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Abstract. This paper presents a novel mediation-based query answer-
ing approach which allows users (1) to reuse their own predefined queries
to retrieve information properly from their local data source, and (2) to
reformulate those queries in terms of remote data sources in order to ob-
tain additional relevant information. The problem of structural diversity
in XML design (e.g. nesting discrepancy and backward paths) makes it
difficult to reformulate the queries. Therefore, we highlight the impor-
tance of precise query rewriting using composite concepts and relations
of the mediated schema. Our experimental evaluations on real applica-
tion datasets show that our approach effectively obtains correct answers
over a broad diversity of schemas.

1 Introduction

Traditional mediation-based XML query answering approaches allow users to
directly pose queries over the global mediated schema; then, the queries are
reformulated in terms of each local schema to retrieve answers. We refer it as
a centralized query model, which suffers several disadvantages. The users at the
local data source have to double their effort in learning and working on two
different systems: their own local system and the integrated system. Posing the
queries over the mediated schema, the users may not be able to find some kinds
of data which are very specific to their local data source and are absent on
the mediated schema. Further, only a limited number of queries built on the
mediated schema are available for the users to obtain their desired answers.

To overcome such disadvantages, we propose a decentralized query model in
Fig. 1. In this model, the users should still be able to work on their own defined
queries on their local schema, increasing the reuse of their queries and reducing
the effort of learning the new integrated system. At the same time, they obtain
more additional relevant answers from other remote data sources. The users
of organization S can use their own familiar existing queries QS to pose on
their own data source S. At the same time, the query is also propagated to the
integrated system to ask for extra information from other remote sources. The
final answer AS ∪ (AR1 ∪ AR2) obtains more answers (AR1 ∪ AR2) from R1 and
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Fig. 1. Decentralized Query Requests

R2, and combines with desired answer from S. The queries are automatically
reformulated, freeing users from the complexity of using multiple systems and
making transparent the complex process of query answering.

2 Related Work and Motivation

Several query answering approaches have been proposed in peer data manage-
ment systems, such as Hyperion [1], PeerDB [2] and Piazza [3]. Peer-based
query answering approach can benefit from straightforward pair-wise mappings
between two data sources. However, it becomes more complicated when deal-
ing with a large collection of heterogeneous data sources. It may require much
human intervention [2] and make the query reformulation process more com-
plicated due to the directional mappings [3]. Mediation-based query rewriting
approaches [4,5] have been developed based upon the global schema and medi-
ation mapping rules. However, the global schema is not rich enough to capture
semantically hierarchical structure, such as backward paths [5]. To the best of
our knowledge, existing approaches mainly use queries available on the global
schema rather than reusing the queries available at local data sources. Thus, our
approach is novel in the way users pose their queries over the local data source.
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Fig. 2. Case Study: Simplified Schema Repository

Fig. 2 presents a simplified schema repository consisting of three data sources
represented by schema trees D = {S, R1, R2} on movies domain. Suppose users
from organization S want to search for information from their local data source
S, and from remote data sources R1 and R2. Consider the following user queries:

Query 1: Find title and year of movies in which Jackie Chan casts as an actor
since 2001.
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Query 2: Find movies in which Chan is an actor. The detail of the movies
include information on directors.
Query 3: Find title of movies in which Chan participates.

With the knowledge of the structure of their local data source S, users may
find it simple to write four corresponding XPath queries as follows:

Q1S = for $m in /*/Actor[Name/FirstName/text()="Jackie" and
*/LastName/text()="Chan"]/Movie[Year >= 2001]
return <result>$m/Title $m/Year</result>

Q2S = //Actor[*/LastName/text()="Chan"]/Movie
Q3S = //Actor[//LastName/text()="Chan"]/Movie/Title

The queries defined above may face a typical problem of label conflicts if the
remote sources R1 and R2 contain different labels conveying the same meaning;
e.g. film vs. movie. The label conflict may arise from label abbreviation or
different naming conventions (e.g. FirstName or first-name). Another problem
is nesting discrepancy which happens in Q1S when a node can be represented
as either a child or as a decendant of another node but have the same meaning.
For example, Actor has FirstName as a child in R1 but as a descendant in S.
The discrepancy may also result from backward paths, such as Actor/Movie in
S vs. Movie//Actor in R1 and Movie/Actor in R2. Answering query Q2S will
return the target node Movie and all of its subtrees; that is, the subtree with
root Director is implicitly included in the result. Such implicit inclusion of a
subtree may lead to two main problems: (i) the answer may not include desired
data in other remote schemas (e.g. Director designed as ancestor or sibling of
Movie); (ii) the answer may include redundant or irrelevant information such
as subtree with root User from R1. Query Q3S returns movie’s title in which
Chan participates as either an actor or a director. Actor and Director have
ancestor/descendant relationship in S but have sibling/cousin relationship in
R1 and R2, making the query answering more difficult. The query reformulation
has to identify such contextual meaning for the correct rewriting. Our novel
query reformulation approach is proposed to solve all of the problems above.

3 Generating Mediated Schemas

This paper focuses on how to effectively rewrite queries using the global medi-
ated schema, as opposed to the process of creating the global schema. Yet it is
important to briefly describe our schema mediation method to make clearer our
proposed query answering approach. Frequent subtree mining approach [6] is
used to generate the mediated schema. We define frequency of a subtree T ′ of in
D, denoted by f(T ′), is the percentage of the number of trees T in D containing
at least one subtree T ′. Subtree T ′ is called frequent in D if its frequency is more
than or equal to a user-defined minimum support threshold: f(T ′) ≥ minsup.

A labeled node in a schema tree represents a concept in the real world. A
concept which appears frequently in D is considered to be important and of
interest in that domain. Frequent concepts being selected as candidate nodes
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ensure that only important concepts are retained in the final mediated schema.
Omitting infrequent concepts allows us to early remove unimportant or irrelevant
concepts. At this step, mediation mappings between constituent schemas and
the global schema are retained for the subsequent query reformulation process.
We resolve the problem of label conflicts by tokenizing the labels, expanding
their abbreviations, and eliminating unimportant parts (such as hyphens and
prepositions) [7]. Although frequent concepts found above are of interest, they
do not carry much information because they are just single nodes in isolation.
They will become more meaningful when they are semantically connected with
each other, forming a larger concept, called composite concept (CC for short).

Definition 1 (Composite/Elementary Concept). A composite concept
X(x1, x2, . . . , xp) is a tree of height 1, which consists of X as the root and
{x1, x2, . . . , xp} as a set of X’s children. When standing alone, X is referred
to as CC-name, and xi (i = 1..p) is called elementary concept (EC). The fol-
lowing conditions hold: (X is a non-leaf in D) ∧ (xi is a leaf in D) ∧ f(X) ≥
minsup ∧ f(xi) ≥ minsup ∧ f(X�xi) ≥ minsup.

The purpose of a CC X(x1, x2, . . . , xp) is to bear a coherent semantics rep-
resenting a real world entity in the domain of interest. The definition on CC
also describes what a CC is and how to mine such substructure from our schema
sources. For example, Movie(Title, Year), as a whole, is a CC, in which Movie
is CC-name, and Title and Year are two ECs. Examining ancestor-descendant
path between X and xi (i.e. embedded subtrees) allows us to solve the problem of
nesting discrepancy. It is the structural context of xi under X that helps clarify
the meaning of both X and xi in the hierarchy. Only such meaningful frequent
relationships between two frequent concepts are kept for the construction of the
mediated schemas. The mined CCs are currently disconnected from each other.
In the real world, the existence of CCs becomes clearer if they interact with each
other. The most popular hierarchical path is the forward path because the design
of XML structure is generally based on top-down design approach. However, we
observe that the same meaning can be represented by X//Y or Y//X, which are
reffered to as forward and backward paths. Ignoring such semantic similarity will
cause information loss. Thus, it is critical to mine both forward and backward
paths so that the final mediated schemas become more comprehensive.

Definition 4 (Relation). Given two CCs X, Y ∈ C. A relation from X to Y ,
denoted as X→Y , is defined as a frequent ancestor-descendant path from X to
Y . A relation between X and Y can be bidirectional, denoted as X ↔ Y . Let
C,R denote a set of CCs and a set of relations mined from D, respectively. A
relation has to satisfy two rules as follows: (1) Forward paths only: f(X//Y ) ≥
minsup ∧ f(Y//X) = 0 ∧ X→Y ∈ R; (2) Backward paths: f(X//Y ) >
0 ∧ f(Y//X) > 0 ∧ (X→Y ∈ R ∧ Y →X ∈ R).

To extract relations, we mine frequent ancestor-descendant X//Y (or Y//X)
which will be included into the final mediated schema (e.g. Movie → Director.
A relation can be either forward pathMining relations based on both forward
and backward paths gives a less strict condition by using the sum of the two
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kinds of paths. This allows more chance of an ancestor-descendant path between
X and Y to become frequent; e.g. Actor ↔ Movie.

Definition 5 (Mediated Schema). Let C and R denote a set of mined CCs
and a set of mined relations, respectively. A global mediated schema is a triple
G = 〈root, C,R〉, where root is the root of G.

We build the mediated schema G = 〈C,R〉, where C={Movie(Title, Year, Rate),
Actor(FirstName, LastName), Director(FirstName, LastName)}, and a set of
relations R = {Actor↔ Movie, Movie→ Director}, with minsup = 0.6. The
containment relationship between a CC-name and an CC (such as between Movie
and Title) can be represented by parent-child or ancestor-descendant path in
source schemas. Semantic correspondence between constituent schemas and the
global schema are captured in the mediation mappings.

4 Query Reformulation Using Mediated Schema

Our approach uses XPath 2.0 syntax [8], a subset language of XQuery, to define
the XPath queries. Basically, a XPath expression is defined as a list of nodes and
location paths: p = o1n1o2n2 . . . oknk, where oi is a location path operator in
{/, //, ∗}, and ni ∈ TagSet is a node in a set of tags. Given an XPath query, we
replace variables in predicates and target nodes with values of binding variables
in for expression. A multi-path query QS can be decomposed into different single
sub-queries, each of which is reformulated as the normal single-path query.

Next, we decompose all paths in predicates into path expressions and se-
lection conditions. Let TargS be a set of paths locating target nodes to be
retrieved, PredS be a set of predicate paths, and CondS contains be a set of
conditions in predicates. Path expressions of predicates of source query posed
over S are included in PredS , their corresponding selection conditions are in-
cluded in CondS , and path expressions of target nodes are kept in TargS . Then,
we expand all of the abbreviated paths with ‘*’ and ‘//’ in source query QS into
its equivalent unabbreviated forms. We define a query pattern [9] of QS as a
triple 〈TargS , P redS , CondS〉. For example, the query pattern of Q1S: TargS =
{/ ∗ /Actor/Movie/Title, /∗ /Actor/Movie/Year}, PredS ={/ ∗ /Actor/Name
/FirstName,/ ∗ /Actor[Name/LastName,/ ∗ /Actor/Movie/Year}, CondS =
{text() = ”Jackie”, text() = ”Chan”, >= 2001}.

Given the query pattern of QS , we generate the query pattern of QG on the
mediated schema G by extracting CCs and relations from QS. The query pattern
of QG will be used for the query reformulation on the remote sources in Fig. 3.

a) Identifying Composite Concepts in Source Queries:
We define a function findCC: PredS ∪TargS → C which extracts all CCs from
an XPath query by mapping every path in sets of predicates and target nodes into
a set of CCs C. Let p = n1/n2/ . . . /nk be a path of k nodes in (PredS ∪TargS).
The last node nk in path p may belong to one of three cases:

i) nk is an EC of a CC ni(nk): Function findCC first seeks the CC-name ni to
associate with the EC nk (where i < k), and returns the CC ni(nk). For example,
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Fig. 3. Query Reformulation Process

the CC Movie(Title) is extracted from the target node /Filmography/Actor
/Movie/Title in the query Q1S .

ii) nk is a CC-name of a CC in C. If nk is a predicate node in PredS , findCC
simply returns nk as a CC-name of a CC in G without returning its ECs. The
meaning of the predicate nk is to check the existence of nk for returning the
answer. Node nk is actually a non-leaf node which contains a substructure and
does not store any value.

If nk is a target node of the query QS , the whole subtree rooted at nk will
be included in the answer. It is important to note that that subtree may include
zero or more subtrees (say nk′) via implied inclusion, in which nk′ corresponds
to a CC on G. Thus, findCC will perform two tasks. First, it seeks CC nk

and all of its ECs from G. An EC on G may or may not corresponds to any
node in S and/or Ri. If the EC does not belong to G, it is considered not of
interest to users because it is unpopular and too specific to the local schema
S. For example, /Filmography/Actor/Movie in Q2S has the last node Movie
as a target node which is the CC-name of Movie(Title, Year, Rate); Rate
is an additional EC that does not appear in S but is included in the answer.
Further, findCC extracts the subtree nk′ if it exists on the mediated schema
G and other remote schemas. In addition to Movie found for Q2S, findCC
also includes CC Director(FirstName, LastName) in the target nodes. Such
consideration resolves problem of implicit inclusion.

iii) nk does not belong to any CC : nk is neither an EC nor CC-name. This
happens when nk is too specific to the local schema S and is not common among
other remote schemas. If nk is a target node, it cannot be retrieved from other re-
mote sources due to its absence in the global schema G. The query reformulation
process will stop without further querying other remote sources. If nk belongs
to a predicate, the query rewritten at G does not contain that predicate. There-
fore, the answer returned from the mediated schema (and hence, from remote
schemas) is either superset or subset of the desired answer. The identification of
CCs in source queries allows non-CC-name nodes to occur between a CC and an



1556 H.-Q. Nguyen et al.

EC. In other words, an EC can be a child node or a descendant node of a CC,
addressing the problem of nesting discrepancy.

b) Identifying Relations in Source Queries:
In this section, we identify all relations between CCs from source query QS .
The relations in QS are important to construct path patterns between CCs in
queries from remote sources. We define function findRel : (PredS∪TargS) → R
which maps each path p ∈ PredS ∪ TargS into a relation r ∈ R. Function
findRel derives relations r between CCs rooted at ni and nj from path p based
upon the following conditions: (i) ∃ni, nj ∈ roots(C) such that ni//nj ∈ p. (ii)
�nt ∈ p, ni, nj, nt ∈ roots(C) such that ni//nt//nj ∈ p.

Path p contains more than one node indicating CC (such as ni and nj) sep-
arated by location paths and non-CC nodes. ni and nj forms one relation on p
such that there exist no other CC nt between their path. Relations extracted
from source queries establish query pattern QG over multiple CCs.

c) Query Reformulation:
Query reformulation involves in using mediated schema to map all paths of source
query patterns into their corresponding paths of remote query patterns. Gener-
ating mediated schema (section 3) provides mediation mappings between medi-
ated schema and each constituent schema. In other words, we map each element
of source query pattern (PredS , T argS, CondS) into a correspondence in remote
query pattern (PredRi , T argRi , CondRi), respectively. Consider query Q1S . The
predicate /Filmography /Actor/Movie/Year>=2001 of Q1S is mapped into a
conditional EC Movie(Year)>=2001) of G, which corresponds to one or more
remote query patterns: Q1R1 = /MoviesDB/Movie/Year>=2001 and Q1R2 =
/Awards/Award/Movie/GenInfo/Year>=2001. The same process is applied to
other paths of source query patterns.

Next, we compose remote query from its query pattern (represented by
PredRi , T argRi, CondRi). To do this, we merge all of the paths and conditions
from its query pattern by defining two generic functions: prefix and suffix.
Function prefix is defined to map a set of paths P = {p1, p2, . . . , pk} into a single
path p′ such that p′ is the common path (from the root) shared among elements
of P . Function suffix returns the suffix of path pi which is not shared with other
paths in P . In other words, suffix(pi, P ) = pi − prefix(P ). For example, sup-
pose P = {p1, p2} = {/n1/n2/n3, /n1/n3}, function prefix(P ) returns shared
paths between p1 and p2, i.e. prefix(P ) = /n1 whereas suffix(p1, P ) = n2/n3

and suffix(p2, P ) = n3.

Definition(Query Answerability). Given a set of XML documents D, query
answerabilty Q is a measure to determine the ability to find correct answers for a
query posed over D, and is defined as the proportion of number of correct answers
found to the number of correct answers: Q = #Correct Answers Retrieved

#Correct Answers

The number of correct answers found from D is less than or equal to the number
of real answers; thus, Q is a real number between 0 and 1. The higher value of
Q is, the more correct answers are found.
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5 Experimental Evaluation

We perform several experiments on Movies1 – a collection of real applications
data collected from Yahoo! Movies (movies.yahoo.com) and Internet Movies
Databases (imdb.com). The Movies dataset contains 1,312 documents of diverse
structural designs and a total of 64,706 nodes. The smallest tree has 14 nodes
while the largest one contains 91 nodes; on average, there are 49.32 nodes per
tree. The height of the trees ranges from 4 to 10 with an average of 6.81.
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Fig. 4. Query Answerability measures the ability to find correct answers for Query 1-2

We use query answerability to evaluate the quality of different mediation-
based query answering approaches. Four different approaches are classified based
on the combination of tree traversal types: parent-child (PC) vs. ancestor-
descendant (AD), and forward-paths only (FPO) vs. both forward and backward
paths (FBP). Fig. 4 presents the query answerability of four kinds of experi-
ments. Among the four experiments, our approach which is based on AD-FBP
provides the best query answerability. It obtains complete answers for Query 1
(Q1S) from the dataset with 1.5, 3.67, and 20.9 times improvement compared to
PC-FPO, PC-FBP and AD-FPO, respectively. PC-FPO approach returns the
worst result with least correct answers for Query 1 and Query 2 (query an-
swerability ≈ 0.048) because it limits its search within parent-child paths and
forward paths only. When the same concept is expressed as a descendant of a
node, the mediated schema based on PC-FPO (e.g. PORSCHE [7]) cannot dis-
cover such semantic matching. Hence, its corresponding queries cannot find the
correct answers due to the problem of both nesting discrepancy and backward
paths. Other traditional schema matching approaches (such as COMA++ [10],
Similarity Flooding [11]) only perform pair-wise element matching between two
schemas without examining structural context. They do not produce mediated
schema for semi-structured documents; thus, they do not belong to any of these
approaches. Dealing with nesting discrepancy gives AD-FPO approach an im-
provement of 2.5 times and 4.8 times the query answerability of Query 1 and
Query 2, respectively, based on PC-FBP approach. As a result, query answer-
ing based on mediation approaches which resolve both nesting discrepancy and
backward paths provides the most comprehensive answers from large collection
of heterogeneous XML documents.
1 http://homepage.cs.latrobe.edu.au/h20nguyen/research
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6 Conclusion

In this paper, a mediation-based query reformulation approach is proposed to
reuse the existing XPath queries to retrieve more information from other remote
sources. It also frees users from the complexity of using multiple systems at the
same time. The mediated schema enables us to efficiently reformulate remote
queries. Further, it helps prevent source queries with too specific selection con-
ditions from being propagated to remote sources. We resolve the problem of
semantic conflicts in labels. Our approach supports users to query and obtains
information from heterogeneous data sources of different structures, including
nesting discrepancy and backward paths. There are several opportunities for fu-
ture work. We plan to extend our work to cover other components in structured
query languages such as XQuery and XQueryX. Also, we are going to work on
the evolution of queries when the global schema evolves.
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