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Abstract. We give an introduction to nonlinear multiobjective optimization by
covering some basic concepts as well as outlines of some methods. Because Pareto
optimal solutions cannot be ordered completely, we need extra preference informa-
tion coming from a decision maker to be able to select the most preferred solution
for a problem involving multiple conflicting objectives. Multiobjective optimization
methods are often classified according to the role of a decision maker in the solution
process. In this chapter, we concentrate on noninteractive methods where the deci-
sion maker either is not involved or specifies preference information before or after
the actual solution process. In other words, the decision maker is not assumed to
devote too much time in the solution process.

1.1 Introduction

Many decision and planning problems involve multiple conflicting objectives
that should be considered simultaneously (alternatively, we can talk about
multiple conflicting criteria). Such problems are generally known as multiple
criteria decision making (MCDM) problems. We can classify MCDM problems
in many ways depending on the characteristics of the problem in question. For
example, we talk about multiattribute decision analysis if we have a discrete,
predefined set of alternatives to be considered. Here we study multiobjec-
tive optimization (also known as multiobjective mathematical programming)
where the set of feasible solutions is not explicitly known in advance but it is
restricted by constraint functions. Because of the aims and scope of this book,
we concentrate on nonlinear multiobjective optimization (where at least one
function in the problem formulation is nonlinear) and ignore approaches de-
signed only for multiobjective linear programming (MOLP) problems (where
all the functions are linear).
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In multiobjective optimization problems, it is characteristic that no unique
solution exists but a set of mathematically equally good solutions can be iden-
tified. These solutions are known as nondominated, efficient, noninferior or
Pareto optimal solutions (defined in Preface). In the MCDM literature, these
terms are usually seen as synonyms. Multiobjective optimization problems
have been intensively studied for several decades and the research is based
on the theoretical background laid, for example, in (Edgeworth, 1881; Koop-
mans, 1951; Kuhn and Tucker, 1951; Pareto, 1896, 1906). As a matter of fact,
many ideas and approaches have their foundation in the theory of mathemat-
ical programming. For example, while formulating optimality conditions of
nonlinear programming, Kuhn and Tucker (1951) did also formulate them for
multiobjective optimization problems.

Typically, in the MCDM literature, the idea of solving a multiobjective
optimization problem is understood as helping a human decision maker (DM)
in considering the multiple objectives simultaneously and in finding a Pareto
optimal solution that pleases him/her the most. Thus, the solution process
needs some involvement of the DM in the form of specifying preference in-
formation and the final solution is determined by his/her preferences in one
way or the other. In other words, a more or less explicit preference model is
built from preference information and this model is exploited in order to find
solutions that better fit the DM’s preferences. Here we assume that a single
DM is involved. Group decision making with several DMs is discussed, e.g.,
in (Hwang and Lin, 1987; Fandel, 1990).

In general, the DM is a person who is assumed to know the problem con-
sidered and be able to provide preference information related to the objectives
and/or different solutions in some form. Besides a DM, we usually also need
an analyst when solving a multiobjective optimization problems. An analyst
is a person or a computer program responsible for the mathematical modelling
and computing sides of the solution process. The analyst is supposed to help
the DM at various stages of the solution process, in particular, in eliciting
preference information and in interpreting the information coming from the
computations (see also Chapter 15).

We can list several desirable properties of multiobjective optimization
methods. Among them are, for example, that the method should generate
Pareto optimal solutions reliably, it should help the DM to get an overview of
the set of Pareto optimal solutions, it should not require too much time from
the DM, the information exchanged (given by the method and asked from the
DM) should be understandable and not too demanding or complicated (cog-
nitively or otherwise) and the method should support the DM in finding the
most preferred solution as the final one so that the DM could be convinced
of its relative goodness. The last-mentioned aim could be characterized as
psychological convergence (differing from mathematical convergence which is
emphasized in mathematical programming).

Surveys of methods developed for multiobjective optimization problems
include (Chankong and Haimes, 1983; Hwang and Masud, 1979; Marler and
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Arora, 2004; Miettinen, 1999; Sawaragi et al., 1985; Steuer, 1986; Vincke,
1992). For example, in (Hwang and Masud, 1979; Miettinen, 1999), the meth-
ods are classified into the four following classes according to the role of the
DM in the solution process. Sometimes, there is no DM and her/his preference
information available and in those cases we must use so-called no-preference
methods. Then, the task is to find some neutral compromise solution with-
out any additional preference information. This means that instead of asking
the DM for preference information, some assumptions are made about what
a “reasonable” compromise could be like. In all the other classes, the DM is
assumed to take part in the solution process.

In a priori methods, the DM first articulates preference information and
one’s aspirations and then the solution process tries to find a Pareto optimal
solution satisfying them as well as possible. This is a straightforward approach
but the difficulty is that the DM does not necessarily know the possibilities
and limitations of the problem beforehand and may have too optimistic or pes-
simistic expectations. Alternatively, it is possible to use a posteriori methods,
where a representation of the set of Pareto optimal solutions is first gener-
ated and then the DM is supposed to select the most preferred one among
them. This approach gives the DM an overview of different solutions available
but if there are more than two objectives in the problem, it may be difficult
for the DM to analyze the large amount of information (because visualizing
the solutions is no longer as straightforward as in a biobjective case) and,
on the other hand, generating the set of Pareto optimal solutions may be
computationally expensive. Typically, evolutionary multiobjective optimiza-
tion algorithms (see Chapter 3) belong to this class but, when using them, it
may happen that the real Pareto optimal set is not reached. This means that
the solutions produced are nondominated in the current population but not
necessarily actually Pareto optimal (if, e.g., the search is stopped too early).

In this chapter, we concentrate on the three classes of noninteractive meth-
ods where either no DM takes part in the solution process or (s)he expresses
preference relations before or after the process. The fourth class devoted to
interactive methods is the most extensive class of methods and it will be cov-
ered in Chapter 2. In interactive approaches, an iterative solution algorithm
(which can be called a solution pattern) is formed and repeated (typically
several times). After each iteration, some information is given to the DM and
(s)he is asked to specify preference information (in the form that the method
in question can utilize, e.g., by answering some questions). One can say that
the analyst aims at determining the preference structure of the DM in an
interactive way. What is noteworthy is that the DM can specify and adjust
one’s preferences between each iteration and at the same time learn about the
interdependencies in the problem as well as about one’s own preferences.

Methods in different classes have their strengths and weaknesses and for
that reason different approaches are needed. Let us point out that the classifi-
cation we use here is not complete or absolute. Overlapping and combinations
of classes are possible and some methods can belong to more than one class
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depending on different interpretations. Other classifications are given, for ex-
ample, by Cohon (1985); Rosenthal (1985).

The rest of this chapter is organized as follows. In Section 1.2, we augment
the basic terminology and notation introduced in Preface. In other words, we
discuss some more concepts of multiobjective optimization including optimal-
ity and elements of a solution process. After that we introduce two widely used
basic methods, the weighting method and the ε-constraint method in Section
1.3. Sections 1.4–1.6 are devoted to some methods belonging to the three
above-described classes, that is, no-preference methods, a posteriori methods
and a priori methods, respectively. We also give references to further details.
In Section 1.7, we summarize some properties of the methods described and,
finally, we conclude with Section 1.8.

1.2 Some Concepts

1.2.1 Optimality

Continuous multiobjective optimization problems typically have an infinite
number of Pareto optimal solutions (whereas combinatorial multiobjective
optimization problems have a finite but possibly very large number of Pareto
optimal solutions) and the Pareto optimal set (consisting of the Pareto optimal
solutions) can be nonconvex and disconnected. Because the basic terminology
and concepts of multiobjective optimization were defined in Preface, we do
not repeat them here. However, it is important to note that the definitions
of Pareto optimality and weak Pareto optimality (given in Preface) introduce
global Pareto optimality and global weak Pareto optimality. Corresponding to
nonlinear programming, we can also define local (weak) Pareto optimality in
a small environment of the point considered. Let us emphasize that a locally
Pareto optimal objective vector has no practical relevance (if it is not global)
because it may be located in the interior of the feasible objective region (i.e.,
it is possible to improve all objective function values) whereas globally Pareto
optimal solutions are always located on its boundary. Thus, it is important to
use appropriate tools to get globally Pareto optimal solutions. We shall get
back to this when we discuss scalarizing functions.

Naturally, any globally Pareto optimal solution is locally Pareto optimal.
The converse is valid for convex problems, see, for example, (Miettinen, 1999).
A multiobjective optimization problem can be defined to be convex if the fea-
sible objective region is convex or if the feasible region is convex and the objec-
tive functions are quasiconvex with at least one strictly quasiconvex function.

Before we continue, it is important to briefly touch the existence of Pareto
optimal solutions. It is shown in (Sawaragi et al., 1985) that Pareto optimal
solutions exist if we assume that the (nonempty) feasible region is compact
and all the objective functions are lower semicontinuous. Alternatively, we
can formulate the assumption in the form that the feasible objective region is
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nonempty and compact. We do not go into details of theoretical foundations
here but assume in what follows that Pareto optimal solutions exist. Another
important question besides the existence of Pareto optimal solutions is the
stability of the Pareto optimal set with respect to perturbations of the feasible
region, objective functions or domination structures of the DM. This topic
is extensively discussed in (Sawaragi et al., 1985) and it is also touched in
Chapter 9. Let us mention that sometimes, like by Steuer (1986), Pareto
optimal decision vectors are referred to as efficient solutions and the term
nondominated solution is used for Pareto optimal objective vectors.

If the problem is correctly specified, the final solution of a rational DM
is always Pareto optimal. Thus, we can restrict our consideration to Pareto
optimal solutions. For that reason, it is important that the multiobjective
optimization method used can meet the following two needs: firstly, is must be
able to cover, that is, find any Pareto optimal solution and, secondly, generate
only Pareto optimal solutions (Sawaragi et al., 1985). However, weakly Pareto
optimal solutions are often relevant from a technical point of view because they
are sometimes easier to generate than Pareto optimal ones.

One more widely used optimality concepts is proper Pareto optimality.
The properly Pareto optimal set is a subset of the Pareto optimal set which
is a subset of the weakly Pareto optimal set. For an example of these three
concepts of optimality and their relationships, see Figure 1.1. In the figure,
the set of weakly Pareto optimal solutions is denoted by a bold line. The
endpoints of the Pareto optimal set are denoted by circles and the endpoints
of the properly Pareto optimal set by short lines (note that the sets can also
be disconnected).
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Fig. 1.1. Sets of properly, weakly and Pareto optimal solutions.
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As a matter of fact, Pareto optimal solutions can be divided into im-
properly and properly Pareto optimal ones depending on whether unbounded
trade-offs between objectives are allowed or not. Practically, a properly Pareto
optimal solution with a very high trade-off does not essentially differ from a
weakly Pareto optimal solution for a human DM. There are several definitions
for proper Pareto optimality and they are not equivalent. The first definition
was given by Kuhn and Tucker (1951) while they formulated optimality condi-
tions for multiobjective optimization. Some of the definitions are collected, for
example, in (Miettinen, 1999) and relationships between different definitions
are analyzed in (Sawaragi et al., 1985; Makarov and Rachkovski, 1999).

The idea of proper Pareto optimality is easily understandable in the defi-
nition of Geoffrion (1968): A decision vector x′ ∈ S is properly Pareto optimal
(in the sense of Geoffrion) if it is Pareto optimal and if there is some real
number M such that for each fi and each x ∈ S satisfying fi(x) < fi(x′)
there exists at least one fj such that fj(x′) < fj(x) and

fi(x′)− fi(x)
fj(x) − fj(x′)

≤M.

An objective vector is properly Pareto optimal if the corresponding decision
vector is properly Pareto optimal. We can see from the definition that a so-
lution is properly Pareto optimal if there is at least one pair of objectives for
which a finite decrement in one objective is possible only at the expense of
some reasonable increment in the other objective.

Let us point out that optimality can be defined in more general ways (than
above) with the help of ordering cones (pointed convex cones) D defined in
Rk. The cone D can be used to induce a partial ordering in Z. In other words,
for two objective vectors z and z′ we can say that z′ dominates z if

z ∈ z′ + D \ {0}.

Now we can say that a feasible decision vector is efficient and the correspond-
ing objective vector is nondominated with respect to D if there exists no
other feasible objective vector that dominates it. This definition is equivalent
to Pareto optimality if we set

D = Rk
+ = {z ∈ Rk | zi ≥ 0 for i = 1, . . . , k},

that is, D is the nonnegative orthant of Rk. For further details of ordering
cones and different spaces we refer, for example, to (Jahn, 2004; Luc, 1989)
and references therein.

As said, we can give an equivalent formulation to the definition of Pareto
optimality (given in Preface) as follows: A feasible decision vector x∗ ∈ S and
the corresponding objective vector z∗ = f(x∗) ∈ Z are Pareto optimal if

z∗ −Rk
+ \ {0}) ∩ Z = ∅.
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For a visualization of this, see Figure 1.1, where a shifted cone at z∗ is il-
lustrated. This definition clearly shows why Pareto optimal objective vectors
must be located on the boundary of the feasible objective region Z. After hav-
ing introduced the definition of Pareto optimality in this form, we can give
another definition for proper Pareto optimality. This definition (introduced
by Wierzbicki (1986)) is both computationally usable and intuitive.

The above-defined vectors x∗ ∈ S and z∗ ∈ Z are ρ-properly Pareto opti-
mal if

z∗ −Rk
ρ \ {0}) ∩ Z = ∅,

where Rk
ρ is a slightly broader cone than Rk

+. Now, trade-offs are bounded
by ρ and 1/ρ and we have a relationship to M used in Geoffrion’s definition
as M = 1 + 1/ρ. For details, see, for example (Miettinen, 1999; Wierzbicki,
1986).

1.2.2 Solution Process and Some Elements in It

Mathematically, we cannot order Pareto optimal objective vectors because the
objective space is only partially ordered. However, it is generally desirable to
obtain one point as a final solution to be implemented and this solution should
satisfy the preferences of the particular DM. Finding a solution to problem (1)
defined in Preface is called a solution process . As mentioned earlier, it usually
involves co-operation of the DM and an analyst. The analyst is supposed to
know the specifics of the methods used and help the DM at various stages
of the solution process. It is important to emphasize that the DM is not
assumed to know MCDM or methods available but (s)he is supposed to be an
expert in the problem domain, that is, understand the application considered.
Sometimes, finding the set of Pareto optimal solutions is referred to as vector
optimization. However, here by solving a multiobjective optimization problem
we mean finding a feasible and Pareto optimal decision vector that satisfies
the DM. Assuming such a solution exists, it is called a final solution.

The concepts of ideal and nadir objective vectors were defined in Preface
for getting information about the ranges of the objective function values in
the Pareto optimal set; provided the objective functions are bounded over
the feasible region. As mentioned then, there is no constructive method for
calculating the nadir objective vector for nonlinear problems. A payoff table
(suggested by Benayoun et al. (1971)) is often used but it is not a reliable way
as demonstrated, for example, by Korhonen et al. (1997); Weistroffer (1985).
The payoff table has k objective vectors as its rows where objective function
values are calculated at points optimizing each objective function individually.
In other words, components of the ideal objective vector are located on the
diagonal of the payoff table. An estimate of the nadir objective vector is
obtained by finding the worst objective values in each column. This method
gives accurate information only in the case of two objectives. Otherwise, it
may be an over- or an underestimation (because of alternative optima, see,
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e.g., (Miettinen, 1999) for details). Let us mention that the nadir objective
vector can also be estimated using evolutionary algorithms (Deb et al., 2006).

Multiobjective optimization problems are usually solved by scalarization.
Scalarization means that the problem involving multiple objectives is con-
verted into an optimization problem with a single objective function or a
family of such problems. Because this new problem has a real-valued objec-
tive function (that possibly depends on some parameters coming, e.g., from
preference information), it can be solved using appropriate single objective
optimizers. The real-valued objective function is often referred to as a scalar-
izing function and, as discussed earlier, it is justified to use such scalarizing
functions that can be proven to generate Pareto optimal solutions. (However,
sometimes it may be computationally easier to generate weakly Pareto op-
timal solutions.) Depending on whether a local or a global solver is used,
we get either locally or globally Pareto optimal solutions (if the problem is
not convex). As discussed earlier, locally Pareto optimal objective vectors are
not of interest and, thus, we must pay attention that an appropriate solver
is used. We must also keep in mind that when using numerical optimization
methods, the solutions obtained are not necessarily optimal in practice (e.g.,
if the method used does not converge properly or if the global solver fails in
finding the global optimum).

It is sometimes assumed that the DM makes decisions on the basis of an
underlying function. This function representing the preferences of the DM
is called a value function v : Rk → R (Keeney and Raiffa, 1976). In some
methods, the value function is assumed to be known implicitly and it has
been important in the development of solution methods and as a theoretical
background. A utility function is often used as a synonym for a value function
but we reserve that concept for stochastic problems which are not treated
here. The value function is assumed to be non-increasing with the increase
of objective values because we here assume that all objective functions are
to be minimized, while the value function is to be maximized. This means
that the preference of the DM will not decrease but will rather increase if the
value of an objective function decreases, while all the other objective values
remain unchanged (i.e., less is preferred to more). In this case, the solution
maximizing v can be proven to be Pareto optimal. Regardless of the existence
of a value function, it is usually assumed that less is preferred to more by
the DM.

Instead of as a maximum of a value function, a final solution can be un-
derstood as a satisficing one. Satisficing decision making means that the DM
does not intend to maximize any value function but tries to achieve certain as-
pirations (Sawaragi et al., 1985). A Pareto optimal solution which satisfies all
the aspirations of the DM is called a satisficing solution. In some rare cases,
DMs may regard solutions satisficing even if they are not Pareto optimal.
This may, for example, means that not all relevant objectives are explicitly
expressed. However, here we assume DMs to be rational and concentrate on
Pareto optimal solutions.
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Not only value functions but, in general, any preference model of a DM
may be explicit or implicit in multiobjective optimization methods. Exam-
ples of local preference models include aspiration levels and different distance
measures. During solution processes, various kinds of information can be so-
licited from the DM. Aspiration levels z̄i (i = 1, . . . , k) are such desirable or
acceptable levels in the objective function values that are of special interest
and importance to the DM. The vector z̄ ∈ Rk consisting of aspiration levels
is called a reference point .

According to the definition of Pareto optimality, moving from one Pareto
optimal solution to another necessitates trading off. This is one of the ba-
sic concepts in multiobjective optimization. A trade-off reflects the ratio of
change in the values of the objective functions concerning the increment of one
objective function that occurs when the value of some other objective func-
tion decreases. For details, see, e.g., (Chankong and Haimes, 1983; Miettinen,
1999) and Chapters 2 and 9.

As mentioned earlier, it is sometimes easier to generate weakly Pareto op-
timal solutions than Pareto optimal ones (because some scalarizing functions
produce weakly Pareto optimal solutions). There are different ways to get so-
lutions that can be proven to be Pareto optimal. Benson (1978) has suggested
to check the Pareto optimality of the decision vector x∗ ∈ S by solving the
problem

maximize
∑k

i=1 εi

subject to fi(x) + εi = fi(x∗) for all i = 1, . . . , k,
εi ≥ 0 for all i = 1, . . . , k,
x ∈ S,

(1.1)

where both x ∈ Rn and εεε ∈ Rk
+ are variables. If the optimal objective func-

tion value of (1.1) is zero, then x∗ can be proven to be Pareto optimal and
if the optimal objective function value is finite and nonzero corresponding to
a decision vector x′, then x′ is Pareto optimal. Note that the equality con-
straints in (1.1) can be replaced by inequalities fi(x) + εi ≤ fi(x∗). However,
we must point out that problem (1.1) is computationally badly conditioned
because it has only one feasible solution (εi = 0 for each i) if x∗ is Pareto op-
timal and computational difficulties must be handled in practice, for example,
using penalty functions. We shall introduce other ways to guarantee Pareto
optimality in what follows in connection with some scalarizing functions.

Let us point out that in this chapter we do not concentrate on the theory
behind multiobjective optimization, necessary and sufficient optimality condi-
tions, duality results, etc. Instead, we refer, for example, to (Jahn, 2004; Luc,
1989; Miettinen, 1999; Sawaragi et al., 1985) and references therein.

In the following sections, we briefly describe some methods for solving
multiobjective optimization problems. We introduce several philosophies and
ways of approaching the problem. As mentioned in the introduction, we con-
centrate on the classes devoted to no-preference methods, a posteriori methods
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and a priori methods and remind that overlapping and combinations of classes
are possible because no classification can fully cover the plethora of existing
methods.

Methods in each class have their strengths and weaknesses and selecting
a method to be used should be based on the desires and abilities of the DM
as well as properties of the problem in question. Naturally, an analyst plays
a crusial role when selecting a method because (s)he is supposed to know
the properties of different methods available. Her/his recommendation should
fit the needs and the psychological profile of the DM in question. In differ-
ent methods, different types of information are given to the DM, the DM
is assumed to specify preference information in different ways and different
scalarizing functions are used. Besides the references given in each section, fur-
ther details about the methods to be described, including proofs of theorems
related to optimality, can be found in (Miettinen, 1999).

1.3 Basic Methods

Before we concentrate on the three classes of methods described in the in-
troduction, we first discuss two well-known methods that can be called basic
methods because they are so widely used. Actually, in many applications one
can see them being used without necessarily recognizing them as multiobjec-
tive optimization methods. In other words, the difference between a modelling
and an optimization phase are often blurred and these methods are used in
order to convert the problem into a form where one objective function can be
optimized with single objective solvers available. The reason for this may be
that methods of single objective optimization are more widely known as those
of multiobjective optimization. One can say that these two basic methods are
the ones that first come to one’s mind if there is a need to optimize multiple
objectives simultaneously. Here we consider their strengths and weaknesses
(which the users of these methods are not necessarily aware of) as well as
show that many other (more advanced) approaches exist.

1.3.1 Weighting Method

In the weighting method (see, e.g., (Gass and Saaty, 1955; Zadeh, 1963)), we
solve the problem

minimize
∑k

i=1 wifi(x)
subject to x ∈ S,

(1.2)

where wi ≥ 0 for all i = 1, . . . , k and, typically,
∑k

i=1 wi = 1. The solution
of (1.2) can be proven to be weakly Pareto optimal and, furthermore, Pareto
optimal if we have wi > 0 for all i = 1, . . . , k or if the solution is unique (see,
e.g., (Miettinen, 1999)).
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The weighting method can be used as an a posteriori method so that
different weights are used to generate different Pareto optimal solutions and
then the DM is asked to select the most satisfactory one. Alternatively, the
DM can be asked to specify the weights in which case the method is used as
an a priori method.

As mentioned earlier, it is important in multiobjective optimization that
Pareto optimal solutions are generated and that any Pareto optimal solution
can be found. In this respect, the weighting method has a serious shortcoming.
It can be proven that any Pareto optimal solution can be found by altering the
weights only if the problem is convex. Thus, it may happen that some Pareto
optimal solutions of nonconvex problems cannot be found no matter how the
weights are selected. (Conditions under which the whole Pareto optimal set
can be generated by the weighting method with positive weights are presented
in (Censor, 1977).) Even though linear problems are not considered here, we
should point out that despite MOLP problems being convex, the weighting
method may not behave as expected even when solving them. This is because,
when altering the weights, the method may jump from one vertex to another
leaving intermediate solutions undetected. This is explained by the fact that
linear solvers typically produce vertex solutions.

Unfortunately, people who use the weighting method do not necessarily
know that that it does not work correctly for nonconvex problems. This is
a serious and important aspect because it is not always easy to check the
convexity in real applications if the problem is based, for example, on some
simulation model or solving some systems like systems of partial differen-
tial equations. If the method is used in nonconvex problems for generating a
representation of the Pareto optimal set, the DM gets a completely mislead-
ing impression about the feasible solutions available when some parts of the
Pareto optimal set remain uncovered.

It is advisable to normalize the objectives with some scaling so that dif-
ferent magnitudes do not confuse the method. Systematic ways of perturbing
the weights to obtain different Pareto optimal solutions are suggested, e.g.,
in (Chankong and Haimes, 1983). However, as illustrated by Das and Den-
nis (1997), an evenly distributed set of weights does not necessarily produce
an evenly distributed representation of the Pareto optimal set, even if the
problem is convex.

On the other hand, if the method is used as an a priori method, the
DM is expected to be able to represent her/his preferences in the form of
weights. This may be possible if we assume that the DM has a linear value
function (which then corresponds to the objective function in problem (1.2)).
However, in general, the role of the weights may be greatly misleading. They
are often said to reflect the relative importance of the objective functions
but, for example, Roy and Mousseau (1996) show that it is not at all clear
what underlies this notion. Moreover, the relative importance of objective
functions is usually understood globally, for the entire decision problem, while
many practical applications show that the importance typically varies for
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different objective function values, that is, the concept is meaningful only
locally. (For more discussion on ordering objective functions by importance,
see, e.g., (Podinovski, 1994).)

One more reason why the DM may not get satisfactory solutions with the
weighting method is that if some of the objective functions correlate with
each other, then changing the weights may not produce expected solutions at
all but, instead, seemingly bad weights may result with satisfactory solutions
and vice versa (see, e.g., (Steuer, 1986)). This is also shown in (Tanner, 1991)
with an example originally formulated by P. Korhonen. With this example of
choosing a spouse (where three candidates are evaluated with five criteria) it
is clearly demonstrated how weights representing the preferences of the DM
(i.e., giving the clearly biggest weight to the most important criterion) result
with a spouse who is the worst in the criterion that the DM regarded as the
most important one. (In this case, the undesired outcome may be explained
by the compensatory character of the weighting method.)

In particular for MOLP problems, weights that produce a certain Pareto
optimal solution are not necessarily unique and, thus, dramatically different
weights may produce similar solutions. On the other hand, it is also possible
that a small change in the weights may cause big differences in objective
values. In all, we can say that it is not necessarily easy for the DM (or the
analyst) to control the solution process with weights because weights behave
in an indirect way. Then, the solution process may become an interactive one
where the DM tries to guess such weights that would produce a satisfactory
solution and this is not at all desirable because the DM can not be properly
supported and (s)he is likely to get frustrated. Instead, in such cases it is
advisable to use real interactive methods where the DM can better control
the solution process with more intuitive preference information. For further
details, see Chapter 2.

1.3.2 ε-Constraint Method

In the ε-constraint method, one of the objective functions is selected to be
optimized, the others are converted into constraints and the problem gets the
form

minimize f�(x)
subject to fj(x) ≤ εj for all j = 1, . . . , k, j �= �,

x ∈ S,
(1.3)

where � ∈ {1, . . . , k} and εj are upper bounds for the objectives (j �= �). The
method has been introduced in (Haimes et al., 1971) and widely discussed in
(Chankong and Haimes, 1983).

As far as optimality is concerned, the solution of problem (1.3) can be
proven to always be weakly Pareto optimal. On the other hand, x∗ ∈ S can be
proven to be Pareto optimal if and only if it solves (1.3) for every � = 1, . . . , k,
where εj = fj(x∗) for j = 1, . . . , k, j �= �. In addition, a unique solution of
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(1.3) can be proven to be Pareto optimal for any upper bounds. In other
words, to ensure Pareto optimality we must either solve k different problems
(and solving many problems for each Pareto optimal solution increases com-
putational cost) or obtain a unique solution (which is not necessarily easy to
verify). However, a positive fact is that finding any Pareto optimal solution
does not necessitate convexity (as was the case with the weighting method).
In other words, this method works for both convex and nonconvex problems.

In practice, it may be difficult to specify the upper bounds so that the re-
sulting problem (1.3) has solutions, that is, the feasible region will not become
empty. This difficulty is emphasized when the number of objective functions
increases. Systematic ways of perturbing the upper bounds to obtain differ-
ent Pareto optimal solutions are suggested in (Chankong and Haimes, 1983).
In this way, the method can be used as an a posteriori method. Information
about the ranges of objective functions in the Pareto optimal set is useful in
perturbing the upper bounds. On the other hand, it is possible to use the
method in an a priori way and ask the DM to specify the function to be op-
timized and the upper bounds. Specifying upper bounds can be expected to
be easier for the DM than, for example, weights because objective function
values are understandable as such for the DM. However, the drawback here
is that if there is a promising solution really close to the bound but on the
infeasible side, it will never be found. In other words, the bounds are a very
stiff way of specifying preference information.

In what follows, we discuss three method classes described in the intro-
duction and outline some methods belonging to each of them. Again, proofs
of theorems related to optimality as well as further details about the methods
can be found in (Miettinen, 1999).

1.4 No-Preference Methods

In no-preference methods, the opinions of the DM are not taken into con-
sideration in the solution process. Thus, the problem is solved using some
relatively simple method and the idea is to find some compromise solution
typically ‘in the middle’ of the Pareto optimal set because there is no pref-
erence information available to direct the solution process otherwise. These
methods are suitable for situations where there is no DM available or (s)he
has no special expectations of the solution. They can also be used to produce
a starting point for interactive methods.

One can question the name of no-preference methods because there may
still exist an underlying preference model (e.g., the acceptance of a global
criterion by a DM, like the one in the method to be described in the next
subsection, can be seen as a preference model). However, we use the term of no-
preference method in order to emphasize the fact that no explicit preferences
from the DM are available and and, thus, they cannot be used. These methods
can also be referred to as methods of neutral preferences.
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1.4.1 Method of Global Criterion

In the method of global criterion or compromise programming (Yu, 1973;
Zeleny, 1973), the distance between some desirable reference point in the
objective space and the feasible objective region is minimized. The analyst
selects the reference point used and a natural choice is to set it as the ideal
objective vector. We can use, for example, the Lp-metric or the Chebyshev
metric (also known as the L∞-metric) to measure the distance to the ideal
objective vector z� or the utopian objective vector z�� (see definitions in
Preface) and then we need to solve the problem

minimize
(∑k

i=1

∣
∣fi(x) − z�

i

∣
∣p
)1/p

subject to x ∈ S,
(1.4)

(where the exponent 1/p can be dropped) or

minimize maxi=1,...,k

[ |fi(x) − z�
i |
]

subject to x ∈ S,
(1.5)

respectively. Note that if we here know the real ideal objective vector, we
can ignore the absolute value signs because the difference is always positive
(according to the definition of the ideal objective vector).

It is demonstrated, for example, in (Miettinen, 1999) that the choice of the
distance metric affects the solution obtained. We can prove that the solution
of (1.4) is Pareto optimal and the solution of (1.5) is weakly Pareto optimal.
Furthermore, the latter can be proven to be Pareto optimal if it is unique.

Let us point out that if the objective functions have different magnitudes,
the method works properly only if we scale the objective functions to a uni-
form, dimensionless scale. This means, for example, that we divide each ab-
solute value term involving fi by the corresponding range of fi in the Pareto
optimal set characterized by nadir and utopian objective vectors (defined in
Preface), that is, by znad

i − z��
i (for each i). As the utopian objective vector

dominates all Pareto optimal solutions, we use the utopian and not the ideal
objective values in order to avoid dividing by zero in all occasions. (Connec-
tions of this method to utility or value functions are discussed in (Ballestero
and Romero, 1991).)

1.4.2 Neutral Compromise Solution

Another simple way of generating a solution without the involvement of the
DM is suggested in (Wierzbicki, 1999) and referred to as a neutral compromise
solution. The idea is to project a point located ‘somewhere in the middle’ of
the ranges of objective values in the Pareto optimal set to become feasible.
Components of such a point can be obtained as the average of the ideal (or
utopian) and nadir values of each objective function. We can get a neutral
compromise solution by solving the problem
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minimize maxi=1,...,k

[ fi(x)−((z�
i +znad

i )/2)

znad
i −z��

i

]

subject to x ∈ S.
(1.6)

As can be seen, this problem uses the utopian and the nadir objective vectors
or other reliable approximations about the ranges of the objective functions
in the Pareto optimal set for scaling purposes (in the denominator), as men-
tioned above. The solution is weakly Pareto optimal. We shall later return to
scalarizing functions of this type later and discuss how Pareto optimality can
be guaranteed. Naturally, the average in the numinator can be taken between
components of utopian and nadir objective vectors, instead of the ideal and
nadir ones.

1.5 A Posteriori Methods

In what follows, we assume that we have a DM available to take part in the
solution process. A posteriori methods can be called methods for generating
Pareto optimal solutions . Because there usually are infinitely many Pareto
optimal solutions, the idea is to generate a representation of the Pareto opti-
mal set and present it to the DM who selects the most satisfactory solution
of them as the final one. The idea is that once the DM has seen an overview
of different Pareto optimal solutions, it is easier to select the most preferred
one. The inconveniences here are that the generation process is usually com-
putationally expensive and sometimes in part, at least, difficult. On the other
hand, it may be hard for the DM to make a choice from a large set of alterna-
tives. An important question related to this is how to represent and display
the alternatives to the DM in an illustrative way (Miettinen, 2003, 1999).
Plotting the objective vectors on a plane is a natural way of displaying them
only in the case of two objectives. In that case, the Pareto optimal set can be
generated parametrically (see, e.g., (Benson, 1979; Gass and Saaty, 1955)).
The problem becomes more complicated with more objectives. For visualiz-
ing sets of Pareto optimal solutions, see Chapter 8. Furthermore, visualization
and approximation of Pareto optimal sets are discussed in Chapter 9. It is also
possible to use so-called box-indices to represent Pareto optimal solutions to
be compared by using a rough enough scale in order to let the DM easily rec-
ognize the main characteristics of the solutions at a glance (Miettinen et al.,
2008).

Remember that the weighting method and the ε-constraint method can
be used as a posteriori methods. Next we outline some other methods in this
class.

1.5.1 Method of Weighted Metrics

In the method of weighted metrics, we generalize the idea of the method
of global criterion where the distance between some reference point and the
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feasible objective region is minimized. The difference is that we can produce
different solutions by weighting the metrics. The weighted approach is also
sometimes called compromise programming (Zeleny, 1973).

Again, the solution obtained depends greatly on the distance measure used.
For 1 ≤ p <∞, we have a problem

minimize
(∑k

i=1 wi

(
fi(x)− z�

i

)p
)1/p

subject to x ∈ S.
(1.7)

The exponent 1/p can be dropped. Alternatively, we can use a weighted Cheby-
shev problem

minimize maxi=1,...,k

[
wi(fi(x)− z�

i )
]

subject to x ∈ S.
(1.8)

Note that we have here ignored the absolute values assuming we know the
global ideal (or utopian) objective vector. As far as optimality is concerned,
we can prove that the solution of (1.7) is Pareto optimal if either the solution
is unique or all the weights are positive. Furthermore, the solution of (1.8)
is weakly Pareto optimal for positive weights. Finally, (1.8) has at least one
Pareto optimal solution. On the other hand, convexity of the problem is needed
in order to be able to prove that every Pareto optimal solution can be found
by (1.7) by altering the weights. However, any Pareto optimal solution can
be found by (1.8) assuming that the utopian objective vector z�� is used as a
reference point.

The objective function in (1.8) is nondifferentiable and, thus single objec-
tive optimizers using gradient information cannot be used to solve it. But if
all the functions in the problem considered are differentiable, we can use an
equivalent differentiable variant of (1.8) by introducing one more variable and
new constraints of the form

minimize α
subject to α ≥ wi(fi(x) − z�

i ) for all i = 1, . . . , k,
x ∈ S,

(1.9)

where both x ∈ Rn and α ∈ R are variables. With this formulation, single
objective solvers assuming differentiability can be used.

Because problem (1.8) with z�� seems a promising approach (as it can
find any Pareto optimal solution), it would be nice to be able to avoid weakly
Pareto optimal solutions. This can be done by giving a slight slope to the
contours of the scalarizing function used (see, e.g., (Steuer, 1986)). In other
words, we can formulate a so-called augmented Chebyshev problem in the form

minimize maxi=1,...,k

[
wi(fi(x)− z��

i )
]
+ ρ

∑k
i=1(fi(x)− z��

i )
subject to x ∈ S,

(1.10)

where ρ is a sufficiently small positive scalar. Strictly speaking, (1.10) gen-
erates properly Pareto optimal solutions and any properly Pareto optimal
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solution can be found (Kaliszewski, 1994). In other words, we are not actually
able to find any Pareto optimal solution but only such solutions having a finite
trade-off. However, when solving real-life problems, it is very likely that the
DM is not interested in improperly Pareto optimal solutions after all. Here ρ
corresponds to the bound for desirable or acceptable trade-offs (see definition
of ρ-proper Pareto optimality in Section 1.2.1). Let us mention that an aug-
mented version of the differentiable problem formulation (1.9) is obtained by
adding the augmentation term (i.e., the term multiplied by ρ) to the objective
function α.

Alternatively, it is possible to generate provably Pareto optimal solutions
by solving two problems in a row. In other words, problem (1.8) is first solved
and then another optimization problem is solved in the set of optimal solutions
to (1.8). To be more specific, let x∗ be the solution of the first problem (1.8).
Then the second problem is the following

minimize
∑k

i=1(fi(x)− z��
i )

subject to maxi=1,...,k

[
wi(fi(x) − z��

i )
] ≤ maxi=1,...,k

[
wi(fi(x∗)− z��

i )
]
,

x ∈ S.

One should mention that the resulting problem may be computationally badly
conditioned if the problem has only one feasible solution. With this so-called
lexicographic approach it is possible to reach any Pareto optimal solution. Un-
fortunately, the computational cost increases because two optimization prob-
lems must be solved for each Pareto optimal solution (Miettinen et al., 2006).

1.5.2 Achievement Scalarizing Function Approach

Scalarizing functions of a special type are called achievement (scalarizing)
functions . They have been introduced, for example, in (Wierzbicki, 1982,
1986). These functions are based on an arbitrary reference point z̄ ∈ Rk and
the idea is to project the reference point consisting of desirable aspiration lev-
els onto the set of Pareto optimal solutions. Different Pareto optimal solutions
can be produced with different reference points. The difference to the previous
method (i.e., method of weighted metrics) is that no distance metric is used
and the reference point does not have to be fixed as the ideal or utopian ob-
jective vector. Because of these characteristics, Pareto optimal solutions are
obtained no matter how the reference point is selected in the objective space.

Achievement functions can be formulated in different ways. As an example
we can mention the problem

minimize maxi=1,...,k

[
wi(fi(x) − z̄i)

]
+ ρ

∑k
i=1(fi(x)− z̄i)

subject to x ∈ S,
(1.11)

where w is a fixed normalizing factor, for example, wi = 1/(znad
i − z��

i ) for
all i and ρ > 0 is an augmentation multiplier as in (1.10). And corresponding
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to (1.10), we can prove that solutions of this problem are properly Pareto
optimal and any properly Pareto optimal solution can be found. To be more
specific, the solutions obtained are ρ-properly Pareto optimal (as defined in
Section 1.2). If the augmentation term is dropped, the solutions can be proven
to be weakly Pareto optimal. Pareto optimality can also be guaranteed and
proven if the lexicographic approach described above is used. Let us point
out that problem (1.6) uses an achievement scalarizing function where the
reference point is fixed. The problem could be augmented as in (1.11).

Note that when compared to the method of weighted metrics, we do not use
absolute value signs here in any case. No matter which achievement function
formulation is used, the idea is the same: if the reference point is feasible,
or actually to be more exact, z̄ ∈ Z + Rk

+, then the minimization of the
achievement function subject to the feasible region allocates slack between
the reference point and Pareto optimal solutions producing a Pareto optimal
solution. In other words, in this case the reference point is a Pareto optimal
solution for the problem in question or it is dominated by some Pareto optimal
solution. On the other hand, if the reference point is infeasible, that is, z̄ /∈
Z+Rk

+, then the minimization produces a solution that minimizes the distance
between z̄ and Z. In both cases, we can say that we project the reference point
on the Pareto optimal set. Discussion on how the projection direction can be
varied in the achievement function can be found in (Luque et al., 2009).

As mentioned before, achievement functions can be formulated in many
ways and they can be based on so-called reservation levels, besides aspiration
levels. For more details about them, we refer, for example, to (Wierzbicki,
1982, 1986, 1999, 2000) and Chapter 2.

1.5.3 Approximation Methods

During the years, many methods have been developed for approximating the
set of Pareto optimal solutions in the MCDM literature. Here we do not go
into their details. A survey of such methods is given in (Ruzika and Wiecek,
2005). Other approximation algorithms (not included there) are introduced
in (Lotov et al., 2004). For more information about approximation methods
we also refer to Chapter 9.

1.6 A Priori Methods

In a priori methods, the DM must specify her/his preference information (for
example, in the form of aspirations or opinions) before the solution process. If
the solution obtained is satisfactory, the DM does not have to invest too much
time in the solution process. However, unfortunately, the DM does not neces-
sarily know beforehand what it is possible to attain in the problem and how
realistic her/his expectations are. In this case, the DM may be disappointed
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at the solution obtained and may be willing to change one’s preference in-
formation. This easily leads to a desire of using an interactive approach (see
Chapter 2). As already mentioned, the basic methods introduced earlier can
be used as a priori methods. It is also possible to use the achievement scalar-
izing function approach as an a priori method where the DM specifies the
reference point and the Pareto optimal solution closest to it is generated.
Here we briefly describe three other methods.

1.6.1 Value Function Method

The value function method (Keeney and Raiffa, 1976) was already mentioned
in Section 1.2.2. It is an excellent method if the DM happens to know an
explicit mathematical formulation for the value function and if that function
can capture and represent all her/his preferences. Then the problem to be
solved is

maximize v(f(x))
subject to x ∈ S.

Because the value function provides a complete ordering in the objective space,
the best Pareto optimal solution is found in this way. Unfortunately, it may be
difficult, if not impossible, to get that mathematical expression of v. For ex-
ample, in (deNeufville and McCord, 1984), the inability to encode the DM’s
underlying value function reliably is demonstrated by experiments. On the
other hand, the value function can be difficult to optimize because of its pos-
sible complicated nature. Finally, even if it were possible for the DM to express
her/his preferences globally as a value function, the resulting preference struc-
ture may be too simple since value functions cannot represent intransitivity
or incomparability. In other words, the DM’s preferences must satisfy certain
conditions (like consistent preferences) so that a value function can be defined
on them. For more discussion see, for example, (Miettinen, 1999).

1.6.2 Lexicographic Ordering

In lexicographic ordering (Fishburn, 1974), the DM must arrange the objec-
tive functions according to their absolute importance. This means that a more
important objective is infinitely more important than a less important objec-
tive. After the ordering, the most important objective function is minimized
subject to the original constraints. If this problem has a unique solution, it is
the final one and the solution process stops. Otherwise, the second most im-
portant objective function is minimized. Now, a new constraint is introduced
to guarantee that the most important objective function preserves its optimal
value. If this problem has a unique solution, the solution process stops. Oth-
erwise, the process goes on as above. (Let us add that computationally it is
not trivial to check the uniqueness of solutions. Then the next problem must
be solved just to be sure. However, if the next problem has a unique solution,
the problem is computationally badly conditioned, as discussed earlier.)
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The solution of lexicographic ordering can be proven to be Pareto optimal.
The method is quite simple and one can claim that people often make decisions
successively. However, the DM may have difficulties in specifying an absolute
order of importance. Besides, the method is very rough and it is very likely
that the process stops before less important objective functions are taken
into consideration. This means that all the objectives that were regarded as
relevant while formulating the problem are not taken into account at all, which
is questionable.

The notion of absolute importance is discussed in (Roy and Mousseau,
1996). Note that lexicographic ordering does not allow a small increment of
an important objective function to be traded off with a great decrement of
a less important objective. Yet, the DM might find this kind of trading off
appealing. If this is the case, lexicographic ordering is not likely to produce a
satisficing solution.

1.6.3 Goal Programming

Goal programming is one of the first methods expressly created for multiob-
jective optimization (Charnes et al., 1955; Charnes and Cooper, 1961). It has
been originally developed for MOLP problems (Ignizio, 1985).

In goal programming, the DM is asked to specify aspiration levels z̄i (i =
1, . . . , k) for the objective functions. Then, deviations from these aspiration
levels are minimized. An objective function jointly with an aspiration level is
referred to as a goal . For minimization problems, goals are of the form fi(x) ≤
z̄i and the aspiration levels are assumed to be selected so that they are not
achievable simultaneously. After the goals have been formed, the deviations
δi = max [0, fi(x) − z̄i] of the objective function values are minimized.

The method has several variants. In the weighted goal programming ap-
proach (Charnes and Cooper, 1977), the weighted sum of the deviations is
minimized. This means that in addition to the aspiration levels, the DM must
specify positive weights. Then we solve a problem

minimize
∑k

i=1 wiδi

subject to fi(x) − δi ≤ z̄i for all i = 1, . . . , k,
δi ≥ 0 for all i = 1, . . . , k,
x ∈ S,

(1.12)

where x ∈ Rn and δi (i = 1, . . . , k) are the variables.
On the other hand, in the lexicographic goal programming approach, the

DM must specify a lexicographic order for the goals in addition to the aspira-
tion levels. After the lexicographic ordering, the problem with the deviations
as objective functions is solved lexicographically subject to the constraints
of (1.12) as explained in Section 1.6.2. It is also possible to use a combina-
tion of the weighted and the lexicographic approaches. In this case, several
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objective functions may belong to the same class of importance in the lexico-
graphic order. In each priority class, a weighted sum of the deviations is min-
imized. Let us also mention a so-called min-max goal programming approach
(Flavell, 1976) where the maximum of deviations is minimized and meta-goal
programming (Rodríguez Uría et al., 2002), where different variants of goal
programming are incorporated.

Let us next discuss optimality. The solution of a goal programming prob-
lem can be proven to be Pareto optimal if either the aspiration levels form a
Pareto optimal reference point or all the variables δi have positive values at
the optimum. In other words, if the aspiration levels form a feasible point, the
solution is equal to that reference point which is not necessarily Pareto op-
timal. We can say that the basic formulation of goal programming presented
here works only if the aspiration levels are overoptimistic enough. Pareto op-
timality of the solutions obtained is discussed, for example, in (Jones et al.,
1998).

Goal programming is a very widely used and popular solution method.
Goal-setting is an understandable and easy way of making decisions. The
specification of the weights or the lexicographic ordering may be more diffi-
cult (the weights have no direct physical meaning). For further details, see
(Romero, 1991). Let us point out that goal programming is related to the
achievement scalarizing function approach (see Section 1.5.2) because they
both are based on reference points. The advantage of the latter is that it is
able to produce Pareto optimal solutions independently of how the reference
point is selected.

Let us finally add that goal programming has been used in a variety of
further developments and modifications. Among others, goal programming
is related to some fuzzy multiobjective optimization methods where fuzzy
sets are used to express degrees of satisfaction from the attainment of goals
and from satisfaction of soft constraints (Rommelfanger and Slowinski, 1998).
Some more applications of goal programming will be discussed in further
chapters of this book.

1.7 Summary

In this section we summarize some of the properties of the nine methods
discussed so far. We provide a collection of different properties in Figure 1.2.
We pay attention to the class the method can be regarded to belong to as well
as properties of solutions obtained. We also briefly comment the format of
preference information used. In some connections, we use the notation (X) to
indicate that the statement or property is true under assumptions mentioned
when describing the method.
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Fig. 1.2. Summary of some properties of the methods described.

1.8 Conclusions

The aim of this chapter has been to briefly describe some basics of MCDM
methods. For this, we have concentrated on some noninteractive methods de-
veloped for multiobjective optimization. A large variety of methods exists
and it is impossible to cover all of them. In this chapter, we have concen-
trated on methods where the DM either specifies no preferences or specifies
them after or before the solution process. The methods can be combined,
hybridized and further developed in many ways, for example, with evolution-
ary algorithms. Other chapters of this book will discuss possibilities of such
developments more.

None of the methods can be claimed to be superior to the others in every
aspect. When selecting a solution method, the specific features of the problem
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to be solved must be taken into consideration. In addition, the opinions and
abilities of the DM are important. The theoretical properties of the methods
can rather easily be compared but, in addition, practical applicability also
plays an important role in the selection of an appropriate method. One can
say that selecting a multiobjective optimization method is a problem with
multiple objectives itself! Some methods may suit some problems and some
DMs better than others. A decision tree is provided in (Miettinen, 1999) for
easing the selection. Specific methods for different areas of application that
take into account the characteristics of the problems may also be useful.
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