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Abstract. There are many studies aiming at using port-scan traffic data
for the fast and accurate detection of rapidly spreading worms. This pa-
per proposes two new methods for reducing the traffic data to a simplified
form comprising significant components of smaller dimensionality. (1) Di-
mension reduction via Term Frequency – Inverse Document Frequency
(TF-IDF) values, a technique used in information retrieval, is used to
choose significant ports and addresses in terms of their “importance” for
classification. (2) Dimension reduction via Principal Component Anal-
ysis (PCA), widely used as a tool in exploratory data analysis, enables
estimation of how uniformly the sensors are distributed over the reduced
coordinate system. PCA gives a scatter plot for the sensors, which helps
to detect abnormal behavior in both the source address space and the
destination port space. In addition to our proposals, we report on ex-
periments that use the Internet Scan Data Acquisition System (ISDAS)
distributed observation data from the Japan Computer Emergency Re-
sponse Team (JPCERT).

1 Introduction

The Internet backbone contains port-scanning packets that are routinely gener-
ated by malicious hosts, e.g., worms and botnets, looking for vulnerable targets.
These attempts are usually made on a specific destination port for which ser-
vices with known vulnerable software are available. Ports 135, 138, and 445 are
frequently scanned. There is also malicious software that uses particular ports
to provide a “back door” to companies. The number of packets targeting the
destination port for the back door is not large, but the statistics for these ports
are sometimes helpful for detecting a new type of attack, a coordinated attack
made by a botnet, or targeted attacks.

Related Works. There have been several attempts to identify attacks via
changes in the traffic data observed by sensors distributed across the Internet.
A honeypot is a semipassive sensor that pretends to be a vulnerable host in
faked communications with intruders or worms [10]. Some sensors are passive
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in the sense that capture packets are sent to an unused IP address without any
interaction. The Network Telescope [8], Internet Storm Center [11], DShield [12],
and ISDAS [3] are examples of passive sensors.

There are many studies aiming at using port-scan traffic data for the fast and
accurate detection of rapidly spreading worms. Kumar uses the characteristics
of the pseudorandom number generation algorithm used in the Witty worm to
reconstruct the spread of infected hosts [13]. Ishiguro et al. propose the Wavelet
coefficients used as metrics for anomaly detection [14]. Jung et al. present an al-
gorithm to detect malicious packets, called Sequential Hypothesis Testing based
on Threshold of Random Walk (TRW) [2]. Dunlop et al. present a simple sta-
tistical scheme called the Simple Worm Detection Scheme (SWorD) [15], where
the number of connection attempts is tested with threshold values.

The accuracy of detection, however, depends on an assumption that the set of
sensors is distributed uniformly over the address space. Because the installation
of sensors is limited to unused address blocks, it is not easy to ensure uniform
sensor distribution. Any distortion of the address distribution could cause false
detection and a misdetection, and therefore uniformity of sensor distribution is
one of the issues we should consider. Nevertheless, it is not trivial to evaluate a
distribution of sensors in terms of its uniformity because the traffic data comprise
ports and addresses that are correlated in high-dimensional domains.

Contribution. This paper proposes a new method for reducing the traffic data
to a simplified form comprising significant components of smaller dimensionality.
Our contribution is twofold:

1. Dimension reduction via TF-IDF values. We apply a technique used
in information retrieval and text mining, called the TF-IDF weight, given
that there are similarities between our problem and the information retrieval
problem. Both deal with high-dimensional data, defined sets of words (ports
or addresses), and documents (sensors). Both sets are discrete. Most elements
are empty.

2. Dimension reduction via PCA. Our second proposal is based on an or-
thogonal linear transformation, which is widely used as a tool in exploratory
data analysis. PCA enables estimation of how uniformly the sensors are dis-
tributed over the reduced coordinate system. The results of PCA give a
scatter plot of sensors, which helps to detect abnormal behavior in both the
source address space and the destination port space.

We give experimental results for our method using the JPCERT/ISDAS dis-
tributed observation data.

2 Proposed Methods

2.1 Preliminary

We give the fundamental definitions necessary for discussion about the charac-
teristics of worms.
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Definition 1. A scanner is a host that performs port-scans on other hosts, look-
ing for targets to be attacked.

A sensor is a host that can passively observe all packets sent from scanners.
Let S be a set of sensors {s1, s2, . . . , sn}, where n is the number of sensors.

Typically, a scanner is a host that has some vulnerability and thereby is con-
trolled by malicious code such as a worm or virus. Some scanners may be human
operated, but we do not distinguish between malicious codes and malicious oper-
ators. Sensors have always-on static IP addresses, i.e., we will omit the dynamic
behavior effects of address assignments provided via Dynamic Host Control Pro-
tocol (DHCP) or Network Address Translation (NAT).

An IP packet, referred to as a “datagram”, specifies a source address and a
destination address, in conjunction with a source port number and a destination
port number, specified in the TCP header.

Definition 2. Let P be a set of ports {p1, p2, . . . , pm}, where m is the number
of possible port numbers. Let A be a set of addresses {a1, a2, . . . , a�}, where � is
the number of all IP addresses.

In IP version 4, possible values for m and � are 216 and 232, respectively. Because
not all address blocks are assigned as yet, the numbers of addresses and ports
observed by the set of sensors are typically limited, i.e., m � 216, � � 232.
To handle reduced address set sizes, we distinguish addresses with respect to
the two highest octets. For example, address a = 221.10 contains the range of
addresses from 221.10.0.0 through 221.10.255.255.

Let cij be the number of packets whose destination port is pj that are captured
by sensor si in duration T . Let bik be the number of packets that are observed
by sensor si and sent from source address ak. An observation of sensor si is
characterized by two vectors

ci =

⎛
⎜⎝

ci1

...
cim

⎞
⎟⎠ and bi =

⎛
⎜⎝

bi1

...
bim

⎞
⎟⎠ ,

which are referred to as the port vector and the address vector. All packets ob-
served by n independent sensors are characterized by the n × m matrix C and
� × n matrix B specified by C = (c1 · · · cn) and B = (b1 · · · bn). Matrices B
and C will usually contain many unexpected packets caused by possible miscon-
figurations or by a small number of unusual worms, which we wish to ignore to
reduce the quantity of observation data.

2.2 Reduced Matrix Via TF-IDF Values

Observation by a limited number of sensors shows an incomplete and small frag-
ment of the Internet traffic of unauthorized packets. Therefore, the observation
matrices P and A are “thinly populated”, i.e., most elements are empty. To
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reduce the dimension of the matrices to a subset of the matrix comprising sig-
nificant elements from the given P and A, we try to apply a technique used in
information retrieval and text mining, called the TF-IDF weight.

The TF-IDF weight gives the degree of importance of a word in a collection
of documents. The importance increases if the word is frequently used in the set
of documents (TF) but decreases if it is used by too many documents (IDF).
The term frequency in the given set of documents is the number of times the
term appears in the document sets. In our study, we use the term frequency to
evaluate how important a specific destination port pj is to a given set of packets
C = {c1, . . . , cn} observed by n sensors, and defined as the average number of
packets for the port pj, i.e.,

TF (pj) =
1
n

n∑
i=1

cij .

The document frequency of destination port pj is defined by

DF (pj) =
∣∣{ci ∈ C|cij > 0, i ∈ {1, . . . , n}}∣∣,

which gives the degree of “uselessness”, because a destination port with the
highest DF (pj) ≈ n implies that the port is always specified by any sensor, and
therefore we would regard the port pj as unable to distinguish between sensors.
By taking the logarithm of the inverse of the document frequency, we obtain a
TF-IDF for a given port pj as

TF-IDF(pj) = TF (pj) · log2(
n

DF (pj)
+ 1),

where the constant 1 is used to avoid the TF-IDF of a port with DF (pj) = n
from being zero.

Similarly to the destination port, we define the TF-IDF weight of source
address ak as TF-IDF(ak) = TF (ak) · log2(

n
DF (ak) + 1), where

TF (ak) =
1
n

n∑
i=1

cik,

DF (ak) =
∣∣{ci ∈ B|bik > 0, i ∈ {1, . . . , n}}∣∣.

Note that a high value for TF-IDF is reached by a high term (port/address)
frequency and a low document (sensor) frequency for the port among the whole
set of packets, thereby working to filter out common ports. Based on the order
of TF-IDF values, we can choose the most important destination ports within
the 216 possible values, from the perspective of frequencies of sets of packets.

2.3 Reduced Matrix Via PCA

PCA is a well-known technique, which is used to reduce multidimensional data
to a smaller set that contributes most to its variance by keeping lower-order
principal components and ignoring higher-order components.



960 H. Kikuchi et al.

Our goal is to transform a given matrix C = (c1 · · · cm) of m dimensions
(observations) to an alternative matrix Y of smaller dimensionality as follows.

Given a matrix of packets

C =

⎛
⎜⎝

c11 · · · c1n

...
. . .

...
cm1 · · · cmn

⎞
⎟⎠ ,

where cij is the number of packets such that the destination port is pj , captured
by sensor si, we subtract the mean for every port to obtain C′ = (c′1 · · · c′m),
where

c′i =

⎛
⎜⎝

ci1 − c1

...
cim − cm

⎞
⎟⎠

and cj is the average number of packets at the j-th port, i.e., cj = 1/n
∑n

i=1 cij .
PCA transforms C ′ to Y = (y1, . . . , ym) such that, for i = 1, . . . , n,

c′i = Uyi = yi1u1 + · · · + yimum,

where u1, . . . , um are m unit vectors, called the principal component basis, which
minimizes the mean square error of the data approximation. The principal com-
ponent basis is given by a matrix U comprising the eigenvectors u1, . . . , un,
sorted in order of decreasing eigenvalue λ1 > · · · > λn, of the covariance matrix
that is defined by

V =
1
m

m∑
i=1

cic
�
i .

From a fundamental property of eigenvectors, the elements of the principal
component basis are orthogonal, i.e., ui ·uj = 0 for any i �= j ∈ {1, . . . , m}. This
gives the matrix Y = (y1 · · ·ym), where

yi = U�c′i = (yi1 · · · yim)�, (1)

which maximizes the variance for each element and gives a zero average, for
i = 1, . . . , m.

The first principal component, namely yi1, contains the most significant as-
pect of the observation data, and the second component yi2 contributes the sec-
ond most significant effect on its variance. These “lower-frequency” components
give a first impression of the port-scanning pattern, even though the “higher-
frequency” ones are ignored.

We apply the PCA transform not only to the matrix C defined over the sensor
and port spaces (n×m) but also to the matrix B of the sensor and the address
spaces (n×m), and to the transposed matrices C� and B�. We use the notation
u(C) and u(B) if we need to distinguish between matrices C and B.
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3 Analysis

We apply the proposed methods to the dataset of packets observed by sensors
distributed over the Internet.

3.1 Experimental Data

ISDAS Distributed Sensors. ISDAS is a distributed set of sensors [3], under
the operation of the JPCERT Coordination Center (JPCERT/CC), that can
estimate the scale of a current malicious event and its performance.

Table 1 shows the statistics for m = 30 sensors from April 1, 2006 through
March 31, 2007. The most frequently scanned sensor is s1 with about 451,000
counts, which is 70 times that for the least frequently scanned sensor s15. In this
sense, the destination addresses to scan are not uniformly distributed.

Institutional Access Sensors. Table 2 shows a set of sensors installed in
institutional LANs and some commercial Internet Service Providers (ISPs). The
bandwidth and the method of address assignment are listed for each of the
sensors.

3.2 TF-IDF Analysis

We show the results of TF-IDF analysis in Table 3, where the top 20 ports and
source addresses (two octets) are listed in order of corresponding TF-IDF values.
In the table, destinations 135, 445, ICMP, 139, and 30 are known as frequently
scanned ports and are therefore listed at the top, while destination ports 23310
and 631 are listed because of their low DFs, implying their “importance” in
classifying sensors. On the other hand, we note that the top 20 source addresses
have higher DFs. For example, the third address 203.205 has DF = 16, i.e., the
address is found by 16 of the 30 sensors.

Table 1. Statistics for ISDAS distributed sensors

sensor count unique h(x) Δh(x)[/day]

Average – 146000 37820 104.9
Standard deviation – 134900 29310 82.72

Max s1 450671 98840 270.79
Min s15 6475 1539 4.22

Table 2. Specification of sensors from Nov. 30, 2006 through Jan. 12, 2007

s101 s102 s103 s104 s105 s106 s107 s108

Subnet class B C B C C
Bandwidth [Mbps] 100 8 100 12 8

Type inst. 1 ISP 1 institutional 2 ISP 2 ISP 3
IP assignment static dynamic static dynamic dynamic
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Table 3. Top 20 ports and addresses, ordered by TF-IDF value (ISDAS)

pj TF(pj) DF(pj) TF-IDF(pj)

135 19499.73 29 20160.80
445 15326.47 27 16941.27

ICMP 6537.40 29 6759.03
139 5778.23 27 6387.03
80 3865.90 30 3865.90

1026 3705.97 30 3705.97
23310 789.57 2 2927.75
1433 2423.33 30 2423.33
631 552.17 3 1823.58
1027 1268.73 30 1268.73
1434 1130.90 27 1250.05
137 989.53 26 1131.14
4899 1007.90 30 1007.90
1025 713.13 29 737.31
4795 150.67 1 663.11
22 470.47 30 470.47

32656 119.17 2 441.88
12592 92.47 1 406.96
113 174.57 8 405.30
1352 108.37 2 401.83

ak TF(ak) DF(ak) TF-IDF(ak)

219.111 4668.60 23 5909.06
58.93 4490.57 24 5492.61

203.205 2939.13 16 4786.70
222.148 3055.33 25 3612.39
61.252 2159.63 21 2929.92
61.193 1994.30 21 2705.62
61.205 1858.40 21 2521.24
220.221 2035.27 26 2326.52
61.199 1810.27 25 2140.32
222.13 1504.80 20 2114.94
219.2 561.77 12 1076.51

218.255 676.33 17 1060.48
222.159 774.90 23 980.79
220.109 722.17 22 946.15
221.208 861.07 29 890.26
219.114 750.70 25 887.57
203.174 408.50 12 782.80
221.188 600.40 25 709.87
221.16 245.23 6 639.92
219.165 533.77 25 631.08

Filtering out the less important ports and addresses in terms of TF-IDF values
gives reduced matrices of 20 dimensions, which are small enough for the PCA
transform to be applied.

3.3 PCA

We have performed PCA for each of the matrices C, B, C�, and B�, namely the
ports-and-sensors, addresses-and-sensors, sensors-and-ports, and sensors-and-
ports matrices, respectively.

Principal Component Basis. Table 4 shows the experimental results for the
first two orthogonal vectors of principal component basis u1(C), u2(C), . . . for
the ports-and-sensors matrix C and basis u1(B), u2(B), . . . for the addresses-
and-sensors matrix B. The elements indicated in boldface are the dominant
elements of each basis. For example, the ports 445 and 135, having the largest
(in absolute value) elements −0.37 and −0.36 in u1(C), are the primary elements
determining the value of the first principal component y1. Informally, we regard
the first coordinate as the degree of well-scanned ports because 445 and 135
are likely to be vulnerable. In the same way, the second principal component
basis u2(C) indicates attacks on web servers (p = 80) and ICMP, and we may
therefore refer to y2 as the degree of http attack. The second principal component
has about half the effect of the projected values because eigenvalue λ1 is almost
double λ2.

The addresses-and-sensors matrix B provides the principal component vec-
tors indicating the degree of importance in source address set A, as shown in
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Table 4. The first two vectors of principal component basis u1(C), u2(C), . . . for port
matrix C and basis u1(B), u2(B), . . . for address matrix B

pj u1(C) u2(C)

445 -0.37 0.01
135 -0.36 0.01
137 -0.34 -0.07
1433 -0.33 0.17
4899 -0.30 0.27
1434 -0.30 0.16
1026 -0.28 -0.27
1025 -0.28 -0.01
1027 -0.25 -0.28
22 -0.23 0.08

32656 -0.13 -0.27
12592 -0.13 -0.27
139 -0.10 0.18

23310 -0.09 -0.03
80 -0.02 0.45

ICMP -0.02 0.44
113 0.00 0.25
4795 0.00 0.25
631 0.05 -0.04
1352 0.09 -0.08

eigenvalue λi 6.19 2.49

ak u1(B) u2(B)

221.188 -0.54 0.20
222.148 -0.54 0.20
219.114 -0.53 0.20
219.165 -0.28 -0.52
221.208 -0.17 -0.41
220.221 -0.14 -0.59
58.93 -0.01 -0.20
222.13 0.00 -0.09
222.159 0.01 -0.06
61.199 0.03 0.03
219.111 0.03 0.02
220.109 0.03 0.03
61.205 0.03 0.03
221.16 0.03 0.03
61.252 0.03 0.04
203.174 0.03 0.04
61.193 0.03 0.04
203.205 0.04 0.04
219.2 0.06 0.14

218.255 0.06 0.14

eigenvalue λi 3.16 2.29

Table 5, as well as in matrix C. In these results, we find that u1(B) has dominant
addresses that are disjoint from those of u2(B).

Scatter Plot for Sensors in Reduced Coordinate System. In Fig. 1, we
illustrate how the observed data are projected into the new coordinate system de-
fined by the first two principal components y1 and y2 as the X-axis and Y-axis of
the scatter plot for the sensors. The sensors s101, . . . , s108, specified in Table 2, are
indicated at the coordinate (yi1, yi2), computed by Eq. (1). The plot shows that
there are three clusters: (1) sensors in institutional LANs, {s101, s103, . . . , s106},
(2) commercial ISPs, {s107, s108}, and (3) ISP 3, {s102}. ISP 3 uses a cable mo-
dem, whereas the access network for ISP 1 and 2 is ADSL. We see that the
two-dimensional principal components successfully retain the characteristics of
each cluster of sensors. In other words, the 20-dimensional data for the ports are
reduced to just two dimensions.

The resulting clusters depend on the given matrix. The same set of sensors
are classified differently into the three clusters shown in Fig. 2 if we begin with
the matrix B. It is interesting that sensors s107 and s108 are distributed quite
differently, even though they were close in Fig. 1.

Analysis from Several Perspectives. PCA can be applied to arbitrary ma-
trices prepared from different perspectives. If we are interested in the indepen-
dence of sensors, PCA enables us to show how uniformly the set of sensors is
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Table 5. The principal component basis u1(C
�), u2(C

�), . . . for sensor-port matrix
C� and basis u1(B

�), u2(B
�), . . . for sensor-address matrix B�

si u1(C
�) u2(C

�)

s7 -0.04 0.34
s20 -0.03 0.30
s8 -0.03 0.42
s22 -0.01 0.42
s26 -0.01 0.25
s30 0.03 -0.12
s28 0.05 -0.19
s12 0.06 0.37
s15 0.06 -0.16
s29 0.07 -0.22
s25 0.17 -0.01
s23 0.18 -0.08
s6 0.18 0.24
s24 0.19 0.04
s5 0.21 0.02
s4 0.22 0.08
s17 0.22 -0.12
s16 0.22 -0.09
s21 0.22 -0.02
s27 0.23 -0.06
s13 0.23 0.03
s14 0.24 -0.02
s18 0.24 0.10
s11 0.24 0.07
s19 0.24 0.01
s3 0.24 0.05
s1 0.24 0.03
s2 0.24 0.01
s10 0.24 -0.02
s9 0.24 0.03

eigenvalue λi 16.64 3.73

si u1(B
�) u2(B

�)

s12 -0.34 0.16
s18 -0.34 0.18
s6 -0.34 0.18
s20 -0.34 0.02
s22 -0.34 0.18
s13 -0.32 0.21
s17 -0.32 0.01
s29 -0.28 -0.20
s28 -0.21 -0.35
s27 -0.20 -0.11
s4 -0.17 -0.27
s23 -0.10 -0.33
s1 -0.05 -0.30
s3 -0.05 -0.21
s5 -0.03 -0.03
s11 -0.01 0.03
s10 0.00 -0.15
s14 0.01 -0.08
s26 0.01 -0.05
s9 0.01 0.07
s2 0.01 0.06
s15 0.02 -0.11
s30 0.02 -0.07
s16 0.03 -0.00
s19 0.03 0.12
s24 0.04 0.15
s8 0.04 0.13
s25 0.04 0.32
s21 0.06 0.31
s7 0.07 0.18

eigenvalue λi 7.81 2.66

distributed over the reduced coordinate system. If we wish to identify abnormal
behavior of source addresses, PCA with respect to a sensors-and-address matrix
B� gives a scatter plot of addresses in which particular addresses stand out from
the cluster of the standard behaviors.

For these purposes, we show the experimental results of ISDAS observation
data, in Figs. 3, 4, 5, and 6, corresponding to matrices C, B, C�, and B�,
respectively.

The set of ISDAS sensors is independently distributed in Fig. 3, but the
distribution is skewed by some irregular sensors in Fig. 4, where the horizontal
axis has more elements with source addresses in class C. As a consequence, the
distribution of ISDAS sensors may be distorted in terms of differences between
source addresses.



Principal Components of Port-Address Matrices in Port-Scan Analysis 965

-10

-5

 0

 5

 10

-10 -5  0  5  10

pc
2

pc1

s101,s105,s103
 s104,s106

s107

s102

s108

Fig. 1. Scatter plot for institutional sensors of a dataset with n = 8, indicating the
coefficients of the first (X-axis) and second (Y-axis) principal components, y1(C) and
y2(C), respectively
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Fig. 2. Scatter plot for institutional sensors of a dataset with n = 8, indicating the
coefficients of the first (X-axis) and the second (Y-axis) principal components, y1(B)
and y2(B), respectively
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Fig. 3. Scatter plot for ISDAS sensors S of a dataset with n = 30, displaying the
coefficients of the first two principal components in terms of ports
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Fig. 4. Scatter plot for ISDAS sensors S of a dataset with n = 30, displaying the
coefficients of the first two principal components in terms of addresses

-10

-5

 0

 5

 10

-10 -5  0  5  10

y2

y1

135

139

1434

Fig. 5. Scatter plot for destination ports P displaying the coefficients of the first two
principal components in terms of ISDAS sensors
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Fig. 6. Scatter plot for source addresses A displaying the coefficients of the first two
principal components in terms of ISDAS sensors
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In Fig. 5, the set of ports P is centrally distributed, with exceptions such as
ports 135 and 139 at the top of the plot.

In Fig. 6, there are two clusters: a singleton {221.208} and the remainder.
Any botnet-like behavior can be seen from the clustering in the plot. A scatter
plot of the principal components provides a useful viewgraph by which any small
change is perceptible by human operators.

4 Conclusion

We have proposed a new analysis method for the distributed observation of
packets with high-dimensional attributes such as port numbers (216) and IP ad-
dresses (232). Our methods are based on the TF-IDF value mainly developed for
information retrieval, and on PCA. Experimental results demonstrate that both
methods correctly reduce a given high-dimension dataset to smaller dimension-
ality, by at least a factor of two. The principal components of port numbers, in
terms of distinguishable sensors, include 445, 135, 137, 1433, 4899, 1434, 80, and
ICMP, which enable any sensors to be classified. The source addresses 221.188,
222.148, 219.114, 219.165, 221.208 and 220.221 are specified as dominant on a
principal component basis.

Future studies will include the stability of the basis, an accuracy evaluation
for a few components, and an application of the orthogonal basis to intrusion
detection.
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