
R. Meersman and Z. Tari (Eds.): OTM 2008, Part II, LNCS 5332, pp. 969–986, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Novel Worm Detection Model Based on Host Packet
Behavior Ranking

Fengtao Xiao1, HuaPing Hu1,2, Bo Liu1, and Xin Chen1

1 School of Computer Science, National University of Defense Technology,
Chang Sha, 410073

myfri2001@126.com,
boliu615@yahoo.com.cn, cx917@21cn.com

2 The 61070 Army Fu Zhou, Fu Jian, 350003 China
howardnudt@yahoo.com.cn

Abstract. Traditional behavior-based worm detection can’t eliminate the influ-
ence of the worm-like P2P traffic effectively, as well as detect slow worms. To
try to address these problems, this paper first presents a user habit model to de-
scribe the factors which influent the generation of network traffic, then a design
of HPBRWD (Host Packet Behavior Ranking Based Worm detection) and some
key issues about it are introduced. This paper has three contributions to the
worm detection: 1) presenting a hierarchical user habit model; 2) using normal
software and time profile to eliminate the worm-like P2P traffic and accelerate
the detection of worms; 3) presenting HPBRWD to effectively detect worms.
Experiments results show that HPBRWD is effective to detect worms.

Keywords: worm detection, behavior based worm detection, user habit model.

1 Introduction

Computer worms have become a serious threat to the Internet in recent years. Many
researches [1] [2] have found that well designed worms can infect the whole Internet
in a few minutes. Now, there exist two kinds of technologies on detecting worms:
signature-based technology and behavior-based technology. Signature-based worm
detection (SBWD) [3-6] can detect worms in real time, but it is a kind of worm-
specific and passive technology. Although widely used in commercial AV software,
signature-based worm detection cannot deal with the new coming and polymorphic or
metamorphic worms effectively. Behavior-based worm detection (BBWD) [7-14] in
itself is a kind of statistics method, so it is less effective in real time than SBWD, but
on the other hand, BBWD is independent of packet content so that it can exceed sig-
nature-based in the ability of detecting unknown worms and polymorphic and meta-
morphic worms. BBWD has also its drawbacks. One of them is that it is difficult to
distinguish between normal traffic and abnormal traffic. For example, in recent years,
P2P software has been widely used. Our previous work [17] has showed that the
widely used P2P software nowadays has the worm-like traffic behavior more or less.

In our opinion, the difficulties of detecting worms lie in four points: 1) propaga-
tion speed of worms is getting much faster so that the detection time left become
less; 2) the application of polymorphic or metamorphic technology makes the

970 F. Xiao et al.

signature-based worm detection less effective or completely fail; 3) the emergence of
worm-like traffic such as P2P traffic makes the network-behavior based worm detec-
tion influenced with high false positives; 4) many work on BBWD is effective on fast
spreading worms, but tends to miss the detection of slow worms or has high false
positives.

In this paper, we mainly focus on BBWD. To try to address the four points men-
tioned above, a worm detection system based on host packet behavior ranking
(HPBRWD) is presented. Its contributions to the four difficulties above lie in four
points: 1) Using behavior based method to try to solve the second problem above; 2)
Using normal software and time profile generated by HPBRWD to eliminated the
influence of worm-like P2P traffic; 3) Using normal software profile and worm beha-
vior profile to reduce the detection time; 4) detecting slow worms through the cumu-
lative effect of HPBRWD.

The remainder of this paper is organized as follows: section 2 introduces the user
habit model on Internet access; section3 overviews the design of HPBRWD; section4
discuss several key design issues and our solutions; section5 describe our prototype
implementation and evaluations; section6 reviews related work. Finally, section7
makes concluding remarks with future work.

2 User Habit Model on Internet Access

Work [7] [8] have presented a definition for user habit on Internet access. According to
that definition, user habit is influenced by user hobbies, characters and limitations of
using internet. The definition is good, but it is lack in further description, so some im-
portant information is missed, such as habitual software. In our opinion, user habit is
influenced with multi-level factors. Fig.1 lists the factors which influence the user habit.

In this model, user habit is described at three layers: user representation layer, use
representation layer and network representation layer. To understand this classifica-
tion, we can try to answer these questions: 1) what are the motivations for a user to
access the internet? 2) Given these motivations, a user must find a way to satisfy these
motivations under certain limitations. So how can he accomplish this? 3) Information
is located in the internet, so what on earth is the representation of two layers above on
the network packets?

We can see later that the three layers are just designed to answer the three ques-
tions above. At the same time, we can also see that each layer can separately describe
the user habit, but they are in different levels.

User representation layer: this layer tries to answer the first question, that is to say, to
describe what information or knowledge a user wants to acquire. User’s characters,
interests or hobbies, unexpected factors and other factors are included in this layer.
Here other factors mean the customary access because of group behavior etc, for
example, if you are impressionable, then once your colleagues tell you something
interesting in the Internet, you will perhaps be attracted to visit it right now.

Use representation layer: this layer is used to answer the second question, that is to
say, to describe what tools we are using and what limitations we will have to get the
information. From fig.1 we can see there are two elements we shall pay attention to:
Time and Software:

 A Novel Worm Detection Model Based on Host Packet Behavior Ranking 971

1) Time means that the time limitation to access the Internet. It includes starting time
limitation and ending time limitation. Detail to say, this limitation has two meanings:

a) The time slots which can be used to access the internet. For example, a user in a
demanding corporation can only use the Internet during non-working time which is
the time limitation for this user. In such a case, the time limitation always has fixed
start-time or end-time or both;

b) Unexpected changes of time limitation in length or start-time and end-time.
This case is usually the result of user representation layer. For example, when a
world-cup final is held, football fans will tend to spend more time using the Internet
and browsing relative websites for further information about football. In such a case,
the total time spent on Internet, the start-time or end-time of using Internet are always
unexpected, but on the user representation layer side, the unexpected changes are in
fact the result of user’s interest on football.

2) Software means that the tools used to acquire the information needed. Different
choosing of software will directly affects the network packets generated. For example,
a user wants to watch world-cup final through the Internet webcast. There exist two
kinds of software at least. One is the direct webcast on the official website or some
web portals, such as www.sina.com; the other is using P2P software, such as ppstream
or pplive etc. We can find that the two methods are greatly different in the destination
IP address selection and the traffic of communication.

Fig. 1. User habit model

Network representation layer: this layer is used to answer the third question, that is to
say, to describe the network packets created during a user accesses internet. These
packets can be seen as the results of the two higher layers.

From this model we can see that to distinguish normal user network behavior and
worm behavior, we must pay attention to both the use representation layer and net-
work representation layer. But unfortunately, traditional behavior-based worm detection

972 F. Xiao et al.

only values at network representation layer. In fact, network representation layer is the
least stable compared with the two other layers. But to tell the truth, network representa-
tion is the easiest to describe and use on detecting worms.

In this paper, we will try to present a novel worm detection algorithm through
combining the information of user representation layer and use representation layer.
Detail to say, we will try to setup time and software profile automatically to improve
worm detection.

3 Overview of HPBRWD Design

3.1 Design Goals and Principles

The design goals of HPBRWD include three points: 1) detecting worms as early as possi-
ble; 2) eliminating worm-like P2P traffic; 3) detecting both fast worms and slow worms.

To achieve such goals, HPBRWD is designed to be host-based so as to get extra in-
formation such as normal software profile and normal time profile easily. Information
about normal software and normal time profile will be detailed addressed later.

We monitor the software used on the host and the traffic from and to the host.
Based on the information, we dynamically setup an initial profile about normal soft-
ware and corresponding ports used by the software automatically.

Profile of normal time slots is dynamic created and HPBRWD has a default profile
which sets all the time slots usable. After the steps above, HPBRWD begins to moni-
tor in real-time.

The principles underlying the HPBRWD design are as follows:

1) Connecting different IPs with the same destination port within a time slot is
suspicious. For a fast worm, it needs to propagate as quickly as possible, so the
slot will be short. HPBR is designed to not be limited to a short time slot, so it
can not only detect fast worms, but also it is effective to detect slow worms.

2) Same messages sent to different nodes construct a tree or chain. This behavior
is also considered to be suspicious. Up to now, except some P2P software,
Normal traffic will not have this behavior. For example, if a host receives a
message on port A, then it sends to port A on another host the same or similar
message, then we can consider this process is suspicious.

3) Software not in the normal software profile and having one or both of the two
behaviors above is suspicious.

4) Packets’ timestamp not in the normal time profile is suspicious.
With the emergence of P2P software, we can find that the first and the second prin-

ciples are not the unique principles of computer worms. But our previous work [17] has
showed that based on HPBR, we can eliminate most or whole worm-like P2P traffic.

3.2 HPBRWD Architecture and Flow of Control

Figure 2 shows the modules of HPBRWD. HPBRWD is host-based, so all the mod-
ules are located on just one host. There are six modules in HPBRWD:

1) Profile setup module. This module focuses on setting up profiles of normal soft-
ware and normal time slots.

 A Novel Worm Detection Model Based on Host Packet Behavior Ranking 973

2) Packet capture module. This module focuses on capturing the packets to and
from the host. Different from general packet capture process, the traffic created by
software in the normal software profile will not be captured.

3) Packet preprocess module. This module preprocesses the packets to create for-
matted packets denoted as meta-access information (MI). These formatted packets
will be the data source for HPBR detector module.

4) HPBR detector module. This module ranks every formatted packet and the selec-
tively stored historical formatted packets. When the ranking value is greater than the
threshold, alert will be triggered.

5) Profile update module. This module includes the update of these profiles: normal
software, normal time slots, blacklist and selectively stored packet history (denoted as
MI library). Blacklist and MI library are generated in HPBR detector module. When
HPBR detector module completes, these two profiles are also updated.

6) Alert process module. This module processes the responses after an alert is trig-
gered. It will look for the program which sent the corresponding packets. In our im-
plementation, this module will take three measures: alert, log and process termination.

Fig. 2. Architecture of HPBRWD

Fig. 3. Flow of HPBRWD

Fig.3 shows the process flow of HPBRWD. The concrete steps are as follows:

1) Creating normal software profile and normal time periods profile through host
monitor and learning. The profiles will be stored into database.

2) Capturing and filtering packets according to normal software profiles. After
this step, all the traffic coming from the normal software will be filtered. Only
the traffic from the abnormal software and the traffic to the host are left.

974 F. Xiao et al.

3) Formatting packets. After this step, packets are formatted to be meta-access in-
formation (MI).

4) Ranking single MI. According to profiles created in step 1), we will first rank
the single MI. If the single MI is in the blacklist, alert will be triggered at once.

5) Ranking similar MIs. In this step, the current MI will be ranked with MI li-
brary. We will find whether there is any MI in the MI library which is similar
with current MI. If existing, we will update the rank value of corresponding MI
in the MI library.

6) Ranking MI library. The ranking value of whole MI library helps us making
decisions on whether to trigger an alert or not. If this ranking value is over the
threshold, an alert will be triggered.

7) Updating MI library. When MI is ranked, it will be added to MI library according
to MI library updating algorithm. The blacklist will also be updated in this step.

8) Processing alerts. When a worm is detected, measures such as log, alert or
process termination will be taken.

4 Key Issues in the Design of HPBRWD

In this section, we discuss some key design issues and our solutions.

4.1 How Do We Carry on HPBR?

To answer this question, we will first give some denotations on data structure used in
HPBR, then the definitions of MI and similar MIs. Based on these two definitions, we
will introduce the design of HPBR. At last, we will present the algorithm of updating
MI library.

Definitions and data structures. Before explaining HPBR, we first list the denotations,
data structures and definitions.

Remark 1. Denotations

Table 1. Denotations

Denotation Description Denotation Description
Habitual used software Habitual time

accessing internet

 A Novel Worm Detection Model Based on Host Packet Behavior Ranking 975

Table 1. (continued)

At the same time, we definite some structures corresponding to some of the denota-
tions above. h(MI୧, SW) ൌ ൜0, MI୧ א SW, i ൒ 01, otherwise (1)

k(MI୧, T) ൌ ൜0, MI୧. pTime א T1, otherwise (2)

g(MI୧, DP) ൌ ቐ 1, ~MI୧. dPort א DP0.5, (~MI୧. dPort א DP୧) ת (MI୧. dPort א (DP\DP୧))0, MI୧. dPort א DP୧ (3)

q൫Aሾଵ..୷ሿ,MI୶൯ ൌ ൜A୧. num ൅ 1, (x ൒ 1) ת i׌) א ሾ1. . yሿ, st A୧. MI ؆ MI୶) 0, otherwise (4)

q൫Aሾଵ..୷ሿ,MI୶൯୧ ൌ ൜A୧. num ൅ 1, (x ൒ 1) ת (A୧. MI ؆ MI୶)0, therwise (5)

w(MI୶, W) ൌ ൜0, (MI୶. dPort, MI୶. progName) א W1, otherwise (6)

b(MI୶, B) ൌ ൜0, (MI୶. dPort, MI୶. protocol, MI୶. pSize, MI୶. progName) א Bδ ൅ 1, otherwise (7)

Remark 2. Definitions

Definition 1: MI (Meta-access Information). MI is in fact the formatted packet. We
denote it as: MI ൌ ሼsIP, sPort, dIP, dPort, protocol, pSize, pTime, pProgNameሽ . The elements of
MI stands for source IP, source port, destination IP, destination port, protocol, size,
timestamp of the a packet and the software which sent the packet.

Definition 2: Similar MIs. We call two MIs as similar MIs when they meet with the
first two principles in section 3.1. If MIଵ and MIଶ are similar, we denote them as MIଵ ؆ MIଶ , to make the judgment of similar MIs easy, we define such functions:

976 F. Xiao et al.

For ܫܯଵ and ܫܯଶ:

fଵ(MIଵ, MIଶ) ൌ ൝ 1, (MIଵ. dPort ൌ MIଶ. dPort) ת (MIଵ. dIP ൌ MIଶ. sIP)ת (MIଵ. pTime ൏ MIଶ. pTime)0, otherwise (8)

 Here ଵ݂ means whether two MIs have the same destination port and the latter MI’s
source IP is the same with the former MI’s destination IP. If true, we set ଵ݂ = 1. In
fact, from the view of host, ଵ݂ tells us how to judge the principle 2). fଶ(MI୧) ൌ ൜1, MI୧. dPort ് MI୧. sPort 0, otherwise (9)

 Here fଶ means that for one MI, whether the destination port equals its source port.
If true, we set fଶ = 1. In fact, this judgment is from the results of experiments. We
found that P2P software always has such feature while computer worms don’t have
because their propagation process is always multi-thread based. So we add fଶ to elim-
inate false negatives created by P2P software.

 fଷ(MIଵ, MIଶ) ൌ ۔ۖەۖ
ۓ 1, (MIଵ.dPort ൌ MIଶ.dPort) ቆ~((MIଵ.dPort ת א DP୑୍భ.୮୰୭୥୒ୟ୫ୣ) .MIଶ)׫ dPort א DP୑୍మ.୮୰୭୥୒ୟ୫ୣ)) ቇ

0, otherwise (10)

Here fଷ is to judge whether two MI have the same destination port and this port is
not in port list of software sending MIଵ and MIଶ. If true, we set fଷ ൌ 1. So In fact, fଷ tells us how to judge the principle 1) and 3). ସ݂(ܫܯଵ, (ଶܫܯ ൌ
 ൞1, .ଵܫܯ) ݈݋ܿ݋ݐ݋ݎ݌ ൌ .ଶܫܯ (݈݋ܿ݋ݐ݋ݎ݌ ת .ଵܫܯ) ݁݉݅ܶ݌ ് .ଶܫܯ ת (݁݉݅ܶ݌ .ଵܫܯ) ܲܫ݀ ് .ଶܫܯ (ܲܫ݀ ת .ଵܫܯ) ݐݎ݋ܲ݀ ് .ଶܫܯ ת(ݐݎ݋ܲݏ .ଵܫܯ) ݁ݖ݅ܵ݌ ൌ .ଶܫܯ ݁ݏ݅ݓݎ݄݁ݐ݋ ,0 (݁ݖ݅ܵ݌ (11)

Here fସ lists the base characters two MIs should have to judge whether a worm ex-
ists or not. ݂(ܫܯଵ, (ଶܫܯ ൌ ൫ ଵ݂(ܫܯଵ, (ଶܫܯ כ ଶ݂(ܫܯଵ) כ ଶ݂(ܫܯଶ) ൅ ଷ݂(ܫܯଵ, ଶ)൯ܫܯ כ ସ݂(ܫܯଵ, (ଶܫܯ

(12)

Here f is to judge whether two MIs are suspicious MIs. It is easy to know MIଵ ؆MIଶ when ,ଵܫܯ)݂ (ଶܫܯ ൒ 1 . At the same time, MIଵ ؆ MIଷ when MIଵ ؆ MIଶ and MIଷ ؆ MIଶ.

Definition 3: MI library. We call the set which saves MI history information and
statistics information of MI as MI library. MI library is denoted as A and we set A ൌ ሼa|a ൌ (MI୧, Fvalue, Num, IPList)ሽ . |A| means the length of A, Fvalue stands for
the ranking value of MI, Num means the number of MI which is the same with MI୧, IPList means the IP list of MI which is the same with MI୧.

 A Novel Worm Detection Model Based on Host Packet Behavior Ranking 977

Host Packet Behavior Ranking. Based on the denotations and definitions above, for
a coming ܠ۷ۻ, we use ۴૚(ۯሾ૚..ܡሿ, ,ሿܡ..ሾ૚ۯas ranking function: ۴૚൫ (ܠ۷ۻ ൯ܠ۷ۻ ൌ ቊܙ൫ۯሾ૚..ܡሿ, ൯ܠ۷ۻ כ ઻ כ ൫૚ ൅ હ כ ,ܠ۷ۻ)ܐ (܅܁ ൅ ી כ ,ܠ۷ۻ)ܓ ,൯(܂ ܡ ൒ ૚૙, ܡ ൌ ૙ (13)

Supposing that there exists MI୶ ؆ MI୩ in formula (6), then for an A୧ in MI library
A, the corresponding rank function is: A୧. Fvalue ൌ
۔ۖەۖ
∑ۓ ቀ1 ൅ α כ h൫MI୨, SW൯ ൅ θ כ k൫MI୨, T൯ቁ כ γ כ q(Aሾଵ..୷ሿ, MI୨)୧, x ൒ 2୶ିଵ୨ୀଵ∑ ൬ቀ1 ൅ α כ h൫MI୨, SW൯ ൅ θ כ k൫MI୨, T൯ቁ כ γ כ q൫Aሾଵ..୷ሿ, MI୨൯୧)൅Fଵ൫Aሾଵ..୷ሿ, MI୶൯, x ൒ 2, i ൌ k୶ିଵ୨ୀଵ0, x ൌ 1

 (14)

So the ranking function for the whole MI is: F൫Aሾଵ..୷ሿ, MI୶൯ ൌ maxሼA୧. Fvalueሽ , x െ 1 ൒ i ൒ 1 (15)

When F൫Aሾଵ..୷ሿ, MI୶൯ is greater than the threshold µ, an alert will be triggered. At the
same time, suppose that F൫Aሾଵ..୷ሿ, MI୶൯ ൌ A୫. Fvalue, then when an alert is triggered, we
set A୫. Fvalue ൌ 0, but for a new coming MI୶ଵ, if q(Aሾଵ..୷ሿ, MI୶ଵ)୫>0, then an alert
will also be triggered.

MI library updating policy
MI library caches the recently coming MI, and at the same time, from section 4.1, we
can see the access to the MI library is also very frequent when performing HPBR.
Thus, the length of MI library cannot be infinite because it has a great influence on
the performance of HPBR. In our work, to effectively use the MI library, we use Modify_A algorithm to update it.

Algorithm ܣ_ݕ݂݅݀݋ܯ:

Input: MI library A, new coming ܫܯ௫
Output: none
1 compute ܣ)ݍሾଵ..௬ሿ, (௫ܫܯ
2 if ݍ൫ܣሾଵ..௬ሿ,ܫܯ௫൯ ൐ 0 and ܣ௜. ܫܯ ؆ .௫ܫܯ ௫ , then addܫܯ ;to A୨ endif ܲܫ݀

3 if ݍ൫ܣሾଵ..௬ሿ,ܫܯ௫൯ ൌ 0 then
 3.1 if |ܣ| ൏ å then add MI୶ to A endif;
 3.2 If |ܣ| ൌ å then

3.2.1 Traverse A and find the minimal from the entire MI library element’s rank
values;

3.2.2 If more than one element in MI library has the minimal rank value and the
value is 0

Then for every element A୧ that has the minimal rank value 0
Compute ݉݅݊ ሼ1 ൅ á כ .௜ܣ)݄ ,ܫܯ ܹܵ) ൅ è כ .௜ܣ)݇ ,ܫܯ ܶ)ሽ

978 F. Xiao et al.

If more than one A୧ meets the condition,
 Then random select one A୧ to delete
Endif;

Endif;
3.2.3 If only one element has the minimal rank value
 Then delete this element
 Endif;
3.2.4 If the minimal rank value >0 then
 Set |A|=|A| + 1;
 Endif;
Endif;

3.3 Add ܫܯ௫ to A;
 Modify_A makes the similar MIs have the biggest chance to stay in the MI library,

so that we can effetely rank them and detect worms. From Modify_A we can also find
that |A| is not certain in all situations. If the minimal rank value is not equal 0, |A| will
increase. This is the core of detecting slow worms and the detail description will be
introduced in section 4.3.

4.2 How to Setup Normal Software Profile and Time Profile Automatically

For HPBRWD, normal software profile and time profile can help us in three aspects:
1) filtering unnecessary traffic to improve processing efficiency; 2) accelerating de-
tection of computer worms through corresponding accelerating coefficient; 3) elimi-
nating the influence of P2P software. So how to setup these two profiles is one of the
key issues of HPBRWD.

Definition 4: normal software. If software doesn’t have the features like the principle
1) and 2), then we consider it as normal software.

Definition 5: suspicious software. If we can’t decide whether software has the fea-
tures like the principle 1) and 2), we consider it as suspicious software.

Definition 6: infected software. If software has the features like 1) or 2) or both, we
consider it as infected software.

In HPBRWD, the construction of normal software profile is a dynamic process.
You can see it in fig 4. The state changes of three kinds of software are also listed in
fig 4.

The software which we are using on a host can be divided into two classes: 1) in-
stalled software; 2) green software. So to get the software list, we can focus on such
two classes.

For installed software, we can check registry to get detail information. Detail to say,
all the installed software save their installation information under the registry item “HKEY_LOCAL_MACHINE\software\Microsoft\windows\uninstall\InstallLocation”
tells us the name and path of software.

 A Novel Worm De

Fig. 4. S

For Green software, we
hooked the function NtRes
Thus we can get software w

For the new created proc
find that they have the featu
suspicious software means a

There are two situation
normal software: 1) A is in
and 2) are found. When e
ware to Normal software pr

For those installed softw
doesn’t mean that each soft
puter worms, so we rando
change their state to suspi
normal software profile is d

There are also two situat
infected software: 1) A is in

For the creation of norm

Definition 7: normal time.

cessing internet. Detail to s

we call this time slot A as
now, we decide that a time
mal software running.

Normal time profile is no
ning now to see if there is
tween now and 5 minutes
minutes passed, there will b

Of course, we can also m
profile.

etection Model Based on Host Packet Behavior Ranking

State changes of the three kinds of software

e decide to get its information when it begins to run.
sumeThread to get information of new created proc

which user is running.
cess, we first consider them to be suspicious until we ca
ures like principles 1) and 2) in a given time period. To
all the traffic sending or receiving will be recorded to HPB
s can software A be shifted from suspicious software
white list; 2) based on HPBR checking, if no principle

either of these two situations is satisfied, we add this s
rofile.

ware, they will first be classified into normal software, bu
tware in normal software profile is always immune to co
omly select software from normal software profile
icious software every given time slot. So the creation
dynamic.
tions for software A to change from suspicious software
n blacklist; 2) based on HPBR, an alert is triggered.
al time profile, we first give the definition of normal tim

 Normal time means the time slot when a user always

ay; if % of normal software is running during time slot

normal time. is a parameter, but in our implementat
 slot will be consider normal time only if there is one n

ot stable. To create it, we first look up all the process r
s any in normal software profile, if true, the time slot
later are considered to be in normal time profile. Whe

be another checking on normal time.
manually set the normal software profile and normal ti

979

We
ess.

an’t
o be
BR.
e to
s 1)
oft-

ut it
om-
and

n of

e to

me:

ac-

t A,

tion
nor-

run-
be-

en 5

ime

980 F. Xiao et al.

4.3 How Does HPBRWD Eliminate the Influence of Worm-Like P2P Traffic?

In this paper, to eliminate the influence of worm-like P2P traffic is relatively easy.
The reason is as follows: traditional P2P traffic identification methods mainly use
communication information, while ours is based on host information. We can easily
get the P2P software list used in the host. Through hooking ntDeviceIoControl, we
can easily acquire the correlation between process and port. Source port is the bridge
between the packet’s information and P2P software self’s information, the whole
process can be shown in fig5.

When a P2P application sends or receives packets, it will call ntDeviceIoControl
function. We have hooked this function and save the corresponding source ports of
this application. If this P2P application is in Normal software profile, we will update
the source ports information to the normal software profile. At the same time, we use
winpcap library to capture the packets of all applications. Source ports are also can be
acquired in the packet’s information. So according to the source port, we can know
whether the packet captured is sent by a normal software or not. So at last, only packets
sent by applications which are not in normal software profile will be formatted to MIs.

Fig. 5. Process of eliminating P2P traffic

4.4 How Does HPBRWD Detect the Slow Worms?

Slow worm has not become public in the internet, but we think in the near future they
will come out. A well-designed slow worm should meet such conditions: 1) they are
profit-driven, not only to do damage to the Internet. So they have clear and certain
victims; 2) to survive longer, they will not choose fast propagation. They will send
exploits in much longer interval. Perhaps they will also learn the communication
character before sending exploits. Traditional worm detection methods mainly focus
on fast worms and have a bad effect on slow worms because they are based on the
characters of fast worms or silent worms.

In our work, we detect slow worms through HPBR. When a slow worm is running
on the host, it will first be classified into suspicious software. When a MI denoted as ܫܯ௫ sent by the slow worm is captured, ݄(ܫܯ௫, ܹܵ) ൐ 0 and1 ൅ ߙ כ ,௫ܫܯ)݄ ܹܵ) ൅ߠ כ ,௫ܫܯ)݇ ܶ)) ൐ 0, so according to ܫܯ ,ܣ_ݕ݂݅݀݋ܯ௫

will stay in the MI library. Only

 A Novel Worm Detection Model Based on Host Packet Behavior Ranking 981

if HPBRWD is running, whenever the next MI from the slow worm will come, the
slow worm will be detected.

4.5 What Are the Considerations for Performance in the HPBRWD?

In HPBRWD, there are three points needed to consider the performance: 1) capturing
packets; 2) computing ranking functions in HPBR; 3) updating MI library. We will
discuss the three aspects as follows:

1) Packet capture. In our work, packet capture module not only captures the pack-
ets, but also filters the traffic from the normal software. Although there is not as much
traffic in one host as that in one network, with the emergence of P2P software, video
and file traffic have become more and more. To improve the performance, we use
winpcap to capture the header of packets and install a driver to get the map of port
and software process. At the same time, we use a memory hash table to store the map
of source port and process so that we can reduce the time of lookup.

2) Updating of MI library. When implementing ܣ_ݕ݂݅݀݋ܯ, it is time-consuming to
look for the minimal ranking value in MI library. We use a separate memory structure
to record the minimal rank value. After a new MI is added to A , the minimal rank
value and MI’s index in the MI library are also updated. In this way, we can greatly
reduce the compute time cost.

5 Implementation and Evaluations

5.1 Implementation Introduction

To prove the concept of HPBRWD, we have implemented a prototype using Delphi
language on windows2003. To capture the packets, we use the famous winpcap (ver-
sion 4.0) library to monitor the communication to and from the host (with Delphi). To
get the relationship between source port and process, we have hooked ntDeviceIo-
Control, ntResumeThread and other related functions. In our prototype, all the pro-
files are stored as plain text file, but after the HPBRWD runs, they will be loaded into
the memory and modified during runtime. When HPBRWD ends, these profiles data
in memory will be saved to text files again. At the same time, in order to carry on
experiments easily, we have dumped the filtered traffic for offline analyzing.

To evaluate HPBRWD, we seek to answer the following questions: 1) Is
HPBRWD effective in eliminating the worm-like P2P traffic? 2) Is HPBRWD effec-
tive in detecting worms?

5.2 Is HPBRWD Effective in Eliminating the Worm-Like P2P Traffic?

Dataset Setting
Table 2 lists the P2P applications used in this experiment. We select three kinds of
typical P2P applications which are widely used: P2P instant messenger, P2P file sharing
software and P2P video. All the P2P applications are installed before the experiment
begins. Table2 also lists the common operations during using these P2P applications.
“Idle” means no manual operations; “Send massive message” means sending message

982 F. Xiao et al.

to all the friends in a group at the same time(in this experiment, we sent a message to a
group with 10 friends); “send file” means sending files to a friend; in “download file”
and “movie playing”, we choose the popular songs and TVs recently.

Table 2. P2P applications used

Type of P2P applications name Operations tested
P2P instant messenger QQ Send massive message; idle;

send file;
P2P file sharing software Bit torrent, Thund-

er version 5
Idle; download file

P2P video software UUsee, PPstream Idle; movie playing

Algorithms Used and Parameter Setting
To make the effect obvious, we implement a simple connection-rate based worm
detection algorithm called CRWD (Connection-Rate based Worm Detection). CRWD
is similar with the work in [7], but it is implemented on host not on the network. We
use the parameter Ԗ as the detection threshold. In this experiment, we set Ԗ ൌ 4.

For HPBRWD, we set (α, β, γ, θ, ε, φ, µ) ൌ (1,1,5,5,256,20,80) . In fact, after
computing, this set of parameters means only if two similar MIs exist, an alert will be
triggered. We can see that the threshold of HPBRWD is stricter than CRWD. We
want to prove whether HPBRWD is effective in eliminating worm-like P2P traffic.

5.2.1 Result

Table 3 list the false positives created by these P2P applications when using HPBRWD
and CRWD. From the table, we can see that there exists worm-like P2P traffic which
can create false positives and HPBRWD has successfully eliminating the traffic. Table 3
also lists the destination ports of P2P application which create the false positives. We
found that UUsee created more of the worm-like P2P traffic. UUsee is a P2P video
application which always sends much maintenance information and request informa-
tion to other peers.

The reasons of why HPBRWD can eliminate these worm-like P2P traffic are: 1) all
the P2P applications have been installed before this experiment, so through automatic

Table 3. Result

software False
positives
In
HPBRWD

False
positives
In
CRWD

Destination ports of P2P application which
 create False positives

Bit tor-
rent

No Yes 137,53,6969

ppstream No Yes 7202,7201,8000,53,33366
QQ No Yes 8001,8002,8003
UUsee No Yes 80,443,11111,444,8665,53,8242,8001,9638,

7775,17024,8565,9600
thunder No yes 80,53,3077,8000

 A Novel Worm Detection Model Based on Host Packet Behavior Ranking 983

normal software profile setup and packets captured, we successfully eliminate the
worm-like P2P traffic. We can understand the detail process in section 4.3; 2) these
P2P applications do not have too much source ports when used, which makes a high
performance in hooking ntDeviceIoControl and updating normal software profile.

5.3 How Effective Is HPBRWD in Detecting Computer Worms?

Dataset Setting
In this experiment, we will use computer worms in the wild: codegreen.a, Sasser.a and
Webdav.a. The three worms have different propagation speed, which we can see later.

To carry out this experiment, we choose the five famous computer worms. We ex-
ecuted them manually on our own host, which is in an intranet of our own. The corres-
ponding process names listed above are considered not in the normal software profile
because we can’t get them from the registry which stores the information of installed
software.

In this experiment, we set (α, β, γ, θ, ε, φ, µ) ൌ (1,1,5,3,256,20,20).
Result
Table 4 lists the result of detection using HPBRWD:

Table 4. Detection result

 Codegreen.a Sasser.a Webdav.a
Release time 22:11:21.000916 22:47:53.350332 22:20:23.619331
Stop time 22:12:10.470961 22:50:03.340721 22:44:29.096500
Total attack number 928 1954 183
Propagation speed
(average)

18.8/s 15/s 7.6/min

First alert time 22:11:21.111759 22:47:53.354992 22:20:52.002402
Time spent on first
detection

0.110843 0.004660s 28.383071s

False positives number 0 0 0
False negatives num-
bers

18 59 0

False negatives ratio 1.94% 2.99% 0%

Fig. 6. Speed of sasse.a

984 F. Xiao et al.

We have tested the three
ble4 lists the release time a
three computer worms hav
spread fastest at 18.8/s. Sa
detected earliest which on
0.110843 . The reason is th

In fig.6, time means the
means 22:47:53.350332, wh
the propagation of sasser.a
chose to be silent at some
detection algorithm based o
HPBRWD is good enough t

At the same time, we fi
worms(such as codegreen.a
an example. It spead at a sp
its speed is stable, which m
worm detection systems. W
detect webdav well.

HPBRWD is good at red
false positives are 0. The r
detection is worm-like traf
nated them which you can
computer worms, there exi
faster worm speed is the m
reason is that HPBRWD is
gets faster, the compute co
This is a problem of both
improve HPBR and its im
solve this problem.

6 Related Work

Work [3-5] are all automati
unknown worms or polymo
worms, but it cannot detect
been proven that polygraph

Behavior-based worm
Many famous IDS system h
such as connection rate-b
detection [8]. Detection ba
analyzes the data similarity
quests and the similar prop
vior data from computer an
In work [11], malicious net
er and connector, and then

e worms on win2000 sp4 by manually executing them.
and stop time of them. We can see from the table that
ve different propagation speed. It seems that codegree
asser.a was at 5.35/s. But we will find that Sasser.a w
nly used 0.004660s, while detecting codegreen.a u

hat Sasser.a didn’t spread at a stable speed, just as fig. 6.
e timestamp at which sasser.a propagated. The “1” ti
hile the last time means 22:50:03.340721. We can see t
has the characteristics of periodicity and instability. It e

e timestamps, which will bring challenges to some wo
on fast propagation. The detection result also tells us t
to detect such kind of propagation.
ind that HPBRWD can not only detect fast-propagat

a and Sasser.a), but also slow worms. Webdav.a is just s
peed of 7.6/min and from the detection log, we can see t

means that it can evade almost all the fast-propagation ba
While our HPBRWD is immune to the slow speed and

ducing false positives. In the experiment, we can see t
eason is that the most challenge for behavior-based wo

ffic created by P2P software. We have successfully eli
see from the section 5.2. But with the different speed

ists different number of false negatives. It looks like
more false negatives HPBRWD has. In our opinion,
 designed to be a real-time detector, but with worm sp

ost will also increase, which created some false negativ
design and implementation. In the future work, we w

mplementation to get a higher performance so as to try

ic worm signatures generation system, but they can‘t de
orphic worms. Work [6] has a try in detecting polymorp
t complex polymorphic and metamorphic worms and it

h is vulnerable to noise injection [7].
m detection has been a research hotspot in recent ye
has added the support for the malicious behavior detecti
ased detection [7] and failed connection number ba

ased on netlike association analysis is presented by [9]
y when coming out, invalid destination IP and service
pagation behavior between hosts. Work [10] collects be
nd network, and then detects worm through pattern libra
twork behavior is divided to three classes: traffic, respo
n worm detection is carried out based on these behavi

Ta-
the

en.a
was

used

ime
that

even
orm
that

tion
uch
that

ased
can

that
orm
imi-
d of
the
the

peed
ves.
will
y to

etect
phic
has

ears.
ion,
ased
], it
 re-
eha-
ary.

ond-
ors.

 A Novel Worm Detection Model Based on Host Packet Behavior Ranking 985

Cliff ChangChun Zou [12] presents Kallman filtering method to evaluate the infection
rate of worm. Work [13] [14] studies the frequency of destination IP scanning and
source port changing, and then detects worms based on Bayesian analysis and entro-
py. Recent work [15] has presented a method based on velocity of the number of new
connections an infected host makes and control system theory. Work [16] has used
both low- and high-interaction honeypot to detect worms. The detection technologies
introduced above have a good effect on fast worm detection without many P2P traffic.
These technologies are concentrated at the instant or statistics behavior from the net-
work traffic and good detection effect lies in good distinction between normal traffic
and malicious traffic. But the emergence of P2P software makes the distinction diffi-
cult for the technologies above.

7 Conclusions and Future Work

In this paper, we have presented a hierarchical user habit model. From this model, we
found that software and time period is also the important factors to generate network
traffic, while they are not paid attention to by traditional user habit model or network
behavior based worm detection. An overview of HPBRWD design is also introduced
to make the design goal and principles clear. To make the work easy to understand,
we introduced several key issues in design and gave our solutions. In this paper, we
also explained that host based gave us the advantage to make the worm detection
more effective.

At last, several experiments were carried on to test the effect of HPBRWD. Results
of the experiments showed that HPBRWD had done a good job.

We plan to optimize the multi-level ranking function in HPBRWD. In the imple-
mentation now, it seems a bit complex; for the profile of normal software, in the fu-
ture work, we want to make the generation more automatic; in section3.1, we have
presented an assumption, in the future work, we will solve the problem of injecting
into other processes to run the worm code.

Acknowledgement

We would like to thank the High Technology Research and Development Program of
China (863 Program) for support of this project with grant 2006AA01Z401 and
2008AA01Z414, we also thank National Natural Science Foundation of China for
support of this project with grant 60573136.

References

1. Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., Weaver, N.: Inside the
slammer worm. IEEE Security & Privacy l(4), 33–39 (2003)

2. Staniford, S., Moore, D., Paxson, V., Weaver, N.: The top speed of flash worms. In: Pax-
son, V. (ed.) Proc. of the 2004 ACM Workshop on Rapid Malcode, pp. 33–42. ACM
Press, Washington (2004)

986 F. Xiao et al.

3. Kim, H., Karp, B.: Autograph: Toward automated distributed worm signature detection.
In: Proceedings of USENIX Security, San Diego,CA (August 2004)

4. Kreibich, C., Crowcroft, J.: Honeycomn-creating intrusion detection signatures using ho-
neypots. In: Proceedings of HotNets, Bostom, MA (November 2003)

5. Singh, S., Estan, C., Varghese, G., Savage, S.: Automated worm fingerprinting. In: Pro-
ceedings of OSDI, San Francisco, CA (December 2004)

6. Newsome, J., Karp, B., Song, D.: Polygraph:Automatically generating signatures for po-
lymorphic worms. In: Proceedings of IEEE Symposium on Security and Privacy, Oakland,
CA (May 2005)

7. Roesch, M.: Snort: Lightweight intrusion detection for networks. In: Proceedings of Con-
ference on system administration (November 1999)

8. Paxson, V.: Bro: a system for detection network intruders in real time. Computer Net-
works 31 (December 1999)

9. Si-Han, Q., Wei-Ping, W., et al.: A new approach to forecasting Internet worms based on
netlike association analysis. Journal On Communications 25(7), 62–70 (2004)

10. Staniford-Chen, S., et al.: GrIDS: A Graph-Based Intrusion Detection System for Large
Networks. In: Proceedings of the 19th National Information Systems Security Conference,
vol. 1, pp. 361–370 (1996)

11. Dubendorfer, T., Plattner, B.: Host Behavior Based Early Detection of Worm Outbreaks in
Internet Backbones. In: Proceedings of 14th IEEE WET ICE/STCA security workshop, pp.
166–171 (2005)

12. Zou, C.C., Gong, W., Towsley, D., et al.: Monitoring and early detection of internet
worms[A]. In: Proceedings of the 10th ACM Conference on Computer and Communica-
tions Security[C], Washington DC, USA, pp. 190–199. ACM Press, New York (2003)

13. Internet Threat Detection System Using Bayesian Estimation. In: 16th Annul FIRST Con-
ference on Computer Security Incident Handling. 20 Sumeet Singh, Cristian Estanm
(2004)

14. Wagner, A., Plattner, B.: Entropy based worm and anomaly detection in fast ip networks.
In: WET ICE 2005, pp. 172–177 (2005)

15. Dantu, R., Cangussu, J.W., et al.: Fast worm containment using feedback control. IEEE
Transactions On Dependable And Secure Computing 4(2), 119–136 (2007)

16. Portokalidis, G., Bos, H.: SweetBait: Zero-hour worm detection and containment using
low- and high-interaction honeypots. Computer Networks 51(5), 1256–1274 (2007)

17. Xiao, F., Hu, H., et al.: ASG - Automated signature generation for worm-like P2P traffic
patterns. In: waim 2008 (2008)

	A Novel Worm Detection Model Based on Host Packet Behavior Ranking
	Introduction
	User Habit Model on Internet Access
	Overview of HPBRWD Design
	Design Goals and Principles
	HPBRWD Architecture and Flow of Control

	Key Issues in the Design of HPBRWD
	How Do We Carry on HPBR?
	How to Setup Normal Software Profile and Time Profile Automatically
	How Does HPBRWD Eliminate the Influence of Worm-Like P2P Traffic?
	How Does HPBRWD Detect the Slow Worms?
	What Are the Considerations for Performance in the HPBRWD?

	Implementation and Evaluations
	Implementation Introduction
	Is HPBRWD Effective in Eliminating the Worm-Like P2P Traffic?
	How Effective Is HPBRWD in Detecting Computer Worms?

	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

