nodes,
and replace them with their actual CSP nodes as a final step. As an example,
the rule for an action

a:ActivityEdge -o-> x:Action -i-> b:ActivityEdge ==>>
^ -processAssignments-> ProcessAssignment [-identifier-> a]
-process-> Prefix [-event-> x] -targetProcess-> b;

already creates some CSP nodes and edges, but keeps the UML nodes of the
left-hand side. Only after the final step we have a valid CSP graph:

a:ActivityEdge ==>> p:Process(a.getName()) moveIncoming(a, p, -1);
a:Action ==>> e:Event(a.getName()) moveIncoming(a, e, -1);

Concerning the control of rule application, we make use of XL extending Java:
a rule is executed simply when it is reached (as a statement) by the usual con-
trol flow of Java. Furthermore, we may set the mode of rule application, either
parallel or sequential. It turns out that most rules can be applied in parallel in
an initial step with the exception of the creation of binary expression trees for
UML decision and fork nodes which has to be done sequentially afterwards.

Among the three case studies of AGTIVE 2007, the UML-to-CSP case study
was least related to the principal application domain of XL. Nevertheless, it was
easily possible to implement the transformation. However, our system does not
provide means for verification.

5 Lessons Learned

According to the categories discussed in Sec. 3, we can draw the following con-
clusions, which are summarized also in Table 1.

Transformation of UML Models to CSP 561

T
ab

le
1.

C
om

pa
ri
so

n
of

so
lu

ti
on

s
an

d
to

ol
s

So
lu

ti
on

M
et

am
od

el
in

g
R

ul
e

la
ng

ua
ge

C
on

tr
ol

st
ru

ct
ur

e
(i

n
th

e
so

lu
ti

on
)

H
an

dl
in

g
ea

ch
m

at
ch

on
ce

A
na

ly
si

s
su

pp
or

t
(i

n
th

e
to

ol
)

A
dv

an
ce

d
tr

an
sf

.
fe

at
ur

es
T

ig
er

E
M

F
gr

ap
hi

ca
l
G

T
ru

le
s

no
ne

re
fe

re
nc

e
m

et
am

od
el

&
N

A
C

–
co

m
pi

le
d

G
T

ru
le

s
T

G
G

E
M

F
T

G
G

s
(g

ra
ph

ic
al

)
no

ne
im

pl
ic

it
ly

ha
nd

le
d

by
T

G
G

se
m

an
ti

cs
–

bi
di

re
ct

io
na

lit
y

P
R

O
G

R
E

S
gr

ap
h

sc
he

m
a

vi
su

al
G

T
ru

le
s

no
n-

de
t.

ru
le

ap
pl

.,
as

lo
ng

as
po

ss
ib

le
N

A
C

gr
ap

h
co

ns
tr

ai
nt

s
pa

th
ex

pr
es

si
on

s,
ba

ck
tr

ac
ki

ng
G

rG
en

.N
E

T
cu

st
om

do
m

ai
n-

sp
ec

ifi
c

te
xt

ua
l
G

T
ru

le
s

se
qu

en
ti

al
co

m
po

si
-

ti
on

of
ru

le
s

de
co

ns
tr

uc
t

th
e

so
ur

ce
gr

ap
h

co
nn

ec
ti

on
as

se
r-

ti
on

s,
in

te
ra

ct
iv

e
de

bu
gg

er

tr
an

sa
ct

io
ns

G
R

eA
T

U
M

L
C

la
ss

D
ia

gr
am

s
G

ra
ph

ic
al

,
U

M
L
-

lik
e

no
ta

ti
on

w
it

h
B

oo
le

an
G

ua
rd

s

E
xp

lic
it

se
qu

en
c-

in
g

of
ru

le
s

w
it

h
D

at
afl

ow
lik

e
sy

nt
ax

Im
pl

ic
it

In
te

ra
ct

iv
e

D
eb

ug
ge

r
C

lo
su

re
ov

er
m

at
ch

es
to

fo
rm

gr
ou

ps
V

M
T

S
do

m
ai

n
in

de
pe

nd
en

t,
n-

le
ve

lm
et

am
od

el
in

g
fr

am
ew

or
k

gr
ap

hi
ca

l
ru

le
s

w
it

h
O

C
L

ac
ti

vi
ty

di
ag

ra
m

w
it

h
pa

ra
m

et
er

pa
ss

in
g

he
lp

er
at

tr
ib

ut
es

an
d

O
C

L
co

ns
tr

ai
nt

s
ru

n-
ti

m
e

va
lid

at
io

n
of

O
C

L
co

ns
tr

ai
nt

s
ex

pl
ic

it
tr

ac
ea

bi
l-

it
y

U
SE

M
O

F
an

d
E

M
F

ca
n

be
ex

pl
ic

it
ly

m
od

el
ed

te
xt

ua
l
G

T
ru

le
s

sc
ri

pt
in

g
an

d
re

de
x

co
m

pu
ta

ti
on

w
it

h
N

A
C

s
ch

ec
ki

ng
of

(p
re

-
an

d
po

st
)

co
nd

it
io

ns
an

d
in

va
ri

an
ts

bi
di

re
ct

io
na

lit
y

po
ss

ib
le

M
oT

M
oT

st
an

da
rd

s
co

m
pl

ia
nt

(M
O

F
,
U

M
L
,
JM

I)
gr

ap
hi

ca
l
G

T
ru

le
s

St
or

y
di

ag
ra

m
s

he
lp

er
st

ru
ct

ur
es

–
hi

gh
er

-o
rd

er
tr

an
sf

or
m

at
io

ns
G

rT
P

U
M

L
te

xt
ua

l
m

od
el

tr
an

s-
fo

rm
at

io
n

la
ng

ua
ge

L
0

te
xt

ua
l

st
ru

ct
ur

es
(f

or
ea

ch
et

c.
)

us
in

g
fo

re
ac

h
co

n-
st

ru
ct

ve
ri

f.
of

te
rm

in
at

io
n

an
d

de
te

rm
in

is
m

(o
f

th
e

ta
rg

et
m

od
el

)

–

M
O

M
E

N
T

2-
G

T
E

M
F

(c
om

pi
le

d
to

M
au

de
)

te
xt

ua
l

Q
V

T
-b

as
ed

G
T

ru
le

s
no

ne
N

A
C

,
O

C
L

co
n-

st
ra

in
ts

fo
rm

al
an

al
ys

is
pr

o-
vi

de
d

by
M

au
de

–

X
L

Ja
va

cl
as

s
hi

er
ar

ch
y

te
xt

ua
l,

ex
te

nd
s

Ja
va

pa
ra

lle
l,

se
q.

,
as

lo
ng

as
po

ss
ib

le
,
Ja

va
re

m
ov

al
of

us
ed

U
M

L
no

de
s

–
–

562 D. Varró et al.

– Modeling (metamodeling) framework: Each tool offers an underlying
modelmanipulationandmetamodeling framework to support transformations.
Supported features frequently included standards-compliant metamodels (like
EMF or GXL) well-formedness constraints for a modeling language (typi-
cally expressed in OCL), edge attributes, etc. Several solutions used UML
diagrams for capturing metamodels and model. Furthermore, some transfor-
mations were built above a full-fledged domain-specific modeling framework.

– Rule language. Solutions used either a textual or a graphical language for
capturing transformation rules. Some tools integrated relied on standards-
compliant languages in transformation design such as OCL (as in case of
USE or VMTS) or QVT (in case of MOMENT2-GT). Interestingly, none
of the tools provided both a graphical and a textual language for capturing
rules.

– Control structures. Control structures used in at least one of the solu-
tions included parameter passing (e.g. GReAT and VMTS), parallel rule
execution (e.g. XL), as long as possible rule application, topological (hierar-
chical) ordering enforced by rules and rewrite sequences (in GrGen.NET),
a dataflow-based language (in GReAT), and traditional programming con-
structs like conditional branching or loops. XL used native Java constructs
as control structures for the transformation. The TIGER, the TGG and the
MOMENT2-GT solutions were purely declarative, i.e., they did not use any
control structure.

– Handling each match once. In order to process each match only once,
different solutions used either some explicit helper data structure (such as
a reference model or a helper attribute), negative application conditions for
rules, and control structures like foreach. The TGG solution automatically
maintains all instances of the applied rules to remember the matched nodes.
Finally, some solutions (such as GrGen.NET, GReAT or XL) removed
some (or all) elements of the source model one by one to prevent multiple
application of rules on the same match.

– Advanced GUI features. Advanced features of the graphical user interface
of different tools included graphical editors (e.g. in case of TIGER, TGGs
or GrTP), different views of rules (e.g. in MoTMoT), and editors of the
source and target models (e.g., in PROGRES, VMTS, GrTP). Online and
interactive layout of the host graph is present in GrGen.NET.

– Underlying run-time transformation platform. Most of the tools were
implemented in Java, several of them above industrial modeling platforms
like EMF (in case of e.g TIGER or TGG) or JMI (in case of MoTMoT). The
exceptions include VMTS and GrGen.NET, which used .Net as underlying
platform. PROGRES transformations can be compiled into C, GReAT and
GrTP transformations can be compiled into C++. Finally, MOMENT2-GT
transformations are executed within the Maude rewriting framework.

– Analysis support. Some tools provided support for analyzing the models
or the transformations. OCL-based validation of models were reported in
USE and VMTS, where the latter also supports the run-time validation of
constraints during transformation. An interactive debugger is available in

Transformation of UML Models to CSP 563

GReAT and GrGen.NET. Formal analysis of transformation specifications
is available in MOMENT2-GT as provided by the underlying Maude engine.

– Advanced model transformation features. Some advanced model trans-
formation constructs have also been used in different solutions. The TGG
solution was the only solution supporting the bidirectionality of transforma-
tions. Higher-order transformations were used in MoTMoT.

As a concluding remark, let us identify some areas where existing tool support
is not as extensive. Interestingly, none of the tools supported implicit traceability
when all correspondence structures are derived automatically when applying the
transformation rules. Such a solution is present in model transformation frame-
works like ATL [6]. Instead, all solutions used some kind of explicit traceability
(i.e. manually introduced correspondence structure) information to represent the
interconnection of source and target models. Furthermore, incremental transfor-
mations were not supported by any of the tools, which is also a key issue in
the design of model transformations. Existing analysis support available in the
presented tools can only guarantee some correctness criteria for specific runs of
a transformation, while there is a lack of support for reasoning on the transfor-
mation (rule) level. Finally, solutions did not emphasize the reusability support
available in the corresponding tools, which is a critical aspect when developing
complex transformations.

References

1. Visual Modelling and Transformation System (VMTS), http://vmts.aut.bme.hu
2. The Lx transformation language set (2007), http://Lx.mii.lu.lv
3. Agrawal, A., Karsai, G., Ledeczi, A.: An end-to-end domain-driven software de-

velopment framework. In: 18th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA), Ana-
heim, California (2003)

4. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: MOFLON: A Standard-
Compliant Metamodeling Framework with Graph Transformations. In: Rensink,
A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 361–375. Springer,
Heidelberg (2006)

5. Boronat, A.: The MOMENT2-GT web site (2008),
http://www.cs.le.ac.uk/people/aboronat/tools/moment2-gt

6. ATLAS Group. The ATLAS Transformation Language,
http://www.eclipse.org/gmt

7. Balasubramanian, D., Narayanan, A., van Buskirk, C., Karsai, G.: The graph
rewriting and transformation language: GReAT. In: 3rd International Workshop
on Graph Based Tools (GraBaTs 2006), Natal, Brazil (2006)

8. Barzdins, J., Zarins, A., Cerans, K., Kalnins, A., Rencis, E., Lace, L., Liepins,
R., Sprogis, A.: GrTP: Transformation based graphical tool building platform.
In: MDDAUI 2007: Workshop on Model Driven Development of Advanced User
Interfaces (Satellite event of MODELS 2007) (2007)

9. Bisztray, D.: Verification of architectural refactoring rules. Tech. rep., Department
of Computer Science, University of Leicester (2008),
http://www.cs.le.ac.uk/people/dab24/refactoring-techrep.pdf

http://vmts.aut.bme.hu
http://Lx.mii.lu.lv
http://www.cs.le.ac.uk/people/aboronat/tools/moment2-gt
http://www.eclipse.org/gmt
http://www.cs.le.ac.uk/people/dab24/refactoring-techrep.pdf

564 D. Varró et al.

10. Bisztray, D., Heckel, R.: Rule-level verification of business process transformations
using CSP. In: Proc. of 6th International Workshop on Graph Transformations and
Visual Modeling Techniques (GTVMT 2007) (2007)

11. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

12. Eclipse Consortium. Eclipse Modeling Framework (EMF) – Version 2.3 (2007),
http://www.eclipse.org/emf

13. Geiß, R., Kroll, M.: GrGen.NET: A fast, expressive, and general purpose graph
rewrite tool. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS,
vol. 5088. Springer, Heidelberg (2008)

14. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. Science of Computer Programming 69, 27–34
(2007)

15. Greenyer, J., Kindler, E.: Reconciling TGGs with QVT. In: Engels, G., Opdyke,
B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 16–30.
Springer, Heidelberg (2007)

16. Greenyer, J., Kindler, E., Rieke, J., Travkin, O.: TGGs for Transforming UML to
CSP: Contribution to the ACTIVE 2007 Graph Transformation Tools Contest.
Tech. Rep. tr-ri-08-287, Software Engineering Group, Dept. of Computer Science,
Univ. of Paderborn (2008),
http://www.uni-paderborn.de/cs/ag-schaefer/Veroeffentlichungen/
Quellen/Papers/2008/tr-ri-08-287.pdf

17. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International
Series in Computer Science. Prentice-Hall, Englewood Cliffs (1985)

18. Kniemeyer, O., Kurth, W.: The modelling platform GroIMP and the programming
language XL. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS,
vol. 5088. Springer, Heidelberg (2008)

19. Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J., Kar-
sai, G.: Composing domain-specific design environments. Computer 34(11), 44–51
(2001)

20. Object Management Group (OMG). MOF QVT Final Adopted Specification
(2007), http://www.omg.org/cgi-bin/apps/doc?ptc/07-07-07.pdf

21. OMG. Unified Modeling Language, version 2.1.1 (2006),
http://www.omg.org/technology/documents/formal/uml.htm

22. Rensink, A., Taentzer, G.: AGTIVE 2007 Graph Transformation Tool Contest. In:
Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088. Springer,
Heidelberg (2007)

23. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–
163. Springer, Heidelberg (1995)

24. Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES approach: Language and
environment. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) Hand-
book on Graph Grammars and Computing by Graph Transformation: Applications,
Languages, and Tools, vol. 2, pp. 487–550. World Scientific, Singapore (1999)

25. SENSORIA: Software Engineering for Service-Oriented Overlay Computers,
http://www.sensoria-ist.eu

26. Tiger Developer Team. Tiger EMF Transformer (2007),
http://www.tfs.cs.tu-berlin.de/emftrans

http://www.eclipse.org/emf
http://www.uni-paderborn.de/cs/ag-schaefer/Veroeffentlichungen/Quellen/Papers/2008/tr-ri-08-287.pdf
http://www.uni-paderborn.de/cs/ag-schaefer/Veroeffentlichungen/Quellen/Papers/2008/tr-ri-08-287.pdf
http://www.omg.org/cgi-bin/apps/doc?ptc/07-07-07.pdf
http://www.omg.org/technology/documents/formal/uml.htm
http://www.sensoria-ist.eu
http://www.tfs.cs.tu-berlin.de/emftrans

Transformation of UML Models to CSP 565

27. Van Gorp, P., Muliawan, O., Keller, A., Janssens, D.: Executing a platform inde-
pendent model of the UML-to-CSP transformation on a commercial platform. In:
AGTIVE 2007 Tool Contest (2007),
http://gtcases.cs.utwente.nl/wiki/UMLToCSP/MoTMoT

28. Wagner, R.: Developing Model Transformations with Fujaba. In: Giese, H., West-
fechtel, B. (eds.) Proc. 4th International Fujaba Days 2006, Bayreuth, Germany,
vol. tr-ri-06-275. Techn. Rep., pp. 79–82. Univ. of Paderborn (2006)

http://gtcases.cs.utwente.nl/wiki/UMLToCSP/MoTMoT

The EMF Model Transformation Framework

Enrico Biermann1, Karsten Ehrig2, Claudia Ermel1, Christian Köhler3, and
Gabriele Taentzer4

1 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
2 Department of Computer Science, University of Leicester, UK

3 Department of Software Engineering, CWI Amsterdam, The Netherlands
4 Fachbereich Mathematik und Informatik, Universität Marburg, Germany

emftrans@cs.tu-berlin.de
http://tfs.cs.tu-berlin.de/emftrans

Abstract. We present the EMF Model Transformation framework
(EMT), which supports the rule-based modification of EMF models.
Model transformation rules are defined graphically and compiled into
Java code to be used in model transformation applications.

Introduction. The Eclipse Modeling Framework (EMF)[1] provides a model-
ing and code generation framework for Eclipse applications based on structured
data models. The goal of the EMF Model Transformation framework (EMT) is
to support the modification of EMF models based on graphical EMF model
transformation rules. EMT currently consists of three components: a graphical
editor for EMF model transformation rules, a compiler, generating Java code
from these rules to be used in further projects, and an interpreter for the execu-
tion of the rules using AGG [2], a graph transformation tool environment.

Definition of EMF Model Transformations. Transformations of EMF mod-
els are defined by transformation rules. Each rule consists of a left-hand side
(LHS), a right-hand side (RHS), possible negative application conditions (NACs)
and mappings between these object structures. An object structure consists of a
number of possibly linked objects conforming to the EMF models for which the
transformation is defined. Each of these structures is visualized in the graphi-
cal editor by a diagram that contains a number of object nodes which can be
connected and/or attributed.

The left-hand side of a rule formulates the structural preconditions that must
be fulfilled to apply the rule. Accordingly, a right-hand side describes the result
(or postconditions) of a rule. Negative application conditions are defined in the
same way and describe structural conditions that must not be fulfilled for rule
application. Furthermore it is possible to define a layer for each rule. Rules on
lower layers are applied prior to those on higher layers. Attributes of an object
can be calculated using Java. Each expression may contain variables defined in
the context of the rule the expression is used in.

Fig. 1 shows a screenshot of EMT where a model transformation from activity
diagrams to Petri nets is defined. The loaded EMF models are shown in the lower
center, while a three-pane rule editor is depicted above. Corresponding objects

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 566–567, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The EMF Model Transformation Framework 567

Fig. 1. EMF model transformation perspective

in these panes are colored equally to visualize rule mappings. The EMT compiler
generates a Java class for each defined rule. Such a class contains methods for
setting rule parameters, checking applicability, as well as performing and undoing
rule applications which change models in-place.

Applications of the EMT framework so far include endogenous model trans-
formations such as the extension of Eclipse GMF-generated editors by complex
editor commands [3], as well as refactoring of EMF models [4,5], and exogenous
model transformations from class diagrams to relational date bases, from activity
diagrams to Petri nets and from UML to CSP.

References

1. Eclipse Consortium: Eclipse Modeling Framework (EMF) – Version 2.2.0 (2006),
http://www.eclipse.org/emf

2. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Val-
idation of Software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003.
LNCS, vol. 3062, pp. 446–456. Springer, Heidelberg (2004)

3. Taentzer, G., Crema, A., Schmutzler, R., Ermel, C.: Generating Domain-Specific
Model Editors with Complex Editing Commands. In: Schürr, A., Nagl, M., Zündorf,
A. (eds.) AGTIVE 2007. LNCS, vol. 5088. Springer, Heidelberg (2008)

4. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: EMF Model
Refactoring based on Graph Transformation Concepts. In: Proc. Software Evolution
through Transformations (SETra 2006), EC-EASST, vol. 3 (2006)

5. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: Graphical
Definition of In-Place Transformations in the Eclipse Modeling Framework. In: Nier-
strasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199,
pp. 425–439. Springer, Heidelberg (2006)

http://www.eclipse.org/emf

GrGen.NET: A Fast, Expressive, and General
Purpose Graph Rewrite Tool

Rubino Geiß and Moritz Kroll

Universität Karlsruhe (TH), 76131 Karlsruhe, Germany
rubino@ipd.info.uni-karlsruhe.de

http://www.grgen.net

Introduction. GrGen.NET is a graph rewrite tool enabling elegant and
convenient development of graph transformation applications with comparable
performance to manually developed ones. GrGen.NET compiles declarative
specifications of graph meta models, patterns, and rewrite rules into .NET
modules. The entire functionality (meta-model, matching, rewriting, elementary
graph operations) is accessible through a convenient API (called libGr) enabling
easy integration of GrGen.NET into custom applications. Meta-model and rule
languages have formal semantics based on a new combination of category theory
and denotational semantics [1].

The general purpose graph rewrite tool GrGen.NET is a descendant of Gr-

Gen [2], initially developed for transformations in compiler construction [3].
GrGen.NET is published under LGPL along with a user manual.

Meta Model Language. GrGen.NET uses typed and directed multigraphs
with multiple inheritance on node and edge types. These types can be equipped
with typed attributes (primitive types, enums and C#-objects). The type hier-
archies in GrGen.NET are similar to those in common OO-languages.

Pattern and Rewrite Language. A set of rewrite rules can be specified refer-
ring to graph meta models. The pattern matcher is able to perform plain isomor-
phic subgraph matching (injective mapping) as well as homomorphic matching
for a selectable set of nodes and edges. The language has special support for
typical use cases like finding induced subgraphs and exact patterns (i.e., all the
incident edges in the host graph are specified in the pattern) by pattern modi-
fiers. Matches can further be restricted by arithmetic and logical conditions on
the attributes and types (including powerful instanceof-like type expressions).
Nested negative application conditions—i.e., subpatterns whose existence for-
bids the matching—are supported, too.

The task of rewriting is internally implemented as an extension to SPO seman-
tics. However, the user is able to specify rules in well-known DPO semantics, too.
The rewrite language offers an extensive set of useful graph operations, including
recalculation of node and edge attributes and retyping (a more general version of
type casts) of nodes and edges. In addition to rules in algebraic style, extended
graph rewrite sequences (XGRS) and emit text can be applied in the rewrite
part of a rule. This way we successfully performed MOF model transformation
with automatic generation of XMI files[4].

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 568–569, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

GrGen.NET: A Fast, Expressive, and General Purpose Graph Rewrite Tool 569

Fig. 1. Screenshot of GrShell and yComp in debug mode (colors optimised for print)

Usability. Because GrGen.NET works on pure text files, handling of large
meta models and rule sets as well as the integration with code generation tools is
easy. A .NET shell application (GrShell) is shipped, capable of interactive and
batched execution of the graph rewrite functionalities. This includes commands
for creation, deletion, input, and output of graphs, nodes, and edges as well
as application of rewrite rules. Several rules can be composed with logical and
iterative sequence control to an XGRS, resulting in its Turing-completeness.
Moreover, XGRS may contain nested transactions.

By accessing the match and rewrite facility through libGr, instead of using
GrShell, custom algorithmic rule applications are possible. Graphical and step-
wise debugging integrated into the GrShell complements the feature highlights
of GrGen.NET (see Figure 1).

Performance. According to all available benchmarks GrGen.NET is among
the fastest graph rewrite tools, with a feature set being superior to most of
the other tools. In contrast to Fujaba (competing in speed with our tool) Gr-

Gen.NET is fully automatic: The user does not have to (partly) specify how
the tool should search for a pattern graph. To automatically optimize the perfor-
mance for a given (class of) host graphs, GrGen.NET implements the search
plan based approach to graph pattern matching [5] as the first tool.

References

1. Geiß, R.: Graphersetzung mit Anwendungen im Übersetzerbau. PhD thesis, Univer-
sität Karlsruhe, approved, to appear (2007)

2. Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.: GrGen: A Fast SPO-Based
Graph Rewriting Tool. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozen-
berg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 383–397. Springer, Heidelberg (2006)

3. Schösser, A., Geiß, R.: Graph Rewriting for Hardware Dependent Program Op-
timizations. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS,
vol. 5088. Springer, Heidelberg (2008)

4. Gelhausen, T., Derre, B., Geiß, R.: Customizing GrGen.NET for Model Transfor-
mation. In: GraMoT 2008 (accepted, 2008)

5. Batz, G.V., Kroll, M., Geiß, R.: A First Experimental Evaluation of Search Plan
Driven Graph Pattern Matching. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AG-
TIVE 2007. LNCS, vol. 5088. Springer, Heidelberg (2008)

The Modelling Platform GroIMP
and the Programming Language XL

Ole Kniemeyer and Winfried Kurth

Brandenburgische Technische Universität Cottbus, Department of Computer Science,
Chair for Practical Computer Science/Graphics Systems,

Ewald-Haase-Straße 12/13, 03044 Cottbus, Germany
http://www.grogra.de/

Abstract. We present the open-source modelling platform GroIMP and
the rule-based programming language XL. The underlying representation
of data within GroIMP is a graph, which can be transformed by rules
specified in XL. The principal field of application is modelling of virtual
plants, but the system can also be used for a lot of other applications.

Introduction. The GroIMP software (growth-grammar related interactive mod-
elling platform) has been developed as an integrated modelling environment for
the specification of plant models. Thus, special importance had to be attached to
the 3D representation of modelled structures as well as to a concise specification
language. For the latter, the success of L(indenmayer)-systems for plant mod-
elling [1] proved that the rule-based paradigm is most suitable, but the simple
string data structure of L-systems turned out to be too poor to reflect the in-
creasing biological knowledge and demands on modelling software. So we chose
to use graphs as the underlying data structure of GroIMP, and graph gram-
mars as the rule-based formalism. As specification language, we implemented
the language XL, extending Java and incorporating rules and graph queries.

The Programming Language XL. The definition of XL as an extension of
the imperative programming language Java is a distinguished feature: XL in-
herits several properties from Java, which in combination are seldom present
in other graph-grammar tools: typing system with inheritance, the possibility
to declare own classes, control flow, modularization of large systems into types
and packages, huge run-time library, standard representation of compiled code,
platform-independence. XL adds queries and rules to Java: a query is an ex-
pression which specifies a graph pattern and finds all matches of this pattern in
the host graph, and a rule consists of a query as left-hand side and production
statements as right-hand side. These statements may have the shape of a graph
as in the following rule which inserts a new Node in a list linked with next edges

a:Node -next-> b:Node ==>> a -next-> Node -next-> b;

but may also contain control flow statements to dynamically construct the re-
placement for the current match:

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 570–572, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Modelling Platform GroIMP and the Programming Language XL 571

a:Node -next-> b:Node ==>> a i f (some condition) (-next-> Node) -next-> b;

Queries may contain advanced patterns like optional patterns or transitive clo-
sures of path expressions or subsets thereof (e. g., (-next->){n} for exactly n
iterations of a next edge). Queries operate on the host graph via a general data
model interface which allows XL to be used not only for GroIMP, but for almost
any given structured data. Imperative and rule-based code can be mixed freely:

void step(boolean delete) {
i f (delete) [s:Sphere ==>> {System.out.println("Deleted " + s);};]
... }

This distinguished feature is very useful from a practical point of view, especially
for programmers familiar with Java who want to have a more suitable language
for the access and modification of graph-like structures of any kind.

The Modelling Platform GroIMP. GroIMP is implemented in Java and
available as open-source software. It contains a comfortable source code editor
for XL programs. The integrated compiler compiles them into executable code
which can immediately be run within GroIMP. The data of a project is repre-
sented as a graph, with nodes being instances of Java classes. The library of
GroIMP provides a rich set of predefined node classes, most of which stand for
3D-geometric objects like spheres, boxes, spline surfaces, or coordinate transfor-
mations. The typical interpretation of a graph is that of a 3D scene graph, in
which case the built-in 3D view displays instances of 3D classes using their in-
trinsic 3D meaning. There is also a 2D view which shows the topology of a graph.
GroIMP implements the XL interfaces such that rule application conforms to
relational growth grammars [2] which extend the single-pushout approach.

Fig. 1. Screenshot of GroIMP displaying 3D visualization, graph structure and source
code editor of the Ludo game example (contained in the GroIMP release)

572 O. Kniemeyer and W. Kurth

References

1. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer,
New York (1990)

2. Kniemeyer, O., Barczik, G., Hemmerling, R., Kurth, W.: Relational growth gram-
mars – a parallel graph transformation approach with applications in biology and
architecture. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS,
vol. 5088. Springer, Heidelberg (2008)

Metamodeling with MOFLON

Carsten Amelunxen, Alexander Königs, Tobias Rötschke, and Andy Schürr

Darmstadt University of Technology, Real-Time Systems Lab
{amelunxen,koenigs,rotschke,schuerr}@es.tu-darmstadt.de

http://www.moflon.org

Abstract. The metamodeling tool MOFLON provides an integrated
approach for the specification of a modeling language’s abstract syntax,
static and dynamic semantics especially for means of tool integration and
further applications.

The Real-Time Systems Lab at the Darmstadt University of Technology devel-
ops the metamodeling tool MOFLON [1] which addresses the issues of meta-
modeling in general and especially the issue of metamodel-based integration of
development tools by bringing together the latest OMG standards with graph
transformations and their formal semantics. Using MOFLON, developers are
able to generate code for specific metamodels needed to perform the integration
of development tools or other tasks like guideline checking, creation of metrics
or for the classical scenario of building CASE-tools.

Since, tool integration is also a matter of metamodeling, MOFLON is designed
to meet especially the demands of metamodeling. As such MOFLON implements
the latest OMG metamodeling standard MOF 2.0. It provides graphical editing
facilities for MOF 2.0 compliant class diagrams created from scratch by the ap-
plication of MOFLON’s editor or imported via XMI from commercial modeling
tools like Rational Rose or Enterprise Architect. The integrated code generation
machinery enables MOFLON to generate repository implementations which are
compliant to SUN’s metadata standardization approach JMI. Hence, MOFLON
is able to transform a MOF 2.0 compliant metamodel into executable Java code
which can be used for the before mentioned tasks.

A MOF 2.0 compliant metamodel in MOFLON can also be completed by
OCL statements in the form of invariants, derivation rules, etc. which are in-
tegrated into the generated repository implementation. Due to the integration
of OCL, metamodels can be modeled much more precisely. Furthermore, beside
OCL, MOFLON also integrates the technique of story driven modeling (SDM)
which is implemented by MOFLON’s base framework Fujaba. Thus, MOF 2.0
metamodels act as graph schema, which, in turn, allows to specify any kind
of behavior based on graph transformation rules. Fig. 1 gives an idea how the
different parts of MOFLON interact.

Especially for the task of tool integration, MOFLON provides an implementa-
tion of triple graph grammars [2]. With the technique of triple graph grammars,
integration rules between two MOF 2.0 compliant metamodels can be specified.

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 573–574, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

574 C. Amelunxen et al.

Graph

generate

transform

instantiate

Legend:

Visual MOF 2.0 Editor

Model Integration
Model Transformation

Model Analysis

M O F L O N

M O F L O N

import

repair

augment

Visual SDM Editor

OCL Compiler SDM CompilerRepository Generator

(Rational Rose,
CASE Tools

COTS

Enterprise Architect,
etc.)

Domain Specific Metamodels
Tool Representations

Java Repository

XML
Representation

Tailored
Interfaces

Reflective
Interfaces Metaobjects

Event
Notification

Constraint
Checking

Repair
Transformation

Transformation
Fujaba

MOF 2.0
Metamodel

refine Constraints
(OCL, Java)

XML Interchange
(XMI)

Triple Graph
Grammar

Visual TGG Editor

Fig. 1. Overview MOFLON architecture

Integration rules can first be transformed into common SDM graph transfor-
mations and than be further transformed by MOFLON’s code generator into
executable integration code. The generated integration code can be executed
within a generic integration component. In combination with tool adapters for
the involved commercial tools, the integration can be executed during the tools’
runtime. Find further details and a demonstration of the mentioned integration
scenario at www.moflon.org

References

1. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: MOFLON: A Standard-
Compliant Metamodeling Framework with Graph Transformations. In: Rensink,
A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 361–375. Springer,
Heidelberg (2006)

2. Königs, A., Schürr, A.: Tool Integration with Triple Graph Grammars - A Survey.
In: Heckel, R. (ed.) Proceedings of the SegraVis School on Foundations of Visual
Modelling Techniques. Electronic Notes in Theoretical Computer Science, vol. 148,
pp. 113–150. Elsevier Science Publ., Amsterdam (2006)

The Graph Rewriting Language and
Environment PROGRES

Ulrike Ranger and Erhard Weinell

RWTH Aachen University of Technology
Department of Computer Science 3 (Software Engineering)

Ahornstraße 55, D-52074 Aachen, Germany
{Ranger,Weinell}@cs.rwth-aachen.de
http://se.rwth-aachen.de/progres

Introduction. PROGRES (PROgrammed Graph REwriting Systems) [1] has
been developed since the late 1980s, and thus constitutes one of the eldest im-
plemented graph rewriting languages and environments. It is based on the logic-
oriented approach to graph grammars. The PROGRES language allows to model
the structure and the behavior of software applications in a visual and declar-
ative way. Thereby, it is not tied to a specific application domain, but may be
used for arbitrary software applications (see [2] for a simple example). Besides
an extensive language, PROGRES offers an integrated modeling environment,
including a syntax-directed editor, an interpreter, and a debugger. Furthermore,
the environment supports rapid prototyping by generating executable source
code from a specification. The code can be embedded into a visual prototype.

The Graph Language PROGRES. PROGRES offers language constructs
for defining graph schemas and graph transformation rules. Thereby, it uses
directed, attributed, node and edge labeled graphs as underlying data model.

Graph Schema. A PROGRES graph schema consists of node types and edge
types where the edge types model relations between the node types. Following
the object oriented programming paradigm, attributes and graph transforma-
tion rules may be defined for every node type. For modeling complex naviga-
tions through a host graph, paths may be defined in the schema describing such
navigations by using operators like the Kleene star. Furthermore, a schema may
contain integrity constraints imposing advanced restrictions on valid host graphs.

Graph Transformation Rules. In PROGRES, graph transformation rules are dis-
tinguished into simple rules and combined rules. A simple rule describes a graph
transformation in a visual way, consisting of a left-hand side (LHS) and a right-
hand side (RHS). The LHS specifies a graph pattern for which an according match
has to be found in the host graph. If such a match could be found, it is transformed
according to the RHS. For modeling variable coherences, rules may contain op-
tional, negative or even set-valued nodes and negative edges. Furthermore, em-
bedding clauses may be used for integrating the transformed sub graph into the
remaining host graph. In contrast to a simple rule, a combined rule composes sev-
eral rules by textual control structures, e. g. loops and conditions. Thus, a complex

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 575–576, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://se.rwth-aachen.de/progres

576 U. Ranger and E. Weinell

Fig. 1. Screenshot of a generated prototype

transformation may be modeled by a combined rule. PROGRES also comprises an
OCL-like language for formulating constraints in transformation rules or paths.

Environment. As example for the extensive PROGRES environment, the rapid
prototyping framework UPGRADE is sketched here. Using the code generated
from a PROGRES specification, UPGRADE is able to display host graphs and
to invoke the specified transformation rules on them. As host graphs tend to be-
come too incomprehensible for inspection, UPGRADE offers a display mechanism
which is highly user-configurable: Filters allow to hide instances of node and edge
types not relevant to the user. They also allow to collapse edge-node-edge con-
structs into a single attributed edge. Display attributes modify colors, fonts, and
shapes of nodes and edges. All attributes can be refined by conditions, e.g. to mark
a node red if one of its attributes exceeds a certain threshold. Label attributes assign
labels to the displayed graph entities, such as type information or node attributes.
All of these attributes can be assigned to each type, or the type’s hierarchy.

Figure 1 shows a prototypical editor created for the case study presented in [2].
Besides the graphical representation, a textual view window displays contents
derived from the according nodes labels. UPGRADE supports the development
of such customized views by a set of extendable base classes.

References

1. Schürr, A., et al.: The PROGRES approach: Language and environment. In: Ehrig,
H., et al. (eds.) Handbook on Graph Grammars and Computing by Graph Trans-
formation, 1st edn., vol. 2, pp. 487–550. World Scientific, Singapore (1999)

2. Varró, D., et al.: Graph Transformation Tools Contest on the Transformation of
UML Models to CSP. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007.
LNCS, vol. 5088. Springer, Heidelberg (2008)

Algorithm and Tool for Ontology Integration
Based on Graph Rewriting

Thomas Heer, Daniel Retkowitz, and Bodo Kraft

Department of Computer Science 3, RWTH Aachen University,
Ahornstr. 55, 52074 Aachen, Germany

{heer,retkowitz}@i3.informatik.rwth-aachen.de,
bodo.kraft@amb-informatik.de

http://www-i3.informatik.rwth-aachen.de

Abstract. Ontologies are often used to define concepts of certain ap-
plication domains. Using knowledge from several different subdomains
then requires the integration of the defined ontologies. Since ontology
integration is a difficult task, there is a need for adequate tool support.
In the ConDes project, we developed a knowledge-based support for the
conceptual design phase in building engineering. Thereby the problem of
ontology integration had to be solved. In this paper, we describe these
tools and demonstrate how they support the integration task.

1 Introduction

The first phase in the process of designing a new building is the conceptual
design phase. The CAD tools currently available do not support this early stage
adequately. In the ConDes project [1] we developed new concepts for software
tools to support this conceptual design phase. On the one hand, the tools enable
the architect to create conceptual sketches, and on the other hand they allow
for the specification of conceptual design knowledge. The tools we develop allow
for a consistency analysis of conceptual sketches against the respective design
knowledge [2].

The term ontology can be used with several semantics [3]. In our case, we
use this term to denote a light-weight ontology, which consists of several tax-
onomies of concepts. Ontologies form the basis for the above mentioned consis-
tency analysis. Domain-specific conceptual design knowledge is specified by a
knowledge engineer at tool runtime in the form of rules. These rules define for
example the possible arrangements of rooms and their dimensions as well as the
the maximal length of escape routes. Before the definition of knowledge in the
form of rules, the concepts used in this knowledge specification have to be spec-
ified in a domain-specific ontology. All domain-specific ontologies are based on a
static, predefined top-level ontology, which comprises certain basic concepts, that
are common to all building designs. One ontology and the according knowledge
rules together constitute a knowledge module for a certain subdomain.

To check a specific design sketch, in most cases knowledge from different sub-
domains has to be considered. The relevant knowledge modules have to be inte-
grated before the analysis can be performed. To integrate the knowledge, a prior

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 577–582, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www-i3.informatik.rwth-aachen.de

578 T. Heer, D. Retkowitz, and B. Kraft

integration of the respective ontologies is required. Different types of ontology in-
tegration can be distinguished [4]. We use integration in terms of merging in our
approach, i. e. unifying two or more ontologies into a single one. In the remainder
of this paper, we present the tools we developed for the integration task.

In [5] a survey over existing approaches to ontology alignment is presented.
This work gives an overview over theoretic frameworks and several current re-
search projects. The surveyed works range from formal over heuristic approaches
to approaches, which use machine learning to automate the process of ontology
alignment. However, most of the presented works more or less neglect the issues
involved with the interactive part of the integration process, which is always
necessary, because a completely automatic approach is not feasible.

2 Tool Support for Ontology Reuse and Integration

Our tools enable the definition, reuse and integration of light-weight ontologies,
i. e. classifications of concepts. Figure 1 shows the three software tools used for
these tasks: the ontology editor (1), the modules browser (2) and the ontology
integration tool (3).

The ontology editor (1) is used to define domain ontologies. During the def-
inition of a new ontology, parts of previously defined ontologies can be reused.
Ontology elements can be copied from a concept hierarchy of an existing ontology
into the corresponding concept hierarchy of the new ontology. These elements
can be hooked into the new concept hierarchy as specializations of existing el-
ements. Thereby, several consistency constraints are enforced by the tool. For
example, if a concept and one of its specializations are copied, then these con-
cepts have to be in the same generalization relation in the new ontology. By
enforcing constraints of this type the tool prohibits, that the semantics of copied
ontology elements get implicitly changed. In figure 1, concept hierarchies from
three different ontologies are shown. Edges of type CopyOf indicate, which on-
tology elements have been copied from another ontology.

Domain ontologies are used as a basis for the formalization of domain knowl-
edge. This domain knowledge is defined in form of design rules. Knowledge mod-
ules can be managed with the help of the modules browser (2). This tool provides
an overview over all defined knowledge modules and their dependencies. Depen-
dencies between knowledge modules result from ontology reuse. When ontology
elements are copied from one knowledge module to another, the latter module
depends on the former. This is the case, because design rules from the former
knowledge module, which apply to the copied elements, also apply to the copies,
when the latter module is used to check a conceptual building sketch. The mod-
ules browser as well as the ontology editor support the versioning of knowledge
modules and their storage in the file system. In figure 1, three user-defined mod-
ules are represented as nodes in a graph, and their dependencies are indicated by
edges of type uses. A fourth module node represents the result of the integration
of the three user-defined modules. It is connected to the modules it integrates
via edges of type integrates.

Algorithm and Tool for Ontology Integration 579

Fig. 1. Tools for ontology definition, reuse and integration

The integration of knowledge modules is supported by the integration tool. It
supports the task of merging domain ontologies from different knowledge mod-
ules into one unified ontology. Besides that, it allows for resolving conflicts be-
tween knowledge rules. The ontologies to be integrated have to be aligned [4],
so that they can be merged into one ontology. The alignment is performed by
a knowledge engineer with the help of our integration tool. Thereby, he defines
semantic correspondences between the elements of the ontologies.

During the interactive alignment of ontologies, several problems have to be
solved [6]. For example, how can a knowledge engineer identify corresponding
ontology elements, and how can it be assured, that he defines the correspondences
in the right order. An important issue is, how to ensure the integrity of all defined
correspondences. Furthermore, possible mismatches between the ontologies, like
synonymous terms or different modeling conventions, have to be resolved during
the alignment process.

The alignment of the ontologies relies on the definition of semantic corre-
spondences between their elements. Like in [7], four different types of semantic
correspondences are used: equivalence, generalization, overlap and disjointness.
While the semantic correspondences are defined manually by the knowledge
engineer, the merged ontology is generated automatically from the defined cor-
respondences and the source ontologies. The knowledge engineer is supported
by the integration tool in many ways. Alignment and merging steps alternate
throughout the integration process. After each definition of a correspondence,
the intermediate result of the integration is immediately updated. That way,
the effects of defined correspondences on the integration result become directly
visible. The knowledge engineer is guided through the merged ontology, and his
attention is focused on small parts of the ontology, where he has to define new

580 T. Heer, D. Retkowitz, and B. Kraft

correspondences. In this way, the common problems of identifying corresponding
ontology elements and defining the correspondences in the right order are sub-
stantially reduced. The integrity of all defined correspondences is ensured. This
means that no correspondences can be defined, which conflict with each other.
If this occurred, either no merged ontology could be created, or the generated
merged ontology would be in an inconsistent state. Therefore, the tool prohibits
all actions, which would violate the correspondence integrity. Thereby, all re-
strictions, which arise through previously defined correspondences, are taken
into account. Finally, the integration tool can provide suggestions for possi-
ble correspondences to the user. These suggestions do not result from heuristic
analyses, but are rather the only possible correspondences left, after evaluating
all restrictions.

We used the graph rewriting system PROGRES [8] to specify the application
logic of our tool. For the specific problem at hand, the use of a graph rewriting
system was a natural choice, and we could profit from its benefits, in particular
from the declarative specification of graph transformations. A detailed presen-
tation of the specified graph transformations is beyond the scope of this paper.

3 Running the Integration Procedure

The graphical user interface of the integration tool is divided into two views.
During the integration process, one view shows a part of the intermediate merged
ontology. In this view, the user can select highlighted ontology elements, and he
can define correspondences between these. The second view of the integration
tool shows the original source ontologies together with the correspondences,
which have been defined between their elements.

Several different ontologies can be integrated into one. Thereby, the ontologies
are successively integrated one by one into a merged ontology. In each run,
concept hierarchies of the intermediate result and the next ontology have to
be aligned. The concept hierarchies of the merged ontology are traversed in
an adapted breadth-first order. The traversing is steered by previously defined
correspondences. At any time, the currently relevant elements of the merged
ontology are highlighted, and the user is asked to define correspondences for
these elements.

We will now describe the integration procedure by example. In figure 2, the
integration tool is depicted in a state during the integration of three ontologies.
In a first run of the integration procedure the ontologies living spaces and family
home were merged into one ontology. After that, the ontology sanitary engineering
has to be merged with the intermediate integration result. The correspondence
Equivalence (1) has been established by an automatic top-level grounding [9].
In the first run the correspondences Overlap and Generalization (2) were defined
by the user. This resulted in a merged ontology, in which family room is a spe-
cialization of dining room and living room (3). In the second run the user has
already defined the correspondence Generalization (4) between toilet and sanitary
room. Because of this correspondence the former ontology element has become

Algorithm and Tool for Ontology Integration 581

Fig. 2. Alignment during integration of three ontologies

a specialization of the latter, and the elements toilet, restroom and washroom
are highlighted in the merged ontology (5). The user is now asked to define
appropriate correspondences between these marked elements. He will define an
equivalence relation between the ontology elements toilet and restroom. In this
state, the user cannot define any correspondence for elements, which are not
highlighted. The equivalence relation is only allowed, because the considered el-
ements have the same relations with all highlighted elements and their parent
elements. Many similar integrity constraints are checked by the tool, whenever
the user attempts to define a new correspondence. If any constraint is violated,
the tool prohibits the definition of the correspondence.

4 Conclusion

In this paper, we presented tools for an interactive, incremental integration of on-
tologies. In contrast to other approaches to ontology integration,we focused onpro-
viding substantial support for the interactive part of the integration process. The
user is guided through the merged ontology. His actions have an immediate effect
on the integration result. The integrity of all defined correspondences is assured.

For the evaluation of our tools, conceptual knowledge relevant for the design
of the university hospital Aachen has been formalized in several domain specific

582 T. Heer, D. Retkowitz, and B. Kraft

ontologies. These large ontologies have been integrated by means of our tools, and
a complex design sketch of the building has been checked against the integrated
knowledge.

Graphs are a natural means for representing complex data structures like
ontologies. Therefore, we use graphs to represent both ontologies and domain
knowledge in the ConDes project. We realized our tools using the graph rewriting
system PROGRES [8] and the UPGRADE framework [10]. Thereby, we benefited
from graph technology, as we could visually specify the application logic in a
declarative way.

References

1. Kraft, B.: Semantische Unterstützung des konzeptuellen Gebäudeentwurfs. Disser-
tation, RWTH Aachen University, Aachen (2007)

2. Kraft, B., Nagl, M.: Visual Knowledge Specification for Conceptual Design: Defi-
nition and Tool Support. Advanced Engineering Informatics 21, 67–83 (2007)

3. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering: With
Examples from the Areas of Knowledge Management, e-Commerce and the Seman-
tic Web. Springer, Heidelberg (2004)

4. Pinto, H.S., Gómez-Pérez, A., Martins, J.P.: Some Issues on Ontology Integra-
tion. In: Proc. of the IJCAI 1999 Workshop on Ontologies and Problem-Solving
Methods, Aachen, RWTH Aachen, pp. 7/1–7/12 (1999)

5. Kalfoglou, Y., Schorlemmer, M.: Ontology Mapping: The State of the Art. The
Knowledge Engineering Review 18(1), 1–31 (2003)

6. Klein, M.: Combining and Relating Ontologies: An Analysis of Problems and So-
lutions. In: [11], pp. 53–62

7. Hakimpour, F., Geppert, A.: Resolving Semantic Heterogeneity in Schema Inte-
gration: an Ontology Based Approach. In: Proc. of the 2nd Intl. Conf. on Formal
Ontology in Information Systems, pp. 297–308. ACM Press, New York (2001)

8. Schürr, A., Winter, A., Zündorf, A.: The PROGRES approach: Language and envi-
ronment. In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.) Handbook
on Graph Grammars and Computing by Graph Transformation: Applications, Lan-
guages, and Tools, vol. 2, pp. 487–550. World Scientific, Singapore (1997)

9. Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann,
H., Hübner, S.: Ontology-Based Integration of Information – A Survey of Existing
Approaches. In: [11], pp. 108–117

10. Böhlen, B., Jäger, D., Schleicher, A., Westfechtel, B.: UPGRADE: A Framework
for Building Graph-Based Interactive Tools. In: Corradini, A., Ehrig, H., Kreowski,
H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 270–285. Springer,
Heidelberg (2002)

11. Gómez-Pérez, A., Gruninger, M., Stuckenschmidt, H., Uschold, M. (eds.): Proc. of
the IJCAI 2001 Workshop on Ontologies and Information Sharing. AAAI Press,
Menlo Park (2001)

Generating Eclipse Editor Plug-Ins Using Tiger

Enrico Biermann1, Karsten Ehrig2, Claudia Ermel1, and Gabriele Taentzer3

1 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
2 Department of Computer Science, University of Leicester, UK

3 Fachbereich Mathematik und Informatik, Universität Marburg, Germany
tigerprj@cs.tu-berlin.de

http://tfs.cs.tu-berlin.de/tigerprj

Abstract. We present Tiger, a visual environment to design visual
language (VL) specifications based on meta models, graph grammars
and layout definitions. A VL specification serves as basis to generate a
visual editor for VL diagrams as Eclipse plug-in.

Introduction. Domain specific modeling languages are of growing importance
for software and system development. Meta tools are needed to support the
rapid development of domain-specific visual editors. A visual language (VL) de-
finition based on a meta model in combination with a rule-based specification of
editor commands is used in Tiger (Transformation-based Generation of Envi-
ronments) to generate a corresponding visual editor.

Tiger combines the advantages of precise VL specification techniques using
graph transformation concepts with sophisticated graphical editor development
features offered by the Eclipse Graphical Editing Framework (GEF) [1]. Using
graph transformation at the abstract syntax level, an editor command is modeled
in a rule-based way. The application of such syntax rules to the underlying syn-
tax graph of a diagram is performed by the graph transformation engine AGG

[2]. Tiger extends AGG by means for concrete syntax definition. From the VL
definition, Java source code is generated, implementing an Eclipse visual editor
plug-in based on GEF. Thus, the generated editors appear in a timely fashion,
conforming to the Eclipse standard for graphical tool environments.

Tiger Architecture and User Interface. The two major parts of the Tiger

environment are the Designer [3] and the Generator [4]. A VL is specified by the
Designer providing the following four parts: the abstract syntax, the concrete syn-
tax of the corresponding abstract elements, the start graph, and the syntax rules
which define the VL editing operations. After defining the VL in the Designer the
Generator is evoked to generate an editor as Eclipse plug-in based on GEF.

The Tiger user interface makes extensive use of the standard elements pro-
vided by the Eclipse workbench paradigm. Fig. 1 shows a few sample designer
views and editors arranged in the Tiger perspective defining a VL for automata:
the tree view 1 shows the hierarchical structure of a VL alphabet, a visual
editor 2 is used to define the layout for a symbol type, and a properties view
3 allows to change values for graphical layout properties of the selected ellipse

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 583–584, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

584 E. Biermann et al.

Fig. 1. The Tiger perspective in Eclipse and the generated automata plug-in

figure. Screenshot 4 shows the generated editor plug-in for automata. The ed-
itor palette contains VL-specific creation operations, grouped into categories
Symbols (for creating symbols), Connections (for creating connections between
two symbols) and Patterns (for modifying patterns consisting of more than one
symbol). Dialogs are used for the definition of input parameter and for edit
operations which can be evoked in the context menu of a selected symbol.

Note that graph transformation-based editors like Tiger, in contrast to re-
lated meta-model-based editors like GMF [5] and AToM3 [6] or MetaEdit+ [7],
do not only offer basic editor commands, but also support complex editing com-
mands which insert or manipulate larger model parts consisting of a number of
elements. With complex editing commands, model optimizations, such as model
refactoring, as well as model simulation may be performed.

References

1. Eclipse Consortium: Eclipse Graphical Editing Framework (GEF) – Version 3.2
(2006), http://www.eclipse.org/gef

2. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Val-
idation of Software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003.
LNCS, vol. 3062, pp. 446–456. Springer, Heidelberg (2004)

3. Ermel, C., Ehrig, K., Taentzer, G., Weiss, E.: Object Oriented and Rule-based Design
of Visual Languages using TIGER. In: GraBaTs 2006, vol. 1. EC-EASST (2006)

4. Ehrig, K., Ermel, C., Hänsgen, S., Taentzer, G.: Generation of visual editors as
Eclipse plug-ins. In: Proc. ASE 2005, pp. 134–143. IEEE Computer Society, Los
Alamitos (2005)

5. Eclipse Consortium: Eclipse Graphical Modeling Framework (GMF)(2007),
http://www.eclipse.org/gmf

6. de Lara, J., Vangheluwe, H., Alfonseca, M.: Meta-Modelling and Graph Grammars
for Multi-Paradigm Modelling in AToM3. Software and System Modeling 3(3), 194–
209 (2004)

7. Tolvanen, J., Rossi, M.: MetaEdit+: Defining and Using Domain-Specific Modeling
Languages and Code Generators. In: Proc. Object-oriented programming, systems,
languages, and applications (OOPSLA 2003), pp. 92–93. ACM Press, New York
(2003)

http://www.eclipse.org/gef
http://www.eclipse.org/gmf

From Graph Transformation to OCL Using USE

Martin Gogolla, Fabian Büttner, and Duc-Hanh Dang

Universität Bremen, Fachbereich 3, AG Datenbanksysteme, D-28334 Bremen
http://www.db.informatik.uni-bremen.de/projects/USE/

With the tool USE, UML class diagrams1 with additional OCL constraints can
be validated and properties can be formally checked. Constraints may be class
invariants and operation pre- and postconditions. USE builds system states with
object diagrams2 and expresses system evolution with operations employing ba-
sic state manipulations by creating and destroying objects (nodes) and links
(edges) and by modifying attributes3.

A graph transformation system is expressed in USE by modeling the working
graph with an object diagram and by expressing the graph transformation rules
with operations modifying the working graph4. These operations encapsulate an
executable sequence of basic state manipulations5 and are additionally charac-
terized by pre- and postconditions in which application conditions of the graph
transformation rules can be expressed6. The graph transformation rules are for-
mulated in a special language permitting to describe left and right hand side
of rules as well as their application conditions. This language is automatically
translated into USE command sequences and OCL pre- and postconditions. The
rules may be executed interactively through operation calls7. The current work-
ing graph and its properties may be inspected on a graphical user interface and
through evaluation of OCL expressions, e.g., for determining the rule redexes
in the current working graph8. Additionally, OCL invariants may be used to
restrict the permitted working graphs9.

1 Figure 1 pictures in the lower third a class diagram with class Person having a civil
status property civstat which is modified by events like birth or marry.

2 Figure 1 shows an object diagram with five Person objects and one Marriage link.
3 The class RuleCollection includes the operations birth for creating a new person

and marry for establishing a marriage. RuleCollection is a singleton class.
4 In the top, the graph transformation rule for a marriage is shown as it is specified

currently. On the right, a possible graphical representation is captured. Left and
right hand side of rules consist of objects, links, and OCL assertions. The rule marry
is the origin of the operation marry in the class RuleCollection.

5 A call of marry will introduce a Marriage link and will modify the participating
civstat attributes as described in the rule marry.

6 The precondition of marry will assert that only unmarried living people with the
correct gender can be involved as specified in the rule marry.

7 The sequence diagram shows the executed operations leading from the empty work-
ing graph to the shown object diagram.

8 The two OCL expressions compute the names of unmarried people and the redexes
of rule marry, i.e., the possible meaningful substitutions for the marry parameters.

9 As shown in the class invariants window, all invariants are valid in the reached system
state, for example, the displayed invariant femaleNoWife.

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 585–586, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

586 M. Gogolla, F. Büttner, and D.-H. Dang

Fig. 1. Example Graph Transformation and USE Screenshot

References

[1] USE Team. USE: A UML-based Specification Environment (2008),
http://www.db.informatik.uni-bremen.de/projects/USE/

[2] Büttner, F., Gogolla, M.: Realizing Graph Transformations by Pre- and Post-
conditions and Command Sequences. In: Corradini, A., Ehrig, H., Montanari,
U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 398–412.
Springer, Heidelberg (2006)

http://www.db.informatik.uni-bremen.de/projects/USE/

A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 587–592, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Introducing the VMTS Mobile Toolkit

Tihamér Levendovszky, László Lengyel, Gergely Mezei, and Tamás Mészáros

Budapest University of Technology and Economics,
Goldmann György tér 3.
1111 Budapest, Hungary

{tihamer,lengyel,gmezei,mesztam}@aut.bme.hu

Abstract. Developing software for mobile devices requires special attention,
and it is still a larger effort compared to the development for desktop computers
and servers. With the introduction and the popularity of wireless devices, the
diversity of the platforms has also been increased. There are different platforms
and tools from different vendors such as Microsoft, Sun, Nokia, SonyEricsson
and many more. Therefore, generative techniques underpinned by model-driven
development can be applied extensively in this field. This paper introduces the
Mobile Toolkit for the tool Visual Modeling and Transformation System
(VMTS). This toolkit provides a bridge between the different mobile platforms
with respect to the user interface and network communication development.

Keywords: Metamodeling, model-driven development, development for mo-
bile platforms, domain-specific modeling.

1 Introduction

Developing software for different mobile devices requires more and more time and
work investment because of the diversity of the increased number of mobile platforms
and the development style required by embedded systems.

Currently, Symbian [1] is one of the most popular mobile platforms. There are sev-
eral versions of Symbian OS. The Symbian v9.5 is the latest of all. Symbian provides
a robust architecture and API to support development. There are two important ways
to develop applications for Symbian platform. The first choice is to choose C++,
which is the native language of the Symbian OS and the second option is to use Java
which runs on top of the OS layer. Recently, the OS can be programmed in Python as
well, which is an emerging direction.

The Microsoft .NET Compact Framework [2] (.NET CF) is a subset of the full Mi-
crosoft .NET Framework [3]. The full .NET Framework was downscaled to fit re-
source-constrained devices without compromising user scenarios in such a way that
the developers would experience enhanced performance with majority of the func-
tionality at a reduced size. The most significant benefit is that the programming model
for .NET Compact Framework devices is identical to that used .NET to build applica-
tions for desktop PCs and servers.

The Java 2 Micro Edition (J2ME) [4] is also a popular platform for developing ap-
plications for mobile devices. J2ME is a smaller version of Java 2 Standard Edition
targeted towards consumer end embedded and small devices.

588 T. Levendovszky et al.

The Visual Modeling and Transformation System [5] is a metamodel-based model-
ing environment and a model transformation system. VMTS has been written in C#
and it is bound to the .NET environment. The aim of VMTS Mobile Toolkit is two-
fold: (i) to provide an easy-to-use development environment for mobile developers
and (ii) unify the development for different mobile platforms on the modeling level.
This paper elaborates on the first aspect only.

2 A Modeling Environment for Wireless Devices

In general purpose application development for mobile devices, there are two fre-
quently appearing domain: (i) the user interface development, and the (ii) network
communication. Accordingly, these are the two supported area of mobile develop-
ment in VMTS Mobile Toolkit. Other functionalities such as graphics and animation
support are not provided by the toolkit.

The organization of this section is as follows. Firstly, we present the modeling en-
vironments for the user interface development. There are three domain-specific lan-
guages (DSLs) developed for this purpose: one for each supported environment,
namely, for the Java, Symbian, and .NET CF-based mobile devices. Secondly, we
outline the model transformation for Symbian platform. Thirdly, we introduce a DSL
describing protocols and network communication for mobile devices. Finally, we give
a brief description of the code generator for .NET CF.

Fig. 1 depicts the metamodels for the three supported platforms. These metamodels
illustrate the fundamental differences between the user control libraries of the target
platforms. Although the difference between the naming conventions of the controls
can be resolved by defining the correspondence between the appropriate metamodel
elements, the conceptual differences cannot be handled in such a way. For instance,
the user interface libraries for the Symbian operating systems require a tab page-based
form, which is not a requirement in the other two cases. This observation underpins
the existence of three different DSLs as a design decision of the environment.

An example instance model for each of these DSLs is depicted in Fig. 2. In VMTS,
it is possible to define a concrete syntax for the appearance of a metamodel instance.
The tool offers a plugin-based architecture, which means that each instance is at-
tached to three components in a plugin, according to the Model/View/Controller pat-
tern [6]. These components specify the appearance and the behavior of the model
item. The WYSIWG (“What You See Is What You Get”) characteristic of the model
presented in Fig. 2 is facilitated by this architecture.

The next component of the user interface-related part of the environment is the
generator. Fig. 3 outlines the code generation process for the Symbian platform. The
generator was built using a visual modeling processor offered by VMTS. This is a
model transformation method on the basis of graph rewriting [7]. The transformation
takes the metamodel of the input and output models, the input model itself, a set of
transformation rules together with a control flow definition.

 Introducing the VMTS Mobile Toolkit 589

Fig. 1. The VMTS resource metamodels for (a) Java, (b) Symbian, and (c) .NET CF mobile
platforms

In our case the metamodel of the input model is depicted in Fig. 1b. Moreover, the
Symbian code generator supports data binding and database generation [8], thus, a
database metamodel is also provided as an input. VMTS uses the Microsoft Code-
DOM technology [3] for code generation. The CodeDOM consists of classes repre-
senting the syntactic elements of the .NET languages, such as C# and managed C++.
The .NET framework has a code generator for these elements that generates syntacti-
cally correct code. VMTS has a CodeDOM metamodel, and there is a built-in code
generator for the instance models. Thus, the metamodel of the output model is the
CodeDOM metamodel.

The input model of the transformation is a Symbian user interface model accompa-
nied with a database model. The output model of the transformation is a CodeDOM
model from which VMTS automatically generates the appropriate C++ code. The
transformation consists of a control flow specification and the related transformation
rules. The rules have a left-hand-side (LHS) and a right-hand-side (RHS). Both LHS
and RHS are specified in terms of metamodel elements. The input model of a rule is
referred to as a host model. The execution of a transformation rule is as follows: (i) an
instantiation of LHS must be found in the host model, and it is replaced with an in-
stance of RHS. The instance of the RHS is retrieved from an attribute transformation
specified in XML or imperative OCL.

590 T. Levendovszky et al.

Fig. 2. Example VMTS UI models for (a) Java, (b) Symbian, and (c) .NET CF platforms

Fig. 3. The transformation process for Symbian-based wireless devices

We illustrate the transformation with another feature of the toolkit. Fig. 4 depicts
an overview of the transformation process that generates source code from mobile
protocol models (Filter models). Source code generation is again based on the Code-
DOM technology. The Filter metamodel and an example for its instance model is
presented in Fig. 5. From each Filter, the transformation builds a separate class which
inherits from the Filter base class. Each class has a Process method with a byte[] and
an int parameter and a byte[] return type: Data exchange between Filters is based on
byte arrays. This method is intended to define the logic of the protocol.

An example transformation rule is depicted in Fig. 6. This rule is part of the trans-
formation for mobile network communication systems. The result of the transforma-
tion uses a state machine to parse the packet structure modeled by the protocol. The
rule BuildFSM is used to build the skeleton of the state machine implemented by the
generated source code, namely creating the if clauses for every control flow node, and
connecting the nodes and the belonging if statements with a helper edge for later

 Introducing the VMTS Mobile Toolkit 591

processing. Thus, the control flow graph is transformed into a semi-interpreted Finite
State Machine. This state machine consists of an infinite loop, and the states are de-
fined with if-then clauses in the loop for examining actual status and perform the
action ordered to them. The only exit point from this infinite loop is a return statement
contained by the state of the Stop element. States are identified with unique numbers

Fig. 4. Code generation process for .NET CF-based mobile devices

Fig. 5. (a) Filter metamodel and (b) an example model describing protocol

Fig. 6. Transformation rule BuildFSM

592 T. Levendovszky et al.

and the actual state is stored in the __state (int) variable inherited from the Filter base
class. This member field can be advanced with the help of the Next(state) inherited
method. The first five rules of the control flow model have the general purpose of
creating the skeleton of the Filter including the complete class hierarchy, constructor,
methods and state-conditions. However, the content of the states is not generated at
this point. The states of the state machine are implemented in the following seven
rules, which match different types of nodes appearing in the Filter model.

3 Conclusions

We have shortly presented the mobile development support of the Visual Modeling
and Transformation System. This has been realized with domain-specific language
engineering and graph rewriting-based model transformation. Compared to other
approaches, VMTS meets the expectations of model-to-model and model-to-code
transformation. VMTS has state-of-the-art mechanisms for validated model transfor-
mation, constraint management and control flow definition. The environment has
several standalone algorithms and other solutions that make it efficient.

Acknowledgments. The fund of “Mobile Innovation Centre” has supported, in part,
the activities described in this paper. This paper was supported by the János Bolyai
Research Scholarship of the Hungarian Academy of Sciences.

References

1. Ortiz, C.E.: Introduction to Symbian OS for Palm OS developers, http://www.
metrowerks.com/pdf/IntroSymbianOSforPalmDevelopers.pdf

2. .NET Compact Framework, http://msdn.microsoft.com/smartclient/
understanding/netcf/

3. Thai, T., Lam, H.: .NET Framework Essentials. O’Reilly, Sebastopol (2003)
4. Java 2 Platform, Micro Edition (J2ME), http://java.sun.com/j2me/index.jsp
5. VMTS Homepage, http://vmts.aut.bme.hu
6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley Professional Computing Series, Reading (1995)
7. Rozenberg, G. (ed.): Handbook on Graph Grammars and Computing by Graph Transforma-

tion. Foundations, vol. 1. World Scientific, Singapore (1997)
8. Lengyel, L., Levendovszky, T., Mezei, G., Forstner, B., Charaf, H.: Metamodel-Based

Model Transformation with Aspect-Oriented Constraints. In: International Workshop on
Graph and Model Transformation, GraMoT, Tallinn, Estonia, September 28 (accepted,
2005)

Author Index

Amelunxen, Carsten 313, 573
Aschenbrenner, Nina 32
Asztalos, Márk 540

Balasubramanian, Daniel 410
Barczik, Günter 152
Bauer, Jörg 361
Biermann, Enrico 514, 566, 583
Bisztray, Dénes 514, 540
Bodden, Eric 249
Bohnet, Bernd 514
Boneva, Iovka 514
Boronat, Artur 514, 540
Buchmann, Thomas 345
Büttner, Fabian 585

Crema, André 98

Damm, Werner 361
Dang, Duc-Hanh 540, 585
de Lara, Juan 82, 493
De Leenheer, Pieter 44
de Mol, Maarten 184
Denninger, Oliver 168
Dotor, Alexander 345, 493
Drewes, Frank 201

Ehrig, Karsten 265, 566, 583
Engels, Gregor 17
Ermel, Claudia 98, 265, 493, 566, 583

Fuss, Christian 442

Geiger, Leif 32, 514
Geiß, Rubino 168, 233, 471, 514,

540, 568
Gelhausen, Tom 168
Gogolla, Martin 585
Greenyer, Joel 540
Grønmo, Roy 329
Gruber, Katja 120
Gschwind, Thomas 1
Guerra, Esther 82
Güldali, Baris 17

Heer, Thomas 577
Hemmerling, Reinhard 152
Hoffmann, Berthold 201
Holze, Marc 120
Horváth, Ákos 456, 514

Janssens, Dirk 201
Jurack, Stefan 493

Kahl, Wolfram 217
Karsai, Gabor 410
Kniemeyer, Ole 152, 493, 514,

540, 570
Koehler, Jana 1
Köhler, Christian 566
Königs, Alexander 573
Körtgen, Anne-Thérèse 426
Küster, Jochen 1
Kraft, Bodo 577
Kreowski, Hans-Jörg 281
Kroll, Moritz 471, 568
Kumar Anand, Christopher 217
Kurtev, Ivan 377
Kurth, Winfried 152, 570
Kuske, Sabine 281

Legros, Elodie 313
Lengyel, László 587
Levendovszky, Tihamér 587

Maier, Sonja 66, 493
Matzner, Alexander 297
Mens, Tom 44, 104, 514
Mészáros, Tamás 587
Mezei, Gergely 587
Minas, Mark 66, 201, 297
Møller-Pedersen, Birger 329
Müller, Dirk 104

Narayanan, Anantha 410, 540
Neema, Sandeep 410
Ness, Benjamin 410, 514

Pautasso, Cesare 1
Pérez Andrés, Francisco 82
Plasmeijer, Rinus 184
Plump, Detlef 514

594 Author Index

Ranger, Ulrike 120, 575
Rencis, Edgars 540
Rensink, Arend 487, 493
Retkowitz, Daniel 577
Rötschke, Tobias 573
Ryndina, Ksenia 1

Schmutzler, René 98
Schösser, Andreas 233
Schulte, Axel 297
Schürr, Andy 313, 573
Shi, Feng 410
Soltenborn, Christian 17
Staijen, Tom 493
Stürmer, Ingo 313
Syriani, Eugene 136

Taentzer, Gabriele 98, 104, 487, 514,
566, 583

Thibodeaux, Ryan 410
Toben, Tobe 361
Tuttlies, Verena E. 442

Uhrig, Sabrina 345

Vajk, Tamás 514
van Eekelen, Marko 184
Van Eetvelde, Niels 201
Van Gorp, Pieter 540
Vangheluwe, Hans 136, 249
Vanhatalo, Jussi 1
Varró, Dániel 456, 540
Varró, Gergely 456
Veit Batz, Gernot 471
Völzer, Hagen 1

Weber-Jahnke, Jens H. 59
Wehrheim, Heike 17
Weinell, Erhard 394, 540, 575
Westfechtel, Bernhard 345
Westphal, Bernd 361

Zündorf, Albert 493

	Title Page
	Preface
	Organization
	Table of Contents
	Combining Quality Assurance and Model Transformations in Business-Driven Development
	Introduction
	Approaches to Model Transformation
	A Refinement Scenario
	Ensuring the Quality of Business Process Models
	In-Place Transformation Framework Architecture
	Palette-Based Invocation of Transformations
	Conclusion
	References

	Assuring Consistency of Business Process Models and Web Services Using Visual Contracts
	Introduction
	Background
	DMM and UML Activities
	Sound Business Processes
	SOA and Web Services

	Quality Assurance
	Tool Support
	Conclusion
	References

	Transforming Scene Graphs Using Triple Graph Grammars – A Practice Report
	Introduction
	Basics
	Scene Graphs
	FBX
	OpenSceneGraph

	FBX2OSG
	Building the Parse Tree
	Enriching the Parse Tree
	Triple Graph Rules
	Dumping the Result Graph

	Lessons Learned
	Conclusions
	References

	Using Graph Transformation to Support Collaborative Ontology Evolution
	Introduction
	Context Dependency Management
	Running Example: Vocational Competency Ontology
	FormalRepresentation
	Representing Ontologies
	Representing Context Dependency Operators
	Detecting Conflicts

	Related and Future Work
	Conclusion
	References

	Modelling of Longitudinal Information Systems with Graph Grammars
	Introduction
	Two-Level Modelling
	Knowledge Model vs. Reference Model
	Archetype Definition Language

	A Graph Grammar-Based Approach to Defining Archetypes
	Conclusions and Related Work
	References

	A Generic Layout Algorithm for Meta-model Based Editors
	Introduction
	PetriNetEditor
	Layout Algorithm
	Input
	Layout Specification
	Algorithm

	Layout Algorithm Used for Petri Nets
	Constraints
	Attribute Evaluation Rules
	Sample Evaluation

	Implementation
	Integration of the Layout Algorithm in DiaMeta
	Usability and Performance

	Related Work
	Conclusions and Prospects
	References

	Domain Specific Languages with Graphical and Textual Views
	Introduction
	Triple Graph Transformation
	Multi-view DSVLs in AToM3
	Specifying Viewpoints with Textual Concrete Syntax
	The “Textual” DSL
	Transformation into “Textual”
	Generating the Parser
	Extending AToM3 to Support Textual Viewpoints

	Adding Textual Viewpoints to the Example
	Related Work
	Conclusions and Future Work
	References

	Generating Domain-Specific Model Editors with Complex Editing Commands
	Introduction
	Examples for Complex Editing Commands
	Extending GMF by Complex Editing Commands
	Extension of the GMF Development Environment
	Extension of the GMF Runtime Environment

	Conclusion
	References

	Specifying Domain-Specific Refactorings for AndroMDA Based on Graph Transformation
	Introduction
	Model-Driven Development with AndroMDA
	Developing a Web Application with AndroMDA
	A Refactoring Example

	Domain-Specific Refactoring
	Specifying Domain-Specific Model Refactorings
	AndroMDA Models as EMF Models
	Refactoring as EMF Transformation
	Analysis of Refactorings

	Related Work
	Conclusion and Open Problems
	References

	Defining Abstract Graph Views as Module Interfaces
	Introduction
	Example
	Module Concept with Simple Module Interfaces
	Concept of Abstract Graph Views
	Realization of Abstract Graph Views
	Related Work
	Summary
	References

	Programmed Graph Rewriting with DEVS
	Introduction
	Discrete Event System Specification (DEVS)
	A Small Case Study: PacMan in AToM3
	The PacMan Language (Abstract and Concrete Syntax)
	The PacMan Semantics (Graph Grammar)
	AToM3’s Graph Grammar Semantics

	Programmed Graph Rewriting Using DEVS
	The User Input Block
	The Controller Block
	The Graph Grammar Rule Blocks and Priority
	Extending the Model

	Advantages of Using DEVS
	Conclusions and Future Work
	References

	Relational Growth Grammars – A Parallel Graph Transformation Approach with Applications in Biology and Architecture
	Introduction
	Relational Growth Grammars
	Graph Model
	Rules

	The XL Programming Language
	Applications
	Artificial Life
	Biology
	Architecture
	Usage of XL within Commercial 3D Modellers

	Discussion
	References

	Applications and Rewriting of Omnigraphs – Exemplified in the Domain of MDD
	Introduction
	Omnigraphs in Use – A Problem-Oriented Introduction
	UML Models as Omnigraphs
	Transforming UML with Ogre
	Advanced UML Structures in Practice

	Formal Definition of Omnigraphs
	Roles
	Definition
	Examples
	Extensions

	Implementation
	Mapping Ogre Definitions to GrGen.NET Definitions

	Related Work
	Conclusion
	References

	A Single-Step Term-Graph Reduction System for Proof Assistants
	Introduction
	Desired Level of Flexibility
	Granularity of Reduction Steps
	Choice of Redex

	The Expression Language
	Reduction System
	Graphs as Self-contained Expressions
	The Reduction Rules for Applications
	The Reduction Rules for Let Lifting
	The Reduction Rule for Unsharing
	Head Reduction
	Locations
	Inner Reduction

	Correctness of Let Lifting
	Confluence
	Related Work
	Conclusions
	References

	Shaped Generic Graph Transformation
	Introduction
	Graph Transformation
	Shapes
	Generic Transformation Rules
	Related Work
	Conclusions
	References

	Code Graph Transformations for Verifiable Generation of SIMD-Parallel Assembly Code
	Introduction
	Overview of SIMD and the SPU ISA
	Code Graphs
	Code Graph Generators
	Code Graph Transformation
	Verification of Loop Overhead
	Related Work
	Conclusion
	References

	Graph Rewriting for Hardware Dependent Program Optimizations
	Introduction
	The Problem
	The Complexity of Rich Instructions
	The Complexity of an IR
	Inserting Rich Instructions

	Using GrGen for Program Optimization
	Generating Graph Rewrite Rules
	Performing the Optimization

	Implementation
	Preliminary Transformations
	Matching
	Replacement
	Priorities
	Variants
	Replacement Strategies
	Clean-Up Operations

	Related Work
	Algorithm Recognition
	Previous Implementations

	Benchmarks
	Conclusion
	References

	Transforming Timeline Specifications into Automata for Runtime Monitoring
	Introduction
	The Timeline Formalism
	Timeline Abstract Syntax in AToM3
	Timeline Concrete Syntax in AToM3

	Transformation into Finite Automata
	Applicability to Runtime Monitoring
	User Experience with AToM3 Suggested Improvements of the Tool
	What Worked Well
	Suggestions for Improvements

	Conclusion and Future Work
	References

	Visualization, Simulation and Analysis of Reconfigurable Systems
	Introduction
	Defining Visual Domain-Specific Languages
	Graph Transformation
	Type Graph and Syntax Rules for a Railway System

	Validation by Simulation
	Analysis
	Relation of Reconfiguration and Simulation
	Model Transformation from Railway Models to Petri Nets
	Correctness of the Model Transformation
	Analysis in the Petri Net Domain

	Related Work
	Conclusion
	References

	Communities of Autonomous Units for Pickup and Delivery Vehicle Routing
	Introduction
	BasicConcepts
	Common Environments and Private States
	Modeling the Behavior of Autonomous Units
	Interaction of Autonomous Units
	Modeling Behavior by Product Rules

	Pickup and Delivery with Autonomous Units
	Semantics
	Related Work
	Conclusion
	References

	Efficient Graph Matching with Application to Cognitive Automation
	Introduction
	Problem Representation
	Related Work
	Approach
	Experimental Evaluation
	Benchmarking Application
	Results

	Conclusion
	References

	Checking and Enforcement of Modeling Guidelines with Graph Transformations
	Introduction
	The MATE Project
	Related Work
	Modeling Guidelines for MATLAB Simulink
	Guidelines
	MATLAB Simulink Metamodel

	Guideline Specification without Graph Transformations
	M-Script
	Regular Expressions
	The Object Constraint Language

	Analysis and Refactoring with Graph Transformations
	Conclusion
	References

	Aspect Diagrams for UML Activity Models
	Introduction
	Examples
	Architecture of the Approach
	Activity Aspect Diagrams
	Aspect Diagram Examples
	Transformation between Concrete and Abstract Syntax
	Discussion
	Related Work
	Conclusions and Future Work
	References

	Model-Driven Software Development with Graph Transformations: A Comparative Case Study
	Introduction
	Dynamic Task Nets
	Models
	GMF/EMF
	PROGRES
	Fujaba

	Evaluation
	GMF/EMF
	PROGRES
	Fujaba

	Conclusion
	References

	Verification and Synthesis of OCL Constraints Via Topology Analysis
	Introduction
	Related Work
	Case Study: Car Platooning
	Ad-Hoc Graph Grammar Semantics of UML
	Topology Analysis
	Reachable Object Diagrams
	Constraints Verification
	Constraints Synthesis
	Graphical Appeal for Debugging and Documentation

	Conclusion
	References

	State of the Art of QVT: A Model Transformation Language Standard
	Introduction
	Transformation Scenarios in Software and Data Engineering
	Model Driven Software Development
	Data Translation Problems in Data Engineering Domain

	QVT Requirements
	QVT Languages
	QVT Architecture
	Relations Language
	Core Language
	Operational Mappings
	Discussion

	QVT Tools
	Conclusions
	References

	Adaptable Support for Queries and Transformations for the DRAGOS Graph-Database
	Introduction
	DRAGOS Architecture and Graph Model
	Query and Transformation Language
	Application-Specific Graph Language: An Example
	Language Structure

	Query and Transformation Mechanism
	Application Integration
	Embedding into the DRAGOS Architecture
	Adding Language Extensions
	Experimental Evaluation

	Related Work
	Conclusion
	References

	Applying a Grouping Operator in Model Transformations
	Introduction
	Recap of Group Operator
	Motivation for the Group Operator

	Separating a System into Its Subsystems
	Creating Proxies for Distributed Communication
	Shared Variables in a Dataflow Model
	Ordered Binary Decision Diagram Reduction
	Related Work
	Summary and Conclusions
	References

	Modeling Successively Connected Repetitive Subgraphs
	Introduction and Motivation
	Syntax and Semantics of ICONS Subgraphs
	Implementation
	Internal Nodes Used for Matching SCORE Subgraphs
	Transformation of ICONS Subgraphs on RHS to Create SCORE Subgraphs
	Transformation of ICONS Subgraphs on LHS to Match SCORE Subgraphs

	Application
	Application in PROGRES Paths
	Application in Triple Graph Grammar Rules

	Related Work
	Conclusion and Future Work
	References

	Simulating Set-Valued Transformations with Algorithmic Graph Transformation Languages
	Introduction
	Related Work
	PROGRES and Set-Valued Rule Elements
	Syntax Definition and Semantics
	Syntax
	Semantics

	Implementation
	Conclusion
	References

	Recursive Graph Pattern Matching
	Introduction
	Background
	VIATRA Models and Metamodels
	Graph Patterns
	Graph Pattern Matching

	Overview of the Approach
	Compile Time Steps of the Recursive Pattern Matcher
	Call Tree
	Flattening
	Search Graph

	Run-Time Behavior of the Recursive Pattern Matcher
	Ordering Constraints of the Flattened Pattern Body
	Recursion Evaluation Techniques
	Magic Sets
	Execution

	Related Work
	Conclusion
	References

	A First Experimental Evaluation of Search Plan Driven Graph Pattern Matching
	Introduction
	Search Plan Driven Graph Pattern Matching
	Search Plans and Their Execution
	The Cost Model
	Generating a Search Plan
	The BacktrackingOnly Heuristics
	The BacktrackingLookup Heuristics

	Experimental Results
	First Experiment: The STS Mutex Benchmark
	Second Experiment: Finding Loop Counters

	Related Work
	Conclusions
	References

	AGTIVE 2007 Graph Transformation Tool Contest
	Introduction
	Call for Cases
	Solutions
	Evaluation and Recommendations
	Evaluation
	Recommendations

	References

	Ludo: A Case Study for Graph Transformation Tools
	Introduction
	Ludo Case Description
	The Game
	Strategies

	Solution Space
	Elements of the Model
	Game Rules
	Modelling Choices
	Graph Formalism
	Visualisation
	Interaction
	Analysis
	Overview

	Individual Solutions
	Fujaba
	Fujaba and GMF
	DiaMeta
	Solution Using XL and GroIMP
	ROOTS
	AToM3
	GROOVE
	Tiger Plays Ludo

	Conclusions
	References

	Generation of Sierpinski Triangles: A Case Study for Graph Transformation Tools
	Introduction
	Case Study “Generation of Sierpinski Triangles”
	Sierpinski Triangle as a Graph
	Goals of the Case

	Overview on Solutions
	Modelling Choices
	Graph Transformation Approaches

	Solutions
	Tiger EMF Transformation Framework
	Graph Transformation Using Two Tapes
	The Groove Tool
	MOMENT2-GT
	Fujaba Solution
	GrGen.NET
	Viatra2
	Solution Using XL
	AGG
	GReAT Solution
	Generating Sierpinski Triangles with GP
	VMTS Solution

	Lessons Learned
	Approaches and Features
	Runtime Performance
	Concluding Remarks

	References

	Transformation of UML Models to CSP: A Case Study for Graph Transformation Tools
	Introduction
	Case Study “UML to CSP Transformation”
	Metamodels
	Overview of the Transformation
	Challenges for the Approach

	Overview on Solutions
	Solutions
	Solution Using Tiger EMF Transformer
	Solution Using Triple Graph Grammars
	Solution Using PROGRES
	Solution Using GrGen.NET
	Solution Using GReAT
	Solution Using VMTS
	Solution Using USE
	Solution Using MoTMoT
	Solution Using GrTP
	Solution Using MOMENT2-GT
	Solution Using XL

	Lessons Learned
	References

	The EMF Model Transformation Framework
	References

	GrGen.NET: A Fast, Expressive, and General Purpose Graph Rewrite Tool
	References

	The Modelling Platform GroIMP and the Programming Language XL
	References

	Metamodeling with MOFLON
	References

	The Graph Rewriting Language and Environment PROGRES
	References

	Algorithm and Tool for Ontology Integration Based on Graph Rewriting
	Introduction
	Tool Support for Ontology Reuse and Integration
	Running the Integration Procedure
	Conclusion
	References

	Generating Eclipse Editor Plug-Ins Using Tiger
	References

	From Graph Transformation to OCL Using USE
	References

	Introducing the VMTS Mobile Toolkit
	Introduction
	A Modeling Environment for Wireless Devices
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

