
6

Consideration of Partial User Preferences in
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Abstract. Evolutionary multiobjective optimization usually attempts to find a
good approximation to the complete Pareto optimal front. However, often the user
has at least a vague idea about what kind of solutions might be preferred. If such in-
formation is available, it can be used to focus the search, yielding a more fine-grained
approximation of the most relevant (from a user’s perspective) areas of the Pareto
optimal front and/or reducing computation time. This chapter surveys the literature
on incorporating partial user preference information in evolutionary multiobjective
optimization.

6.1 Introduction

Most research in evolutionary multiobjective optimization (EMO) attempts
to approximate the complete Pareto optimal front by a set of well-distributed
representatives of Pareto optimal solutions. The underlying reasoning is that
in the absence of any preference information, all Pareto optimal solutions have
to be considered equivalent.

On the other hand, in most practical applications, the decision maker (DM)
is eventually interested in only a single solution. In order to come up with a
single solution, at some point during the optimization process, the DM has to
reveal his/her preferences to choose between mutually non-dominating solu-
tions. Following a classification by Horn (1997) and Veldhuizen and Lamont
(2000), the articulation of preferences may be done either before (a priori),
during (progressive), or after (a posteriori) the optimization process, see also
Figure 6.1.

A priori approaches aggregate different objectives into a single auxilliary
objective in one way or another, which allows to use standard optimization
techniques (including single-objective evolutionary algorithms) and usually
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Fig. 6.1. Different ways to solve multiobjective problems.

results in a single solution. Many classical MCDM methodologies fall into this
category. The most often used aggregation method is probably just a linear
combination of the different objectives. Alternatives would be a lexicographic
ordering of the objectives, or to use the distance from a specified target as
objective. For an example of an approach based on fuzzy rules see Sait et al.
(1999) or Sakawa and Yauchi (1999). As aggregation of objectives turn the
multiobjective problem into a single objective problem, such evolutionary al-
gorithms are actually out of scope of this chapter. A discussion of advantages
and disadvantages of such aggregations can be found in Coello et al. (2002),
Chapter 2.2. In any case, the aggregation of objectives into a single objective
is usually not practical, because it basically requires to specify a ranking of
alternatives before these alternatives are known. Classical MCDM techniques
usually solve this predicament by repeatedly adjusting the auxilliary objective
and re-solving the single objective problem until the DM is satisfied with the
solution.

Most multiobjective evolutionary algorithms (MOEAs) can be classified as
a posteriori. First, the EA generates a (potentially large) set of non-dominated
solutions, then the DM can examine the possible trade-offs and choose accord-
ing to his/her preferences. For an introduction to MOEAs, see Chapter 3. The
most prominent MOEAs are the Non-Dominated Sorting Genetic Algorithm
(NSGA-II, Deb et al., 2002a) and the Strength-Pareto Evolutionary Algorithm
(SPEA-II, Zitzler et al., 2002).

Interactive approaches interleave the optimization with a progressive elic-
itation of user preferences. These approaches are discussed in detail in Chap-
ter 7.

In the following, we consider an intermediate approach (middle path in
Figure 6.1). Although we agree that it may be impractical for a DM to com-
pletely specify his or her preferences before any alternatives are known, we
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assume that the DM has at least a rough idea about what solutions might
be preferred, and can specify partial preferences. The methods discussed here
aim at integrating such imprecise knowledge into the EMO approach, biasing
the search towards solutions that are considered as relevant by the DM. The
goal is no longer to generate a good approximation to all Pareto optimal so-
lutions, but a small set of solution that contains the DM’s preferred solution
with the highest probability. This may yield three important advantages:

1. Focus: Partial user preferences may be used to focus the search and gen-
erate a subset of all Pareto optimal alternatives that is particularly inter-
esting to the DM. This avoids overwhelming the DM with a huge set of
(mostly irrelevant) alternatives.

2. Speed: By focusing the search onto the relevant part of the search space,
one may expect the optimization algorithm to find these solutions more
quickly, not wasting computational effort to identify Pareto optimal but
irrelevant solutions.

3. Gradient: MOEAs require some quality measure for solutions in or-
der to identify the most promising search direction (gradient). The most
important quality measure used in MOEA is Pareto dominance. How-
ever, with an increasing number of objectives, more and more solutions
become incomparable, rendering Pareto dominance as fitness criterion
less useful,resulting in a severe performance loss of MOEAs (e.g., Deb
et al., 2002b). Incorporating (partial) user preferences introduces addi-
tional preference relations, restoring the necessary fitness gradient infor-
mation to some extend and ensuring MOEA’s progress.

To reach these goals, the MOEA community can accomodate or be inspired by
many of the classical MCDM methodologies covered in Chapters 1 and 2, as
those generally integrate preference information into the optimization process.
Thus, combining MOEAs, and their ability to generate multiple alternatives
simultaneously in one run, and classical MCDM methodologies, and their ways
to incorporate user preferences, holds great promise.

The literature contains quite a few techniques to incorporate full or par-
tial preference information into MOEAs, and previous surveys on this topic
include Coello (2000); Rachmawati and Srinivasan (2006), and Coello et al.
(2002). In the following, we classify the different approaches based on the
type of partial preference information they ask from the DM, namely objec-
tive scaling (Section 6.2), constraints (Section 6.3), a goal or reference point
(Section 6.4), trade-off information (Section 6.5), or weighted performance
measures (Section 6.6 on approaches based on marginal contribution). Some
additional approaches are summarized in Section 6.7. The chapter concludes
with a summary in Section 6.8.
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6.2 Scaling

One of the often claimed advantages of MOEAs is that they do not require
an a priori specification of user preferences because they generate a good
approximation of the whole Pareto front, allowing the DM to pick his/her
preferred solution afterwards. However, the whole Pareto optimal front may
contain very many alternatives, in which case MOEAs can only hope to find
a representative subset of all Pareto optimal solutions. Therefore, all basic
EMO approaches attempt to generate a uniform distribution of representatives
along the Pareto front. For this goal, they rely on distance information in the
objective space, be it in the crowding distance of NSGA-II or in the clustering
of SPEA-II1. Thus, what is considered uniform depends on the scaling of
the objectives. This is illustrated in Figure 6.2. The left panel (a) shows an
evenly distributed set of solutions along the Pareto front. Scaling the second
objective by a factor of 100 (e.g., using centimeters instead of meters as unit),
leads to a bias of the distribution and more solutions along the front parallel
to the axis of the second objective (right panel). Note that depending on the
shape of the front, this means that there is a bias towards objective 1 (as in
the convex front in Figure 6.2), or objective 2 (if the front is concave). So,
the user-defined scaling is actually a usually ignored form of user preference
specification necessary also for MOEAs.

Many current implementations of MOEAs (e.g., NSGA-II and SPEA) scale
objectives based on the solutions currently in the population (see, e.g., Deb
(2001), S. 248). While this results in nice visualizations if the front is plotted
with a 1:1 ratio, and relieves the DM from specifying a scaling, it assumes
that ranges of values covered by the Pareto front in each objective are equally
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Fig. 6.2. Influence of scaling on the distribution of solutions along the Pareto front.

1 The rest of this section assumes familiarity with the crowding distance concept.
Readers unfamiliar with this concept are referred to, e.g., Deb (2001) or Chapter 3.
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important. Whether this assumption is justified certainly depends strongly on
the application and the DM’s preferences.

In order to find a biased distribution anywhere on the Pareto optimal
front, a previous study by Deb (2003) used a biased sharing2 mechanism
implemented on NSGA. In brief, the objectives are scaled according to pref-
erences when calculating the distances. This allows to make distances in one
objective appear larger than they are, with a corresponding change in the
resulting distribution of individuals. Although this allows to focus on one ob-
jective or another, the approach does not allow to focus on a compromise
region (for equal weighting of the objectives, the algorithm would produce no
bias at all).

In Branke and Deb (2005), the biased sharing mechanism has been ex-
tended with a better control of the region of interest and a separate parame-
ter controlling the strength of the bias. For a solution i on a particular front,
the biased crowding disctance measure Di is re-defined as follows. Let η be
a user-specified direction vector indicating the most probable, or central lin-
early weighted utility function, and let α be a parameter controlling the bias
intensity. Then,

Di = di

(
d′i
di

)α

, (6.1)

where di and d′i are the original crowding distance and the crowding distance
calculated based on the locations of the individuals projected onto the (hy-
per)plane with direction vector η. Figure 6.3 illustrates the concept.

As a result, for a solution in a region of the Pareto optimal front more or
less parallel to the projected plane (such as solution ’a’), the original crowded
distance da and projected crowding distance d′a are more or less the same,
thereby making the ratio d′a/da close to one. On the other hand, for a solu-
tion in an area of the Pareto optimal front where the tangent has an orien-
tation significantly different from the chosen plane (such as solution ’b’), the
projected crowding distance d′b is much smaller than the original crowding
distance db. For such a solution, the biased crowding distance value Di will
be a small quantity, meaning that such a solution is assumed to be artificially
crowded by neighboring solutions. A preference of solutions having a larger
biased crowding distance Di will then enable solutions closer to the tangent
point to be found. The exponent α controls the extent of the bias, with larger
α resulting in a stronger bias.

Note that biased crowding will focus on the area of the Pareto optimal front
which is parallel to the iso-utility function defined by the provided direction
vector η. For a convex Pareto optimal front, that is just the area around
the optimal solution regarding a corresponding aggregate cost function. For
a concave region, such an aggregate cost function would always prefer one of
the edge points, while biased crowding may focus on the area in between.

2 The sharing function in NSGA fulfills the same functionality as the crowding
distance in NSGA-II, namely to ensure a diversity of solutions.
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Fig. 6.3. The biased crowding approach is illustrated on a two-objective minimiza-
tion problem (Branke and Deb, 2005).

Trautmann and Mehnen (2005) suggest an explicit incorporation of prefer-
ences into the scaling. They propose to map the objectives into the range [0, 1]
according to desirability functions. With one-sided sigmoid (monotone) desir-
ability functions, the non-dominance relations are not changed. Therefore,
the solutions found are always also non-dominated in the original objective
space. What changes is the distribution along the front. Solutions that are in
flat parts of the desirability function receive very similar desirability values
and as MOEAs then attempt to spread solutions evenly in the desirability
space, this will result in a more spread out distribution in the original objec-
tive space. However, in order to specify the desirability functions in a sensible
manner, it is necessary to at least know the ranges of the Pareto front.

6.3 Constraints

Often, the DM can formulate preferences in the form of constraints, for ex-
ample “Criterion 1 should be less than β”. Handling constraints is a well-
researched topic in evolutionary algorithms in general, and most of the tech-
niques carry over to EMO in a straightforward manner. One of the simplest
and most common techniques is probably to rank infeasible solutions accord-
ing to their degree of infeasibility, and inferior to all feasible solutions (Deb,
2000; Jiménez and Verdegay, 1999). A detailed discussion of constraint han-
dling techniques is out of the scope of this chapter. Instead, the interested
reader is referred to Coello (2002) for a general survey on constraint han-
dling techniques, and Deb (2001), Chapter 7, for a survey with focus on EMO
techniques.
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6.4 Providing a Reference Point

Perhaps the most important way to provide preference information is a ref-
erence point, a technique that has a long tradition in multicriteria decision
making, see, e.g., Wierzbicki (1977, 1986) and also Chapter 2. A reference
point consists of aspiration levels reflecting desirable values for the objective
function, i.e., a target the user is hoping for. Such an information can then
be used in different ways to focus the search. However, it should not lead to
a dominated solution being preferred over the dominating solution.

The use of a reference point to guide the EMO algorithm has first been
proposed in Fonseca and Fleming (1993). The basic idea there is to give a
higher priority to objectives in which the goal is not fulfilled. Thus, when
deciding whether a solution x is preferable to a solution y or not, first, only
the objectives in which solution x does not satisfy the goal are considered,
and x is preferred to y if it dominates y on these objectives. If x is equal to y
in all these objectives, or if x satisfies the goal in all objectives, x is preferred
over y either if y does not fulfill some of the objectives fulfilled by x, or if x
dominates y on the objectives fulfilled by x. More formally, this can be stated
as follows. Let r denote the reference point, and let there be m objectives
without loss of generality sorted such that x fulfills objectives k + 1 . . .m but
not objectives 1 . . . k, i.e.

fi(x) > ri ∀i = 1 . . . k (6.2)
fi(x) ≤ ri ∀i = k + 1 . . .m. (6.3)

Then, x is preferred to y if and only if

x �1...k y∨
x =1...k y ∧ [(∃l ∈ [k + 1 . . . n] : fl(y) > rk) ∨ (x �k+1...n y)] (6.4)

with x �i...j y meaning that solution x dominates solution y on objectives i to
j (i.e., for minimization problems as considered here, fk(x ≤ fk(y∀k = i . . . j
with at least one strict inequality). A slightly extended version that allows
the decision maker to additionally assign priorities to objectives has been
published in Fonseca and Fleming (1998). This publication also contains the
proof that the proposed preference relation is transitive. Figure 6.4 visualizes
what part of the Pareto front remains preferred depending on whether the
reference point is reachable (a) or not (b). If the goal has been set so ambitious
that there is no solution which can reach the goal in even a single objective,
the goal has no effect on search, and simply the whole Pareto front is returned.

In Deb (1999), a simpler variant has been proposed which simply ignores
improvements over a goal value by replacing a solution’s objective value fi(x)
by max{fi(x), ri}. If the goal vector r is outside the feasible range, the method
is almost identical to the definition in Fonseca and Fleming (1993). However, if
the goal can be reached, the approach from Deb (1999) will lose its selection
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Fig. 6.4. Part of the Pareto optimal front that remains optimal with a given ref-
erence point r and the preference relation from Fonseca and Fleming (1993). The
left panel (a) shows a reachable reference point, while the right panel (b) shows an
unreachable one. Minimization of objectives is assumed.

pressure and basically stop search as soon as the reference point has been
found, i.e., return a solution which is not Pareto optimal. On the other hand,
the approach from Fonseca and Fleming (1993) keeps improving beyond the
reference point. The goal-programming idea has been extended in Deb (2001)
to allow for reference regions in addition to reference points.

Tan et al. (1999) proposed another ranking scheme which in a first stage
prefers individuals fulfilling all criteria, and ranks those individuals according
to standard non-dominance sorting. Among the remaining solutions, solution
x dominates solution y if and only if x dominates y with respect to the
objectives in which x does not fulfill the goal (as in Fonseca and Fleming
(1993)), or if |x − r| � |y − r|. The latter corresponds to a “mirroring” of
the objective vector along the axis of the fulfilled criteria. This may lead to
some strange effects, such as non-transitivity of the preference relation (x is
preferred to y, and y to z, but x and z are considered equal). Also, it seems odd
to “penalize” solutions for largely exceeding a goal. What is more interesting
in Tan et al. (1999) is the suggestion on how to account for multiple reference
points, connected with AND and OR operations. The idea here is to rank the
solutions independently with respect to all reference points. Then, rankings
are combined as follows. If two reference points are connected by an AND
operator, the rank of the solution is the maximum of the ranks according
to the individual reference points. If the operator is an OR, the rank of the
solution is the minimum of the ranks according to the individual reference
points. This idea of combining the information of several reference points
can naturally be combined with other preference relations using a reference
point. The paper also presents a way to prioritize objectives by introducing
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additional goals. In effect, however, the priorization is equivalent to the one
proposed in Fonseca and Fleming (1998).

In Deb and Sundar (2006); Deb et al. (2006), the crowding distance cal-
culation in NSGA-II is replaced by the distance to the reference point, where
solutions with a smaller distance are preferred. More specifically, solutions
with the same non-dominated rank are sorted with respect to their distance
to the reference point. Furthermore, to control the extent of obtained solu-
tions, all solutions having a distance of ε or less between them are grouped.
Only one randomly picked solution from each group is retained, while all other
group members are assigned a large rank to discourage their use. As Fonseca
and Fleming (1998) and Tan et al. (1999), this approach is able to improve be-
yond a reference point within the feasible region, because the non-dominated
sorting keeps driving the population to the Pareto optimal front. Also, as Tan
et al. (1999), it can handle multiple reference points simultaneously. With
the parameter ε, it is possible to explicitly influence the diversity of solutions
returned. Whether this extra parameter is an advantage or a burden may
depend on the application.

Yet another dominance scheme was recently proposed in Molina et al.
(2009), where solutions fulfilling all goals and solutions fulfilling none of the
goals are preferred over solutions fulfilling only some of the goals. This, again,
drives the search beyond the reference point if it is feasible, but it can obviously
lead to situations where a solution which is dominated (fulfilling none of the
goals) is actually preferred over the solution that dominates it (fulfilling some
of the goals).

Thiele et al. (2007) integrate reference point information into the Indicator-
Based Evolutionary Algorithm, see Section 6.6 for details.

The classical MCDM literature also includes some approaches where, in
addition to a reference point, some further indicators are used to generate a
set of alternative solutions. These include the reference direction method (Ko-
rhonen and Laakso, 1986) and light beam search (Jaszkiewicz and Slowinski,
1999). Recently, these methods have also been adopted into MOEAs.

In brief, the reference direction method allows the user to specify a start-
ing point and a reference point, with the difference of the two defining the
reference direction. Then, several points on this vector are used to define a
set of achievement scalarizing functions, and each of these is used to search
for a point on the Pareto optimal frontier. In Deb and Kumar (2007a), an
MOEA is used to search for all these points simultaneously. For this pur-
pose, the NSGA-II ranking mechanism has been modified to focus the search
accordingly.

The light beam search also uses a reference direction, and additionally
asks the user for some thresholds which are then used so find some possibly
interesting neighboring solutions around the (according to the reference di-
rection) most preferred solution. Deb and Kumar (2007b) use an MOEA to
simultaneously search for a number of solutions in the neighborhood of the
solution defined by the reference direction. This is achieved by first identify-
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ing the “most preferred” or “middle” solution using an achievement scalarizing
function based on the reference point. Then, a modified crowding distance
calculation is used to focus the search on those solutions which are not worse
by more than the allowed threshold in all the objectives.

Summarizing, the first approach proposed in Fonseca and Fleming (1993)
still seems to be a good way to include reference point information. While in
most approaches the part of the Pareto optimal front considered as relevant
depends on the reference point and the shape and location of the Pareto
optimal front, in Deb and Sundar (2006) the desired spread of solutions in the
vicinity of the Pareto optimal solution closest to the reference point is specified
explicitly. The schemes proposed by Tan et al. (1999) and Deb and Sundar
(2006) allow to consider several reference points simultaneously. The MOEAs
based on the reference direction and light beam search (Deb and Kumar,
2007a,b) allow the user to specify additional information that influences the
focus of the search and the set of solutions returned.

6.5 Limit Possible Trade-offs

If the user has no idea of what kind of solutions may be reachable, it may
be easier to specify suitable trade-offs, i.e., how much gain in one objective is
necessary to balance the loss in the other.

Greenwood et al. (1997) suggested a procedure which asks the user to rank
a few alternatives, and from this derives constraints for linear weighting of the
objectives consistent with the given ordering. Then, these are used to check
whether there is a feasible linear weighting such that solution x is preferable
to solution y. More specifically, if the DM prefers a solution with objective
values f(x) to a solution with objective values f(y), then, assuming linearly
weighted additive utility functions and minimization of objectives, we know
that

n∑

k=1

wk(fk(x)− fk(y)) < 0 (6.5)

n∑

k=1

wk = 1, wk ≥ 0.

Let A denote the set of all pairs of solutions (x,y) ranked by the DM, and
x preferred to y. Then, to compare any two solutions u and v, all linearly
weighted additive utility functions are considered which are consistent with
the ordering on the initially ranked solutions, i.e., consistent with Inequal-
ity 6.5 for all pairs of solutions (x,y) ∈ A. A preference of u over v is inferred
if u is preferred to v for all such utility functions. A linear program (LP) is
used to search for a utility function where u is not preferred to v.
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min Z =
n∑

k=1

wk(fk(u)− fk(v)) (6.6)

n∑

k=1

wk(fk(x)− fk(y)) < 0 ∀(x,y) ∈ A (6.7)

n∑

k=1

wk = 1, wk ≥ 0.

If the LP returns a solution value Z > 0, we know there is no linear com-
bination of objectives consistent with Inequality 6.7 such that u would be
preferable, and we can conclude that v is preferred over u. If the LP can find
a linear combination with Z < 0, it only means that v is not preferred to
u. To test whether u is preferred to v, one has to solve another LP and fail
to find a linear combination of objectives such that v would be preferable.
Overall, the method requires to solve 1 or 2 LPs for each pair of solutions
in the population. Also, it needs special mechanisms to make sure that the
allowed weight space does not become empty, i.e., that the user ranking is
consistent with at least one possible linear weight assignment. The authors
suggest to use a mechanism from White et al. (1984) which removes a minimal
set of the DM’s preference statements to make the weight space non-empty.
Note that although linear combinations of objectives are assumed, it is pos-
sible to identify a concave part of the Pareto front, because the comparisons
are only pair-wise. A more general framework for inferring preferences from
examples (allowing for piecewise linear additive utility functions rather than
linear additive utility functions) is discussed in Chapter 4.

In the guided MOEA proposed in Branke et al. (2001), the user is allowed
to specify preferences in the form of maximally acceptable trade-offs like “one
unit improvement in objective i is worth at most aji units in objective j”. The
basic idea is to modify the dominance criterion accordingly, so that it reflects
the specified maximally acceptable trade-offs. A solution x is now preferred to
a non-dominated solution y if the gain in the objective where y is better does
not outweigh the loss in the other objective, see Figure 6.5 for an example.
The region dominated by a solution is adjusted by changing the slope of the
boundaries according to the specified maximal and minimal trade-offs. In this
example, Solution A is now dominated by Solution B, because the loss in
Objective 2 is too big to justify the improvement in Objective 1. On the other
hand, Solutions D and C are still mutually non-dominated.

This idea can be implemented by a simple transformation of the objectives:
It is sufficient to replace the original objectives with two auxiliary objectives
Ω1 and Ω2 and use these together with the standard dominance principle,
where
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Ω1(x) = f1(x) +
1

a21
f2(x)

Ω2(x) =
1

a12
f1(x) + f2(x)

See Figures 6.7 and 6.6 for a visualization.
Because the transformation is so simple, the guided dominance scheme can

be easily incorporated into standard MOEAs based on dominance, and it does
not change the complexity nor the inner workings of the algorithm. However,
an extension of this simple idea to more than two dimensions seems difficult.

Although developed independently and with a different motivation, the
guided MOEA can lead to the same preference relation as the imprecise value
function approach in Greenwood et al. (1997) discussed above. A maximally
acceptable trade-off of the form “one unit improvement in objective i is worth
at most aji units in objective j” could easily be transformed into the constraint

− wi + aji · wj < 0 or (6.8)
wi

wj
> aji (6.9)

The differences are in the way the maximally acceptable trade-offs are de-
rived (specified directly by the DM in the guided MOEA, and inferred from
a ranking of solutions in Greenwood et al. (1997)), and in the different im-
plementation (a simple transformation of objectives in guided MOEA, and
the solving of many LPs in the imprecise value function approach). While the
guided MOEA is more elegant and computationally efficient for two objec-
tives, the imprecise value function approach works independent of the number
of objectives.

The idea proposed in Jin and Sendhoff (2002) is to aggregate the differ-
ent objectives into one objective via weighted summation, but to vary the
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weights gradually over time during the optimization. For two objectives, it is
suggested to set w1(t) = | sin(2πt/F )| and w2(t) = 1 − w1(t), where t is the
generation counter and F is a parameter to influence the oscillation period.
The range of weights used in this process can be easily restricted to reflect
the preferences of the DM by specifying a maximal and minimal weight wmax

1

and wmin
1 , setting w1(t) = wmin

1 + (wmax
1 −wmin

1 ) · (sin(2πt/F ) + 1)/2 and
adjusting w2 accordingly. The effect is a population moving along the Pareto
front, covering the part of the front which is optimal with respect to the range
of possible weight values. Because the population will not converge but keep
oscillating along the front, it is necessary to collect all non-dominated solu-
tions found in an external archive. Note also the slight difference in effect to
restricting the maximal and minimal trade-off as do the other approaches in
this section. While the other approaches enforce these trade-offs locally, on
a one-to-one comparison, the dynamic weighting modifies the global fitness
function. Therefore, the approach runs into problems if the Pareto front is
concave, because a small weight change would require the population to make
a big “jump”.

6.6 Approaches Based on Marginal Contribution

Several authors have recently proposed to replace the crowding distance as
used in NSGA-II by a solution’s contribution to a given performance measure,



170 J. Branke

i.e., the loss in performance if that particular solution would be absent from
the population (Branke et al., 2004; Emmerich et al., 2005; Zitzler and Künzli,
2004). In the following, we call this a solution’s marginal contribution. The
algorithm then looks similar to Algorithm 2.

Algorithm 2 Marginal contribution MOEA
Initialize population of size µ
Determine Pareto-ranking
Compute marginal contributions
repeat

Select parents
Generate λ offspring by crossover and mutation and add them to the
population
Determine Pareto-ranking
Compute marginal contributions
while (population size > µ) do {Environmental selection}

From worst Pareto rank, remove individual with least marginal contri-
bution
Recompute marginal contributions

end while
until termination condition

In Zitzler and Künzli (2004) and Emmerich et al. (2005), the performance mea-
sure used is the hypervolume. The hypervolume is the area (in 2D) or part of
the objective space dominated by the solution set and bounded by a reference
point p, see Chapter 14. Figure 6.8 gives an example for the hypervolume,
and the parts used to rank the different solutions. The marginal contribution
is then calculated only based on the individuals with the same Pareto rank. In
the given example, Solution B has the largest marginal contribution. An obvi-
ous difficulty with hypervolume calculations is the determination of a proper
reference point p, as this strongly influences the marginal contribution of the
extreme solutions.

Zitzler et al. (2007) extend this idea by defining a weighting function over
the objective space, and use the weighted hypervolume as indicator. This al-
lows to incorporate preferences into the MOEA by giving preferred regions
of the objective space a higher weight. In Zitzler et al. (2007), three different
weighting schemes are proposed: a weight distribution which favors extremal
solutions, a weight distribution which favors one objective over the other (but
still keeping the best solution with respect to the less important objective),
and a weight distribution based on a reference point, which generates a ridge-
like function through the reference point (a, b) parallel to the diagonal. To
calculate the weighted hypervolume marginal contributions, numerical inte-
gration is used.
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Fig. 6.8. Marginal contributions as calculated according to the hypervolume per-
formance measure. The marginal contributions correspond to the respective shaded
areas.

Another measure discussed in Zitzler and Künzli (2004) is the ε-Indicator.
Basically, it measures the minimal distance by which an individual needs to
be improved in each objective to become non-dominated (or can be worsened
before it becomes dominated). Recently, Thiele et al. (2007) suggested to
weight the ε-Indicator by an achievement scalarizing function based on a user
specified reference point. The paper demonstrates that this allows to focus the
search on the area around the specified reference point, and find interesting
solutions faster.

Branke et al. (2004) proposed to use the “expected utility” as performance
measure, i.e., a solution is evaluated by the expected loss in utility if this
solution would be absent from the population. To calculate the expected util-
ity, Branke et al. (2004) assumed that the DM has a linear utility function
of the form u(x) = λf1(x) + (1 − λ)f2(x), and λ is unknown but follows a
uniform distribution over [0, 1]. The expected marginal utility (emu) of a solu-
tion x is then the utility difference between the best and second best solution,
integrated over all utility functions where solution x is best:

emu(x) =
∫ 1

λ=0

max{0, min
y
{u(y)− u(x)}}dλ (6.10)

While the expected marginal utility can be calculated exactly in the case
of two objectives, numerical integration is required for more objectives. The
result of using this performance measure is a natural focus of the search on
so-called “knees”, i.e., convex regions with strong curvature. In these regions,
an improvement in either objective requires a significant worsening of the
other objective, and such solutions are often preferred by DMs (Das, 1999).
An example of the resulting distribution of individuals along a Pareto front
with a single knee is shown in Figure 6.9. Although this approach does not
take into account individual user preferences explicitly, it favors the often
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preferred knee regions of the Pareto front. Additional explicit user preferences
can be taken into account by allowing the user to specify the probability
distribution for λ. For example, a probable preference for objective f2 could
be expressed by a linearly decreasing probability density of λ in the interval
[0..1], pλ(α) = 2− 2α. The effect of integrating such a preference information
can be seen in Figure 6.10.

6.7 Other Approaches

The method by Cvetkovic and Parmee (2002) assigns each criterion a weight
wi, and additionally requires a minimum level for dominance τ , which corre-
sponds to the concordance criterion of the ELECTRE method Figueira et al.
(2005). Accordingly, the following weighted dominance criterion is used as
dominance relation in the MOEA.

x �w y⇔
∑

i:fi(x)≤fi(y)

wi ≥ τ.

To facilitate specification of the required weights, they suggest a method to
turn fuzzy preferences into specific quantitative weights. However, since for
every criterion the dominance scheme only considers whether one solution is
better than another solution, and not by how much it is better, this approach
allows only a very coarse guidance and is difficult to control. A somewhat
similar dominance criterion has been proposed in Schmiedle et al. (2002). As

Fig. 6.9. Marginal contribution calculated according to expected utility result in a
concentration of the individuals in knee areas.
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Fig. 6.10. Resulting distribution of individuals with the marginal expected utility
approach and a linearly decreasing probability distribution for λ.

an additioanal feature, cycles in the preference relation graph are treated by
considering all alternatives in a cycle as equivalent, and merging them into a
single meta-node in the preference relation graph.

Hughes (2001) is concerned with MOEAs for noisy objective functions.
The main idea to cope with the noise is to rank individuals by the sum of
probabilities of being dominated by any other individual. To take preferences
into account, the paper proposes a kind of weighting of the domination prob-
abilities.

Some papers (Rekiek et al., 2000; Coelho et al., 2003; Parreiras and Vas-
concelos, 2005) use preference flow according to Promethee II (Brans and
Mareschal, 2005). Although this generates a preference order of the individu-
als, it does so depending on the different alternatives present in the population,
not in absolute terms as, e.g., a weighted aggregation would do.

6.8 Discussions and Conclusions

If a single solution is to be selected in a multiobjective optimization problem,
at some point during the process, the DM has to reveal his/her preferences.
Specifying these preferences a priori, i.e., before alternatives are known, often
means to ask too much of the DM. On the other hand, searching for all non-
dominated solutions as most MOEA do may result in a waste of optimization
efforts to find solutions that are clearly unacceptable to the DM.

This chapter overviewed intermediate approaches, that ask for partial pref-
erence information from the DM a priori, and then focus the search to those
regions of the Pareto optimal front that seem most interesting to the DM.
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That way, it is possible to provide a larger number of relevant solutions. It
seems intuitive that this should also allow to reduce the computation time,
although this aspect has explicitly only been shown in Branke and Deb (2005)
and Thiele et al. (2007).

Table 6.1 summarizes some aspects of some of the most prominent ap-
proaches. It lists the information required from the DM (Information), the
part of the MOEA modified (Modification), and whether the result is a
bounded region of the Pareto optimal front or a biased distribution (Influ-
ence). What method is most appropriate certainly depends on the application
(e.g., whether the Pareto front is convex or concave, or whether the DM has
a good conception of what is reachable) and on the kind of information the
DM feels comfortable to provide. Many of the ideas can be combined, allowing
the DM to provide preference information in different ways. For example, it
would be straightforward to combine a reference point based approach which
leads to sharp boundaries of the area in objective space considered as inter-
esting with a marginal contribution approach which alters the distribution

Table 6.1. Comparison of some selected approaches to incorporate partial user
preferences.

Name Information Modification Influence
Constraints

Coello (2002)
constraint miscellaneous region

Preference relation
Fonseca and Fleming (1993)

reference point dominance region

Reference point based
EMO, Deb et al. (2006)

reference point crowding dist. region

Light beam search based reference direction
EMO, Deb and Kumar (2007b) thresholds

crowding dist. region

Imprecise value function
Greenwood et al. (1997)

solution ranking dominance region

Guided MOEA maximal/minimal
Branke et al. (2001) trade-off

objectives region

Weighted integration weighting of
Zitzler et al. (2007) objective space

crowding dist. distribution

Marginal expected utility trade-off prob-
Branke et al. (2004) ability distribution

crowding dist. distribution

Biased crowding
Branke and Deb (2005)

desired trade-off crowding dist. distribution
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within this area. Furthermore, many of the ideas can be used in an interactive
manner, which will be the focus of the following chapter (Chapter 7).
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