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Abstract. Incremental/iterative development is often considered to be the best
approach to develop large scale information management applications. In an ap-
plication using an ontology as a central component at design and/or runtime (on-
tology based system) that is built using this approach, the ontology itself might be
constantly modified to satisfy new and changing requirements. Since many other
artifacts, e.g., queries, inter-component message formats, code, in the applica-
tion are dependent on the ontology definition, changes to it necessitate changes
to other artifacts and thus might prove to be very expensive. To alleviate this, we
address the specific problem of detecting the SPARQL queries that need to be
modified due to changes to an OWL ontology (T-Box). Our approach is based
on a novel evaluation function for SPARQL queries, which maps a query to the
extensions of T-Box elements. This evaluation is used to match the query with
the semantics of the changes made to the ontology to determine if the query
is dirty- i.e., needs to be modified. We present an implementation of the tech-
nique, integrated with a popular ontology development environment and provide
an evaluation of our technique on a real-life as well as benchmark applications.

1 Introduction

OWL and RDF, the ontology languages proposed as a part of the semantic web stan-
dards stack, provide a rich set of data modeling primitives, precise semantics and stan-
dard XML based representation mechanisms for knowledge representation. Although
originally intended to address the problem of finding and interpreting content on the
World Wide Web, these standards have been proposed as an attractive alternative to
traditional technologies used for addressing the information and knowledge manage-
ment problems in large enterprises [7]. As more robust and scalable tools appear in
the market, the motivation for applying semantic web technologies in large-scale enter-
prise wide solution increases steadily. A common use of these technologies is to build
ontology-based systems [4]. In such systems an ontology, which is a formal model of
the problem domain, is a key entity in the design of other system elements like the
knowledge bases (KBs), queries to the KBs, messages between the components in the
system, and the code itself.

Vast experience in building large-scale information systems, including those based
on traditional RDBMS, data warehouses etc., point to the use of an incremental/iterative
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Fig. 1. A ontology change scenario

approach as being the most effective [2,6,13]. In such an approach, the requirements
are assumed to be evolving as the system is developed (and used). The software itself is
built in phases- with new requirements added at the beginning of each phase and work-
ing sub-systems delivered at the end of it. Frequent changes may thus be made to the
ontology in order to accommodate the new requirements. Since other artifacts that form
a part of the system are closely tied to the ontology, changes to the ontology necessi-
tates changes to them. This may lead to a situation in which changes to an ontology
could trigger an expensive chain of changes to other artifacts. Tools that ease the de-
tection and performance of such changes can increase the productivity of the software
engineers and hence reduce the cost of building software are thus very important for the
success of such a development methodology.

We address a specific case of this broader problem for the class of applications that
use OWL for representing the ontologies and SPARQL for the queries. In general, we
assume that the ontologies are built ground up- perhaps reusing existing ontologies.
Our technique uses the changes made to an OWL TBox to detect which queries need
to be modified due to it- we call such queries dirty queries. To understand why this is
non-trivial consider the following simple scenario shown in Fig. 1.

The original setup consists of a TBox with three classes (Sub-SurfaceEntity,
Well, Producer) and a query to retrieve all Sub-SurfaceEntity elements.
A new class Injector is then added to the TBox and specified as a sub-class to
Well (this is recorded in the change log). A naive change detection algorithm [10]
would have compared the entity names from the log (Well, Injector) to those
in the query (Sub-SurfaceEntity), and determined that the query need not be
modified. However, there could be a knowledge base consistent with the new ontology
which contains statements asserting certain elements to be of type Injector. Since
these elements/type assertions are not valid in any knowledge base consistent with the
original ontology and will be returned as the results of the said query, we consider the
query to be dirty. The naive algorithm does not detect this invalid example because
the semantics are not considered in this approach (in this case the class hierarchy).

Thus our approach goes beyond the simple entity matching by considering the se-
mantics of the ontology, the changes and the queries. A challenge we face in our ap-
proach arises because SPARQL is defined as a query language for RDF graphs and its
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relationship with OWL ontologies is not very obvious. We address this challenge by
defining a novel evaluation function that maps the SPARQL queries to the domain of
OWL semantic elements (Sect. 4). Then the semantics of the changes are also defined
on the same set of semantic elements (Sect. 5). This enables us to compare and match
the the SPARQL queries with that of the changes made to the ontology and hence de-
termine which queries have been effected (Sect. 6). We present an implementation of
our technique, which seamlessly integrates with a popular, openly available OWL on-
tology development environment (Sect. 7). We show an evaluation of our technique for
a real-life application for the oil industry and two publicly available OWL benchmark
applications (Sect. 8). Finally we describe some related work (Sect. 9) and discussions
and conclusions (Sect. 10).

2 Preliminaries

2.1 OWL

The OWL specification is organized into the following three sections [16]:

1. Abstract Syntax: In this section, the modeling features of the language are pre-
sented using an abstract (non-RDF) syntax.

2. RDF Mapping: This section of the specification defines how the constructs in the
abstract syntax are mapped into RDF triples. Rules are provided that map valid
OWL ontologies to a certain sub-set of the universe of RDF graphs. Thus RDF
mappings define a subset of all RDF graphs called well-formed graphs (WFOWL)
to represent valid OWL ontologies.

3. Semantics: The semantics of the language is presented in a model-theoretic form.
The OWL-DL vocabulary is defined over an OWL Universe given by the three tuple
〈IOT, IOC, ALLPROP 〉, where:
(a) IOT is the set of all owl:Things, which defines the set of all individuals.
(b) IOC is the set of all owl:Classes, comprises all classes of the universe.
(c) ALLPROP is the union of set of owl:ObjectProperty (IOOP), owl:Datatype

Property (IODP), owl: AnnotationProperty (IOAP) and OWL:Ontology
Property (IOXP).

In addition the following notations are defined in the specification, which we will
use in the rest of this paper:

– A mapping function T is defined to map the elements from OWL universe to
RDF format.

– An interpretation function EXTI : ALLPROP→P(RI ×RI) is used to define
the semantics of the properties.

– The notation CEXTI is used for a mapping from IOC to P(RI) defining the
extension of a class C from IOC.

From now on we will use ontology to refer to the TBox, ABox combine as commonly
used in OWL terminology.
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2.2 SPARQL

SPARQL is the language recommended by the W3C consortium, to query RDF graphs
[20]. The language is based on the idea of matching graph patterns. We use the follow-
ing inductive definition of graph-pattern [17]

1. A tuple of form (I ∪L ∪V)×(I ∪V)×(I ∪L ∪V) is a graph pattern (also a triple
pattern). Where I is the set of IRIs, L set of literals and V is set of variables.

2. If P1 and P2 are graph patterns then P1 AND P2, P1 OPT P2, P1 UNION P2 are
graph patterns

3. If P is a graph pattern and R is a built-in condition then P FILTER R is a valid
graph pattern.

The semantics of SPARQL queries are defined using a mapping function μ, which is
a partial function μ:V→τ , where V is the set of variables appearing in the query and τ is
the triple space. For a set of such mappings Ω, the semantics of the AND (��), UNION
and OPT (

←−
�� ) operators are given as follows

Ω1 �� Ω2 = {μ1 ∪ μ2|μ1 ∈ Ω1, μ2 ∈ Ω2 are compatible mappings1}

Ω1 ∪Ω2 = {μ|μ ∈ Ω1 or μ ∈ Ω2}
Ω1
←−
��Ω2 = (Ω1 �� Ω2) ∪ (Ω1\Ω2)

where
Ω1\Ω2 = {μ ∈ Ω1|∀μ′ ∈ Ω2, μ and μ′are not compatible}

Since SPARQL is defined over RDF graphs, its semantics with respect to OWL is not
very easy to understand. In an attempt to clarify this, a subset of SPARQL that can be
applied to OWL-DL ontologies is presented in SPARQL-DL [22]. The kind of queries
we use in our work are the same as those presented in their work but we also consider
graph patterns that SPARQL-DL does not- more specifically the authors consider only
conjunctive (AND) queries, where as we consider all SPARQL operators, viz, AND,
UNION, OPTIONAL and FILTER. Note that the main goal of [22] is to define a (sub-
set of the) language that can be implemented using current reasoners, whereas the goal
of our work is to be able to detect queries that effected by ontology changes.

3 Overview

In Sect. 1 we provided the intuition that a dirty query with respect to two TBoxes is one
which can match some triple from an ontology consistent with either one of the TBoxes
but not both. We further formalize this notion here, using:

– O is the original ontology.
– C is the set of changes applied to O.
– O′ is the new ontology obtained after C is applied to O.
– Q is a SPARQL query. We need to determine if it is dirty or not.

1 μ1 and μ2 are compatible if for a variable x, (μ1(x) = μ2(x)) ∨(μ1(x) = φ) ∨(μ2(x) = φ)
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– WFO is the set of RDF graphs which represent ontologies that are consistent wrt.
the statements in O.

– Similarly the set of well-formed OWL graphs wrt. O′ is given by WFO
′.

The extension of a query is defined as follows:

Definition: The extension of a query Q containing a graph pattern GP, wrt. an
OWL T-Box O (denoted EXTO(Q) or EXTO(GP)), is defined as the set of all
triples that match GP and are valid statements in some RDF graph from WFO.

A more formal definition of a dirty query is given as:

Definition: A query is said to be dirty wrt. two OWL TBoxes O and O′, if it
matches some triple in WFO

′ \WFO or WFO \WFO
′, i.e., EXTO(Q) ∩(WFO

′

\WFO ∪WFO \WFO
′) �=φ.

Thus to determine if a given query is dirty we find the extension of the given query.
Apart from this, we also need to determine and compare it with the set of triples that
are present in WFO

′ \WFO ∪WFO \WFO
′. To do this we consider the changes C and

determine the set of triples added, removed or modified in WFO due to it- we call this as
the semantics of the change. Thus our overall approach to detect dirty queries consists
of the following four steps:

1. Capture ontology change: The changes made to the ontology are logged. Ideally,
the change capture tool must be integrated with the ontology design tool, so that
the changes are tracked in a manner that is invisible to the ontology engineer. Since
many other works [14,15,8] have focused on this aspect of the problem we re-use
much of their work and hence do not delve into it.

2. Determine the extension of the query.
3. Determine the semantics of change.
4. Matching: Determine if the ontology change can lead to an inconsistent result for

the given queries, by matching the extension of the query with the changed seman-
tics of the ontology.

Each of these steps is detailed in the following sections.

4 Extension of SPARQL Queries

Due to the complexity of consistency checking for DL ontologies [3,5], it is very hard
to accurately determine the EXT of a query. In order to alleviate this we use a simplified
function called NEXT, which determines the set of triples that satisfy a graph pattern by
using a necessary (but not sufficient) condition for a triple to be a valid statement in an
ontology KO. From the SPARQL semantics point of view, NEXT can be thought of as
a function that provides the range for each variable in a query, in the evaluation func-
tion Ω. The range itself is defined in terms of the semantic elements of an OWL TBox.
In other words, Ω:Q →T(NEXT(Q))- where T is the function to map OWL seman-
tic elements to triples [16]. The semantics presented in the RDF-Compatible Model-
Theoretic Semantics section of the OWL specification has been used as the basis for
defining NEXT. We first show how NEXT is defined for simple triple patterns and then
generalize it to complete queries.
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4.1 Triple Patterns

Queries to OWL ontologies can be classified into three types: those that only query
A-Box statements (A-Box queries), those that query only T-Box statements (T-Box
queries) or those that contain a mix of both (mixed queries) [22]. In the interest of
space and as all the queries in the applications/benchmarks we have considered are
A-Box queries, we will only present the NEXT values for them. A similar method to
the one below can be used to create the corresponding tables for the mixed and TBox
queries.

Our evaluation of NEXT for triple patterns in A-Box queries is based on the following
observations:

1. The facts/statements in an OWL A-Box can only be of three kinds: type assertions,
or identity assertions (sameAs/ differentFrom) or property values.

2. A triple pattern contains either a constant (URI/literal) or a variable in each of the
subject, object and predicate position. Correspondingly, triple patterns are evaluated
differently based on whether a constant or a variable occurs in the subject, property,
or object position of the query.

We illustrate how NEXT values for triple patterns are determined through an exam-
ple. Consider a triple pattern of the form ?var1 constProperty ?var2, where
(?var1 and ?var2 are variables and constProperty is a URI). We know that
for this triple to match any triple in the A-Box, constProperty must be either
rdf:type or owl:sameAs/ differentFrom or some datatype/object property
defined in the T-Box.

Consider the case where constProperty is rdf:type. The only valid values
that can be bound to ?var2 are the URIs that are defined as a class (or a restriction)
in the T-Box. In other words it belongs to the set IOC. The valid values of the subject
(?var2) is the set of all valid objects in O, i.e., IOT, because every element in IOT can
have a type assertion. Therefore the NEXT(tp) is given as P(IOT ×{rdf:type} ×IOC)-
the power-set of all the triples from {IOT ×rdf:type×IOC}.

Note that this is a necessary but not sufficient condition because, although every
triple in NEXT cannot be proved to be a valid statement with respect to O (not suffi-
cient), but by the definition of these semantic elements, it is necessary for a triple to
be in it. As a simple example to illustrate this, consider a TBox with two classes Man
and Woman that are defined to be disjoint classes and a triple pattern ?x rdf:type
?var. An implication of Man and Woman being specified as disjoint classes is that an
individual cannot be an instance of both these classes i.e. EXT(tp) /∈{〈aIndrdf:type
Man〉∧〈aInd rdf:type Woman〉}. However as described above the NEXT for the
triple pattern is P(IOT ×{rdf:type} ×IOC) and does not preclude such a combination
of triples from being considered in it.

Using similar analysis, we evaluate the NEXT values for other kinds of triple patterns
as shown in Table 1.

4.2 Compound Graph Patterns

We now extend this notion to arbitrary graph patterns. Recall from Sect. 2 that a graph
pattern Q is recursively defined as Q = Q1 AND Q2 ‖ Q1 UNION Q2 ‖ Q1 OPT Q2 ‖
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Table 1. NEXT values for SPARQL queries to OWL A-Boxes

Type Triple Pattern (TP) Case NEXTO(TP)
1 ?var1 ?var2 ?var3 - P(IOT ×Prop ×(IOT ∪LVI ))

2 ?var1 ?var2 Value
Value is a URI from the TBox
(Class Name)

P(IOT ×{rdf:type} ×{Value})

Value is an unknown URI P(IOT ×{IOOP ∪owl:sameAs
∪owl:differentFrom}
×{Value})

Value is a literal P(IOT ×{IODP} ×Value)

3 ?var1 Property?var3

Property is rdf:type P(IOT ×{rdf:type} ×(IOC))
Property is
owl:sameAs(differentFrom)

P(IOT ×{owl:sameAs}×IOT)

Property is object property
i.e. Property ⊂IOOP

P (
⋃

D∈DOMP

CEXT (D)

×{Property}×
⋃

R∈RANP

CEXT (R)))

Property is Data-type prop-
erty i.e. Property ⊂IODP

P (
⋃

D∈DOMP

CEXT (D)

×{Property} ×LV)

4 ?var1 Property Value
Property is rdf:type (and
Value ⊂IOC)

P(CEXT(C)) ×{rdf:type}
×Value) C = T−1(Value)

Property is
sameAs/differentFrom (Value
is a URI ⊂IOT)

P(IOT ×{owl:sameAs}
×{Value})

Property is a object property
or data type property (Corre-
spondingly Value is a URI or a
literal)

P(∪D∈DOMP
CEXT (D)

×{Property}×{Value})
5 Value ?var1 ?var2 - P({Value} ×ALLPROP

×{IOT ∪LV ∪IOC})
6 Value ?var1 Value2 - Same as case 2.
7 Value Property ?var2 - Same as case 3.
8 Value Property Value2 - TP

Q1 FILTER R. The NEXT value for a query Q is defined based on what the connecting
operator is as follows:

1. Consider a simple example of the first case in which both Q1 and Q2 are triple pat-
terns connected through AND: (?x type A AND ?x type B). For the variable x to sat-
isfy the first (second) triple pattern, it has to have a value in CEXT(A) (CEXT(B)).
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However, due to the AND, x has to be a compatible mapping. Thus the valid values
of x are in (CEXT(A)∩CEXT(B)). For a variable that only appears in either of the
sub-patterns, the NEXT does not depend on the other sub-pattern.

2. For a UNION query, the mappings of the variables occurring in Q1 and Q2 are
completely independent of each other and thus the evaluation can be independently
performed.

3. If the two sub-queries are connected by OPT, which has the left join semantics,
the variables on the left side (Q1) is independent of variables in Q2 . However the
extension of the variables in Q2, is similar to the queries in an AND query.

4. When expressions are connected using the FILTER operator, the extension is de-
termined as that of Q1 (we examine two special cases later).

Once the NEXT values of the variables in each sub-query are computed, the NEXT
values of the query can be computed as follows:
For a constant c, NEXT(c,Q) = {c}. The extension of the query Q is given as

NEXT (Q)=
⋃

tp∈Q

P ({NEXT (subtp, Q)×NEXT (proptp, Q)×NEXT (objtp, Q)})

where tp is each triple pattern in Q and subtp, proptp and objtp represent the con-
stant/variable in the respective position in tp.

This procedure is summarized in algorithm 4.2. The algorithm takes as input a
SPARQL query that is fully parenthesized, such that the inner most parenthesis contains
the expression that is to be evaluated next. For each of the expressions surrounded by a
parenthesis, we maintain the value of the NEXT value to which the variable is mapped.
When this is modified during the evaluation of the expression in a different sub-query, it
is updated to be the new value of the variable, based on the operator semantics described
above.

Exceptions: Two exception cases which are treated separately are:

– An interesting use of the FILTER expression is used to express negation in queries
[21]. E.g., to query for the complement of instances of a class C one can write a
query of the form:

(?x type owl:Thing.OPT(?a type C.Filter(?x = ?a)).Filter(!Bound(a))

In this query ?x is bound to all objects that are not of type C i.e., the NEXT value
for the variable ?x should be assigned as IOT \CEXT(C).

– Another interesting case is the use of isLiteral condition in a FILTER expression.
Consider the triple pattern ?c type Student. ?c ?p ?val.FILTER(isLiteral(val)). With-
out the FILTER clause, we might conclude that the variable p is bound to all prop-
erties with domain Student. But since the filter condition specifies that val has to be
a literal, p can be restricted to the set of data-type properties with domain C. Note
that by not considering the FILTER we obtained the super-set of possible bindings.
Therefore any change to one of these properties would have still been detected but
some false positives may have been present.
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Algorithm 1. Algorithm to compute the NEXT of a compound query
Require: Fully Parenthesized Query in Normal form Q, Ontology O
Ensure: NEXT of Q
1. while all patterns are not evaluated do
2. P←innermost unevaluated expression in Q
3. if P is a triple pattern(tp) then
4. NEXT(var, P) ←NEXTS(var, tp)
5. NEXT(var, tp) ←NEXTS(var, tp)
6. else if P is of the form (P1 AND P2) then
7. for each variable v in P1,P2 do
8. if if v occurs in both P1 and P2 then
9. NEXT(v, P) = NEXT(v,P1) ∩NEXT(v,P2)

10. Update the NEXT of v in P1 and P2 as well all sub-patterns it may occur in to
NEXT(v, P)

11. else if if v occurs in both P1 and P2 then
12. NEXT(v, P) = NEXT(v,Pi)
13. end if
14. end for
15. else if P is of the form (P1 OPT P2) then
16. for each variable v in P1,P2 do
17. if v occurs in P1 then
18. NEXT(v, P) = NEXT(v,P1)
19. else if v occurs in P2 then
20. if v also occurs in P1 then
21. NEXT(v, P2) = NEXT(v, P1) ∩NEXT(v,P2)
22. else if v occurs only in P2 then
23. NEXT(v, P) = NEXT(v,P2)
24. end if
25. end if
26. end for
27. else if P is of the form (P1 FILTER R) then
28. for each variable v in P1,P2 do
29. NEXT(v, P) = NEXT(v, P1)
30. end for
31. else if P is of the form (P1 UNION P2) then
32. NEXT(v, P) = NEXT(v, P1)
33. end if
34. end while
35. return The union of NEXT of each triple pattern in the query

5 Semantics of Change

The second step of our change detection process is to map the changes made to the
ontology to OWL semantic elements, which will enable the queries and the changes to
be compared. We observe that the changes to a TBox can be classified as lexical changes
and semantic changes. Lexical changes represent the changes made to the names(URIs)
of OWL classes or properties. Such changes can be handled easily by a simple string
match and replace in the query.
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Semantic changes are more interesting because they effect one or more OWL seman-
tic elements and need to be carefully considered. They can be further classified as:

– Extensional changes: Extensional changes are the changes that modify the exten-
sional sets of a class or a property. E.g., adding an axiom that specifies a class as a
super-class of another is an example of this because, the extension of the super-class
is now changed to include the instances of the sub-class.

– Assertional/rule changes: Assertional changes do not modify the extensions of TBox
elements but add additional inference rules or assertions. E.g., specifying a property
to be transitive does not change the extension of the domain or range of the property
but adds a rule to derive additional triples from asserted ones.

– Cardinality changes. The cardinality changes specify constraints on the cardinality
of the relationship.

The complete list of semantic changes that can be made to an OWL (Lite) ontology
is presented in [8]. We have used it as the basis of capturing and representing the on-
tology changes in our system. The semantics of a change, is the effect of the change to
extension of the model is represented as a set of all OWL semantic elements that are
effected by the change. By matching this to the extension (NEXT value) of the query,
we can determine if the query is dirty or not. In table 2, we show some examples of the
changes and their semantics.

Table 2. Changes to OWL ontologies and their semantics

Object Operation Argument(s) Semantics of Change
Ontology Add Class Class definition (C) IOC �=IOC′

Ontology
Remove Class Class ID (C) IOC �=IOC′, CEXT(SC)

�=CEXT′(SC)
CEXT(Dom(P))
�=CEXT′(Dom(P)),
CEXT �=CEXT′(Ran(P))∀P‖ C
∈Dom(P) or Ran(P)

Class (C) Add SuperClass Class ID (SC) CEXT(SC) �=CEXT′(SC)
Class(C) Remove SuperClass Class ID (SC) CEXT(SC) �=CEXT′(SC)
Property (P) Set Transitivity Property ID - (Assertional Change)
Property (P) UnSet Transitivity Property ID - (Assertional Change)

– Example 1: A class C is added to the TBox- IOC 2 the set of classes defined in the
TBox of the new ontology is different from the original one.

– Example 2: A more interesting case is when a class C is removed from the TBox.
Not only is IOC changed as before, but also the extension of the super-classes of C
because all the instances of C which were also instances of the super-class(es) in the
original TBox are not valid in the modified TBox. The modification also effects the
extensions of the classes (restrictions), intersectionOf in which the class C appears.

2 The OWL spec [16] defines IOC as the set of all OWL classes, here we (ab)use the notation
to denote the set of classes defined in the ontology (T-Box).
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Finally, the domain and range resp. of the properties in which C appears are also
modified. Note that a complete DL reasoner (like Pellet or Racer) can be used to
fully derive the class subsumption hierarchy, which can then be used to derive the
semantics of the change.

– Example 3: In the third example, an OWL axiom which defines a class C as sub-
class of SC is added. In this case, the extension of the class SC changes. Setting
and un-setting transitivity of a property is an example of an assertional change to
the ontology as described above.

In the interest of space the entire set of changes and the OWL semantic entities that
it changes are not presented here but the interested reader can find it online3.

6 Matching

The matching algorithm is fairly straight forward and is presented in pseudo-code form
in Algorithm 2.

Algorithm 2. Algorithm to detect dirty queries for a set of ontology changes
Require: Ontology Change log L, Query Q
Ensure: Dirty queries
1. Aggregate changes in L
2. for each lexical change l in L do
3. Modify the name of the ontology entity if it appears in it
4. end for
5. Let N ←NEXT of Q
6. Let C ←set of semantically changed extensions of O due to L
7. for each element n in N do
8. if Check if n matches any element in C then
9. Mark Q as dirty

10. end if
11. end for
12. return

In the first step the log entries are aggregated to eliminate redundant edits. E.g., it is
possible that the log contains two entries, one which deletes a class C and another which
adds the same class C. Such changes are commonly observed when the changes are
tracked through a user interface and the user often retraces some of the changes made.
Clearly these need to be aggregated to conclude that the TBox has not been modified.
Then the lexical changes are matched and the query is automatically modified to refer
to the new names of the TBox elements. Finally the NEXT value of Q and the semantic
implications of each change in L are matched. This is done by comparing the extension
or element bound to the subject, object, property position of each triple pattern of Q,
with extensions modified due to the changes made to the TBox. If any of these sets is
effected, then the query is marked as dirty.

3 http://pgroup.usc.edu/iam/papers/supplemental-material/SemanticsOfChange.pdf
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7 Implementation

Our technique has been implemented as a plug-in to the popular and openly available
Protégé ontology management tool [19]. Since we have used Protégé for ontology devel-
opment in our work, providing this service as a plug-in enables a seamless environment
to the ontology engineer. Moreover, the Protégé toolkit is equipped with another plug-
in that tracks the changes made to an ontology. We utilise this to capture the changes
made to the ontology. After the user makes the changes to the ontology in the design tab
of the tool, he proceeds to the dirty query detection panel and points to a file contain-
ing the SPARQL files for validation. The dirty queries are highlighted and the user can
then decide if the changes have to be kept or discarded. The query validation plug-in is
shown in Fig. 2(a) and the Protégé change tracking plug-in in Fig. 2(b).

Our implementation of the dirty query detection algorithm is in Java and uses a
openly available grammar for SPARQL to create a parser for the queries4. Since all

(a) Query validation service implemented as a plug-in to the Protégé toolkit

(b) Change tracking service in Protégé

Fig. 2. Support for incremental development in Protégé environment

4 http://antlr.org/grammar/1200929755392/index.html
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the queries in our applications were stored in a file, the problem of finding the queries
was made easy. However, many of the queries were parameterized and we had to pre-
process the queries to convert it to a form that was compliant with the specification.
E.g., a query for a keyword search to find people with a user specified name is usu-
ally parameterized as follows “SELECT ?persons WHERE {?persons rdf:type
Person. ?persons hasName $userParm$}”. Here $userParm$ is replaced
with a dummy string literal to make it into a parseable SPARQL query.

Once the queries are parsed, the NEXT values for the queries are evaluated as de-
scribed in Sect. 4. We have used the Pellet reasoner5 for determining the class and
property lattices needed for evaluating NEXT. The changes tracked by Protégé ontology
plug-in are logged in a RDF file. We extract these changes using the Jena API6, perform
the necessary aggregations and evaluate the semantics of the changes. Again the Pellet
reasoner is used here for computing the class lattices etc. Finally the matching is done
and all the details of the dirty queries- the triple pattern in the query that is dirty, the
TBox change that caused it to be invalidated, the person who made the change and a
suggested fix to the problem is displayed to the user.

8 Evaluation

We have evaluated our algorithm on three data-sets: the first two, LUBM [11] and
UOBM [12] are two popular OWL knowledge base benchmarks which consist of OWL
ontologies related to universities and about 15 queries. The third benchmark we have
used (called CiSoft) is based on a real application that we have built for an oil com-
pany [23]. The schema for LUBM is relatively simple- it has about 40 classes. Although
UOBM has a similar size it ensures that all the OWL constructs are exercised in the
TBox. Both these benchmarks have simple queries- each query on an average has about
3 triple patterns in it and they are all conjunctive queries. The TBox of the Cisoft bench-
mark is larger than the other two (about 100 classes) and the queries we have chosen
from the Cisoft application is a set of about 25 queries, and each query has on an aver-
age 6 triple patterns. These queries exercise all the SPARQL connectors (AND, OPT,
UNION, FILTER).

To evaluate our algorithm, we compare it with two other algorithms. The simpler of
these two is the Entity name algorithm which checks if the name of the entities modified
in the TBox occur in the triple patterns of the query by string matching. If it occurs,
then it declares the query to be dirty and if not it declares it clean. The second algorithm
called the Basic Triple Pattern is a sub-set of our Complete algorithm. This algorithm
does not consider the connectors between the SPARQL operators i.e., it only implements
the rules presented in table 1.

We have used the two standard metrics from information retrieval- precision and
recall for evaluation. Recall is given as the ratio of the no. of dirty queries retrieved by
the algorithm to the total no. of dirty queries in the data-set. Precision is given by the
ratio of the total no. of dirty queries detected by the algorithm to the total no. of results
returned by the algorithm. The results show in Table 3 are the average of 50 runs for

5 http://pellet.owldl.com/
6 http://jena.sourceforge.net/
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Table 3. Dirty query detection results for three algorithms

Benchmark Algorithm Recall Precision

Cisoft
Complete 1 1
Basic T.P 1 0.2

Entity name 0.4 0.45

LUBM
Complete 1 1
Basic T.P 1 0.6

Entity name 0.4 0.85

UOBM
Complete 1 1
Basic T.P 1 0.7

Entity name 0.25 0.6

each data-set; in each run a small number (< 10) of random changes to the ontology
was simulated and the algorithms were then used to detect the dirty queries with respect
to those changes.

We see that the Basic TP algorithm has a recall of 1 i.e., always returns all the dirty
queries in the data-set but it also returns a number of false positives (low precision).
Since the results returned by BTP is always a super-set of the complete algorithm- the
recall is always 1. To understand why a low precision is observed for BTP (especially
for the Cisoft data-set), consider a query of the form ?a rdf:type Student.?a ?prop ?value.
Since the algorithm considers each triple pattern in isolation, it infers that every valid
triple in the ontology will match the second triple pattern (?a ?prop ?value). Therefore
any ontology change will invalidate the query. However, this is incorrect because the
first triple pattern ensures that only triples which refer to instances of Student will match
the query and therefore only changes related to the OWL class Student will invalidate
the query. The LUBM and UOBM queries do not have many triple patterns of this form,
thus the precision of BTP for these data-sets is higher.

The entity name algorithm does not always pick out the dirty queries (recall < 1).
The main shortcoming of this algorithm is that, it cannot detect the ontology changes
that might affect values that might be bound to a variable.

9 Related Work

Much work has been done in the general area of ontology change management [8,9,24].
Most of these works deal with the semantic web applications in which ontologies are
imported or built in a distributed setting. In such a setting, the main challenge is to ensure
that the ontologies are kept consistent with each other. In our work, we address the
problem of keeping the SPARQL queries consistent with OWL ontologies. Although,
some aspects of the problem- e.g., the set of changes that can be made to an OWL
ontology are the same, our key contributions are in defining the notion of dirty queries
and the evaluation function which maps queries and (implications) of ontology changes
onto the OWL semantic elements, which makes it possible to compare them to decide
if the query is invalidated.
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In [24], although the authors define evolution quite broadly as timely adaptation
of an ontology to the arisen changes and the consistent propagation of these changes
to dependent artifacts, they do not address the issue of keeping queries based on on-
tology definitions consistent with the new ontology. The authors do define a generic
four stage change handling mechanism- (change) representation, semantics of change,
propagation, and implementation, which is applicable to any artifact that depends on
the ontology. Our own four step process is somewhat similar to this.

An important sub-problem in the ontology evolution problem is the change detection
problem. Various approaches have proposed in literature to address this problem. Most
of these address the problem setting of distributed ontology development and thus pro-
vide sophisticated mechanisms to compare and thus find the differences between two
ontologies [15,18]. On the other hand we assume a more centralized setting in which
we assume that the ontology engineers modify the same copy of the ontology defini-
tion file. We have used an existing plug-in developed for the Protégé toolkit [14], which
tracks the changes made to the ontology.

An important artifact in a ontology based system is the knowledge base. In [25],
the authors address the problem of efficiently maintaining a knowledge base when the
ontology (logic program) changes. Similar to the work of view maintenance in the dat-
alog community, the authors use the delta program to efficiently detect the data tuples
that need to be added or deleted from the existing data store. This is an important piece
of work addressing the needs of the class of applications that we target, and is compli-
mentary to our work.

In the area of software engineering, the idea of agile database [1] addresses the sim-
ilar problem of developing software in an environment in which the database schema
is constantly evolving. The authors present various techniques and best practices to fa-
cilitate efficient development of software in such a dynamic methodology. Unlike our
work, the authors however, do not address the problem of detecting the queries that are
affected by the changes to the schema.

10 Discussion and Conclusions

We have addressed a problem seen in the context of OWL based application develop-
ment using an iterative methodology. In such a setting as the (OWL) TBox is frequently
modified, it becomes necessary to check if the queries used in the application also need
to be modified. The key element of our technique is a SPARQL evaluation function that
is used to map the query to OWL semantic elements. This is then matched with the se-
mantics of the changes to the TBox to detect dirty queries. Our evaluation shows that
simpler approaches might not be enough to effectively detect such queries.

Although originally intended to detect dirty queries we have found that our evalua-
tion function can be used as a quick way to check if a SPARQL query is semantically
incorrect with respect to an ontology. Semantically incorrect queries are those that do
not match any valid graph for the ontology- i.e., always return an empty result-set. For
such queries, our evaluation function will not find a satisfactory binding for all the triple
patterns.
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An assumption we make in our work is that all the queries to the A-Box are available
for checking when changes are made. In many application development scenarios this
may not be feasible. Therefore whenever possible it is a good practice for an application
development team working in such an agile methodology to structure the application
so that the queries used in the application can be easily extracted for these kinds of
analysis. If it is not possible to do so, one option for an ontology engineer is to use the
OWL built-in mechanism to mark the changed entity as deprecated, and phase it out
after a sufficiently long time.

Often times, the queries are dynamically generated based on some user input. In
such cases it might be harder to check the validity of the queries. However, it might
still be possible to detect dirty queries because, such queries are generally written as
parameterized templates which are customized to the user input. If such templates are
made available, it might still be possible to check if they are valid.
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