
The Life Cycle of the Endocannabinoids:

Formation and Inactivation

Stephen P.H. Alexander and David A. Kendall

Contents

1 Cannabinoid Signalling in the CNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 What Are Endocannabinoids? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Ester Endocannabinoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Synthesis of Ester Endocannabinoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Hydrolysis of Ester Endocannabinoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Amide Endocannabinoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Synthesis of NAPEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Synthesis of Amide Endocannabinoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 Hydrolysis of Amide Endocannabinoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Other Routes of ECB Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1 Oxidative Metabolism of ECBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Stimulation of ECB Synthesis and Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Abstract In this chapter, we summarise the current thinking about the nature of

endocannabinoids. In describing the life cycle of these agents, we highlight the

synthetic and catabolic enzymes suggested to be involved. For each of these, we

provide a systematic analysis of information on sequence, subcellular and cellular

distribution, as well as physiological and pharmacological substrates, enhancers

and inhibitors, together with brief descriptions of the impact of manipulating

enzyme levels through genetic mechanisms (dealt with in more detail in the chapter

“Genetic Models of the Endocannabinoid System” by Monory and Lutz, this

S.P.H. Alexander ð*Þ and D.A. Kendall

School of Biomedical Sciences and Institute of Neuroscience, University of Nottingham Medical

School, Queens Medical Centre, Nottingham, NG7 2UH, UK

e-mail: steve.alexander@nottingham.ac.uk, dave.kendall@nottingham.ac.uk

D. Kendall and S. Alexander (eds.), Behavioral Neurobiology of the
Endocannabinoid System, Current Topics in Behavioral Neurosciences 1,

DOI: 10.1007/978-3-540-88955-7_1, # Springer‐Verlag Berlin Heidelberg 2009

3



volume). In addition, we describe experiments investigating the stimulation of

endocannabinoid synthesis and release in intact cell systems.

Keywords 2-arachidonoylglycerol l Anandamide l Diacylglcyerol lipase l

Endocannabinoid turnover l Fatty acid amide hydrolase l N-acylphosphatidy-

lethanolamine phospholipase D

Abbreviations

2AG 2-Arachidonoylglycerol

2AG-3P 2-Arachidonoylglycerol-3-phosphate

AEA Anandamide, N-arachidonoylethanolamine

COX Cyclooxygenase

DAG Diacylglycerol

DGL Diacylglycerol lipase

DSI Depolarization-evoked suppression of inhibition

ECB Endocannabinoid

EET Epoxyeicosatrienoic acid

Epac Exchange protein activated by cyclic AMP

FAAH Fatty acid amide hydrolase

LOX Lipoxygenase

LPI Lysophosphatidylinositol

LPLC Lysophospholipase C

LPLD Lysophospholipase D

lysoNAPE Lyso-N-acylphosphatidylethanolamine

MAFP Methylarachidonylfluorophosphonate

MGL Monoacylglycerol lipase

NAAA N-Acylethanolamine acid amidase

NAE N-Acylethanolamine

NAPE N-Acylphosphatidylethanolamine

ODA Oleamide

OEA N-Oleoylethanolamine

PE Phosphatidylethanolamine

PEA N-Palmitoylethanolamine

PIP2 Phosphatidylinositol-4,5-bisphosphate

PLA1 Phospholipase A1

PLA2 Phospholipase A2

PLB Phospholipase B

PLC Phospholipase C

PLD Phospholipase D

SEA N-Stearoylethanolamine

THL Tetrahydrolipstatin
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1 Cannabinoid Signalling in the CNS

The widely accepted phenomenon of synaptic plasticity highlights the fact that the

efficiency of synaptic transmission can alter, dependent on the local environment.

Two relevant aspects of synaptic plasticity involving cannabinoid receptors are

depolarization-evoked suppression of excitation and inhibition (Gerdeman and

Lovinger 2003; Diana and Marty 2004). Although dealt with in more detail in the

chapter “Endocannabinoid Signaling in Neural Plasticity” by Brad Alger in this

volume, in brief, these phenomena are proposed to result from transmitter-mediated

post-synaptic depolarization of neurones leading to an elevation of intracellular

calcium ions, resulting in the generation of a retrograde messenger which acts on

the presynaptic neurone to alter neurotransmitter release. The involvement of the

CB1 cannabinoid receptor has been identified through the use of the relatively

selective antagonists, rimonabant (Wilson and Nicoll 2001) and AM251 (Kreitzer

and Regehr 2001), as well as animal models with disruption of the gene encoding

CB1 cannabinoid receptors (Varma et al. 2001; Wilson et al. 2001; Kim et al. 2002;

Yoshida et al. 2002). The majority of evidence favours the involvement of ester

endocannabinoids (ECBs) in mediating these retrograde effects. In contrast, the

amide ECBs have been proposed to act in an anterograde fashion, subserving a

more conventional neurotransmitter-like role (Egertova et al. 2008).

From these studies and previous investigations (Di Marzo et al. 1994), the

hypothesis has emerged that ECBs are made “on demand” as a result of heightened

neuronal activity. In this chapter, we will look at synthetic pathways which appear

to be consistent with this hypothesis and more recent developments, which suggest

alternative strategies for endocannabinoid biosynthesis, potentially of more rele-

vance to the pathophysiological state. In addition, we will examine metabolic

pathways which inactivate, or potentially transform, ECBs.

2 What Are Endocannabinoids?

Anandamide (N-arachidonoylethanolamine, AEA) is the archetypal ECB described

first by Raphael Mechoulam, Roger Pertwee and colleagues in 1992 (Devane et al.

1992). It was identified in the classical fashion by screening solvent extracts of

brain in a cannabinoid receptor radioligand binding assay, with subsequent deter-

mination of structure by GC-MS and re-synthesis. N-Palmitoylethanolamine (PEA)

was identified in the same experiments, but was not considered to be an ECB since

only one cannabinoid receptor (CB1) had been identified at the time and PEA had

negligible affinity for this. The situation is much more complex now with a variety

of putative ECB receptors of the G-protein-coupled, ion channel and nuclear

receptor families proposed (see the chapter “Endocannabinoid Receptor Pharma-

cology” by Mackie and Yao, this volume) along with chemically related agents

having affinities for one or more of these. As a note of caution, it is not always clear

whether endogenous levels of some of these agents in different tissues are sufficient

The Life Cycle of the Endocannabinoids: Formation and Inactivation 5



to activate cognate receptors allowing them to be labelled as true ECBs (Oka et al.

2003). 2-Arachidonoylglycerol (2AG) has been suggested to be the most biologi-

cally important ECB, as it occurs in greater concentrations in tissues, and shows

greater efficacy at these targets, than AEA (Sugiura et al. 1997, 1999; Sugiura and

Waku 2000, 2002). Although AEA and 2AG are considered the principal ECBs, the

range of endogenous agents active at cannabinoid receptors is certainly not limited

to these two (Hanus et al. 1993). As a pair, they are closely structurally related in

that they are both based on the polyunsaturated fatty acid arachidonate. They are

both hydrophobic entities, with partition coefficients (XlogP values, indices of

hydrophobicity) of 5.5 and 5.4, respectively. In comparison, conventional neuro-

transmitters like dopamine, glutamate and GABA have XlogP values of 0.9, �3.3

and �0.7, and are considerably more hydrophilic, partitioning readily into aqueous

solutions. This hydrophobicity is also considerably more marked than that of

prostaglandin E2 (2.8) and more similar to leukotriene A4 (5.0). In comparison to

arachidonic acid (6.5), however, the endocannabinoids AEA and 2AG are less

hydrophobic. Similarly, the precursor molecules 1-stearoyl-2-arachidonoylglycerol

(14.3) and N-arachidonoyl-1-stearoyl-2-arachidonoylglycerolphosphoethanola-
mine (XlogP likely in excess of 20) are likely only to be found dissolved in

membranes. 1-Stearoyl-2-arachidonoylglycerol and 1-palmitoyl-2-oleoylglycerol,

in particular, partition into enriched domains of membranes (Basanez et al. 1996;

Jimenez-Monreal et al. 1998). This hydrophobicity has a marked influence on

the life cycle of ECBs. For example, it has been hypothesised that AEA is able

to merge into the phospholipid bilayer as an extended conformation with the

ethanolamine headgroup protruding, and access the receptor binding site by lateral

diffusion without leaving the plane of the membrane (Tian et al. 2005), suggesting a

role as an autocrine messenger without the need for a specific release mechanism.

Despite sharing similar structural features, the turnovers of AEA and 2AG

follow parallel pathways with little overlap in selectivity. A convenient division

of the ECBs is into ester or amide derivatives (see the chapter “Pharmacological

Tools in Endocannabinoid Neurobiology” by Mor and Lodola, this volume).

3 Ester Endocannabinoids

Given the levels of 2AG in rodent brain (in our assays of rat brain, between 10 and

30 nmol g�1), and the relative ability of isolated astrocytes and neurones to generate

2AG, it has been suggested that astrocytes are the major source of 2AG in the brain

(Walter et al. 2004).

3.1 Synthesis of Ester Endocannabinoids

The “classical” pathway for 2AG synthesis is through the sequential activation of

phospholipase C and diacylglycerol lipase (DGL) enzymes (Figs. 1 and 2). The

intermediate in 2AG synthesis through this pathway, diacylglycerol (DAG), is more
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Fig. 1 Reaction scheme for phospholipase C action. Phosphatidylinositol-4,5-bisphosphate, accu-

mulated primarily in plasma membranes, is cleaved to form the water-soluble second messenger

inositol 1,4,5-trisphosphate, which causes calcium release from intracellular stores. The co-

product, diacylglycerol, shown here as 1-stearoyl-2-arachidonoylglycerol, remains inserted in

the plasma membrane and can activate protein kinase C, be recycled to form phospholipids or

be hydrolysed to generate monoacylglycerols
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widely associated as a second messenger in phosphoinositide turnover, activating

protein kinase C. Enzymes competing for DAG include DAG kinase (seven iso-

forms), which is able to generate phosphatidic acid, and DAG acyltransferases (two

isoforms prominent in adipose tissue), which generate triacylglycerols.

DGL is a membrane-associated enzyme generated as two separate gene pro-

ducts, DGLa and DGLb (Table 1). The b isoform (694 aa) is a truncated paralogue

of the a isoform (1,004 aa), although both show similar topology, with a short

intracellular N-terminus and four transmembrane domains in the first 10% of the

molecule. The remainder of the protein encompasses the active site and putative

Table 1 Molecular parameters of ECB-related enzymes

Enzyme Gene name/Ensembl ID Size Species

orthologues

identity

(homology)

Genetic variation

DGLa DAGLA/
ENSG00000134780

1,042 aa/

115 kDa

h/r 97%

(99%)

Intronless; four non-

synonymous SNPs:

595 G/A, 735 G/T,

889 C/T, 945 C/G

h/m 97%

(97%)

DGLb DAGLB/
ENSG00000164535

672 aa/

74 kDa

34%

(52%)

identity to

DGLa

h/r 78%

(88%)

Intronless; three non-

synonymous SNPs:

456 G/C, 517 G/A,

664 T/C

h/m 79%

(88%)

MGL MGLL/
ENSG00000074416

303 aa/

33 kDa

h/r 83%

(92%)

Eight exons generating

two isoforms of 303

and 273 aa; two non-

synonymous SNPs:

202 C/T, 288 A/C

h/m 84%

(93%)

NAPE-PLD NAPEPLD/
ENSG00000161048

393 aa/

46 kDa

h/r 90%

(95%)

Six exons; four non-

synonymous SNPs:

152 A/C, 207 C/G,

380 T/C, 389 C/T

h/m 89%

(94%)

FAAH1 FAAH/
ENSG00000117480

579 aa/

63 kDa

h/r 82%

(91%)

15 exons; four non-

synonymous SNPs:

129 C/A, 208 G/A,

370 A/G, 504 G/A

h/m 84%

(91%)

FAAH2 FAAH2/
ENSG00000165591

532 aa/

58 kDa

11 exons; one non-

synonymous SNP:

293 G/T

NAAA NAAA/
ENSG00000138744

331 aa/

36 kDa

h/r 79%

(88%)

11 exons generating

three isoforms; three

non-synonymous

SNPs: 107 G/T, 151

C/G, 334 A/G

h/m 78%

(87%)

COX2 PTGS2/
ENSG00000073756

587 aa/

68 kDa

h/r 84%

(91%)

10 exons; six non-

synonymous SNPs:

1 C/T, 228 C/T, 428

G/C, 488 T/C, 511

A/G, 587 C/T

h/m 86%

(93%)
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sites for regulation. Analysis of the protein sequence suggests two consensus

sequences in the cytoplasmic C-terminus of the DGLa isoform for serine/threonine

phosphorylation, one of which (S-727) is a potential target for both protein kinases

A and C.

3.1.1 Regulation of Phospholipase C Activity

Although PLC appears capable of hydrolysing a variety of phosphoinositides

in vitro, phosphatidylinositol-4,5-bisphosphate (PIP2) appears to be the physiologi-

cal substrate (Fig. 1). This substrate and one of the products (DAG) are sufficiently

hydrophobic to be retained in the plasma membrane, while the second product of

PLC action, inositol-1,4,5-trisphosphate, is much more hydrophilic (XlogP of –7)

and so can migrate away from the membrane. Currently, 13 isoforms of PLC

have been identified, which are widely distributed in the body (Suh et al. 2008).

Within the cell, PLC-b isoforms (b1-b4) are membrane-associated and activated

by G-proteins of the Gq family, while PLC-g isoforms (g1, g2) are recruited to

membranes by activation by tyrosine kinase-linked receptors of the growth factor

family. PLC-d isoforms (d1, d3, d4) associate with PIP2 in the plasma membrane

and are activated by elevated concentrations of intracellular calcium ions leading to

the view that PLC-d is a calcium amplifier. PLC-e1 is activated by the low

molecular weight G-proteins Ras and Rho, as well as the exchange protein activated

by cyclic AMP (Epac). Much less is known about the regulation of the z1, Z1 and

Z2 isoforms (Suh et al. 2008). Gene expression of all of these isoforms appears

abundant in CNS tissues, with the exception of the z1 isoform, which appears to

have a crucial role in oocyte fertilisation. Clearly, therefore, the apparent potential

for regulation of this route of ECB synthesis is huge.

U73122 is an aminosteroid which has been used to inhibit PLC activity, although

its activity has not been assessed against all 13 isoforms. It has been shown to

inhibit 2AG synthesis in a macrophage cell line (Berdyshev et al. 2001), 3T3 mouse

fibroblasts (Parrish and Nichols 2006) and rat brain synaptosomes (Oka et al.

2007a), as well as inhibiting DSI in the hippocampus (Edwards et al. 2006).

However, U73122 has also been shown to interfere with 2AG-evoked regulation

of excitability in rat microglial cells (Carrier et al. 2004) or rat hippocampal slices

(Hashimotodani et al. 2008). Furthermore, using mice in which genes encoding three

of the isoforms of phospholipase C (PLCd1, PLCd3 and PLCd4) were disrupted

failed to alter cannabinoid-induced DSI responses (Hashimotodani et al. 2008).

The role of phospholipase C in 2AG generation in the CNS is, therefore,

inconclusive.

3.1.2 Regulation of DGL Activity

DGL (Table 1) hydrolyses DAG to generate monoacylglycerol and free fatty acid

(Fig. 2) with some selectivity for the sn-1 position (Bisogno et al. 2003). The

The Life Cycle of the Endocannabinoids: Formation and Inactivation 9



substrate specificity is not well understood, but a dually monounsaturated DAG

appeared better hydrolysed than a mixed monounsaturated/saturated or monoun-

saturated/polyunsaturated DAG (Bisogno et al. 2003). DGL action, therefore, takes

a predominantly membrane-associated substrate and generates two products, both

of which are much more able to migrate away from the membrane. The recombi-

nant enzymes are activated by calcium at supra-physiological concentrations of

100 mM or above, albeit to levels less than those evoked by glutathione (Bisogno

et al. 2003). Whether these modulations are replicated with the enzyme in situ

awaits further investigation.

Tetrahydrolipstatin (THL, also known as orlistat), an agent used to target

pancreatic lipase in the treatment of obesity, was also found to inhibit the recombi-

nant enzymes with IC50 values of 60–100 nM (Bisogno et al. 2003), although the

activity in bovine aorta was more sensitive by an order of magnitude (Lee et al.

1995). THL is ineffective at 25 mM against MGL or FAAH activities, but does show

inhibition of NAPE-PLD (IC50 of 10 mM) and triacylglycerol lipase (IC50 of 10 mM)

(Szabo et al. 2006). Intriguingly, it also shows some occupancy of cannabinoid

receptors (CB1 IC50 of 4 mM vs. CB2 IC50>25 mM) (Szabo et al. 2006). RHC80267

shows low potency inhibition of DGL in platelets with an IC50 of 1–4 mM, with

some selectivity vs. other enzymes expressed (no inhibition at 100 mM against

phospholipase C or phospholipase A2 activities (Sutherland and Amin 1982) or

MGL (Rindlisbacher et al. 1987)). A recent investigation of ‘activity-based protein

profiling’ of mouse brain using fluorophosphonate probes indicated that these two

agents interfered with multiple serine hydrolases (Hoover et al. 2008), including

FAAH and ABHD12 (see below). Intriguingly, the two isoforms of DGL were not

identified using this methodology, suggesting either low abundance in this tissue, or

reduced activity against the fluorophosphonate substrate. Despite this apparent lack

of selectivity, it was noted that very few enzyme activities were inhibited by both

THL and RHC80267, leading the authors to suggest the use of both agents to

identify the role of DGL in biological processes.

These inhibitors have been used to identify the essential role of DGL in 2AG

accumulation in the action of the Ca2+ ionophores ionomycin in neuroblastoma

cells (Bisogno et al. 1999; Szabo et al. 2006) and A23187 in RTMGL1 rat micro-

glial cells (Carrier et al. 2004) as well as ATP in astrocytes (Walter et al. 2004).

Currently, there are no published reports of genetic interference with DGL

expression.

3.1.3 Alternative Pathways of DAG and 2AG Synthesis

Although the best established route of 2AG biosynthesis described above involves a

two-step process utilising sequential activities of PLC (Fig. 1) and DGL (Fig. 2)

activities, at least three further routes are possible using phosphatidylinositol,

phosphatidylcholine or phosphatidylserine as starting points (Fig. 3).

A Ca2+-independent phospholipase A1 (PLA1) activity in rat brain hydrolyses

phosphatidylinositol to generate LPI, lysophosphatidylinositol (Kobayashi et al.

10 S.P.H. Alexander and D.A. Kendall



1996), which has recently been suggested to be the endogenous ligand for a

cannabinoid-related receptor, GPR55 (Oka et al. 2007b, 2009). A PLA1 activity

able to hydrolyse phosphatidylinositol in cytosolic and microsomal fractions of rat

brain has been described, which was less active than a PLC-like phosphodiesterase

activity (Hirasawa et al. 1981). Later reports described a PLA1 activity found in the

soluble fraction of brains, which exhibited some selectivity for phosphatidylinositol

over other phospholipid substrates (Ueda et al. 1993a, b).

In molecular terms, three isoforms of PLA1 have been identified (Aoki et al.

2007). PS-PLA1 (also known as PLA1A, ENSG00000144837) is a soluble enzyme

released by activated platelets (Sato et al. 1997), which hydrolyses phosphatidyl-

serine to produce lysophosphatidylserine and a fatty acid. Two further, membrane-

associated PLA1 activities have been identified (mPA-PLA1a, LIPH or PLA1B,

ENSG00000163898 and mPA-PLA1b, LIPI or PLA1C, ENSG00000188992),

which appear to hydrolyse preferentially phosphatidic acid, giving rise to lysopho-

sphatidic acid and a fatty acid (Hiramatsu et al. 2003). Other lipase activities,

such as hepatic lipase (LIPC, ENSG00000166035) and endothelial lipase (LIPG,

ENSG00000101670), have also been reported to exhibit phospholipase A1 activity

when presented with phosphatidylcholine as a substrate (Gillett et al. 1993; Jaye

et al. 1999).

Following PLA1 degradation of phospholipid, a lysophospholipase C (LPLC)

activity of rat brain, with some selectivity for LPI, is able to generate 2AG

(Tsutsumi et al. 1994). This enzyme, although not precisely identified at the

molecular level, appears to be an integral membrane protein (Tsutsumi et al. 1995).

Two further alternative routes of 2AG synthesis, independent of the phosphati-

dylinositol/PLC pathway, involve phospholipase D (PLD) activity, which favours

PL

DAG
DAGL

P
L
D

2-AG-3PI

L
P

L
C

P
L
C

PLA1

DAG kinase

PA phosphatase
2-AG

2-AG-3P

LPLC/

phosphatase

LPLD

PLA1

PA

Fig. 3 Alternative routes of

2AG formation. Aside from

the canonical route of 2AG

formation through PLC/DGL

action, diacylglycerol can

also be formed via

phosphatidic acid generated

by PLD action. Additionally,

PLA1 activity can generate a

lysophospholipid, which may

be used to generate 2AG

directly through a LPLC

activity, or indirectly through

a LPLD/LPLC sequence.

Phospholipase A1 hydrolysis

of phosphatidic acid can also

allow generation of 2AG,

through the intermediate

2AG-3-phosphate, which

can then be hydrolysed

by a phosphatase/

lysophospholipase C activity
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phosphatidylcholine as a substrate, generating phosphatidic acid. In mouse N18TG2

neuroblastoma cells stimulated by the calcium ionophore ionomycin, this appears

to be the major synthetic route (Bisogno et al. 1999), with sequential formation of

phosphatidic acid, DAG and then 2AG. The conversion of phosphatidic acid to

DAG is catalysed by phosphatidic acid phosphatases or lipid phosphate phospha-

tases (Brindley 2004).

The phosphatidic acid phosphatase can be inhibited by high concentrations

(100 mM) of the b-adrenoceptor antagonist propranolol, which has allowed identi-

fication of the involvement of this enzyme in 2AG biosynthesis in cultured

neuroblastoma (Bisogno et al. 1999) and microglial (Carrier et al. 2004) cells. It

has, however, not been widely applied to investigate mechanisms of ECB biosyn-

thesis, presumably because of “non-specific” effects, for example, directly inter-

fering with electrophysiological recordings (Hashimotodani et al. 2008) due to its

local anaesthetic-like action.

A further alternative pathway for 2AG synthesis involves the generation of

2-arachidonoylglycerol-3-phosphate (2AG-3P), a lysophosphatidic acid (Nakane

et al. 2002). This may theoretically be generated from phosphatidic acid by

phospholipase A1 or from lysophospholipids by lysophospholipase D (LPLD). A

phosphatidic acid-hydrolysing PLA1 activity was identified in porcine platelet

membranes (Inoue and Okuyama 1984), and subsequently in rat liver (Kucera

et al. 1988) and bovine brain (Higgs and Glomset 1994), leading to cloning of the

enzyme from bovine testis (DDHD1, ENSG00000100523) (Higgs et al. 1998).

To date, a single isoform of LPLD has been identified at the molecular level.

This is autotaxin (ENPP2, ENSG00000136960), a membrane-associated enzyme

initially characterised as an ecto-nucleotide pyrophosphatase/phosphodiesterase.

The primary physiological role of this enzyme, however, is thought to be the

regulation of levels of lysophosphatidic acid, which it produces from lysopho-

sphatidylcholine (Goding et al. 2003). It remains to be determined whether this

entity is able to regulate ECB production, however; the fact that it contains

extracellular enzymatic activity allows some speculation about a particular signal-

ling role.

Although the enzymatic pathway involved in 2AG-3P synthesis has not been

unequivocally defined, levels in rat brain of 2AG-3P (530 pmol g�1) were lower

than those of 2AG (37,000 pmol g�1 (Artmann et al. 2008)), suggesting either lower

rates of 2AG-3P synthesis or higher rates of 2AG-3P dephosphorylation. The rapid

conversion of 2AG-3P to 2AG (70% in 2 min) by rat brain homogenate (Nakane

et al. 2002) suggests that this may be a feasible route for 2AG synthesis in vivo.

3.2 Hydrolysis of Ester Endocannabinoids

FAAH appears to be the primary enzyme involved in amide ECB hydrolysis (see

Sect. 4.3 below). Initial characterization of cell-free preparations from cells expres-

sing recombinant FAAH (Goparaju et al. 1998) or endogenously expressing FAAH
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(Di Marzo et al. 1998) suggested that 2AG might also be hydrolysed through this

route. However, tissues from mice with disruption of the gene encoding FAAH

show an unchanged ability to hydrolyse 2AG, suggesting FAAH plays only a minor

role in turnover of ester ECBs (Lichtman et al. 2002). The identification of mono-

acylglycerol lipase (MGL) as a serine hydrolase enzyme capable of hydrolysing

ester ECBs in vitro drew attention to an alternative route of ECL turnover (Dinh

et al. 2002). Although this enzyme was shown to have a central role in lipid

turnover over 30 years ago (Tornqvist and Belfrage 1976), it appears to have an

additional important role in the regulation of ester ECBs. It is generally thought

to be a cytosolic enzyme, with the primary sequence consistent with a lack of

predicted transmembrane domains. Experimentally, however, both soluble and

membrane-associated activities are observed (Dinh et al. 2002; Saario et al. 2004;

Vandevoorde et al. 2005), with some pharmacological evidence to indicate minor

differences between the two (Vandevoorde et al. 2005; Duncan et al. 2008).

Primary sequence analysis indicated the possibility for phosphorylation of MGL

and, presumably, regulation of activity by protein kinases, in particular calcium/

calmodulin kinase II and cyclic AMP- and cyclic GMP-dependent protein kinases

(Dinh et al. 2002). Although this has not been investigated directly, this suggests the

possibility that 2AG hydrolysis can be regulated by intracellular levels of calcium

and cyclic nucleotides. Immunostaining analysis suggested predominant expression

of MGL in nerve fibres and cell bodies of brain regions rich in CB1 cannabinoid

receptors (Dinh et al. 2002).

The substrate specificity of MGL showed hydrolytic activity towards 2AG, but

not AEA (Dinh et al. 2002), but with little specificity between acylglycerols

(Ghafouri et al. 2004; Vandevoorde et al. 2005).

The available MGL inhibitors described to date have little selectivity. Fluor-

ophosphonate analogues, such as methylarachidonylfluorophosphonate (MAFP),

are potent inhibitors of MGL activity in the nanomolar range (Saario et al. 2004;

Duncan et al. 2008). However, they exhibit similar activity at FAAH (De Petrocellis

et al. 1997), and are thus unhelpful in defining a role of MGL in intact tissues.

URB754, on the other hand, appeared at first to have selectivity for MGL over

FAAH (Makara et al. 2005). Subsequently, a retraction was published indicating

that a contaminant of the preparation was found to be responsible (Makara et al.

2007). URB602 was initially described as a non-competitive selective inhibitor of

MGL activity (Hohmann et al. 2005). However, this compound has been reported

not to show selectivity over FAAH (Vandevoorde et al. 2007; Duncan et al. 2008).

OMDM169, a recently reported analogue of the DAGL inhibitor THL, shows sub-

micromolar potency at MGL activity and enhances levels of 2AG, but not AEA, in

ionomycin-stimulated N18TG2 neuroblastoma cells, but still is only tenfold selec-

tive over FAAH (Bisogno et al. 2009). JZL184, a carbamate analogue, on the other

hand, appears to be almost 1,000-fold selective for MGL over FAAH (Long et al.

2009). Intraperitoneal administration of this agent caused an elevation of 2AG, but

not AEA, in KCl-perfused microdialysate of mouse nucleus accumbens.

Although a knockout mouse with the gene encoding MGL has not yet been

described, siRNA silencing of the enzyme in HeLa human cervical carcinoma cells
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causes an elevation of cellular 2AG levels equivalent to those obtained in the

presence of MAFP (Dinh et al. 2004).

A functional, activity-based protein profiling approach to studying the enzymes

in rat brain responsible for 2AG hydrolysis indicated MGL accounted for the vast

majority of activity. Two further, poorly characterised enzymes, abhd6 and abhd12,

were identified as contributing up to 15% of 2AG hydrolysis, but evidence for their

physiological significance is currently lacking.

4 Amide Endocannabinoids

The canonical pathway of AEA formation in neural tissues is thought to be via

a two-step reaction – a transacylase-phosphodiesterase pathway. The interme-

diate involved is a low abundance phospholipid, which acts as a precursor for N-
acylethanolamides (NAEs), including AEA. It is generally considered that the

formation of this precursor, rather than its metabolism, is the rate-determining

step in AEA synthesis.

4.1 Synthesis of NAPEs

N-Acylphosphatidylethanolamines (NAPEs) were described in plants about 40

years ago (Dawson et al. 1969), and observed to be mobilised during seed germi-

nation and to accumulate during stress. More recently, they were identified as

precursors of the ethanolamide ECBs (Di Marzo et al. 1994). They are synthesised

through the action of an acyltransferase (E.C. 2.3.1.-), which catalyses the lysopho-

spholipase A1-style hydrolysis of a fatty acid from the sn-1 position of phosphati-

dylcholine and transfers it to the amine of phosphatidylethanolamine (PE) (Fig. 4).

In mammalian systems, this activity was initially identified in dog heart and

reported to be calcium-dependent (Natarajan et al. 1982; Reddy et al. 1983). In

mouse cerebral cortical neurones, NAPE formation was also enhanced substantially

in the presence of the calcium ionophore A23187 (Hansen et al. 1995). Intriguingly,

although the adenylyl cyclase activator forskolin and the Gs-coupled receptor

agonist vasoactive intestinal polypeptide both failed to enhance NAPE accumula-

tion in cultured neurones, they potentiated the stimulatory effects of the calcium

ionophore ionomycin (Cadas et al. 1996a). The protein kinase inhibitor, H89, was

able to prevent this potentiation, indicating a role for phosphorylation of a key

enzyme in this process. In a comparison of cell types, NAPE synthesis appeared

restricted to cultured neurons rather than astrocytes (Cadas et al. 1996a). In cultured

neurons, the use of exogenous PLD activities indicated that approximately half of

cellular NAPEs were available for hydrolysis, indicating a likely accumulation in

the plasma membrane (Cadas et al. 1996b). A molecular correlate for this calcium-

dependent transferase has yet to be identified.
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In contrast, a Ca2+-independent PE N-acyltransferase has recently been de-

scribed (Jin et al. 2007). This predominantly cytosolic activity appears to be iden-

tical to a protein termed rat lecithin-retinol acyltransferase-like protein 1 (RLP-1,

ENSG00000168004). Given that this enzyme is highly expressed in testis and

pancreas, with much lower levels expressed in brain, it seems unlikely that it

contributes significantly to ECB precursor formation in neural tissues.

Very recently, NAPEs have been described to have functions beyond acting

simply as precursors for ECBs. Reportedly, NAPEs are synthesised in the gut,

prompted by fat ingestion, and released into the circulation where they appear to

have a hormonal function. Administration of exogenous NAPE led to reduced food

intake which was independent of CB1 receptors (Gillum et al. 2008).

4.2 Synthesis of Amide Endocannabinoids

As the (perhaps inappropriately considered) archetypal ECB, AEA synthesis has

received the most attention. In the chemistry lab, AEA can be synthesised as a
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Fig. 4 Reaction scheme for N-acyltransferase action. The two phospholipids, phosphatidyletha-

nolamine and phosphatidylcholine are co-substrates for N-acyltransferase activity, where the sn-1
fatty acid (depicted here as arachidonic acid) from the phosphatidylcholine is transferred to the

amine of the phosphatidylethanolamine
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simple condensation product of arachidonic acid and ethanolamine, but in vivo,

generation of the ethanolamide ECBs is thought to occur mainly as a result

of hydrolysis of a minor membrane phospholipid, N-arachidonoylphosphatidy-
lethanolamine (Di Marzo et al. 1994). This is a substrate for a phospholipase

D-type activity (NAPE-PLD, ENSG00000161048, Table 1) which can produce a

wide range of endogenous fatty acid ethanolamides, including AEA (Okamoto

et al. 2004).

4.2.1 Pharmacological and Biochemical Manipulation of NAPE-PLD

Activity

An early report of crude preparations of rat heart homogenates identified a

membrane-associated NAPE-PLD activity (Fig. 5) capable of hydrolysing NAPEs

to generate phosphatidic acid and diacylglycerols (Schmid et al. 1983). With the

inhibition of phosphatidic acid phosphatase activity, the production of diacylgly-

cerol was inhibited indicating that the latter was produced in a two-step process. In

addition to the phosphatidic acid, NAEs were produced apparently in equimolar

quantities, and in the absence of synthesis of N-acylethanolamine phosphates

(indicating the lack of involvement of PLC). Similar levels of lyso-N-acylpho-
sphatidylethanolamine (lysoNAPE) to phosphatidic acid were observed, indicating
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Fig. 5 Reaction scheme for NAPE-PLD action. The action of a selective phospholipase D activity

allows cleavage of N-arachidonoylphosphatidylethanolamine to generate anandamide and phos-

phatidic acid. The latter is highly hydrophobic (dipalmitoylphosphatidic acid has an XlogP value

of 12.9) and so stays associated with the membrane, while the anandamide can more readily move

into the aqueous milieu
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activity of phospholipase A1 and/or A2 in this preparation. In this crude preparation,

supplementation with calcium or magnesium ions at concentrations up to 5 mMwas

without effect (Schmid et al. 1983). The same crude preparations were also able to

hydrolyse LNAPE and an ether analogue of NAPE with activities only slightly less

than those with NAPE itself, although it is uncertain whether these activities reside

in the NAPE-PLD activity or are present in parallel enzymes (Schmid et al. 1983).

NAPE-PLD activity from rat brain microsomes was observed to generate AEA

at a slightly lower rate compared to other shorter chain, more saturated NAEs

(Sugiura et al. 1996). In the presence of calcium ions, the generation of these latter

shorter chain, more saturated NAEs appeared enhanced, while AEA production was

unchanged, although the mechanism for this selective action has not been eluci-

dated. A further stimulus for NAPE-PLD activity is the presence of polyamines.

Spermine, spermidine and putrescine were able to replace calcium ions or detergent

(see below) as enhancers of NAPE-PLD activity at concentrations within the

physiological range (Liu et al. 2002), although whether polyamine levels are a

physiological influence on AEA levels has not been identified.

Intriguingly, addition of the non-ionic detergent Triton X-100 (up to 0.2%) led to

a doubling of NAPE-PLD activity, while the same concentrations of an alternative

non-ionic detergent, Tween 20, inhibited activity to 4% of the level in control

preparations (Schmid et al. 1983). Ionic detergents, such as SDS or taurodeoxycho-

late, also inhibited NAPE-PLD activity in these preparations. It may be that these

influences are more physical than biochemical, with the possibility that Triton

X-100 allows a particular conformation of enzyme:substrate interaction to occur,

which the other detergents are unable to facilitate. Recently, it was noted that

solubilisation of NAPE-PLD from the membrane by detergents revealed a greater

sensitivity to divalent cations, including calcium (Wang et al. 2008a), leading to the

suggestion that a membrane component was able to substitute for calcium. A heat-

stable membrane fraction was able to enhance enzyme activity, which was later

suggested to be the phospholipid PE. It was surmised that membrane components,

including PE, were able to maintain activity of NAPE-PLD in a tonically active

state, implying that formation of the NAPE precursor was the rate-determining state

in amide ECB synthesis (Wang et al. 2008a).

Although this is dealt with by Monory and Lutz in the chapter “Genetic Models

of the Endocannabinoid System” in this volume, it is pertinent to consider briefly

the impact of genetic manipulation of NAPE-PLD activity. Cloning of the gene

encoding this enzyme allowed identification of a primary sequence distinct from

classical phospholipase D activities, with characteristics of a metallo-b-lactamase

family (Okamoto et al. 2004), including the obligate incorporation of a zinc atom

(Wang et al. 2006). Subsequently, it was observed that disruption of the gene

encoding NAPE-PLD leads to increased levels of many forms of the precursor

NAPE and decreased levels of the cognate NAEs (Leung et al. 2006). In particular,

OEA, PEA and SEA levels were reduced, while their cognate precursors were

enhanced. In comparison, AEA and DHEA, as well as their precursors, were

unaltered. This has been taken as evidence for alternative pathways for synthesis

of NAEs, particularly AEA (see below).

The Life Cycle of the Endocannabinoids: Formation and Inactivation 17



Using viral over-expression of NAPE-PLD activity in HeLa cells, it was

observed that cellular levels of OEA and PEA were increased, without altering

AEA levels (Fu et al. 2008). This suggests either that AEA synthesis can be selec-

tively driven by synthesis of the precursor NAPE, or that AEA synthesis does not

involve NAPE-PLD activity.

4.2.2 Alternative Pathways of Amide ECB Generation

In NAPE-PLD knockout mice, lower brain levels of saturated N-acylethanolamines

were detected but concentrations of polyunsaturated NAEs, including AEA, were

essentially unchanged (Leung et al. 2006), indicating the existence of more than

one synthetic pathway (Fig. 6). Indeed, a further three routes for AEA synthesis

have been proposed, although their roles in the physiological generation of AEA in

neural preparations is unclear.

Studies by Natarajan et al. (1984) provided in vitro evidence for multi-step

enzymatic activities capable of producing NAEs from NAPEs. This involved the

hydrolysis of one or both acyl chains from NAPEs followed by cleavage of the

phosphodiester bond of the resulting lysoNAPE or glycerophospho (GP)-NAE,

respectively. A secreted PLA2 has been shown to catalyse the deacylation of

NArPE GP-AEA
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NAPE to yield lysoNAPE in vitro (Sun et al. 2004), although this enzyme was

primarily expressed in the gut, with little expression in the brain. This suggests the

existence of additional enzymes responsible for the calcium-independent NAPE

hydrolase activity detected in NAPE-PLD knockout mouse brain.

The lysoNAPE evolved following a PLA2-mediated hydrolysis of NAPE can

itself be hydrolysed by a LPLD activity which produces NAEs and lysophosphati-

dic acid (LPA). This activity was, however, found to be enriched in brain and testis

(Sun et al. 2004). Given the profound biological actions of LPA, it is interesting to

speculate on the dual functions of products of this enzyme.

More recently, Simon and Cravatt (2006) identified a novel enzyme ab-
hydrolase 4 (abhd4, ENSG00000100439) as a lysophospholipase/phospholipase B

that selectively hydrolyzes NAPEs and lysoNAPEs to yield GP-NAE. This enzyme

is indeed present in the brain and probably represents the NAPE-PLD-independent

route for NAE biosynthesis observed in both NAPE-PLD-knockout and wild-type

mice. Currently, very little is known about the distribution of abhd4 between

neuronal and glial populations, as well as its subcellular location. The enzyme

shows little selectivity between acyl groups, generating PEA at an equal rate to

AEA, and is inhibited by fluorophosphonates, with 5 mM MAFP proving an effec-

tive inhibitor (Simon and Cravatt 2006). As yet, no selective inhibitors have been

described. However, since NAPE-PLD is insensitive to MAFP up to 100 mM
(Petersen and Hansen 1999), it is possible that this agent allows some discrimina-

tion of the two routes of AEA synthesis.

GDE1 (ENSG00000006007) is an integral membrane protein which has been

identified as a glycerophosphodiesterase (Zheng et al. 2000). Initial characteriza-

tion indicated an interaction with RGS16, a regulator of G-protein signalling,

implying the possibility that enzyme activity might be modulated by cell-surface

receptors. Indeed, in a recombinant system, the enzyme was able to hydrolyse

glycerophosphoinositol preferentially (compared to glycerophosphocholine) and

this activity was enhanced by isoprenaline and reduced by phenylephrine (Zheng

et al. 2003). Recently, the substrate profile of this enzyme was extended to include

GP-NAE, including a glycerophospho derivative of AEA (Simon and Cravatt

2008). Since the enzyme activity is stimulated by magnesium ions and inhibited

by calcium ions, chelation of these allowed accumulation of several GP-NAEs in a

rat brain membrane fraction, including saturated, mono-unsaturated and polyunsat-

urated fatty acid derivatives. Analysis of multiple recombinant glycerophospho-

diesterase activities suggested identity with GDE1. Taken together, these data

suggest a role for abhd4 and GDE1 in calcium-independent generation of AEA

(and other NAEs) in neural tissue.

Another route that has been identified is the PLC hydrolysis of NAPE and the

consequent production of acylethanolamine-O-phosphates, which may subsequently

be hydrolysed by the phosphatases, PTPN22 or SHIP1 (Liu et al. 2008). Intrigu-

ingly, the PLC route was suggested to react more rapidly (<10 min) than the PLB

route (�1 h). Whether the PLC activity which is able to hydrolysis NAPE is a

member of the conventional phosphoinositide-specific PLC activities described

earlier is as yet unknown.
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The physiogical role of PTPN22 and SHIP1 in ECB turnover in neural tissues is,

as yet, almost completely unexplored.

4.3 Hydrolysis of Amide Endocannabinoids

The best characterised and investigated pathway of ECB turnover is the hydrolysis

of amide ECBs. This is partly because of the relative ease of assay and synthesis of

substrates, but also because inhibitors of ECB hydrolysis show some promise as

therapeutic agents.

4.3.1 FAAH1 Activity

FAAH was cloned from rat tissues on the basis of identifying the enzyme responsi-

ble for hydrolysis of oleamide, an ECB-related fatty acid amide (Cravatt et al.

1996). Expression of human and rat enzymes in recombinant systems indicated

intracellular location of both enzymes, although the two appeared to have distinct

patterns. The rat enzyme appeared to associate with Golgi and ER membranes,

predominantly in perinuclear regions, while the human enzyme appeared more

associated with cytoskeletal elements (Cravatt et al. 1996). In neural tissues,

FAAH-like immunoreactivity is associated primarily with neurons, in a pattern

extensively (although not completely) complementary to the expression of CB1

cannabinoid receptors (Egertová et al. 1998; Tsou et al. 1998).

Hydrolysis rates of AEA were greater than those of oleamide, OEA and PEA in

mouse brain and liver, but were diminished by ~99% in both tissues in mice in

which the faah gene was disrupted (Lichtman et al. 2002) indicating the predomi-

nant role for FAAH in the hydrolysis of AEA, at least in “normal” neural tissues. It

is, therefore, easy to understand the focus on development of FAAH inhibitors

as therapeutic alternatives to receptor agonists. Intriguingly, there is a possibility

that endogenous inhibitors of FAAH are able to regulate ECB turnover. Thus,

N-arachidonoyl amino acids, such as N-arachidonoylglycine and N-arachidonoyla-
lanine show species-dependent inhibition of FAAH activity (Grazia Cascio et al.

2004), although whether these are physiological regulators of ECB hydrolysis is

unknown. Of potentially more direct influence is the observation that FAAH has a

wide substrate profile, such that many endogenous fatty acid amides, including

OEA and PEA, but not limited to NAEs, are also substrates for the enzyme and are

present in quantities up to 100 times those of AEA. This observation led to the

hypothesis that these compounds act as “entourage” compounds. That is, although

they have no direct activity at CB1 or CB2 cannabinoid receptors, they are able to

slow the hydrolysis of AEA through competition for FAAH activity sufficiently so

that they can indirectly influence cannabinoid activity. The issue is complicated

further by studies of the putative ECB-like receptor GPR119, which suggested that

it was activated by OEA, PEA and SEA (Overton et al. 2006). Whether there is a
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convergence between GPR119 and conventional cannabinoid receptors awaits

further investigation.

Synthetic inhibitors of FAAH abound and can be divided into two broad groups.

One group is based around mimicking endogenous ligands, while the second is

structurally unrelated compounds. Although a-keto ethyl esters and trifluoromethyl-

ketone analogues of AEA were effective FAAH inhibitors, the overlap in pharma-

cophore meant that activity at CB1 receptors and other eicosanoid-metabolising

enzymes reduced their applicability (Koutek et al. 1994). Assessment of a number

of carbamate analogues identified an irreversible inhibitor with nanomolar potency,

URB597 (Kathuria et al. 2003). Although this compound has some “off-target”

activity (Zhang et al. 2007), including activation of TRPA1 channels (Niforatos

et al. 2007), the profile of its action in vitro and in vivo is consistent with a

predominant action to elevate NAEs. Although systemic administration of URB597

has been demonstrated to increase levels of AEA, OEA and PEA in rat CNS tissues

(Gobbi et al. 2005; Russo et al. 2007). Moise et al. (2008) reported that it elevated

brain levels of OEA and PEA but not AEA in the hamster brain, indicating

the possibility of species-selective effects of the inhibitor on multiple enzyme

activities.

The observation that some, but not all, non-steroidal anti-inflammatory drugs,

previously thought to exert their therapeutic effects through inhibition of cyclooxy-

genase activity, were also able to inhibit FAAH activity at relevant concentrations

(Fowler et al. 1997) raised the possibility that some of the therapeutic effects of

these agents might be mediated through cannabinoid receptors.

4.3.2 FAAH2 Activity

A second isoform of FAAH, FAAH2 (ENSG00000165591), has a limited species

distribution in mammals, being found in man, other primates, elephants and rabbits,

but not mice, rats, pigs, dogs, sheep or cows (Wei et al. 2006). Although the

subcellular distribution of this isoform has not been precisely identified, it was

predicted to be membrane-associated with the active site oriented towards the

luminal side of the membrane. Whether FAAH2 regulates ECB levels in the

extracellular medium or in subcellular organelles is, as yet, unknown. Although

FAAH2 appears to hydrolyse the conventional fatty acid ethanolamine ECB-like

compounds, the activity against AEA, OEA and PEA is greatly reduced, while

ODA hydrolysis is similar to that evoked by FAAH1 (Wei et al. 2006). Unlike

FAAH1, FAAH2 appears not to be expressed in brain or small intestine, but in

contrast to FAAH1, shows low expression in heart, muscle and ovary (Wei et al.

2006). Both isoforms show high expression in kidney, liver, lung and prostate. In

comparison with FAAH1, there appear to be no inhibitors of FAAH2 with greater

than 100-fold selectivity (Wei et al. 2006), although both URB597 and OL135

show more than tenfold selectivity. In contrast, JNJ1661010 appears to be 100-fold

selective for FAAH1 (Karbarz et al. 2009). It appears unlikely, therefore, that

FAAH2 is a major regulator of AEA levels in human neural tissues.

The Life Cycle of the Endocannabinoids: Formation and Inactivation 21



4.3.3 NAAA Activity

N-Acylethanolamine acid amidase (NAAA, ENSG00000138744) activity is a lyso-

somal enzyme, with an acid pH optimum, and structural similarity to acid cerami-

dase. The mature enzyme is glycosylated and requires proteolysis for activation

(Wang et al. 2008b). It appears to hydrolyse preferentially PEA compared to AEA

in cell-free systems (Ueda et al. 1999). In intact cells, however, NAAA appeared

capable of hydrolysing a variety of fatty acid ethanolamides, including AEA (Sun

et al. 2005), but not 2AG (Tsuboi et al. 2005). The enzyme is expressed to relatively

high levels in lung, spleen and large intestine, but in contrast to FAAH activity, is

less well expressed in liver, testis and brain (Tsuboi et al. 2005). Under normal

circumstances, therefore, it appears unlikely to contribute significantly to AEA

turnover in neural tissues.

In counterpoint to FAAH activities, NAAA is not inhibited by MAFP concen-

trations up to 10�5 M (Ueda et al. 1999). The enzyme is also insensitive to URB597,

but can be inhibited by a retroamide, N-cyclohexylcarbonylpentadecylamine, in the

micromolar range (Tsuboi et al. 2004). As yet, genetic disruption of this enzyme has

not been reported.

5 Other Routes of ECB Transformation

Other than FAAH, NAAA and MGL, the most prominent route of ECB inactivation

appears to be through oxidative metabolism. Intriguingly, there is the possibility

that this is not simply an inactivation, but rather a transformation to metabolites,

which may themselves be active, albeit not only at canonical cannabinoid receptors.

Aside from oxidative metabolism, a further form of transformation of NAEs

was identified using tissue from FAAH–/– mice (Mulder and Cravatt 2006). O-
Phosphorylcholine derivatives of NAEs (PC-NAEs) were identified in the brain

and/or spinal cord of FAAH–/– mice, but not wild-type mice. Intriguingly, although

AEA levels were elevated in FAAH–/– mice, there were no detectable levels of PC-

AEA, although PC-PEA and PC-OEA were detectable. Whether these metabolites

are generated in other species or under pathological conditions or indeed whether

they have biological activity in their own right is unknown. The mechanism of

PC-NAE formation is also unknown; however, an enzyme activity has been identi-

fied which is capable of hydrolysing PC-NAEs to generate O-phosphorylcholine
and NAE (Mulder and Cravatt 2006). This is ENPP6 (ENSG00000164303), a

membrane-associated member of the nucleotide pyrophosphate/phosphatase family

(Sakagami et al. 2005), which is expressed highly in human (although not mouse)

brain. ENPP6 exhibits LPLC activity with some selectivity for lysophosphatidyl-

choline over any other lysophospholipid, including LPI (Sakagami et al. 2005).

Although PC-NAEs were poor substrates for FAAH activity, they were efficiently

hydrolysed by recombinant ENPP6 (Mulder and Cravatt 2006).
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5.1 Oxidative Metabolism of ECBs

5.1.1 Cyclooxygenase Activity

Cyclooxygenase (COX) activities are membrane-bound enzymes responsible for

the production of prostanoids (prostaglandins and thromboxanes) from arachidonic

acid. Of the two isoforms, COX-1 is generally held to be constitutively expressed

and responsible for the “house-keeping” roles of prostanoids, while COX-2 is

generally inducible, although it is constitutively expressed in some tissues

(e.g. spinal cord) and thought to be responsible for the inflammatory, pyrexic and

hyperalgesic prostanoids. Given that the two major ECBs, AEA and 2AG, are

arachidonate derivatives, it is, in retrospect, not too surprising that COX metabo-

lises ECBs to produce prostanoid-like molecules. Intriguingly, AEA and 2AG

appear to be poor substrates for COX-1, but are readily metabolised by COX-2 (Yu

et al. 1997; Kozak et al. 2000). Perhaps more intriguing is the observation that

ECBs, through the CB1 receptor, are able to induce COX-2 expression in the

cerebral microvasculature (Chen et al. 2005), indicating the possibility of diversion

of ECBs through alternative metabolic routes following repeated administration.

The products of COX-2 oxidative metabolism of ECBs are biologically active

(Sang et al. 2006, 2007; Hu et al. 2008) and so COX-2 metabolism represents

transformation of ECBs rather than inactivation. The prostanoid ethanolamides

and glyceryl esters appear not to be active at conventional cannabinoid or prosta-

noid receptors, however, but rather through separate targets, as yet undefined at the

molecular level (Fowler 2007; Woodward et al. 2008). The major route of prosta-

glandin inactivation, via 15-hydroxyprostaglandin dehydrogenase, appears to be

less effective for oxidation of COX-2 metabolites of ECBs (Kozak et al. 2001).

In parallel, FAAH or MGL hydrolysis of the COX-2 metabolites of AEA or 2AG,

respectively, was reduced in comparison to the untransformed parent ECB (Vila

et al. 2007). It appears, therefore, that whilst the ECBs themselves are transient

species, COX-2 metabolism is able to generate derivatives which are far more

long-lasting.

Numerous cellular and tissue preparations have been shown to be able to

metabolise administered ECBs through the COX-2 pathway (Kim and Alger

2004; Patsos et al. 2005; Ahn et al. 2007; Ho and Randall 2007; Rockwell et al.

2008; Jhaveri et al. 2008; Bajo et al. 2009); however, definitive evidence for COX-2

metabolism of endogenous ECBs is currently lacking. Intriguingly, however, the

observation that typical antibody-based assays for prostanoids fails to distinguish

prostaglandins from prostamides suggests that there is more to be elucidated from

the COX-2 metabolism of ECBs (Glass et al. 2005). The picture is further obscured

by the observation that many, but not all, non-steroidal anti-inflammatory drugs,

previously thought to target COX activities selectively, are also able to inhibit

FAAH activity at pharmacologically relevant concentrations (Fowler et al. 1997,

1999, 2003). The possibility exists, therefore, that clinical efficacy of some of these
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agents may be due to a combination of preventing the accumulation of inflamma-

tory prostanoids, as well as promoting the accumulation of anti-inflammatory ECBs

(Jhaveri et al. 2008).

5.1.2 Lipoxygenase Activity

Mammalian lipoxygenases (LOXs) are bound to membranes inside the cell, includ-

ing the nuclear membrane, and generate hydroperoxides of unsaturated fatty acids

(typically of the 1Z,5Z pentadiene structure) by introducing molecular oxygen at

the points of unsaturation. For arachidonate, 5-, 12- and 15-hydroperoxidation

generates hydroperoxyeicosatetraenoic acids (HPETEs). 5-LOX metabolism of

arachidonate, primarily in white blood cells, generates leukotrienes, while sequen-

tial oxidative metabolism of arachidonate by 5- and 15-LOXs generates lipoxins.

Although a sequence of metabolic steps allows AEA to be metabolised to 12-

oxygenated species in splenocytes, this appears to be due to FAAH-mediated

hydrolysis of AEA generating arachidonate, thereafter metabolised by 12-LOX

(Bobrov et al. 2000). Both 12- and 15-LOX, but not 5-LOX, appear capable of

metabolising AEA and 2AG (Hampson et al. 1995; Ueda et al. 1995; Edgemond

et al. 1998; Moody et al. 2001; Kozak et al. 2002). Indeed, incubation of AEA

with plant-derived 5-LOX generates a 12-hydroperoxide derivative (Van Zadelhoff

et al. 1998).

In the brain, the majority of LOX activity appears to reside in the pineal gland

(Nishiyama et al. 1993; Hada et al. 1994), through which enzyme activity a product

consistent with 12-hydroxyAEA was identified (Hampson et al. 1995). Rat brain

homogenates are able to generate both 12-hydroxyAEA and 15-hydroxyAEA

(Veldhuis et al. 2003). Human platelets are able to convert AEA to 12(S)-hydro-

xyAEA, while both 12(S)-hydroxyAEA and 15(S)-hydroxyAEA appeared follow-

ing incubation of AEA with human polymorphonuclear lymphocytes (Edgemond

et al. 1998).

As with COX activity, LOX metabolism represents transformation, rather than

inactivation, of ECBs, since LOX products are active at CB1 and CB2 receptors

(Edgemond et al. 1998), as well as TRPV1 (Craib et al. 2001) and PPAR (Kozak

et al. 2002) receptors.

5.1.3 Cytochrome P450s and Epoxygenase Activity

Arachidonic acid is subject to an additional form of oxidative metabolism, in which

5,6-epoxyeicosatrienoic acid (EET), 8,9-EET, 11,12-EET or 14,15-EET may be

formed. These epoxides are thought to be important signalling molecules in the

vascular system and are metabolised by epoxide hydrolases to form diols. Human

liver microsomes, containing multiple cytochrome P450 activities, were found to

catalyse epoxide formation at all four unsaturations of AEA (Snider et al. 2007).

One isoform of cytochrome P450, 4X1, generates 14,15-EET ethanolamide from
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AEA (Stark et al. 2008), while a second, 2D6, is not only able to generate all four

epoxides from AEA, but also oxidises them further to generate diol analogues of

AEA (Snider et al. 2008).

One isoform of cytochrome P450, 4F2, oxidises the o-carbon of the fatty acid

chain to produce N-20-hydroxyarachidonoylethanolamine.

The potential for oxidation at the terminal alcohol of AEA has recently been

demonstrated, with alcohol dehydrogenase metabolism generating N-arachidonoyl-
glycine (Aneetha et al. 2009), which may prove to be the endogenous ligand for the

putative ECB-like receptor GPR18 (Kohno et al. 2006).

6 Stimulation of ECB Synthesis and Release

It is widely thought that AEA and 2AG (which are very lipophilic compounds) are

produced from their precursor membrane phosphoglycerides via Ca2+-sensitive

biosynthetic pathways, activated on demand, rather than being pre-synthesised

and stored in secretory vesicles awaiting exocytosis, as is the case for many neuro-

transmitters. Hence, it is likely that ECB agents act largely as local (autocrine/

paracrine) mediators rather than conventional hormones. ECBs can, however, be

detected in the plasma, although their tissues of origin are not clear, and a longer

range hormonal action should not be completely disregarded. AEA and 2AG

are regarded as retrograde mediators in the brain where post-synaptic depolarisation

leads to the elevation of intracellular Ca2+ from intracellular stores, entry through

receptor/voltage-operated Ca2+ channels (or both). This is assumed to stimulate

Ca2+-sensitive enzymes such as NAPE-PLD catalysing the biosynthesis of AEA

and, particularly, 2AG. The released ECB mediators retrogradely traverse the

synapse to activate presynaptic CB1 receptors resulting in inhibition of voltage-

activated calcium channels, activation of K+ channels and inhibition of neurotrans-

mitter release.

However, in spite of the massive research effort expended on the ECBs in recent

years, there have been remarkably few direct studies of stimulated ECB synthesis

and release, particularly in native cells and tissues. The chemical nature of the

ECBs probably explains the difficulty in measuring extracellular concentrations,

their high lipophilicity suggesting that they are unlikely to exist alone in the

aqueous extracellular medium for any length of time. However, elegant electro-

physiological studies by Brad Alger (see the chapter “Endocannabinoid Signaling

in Neural Plasticity” by Alger, this volume) have unambiguously shown that de-

polarisation and agonist-mediated Ca2+ mobilisation stimulates release of ECBs,

indicated by depolarisation-induced suppression of inhibition and excitation in the

CA1 region of the hippocampus (Kim et al. 2002). More direct studies (Bisogno

et al. 1997) showed that stimulation of mouse neuroblastoma cells with the Ca2+

ionophore, ionomycin, caused the synthesis, release and subsequent degradation of

2AG. Stella and Piomelli (2001) also demonstrated Ca2+ mobilising receptor-

mediated enhancement of 2AG, OEA and PEA, but not AEA, in rat cortical
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neurones. These authors (Stella et al. 1997) had previously reported that high

frequency stimulation of hippocampal slices had increased the synthesis of 2AG

but not AEA.

Despite the weight of evidence favouring the Ca2+-mediated formation of 2AG

but less so of AEA, Di Marzo’s group have proposed that AEA acts as a kind of

intracellular “volume switch” for Ca2+; van der Stelt et al. (2005) reported that in

dorsal root ganglion (DRG) cells, purinoceptor or muscarinic cholinergic receptor

activation leads to AEA synthesis which acts on TRPV1 channels, gating extracel-

lular Ca2+ allowing more AEA synthesis, thus providing a feed-forward mecha-

nism. This potentially vicious cycle is suggested to be interrupted by released AEA

acting on extracellular facing CB1 receptors and inhibiting TRPV1 function, as

demonstrated by Millns et al. (2001). In more recent studies, Vellani et al. (2008)

again suggested a central role for the TRPV1 channel in the control of DRG and, by

extension, sensory nerve activity. They showed that, in addition to activation by

AEA, TRPV1 channels were activated and/or sensitised by stimulating protein

kinases A or C leading to enhanced AEA but not 2AG or PEA levels. This indicates

that, in addition to Ca2+ mobilisation, the generation of other second messengers

following receptor activation has the potential to modulate ECB synthesis and

release.

In our own studies of ECB synthesis and release in rat cerebral cortical slices

in vitro, we have found little evidence for Ca2+-mobilising stimuli elevating the

Fig. 7 Accumulation of ECBs in rat brain cerebral cortex in vitro. Brain slices were incubated for

30 min in the absence and presence of ligands and/or calcium-free Krebs’ ringer solution before

extraction and quantification of ECBs (Sarmad et al. 2008)
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levels of ECBs but it is notable that the FAAH inhibitor URB597 (see above) causes

a robust increase in tissue levels and accompanying release, suggesting that, in

this preparation, there is a high on-going turnover of ECBs independent of calcium

ions (Fig. 7).

There have been a few attempts to monitor in vivo ECB release using micro-

dialysis coupled with LC/MS analysis. Béquet et al. (2007) reported that, in the rat

hypothalamus, local depolarisation following high K+ or glutamate perfusion

enhanced AEA and 2AG release independently of Ca2+. Their experiments sup-

ported a release-modulating role for CB1 receptors in that the antagonist rimona-

bant enhanced, while the CB agonist WIN55212-2 reduced, AEA release, although,

intriguingly, the same treatments induced opposite changes in 2AG. The mechan-

isms underlying the control of release clearly require further investigation. At the

present time, even basic questions such as whether the release process is an active,

energy-dependent mechanism or simply a passive flow down concentration gradi-

ents remain unanswered.

7 Conclusion

Despite a massive research effort over the last two decades, there is still a plethora

of questions to be addressed concerning the ECB system. There has been a probably

unwarranted concentration on AEA, given its archetypal status, and the challenge

now is to clarify the roles of the many related fatty acids and their interactions, not

only with CB1 and CB2 receptors but with the ever-growing family of G-protein-

coupled, nuclear and ion channel receptors responsive to ECBs. The immense

complexity of the synthetic and metabolic pathways followed by the ECBs provides

a great challenge but also an opportunity for the development of selective thera-

peutic agents to tackle some of the diseases involving the ECB system which are

described in later chapters in this volume.
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