
Context-Addressable Messaging Service with

Ontology-Driven Addresses�

Jaroslaw Domaszewicz, Michal Koziuk, and Radoslaw Olgierd Schoeneich

Institute of Telecommunications, Warsaw University of Technology
ul. Nowowiejska 15/19, 00-665 Warsaw, Poland

{domaszew,mkoziuk,rschoeneich}@tele.pw.edu.pl

Abstract. The context-addressable messaging service allows applica-
tions to send messages to mobile users described by their context. The
context of these users is described in terms of ontology assertions, and
an ontology-driven expression is used as a context-based address. This
expression can be interpreted as a definition of a new ontology class. The
recipients of a context-addressed message are all the users (nodes) whose
context makes them instances of the address class. This paper presents a
model for an ontology-based context-addressable messaging system, and
provides performance results of its implementation based on available
’off-the-shelf’ software.

1 Introduction

In mobile context-aware systems, a piece of context data can often be associated
with a particular node in the network. Such node-specific context data are used to
describe the node’s location, its environment, the role of its user, etc. Special use
of this node-specific context data can be made to provide support for a Context-
Addressable Messaging (CAM) service. This service allows sending messages
whose recipients are specified using context data.

A simple use case for Context-Addressable Messaging is presented in Fig.11.
Imagine that on the scene of a major emergency, an injured person requires
medical assistance. Such a person could inform nearby medical staff about his sit-
uation by sending a message with a request for help, with an appropriate context-
based description of desired recipients (e.g. ”All unoccupied medical staff which
are within 1km from me”). The description is what we call a Context-based Ad-
dress. A Context-based Address is used to describe the context of nodes to which
a message is to be delivered. The Context-Addressable Messaging service would
deliver the request for help to all users of the system meeting the specified crite-
ria, in particular the two unoccupied nurses within 1km from the sender. Med-
ical staff in the area who are currently occupied would not receive the message.
� This work was supported by the 6FP MIDAS IST project, contract no. 027055.
1 Cliparts taken from Open Clip Art Library at http://openclipart.org/

R. Meersman and Z. Tari (Eds.): OTM 2008, Part II, LNCS 5332, pp. 1471–1481, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

1472 J. Domaszewicz, M. Koziuk, and R.O. Schoeneich

Fig. 1. Illustration of Context-Addressable Messaging

Medical staff further than 1 km from the injured person would not receive it
either.

The CAM service, as envisioned in this paper, is: (a) unreliable (the service is
best effort), (b) connectionless, (c) datagram-oriented (each message send oper-
ation causes a network packet to be sent), (d) group-oriented (a Context-based
Address describes a group of message recipients), and (e) one-way (responses, if
needed, can be handled by a regular, unicast communications service).

We have identified three major issues important for Context-Addressable Mes-
saging. First, the system requires a context modeling mechanism. Second, a lan-
guage for constructing Context-based Addresses is needed. Third, a dedicated
routing protocol (not addressed in this paper) is required to efficiently route
Context-Addressed Messages to their destinations.

The key contribution of this paper is the idea of using ontology-driven, runtime-
formed class definitions as Context-based Addresses. A Context-based Address is
constructed from terms taken from a context modeling ontology, using operators
offered by the concept description language of a selected ontology language. Each
address can be viewed as a definition of a new concept (class), which does not exist
in the original ontology. The intended recipients of a Context-Addressed Message
are all the nodes whose context makes them instances of the address class. Another
contribution is the architecture for an ontology-driven Context-Addressable Mes-
saging service, constructed as a middleware layer. The middleware is a domain-
neutral framework customized for a specific domain by an exchangeable context
modeling ontology. Finally, this paper presents an evaluation of a proof-of-concept
implementation of the middleware, including performance results and conclusions
for future research.

This paper is organized as follows. Section 2 presents existing solutions similar
to the CAM service. Section 3 explains the proposed structure of Context-based
Addresses. Section 4 presents the architecture of a middleware which provides
the CAM service. Section 5 contains results of the performed experiments. Con-
clusions and directions for future work are presented in section 6.

Context-Addressable Messaging Service with Ontology-Driven Addresses 1473

2 Related Work

Addressing network nodes by their attributes has already been proposed in the
literature. In particular, discarding node identifiers has been of particular interest
to the wireless sensor networks research community, where focus is placed on
creating a data-centric network. Solutions such as Directed Diffusion [1] or the
EYES project [2] propose to use attributes of nodes (coupled with values of those
attributes) in order to describe destination nodes.

A similar context-based messaging architecture for MANET networks, called
FlavourCast [3], has been proposed. There, destination nodes can be described
by an arbitrary attribute such as color.

Another area where nodes are not interested in directly addressing each other
is Content-Based Addressing [4] [5]. In this solution communicating entities spec-
ify the content of the data they are producing and send out appropriate noti-
fications. Nodes which would like to receive data, subscribe to it by creating
appropriate filters. The system selects relevant messages, by matching the at-
tributes and values from notifications with constraints contained in filters.

The main difference between all the mentioned work and our research is
that (a) we propose to incorporate a domain model in the form of an ontol-
ogy and (b) we use ontology-driven, runtime defined classes as addresses. All
the above solutions rely on functions performed on attributes, their values, and
arbitrary other parameters. There are however, a number of systems which aim
at enhancing the publish/subscribe scheme with ontologies. S-ToPSS (Seman-
tic Toronto Publish/Subscribe System) [6] proposes to introduce semantics into
publish/subscribe matching algorithms, by using a taxonomy of concepts from
a domain specific ontology (as one of three possible extensions).

A similar concept (which uses ontologies to match subscriptions and pub-
lished data) is presented in [7] and [8], where the Siena subscription language is
extended by ontologies and ontological operators. The proposed extension relies
on the usage of ontological equivalence and subsumption to perform matching
between filters and subscriptions.

Solutions described above are implemented according to the publish-subscribe
scheme. The proposed Context-Addressable Messaging service differs from them
in that the destination nodes do not need to subscribe to any events. Instead
each node receives messages that match its current context (which can change
dynamically).

3 Ontology-Driven Context-Based Addresses

A basic assumption behind Context-Addressable Messaging is that each node
in the network has access to a common context (domain) model. The context
model is an ontology which describes the current domain of the CAM service.
Thus, there exists a collection of predefined classes, relations and individuals
specific to the domain. Every piece of information entered into the system has
to be structured in terms of the ontology. A simple example is presented in Fig.2.

1474 J. Domaszewicz, M. Koziuk, and R.O. Schoeneich

Fig. 2. A simple ontology

Constructor DL Syntax Example

intersectionOf C1 � ... � Cn Human � Male

unionOf C1 � ... � Cn Doctor � Lawyer

complementOf ¬C ¬ Male

oneOf {x1 ... xn} {john,mary}
toClass ∀P.C ∀hasChild.Doctor
hasClass ∃r.C ∃hasChild.Lawyer
hasValue ∃r.{x} ∃CitizenOf.{USA}
minCardinalityQ (≥ nr.C) (≥2 hasChild.Lawyer)

maxCardinalityQ (≤ nr.C) (≤1 hasChild.Male)

inverseOf r− hasChild−

Fig. 3. An example of a concept description language (taken from [9])

Spectator � (∃isLocatedIn.{WembleyStadium})�
(∃isFanOf.{SpanishFootballTeam})

Fig. 4. An example of a Context-based Address (in a Description Logic notation)

In our approach to CAM, Context-based Addresses are domain ontology-
driven classes defined with a concept description language (a part of a selected
ontology language). In other words, Context-based Addresses are definitions of
new classes, formed from existing concepts (classes, relations, individuals) by
means of concept constructors (operators). The structure of these definitions
follows the formalism of the chosen ontology language. An example of concept
constructors from a concept description language (taken from [9]) is presented
in Fig.3.

Consider the example ontology of a sports domain, presented in Fig.2. A sam-
ple Context-based Address for this ontology is presented in Fig.4. This address
denotes all spectators located at the Wembley Stadium who are fans of the

Context-Addressable Messaging Service with Ontology-Driven Addresses 1475

Address: Payload:

Spectator and

(isLocatedIn value WembleyStadium) and (ANY DATA)
(isFanOf value SpanishFootballTeam)

Fig. 5. An example of a Context-Addressed Message

Spanish football team. It is constructed by combining one class, two relations,
and two individuals, all belonging to the sports domain ontology. Two concept-
description language constructors (intersectionOf and hasValue) are used in
the definition. Note that such an address class does not exist in the ontology; it
is produced at runtime by an application or a user.

A binary representation of a Context-based Address is placed in the header
of a Context-Addressed Message (see Fig.5). The message’s payload can be any
data. Such message is sent into the network and is delivered to all nodes whose
context matches the description contained in the attached address (i.e., whose
context makes them instances of the address class). Note that the Manchester
OWL Syntax [10] notation used in Fig.5 is equivalent to the Description Logic
notation from Fig.4.

4 CAM Middleware Architecture

The CAM middleware architecture, for a single mobile node, is given in Fig.6.
As can be seen, the domain model (i.e., an ontology) is not hardwired into the
middleware but is imported into it. To use the middleware in a different environ-
ment (i.e., for a different domain), it is enough to exchange the domain model.
Hence, the CAM middleware can be described as a domain-neutral framework
customized by a domain model. All nodes in the network have to use the same
domain model.

Fig. 6. CAM middleware architecture (one mobile node shown)

1476 J. Domaszewicz, M. Koziuk, and R.O. Schoeneich

The CAM middleware consists of four main building blocks: the internal do-
main model representation (TBox), the node’s context data (ABox), the rea-
soner, and the routing component. The TBox holds a runtime representation of
all the information provided in the domain model ontology (such as, for example,
the class hierarchy). The TBox, once produced from the imported domain model,
remains unchanged at runtime, except for temporary insertion of Context-based
Addresses (explained below). The context data (ABox) are statements entered
into the middleware by applications and expressed in terms of the domain model
(such as a statement that some instance belongs to a certain class). The ABox
changes at runtime in response to changing context of the node. Also, while the
TBox is the same at all nodes in the network (all the nodes share the domain
model), the ABox is node-specific. A node’s ABox contains context data col-
lected and injected into the middleware by this node’s applications (it is the
applications’ responsibility to acquire context from the environment and inject
it into the middleware). In general, the context data stored in the Abox vary
from node to node. The middleware reasoner performs address resolving, i.e.,
using the ABox and the TBox, it provides an answer to the question: “does this
node’s context match a certain Context-based Address”. Finally the routing
component routes Context-Addressed Messages. The goal of the routing compo-
nent is to avoid flooding the network with Context-Addressed Messages. As a
result, a Context-Addressed Message is delivered to only a subset of nodes, so
that address resolving need not be performed by all nodes in the network2.

Among the context data items stored in a node’s ABox, we distinguish a spe-
cial ABox individual which we refer to as thisNode. Facts about the context
of the node are expressed as: (a) object properties linking thisNode with other
individuals, (b) datatype properties assigning certain values to thisNode or (c)
statements that thisNode belongs to certain classes. Of course, once a relation
exists between thisNode and other individuals, the facts related to those indi-
viduals also become a part of the node’s context. An important feature of this
way of context representation is that each node holds a self-centric view of the
context, centered around the thisNode individual.

The key part of the CAM middleware is the address resolving, i.e., checking
if the node’s context (i.e., all data in the node’s ABox directly or indirectly
related to the thisNode individual) matches the Context-based Address of a
newly received Context-Addressed Message. The address resolving is done at
each prospective message recipient. This is carried out as a three step process
(illustrated in Fig.7). First, the definition of a class forming the Context-based
Address is inserted to the TBox. Next, the reasoner is requested to determine
(taking into account all relationships captured by the domain ontology) if the
thisNode individual belongs to this new class. As the domain model has been
changed, the reasoner has to perform a classification process, on a structure
which includes the new class. Finally, after a response to the query has been
produced, the address class is removed from the TBox. This is required to restore

2 The routing component as envisioned by the authors, is described in [11].

Context-Addressable Messaging Service with Ontology-Driven Addresses 1477

Address: Spectator and (isLocatedIn value WembleyStadium) and
(isFanOf value SpanishFootballTeam)

Step 1:
- Add the class CL = Spectator and (isLocatedIn value WembleyStadium) and
(isFanOf value SpanishFootballTeam) to the TBox

Step 2:
- Check if thisNode individual belongs to the class CL
Step 3:
- Remove the class CL from the TBox

Fig. 7. The steps of address resolving

a) Defining the context of a node.
//entering context data
ClientContextAPI thisNode = new ClientContextAPI();
thisNode.addBelongsToClass("Spectator");
thisNode.addUniqueProperty("isLocatedIn", "WembleyStadium");
thisNode.addProperty("isFanOf", "SpanishFootballTeam");
//retrieving context data
String myTeam = thisNode.getProperty("isFanOf");

b) Creating Context-based Addresses.
ClientAddressAPI a = new ClientAddressAPI();
int Spectator = a.getClass("Spectator");
int SpectatorAtWembley = a.addRestriction(Spectator, "isLocatedIn", "WembleyStadium");
int SpanishFanAtWembley = a.addRestriction(SpectatorAtWembley, "isFanOf",
"SpanishFootballTeam");

c) Sending and receiving Context-Addressed Messages.
//sending a message
ClientCommAPI c = new ClientCommAPI();
c.send(a.getProperAddress(SpanishFanAtWembley),
"The game of the Spanish team will start in 10 minutes !!!");
//receiving a message
c.buffer.wait();
processMessage(c.buffer.data);

Fig. 8. Using the CAM middleware

the TBox of the ontology to its original state. Depending on the query response,
the message is either passed to the application layer or discarded.

Fig.8 illustrates how the described middleware can be used by applications.
Fig.8a shows an example of how the context of a node can be entered into the
middleware using the Context API (retrieval and removal of context data is also
possible). Fig.8b presents an example of how different Context-based Addresses
can be constructed using the Address API. Fig.8c illustrates the Communication
API, showing how a message can be sent to a constructed address, and how a
message can be received by nodes whose context matches the message’s address.

5 Experimental Results

The CAM middleware architecture has been implemented by using mainstream
technologies and off-the-shelf software components presented in Fig.9. As the
research on a dedicated routing protocol was still work in progress, we used
flooding based on broadcasting for delivery of messages (i.e., all nodes in the
network were prospective recipients).

1478 J. Domaszewicz, M. Koziuk, and R.O. Schoeneich

Issue Solution

Ontology language OWL-DL
Tbox and ABox JENA [12]
Reasoner Pellet [13]
Routing None (flooding)

Fig. 9. CAM middleware implementation summary

Fig. 10. Address resolution time at the receiver for a small emergency ontology

Performance testing of the CAM middleware was performed on a PC with
a 2,66GHz Celeron processor and 1GB RAM. During the tests we used two
ontologies. The first one was a very small ontology for emergency situations,
developed internally for test purposes. The second ontology was the publicly
available, much larger Pizza [14] ontology.

To evaluate the performance of the CAM middleware, we measured the times
of different stages of address resolving (due to reasoning, it is by far the most
time consuming operation in the middleware). The test procedure was the fol-
lowing: (a) the context of each node was set-up and did not change later on, (b)
a Context-based Address was created on one node, (c) the message with this
address was sent to the other nodes, and (d) one of the destination nodes mea-
sured the time required to resolve the address. As address resolving is a three
phase process, we measured the time required to perform each phase.

Fig.10 presents the results obtained for the emergency ontology. The first
resolved address is a class present in the TBox (Firefighter). In this case, both
the TBox and the ABox do not change and resolving an address is instantaneous.

Context-Addressable Messaging Service with Ontology-Driven Addresses 1479

Fig. 11. Address resolution time at the receiver for the pizza ontology

More complicated addresses consist of an intersection or a union of two classes
(e.g., Firefighter or Policeman), and we observe that the time required for
resolving an address increases. The steps which were not required previously
(adding a new class, and removing it later) are now performed and constitute the
major part of the address resolving process. In general, the more complicated an
address, the longer the address resolving process. Resolving the most complicated
address (out of the tested ones) requires around 700ms. Looking at results for
the significantly bigger Pizza ontology (Fig.11), we observe that the address
resolving time has dramatically increased.

Based on the presented results we draw a number of conclusions. First, not
surprisingly, the more complicated the address, the longer it takes to resolve it.
Second, a significant amount of time required for address resolving is consumed
when adding the new address class to the TBox, and later removing it. Finally,
the time required to resolve an address grows with the size of the ontology; this
has a severe impact on performance of the CAM middleware for large ontologies.

6 Conclusions and Future Work

The performance results of the CAM middleware show that, even for a PC, it
is hard to obtain near real-time operation with mainstream, off-the-shelf soft-
ware technologies. This is even more true for mobile devices. Clearly, the Pel-
let reasoner has not been optimized for real-time reasoning on a variable TBox

1480 J. Domaszewicz, M. Koziuk, and R.O. Schoeneich

and ABox. We assume that this conclusion holds for other existing OWL-DL
reasoners.

We intend to address the above performance problems by (a) choosing an
ontology language less complex than OWL-DL (DL-Lite [15], along with its con-
junctive query mechanism, seems to be a good candidate) and (b) implementing
a dedicated reasoner that can handle the chosen ontology language on a mobile
device. Another important part of the work on the CAM architecture is the
Context-Based Routing [11] protocol; such a protocol is essential to avoid flood-
ing the network with Context-Addressed Messages and having to do address
resolving at every node.

References

1. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., Silva, F.: Directed
diffusion for wireless sensor networking. IEEE/ACM Trans. Netw. 11(1), 2–16
(2003)

2. Handzinski, V., Koepke, A., Frank, Ch., Karl, H., Wolisz, A.: Semantic address-
ing for wireless sensor networks. Technical report, Telecommunication Networks
Group, Technische Universität Berlin (May 2004)

3. Cutting, D., Corbett, D.J., Quigley, A.: Context-based Messaging for Ad Hoc Net-
works (May 8-13, 2005)

4. Carzaniga, A., Rosenblum, D., Wolf, A.: Content-based addressing and routing: A
general model and its application (2000)

5. Carzaniga, A., Wolf, A.L.: Forwarding in a content-based network. In: SIGCOMM
2003: Proceedings of the 2003 conference on Applications, technologies, architec-
tures, and protocols for computer communications, pp. 163–174. ACM, New York
(2003)

6. Petrovic, M., Burcea, I., Jacobsen, H.A.: S-ToPSS: semantic Toronto pub-
lish/subscribe system. In: VLDB 2003: Proceedings of the 29th international con-
ference on Very large data bases, VLDB Endowment, pp. 1101–1104 (2003)

7. Keeney, J., Lynch, D., Lewis, D., O’Sullivan, D.: On the Role of Ontological Seman-
tics in Routing Contextual Knowledge in Highly Distributed Autonomic System.
Technical report, Department of Computer Science, Trinity College Dublin (2006)

8. Keeney, J., Jones, D., Roblek, D., Lewis, D., O’Sullivan, D.: Knowledge-based
semantic clustering. In: SAC 2008: Proceedings of the 2008 ACM symposium on
Applied computing, pp. 460–467. ACM, New York (2008)

9. Baader, F., Horrocks, I., Sattler, U.: Description logics as ontology languages for
the semantic web. In: Festschrift in honor of Jörg Siekmann. LNCS (LNAI), pp.
228–248. Springer, Heidelberg (2003)

10. Horridge, M., Drummond, N., Goodwin, J., Rector, A., Stevens, R., Wang, H.H.:
The Manchester OWL Syntax. In: OWL: Experiences and Directions 2006, Athens,
Georgia, USA, November 10-11 (2006)

11. Schoeneich, R.O., Domaszewicz, J., Koziuk, M.: Concept-Based Routing in Ad-
Hoc Networks. In: The 10th International Conference on Distributed Computing
and Networking - ICDCN 2009, January 3-6 (submitted, 2009)

12. Carroll, J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: Implementing the semantic web recommendations (2003)

Context-Addressable Messaging Service with Ontology-Driven Addresses 1481

13. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl
reasoner. Web Semant. 5(2), 51–53 (2007)

14. Drummond, N., Horridge, M., Stevens, R., Wroe, C., Sampaio, S.: Pizza ontology
v1.3 (October 18, 2005),
http://www.co-ode.org/ontologies/pizza/2005/10/18/

15. Calvanese, D., Giuseppe, D.G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:
Tractable description logics for ontologies. In: Proceedings of the Twentieth Na-
tional Conference on Artificial Intelligence, pp. 602–607 (2005)

http://www.co-ode.org/ontologies/pizza/2005/10/18/

	Context-Addressable Messaging Service with Ontology-Driven Addresses
	Introduction
	Related Work
	Ontology-Driven Context-Based Addresses
	CAM Middleware Architecture
	Experimental Results
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

