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Abstract. Typical ontology matching applications, such as ontology integration,
focus on the computation of correspondences holding between the nodes of two
graph-like structures, e.g., between concepts in two ontologies. However, for ap-
plications such as web service integration, we need to establish whether full graph
structures correspond to one another globally, preserving certain structural prop-
erties of the graphs being considered. The goal of this paper is to provide a new
matching operation, called structure-preserving semantic matching. This opera-
tion takes two graph-like structures and produces a set of correspondences, (i)
still preserving a set of structural properties of the graphs being matched, (ii)
only in the case if the graphs are globally similar to one another. Our approach
is based on a formal theory of abstraction and on a tree edit distance measure.
We have evaluated our solution in various settings. Empirical results show the
efficiency and effectiveness of our approach.

1 Introduction

Ontology matching is a critical operation in many applications, such as Artificial In-
telligence, the Semantic Web and e-commerce. It takes two graph-like structures, for
instance, lightweight ontologies [9], and produces an alignment, that is, a set of cor-
respondences, between the nodes of those graphs that correspond semantically to one
another [6].

Many varied solutions of matching have been proposed so far; see [6,29,24] for re-
cent surveys1. In this paper we introduce a particular type of matching, namely
Structure-preserving semantic matching (SPSM). In contrast to conventional ontology
matching, which aims to match single words through considering their position in hi-
erarchical ontologies, structure-preserving semantics matching aims to match complex,
structured terms. These terms are not structured according to their semantics, as terms
are in an ontology, but are structured to express relationships: in the case of our ap-
proach, first-order relationships. This structure-preserving matching is therefore a two-
step process, the first step of which is to match individual words within the terms
through techniques used for conventional ontology matching, and the second - and

1 See, http://www.ontologymatching.org for a complete information on the topic.
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novel - step of which is to match the structure of the terms. For example, consider
a first-order relation buy(car, price) and another, purchase(price, vehicle, number),
both expressing buying relations between vehicles and cost. If the words used in these
terms are from known ontologies, then we can use standard ontology matching tech-
niques to determine, for example, that buy is equivalent to purchase and that car is a
sub-type of vehicle. If they are not from known ontologies we can still use WordNet to
gather this information. Our work is concerned with understanding and using this infor-
mation about how the words are related to determine how the full structured terms are
related. Therefore, SPSM needs to preserve a set of structural properties (e.g., vertical
ordering of nodes) to establish whether two graphs are globally similar and, if so, how
similar they are and in what way. These characteristics of matching are required in web
service integration applications, see, e.g., [21,23,18].

More specifically, most of the previous solutions to web service matching employ a
single ontology approach, that is, the web services are assumed to be described by the
concepts taken from a shared ontology. This allows for the reduction of the matching
problem to the problem of reasoning within the shared ontology [21,27]. In contrast, fol-
lowing the work in [1,26,31], we assume that web services are described using terms from
different ontologies and that their behavior is described using complex terms; we con-
sider first-order terms. This allows us to provide detailed descriptions of the web services’
input and output behavior. The problem becomes therefore that of matching two web ser-
vice descriptions, which in turn, can be viewed as first-order terms and represented as
tree-like structures. An alignment between these structures is considered as successful
only if two trees are globally similar, e.g., tree1 is 0.7 similar to tree2, according to some
measure in [0 1]. A further requirement is that the alignment must preserve certain struc-
tural properties of the trees being considered. In particular, the syntactic types and sorts
have to be preserved: (i) a function symbol must be matched to a function symbol and
(ii) a variable must be matched to a variable. We are mainly interested in approximate
matching, since two web service descriptions may only rarely match perfectly.

The contributions of this paper include: (i) a new approach to approximate web
service matching, called Structure-preserving semantic matching (SPSM), and (ii) an
implementation and evaluation of the approach in various settings (both with automat-
ically generated tests and real-world first-order ontologies) with encouraging results.
SPSM takes two tree-like structures and produces an alignment between those nodes of
the trees that correspond semantically to one another, preserving the above mentioned
two structural properties of the trees being matched, and only in the case that the trees
are globally similar. Technically, the solution is based on the fusion of ideas derived
from the theory of abstraction [11,12] and tree edit distance algorithms [3]. To the best
of our knowledge, this is the first work taking this view.

The rest of the paper is organized as follows. Section 2 explains how calls to web
services can be viewed as first-order trees. It also provides a motivating example. We
overview the approximate SPSM approach in Section 3, while its details, such as ab-
straction operations, their correspondence to tree edit operations as well as computation
of global similarity between trees are presented in Section 4 and Section 5, respectively.
Evaluation is discussed in Section 6. Section 7 relates our work to similar approaches.
Finally, Section 8 summarizes the major findings.
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2 Matching Web Services

Our hypothesis is that we can consider web services inputs and outputs as trees and
therefore apply SPSM to calls to web services. This kind of structural matching can
then allow us to introduce flexibility to calls to web services so that we no longer need
to rely on (i) terms used in these calls coming from a global ontology; instead local on-
tologies adapted to purpose can be used; (ii) the structuring of these calls being fixed.

The structure is important because each argument in a call to a web service is de-
fined according to its position in the input or output. However, expecting this structure
to be fixed is just as problematic as expecting a global ontology. Individual web ser-
vice designers will use different structure just as they will use different vocabulary and
changes to web service descriptions over time will be mean that previous calls to web
services become inappropriate. In order to remove the need both for a global ontology
and a fixed structure for every web service call, we therefore need to employ struc-
tured matching techniques for matching between web service calls and returns and web
service inputs and outputs.

The first-order terms that we match do not distinguish between inputs and outputs in
the same manner as, for example, Web Service Description Language (WSDL). Instead,
both inputs and outputs are arguments of the same predicate. In Prolog notation, this is
indicated by using a + for an input and a − for an output. Thus the term:

purchase(−Price, +V ehicle, +Number)

indicates that V ehicle and Number are inputs and Price is an output. During run-time,
we can distinguish between inputs and outputs because inputs must be instantiated and
outputs must be uninstantiated. In order to use our tree matching techniques for web
services, we therefore make use of an automated translation process we have created
that will map between a first-order term such as the above and a standard WSDL rep-
resentation of the same information. This approach can also be used for other kinds of
services in addition to web services; all that is required is that a translation process is
created to convert between the representation of the service and first-order terms.

We make the assumption that web services written in WSDL will contain some kind
of semantic descriptions of what the inputs and outputs are: that arguments are labelled
descriptively and not merely as ‘input1’ and so on. This is after all what WSDL, as
a description language, is designed to do. We appreciate that in practice designers of
web services adopt a lazy approach and label inputs and outputs with terms that do
not describe their semantics, especially when the WSDL files are generated automati-
cally from classes or interfaces written in a programming language. In such cases, our
techniques will have a very low success rate. However, such web services are of little
value for any automated process and do not make use of the full potential of WSDL.
We believe that as they become more widely used, the need for them to be properly de-
scriptive becomes imperative so that they can be located and invoked automatically. In
the meantime, any mark-up that is used to provide semantics for web services outside
of the WSDL can also be amenable to our techniques, provided, as is usually the case,
that descriptions of inputs and outputs can be expressed as a tree.

Let us consider an example of approximate SPSM between the following web ser-
vices: get wine(Region, Country, Color, Price, Number of bottles) and get wine(Region



1220 F. Giunchiglia et al.

get_Wineget_Wine

RegionRegion
Country
Price
Color
Number_of_bottles

Country
Area

Colour
Cost
Year

Quantity

Fig. 1. Two approximately matched web services represented as trees: T1: get wine(Region,
Country, Color, Price, Number of bottles) and T2: get wine(Region(Country, Area),
Colour, Cost, Year, Quantity). Functions are in rectangles with rounded corners; they are con-
nected to their arguments by dashed lines. Node correspondences are indicated by arrows.

(Country, Area), Colour, Cost, Year, Quantity), see Figure 1. In this case the first web
service description requires the fourth argument of the get wine function (Color) to be
matched to the second argument (Colour) of the get wine function in the second de-
scription. Also, Region in T 2 is defined as a function with two arguments (Country and
Area), while in T 1, Region is an argument of get wine. Thus, Region in T 1 must be
passed to T 2 as the value of the Area argument of the Region function. Moreover, Year
in T 2 has no corresponding term in T 1. Notice that detecting these correspondences
would have not been possible in the case of exact matching by its definition.

In order to guarantee successful web service integration, we are only interested in
the correspondences holding among the nodes of the trees underlying the given web
services in the case when the web services themselves are similar enough. At the same
time the correspondences have to preserve two structural properties of the descriptions
being matched: (i) functions have to be matched to functions and (ii) variables to vari-
ables. Thus, for example, Region in T 1 is not linked to Region in T 2. Finally, let us
suppose that the correspondences on the example of Figure 1 are aggregated into a sin-
gle similarity measure between the trees under consideration, e.g., 0.62. If this global
similarity measure is higher than empirically established threshold (e.g., 0.5), the web
services under scrutiny are considered to be similar enough, and the set of correspon-
dences showed in Figure 1 is further used for the actual web service integration.

3 Overview of the Approach

The matching process is organized in two steps: (i) node matching and (ii) tree match-
ing. Node matching solves the semantic heterogeneity problem by considering only
labels at nodes and contextual information of the trees. We use here the S-Match sys-
tem [14]. Technically, two nodes n1 ∈ T 1 and n2 ∈ T 2 match iff: c@n1 R c@n2 holds,
where c@n1 and c@n2 are the concepts at nodes n1 and n2, and R ∈ {=,�,�}. In
semantic matching [10] as implemented in the S-Match system [14] the key idea is that
the relations, e.g., equivalence and subsumption, between nodes are determined by (i)
expressing the entities of the ontologies as logical formulas and by (ii) reducing the
matching problem to a logical validity problem. Specifically, the entities are translated
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Table 1. Element level matchers. The first column contains the names of the matchers. The sec-
ond column lists the order in which they are executed. The third column introduces the matcher’s
approximation level. The relations produced by a matcher with the first approximation level are
always correct. Notice that matchers are executed following the order of increasing approxima-
tion. The fourth column reports the matcher’s type, while the fifth column describes the matcher’s
input, see [14] for details.

Matcher name Execution order Approximation level Matcher type Schema info

WordNet 1 1 Sense-based WordNet senses

Prefix 2 2 String-based Labels

Suffix 3 2 String-based Labels

Edit distance 4 2 String-based Labels

Ngram 5 2 String-based Labels

into logical formulas which explicitly express the concept descriptions as encoded in the
ontology structure and in external resources, such as WordNet [8]. Besides WordNet,
the basic version of S-Match also uses four string-based matchers, see Table 1. This
allows for a translation of the matching problem into a logical validity problem, which
can then be efficiently resolved using sound and complete state of the art satisfiability
solvers [13]. Notice that the result of this stage is the set of one-to-many correspon-
dences holding between the nodes of the trees. For example, initially Region in T 1 is
matched to both Region and Area in T 2.

Tree matching, in turn, exploits the results of the node matching and the structure of
the trees to find if these globally match each other. Specifically, given the correspon-
dences produced by the node matching, the abstraction operations (§4) are used in order
to select only those correspondences that preserve the desired properties, namely that
functions are matched to functions and variables to variables. Thus, for example, the
correspondence that binds Region in T 1 and Region in T 2 should be discarded, while
the correspondence that binds Region in T 1 and Area in T 2 should be preserved. Then,
the preserved correspondences are used as allowed operations of a tree edit distance
in order to determine global similarity (§5) between trees under consideration. If this
global similarity measure is higher than an empirically established threshold, the trees
are considered to be similar enough, and not similar otherwise. Technically, two trees
T 1 and T 2 approximately match iff there is at least one node n1i in T 1 and a node n2j

in T 2 such that: (i) n1i approximately matches n2j , and (ii) all ancestors of n1i are
approximately matched to the ancestors of n2j , where i=1,. . . ,N1; j=1,. . . ,N2; N1 and
N2 are the number of nodes in T 1 and T 2, respectively.

Semantic heterogeneity is therefore reduced to two steps: (i) matching the web ser-
vices, thereby obtaining an alignment, and (ii) using this alignment for the actual web
service integration. This paper focuses only on the matching step.

4 Matching Via Abstraction

In this section we first discuss the abstraction operations (§4.1), then discuss how these
operations are used in order to drive a tree edit distance computation (§4.2), and, finally,
discuss the implementation details (§4.3).
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4.1 Abstraction Operations

The work in [12] categorizes the various kinds of abstraction operations in a wide-
ranging survey. It also introduces a new class of abstractions, called TI-abstractions
(where TI means “Theorem Increasing”), which have the fundamental property of main-
taining completeness, while loosing correctness. In other words, any fact that is true of
the original term is also true of the abstract term, but not vice versa. Similarly, if a
ground formula is true, so is the abstract formula, but not vice versa. Dually, by taking
the inverse of each abstraction operation, we can define a corresponding refinement op-
eration which preserves correctness while loosing completeness. The second fundamen-
tal property of the abstraction operations is that they provide all and only the possible
ways in which two first-order terms can be made to differ by manipulations of their sig-
nature, still preserving completeness. In other words, this set of abstraction/refinement
operations defines all and only the possible ways in which correctness and complete-
ness are maintained when operating on first-order terms and atomic formulas. This is
the fundamental property which allows us to study and consequently quantify the se-
mantic similarity (distance) between two first-order terms. To this extent it is sufficient
to determine which abstraction/refinement operations are necessary to convert one term
into the other and to assign to each of them a cost that models the semantic distance
associated to the operation.

The work in [12] provides the following major categories of abstraction operations:

Predicate: Two or more predicates are merged, typically to the least general gener-
alization in the predicate type hierarchy, e.g., Bottle(X) + Container(X) �→ Con-
tainer(X). We call Container(X) a predicate abstraction of Bottle(X) or
Container(X) �Pd Bottle(X). Conversely, we call Bottle(X) a predicate refinement
of Container(X) or Bottle(X) �Pd Container(X).

Domain: Two or more terms are merged, typically by moving the functions or con-
stants to the least general generalization in the domain type hierarchy, e.g.,
Micra + Nissan �→ Nissan. Similarly to the previous item we call Nissan a domain
abstraction of Micra or Nissan �D Micra. Conversely, we call Micra a domain
refinement of Nissan or Micra �D Nissan.

Propositional: One or more arguments are dropped, e.g., Bottle(A) �→ Bottle. We call
Bottle a propositional abstraction of Bottle(A) or Bottle �P Bottle(A). Conversely,
Bottle(A) is a propositional refinement of Bottle or Bottle(A) �P Bottle.

Let us consider the following pair of first-order terms (Bottle A) and (Container).
In this case there is no abstraction/refinement operation that makes them equivalent.
However, consequent applications of propositional and domain abstraction operations
make the two terms equivalent:

(Bottle A) �→�P (Bottle) �→�D (Container)

In fact the relation holding among the terms is a composition of two refinement opera-
tions, namely (Bottle A) �P (Bottle) and (Bottle) �D (Container).

The abstraction/refinement operations discussed above allow us to preserve the de-
sired properties: that functions are matched to functions and variables to variables. For
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example, predicate and domain abstraction/refinement operations do not convert a func-
tion into a variable. Therefore, the one-to-many correspondences returned by the node
matching should be further filtered based on the allowed abstraction/refinement opera-
tions: {=,�,�}, where = stands for equivalence; � represents an abstraction relation
and connects the precondition and the result of a composition of arbitrary number of
predicate, domain and propositional abstraction operations; and � represents a refine-
ment relation and connects the precondition and the result of a composition of arbitrary
number of predicate, domain and propositional refinement operations.

Since abstractions and refinements cover every way in which first-order terms can
differ (either in the predicate, in the number of arguments or in the types of arguments),
we can consider every relation between terms that are in some way related as a com-
bination of these six basic refinements and abstractions. Therefore, every map between
first-order trees can be described using these operations. The only situation in which we
cannot use these techniques is if there is no semantic relation between the predicates of
the two terms, but in this situation, a failed mapping is the appropriate outcome since
we do not consider them to be related even though the arguments may agree. Note that
we can match non-related arguments using these operations by applying propositional
abstraction and then propositional refinement.

4.2 Tree Edit Distance Via Abstraction Operations

Now that we have defined the operations that describe the differences between trees,
we need some way of composing them so that we can match entire trees to one another.
We look for a composition of the abstraction/refinement operations allowed for the
given relation R (see §3) that are necessary to convert one tree into another. In order
to solve this problem we propose to represent abstraction/refinement operations as tree
edit distance operations applied to the term trees.

In its traditional formulation, the tree edit distance problem considers three opera-
tions: (i) vertex deletion, (ii) vertex insertion, and (iii) vertex replacement [32]. Often
these operations are presented as rewriting rules:

(i) υ → λ (ii) λ → υ (iii) υ → ω

where υ and ω correspond to the labels of nodes in the trees while λ stands for the
special blank symbol.

Our proposal is to restrict the formulation of the tree edit distance problem in or-
der to reflect the semantics of the first-order terms. In particular, we propose to rede-
fine the tree edit distance operations in a way that will allow them to have one-to-one
correspondence to the abstraction/refinement operations. Table 2 illustrates the corre-
spondence between abstraction/refinement and tree edit operations. Let us focus for the
moment on the first three columns of Table 2. The first column presents the abstrac-
tion/refinement operations. The second column lists corresponding tree edit operations.
The third column describes the preconditions of the tree edit operation use.

Let us consider, for example, the first line of Table 2. The predicate abstraction op-
eration applied to first-order term t1 results with term t2 (t1 �Pd t2). This abstraction
operation corresponds to a tree edit replacement operation applied to the term t1 of the
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Table 2. The correspondence between abstraction operations, tree edit operations and costs

Abstraction Tree edit Preconditions of operations CostT1=T2 CostT1�T2 CostT1�T2
operations operations

t1 �Pd t2 a → b a � b; 1 ∞ 1
a and b correspond to predicates

t1 �D t2 a → b a � b; 1 ∞ 1
a and b correspond to functions or constants

t1 �P t2 a → λ a corresponds to predicates, 1 ∞ 1
functions or constants

t1 �Pd t2 a → b a � b; 1 1 ∞
a and b correspond to predicates

t1 �D t2 a → b a � b; 1 1 ∞
a and b correspond to functions or constants

t1 �P t2 a → λ a corresponds to predicates, 1 1 ∞
functions or constants

t1 = t2 a = b a = b; a and b correspond to 0 0 0
predicates, functions or constants

first tree that replaces the node a with the node b of the second tree (a → b). Moreover,
the operation can be applied only in the case that: (i) label a is a generalization of label
b and (ii) both nodes with labels a and b in the term trees correspond to predicates in
the first-order terms.

4.3 Implementation

We have implemented our approximate SPSM solution in Java. Many existing tree edit
distance algorithms allow the tracking of the nodes to which a replace operation is
applied. According to [32], the minimal cost correspondences are: (i) one-to-one, (ii)
horizontal order preserving between sibling nodes, and (iii) vertical order preserving.
The alignment depicted in Figure 1 complies with (i), (iii) and violates (ii). In fact,
the fourth sibling Color in T 1 is matched to the second sibling Colour in T 2 (see below
for an explanation).

For the tree edit distance operations depicted in Table 2, we propose to keep track
of nodes to which the tree edit operations derived from the replace operation are ap-
plied. In particular, we consider the operations that correspond to predicate and domain
abstraction/refinement (t1 �Pd, t1 �Pd, t1 �D, t1 �D). This allows us to obtain an
alignment among the nodes of the term trees with the desired properties, i.e., that there
are only one-to-one correspondences in it and that functions are matched to functions
and variables are matched to variables. This is the case because (i) predicate and do-
main abstraction/refinement operations do not convert, for example, a function into a
variable and (ii) the tree edit distance operations, as from Table 2, have a one-to-one
correspondence with abstraction/refinement operations.

At the same time, an alignment used in a tree edit distance computation preserves
the horizontal order among the sibling nodes, but this is not a desirable property for
the web service integration purposes. In fact, we would want the fourth sibling Colour
in T 1 to match the second sibling Color in T 2 of Figure 1. However, as from Table 2,
the tree edit operations corresponding to predicate and domain abstraction/refinement
(t1 �Pd, t1 �Pd, t1 �D, t1 �D) can be applied only to those nodes of the trees
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whose labels are either generalizations or specializations of each other, as computed
by the S-Match node matching algorithm. Therefore, given the alignment produced by
the S-Match node matching algorithm, we identify the cases when the horizontal order
between sibling nodes is not preserved and change the ordering of the sibling nodes to
make the alignment horizontal order preserving. For example, swapping the nodes Cost
and Colour in T 2 of Figure 1 does not change the meaning of these terms but it allows
the correspondence holding between Colour and Color in Figure 1 to be included in the
alignment without increasing the cost during the tree edit distance computation. This
switching means that the original horizontal order of siblings is not preserved in most
cases. If there are arguments with identical names, such cases are resolved with the help
of indexing schemes.

5 Global Similarity between Trees

Our goal now is to compute the similarity between two term trees. Since we compute
the composition of the abstraction/refinement operations that are necessary to convert
one term tree into the other, we are interested in a minimal cost of this composition.
Therefore, we have to determine the minimal set of operations which transforms one
tree into another, see Eq. 1:

Cost = min
∑

i∈S

ki ∗ Costi (1)

where, S stands for the set of the allowed tree edit operations; ki stands for the number
of i-th operations necessary to convert one tree into the other and Costi defines the
cost of the i-th operation. Our goal here is to define the Costi in a way that models the
semantic distance.

A possible uniform proposal is to assign the same unit cost to all tree edit operations
that have their abstraction theoretic counterparts. The last three columns of Table 2 il-
lustrate the costs of the abstraction/refinement (tree edit) operations, depending on the
relation (equivalence, abstraction or refinement) being computed between trees. Notice
that the costs for estimating abstraction (�) and refinement (�) relations have to be ad-
justed according to their definitions. In particular, the tree edit operations corresponding
to abstraction/refinement operations that are not allowed by definition of the given re-
lation have to be prohibited by assigning to them an infinite cost. Notice also that we
do not give any preference to a particular type of abstraction/refinement operations. Of
course this strategy can be changed to satisfy certain domain specific requirements.

Let us consider, for example, the first line of Table 2. The cost of the tree edit distance
operation that corresponds to the predicate abstraction (t1 �Pd t2) is equal to 1 when
used for the computation of equivalence (CostT1=T2) and abstraction (CostT1�T2) re-
lations between trees. It is equal to ∞ when used for the computation of refinement
(CostT1�T2) relation.

Eq. 1 can now be used for the computation of the tree edit distance score. However,
when comparing two web service descriptions we are interested in similarity rather than
in distance. We exploit the following equation to convert the distance produced by a tree
edit distance into the similarity score:
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TreeSim = 1 − Cost
max(T1, T2)

(2)

where Cost is taken from Eq. 1 and is normalized by the size of the biggest tree. Note
that for the special case of Cost equal to ∞, TreeSim is estimated as 0. Finally, the high-
est value of TreeSim computed for CostT1=T2, CostT1�T2 and CostT1�T2 is selected
as the one ultimately returned. For example, in the case of example of Figure 1, when
we match T 1 with T 2 this would be 0.62 for both CostT1=T2 and CostT1�T2.

6 Evaluation

On top of the implementation discussed in §4.3 we exploited a modification of simple
tree edit distance algorithm from [34]. The evaluation set-up is discussed in §6.1, while
the evaluation results are presented in §6.2.

6.1 Evaluation Set-Up

Ontology and web service engineering practices suggest that often the underlying trees
to be matched are derived or inspired from one another. Therefore, it is reasonable
to compare a tree with another one derived from the original one. We have evaluated
efficiency and quality of the results of our matching solution on two test cases. Note that
this is not the largest data set we have access to; a larger set is described, for example,
in [15]. However, such data sets are not useful to us in this instance because they do not
allow us to evaluate our approximate matching.

Test case 1: real-world ontologies. We used different versions of the Standard Upper
Merged Ontology (SUMO)2 and the Advance Knowledge Transfer (AKT)3 ontologies.
We extracted all the differences between versions 1.50 and 1.51, and between versions
1.51 and 1.52 of the SUMO ontology and between versions 1 and 2.1, and 2.1 and
2.2 of the AKT-portal and AKT-support ontologies4. These are all first-order ontolo-
gies (hence, their expressivity is far beyond generalization/specialization hierarchies),
so many of these differences matched well to the potential differences between terms
that we are investigating. However, some of them were more complex, such as differ-
ences in inference rules, and had no parallel in our work; therefore, these were dis-
carded, and our tests were run on all remaining differences. Specifically, 132 pairs of
trees (first-order logic terms) were used. Half of the pairs were composed of the equiv-
alent terms (e.g., journal(periodical-publication) and magazine (periodical-publication))
while the other half was composed from similar but not equivalent terms (e.g., web-
reference(publication-reference) and thesis-reference (publication-reference)).

Test case 2: systematic benchmarks. Different application programming interfaces
(APIs) suggest that the terms within a tree are likely not to be semantically related

2 http://ontology.teknowledge.com/
3 http://www.aktors.org
4 See http://dream.inf.ed.ac.uk/projects/dor/ for full versions of these on-

tologies and analysis of their differences.

http://ontology.teknowledge.com/
http://www.aktors.org
http://dream.inf.ed.ac.uk/projects/dor/
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to each other. Examples from the Java API include: set(index, element) and put(key,
value). Thus, trees can be considered as being composed of nodes whose labels are
random terms.

This test case was composed of trees that are alterations of the original trees. Unlike
the work on systematic benchmarks in Ontology Alignment Evaluation Initiative-OAEI
[5], the original trees here were generated automatically. We have generated 100 trees.
For each original tree, 30 altered ones were created, see Table 3. Pairs composed of
the original tree and one varied tree were fed to our SPSM solution. The experiment
described above was repeated 5 times in order to remove noise in the results.

For tree generation, node labels were composed of a random number of words, se-
lected from 9000 words extracted from the Brown Corpus5. The average number of
nodes per tree was 8; in fact, functions usually have fewer parameters. In turn, the
tree alterations were inspired by the approach in [5]. These are summarized in Table 3
and include: (i) syntactic alterations, such as adding or removing characters, and (ii)
semantic alterations, word addition in labels by using related words (e.g., synonyms)
extracted from the Moby thesaurus6. The probabilities used for these two types of alter-
ations represent the fact that in most of the cases (0.8) the modifications made during an
evolution process concern the altering in meaning, while syntactic modifications, such
as introducing acronyms, usually have less occurrences (0.3).

Table 3. Parameters used for generating and modifying the trees

Parameter Syntactic Semantic Combined

Number of trees 100 100 100

Number of modifications per tree 30 30 30

Average number of nodes per tree 8 8 8

Probability of replacing a word in a node label for a related one 0.0 0.8 0.8

Probability of making a syntactic change in a word of a node label 0.3 0.0 0.3

Since the tree alterations made are known, these provide the ground truth, and hence,
the reference results are available for free by construction, see also [5,22]. This al-
lows for the computation of the matching quality measures. In particular, the standard
matching quality measures, such as Recall, Precision and F-measure for the similarity
between trees have been computed [6]. In computation of these quality measures we
considered the correspondences holding among first-order terms rather than the nodes of
the term trees. Thus, for instance, journal(periodical-publication1)=magazine(periodical-
publication2) was considered as a single correspondence rather than two correspon-
dences, namely journal=magazine and periodical-publication1=periodical-publication2.

The evaluation was performed on a standard laptop Core Duo CPU-2Ghz, 2GB
RAM, with the Windows Vista operating system, and with no applications running but
a single matching system.

5 http://icame.uib.no/brown/bcm.html
6 http://www.mobysaurus.com/. Since the SPSM node matching uses WordNet 2.1, an

alternative thesaurus was used here.

http://icame.uib.no/brown/bcm.html
http://www.mobysaurus.com/
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6.2 Evaluation Results

The matching quality results for the first test case are shown in Figure 2. Quality mea-
sures depend on the cut-off threshold values and the SPSM solution demonstrates high
matching quality on the wide range of these values. In particular, F-Measure values
exceed 70% for the given range.

Fig. 2. Test case 1: Evaluation results

The evaluation results for the second test case are summarized in Figures 3, 4 and
5. In order to obtain those results there have been used: (i) the tree matcher discussed
in §4 and §5 and (ii) the various matchers used in isolation (namely, edit distance,
NGram, prefix, suffix and WordNet) and all these matchers as combined by S-Match,
see Table 1. Figures 3, 4 and 5 are composed of four plots (from top to bottom): (i)
standard precision-recall plot, (ii) recall vs various cut-off threshold values in [0 1],
(iii) precision vs various cut-off threshold values in [0 1], and (iv) F-measure vs various
cut-off threshold values in [0 1].

In particular, Figure 3 shows that for the syntactic alterations, as expected, string-
based matchers outperform the WordNet matcher. Also, edit distance performs as well
as S-Match. The best performance in terms of F-Measure (which is 0.52) is reached
at the threshold of 0.8. In turn, Figure 4 shows that for the semantic alterations, as
expected, the WordNet matcher outperforms the string-based matchers. The best per-
formance in terms of F-Measure (which is 0.73) is demonstrated by S-Match and is
reached at the threshold of 0.8. Finally, Figure 5 shows that when both types of alter-
ations, namely syntactic and semantics, are applied the best performance in terms of
F-Measure (which is 0.47) is demonstrated by S-Match and is reached at the threshold
of 0.8.

The efficiency of our solution is such that the average execution time per match-
ing task in the two test cases under consideration was 93ms. The quantity of main
memory used by SPSM during matching did not rise more than 3Mb higher than the
standby level. Finally, the evaluation results show that conventional ontology matching
technology that we previously applied to matching classifications and XML schemas
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Fig. 3. Test case 2: Evaluation results for syntactic changes
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Fig. 4. Test case 2: Evaluation results for semantic changes
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Fig. 5. Test case 2: Evaluation results for combined changes
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(see [14]) can also provide encouraging results in the web services domain. Of course,
additional extensive testing is needed, especially with WSDL services, for example as
done in [31].

7 Related Work

We believe that this approach to structured matching is unique and therefore it is dif-
ficult to perform any comparative analysis. In order to demonstrate that we make use
of powerful ontology matching tools for the standard ontology matching step of the
process, we can compare S-Match against other ontology matching tools. However, the
full structure-preserving semantic matching addresses a previously unsolved problem.
In this section, we discuss other methods that address similar problems.

Our work builds on standard work in tree-edit distance measures, for example, as
espoused by [28]. The key difference with our work is the integration of the semantics
that we gain through the application of the abstraction and refinement rules. This allows
us to consider questions such as what is the effect to the overall meaning of the term
(tree) if node a is relabelled to node b?, or how significant is the removal of a node to the
overall semantics of the term? These questions are crucial in determining an intuitive
and meaningful similarity score between two terms, and are very context dependent.
Altering the scores given in Table 2 enables us to provide different answers to these
questions depending on the context, and we are working on giving providing even more
subtle variations of answers reflecting different contexts (see Section 8).

Work based on these ideas, such as Mikhaiel and Stroudi’s work on HTML differ-
encing [16], tends to focus only on the structure and not on the semantics. This work
never considers what the individual nodes in their HTML trees mean and only considers
context in the sense that, for example, the cost of deleting a node with a large subtree
is higher than the cost of deleting a leaf node; the semantic meanings of these nodes is
not considered.

The problem of location of web services on the basis of the capabilities that they
provide (often referred as the matchmaking problem) has recently received consider-
able attention. Most of the approaches to the matchmaking problem so far employed
a single ontology approach (i.e., the web services are assumed to be described by the
concepts taken from the shared ontology). See [21,23,27] for example. Probably the
most similar to ours is the approach taken in METEOR-S [1] and in [26], where the
services are assumed to be annotated with the concepts taken from various ontologies.
Then the matchmaking problem is solved by the application of the matching algorithm.
The algorithm combines the results of atomic matchers that roughly correspond to the
element level matchers exploited as part of our algorithm. In contrast to this work, we
exploit a more sophisticated matching technique that allows us to utilise the structure
provided by the first order term.

Many diverse solutions to the ontology matching problem have been proposed so far.
See [29] for a comprehensive survey and [7,25,4,17,2,20,30] for individual solutions.
However most efforts has been devoted to computation of the correspondences hold-
ing among the classes of description logic ontologies. Recently, several approaches al-
lowed computation of correspondences holding among the object properties (or binary
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predicates) [33]. The approach taken in [19] facilitates the finding of correspondences
holding among parts of description logic ontologies or subgraphs extracted from the
ontology graphs. In contrast to these approaches, we allow the computation of corre-
spondences holding among first order terms.

In summary, much work has been done on structure-preserving matching and much
has been done on semantic matching, and our work depends heavily on the work of
others in these fields. The novelty of our work is in the combination of these two ap-
proaches to produce a structure-preserving semantic matching algorithm, thus allowing
us to determine fully how structured terms, such as web service calls, are related to one
another.

8 Conclusions and Future Work

We have presented an approximate SPSM approach that implements the SPSM opera-
tion. It is based on a theory of abstraction and a tree edit distance. We have evaluated
our solution on test cases composed of hundreds of trees. The evaluation results look
promising, especially with reference to the efficiency indicators.

Future work proceeds at least along the following directions: (i) studying a best
suitable cost model, (ii) incorporating preferences in order to drive approximation, thus
allowing/prohibiting certain kinds of approximation (e.g., not approximating red wine
with white wine, although these are both wines), and (iii) conducting extensive and
comparative testing in real-world scenarios.

Acknowledgements. We appreciate support from the OpenKnowledge European
STREP (FP6-027253).
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