
A Model-Driven Approach for the Specification

and Analysis of Access Control Policies�

Fabio Massacci1 and Nicola Zannone2

1 Department of Information and Communication Technology
University of Trento - Italy
fabio.massacci@unitn.it

2 Department of Computer Science
University of Toronto - Canada

zannone@cs.toronto.edu

Abstract. The last years have seen the definition of many languages,
models and standards tailored to specify and enforce access control poli-
cies, but such frameworks do not provide methodological support during
the policy specification process. In particular, they do not provide facil-
ities for the analysis of the social context where the system operates.

In this paper we propose a model-driven approach for the specification
and analysis of access control policies. We build this framework on top
of SI*, a modeling language tailored to capture and analyze functional
and security requirements of socio-technical systems. The framework also
provides formal mechanisms to assist policy writers and system admin-
istrators in the verification of access control policies and of the actual
user-permission assignment.

Keywords: Security Requirements Engineering, Access Control, Policy
Specification.

1 Introduction

Access Control is a critical step in securing IT systems as it aims to prevent
unauthorized access to sensitive information. An access control system is typi-
cally described in three ways: access control policies, models, and mechanisms
[38]. Access control policies (the focus of this paper) are sets of rules that specify
what users are allowed or not allowed to do in the application domain.

The last years have seen the emergence of languages, models, and standards
intended to support policy writers and system administrators in the specification
and enforcement of access control policies [4,8,14,24,33,35]. Those frameworks
however do not provide any methodological support to assist policy writers in
capturing the organizational context where the policy will be enforced.

� This work has been partially funded by the EU-IST-IP SERENITY and SENSORIA
projects, and by the Canada’s NSERC Hyperion project.

R. Meersman and Z. Tari (Eds.): OTM 2008, Part II, LNCS 5332, pp. 1087–1103, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

1088 F. Massacci and N. Zannone

The understanding of the social context plays a key role as access control
policies must be consistent with the actual organization’s practices [32]. Pol-
icy writers have to guarantee that the (IT mediated) access control policies in
place within the system should protect the system without affecting business
continuity. At the same time, they have to prevent the assignment of unnec-
essary authorizations (the so called least privilege principle [37]). Last but not
least, they have to ensure that users cannot abuse their position within the
organization to gain personal advantages. Thus, several questions arise during
the definition of access control policies: “Why does a user need a certain access
right?”, “Does a user have all permissions he needs to achieve the duties assigned
by the organization?”, “Does a user have permissions he does not need?”, “Can
a user abuse his access privileges?”, etc.

These issues are critical especially when dealing with sensitive personal in-
formation: many countries have issued data protection regulations establishing
that the collection and processing of personal data shall be limited to the min-
imum necessary to achieve the stated purpose [36]. Some proposals [7,20,25,28]
have partially answered these issues. For instance, Bertino et al. [7] ensure the
least privilege principle by deriving access control policies from functional re-
quirements: users are assigned with the access rights necessary to perform their
duties. However, this approach leaves little room for verifying the consistency
between security and functional requirements. Even though most policy lan-
guages, e.g. XACML [33], are coupled with enforcement mechanisms, very few
provide frameworks and tools tailored to analyze the consistency of policies with
organizational requirements and to verify the actual assignment of permissions
to users.

In this paper, we present a model-driven approach that intends to assist policy
writers in the specification and analysis of access control policies and system ad-
ministrators in making decisions about the assignments of permissions to users.
In the development of such a methodology we have taken advantages from both
Requirements Engineering (RE) (e.g., [2,13]) and Trust Management (TM). (e.g.,
[5,27]). From RE we get the machinery to model and analyze functional require-
ments of IT systems and their operational environment. However, RE proposals
unlikely address security aspects of organizations. In other words, they focus
on what actors should do rather than what actors are authorized to do. TM is
orthogonal. It addresses the authorization problem in distributed systems solely.
For our purpose, we have chosen the SI* modeling language [30] that integrates
concepts from TM, such as permission and its transfer (between actors), into a
RE framework. In particular, this language allows the capture and modeling of
functional and security aspects of socio-technical systems at the same time.

The first contribution of this paper is a methodological approach for the spec-
ifications of access control policies from organizational requirements and their
analysis. The consistency of access control policies with functional and security
requirements is ensured by verifying the compliance of the requirements models
that have generated them with a number of properties of design.

A Model-Driven Approach for the Specification and Analysis 1089

The analysis of security incidents and frauds [3,21,34] has revealed that secu-
rity breaches are often not apparent in policies specified at organizational level,
that is, in terms of roles within an organization. To address this issue, we propose
to capture security bugs that may be introduced by only modeling organizational
requirements by means of a mechanism for instantiating requirements specified
at organizational level. This also allows security and system administrators to
discard system configurations that may be harmful to the system or to one of the
stakeholders of the system through domain-specific constraints (e.g., separation
of duties constraints, cardinality of roles, etc.).

Together with a modeling framework, we present a formal framework based
on Answer Set Programming (ASP) with value invention [9] to assist policy
writers in the specification and analysis of access control policies and system
administrators in the user-permission assignment decision making.

In the rest of the paper we provide at first a primer of the SI* modeling
language. We then present the process for the specification of access control
policies (§3). We propose an approach for the analysis of access control policy at
organizational level (§4) and at user level (§5). Access control policies are also
analyzed with respect to specificity of the application domain (§6). Next, we
propose a formal framework to assist policy writers and system administrators
in their task (§7). Finally, we discuss related work (§8) and conclude with some
directions for future work (§9).

2 Capturing Organizational Requirements

The SI* modeling language [30] has been proposed to capture security and func-
tional requirements of socio-technical systems. Its main advantage is that it
allows the analysis of the organizational environment where the system-to-be
will operate and, consequently, it permits to capture not only the what and the
how, but also the why security mechanisms have to be introduced in the system.

SI* employs the concepts of agent, role, goal, and task. An agent is an ac-
tive entity with concrete manifestations and is used to model humans as well
as software agents and organizations. A role is the abstract characterization
of the behavior of an active entity within some context. They are graphically
represented as circles. Assignments of agents to roles are described by the play
relation. For the sake of simplicity, in the remainder of the paper we use the
term “actor” to indicate agents and roles when it is not necessary to distinguish
them.

A goal is a state of affairs whose realization is desired by some actor (objec-
tive), can be realized by some (possibly different) actor (capability), or should
be authorized by some (possibly different) actor (entitlement). Entitlements,
capabilities and objectives of actors are modeled through relations between an
actor and a goal: own indicates that an actor has full authority concerning ac-
cess and disposition over his entitlement; provide indicates that an actor has the
capabilities to achieve the goal; and request indicates that an actor intends to
achieve the goal. A task specifies the procedure used to achieve goals. In the

1090 F. Massacci and N. Zannone

graphical representation, goals and tasks are respectively represented as ovals
and hexagons. Own, provide, and request are represented with edges between
an actor and a goal labeled by O, P, and R, respectively.

Goals and tasks of the same actor or of different actors are often related to one
another in many ways. AND/OR decomposition combines AND and OR refine-
ments of a root goal into subgoals, modeling a finer goal structure. Since subgoals
are parts of the whole, objectives, entitlements, and capabilities are propagated
from a root goal to its subgoals. Need relations identify the goals to be achieved
in order to achieve another goal. However, neither such goals might be under
the control of the actor nor the actor may have the capabilities to achieve them.
Therefore, need relations propagate objectives, but not entitlements and capa-
bilities. Contribution relations are used when the relation between goals is not
the consequence of a deliberative planning but rather results from side-effects.
Therefore, contribution relations propagate neither objectives, capabilities, nor
entitlements. The impact can be positive or negative and is graphically repre-
sented as edges labeled with “+” and “−”, respectively. Finally, tasks are linked
to the goals that they intend to achieve using means-end relations.

The relations between actors within the system are captured by the notions of
delegation and trust. Assignment of responsibilities among actors can be made by
execution dependency (when an actor depends on another actor for the achieve-
ment of a goal) or permission delegation (when an actor authorizes another actor
to achieve the goal). Usually, an actor prefers to appoint actors that are expected
to achieve assigned duties and not misuse granted permissions. SI* adopts the
notions of trust of execution and trust of permission to model such expecta-
tions. In the graphical representation, permission delegations are represented
with edges labeled by Dp and execution dependencies with edges labeled by
De. Finally, trust of permission relations are represented with edges labeled by
Tp and trust of execution relations with edges labeled by Te.

To illustrate what SI* models are, let us look at a health care scenario
(Figure 1). This example is an excerpt of a case study analyzed in the EU
SERENITY project1 and we will use it through the paper to demonstrate our
approach.

Example 1. Patients depend on the Health Care Centre (HCC) for receiving
medical services, such as assistance because of faintness alert and home delivery
of medicines. When a patient feels giddy, he can send a request for assistance
to the Monitoring and Emergency Response Centre (MERC), a department of
the HCC. The MERC starts a doctor discovery process that consists in sending
a message to a group of doctors. The first doctor that answers the request is
appointed to provide medical care to the patient. The selected doctor sets a
diagnosis and defines the necessary treatments in terms of medical prescriptions
or requests for specialist visits. A patient can also require the MERC to get
medicines from the pharmacy. In this case, a social worker is contacted by the
MERC to go to the pharmacy and get the medicine to be delivered to the patient.

1 http://www.serenity-project.org

A Model-Driven Approach for the Specification and Analysis 1091

Fig. 1. A SI* model for the health care scenario

3 Access Control Policy Specification

Access control policies shall be compliant with organizational and system re-
quirements. The key idea to the modeling of access rights to data objects is
that actors have some kind of permission with respect to the activities they
have to perform. Here, we propose a methodological framework for supporting
policy writers in the specification of access control policies from the functional
and security requirements of the system. The framework intends to analyze the
organizational context in terms of the actors who comprise it, their goals (i.e.,
entitlements, objectives, and capabilities), and the interrelations among them.
Goals are then operationalized into specifications of operations to achieve them.
The access control policy is defined as the set of permission associated with
operations. In the remainder of this section, the phases of the access control
specification process (Figure 2) are presented in detail.

Actor modeling (step 1) aims to identify and model the roles (e.g., Doctor,
Social Worker, etc.) and agents (e.g., HCC, MERC, David, etc.) within the socio-
technical system. Identified actors are described along with their objectives, en-
titlements, and capabilities. In this phase, agents are also described along the
roles they play (e.g., David plays role Doctor). As the analysis proceeds (steps 3,

1092 F. Massacci and N. Zannone

5) Permission Delegation Modeling4) Execution Dependency Modeling

3) Trust Modeling

6) Task Modeling

2) Goal Modeling

1) Actor Modeling

Fig. 2. Access Control Policy Specification Process with SI*

4, and 5), more actors might be identified, leading to new iterations of the actor
modeling phase.

Goal modeling (step 2) aims to analyze objectives, entitlements and capabili-
ties of actors. These are analyzed from the perspective of their respective actor
using the various forms of goal analysis described earlier. Initially, goal modeling
is conducted for all root goals associated with actors. Later on, more goals are
created as goals are delegated to existing or new actors (steps 4 and 5). The
refinement of goals are considered to reach an adequate level once objectives of
every actor have been assigned to actors that are capable to achieve them and
permission are specified at an appropriate level of granularity.

The assignment of responsibilities is driven by the expected behavior of other
actors. Trust modeling (step 3) enriches the requirements model by identifying
trust relationships (of both permission and execution) between actors. Execu-
tion dependency modeling (step 4) aims to discover and establish dependencies
between actors (e.g., the Patient depends on the HCC for achieving goal pro-
vide medical services). Entitlements are also analyzed from the perspective of
each actor. Permission delegation modeling (step 5) aims to identify and model
transfers of authority between actors (e.g., the Patient delegates the permission
to manage patient data to the HCC).

Once all objectives have been dealt with to the satisfaction2 of the actors who
want them, task modeling (step 6) identifies the actions to be executed in order
to achieve goals. For the sake of simplicity, in this work we assume that tasks
are atomic actions (e.g., read, write, modify, etc.) and cannot be further refined.
The identified tasks are linked to goals via means-end relations that propagate
properties of goals (i.e., objectives, entitlements, and capabilities) to tasks. The
access control policy is defined as the set of permissions associated with tasks.

Example 2. Figure 3 shows the access control policy derived from the health
care scenario of Figure 1. The Doctor is appointed by the HCC to provide patient

2 An actor A can satisfy a goal G if G is an objectives of A and A has the capabilities
to achieve G or A depends on an actor who can satisfy G [18].

A Model-Driven Approach for the Specification and Analysis 1093

(Doctor,read patient medical data)
(Doctor,modify patient medical data)
(Doctor,write prescription)
(Social Worker,read patient personal data)
(Pharmacist,read patient prescription)

Fig. 3. Access Control Policy

with medical care and update patient medical records. The requirements analysis
process shows that the Doctor shall be authorized to read and modify patient
medical records as well as write prescription to achieve assigned duties. Similarly,
the Social Worker shall be authorized to read patient personal data for shipping
medicine and the Pharmacist shall be authorized to read patient prescription for
collecting medicine. It is worth noting that the Social Worker has not the per-
mission to read the prescriptions; only the Pharmacist is authorized to do it. As
consequences, the system designer needs to employ some mechanism to protect
prescriptions, for instance, by enclosing them into closed and sealed envelopes
that only the pharmacist is authorized to open3 (if prescriptions are in paper
form) or by encrypting them (if prescriptions are in digital form).

In the above example we showed a RBAC policy as we have only considered
the access rights to be associated with roles. The framework is, however, flexible
enough to specify policies in other access control models. This might be useful,
for instance, when access rights are specified with respect to agents instead of
to roles.

4 Policy Verification at Organizational Level

The most frequent question during modeling is whether the policy is consistent
with functional requirements and compliant with security requirements. The
first issue we tackle concerns the analysis of functional requirements from the
perspective of actors who want goals achieved (hereafter requesters). We verify
whether actors’ objectives are satisfied by the system design.

Pro1. Every requester has assigned (possibly indirectly) the achievement of his
objectives to actors that have the capabilities and the necessary access right
to achieve them.

Pro2. Every requester has assigned (possibly indirectly) the achievement of his
objectives to actors that he trusts.

The first property verifies that actors’ objectives are assigned to actors that can
actually take charge of their satisfaction. The latter aims to provide additional
guarantee about the satisfaction of goals by employing the notion of trust. The
satisfaction of these properties ensures requirements engineers that the system
design leads to the satisfaction of the objectives of each actor.
3 The pharmacist can report the occurrence of a misuse to the HCC if he receives an

envelope without the seal or with a broken seal from the social worker.

1094 F. Massacci and N. Zannone

From the perspective of actors who control the achievement of goals (hereafter
owners), the system design should guarantee that entitlements of actors are not
misused. To this purpose, we employ the following properties:

Pro3. Entitlements have been assigned only to actors trusted by their owners.
Pro4. Actors granting permissions to achieve a goal, have the right to do so.
Pro5. Entitlements have been assigned to actors who actually need them to

perform their duties.

Pro3 provides owners with assurance that their entitlements are used properly.
The system design has also to ensure that actors do not grant privileges they do
not have to other actors. This is verified by Pro4. Pro5 verifies the compliance
of the model with the least privilege principle.

Finally, designers have to analyze their model from the perspective of actors
that are actually in charge of achieving goals (hereafter providers).

Pro6. Every provider has the permissions necessary to accomplish assigned
duties.

A failure of Pro6 can be due to the lack of assignments of permission to legit-
imate users. In this case, designers should revise the model by identifying the
permission path that at the end will authorize the provider to achieve the goal.
The failure, however, can be also due to the fact that the achievement of objec-
tives has been assigned to actors that should not be authorized to accomplish
such tasks. This requires designers to revise the model by identifying other ac-
tors that has the capabilities to achieve the goals. It is worth noting that only by
modeling security and functional requirements separately one is able to capture
both these aspects. Indeed, by deriving access control policies from the functional
requirements one always ends up that access rights have not been assigned to
users.

5 Policy Verification at User Level

The analysis of industry case studies (e.g., [31,40]) has revealed that security
breaches are often not apparent in policies specified at organizational level. They
only appear at the instance level, once we see what happens when individuals are
mapped into roles and delegation paths are concretely followed. Requirements
engineers, however, do not usually want to design the system at the instance
level even if they need to reason at that level to detect many security breaches.
Our objectives is thus to offer them tools for instantiating organizational re-
quirements and analyzing the instantiated requirements.

The SI* modeling framework allows for a clear distinction between organi-
zational and instance levels as it only employs the notions of agent and role.
The organizational level focuses on roles by associating with each role the ob-
jectives, entitlements, and capabilities related to the activities that such a role
has to perform within the organization and the relationships among them. The
instance level focuses on single agents by identifying their personal objectives,

A Model-Driven Approach for the Specification and Analysis 1095

entitlements, and capabilities and the relationships among them as well as the
roles they play.

Many access control frameworks determine the permissions assigned to users
(possibly via roles assignment) by adopting an inheritance method, that is, a user
inherits all privileges associated with the roles he plays. This approach, however,
requires access rights to be specified on concrete objects, making difficult policy
specification, analysis, and management. In this section, we propose an instan-
tiation procedure that automatically relates goal instances to users with respect
to the responsibilities and permissions that have been assigned to them. The
basic idea is that when a designer draws a goal, he specifies an “abstract goal”,
rather than a “goal instance”. Then, it is matter of the instantiation procedure
to automatically generate the instantiated requirements model.

Different SI* concepts instantiate goals and social relations differently. Though
it might seem that the instantiation of objectives depends on the responsibilities
of agents, an agent will unlikely desire the fulfillment of all instances of a goal.
Rather, he is interested in the achievement of a particular instance. For exam-
ple, a patient (e.g., Peter in Figure 2) cares about medical services provided to
him rather than to services provided to other patients. There might be situations
where agents want to satisfy more than one instance of the same goal. This is, for
instance, the case of the HCC that is in charge of providing medical treatments
to those agents, who requested them. However, they are delegated responsibili-
ties. Conversely, an agent to whom capabilities are prescribed (possibly via role
assignment), has the capabilities to achieve all instances of a goal. For instance,
a doctor (e.g., David) is capable of prescribing medicines to all patients rather
than only to one particular patient.

The instantiation of entitlements is on case-by-case basis. The designer may
assign permission to a role with the intended meaning that the agents that play
that role are entitled to control only a particular instance of the goal. On the
contrary, there are situations where an actor is entitled to control all instances of
the goal. The difference in the meaning of entitlement is evident by looking at the
relationship between the patient and his data and between the HCC and medical
services (Figure 2). When a designer says that “a patient is entitled to control
the use of patient’s medical records”, he means that every patient is entitled to
control only his own medical records. Conversely, the HCC has full authority
over all instances of the provisioning of medical services. To distinguish these
situations, we have refined the concept of ownership into existential ownership
and universal ownership. Existential ownership indicates that the actor is the
legitimate owner of one instance of the goal. Universal ownership indicates that
the actor is the legitimate owner of all instances of the goal.

Execution dependencies (permission delegations, resp.) propagate the respon-
sibility (authority, resp.) to achieve the goal instances generated by objective (ex-
istential ownership, resp.) instantiation to the agents playing the role of dependee
(delegatee, resp.). However, only one instance of the dependee is appointed to
perform the assigned duties. This intuition is actually closer to reality than one
may think: when the MERC appoints a doctor to provide medical care to a

1096 F. Massacci and N. Zannone

patient, only one doctor will perform this task. Similarly, permission delegations
grant permission only to one of the agents playing the role of delegatee. Trust
relations are used to model the expectation of an actor. This expectation is not
related to a particular goal instance but refers to the general behavior of the
trustee, that is, to all instances of the goal. Accordingly, trust relations are in-
stantiated for all instances of the goal. Moreover, trust relations are instantiated
between every agent playing the role of trustor and every agent playing the role
of trustee.

This instantiation model can also assist system and security administrators in
the configuration decision making process. For instance, the simple SI* model in
Figure 2 generates a huge number of possible configurations (i.e., combinations
of assignments of objectives and entitlements).4 However, not all of them may
guarantee a fair and lawful behavior of the socio-technical system. For instance,
in many configurations access rights are assigned to agents that are not actually
in charge to achieve the goals. The key idea is to apply the properties presented
in Section 4 to the instantiated model in order to discard those configurations
that are not compliant with security and organizational requirements.

6 Domain-Specific Verification

The analysis at the instance level allows us to capture other situations that might
result harmful to the system or one of the stakeholders of the system.

Example 3. The first doctor who answer Peter’s request is David. Thereby, David
is appointed by the MERC to provide medical care to Peter. David is also a
consultant in the health insurance company with whom Peter has stipulated an
insurance policy. This situation is clearly to be avoided. The MERC needs to
find another doctor to provide medical care to Peter. This demands a revision
of the doctor discovery procedure: the first-answer first-appointed policy (see
Example 1) should be modified by introducing a check for possible conflicts.

If we look at ways to handle situations like the above example, starting from
the landmark paper by Saltzer and Schroeder [37] to other classical papers
[1,15,16,19,41], we found that Separation of Duty (SoD) is invariably offered
as “the” solution to prevent the violation of business rules. SoD aims to reduce
the risk of security breaches by not allowing any individual to have sufficient
authority within the system to compromise it on his own [7]. Our framework
supports the specification of SoD constraints at three levels of granularity. The
basic type of constraint simply denies agents to play conflicting roles.

Example 4. A doctor in the HCC shall not work as a consultant in an insurance
company.

A second type focuses on incompatible activities. They prevent users from per-
forming activities whose combination can compromise the system integrity.
4 The number of configuration is exponential in the number of OR-decompositions,

permission delegations, execution dependencies, and agent-role assignments.

A Model-Driven Approach for the Specification and Analysis 1097

Example 5. A doctor shall not provide both health care in behalf of the HCC and
consulting to the insurance company. This constraint, however, does not deny
doctors to perform other duties within the HCC and the insurance company.

Above types of constraint can be classified as static SoD constraints [41]. In some
cases they impose too strict limits on requirements. To this end, the framework
allows for the specification of dynamic SoD constraints [41] by focusing on par-
ticular instances of activities.

Example 6. David shall not provide assistance to patients who have stipulated
an insurance policy with the insurance company were he works. This constraint,
however, does not deny David to provide medical care to patients who do not
have any relation with the insurance company.

Other constraints imposed by the application domain can be defined, for in-
stance, to specify the cardinality of roles, that is, the number of agents that can
play a role at the same time, or the number of tasks assigned to single agents.

7 Automated Reasoning Support

Looking at the process in Figure 2, it is evident the need of tools to assist policy
writers in determining (1) which actors’ goals are satisfied and (2) the permis-
sion on tasks. These activities can be cumbersome to be manually performed
especially when the requirements model is huge. Tool support is also necessary
for model instantiation and policy verification.

For our purpose, we have chosen the ASP paradigm with value invention [9].
In [18] the authors have defined the semantics of SI* in the ASP paradigm [26].
Roughly speaking, ASP is a variant of Datalog with negation as failure and dis-
junction. This paradigm supports specifications expressed in terms of facts and
Horn clauses, which are evaluated using the stable model semantics. Here, graph-
ical models are encoded as sets of facts (see [29] for details on the trasformation of
graphical models into formal specifications). Rules (or axioms) are Horn clauses
that define the semantics of SI* concepts. Specifically, axioms are used to propa-
gate objectives, entitlements, and capabilities across the requirements model via
goal analysis, execution dependencies, and permission delegations. As an exam-
ple, we report the axioms for entitlements and permission delegations (Ax1-3)
in Table 1 [18]. As described earlier in the paper, the access control policy is de-
fined as the set of permission associated to tasks. Ax4 is used to determine such
permission. Axioms are also used to determine the goals that can be satisfied
and to propagate satisfaction evidence backward to the requester [18].

Properties of design (Section 4) and domain-specific constraints (Section 6)
are encoded as ASP constraints. Constraints are Horn clauses without positive
literals and are used to specify conditions which must not be true in the model.
In other words, constraints are formulations of possible inconsistencies. Table 2
presents some examples of constraints. Pro3 verifies if an owner is confident that
there is no likely misuse of his entitlements. Specifically, an owner is confident
that permissions on his entitlements have been assigned only to trusted actors.

1098 F. Massacci and N. Zannone

Table 1. Axiomatization of Entitlements and Permission Delegations

Ax1 have perm(X, G)← own(X, G)
Ax2 have perm(X, G)← delegate(Y, X, G) ∧ have perm(Y, G)
Ax3 have perm(X, G1)← subgoal(G1, G) ∧ have perm(X, G)
Ax4 access control(X, T)← means end(T, G) ∧ have perm(X, G)

Table 2. Properties of Design and Domain-Specific Constraints

Pro3← own(X, G) ∧ not confident owner(X, G)
Pro4← delegate(X, Y, G) ∧ not have perm(X, G)
Pro5← have perm(X, G) ∧ not need to have perm(X, G)
Pro6← need to have perm(X, G) ∧ not have perm(X, G)

SoD ← play(A, r1) ∧ play(A, r2)
RC ← #count{X : play(A, r)} > n

Here, literal confident owner(x, g) holds if actor x is confident that permissions
on goal g are given only to trusted actors. Pro4 verifies that actors, who delegate
the permission to achieve a goal, are entitled to do it, that is, it that checks that
permission are well rooted. Pro5 verifies that actors, who have the permission to
achieve a goal, actually need such permission. Pro6 is opposite to Pro5. It verify
that actors, who need to have the permission to achieve their duties, have such
permission. Thereby, the combination of Pro5 and Pro6 guarantees that actors
have access right if and only if they need them. SoD verifies that there are no
agents that play both roles r1 and r2. RC verifies that there are not more than
n agents that play role r.5

Facts, axioms and constraints compound the program that is executed by an
ASP inference engine. As result, the engine returns all answer sets (i.e., sets
of atoms) satisfying all Horn clauses. These answer sets represent the system
configurations in which all properties of design are satisfied. Answer sets include
the access control policy, that is, the sets of facts in the form access control(x, t).

The ASP paradigm, however, is not sufficient for implementing the instantia-
tion procedure presented in Section 5. ASP with value invention improves ASP
by introducing function symbols. Essentially, functions are treated as external
predicates that implement the mechanism of value invention by taking in in-
put a set of values and returning a new value. Accordingly, instances of goals
are represented using function gi(g, a, r), where g is a goal, a is the agent who
has generated the instance, and r is the role from which the agent has taken
the goal.6 The choice of implementing the instantiation procedure in ASP with
value invention instead of in other formalisms allows us to reuse the framework
proposed in [18] (with some minor changes). Actually, the rules for instantiation
are simply added to the ASP program used for the analysis of organizational

5 #count{. . .} is a built-in aggregate function that is supported by several ASP solvers.
6 We use the constant null when the goal is directly associated to an agent.

A Model-Driven Approach for the Specification and Analysis 1099

Table 3. Instantiation of Entitlements and Permission Delegations

I1 owni(A, gi(G, A, R))← own existential(R, G) ∧ play(A, R)

I2 owni(A, gi(G, B, R))←
j

own universal(P, G) ∧ play(A, P)∧
agent(B) ∧ role(R) ∧ goal(G)

I3 delegatei(A,B, gi(G, C, R))←
8<
:

delegate(P, Q,G) ∧ play(A, P) ∧ play(B, Q)∧
have perm(A, gi(G, C, R))∧
not other agent(B, Q, gi(G, C, R))

I4 other agent(A, R, G)← play(A, R) ∧ play(B, R) ∧ delegatei(D, B, G) ∧ A �= B

requirements. Table 3 presents the rules for instantiating entitlements and per-
mission delegations.7

One can observe the different instantiation for existential and universal own-
ership. Specifically, the rule for existential ownership (I1) introduces new values,
that is, it creates new instances of the goal. On the other hand, the rule for uni-
versal ownership (I2) considers all the instances of the goal. Rule I3 implements
the instantiation of permission delegations. We introduce predicate other agent
to verify if the permission has already been assigned to another agent. Thus,
axiom I3 (in combination with I4) will not yield one model but multiple models
in which the permission is granted only to one agent playing the role of the
delegatee. Another observation concerns the goal instance: an actor can delegate
only the permission on the instances that are in his scope, that is, instances
which the actor is already entitled to achieve. The proposed approach has been
implemented in the DLV system [26] – a state-of-the art implementation of ASP.

8 Related Work

Several languages and models intended to support policy writers and system
administrators in the specification and enforcement of access control policies
has been proposed [6,23,33,39]. Our work is complementary to those proposals.
Indeed, we have not proposed a new access control language. Rather, our objec-
tive is to support policy writers in defining access control policies, which can be
specified using existing languages.

Several efforts have been spent to close the gap between security requirements
analysis and policy specification. Basin et al. [4] propose SecureUML, an UML-
based modeling language for modeling access control policies and integrating
them into a model-driven software development process. Similar approaches have
been proposed by Doan et al. [14], who incorporate Mandatory Access Control
(MAC) into UML, and by Ray et al. [35], who model RBAC as a pattern using
UML diagram template. Breu et al. [8] propose an approach for the specification
of user rights in the context of an object oriented use case driven development
process. However, these frameworks do not provide facilities for the analysis of
the social context where the system operates.
7 For the sake of simplicity, Table 3 reports the rules used when own and delegation

are specified for roles. Similar rules are used when relations are specified for agents.

1100 F. Massacci and N. Zannone

The problem of specifying access control policies has been partially addressed
in workflow management systems. For instance, Bertino at al. [7] formally ex-
press constraints on the assignment of roles to tasks in a workflow in order to
automatically assign users to roles according to such constrains. Kang at al. [25]
propose a fine-grained and context-based access control mechanism for inter-
organizational workflows. The idea underlying these proposals is to grant access
rights to users on the basis of the duties assigned to the roles they play. This
approach, however, does not allow the analysis of the functional requirements of
the system to be protected.

Moving towards early requirements, He et al. [20] propose a goal-driven frame-
work for modeling RBAC policies based on role engineering [10]. This framework
includes a context-based data model, in which policy elements are represented as
attributes of roles, permissions, and objects, and a goal-driven role engineering
process, which addresses how the security contexts in the data model can be
elicit and modeled. However, roles are derived from task and are not analyzed
with respect to the organizational context. Liu et al. [28] propose an access con-
trol analysis in i*. The main difference with our approach lies in the degree of
automation. Liu et al. provide a systematic way to specify access control poli-
cies, but leave all work to humans. Indeed, they do not provide any tool support
for assisting policy writers in their work. Moreover, similarly to workflow access
control proposals, the authors propose to grant a permission to an actor every
time he needs such a permission. Crook et al. [11] enhance i* to derive role def-
inition from the organizational context. However, instantiation is still manually.
Moreover, as in [7,25] permissions are simple derived by the tasks assigned to
users, leaving a little room for verifying the consistency between security and
functional requirements. Finally, we mention the work by Fontaine [17], who pro-
pose a mapping of goal models based on KAOS [13], a goal-based requirements
engineering methodology, onto Ponder [12], a language for specifying manage-
ment and security policies for distributed systems. The key point of this work
is the transformation of operationalized goals into access control policies. How-
ever, KAOS is inadequate to model and analyze policies because it lacks the
necessary features necessary for the modeling and analysis of the organization
structure.

In the area of policy verification, Sohr et al. [42] propose a framework for
the verification and validation of RBAC policies and authorization constraints.
Policies and constraints are specified as sentences in first-order LTL and ver-
ified using theorem provers. Although the use of theorem provers allows ana-
lysts to give proofs that are independent from the number of users and objects,
it makes the verification process not completely automated. The authors also
propose a validation approach based on UML and OCL: RBAC policies are
modeled as class diagrams and authorization constraints are specified in OCL.
The UML-based Specification Framework is then used to generate system states
and to check those states against specified constraints. Hu et al. [22] propose a
framework for verification and conformance testing for secure system develop-
ment. Verification is intended to ensure that access control policies comply with

A Model-Driven Approach for the Specification and Analysis 1101

security properties, and conformance testing is used to validate the compliance
of system implementation with access control policies. However, these proposals
mainly focus on the implementation and enforcement of access control policies
and do not provide any methodological support for the analysis of the organiza-
tional context and the definition of access control policies on the basis of elicited
organizational and system requirements.

9 Conclusive Remarks and Future Work

In this paper we have proposed a model driven approach to assist policy writ-
ers in the specification and analysis of access control policies with respect to
organization and security requirements and system administrators in the user-
permission assignment decision making. To support a more accurate analysis, we
have defined an approach for instantiating organizational requirements. Readers
familiar with RBAC and other access control models will easily find out some
differences in the way permissions are assigned to agents. In RBAC a user inher-
its all permissions associated with the roles he plays. If permission is specified for
classes of objects, the user is entitled to access all objects in those classes [23].
We observe that this assumption is not always true especially with regards to
the least privilege principle. For example, just because the doctor role can access
a patient record does not mean that a doctor can access all patient records. A
doctor can only access the records of those patients currently assigned to that
doctor.

The instantiation procedure together with policy analysis facilities have been
implemented in ASP with value invention. One may claim that the approach
suffers from exponential complexity. We argue that this is the cost of security:
policy writers shall explore the entire space of solutions to identify vulnerabilities
in their access control policies. Scalability problems, however, occur at design
time where the policy writer can add and remove agents for a more accurate anal-
ysis. They disappear at run time when administrators verify whether or not the
actual system configuration is secure. Indeed, the problem of verifying if a cer-
tain configuration satisfies properties of design and domain-specific constraints
is polynomial. The last observation concerns the verification of Pro4 against the
instantiated requirements. Rule I3 instantiates permission delegations only for
the instances in the scope of the agent. This approach makes every permission
well rooted by construction. The verification of Pro4 at the instance level, how-
ever, can be done by creating a “fake” instance of the goal, for instance, when
the agent is supposed to delegate the permission on a goal but he has not it on
any instance of that goal.

The research presented here is still in progress. Much remains to be done
to further refine the proposed approach to support the specification of access
control policies comparable to the ones that can be expressed, for instance, in
XACML [33]. Future work plans include the support for the specification of
negative authorizations and obligations. Another direction under investigation
involves the capture of behavioral aspects by means of revocation policies.

1102 F. Massacci and N. Zannone

References

1. Ahn, G.-J., Sandhu, R.: The RSL99 language for role-based separation of duty
constraints. In: Proc. of RBAC 1999, pp. 43–54. ACM Press, New York (1999)

2. Antón, A.I., Potts, C.: The use of goals to surface requirements for evolving sys-
tems. In: Proc. of ICSE 1998, pp. 157–166. IEEE Press, Los Alamitos (1998)

3. Association of Certified Fraud Examiners. The 2006 report to the nation (2006)

4. Basin, D., Doser, J., Lodderstedt, T.: Model Driven Security: from UML Models
to Access Control Infrastructures. TOSEM 15(1), 39–91 (2006)

5. Becker, M.Y., Sewell, P.: Cassandra: flexible trust management, applied to elec-
tronic health records. In: Proc. of CSFW 2004, pp. 139–154. IEEE Press, Los
Alamitos (2004)

6. Bell, D.E., LaPadula, L.J.: Secure Computer System: Unified Exposition and MUL-
TICS Interpretation. Technical Report MTR-2997 Rev. 1, The MITRE Corpora-
tion, Bedford, MA (1976)

7. Bertino, E., Ferrari, E., Atluri, V.: The specification and enforcement of authoriza-
tion constraints in workflow management systems. TISSEC 2(1), 65–104 (1999)

8. Breu, R., Popp, G., Alam, M.: Model based development of access policies. STTT 9,
457–470 (2007)

9. Calimeri, F., Ianni, G.: External Sources of Computation for Answer Set Solvers.
In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS
(LNAI), vol. 3662, pp. 105–118. Springer, Heidelberg (2005)

10. Coyne, E.J.: Role engineering. In: Proc. of RBAC 1995, pp. 15–16. ACM Press,
New York (1995)

11. Crook, R., Ince, D., Nuseibeh, B.: On Modelling Access Policies: Relating Roles to
their Organisational Context. In: Proc. of RE 2005, pp. 157–166 (2005)

12. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification
Language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS,
vol. 1995, pp. 18–39. Springer, Heidelberg (2001)

13. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed Requirements Acqui-
sition. Sci. of Comp. Prog. 20, 3–50 (1993)

14. Doan, T., Demurjian, S., Ting, T.C., Ketterl, A.: MAC and UML for secure soft-
ware design. In: Proc. of FMSE 2004, pp. 75–85. ACM Press, New York (2004)

15. Dobson, J.E., McDermid, J.A.: A framework for expressing models of security
policy. In: Proc. of Symp. on Sec. and Privacy, pp. 229–239. IEEE Press, Los
Alamitos (1989)

16. Ferraiolo, D.F., Barkley, J.F., Kuhn, D.R.: A role-based access control model and
reference implementation within a corporate intranet. TISSEC 2(1), 34–64 (1999)

17. Fontaine, P.-J.: Goal-Oriented Elaboration of Security Requirements. Ph.D thesis,
Université Catholique de Louvain (2001)

18. Giorgini, P., Massacci, F., Zannone, N.: Security and Trust Requirements Engi-
neering. In: Aldini, A., Gorrieri, R., Martinelli, F. (eds.) FOSAD 2005. LNCS,
vol. 3655, pp. 237–272. Springer, Heidelberg (2005)

19. Gligor, V.D., Gavrila, S.I., Ferraiolo, D.: On the formal definition of separation-of-
duty policies and their composition. In: Proc. of Symp. on Sec. and Privacy, pp.
172–183. IEEE Press, Los Alamitos (1998)

20. He, Q., Antón, A.I.: A Framework for Modeling Privacy Requirements in Role
Engineering. In: Proc. of REFSQ 2003, pp. 137–146 (2003)

21. House of Lords. Prince Jefri Bolkiah vs KPMG. 1 All ER 517 (1999)

A Model-Driven Approach for the Specification and Analysis 1103

22. Hu, H., Ahn, G.: Enabling verification and conformance testing for access control
model. In: Proc. of SACMAT 2008, pp. 195–204. ACM Press, New York (2008)

23. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S.: Flexible support for
multiple access control policies. TODS 26(2), 214–260 (2001)

24. Jürjens, J.: Secure Systems Development with UML. Springer, Heidelberg (2004)
25. Kang, M.H., Park, J.S., Froscher, J.N.: Access control mechanisms for inter-

organizational workflow. In: Proc. of SACMAT 2001, pp. 66–74. ACM Press, New
York (2001)

26. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV System for Knowledge Representation and Reasoning. TOCL 7(3), 499–562
(2006)

27. Li, N., Mitchell, J.C.: RT: A Role-based Trust-management Framework. In: Proc.
of DISCEX 2003, vol. 1, pp. 201–212. IEEE Press, Los Alamitos (2003)

28. Liu, L., Yu, E.S.K., Mylopoulos, J.: Security and Privacy Requirements Analy-
sis within a Social Setting. In: Proc. of RE 2003, pp. 151–161. IEEE Press, Los
Alamitos (2003)

29. Massacci, F., Mylopoulos, J., Zannone, N.: Computer-Aided Support for Secure
Tropos. ASE 14(3), 341–364 (2007)

30. Massacci, F., Mylopoulos, J., Zannone, N.: An Ontology for Secure Socio-Technical
Systems. In: Handbook of Ontologies for Business Interaction, ch. XI, p. 188. The
IDEA Group (2008)

31. Massacci, F., Zannone, N.: Detecting Conflicts between Functional and Security
Requirements with Secure Tropos: John Rusnak and the Allied Irish Bank. In:
Social Modeling for Requirements Engineering. MIT Press, Cambridge (to appear,
2008)

32. Mellado, D., Fernández-Medina, E., Piattini, M.: Applying a Security Require-
ments Engineering Process. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ES-
ORICS 2006. LNCS, vol. 4189, pp. 192–206. Springer, Heidelberg (2006)

33. OASIS. eXtensible Access Control Markup Language (XACML) Version 2.0. OA-
SIS Standard (2005)

34. Promontory Financial Group, Wachtell, Lipton, Rosen, and Katz. Report to the
Board and Directors of Allied Irish Bank P.L.C., Allfirst Financial Inc., and Allfirst
Bank Concerning Currency Trading Losses (March 12, 2003)

35. Ray, I., Li, N., France, R., Kim, D.-K.: Using UML to visualize role-based access
control constraints. In: Proc. of SACMAT 2004, pp. 115–124. ACM Press, New
York (2004)

36. Room, S.: Data Protection & Compliance in Context. BCS (2007)
37. Saltzer, J.H., Schroeder, M.D.: The Protection of Information in Computer Sys-

tems. Proceedings of the IEEE 63(9), 1278–1308 (1975)
38. Samarati, P., di Vimercati, S.D.C.: Access Control: Policies, Models, and Mech-

anisms. In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2001. LNCS, vol. 2946, pp.
137–196. Springer, Heidelberg (2004)

39. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-Based Access Con-
trol Models. IEEE Comp. 29(2), 38–47 (1996)

40. Schaad, A., Lotz, V., Sohr, K.: A model-checking approach to analysing organ-
isational controls in a loan origination process. In: Proc. of SACMAT 2006, pp.
139–149. ACM Press, New York (2006)

41. Simon, R., Zurko, M.E.: Separation of duty in role-based environments. In: Proc.
of CSFW 1997, pp. 183–194. IEEE Press, Los Alamitos (1997)

42. Sohr, K., Drouineaud, M., Ahn, G.-J., Gogolla, M.: Analyzing and managing role-
based access control policies. TKDE 20(7), 924–939 (2008)

	A Model-Driven Approach for the Specification and Analysis of Access Control Policies
	Introduction
	Capturing Organizational Requirements
	Access Control Policy Specification
	Policy Verification at Organizational Level
	Policy Verification at User Level
	Domain-Specific Verification
	Automated Reasoning Support
	Related Work
	Conclusive Remarks and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

