
Generating a Large Prime Factor of p4 ± p2 + 1

in Polynomial Time

Maciej Grześkowiak�

Adam Mickiewicz University,
Faculty of Mathematics and Computer Science,

Umultowska 87, 61-614 Poznań, Poland
maciejg@amu.edu.pl

Abstract. In this paper we present a probabilistic polynomial-time al-
gorithm for generating a large prime p such that Φm(p2) has a large prime
factor, where Φm(x) is the m − th cyclotomic polynomial and m = 3 or
m = 6. An unconditionally polynomial time algorithm for generating
primes of the above form is not yet known. Generating primes of such
form is essential for the GH and the CEILIDH Public Key Systems, since
they are key parameters in these cryptosystems.

Keywords: The Gong-Harn Public Key System, CEILIDH Public Key
System, Torus-Based Cryptography, primes of a special form.

1 Introduction and Background

Many new cryptosystems have been introduced in recent years which require
generating primes of special forms as key parameters. For instance of interest
is generating of a large prime p such that Φm(pk) is divisible by a large prime
q, where k is a fixed positive integer and Φm(x) is the m-th cyclotomic polyno-
mial. From the security point of view it is essential to find a prime p such that
m log pk ≈ 2048 to obtain a level of security equivalent to factoring a positive
integer having 2048 bits. The prime q should have at least 160 bits to make solv-
ing DLP in subgroup of order q of F∗

pk impossible in practice. For m = 3, in 1998
Gong and Harn presented a public key system called GH [4], [5]. In 2003 Rubin
and Silverberg introduced the idea of Torus-Based Cryptography [10]. In par-
ticular, they proposed a public key system called CEILIDH, which requires the
generation of special primes p, q for m = 6. There exist two main approaches
for generating primes of the above form. The first approach was proposed by
Gong and Giuliani [6]. The second approach for generating desired primes was
proposed by Lenstra and Verheul [9]. We next give an illustration of this algo-
rithm in the case m = 3 and k = 1. The algorithm randomly selects a prime
q ≡ 7 (mod 12) and computes ri for i = 1, 2 roots of Φ6(x) = x2 − x+ 1 mod q.
Alternatively the algorithm finds a positive integer r3 such that Φ6(r3) = q is a
prime. Next the algorithm selects a prime p such that p ≡ ri (mod q) for one
� Supported by Ministry of Science and Higher Education, grant N N201 1482 33.

R. Meersman and Z. Tari (Eds.): OTM 2008, Part II, LNCS 5332, pp. 1140–1149, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Generating a Large Prime Factor of p4 ± p2 + 1 in Polynomial Time 1141

of ri i = 1, 2, 3 (from this q divides Φ6(p)). It is worth pointing out that the
above algorithm works perfectly well in practice. However in the general case,
we can encounter some problems. For example let k = 2. Consider the naive way
of computing the root of the polynomial Φ6(x2) = x4 − x2 + 1 (mod q), where
q is a prime. Substituting y = x2 we reduce the degree of Φ6(x2) (mod q) to 2.
Next we compute y1, y2 roots of y2 − y + 1 (mod q), which requires computing√
−3 (mod q). In the end we compute the square root (mod q) of yi for i = 1 or

i = 2. There are two difficulties, which we can encounter in practice while com-
puting the roots of Φ6(x2) (mod q). The first is that we have to use algorithm
to compute the square root. Computing of the square root (mod q) is basically
simple, except for the case where q ≡ 1 (mod 8), which takes at most O(log4 q)
[2]. The second problem lies in the handling of square roots when these are
not in Fq (they are then in Fq2 and Fq4 respectively). However the alternative
method in the abovementioned algorithm, involving finding a positive integer r3
such that Φ6(r3) = q is a prime, causes theoretical problem. We do not know if
there exist infinitely many primes of the form Φ6(r3). This is an extremely hard,
still unproven mathematical problem. The second part of the algorithm also
seems problematic. When the modulus q is close to x there are not sufficiently
many primes p ≤ x, to warrant the equidistribution among the residue classes
a (mod q). To be more precise, let π(x; a, q), 1 ≤ a ≤ q, (a, q) = 1, denote the
number of primes p ≡ a (mod q) with p ≤ x. By the Siegel-Walfisz theorem [3]
we get that for any fixed N > 0, the formula π(x; a, q) = x/(φ(q) log x){1+o(1)}
holds uniformly throughout the range q ≤ (log x)N and (a, q) = 1. Therefore we
cannot apply Siegel-Walfisz theorem to estimate the running time of the second
procedure, when q is close to p. Analysis and theoretical estimation of computa-
tional complexity of the Lenstra and Verheul algorithm under the assumption of
some unproven conjectures can be found in [7]. However an unconditionally poly-
nomial time algorithm for generating desired primes p and q is not yet known.

In this paper we present a new probabilistic algorithm for generating large
primes p and q such that q|Φ6(p2) or q|Φ3(p2), which is faster than those pre-
viously considered. We prove that the algorithm for finding such a primes is
random and executes in polynomial time. We also present the developments and
improvements of ideas proposed by Lenstra and Verheul. In particular, we im-
prove the method of finding root of polynomials Φm(x2) (mod q), wherem = 3, 6
and q is a prime, by reducing the number of computed square roots. Our method
require computing only

√
3 (mod q) in order to find the root of Φm(x2) (mod q),

which is a big improvement over the Lenstra-Verheul method [9]. Achieving the
described goals is made possible by generating a prime q, which is a value of
a primitive quadratic polynomial of two variables with integer coefficients. We
prove that the procedure for finding such prime is random and executes in poly-
nomial time. Moreover we prove Lemma 2, which is slightly weaker than the
above Siegel-Walfisz result, but can be applied to estimate computational com-
plexity of finding prime p ≡ a (mod q), where p is close to q. Therefore we can
prove that our algorithm executes in polynomial time.

1142 M. Grześkowiak

2 Generating a Large Prime Factor of Φm(p2)

Our algorithm consists of two procedures. Let us fix F (x, y) = 144x2 + 144y2 +
24y+1 ∈ Z[x, y]. The first procedure generates positive integers a ∈

[
n

12
√

2
, cn

12
√

2

]

and b ∈
[

n−√
2

12
√

2
, cn−√

2
12

√
2

]
such that F (a, b) = q is a prime, where n ∈ N and c

is some positive number. The second procedure computes r (mod q) and next
finds a positive integer k ∈

[
1,

[
n6−r

q

]]
such that the number qk + r is prime.

Algorithm 1. Generating primes p and q, such that q|Φm(p2) and m = 3, 6
1: procedure FindPrimeQ(n, F (x, y)) � Input n and F (x, y)
2: q ← 1
3: while not IsPrime(q) do

4: a← Random(n) � Randomly select a ∈
h

n

12
√

2
, cn

12
√

2

i

5: b← Random(n) � Randomly select b ∈
h

n−√
2

12
√

2
, cn−√

2

12
√

2

i

6: q ← F (a, b)
7: end while
8: return (a, b, q)
9: end procedure

10: procedure FindPrimePModuloQ(a, b, q, m) � Input a, b, q and m
11: r ← (

√
3(12b + 1)− 12a)(−2(12b + 1))−1 (mod q)

12: if m = 3 then
13: r ← −r
14: end if
15: p← 1
16: while not IsPrime(p) do

17: k← Random(n) � Randomly select k ∈ N, k ∈
h
1,

h
n6−r

q

ii

18: p← qk + r
19: end while
20: return (p)
21: end procedure

22: return (p, q)

Theorem 1. Let us fix m = 3 or m = 6. Then Algorithm 1 generates primes p
and q such that q divides Φm(p2). Moreover q = F (a, b) = N(γ) and Φm(p2) =
N(ξ), where γ, ξ ∈ Z[i], γ | ξ and γ = 12a+ (12b+ 1)i and ξ = (p2 − 1) + pi.

Proof. Let Z[i] = {x + yi : x, y ∈ Z, i =
√
−1}. Let Q(i) be the corresponding

quadratic number field with the ring of integers Z[i]. Let α ∈ Z[i]. We denote
by N(α) = x2 + y2 the norm of α relative to Q. Assume that the procedure
FindPrimeQ finds positive integers a, b such that F (a, b) = q is prime. Then
there exists γ = 12a+(12b+1)i ∈ Z[i] such that F (a, b) = (12a)2−((12b+1)i)2 =

Generating a Large Prime Factor of p4 ± p2 + 1 in Polynomial Time 1143

N(γ). Let ξ ∈ Z[i], ξ = (p2−1)+p i, where p is a prime. We have N(ξ) = Φ6(p2).
Assume that γ divides ξ. Then there exists δ ∈ Z[i], δ = x + yi, x, y ∈ Z such
that

γδ = (12a+ (12b+ 1)i)(x+ yi) = (p2 − 1) + p = ξ, (1)

and

N(γ)N(δ) = N(ξ) = Φ6(p2). (2)

We show how one can find elements δ, ξ ∈ Z[i], and a prime p satisfying (1). By
(1) it follows that

{
12ax− (12b+ 1)y = p2 − 1
(12b+ 1)x+ 12ay = p,

(3)

where 12a, 12b+ 1 are given. Squaring the second equation and substituting to
the first one we get

Ax2 +Bxy + Cy2 +Dx+ Ey + 1 = 0, (4)

where

A = −(12b+ 1)2, B = −2(12a)(12b+ 1), (5)
C = −(12a)2, D = 12a, E = −(12b+ 1). (6)

Now we find solutions of (4). We write Δ = B2−4AC. Trivial computation show
that Δ = 0. Multiplying (4) by 2A we obtain (2Ax + By)2 + 4ADx + 4AEy +
4A = 0. Let 2Ax + By = T then T 2 + 2(2AE − BD)y + 4A + 2DT = 0 and
(T +D)2 = 2(BD− 2AE)y+D2 − 4A. Consequently equation (4) is equivalent
to

(2Ax+By +D)2 + αy = β, (7)

where

α = 2(BD − 2AE) = 4(12b+ 1)((12a)2 + (12b+ 1)2) = −4(12b+ 1)q (8)

and

β = D2 − 4A = (12a)2 + 4(12b+ 1)2. (9)

Let

X = 2Ax+By +D, Y = −αy. (10)

By (7)

X2 − β = Y, (11)

1144 M. Grześkowiak

we see that a necessary condition for existence of integers solution of (7) is
solubility of the congruence

Z2 ≡ β (mod α). (12)

Let z0 be the solution of (12). From (8) and (9) it follows that

z0 ≡ 0 (mod 4)
z0 ≡ 12a (mod (12b+ 1))

z0 ≡
√

3(12b+ 1) (mod q). (13)

Since q ≡ 1 (mod 3) then 3 is quadratic residue modulo q and, in consequence,
z0 (mod α) exists. It can be easily found by the Chinese Remainder Theorem.
By (10), (11) we have y = (z2

0 −β)/(−α), y ∈ N. Now we prove that in this case
x is integer as well. By (10) we have

z0 −D = 2Ax+By (14)

Since q = F (a, b) = (12a)2+(12b+1)2 is a prime then (2A,B) = 2(12b+1). Hence
z0 − D ≡ 0 (mod 2(12b + 1)) and so (14) has integer solutions. Consequently,
solutions of (7) are integers. This observation works for general solutions of (12)
z ≡ z0 (mod α). Our computation shows that integers solutions x, y of (7) have
the form

x =
z −By −D

2A
, y =

z2 − β

−α , x, y ∈ Z, (15)

where z = αt+ z0, t ∈ Z. Substituting the above x to the second equation of (3)
we obtain

(12b+ 1)
(
αt+ z0 −D

2A

)
+

(
12a− B(12b+ 1)

2A

)
y = p

Since (12a− ((12b+ 1)B)/2A)y = 0 then putting (8), (5) we get

2qt+
z0 − 12a

−2(12b+ 1)
= p, t ∈ Z.

Hence

p ≡ (z0 − 12a)(−2(12b+ 1))−1 (mod q)

and consequently by (13)

p ≡ (
√

3(12b+ 1) − 12a)(−2(12b+ 1))−1 (mod q), (16)

Taking (compare steps 11-14 of procedure FindPrimePModuloQ)

r = (
√

3(12b+ 1) − 12a)(−2(12b+ 1))−1 (mod q)

then from (2) and (16) we get

Φ6(p2) ≡ Φ6(r2) ≡ 0 (mod q).

Generating a Large Prime Factor of p4 ± p2 + 1 in Polynomial Time 1145

Therefore if we find prime p in the arithmetic progression p ≡ r (mod q) (com-
pare steps 16-20 of procedure FindPrimePModuloQ), then q|Φ6(p2). Since
Φ6(r) = Φ3(−r) then if we find p ≡ −r (mod q), then q|Φ3(p2). This finishes
the proof.

3 Run-Time Analysis of the Algorithm

Let us adopt the standard notation used in the theory of primes. We denote by
π(x, q, a) the number of primes p ≡ a (mod q) not exceeding x, where x ≥ 1,
a, q ∈ N, 1 ≤ a ≤ q, (a, q) = 1. We write also π(x) in place of π(x, 1, 1). Moreover
we write

ψ(x; q, a) =
∑
n≤x

n≡a (mod q)

Λ(n),

where

Λ(n) =
{

log p, if n = pk

0, otherwise

With the notation as above we recall some theorems which are related to distri-
butions of primes.

Theorem 2 (de la Vallée Poussin). For some positive number A

π(x) = li x+O(x exp(−A
√

log x)).

Proof. see [3].

Theorem 3 (Bombieri-Vinogradov). Let A > 0 be fixed. Then

∑
q≤Q

max
y≤x

max
a

(a,q)=1

∣∣∣∣ψ(y; q, a) − y

φ(q)

∣∣∣∣ � x
1
2Q(log x)5,

provided that x
1
2 (log x)−A ≤ Q ≤ x

1
2 .

Proof. see [3].

Theorem 4 (Iwaniec). Let P (x, y) = ax2 + bxy+ cy2 + ex+ fy+ g ∈ Z[x, y],
deg P = 2, (a, b, c, e, f, g) = 1, P (x, y) be irreducible in Q[x, y], represent ar-
bitrary large number and depend essentially on two variables. Then N

log N �∑
q≤N

q=P (x,y)

1, if D = af2 − bef + ce2 + (b2 − 4ac)g = 0 or Δ = b2 − 4ac is a

perfect square.

Proof. see [8].

1146 M. Grześkowiak

3.1 Analysis of the Procedure FindPrimeQ

We denote by PT the number of bit operations necessary to carry out the
deterministic primality test [1]. For simplicity, assume that PT 	 log4 n.

Theorem 5. Let F (x, y) = 144x2 + 144y2 + 24y + 1 ∈ Z[x, y]. Then there
exist constants c and b0 = b0(c, n), n0 such that for every integer n ≥ n0 and
an arbitrary real λ ≥ 1, the procedure FindPrimeQ finds a ∈

[
n

12
√

2
, cn

12
√

2

]

and b ∈
[

n−√
2

12
√

2
, cn−√

2
12

√
2

]
such that q = F (a, b) is a prime, q ∈ [n2, (cn)2], with

probability greater than or equal to 1−e−λ after repeating [b0λ log n] steps 3−7 of
the procedure. Every step of the procedure takes no more than PT bit operations.

Proof. We start with an estimate for the number of primes in the interval
[n2, cn2] which are of the form F (a, b), where F (x, y) = 144x2+144y2+24y+1 ∈
Z[x, y]. We apply the Theorem 4. We say that F depends essentially on two vari-
ables if ∂F/∂x and ∂F/∂y are linearly independent. We use the Lemma

Lemma 1. Let F (x, y) = ax2 + bxy+ cy2 + ex+ fy+ g ∈ Z[x, y], Δ = b2 − 4ac,
α = bf − 2ce, β = be− 2af . Then ∂F/∂x and ∂F/∂y are linearly dependent if
and only if Δ = α = β = 0.

Proof. see [8]

Since Δ = 2882 and (144, 144, 24, 1) = 1 then F (x, y) satisfies assumptions of
Theorem 4. We define the set

Q = {n2 ≤ q ≤ (cn)2 : F (x, y) = q − prime, x, y ∈ N},

where c > 0. Denote by |Q| the number of the elements of Q. Since Δ is
a perfect square then by Theorem 4 there exists c0 > 0 such that |Q| ≥
(c0(cn)2)(2 logn)−1 − π(n2). By Theorem 2 and the above there exists c1 such
that for sufficiently large n we have

|Q| ≥ c1
n2

logn
+O

(
n2

log2 n

)
, (17)

where c1 = (c0c2−1)/2 with c ≥
√

3/c0. Denote by AF the event that a randomly
chosen pair of natural numbers a and b satisfying

a ∈
[

n

12
√

2
,
cn−

√
2

12
√

2

]
, b ∈

[
n−

√
2

12
√

2
,
cn−

√
2

12
√

2

]

is such that the number F (a, b) ∈ [n2, (cn)2] is a prime. Hence by (17) there
exists c2 = c1 − ε(n), where ε −→ 0 as n −→ ∞ such that for sufficiently large
n, the probability that in l trials AF does not occur is

(
1 − c2

logn

)l

= exp
(
l log

(
1 − c2

logn

))
≤ exp

(
−c2l
logn

)
≤ e−λ

Generating a Large Prime Factor of p4 ± p2 + 1 in Polynomial Time 1147

for an arbitrary real λ ≥ 1 and l = b0λ logn, where b0 = c−1
2 . Hence the probabil-

ity that in l trials AF does occur is greater or equal to 1−e−λ. So after repeating
[b0λ logn] steps, the procedure finds integers a and b and primes q = F (a, b) with
probability greater than or equal to 1 − e−λ. The most time-consuming step of
the algorithm is the deterministic primality test for number q which takes no
more than PT operations. This finished the proof.

3.2 Analysis of the Procedure FindPrimePModuloQ

Theorem 6. Let q be the output of the procedure FindPrimeQ. The procedure
FindPrimePModuloQ with the input consisting of the prime q and a, b has the
following properties. There exists b1 and n1 such that for every integer n ≥ n1

and an arbitrary real λ ≥ 1, the procedure finds a positive integer k ∈
[
1,

[
n6−r

q

]]

such that p = qk+ r is prime, q � p� n6, with probability greater than or equal
to 1 − e−λ after repeating [b1λ logn] steps of the procedure with the possible
exception of at most O(n2(log n)−C0−1)) values of q. Every step of the procedure
takes no more than PT bit operations.

Proof. We use the lemma

Lemma 2. Let q ≤ (cn)2 be a positive integer. Then there exist constants 0 <
C0 < B < 1 and n0 such that for every n > n0 and for all residue classes a
(mod q)

π(n6; q, a) =
n6

6φ(q) logn
+O

(
n6

φ(q)(log n)B−C0+1

)

with the possible exception of at most O(n2(log n)−C0−1)) values of q.

Proof. See section 3.3

Denote by Ap the event that a randomly chosen positive integer k ∈
[
1, n6−r

q

]

is such that the number qk + r is a prime. It follows by Lemma 2 that there
exist 0 < C0 < B < 1 and n1 such that for every n > n1 we have Ap ≥
(6 logn)−1 +O((log n)−B+C0−1) for all q with the possible exception of at most
O(n2(logn)−C0−1)) values of q. Hence there exists c1 = 1

6 − ε(n), where ε −→ 0
as n −→ ∞ such that for sufficiently large n the probability that in l trials Ap

does not occur is
(

1 − c1
logn

)l

= exp
(
l log

(
1 − c1

logn

))
≤ exp

(
−lc1
logn

)
≤ e−λ

for an arbitrary real λ ≥ 1 and l = b1λ logn, where b1 = c−1
1 . Hence the prob-

ability that in l trials AP does occur is greater than or equal to 1 − e−λ. So
after repeating [b1λ log n] steps, the procedure finds a positive integer k such
that p = qk + r is prime with probability greater than or equal to 1 − e−λ for
all q with the possible exception of at most O(n2(log n)−C0−1)) values of q. The
most time-consuming step of the algorithm is the deterministic primality test
for number p which takes no more than PT operations. This finishes the proof.

1148 M. Grześkowiak

3.3 Proof of Lemma 2

Proof. We apply Theorem 3 with x = n6 and A = 2B + 6, 0 < B < 1

∑
q�n3(log n)−2B−6

max
y≤n6

max
a

(a,q)=1

∣∣∣∣ψ(y; q, a) − y

φ(q)

∣∣∣∣ �
n6

(logn)2B+1
. (18)

Let

Q̃ =

⎧
⎨
⎩q ≤ (cn)2 : ∃

n6(log n)−C≤y≤n6
∃
a

(a,q)=1

∣∣∣∣ψ(y; q, a) − y

φ(q)

∣∣∣∣ ≥
y

φ(q)(log n)B

⎫
⎬
⎭ ,

where C > 0. Then

n6

(log n)2B+1
≥

∑

q∈ eQ

y

φ(q)(log n)B
	 n6

(logn)B+C

∑

q∈ eQ

1
φ(q)

	 n6|Q̃|
n2(logn)B+C

.

Hence

|Q̃| � n2

(log n)B−C+1
=

n2

(log n)C0+1
, (19)

where C = B − C0 and B < 2C0. Consequently

max
n6

(log n)B−C0
≤y≤n6

max
a

(a,q)=1

∣∣∣∣ψ(y; q, a) − y

φ(q)

∣∣∣∣ ≤
n6

(log n)B
.

and

ψ(y; q, a) =
y

φ(q)
(
1 +O((log n)−C0

)
(20)

for all reduced residue classes a (mod q), and for all q ≤ (cn)2 with the possible
exception of at most O(n2(logn−C0−1)) values of q. We have

π(n6; q, a) =
∑

m≤n6

m≡a (mod q)

Λ(m)
logm

−
∑
t≥2

∑

pt≤n6

pt≡a (mod q)

1
t

=
∑

m≤n6

m≡a (mod q)

Λ(m)
logm

+O

(
n3

logn

)

By (20) and Abel’s summation formula

∑

2≤m≤n6

m≡a (mod q)

Λ(m)
logm

=
ψ(n6; q, a)

6 logn
+

∫ n6

2

ψ(y; q, a)dy
y log2 y

=
ψ(n6; q, a)

6 logn
+ J1 + J1

=
n6

6φ(q) logn
+O

(
n6

φ(q)(log n)C0+1

)
+ J1 + J2,

Generating a Large Prime Factor of p4 ± p2 + 1 in Polynomial Time 1149

where

J1 =

n6

(log n)B−C0∫

2

ψ(y; q, a)dy
y log2 y

, J2 =

n6∫

n6

(log n)B−C0

ψ(y; q, a)dy
y log2 y

.

Since

ψ(y; q, a) =
∑

2≤m≤y
m≡a (mod q)

Λ(m) � log y
∑

2≤m≤y
m≡a (mod q)

1 � y log y
q

+O(log y)

Hence there exists n1 such that for every positive integer n ≥ n1

J1 � 1
q

n6

(log n)B−C0∫

2

dy

log y
+

n6

(log n)B−C0∫

2

dy

y log y
� 1

q

n6

(log n)B−C0+1
.

By (20) there exists n2 such that for every positive integer n ≥ n2

J2 � 1
φ(q)

n6∫

n6

(log n)B−C0

dy

log2 y
+

1
φ(q)

n6∫

n6

(log n)B−C0

dy

(log y)C0+2
� n6

φ(q) log2 n
.

This finishes the proof.

References

1. Agrawal, M., Kayal, K., Saxena, N.: Primes is P. Ann. of Math. 160, 781–793 (2004)
2. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, New

York (1993)
3. Davenport, H.: Multiplicative Number Theory. Springer, New York (1980)
4. Gong, G., Harn, L.: Public-Key Cryptosystems Based on Cubic Finite Field Ex-

tension. IEEE Transactions on Information Theory 45, 2601–2605 (1999)
5. Gong, G., Harn, L.: A New Approach on Public-key Distribution. In: Proceedings

of China - Crypto, Chengdu, China, pp. 50–55 (1998)
6. Giuliani, K., Gong, G.: Generating Large Instances of the Gong-Harn Cryp-

tosytem. In: Proceedings of Cryptography and Coding: 8th International Con-
ference Cirencester. LNCS, vol. 2261, pp. 111–133. Springer, Heidelberg (2002)

7. Grześkowiak, M.: Analysis of Algorithms of Generating Key Parameters for the
XTR Cryptosystem. In: Proceedings of Wartacrypt 2004, pp. 1–12. Tatra Moun-
tains Mathematical Publications (2006)

8. Iwaniec, H.: Primes Represented by Quadratic Polynomials in Two Variables. Acta
Arith. 24, 435–459 (1974)

9. Lenstra, A.K., Verhuel, E.R.: The XTR Public Key System. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 1–19. Springer, Heidelberg (2000)

10. Rubin, K., Silverberg, A.: Torus-based cryptography. In: Boneh, D. (ed.) CRYPTO
2003. LNCS, vol. 2729, pp. 349–365. Springer, Heidelberg (2003)

	Generating a Large Prime Factor of $p^4 ± p^2 + 1$ in Polynomial Time
	Introduction and Background
	Generating a Large Prime Factor of $phi m(p^2)$
	Run-Time Analysis of the Algorithm
	Analysis of the Procedure {\sc FindPrimeQ}
	Analysis of the Procedure {\sc FindPrimePModuloQ}
	Proof of Lemma 2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

