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Preface

This volume contains the proceedings of the Second International Conference on
Web Reasoning and Rule Systems (RR2008), which was held on October 31 and
November 1 in Karlsruhe, Germany.

The International Conference on Web Reasoning and Rule Systems (RR) is
the major forum for discussion and dissemination of new results on all topics
concerning web reasoning and rule systems. RR2008 built on the success of the
First International Conference on Web Reasoning and Rule Systems RR2007,
which received enthusiastic support from the Web Rules community. In 2008,
as documented by this proceedings volume, RR continued the excellence of the
new series.

The reasoning landscape features theoretical areas such as knowledge repre-
sentation (KR) and algorithms; design aspects of rule markup; design of ontology
languages; engineering of engines, translators, and other tools; efficiency consider-
ations and benchmarking; standardization efforts, such as the Rules Interchange
Format activity at W3C; and applications. Of particular interest has been the
use of rules to facilitate ontology modeling, and the relationships and possible in-
teractions between rules and ontology languages like RDF and OWL, as well as
ontology reasoning related to RDF and OWL, or querying with SPARQL.

We received 35 submissions, each of which was reviewed by at least 3 Pro-
gram Committee members. The committee decided to accept 21 papers, among
these 12 full papers, 4 short papers and 5 poster presentations. The program also
featured two invited talks, one by Michael Kifer on the standardization activity
around RIF, and one by Boris Motik on the theoretical foundations underlying
the integration of description logics and rules. The talk by Michael Kifer was also
broadcast as a joint keynote to the International RuleML Symposium on Rule
Interchange and Applications (RuleML2008), held in parallel in Orlando (USA).

We would like to thank all the people who invested their time and efforts and
made the organization of this conference possible. The General Chair Thomas
Eiter, and the members of the RR Steering Committee, who provided valuable
advice when critical decisions had to be taken, the members of the Program Com-
mittee and the additional reviewers, who helped in shaping a challenging confer-
ence program, and Sebastian Rudolph who took care of the local requirements
for running the conference. Finally, we would like to thank Andrei Voronkov, for
providing us with the EasyChair system, which greatly simplified the handling
of all stages from the paper submission to the production of these proceedings.

August 2008 Diego Calvanese
Georg Lausen
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Rule Interchange Format: The Framework

Michael Kifer

State University of New York at Stony Brook, USA

Abstract. The Rule Interchange Format (RIF) is an activity within the
World Wide Web Consortium aimed at developing a Web standard for
exchanging rules. The need for rule-based information processing on the
Semantic Web has been felt ever since RDF was introduced in the late 90’s.
As ontology development picked up pace this decade and as the limitations
of OWL became apparent, rules were firmly put back on the agenda. RIF is
therefore a major opportunity for the introduction of rule based technolo-
gies into the main stream of knowledge representation and information
processing on the Web.

Despite its humble name, RIF is not just a format and is not primar-
ily about syntax. It is an extensible framework for rule-based languages,
called RIF dialects, which includes precise and formal specification of the
syntax, semantics, and XML serialization. In this paper we will discuss
the main principles behind RIF, introduce the RIF extensibility frame-
work, and outline the Basic Logic Dialect—the only fully developed RIF
dialect so far.

1 Introduction

The Rule Interchange Format (RIF) activity within the World Wide Web Con-
sortium (W3C) aims to develop a standard for exchanging rules among disparate
systems, especially on the Semantic Web. Given that the existing rule systems,
both commercial and research prototypes, have wide variety of features and dif-
fer not only syntactically but also—more importantly—semantically, the goal
of the RIF effort is not at all simple. Some systems extend one another syn-
tactically and/or semantically, but in many cases this is true only to a degree.
Other rule systems are largely incompatible, each having features that the other
system does not. With this diversity, how can interoperability be achieved?

The vision of RIF is a collection of dialects—an extensible set of languages
with rigorously defined syntax and semantics. Extensibility here means that new
dialects can be added, if sufficient interest exists, and the languages are supposed
to share much of the syntactic and semantic apparatus.

Because of the emphasis on rigor and semantics, the term “format” in the
name of RIF might seem a misnomer. However, making a cute acronym is not
the only reason for the choice of this term. The idea behind rule exchange through
RIF is that the different systems will be able to map their languages (or sub-
stantial parts thereof) to and from the appropriate RIF dialects in semantics-
preserving ways and thus rule sets and data could be communicated by one

D. Calvanese and G. Lausen (Eds.): RR 2008, LNCS 5341, pp. 1–11, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 M. Kifer

system to another provided that the systems can find a suitable dialect, which
they both support. The intermediate RIF language is supposed to be in the XML
format, whence the term “format” in the RIF name.

The RIF Working Group has plans to develop two kinds of dialects: logic-
based dialects and dialects for rules with actions. The logic-based dialects include
languages based on first-order logic and also a variety of logic programming
dialects based on the different non-first-order semantics such as the well-founded
and stable semantics [22,12]. The rules-with-actions dialects will be designed for
production rule systems, such as Jess and Drools [15,14], and for reactive rules
such as those represented by XChange [4], FLORA-2 [16], and Prova [18]. At
the time of this writing, only the Basic Logic Dialect, RIF-BLD (which belongs
to the first category), has been substantially completed and is in the “Last
Call” status in the W3C standardization process [2]. In the second category, a
Production Rule Dialect, RIF-PRD, is under active development [8].

These plans are very ambitious, and in the beginning it was not at all obvious
how the different dialects could be made to substantially share syntactic and,
especially, semantic machinery. Even within the logic-based category the dialects
are expected to have vastly different semantics: the first-order semantics warrants
inferences that are different from those warranted by the logic programming
semantics, and the various logic programming semantics do not agree in all
cases. This is where the RIF extensibility framework comes in. At present, only
the Framework for Logic Dialects, RIF-FLD, has been worked out to sufficient
degree of detail [3], and this is the main subject of this paper.

We assume general familiarity with first-order logic syntax and semantics, and
with the idea of rule-based languages, especially logic programming languages
like Prolog [7]. We also assume that the reader understands the difference be-
tween first-order logic based languages and those based on logic programming;
especially the difference that the notion of negation plays in both.

This survey is organized as follows. In Section 2, we give an overview of the
RIF framework for logic dialects. Section 3 describes the syntactic machinery of
the framework, including the notions of terms, formulas, signatures, and well-
formedness. Section 4 describes the semantic framework. In Section 5 we give
a brief introduction to the Basic Logic Dialect of RIF and show how it can be
described in terms of the RIF framework. Section 6 concludes the paper.

2 RIF Framework for Logic Dialects—An Overview

The RIF Framework for Logic Dialects, RIF-FLD, is a formalism for specifying
all logic dialects of RIF, including the Basic Logic Dialect [1]. In itself, FLD
is a logic in which both the syntax and semantics of the dialects are described
through a number of mechanisms that are commonly used in practice and in
literature, but are rarely brought all together. Fusion of all these mechanisms is
required because the framework must be broad enough to accommodate several
different types of logic languages and because various advanced mechanisms are
needed to facilitate translation into a common framework. RIF-FLD gives precise
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definitions to these mechanisms, but allows details to vary. The design of RIF
envisages that its future logic dialects will be based on RIF-FLD and will be
defined as specializations of FLD. Being all derived from the same framework
will ensure that RIF dialects are syntactically and semantically compatible in the
sense that extensions, restrictions, and common subsets of the different dialects
will be formally identifiable and rule systems would be able to communicate
their rule sets using a collection of such dialects.

The framework has three main components: the syntactic framework, the se-
mantic framework, and the XML framework. The syntactic framework defines a
general mechanism for specifying which kinds of terms and formulas are allowed
and how to specialize this mechanism to produce specific dialects. The seman-
tic framework provides model-theoretic mechanisms for specifying how logical
inference is to be defined in the derived dialects. The XML framework defines
the general principles for mapping the syntax of RIF-FLD to a concrete XML
interchange format.

As an example of this approach, the RIF Basic Logic Dialect is normatively
defined as a specialization of RIF-FLD. Having RIF-FLD is a major advantage
because the specification of RIF-BLD as a specialization of RIF-FLD is very
short and easy to grasp. For comparison, RIF-BLD is also specified directly,
without relying on the framework. This specialization is also normative, but
much longer and more complex. It is required that the two specifications of BLD
are equivalent and any discrepancy must be treated as a mistake to be corrected.

In the following sections, we will provide an informal survey of the syntactic
and semantic frameworks. It is informal both in order to be brief and also because
the reader is encouraged to consult the definitive document [3].

3 The Syntactic Framework

The syntactic framework defines the types of terms and formulas that are allowed
in a dialect. A specific dialect might choose to restrict certain combinations of
symbols and throw out some combinations altogether.

3.1 Terms: The Object Level

The framework defines the following types of terms (among others: it is not the
purpose this this survey to complete):

– Constants and variables. In the RIF presentation syntax, variables are de-
noted using alphanumeric symbols prefixed with a “?”-mark, and we will
also do so here.

– Positional terms. If t and t1, ..., tn are terms then t(t1 ... tn) is a posi-
tional term.1 These are like the usual terms of first-order logic except that

1 The presentation syntax of RIF does not use commas to separate the arguments in
predicates and terms. It is an abstract syntax and, as such, it omits certain details
that might be important for unambiguous parsing.
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the symbols are not necessarily partitioned into individuals, functions, and
predicates (any such restrictions are left to the dialects’ discretion). In addi-
tion, variables are allowed to occur anywhere a term can. Thus, a positional
term can be as general as a HiLog term [5] and expressions of the form
?X(abc ?W )(?Y ?Z(?V 33)) are well within the limits of what is allowed.

– Terms with named arguments. The arguments of a term can be named as
in person(name→Bob age→33). Such a term is distinct from, say, person
(Bob 33) or person(spouse→Bob age→33). However, the order of the named
arguments within such a term is immaterial, so person(name→Bob age→33)
and person(age→33 name→Bob) are indistinguishable.

– Frame and classification terms. RIF-FLD includes certain terms borrowed
from F-logic [17]. A frame term has the form t[p1→v1 ... pn→vn], where
t, p1, ..., pn, v1, ..., vn are terms. The order of the attribute specifications
(the pi→vi’s) is immaterial, like in the case of terms with named arguments.
However, frames have very different semantics compared to the named ar-
gument terms. For instance, in bob[name→Bob age→33], bob denotes an ob-
ject and name→Bob, age→33 are statements about the properties of that
object. In contrast, person(name→Bob age→33) is not a statement about
the object person. Here person is the name of a relation type (think of a
database table) and name→Bob age→33 describes a particular relation of
that type. So, bob[spouse→mary] would still be a statement about the same
object bob (just about some other of its properties), while the statement
person(spouse→Mary) would have no relationship to the earlier statement
person(name→Bob age→33).

Classification terms include membership and subclass terms. Here t#s
represents a membership relationship between the member-object t and the
class-object s ; s##c is a term that represents the subclass relationship be-
tween the objects s and c.2 For instance, student##person.

– Other kinds of terms include equality and external terms. The latter repre-
sent references to outside sources of information and built-ins.

Since communication between the different rule systems through the medium of
RIF is supposed to be by translation, one might ask why so many different kinds
of terms? After all, it is well known that everything can be encoded using just the
first-order terms; in fact lists alone suffice. The answer is model-preservation or
round-tripping. One of the requirements in RIF is to support round-tripping, i.e.,
the ability to translate a rule set from, say, system S1 to RIF, then to S2, then
back to RIF, back to S1, and get not only a semantically equivalent set of rules,
but essentially the same set of rules from the modeling points of view. What
this is supposed to mean precisely has not been addressed, but the intuitive idea
is that if something was modeled as an object (a frame term) then it should
stay an object and not metamorphose itself into a relation (a positional or a
named argument term) after returning back to S1. Likewise, the subclass and
2 Those familiar with F-logic might be surprised to see t#s and s##c instead of t : s

and s :: c, but the colon has been irrevocably appropriated for other purposes in the
world of W3C standards.
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membership relationships are well-established modeling primitives and must be
recognized by the syntax. This also simplifies translation to and from RIF, and
makes it more natural.

The other question that comes to mind is why things that are normally called
formulas (e.g., frames and classification terms in F-logic [17]) are called terms in
RIF-FLD? The answer is that RIF-FLD is required to support a degree of reifi-
cation—the ability to represent formulas (which are statements about true facts
or beliefs) as terms (i.e., objects). In this way, RIF will allow dialects in which
statements can be made about other statements, and these meta-statements can
then be processed by rules.

3.2 Formulas: The Statement Level

The logic RIF framework defines several types of formulas, most of which are
adaptations from other known logics. However, in RIF-FLD they are all together
in one logic system.

– Atomic formulas: A term is also an atomic formula. Like in HiLog [5], this
blurs the distinction between objects and statements about objects and lays
a foundation of the infrastructure for meta-reasoning in RIF dialects that
might choose to support it.

– Conjunction and disjunction: These are the usual connectives in first-order
logic. The RIF syntax for that is And(φ1 ... φn) and Or(φ1 ... φn).

– Negation: RIF-FLD supplies both the classical negation as used in first-order
logic, denoted Neg, and a symbol for default negation, as used in logic pro-
gramming. The latter is intended for logical notions of default negation, such
as those based on the well-founded and the stable-model semantics [22,12]—
not for negation-as-failure, as used in Prolog [6]. In view of this, the current
choice of the symbol for default negation, Naf, is misleading and might be
replaced in the future. It is also possible that explicit negation (a weaker
form of classical negation that is sometimes used in logic programming [13])
might be added in the future.3

– Rule implication: A rule implication is a formula of the form phi :- ψ. This
is the notion of implication as used in logic programming; it is different from
the classical implication and is not equivalent to Or(φ Negψ).

– Quantification: A quantified formula is, as usual, a formula of the form
Forall?V1 ... ?Vn (φ) or Exists?V1 ... ?Vn (φ).

Apart from these, FLD also has Group-formulas and Document-formulas. A group
formula is simply a set of formulas of the above form, and groups can be nested.
This type of formulas exists just for convenience and for possible future enhance-
ments. One convenience is the ability to assign an identifier (say, a URL) and
meta-data to a group of formulas. This information can then be used in other
Web documents.
3 Since true classical negation and explicit negation are never used together, it is also

possible that Neg will be used for both.
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A Document-formula generalizes what we earlier informally called a “rule set.”
The Web consists of documents and this is also a structural unit chosen for
RIF. An important aspect of documents is that one can import the other. This
provides a degree of modularity similar to what exists in other Web standards,
such as XML Schema and OWL [11,9].

Documents also provide a convenient way to localize constant symbols to
particular documents and avoid clashes. This is particularly important for logic
programming languages where it is common to use intermediate predicates that
are not supposed to have meaning outside of a particular document.

3.3 Signatures: The Key to Extensibility

One of the most important ingredients that makes RIF-FLD into a framework
for defining other languages (dialects) is the concept of a signature. Signatures
determine which terms and formulas are well-formed. It is a generalization of the
notion of a sort in classical first-order logic [10]. Each symbol has an associated
signature. A signature defines, in a precise way, the syntactic contexts in which
the symbol is allowed to occur.

For instance, the signature associated with a symbol p might allow p to appear
in a term of the form f(p), but disallow it to occur in the term p(a,b). The
signature for f, on the other hand, might allow that symbol to appear in f(p)
and f(p,q), but disallow f(p,q,r) and f(f). Note that, say, f(f) is still a term
according to our earlier definition; it is just not a well-formed term. In this way,
it is possible to control which symbols are used for predicates and which for
functions, where variables are allowed to occur and where they are not allowed.

A signature is a statement of the form η{e1, ..., en, ...} where η is the name
of the signature and {e1, ..., en, ...} is a countable set of arrow expressions. The
number of such expressions in a particular signature can be zero or more, or it
can be infinite. The dialects decide for themselves. In RIF-BLD, signatures can
have at most one arrow expression. Dialects that support polymorphism may
allow more than one arrow expression in a signature. HiLog [5], for example,
puts a countably infinite number of arrow expressions in all signatures.

An arrow expression is a statement of the form (κ1 ... κn) ⇒ κ, where κ,
κ1, ..., κn are signature names. For instance, if term is a signature name then
( ) ⇒ term and (term) ⇒ term are signatures.

There is more to the notion of arrow expression that the above suggests. For
instance, the above are arrow expressions for just the positional terms. There
are also signatures for terms with named arguments, frames, and signatures can
be organized into class hierarchies. However, we will ignore these aspects and
focus on the essentials.

Signatures are used to control the context in which symbols occur using the
notion of well-formedness. Earlier we defined the notion of terms and formulas,
but those definitions do not say whether a term or a formula is well-formed. In
order to define this notion we must assume that every symbol in the alphabet of
the language is assigned a unique signature. How exactly this is done depends on
a dialect. For instance, BLD imposes very strict conditions on signatures, which
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makes it possible to assign signatures by the context in which the symbols are
used. Terms are well-formed if their structure conforms to the following rules.

– A constant or variable symbol with signature η is a well-formed term with
signature η.

– A term t(t1 ... tn) is well-formed and has a signature σ if and only if

• t is a well-formed term that has a signature that contains an arrow
expression of the form (σ1 ... σn)⇒σ; and

• Each ti is a well-formed term with signature σi.

This is not a full definition. It omits terms with named arguments, frames,
membership and subclass terms, and other aspects. The full definition can be
found in [3]. However, this partial definition should convey the idea. For instance,
if p has the signature mysig{(obj)⇒obj, (obj obj)⇒ obj, (obj obj obj)⇒ obj} and
a, b, c each has the signature obj{ } then p(p(a) p(a b c)) is a well-formed term
with signature obj{ }. On the other hand, p(a b c a) is a term, but not a well-
formed one, since the signature of p has no arrow expression that permits p to
have four arguments. The following is an even more telling example. Suppose
John and Mary are symbols with the signature obj{ }, the variable ?P has
the signature h2{(obj obj)⇒ obj}, and closure has the signature h3{(h2)⇒ p2},
where p2 is the name of the signature p2{(obj obj)⇒ obj}. Then ?P (John Mary)
and closure(?P )(John Mary) are well-formed terms with signature obj{ }.

Designers of each particular RIF dialect can decide which signatures can be
assigned to which symbols and in this way fully determine the syntax of the
dialect. Thus, RIF-FLD provides a general framework, which dialects can use to
specify their syntaxes. The present draft of RIF-BLD uses a different technique
for defining well-formed formulas, but a future draft will extend signatures to
cover well-formedness of formulas by assigning signatures to logical connectives.
In particular, RIF dialects would be entitled to introduce connectives, such as
modal operators, which do not explicitly exist in RIF-FLD.

4 The Semantic Framework

The RIF-FLD semantic framework defines the notions of semantic structures
and of models for RIF-FLD formulas. The semantics of a dialect is derived from
these notions by specializing the following parameters.

1. The effect of the syntax.
The syntax of a dialect may limit the kinds of terms that are allowed. For in-
stance, if a dialect’s syntax excludes frames or terms with named arguments
then the parts of the semantic structures whose purpose is to interpret those
types of terms become redundant.

2. Truth values.
The semantic framework allows formulas to have truth values from an ar-
bitrary partially ordered set of truth values, TV . A concrete dialect must
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select a concrete partially or totally ordered set of truth values. For in-
stance, most dialects are expected to stay within the regular two-valued
category, but, for example, logic programming dialects that are based on
the well-founded semantics would use a three-valued logic where the order
is true > undefined > false.

3. Datatypes.
A datatype is a set of symbols that have a fixed interpretation in any seman-
tic structure. RIF-FLD defines a set of core datatypes that each dialect is
required to include as part of its syntax and semantics. However, it does not
limit dialects to just the core types: they can introduce additional datatypes,
and each dialect must define the exact set of datatypes that it includes.

This is just a remark in passing about the role of datatypes in RIF, which
is beyond the scope of this survey. RIF datatypes are defined in a separate
document produced by the working group [20].

4. Logical entailment.
Logical entailment in RIF-FLD is defined with respect to an unspecified set
of intended models. A RIF dialect must define which models are considered
to be intended. For instance, one dialect might specify that all models are
intended (which leads to classical first-order entailment), another may regard
only the minimal models as intended, while a third might use only well-
founded or stable models [22,12].

We will not reproduce all the definitions here, but instead will highlight the most
interesting aspects. The definition of semantic structures is pretty standard,
especially to those who are familiar with F-logic and HiLog [17,5]. The main
differences are the mechanisms for dealing with multiple truth values (recall
that the set TV of truth values can include more than the standard true and
false) and formula reification. It amalgamates the techniques from [17,5] to allow
reification of frames.

Another interesting technique is used to define the semantics of document
formulas. Recall that documents can import other documents, and documents
can have local symbols. So, import is not just a mechanical union of all the
imported document: the local symbols need to be disambiguated. FLD provides
a model-theoretic semantics for that.

What makes FLD into a true framework for a range of different semantics
is the concept of entailment that is based on the notion of intended models.
To make the problem clear and highlight the difficulties, let us recall that apart
from the syntax, what makes the different logic languages really different is their
notion of entailment, i.e., the way they determine which formulas are regarded as
consequences of other formulas. For instance, a large subset of first-order logic
can be seen as a rule-based language. In such a language, the formula p←¬p
logically entails p, but not, say, q. If the same formula is considered to be part of
a logic programming language with ¬ understood as default negation then the
situation is different. First, there are several semantics for default negation, and
two of them are widely used. According to the stable model semantics [12], p←¬p
is an inconsistent formula, so every conclusion follows, including q. According to
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the other popular semantics, the well-founded semantics [22], p←¬p is consistent,
but nothing of interest follows from it: neither p nor q.

The question therefore is: how does one accommodate all these different se-
mantics in one framework so that the different RIF dialects could share the
same machinery and be compatible with each other? The solution adopted in
RIF-FLD was proposed by Shoham over two decades ago [21] when he observed
that many logics that seemingly use completely different notions of entailment
share essentially the same elements and can be explained away with the help of
one simple definition.

We already talked about the notion of semantic structures, which is also often
called interpretation in the literature. The purpose of semantic structures is
to define certain sets and functions, which together determine the truth value
(drawn from the set TV ) of every well-formed formula in the logic language. If
a semantic structure assigns the value true to a formula then it is said to be a
model of that formula.

If S is a set of semantic structures then we say that one formula, φ, S-entails
another formula, ψ, if and only if for every semantic structure in S, if it is an
intended model of φ then it is also a model of ψ.

It turns out that all the interesting logic-based rule languages, including first-
order logic and many others, define their notions of entailment in this or an
equivalent way. The only difference is the set S, which they consider in defining
entailment, and what they consider to be an “intended” model. For instance,
first-order logic has the simplest definition in this regard: S is just the set of all
semantic structures and every model is intended. Other logics are more picky.
For instance, S might contain only Herbrand semantic structures [19], and only
minimal (in a certain sense) models might be considered as intended. Yet other
languages have their own ideas about what is intended. We already mentioned
the well-founded semantics and the stable-model semantics, for which the in-
tended models are, as their names suggest, the well-founded models and the
stable models, respectively [22,12].

So, the bottom line is that RIF-FLD defines entailment with respect to the
sets of intended models, as above, but it does not specify what these intended
models are—it only defines semantic structures in general. It is left to the dialects
to choose the appropriate notion.

5 The Basic Logic Dialect

The Basic Logic Dialect, RIF-BLD, is currently the only fully specified dialect of
RIF. From the expressivity point of view, this dialect corresponds to the familiar
Horn subset of logic programming [19]. No negation of any kind is allowed in the
rule head and in the body. However, RIF-BLD has many syntactic extensions
with respect to stock Horn rules. These include:

– Conjunctions in rule heads and disjunctions in rule bodies.
– Frames, membership, and subclass formulas.
– Predicates and functions with named arguments.
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– Data types, group and document formulas.
– Equality both in rule heads and bodies.

There is also one notable restriction compared to FLD (and to many logic pro-
gramming languages, like Prolog): as in a standard textbook version of first-order
logic, every symbol is allowed to occur in at most one context in any document
(including the imported documents). Thus, if a symbol occurs in the context of,
say, binary predicate then it cannot occur as a ternary predicate. It cannot also
occur as a function symbol or individual constant.

Ostensibly, these extensions and restrictions are supposed to simplify round-
trippable translations to and from RIF-BLD (see Section 3.1 about round-
tripping), but ultimately they are results of compromises. While they do
simplify translation for some languages, they also make round-trippable trans-
lation harder for others. Nevertheless, round-tripping is helped greatly by an-
other interesting feature of RIF: meta-information. In RIF-FLD (and in RIF
dialects), meta-information can be attached to various syntactic objects at a
very fine-grained level. For instance, it can be attached to variables, constants,
etc. If enough meta-information is supplied with the RIF document obtained by
translation from the language of some other system, then translation from that
document back to the original system can be done unambiguously.

RIF-BLD can be easily defined as a specialization of the syntax and semantics
of RIF-FLD. The restriction about the uniqueness of context for every symbol
can be achieved by requiring that the signatures that are associated with the
symbols that are used in RIF-BLD terms can have at most one arrow expression.
Other syntactic restrictions are expressed by disallowing negation in rule impli-
cations and disjunction in rule heads. The corresponding semantic restrictions
largely follow from the restrictions on the syntax. The exact details can be found
in [1, Section 6].

6 Conclusions

This paper is an introduction to RIF Framework for Logic Dialects, an extensibility
framework that ensures that the current and future dialects of theRule Interchange
Format share commonsyntactic, semantic, andXMLmarkupapparatus.RIF-FLD
is still work in progress: some details may change and additions to the framework
should be expected.

Apart from RIF-BLD and the dialect under development for production rule
systems, other dialects are being planned. These include the logic programming di-
alects that supportwell-foundedand stable-model negation, a dialect that supports
higher-order extensions as in HiLog [5], and a dialect that extends RIF-BLD with
full F-logic [17] support (BLD accommodates only a very small part of F-logic).

The development of the RIF standard is an open process and feedback from ex-
perts and users is welcome. All the documents of the working group,
meeting agendas, and working lists are publicly available at the group’s Web
site http://www.w3.org/2005/rules/wiki/RIF Working Group. The working

http://www.w3.org/2005/rules/wiki/RIF_Working_Group
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version of the RIF framework document can be found at the following address:
http://www.w3.org/2005/rules/wiki/FLD.
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Semantics and Reasoning Algorithms for a
Faithful Integration of Description Logics and

Rules

Boris Motik

University of Oxford, UK

Abstract. Description logics (DLs) and rule-based systems are two
prominent families of knowledge representation formalisms. While DLs
are focused on describing and reasoning about conceptual knowledge,
rules are focused on answering queries about facts in the knowledge base.
So far, research on DLs has been largely isolated from the research on
rules. With the advent of the Semantic Web, however, it became appar-
ent that neither formalism alone can cover all the practical use cases.
The integration between DLs and rules, however, is technically challeng-
ing due to significant differences in the underlying semantic assumptions.
In particular, DLs are based on standard first-order semantics and open-
world assumption, whereas rules typically employ closed-world semantics
based on a variant of circumscription.

In my talk, I shall present an overview of the benefits of integrat-
ing DLs and rules in a coherent semantic framework, and shall discuss
the main challenges in achieving a tight integration. I shall present an
overview of the approaches currently discussed in literature. Finally, I
shall present in more detail the approach that is based on the nonmono-
tonic logic MKNF by Lifschitz. This approach is tight in the sense that
DLs and rules are given a common model-theoretic semantics. Further-
more, it is faithful in the sense that it is compatible with the original
semantics of both DLs and rules. Finally, it is expressive and can natu-
rally capture many of the existing proposals. I shall discuss the definitions
of the semantics of the hybrid formalism, present a decision procedure
for a particular decidable fragment, and discuss the complexity bounds
of reasoning.
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Abstract. Reasoning in systems integrating Description Logics (DL) ontologies
and Datalog rules is a very hard task, and previous studies have shown undecid-
ability of reasoning in systems integrating (even very simple) DL ontologies with
recursive Datalog. However, the results obtained so far constitute a very partial
picture of the computational properties of systems combining DL ontologies and
Datalog rules. The aim of this paper is to contribute to complete this picture, ex-
tending the computational analysis of reasoning in systems integrating ontologies
and Datalog rules. More precisely, we first provide a set of decidability and com-
plexity results for reasoning in systems combining ontologies specified in DLs
and rules specified in nonrecursive Datalog (and its extensions with inequality
and negation): such results identify, from the viewpoint of the expressive abil-
ities of the two formalisms, minimal combinations of Description Logics and
Datalog in which reasoning is undecidable. Then, we present new results on the
decidability and complexity of the so-called restricted (or safe) integration of DL
ontologies and Datalog rules. Our results show that: (1) the unrestricted interac-
tion between DLs and Datalog is computationally very hard even in the absence
of recursion in rules; (2) surprisingly, the various ”safeness” restrictions, which
have been defined to regain decidability of reasoning in the interaction between
DLs and recursive Datalog, appear as necessary restrictions even when rules are
not recursive.

1 Introduction

Background. The problem of adding rules to ontologies is currently a hot research
topic, due to the interest of Semantic Web applications towards the integration of rule-
based systems with ontologies. Most of the approaches in this field concern the study
of Description Logic (DL) knowledge bases [3] augmented with rules expressed in
Datalog and its nonmonotonic extensions [9].

DLs are currently the most used formalisms for building ontologies, and have been
proposed as standard languages for the specification of ontologies in the Semantic
Web [26]. DLs are a family of knowledge representation formalisms based on first-order
logic (FOL). In fact, almost all DLs coincide with decidable fragments of function-free
first-order logic with equality, and the language of a DL can be seen as a restricted
FOL language over unary and binary predicates and with a controlled form of quantifi-
cation (actually, DLs are equipped with a special, variable-free syntax). Notably, DLs
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have been designed to optimize the trade-off between expressive abilities and com-
plexity of reasoning, hence the computational properties of DLs have been extensively
studied [3].

From the knowledge representation viewpoint, Datalog is somehow “complemen-
tary” to DLs. Indeed, with respect to DLs, Datalog allows for using predicates of ar-
bitrary arity, the explicit use of variables, and the ability of expressing more powerful
queries. Moreover, its nonmonotonic features (in particular, the negation-as-failure op-
erator not ) allow for expressing default rules and forms of closed-world reasoning.

Problem Studied. Unfortunately, reasoning in systems integrating DLs and Datalog is
a very hard task, and well-known previous results have shown undecidability of reason-
ing in systems fully integrating (even very simple) DL ontologies with Datalog rules.
In fact, in general this combination does not preserve decidability, i.e., starting from a
DL knowledge base in which reasoning is decidable and a set of rules in which rea-
soning is decidable, reasoning in the knowledge base obtained by integrating these two
components may not be a decidable problem.

To avoid undecidability of reasoning, practically all decidable approaches to inte-
grating ontologies and rules impose (either at the syntactic or at the semantic level)
specific conditions which restrict the interaction between the rules and the ontology.
Such restrictions were mainly introduced to keep reasoning decidable in the presence
of recursion in Datalog rules.

However, the results obtained so far [20,11,18,23,27,28,10] actually constitute a very
partial picture of the computational properties of systems combining DL ontologies and
Datalog rules. In particular, the computational properties of systems combining DL on-
tologies and the class of nonrecursive Datalog rules are mostly unknown. The only
known studies related to this topic are the work on CARIN [20], which has shown de-
cidability of nonrecursive positive Datalog with the DL ALCNR, and the studies on
conjunctive query answering in DLs (see e.g. [7,24,25,14,15]), which are indirectly
related to integrating Datalog and DLs (since conjunctive queries can be seen as nonre-
cursive Datalog programs consisting of a single rule).

Contribution. The aim of this paper is to contribute to fill this gap, extending the com-
putational analysis of reasoning in systems integrating ontologies and Datalog rules.
More precisely, our contributions can be summarized as follows:

– We first provide a set of decidability and complexity results for reasoning in
systems combining ontologies specified in (different classes of) DLs and rules
specified in (different classes of) nonrecursive Datalog (and its extensions with
inequality or negation). Such results identify, from the viewpoint of the expres-
sive abilities of the two formalisms, minimal combinations of Description Logics
and (nonmonotonic) Datalog in which reasoning is undecidable. A summary of the
results obtained is reported in Figure 2 (Section 4).

– Then, we present new results on the decidability and complexity of the restricted
integration of DL ontologies and Datalog rules. In particular, we consider the so-
called “weakly DL-safe” interaction between rules and DL ontologies [28], which
is currently one of the most expressive decidable combinations of DLs and rules:
we extend the framework of [28] to deal with both negation of DL predicates and
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the presence of inequality, and provide new decidability and complexity results for
such a class of weakly DL-safe Datalog rules.

Besides constituting one of the first refined computational analyses taking into ac-
count the expressive power of both the DL language and the rule language (the only
similar study which we are aware of is [20]), the above results imply the following
consequences:

– the unrestricted interaction of DLs and Datalog is computationally very hard even in
the absence of recursion in rules. This contrasts with the general opinion (suggested
by the results in [20]) that the presence of recursion in rules is necessary in order to
rise the undecidability issue in their combination with DL ontologies;

– surprisingly, the “safeness” restrictions, which have been defined to regain decid-
ability in the interaction between DLs and recursive Datalog, appear as necessary
restrictions even when rules are not recursive.

Structure of the Paper. In Section 2, we briefly recall the basics of Description Logics
and Datalog. In Section 3, we formally define syntax and semantics of systems integrat-
ing DLs and Datalog. In Section 4, we consider the full integration of DLs and rules,
and present a set of undecidability and hardness results for reasoning in systems fully
combining DLs and Datalog rules. In Section 5, we focus on weakly DL-safe systems,
which are based on a restricted form of interaction between DLs and rules, extend them
to the presence of inequality atoms, and present a computational analysis of reasoning
in such systems. Finally, we conclude in Section 6. Due to space limits, in the present
version of the paper we provide proof sketches of the theorems.

2 Description Logics and Datalog

In this section we briefly introduce Description Logics and Datalog.

Description Logics. We now briefly recall the basics of Description Logics (DLs)
and introduce the following DLs: (i) three prominent tractable DLs, i.e., DL-LiteRDFS ,
DL-LiteR and EL; (ii) the “classical” and moderately expressive DLALC; (iii) two very
expressive DLs, i.e., SHIQ and DLR. We refer to [3] for a more detailed introduction
to DLs.

We start from an alphabet of concept names, an alphabet of role names and an al-
phabet of constant names. Concepts correspond to unary predicates in FOL, roles cor-
respond to binary predicates, and constants corresponds to FOL constants.

Starting from concept and role names, concept expressions and role expressions can
be constructed, based on a formal syntax. Different DLs are based on different lan-
guages concept and role expressions. Details on the concept and role languages for the
DLs considered in this paper are reported below.

A concept inclusion is an expression of the form C1 � C2, where C1 and C2 are
concept expressions. Similarly, a role inclusion is an expression of the form R1 � R2,
where R1 and R2 are role expressions.
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DL concept expressions role expressions TBox axioms

DL-LiteRDFS CL ::= A | ∃R R ::= P | P− CL � CR

CR ::= A R1 � R2

DL-LiteR CL ::= A | ∃R R ::= P | P− CL � CR

CR ::= A | ¬CR | ∃R R1 � R2

EL C ::= A | C1 � C2 | ∃P .C R ::= P C1 � C2

ALC C ::= A | C1 � C2 | ¬C | ∃P .C R ::= P C1 � C2

C1 � C2

SHIQ C ::= A | ¬C | C1 � C2 | (≥ n R C) R ::= P | P− R1 � R2

Trans(R)

Fig. 1. Abstract syntax of the DLs studied in the paper

An instance assertion is an expression of the form A(a) or P (a, b), where A is
a concept name, P is a role name, and a, b are constant names. We do not consider
complex concept and role expressions in instance assertions, since in this paper we are
interested in data complexity of reasoning (see Section 4).

A DL knowledge base (KB) is a pair 〈T ,A〉, where T , called the TBox, is a set of
concept and role inclusions, and A, called the ABox, is a set of instance assertions.

The DLs mainly considered in this paper are the following:

– DL-LiteRDFS , which corresponds to the “DL fragment” of RDFS [1], the schema
language for RDF (see also [16]);

– DL-LiteR [5], a tractable DL which is tailored for efficient reasoning and query
answering in the presence of very large ABoxes;

– EL [2], a prominent tractable DL;
– ALC, a very well-known DL which corresponds to multimodal logic Kn [3];
– SHIQ, a very expressive DL which constitutes the basis of the OWL family of

DLs adopted as standard languages for ontology specification in the Semantic
Web [26].

The syntax of the above DLs is summarized in Figure 1, in which the symbol A denotes
a concept name and the symbol P denotes a role name (in addition to concept and
role inclusions, SHIQ also allows for TBox axioms of the form Trans(R), which state
transitivity of the role R).

We will also mention the DL DLR [7], which informally extends SHIQ (without
transitive roles) through the use of n-ary relations, and for which decidability results on
query answering are known (we refer to [7] for details on the syntax of DLR, which is
quite different from the other DLs due to the usage of relations of arbitrary arity).

The above mentioned DLs verify the following ordering with respect to their relative
expressive power (see [3] for details): DL-LiteRDFS ⊂ DL-LiteR ⊂ SHIQ ⊂ DLR;
and EL ⊂ ALC ⊂ SHIQ.

We give the semantics of DLs through the well-known translation ρfol of DL knowl-
edge bases into FOL theories with counting quantifiers (see [3]).
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ρfol (〈T ,A〉) = ρfol (T ) ∪ ρfol (A)
ρfol (C1 � C2) = ∀x.ρfol (C1, x) → ρfol (C2, x)
ρfol (R1 � R2) = ∀x, y.ρfol (R1, x, y) → ρfol (R2, x, y)
ρfol (Trans(R)) = ∀x, y, z.ρfol (R, x, y) ∧ ρfol (R, y, z) → ρfol (R, x, z)

ρfol (A, x) = A(x)
ρfol (¬C, x) = ¬ρfol (C, x)

ρfol (C1 � C2, x) = ρfol (C1, x) ∧ ρfol (C2, x)
ρfol (∃R, x) = ∃y.ρfol (R, x, y)

ρfol (∃R.C, x) = ∃y.ρfol (R, x, y) ∧ ρfol (C, y)
ρfol ((≥ n R C), x) = ∃≥ny.ρfol (R, x, y) ∧ ρfol (C, y)

ρfol (P, x, y) = P (x, y)
ρfol (P−, x, y) = P (y, x)

An interpretation ofK is a classical FOL interpretation for ρfol (K), where constants and
predicates are interpreted over a non-empty interpretation domain which may be finite
or countably infinite. Actually, in this paper we adopt the standard names assumption,
i.e.: (i) we assume a countably infinite set of constant symbols Γ ; (ii) the interpretation
domain Δ is countably infinite and is the same for every interpretation; (iii) the interpre-
tation of constants in Γ is the same in every interpretation and is given by a one-to-one
correspondence between Γ and Δ. Such an assumption is necessary for the nonmono-
tonic semantics defined in Section 3: however, we point out that all the results presented
in this paper under the first-order semantics (i.e., the results for FOL-satisfiability) also
hold in the absence of the standard names assumption.

A model of a DL KB K = 〈T ,A〉 is a FOL model of ρfol (K). We say that K is
satisfiable if K has a model.

Disjunctive Datalog. In this section be briefy recall disjunctive Datalog [9], denoted by
Datalog¬∨, which is the well-known nonmonotonic extension of Datalog with negation
as failure and disjunction.

We start from a predicate alphabet, a constant alphabet, and a variable alphabet. An
atom is an expression of the form p(X), where p is a predicate of arity n and X is
a n-tuple of variables and constants. If no variable symbol occurs in X , then p(X) is
called a ground atom (or fact). A Datalog¬∨ rule R is an expression of the form

α1 ∨ . . . ∨ αn ← β1, . . . , βm, not γ1, . . . , not γk, t1 �= t′1, . . . , th �= t′h (1)

where each αi, βi, γi is an atom, each ti, t′i, is either a variable or a constant, and
every variable occurring in R must appear in at least one of the atoms β1, . . . , βm. This
last condition is known as the Datalog safeness condition for variables. The variables
occurring in the atoms α1, . . . , αn are called the head variables of R. If n = 0, we call
R a constraint.

A Datalog¬∨ program is a set of Datalog¬∨ rules. If, for all R ∈ P , k = 0 and
h = 0, P is called a positive disjunctive Datalog program. If, for all R ∈ P , n ≤ 1,
k = 0 and h = 0, P is called a positive Datalog program. If there are no occurrences
of variable symbols in a rule R, then R is called a ground rule. A ground program is a
program containing only ground rules.
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The dependency graph of a program P is a graph whose nodes are the predicates
of P and in which there is an edge from p1 to p2 if there is a rule r in P such that p2

occurs in the body of r and p1 occurs in the head of r. A program P is recursive if its
dependency graph contains a cycle. Otherwise, P is called nonrecursive.

The semantics of disjunctive Datalog is given in terms of stable models of a program
P . Due to space limitations, we refer to [9] for details on such semantics: however, in
the following we will provide a detailed definition of such semantics in the more general
framework of r-hybrid KBs integrating DLs and disjunctive Datalog.

3 R-Hybrid KBs

In this section we present the framework of r-hybrid KBs which integrate DLs with dis-
junctive Datalog. More precisely, we slightly extend the framework of r-hybrid knowl-
edge bases presented in [27] to the presence of both inequality atoms and negation of
DL predicates in rules.

Syntax. From the syntactic viewpoint, integrating a DL with (disjunctive) Datalog
simply means the possibility of writing a hybrid knowledge base H containing a DL
KB K = 〈T ,A〉 and a disjunctive Datalog program P (i.e., H = (K,P)) where K
and P share both the alphabet of predicates and the alphabet of constants. However, for
technical reasons related to the subsequent definition of the nonmonotonic semantics,
we distinguish the predicates occurring only in P , which we call Datalog predicates,
from the ones occurring both in K and in P , or even only in K, which we call DL
predicates. In the following, we denote by ΣC ∪ ΣR the set of DL predicates, and
denote by ΣD the set of Datalog predicates. Formally, a rule R in P is a rule of the
form (1) over both DL-predicates and Datalog predicates. An atom whose predicate is a
DL predicate is called a DL atom, while an atom whose predicate is a Datalog predicate
is called a Datalog atom.

First-Order Semantics. According to a semantic approach based on classical logic,
the hybrid knowledge base can be considered as a first-order theory, by interpreting
Datalog rules as first-order implications. More specifically, let R be the Datalog¬∨ rule
of the form (1). Then, we denote by FO(R) the first-order sentence

∀x1, . . . , xp. β1∧ . . .∧βm∧¬γ1∧ . . .∧¬γk ∧ t1 �= t′1∧ . . .∧ th �= t′h → α1∨ . . .∨αn

where x1, . . . , xp are all the variable symbols appearing in R. Given a Datalog¬∨ pro-
gram P , we denote by FO(P) the set of first-order sentences {FO(R) | R ∈ P}.

Finally, the semantics of a knowledge base H = (K,P) composed of a DL-KB K
and a Datalog programP is given by the first-order theory FO(H) corresponding to the
union of FO(P) and the first-order translation FO(K) of K: in particular, we say that
H is FOL-satisfiable if FO(H) has a model (which is called FOL-model of H), and we
say that a ground atom g is FOL-entailed by H, denoted by H |=FOL g iff, for each
FOL-model I of H, I satisfies g.

Nonmonotonic Semantics. We now recall the nonmonotonic semantics for r-hybrid
KBs presented in [27], which is a “conservative extension” of both the open-world
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semantics (classical FOL models) of DLs and the closed-world semantics (stable mod-
els) of disjunctive Datalog.

Given an interpretation I and a predicate alphabet Σ, we denote by IΣ the projec-
tion of I to Σ, i.e., IΣ is obtained from I by restricting it to the interpretation of the
predicates in Σ.

The ground instantiation of P , denoted by gr(P), is the program obtained from P
by replacing every rule R in P with the set of rules obtained by applying all possible
substitutions of variables in R with constants in Γ .

Given an interpretation I of an alphabet of predicates Σ′ ⊂ Σ, and a ground pro-
gram Pg over the predicates in Σ, the projection of Pg with respect to I, denoted by
Π(Pg, I), is the ground program obtained from Pg as follows. For each rule R ∈ Pg:

– delete R if there exists an atom r(t) in the head of R such that r ∈ Σ′ and tI ∈ rI ;
– delete each atom r(t) in the head of R such that r ∈ Σ′ and tI �∈ rI ;
– delete R if: either (i) there exists an atom r(t) in the body of R such that r ∈ Σ′

and tI �∈ rI ; or (ii) there exists a negated atom not r(t) in the body of R such that
r ∈ Σ′ and tI ∈ rI ;

– delete each atom r(t) in the body of R such that r ∈ Σ′ and tI ∈ rI ;
– delete each negated atom not r(t) in the body of R such that r ∈ Σ′ and tI �∈ rI .

Informally, the projection of Pg with respect to I corresponds to evaluating Pg with
respect to I, thus eliminating from Pg every atom whose predicate is interpreted in I.
Thus, when Σ′ = ΣC ∪ ΣR, all occurrences of DL predicates are eliminated in the
projection of Pg with respect to I, according to the evaluation in I of the atoms with
DL predicates occurring in Pg.

Given two interpretations I1, I2 of the set of predicates Σ, we write I1 ⊂Σ I2 if (i)
for each p ∈ Σ and for each tuple t of constants from Γ , if tI1 ∈ pI1 then tI2 ∈ pI2 ,
and (ii) there exist p ∈ Σ and tuple t of constants from Γ such that tI1 �∈ pI1 and
tI2 ∈ pI2 .

Given a positive disjunctive ground Datalog¬∨ program P over an alphabet of pred-
icates Σ and an interpretation I, we say that I is a minimal model of P if: (i) I satisfies
the first-order translation FO(P) of P ; (ii) there is no interpretation I′ such that I ′

satisfies FO(P) and I ′ ⊂Σ I.
Given a ground Datalog¬∨ program P and an interpretation I for P , the GL-reduct

[12] of P with respect to I, denoted by GL(P , I), is the positive disjunctive ground
program obtained from P as follows. For each rule R ∈ P :

1. delete R if either there exists a negated atom not r(t) in the body of R such that
tI ∈ rI , or there exists an inequality c �= c in the body of R;

2. delete each negated atom not r(t) in the body of R such that tI �∈ rI and delete
each inequality c �= d where c and d are distinct constants.

Given a ground Datalog¬∨ program P and an interpretation I, I is a stable model for
P iff I is a minimal model of GL(P , I).

Definition 1. An interpretation I of ΣC ∪ ΣR ∪ ΣD is a NM-model for H = (K,P)
if the following conditions hold: (i) IΣC∪ΣR satisfies K; (ii) IΣD is a stable model for
Π(gr(P), IΣC∪ΣR). H is called NM-satisfiable if H has at least one NM-model.
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We say that a ground atom g is NM-entailed by H, denoted by H |=NM g iff, for each
NM-model I of H, I satisfies g.

According to the above semantics, DL predicates are interpreted under the open-
world assumption, while Datalog predicates are interpreted under the closed-world
assumption of disjunctive Datalog and Answer Set Programming. As a consequence,
negation of DL predicates in rule bodies is interpeted as classical (monotonic) negation,
while negation of Datalog predicates is interpreted as nonmonotonic negation (negation
as failure under stable model semantics).

Reasoning: General Properties. Notice that, under the above NM semantics (as well
as under the FOL semantics), entailment can be reduced to unsatisfiability, since it is
possible to express constraints (i.e., rules with empty head) in the Datalog program.
More precisely, the following property holds.

Proposition 1. Let H = (K,P) be a r-hybrid KB and let g be a ground atom. Then,
H |=NM g (respectively, H |=FOL g) iff the r-hybrid KB (K,P ∪ {← g}) is NM-
unsatisfiable (respectively, FOL-unsatisfiable).

Then, we show that, when there are no negated Datalog atoms in the bodies of rules,
the above two semantics are equivalent with respect to the satisfiability problem. The
following property extends an analogous one shown in [28].

Proposition 2. Let H = (K,P) be a r-hybrid KB, where P is such that there are no
occurrences of negated Datalog atoms in P . Then, H is FOL-satisfiable iff H is NM-
satisfiable.

4 Results for Nonrecursive Rules

In this section we present a set of new results on the decidability and complexity of
reasoning in r-hybrid KBs, under both FOL-semantics and NM-semantics.

We have conducted our computational analysis on the following subclasses of non-
recursive and nondisjunctive Datalog programs:

– NR-Datalog = nonrecursive positive Datalog, i.e., nonrecursive rules of the form (1)
where n ≤ 1, k = 0, h = 0;

– NR-Datalog�= = nonrecursive positive Datalog with inequality, i.e., nonrecursive
rules of the form (1) where n ≤ 1, k = 0;

– NR-Datalog�=s = single-rule nonrecursive positive Datalog with inequality (i.e.,
NR-Datalog�= programs consisting of a single rule);

– NR-Datalog¬ = nonrecursive Datalog with negation, i.e., nonrecursive rules of the
form (1) where n ≤ 1, h = 0;

– NR-Datalog¬s = single-rule nonrecursive Datalog with negation (i.e., NR-Datalog¬

programs consisting of a single rule);

– NR-Datalog¬A = nonrecursive Datalog with “atomic” negation, i.e., NR-Datalog¬

programs such that predicates occurring in negated atoms cannot occur in rule
heads.
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Moreover, throughout this section we impose the further restriction that programs are
such that DL predicates do not occur in the head of rules. We call head-DL-free the pro-
grams satisfying the above restriction. Such a restriction strengthens the lower bounds
and undecidability results which are presented below.

Furthermore, we remark that we focus on data complexity of satisfiability, which in
the framework of r-hybrid KBs (H = (K,P) with K = 〈T ,A〉) corresponds to the
analysis of the computational complexity of the problem when we only consider the
size of the ABox A and of the EDB of P , i.e., the set of facts contained in P .

Finally, we point out that most of the proofs of the following theorems are obtained
by exploiting and extending the proofs of recent results on query answering in DLs, in
particular the results in [6,29].

We start by analyzing r-hybrid KBs with NR-Datalog programs.

Theorem 1. Let H = (K,P) be a r-hybrid KB such that P is a head-DL-free
NR-Datalog program. Then, under both FOL semantics and NM semantics:

– when K is either a DL-LiteRDFS KB or a DL-LiteR KB, deciding satisfiability of
H is in LOGSPACE with respect to data complexity;

– when K is an EL KB, deciding satisfiability of H is PTIME-complete with respect
to data complexity.

Proof (sketch). First, observe that by Proposition 2 FOL-satisfiability and NM-
satisfiability coincide for the class of r-hybrid KBs considered. Then, for DL-LiteRDFS

and DL-LiteR the thesis follows from the complexity results on answering unions of
conjunctive queries in DL-LiteR [6] and from the fact that it is possible to reduce unsat-
isfiability of (K,P), whereP is nonrecursive, to the evaluation of unions of conjunctive
queries over K. In the case of EL, the thesis follows from a similar argument and from
the computational properties of answering unions of conjunctive queries in EL [29,
Theorem 4].

Then, we provide the following computational characterization of satisfiability in the
presence of NR-Datalog�=s programs.

Theorem 2. Let H = (K,P) be a r-hybrid KB such that P is a head-DL-free
NR-Datalog�=s program. Then, under both FOL semantics and NM semantics:

– when K is a DL-LiteRDFS KB, deciding satisfiability of H is in LOGSPACE with
respect to data complexity;

– when K is an EL KB, deciding satisfiability of H is PTIME-complete with respect
to data complexity;

– when K is a DL-LiteR KB, deciding satisfiability of H is NP-hard with respect to
data complexity;

– when K is an ALC KB, satisfiability of H is undecidable.

Proof (sketch). First, observe that by Proposition 2 FOL-satisfiability and NM-
satisfiability coincide for the class of r-hybrid KBs considered. Then, for DL-LiteRDFS

and EL the thesis is a consequence of a property analogous to [29, Theorem 7], and
to the data complexity of answering conjunctive queries in those DLs [6,29], while for
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DL-LiteR the proof is by reduction from satisfiability of a 3-CNF propositional for-
mula, in a way analogous to [29, Theorem 6]. Finally, in the case of ALC the proof
is by reduction from the unbounded tiling problem [4], in a way analogous to [29,
Theorem 5].

We then analyze reasoning in r-hybrid KBs with NR-Datalog�= programs.

Theorem 3. Let H = (K,P) be a r-hybrid KB such that P is a head-DL-free
NR-Datalog�= program. Then, under both FOL semantics and NM semantics:

– when K is a DL-LiteRDFS KB, deciding satisfiability of H is in LOGSPACE with
respect to data complexity;

– when K is either a DL-LiteR KB or an EL KB, satisfiability of H is undecidable.

Proof (sketch). Again, we start by observing that by Proposition 2 FOL-satisfiability
and NM-satisfiability coincide for the class of r-hybrid KBs considered. Then, for
DL-LiteRDFS the proof is obtained by extending the result in [29, Theorem 11], while
in the case of both DL-LiteR and EL the proof is obtained by reducing the word prob-
lem for semigroups to satisfiability in such DLs, in a way analogous to Theorem 8 and
Theorem 9 of [29].

Next, we are able to prove the following results for r-hybrid KBs with NR-Datalog¬s
programs.

Theorem 4. Let H = (K,P) be a r-hybrid KB such that P is a head-DL-free
NR-Datalog¬s program. Then, under both FOL semantics and NM semantics:

– when K is a DL-LiteRDFS KB, deciding satisfiability of H is in LOGSPACE with
respect to data complexity;

– when K is an EL KB, deciding satisfiability of H is PTIME-complete with respect
to data complexity;

– when K is a DL-LiteR KB, deciding satisfiability of H is NP-hard with respect to
data complexity;

– when K is an ALC KB, satisfiability of H is undecidable.

Proof (sketch). First, we consider the case of FOL-satisfiability. For DL-LiteRDFS and
EL the proof is obtained from [29, Theorem 14] and from the data complexity of an-
swering conjunctive queries in those DLs [6,29], while for DL-LiteR the proof is by
reduction from satisfiability of a 3-CNF propositional formula, in a way analogous to
[29, Theorem 13]. Finally, in the case of ALC the proof is by reduction from the un-
bounded tiling problem [4], in a way analogous to [29, Theorem 12]. The above results
can be easily extended to the case of NM-satisfiability: in particular, the above reduc-
tions used for DL-LiteR and ALC do not employ negated Datalog atoms in rules, hence
by Proposition 2 such reductions also prove the thesis under the NM semantics.

Finally, we consider NR-Datalog¬A programs, and provide the following results.

Theorem 5. Let H = (K,P) be a r-hybrid KB such that P is a head-DL-free
NR-Datalog¬A program. Then, under both FOL semantics and NM semantics:
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NR-Datalog NR-Datalog�=s NR-Datalog�= NR-Datalog¬s NR-Datalog¬A NR-Datalog¬

DL-LiteRDFS ≤LOGSPACE ≤LOGSPACE ≤LOGSPACE ≤LOGSPACE = NP UNDEC.
DL-LiteR ≤LOGSPACE ≥NP UNDEC. ≥NP UNDEC. UNDEC.

EL = PTIME = PTIME UNDEC. = PTIME UNDEC. UNDEC.
from ALC = NP UNDEC. UNDEC. UNDEC. UNDEC. UNDEC.
to SHIQ
DLR DECID., UNDEC. UNDEC. UNDEC. UNDEC. UNDEC.

≥ NP

Fig. 2. Decidability/data complexity of both FOL-satisfiability and NM-satisfiability in r-hybrid
KBs (head-DL-free programs)

– when K is a DL-LiteRDFS KB, deciding satisfiability of H is NP-hard with respect
to data complexity;

– when K is either a DL-LiteR KB or an EL KB, satisfiability of H is undecidable.

Proof (sketch). First, we consider the case of FOL-satisfiability. For DL-LiteRDFS the
proof is obtained from [29, Theorem 16], while for DL-LiteR and EL the proof is by
reduction from the unbounded tiling problem, in a way analogous to [29, Theorem 15].
Finally, the above reductions do not employ negated Datalog atoms in rules, hence by
Proposition 2 such reductions also prove the thesis under the NM semantics.

The table displayed in Figure 2 summarizes the results presented in this section. In the
table, each column corresponds to a different rule language, while each row corresponds
to a different DL. Each cell reports the data complexity of satisfiability (both under FOL
semantics and under NM semantics) in the corresponding combination of DL and rule
language. If the problem is decidable, then hardness (≥) and/or membership (≤) and/or
completeness (=) results are reported.

More precisely, observe that:

– the results for NR-Datalog programs follow from Theorem 1 and from the results
in [6,13];

– the well-known translation of arbitrary first-order queries in NR-Datalog¬ allows
for reducing satisfiability of first-order sentences to satisfiability of r-hybrid KBs
with NR-Datalog¬ programs for any choice of the DL language, which immedi-
ately implies undecidability of reasoning in this class of r-hybrid KBs.

Finally, due to the correspondence between unsatisfiability and entailment in r-hybrid
KBs illustrated in Section 3 (Proposition 1), it is also immediate to turn these results
(obtained for satisfiability of programs with constraints) into results for skeptical entail-
ment (also for classes of programs without constraints).

5 Results for Weakly DL-Safe Rules

In this section we consider the weakly DL-safe integration of DLs and disjunctive Dat-
alog. More precisely, we extend the weak DL-safeness restriction defined in the frame-
work of DL+log [28] to the r-hybrid KBs defined in Section 3, thus extending the
setting presented in [28] by considering the presence of inequality and of negation of
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DL predicates. Then, we extend the computational results presented in [28] to such a
class of r-hybrid KBs.

Weak DL-safeness is formally defined as follows.

Definition 2. Given a r-hybrid KB H = (K,P), we say that P is weaky DL-safe if
every rule R in P of the form (1) is such that, for every variable x appearing in R,
either x occurs in a positive Datalog atom in the body of R, or x only occurs in positive
DL atoms in the body of R.

In other words, weak DL-safeness imposes (besides the usual Datalog safeness) the
following condition: every variable that is either a head variable or a variable occurring
in a negated atom or in an inequality occurs in a positive Datalog atom in the body of
the rule. Such a restriction only constrains the interaction between the DL KB and the
Datalog program, in the sense that neither it imposes any additional restriction on the
rules if the DL KB is empty, nor it imposes any restriction on the DL KB.

We now show decidability of reasoning in r-hybrid KBs under the above restriction.
To this aim, we start from the algorithm for NM-satisfiability in DL+log presented
in [28] and extend it to the broader class of rules considered here. Due to space limits,
we do not report details on the algorithm, which is actually very similar to the one
reported in [28]. Such an algorithm checks satisfiability of a r-hybrid KB by solving a
finite number of Boolean CQ/UCQ containment problems in DLs. Boolean CQ/UCQ
containment is the problem of checking the containment between two queries q1 and q2

with respect to a DL KBK, where q1 is a Boolean conjunctive query and q2 is a Boolean
union of conjunctive queries (this problem is also known as existential entailment [20]).

Based on such an algorithm, we are able to extend the general decidability result
of [28] to the present class of r-hybrid KBs. Formally:

Theorem 6. Let DL be a description logic and let H = (K,P) be a r-hybrid KB,
where K is a DL KB and P is a weakly DL-safe Datalog¬∨ program. NM-satisfiability
(as well as FOL-satisfiability) of H is decidable iff Boolean CQ/UCQ containment is
decidable in DL.

In particular, the above theorem and the results on CQ/UCQ containment in DLs pre-
sented in [20,7,15,25] imply the following property: for all the DLs studied in this
paper, NM-satisfiability (as well as FOL-satisfiability) of weakly DL-safe r-hybrid KBs
is decidable.

Moreover, based on the above cited results and on our technique for NM-
satisfiability, we are able to provide a computational characterization of r-hybrid KBs
with weakly DL-safe rules for all the DLs and all the classes of nonrecursive programs
above considered. More specifically, the table in Figure 3 summarizes the results on
data complexity of NM-satisfiability (as well as for FOL-satisfiability) which hold for
the class of r-hybrid KBs with weakly DL-safe rules. The complexity is the same for all
the classes of nonrecursive Datalog rules considered in this paper.

A comparison of the table in Figure 3 with the previous one in Figure 2 allows us to
evaluate the impact of the weak-DL-safeness assumption on the complexity of reason-
ing in r-hybrid KBs. Indeed, restricting the interaction between DLs and rules through
the weak DL-safeness condition allows for using even very expressive DLs as the ontol-
ogy language of the r-hybrid KB, without losing decidability of reasoning. In particular,
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NR-Datalog, NR-Datalog�=, NR-Datalog¬

DL-LiteRDFS ≤LOGSPACE
DL-LiteR ≤LOGSPACE

EL = PTIME
from ALC to SHIQ = NP

DLR DECIDABLE, ≥ NP

Fig. 3. Data complexity of both NM-satisfiability and FOL-satisfiability in r-hybrid KBs with
nonrecursive weakly DL-safe programs

Theorem 6 implies that, under the weak DL-safeness condition, it is possible to combine
every DL considered in this paper with full Datalog¬∨ programs (i.e., with recursion,
inequality, negation, and disjunction in the head), and obtain a decidable formalism.
Moreover, Figure 3 shows that, for all the DLs and the classes of nonrecursive Datalog
rules considered in this paper, when we impose weak DL-safeness the data complexity
of reasoning is no worse than the data complexity of reasoning in the absence of rules:
i.e., adding weakly DL-safe nonrecursive rules does not actually affect data complexity
of reasoning in all the DLs considered.

On the other hand, the unrestricted integration of DLs and rules imposes severe re-
strictions on the expressive power of both the DL component and the rule component:
indeed, as explicitly shown by Figure 2, decidability in the presence of inequality or
negation in rules can be regained at the price of restricting both the ontology language
to DLs of very little expressiveness and the rule language to extremely limited frag-
ments of Datalog.

6 Conclusions

In this paper we have tried to extend the computational analysis of reasoning in sys-
tems integrating Description Logics ontologies and Datalog rules. To this aim, we have
considered a group of Description Logics which, from the viewpoint of the expressive
power, lie within the range from RDFS to OWL, and thus constitute very important
classes of ontology formalisms with respect to Semantic Web applications. Moreover,
we have considered disjunctive Datalog and several subclasses of it, with special em-
phasis on nonrecursive and nondisjunctive fragments.

In our opinion, the results presented in Section 4 clearly show that the unrestricted
interaction of DLs and Datalog is computationally very hard even in the absence of
recursion in rules. This contrasts with the general opinion that recursion is a necessary
feature for rules to rise the undecidability issue in their integration with DL ontologies.
So, surprisingly, the various “safeness” restrictions which have been defined to regain
decidability in the interaction between DLs and recursive Datalog, appear as necessary
restrictions even when rules are not recursive. In this respect, the results in Section 5
further enlarge the class of Description Logics and rules with decidable, restricted in-
tegration, and provide a refined computational analysis for the integration of weakly
DL-safe rules with the Description Logics considered in this paper.
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The present study can be extended in several directions. In our opinion, the most
interesting ones are the following:

– the analysis presented in Section 4 should be extended to other very promising
tractable DLs recently defined, in particular HornSHIQ [19], EL++ [2] and
DL-LiteF [5];

– the analysis presented in Section 4 should be further extended to classes of disjunc-
tive programs;

– it would be very interesting, for the decidable cases of Figure 2, to provide upper
bounds for non-head-DL-free programs;

– with respect to the results presented in Section 5, an important open issue is whether
it is possible to identify other forms of decidable interaction between DL-KBs
and rules, which overcome the expressive limitations of the weak DL-safeness
(see [28]). An approach in this direction is presented in [22], which is based on
the use of a modal autoepistemic logic, as well as the approach in [8]. Moreover,
other interesting approaches have been presented. Some of the most recent ones
study the combination of DLs and rules under a different semantic approach [21]
or under different restrictions on variables in rules [17].
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Abstract. Simulation unification is a special kind of unification adapted
to retrieving semi-structured data on the Web. This article introduces
simulation subsumption, or containment, that is, query subsumption un-
der simulation unification. Simulation subsumption is crucial in general
for query optimization, in particular for optimizing pattern-based search
engines, and for the termination of recursive rule-based web languages
such as the XML and RDF query language Xcerpt. This paper first
motivates and formalizes simulation subsumption. Then, it establishes
decidability of simulation subsumption for advanced query patterns fea-
turing descendant constructs, regular expressions, negative subterms (or
subterm exclusions), and multiple variable occurrences. Finally, we show
that subsumption between two query terms can be decided in O(n!n)
where n is the sum of the sizes of both query terms.

1 Introduction

Xcerpt query terms [1] are an answer to accessing Web data in a rule-based
query language. Like most approaches to Web data (or semi-structured data,
in general), they are distinguished from relational query languages such as SQL
by a set of query constructs specifically attuned to the less rigid, often diverse,
or even entirely schema-less nature of Web data. Xcerpt terms are similar to
normalized forward XPath (see [2]) but extended with variables, deep-equal,
a notion of injective match, regular expressions, and full negation. Thus, they
achieve much of the expressiveness of XQuery without sacrificing the simplicity
and pattern-structure of XPath.

When used in the context of Xcerpt, query terms serve a similar role to terms
of first-order logic in logic languages. Therefore, the notion of unification has been
adapted for Web data in [3], there called “simulation unification”. This form of
unification is capable of handling all the extensions of query terms over first-
order terms that are needed to support Web data: selecting terms at arbitrary
depth (desc), distinguishing partial from total terms, regular expressions instead
of plain labels, negated subterms (without), etc.

To illustrate the notion of query term, consider the following query term.
It selects the content of title elements at arbitrary depth (desc) under a book
element in a bibliography database. In addition, we ask for the author of such
a book, but only if both first-name and last-name of that author are recorded in
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that order. Finally, if there is also information about the publisher of that book,
we retrieve that information as well:

bib{{
2 book{{

desc title{ var Title },
4 var Author as author[[ first-name{{ }}, last-name{{ }} ]],

optional var publisher as publisher{{ }}
6 }}
}}

Subsumption or containment of two queries (or terms) is an established technique
for optimizing query evaluation: a query q1 is said to be subsumed by or contained
in a query q2 if every possible answer to q1 against every possible data is also
an answer to q2. Thus, given all answers to q2, we can evaluate q1 only against
those answers rather than against the whole database.

For first-order terms, subsumption is efficient and employed for guarantee-
ing termination in tabling (or memoization) approaches to backward chaining
of logic [4,5]. However, when we move from first-order terms to Web queries
subsumption (or containment) becomes quickly less efficient or even intractable.
Xcerpt query terms have, as pointed out above, some similarity with XPath
queries. Containment for various fragments of XPath is surveyed in [6], both in
absence and in presence of a DTD. Here, we focus on the first setting, where
no additional information about the schema of the data is available. However,
Xcerpt query terms are a strict super-set of (navigational) XPath as investigated
in [6]. In particular, the Xcerpt query terms may contain (multiple occurrences
of the same) variables. This brings them closer to conjunctive queries (with
negation and deep-equal), as considered in [7] on general relations, and in [8]
for tree data. Basic Xcerpt query terms can be reduced to (unions of) conjunc-
tive queries with negation. However, the injectivity of Xcerpt query terms (no
two siblings may match with the same data node) and the presence of deep-
equal (two nodes are deep-equal iff they have the same structure) have no direct
counterpart in conjunctive query containment. Though [9] shows how inequali-
ties in general affect conjunctive query containment, the effect of injectivity (or
all-distinct constraints) on query containment has not been studied previously.
The same applies to deep-equal, though the results in [10] indicate that in ab-
sence of composition deep-equal has no effect on evaluation and thus likely on
containment complexity.

For Xcerpt query terms, subsumption is, naturally, of interest for the design
of a terminating, efficient Xcerpt engine. Beyond that, however, it is particularly
relevant in a Web setting. Whenever we know that one query subsumes another,
we do not need to access whatever data the two queries access twice, but rather
can evaluate both queries with a single access to the basic data by evaluating
the second query on the answers of the first one. This can be a key optimization
also in the context of search engines, where answers to frequent queries can
be memorized so as to avoid their repeated computation. Even though today’s
search engines are rather blind of the tree or graph structure of HTML, XML and
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RDF data, there is no doubt that some more or less limited form of structured
queries will become more and more frequent in the future (see Google scholar’s
“search by author, date, etc.”). Query subsumption, or containment, is key to a
selection of queries, the answers to which are to be stored so as to allow as many
queries as possible to be evaluated against that small set of data rather than
against the entire search engine data. Thus, the notion of simulation subsumption
proposed in this paper can be seen as a building block of future, structure-aware
search engines.

Therefore, we study in this paper subsumption of Xcerpt query terms. To that
end, the main contributions are:

– we introduce and formalize a notion of subsumption for Xcerpt query terms,
called simulation subsumption, in Section 3. To the best of our knowledge,
this is the first notion of subsumption for queries with injectivity of sibling
nodes and deep-equal.

– we show, also in Section 3, that simulation on query terms is equivalent
to simulation subsumption. This also shows that simulation unification as
introduced in [3] indeed captures the intuition that a query term that simu-
lates into another query term subsumes that term. Furthermore, all results
for simulation subsumption apply equally to simulation unification.

– we define, in Section 4, a rewriting system that allows us to reduce the test
for subsumption of q in q′ to finding a sequence of syntactic transformations
that can be applied to q to transform it into q′.

– we show, in Section 5, that this rewriting system gives rise to an algorithm for
testing subsumption that is sound and complete and can determine whether
q subsumes q′ in time O(n!n). In particular, this shows that simulation sub-
sumption is decidable.

2 Xcerpt Basics: Query Terms and Simulation

This section lays the foundations for simulation subsumption by introducing the
notions of semi-structured trees (Definition 1), query terms (Definition 2) and
simulation (Definition 5). Semi-structured trees are an abstraction for all kinds
of Web data such as XML-documents, RDF graphs or HTML-documents.

Definition 1 (Semi-structured Trees). Trees (also called data terms in the
following) are are inductively defined as follows:

– a label is an atomic tree
– if l is a label and t1, . . . , tn are trees with n ≥ 1, then l{t1, . . . , tn} is a tree.

Query terms are an abstraction for queries that can be used to extract data from
semi-structured trees. In contrast to XPath queries, they may contain (multiple
occurrences of the same) variables and demand an injective mapping of the child
terms of each term. For example, the XPath query /a/b[c]/c demands that
the document root has label a, and has a child term with label b that has itself
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a child term with label c. The subterm c that is given within the predicate
of b can be mapped to the same node in the data as the child named c of b.
Therefore this XPath query would be equivalent to the query term a{{b{{c}}}},
but not to a{{b{{c, c}}}}. Simulation could be, however, easily modified to drop
the injectivity requirement.

Recall the example query term from Section 1:

1 bib{{
book{{

3 desc title{ var Title },
var Author as author[[ first-name{{ }}, last-name{{ }} ]],

5 optional var publisher as publisher{{ }}
}}

7 }}

This query term illustrates most of the features of Xcerpt query terms relevant for
this paper. As stated above, it selects titles, authors, and optionally publishers of
the same book. Titles may occur at any depth under the book element (indicated
by desc), but authors and publishers must be children. For authors we further
ask that they also record first and last name and that these are recorded in that
order (i.e., not last-name before first-name).

Single (double, resp.) braces or brackets in an Xcerpt query term mean that
the term’s content model is completely (incompletely, resp.) specified (i.e. there
must only be a single subterm within the title element of the example from
Section 1, but the author element may contain other children besides first-name
and last-name). (Curly) braces mean that the order of occurrence of the subterm
in the data is irrelevant, (square) brackets enforce the same order in the data
as in the query term (i.e. first-name must appear before last-name in the data,
otherwise the query term from Section 1 does not match).

Even though there are (many) XML serializations for RDF data, most promi-
nently RDF/XML, none convey the inherent graph structure of RDF data. Each
RDF serialization either approximates an RDF graph by a tree, or decomposes
it into triples. Xcerpt natively supports RDF with constructs conveying RDF
specifics such as containers, collections, the type system and reification. For the
sake of focus and simplicity, these RDF constructs are not addressed in the
present paper. A complete presentation of Xcerpt’s construct for RDF is given
in [11].

Definition 2 ((Xcerpt) Query Terms). Query terms over a set of labels N ,
a set of variables V, and a set of regular expressions R are inductively defined
as follows:

– for each label l ∈ N , l{{ }} and l{ } are atomic query terms. l is a short
hand notation for l{{ }}. The formal treatment of square brackets in query
terms is omitted in this contribution for the sake of brevity.

– for each variable X ∈ V , var X is a query term
– for each regular expression r ∈ R, /r/ is a query term. With L(r) we denote

the set of labels matched by r, i.e. the language defined by the regular
expression.
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– for each variable X ∈ V and query term t, Xas t is a query term. t is called
a variable restriction for X .

– for each query term t, desc t is a query term and called depth-incomplete
or incomplete in depth.

– for each query term t, without t is a query term and called a negated sub-
term.

– for each label l and query terms t1, . . . , tn are query terms with n ≥ 1,

q1 = l{{ t1, \ldots, tn}}

q2 = l{ t1, \ldots, tn}

are query terms. q1 is said to be incompletely specified in breadth, or simply
breadth-incomplete, whereas q2 is completely specified in breadth, or simply
breadth-complete.

In the following, we let D and Q denote the set of all semi-structured trees and
query terms, respectively.

A query term and a semi-structured tree are in the simulation relation, if
the query term “matches” the data. Matching trees with data is very similar to
matching Xpath queries with XML documents – apart from the variables and
the injectivity requirement in query terms. The formal definition of simulation
of a query term with a semi-structured tree is somewhat involved. To shorten
the presentation, we first introduce some notation:

Definition 3 (Injective and Bijective Mappings). Let I := {t11, . . . , t1k},
J := {t21, . . . , t2n} be sets of query terms and π : I ⇒ J be a mapping.

– π is injective, if all t1i , t
1
j ∈ I satisfy t1i �= t1j ⇒ π(t1i ) �= π(t1j ).

– π is bijective, if it is injective and for all t2j ∈ J there is some t1i ∈ I such
that π(t1i ) = t2j .

We use the following abbreviations to reference parts of a query term q:

l(q): the label of q,
ChildT (q): the set of child subterms of q, i.e. those directly nested inside of q.
ChildT +(q): the set of positive direct subterms (i.e. those direct subterms which

are not of the form without . . .),
ChildT−(q): the set of negated direct subterms (i.e. the direct subterms of the

form without . . .),
Desc(q): the set of direct descendant subterms of q (i.e. those of the from

desc . . .),
SubT (q): the direct or indirect subterms of q, i.e. all direct subterms as well as

their subterms.
ss(q): the subterm specification of q. It can either be complete (single curly

braces) or incomplete (double curly braces).
vars(q): the set of variables occurring somewhere in q.
pos(q): q′, if q is of the form without q′ for some query term, q otherwise.
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Definition 4 (Ground Query Term Simulation). Let q be a query term and
d be a semi-structured tree, A relation S ⊆ (SubT (q) ∪ {q})× (SubT (d) ∪ {d})
is a simulation of q into d if the following holds:

– q S d

– if q := l1{{q1, . . . , qn}} S l2{d1, . . . , dm} =: d then l1 must subsume l2,
and there must be an injective mapping π : ChildT +(q) → ChildT +(d)
such that qi S π(qi) for all i ∈ ChildT +(q). Moreover, there must not be a
qj ∈ ChildT−(q) and dl ∈ ChildT +(d) \ range(π) such that pos(qj) S dl.

– if q := l1{q1, . . . , qn} S l2{d1, . . . , dm} =: d then l1 must subsume l2, and
there must be a bijective mapping π : ChildT +(q) → ChildT +(d) such that
qi S π(qi) for all i ∈ ChildT +(q). Note that the set ChildT−(q) of negated
direct subterms of q should be empty – the presence of negated subterms in
breadth-complete query terms is irrelevant.

– if q = desc q′ S d then q′ S d or q′ S d′ for some subterm d′ of d.

If there is a relation S that satisfies the above conditions, q simulates into d
(short: q � d; to state the contrary we write q � d).

Since every semi-structured tree is also a query term, the above definition of
simulation between a query term and a tree can be extended to a relation between
pairs of query terms. For the sake of brevity this full definition of extended ground
query term simulation is given in the appendix of the online version [12].

The existence of a ground query term simulation states that a given semi-
structured tree satisfies the conditions encapsulated in the query term. Many
times, however, query authors are not only interested in checking the structure
and content of a document, but also in extracting data from the document,
and therefore query terms may contain logical variables. To formally specify the
data that is extracted by matching a query term with a semi-structured tree,
non-ground query term is introduced (Definition 5). Substitutions are defined
as usual, and the application of a substitution to a query term is the consistent
replacement of the variables by their images in the substitution.

Definition 5 (Non-Ground Query Term Simulation). A query term q with
variables simulates into a semi-structured tree d iff there is a substitution σ :
V ars(q) → D such that qσ simulates into d.

3 Simulation Subsumption

In this section, we first introduce simulation subsumption (Definition 6), then
for several query terms we discuss whether one subsumes the other to give an
intuition for the compositionality of the subsumption relationship. Subsequently,
the transitivity of the subsumption relationship is proven (Lemma 1), some con-
clusions about the membership in the subsumption relationship of subterms,
given the membership in the subsumption relationship of their parent terms are
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stated. These conclusions formalize the compositionality of simulation subsump-
tion and are a necessary condition for the completeness of the rewriting system
introduced in Section 4.

In tabled evaluation of logic programs, solutions to subgoals are saved in a
solution table, such that for equivalent or subsumed subgoals, these sets do not
have to be recomputed. As mentioned before, this avoidance of re-computation
does not only save time, but can, in certain cases be crucial for the termination
of a backward chaining evaluation of a program. In order to classify subgoal
as solution or look-up goals, boolean subsumption as specified by Definition 6
must be decided. Although Xcerpt query terms may contain variables, n-ary
subsumption as defined in [6] would be too strict for our purposes. To see this,
consider the Xcerpt query terms q1 := a{{var X}} and q2 := a{{c}}. Although
all trees that are relevant for q2 can be found in the solutions for q1, q1 and q2

cannot be compared by n-ary containment, because they differ in the number of
their query variables.

Definition 6 (Simulation Subsumption). A query term q1 subsumes an-
other query term q2 if all data or query terms that q2 simulates with are also
simulated by q1.

Example 1 (Examples for the subsumption relationship). Let q1 := a{{}}, q2 :=
a{{desc b, desc c, d}}, q3 := a{{desc b, c, d}}, q4 := a{{without e}}, and q5 :=
a{{without e{{without f}}}}. Then the following subsumption relationships
hold:

– q2 subsumes q3 because it requires less than q3: While q3 requires that the
data has outermost label a, subterms c and d as well as a descendant subterm
b, q2 requires not that there is a direct subterm c, but only a descendant
subterm. Since every descendant subterm is also a direct subterm, all trees
simulating with q3 also simulate with q2.
But the subsumption relationship can also be decided in terms of simulation:
q2 subsumes q3, because there is a mapping π from the direct subterms
Child(q2) of q2 to the direct subterms Child(q3) of q3, such that qi subsumes
π(qi) for all qi in Child(q2).

– q3 does not subsume q2, since there are trees that simulate with q2, but not
with q3. One such tree is d := a{b, e{c}, d}.
Again, the subsumption relationship between q3 and q2 (in this order) can
be decided by simulation. There is no mapping π from the direct subterms
of q3 to the direct subterms of q2, such that a simulates into π(a).

– q1 subsumes q4 since it requires less than q4. All trees that simulate with q4

also simulate with q1.
– q4 does not subsume q1, since the tree a{{e}} simulates with q1, but does

not simulate with q4.
– q5 subsumes q4, but not the other way around.

Proposition 1. The subsumption relationship between query terms is transitive,
i.e. for arbitrary query terms q1, q2 and q3 it holds that if q1 subsumes q2 and
q2 subsumes q3, then q1 subsumes q3.
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Proposition 1 immediately follows from the transitivity of the subset relationship.
Query term simulation and subsumption are defined in a way such that, given
the simulation subsumption between two query terms, one can draw conclusions
about subsumption relationships that must be fulfilled between pairs of subterms
of the query terms. Lemma 1 formalizes these sets of conclusions.

Lemma 1 (Subterm Subsumption). Let q1 and q2 be query terms such
that q1 subsumes q2. Then there is an injective mapping π from Child+(q1)
to Child+(q2) such that qi

1 subsumes π(qi
1) for all qi

1 ∈ Child+(q1).
Furthermore, if q1 and q2 are breadth-incomplete, then there is a (not neces-

sarily injective) mapping σ from Child−(q1) to Child−(q2) such that pos(σ(qj
1))

subsumes pos(qj
1) for all qj

1 ∈ Child−(q1).
If q1 is breadth-incomplete and q2 is breadth-complete then there is no qj

1 in
Child−(q1) and qk

2 ∈ Child+(q2) \ range(π) such that pos(qj
1) � qk

2 .

Lemma 1 immediately follows from the equivalence of the subsumption relation-
ship and the extended query term simulation (see Lemma 4 in the appendix of
the online version [12]).

4 Simulation Subsumption by Rewriting

In this section we lay the foundations for a proof for the decidability of subsump-
tion between query terms according to Definition 6 by introducing a rewriting
system from one query term to another, which is later shown to be sound and
complete. Furthermore this rewriting system lays the foundation for the com-
plexity analysis in Section 5.3.

The transformation of a query term q1 into a subsumed query term q2 is
exemplified in Figure 1.

Definition 7 (Subsumption Monotone Query Term Transformations).
Let q be a query term. The following is a list of so-called subsumption monotone
query term transformations.

– if q has incomplete subterm specification, it may be transformed to the anal-
ogous query term with complete subterm specification.

a{{q1, . . . , qn}}
a{q1, . . . , qn}

, (1)

– if q is of the form desc q′ then the descendant construct may be eliminated
or it may be split into two descendant constructs separated by the regular
expression /.*/, the inner descendant construct being wrapped in double
curly braces.

desc q

q
,

desc q

desc /. ∗ /{{desc q}} (2)
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a{{
b{c, var X},
desc d,
without e{{ f }}

}}

a{{ b{c, var X},
desc d,
without e{{ f }},
var Y

}}

a{{ b{var X, c},
/.*/{{ desc d }},
without e{{ f }},
var Y

}}

a{{ b{var X, c},
g{{ desc d }},
var Y,
without e{{ f }}

}}

a{{ b{var X, c},
g{{ /.*/{{

desc d }} }},
var Y,
without e{{ f }}

}}

a{{ b{var X, c},
g{{ h{{ d }} }},
var Y,
without e{{ f }}

}}

a{ b{var X, c},
g{{ h{{ d }} }},
var Y,
without e{{ f }}

}

a{ b{var X, c},
g{{ h{{ d }} }},
i{ },
without e{{ }}

}

Equation 3

Equations 2, 4, 7

Equations 8, 4

Equation 2

Equation 8

Equation 1

Equation 6, 9, 7

Fig. 1.

– if q has incomplete-unordered subterm specification, then a fresh variable
X may be appended to the end of the subterm list. A fresh variable is a
variable that does not occur in q1 or q2 and is not otherwise introduced by
the rewriting system.

X fresh ⇒ a{{q1, . . . , qn}},
a{{q1, . . . , qn, var X}} (3)

– if q has unordered subterm specification, then the subterms of q may be ar-
bitrarily permuted.

π ∈ Perms({1, . . . , n}) ⇒ a{{q1, ..., qn}}
a{{qπ(1), ..., qπ(n)}}

(4)

π ∈ Perms({1, . . . , n}) ⇒ a{q1, ..., qn}
a{qπ(1), ..., qπ(n)}

(5)
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– if q contains a variable var X, which occurs in q at least once in a positive
context (i.e. not within the scope of a without) then all occurrences of var X
may be substituted by another Xcerpt query term.

X ∈ PV (q), t ∈ QTerms ⇒ q

q{X �→ t} (6)

This rule may only be applied, if q contains all occurrences of X in q1.
Furthermore, no further rewriting rules may be applied to the replacement
term t.

Notice that if a variable appears within q only in a negative context (i.e.
within the scope of a without), the variable cannot be substituted by an
arbitrary term to yield a transformed term that is subsumed by q. The query
terms a{{ without var X }} and a{{ without b{ } }} together with
the tree a{ c } illustrate this characteristic of the subsumption relationship.
For further discussion of substitution of variables in a negative context see
Example 2.

– if q has a subterm qi, then qi may be transformed by any of the transforma-
tions in this list except for Equation 6 to the term t(qi), and this transformed
version may be substituted at the place of qi in q, as formalized by the fol-
lowing rule: 1,2

qi

t(qi)
⇒ a{{q1, . . . , qn}}

a{{q1, . . . , qi−1, t(qi), qi+1, . . . qn}}
(7)

– if the label of q is a regular expression e, this regular expression may be
replaced by any label that matches with e, or any other regular expression
e′ which is subsumed by e (see Definition 8 in the appendix of the online
version [12]).1

e ∈ RE, e subsumes e’ ⇒ e{{q1, . . . , qn}}
e′{{q1, . . . , qn}}

(8)

– if q contains a negated subterm qi = without r and r′ is a query term such
that t(r′) = r (i.e. r′ subsumes r) for some transformation step t, then qi

can be replaced by q′i := without r′.

(qi = without r) ∧ r′

r
∧ (q′i = without r′) ⇒ a{{q1, . . . , qi, . . . , qn}}

a{{q1, . . . , q′i, . . . qn}}
(9)

1 The respective rules for complete-unordered subterm specification, incomplete-
ordered subterm specification and complete-ordered subterm specification are omit-
ted for the sake of brevity.

2 The exclusion of Equation 6 ensures that variable substitutions are only applied
to entire query terms and not to subterms. Otherwise the same variable might be
substituted by different terms in different subterms.
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5 Properties of the Rewriting System

In this section we show that the rewriting system introduced in the previous
section is sound (Section 5.1) and complete (Section 5.2). Furthermore we study
the structure of the search tree induced by the rewriting rules, show that it can
be pruned without losing the completeness of the rewriting system and conclude
that simulation subsumption is decidable. Finally we derive complexity results
from the size of the search tree in Section 5.3.

5.1 Subsumption Monotonicity and Soundness

Lemma 2 (Monotonicity of the Transformations in Definition 7). All
of the transformations given in Definition 7 are subsumption monotone, i.e. for
any query term q and a transformation from Definition 7 which is applicable to
q, q subsumes t(q).

The proof of Lemma 2 is straight-forward since each of the transformation steps
can be shown independently of the others. For all of the transformations, inverse
transformation steps t−1 can be defined, and obviously for any query term q it
holds that t−1(q) subsumes q.

Lemma 3 (Transitivity of the Subsumption Relationship, Monotonic-
ity of a Sequence of Subsumption Monotone Query Term Transfor-
mations). For a sequence of subsumption monotone query term transformations
t1, . . . , tn, and an arbitrary query term q, q subsumes t1 ◦ . . . ◦ tn(q1).

The transitivity of the subsumption relationship is immediate from its definition
(Definition 6) which is based on the subset relationship, which is itself transitive.

As mentioned above, the substitution of a variable X in a negative context of
a query term q by a query term t, which is not a variable, results in a query term
q′ := q[X �→ t] which is in fact more general than q. In other words q[X �→ t]
subsumes q for any query term q if X only appears within a negative context in
q. On the other hand, if X only appears in a positive context within q, then q′ is
less general – i.e. q subsumes q′. But what about the case of X appearing both
in a positive and a negative context within q? Consider the following example:

Example 2. Let q := a{{ var X, without b{{ var X }} }}. One may be
tempted to think that substituting X by c[] to give q′ makes the first subterm
of q less general, but the second subterm of q more general. In fact, a subterm
b[ c ] within a tree would cause the subterm without b{{ var X }} of
q to fail, but the respective subterm of q′ to succeed, suggesting that there is
a tree that simulation unifies with q′, but not with q, meaning that q does not
subsume q′. However, there is no such tree, which is due to the fact that the
second occurrence of X within q is only a consuming occurrence. When this part
of the query term is evaluated, the variable X is already bound.
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The normalized form for Xcerpt query terms is introduced, because for an un-
normalized query term q1 that subsumes a query term q2 one cannot guarantee
that there is a sequence of subsumption monotone query term transformations
t1, . . . , tn such that tn ◦ . . . ◦ t1(q1) = q2. To see this, consider example 3.

Example 3 (Impossibility of transforming an unnormalized query term). Let q1 :
= a{{var X as b{{c}}, var X as b{{d}}}} and q2 := a{{b{{c, d}}, b{{c, d}}}}.
q2 subsumes q1, in fact both terms are even simulation equivalent. But there is
no sequence of subsumption monotone query term transformations from q2 to
q1, since one would have to omit one subterm from both the first subterm of q2

and from the second one. But such a transformation would not be subsumption
monotone.

To overcome this issue, query terms are assumed to be in normalized form (Def-
inition 9 in the appendix of the online version [12]). In fact, almost all Xcerpt
query terms can be transformed into normalized form.

5.2 Completeness

Theorem 1 (Subsumption by Transformation). Let q1 and q2 be two query
terms in normalized form such that q1 subsumes q2. Then q1 can be transformed
into q2 by a sequence of subsumption monotone query term transformations listed
in Definition 7.

Proof. We distinguish two cases:

– q1 and q2 are subsumption equivalent (i.e. they subsume each other)
– q1 strictly subsumes q2

The first case is the easier one. If q1 and q2 are subsumption equivalent, then
there is no tree t, such that t simulates with one, but not the other. Hence q1 and
q2 are merely syntactical variants of each other. Then q1 can be transformed into
q2 by consistent renaming of variables (Equation 7), and by reordering sibling
terms within subterms of q (Equation 4). Note that this would not be true for
unnormalized query terms as Example 3 shows.

The second is shown by structural induction on q1.
For both the induction base and the induction step, we assume that q1 sub-

sumes q2, but not the other way around. Then there is a tree d, such that q1

simulates into d, but q2 does not. In both the induction base and the induc-
tion step, we give a distinction of cases, enumerating all possible reasons for q1

simulating into d but q2 not. For each of these cases, a sequence of subsump-
tion monotone transformations t1, . . . tn from Definition 7 is given, such that
q′1 := tn ◦ tn−1 ◦ . . . ◦ t1(q1) does not simulate into d. By Lemmas 2 and 3, q′1
still subsumes q2. Hence by considering d and by applying the transformations,
q1 is brought “closer” to q2. If q′1 is still more general than q2, then one more
dataterm d′ can be found that simulates with q′1, but not with q2, and another
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sequence of transformations to be applied can be deduced from this theorem.
This process can be repeated until q1 has been transformed into a simulation
equivalent version of q2. For the proof see the appendix of the online version [12].

5.3 Decidability and Complexity

In the previous section, we establish that, for each pair of query terms q1, q2 such
that q1 subsumes q2, there is a (possibly infinite) sequence of transformations
t1, . . . , tk by one of the rules in Section 4 such that tk ◦ . . . ◦ t1(q) = q2.

However, if we reconsider the proof of Theorem 1, it is quite obvious that the
sequence of transformations can in fact not be infinite: Intuitively, we transform
at each step in the proof q1 further towards q2, guided by a data term that
simulates in q1 but not in q2. In fact, the length of a transformation sequence is
bounded by the sum of the sizes of the two query terms. As size of a query term
we consider the total number of its subterms.

Proposition 2 (Length of Transformation Sequences). Let q1 and q2 be
two Xcerpt query terms such that q1 subsumes q2 and n the sum of the sizes
of q1 and q2. Then, there is a sequence of transformations t1, . . . , tk such that
tk ◦ . . . ◦ t1(q1) = q2 and k ∈ O(n).

Proof. We show that the sequences of transformations created by the proof of
Theorem 1 can be bounded by O(n + m) if computed in a specific way: We
maintain a mapping μ from subterms of q1 to subterms of q2 indicating how the
query terms are mapped. μ is initialized with (q1, q2). In the following, we call a
data term d discriminating between q1 and q2 if q1 simulates in d but not q2.

(1) For each pair (q, q′) in μ, we first choose a discriminating data term that
matches case 1 in the proof of Theorem 1. If there is such a data term, we apply
Equation (8), label replacement, once to q obtaining t(q) and update the pair
in μ by (t(q), q′). This step is performed at most once for each pair as (t(q), q′)
have the same label and thus there is no more discriminating data term that
matches case 1.

(2) Otherwise, we next choose a discriminating data term that matches case
2.a.i or 2.b.i. In both cases, we apply Equation (3), variable insertion, to insert a
new variable and update the pair in μ. This step is performed at most |q2|−|q1| ≤
n times for each pair.

(3) Otherwise, we next choose a discriminating data term that matches case
2.a.ii and apply Equation (1), complete term specification and update the pair
in μ. This step is performed at most once for each pair.

(4) Finally, the only type of discriminating data term that remains is one
with the same number of positive child terms as q2. We use an oracle to guess
the right mapping σ from child terms of q1 to child terms of q2. Then we remove
the pair from μ and add (c, σ(c)) to μ for each child term of q1. This step is
performed at most once for each pair in μ.

Since query subterms have a single parent, we add each subterm only once to μ in
a pair. Except for case 2, we perform only a constant number of transformations
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to each pair. Case 2 allows up to n transformations for a single pair, but the
total number of transformations (over all pairs) due to case 2 is bound by the
size of q2. Thus in total we perform at most 4 · n transformations where n is
the sum of the number of the sizes of q1 and q2.

Though we have established that the length of a transformation sequence
is bound by O(n), we also have to consider how to find such a transforma-
tion sequence. The proof of Proposition 2, already spells out an algorithm for
finding such transformation sequences. However, it uses an oracle to guess the
right mapping between child terms of two terms that are to be transformed.
A naive deterministic algorithm needs to consider all possible such mappings
whose number is bound by O(n!). It is worth noting, however, that in most
cases the actual number of such mappings is much smaller as most query terms
have fairly low breadth and the possible mappings between their child terms
are severely reduced just by considering only mappings where the labels of child
terms simulate. However, in the worst case the O(n!) complexity for finding the
right mapping may be reached and thus we obtain:

Theorem 2 (Complexity of Subsumption by Rewriting). Let q1 and q2

be two Xcerpt query terms. Then we can test whether q1 subsumes q2 in O(n!n)
time.

Proof. By proposition 2 we can find a O(n) length transformation sequence in
O(n!n) time and by Theorem 1 q1 subsumes q2 if and only if there is such a
sequence.

6 Conclusion

Starting out from the problem of improving termination of logic programming
based on rich kinds of simulation such as simulation unification, the problem
of deciding simulation subsumption between query terms is investigated in this
paper. A rewriting system consisting of subsumption monotone query term trans-
formations is introduced and shown to be sound and complete. By convenient
pruning of the search tree defined by this rewriting system, the decidability of
simulation subsumption is proven, and an upper bound for its complexity is
identified.

Future work includes (a) a proof of concept implementation of the rewriting
system, (b) the development of heuristics and their incorporation into the proto-
type to ensure fast termination of the algorithm in the cases when it is possible,
(c) the study of the complexity of the problem in absence of subterm negation,
descendant constructs, deep-equal, and/or injectivity, (d) the implementation of
a backward chaining algorithm with tabling, which uses subsumption checking
to avoid redundant computations and infinite branches in the resolution tree,
and (e) the adaptation of the rewriting system to XPath in order to decide sub-
sumption and to derive complexity results for the subsumption problem between
XPath queries.
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Abstract. In the context of the Semantic Web or semantic peer to peer systems,
many ontologies may exist and be developed independently. Ontology alignments
help integrating, mediating or reasoning with a system of networked ontologies.
Though different formalisms have already been defined to reason with such sys-
tems, they do not consider ontology alignments as first class objects designed
by third party ontology matching systems. Correspondences between ontologies
are often asserted from an external point of view encompassing both ontologies.
We study consistency checking in a network of aligned ontologies represented
in Integrated Distributed Description Logics (IDDL). This formalism treats local
knowledge (ontologies) and global knowledge (inter-ontology semantic relations,
i.e., alignments) separately by distinguishing local interpretations and global in-
terpretation so that local systems do not need to directly connect to each other.
We consequently devise a correct and complete algorithm which, although be-
ing far from tractacle, has interesting properties: it is independent from the local
logics expressing ontologies by encapsulating local reasoners. This shows that
consistency of a IDDL system is decidable whenever consistency of the local
logics is decidable. Moreover, the expressiveness of local logics does not need to
be known as long as local reasoners can handle at least ALC.

1 Introduction

Reasoning on a network of multiple ontologies can be achieved by integration of sev-
eral knowledge bases or by using non standard distributed logic formalisms. With the
first, knowledge must be translated into a common logic, and reasoning is fully cen-
tralized. The second option, which has been chosen for Distributed Description Logics
(DDL) [3], E-connections [7], Package-based Description Logics (P-DL) [2] or [8] con-
sists in defining new formalisms which allow reasoning with multiple domains in a
distributed way. The non-standard semantics of these formalisms reduces conflicts be-
tween ontologies, but they do not adequately formalize the quite common case of on-
tologies related with ontology alignments produced by third party ontology matchers.
Indeed, these formalisms assert cross-ontology correspondences (bridge rules, links or
imports) from one ontology’s point of view, while often, such correspondences are ex-
pressed from a point of view that encompasses both aligned ontologies. Consequently,
correspondences, being tied to one “context”, are not transitive, and therefore,
alignments cannot be composed in these languages.
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Our proposed formalism, Integrated Distributed Description Logics (IDDL), ad-
dresses this situation and offer sound alignment composition. The principle behind it
was presented in [12] under the name integrated distributed semantics, and particular-
ized for Description Logics in [10]. This article aims at providing a distributed reason-
ing procedure for IDDL, which has the following interesting characteristics:

– the distributed process takes advantage of existing DL reasoners (e.g., Pellet, Racer,
FacT++, etc.);

– local ontologies are encapsulated in the local reasoning system, so it is not neces-
sary to access the content of the ontologies in order to determine the consistency of
the overall system;

– the expressiveness of local ontologies is not limited as long as it is a decidable
description logic.

The noticeable drawbacks are the following:

– cross-ontology correspondences are limited to concept subsumption or disjointness,
and role subsumption (so, role disjointness is not supported); individual correspon-
dences are treated via nominal concepts;

– the algorithm is highly intractable. However this paper is above all concerned by
the decidability of IDDL.

The presentation is organized as follows. We start with a presentation of the formalism
itself. Then, we describe the reasoning process in the case of concept correspondences
alone, in order to lighten the complexity of the notations which will serve to prove the
correctness of the algorithm. The following section updates the notations and theorem in
the more general case of possible cross-ontology role subsumption. Finally, a discussion
on planned implementation and further work is given as well as concluding remarks.
Additionally, an Appendix provides a sketch of the proof of the correctness of IDDL
decision procedure.

2 Integrated Distributed Description Logics

IDDL is a formalism which inherits from both the field of Description Logics and from
the analysis of the forms of distributed semantics in [12].

In a preliminary section, we provide definitions if the syntax and semantics of clas-
sical description logics. Thereafter, we provide the definition of correspondence, align-
ment and distributed system, for which we define a semantics.

2.1 DL: Syntax and Semantics

IDDL ontologies have the same syntax and semantics as in standard DLs. More pre-
cisely, a DL ontology is composed of concepts, roles and individuals, as well as axioms
built out of these elements. A concept is either a primitive concept A, or, given concepts
C, D, role R, individuals a1, . . . , ak, and natural number n,⊥,�, C�D, C�D, ∃R.C,
∀R.C, ≤ nR.C, ≥ nR.C, ¬C or {a1, . . . , ak}. A role is either a primitive role P , or,
given roles R and S, R � S, R � S, ¬R, R−, R ◦ S and R+.
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Interpretations are pairs 〈ΔI , ·I〉, where ΔI is a non-empty set (the domain of
interpretation) and ·I is the function of interpretation such that for all primitive con-
cepts A, AI ⊆ ΔI , for all primitive roles P , P I ⊆ ΔI × ΔI , and for all indi-
viduals a, aI ∈ ΔI . Interpretations of complex concepts and roles are inductively
defined by ⊥I = ∅, �I = ΔI , (C � D)I = CI ∪ DI , (C � D)I = CI ∩ DI ,
(∃R.C)I = {x|∃y.y∈CI ∧ 〈x, y〉∈RI}, (∀R.C)I = {x|∀y.〈x, y〉∈RI ⇒ y∈CI},
(≤ nR.C)I = {x|�{y ∈CI |〈x, y〉 ∈RI} ≤ n}, (≥ nR.C)I = {x|�{y ∈CI |〈x, y〉 ∈
RI} ≥ n}, (¬C)I = ΔI \ CI , {a1, . . . , ak} = {aI

1, . . . , a
I
k}, (R � S)I = RI ∪ SI ,

(R � S)I = RI ∩ SI , (¬R)I = (ΔI × ΔI) \ RI , (R−)I = {〈x, y〉|〈y, x〉 ∈ RI},
(R ◦ S)I = {〈x, y〉|∃z.〈x, z〉∈RI ∧ 〈z, y〉∈SI} and (R+)I is the reflexive-transitive
closure of RI .

Axioms are either subsumptions C � D, sub-role axioms R � S, instance asser-
tions C(a), role assertions R(a, b) and individual identities a = b, where C and D are
concepts, R and S are roles, and a and b are individuals. An interpretation I satisfies
axiom C � D iff CI ⊆ DI ; it satisfies R � S iff RI ⊆ SI ; it satisfies C(a) iff
aI ∈CI ; it satisfies R(a, b) iff 〈aI , bI〉∈RI ; and it satisfies a = b iff aI = bI . When I
satisfies an axiom α, it is denoted by I |= α.

An ontology O is composed of a set of terms (primitive concepts/roles and individ-
uals) called the signature of O and denoted by Sig(O), and a set of axioms denoted by
Ax(O). An interpretation I is a model of an ontology O iff for all α∈Ax(O), I |= α.
In this case, we write I |= O. The set of all models of an ontology O is denoted by
Mod(O). A semantic consequence of an ontology O is a formula α such that for all
I∈Mod(O), I |= α.

2.2 Distributed Systems

A distributed system (DS) is composed of a set of ontologies, connected by ontology
alignments. An ontology alignment describes semantic relations between ontologies.

Syntax. An ontology alignment is a set of correspondences. A correspondence can be
seen as an axiom that asserts a relation between concepts, roles or individuals of two
distinct ontologies. They are homologous to bridge rules in DDL. We use a notation
similar to DDL in order to identify in which ontology a concept, role or individual is
defined. If a concept/role/individual E belongs to ontology i, then we write it i:E. The
6 possible types of correspondences between ontologies i and j are:

Definition 1 (Correspondence). A correspondence between two ontologies i and j is
one of the following formulas:

– i:C 	←→ j:D is a cross-ontology concept subsumption;

– i:R 	←→ j:S is a cross-ontology role subsumption;

– i:C ⊥←→ j:D is a cross-ontology concept disjointness;

– i:R ⊥←→ j:S is a cross-ontology role disjointness;

– i:a ∈←→ j:C is a cross-ontology membership;
– i:a =←→ j:b is a cross-ontology identity.
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Notice that it is possible that i = j. Ontology alignments and DL ontologies form the
components of a Distributed System in IDDL.

Definition 2 (Distributed System). A distributed system or DS is a pair 〈O,A〉 such
that O is a set of ontologies, and A = (Aij)i,j∈O is a family of alignments relating
ontologies of O.1

Semantics. Distributed systems semantics depends on local semantics, but does not in-
terfere with it. A standard DL ontology can be straightforwardly used in IDDL system.
Informally, interpreting an IDDL system consists in assigning a standard DL interpre-
tation to each local ontology, then correlating the domains of interpretation thanks to
what we call an equalizing function.

Definition 3 (Equalizing Function). Given a family of local interpretations I, an
equalizing function ε is a family of functions indexed by I such that for all Ii ∈ I,
εi : ΔIi → Δε where Δε is called the global domain of interpretation of ε.

A distributed interpretation assigns a standard DL interpretation to each ontology in the
system, as well as an equalizing function that correlates local knowledge into a global
domain of interpretation.

Definition 4 (Distributed Interpretation). Let S = 〈O,A〉 be a DS. A distributed
interpretation of S is a pair 〈I, ε〉 where I is a family of interpretations indexed by O, ε
is an equalizing function for I, such that for all i∈O, Ii interprets i and εi : ΔIi → Δε.

While local satisfiability is the same as standard DL, correspondence satisfaction in-
volves the equalizing function.

Definition 5 (Satisfaction of a Correspondence). Let S be a DS, and i, j two ontolo-
gies of S. Let I = 〈I, ε〉 be a distributed interpretation. We define satisfaction of a
correspondence c (denoted by I |=d c) as follows:

I |=d i:C 	←→ j:D iff εi(CIi) ⊆ εj(DIj )

I |=d i:R 	←→ j:S iff εi(RIi) ⊆ εj(SIj )

I |=d i:C ⊥←→ j:D iff εi(CIi) ∩ εj(DIj ) = ∅

I |=d i:R ⊥←→ j:S iff εi(RIi) ∩ εj(SIj ) = ∅

I |=d i:a ∈←→ j:C iff εi(aIi)∈εj(CIj )

I |=d i:a =←→ j:b iff εi(aIi) = εj(bIj )

Additionally, for all local formulas i:φ, I |=d i:φ iff Ii |= φ (i.e., local satisfaction is
equivalent to global satisfaction of local formulas). A distributed interpretation I satis-
fies an alignment A iff it satisfies all correspondences of A (denoted by I |=d A) and
it satisfies an ontology Oi iff it satisfies all axioms of Oi (denoted by I |=d Oi). When
all ontologies and all alignments are satisfied, the DS is satisfied by the distributed
interpretation. In which case we call this interpretation a model of the system.

1 We systematicaly use bold face to denote a mathematical family of elements. So, O denotes
(Oi)i∈I where I is a set of indices.
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Definition 6 (Model of a DS). Let S = 〈O,A〉 be a DS. A distributed interpretation
I is a model of S (denoted by I |=d S), iff:

– for all Oi∈O, I |=d Oi;
– for all Aij ∈A, I |=d Aij .

The set of all models of a DS is denoted by Mod(S). A formula α is a consequence of
a DS (S |=d α) iff ∀M ∈ Mod(S),M |=d α. This model-theoretic semantics offers
special challenges to the reasoning infrastructure, that we discuss in next section.

3 Reasoning in IDDL with Concept Correspondences

In this section, we investigate a reasoning procedure for checking whether or not S =
〈O,A〉 is consistent, in the case when only concepts are put in correspondences. Role
correspondences are considered in the next section.

We can reduce the problem of entailment S |=d α to deciding (in)consistency of a

DS when α is either a local GCI (i:C � D), a concept correspondence (i:C
	←→ j:D

or i :C ⊥←→ j :D) or a local ABox assertion (i : C(a)). Local entailment reduction

is straightforward. However, correspondence entailment like S |=d i :C 	←→ j :D is

equivalent to the inconsistency of S ∪ {i:{a} 	←→ i:C} ∪ {i:{a} ⊥←→ j:D}, where a is
a new individual name added to ontology Oi.

When ontologies are correlated with alignments, new deductions may occur. Indeed,
cross-ontology knowledge interacts with local knowledge. Moreover, knowledge from
one ontology may influence knowledge from another ontology. Besides, local knowl-
edge would also induce cross-ontology knowledge (i.e., alignments). And finally, de-
ductions can be made with and about the alignments alone.

In fact, the difficulty of reasoning in IDDL resides in determining what knowledge
propagates from local domains to global domain, or from global to local domains. For
instance, if there is a correspondence which asserts disjointness of two concepts from
a local ontology then the semantics of the system imposes disjointness of these two
concepts in the local ontology. We will show that, in the restricted case when only
concept correspondences are allowed, it suffices to propagate only unsatisfiability and
non-emptiness of concepts.

Example 1. Let S be the DS composed of O1 ={D1≡B1�C1}, O2 ={B2��, C2�
�} and alignment A12 = {1:B1

	←→ 2:B2, 1:C1
⊥←→ 2:B2, 1:D1

�←→ 2:C2}.

We see that S |= 1:B1
⊥←→ 1:C1. If B1 � ¬C1 is added to O1 (as a consequence

of knowledge propagation from the alignments to the ontology) then D1 becomes un-

satisfiable in O1. From the correspondence 1 : D1
�←→ 2 : C2, it follows that C2 is

unsatisfiable in O2 as well.
Ex. 1 shows that reasoning on IDDL systems is not trivial and the existing algorithms

for reasoning on DL-based ontologies (e.g., tableau algorithms) cannot be directly used.
The principle behind the algorithm is based on the fact that correspondences are sim-

ilar to axioms, and alignments resemble ontologies. In fact, an alignment represents an
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ontology which would be interpreted in the global domain of interpretation (see Def. 4).
In this algorithm, the alignments will be translated into an ontology (the global ontol-
ogy). However, this is not enough to check global consistency because local knowledge
influences global reasoning. So, the idea consists in extending the global ontology to-
gether with the local ontologies by adding specific axioms which represent knowledge
propagated through the distributed system.

As a matter of fact, if correspondences are restricted to cross-ontology concept sub-
sumption or disjointness, only concept unsatisfiability and concept non-emptiness2 can
be propogated. Indeed, if a concept is locally interpreted as empty, then its image via the
equalizing function is empty too. Conversely, a non-empty set has a non-empty image
through ε.

Unfortunately, it is not possible to propagate knowledge by analysing ontologies
one by one. A subtle combination of several ontologies and alignments can impose
unsatisfiability of a locally satisfiable concept (see Ex. 1).

In order to be certain that all concept unsatisfiability and non-emptiness are propa-
gated, our algorithm exhaustively tests each combination of concept unsatisfiability and
non-emptiness by explicitely adding these facts, and propagating them accordingly.

In the sequel, we introduce the construction of extended ontologies from A and O
and we show that the consistency of an IDDL system S is equivalent to the existence
of such extended ontologies such that they are consistent.

3.1 Configurations and Extended Ontologies

This section provides the formal definitions which will finally lead to the construction of
the extended ontologies mentioned above. A configuration determines whether certain
well-chosen concepts in a vocabulary are unsatisfiable or non-empty. In our specific
case, the vocabulary in question is defined by the correspondences. It will be proven
that it is sufficient to consider concepts appearing in correspondences when dealing
with knowledge propagation in IDDL.

More precisely, concepts occurring as the left or right side of correspondences in
alignments constitute the vocabulary of an alignment ontology, namely global vocabu-
lary. It consists, in turn, of local vocabularies which are originated from local ontolo-
gies. The following definitions introduce formally the construction of these elements.

Definition 7 (Local Vocabulary). Let S = 〈O,A〉 be a DS. We denote by Ci the set
that includes the top concept � and all (primitive or complex) concepts that appear in
the left side of correspondences in Aij or in the right side of correspondences in Aji.

Definition 8 (Global Vocabulary). Let S =〈O,A〉 be a DS. The set of global concept

names of S is C =
⋃
i∈O

{i:C | C ∈ Ci} ∪ {�}. When w ⊆ Ci, we denote by ŵ the set

{i:C | C ∈ w} of (global) concept names. When W ⊆ C , we denote by W |i the set
{C ∈ Ci | i:C ∈ W}.

2 In this paper, “concept non-emptiness” means that an interpretation satisfies the system only
if the concept is interpreted as a non-empty set.
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Example 2. Considering the system of Ex. 1, the local vocabulary C1 is {B1, C1, D1,
�1} and C2 is {B2, C2,�2}, while the global vocabulary C is {1:B1, 1:C1, 1:D1, 1:
�1, 2:B2, 2:C2, 2:�2,�}.

As mentioned before Ex. 1 we need to determine the unsatisfiability or non-emptiness
of certain concepts but not only the concepts of the vocabularies. It is necessary to know
also the unsatisfiability or non-emptiness of all atomic decompositions [9] on concepts
in a vocabulary. The reason is that, for instance, the non-emptiness of two concepts
C, D ∈ C does not mean the non-emptiness of C � D which should be propagated to
local ontologies. Concepts defined in Def. 9 express just all atomic decompositions on
concepts in a set T .

Definition 9. Let T be a set of concepts (primitive or complex) including �. For each
non empty subset W ⊆ T , we define the concept CT

W := (
�

X∈W

X �
�

X′∈T\W

¬X ′).

From Def. 9, it follows that all concepts CT
W are disjoint and their union is equivalent

to �. As a consequence, an interpretation of vocabulary T associates to the set of con-
cepts CT

W a partition of the interpretation domain.
Relying on concepts CT

W we can define an equivalence relation over the set of in-
terpretations of T as follows: two interpretations belong to an equivalence class if for
each subset W ⊆ T , they both interpret concept CT

W as empty, or both interpret it
as non empty. The notion of configuration defined below represents such equivalence
classes. For more convenience, a configuration only indicates the subset of atomic de-
compositions which will be considered as non-empty, while the others are considered
unsatisfiable.

Consequently, a configuration is just a choice of a subset of all atomic
decompositions.

Definition 10 (Global Configuration). Let S be a DS with a set of global concept
names C . A global configuration of S is a subset Ω of 2 C .

Configurations are essential because, as we will show, consistency of a DS can be
equated to finding a relevant configuration instead of considering the possibly infinite
set of all equalizing functions. However, to achieve this, we must translate the config-
uration into axioms and assertions which express non-emptiness and unsatisfiability,
respectively.

We have prepared necessary elements for constructing the so-called alignment on-
tology. This ontology “axiomatizes” the alignments, which represent inter-ontology
knowledge. Apart from axioms expressing correspondences in alignments, an align-
ment ontology includes additional axioms or assertions representing the global
configuration.

Definition 11 (Alignment Ontology). Let S = 〈O,A〉 be a DS. Let Ω be a global
configuration of S. The alignment ontology w.r.t. Ω is an ontology ÂΩ defined as
follows:

1. for each i, j ∈ O, if i : C
	←→ j : D (resp. i : C

⊥←→ j : D) is a concept
correspondence in A then i :C � j :D (resp. i :C � ¬j :D) is an axiom of ÂΩ;
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2. for each W ∈ Ω, CW ≡ {aW } is an axiom of ÂΩ where aW is a new individual
name;

3. for each W /∈ Ω, CW � ⊥ is an axiom of ÂΩ .

Axiomatization of the alignments renders explicit the constraints imposed by corre-
spondences. The additional axioms or assertions constrain interpretations to belong to
the equivalence class represented by configuration Ω.

Example 3. Reconsidering Ex. 1, if we pick, for instance, the configuration Ω = 2 C \
{∅} to build an alignment ontology ÂΩ according to Def. 11, then ÂΩ is inconsistent
because W = {1:B1, 1:C1} ∈ Ω, ÂΩ |= (1:B1�1:C1)(aW ) and ÂΩ |= 1:B1 � ¬1:C1.

The construction of local configurations is very similar to that of global configuration
except that compatibility of local configurations with a given global configuration must
be taken into account. This compatibility results from the semantics of IDDL system,
which imposes that if the image of a set under an equalizing function is not empty then
that set must be not empty.

Definition 12 (Local Configuration). Let S = 〈O,A〉 be a DS. Let Ω be a global
configuration of S. For each Oi ∈ O, we define a local configuration of Oi w.r.t. Ω as a
subset Ωi of 2 Ci . Moreover, if w ∈ Ωi then there must exist W ∈ Ω such that ŵ ⊆ W .

As discussed at the beginning of this section, knowledge propagation from alignments
to local ontologies is crucial to the construction of extended ontologies which preserve
the consistency of an IDDL system. A global configuration Ω and a local configuration
Ωi which is compatible with Ω provide necessary elements to define such extended
ontologies. The following definition describes how to propagate knowledge from align-
ments to local ontologies through the determined configurations.

Definition 13 (Extended Ontologies). Let S = 〈O,A〉 be a DS. Let Ω be a global
configuration of S. For each Oi ∈ O, let Ωi be a local configuration w.r.t. Ω. The
extended ontology ÔΩi w.r.t. Ωi and Ω is defined as follows:

1. Oi ⊆ ÔΩi ;
2. for each w ∈ Ωi, CCi

w (bw) is an axiom of ÔΩi , where bw is a new individual name;
3. for each w /∈ Ωi, CCi

w � ⊥ is an axiom of ÔΩi ;
4. for each W ∈ Ω and for each X ∈ W |i, we define a new concept CX

W for ontology
ÔΩi such that:

(a) CX
W � X �

�

X′∈Ci\W |i

¬X ′ is an axiom of ÔΩi ;

(b) CX
W (bX

W ) is an axiom of ÔΩi with bX
W a new individual name in ÔΩi ;

(c) CX
W � C


W is an axiom of ÔΩi ;
5. for each W, W ′ ⊆ C such that W �= W ′, C


W � ¬C

W ′ is an axiom of ÔΩi .

Notice that the propagation of knowledge through a global configuration is not straight-
forward. The non-emptiness expressed by the assertion CW ≡ {aW } indicates that each
concept of W coming from the local vocabulary Ci must be individually non empty, but
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not necessarilly conjonctly non-empty. Consequently, the decomposition of the concept
CW for the propagation as described in the item 4a in Def. 13 is necessary.

The following theorem establishes the most important result in the present section. It
asserts that an IDDL system can be translated into an alignment ontology and extended
ontologies that preserve the semantics of the IDDL system.

Theorem 1 (DS Consistency). Let S = 〈O,A〉 be a DS. S is consistent iff there exist
a global configuration Ω of S and a local configuration Ωi for each Oi ∈ O w.r.t.
Ω such that the alignment ontology ÂΩ and the extended local ontologies {ÔΩi} as
defined in Def. 11 and Def. 13 are consistent.

A proof of this theorem is given in a technical report [11].

4 Reasoning with Cross-Ontology Role Subsumption

In this section, we devise a new reasoning procedure which now takes into account
cross-ontology role subsumption. The principle behind this improved reasoning task is
the same as before, except that configurations must be extended to take into account
the roles involved in correspondences. Since most of the definitions necessary for this
part are the same or similar as the ones for the previous part, we simply update existing
definitions or add new definitions when necessary.

First, a new notion of role vocabulary must be defined, locally or globally.

Definition 14 (Local Role Vocabulary). Let S = 〈O,A〉 be a DS. We denote by Ri

the set that includes primitive or complex roles that appear in the left side of correspon-
dences in Aij or in the right side of correspondences in Aji together with their inverse
roles (i.e., R ∈ Ri ←→ R− ∈ Ri).

Definition 15 (Global Role Vocabulary). Let S = 〈O,A〉 be a DS. The set of global

role names of S is R =
⋃
i∈O

{i:R | R ∈ Ri}.

Now we must define a new kind of configuration which has to be considered in addition
to the already defined global and local configurations. However, the treatment of roles
is quite different from the treatment of concepts only, because there are interactions
between roles and concepts. Therefore, we need to keep track of role satisfiability in
addition to concept satisfiability.

We do that by considering a given (concept) configuration Ω which represents a par-
tition of the domain of interpretation. Then, according to this configuration, we define
the role configuration as a family of relations over Ω indexed by the set of roles. In other
terms, we determine in a role configuration whether there exists a relation R between
two sets in the partition Ω.

Definition 16 (Role Configuration). Let S be a DS with a set of global role names R.
Let Ω be a global configuration of S. A role configuration of S w.r.t. Ω is a subset ΦΩ

of Ω ×Ω ×R.
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The introduction of role configuration leads to additional constraints on the alignment
ontology that we summarize in this addendum to Def. 11.

Definition 17 (Alignment Ontology (Revised)). Let S = 〈O,A〉 be a DS. Let Ω be
a global configuration of S, and let ΦΩ be a role configuration w.r.t. Ω. The alignment
ontology w.r.t. Ω and ΦΩ is an ontology ÂΩ defined as follows:

1. 2. and 3. See Def. 11;

4. for each i, j ∈ O, if i:R 	←→ j:S is a role correspondence in A then i:R � j:S is
a sub-role axiom of ÂΩ;

5. for each 〈W, W ′, R〉 ∈ ΦΩ , CW � ∃R.CW ′ is an axiom of ÂΩ;
6. for each 〈W, W ′, R〉 �∈ ΦΩ , CW � ∀R.¬CW ′ is an axiom of ÂΩ;

The axioms introduced by items 5 and 6 in Def. 17 express the semantics of a role
configuration: they impose a R connection or no R connection between two atomic
decompositions on concepts in C .

Similarly to local configurations, local role configurations have to satisfy constraints
which reflect the propagation of knowledge from the alignment ontology to extended
ontologies.

Definition 18 (Local Role Configuration). Let S be a DS with a set of global role
names R. Let Ω be a global configuration of S, let ΦΩ be a role configuration w.r.t. Ω,
and Ωi a local configuration of Oi w.r.t. Ω. A local role configuration of Oi w.r.t. Ω, Ωi

and ΦΩ is a subset ΦΩi of Ωi ×Ωi ×Ri such that 〈w, w′, R〉 ∈ ΦΩi implies that there
exists W, W ′ ∈ Ω such that w ⊆ W |i, w′ ⊆ W ′|i and 〈W, W ′, i:R〉 ∈ ΦΩ .

The extended ontologies are now further extended with axioms which involve roles.

Definition 19 (Extended Ontologies (Revised)). Let S = 〈O,A〉 be a DS. Let Ω be
a global configuration and ΦΩ a role configuration of S. For each Oi ∈ O, let Ωi be a
local configuration w.r.t. Ω and ΦΩi be a local role configuration w.r.t. Ω, Ωi and ΦΩ .
The extended ontology ÔΩi w.r.t. Ωi, Ω, ΦΩ and ΦΩi is defined as follows:

1. 2. 3. 4. and 5. See Def. 13;
6. for each 〈w, w′, R〉 ∈ ΦΩi , (CCi

w � ∃R.CCi

w′ )(bR
w,w′) is an axiom of ÔΩi , where

bR
w,w′ is a new individual name;

7. for each 〈w, w′, R〉 /∈ ΦΩi , CCi
w � ∀R.¬CCi

w′ is an axiom of ÔΩi ;
8. for each W, W ′ ⊆ Ω, and each R ∈ Ri, we define a new concept name CR

W,W ′ for

ontology ÔΩi such that:
(a) CR

W,W ′ � C

W is an axiom of ÔΩi ;

(b) if 〈W, W ′, i :R〉 ∈ ΦΩ then CR
W,W ′ � ∃R.CR−

W ′,W and CR
W,W ′ (βR

W,W ′) are

axioms of ÔΩi with βR
W,W ′ a new individual name;

(c) else, CR
W,W ′ � ∀R.¬CR−

W ′,W is an axiom of ÔΩi ;

9. for each R ∈ Ri, ∃R.� �
⊔

W,W ′∈Ω

CR
W,W ′ is an axiom of ÔΩi .
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In the previous definition, item 6 means that a triple 〈w, w′, R〉 in the local role con-
figuration determines the existence of a relation R between some member of CCi

w and
some member of CCi

w′ . Conversely, item 7 means that whenever a triple 〈w, w′, R〉 is
not in the local role configuration, then concepts CCi

w and CCi

w′ are not related through
R. Item 8 adds a concept CR

W,W ′ which represents the set of elements of local concept
C


W which have their counterparts in global concept CW and are in relation through R
with elements which have their own counterparts in CW ′ . Finally, item 9 asserts that
any element involved in a relation R must belong to one of the newly introduced sets
CR

W,W ′ for some W and W ′. This last item is important to ensure that the role structure
is correctly propagated.

Theorem 2 (DS Consistency). Let S = 〈O,A〉 be a DS. S is consistent iff there exist
a global configuration Ω of S, a role configuration ΦΩ w.r.t. Ω, local configurations
Ωi for all Oi ∈ O w.r.t. Ω and local role configurations ΦΩi w.r.t. Ω, Ωi and ΦΩ , such
that the alignment ontology ÂΩ and the extended local ontologies {ÔΩi} as defined in
Def. 17 and Def. 19 are consistent.

5 Algorithms and Improvements

In this section, we try to devise an explicit algorithm for checking the consistency of a
distributed system in IDDL. We first present a naive algorithm, as a direct application
of Theo. 1. Then, we propose a simple optimization for this particular problem. Finally,
we show how the very same principle can be used in a less expressive setting to ensure
a tractable consistency checking procedure.

5.1 Naive Algorithm

Theo. 1 provides enough information for building a naive but correct and complete
algorithm, which corresponds to an exhaustive traversal of all possible configurations
(see Algo. 1).

input : S = 〈O, A〉 with A = {Aij | i, j ∈ O}
output: IsConsistent(S)

foreach global configuration Ω ⊆ 2C do1

if Consistent(ÂΩ) then2

foreach family of local configurations (Ωi)i∈O do3

if Consistent(ÔΩi) for all i ∈ O then4

return true;5

return false;6

Algorithm 1. Consistency(〈O,A〉)
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Property 1. Given c the number of global concepts in C and N the number of ontolo-
gies in the system, the number of calls for consistency checking of extended ontologies
in Alg. 1 is bounded by N2(2c+1). Moreover, the size of the extended ontologies to be
checked is in the order of O(2c).

Proof. There are as many global configurations as there are subsets of 2 C , i.e., 2(2c).
For each global configuration, all local configurations have to be tested, for all ontolo-
gies. The number of local configuration, for a given ontology in the system, is bounded
by 2(2c), and there are N ontologies to be checked. So the total number of consistency
checking is bounded by N2(2c) · 2(2c) = N2(2c+1).

Prop. 1 shows that the complexity of Alg. 1 can be determined from that of consis-
tency checking of extended ontologies. Whatever the local algorithm complexity, the
complexity of this global consistency checking algorithm is at least in 2EXPTIME.
In the case when the local algorithm is itself in 2EXPTIME (which can happen with
some tableau algorithm over very expressive description logics), the global consistency
checking algorithm is in 3EXPTIME.

This high intractibility must be balanced with the good properties that it guaran-
tees. First, the algorithm proves that our distributed formalism is decidable whenever
local logics are decidable. Second, the actual local logics need not be known, as well as
the local decision procedure. Therefore, ontologies can be encapsulated in an interface
which only communicate the consistency of its internal ontology extended with well
defined axioms. Moreover, the expressiveness of the axioms added to the extended on-
tologies are restricted to ALC, which is simple enough to cover many existing DL rea-
soners. The goal of the next section is to explore possible optimization for this particular
problem.

5.2 Optimizing the Algorithm

This section proposes several simple optimizations which significantly decrease com-
plexity. Unfortunately, they do not change the class of complexity, but help approach-
ing tractability in “favorable situations”. The goal is to reduce as much as possible the
number of configurations that must be considered. To simplify this discussion, we only
focus on the global concept configurations. We consider three complementary methods
for improving the algorithm.

Using Correspondences. This first method takes advantage of the correspondences to
systematically decrease the possible configurations. Indeed, it may be noticed that if

i : C
	↔ j : D ∈ Aij , then the non-emptiness of C implies the non-emptiness of D.

Therefore, it is not necessary to inspect configurations containing W ⊆ C such that

C ∈ W and D �∈ W . Additionally, if i : C
⊥↔ j : D ∈ Aij , then it is not necessary

to inspect configurations containing W ⊆ C such that C, D ∈ W since i : C � D is
necessarily empty. This can decrease the search space a lot. For instance, if there are n

concepts C1, . . . , Cn such that i : Ck
	↔ j : Ck+1, then the non-emptiness of any Ck
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implies the non-emptiness of all Cl for all l ≥ k. So, in the best possible situation, the
number of configurations to be tested would be linear in the size of the alignements.
Nonetheless, in the worst situation, the number of configurations is still exponential.

Indeed, if there are n concepts D1, . . . , Dn and a concept C such that i :C
	↔ j :Dk for

all k, then the non-emptiness of C implies the non-emptiness of all Dk, but when C is
empty, the concepts Dk can be independently empty or non-empty. However interesting
compared to the brute force approach, this optimization still places the algorithm in the
double exponential class. We admit that it is still too high, but this worst case complexity
can be avoided in many cases using the two following optimizations.

Using Backtracking Techniques. Thanks to Theo. 1, the problem of checking consis-
tency has been reformulated into finding a configuration. We can notice that an appro-
priate configuration can be determined step by step with a decision tree, by deciding
whether a given subset W ⊆ C is in the configuration or not. In fact, each node of
the tree asks whether CW is empty or not. In case CW can neither be empty nor non-
empty, the algorithm must backtrack and try another decision for the previous subset
considered. Fig. 1 shows a part of a possible decision tree.

. . .

. . .

. . .

CWk

CWk+1

CWk+2

CWk+3

CWk+4

CWk+5

CWk � ⊥ CWk ≡ {aWk}

at most 2n

Fig. 1. At each node, the left branch indicates that the concept CW is asserted as an empty concept
(CW � ⊥), while the right branch indicates a non empty concept (CW ≡ {aW } for a new aW ).
The thick path indicates a possible configuration for the distributed system.

Other backtracking techniques like backjumping may be used. With such a method,
the number of calls to local reasoners may be reduced to 2n in favorable cases, not to
mention additional reductions due to the previous optimization.

Additional Optimization. In the course of reasoning at a certain level of the decision
tree, if it can be proved that a concept C is empty (C � ⊥), then it can also be asserted
that all conjunctions of C with any other concepts are also empty. More precisely, for
all W ⊆ C such that C ∈ W , the system implies that CW � ⊥, so all configurations
containing W can be eliminated. This further decreases the search space. Consequently,
we conjecture that there are practical cases where reasoning with our algorithm can be
carried out, in spite of the very high worst case complexity. Nonetheless, since these op-
timizations are still insufficient to treat hard cases practically, we study another possible
improvement that can be done when the alignments are less expressive.
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5.3 Reducing the Expressivity of Alignments

The highly intractable complexity of the algorithm for checking consistency of an IDDL
system is originated from the fact that it may propagate to local ontologies a double
exponential number of configurations with exponential size. These configurations repre-
sent the structure of models for alignment ontologies which are expressed in a sublogic
of ALC. We can simplify the structure of models by removing cross-ontology concept
and role disjointness from the alignment language. Tableau-based algorithms, for ex-
ample in [1], can generate a singleton model for a consistent ontology involving only
subsumption axioms between primitive concepts or roles, i.e., each configuration rep-
resents now the structure of a singleton model. Therefore, all concepts are interpreted
either as the singleton or the empty set. Consequently, it is sufficient to represent models
by a set of non-empty primitive concepts.

If C denotes the global vocaburary of an IDDL system (Def. 8) then a global config-
uration is now defined as Ω ⊆ C and the algorithm needs to call to local reasoners at
most 2C times with these polynomial configurations. This is true because, in absence of
disjointness, testing whether

�

X∈W

X �
�

X′∈T\W

¬X ′ is empty or not can be reduced to

testing whether each primitive concept X are empty or equal to an identified singleton.

6 Conclusion and Future Work

We have proposed a reasoning procedure for IDDL which determines the consistency
of a distributed system of DL ontologies and alignments. On the one hand, it only re-
quires the minimal support of ALC reasoning locally, while there is no upper bound
expressivity. On the other hand, alignments are currently limited to cross-ontology con-
cept subsumption or disjointness and role subsumption. This restriction on the expres-
siveness of alignment language is not really severe since alignments produced by almost
all ontology matching algorithms [5] are expressible within this restricted alignment
language. Furthermore, the majority of these algorithms (OLA, AROMA, Falcon-AO,
etc. [5]) yields only cross-ontology concept or role subsumption. This meets exactly the
reduction of expressiveness of alignment language presented in Sect.5.2.

Several research directions are considered to continue this work. We plan to further
optimize the algorithm. This will lead to a distributed implementation taking advantage
of various reasoners encapsulating ontologies of unknown complexity. In particular,
this would fit quite well in our modular framework presented in [6]. There are also
potential optimization when local expressivity is limited to a logic known in advance.
Another direction would involve peer reasoning, which means defining the inferences
produced by a local reasoner taking advantage of global knowledge in a network of
aligned ontologies.

Finally, our goal is to revise the consistency checking procedure by taking into ac-
count role disjointness. Eventually, we hope to extend the expressivity of the alignment
language, by adding specific constructors in line with the expressive ontology mapping
language proposed in [4].
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Abstract. Logical inconsistency may often occur throughout the development
stage of a DL-based ontology. We apply the lexicographic inference to reason
over inconsistent DL-based ontologies without repairing them first. We address
the problem of checking consequences in a SHIQ ontology that are classically
inferred from every consistent (or coherent) subontology having the highest lex-
icographic precedence. We propose a method for compiling a SHIQ ontology
to a propositional program so that the problem can be solved in polynomial calls
to a SAT solver. We prove that this time complexity is worst-case optimal in data
complexity. In order to make the method more scalable, we also present partition-
based techniques to optimize the calling of SAT solvers.

1 Introduction

Ontologies play a core role for the success of the Semantic Web (SW) as they provide
shared vocabularies for different domains. The Web Ontology Language (OWL) [24] is
a standard language for modeling ontologies in the SW, which is based on Description
Logics (DLs) [1]. The quality of ontologies is highly important for the SW technology.
However, in practice it is difficult to construct an error free or logically consistent DL-
based ontology. Logical inconsistency may often occur in different scenarios, such as
ontology modeling, evolution, migration and merging [11,29]. For example, if ontolo-
gies such as SUMO and CYC are directly merged into a single ontology, there will be
misalignments of concepts that introduce logical inconsistency [28].

Given an inconsistent ontology, one may want to repair it so as to apply standard
reasoners to access its (implicit) information. To fulfill this requirement, some methods
(e.g. [7,15,23,28,29]) emerge. They repair inconsistent ontologies through debugging or
diagnosing. Nevertheless, as pointed out by Haase et al. [11], in some cases consistency
cannot be guaranteed at all and inconsistency cannot be repaired, still one wants to
reason over ontologies in order to support information access and integration of new
information. Hence, some other methods (e.g. [13,19,18]) emerge to fulfill the latter
requirement. They tolerate inconsistency and apply non-standard reasoning methods to
obtain meaningful answers from an inconsistent ontology. Our method given in this
paper belongs to the latter family of methods.

D. Calvanese and G. Lausen (Eds.): RR 2008, LNCS 5341, pp. 58–73, 2008.
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The notion of ordering plays a crucial role in handling inconsistency as it gives clues
to tell which information is more important and should be kept. The well-known lexi-
cographic ordering is defined for stratified knowledge bases in propositional logic [3],
where a knowledge base, viewed as a set of formulas, is divided into a set of strata with
priorities. A subbase is lexicographically preferable to another one if it contains more
formulas in strata with higher priorities. A lex-maximal consistent subbase is defined as
a subbase that has the highest lexicographic precedence. To reason with inconsistency,
the lexicographic inference based on such ordering checks consequences that are clas-
sically inferred from every lex-maximal consistent subbase. Since many advantages of
lexicographic inference have been shown in the literature [3,4], such as the flexibility
for utilizing priority information (e.g., priorities of different sources in the situation of
ontology merging) and the conformity to the minimal-change point of view, we apply
lexicographic inference to DLs.

The major challenge in applying lexicographic inference to DLs lies on the practical-
ity of the computational aspect, because both reasoning in expressive DLs and lexico-
graphic inference in propositional logic are already computationally hard. To take this
challenge, we develop a method that is expected to work well on SHIQ [12] ontologies
with simple terminologies and large ABoxes. The method checks lex-consistent conse-
quences (resp. lex-coherent consequences) of a SHIQ ontology that are classically
inferred from every lex-maximal consistent (resp. coherent1) subontology. Basically,
the method first compiles the input SHIQ ontology into a propositional program, then
performs the checking over the propositional program by polynomial calls to a SAT
solver. We prove that this time complexity is worst-case optimal in data complexity, i.e.
the complexity measured in the size of the ABox only. The compilation is based on an
extension of the KAON2 transformation [14,20] in which decision atoms are embed-
ded, where decision atoms are new nullary atoms one-to-one corresponding to axioms
in the original ontology. In order to make the method more scalable, we further adapt
the partitioning technique in [7] to decompose the compiled propositional program, and
develop a novel algorithm for using the partitioning results to check lex-consistent con-
sequences. For the problem of checking a lex-coherent consequence, we first reduce it
to the problem of checking a lex-consistent consequence, then solve it in the same way.

By now we have not fully tested the proposed method but a complete implementa-
tion is under way. Some relevant experimental results were reported in [7]. The method
given in [7]2 similarly applies SAT solvers to compute consistent subontologies with
certain maximality, such as those ones having the maximum number of ABox axioms3.
It was shown [7] that for a SHIQ ontology, even though the ABox is large (i.e. has
over tens of thousands of axioms), as long as the KAON2 transformation can reduce
the terminology to over hundreds of DATALOG∨ [9] rules within which only a few
are disjunctive or with equality, the subsequent partitioning step yields small proposi-
tional subprograms that can be efficiently handled by SAT solvers. Based on the fact

1 An ontology is called coherent if all atomic concept in it are satisfiable.
2 The method employs the original KAON2 transformation and has a restriction that the termi-

nology must be fixed and consistent. Such restriction is removed in the current work.
3 They are actually lex-maximal consistent subontologies of a stratified ontology O = (O1,
O2), where O1, consisting of all terminological axioms, is the stratum with higher priority;
and O2, consisting of all ABox axioms, is the stratum with lower priority.
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that the extended KAON2 transformation spends almost all the time on the terminol-
ogy (it directly translates atomic ABox axioms to ground clauses), the effectiveness of
the partitioning step in decomposing a large propositional program into much smaller
subprograms, as well as the efficiency of current powerful SAT solvers, we expect that
the proposed method works well on SHIQ ontologies with simple terminologies and
large ABoxes.

The remainder of this paper is organized as follows. Section 2 discusses related work.
Section 3 gives some background on SHIQ and lexicographic inference. Section 4 for-
mally defines lex-consistent and lex-coherent consequences for lexicographic inference
in DLs. Section 5 presents our method for checking a lex-consistent (or lex-coherent)
consequence of a stratified SHIQ ontology. Section 6 concludes. Due to the space lim-
itation, we do not give (full) proofs of all theorems in this paper but refer the reader to
our technical report [6] for more details.

2 Related Work

There exist some computational methods for lexicographic inference in DLs. In the
work of Meyer et al. [19], the lexicographic inference and its refined version are re-
spectively applied to ALC and its extension with cardinality restrictions on concepts.
These inferences are computed through a disjunctive DL knowledge base (DKB for
short) compiled from the original ontology. A lex-consistent consequence of the origi-
nal ontology amounts to a consequence of the compiled DKB that is classically inferred
from all disjuncts of the compiled DKB, where each disjunct is a DL-based ontology.
In the work of Qi et al. [26], two other refined versions of lexicographic inference are
proposed. The corresponding computational methods are also DKB-based. It should be
noted that the DKB-based methods have a very high computational complexity. First,
the compilation of a DKB needs up to exponential number of DL satisfiability tests wrt
the number of axioms in the original ontology. Note that a satisfiability test in SHIQ is
already NP-complete in data complexity [14]. Second, the checking of a consequence
of a DKB is performed over all its disjuncts. Since the number of disjuncts can be
exponential in the the number of axioms in the original ontology, the checking phase
may need another exponential number of DL satisfiability tests. In contrast, our pro-
posed method performs polynomial number of propositional satisfiability tests wrt the
number of axioms in the original ontology in both the compiling phase and the check-
ing phase. Each such satisfiability test is also NP-complete in data complexity and can
further be optimized by our proposed partition-based techniques.

There exist other methods for reasoning over inconsistent DL-based ontologies
[13,17,18,22,27]. As ours, most of them first specify the preferred consistent subon-
tologies, then check consequences classically inferred from those subontologies. The
method proposed in [13] first selects a consistent subontology based on a selection
function, which is defined on the syntactic or semantic relevance, then reasons over the
selected subontology. Such selected subontology is not always maximal, so the infer-
ence is less satisfactory from the minimal-change point of view. The methods given
in [27] respectively extend possibilistic and linear order inferences in DLs by exploit-
ing uncertainty degrees on DL axioms. Each extended inference selects a consistent
subontology that keeps more DL axioms than the original one does, but the selected
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subontology is still often not maximal, so these extended inferences are also less sat-
isfactory from the minimal-change point of view. The method given in [17] essentially
checks consequences that are classically inferred from every maximal consistent subon-
tology. It does not consider priority information on DL axioms and has a restriction that
the terminology must be fixed and consistent. The reasoning methods proposed in [22]
and [18] adopt a different idea. To tolerate inconsistency, they weaken an interpretation
from two truth values to four truth values. Thus they result in a completely different
reasoning mechanism for DL-based ontologies.

3 Preliminaries

The SHIQ description logic [12] is highly related to OWL DL [24]. It semantically
equals OWL DL without nominals and datatype specifications but with qualified num-
ber restrictions.

Given a set of role names NR, a role is either some R ∈ NR or an inverse role R−

for R ∈ NR. An RBox OR is a finite set of transitivity axioms Trans(R) and role
inclusion axioms R � S, for R and S roles. For R ∈ NR, we set Inv(R) = R− and
Inv(R−) = R, and assume that R � S ∈ OR implies Inv(R) � Inv(S) ∈ OR
and Trans(R) ∈ OR implies Trans(Inv(R)) ∈ OR. A role R is called transitive
if Trans(R) ∈ OR; simple if it has not any transitive subrole. Given a set of concept
names NC , the set of SHIQ concepts is the minimal set such that each A ∈ NC is
a SHIQ concept (called an atomic concept) and, for C and D SHIQ concepts, R a
role, S a simple role, and n a positive integer,�,⊥,¬C, C�D, C�D, ∃R.C, ∀R.C,≤
n S.C and ≥ n S.C are also SHIQ concepts. A TBox OT is a finite set of concept
inclusion axioms C � D, where C and D are SHIQ concepts. An ABox OA is a set of
concept membership axioms C(a), role membership axioms R(a, b), and (in)equality
axioms a ≈ b, a �≈ b, where C is a SHIQ concept, R a role, and a and b individuals.
The axioms C(a), R(a, b), a ≈ b and a �≈ b are also called ABox axioms; called atomic
ABox axioms if C is a concept name and R is a role name.

A SHIQ ontology O consists of an RBox OR, a TBox OT , and an ABox OA.
OR ∪OT is also called the terminology of O.

As a description logic, SHIQ inherits its semantics from first-order logic by the
standard translations known e.g. from [14]. Let π denote the operator for mapping a
SHIQ ontology to a first-order logic program as given in [14], which can also be
found in our technical report [6]. Then, O is consistent (or satisfiable) iff there exists a
first-order model of π(O). A concept C is satisfiable in O iff there exists a first-order
model of π(O) that satisfies C(a) for some individual a. O is coherent iff all atomic
concepts in it are satisfiable.

The lexicographic inference is originally defined for stratified knowledge bases in
propositional logic [3]. A stratified knowledge base S is viewed as a set of formulas and
is divided into a set of strata {S1, . . . , Sn}, where Si is a subset of formulas in S such
that S =

⋃n
i=1 Si and Sj∩Sk = ∅ for any j �= k. S can be written as (S1, . . . , Sn). The

formulas in Si have the same priority and have a higher priority than the ones in Si+1.
Let |S| denote the number of formulas in the knowledge base S. The lexicographic
ordering is a complete preordering between any two subbases A = (A1, . . . , An) and
B = (B1, . . . , Bn) of S = (S1, . . . , Sn), where Ai ⊆ Si and Bi ⊆ Si for any i,
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defined as follows: A <lex B iff there exists i such that |Ai| < |Bi| and |Aj | = |Bj |
for any j < i; A =lex B iff |Ai| = |Bi| for any i. By A ≤lex B we denote A <lex B
or A =lex B. S is called consistent if it has a model. A lex-maximal consistent subbase
S′ of S is defined as a consistent subbase of S such that for any consistent subbase S′′

of S, S′′ ≤lex S′. A formula ψ is called a lex-consistent consequence of S if for any
lex-maximal consistent subbase S′ of S, S′ |= ψ, i.e., every model of S′ is a model of
ψ. Given a stratified knowledge base S and a formula ψ, the lexicographic inference
problem checks if ψ is a lex-consistent consequence of S.

4 Lexicographic Inference in DLs

In order to apply lexicographic inference to DLs, we view a DL-based ontology as a
set of axioms (i.e. as a syntactic object). This syntactic approach to treating DL-based
ontologies is commonly used in handling inconsistency [11]. From this point of view,
two DL-based ontologies are regarded as the same iff they have the same set of axioms.

A stratified ontology O is an ontology divided into a set of strata {O1, . . . ,On},
where Oi is a subset of axioms in O such that O =

⋃n
i=1Oi and Oj ∩ Ok = ∅ for any

j �= k. O is written as (O1, . . . ,On), where the axioms in Oi have the same priority
and have a higher priority than the ones in Oi+1. Let |O| denote the number of axioms
in the ontology O. Then the notions of lexicographic ordering and lex-maximal con-
sistent subontology are defined analogously as in stratified knowledge bases by treating
axioms as formulas [19]. Since an incoherent ontology cannot deduce nontrivial conse-
quences on the unsatisfiable concepts, one may expect that a lex-maximal subontology
is not only consistent but also coherent. For example, in the following incoherent but
consistent ontology O = {A � B, A � ¬B, B(a)}, we trivially have O �|= A(x)
for any individual x because A is unsatisfiable in O. Hence, we introduce the notion
of lex-maximal coherent subontology. A lex-maximal coherent subontology O′ of O is
defined as a coherent subontology of O such that for any coherent subontology O′′ of
O, O′′ ≤lex O′. Two sorts of lexicographic consequences in DLs are defined below.

Definition 1. For a stratified ontologyO, an axiom ax is called a lex-consistent conse-
quence (resp. lex-coherent consequence) of O, written O  lex

cons ax (resp. O  lex
cohe ax),

if for any lex-maximal consistent (resp. coherent) subontology O′ of O, O′ |= ax, i.e.,
every model of O′ is a model of ax.

It should be noted that a lex-maximal coherent subontology is not necessarily a lex-
maximal consistent subontology, and vice versa. There is no straightforward correspon-
dence between lex-consistent consequences and lex-coherent consequences, as shown
in the following example.

Example 1. Let O = ({A � ⊥}, {A(a)}). Then O′ = (∅, {A(a)}) is the unique lex-
maximal coherent subontology of O, but it is not a lex-maximal consistent subontology
of O, because O′′ = ({A � ⊥}, ∅) is consistent and O′ <lex O′′. On the other
hand,O′′ is the unique lex-maximal consistent subontology of O, but it is not coherent.
Hence, O  lex

cohe A(a) but O � lex
cons A(a); O  lex

cons A � ⊥ but O � lex
cohe A � ⊥.

In this paper we consider checking both sorts of lexicographic consequences, where
the axiom ax in Definition 1 can be a concept membership axiom C(a) or a concept
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inclusion axiom C � D. The following theorem shows a reduction from the problem of
checking a lex-coherent consequence to that of checking a lex-consistent consequence.
So we focus on the problem of checking a lex-consistent consequence.

Theorem 1 ([6]). Let O = (O1, . . . ,On) be a stratified DL-based ontology, and ax
an axiom. Then O  lex

cohe ax iff O′  lex
cons ax, where O′ = (A,O1, . . . ,On) and A =

{A(a) | A is an atomic concept in O, and a is a new globally unique individual not
occurring in O and ax}.

Proof sketch. It is sufficient to show a bijection between the set of lex-maximal coher-
ent subontologies of O and the set of lex-maximal consistent subontologies of O′. (1)
Let S = (S1, . . . , Sn) be a lex-maximal coherent subontology of O. Then S′ = (A,
S1, . . . , Sn) is obviously consistent. It can be shown that S′ is a lex-maximal consistent
subontology of O′. (2) Let S = (S0, S1, . . . , Sn) be a lex-maximal consistent subon-
tology of O′. Since {A, ∅, . . . , ∅} is consistent, we have S0 = A, so S′ = (S1, . . . , Sn)
is coherent. It can be shown that S′ is a lex-maximal coherent subontology of O. ��

5 Computing Lexicographic Inference in SHIQ
The number of lex-maximal consistent subontologies of a stratified SHIQ ontologyO
can be exponential in |O| (even in |OA|, the number of ABox axioms in O). Take an
ontology O† = (O†

1, . . . , O†
n) for example, where O†

1 = {A � B � ⊥} and O†
i =

{A(ai), B(ai)} for 2 ≤ i ≤ n. O† has 2n−1 lex-maximal consistent subontologies.
Note also that the time complexity for lexicographic inference in propositional logic
is Δp

2-complete [5], i.e. exactly in polynomial calls to an NP oracle. It is not desirable
to compute all lex-maximal consistent subontologies before checking lex-consistent
consequences, because such computation needs up to exponential calls to a SHIQ
reasoner, where each call is worst-case NP-complete in data complexity [14].

To obtain a worst-case optimal method for computing lexicographic inference in
SHIQ, we consider transforming SHIQ to propositional logic. SHIQ is a subset of
first-order logic. The hardness for transforming SHIQ to propositional logic lies on
handling function symbols. Though the KAON2 transformation [14,20] can get rid of
function symbols and obtain an equisatisfiable DATALOG∨ [9] program from a SHIQ
ontology, it does not maintain the correspondence between resulting DATALOG∨ rules
and original axioms in the input ontology. We therefore extend the KAON2 transfor-
mation to maintain such correspondence by introducing new nullary atoms one-to-one
corresponding to axioms in the original ontology. Afterwards, we ground the trans-
formed DATALOG∨ program and apply current powerful SAT solvers to compute lex-
icographic inference. In this way we obtain a worst-case optimal method in data com-
plexity. There remains a practical problem in such method, i.e. SAT solvers lack of
scalability for handling large propositional programs. To tackle this problem, we parti-
tion the transformed propositional program so that we can apply SAT solvers to handle
much smaller subprograms.

Our approach is outlined as follows. Let O be a (possibly inconsistent) stratified
SHIQ ontology. We first consider the basic case, i.e. checking if O  lex

cons A(a) for
A(a) an atomic concept membership axiom, then consider the checking of other con-
sequences. The basic case is addressed in two phases. In phase 1 (subsection 5.1), we
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compute a DATALOG∨ program R(O), called the repair program of O, by using the
extended KAON2 transformation. In phase 2 (subsection 5.2), we first ground R(O)
to GR(O), then treat the problem of deciding if O  lex

cons A(a) as a set of satisfiabil-
ity problems over GR(O) and solve them by polynomial calls to a SAT solver; in this
phase we also exploit partition-based optimizations (subsection 5.3). The problem of
checking other consequences is first reduced to the basic case, then solved in the same
way (subsection 5.4).

5.1 Computing the Repair Program

We associate each axiom ax ∈ O with a new nullary decision atom h̄ax, such that
the truth value of h̄ax determines the existence of ax in O. It should be noted that
S � R and Inv(S) � Inv(R) (resp. Trans(R) and Trans(Inv(R))) are treated as
the same axiom and thus associated with the same decision atom, because they are as-
sumed present or absent together (see this assumption in Preliminaries). Let X be the set
of decision atoms wrtO, i.e., X = {h̄ax | ax ∈ O}. We extend the KAON2 transforma-
tion [14,20] to compile a DATALOG∨ programR(O) (called the repair program ofO),
such that for any truth assignment φX on X , the reduction of O wrt φX (i.e. O ↓ φX ,
see Definition 2) is satisfiable iff the reduction of R(O) wrt φX (i.e. R(O) ↓ φX , see
Definition 3) is satisfiable. Simply speaking, R(O) ↓ φX is a DATALOG∨ program
without atoms in X . The relationship between O ↓ φX and R(O) ↓ φX implies a cor-
respondence between lex-maximal consistent subontologies of O and certain optimal
models of R(O), where the optimality is defined over X .

Definition 2. Let O be a SHIQ ontology and φX a truth assignment on the set X of
decision atoms. The reduction of O wrt φX , written O ↓ φX , is a subontology obtained
from O by deleting each axiom ax such that φX(h̄ax) = 1.

Definition 3. Let P be a logic program, i.e. a set of rules (or clauses), X be a set of
ground atoms that only occur in rule heads (or only occur positively) in P , and φX be a
truth assignment on X . The reduction of P wrt φX , written P ↓ φX , is a logic program
obtained from P by deleting each rule (or clause) in P that has a head atom (or positive
atom) α ∈ X such that φX(α) = 1, and by removing any ground atom α ∈ X from
remaining rules (or clauses).

The compilation of R(O) roughly consists of three steps.
In step 1, we convert SHIQ to ALCHIQ, i.e. SHIQ without transitive roles. In

the original KAON2 transformation, a SHIQ ontology O is converted to an equisatis-
fiable ALCHIQ ontology Ω(O) by replacing each transitivity axioms Trans(S) with
all axioms of the form ∀R.C � ∀S.(∀S.C), for each R having S as a subrole and each
concept C occurring in O. In order to make each translated clause in step 2 be associ-
ated with a single decision atom, we remove from Ω(O) those axioms added to O of
the form ∀R.C � ∀S.(∀S.C) where R �= S, which are actually redundant axioms. By
Ω−(O) we denote the ALCHIQ ontology converted from O by replacing each tran-
sitivity axioms Trans(S) with all axioms of the form ∀S.C � ∀S.(∀S.C), for each
concept C occurring in O. The following lemma shows the correspondence between O
and Ω−(O).
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Lemma 1 ([6]). A SHIQ ontology O is satisfiable iff Ω−(O) is satisfiable. ��
In step 2, we translate each axiom in Ω−(O) to a set of clauses via the well-known
structural transformation [25,14,20], mapping to first-order formulas, Skolemization
and rewriting into conjunctive normal form. By Cls(ax) we denote the set of clauses
obtained from axiom ax via the above translation process (cf. [6] for details about
the translation process). For an axiom ax ∈ Ω−(O) and a clause cl ∈ Cls(ax), by
em(cl, ax) we denote the modified clause of cl into which a decision atom about ax
is embedded: if ax ∈ Ω−(O) \ O, ax must be of the form ∀S.C � ∀S.(∀S.C),

then em(cl, ax)
def
= cl ∨ h̄Trans(S); otherwise, em(cl, ax)

def
= cl ∨ h̄ax. By Ξ(O)

we denote ClsNR ∪
⋃

ax∈Ω−(O){em(cl, ax) | cl ∈ Cls(ax)}, where the clause set
ClsNR = {¬R(x, y) ∨ R−(y, x),¬R−(x, y) ∨ R(y, x) | R ∈ NR} with x and y
variables is introduced for mapping Ω−(O) to first-order logic. The following lemma
shows the correspondence between O and Ξ(O).

Lemma 2 ([6]). For any truth assignment φX on the set of decision atoms X = {h̄ax |
ax ∈ O}, O ↓ φX is satisfiable iff Ξ(O) ↓ φX is satisfiable. ��
Example 2. Let O = (O1,O2,O3,O4), where O1 = {ax1 = A(a), ax2 = B(b),
ax3 =≤1 T.�(a)}, O2 = {ax4 = T (a, b), ax5 = T (a, c), ax6 = b �≈ c}, O3 =
{ax7 = A � ∃R.B, ax8 = ∃S.B � ¬A} and O4 = {ax9 = R � S}. Then Ξ(O)
consists of the following clauses. Note that the clauses on R− and S− are removed
from Ξ(O), because neither R− nor S− occurs in O and the removal does not affect
the satisfiability of Ξ(O) ↓ φX for any truth assignment φX on X = {h̄ax1 , . . . , h̄ax9}.

cl1 : A(a) ∨ h̄ax1 . cl2 : B(b) ∨ h̄ax2 . cl3 : Q1(a) ∨ h̄ax3 .
cl4 : y1 ≈ y2 ∨ ¬Q1(x) ∨ ¬T (x, y1) ∨ ¬T (x, y2) ∨ h̄ax3 .
cl5 : T (a, b) ∨ h̄ax4 . cl6 : T (a, c) ∨ h̄ax5 . cl7 : ¬(b ≈ c) ∨ h̄ax6 .
cl8 : R(x, f(x)) ∨ ¬A(x) ∨ h̄ax7 . cl9 : B(f(x)) ∨ ¬A(x) ∨ h̄ax7 .
cl10 : ¬A(x) ∨ ¬S(x, y) ∨ ¬B(y) ∨ h̄ax8 . cl11 : S(x, y) ∨ ¬R(x, y) ∨ h̄ax9 . ��

In step 3, we extend the Basic Superposition (BS) calculus [2,21] adapted in the KAON2
transformation [14,20] by considering decision atoms in the term ordering, i.e. assign-
ing a lower precedence to decision atoms than other function symbols, constants and
predicates. Then, we compute a DATALOG∨ program, i.e. the repair program R(O),
from Ξ(O) analogously as in the KAON2 transformation. The computation of R(O)
is through saturating the set of translated clauses in Ξ(O) that have variables, elimi-
nating function symbols in the saturated set, removing irrelevant clauses and convert-
ing clauses to rules. Such computation is very technical, so we do not give details
here but refer the reader to our technical report [6]. Recall that a DATALOG∨ pro-
gram consists of rules R of the form A1 ∨ . . . ∨ An ← B1, . . . , Bm, where all Ai

and Bi are atoms; the set head(R) = {A1, . . . , An} is called the head of R; the set
body(R) = {B1, . . . , Bm} is called the body of R.

Example 3 (Example 2 continued). The repair program R(O) is constructed as fol-
lows. First, Ξ(O) is separated into the set of clauses having variables Ξvar(O) = {cl4,
cl8, cl9, cl10, cl11} and the set of variable-free clauses Ξcon(O) = {cl1, cl2, cl3, cl5,
cl6, cl7}. Second, Ξvar(O) is saturated by our extended BS calculus, yielding the fol-
lowing new clauses (the notation R(cli, clj) means that a clause is derived by resolving
clauses cli and clj).
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cl12 : S(x, f(x)) ∨ ¬A(x) ∨ h̄ax7 ∨ h̄ax9 . R(cl8, cl11)
cl13 : ¬A(x) ∨ ¬B(f(x)) ∨ h̄ax7 ∨ h̄ax8 ∨ h̄ax9 . R(cl12, cl10)
cl14 : ¬A(x) ∨ h̄ax7 ∨ h̄ax8 ∨ h̄ax9 . R(cl13, cl9)

Third, the clauses containing function symbols are mapped to function-free clauses
given below, where each mapped clause is associated with the original sequence num-
ber. The function term f(x) is mapped to a new variable xf ; meanwhile, a new negative
literal ¬Sf (x, xf ) is added to the mapped clause to make it safe, i.e. every variable oc-
curring in positive literals occurs in some negative literal as well.

cl8 : ¬Sf (x, xf ) ∨R(x, xf ) ∨ ¬A(x) ∨ h̄ax7 .

cl9 : ¬Sf (x, xf ) ∨B(xf ) ∨ ¬A(x) ∨ h̄ax7 .

cl12 : ¬Sf (x, xf ) ∨ S(x, xf ) ∨ ¬A(x) ∨ h̄ax7 ∨ h̄ax9 .

cl13 : ¬Sf (x, xf ) ∨ ¬A(x) ∨ ¬B(xf ) ∨ h̄ax7 ∨ h̄ax8 ∨ h̄ax9 .

Fourth, cl13 and cl12 are in turn detected to be irrelevant and removed. Finally, remain-
ing clauses, together with ground clauses instantiated from Sf (x, xf ), are translated
into rules given below, yielding R(O) = {R1, . . . , R15}.

R1 : A(a) ∨ h̄ax1 . R2 : B(b) ∨ h̄ax2 . R3 : Q1(a) ∨ h̄ax3 .

R4 : y1 ≈ y2 ∨ h̄ax3 ← Q1(x), T (x, y1), T (x, y2).
R5 : T (a, b) ∨ h̄ax4 . R6 : T (a, c) ∨ h̄ax5 . R7 : h̄ax6 ← b ≈ c.

R8 : R(x, xf )∨h̄ax7 ← A(x), Sf (x, xf ). R9 : B(xf )∨h̄ax7 ← A(x), Sf (x, xf ).
R10 : h̄ax8 ← A(x), S(x, y), B(y). R11 : S(x, y) ∨ h̄ax9 ← R(x, y).
R12 : h̄ax7 ∨ h̄ax8 ∨ h̄ax9 ← A(x).
R13 : Sf (a, af ). R14 : Sf (b, bf ). R15 : Sf (c, cf ). ��

The following theorem shows the equisatisfiability between O ↓ φX and R(O) ↓ φX

for an arbitrary truth assignment φX on X . Note that when O is a stratified ontology,
R(O) is not stratified according to the stratification of O. Instead, we associate the
stratification of O with the stratification of decision atoms (see Theorem 3).

Theorem 2 ([6]). Let O be a SHIQ ontology and X the set of decision atoms. Then:
(1) For any truth assignment φX on X , O ↓ φX is satisfiable iff R(O) ↓ φX is satisfi-
able; (2) The number of atoms in each rule in R(O) is at most polynomial, the number
of rules in R(O) is at most exponential in the size of O, and R(O) can be computed in
time exponential in the size of O, for unary coding of numbers in input.

Proof sketch. (For Claim 1) We can prove analogously as in Chapter 7 of [20] that, for
any truth assignment φX on X , Ξ(O) ↓ φX and R(O) ↓ φX are equisatisfiable. So
by Lemma 2, O ↓ φX and R(O) ↓ φX are equisatisfiable. (For Claim 2) The proof
is by considering the maximum number of each type of clauses that can be derived by
our extended BS calculus, analogously as in Lemma 5.3.10 and Theorem 5.4.8 of [20].

��
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5.2 Checking the Basic Consequences

To decide if O  lex
cons A(a) for an atomic concept membership axiom A(a), we es-

tablish, by Claim 1 of Theorem 2, a correspondence between X-lex-minimal mod-
els of the repair program R(O) and lex-maximal consistent subontologies of O (see
Theorem 3). This correspondence implies that the problem of deciding if O  lex

cons A(a)
can be reduced to a certain problem of cautious reasoning over R(O) (see Theorem 4),
solved by a set of satisfiability tests (see Theorem 5).

Definition 4. For a logic program P and a stratification X = (X1, . . . , Xn) of some
ground atoms in P , a model M of P is called an X-lex-minimal model of P if for any
model M ′ of P , (M ∩X1, . . . , M ∩Xn) ≤lex (M ′ ∩X1, . . . , M

′ ∩Xn).

Theorem 3 ([6]). Let O = (O1, . . . ,On) be a stratified SHIQ ontology, and X =
(X1, . . . , Xn) be the corresponding stratification of decision atoms in R(O), i.e., Xi =
{h̄ax | ax ∈ Oi} for i = 1, . . . , n. Then: (1) If M is an X-lex-minimal model of R(O),
then O \ {ax | h̄ax ∈ M ∩ X} is a lex-maximal consistent subontology of O; (2) If
O′ = (O′

1, . . . ,O′
n) is a lex-maximal consistent subontology of O, then R(O) has an

X-lex-minimal model M such that for each i, M ∩Xi = {h̄ax | ax ∈ Oi \ O′
i}. ��

Theorem 4 ([6]).O  lex
cons A(a) iff A(a) is in all X-lex-minimal models of R(O). ��

Suppose X = (X1, . . . , Xn). It is easy to see that (|M ∩ X1|, . . . , |M ∩ Xn|) is the
same for every X-lex-minimal model M of R(O). By lmw(R(O), X) = (|M ∩
X1|, . . . , |M ∩ Xn|) we denote the unique lex-minimal weight vector of every X-
lex-minimal model M of R(O), and by lmwi(R(O), X) we denote the ith element
|M ∩ Xi| in lmw(R(O), X). Note that an interpretation is an X-lex-minimal model
of R(O) iff it is a model of R(O) ∪ {

∑
h̄ax∈Xi

assign(h̄ax) ≤ lmwi(R(O), X) |
1 ≤ i ≤ n}, where assign(α) denotes the 0-1 truth value of α. So Theorem 4 can be
reformulated into the following theorem.

Theorem 5. O  lex
cons A(a) iff R(O) ∪ {

∑
h̄ax∈Xi

assign(h̄ax) ≤ lmwi(R(O), X) |
1 ≤ i ≤ n} ∪ {← A(a)} is unsatisfiable. ��

In order to apply Theorem 5 to check if O  lex
cons A(a), we need to compute lmw

(R(O), X). By Definition 4, it can be seen that lmwi(R(O), X) is the minimum num-
ber v such that Pi(v) is satisfiable, where

Pi(v) = R(O) ∪ {
∑

h̄ax∈Xj

assign(h̄ax) ≤ lmwj(R(O), X) | 1 ≤ j < i} ∪ (1)

{
∑

h̄ax∈Xi

assign(h̄ax) ≤ v} ∪ {assign(h̄ax) = 0 | h̄ax ∈
n⋃

j=i+1

Xj}.

I.e., lmwi(R(O), X) is defined based on lmwj(R(O), X) for all j < i, and can be
computed one by one from i = 1 to n.

To check the satisfiability of a logic program of the form in Theorem 5 or
Formula (1), we need to handle Pseudo-Boolean constraints (PB-constraints) of the
form

∑
i ci · assign(xi) ≤ d with constants ci, d ∈ Z and variables xi ∈ {0, 1}, where
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Z denotes the integer domain. The satisfiability problem with PB-constraints has been
well studied in the SAT community. It can be either solved by standard SAT solvers
after translating PB-constraints to SAT clauses [8], or solved by extended SAT solvers
that support PB-constraints natively, such as PUEBLO [30].

There are some issues for applying SAT solvers: they work on propositional pro-
grams only and do not distinguish equational atoms (of the form a ≈ b) from other
atoms. To treat the equality predicate ≈, which is interpreted as a congruence relation
in SHIQ, as an ordinary predicate, we use a well-known transformation from [10].
For a DATALOG∨ program P , let P≈ denote the logic program consisting of the rules
stating that ≈ is reflexive, symmetric and transitive, as well as the replacement rules
of the form “ T (x1, . . . , yi, . . . , xn) ← T (x1, . . . , xi, . . . , xn), xi ≈ yi”, instantiated
for each predicate T in P other than ≈ and each position i. Then, appending P≈ to P
allows to treat ≈ as an ordinary predicate.

To ground R(O) ∪ R(O)≈, we apply the disk-based grounding (DBG) technique
in [7]. Basically, the DBG technique instantiates rules in a traditional bottom-up iter-
ative manner, applying a SQL engine to maintain ground atoms in instantiated rules.
By GR(O) we denote the propositional program grounded from R(O) ∪ R(O)≈ by
applying the DBG technique. There exists a bijection between the set of minimal mod-
els of GR(O) and that of R(O) ∪ R(O)≈, where two corresponding minimal models
coincide except on some ground atoms not over concept/role names. The following
corollary is an immediate consequence that follows from Theorem 4 and Theorem 5,
where lmwi(GR(O), X) = lmwi(R(O), X) for each i.

Corollary 1 ([6]). O  lex
cons A(a) iff A(a) is in all X-lex-minimal models of GR(O),

i.e., GR(O)∪{
∑

h̄ax∈Xi
assign(h̄ax) ≤ lmwi(GR(O), X) | 1 ≤ i ≤ n}∪{← A(a)}

is unsatisfiable. ��

Example 4 (Example 3 continued). By applying the DBG technique,R(O) ∪R(O)≈
is grounded to GR(O) = {r1, . . . , r16} given below. Note that some optimizations on
instantiating R(O)≈ are used in this example, cf. [6].

r1 : A(a) ∨ h̄ax1 . r2 : B(b) ∨ h̄ax2 . r3 : Q1(a) ∨ h̄ax3 .
r4 : T (a, b) ∨ h̄ax4 . r5 : T (a, c) ∨ h̄ax5 . r6 : h̄ax6 ← b ≈ c.
r7 : b ≈ c ∨ h̄ax3 ← Q1(a), T (a, b), T (a, c). r8 : R(a, af) ∨ h̄ax7 ← A(a).
r9 : B(af ) ∨ h̄ax7 ← A(a). r10 : S(a, af ) ∨ h̄ax9 ← R(a, af).
r11 : h̄ax8 ← A(a), S(a, af ), B(af ). r12 : h̄ax7 ∨ h̄ax8 ∨ h̄ax9 ← A(a).
r13 : T (a, c) ← T (a, b), b ≈ c. r14 : T (a, b) ← T (a, c), b ≈ c.
r15 : B(c) ← B(b), b ≈ c. r16 : B(b) ← B(c), b ≈ c.

It can be computed by Formula (1), where R(O) is replaced with GR(O), that lmw
(GR(O), X) = (0, 1, 0, 1). Consider deciding if O  lex

cons A(a). The satisfiability of
Π = GR(O) ∪ {assign(h̄ax1) + assign(h̄ax2) + assign(h̄ax3) ≤ 0, assign(h̄ax4) +
assign(h̄ax5) + assign(h̄ax6) ≤ 1, assign(h̄ax7) + assign(h̄ax8) ≤ 0, assign(h̄ax9) ≤
1}∪{← A(a)} is tested. It is easy to see that Π is unsatisfiable, so O  lex

cons A(a). ��

Consider the time complexity for checking ifO  lex
cons A(a) in terms of data complexity,

i.e. the complexity measured as a function of |OA|. Since saturating the clause set Ξ(O)
is only performed over the subset transformed from terminological axioms, by viewing
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the considering ontology in Claim 2 of Theorem 2 as the terminology of O only, the
saturation of Ξ(O) is accomplished in constant time and the number of rules inR(O) is
polynomial in |OA|. For every rule R ∈ R(O), the number of variables in R is bounded
by a constant, so there are at most polynomial ground instances of R in GR(O). It
follows that the number of rules in GR(O) is polynomial in |OA|. In addition, the
computation of lmw(GR(O), X) needs at most |X | satisfiability tests, so checking if
O  lex

cons A(a) is accomplished in |X | + 1 satisfiability tests over GR(O). Since the
satisfiability problem with PB-constraints is NP-complete, the problem of deciding if
O  lex

cons A(a) is thus in Δp
2 in data complexity. Note that the addressing problem is also

Δp
2-hard (see the following theorem), so our proposed method is worst-case optimal in

data complexity.

Theorem 6 ([6]). For a stratified SHIQ ontology O and an atomic concept member-
ship axiom A(a), the problem of deciding if O  lex

cons A(a) is data complete for Δp
2.

Proof sketch. The Δp
2 membership has been shown by our proposed method. The Δp

2

hardness is proved by a polynomial time reduction from the following Δp
2-complete

problem [16]: “given a satisfiable clause set C = {C1, . . . , Cm} on X = {x1, . . . , xn},
decide whether the lexicographically minimum truth assignment φm

X satisfying C ful-
fills φm

X(xn) = 1”. ��

5.3 Partition-Based Optimizations

To make the above method more scalable, we adapt the partitioning technique in [7]
to decompose GR(O) into disjoint subprograms before checking if O  lex

cons A(a). By
that means, the satisfiability test in Corollary 1 can be performed over a small relevant
part of GR(O).

Let atoms(P ) denote the set of ground atoms in a propositional program P . By ap-
plying the partitioning algorithm given in [7], which can also be found in our technical
report [6], we decompose GR(O) into a set of disjoint subprograms {GRi(O)}1≤i≤p.
The decomposition is through sequentially accessing GR(O) at most min(|GR(O)|,
|atoms(GR(O))|) times, where |GR(O)| denotes the number of rules in GR(O) and
|atoms(GR(O))| denotes the number of atoms in GR(O). The resulting set has the
following properties: (1) GRj(O) and GRk(O) have no common ground atoms for
any j �= k; (2) each GRi(O) is a connected component, i.e., for any two ground
atoms α1 and α2 occurring in GRi(O), there exists a sequence of ground atoms β1 =
α1, . . . , βn = α2 such that βk and βk+1 occur together in some rule in GRi(O)
for k = 1, . . . , n − 1; (3) each GRi(O) is a certain rule closure, i.e., for each rule
r ∈ GR(O) such that ∅ ⊂ head(r) \ X ⊆ atoms(GRi(O) \ {r}), r ∈ GRi(O);
and (4) for each rule r ∈ GR(O) \

⋃p
i=1 GRi(O), there exists some ground atom

α ∈ head(r) such that α �∈ atoms(
⋃p

i=1 GRi(O)) ∪ X . Let X†
i denote the subset

of decision atoms that occur in GRi(O). Then X†
i can be written as (X†

i,1, . . . , X
†
i,n)

based on the stratification of O, i.e., X†
i,j = X†

i ∩ {h̄ax | ax ∈ Oj} for j = 1, . . . , n.
By using the partitioning results, we develop a novel algorithm for checking if

O  lex
cons A(a) (cf. [6] for more explanations on this algorithm). Let GR0(O) =

GR(O)\
⋃p

i=1 GRi(O) and M0 =
⋃

r∈GR0(O) head(r)\(atoms(
⋃p

i=1 GRi(O))∪X).
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Then by Property (4) in the previous paragraph, M0 ∩ head(r) �= ∅ for all rules r ∈
GR0(O). Let X ′ be the set of decision atoms not occurring in

⋃p
i=1 GRi(O), i.e., X ′ =

X \ atoms(
⋃p

i=1 GRi(O)). Let GR′
0(O) be obtained from GR0(O) by deleting all de-

cision atoms in X ′, i.e., GR′
0(O) = {

∨
head(r) \X ′ ←

∧
body(r) | r ∈ GR0(O)}.

Let MM0(O) denote the unique minimal model of {r ∈ GR′
0(O) | |head(r)| = 1}.

For every X-lex-minimal model M of GR(O), M does not contain any decision atom
in X ′, otherwise M ′ = (M ∩ atoms(

⋃p
i=1 GRi(O))) ∪M0 will be a model of GR(O)

such that (M ′ ∩ X1, . . . , M
′ ∩ Xn) <lex (M ∩ X1, . . . , M ∩ Xn), contracting that

M is an X-lex-minimal model of GR(O). Hence, M ∩ atoms(GR′
0(O)) is a model

of GR′
0(O). It follows that MM0(O) ⊆ M . Let GRr

0(O) be obtained from GR′
0(O)

by deleting each rule that has at least one head atom in MM0(O), and by removing
all atoms in MM0(O) from the remaining rules. Then, the satisfiability test in Corol-
lary 1 can be performed over a subprogram of GR(O), extracted from GRi(O)1≤i≤p,
GRr

0(O) or MM0(O), as shown below, where lmwi(GRk(O), X†
k) can be computed

over GRk(O) in the same way as computing lmwi(R(O), X), cf. Formula (1).

1. In case A(a) ∈ MM0(O), O  lex
cons A(a).

2. In case A(a) ∈ atoms(GRk(O)) for some k > 0, let Π = GRk(O)∪{
∑

h̄ax∈X†
k,i

assign(h̄ax) ≤ lmwi(GRk(O), X†
k) | 1 ≤ i ≤ n}. I.e., Π is GRk(O) to-

gether with PB-constraints encoded from the criterion for X†
k-lex-minimal models

of GRk(O). Then O  lex
cons A(a) iff Π ∪ {← A(a)} is unsatisfiable.

3. In case A(a) ∈ head(r) \ atoms(
⋃p

i=1 GRi(O)) for some rule r ∈ GRr
0(O), let

Π be the fixpoint of Πt such that Π0 = {r ∈ GRr
0(O) | head(r) ⊆ X ∪ {A(a)}},

and Πt = Πt−1 ∪ {r ∈ GRr
0(O) | head(r) ⊆ atoms(Πt−1 ∪

⋃p
i=1 GRi(O))}

for t > 0. Let SN = {1 ≤ i ≤ p | atoms(Π) ∩ atoms(GRi(O)) �= ∅} and
Π ′ = Π ∪

⋃
k∈SN

(GRk(O) ∪ {
∑

h̄ax∈X†
k,i

assign(h̄ax) ≤ lmwi(GRk(O), X†
k) |

1 ≤ i ≤ n}). I.e., Π is a subprogram extracted from GRr
0(O); Π ′ is the union

of Π and every GRk(O) that has some atoms occurring in Π , together with PB-
constraints encoded from the criterion for X†

k-lex-minimal models of GRk(O).
Then O  lex

cons A(a) iff Π ′ ∪ {← A(a)} is unsatisfiable.
4. In other cases, O � lex

cons A(a).

Theorem 7 ([6]). The above algorithm for checking if O  lex
cons A(a) is correct. ��

Example 5 (Example 4 continued). By applying the partitioning algorithm in [7],
GR(O) is decomposed into GR1(O) = {r1, r8, r9, r10, r11, r12} and GR2(O) = {r3,
r4, r5, r6, r7, r13, r14}. Afterwards, the decomposition is continued to yield in turn
GR0(O) = {r2, r15, r16}, MM0(O) = {B(b)} and GRr

0(O) = {B(c) ← b ≈ c}.
The decomposition also divides X into X†

1 = ({h̄ax1}, ∅, {h̄ax7 , h̄ax8}, {h̄ax9})
and X†

2 = ({h̄ax3}, {h̄ax4 , h̄ax5 , h̄ax6}, ∅, ∅). It can be computed by Formula (1),
whereR(O) and X are replaced with GRi(O) and X†

i respectively, that lmw(GR1(O),
X†

1) = (0, 0, 0, 1) and lmw(GR2(O), X†
2) = (0, 1, 0, 0).

Consider deciding if O  lex
cons A(a). Since A(a) ∈ atoms(GR1(O)), the satisfi-

ability of Π is tested, where Π = GR1(O) ∪ {assign(h̄ax1) ≤ 0, assign(h̄ax7) +
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assign(h̄ax8) ≤ 0, assign(h̄ax9) ≤ 1}. Since Π ∪ {← A(a)} is unsatisfiable, we have
O  lex

cons A(a).
Consider deciding if O  lex

cons B(c). Since B(c) ∈ head(r) \ atoms(GR1(O) ∪
GR2(O)) for the unique rule r ∈ GRr

0(O), the satisfiability of Π ′ ∪ {← B(c)}
is tested, where Π ′ = GRr

0(O) ∪ GR1(O) ∪ {assign(h̄ax3) ≤ 0, assign(h̄ax4) +
assign(h̄ax5) + assign(h̄ax6) ≤ 1}. Since Π ′ ∪ {← B(c)} is satisfiable (e.g., the set
{Q1(a), T (a, b), h̄ax5} is a model), we have O � lex

cons B(c).
Consider deciding if O  lex

cons B(b). Since B(b) ∈ MM0(O), we have O  lex
cons

B(b). Consider deciding ifO  lex
cons B(a). Since B(a) �∈ MM0(O)∪atoms(GRr

0(O)∪
GR1(O) ∪GR2(O)), we have O � lex

cons B(a). ��

5.4 Checking Other Consequences

To decide if O  lex
cons C(a) for O = (O1, . . . ,On) and C a general concept, we con-

sider a new ontology O′ = ({C � Q},O1, . . . ,On), where Q is a new concept name.
Since the axiom C � Q must be in every lex-maximal consistent subontology of O′,
we have O  lex

cons C(a) iff O′  lex
cons Q(a), where the latter can be checked using the

proposed method, as Q(a) is an atomic concept membership axiom.
To decide if O  lex

cons C � D for C and D general concepts, we consider the axiom
(¬C � D)(a) for a a new globally unique individual. Since C � D is equivalent to
� � ¬C � D and O  lex

cons (� � ¬C � D) iff O  lex
cons (¬C � D)(a), we have

O  lex
cons C � D iff O  lex

cons (¬C � D)(a), where the latter can be checked using the
method just given above.

To decide if O  lex
cohe C(a) or decide if O  lex

cohe C � D for C and D general con-
cepts, we first reduce the problem to that of checking the corresponding lex-consistent
consequence by Theorem 1, then solve it in the same way.

6 Conclusion and Future Work

In this paper, we applied the lexicographic inference to reason over inconsistent DL-
based ontologies and addressed the problem of checking lex-consistent (or lex-coherent)
consequences of a SHIQ ontology. Basically, our proposed method compiles the input
SHIQ ontology to a propositional program, so that the addressing problem is solved
in polynomial calls to current powerful SAT solvers. The method is the first worst-
case optimal one (in data complexity) for checking lex-consistent consequences of a
SHIQ ontology. It performs the checking without computing any lex-maximal consis-
tent subontology. It can also be applied to check lex-coherence consequences by first
reducing the problem to that of checking lex-consistent consequences. In order to make
the method more scalable, we also gave partition-based techniques to optimize the call-
ing of SAT solvers. For future work, we plan to conduct a thorough evaluation for the
proposed method and find feasible approaches to handle OWL DL ontologies.
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Abstract. Revision of a Description Logic-based ontology to incorporate newly
received information consistently is an important problem for the lifecycle of
ontologies. Many approaches in the theory of belief revision have been applied
to deal with this problem and most of them focus on the postulates or the logical
properties of a revision operator in Description Logics (DLs). However, there is
no coherent view on how to characterize a revision operator in DLs. In this paper,
we lay bare the assumptions underlying different approaches for revision in DLs
and propose some criteria to compare them. Based on the analysis, we give our
definition of a revision operator in DLs and point out some open problems.

1 Introduction

Ontologies play a crucial role for the success of the Semantic Web [3]. One of the
challenging problems for the development of ontology is ontology evolution, which is
defined as the timely adaptation of an ontology to the arisen changes and the consistent
management of these changes [10,27]. One of the central problems during ontology
evolution is inconsistency handling. There are various forms of inconsistencies, such as
structural inconsistency, logical inconsistency and user-defined inconsistency. Among
them, logical inconsistency has received lots of attention, where ontologies are repre-
sented by logical theories, such as Description Logics (DLs) [6,10,11].

Theory of belief change in propositional logic or first-order logic deals with the log-
ical inconsistency resulting from revising a knowledge base by newly received infor-
mation. There are three types of belief change, i.e. expansion, contraction and revision.
Expansion is simply to add a formula to a knowledge base; contraction requires to con-
sistently remove a formula from a knowledge base and revision is the problem of ac-
commodating a new formula to a knowledge base consistently. Alchourrón, Gardenfors
and Markinson (AGM) propose a set of postulates to characterize each belief change
operator (see [8] for their work). The application of AGM’s theory to description log-
ics is not trivial because it is based on the assumptions that generally fail for DLs [5].
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In [5,6], the basic AGM postulates for contraction are generalized to DLs and the fea-
sibility of applying the generalized AGM theory of contraction to DLs and OWL is
studied. However, they do not consider the application of AGM postulates for revision
in DLs. According to [6], DL SHIF(D) and DL SHOIN (D) are not AGM com-
pliant, i.e., we cannot define a contraction operator that satisfies the generalized AGM
postulates in these DLs.

In AGM’s theory, epistemic states are represented by belief sets, i.e., sets of formulas
that are closed under logical consequence. However, in a belief set, there is no difference
between the explicitly represented knowledge (i.e., those formulas that are stored in
the databases) and the implicitly represented one (i.e., those formulas that are implied
by the explicitly represented one). Therefore, many researchers turn to use a belief
base, i.e., a finite set of formulas that may not be closed under logical consequence, to
represent epistemic sates of an agent (see [7,18,14,16]). In [4], the authors argue that
in the context of the ontology evolution, it is more natural to differentiate the explicit
knowledge and implied one in an ontology. They then propose a set of postulates for
contraction operators by dropping the assumption that the result of contraction is an
ontology closed under logical consequence. They also define a set of postulates for
revision. In [12], Hansson’s semi-revision operator is applied to deal with the revision
problem in DLs and an algorithm is given to implement the revision operator. However,
semi-revision operator does not guarantee the success postulate, which says that the
newly received information will be kept after revision. Therefore, in [25], two revised
semi-revision operators are given to guarantee the property of (weak) success, which
says that we should not remove the new information unless it leads to contradiction.
The disadvantage of their approaches is that they are dependent on the syntactical forms
of axioms and therefore are not fine-grained.

Most of the important work on revising DL knowledge bases is based on the AGM
theory. However, compared with mature research in the area of belief revision, e.g.,
AGM’s theory, some of them are not well justified and also deviate from the AGM
paradigms, leading to a misconception that AGM theory is unsuitable for DLs. There-
fore, it is important to analyze these approaches to lay bare the assumptions underlying
them. The forthcoming Semantic Web constitutes an ideal application scenario for for-
mal logic and traditional commonsense reasoning approaches. Therefore, many people
from traditional knowledge representation and reasoning community are interested in
applying the work on belief revision to DLs. But they may not be familiar with the lit-
erature and find it hard to know where to start. So, another motivation of this work is
to report the latest progress of the work on revision in DLs and point out some future
directions to facilitate their study.

In this paper, we investigate the problem of revision in description logics. We mainly
consider the following questions:

– What is a revision operator in description logics? This is a fundamental question to
be answered.

– What postulates should a revision operator satisfy? This is the main question that
will be discussed in this paper. This question is closely related to the first one.

This paper is organized as follows. Section 2 briefly introduces Description Logics and
Section 3 gives a short survey of belief revision theory. Section 4 gives a survey of
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existing revision approaches in description logics. We also propose some criteria to
facilitate the comparison among these approaches. Finally, we conclude the paper, and
give some open questions in Section 6.

2 Description Logics

We introduce some basic definitions of Description Logics (DLs). More comprehensive
treatment of DLs can be found in Chapters 2 and 4 of [2].

We start from a set NC of concept names, a set NR of role names and a set NI of
individual names. Concepts in DLs are defined inductively with the help of a set of
constructors, such as conjunction (�), disjunction (�), negation (¬) and nominal ({a})
where a is an individual name. The expressive power of a DL is determined by the
constructors that are used in it.

A terminology axiom is an expression of the form C � D where C and D are concept
expressions, and a role axiom is an expression of the form R�S, where R and S are
role expressions. A TBox, denoted by T , is a set of terminology axioms and role axioms
which are viewed as intensional description of the domain of interest. An assertional
axiom is an expression of the form C(a) or R(a, b), where C is a concept expression,
R is a role expression and a and b are individual names. An ABox, denoted by A, is
a set of assertional axioms, which are viewed as extensional information. Finally, A
DL-based knowledge base (or ontology) is a pair K = (T ,A), where T and A are a
TBox and an ABox respectively.

The semantics of a DL is defined by an interpretation I = ("I , ·I) which consists
of a non-empty domain set "I and an interpretation function ·I , which maps from
individuals, concepts and roles to elements of the domain, subsets of the domain and
binary relations on the domain, respectively. Given an interpretation I, we say that I
satisfies a terminology axiom C � D (resp., a role axiom R � S) if CI⊆DI (resp.,
RI ⊆ SI ). Furthermore, I satisfies a concept assertion C(a) (resp., a role assertion
R(a, b)) if aI∈CI (resp., (aI , bI)∈RI). An interpretation I is called a model of an
ontology K , iff it satisfies each axiom in K . A concept name C in an ontology K , is
unsatisfiable if for each model I of K , CI = ∅. An ontology K is incoherent if there
exists an unsatisfiable concept name in K . An ontology K is inconsistent iff it has no
model.

3 Belief Revision

We give a short survey of belief revision theory and refer the interesting reader to Chap-
ter 8 of [28]. The purpose of this section is to provide some background knowledge for
understanding the analysis of existing revision approaches in DLs. For this reason, we
will focus on two lines of work: AGM belief change theory [8] and Hansson’s belief
dynamics theory [17].

Theory of belief revision deals with logical inconsistency resulting from revising a
knowledge base by a piece of newly received information. In their pioneer work in [1],
Alchourrón, Gardenfors and Markinson (AGM) propose a set of postulates to charac-
terize a rational revision operator. AGM’ framework is built on a formal language L
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in a logic which is identified by its consequence operation Cn, where L is assumed to
be closed under all the boolean connectives ¬ (negation), ∧ (conjunction), ∨ (disjunc-
tion) and → (implication), and Cn should satisfy the following conditions: for any set
of formulas X and Y , X ⊆ Cn(X), Cn(X) = Cn(Cn(X)) and Cn(X) ⊆ Cn(Y )
whenever X ⊆ Y . For example, L can be based on first order logic or classical propo-
sitional logic. The symbols � and ⊥ will be used to denote respectively an arbitrary
tautology and contradiction of L. In AGM’s work, beliefs of an agent are represented
by a set of formulas closed under logical consequence, called a belief set, i.e., a set K
such that K = Cn(K). A revision operator is an operation ∗ that maps a belief set K
and a formula φ to a belief set K ∗ φ. Additional constraints should be imposed on re-
vision operator ∗ to capture the notion of rational belief revision. One of the important
constraints is the principle of minimal change, that is, a rational agent should change
her beliefs as little as possible to accommodate the new information consistently. To
define a rational belief revision operator, AGM propose a set of eight postulates, known
as the AGM postulates for belief revision, as follows: let K + φ = Cn(K ∪ {φ}),

(K ∗ 1) K ∗ φ is a theory of L.
(K ∗ 2) φ ∈ K ∗ φ.
(K ∗ 3) K ∗ φ ⊆ K + φ.
(K ∗ 4) If ¬φ �∈ K then K + φ ⊆ K ∗ φ.
(K ∗ 5) If φ is consistent then K ∗ φ is also consistent.
(K ∗ 6) If Cn(φ) = Cn(ψ) then K ∗ φ = K ∗ ψ.
(K ∗ 7) K ∗ (φ ∧ ψ) ⊆ (K ∗ φ) + ψ.
(K ∗ 8) If ¬ψ �∈ K ∗ φ then (K ∗ φ) + ψ ⊆ K ∗ (φ ∧ ψ).

Explanation of these postulates can be found in Chapter 8 of [28].
AGM also study another type of belief change called belief contraction, the problem

of giving up a certain belief φ in a belief set K . Formally, a belief contraction operator
− is a function mapping a theory K and a formula φ to a new theory K −φ. To capture
a rational belief contraction operator, AGM propose a set of postulates, known as AGM
postulates for belief contraction:

(K − 1) K − φ is a theory of L.
(K − 2) K − φ ⊆ K .
(K − 3) If φ �∈ K then K − φ = K .
(K − 4) If Cn(φ) �= Cn(�) then φ �∈ K − φ.
(K − 5) If φ ∈ K then K ⊆ (K − φ) + φ.
(K − 6) If Cn(φ) = Cn(ψ) then K − φ = K − ψ.
(K − 7) (K − φ) ∩ (K − ψ) ⊆ K − (φ ∧ ψ).
(K − 8) If φ �∈ K − (φ ∧ ψ) then K − (φ ∧ ψ) ⊆ K − φ.

There is a close relationship between belief revision and belief contraction. That is, they
can be defined by each other via the Levi Identity and the Harper Identity:

K ∗ φ = K − ¬φ) + φ (Levi Identity)

K − φ = (K ∗ ¬φ) ∩K (Harper Identity)

It has been shown that for every revision operator ∗ satisfying AGM postulates
for belief revision there is a contraction function− satisfying AGM postulates for belief
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contraction that produces ∗ by means of the (Levi Identity). Similar comment can be
applied to the Harper Identity.

AGM postulates provide nice characterization of a rational belief revision operator
and a rational belief contraction operator. To justify their postulates, they also propose
two constructive models for contraction operator (we only need to consider constructive
models for contraction operator because of the (Levi Identity)). The first constructive
model is based on a selection function. Contraction operators defined by selection func-
tions are called partial meet contraction operators. They have shown a representation
theorem which says that a partial meet contraction function corresponds the postulates
(K − 1)-(K − 8). The second constructive model is based on the notion of epistemic
entrenchment, which is a special preorder on formulas representing the relative epis-
temic loss produced by the removal of beliefs from the agent’s initial belief set. It has
been shown that the class of contraction operators produced by epistemic entrenchment
coincides precisely with those satisfying the AGM postulates for contraction.

Although AGM’s theory on belief revision and belief contraction looks elegant, their
work has been criticized by many other researchers. For example, they follow the prin-
ciple of syntax independence, which is not always advisable because an agent may not
want to change the syntactic form of formulas in the revised knowledge base. Another
criticism is that their work is based on the assumption that an agent’s beliefs should be
modelled as a belief set. This representation suffers from several problems. For exam-
ple, there is potentially infinite number of formulas in a belief set. Therefore, several
researchers have proposed to use a belief base which is a set of formulas that is no
closed under logical consequence to represent the beliefs of an agent [17,18].

In [18], AGM postulates for revision are rephrased in propositional logic as follows,
where ◦ is a revision operator which is a function from a pair of formulas ψ and μ to
a new formula denoted by ψ◦μ (we use  to denote the classical deduction and ≡ to
denote the equivalence relation).

(R1) ψ ◦ μ  μ
(R2) If ψ ∧ μ is satisfiable then ψ ◦ μ≡ψ ∧ μ
(R3) If μ is satisfiable then ψ ◦ μ is also satisfiable
(R4) If ψ1 ≡ ψ2 and μ1 ≡ μ2 then ψ1 ◦ μ1 ≡ ψ2 ◦ μ2

(R5) (ψ ◦ μ) ∧ φ implies ψ ◦ (μ ∧ φ)
(R6) If (ψ ◦ μ) ∧ φ is satisfiable then ψ ◦ (μ ∧ φ) implies (ψ ◦ μ) ∧ φ

It has been show that, given a belief set K , if ψ is a formula that satisfies K = Cn(ψ)
and define K ∗μ = Cn(ψ ◦μ), then ∗ satisfies (K ∗ 1)-(K ∗ 8) if and only if ◦ satisfies
(R1)-(R6).

Hansson in [15] defines a contraction operator, called a kernel contraction operator,
which follows AGM’s work on safe contraction (see [17]). He shows that a contraction
operator for a belief set which is generated by a kernel contraction on a finite base for
the belief set satisfies (K − 1)-(K − 5) and some other new postulates but it does not
satisfy (K − 6) in general. Let B be a belief base and φ a formula in L. A φ-kernel of
B is a subset B′ of B such that B′  φ and there is no proper subset of B′ entails φ.
We denote the set of all φ-kernels by B ⊥ φ. An incision function σ for B is a function
such that for all φ, σ(B ⊥ φ) ⊆ ∪A∈B⊥φA and for all B′ ∈ B ⊥ φ such that B′ �= ∅,
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σ(B ⊥ φ) ∩B′ �= ∅. Given an incision function σ for a belief base B, we can define a
kernel revision operator − as follows: B − φ = B \ σ(B ⊥ φ). Hansson shows that a
kernel contraction operator can be characterized by a set of postulates.

Theorem 1. [15] An operator− from 2L ×L to 2L, where 2L is the power set of L, is
a kernel contraction operator if and only if it satisfies the following conditions:

(B − 1) If Cn(φ) �= Cn(�) then φ �∈ Cn(B − φ).
(B − 2) B − φ ⊆ B.
(B − 3) If for all subsets B′ of B, φ ∈ B′ iff ψ ∈ B′, then B − φ = B − ψ.
(B − 4) If ψ ∈ B and ψ �∈ B − φ, then there is a set B′ such that B′ ⊆ B and that

φ �∈ Cn(B′) but φ ∈ Cn(B′ ∪ {ψ}).

To justify his postulates, Hansson gives a special kernel contraction operator, called par-
tial meet base contraction operator, which is to follow AGM’s partial meet
construction.

To define a kernel revision operator from a kernel contraction operator, Hansson
proposes the following variant of the (Levi Identity): (BL) B ∗ φ = (B − ¬φ) ∪ {φ}.

Hansson and other researchers also consider another type of belief change, called
non-prioritized belief revision, which may reject the new information. For example,
Hansson in [16] proposes a semi-revision operator, which is defined as follows: B#φ =
(B ∪ {φ})−⊥, where − is a contraction function. The idea is that we first add the new
information φ to the initial belief base B then remove all inconsistencies that may result.

4 A Survey of Revision Approaches in DLs

In this section, we present a survey of existing approaches for revision in DLs. We can
roughly classify these approaches into two families: AGM-based approaches and non-
AGM-based approaches. Before we introduce the approaches, we analyze why existing
work on belief revision may not work in DLs and give comparison criteria.

4.1 Difficulties of Applying Belief Revisions to DLs

Although DLs are fragments of first-order logic in the sense that each axiom can be
translated into a first-order formula, they have their own features which make it diffi-
cult to apply existing work on belief revision to DLs. In [21], Nebel shows that it is not
possible to apply revision operators in propositional logic directly to deal with revision
of the TBox of a DL knowledge base because of the following problems. First, the TBox
of a DL knowledge base of some DLs can never become inconsistent, although it may
be incoherent. Second, there is no counterpart of disjunction or negation of an axiom
in a TBox. That is, it is impossible to state negated subsumption, like ¬(C � D), or
disjunctive subsumption such as (D � A) ∨ (B � C) in some DL languages. It is also
not possible to define disjunction between a TBox axiom and an ABox assertion in any
DL. Therefore, it is not possible to define disjunction between two DL knowledge bases
in most cases. It is also pointed out in [6] that a DL is not necessarily closed under the
usual operators such as ¬ and ∧. Third, there are different DL languages with different
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expressive power. When applying a revision operator to a particular DL, we must ensure
that the result of revision can be also expressed by the same DL language. Finally, there
are two kinds of contradiction in DLs: inconsistency and incoherence. Incoherence,
which often occurs in the terminological level, i.e., between different TBoxes, does not
provide the classical sense of the inconsistency because there might exist a model for
an incoherent knowledge base. A model-based revision operator in propositional logic
is usually defined by the symmetric difference between two interpretations which are
a set of propositional variables. Since interpretations of a DL langauge have first-order
feature, to define a model-based revision operator in DLs, we need to define the dif-
ference between two interpretations in DLs and consider if the result of revision can
be expressed in the same language as the original ontology. In contrast to incoherence,
an inconsistency is often caused by conflict between intensional information and exten-
sional information, i.e., terminology axioms and assertional axioms. When dealing with
inconsistency, we can either circumscribe individuals in ABoxes to restore consistency
or change terminologies. One may think that we can translate a DL knowledge base to a
first-order knowledge base and apply the revision operator in first-order predicate logic
to it. However, this method has three weakness. First, the result of revision may be a
first-order knowledge base which cannot be translated back to a DL knowledge base.
Second, the advantage of using DLs is that they are decidable fragment of first-order
logic, we may lose this advantage if we translate a DL knowledge base to a first-order
knowledge base. Third, some DLs that provide operator like transitive closure of roles
require second-order logic.

4.2 Comparison Criteria

In classical logic (propositional logic and first-order logic), two important criteria used
for comparing different revision operators are postulates and computational complexity.
However, these two criteria are not enough for comparison of different work on revi-
sion in DLs. First, there are several proposals of adapting existing postulates for belief
revision to DLs, but there is no agreement which set of postulates is appropriate. We
even need criteria for comparing different sets of postulates. Second, since one of the
most important application areas of description logics is the Semantic Web, we need to
consider the practical usage of the revision operators and need criteria for this purpose.
To address the above two problems, we propose the following criteria (note that these
criteria are what we think as important and are not claimed to be complete).

– Implementation (IM): Considering the vision of the Semantic Web, we should give
more emphasis on the implementation of a revision approach. We consider two is-
sues: is there an algorithm for the operator and has the algorithm been
implemented?

– Minimal Change (MC): When we revise a knowledge base, a natural requirement
is that the operator should keep as much original information as possible.

– Preservation of Structure (PS): We say that a revision operator preserves the struc-
ture of an axiom in an ontology if we can only remove or change some (or all) of
its concept(s) or instance(s).

– Language Dependence (LD): Some revision operator can be applied to any DL,
such as those defined in [25]. However, utilizing certain special features of DL may
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lead to fine-grained revision operators and can return desirable results efficiently
for certain useful languages, although these operators are not general enough for
all family of DLs.

– Uniqueness of the Result (UR): Disjunction among axioms or ontologies is not
allowed in DLs. Therefore, a revision operator either results in a single ontology
or a set of ontologies. When an inconsistency or incoherence is encountered, there
are usually several alternative ways to resolve it. In some applications where the
user wants to participate in the revision process, they will prefer a revision operator
that result in a set of ontologies. In other cases, the user may want to get a unique
ontology as the result of revision.

– Inconsistency vs. Incoherence (II): According to the discussion in [4], incoherence
is a potential cause of inconsistency but it does not provide the classical sense
of the inconsistency. It is interesting to know if a revision operator can resolve
incoherence or inconsistency (or both).

– Complexity (CO): Reasoning with expressive DLs is intractable for standard rea-
soning tasks. Often the approaches for dealing with inconsistencies introduce an
additional level of complexity. In order to assure practicability, these complexity
issues need to be taken into account.

– Interactivity, user involvement (IU): To revise an ontology w.r.t. another one, we
usually have different alternative ways to resolve the conflict. As we have discussed
before, it may be desirable to ask the user to decide which solution is the best one.
Therefore, a semi-automated revision approach seems to be promising in practice.

4.3 AGM-Based Approaches

The importance of applying AGM theory to terminological systems has not been fully
recognized until recent years. The first work that tries to apply AGM theory to DLs may
be traced back to Nebel’s thesis [21] published in 1990. He first gives five general prin-
ciples for knowledge base revision in a logical language. He then argues that revision
of a TBox should only be applied to definition of an atomic concept. Finally, a revision
operator is defined to revise concept definitions that satisfies most of the principles.
However, the five principles given by Nebel are not formalized and some of them are
not well-justified. For example, he claims that a revision operator should be indepen-
dent of the syntactical form of the original ontology and the newly received ontology,
which is controversial. On the other hand, some of the postulates given in [6,4] and [23]
follow his general principles. Furthermore, his revision operator does not resolve in-
consistency and is specifically defined for DL T F , which is not a popular DL language
now. Because of these reasons and maybe other reasons, there has been no follow-up
work along Nebel’s theory.

Recently, there is an increasing interest in applying belief revision theory to handle
inconsistency during ontology evolution. In [5,6], some work has been done to analyze
the feasibility of applying AGM postulates for contraction to DLs (the underlying logic is
more general than DLs in their work). Their work is based on the coherence model, i.e. the
revised knowledge base should be knowledge set which is knowledge base closed under
logical consequence (see K-1 below). They reformulate AGM postulates to a general
logic. Here we restrict the logic to a DL. Suppose ‘−′ is the operation of contraction
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which refers to the consistent removal of a piece of information from a knowledge base.
Let Cn be consequence relation in a DL language, their postulates are given as follows:

(K-1) Closure: Cn(K-X)=K-X
(K-2) Inclusion: K-X ⊆Cn(K)
(K-3) Vacuity: If X �⊆Cn(K), then K-X=Cn(K)
(K-4) Success: If X �⊆Cn(∅), then X �⊆Cn(K-X)
(K-5) Preservation: If Cn(X)=Cn(Y ), then K-X=K-Y
(K-6) Recovery: K ⊆Cn((K-X)∪X)

They then define a logic to be AGM -compliant iff a contraction operator that satisfies
the generalized AGM postulates given above can be defined in the given logic. It has
been shown that some important DLs, such as SHIQ and SHOIN , are not AGM
compliant. They also show that by adding role operators to theAL family we can obtain
some AGM-compliant DLs, such as ALCO¬,�,�, and ALC¬,�,� with empty ABox.

It is argued in [24] that the recovery postulate for contraction is not intuitive accord-
ing to the discussion in the literature and the authors introduce another postulate, called
relevance, which is originally defined in [13]:

Relevance: If ψ ∈ K and ψ �∈K-φ, then there is a set K ′ such that K-φ ⊆ K ′ ⊆ K and
that φ�∈Cn(K ′), but φ∈Cn(K ′ ∪ {ψ}).

They have shown that there exists a contraction operator for DL SHIF(D) and
DL SHOIN (D) that satisfies generalized AGM postulates with Relevance instead of
Recovery.

Considering the criteria given in last subsection, we can see that for the work given
in [6] and [24], criteria IM, PS, CO and IU are not applicable. Some of their postulates
capture minimal change, such as (K-3) and (K-6), but no representation theorem is
given to justify their postulates. It is unknown if their approaches produce unique result
or not. They are dealing with inconsistency.

None of the above work considers the explicit construction of a contraction operator
that satisfies their postulates, which makes the postulates not fully justified. In contrast,
in AGM’s work, their postulates are well justified by some concrete contraction opera-
tors. Furthermore, they did not consider the application of AGM postulates for revision
in DLs. One may wonder if we can define a revision operator by a contraction operator
via the Levi identity, i.e., K ◦X = Cn((K-¬X)∪X). The problem is that Levi identity
is not applicable for most DLs [6] because negation of a DL axiom is not well-defined.

In [4], the authors advocate that in the context of ontology evolution, it is more
natural to differentiate the explicit knowledge and implied knowledge in an ontology.
They then propose a set of postulates for contraction by dropping the assumption that a
knowledge base or an ontology is closed under logical consequence. They also define a
set of postulates for revision by introducing axiom negation. Let K and X be two DL
knowledge bases, and ◦ be a revision operator, then we have the following postulates:

(O+1) X ⊆ K ◦X .
(O+2) If K ∪X is consistent, then K ◦X = K ∪X .
(O+3) If X is consistent, then K ◦X is also consistent.
(O+4) If X ≡ Y , then K ◦X ≡ K ◦ Y .
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Plus the following postulate which is defined by a contraction operator:

(O+5) (K ◦X)∩K ≡ K-¬X , where the negation of an axiom has two different defini-
tions (consistency-negation and coherence-negation) which are given in [4].

(O+1) says that the newly received information must appear in the revised ontology.
(O+2) is one of the postulates for minimal change. (O+3) states that the revised ontology
should be consistent if the newly received one is. (O+4) is the postulate for syntax-
irrelevance.

Postulates (O+1)-(O+5) give some good insights on how a rational revision operator
should behave. For example, they introduce negation of an axiom to define a revision
operator by a contraction operator. The authors claim that their postulates correspond
to postulates for revision given in [1]. Unfortunately, their reformulation of AGM pos-
tulates deviate the original idea of AGM theory. They ignore one important assumption
underlying AGM postulates for revision given in [1]: the result of revision should be a
knowledge set, instead of a knowledge base. Indeed, according to (O+2), the result of
revision should be a DL knowledge base which may not be a knowledge set. Further-
more, in AGM theory, most of the revision operators satisfying AGM postulates, such
as the partial meet revision operator, are defined by disjunction of some knowledge
bases containing the newly received formula. The reason for using disjunction is that
when revising a knowledge base, there are usually several alternative ways to resolve
an inconsistency, and one does not know which solution is the best one. According to
(O+1) and (O+2), the result of revision must be a single ontology which contains the
new ontology X .

Let us consider the comparison criteria. Again IM, PS, CO and IU are not applica-
ble. Some of their postulates capture minimal change, such as (O+2) and (O+5), but
more justifications are needed. Their postulates can be applied to all DLs extended with
negation of axioms, produce a unique ontology, and can be applied to deal with both
inconsistency and incoherence.

In parallel to the work in [4], Qi et.al. in [23] propose a set of postulates for knowl-
edge base revision in DLs based on reformulated AGM postulates given in [18]. They
define a revision operator as a mapping from a pair of DL knowledge bases to a dis-
junctive DL knowledge base. A disjunctive DL knowledge base K (or DKB), defined
in [20], is a set of DL knowledge bases. An interpretation is a model of a disjunctive
DL knowledge base K iff it is a model of one of the DL knowledge bases in K. Given a
knowledge base K (resp. a disjunctive knowledge baseK), we use M(K) (resp. M(K))
to denote the set of all its models. K |= K if and only if M(K) ⊆ M(K). Let K and
K ′ be DL knowledge bases. We introduce their postulates as follows:

(G1) M(K◦K ′) ⊆ M(φ) for all φ ∈ K ′

(G2) If M(K)∩M(K ′) �= ∅, then M(K◦K ′) = M(K)∩M(K ′)
(G3) If K ′ is consistent, then M(K◦K ′) �= ∅
(G4) If M(K) = M(K1) and M(K ′) = M(K2), then M(K◦K ′) = M(K1◦K2).
(G5) M(K◦K ′)∩M(K ′′)⊆M(K◦(K ′∪K ′′))
(G6) If M(K◦K ′)∩M(K ′′) is not empty, then M(K◦(K ′∪K ′′))⊆M(K◦K ′)∩
M(K ′′)
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(G1) guarantees that the new information is inferred from each revised knowledge base.
(G2) requires that when there is no conflict between K and K ′, we do not need to
change the original knowledge base. (G3) is a condition preventing a revision from
introducing unwarranted inconsistency. (G1)-(G3) corresponds to (O+1)-(O+3). (G4)
requires that the revision operator is independent of the syntactical forms of both the
original DL knowledge base and the newly received one. It is stronger than O+4. How-
ever, this postulate is not always advisable because we may want to keep the structure
of DL axioms after revision. In [23], a weaker version of (G4) is proposed:

(G4)′ If K1 and K2 are element-equivalent and M(K ′
1) = M(K ′

2), then M(K1◦K ′
1)

= M(K2◦K ′
2), where K1 and K2 are said to be element-equivalent iff there is a bijectin

f from K1 to K2 such that for every φ in K1, M(f(φ)) = M(φ).
Similar to the work in [18], we can show a representation theorem for the postulates

(G1)-(G6) or (G1)-(G3), G(4)′, (G5) and (G6). We first define the notion of a faithful
assignment.

Definition 1. Let K and K ′ be DL knowledge bases and Ω the set of all interpretations
in the considered DL language, a total pre-order �K on Ω, associated with K , is said
to be a faithful assignment if the following conditions hold:

1. if I, I ′ |= K , then I ≺K I ′ does not hold.
2. if I |= K and I ′ �|= K , then I ≺K I ′ holds.
3. if K ≡ K ′, then �K=�K′ .

Furthermore, �K is said to be a weak faithful assignment if it satisfies condition 1 and
condition 2 above and the following condition: if K and K ′ are element-equivalent,
then �K=�K′ .

The following theorem establishes the correspondence between the set of postulates and
the (weak) faithful assignment.

Theorem 2. A revision operator ◦ satisfies the postulates (G1)-(G6) (resp. (G1)-(G3),
G(4)′, (G5) and (G6)) iff for any DL knowledge base K , there exists a faithful assign-
ment (resp. weak faithful assignment)�K such that M(K ◦K ′) = min(M(K ′),�K).

Two concrete revision operators were proposed in [23], both satisfying (G1)-(G3),
(G4)′, (G5) and (G6). When revising an ontology by another ontology, they propose
to circumscribe minimal number of individual that are responsible for the conflict from
axioms in the TBox and/or minimal number of axioms from the ABox in the original on-
tology to restore consistency. Therefore, their revision operators are more fine-grained
than those resolve inconsistency by deleting the whole axioms. One weakness of their
work is that their revision operators deal with only inconsistencies arising due to objects
being explicitly introduced in the ABoxes.

With respect to comparison criteria, their operators are not implemented and does
not allow user involvement. According to Theorem 2, their postulates capture minimal
change. The revision operators change the structure of axioms which are involved in
the conflict, but keep others intact. The postulates can be applied to all DLs, but their
revision operators can be only applied DLs with nominals. It is clear that the operators
do not result in a unique ontology, and deal with inconsistency only.
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4.4 Non-AGM-Based Approach

In [12], Hansson’s semi-revision operator is adapted to DLs and an algorithm is given to
implement the revision operator. However, a semi-revision operator does not guarantee
that the newly received information will be kept after revision (i.e., (R1) in [4] or (G1)
in [23]). Therefore, in [25], two revised semi-revision operators are given to guarantee
this property. Unlike the approach in [23], their approach deletes the whole axiom in
ABox and TBox to restore consistency. One of their revision operator, called kernel
revision without negation can be equivalently defined by some postulates. Let K be an
ontology, φ and ψ be axioms. Then ◦ is a kernel revision operator without negation iff
it satisfies the following postulates:

[success] φ ∈ K ◦ φ
[weak consistency] If φ is consistent, then K ◦ φ is consistent
[inclusion] K ◦ φ ⊆ K ∪ {φ}
[core-retainment] If ψ ∈ K and ψ �∈ K ◦ φ then there is at least a consistent subset K ′

of K ∪ {φ} such that K ∪ {ψ} is inconsistent.
[pre-expansion] (K ∪ {φ}) ◦ φ = K ◦ φ

The result of the kernel revision operator is a single ontology according to postulate
[success]. This postulate corresponds to postulate (O+1). Together with postulate [suc-
cess], postulate [inclusion] says that the revision operator takes the subset of the original
ontology and add the new axiom φ to it. Postulate [core-retainment] states that if an ax-
iom is deleted after revision, then this axiom must belong to a sub-ontology that is in
conflict with the new axiom. By [inclusion] and [core-retainment], we can infer that the
kernel revision operator also satisfies the following postulate which is similar to [O+2]:
If K ∪ {φ} is consistent, then K ◦ φ = K ∪ {φ}.

The analysis of the postulates given in [25] is similar to analysis of postulates given
in [4], so we do not provide it here.

The work in [10] describes a process to support the consistent evolution of OWL DL
based ontologies, which ensures that the consistency of an ontology is preserved when
changes are applied to the ontology. Two algorithms were given to find minimal incon-
sistent sub-ontologies and maximal consistent sub-ontologies. There is no guarantee
that their algorithms can find all the minimal inconsistent sub-ontologies or maximal
consistent sub-ontologies, although they can efficiently find one minimal inconsistent
sub-ontology and one maximal consistent sub-ontology. They consider only adding one
axiom (instead of an ontology) to an ontology consistently. Their algorithms have been
implemented. It is clear that the revision approach for finding one maximal consistent
sub-ontology captures the principle of minimal change. Since the approach only takes
one maximal consistent sub-ontology, it preserves the structure of every axiom, can be
applied to any DLs, and produces a unique ontology. But it only deals with inconsis-
tency and has no user interactivity.

4.5 Comparison

The results of comparison are compactly summarized in Table 1. We do not list the
approaches in [21], in [24], and in [12]. The approach in [24] is similar to the approach
1 in [6], so the result in Table 1 can be applied to it as well. The approach in [12] is not a
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Table 1. Approach 1:approach in [6], Approach 2:approach in [4], Approach 3a: postulates
in [23], Approach 3b: revision operators in [23], Approach 4: approach in [25], Approach 5:
maximal consistent subset-based approach in [10], n.a. means “not applicable”. DLs(O) in low 5
means DLs with nominals, and IS in row 7 means “inconsistency”.

Criteria Approach 1 Approach 2 Approach 3a Approach 3b Approach 4 Approach 5
IM n.a. n.a. n.a. no no yes
MC yes yes yes yes yes yes
PS n.a. n.a. n.a. partially yes yes
LD see [6] DLs with negation of axioms all DLs DLs(O) all DLs all DLs
UR unknown yes no no yes yes
II IS both IS IS IS IS
IU n.a. n.a. n.a. no no no

revision operator in a strict sense because it does not satisfy the success postulate, which
is a mandatory postulate for a revision operator. Furthermore, this approach is similar to
approach 4 in [25]. We also do not discuss complexity of different approaches because
most of them do not have an algorithm for implementation.

According to Table 1, the syntax-based revision approaches (i.e. approach 4 and
approach 5) seem to be more promising than other approaches. These approaches can
be very easily generalized to deal with incoherence as well. For example, it is possible
to apply the approaches for repairing terminologies in [22,26] to revise terminologies.
However, these approaches are dependent on the syntactically form of the axioms and
are not fine-grained when repairing inconsistency. The revision operators given in [23]
are fine-grained, but they can only be applied to DLs with nominals and there is no
algorithm to implement them. None of the revision operators allow user to decide how
to change the ontology to restore consistency. For postulates, both sets of postulates
given in [6] and [4] can only be applied to some particular DLs. In contrast, the sets
of postulates given in [23] and [25] can be applied to all DLs. The only approach that
considers incoherence is the one given in [4]. Surprisingly, although revision in DLs
has attracted much attention, only the approach given in [10] has been implemented.

5 Discussion

In this section, we try to answer the questions given in Section 1. We also briefly discuss
the relationship between revision and update in DLs.

For the first question, we have the following definition of a revision operator. Let
DKBL denote the set of all disjunctive DL knowledge base in a DL language L. A
revision operator ◦ in a DL language L is a function from 2L × 2L to DKBL such that
K ◦K ′ |= K ′, for any DL knowledge bases K and K ′. This definition has the following
requirements for a revision operator in DLs: (1) the result of revision is a disjunctive
DL knowledge base, (2) each ontology obtained by revision should be expressed by
the same language and (3) every axiom in the newly received ontology can be inferred
from the result of revision. According to our discussion before, these conditions are
prerequisite for a revision operator. Note that condition (1) does not disallow the result
of revision to be a single ontology, i.e. if K ◦K ′ is a singleton then the result of revision
can be equivalently considered as a single ontology due to the semantics of a disjunctive
DL knowledge base. Similar to the definition of a revision operator in classical logic,
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our definition of a revision operator is very general. For example, K ◦K ′ may contain
inconsistent ontologies. To obtain a rational revision operator that fulfils the principle
of minimal change, we need to further constrain the revision operator by some logical
postulates. This will be discussed in the following.

For the second question, there is no unique answer to it because there are different
sets of postulates for a revision operator in DLs. The sets of postulates given in [23]
and [25] capture the principle of minimal change. Therefore, they can be used to define
a rational revision operator. The difference between the postulates in [23] and those
in [25] is that the former characterizes those revision operators defined by a total pre-
order whilst the latter characterizes those revision operators defined by an incision func-
tion which selects axioms to be deleted. Therefore, the former allows more fine-grained
approaches for resolving inconsistency. In contrast, the sets of postulates given in [6]
and [4] lack of justifications for minimal change and are hard to be used.

There are a couple of works discussing update in DLs, such as [19,9]. There have
been many discussions of the relationship between belief revision and belief update in
the literature (see, for example, Section 8.8 of Chapter 8 in [28]). These discussions can
be also applied to revision and update in DLs. For example, one of the main differences
between revision and update is that when two ontologies are not in conflict, a rational
revision operator will simply take their union as the result of revision to ensure minimal
change, whilst a rational update operator may still change the original ontology.

6 Conclusion and Open Problems

In this paper, we presented a brief review of existing approaches for revision in DL-
based ontologies. Focusing on analyzing these methods by looking into their origins
in belief revision theory, we aim to clarify the pros and cons of each method. A set
of criteria was proposed to compare them. The results of comparison were compactly
summarized in Table 1. Based on our analysis, we gave our definition of a revision
operator in DLs and our view of postulates for a revision operator. Revision in DLs is a
challenging problem and need more effort to solve. We list some of the open problems
for further study. First, it would be interesting to know how postulates given in [6]
and [4] ensure minimal change. Second, it is also interesting to implement a revision
tool which allows the user to make some decision during revision process. Third, most
of work on revision in DLs considers resolving inconsistency. However, incoherence is
also a defect in an ontology. Therefore, it would be interesting to discuss postulates for
a revision operator that deals with incoherence.
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Abstract. The Resource Description Framework (RDF) is a corner-
stone of the Semantic Web. Due to its few and elementary language
constructs, RDF data can become large and contain redundant informa-
tion. So far, techniques for eliminating redundancy rely on the generic
notion of lean graphs. We propose a user-specific minimization technique
based on Datalog rules, enabling a user to specify the structures in an
RDF graph that are not relevant for an application and therefore are
deleted, while still by means of the rules retaining the possibility to re-
construct the deleted data. We set this scenario on top of constraints to
ensure data consistency, i.e. if an RDF graph satisfies some constraints
before minimization, these constraints must be also satisfied afterwards.
The problem is decidable but already for a restricted case intractable. In
addition we give a fragment of the minimization problem which can be
solved in polynomial time.

1 Introduction

The Semantic Web [4] facilitates semantic interoperability and data exchange
between applications. The Resource Description Framework [18] was proposed
by the World Wide Web consortium as a standard language for data in the
Semantic Web. As RDF has only very simple language constructs, RDF data
often becomes large. There has been a line of research [8,11,12,13,14] to mini-
mize RDF graphs without losing any information, i.e. retaining homomorphic
equivalence. This allows applications to exchange reduced data, thus minimizing
storage cost, transfer and query evaluation time. In [11,12,13] the notion of lean
graphs was introduced as a minimal representation of an RDF graph. Basically,
a lean graph eliminates triples which contain blank nodes that specify redun-
dant information. For example in the graph {(a1, a2, a3), (X, a2, Y )} the triple
(X, a2, Y ) can be eliminated (X, Y are blank nodes) because both X and Y
are treated like existentially quantified variables in the RDF semantics [13] and
the triple (a1, a2, a3) is a witness for the existence of such a resource (X, a2, Y ).
In [8,14] different algorithms are introduced that approximately compute a lean
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Fr Ka Ma Fra Be Mu

The original graph.

Fr Ka Ma Fra Be Mu

A reduced graph.

Fr Ka Ma Fra Be Mu

A reduced graph that satisfies a constraint.

Fig. 1. An RDF graph modelling some train connections

version of a given RDF graph. The notion of lean is orthogonal to derivability
by application-specific rules. If such rules exist, a lean graph may still contain
triples which are redundant in the sense that they need not be stored explicitly
because they could be derived by the rules as well. We propose a user-specific
redundancy elimination technique based on rules. Before describing it, we give
an example for our scenario. Consider figure 1. It shows the original RDF graph
that models some train connections between cities. If the transitive edges are
not relevant for an application, we may want to eliminate them as shown in the
second graph in the figure1. Yet, if an application often asks for connections from
‘Fr’ to any other city, then we want to keep all outgoing edges from ‘Fr’ in order
to avoid unnecessary recomputations. This is depicted in the third graph. What
we have done is the following. First, we eliminated triples according to the rule
“delete all transitive edges” and second we satisfied the constraint “keep all out-
going edges from ‘Fr’”. The constraint expresses that we are mainly interested in
connections from ‘Fr’ to the other cities. If we would be looking for connections
from ‘Ka’ to ‘Mu’ we would have to perform some additional computations on
the reduced graph.

Usually, rules are interpreted generatively, i.e. if we have a rule of the form
p(X, Y ) ← r(Y, X) and we find r(a, b) in our data, we add p(b, a) to it. In our
work, we use rules in the following sense: whenever p(b, a) and r(a, b) are in our
data, we delete p(b, a). If later needed, we can recompute the tuple p(b, a) again
with the help of our rule, i.e. we minimize a given RDF graph such that all

1 An application of transitively reduced graphs was given for the context of transitive
reduction [2] in [21].
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deleted triples can be reconstructed. We want to stress that our work is well-
suited for scenarios in which it is known in advance what structures in the RDF
graph are redundant and therefore building appropriate rules is possible. For
example, this applies when the graph to be minimized has a user-defined rule
semantics in the sense of [20], where it could be desirable to minimize a given
graph along its rule semantics, for example the RDFS rules [17].

Additionally, we take data consistency into account. In [16] it was proposed
to extend RDF and RDFS [17] by constraints. We adapt the notion of tuple-
generating dependencies to the RDF scenario and ensure that if such a kind
of constraint is satisfied before the minimization step, then it is also satisfied
afterwards. We will exploit these constraints for answering conjunctive queries
on the reduced graph. For certain queries it is possible to use only the reduced
graph to compute the answer to a query posed over the original graph. Of course,
this is not always possible and for another case we show that we can guarantee
a non-empty answer for a query on the reduced graph if the same query yields
a non-empty answer on the original graph.

The paper is structured as follows. Section 2 introduces the necessary foun-
dations from database theory that are used throughout the paper. Section 3
introduces the minimization problem formally and gives some examples. The
complexity results in section 4 show that the decision problem introduced in the
previous section is intractable, namely that it is NP -complete. This is why we
give a tractable fragment of it in section 5. In section 6 we consider the problem
of answering queries on the reduced graph. Section 7 contains related work and
finally section 8 concludes the paper.

2 Preliminaries

Throughout the paper, we will use several results from database theory that we
adapt to the case of RDF. We introduce them in this section.

2.1 General Mathematical Notation

For sets M and N , M ⊂ N denotes that M is a proper subset of N . If M is
finite, then |M | is the cardinality of M . We use the convention that the natural
numbers N begin with 1 and not with zero. For n ∈ N, [n] := {1, ..., n}. For a
mapping f , we denote by f ↑M the restriction of f to M , where M is a subset
of f ’s domain.

2.2 Syntax of RDF

The Semantic Web necessitates data in a machine-readable format. RDF
databases are sets of triples (s, p, o). Such a triple states a directed relation-
ship p between s and o. More formally, an RDF vocabulary is a triple (U, B, L),
where U, B, L are infinite sets. U is usually referred to as the set of URI ref-
erences, B is the set of blank nodes and L the set of literals. An RDF graph
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G (with respect to (U, B, L)) is a finite subset of (U ∪ B) × U × (U ∪ B ∪ L).
RDF graphs have a graphical representation. A triple (s, p, o) ∈ G can be seen
as two nodes connected by a labelled arc s

p−→ o. In a triple (s, p, o), s is called
the subject, p the predicate and o the object of the triple. The subset of U that
occurs in an RDF graph G is denoted by UG. BG and LG are defined similarly.
A map (with respect to (U, B, L)) is a function ν : (U ∪B ∪ L) → (U ∪B ∪ L)
such that for all x ∈ (U ∪L) : ν(x) = x. For matters of convenience we introduce
the following notion. A maplet2 (with respect to (U, B, L) and G) is a function
μ : (U ∪ BG ∪ L) → (U ∪ B ∪ L) such that for all x ∈ (U ∪ L) : μ(x) = x.
If the image of such a μ is contained in a graph G′, we will denote this by
μ : G → G′. Two RDF graphs G1, G2 are called homomorphically equivalent if
there are maps μ1, μ2 such that μ1(G1) ⊆ G2 and μ2(G2) ⊆ G1.

2.3 Constraints in RDF

Logical constraints are a useful tool to help modelling an application domain.
They restrict the legal state space of a database and guarantee that only mean-
ingful data can be inserted into a database. In [16] it was proposed to add con-
straints to RDF in order to ensure data consistency. We are going to introduce
a large class of constraints for RDF graphs, namely we will adapt the notion of
tuple-generating dependencies.

Definition 1. Let m, n ∈ N, x1, ..., xn, y1, ..., ym ∈ B and G, G′ non-empty RDF
graphs such that BG ⊆ {x1, ..., xn} and BG′ ⊆ {x1, ..., xn, y1, ..., ym}. A tuple
generating dependency (TGD) ϕ is an expression of the form ∀x1...∀xn(G →
∃y1...∃ymG′). Given b ∈ N, ϕ is called b-bounded if |G| ≤ b and |G′| ≤ b. A set C
of TGDs is called b-bounded if every element of C is b-bounded. A TGD is called
full dependency if it does not contain existential quantifiers.

Note that a blank node can never occur as a predicate of an RDF triple. The
only sort of constraint introduced in [16] that can be compared to TGDs are
participation constraints. Clearly, TGDs generalize them. A TGD is interpreted
as a semantic constraint in the following sense.

Definition 2. An RDF graph G (with respect to (U, B, L)) satisfies a TGD
ϕ := ∀x1...∀xn(G1 → ∃y1...∃ymG2) ⇔ for every maplet μ : G1 → G there exists
a maplet ν : G2 → G such that for all x ∈ BG1 ∩BG2 : μ(x) = ν(x). In the case
that G satisfies ϕ, we write G |= ϕ. If C is a set of TGDs, we write G |= C if G
satisfies every element in C.

Note that we did not define the semantics of a constraint in terms of interpreta-
tions of RDF graphs, but only gave an algebraic version of satisfaction. This is
due to limited space in this paper. The following proposition states that checking
constraints is tractable and that constraints are preserved under maplets. The
proof follows from classical results , see [10,15].
2 The notion of maplet is introduced because in many situations we are not interested

in the image of blank nodes that do not occur in an RDF graph. It can always be
extended to a map.
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Proposition 3.

1. Let b ∈ N fixed. For any RDF graph G and b-bounded set of TGDs C, it can
be tested in polynomial time whether G |= C holds.

2. Let G |= C, where C is a set of TGDs, then for any maplet h it holds that
h(G) |= C (if h(G) is defined).

2.4 The Chase

The chase is a well-known algorithm in database theory. Assume that G is an
RDF graph and C a set of TGDs. The chase proceeds as follows. Set GC

0 := G.
GC

i+1 is obtained from GC
i as follows. If there is some TGD ϕ := ∀x1...∀xn(G1 →

∃y1...∃ymG2) ∈ C such that there is a maplet μ with respect to G1 such that
μ(G1) ⊆ GC

i , but GC
i � ϕ, then we choose some fresh blank nodes b1, ..., bm

and define a mapping h(yj) := bj, j ∈ [m]. In this case GC
i+1 := GC

i ∪ h(G2).
If for some GC

k it happens that this procedure cannot be applied anymore,
chaseC(G) := GC

k , otherwise chaseC is undefined. The procedure minimalisti-
cally adds consequences such that the constraints are fullfilled. Note that it is
not deterministic and chaseC(G) depends on the order of the applications of the
constraints. Yet, it was shown that two different chase orders lead to homomor-
phically equivalent results, see [9]. Therefore, we omit the order of the chase in
our notation and assume that the chase was performed in some arbitrary order.
If chaseC(G) is defined then chaseC(G) |= C. If it is undefined, it is natural to
ask for conditions for the termination of the chase. A broad class of TGDs for
which the chase is known to terminate for any input graph is the so-called class
of weakly acyclic TGDs.

Definition 4. [9] Let C be a set of TGDs. For any x ∈ U ∪ B ∪ L and p ∈ U
we say that

– x occurs in position p(1) if there is some RDF triple t that occurs in C with
t = (x, p, ...) and

– x occurs in position p(3) if there is some RDF triple t that occurs in C with
t = (..., p, x).

The dependency graph of C is a directed graph that has all positions as ver-
tices and there is an edge (p(i), q(j)) if there is some constraint of the form
∀x1...∀xn(G1 → ∃y1...∃ymG2) ∈ C such that

1. some xl occurs in p(i) in G1 and in q(j) in G2,
2. some xl occurs in p(i) in G1 and some yk occurs in q(j) in G2 (in this case

we label the edge as existential).

C is called weakly acyclic if its dependency graph contains no cycles with an
existential edge.

Note that our defintition of TGDs is just a translation to RDF of the classical
notion. For example, a TGD of the form ∀x({(x, d, e)} → {(x, f, e)}) can be seen
as the constraint ∀x(d(x, e) → f(x, e)), where d, f become predicate symbols.
This is why the following theorem also applies to our case.
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Theorem 5. [9] For any set of weakly acyclic TGDs C, there is b ∈ N such that
for any RDF graph G it holds that chaseC(G) is defined and can be computed in
time O(|G|b).

In the context of the chase we consider a special class of maplets, which preserve
certain blank nodes.

Definition and Convention 6. Let G̃ ⊆ G be an RDF graph and C a set of
TGDs. Throughout the rest of the paper, we will tacitly assume that chaseC(G̃)
only introduces blank nodes via existential quantifiers that do not occur in G.
Then, Hom(chaseC(G̃), G) := { μ : chaseC(G̃) → G | f.a. x ∈ BG̃ : μ(x) = x }.

Note that Hom(chaseC(G̃), G) depends also on G̃ and not only on chaseC(G̃),
but for readability we will omit this dependency in our notation.

2.5 Datalog

Rules allow to derive new knowledge from given knowledge and especially add
recursion to a database query language. We define syntax and semantics of
Datalog.

Definition 7. A (Datalog) rule is of the form t ← G, where t is an RDF triple
and G is an RDF graph such that B{t} ⊆ BG. Given b ∈ N, t ← G is called
b-bounded if |G| ≤ b. A set of rules R is called b-bounded if every element of R
is b-bounded. The set head(R) is defined as { p | ∃s, o : (s, p, o) ← G ∈ R }.

Definition 8. Let G be an RDF graph. The semantics of a set of rules R =
{t1 ← G1, ..., tn ← Gn} is defined via the help of the TR-operator, where TR(G)
:= G ∪ { μ(ti) | i ∈ [n] and there is a maplet μ : BGi with μ(Gi) ⊆ G }. The
semantics of R applied to G is R(G) :=

⋃∞
i=1 T i

R(G).

The TR-operator is monotonic, therefore R(G) ⊇ G. This means that we can
generate new data from old one, but never lose original data. Note that R(G)
may not be an RDF graph again because it can happen that a literal occurs in
the subject position of a triple. The following proposition states that evaluating
rules takes polynomial data complexity and is well-known in database theory,
see [1].

Proposition 9. Let b ∈ N fixed. Then, for any RDF graph G and any b-bounded
set of rules R there exists n ∈ N such that R(G) := T n

R(G). Furthermore, the
mapping (G,R) �→ R(G) can be computed in polynomial time.

3 Formal Problem Statement and Examples

This section introduces the minimization problem formally. We consider two ver-
sions of it: the construction problem and the corresponding decision problem.
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As already mentioned earlier, we do not use Datalog rules to generate new
data. Instead, we delete it from a given RDF graph. Intuitively, we define the
inverse semantics of a rule of the form t ← G in such a way that, we delete t, if
G is still in the graph afterwards. This means that we are interested in subsets
G′ of a given RDF graph G such that R(G′) ⊇ G(or equivalently R(G′) = R(G)
because Datalog rules are monotonic). Unfortunately, such a G′ is, in general,
not unique. This motivates the following definition.

Definition 10. Let R be a set of Datalog rules. The inverse semantics of G with
respect to R is given by R−(G) := { G′ ⊆ G | R(G′) ⊇ G and there is no G′′ ⊆
G′ with R(G′′) ⊇ G }. If G′ ∈ R−(G), we call G′ a reduction of G along R.

Example 11. Figure 2 shows an RDF graph G and three reductions along
R = {(X, d, Z) ← {(X, d, Y ), (Y, d, Z)}}. �
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Fig. 2. An RDF graph and three possible reductions along transitivity

Definition 12. The construction problem MINI-RDF is defined as follows.

Input : An RDF graph G, a set of Datalog rules R,
a set of constraints C with G |= C.

Task : Find G′ ⊂ G such that
(i) G′ |= C,
(ii) R(G′) ⊇ G and
(iii) G′ is minimal (w.r.t. to its cardinality) with (i) and (ii).

Answer: G′, if such a G′ exists. No, otherwise.
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Note that in the definition of MINI-RDF G′ must be a proper subset of G. If
G′ can only be chosen equal to G, then the answer to MINI-RDF will be NO.
To denote that G′ is a solution to MINI-RDF for the input G,R, C we write
G′ ∈ MINI-RDF(G,R, C). The corresponding decision problem MINI-RDFd is
the following.

Input : (G,R, C) such that G |= C.
Question: Is there G′ ∈ MINI-RDF(G,R, C)?
Answer: Yes or no.

A simple example for solutions to MINI-RDF is the following. It does not take
any constraints into account.

Example 13. Consider again example 11. Let additionally be C = ∅. Then,
MINI-RDF(G,R, C) has the two solutions (1) and (2) depicted in figure 2. This
example shows that solutions to MINI-RDF are in general not homomorphically
equivalent. �

The next example makes use of a constraint. It demonstrates the interaction
between the rules’ inverse semantics and constraints.

Example 14. Consider again figure 1 from the introduction and assume that
all edges are implicitly labelled by reach. The figure shows the original graph G,
the only element of R−(G) and the only solution to MINI-RDF(G,R, C), where
R = {(X, reach, Z) ← {(X, reach, Y ), (Y, reach, Z)}} and
C = {{(Fr, reach, X), (X, reach, Y )} → {(Fr, reach, Y )}}. �

The following theorem gives us a method with which we are able to compute
solutions to MINI-RDF using the well-known technique of the chase. The proof
is given in the appendix.

Theorem 15. If G′ ∈ MINI-RDF(G,R, C), then there exists G̃ ∈ R−(G) and
π ∈ Hom(chaseC(G̃), G) such that |G′| = |π(chaseC(G̃))|.

Given this theorem we can solve MINI-RDF in the following three steps. Of
course these steps depend on each other and, in general, cannot be solved
seperately:

1. Guess an adequate G̃ ∈ R−(G).
2. Compute chaseC(G̃).
3. Find π∈Hom(chaseC(G̃), G) such that π(chaseC(G̃))∈MINI-RDF(G,R, C).

A natural question that arises is whether for step one it suffices to take only
G̃ ∈ R−(G) of minimal cardinality into account. The next example shows that
this conjecture is wrong, in general.

Example 16. Consider the graph G from figure 2 together with the transitivity
rule R = {(X, reach, Z) ← {(X, reach, Y ), (Y, reach, Z)}} and the constraint
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C = {{(X, d, Y )} ← {(Y, d, X)}}. For readability we omitted all arc labels, but
we assume that any arc is implicitly labelled by the URI reach. Then, graph (3)
in the figure is a solution to MINI-RDF(G,R, C) and graphs (1) and (2) cannot
be extended to a solution. Note that the graphs (1) and (2) are the only elements
in R−(G) of minimal cardinality. �

4 Complexity Results

This section establishes complexity results for MINI-RDFd and MINI-RDF. While
it follows from the definition that the problem is decidable in general, we give
an exact complexity bound for a restricted b-bounded version of MINI-RDFd.
Namely, we show that it is NP -complete.

Proposition 17. Let b ∈ N fixed. MINI-RDFd restricted to instances of b-
bounded sets of TGDs and b-bounded sets of rules is solvable by an NP -algorithm.

Proof. Let (G,R, C) be an input for MINI-RDFd. Non-deterministically guess
G′ ⊂ G and check whether R(G′) ⊇ G and G′ |= C. Notice that by propositions
3 and 9 these steps take polynomial time. �

Theorem 18. MINI-RDFd restricted to instances of 2-bounded sets of full de-
pendencies and 1-bounded sets of rules is NP -hard. This still holds if neither the
rules, the constraints nor the input graph contain any blank nodes.

The proof of theorem 18 is given in the appendix. This result demonstrates even
in such a restricted case the interaction between the rules’ inverse semantics and
the constraints is so complex that this leads to NP -hardness.

Corollary 19. Let b ≥ 2 fixed. MINI-RDFd restricted to instances of b-bounded
sets of TGDs and b-bounded sets of rules is NP -complete under polynomial-time
many-one reductions.

5 A Tractable Fragment

The complexity results for MINI-RDFd and therefore also for MINI-RDF from
the last section are negative. We will now look for tractable subsets. The proof of
theorem 18 seems to imply that recursion in the Datalog rules along with cycles
in the input RDF graph are a source of high complexity. This is why we will
restrict ourselves to a case where recursion is limited and the constraints are a
set of full dependencies. We will give a syntactic restriction in terms of acyclicity
of a graph.

Definition 20. Let R be a set of rules and G an RDF graph. The data depen-
dency graph with respect to (R, G) is defined as dep(R, G) = (R(G), ER), where
ER := { (v, w) | there are t ← G̃ ∈ R, μ : G̃ → R(G) such that μ(t) = w, v ∈
μ(G̃) }. (R, G) is called acyclic if dep(R, G) is acyclic, i.e. for every node in the
graph, there is no directed path to itself.
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The intuition why the acyclicity of dep(R, G) yields a tractable fragment of
MINI-RDF is the following. We want to solve MINI-RDF according to the steps
in theorem 15. The main problem in the reduction along the rules is that we do
not know in what order triples should be deleted. When dep(R, G) is acyclic, we
can impose an order on R(G) such that the deletion of an element that has a
very high rank in this order will not affect the deletion of an element with a low
rank. Deleting triples according to that order yields the unique reduction of G
along R.

Remark 21

1. If (R, G) is acyclic, then |R−(G)| = 1.
2. If C is a set of full dependencies, then |Hom(chaseC(G̃), G)| = 1 for any

G̃ ⊆ G.
The proof of remark 21 is given in the appendix. As a consequence, we obtain
the following corollary, which states that under the conditions of the remark,
computing solutions to MINI-RDF is tractable if we consider data complexity3.
A proof for the corollary is also given in the appendix.

Corollary 22. Let R be a fixed set of rules and C be a fixed set of constraints.
For any RDF graph G auch that (R, G) is acyclic, a solution to MINI-RDF
(G,R, C) can be computed in polynomial time (with respect to |G|).

Consider again R, G from example 14. It can be easily seen that (R, G) is acyclic
there.

Next, we will show that a special case of (R, G) being acyclic is that R is
acyclic, i.e. non-recursive. We first repeat the definition of an acyclic set of rules.

Definition 23. Let R be a set of rules.

1. The dependency graph dep(R) = (VR, ER) is defined as
VR := { v | v is a predicate symbol that occurs in R } and
ER := { (v, w) ∈ VR × VR | v occurs in the body of a rule with head w }.

2. R is called acyclic if and only if dep(R) is acyclic.

The following remark shows that the tractable fragment given in theorem 22
generalizes the case when the set of rules is acyclic. We give no detailed proof
for it, but just mention that a cycle in dep(R, G) would force a cycle in dep(R).

Remark 24. If R is an acyclic set of rules, then for any RDF graph G it holds
that (R, G) is acyclic.

6 Query Answering

So far, we were able to reduce the size of an RDF graph via rules. Now we want
to consider the problem of answering conjunctive queries posed on the original
3 We assume that the data, i.e. the RDF graph, is much larger than the rules and the

constraints.
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graph using the reduced graph only. Consider a query q. As the reduced graph
G′ is always a subset of the input graph G, q(G′) ⊆ q(G). But there are some
cases where q(G) = q(G′) or at least q(G) �= ∅ ⇔ q(G′) �= ∅ holds. We will
briefly introduce the basic definitions and then use the chase and backchase
technique [6] in order to answer queries.

Let G′ be a non-empty RDF graph and V a finite subset of B such that
V ⊆ BG′ . A conjunctive query q has the form q : B ← G′. The set body(q) is
defined as G′. The answer of a conjunctive query on an RDF graph G is q(G) := {
μ ↑V | μ : G′ → G is a maplet }. Note that our notion of conjunctive queries
can be easily implemented using SPARQL [19]. For two conjunctive queries q, q′

we say that q is contained in q′ in the presence of C, q �C q′, if for every RDF
graph G such that G |= C it holds that q(G) ⊆ q′(G). If q �C q′ and q′ �C q we
write q ≡C q′. In [6] the following result is shown.

Theorem 25. [6] Let q be a conjunctive query and C a set of TGDs such that
chaseC(body(q)) is defined. Then, there is an algorithm that outputs precisely
all queries q′ (up to isomorphism) such that no predicate in body(q′) appears in
head(R) and q ≡C q′.

From this theorem we obtain as a first result the possibility to answer a query on
the full graph using the query and reduced graph only. We use this algorithm,
called Chase and Backchase, in order to determine if it is possible to rewrite a
given query such that its body does not contain any predicates that could have
been minimized by the rules. Of course, this is not always possible and stronger
results are left as future work. The corollary is proven in the appendix.

Corollary 26. Let R be a set of rules, C weakly acyclic, G′ ∈ MINI-RDF
(G,R, C) and q = V ← G0 a conjunctive query. The query q0 is defined as
∅ ← G0. If there is a conjunctive query q′ such that no predicate in body(q′)
appears in head(R) and

1. q ≡C q′, then q(G) = q(G′).
2. q0 ≡C q′, then q(G) �= ∅ ⇔ q(G′) �= ∅.

This corollary gives us a case where we can expect non-empty answers on the
reduced graph for the case that we had a non-empty answer in the original graph.

7 Related Work

Our work extends the works on transitive reduction, see [2], in graph theory.
Yet, in our framework it is not only possible to eliminate transivities in graphs,
but to define general rules for the reduction. Constraints on the reduced graph
are also not considered in [2].

The problem of optimizing the amount of data that must be exchanged if a
graph is updated and the update must be transferred to other hosts was already
studied in [22] using the notion of deltas. We are not aware of any work on RDF
that provides user-specific minimization techniques the way we do.
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The work in [8,14] eliminates triples in the sense of lean graphs and homomor-
phic equivalence. Although the results that are produced are homomorphically
equivalent to the original graph, they are not necessarily lean. Our work does not
subsume [8,14] nor the other way round. We focus on different aspects of redun-
dancy elimination. In our work, it must be explicitly specified via rules what a re-
dundancy structurally looks like. For example, our method may also be suitable
when the graph to be minimized has a user-defined rule semantics in the sense
of [20], where it could be desirable to minimize a given graph along its rule seman-
tics. The notion of lean is orthogonal to derivability by application-specific rules.
If such rules exist, a lean graph may still contain triples which are redundant in the
sense that they need not be stored explicitly because they could be derived by the
rules as well. Minimization in the sense of lean graphs is always possible because
this method is generic.

We also want to mention that MINI-RDF is not an abduction problem in the
sense of [7]. An abduction problem is characterized as follows: if we observe C and
have a rule of the form C ← A, then we can conclude the premise A, regardless
of A follows from our fact base or not. In our scenario, we would only delete C
from our fact base if afterwards A still follows from it. Knowledge assimilation in
deductive databases [5] uses abduction techniques to rewrite updates in such a
way that they can be performed on the extensional data only. Here it is already
known in advance what data is extensional and what data is intensional. In a
certain sense, in our scenario we want to compute the extensional part and delete
all intensional data such that the constraints remain satisfied.

8 Conclusions

We introduced the problem of minimizing RDF graphs along rules in the presence
of constraints. We showed that this problem is NP -complete even for a restricted
case and gave a tractable fragment of it. As a last contribution we provided a
first and simple result on answering queries posed over the original graph using
only the reduced graph to answer it.

There are several directions left open for future work. First of all, we did not
consider negation in the rules and except for theorem 15 no existential quantifiers
in the TGDs. Also other constraints than TGDs should be investigated for our
scenario e.g. the constraints studied in [16], where classical database constraints
were mixed with typical constraints on ontologies. Query answering with the
help of the reduced graph should be looked at more thoroughly. More expressive
classes of conjunctive queries than introduced in this paper and approximate
query answering should be studied. On the practical side, we plan to implement
our work and evaluate the results.
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Appendix

A Proof of Theorem 15
Assume that for all G̃ ∈ R−(G) and for all π ∈ Hom(chaseC(G̃), G) it holds
that |G′| �= |π(chaseC(G̃))|.
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Case 1: Assume that there is G̃ ∈ R−(G) and π ∈ Hom(chaseC(G̃), G) such
that |G′| > |π(chaseC(G̃))|. Clearly, for every choice of G̃ and π we have that
π(chaseC(G̃)) |= C and R(π(chaseC(G̃))) ⊇ G. Thus, G′ /∈ MINI-RDF(G,R, C).
Case 2: Assume that for all G̃ ∈ R−(G) and for all π ∈ Hom(chaseC(G̃), G)
it holds that |G′| < |π(chaseC(G̃))|. Define A := { G′′ ⊆ G′ | G′′ ∈ R−(G) }.
By definition A �= ∅. Choose G̃ ∈ A arbitrarily. As G̃ ⊆ G′ ι : G̃ → G′ is a
maplet, where ι(x) = x for all x in the domain of ι. G′ |= C. So, there exists a
maplet π : chaseC(G̃) → G′ with π ⊇ ι (see [15]), thus π ∈ Hom(chaseC(G̃), G)
and |π(chaseC(G̃))| ≤ |G′|. By assumption |G′| < |π(chaseC(G̃))|, which yields
a contradiction. �

B Proof of Theorem 18
It is well-known that CNF−SAT , the satisfiability problem for boolean formulas
in conjunctive normal form, is NP -complete under polynomial-time many-one
reductions, see [3]. We show that CNF − SAT can be reduced to MINI-RDFd.
An instance α of CNF − SAT is of the form

(x1,1 ∨ ... ∨ x1,k1) ∧ ... ∧ (xl,1 ∨ ... ∨ xl,kl
),

where xi,j are literals. Without loss of generality, we assume that (x ∨ ¬x) is a
conjunct in α for every veriable x that occurs in α. xi,j = xi,j , if xi,j is a positive
literal and xi,j = p, if xi,j = ¬p for a positive literal p. A possible reduction is
given by α �→ (G,R, C), where

G = { (xi,j , i, xi,j) | i ∈ [l], j ∈ [ki] } ∪ {(d, d, d)}
R = { (xi,j , i, xi,j) ← (xi,j′ , i, xi,j′) | i ∈ [l], j, j′ ∈ [ki], j �= j′ }

∪ { (d, d, d) ← t | t ∈ G\{(d, d, d)} }
C = { ((xi,j , i, xi,j) → (xi′,j′ , i

′, xi′,j′)) | xi′,j′ = xi,j }
∪ { ((xi,j , i, xi,j), (xi′,j′ , i

′, xi′,j′) → t) | xi′,j′ = xi,j , t ∈ G }.
Note that α �→ (G,R, C) is computable in polynomial time and that neither G,
R nor C contain any blank nodes. It remains to show that α is satisfiable if and
only if MINI-RDF(G,R, C) admits a solution.

Assume that b is a satisfying assignment for α. Define G′ := { (xi,j , i, xi,j) |
i ∈ [l], j ∈ [ki], b(xi,j) = 1 }. We will show that (i) R(G′) ⊇ G, (ii) G′ |= C
and G′ ⊂ G. Obviously, ∅ �= G′ ⊆ G holds.(i): Clearly, (d, d, d) ∈ R(G′) be-
cause ∅ �= G′ and for any s ∈ G′\{(d, d, d)} there is (d, d, d) ← s ∈ R. Let
t ∈ G\{(d, d, d)} arbitrarily. Then, there exist i ∈ [l], j ∈ [ki] such that t =
(xi,j , i, xi,j). As b satisfies α, b also satisfies the i-th conjunct of α. So, there is
j′ ∈ [ki] such that b(xi,j′ ) = 1. But then (xi,j , i, xi,j) ← (xi,j′ , i, xi,j′ ) ∈ R which
implies t ∈ R(G′). (ii): A constraint of the form ((xi,j , i, xi,j) → (xi′,j′ , i

′, xi′,j′))
where xi′,j′ = xi,j is satisfied because b(xi′,j′) = b(xi,j). Constraints of the form
((xi,j , i, xi,j), (xi′,j′ , i

′, xi′,j′) → t) (xi′,j′ = xi,j , t ∈ G) are satisfied too because
otherwise b(xi,j) = b(xi′,j′) = 1 although xi′,j′ = xi,j . So, overall we have found a
proper subset of G that satisfies (i) and (ii). This implies MINI-RDF(G,R, C) �= ∅.

Assume conversely that G′ ∈ MINI-RDF(G,R, C). Note that (d, d, d) /∈ G′.
We define a satisfying assignment b for α. For i ∈ [l], j ∈ [ki], if (xi,j , i, xi,j) ∈ G′,
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then b(xi,j) := 1. Note that b is well-defined and that it cannot occur that
b(xi,j) = b(xi,j) = 1 because G′ |= C. For all literals x that occur in α but
neither x nor x was assigned a truth value, set b(x) ∈ {0, 1} arbitrarily. Assume
b does not satisfy the i-th conjunct in α. By assumption R(G′) ⊇ G. So, by
construction, there must be j ∈ [ki] such that (xi,j , i, xi,j) ∈ G′. This means
b(xi,j) = 1. Thus, b satisfies the i-th conjunct in α, which is a contradiction. �

C Proof of Remark 21
1.) Define G′ := { w ∈ G | for all v ∈ R(G) : (v, w) /∈ ER }. We will show that
R−(G) = {G′}.

Assume that G′ /∈ R−(G). Then, there is a ∈ G′ such that R(G′\{a}) ⊇ G.
Thus, there must be a rule t ← G̃ ∈ R and a maplet μ : G′\{a} → R(G) such
that a = μ(t) and μ(G̃) ⊆ G′\{a}. From the construction of G′ it follows that
a /∈ G′, which is a contradiction.

Conversely, assume there is some G′′ ∈ R−(G). We will show that G′′ = G′.
Assume for a short moment that G′′ �= G′. Case 1: there is some a ∈ G′′\G′.
Without loss of generality, we can assume that a is minimal with respect to the
order of an arbitrary topological sorting of R(G) according to ER. In case that a
has no predecessors in ER, then a ∈ G′ by construction. Otherwise, a must have a
predecessor. It follows that a /∈ R−(G′′\{a}). So, there must be b ∈ R(G)\R(G′′)
such that (b, a) ∈ ER. This is a contradiction to the minimality of a.

Case 2: there is some a ∈ G′\G′′. Then, it must hold that R(G′) �= R(G′′).
We show that a /∈ R(G′′). Assume that a ∈ R(G′′). Then there must be a rule
t ← G̃ ∈ R and a maplet μ : G̃ → R(G) such that μ(t) = a. As G̃ �= ∅, a must
have a predecessor in ER. But as a ∈ G′, then by construction of G′ a cannot
have any predecessors in ER, which is a contradiction.

2.) |Hom(chaseC(G̃), G)| = 1 for any G̃ ⊆ G holds because C is a set of full de-
pendencies, the chase does not introduce any variables and therefore the identity
is the only element in Hom(chaseC(G̃), G). �

D Proof of Corollary 22
Assume that G is an RDF graph such that (R, G) is acyclic. We give an algo-
rithm that computes a solution to MINI-RDF(G,R, C). Let G′ be as in the proof
of remark 21 and note that the mapping G �→ G′ can be computed in polynomial
time. Compute chaseC(G′). Due to theorem 5 this can be in time polynomial
in |G′|. If chaseC(G′) ⊂ G, then return chaseC(G′), otherwise return NO. By
theorem 15 and remark 21 this algorithm works correct. We already argued that
it takes time polynomial in |G|. �

E Proof of Corollary 26
1.) Similar to point two.
2.) If q(G) �= ∅, then {∅} = q0(G) = q′(G) because G |= C. Furthermore,
q′(G) = q′(G′) because body(q) contains no predicates that could have been
minimized. As G′ |= C, q′(G′) = q0(G′). Therefore, q(G′) �= ∅. �
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Abstract. Ontologies are already used in the life sciences and the Semantic Web,
but are expected to be deployed in many other areas in the near future—for exam-
ple, in software development. As the use of ontologies becomes commonplace,
they will be constructed more frequently and also become more complex. To cope
with this issue, modularization paradigms and reuse techniques must be defined
for ontologies and supported by ontology languages. In this paper, we propose the
use of roles from conceptual modeling for this purpose, and show how they can
be used to define ontological reuse units and enable modularization. We present
role-based ontologies as an extension of standard ontologies and define their se-
mantics through a reduction to standard Description Logics, such that existing
reasoners can be used.

1 Introduction

In conceptual modeling it has long been known that there is a fundamental distinction
between different kinds of concepts: some stand on their own (e.g. Person), while oth-
ers depend on the existence of some other concept (e.g. Borrower, who must be related
to the borrowed item). Making this distinction explicit is favored in the role modeling
community (see e.g. [17,18] and references therein), with successful applications—for
example, in object-oriented programming [6]. In role modeling, concepts that can stand
on their own are called natural types, while dependent concepts are called role types.
Even though considered an important and fundamental conceptual differentiation, cur-
rent ontology languages, such as OWL DL [11], do not support it (nor does the OWL 2
working draft [2]). The Description Logics (DLs) community—providing much of the
foundations for OWL DL—is however aware of the differentiation and refers to role types
as relationship-roles [1].1 The DL handbook even supports the idea for the ontology de-
velopment process by encouraging its readers to “distinguish independent concepts from
relationship-roles” [1, p. 379].

Distinguishing different kinds of concepts is not only important for a better under-
standing of the modeled domain, but also for ontology reuse. This second application of

� This research has been co-funded by the European Commission within the 7th Framework
Programme project MOST number 216691 (cf. http://most-project.eu).

1 The DL community uses the term ‘role’ for binary properties. To avoid confusion with con-
ceptual roles (relationship-roles) we will use the term dl-role to describe the former construct.
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role types has—to the best of our knowledge—never been investigated by the ontology
community. Related role types and their relationships form abstraction units that can be
studied and defined on their own. Such abstraction units are traditionally called role mod-
els. As role models often transcend domains, they can be reused in different ontologies.

Consider, for example, the simple role model in Figure 1. It describes the role types
Producer, Product, and Consumer, and their relationships.

produces
Producer Product Consumer

consumes

Fig. 1. A simple role model describing three related role types and their relationships

This role model could be integrated in ontologies covering topics as different as
foods, wines, consumer electronics, or car dealerships. For example, a consumer elec-
tronics company modeling their infrastructure and their business processes can (re)use
the generic description captured in the role model in Figure 1.

By being domain-independent units, role models have something in common with
upper-level ontologies. Upper-level ontologies, however, are mainly used for integration
purposes and reside “above” domain ontologies. Role models serve a different purpose,
come with a different reuse approach and—as we will see—essentially reside “below”
domain ontologies.

Role modeling can be seen as a design methodology, or process, allowing to break a
larger description into smaller, reusable units—the role models. But to successfully de-
ploy design processes for reuse, the underlying languages must support them. To quote
Kiczales et. al. [8]: “Software design processes and programming languages exist in a
mutually supporting relationship.” Clearly ‘programming languages’ can here be substi-
tuted with ‘ontology languages.’ They go on to explain that the design processes allow
to break a system down into smaller and smaller (reusable) units, and that “a design
process and a programming language work well together when the programming lan-
guage provides abstraction and composition mechanisms that cleanly support the kinds
of units the design process breaks the system into.” It would hence be advantageous—
from a reuse point of view—if ontology languages supported the definition of role mod-
els and provided constructs for composing role models into complete ontologies.

In this paper we investigate how explicitly supporting role modeling in ontology lan-
guages can provide an important and little investigated reuse opportunity—in form of
role models. We also discuss the consequences of supporting the underlying role mod-
eling semantics. The contributions of this paper are: (1) We demonstrate the viability
of role models as ontological reuse units. (2) We propose a formalization for what role
modeling means for current ontology languages. (3) We explain the consequences of
introducing the semantics of role modeling into ontology languages. That is, the possi-
ble reasoning effects the ontology engineer has to be aware of. (4) We describe how the
role modeling semantics can be realized by reducing role modeled ontologies into on-
tologies expressed in standard ontology languages. This enables the reuse of reasoning
engines. Preliminary results of our work have been presented in [13].

The remainder of the paper is structured as follows: We begin in the next section
by giving some background on role modeling and DLs. In Section 3 we discuss an
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example of how role models can provide reuse opportunities, before providing a formal
reduction of our concepts to an underlying DL in Section 4.

2 Background

This section gives background knowledge the rest of the paper is based on. First, we in-
troduce role modeling as it is known from conceptual and software modeling. Then,
we discuss Description Logics, the formal underpinning of many current ontology
languages.

2.1 Role Modeling

In modeling, types (or concepts) abstract over sets of individuals. Role modeling at
its core argues for the existence of two inherently distinguishable abstractions: natural
types and role types, a terminology first introduced by Sowa [16]. Intuitively, natural
types describe the part of individuals that are essential to their identity while role types
describe accidental or temporal relations to other individuals.

A common example is the natural type Person and its associated role type Actor. In
this case, a person is said to play the role of an actor. Along with being an actor comes,
for example, giving performances led by stage managers and attending rehearsals led
by directors. Hence, in the role of being an actor one stands in certain relations to
individuals of other role types such as Director.

Guarino defines natural types and role types using the notions of founded types and
semantically rigid types [3]. A type is founded if all of its individuals have to be related
to an individual of another type, where the relation is not part-of. For example, one could
say that an actor necessarily has to be related to a director in order to be an actor. A type
is semantically rigid, if it contributes to the identity of its individuals. For instance, the
name and date of birth of a person are part of its identity. Hence, an individual cannot
drop the type Person, while ceasing to be an Actor is possible. Using these two notions,
we can define natural types and role types:

– A natural type is non-founded and semantically rigid.
– A role type is founded and semantically non-rigid.

Although the notion of roles seems intuitively clear, different definitions exist in the
literature. Steimann summarizes the fifteen most common characteristics the research
community associates with roles in object-oriented and conceptual modeling [17]. As
an ontology describes a static view of the world, those referring to dynamic aspects
observable in software systems are not relevant in this paper. Among the remaining, we
consider the following to be the most fundamental (each of Steimann’s role features is
referred to as ‘Sx’):

S1 “A role comes with its own properties and behaviour. This basic property sug-
gests that roles are types.”

S2 “Roles depend on relationships. As suggested by the work of Sowa and Guar-
ino, a role is meaningful only in the context of a relationship.”
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S3 “An object may play different roles simultaneously. This is one of the most
broadly accepted properties of the role concept.”

S14 “An object and its roles share identity. In the object-oriented world this entails
that an object and its roles are the same.”

Roles alone are beneficial to separate inherent and accidental characteristics of individ-
uals. Encapsulating several related roles into a role model is another important aspect
focused on in this paper. Results from the object-oriented software community [5,14]
show that role models are an interesting unit of abstraction for mainly two reasons: First,
role models focus on one specific concern of a domain, and hence, help in separating
concerns. Second, role models are often reusable across domain boundaries because
they can describe relations between individuals on a more general level than natural
types can. We will focus on the second point, reuse of role models, in this work and
show how role models serve as an ontological reuse unit.

An often discussed question is the relation of natural types and role types. Intuitively,
natural types are related to role types via the “can play role” relationship, but the ques-
tion is what semantics to associate. We will use the N � R notation for the “can play
role” relation in this paper, where N is a natural type and R a role type. Sowa originally
proposed to use the subsumption relationship (“IS-A”) to explain �, such that:

N � R ≡ R � N

where� represents the IS-A relationship. This interpretation is quite intuitive and works
remarkably well, but not in all situations as we discuss in Section 4.3.

An alternative way of representing roles are separate individuals that are attached to
individuals of natural types in some way. However, that contradicts role feature S14,
since a role-playing individual would be split into at least two separate individuals. For
a detailed discussion, the reader is referred to [17].

2.2 Description Logics and OWL

Description Logics (DLs) are a family of knowledge representation formalisms, where
most members are sub-languages of first-order logics. DLs are used to capture the im-
portant concepts and relations (roles in DL parlance) between individuals of the mod-
eled domain. We will refer to (binary) relations in DL as dl-roles to distinguish them
from the conceptual role types. Concepts and dl-roles can be described by complex
concept (resp. dl-role) descriptions using the construction operators available in the
particular DL.

The most widely used DL is the one underlying the ontology language OWL DL.
To simplify the presentation, we do not cover datatypes in this paper. An OWL DL
interpretation is a tuple I = (ΔI , ·I ) where the individual domain ΔI is a nonempty
set of individuals, and ·I is an individual interpretation function that maps (i) each
individual name o to an element oI ∈ ΔI , (ii) each concept name A to a subset AI ⊆ ΔI ,
and (iii) each dl-role name RN to a binary relation RNI ⊆ ΔI ×ΔI .

Valid OWL DL concept descriptions are defined by the DL syntax:

C ::= � | ⊥ | A | ¬C | C�D | C�D | {o} | ∃R.C | ∀R.C |� mR |� mR
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The interpretation function ·I is extended to interpret�I = ΔI and ⊥I = /0. The concept
� (⊥) is called Thing (Nothing) in OWL. The interpretation function can further be
extended to give semantics to the remaining concept and dl-role descriptions (see [12]
for details).

An OWL DL ontology consists of a set of axioms, including concept axioms, dl-role
axioms and individual axioms.2 A DL knowledge base consists of a TBox, an RBox
and an ABox. A TBox is a finite set of concept inclusion axioms of the form C � D,
where C,D are concept descriptions. An interpretation I satisfies C � D if CI ⊆ DI .
An RBox is a finite set of dl-role axioms, such as dl-role inclusion axioms (R � S). The
kinds of dl-role axioms that can appear in an RBox depend on the expressiveness of the
ontology language. An interpretation I satisfies R � S if RI ⊆ SI . An ABox is a finite
set of individual axioms of the form a : C, called concept assertions, or 〈a,b〉 : R, called
dl-role assertions. An interpretation I satisfies a : C if aI ∈CI , and it satisfies 〈a,b〉 : R
if 〈aI ,bI 〉 ∈ RI .

Let C,D be concept descriptions, C is satisfiable wrt. a TBox T iff there exist an
interpretation I of T such that CI �= /0; C subsumes D wrt. T iff for every interpretation
I of T we have CI ⊆DI . A knowledge base Σ is consistent (inconsistent) iff there exists
(does not exist) an interpretation I that satisfies all axioms in Σ.

Many people also use the Manchester OWL syntax [7], which is more user friendly
for non-logicians.

3 A Role-Based Design Process for Ontological Reuse

The purpose of this section is to give an intuitive understanding of why role models
are reusable entities and how they can be beneficial to ontology engineers. We use
a running example to discuss consequences of a role modeling approach to ontology
design. Furthermore, we discuss what the benefits of ontological role modeling are from
a conceptual modeling point of view, and what the methodology of defining role-based
ontologies is. Then, in Section 4, we discuss the semantics of such ontologies.

The examples are written in Manchester Syntax [7], which is not further described
here but should be no problem to understand. We extend the syntax for the purpose
of defining and composing role models; the keywords of the extended constructs are
underlined (and in a different color).

Listing 1.1 shows an ontology that models a faculty, introducing main concepts such
as Professor, FacultyMember, and PhDStudent. The faculty is managed by a board
which is described in the role model in Listing 1.2. A board consists of board members
that elect a chairman.3 The chairman can appoint one of the members as secretary. The
ontology in Listing 1.1 imports the board role model and can so use the concepts it de-
fines. Concepts and properties defined in the role model are marked with ’ to distinguish
them from the concepts introduced in the base ontology.

Readers might ask why the board is described in a role model. The reason is that
boards have a recognizable structure with a typical set of relationships that hold

2 Individual axioms are called facts in OWL.
3 A ‘chairman’ is here a person designated to preside over a meeting.
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Ontology: http://ex.org/Faculty
ImportRoles: http://ex.org/Board
Class: FacultyMember
CanPlay: BoardMember’

Class: Professor
SubclassOf: FacultyMember
CanPlay: ChairMan’

Class: PhDStudent
SubclassOf: FacultyMember

Individual: smith
Types: Professor, Chairman’

Individual: mike
Types: PhDStudent, BoardMember’

Listing 1.1. Role-based ontology

RoleModel: http://ex.org/Board
Role: BoardMember’
Role: Chairman’
SubclassOf: BoardMember’ and
electedBy’ some BoardMember’

Role: Secretary’
SubclassOf: BoardMember’

ObjectProperty: electedBy’
Domain: Chairman’
Range: BoardMember’

ObjectProperty: appointedBy’
Domain: Secretary’
Range: Chairman’

Listing 1.2. Role model

between entities in that context, regardless of the particular underlying domain. It makes
therefore sense to detach the description of the board from the faculty ontology.

The ontology in Listing 1.1 is made up of standard DL constructs, save the Im-
portRoles and CanPlay constructs. The meaning of the ImportRoles construct is the
obvious, making the role model available to the ontology. The CanPlay constructs are
crucial since they define the relations between the base ontology and the role model.
We refer to such connecting statements as bridge axioms. The role model in Listing 1.2
makes use of two additional constructs, RoleModel and Role that have to obvious mean-
ing. The URL of a RoleModel can be used to import it using the ImportRoles construct.

3.1 Methodology

Role modeling provides a methodology for developing ontologies, a methodology that
we claim encourages good design and supports reuse. The following are the intuitive
development steps that we propose for constructing a role-based ontology:

1. Define base concepts. Define a base ontology that contains the main concepts of the
modeled domain. These concepts correspond to natural types of the domain. That
is, each concept in the base ontology should be semantically rigid and non-founded.
In our example, an ontology modeler would start by defining basic concepts of
a faculty, such as Professor and PhDStudent. Notice that, in a different universe
of discourse, Professor may itself be a role type (for example, for an underlying
natural type Person).

2. Identify role models. Identify accidental or temporal relationships that individuals,
abstracted by the base concepts, may participate in. Then, identify the contexts that
those relationships appear in and what concepts (role types) are involved. Such
contexts should be described in separate role models to be integrated into the base
ontology.

(a) If a role model for the desired relationships already exists, it can be reused.

http://ex.org/Faculty
http://ex.org/Board
http://ex.org/Board
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(b) If no fitting role model exists, then define it. This involves capturing the im-
portant role types in the context and defining the relationships between them.
There will exist relationships, since role types are by definition semantically
non-rigid and founded. For instance, the board role model contains the role
types Chairman’ and BoardMember’, which are related by the electedBy’
property.

To ensure reusability of role models they have to be self-contained. In particular,
each property defined in a role model must have its domain and range restricted
to a role type from the same role model. This guarantees that each individual that
participates in such a property actually belongs to a role type of the role model.

3. Define bridge axioms. Describe how the identified role models should be integrated
into the base ontology by defining appropriate bridge axioms. A bridge axiom can
bind a role type to a natural type, assert that an individual belongs to a certain
role type, or assert two individuals to be connected via a property that is part of a
role model. For example, we connect Professor and Chairman’ through a CanPlay
axiom; the individual smith is asserted to be a Chairman’.

3.2 Benefits of Separating Role Models and Base Ontologies

We argue that it is beneficial to separate role models from base ontologies during the
ontology design process. In particular, following the above methodology brings the
following advantages:

– Modularization during development:

• Base ontology development can focus on the main domain concepts and their
hierarchical relations.

• Role models can be defined, and refined, without necessarily focusing on the
domain concepts, because role models typically transcend domains.

• A role model focuses on a single context and important relationships holding
between entities in this context.

– Reuse of role models:

• As role models concentrate on a single concern, reuse is more likely than with
complete ontologies that intermingle different concerns.

• Role models constitute ontological modules. A base ontology can use role type
names and property names of a role model, but not redefine them. Hence, a role
model provides an interface, via the names of its role types and properties.

3.3 Reusing Role Models

The role-based ontology in Listing 1.3 demonstrates the reusability of the board role
model from Listing 1.2. The role model is being deployed in a different setting, this
time in an ontology modeling a company, instead of a university. Because the concern
which is captured in the role model appears in both domains, it can be reused.
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Ontology: http://ex.org/Company
ImportRoles: http://ex.org/Board
Class: President
CanPlay: ChairMan’

Class: VicePresident
CanPlay: Secretary’

Class: CompanyAdvisor
CanPlay: BoardMember’

Individual: donald
Types: President, Chairman’

Individual: jane
Types: VicePresident, BoardMember’

Listing 1.3. Role-based ontology reusing the role model from Listing 1.2

4 Formalization and Semantics of Ontological Role Modeling

In Section 4.1 we formalize ontological roles and role models. Then, in Sections 4.2
to 4.3, we propose two possible semantics for the role modeling constructs used in the
preceding section. The two semantics cover different aspects of role modeling and are
realized by mapping role-based ontologies to different DL constructs.

4.1 Formalization of Role-Based Ontologies

We formalize role-based ontologies in three parts, based on the methodology described
in Section 3. A base ontology only contains natural types. Role models define role
types and their relationships. We use bridge axioms to combine a base ontology with
role models into a role-based ontology.

Definition 1 (Base Ontology). A base ontology is a finite set of axioms in some DL,
capturing concepts that are assumed to correspond to natural types.

A base ontology is assumed to capture concepts that provide semantic rigidity for in-
dividuals of the modeled domain. Naturally, any properties that inherently relate such
concepts are also introduced, as are concrete individuals. We do not commit to a partic-
ular DL, since this definition is general enough to cover many DLs.

Definition 2 (Ontological Role Model). An ontological role model is a TBox where
each concept name is considered a role type. Each concept name must be “related” to
another concept name, either via a dl-role, or by at least one axiom (e.g. a subsumption
axiom). All dl-roles must be domain and range restricted to a type from the role model.

The restriction of “related” concept names prevents role models from being divided into
subparts with pairwise disjoint signatures.4 If such a division is possible, the role model
should be split into separate role models. Intuitively, this restriction ensures that a role
model only describes one concern.

4 As pointed out by a reviewer, what “related” means is not formalized. We recognize this for-
malization as important future work, but here stay with the intuitive notion, as described.

http://ex.org/Company
http://ex.org/Board
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Definition 3 (Role-Based ontology). A role-based ontology O is a triple O =
(N ,R ,B) where N is a base ontology, R is a finite set of role models and B a fi-
nite set of bridge axioms. The base ontology and the role models have pairwise disjoint
signatures. The bridge axioms in B are of the form:

1. N � R (terminological bridge axiom), or
2. R(a) or S(a,b) (assertional bridge axiom)

where N is an arbitrary concept description, and a,b are individuals, in N . R is a
concept name (role type), and S a dl-role, in one of the role models in R .

The � symbol reads “can play” and specifies that instances of a natural type can play a
role of a certain role type.

To be able to reuse existing tools, most importantly, reasoners, we define the seman-
tics of role-based ontologies via reduction to the underlying DL. Thus, the reduction
algorithm unambiguously defines the semantics of role-based ontologies by referring to
the already understood model-theoretic semantics of DLs.

4.2 Conjunctive Role Modeling Semantics

The goal is to define a semantics for role-based ontologies that cover desirable prop-
erties of role modeling. As a minimal requirement, the semantics should cover the
Steimann criteria S1, S2, S3, and S14 described in Section 2. More importantly, we
need to account for the differentiation between natural and role types according to the
distinction made by Guarino [3]. That is, natural types are semantically rigid, while role
types are not, and do not provide identity for its instances. We will address this by ac-
knowledging that individuals cannot only be instances of role types. This suggests that
role types that are not explicitly related to some natural type should—by definition—be
unsatisfiable (empty in all models of the ontology). Conveniently, unbound role types
can easily be detected with standard ontology reasoners. Relations between natural and
role types should explicitly be modeled by ontology engineers using terminological
bridge axioms (that is, using the CanPlay construct).

The semantics of a role-based ontology O = (N ,R ,B) is here given by a transfor-
mation to an ontology O ′ in the DL of N according to the following transformation:

O ′ = N ∪R
∪ {R � N|N � R ∈ B}
∪ B \ {N � R|N � R ∈ B}
∪ {R �⊥|R ∈ R ∧¬∃N : N � R ∈ B}

As can be seen, the translation scheme consists of four steps:

1. Integration. The base ontology and the role models (with pairwise disjoint signa-
tures) are combined.

2. Terminological bridge axioms. Here we use the semantics proposed by Sowa for
realizing the � relationship [15]. That is, if instances of a natural type N can play a
role of a role type R, we specify R to be subsumed by N.
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Ontology: http://ex.org/Faculty
Class: FacultyMember
Class: Professor
SubclassOf: FacultyMember

Class: PhDStudent
SubclassOf: FacultyMember

Class: BoardMember’
SubclassOf: FacultyMember

Class: Chairman’
SubclassOf: BoardMember’ and
electedBy’ some BoardMember’
and Professor

Class: Secretary’
SubclassOf: BoardMember’ and

Nothing
ObjectProperty: electedBy’
Domain: Chairman’
Range: BoardMember’

ObjectProperty: appointedBy’
Domain: Secretary’
Range: Chairman’

Individual: smith
Types: Professor, Chairman’

Individual: mike
Types: PhDStudent, BoardMember’

Listing 1.4. Translation of a role-based ontology into the underlying ontology language

3. Assertional bridge axioms. All other bridge axioms are incorporated into O ′. That
is, all the assertional bridge axioms.

4. Unbound role types. Role types that are not related to any natural type through �
subsume ⊥ (Nothing in OWL), that is, they are unsatisfiable.

We will illustrate the transformation using the example from Listings 1.1 and 1.2. Ap-
plying the transformation yields the ontology in Listing 1.4. This ontology only uses
standard ontology constructs. It must be highlighted that the ontology in Listing 1.4
only captures the meaning of the ontology units from Listings 1.1 and 1.2. The on-
tology engineer is never expected to continue working on the “compiled” ontology.
The abstractions gained through explicit role modeling are lost in the compilation step,
making the resulting ontology more difficult to maintain. At the same time, because
the compilation result is expressed in a standard DL, existing ontology reasoners can
handle it directly.

For instance, the role type Secretary’ is not bound to any natural type, and hence,
defined as a subtype of Nothing (⊥). To understand the consequences of this translation,
let us consider two scenarios:

1. Assume an additional assertion, stating that mike is an instance of Secretary’. As
Secretary’ is unbound, and thus, unsatisfiable, the resulting ontology would be in-
consistent.

2. Assume another role type relies on instances of Secretary’. For instance, Chairman’
could be a subclass of the concept (assistedBy’ some Secretary’). As there can be
no instances of Secretary’, Chairman’ would also become unsatisfiable.

Obviously, our translation scheme for unbound role types helps in finding situations
where role types are misused as natural types. The logical solution to repair our on-
tology for the two scenarios would be an additional bridge axiom FacultyMember �
Secretary’. In this case, Secretary’ is no longer unsatisfiable and, as a consequence, the
above illustrated inconsistencies do not occur.

Finally, let us come back to the four properties of Steimann from Section 2.1. As
we define roles as concepts that can be described with all constructs of the underlying

http://ex.org/Faculty
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DL, we fulfill S1. The second property, S2, is also supported, since we require that
the context of each role type is captured in its surrounding role model. The second
kind of bridge axiom in Definition 3 can be used arbitrarily often, hence, allowing
one individual to be an instance of multiple role types (S3). The last property (S14) is
supported as we do not represent roles as additional individuals but combine them with
natural types using subsumption.

We refer to the above-described semantics as conjunctive role modeling semantics
because a role type R played by different natural types N1, . . . ,Nn is interpreted as a
subtype of the conjunction of the natural types, that is, R � N1 � . . .�Nn. This follows
immediately from defining � using standard subsumption. While simple, this semantics
does not come without problems from a role modeling perspective. We investigate this
further in the next section.

4.3 Disjunctive Role Modeling Semantics

Another important role modeling feature from Steimann’s overview paper [17] is the
following:

S7 “Objects of unrelated types can play the same role. Although a fundamental
observation [...] it is not acknowledged by all authors.”

Although “not acknowledged by all authors”, it is a rather intuitive and useful modeling
notion. Imagine, for example, that we replace the class Professor, from Listing 1.1,
with the two classes FullProfessor and AssistantProfessor. Imagine, furthermore, that
they are declared to be disjoint (natural, since you cannot be both). Suppose we want
to express that both kinds of professors can be chairmen in a board. Not only is this a
natural thing to express, but doing so would also enable us to discuss the properties of
a chairman (defined by Chairman’), regardless of which kind of professor it is. To do
this, we would issue the following bridge axioms:

FullPro f essor � Chairman′

AssistantPro f essor � Chairman′

While the above axioms are intuitive to understand and write, the conjunctive role
modeling semantics, based on Sowa’s original interpretation of �, does not work as
we perhaps would like. The reason is that the above gets interpreted as Chairman′ �
FullPro f essor �AssistantPro f essor, which renders Chairman′ unsatisfiable. This is
the case since the intersection of FullPro f essor and AssistantPro f essor is necessar-
ily empty, since they are disjoint. In general, the conjunctive role modeling seman-
tics can result in unexpected results when types that are not related via subsumption
(e.g FullPro f essor and AssistantPro f essor in the above example) are related to the
same role type via �.

To be able to address S7, we provide an alternative semantics by letting role types
be subsumed by the union of all natural types their are bound to. For the above ex-
ample, this results in Chairman′ � FullPro f essor�AssistantPro f essor, which in this
case does not make Chairman′ unsatisfiable. We call this the disjunctive role modeling
semantics and its formal realization is as follows:
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...
Class: FullProfessor
SubclassOf: FacultyMember

Class: AssistantProfessor
SubclassOf: FacultyMember

...
Class: Chairman’
SubclassOf: BoardMember’ and

electedBy’ some BoardMember’ and
(FullProfessor or AssistantProfessor)

...

Listing 1.5. Translation of a role-based ontology into the underlying ontology language using
disjunctive role modeling semantics

O ′ = N ∪R
∪ {R � N1� . . .�Nn|{N1, . . . ,Nn}= {N|N � R ∈ B}}
∪ B \ {N � R|N � R ∈ B}
∪ {R �⊥|R ∈ R ∧¬∃N : N � R ∈ B}

The above equations only differ from the corresponding equations for conjunctive se-
mantic in the translation of terminological bridge axioms. Therefore, disjunctive seman-
tics only differs from the conjunctive in cases where several natural types are bound to
the same role type. In the case from the previous section with a single concept Profes-
sor bound to role type Chairman’, both semantics are equivalent. In contrast, the two
semantics give different results if both FullProfessor and AssistantProfessor are bound
to the role type Chairman’. While we obtain an inconsistency with the conjunctive se-
mantics, disjunctive semantics allow for a consistent interpretation. The result is shown
in Listing 1.5 (parts that are equal to Listing 1.4 are left out).

The disjunctive role modeling semantics satisfies S7, as well as the previously dis-
cussed role modeling requirements. Being able to connect unrelated, possibly disjoint,
natural types to the same role type can be valuable from a modeling perspective. How-
ever, fulfilling S7 turns out to have a drawback: In contrast to standard DLs, the dis-
junctive semantics is non-monotonic. A logic is monotonic if adding a new axiom never
falsifies assertions that were true before adding the axiom.

Lemma 1. Ontological role modeling under disjunctive semantics is non-monotonic.

The reason for this is that adding assertional bridge axioms can redefine previous knowl-
edge. Consider the following role-based ontology O = (N ,R ,B), with:

N = {FullPro f essor�AssistantPro f essor �⊥,

FullPro f essor(smith),AssistantPro f essor( jones)}
R = {Chairman′ = electedBy′ some BoardMember′}

B = {FullPro f essor � Chairman′}
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Based on the disjunctive role modeling semantics we have O |= ¬Chairman′( jones).
But adding the bridge axiom AssistantPro f essor � Chairman′ to B , this is not the
case anymore, that is, O �|= ¬Chairman′( jones). As we have to retract knowledge when
adding a bridge axiom, role modeling under the disjunctive semantics is non-monotonic.

5 Related Work

Reuse is an important part in the ontology development process. A structured reuse
opportunity is presented by upper-level ontologies (e.g. [10]). Upper-level ontologies
typically describe generic concepts related to notions such as time, space, matter, and
have a high reuse value since they span many different domains. Role models also span
different domains, but their reuse usage is different from upper-level ontologies. In gen-
eral, upper-level ontologies reside “above” the base ontology and reuse is accomplished
by declaring a base concept B as a subclass of the upper-level concept U , that is, B�U
in DL syntax. Role models on the other hand reside “below” the base ontology and the
reuse relationship is inverted from the upper-level one. That is, reuse is in general ac-
complished using axioms such as R � B, where R is a role type from a role model. As
such, role models are complementary to upper-level ontologies. The main incentive for
upper-level ontologies is to achieve base ontology integration and reuse is a condition
for its success. For role models, reuse is the incentive.

The OntoClean methodology proposed by Guarino [4] shares a number of ideas with
our approach. The paper describes common misuses of the subsumption concept, for
instance, to represent part/whole relations, instantiations, or meta-level relationships,
and proposes to identify them using meta-properties for ontological classes. The two
basic meta-properties of a class are essence and rigidity. Properties of a class belong to
its essence, if they must hold for an instance (in contrast, for example, to properties of a
role type, which can hold). Rigidity means that the properties of the class must hold for
all instances. Our approach relates to this work as essential and rigid classes correspond
to natural types, while non-essential and non-rigid classes are role types. Based on the
meta-properties, Guarino proposes to impose constraints on subsumption relationships,
for instance, forbidding a rigid concept to be subsumed by a non-rigid concept. This
constraint is enforced in our approach by translating the terminological bridging axiom
into R � C, where a non-rigid concept R is always subsumed by a rigid concept C.
Furthermore, OntoClean claims that each ontology has a backbone taxonomy with its
rigid classes and their subsumption relationships. Such a backbone taxonomy roughly
corresponds to our base ontology that exclusively consists of natural types.

The work in [19] proposes, similarly to us, to discriminate role concepts from basic
concepts to overcome the gap between the recognition of different types of concepts
and what is provided in standard ontology languages. The approach builds upon three
notions: role concepts, equivalent to our role types, potential players, which roughly
correspond to classes bound to a role type via a CanPlay relationship, and role-holder,
that is, instances actually playing a role. The authors argue for two distinct type hi-
erarchies and emphasize the relation of a role to its context. Furthermore, the pa-
per describes compound roles that are built from primitive roles, realizing ideas that
are similar to roles playing roles as in [17]. In contrast to our approach, the authors
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implement roles in their own ontology framework, including an ontology language and
custom-built tools.5 Instead, we propose to embed roles into existing languages using
syntactic extensions that can be translated into the underlying ontology language.

6 Conclusions and Outlook

Ontologies are increasingly often applied in real-life scenarios, where they are used
for modeling large knowledge domains. Perhaps the most prominent example to name
here is the Gene Ontology [20] with its almost 25.000 terms (as of January 2008). To
successfully develop and maintain such large ontologies, powerful modularization and
reuse techniques are required.

In this paper we have discussed the notion of roles as explicit modeling constructs,
that has been discussed in the domain of conceptual modeling for some time now, but
never really utilized in ontology languages. We have shown how making roles explicit
concepts—instead of encoding them implicitly in dl-roles—enables us to encapsulate
role models and reuse them in different ontologies, even across domain boundaries. A
role model in this context is an ontology consisting of role concepts and relationships
between them. We have shown how to construct role-based ontologies from a base
ontology, a role model and a set of bridging axioms relating natural concepts from
the base ontology to role concepts from the role model via a CanPlay relationship. The
semantics of this new relationship has been defined by translating role-based ontologies
to equivalent ontologies in a standard DL. In this paper, we have discussed two such
semantics: conjunctive semantics and disjunctive semantics. The former is simpler, but
does not allow individuals of disjoint natural concepts to play the same role, which may
be counter intuitive to ontology designers. The latter semantics allows such situations,
but at the cost of a non-monotonic logic. It is at this stage not possible to recommend
one of the semantics as canonical—they serve different purposes. We first need to study
how role models are used and applied in practice to better understand which semantics
is more intuitive to ontology engineers.

In conclusion, we suggest to integrate explicit role concepts with ontology languages,
such as OWL, as they offer a unique reuse and modularization opportunity that goes
beyond currently available mechanisms for ontology reuse. Role models form compo-
nents; their role types define a component interface enabling to check correct usage
of the component—for example, every used role type must be assigned to some base
concept. A notion of components that allows checking for correct usage is lacking in
today’s ontology languages. This gap can be closed by role modeling. Role modeling
goes beyond upper-level ontology reuse, as it allows more specific ontologies to be
reused and also allows reusing multiple role models within one ontology. Role models
are, therefore, an important tool in every ontology designer’s tool box.

Of course, more work is needed. We would like to perform a larger case study of ap-
plying role models to refactoring, modularizing, and partially reusing a large ontology.
Role modeling should be supported by ontology modeling tools that can transform the
role-based ontologies before applying reasoners. Furthermore, it will be interesting to

5 http://www.hozo.jp

http://www.hozo.jp
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study other applications of role models in ontologies—for example, where ontologies
are used for describing situations in an action calculus [9].
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Abstract. Disjunctive logic programming under answer set semantics
(DLP, ASP) is a powerful rule-based formalism for knowledge repre-
sentation and reasoning. The language of DLP is very expressive, and
allows to model also advanced knowledge-based tasks arising in modern
application-areas like, e.g., information integration and knowledge man-
agement. The recent development of efficient systems supporting disjunc-
tive logic programming, has encouraged the usage of DLP in real-world
applications. However, despite the high expressiveness of their languages,
the success of DLP systems is still dimmed when the applications of in-
terest become data intensive (current DLP systems work only in main
memory) or they need the execution of some inherently procedural sub-
tasks. The main goal of this paper is precisely to improve efficiency and
usability of DLP systems in these contexts, for a full exploitation of DLP
in real-world applications.

We develop a DLP system which (i) carries out as much as possible
of the reasoning tasks in mass memory without degrading performances,
allowing to deal with data-intensive applications; (ii) extends the ex-
pressiveness of DLP language with external function calls, yet improv-
ing efficiency (at least for procedural sub-tasks) and knowledge-modeling
power; (iii) incorporates an optimization strategy, based on an unfolding
technique, for efficient query answering; (iv) supports primitives allowing
to integrate data from different databases in a simple way.

We test the system on a real data-integration application, comparing
its performance against the main DLP systems. Test results are very en-
couraging: the proposed system can handle significantly larger amounts
of data than competitor systems, and it is also faster in response time.

1 Introduction

Current capabilities of generating and collecting data are increasing rapidly. The
wide-spread use of internet applications for most commercial activities, the com-
puterization of many business and government transactions, and the advances in
data collection tools have provided us with huge amounts of data. This explosive
growth in data and databases has generated an urgent need for new techniques
and tools that can intelligently and automatically infer useful information and
knowledge from available data.
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Knowledge representation and reasoning capabilities required in these con-
texts could be provided also by a powerful rule-based formalism like disjunctive
logic programming under answer set semantics (DLP, ASP).

The recent development of efficient DLP systems, like DLV [14], Cmodels
[10], Gnt2 [12], and ClaspD [8], has renewed the interest for DLP in modern
application areas. As an example, DLV has been recently exploited for data-
integration [7], ontology specification [18], and ontology querying [11].

However, current DLP systems present two main drawbacks in real world
scenarios: they are not capable of handling data intensive applications (they
work in main memory only) and they are not well suited for modelling inherently
procedural problems.

Recently, we presented a database-oriented variant of DLV, namely DLVDB

[20], representing a first step towards overcoming these drawbacks. In fact, [20]
carries out all of its tasks in mass memory, thus enabling data intensive appli-
cations, but only for limited forms of reasoning (only disjunction free, stratified
programs are allowed).

The goal of this work is to enhance DLVDB features to improve its efficiency
and usability in the contexts outlined above, for an effective exploitation of DLP
in real world scenarios. The proposed enhancements include:

– Full support to disjunctive datalog with unstratified negation, and aggregate
functions;

– Extension of DLP with external function calls, particularly suited for solving
inherently procedural sub-tasks but also for improving knowledge-modelling
power;

– An evaluation strategy devoted to carry out as much as possible of the
reasoning tasks in mass memory, thus enabling complex reasonings in data
intensive applications without degrading performances;

– An optimization strategy oriented to improve query answering;
– Primitives to integrate data from different databases.

In order to make the above enhancements possible, various challenges had to be
faced:

1. Data intensive applications usually must access, and modify, data stored in
enterprise databases and these should be accessed also by other applications.

2. Evaluating the stable models of a program directly in mass-memory data-
structures, could be highly inefficient.

3. Using the main memory to accommodate both the input data (hereafter,
EDB) and the inferred data (hereafter, IDB) is usually impossible for data
intensive applications due to the limited amount of available main memory.

Note that, from points 2. and 3. it comes out that some amount of data must
be loaded in main memory, but this should be as small as possible.

In order to face challenge 1. DLVDB is interfaced with external databases
via ODBC. ODBC allows a very straightforward way to access and manipulate
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data over, possibly distributed, databases. Note that challenge 1. makes systems
integrating proprietary DBMSs less effective.

As far as challenge 2. is concerned we adopt a mixed strategy, which is detailed
in Section 2; intuitively, the evaluation can be divided in two distinct phases:
the grounding and the model generation. Grounding is completely performed in
the database, whereas the model generation is carried out in main memory; this
allows also to address challenge 3. In fact, in several cases, only a small portion
of the ground program is actually needed for the model generation phase, since
most of the inferred data is “stable” and belongs to every stable model (and is
already derived during the grounding phase).

We have dedicated special attention also to efficiency; in fact, while language
extensions and mass memory evaluations usually tend to degrade systems effi-
ciency, our implementation presents comparable, and in several cases even better,
performances than competitor main memory systems, yet allowing the handling
of the highest amounts of data. The proposed system has been in fact compared
with state-of-the-art ASP systems on a real data-integration scenario. Test re-
sults, reported in the paper, show that DLVDB is well suited for data intensive
applications both for time and space requirements.

The plan of the paper is as follows. Section 2 describes the overall character-
istics of the proposed system, and its database oriented evaluation strategy. Sec-
tion 3 describes the application scenario adopted for our tests, whereas Section 4
presents benchmarks and results. Finally, Section 5 provides some final remarks.

2 System Description

The language supported by the proposed system is disjunctive datalog, extended
with functions and aggregates. Syntax and semantics of this language are de-
scribed in detail in [5,6]. In the following we focus on our implementation of the
language, recalling just the syntax of rules, and the main syntactic conditions to
be respected.

Rules accepted by the system have the form

α1 ∨ · · · ∨ αk :-β1, . . . , βn, notβn+1, . . . , notβm. (1)

where m, k ≥ 0, α1, . . . , αk, are ordinary atoms, and β1, . . . , βm are (ordinary,
external, or aggregate) atoms. External and aggregate atom predicate names
are conventionally preceded by “#”. Rules with k = 0 and m > 0 are called
constraints, whereas rules such that k = 1 and m = 0 are called facts.

An example of external atom could be #concat(X,Y,Z), which takes two
strings X and Y as input and returns a string Z corresponding to the con-
catenation of X and Y . Examples of aggregate functions are #count (number
of terms) and #sum (sum of rational numbers).

Functions introduced in the program by external atoms are expected to be
defined as scalar stored functions in the database coupled with DLVDB; in fact,
as it will be clear in the following, DLVDB performs most of its evaluations
directly on a working database specified by the user. Moreover, programs must
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be value-invention restricted (cfr. [5]), i.e. new values possibly introduced by
external atoms must not propagate through recursion; this avoids the generation
of infinite-sized answer sets.

Stored functions in databases can return only one scalar value; as a conse-
quence, DLVDB adopts the convention that the last variable of the external
atom corresponds to the result returned by the function call, whereas all the
other variables are the inputs for the stored function.

The evaluation strategy implemented in our approach puts its basis on the
sharp distinction existing between the grounding of the input datalog program
and the generation of its stable models. Then, two distinct approaches can be
adopted whether the input program is non disjunctive and stratified (in this case
everything can be evaluated on the DBMS) or not. Details are provided next.

Evaluation of non disjunctive stratified programs. It is well known that if a pro-
gram is non disjunctive and stratified, it has a unique stable model corresponding
exactly to its ground instantiation. The evaluation of these kinds of program has
been already addressed in our previous version of DLVDB. Intuitively, it consists
in the translation of each datalog rule in a corresponding SQL statement and
in the composition of a suitable query plan on the DBMS; the evaluation of
recursive rules is carried out with an improved semi-näıve approach. A detailed
description of the approach is out of the scope of this paper; the interested reader
is referred to [20] for details.

This paper, however, extends the language previously supported by DLVDB to
allow also for external atoms. Note that since the grounding phase instantiates
all the variables, there is no need to invoke again the functions associated with
external atoms after the grounding (this is true even for disjunctive or non strati-
fied programs). As a consequence, the handling of external atoms can be carried
out completely during the grounding and, hence, within the SQL statements
generated from the datalog rules.

Now recall that, by convention, given an external atom #f(X1, . . . , Xn, O)
used in a rule r, only the last variable O can be considered as an output pa-
rameter, while all the other variables must be intended as input for f . This
corresponds to the function call on the database f(X1, . . . , Xn) = O. Moreover,
O can be: (i) bound to another variable in the body of r, (ii) bound to a con-
stant, (iii) a variable of r’s head. Then, in the SQL statement corresponding to
r, a function call is introduced in the WHERE part to implement cases (i) and
(ii) and in the SELECT part to implement case (iii).

As an example, consider the rule:

mergedNames(ID, Name) :- person(ID, FirstName, LastName),
#concat(FirstName, LastName, Name).

This rule belongs to case (iii) above and is translated into:

INSERT INTO mergedNames
(SELECT person.ID, concat(person.FirstName,person.LastName) FROM
person);

Cases (i) and (ii) are handled analogously.
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Evaluation of disjunctive programs with unstratified negation. In presence of dis-
junctive rules or unstratified negation in a program P , the ground instantiation
of P is not sufficient to compute its stable models. Then, grounding and model
generation phases must both be handled.

The evaluation strategy we adopt in this paper carries out the grounding
completely in the database, by the execution of suitable SQL queries. This phase
generates two kinds of data: ground atoms (facts) valid in every stable model
(and thus not requiring further elaboration in the model generation phase) and
ground rules, summarizing possible values for a predicate and the conditions
under which these can be inferred.

Facts compose the so called solved part of the program, whereas ground rules
form the residual program, not completely solved by the grounding. As previously
pointed out, one of the main challenges in our work is to load the smallest amount
of information as possible in main memory; consequently, the residual program
generated by the system should be as small as possible.

Model generation is then carried out in main memory with the technique
described in [14].

Definition 1. Let p be a predicate of a program P, p is said to be unsolved if:
(i) it is in the head of a disjunctive rule; (ii) it is the head of at least one rule
involved in unstratified negation; (iii) the body of a rule having p as head contains
at least one unsolved predicate. p is said to be solved otherwise.

In our evaluation strategy, a ground solved predicate is associated with facts
only in the ground program and, thus, with certainly-true values, i.e. values true
in every stable model. On the contrary, a ground unsolved predicate p may be
defined by both facts (certainly-true values) and ground rules; the latter identify
possibly-true values for p, i.e. the domain of values p may assume in stable models.

Given an unsolved predicate p we indicate the set of its certainly-true values
as ps and the set of its possibly-true values as pu.

Example 1. Consider the simple program: q(1,2). p(3). p(X) ∨ p(Y) :- q(X,Y).
Here q is a solved predicate, whereas p is an unsolved predicate; in particular,
q(1, 2) is a certainly-true value for q, p(3) is a certainly-true value for p, whereas
p(1) and p(2) are possibly-true values of p. Then, ps = {3}, whereas pu = {1, 2}.

As previously pointed out, rules having an unsolved predicate may generate
ground rules in the instantiation. Since we are interested in generating the small-
est residual program as possible, ground rules are “epurated” of certainly-true
values.

Definition 2. A simplified ground rule (g-rule in the following) of a program
P is a ground rule not involving any certainly-true values of P.

Example 2. From the previous example, the (only) ground rule that can be gen-
erated is p(1)∨p(2) :- q(1, 2). However this is not a simplified rule since it involves
q(1, 2) which is a certainly-true value. Then, the corresponding g-rule is simply
p(1) ∨ p(2).
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It is now possible to illustrate the evaluation strategy implemented in our
system. Consider a program P composed of non ground rules of the form
α1 ∨ · · · ∨ αk :-β1, . . . , βn, notβn+1, . . . , notβm, γ1, . . . , γp, not γp+1, . . . , not γq.

(2)
where βi (resp. γj) are solved (resp. unsolved) predicates. The evaluation is
carried out in five steps:

Step 1. Translate P in an equivalent program P ′;
Step 2. Translate each rule of P ′ in a corresponding SQL statement;
Step 3. Compose and execute the query plan of statements generated in
Step 2 on the DBMS;
Step 4. Generate the residual program and load it in the Model Generator
of DLV;
Step 5. Execute the residual program in main memory and show the results.

Step 1. The objective of this step is to “prepare” rules of P to be translated in
SQL almost straightforwardly, in order to generate a residual programs as small
as possible. In more detail, for each rule r in P three kinds of rule are generated:

A. If the head of r has one atom only (k = 1), a rule (hereafter denoted as
A-rule) is created for deriving only certainly-true values of r’s head; note
that if k > 1 no certainly-true values can be derived from r.

B. A set of rules (hereafter, B-rules) supporting the generation of the g-rules of
r. The heads of these rules contain both the variables of unsolved predicates
in the body of r and the variables in the head of r. Ground values obtained
for these variables with B-rules are then used to instantiate r with possibly-
true values only.

C. A set of rules (hereafter, C-rules) for generating the set of possibly-true
values of unsolved predicates as projections on B-rules obtained previously.

Given a generic rule defined as (2), the corresponding A-rule have the form:

αs
1 :-β1, .., βn, notβn+1, .., notβm, γs

1 , .., γ
s
p, not γs

p+1, not γu
p+1, .., not γs

q , not γu
q .
(3)

where for positive unsolved predicates only certainly-true values (γs
1 , . . . , γs

p)
are considered, whereas for negated unsolved predicates both certainly-true and
possibly-true values (γs

p+1, . . . , γ
s
q , γu

p+1, . . . , γ
u
q ) must be taken into account.

Example 3. Consider the following program, which will be exploited as a running
example throughout the rest of the section:

r1: q(1,2). r2: p(Y,X) ∨ t(X) :- q(X,Y). r3: q(X,Y):- p(X,Y), not
t(X).

Here both p, q, and t are unsolved. The A-rules derived for this program are:

r1.A: qs(1,2).
r3.A: qs(X,Y):- ps(X,Y), not ts(X), not tu(X).
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where rule r2 does not contribute since it is disjunctive and cannot generate
certainly-true values.

B-rules play a key role in our approach; in fact, they allow the generation of
the residual program. In particular, their role is to identify the set of values for
variables in unsolved predicates of the body of r, generating possibly-true values
of the head of r. Then, r is seen as a template for generating its g-rules, and
ground values derived by the corresponding B-rules are used to instantiate r.

Note that in order to generate a possibly true value for a normal rule, at least
one possibly true value must be involved in its body, whereas disjunctive rules
always generate possibly-true values. Moreover, in order to properly generate g-
rules (i.e. ground rules involving possibly-true values only) the system must be
able to track, for each truth value of a B-rule, which predicates of r contributed
with a certainly-true value and which ones with a possibly-true value.

In our approach, this issue is addressed by first labelling each unsolved pred-
icate γj of r alternatively with a 0 or with a 1, where a 0 indicates to take
its γs

j , whereas a 1 indicates to consider its γu
j . Then, each binary number be-

tween 1 and 2q-1 for normal rules and between 0 and 2q-1 for disjunctive rules1

corresponds to a labelling stating the combination of values to be considered.
For each labelling, a corresponding B-rule is generated starting from the defini-
tion of r and substituting each unsolved predicate γj with γs

j (resp., γu
j ) if the

corresponding label is 0 (resp., 1).
The only exception is caused by negated unsolved predicates. In fact, if γj is

negated and labelled with a 1, it must be put in the B-rule without negation.
In fact, negated certainly-true values surely invalidate the satisfiability of the
g-rule, whereas negated possibly-true values may invalidate the rule only if the
model generator sets them to true.

It is worth pointing out that our labelling approach, makes significantly easier
the generation of simplified ground rules; in fact, it is sufficient to consider only
the values of predicates labelled with 1 and not derived to be certainly-true by
other rules.

Finally, in order to allow a proper reconstruction of g-rules from B-rules, a
mapping between the variables of the B-rules and the variables of r is maintained.

Example 4. From rules r2 and r3 introduced in the previous example, the follow-
ing B-rules are derived. Original rules are re-proposed in parenthesis to simplify
the comprehension; labels are reported in rule names. Variable mapping is trivial
and not reported.

(r2: p(Y,X) ∨ t(X) :- q(X,Y).)
r2.B(0): B-rule r2(X,Y):- qs(X,Y).
r2.B(1): B-rule r2(X,Y):- qu(X,Y).

(r3: q(X,Y):- p(X,Y), not t(X).)
r3.B(01): B-rule r3(X,Y):- ps(X,Y), tu(X).
r3.B(10): B-rule r3(X,Y):- pu(X,Y), not ts(X).
r3.B(11): B-rule r3(X,Y):- pu(X,Y), tu(X).

1 Recall that q is the number of unsolved predicates in the body of r.
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Finally, C-rules are simple projections on the B-rule heads over the attributes
of the corresponding predicate.

Example 5. From rules r2 and r3 introduced previously and from the corre-
sponding B-rules the system generates:

r2.C p: pu(Y,X):- B-rule r2(X,Y).
r2.C t: tu(X):- B-rule r2(X,Y).
r3.C q: qu(X,Y):- B-rule r3(X,Y).

Note that in the example above, the same B-rule predicate (B-rule r2) is used to
generate possibly-true values of two predicates (pu and tu); this follows directly
from the fact that r2 is a disjunctive rule involving p and t.

Step 2. Translation of the rules obtained in Step 1. into SQL is carried out
with the technique already presented in [20] for non disjunctive and stratified
programs. As an example, rule r3.A introduced above is translated into2:

INSERT INTO qs (SELECT ps.att1, ps.att2, FROM ps

WHERE ps.att1 NOT IN (SELECT * FROM ts)
AND ps.att1 NOT IN (SELECT * FROM tu))

Step 3. In order to compile the query plan, the dependency graph D associated
with P is considered [15]. In particular, D allows the identification of a partially
ordered set {Compi} of program components where lower components must be
evaluated first.

Then, given a component Comp and a rule r in Comp, if r is not recursive,
then the corresponding portion of query plan is as follows3: (1) evaluate (if
present) the A-rule associated with r; (2) evaluate each B-rule obtained from r;
(3) for each predicate in the head of r evaluate the corresponding C-rule.

If r is recursive, the portion of query plan above must be included in a fix-point
semi-näıve evaluation, as described in [20].

Step 4 and 5. The generation of the residual program requires the analysis
of values derived by B-rules only. Then, for each rule r and each correspond-
ing B-rule (say, r.B(L)), first predicates having label 0 in L are purged from r,
then r is instantiated with values of r.B(L); during this phase a further check
is carried out to verify if some predicate value has been derived as certainly-
true by other rules. In this case the predicate is removed from the g-rule for
that instance. The residual program is then loaded in main memory for the
generation of stable models. Note that each answer set found on this resid-
ual program shall be enriched with certainly-true values determined during the
grounding.

2 Here and in the following we use the notation x.atti to indicate the i-th attribute of
the table x. Actual attribute names are determined at runtime.

3 Here, for simplicity of exposition, we refer to rules, indicating that the corresponding
SQL statements must be evaluated on the database.
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Example 6. The residual program generated for our running example is:

p(2,1) v t(1). p(1,2) v t(2) :- q(2,1). q(2,1):- p(2,1), not t(2).

Note that the first g-rule does not involve q since it derives from r2.B(0), having
q(1, 2) as certainly-true value.

Query oriented optimizations. Query answering under the cautious (resp., brave)
semantics basically consists in determining the set of truth values of predicates
involved in the query, holding in all (resp., at least one) answer sets of the program.
It is well known that answer set programming implements a bottom-up evaluation
strategy which is not well suited for query answering purposes, especially when the
query contains constants, where top-down approaches usualy perform better. To
this purpose, many strategies have been developed so far to simulate the top-down
evaluation within the answer sets setting (see, e.g., magic sets [2,16]).

DLVDB incorporates query oriented optimizations based on both magic sets
(already incorporated in the earlier version of the system) and query unfolding.
The latter optimization basically consists in an unfolding of the query whose
final desiderata is the rewriting of the query in terms of EDB predicates only.
Clearly, when dealing with disjunctive and unstratified programs, this is not
always possible and, under some conditions, not convenient; however, there are
several situations in which unfolding can push down selections and sub-queries
onto the EDB, thus allowing significant performance improvements.

The algorithm for the unfolding is quite complex and, due to space constraints,
we can not show it here; the interested reader is referred to [3] for details.

Primitives for integrating data from different databases. As previously pointed
out, DLVDB can be coupled with a DBMS to carry out mass memory evaluations.
Actually, the system provides more involved kinds of primitives to access data
residing on different databases. These can be specified by the user with some
auxiliary directives whose grammar is shown in Figure 1.

Intuitively, the user must specify the working database and can specify a set
of table definitions; note that each specified table must be mapped into one of the

Auxiliary-Directives ::= Init-section [Table-definition]+ [Query-Section]? [Final-section]*
Init-Section ::=USEDB DatabaseName:UserName:Password [System-Like]?.
Table-definition ::=

[USE TableName [( AttrName [, AttrName]* )]? [AS ( SQL-Statement )]?
[FROM DatabaseName:UserName:Password]?
[MAPTO PredName [( SqlType [, SqlType]* )]? ]?.
|
CREATE [VIEW] TableName [( AttrName [, AttrName]* )]?
[MAPTO PredName [( SqlType [, SqlType]* )]? ]?
[KEEP_AFTER_EXECUTION]?.]

Query-Section ::= QUERY TableName.
Final-section ::=

[DBOUTPUT DatabaseName:UserName:Password.
|
OUTPUT [APPEND | OVERWRITE]? PredName [AS AliasName]?
[IN DatabaseName:UserName:Password.]

System-Like ::= LIKE [POSTGRES | ORACLE | DB2 | SQLSERVER | MYSQL]

Fig. 1. Grammar of the auxiliary directives
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programpredicates. Facts can reside on separatedatabases or they can be obtained
as views on different tables. TheUSE and CREATEoptions can be exploited to specify
input and output data. Finally, the user can choose to copy the entire output of
the evaluation or parts thereof in a database different from the working one.

Of particular interest is the VIEW option of the CREATE statement (not available
in the earlier version of DLVDB); this can be used to specify that tables associated
with intermediate predicates (i.e. corresponding to neither input nor output
data) should be maintained virtual. This possibility may provide both space
saving and performance improvements, especially for those programs having a
hierarchical structure.

Example 7. Assume that a travel agency asks to derive all the destinations
reachable by an airline company either by using its aircrafts or by exploiting
code-share agreements. Suppose that the direct flights of each company are
stored in a relation flight rel(Id, FromX, ToY, Company) of the database
dbAirports, whereas the code-share agreements between companies are stored
in a relation codeshare rel (Company1, Company2, FlightId) of an external
database dbCommercial; if a code-share agreement holds between the company
c1 and the company c2 for flightId, it means that the flight flightId is actually
provided by an aircraft of c1 but can be considered also carried out by c2. The
DLP program that can derive all the connections is:

(1) destinations(FromX, ToY, Comp) :- flight(Id, FromX, ToY, Comp).
(2) destinations(FromX, ToY, Comp) :- flight(Id, FromX, ToY, C2), codeshare(C2,Comp, Id).
(3) destinations(FromX, ToY, Comp) :- destinations(FromX, T2, Comp),

destinations(T2, ToY, Comp).

In order to exploit data residing in the above mentioned databases, we should
map the predicate flight to the relation flight rel of dbAirports and the
predicate codeshare to the relation codeshare rel of dbCommercial. Finally, we
have to map the predicate destinations to the relation composedCompanyRoutes
of dbTravelAgency. To this purpose, the auxiliary directives shown in Figure 2
should be used.

USEDB dlvdb:myname:mypasswd.
USE flight_rel (Id, FromX, ToY, Company) FROM dbAirports:airportUser:airportPasswd
MAPTO flight (integer, varchar(255), varchar(255), varchar(255)).
USE codeshare_rel (Company1, Company2, FlightId) FROM dbCommercial:commUser:commPasswd
MAPTO codeshare (varchar(255), varchar(255), integer).
CREATE destinations_rel (FromX, ToY, Company)
MAPTO destinations (varchar(255), varchar(255), varchar(255)) KEEP_AFTER_EXECUTION.

Fig. 2. Auxiliary directives for Example 7

3 Application to Data Integration

Data integration systems provide a transparent access to different and possibly
distributed sources. The user is provided with a uniform view of available infor-
mation by the so-called global schema, which queries can be posed upon. The
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integration system is then in charge of accessing the single sources separately
and merging data relevant for the query, guided by mapping rules that specify
relationships holding between the sources and the global schema [1,13].

The global schema may contain integrity constraints (such as key dependen-
cies, inclusion dependencies, etc.). The main issues in data integration arise when
original sources independently satisfy the integrity constraints but, when they
are merged through the mappings, they become inconsistent. As an example,
think to the lists of students of two universities; each student has an unique ID
in his university, but two different students in different universities may have as-
signed the same ID. Clearly, when they are loaded in a global database merging
students lists, it is likely that the key constraint on student IDs of the global
schema will be violated.

Most of the solutions to these problems are based on database repair ap-
proaches. Basically, a repair is a new database satisfying constraints of the global
schema with minimal differences from the source data. Note that multiple re-
pairs can be singled out for the same database. Then, answering queries over
globally inconsistent sources consists in computing those answers that are true
in every possible repair; these are called consistent answers in the literature.

DLP under ASP is a powerful tool in this context, as demonstrated for exam-
ple by the approaches formalized in [1,4,7]. In fact, if mappings and constraints
on the global schema are expressed as DLP programs, and the query Q as a
union of conjunctions on the global schema, the database repairs correspond to
the stable models of the program, and the consistent answers to Q correspond
to the answers of Q under cautious reasoning.

As an example, the approach proposed in [7] consists in first retrieving as
much information as possible from the sources, and then building the repairs
by removing the minimal amount of inconsistent data and adding the minimal
amount of missing data.

Example 8. To have an intuition on the repair approach proposed in [7] for han-
dling key constraints, consider two sources s1(SID, StudentName) and s2(SID,
StudentName), storing the students of two universities, and assume that the
global schema is designed so as to merge these lists. The program defining the
mappings for the global relation studentG and handling the key constraint over
SID is:

studentD(SID,SName):- s1(SID,SName).
studentD(SID,SName):- s2(SID,SName).
studentG(SID,SName):-studentD(SID,SName), not student(SID,SName).
student(SID,SName1) v student(SID,SName2):- studentD(SID,SName1),

studentD(SID,SName2), SName1
=SName2.

Here the first two rules load all possible data from the sources, whereas the third
one avoids to put conflicting tuples in the global relation studentG. Note that
the disjunctive rule allows the generation of the various repairs by singling out
the conflicting tuples.
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Now, assume that s1 contains {s1(1234, Jhon), s1(2345, Andrew)} and s2 con-
tains {s2(1234, David)}. There is globally a conflict between Jhon and David be-
cause they have the same ID. Then, there are two repairs for studentG, namely
{studentG(1234,Jhon), studentG(2345, Andrew)} and {studentG(1234,David),
studentG(2345, Andrew)}. If the user poses the query Q1(SName):-studentG
(SID,SName), the only consistent answer is: {Andrew}, but if the user asks for
Q2(SID):- studentG(SID,SName), the consistent answers are: {1234,2345}.

4 Experiments and Benchmarks

In this section we describe the tests we carried out in querying inconsistent
and incomplete data. We exploited a data integration framework developed in
the INFOMIX project (IST-2001-33570) [7] which integrates real data from a
university context.

4.1 Comparison to Other ASP Systems

Compared systems. We compared DLVDB with state-of-the-art ASP systems,
namely DLV [14], Gnt2 [12], ClaspD [8], Smodels [17], and Cmodels [10]. DLVDB

and DLV include an internal proprietary grounder, whereas the other systems re-
quire an external grounder; we tested both Lparse [19] and GrinGo [9] for this
purpose; precisely, given a grounder x and a system y, we run x|y so as to direct
the output of x into y; the output of the systems have been directed to null in order
to eliminate printing times from the computation of the overall execution times.

It is worth pointing out that all systems but DLVDB and DLV do not sup-
port non-ground queries; in order to carry out our tests, we asked these systems
to compute all answer sets. However, since tested queries are all non-ground
(see below) answer sets must be all computed anyway. Note also that Smodels
and GrinGo do not support disjunction; when using these systems we adopted
a semantic preserving rewriting, possible for tested queries, which removed dis-
junctive rules4. Finally, the working database of DLVDB was defined on Microsoft
SQL Server 2005.

All tests have been carried out on a Pentium IV machine with 500Mb of RAM.

Tested queries. We tested four queries, ranging from simple selections to more
complicated ones. Two of these queries have been also used for studying the
scalability of tested systems:

• Q1: select the student IDs and the course descriptions of the examinations
they passed (this query involves possible inconsistencies in student IDs, exam
records, and course descriptions).

• Q2: select the first and second names of the professors stored in the database
(this query involves possible inclusion dependency violations in relationships
involving professors, and possible inconsistencies in exam records).

4 We used ClaspD also for non disjunctive programs with GrinGo. However, we checked
that running times of Clasp are the same as those of ClaspD in these queries.
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• Q3: select pairs of students having at least one common exam (this query in-
volves possible inconsistencies in student IDs and exam records). We leveraged
the complexity of this query by filtering out different subsets of exam records.

• Q4: select pairs of students and course codes of passed examinations such that
the professor’s first name of the corresponding courses is the same (this query
involves possible inconsistencies in student IDs, exam records, and course de-
scriptions). We leveraged the complexity of this query by filtering out different
subsets of exam records.

All tested queries are non-ground. We verified also the effectiveness of the
unfolding strategy with constants in the queries and obtained very positive re-
sults. However, since none of the other tested systems provides query oriented
optimizations we do not report here the results obtained in this setting.

It is worth pointing out that all tested queries, even if simple when considered
in a single database context, become quite complex when dealing with data
integration and inconsistency handling. As an example, query Q1 on the single
global schema can be expressed simply as:

Q1(StudID, CDesc):-course(CCode,CDesc),

exam record(StudID,CCode,FN,SN,City,Address,Tel,Degree).

however, when introducing mappings with the sources and inconsistency han-
dling, the program allowing to answer Q1 becomes disjunctive (see the example
in Section 3). Due to space constraints we can not show here the complete en-
codings of tested queries. The interested reader can find them in the on-line
Appendix at
http://www.mat.unical.it/terracina/rr08/Appendix.pdf.

Results and discussion. Test results are shown in Figure 3. In the graphs, we used
the notation x:y to denote the system y coupled with the grounder x; moreover, to
simplify the notation, we used symbol L (resp. G) to denote Lparse (resp. GrinGo).

Results of queries Q1 and Q2 are shown in Figure 3(a). We can observe that
the amount of data involved by these queries is still manageable by all tested
systems in main memory. DLVDB and DLV present comparable performances
and they are at least 50% faster than other systems. In these queries, there is
no substantial difference in using Lparse or GrinGo.

The total amount of data involved by Q3 and Q4 is manageable by DLVDB

only. We then used different subsets of exam recors to test all the systems.
The scalability of query Q3 is illustrated in Figure 3(b). Here (and in Figure

3(c)) the line of a system stops when it (or the associated grounder) has not
been able to solve the query. Note that no system but DLVDB has been capable
of handling 100% of input data, due to lack of memory. Specifically, for this
query, grounders were able to complete the computation, but systems not. As
for obtained results, it is possible to observe that in this query, when coupled
with GrinGo, systems behave generally better than with Lparse, at least for small
inputs. Performances of DLVDB are comparable to those of the other systems
with Lparse for small inputs, but it behaves much better for bigger data sizes.
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(a) (b)

(c) (d)

Fig. 3. Results for : (a) Q1, and Q2; (b) Q3; (c) Q4; (d) Q5

Notably ClaspD with GrinGo presents the best performance for Q3 until it is
able to handle data in main memory.

Results for query Q4 are shown in Figure 3(c). Here, Lparse has not been able
to complete the grounding in reasonable time even for the smallest data set (we
stopped it after 12 hours). Hence, only results with GrinGo are presented (which
has been able to complete the grounding for plotted data). Here, again, DLVDB

allows handling bigger data sizes than the other systems which, at some point,
are subject to memory overflow. Also, the performances of DLVDB in small data
sets are extremely competitive.

Finally, Table 1 summarizes the biggest data sets handled by each system for
queries Q3 and Q4 (the 0% in Q4 are due to Lparse fault).

Table 1. Biggest data sets handled by tested systems for Q3 and Q4

Lparse: GrinGo:

DLVDB DLV Gnt2 ClaspD Smodels Cmodels Gnt2 ClaspD Smodels Cmodels

Q3 100% 90% 46% 57% 70% 57% 57% 90% 84% 57%
Q4 100% 93% 0% 0% 0% 0% 24% 93% 78% 78%

4.2 Testing Extended Capabilities of the System

Tests on functions. We tested the capability to improve usability and efficiency
of DLVDB via functions for a typical real world problem, namely data transfor-
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mation. Data transformation is particularly relevant also in data integration to
uniform data representations among involved sources.

In particular, we considered the problem of transforming integer numbers in
their binary representation. This task can be encoded also in datalog (see the
on-line Appendix). We then designed a further query, named Q5, aiming simply
at transforming marks stored in input exam records from integers to binaries.
We defined two variants of Q5, one with and one without function calls. In order
to measure the scalability of DLVDB with and without functions in this query,
we considered the conversion to binary numbers having 5 to 16 bits. Obtained
results are shown in Figure 3(d).

The Figure clearly shows the significant advantage of using functions in this
context. In fact, the execution time of Q5 with functions is almost constant be-
cause it requires a fixed number of function calls (one for each mark to convert),
independently of the number of bits. To the contrary, the standard datalog ver-
sion must generate all the binary numbers in the admissible range; this explains
the exponential growth of the response time.

5 Conclusions

In this paper we presented some enhancements to DLVDB devoted to improve
both expressiveness of its supported language and its efficiency. We showed that
proposed improvements make DLVDB particularly suited for data intensive ap-
plications; moreover we showed that DLVDB exemplifies the usage of DLP for
those problems characterized by both declarative and procedural components,
via the usage of external function calls. Tests results are very encouraging, show-
ing that DLVDB can handle larger amounts of data in less time than competitor
systems.

As for future work we plan to further extend language expressiveness with
the capability of handling lists and sets; moreover, we plan to investigate the
landscapes of language extensions allowing some controlled forms of side-effects
in external functions. It is in fact our opinion that such features may be highly
relevant in several contexts, such as intelligent agents interaction.
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Abstract. We describe a reasoner for OWL ontologies and SWRL poli-
cies used on cognitive radios to control dynamic spectrum access. In ad-
dition to rules and ontologies, the reasoner needs to handle user-defined
operations (e.g., temporal and geospatial). Furthermore, the reasoner
must perform sophisticated constraint simplification because any unre-
solved constraints can be used by a cognitive radio to plan and rea-
son about its spectrum usage. No existing reasoner supported all these
features. However, the term rewriting engine Maude, augmented with
narrowing, provides a promising reasoning mechanism. This allows for a
behavior similar to that of a logic programming system, while constraint
simplification rules as well as operations can easily be defined and pro-
cessed. Our system and general approach will be useful for other problems
that need sophisticated constraint processing in addition to rule-based
reasoning, or where new operations need to be added. The implementa-
tion is efficient enough to run on resource-constrained embedded systems
such as software-defined radios.

1 Introduction

The radio frequency spectrum is a finite resource, and demand for it is increas-
ing. Large, robust, and agile radio networks are very difficult to achieve with
traditional methods. Cognitive radios and dynamic spectrum access offers a so-
lution, where radios can use sensors to avoid interference and reason about spec-
trum usage. This area offers an interesting application domain for Semantic Web
technologies.

In DARPA’s neXt Generation (XG) program, declarative policies are used
to control access to the spectrum resource. Policies define circumstances under
which radios are allowed to transmit, in terms of frequencies used, power levels,
geographic location, time, and so on. These concepts are defined in ontologies.
A policy reasoner is used to decide whether a transmission is allowed. More
background can be found in [1].

The ontologies and policies are encoded in OWL and SWRL. The semantics
is the usual first-order model theory. However, the reasoning problem is not a
straightforward Description Logic subsumption problem. This paper describes
our policy reasoner, which is a general-purpose reasoner for OWL and SWRL,
but with several additional features. Our intent here is not to give a formal
characterization of our reasoner, but to motivate and describe the system, and
to contrast it with other reasoning technologies.

D. Calvanese and G. Lausen (Eds.): RR 2008, LNCS 5341, pp. 135–149, 2008.
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Our approach is to translate to a target language that has reasoning mech-
anisms appropriate to our domain. There are several desired features of such a
language and its reasoning system. Policies can be permissive or restrictive. It
is intuitive to write policies as rules, e.g., of the form Allow⇐ Constraints (for
permissive policies), where we try to prove Allow by solving the constraints.
(Replace Allow by Disallow for restrictive policies). It is also useful to define
auxiliary predicates using rules, for modularity, reusability, and convenience of
specification. This speaks in favor of a logic programming type of language.

We also need to define certain operations, such as arithmetic on time primi-
tives, and calculation of the distance between two geographic points. Pure logic
programming does not provide an appropriate computation framework for this,
and because we want purely declarative policies, procedural attachments are not
an option. However, these types of operations can be defined in a natural, declar-
ative way that allows for efficient computation, using functions and equational
specifications. Another use of functions is to define so-called power masks, i.e.,
functions from frequency to power levels (see Figure 1).
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power(f) = 0.0 ⇐ f < 10.0
power(f) = 10.0 ⇐ 10.0 ≤ f ∧ f < 30.0
power(f) = 20.0 ⇐ 30.0 ≤ f ∧ f < 40.0
power(f) = 10.0 ⇐ 40.0 ≤ f ∧ f < 50.0
power(f) = 0.0 ⇐ 50.0 ≤ f

Fig. 1. A power mask (left) is a function from frequency to power. Such functions can
be intuitively defined using conditional equations (right).

Another ubiquitous feature in spectrum policies are numerical constraints,
for frequency ranges, power levels, minimum distance to other transmitters, and
so on. Interesting problems arise from the combination of numerical and other
logical constraints.

To summarize, we need a reasoner that allows rules in the logic program-
ming style, functions defined using equations, and flexible handling of numerical
constraints.

This remainder of this paper is organized as follows. In Section 2 we examine
existing reasoning technologies with regard to the desired features. Section 3
describes the system in which we implemented our reasoner, and its underlying
logic. Section 4 describes our reasoner, and shows how it can be used as a Web
reasoning tool. We end with some conclusions in Section 5.

2 Rules, Equations, and Constraints

Here, we examine the features needed by the policy language in more detail, and
discuss existing technologies supporting them. There are two somewhat (but not
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completely) separate issues. The first is the combination of logic programming
with functions and equations. The second is the addition of a flexible notion of
constraints.

2.1 Combining Rules and Equations

Combining a rule system with functions and equations could be seen as combin-
ing the logic programming and functional programming paradigms. There is a
large body of work on this topic (see [2,3] for extensive surveys). Following [4],
we take the relational paradigm to be about multidirectional, nondeterministic,
and not necessarily convergent computation, and the functional paradigm to be
about directional, deterministic, and convergent computation (see Table 1).

Table 1. Comparison of two paradigms of computation

Functions, Equations Relations, Rules

Deterministic Nondeterministic
No failure or backtracking Failure/backtracking

Directional Multidirectional
Takes inputs and produces outputs No specific inputs/outputs

Terminating Not necessarily terminating
Usually expected to terminate on legal input Can enumerate infinitely many

instances of arguments

Evaluation Deduction
Reduction Search/resolution/

unification

Having a language that supports only one of the two paradigms usually forces
users to make unnatural encodings in order to support the missing function-
ality. One one hand, functions encoded as relations in logic programming can-
not take advantage of the efficient evaluation of deterministic functions that a
functional programming language can perform. On the other hand, functional
programming cannot take advantage of the built-in search and partially instan-
tiated data structures that logical programming supports. Thus, a combination
of both paradigms is called for.

There are two fundamental approaches to the problem of combining relations
and functions [3]. One is to start with the relational approach and add functions.
The other is to start with the functional approach and add relations.

In some sense, relations are more general than functions and can emulate func-
tional behavior. For example, functional notations can be translated into Pro-
log through flattening, and determinism of function evaluation can be achieved
by using Prolog features like cuts. This approach is used in [5] and [6], which
both take logic programming as the starting point, and add functional notation
through a translation approach. These approaches make a syntactical distinction
between rules and equations, and between relations and functions. Normal Pro-
log mechanisms are used for rules and relations, and the translated versions with
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a special encoding to behave like functions are used for the equational/functional
side.

Systems that take functional programming as the starting point instead treat
relations and logical connectives (and, or, etc.) as boolean functions, and gen-
eralize their expressiveness by allowing new variables on the right-hand sides of
equations. Thus, these languages typically do not make a distinction between
relations and functions.

Regardless of the starting point, the choices of operational principles are sim-
ilar, the main choices being residuation (e.g., Le Fun [4]) or narrowing (e.g.,
Curry [7]). The idea of residuation is to delay evaluation of terms containing
logical variables until the variables have been instantiated due to the evaluation
of other terms. Narrowing works by using unification instead of matching when
a redex is matched with the left-hand side of an equation, thus allowing logical
variables in the redex. For example, given the equations

brother(Phil) = Tom

brother(Phil) = Jack

and the redex brother(x) = Tom, normal reduction does not work since we
have a variable in the redex. However, with narrowing, the redex unifies with
the first equation and the binding x = Phil. In general, narrowing can result
in several different solutions, which means that backtracking or some equivalent
mechanism must be provided. For example, the redex brother(Phil) = y unifies
with both equations, with the bindings y = Tom and y = Jack. Narrowing is
the most general approach, encompassing both unification and reduction, and
thus supporting both the functional and the relational paradigms. Our solution
is based on a functional language, Maude [8], and uses narrowing.

2.2 Constraints

Constraints are fundamental in the policies we considered in the XG project – in
fact we take the view that policies are constraints. There are many different no-
tions of “constraints”. We will make clear what we mean by constraints, and how
this compares to the constraints of Constraint Logic Programming (CLP) [9].

In the XG architecture, the policy reasoner must prove a special atom Permit
based on the policies and facts available:

Facts , Policies  Permit

Policies will have axioms about the Permit predicate, so that the proof obligation
becomes

Facts  Constraint

where Constraint is a formula resulting from combining all those Permit axioms.
The facts come from a transmission request, where the radio states what its
current configuration is, what its intended transmission looks like, and what the
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state of the environment is, as far as the radio can determine by using its sensors.
As a simplistic example, consider the following policies:

Permit⇔ Allow∧ ¬Disallow

Allow⇐ 500 < freq ∧ freq < 1000

Allow⇐ 1200 < freq ∧ freq < 1400

Disallow⇐ 900 < freq∧ freq < 1300

The first, “top-level”, policy relates permissive and restrictive policies. The given
top-level policy just says that we need to find some policy that allows, and no
policy can disallow. Other top-level rules can be used to account for priorities
and other relationships between policies. With these policies, after expanding
the definition of Permit, we get the proof obligation

Facts  (500 < freq ∧ freq < 1000∨ 1200 < freq ∧ freq < 1400)
∧¬(900 < freq ∧ freq < 1300)

which can be further simplified to

Facts  500 < freq ∧ freq ≤ 900 ∨ 1300 ≤ freq ∧ freq < 1400

If Facts contains for instance freq = 800, the whole constraint reduces to True,
which means that the proof is completed and the radio can transmit. However, we
are also interested in the case where such facts are not provided, because radios
can make underspecified requests as a way of querying for available transmission
opportunities. Thus, whatever remains of the constraint after simplification has
been performed should be returned as a result to the radio.

The description above could be subsumed under a very general view of CLP.
However, the variant of CLP that has been implemented in current Prolog
systems is less general, in at least three respects. First, CLP does not han-
dle negation in a clean, logical way. For example, we would like to be able to get
simplifications like

¬freq < 500 → freq ≥ 500

In Prolog, negation is handled by the negation-as-failure method, which pre-
cludes such inferences. Second, CLP does not handle disjunction. For example,
it cannot perform the simplification

freq < 500 ∨ freq > 400 → True

Third, in Prolog/CLP, only special constraint formulas are returned when they
are not completely satisfied, whereas we view all formulas as constraints. While
there are proposals to handle the negation [10] and disjunction [11] limitations,
the third limitation is of a more fundamental nature.

The view of constraints and constraint simplification that we have suggested
above lends itself very well to a formalization and implementation as a term
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rewriting system [12], where the derivations above are instances of some rewrite
rules of the form A → B. Indeed, at first glance it may look as if most functional
programming languages (e.g., Haskell or ML) or functional logic programming
languages (e.g., Curry or Escher) can be used for this purpose, since they al-
low us to write equations, which are usually interpreted as left-to-right rewrite
rules. However, two limitations of these languages prohibit this: their constructor
discipline and their inability to handle associative or commutative functions.

Constructors are a subset of the function symbols that cannot be further
reduced. Most functional programming languages restrict the equations one can
write such that the left-hand sides must be of the form f(t1, . . . , tn), where f is
a nonconstructor function symbol and ti are terms containing only constructor
symbols or variables. This constructor discipline allows one to define computable
functions and to execute them in an efficient way, but it limits us when we want
to define a more general rewrite relation, such as our constraint simplification
relation. For example, we will need rewrite rules/equations such as

A ∧ true = A

A ∨ true = true

A ∧ (B ∨C) = (A ∧B) ∨ (A ∧ C)

where A, B, and C are boolean variables. From the first two equations, it is clear
that neither ∧ nor ∨ are constructors, as they can be eliminated (in fact, true
and false are the only constructors of the boolean algebra). Thus, the third
equation does not adhere to the constructor discipline, since it contains nested
nonconstructor function symbols.

To show the deficiency of functional programming languages with regard to
associative and commutative functions, consider what would happen if we try to
reduce a term true ∨A using the rules above. We want to use the second rule,
but it does not match, since the terms are in the wrong order. However, ∨ is
commutative, and we could encode this using another equation,

A ∧B = B ∧A

but adding this equation will make the term rewriting system nonterminating,
since any term rewritten by this equation still matches the equation, and can thus
be rewritten again indefinitely. A similar argument applies to the associativity
of conjunction and other operators. One solution is AC matching, where we can
declare that an operator is associative and/or commutative, instead of using an
equation. AC matching means matching modulo these properties, and can be
done in a built-in, terminating way. Thus, our solution is to use a system which
does not demand a constructor discipline and which supports AC matching,
namely, Maude [8].

3 Equational Logic, Rewriting Logic, and Maude

Equational Logic. (EL) [13] is the subset of first-order logic with = as the
only predicate symbol, and equations as the only formulas (i.e., there are no
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logical connectives). The rules of deduction of EL are reflexivity, congruence,
transitivity, and symmetry. Despite being a very small subset of first-order logic,
equational logic can be used to define any computable function. Furthermore,
EL can be used as a programming language, by treating equations as left-to-
right rewrite rules (i.e., ignoring the symmetry rule), and using reduction as the
operational semantics. Viewed as rewrite systems, theories in EL are expected to
be terminating and confluent. This means that the order in which redexes and
rewrite rules are chosen does not matter; we will reach the same result regardless,
and in a finite number of steps. Sometimes conditional equations are allowed,
which means that Horn clauses can be used in addition to plain equations, as in
the power mask definition in Figure 1.

Rewriting Logic. (RL) [14] is similar to EL on the surface, in that it allows
for (possibly conditional) rewrite rules. However, the rules are not semantically
equations, and the rule systems are not expected to be confluent. Therefore,
reduction cannot be used as the operational semantics, since different choices
of redexes and rules can lead to different results. Instead, the rewrite rules are
interpreted as nondeterministic state transitions, and the operational mechanism
is search in the state space. Analogously to EL, RL can also support conditional
rewrite rules.

Maude. [8] is a multiparadigm executable specification language encompassing
both EL and RL. The Maude interpreter is very efficient, allowing prototyp-
ing of quite complex test cases. Maude also provides efficient built-in search
and model checking capabilities. Maude is reflective [15], providing a meta-level
module that reflects both the syntax and semantics of Maude. Using reflection,
the user can program special-purpose execution and search strategies, module
transformations, analyses, and user interfaces. Maude sources, executables for
several platforms, the manual, a primer, cases studies, and papers are available
from the Maude website http://maude.cs.uiuc.edu.

We briefly summarize the syntax of Maude that is used in this paper. Maude
has a module system, with

– functional modules, specifying equational theories, which are declared with
the syntax fmod. . . endfm

– system modules, which are rewrite theories specifying systems of state tran-
sitions; they are declared with the syntax mod. . . endm

These modules have an initial model semantics [16]. Immediately after the mod-
ule’s keyword, the name of the module is given. After this, a list of imported
submodules can be added. One can also declare sorts and subsorts and oper-
ators. Operators are introduced with the op keyword followed by the operator
name, the argument and result sorts. An operator may have mixfix syntax,
with the name containing ‘_’s marking the argument positions. A binary op-
erator may be declared with equational attributes, such as assoc, comm, and
id: <identity element> stating, for example, that the operator is associative,
commutative, and specifying an identity element for the operation. Such at-
tributes are then used by the Maude engine to match terms modulo the declared

http://maude.cs.uiuc.edu


142 D. Elenius, G. Denker, and M.-O. Stehr

axioms. Equational axioms are introduced with the keyword eq (or ceq for con-
ditional equations) followed by the two terms being declared equal separated by
the equality sign =. Rewrite rules are introduced with the keyword rl (or crl

for conditional rules) followed by an optional rule label, and terms correspond-
ing to the premises and conclusion of the rule separated by the rewrite sign
=>. Variables appearing in axioms and rules (and commands), may be declared
globally using the keyword var or vars, or “inline” using the variable name and
its sort separated by a colon; for example, n:Nat is a variable named n of sort
Nat. Rewrite rules are not allowed in functional modules.

Maude has a reduce command for equational reduction in functional mod-
ules, and a search command for breadth-first search in the state space of system
modules. The search mechanism allows searching for the first answer, all answers,
or only answers matching some goal term. The search mechanism encompasses
the reduction mechanism, as equational reduction is performed before each ap-
plication of rewrite rules.

3.1 Logic Programming in Maude

Maude also has a narrow command. Narrowing in Maude is similar in many ways
to the search mechanism mentioned above. Like search, narrowing nondetermin-
istically selects rewrite rules, generates choice points, and can return answers in
the same ways. There are two differences: 1) new variables are allowed on the
right-hand side of rewrite rules, and 2) when there are uninstantiated variables
in a redex, unification is used instead of matching.

As mentioned in Section 2.1, the addition of narrowing to a functional lan-
guage gives us the ability to subsume logic programming. We encode relations
and logical connectives as boolean functions. The logical connectives are defined
in a BOOL module in Maude’s “prelude”, which contains statements like

op _and_ : Bool Bool -> Bool [assoc comm prec 55] .

op _or_ : Bool Bool -> Bool [assoc comm prec 59] .

op not_ : Bool -> Bool [prec 53] .

vars A B C : Bool .

eq true and A = A .

eq false and A = false .

eq A and A = A .

The assoc and comm attributes declare the associativity and commutativity of
the operators. The prec attribute sets the precedence of an operator so that the
mixfix notation is parsed correctly without a proliferation of parentheses. Note
that not is simply a truth function that takes true to false and vice versa, and
corresponds to classical negation. We do not have a notion of negation-as-failure
since we deal with a language with classical first-order models.

User-defined predicates are encoded in a way similar to the connectives. For
example, an n-ary predicate P is encoded as
op P : T1 ... Tn -> Bool .

where Ti are the sorts of the arguments of P.
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Rules are encoded as rewrite rules. For example,

∀x, y, z : uncle(x, y) ⇐ parent(x, z) ∧ brother(z, y)

is encoded in Maude as

vars x,y,z : Ind .

rl uncle(x,y) => father(x,z) and brother(z,y).

Note the implicit existential variable z on the right-hand side. Normal rewriting
logic does not support this, but narrowing allows us to handle this. We do not
allow existential variables in a negative context (i.e., under an odd number of
nots). This would correspond to universal quantification, which the system does
not support.

Facts are rules without bodies. For example, father (John , Bob) is encoded as

rl father(John,Bob) => true .

Note the use of rewrite rules (rl) rather than equations (eq) for user-defined
facts and rules. This is motivated by operational concerns; we want to be able to
use narrowing on these facts and rules. The model-theoretic semantics of Maude
rewrite rules as state transitions does not directly reflect our interpretation of
the rules as implications in first-order logic. However, our use of Maude is sound
with regard to the first-order model theory.

4 Maude as a Web Reasoning Tool

We now describe how Maude can be used as a Web reasoning tool. First we de-
scribe how to translate (parts of) OWL ontologies and SWRL rules into Maude,
and how the system can be used in a way similar to other rule-based systems like
Prolog. Then we describe the novel features where our system goes beyond other
rule-based systems: user-defined or “built-in” operations, and domain-specific
simplification rules. Our examples come from the spectrum policy domain as
discussed above, but we believe that these features are generally useful for a
wide variety of problems. Finally, we discuss some implementation details.

4.1 Encoding OWL and SWRL in Maude

To use Maude as the reasoning engine for spectrum policies, we need to trans-
late our policies to Maude. The policies are written as SWRL rules, i.e., Horn
clauses, and refer to OWL ontologies. We can also translate a significant por-
tion of axioms from OWL ontologies into Horn logic [17]. Once we have all our
statements in Horn clause form, it is straightforward to encode them in a very
direct way in Maude, using the scheme described in Section 3.1. Some specifics
of the encoding follow.

First, we note that OWL does not have types or sorts in the sense of Maude
or other programming languages. However, Maude operators need to be declared
with sorted signatures. We therefore introduce one sort of OWL individuals, Ind,
and one sort of OWL data values, Data. These are the two semantic domains of
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OWL models. We translate OWL individuals, classes, and properties as follows
(*** denotes a comment in Maude):

op Radio1 : -> Ind . *** an individual

op Radio : Ind -> Bool . *** a class

op detector : Ind Ind -> Bool . *** an object property

op frequency : Ind Data -> Bool . *** a datatype property

The signatures here are perhaps best understood as follows: An individual is an
operator with no argument that returns itself (a constant). A class is an operator
that takes an individual as an argument, and returns true or false, depending
on whether or not the individual is a member of the class. A property is an
operator that takes a subject and an object as arguments, and returns true or
false depending on whether or not that subject has that object as a property
value for the property in question.

We treat functional properties separately, translating them as

op role : Ind -> Ind *** a functional object property op

power : Ind -> Data *** a functional datatype property

where the operator works as a function—it takes the subject as an argument
and returns the object. This encoding makes reasoning more efficient in Maude,
since it is essentially a functional language.

Facts are translated into Maude rewrite rules as in the following examples:

rl Radio(Radio1) => true . *** class-instance fact

rl detector(Radio1,Detector1) => true . *** property-value fact

rl role(Radio1) => BaseStation . *** functional property-value fact

Finally, rules are translated exactly as shown in Section 3.1.

4.2 Operations

Recall from Section 1 that one of our motivations for using a reasoning technol-
ogy that supports functions and equations was that we needed to define certain
operations on temporal and geospatial entities. These operations should be de-
terministic, directional, and terminating, and should be evaluated rather than
“reasoned” about. In other words, they should be defined as functions. Whereas
we need to use rewrite rules (rl) for user-defined axioms in order to support
more general reasoning using narrowing, we use equations (eq) for these defined
operations.

Note that SWRL has a number of built-in operations of this functional fla-
vor, e.g., for math, time, comparisons, and strings.1 We propose that additional
operations should be treated in the same way as SWRL built-ins, i.e., used in
“built-in atoms” in SWRL rules.

These kinds of operations cannot be defined in OWL or SWRL. The Protégé
ontology development environment [18] supports adding implementations of new

1 See http://www.w3.org/Submission/SWRL/

http://www.w3.org/Submission/SWRL/
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built-ins in Java [19]. However, using a functional framework, as we propose,
provides many well-known advantages of declarative languages, such as clear
semantics, intuitive and transparent specifications, and better integration with
reasoning. In fact, one could give the SWRL builtins a formal semantics (which
they currently lack) by defining them using Maude equations.

Ideally, we would like to have an overall semantic framework that encompasses
both OWL (and SWRL) and the equational specification of these “built-ins.”
This is an area of future research. It is also an open question whether all the
operations should be considered “built in” to the reasoner, or whether users
could also define their own operations. The latter option would provide great
flexibility, as it allows the same reasoner to be applied to new domains, where
any new operations required can be defined by users themselves, rather than
having to modify the reasoner with new “built-ins”. There are, however, some
practical details to resolve, e.g., regarding which syntax to use for these user-
defined operations.

Currently, our reasoner specification includes many of the SWRL built-ins,
and certain geospatial operations. Because of space restrictions, we cannot show
sample implementations of operations here, but our reasoner specification can
be downloaded at http://xg.csl.sri.com/. See, in particular, the TIME and
GEO modules.

4.3 Simplification Rules

The second motivation for using a reasoning technology that supports equations
is our need to write custom constraint simplification rules, as discussed in Sec-
tion 2.2. In fact, this is where Maude really differentiates itself from most other
systems, because it can do reduction, rewriting, and narrowing modulo associa-
tivity and commutativity (AC). Handling associativity and commutativity in a
built-in way is critical for encoding logical rewriting systems such as the one in
question here, because lacking this capability, we would be forced to add AC
axioms, which would make the system nonterminating, as discussed previously.

While Maude’s prelude already includes certain constraint simplification rules,
such as the trivial ones we showed in Section 3.1, we needed to go further and
implement our custom rules, for two reasons: 1) the combination of ordering
constraints (e.g., <, ≤) and boolean constraints (e.g., ∧, ∨) introduces many
opportunities for simplification, and 2) the desire to get answers in a certain
form.

The latter point could use some additional clarification. All the simplification
rules transform a constraint into another, equivalent, constraint. The purpose of
all rules is to move the constraint to a “simpler” form, until we have reached the
“simplest” possible form. However, it is not always obvious what the simplest
form is. In the radio policy domain, we have some guidance from the domain.
The policy engine should return a constraint that can be recognized by the radio
as a set of transmission opportunities, where each opportunity is straightforward
to interpret. We can achieve this by using disjunctive normal form (DNF) as the

http://xg.csl.sri.com/
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target of our constraint reduction. A DNF formula is a disjunction of conjunc-
tions, i.e., it has the form

(A ∧B ∧ C) ∨ (D ∧ E) ∨ (F ∧G) ∨ ...

We can think of each of the conjuncts (A ∧ B ∧ C), (D ∧ E), or (F ∧G) as an
opportunity, because it is enough for the radio to satisfy one of the disjunctions
in order to satisfy the entire constraint. For example, if the radio provides the
facts D and E, then the formula above reduces to

(A ∧B ∧ C) ∨ True∨ (F ∧G) ∨ ... → True

using the rule
True ∨ P → True

Furthermore, for the chosen opportunity, all the constraints have to be satisfied.
Simplifying to DNF, however, is not enough. For example, the following con-

straint is in DNF

(freq < 500 ∧ power < 10) ∨ (freq > 400)

but it can be simplified further to

power < 10 ∨ freq > 400

This constraint is still in DNF and equivalent to, but simpler in some sense than,
the first form. Our simplification rules take care of such cases.

4.4 Implementation

Above, we have discussed the principles of our engine. Here, we describe the
main components of our implementation. The engine needed to be implemented
in C/C++ in order to run on resource-constrained radios. Maude is imple-
mented in C++ and highly optimized, so this posed no particular problem.
The policies are written in OWL, SWRL, and SWRL FOL, using the XML
presentation syntax. There was no existing C/C++ parser for OWL, and no
software support for SWRL FOL. Thus, we implemented our own parser/writer
for OWL+SWRL+SWRL FOL using the XML presentation syntax.

The Maude reasoner back end consists of several distinct parts, as shown in
Figure 2:
– A translator from the parser’s representation of OWL/SWRL to Maude,

using the encoding in Section 4.1.
– The Maude reasoner specification, containing Maude equations representing

the simplification rules and built-in operations.
– The Maude engine itself. Normally, Maude runs as an interactive console-

based tool, but we used an experimental programming API to Maude.
– A translator from Maude results back to OWL/SWRL.
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Fig. 2. Components of the Maude-based reasoner

On a more detailed level, the Maude specification consists of a number of
Maude modules: TRM, TIME, GEO, POLICY, SIMP, DNF, CNF, and REASONER. The
TRM module contains basic definitions of the boolean algebra, arithmetic, and
ordering constraints. The TIME and GEO modules contain built-in functions for
temporal and geospatial reasoning. The POLICY module contains the translation
of all the policies and facts that are currently loaded. When the reasoner first
starts, the POLICY module is empty. Whenever new policies or facts are loaded,
this module is updated. SIMP, DNF, and CNF contain different parts of the proof
system. SIMP does a number of simplifications such as eliminating negation (as
far as possible) and implication. CNF converts to conjunctive normal form, and
does some simplifications that can be done only in this form. DNF converts to
disjunctive normal form, and does some simplifications that can be done only in
this form. If these three modules were combined into one, the reasoning would
never terminate. For example, it could transform between CNF and DNF back
and forth indefinitely. The REASONER module controls the ordered execution of
the reasoning modules by using the Maude meta level. First, narrowing is done
in the POLICY module, then reduction in SIMP, CNF, and DNF, in that order.
The narrowing step looks for all answers. To exploit simplification opportunities
between different answers, the answers are or’d together before simplification,
again using meta level Maude code.

5 Conclusions

Dynamic spectrum access offers an interesting application area for Semantic Web
technologies. OWL allows us to define concepts related to the radio domain, and
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spectrum access can be controlled by policies written as SWRL rules. In addi-
tion to rules and ontologies, we needed to define operations (e.g., temporal and
geospatial) using equational specifications. Furthermore, we wanted the reasoner
to perform sophisticated constraint simplification. Any unresolved constraints can
be used by a cognitive radio to plan and reason about its spectrum usage.

No existing reasoner supported all these features, but we found that Rewriting
Logic provided a promising reasoning mechanism. We built our reasoner on top
of Maude, an Equational Logic and Rewriting Logic system developed at SRI.
Maude was extended with narrowing, which allows it to achieve behavior similar
to that of a logic programming system, i.e., goal-oriented reasoning with rules.
At the same time, the equational part of Maude is ideal for defining a constraint
simplification system, as well as for defining operations. Thus, we were able to
include all our desired features in one system. The resulting system subsumes
both equational logic and logic programming. It can also easily be extended or
modified in two ways. First, because the constraint simplification part is specified
in the Maude language, as opposed to hard coded into the reasoning engine, it
can be modified to better suit different needs. Second, new operations can be
added as additional equational specifications.

The policy domain motivated our work, but the reasoner is not limited to this
domain, since it operates on any OWL ontologies and SWRL rules. In partic-
ular, our system will be useful for problems that need sophisticated constraint
processing in addition to rule-based reasoning, or where new operations need
to be added. The implementation is also efficient enough to run on resource-
constrained embedded systems such as software-defined radios.
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Abstract. Approximate reasoning for the Semantic Web is based on
the idea of sacrificing soundness or completeness for a significant speed-
up of reasoning. This is to be done in such a way that the number of
introduced mistakes is at least outweighed by the obtained speed-up.
When pursuing such approximate reasoning approaches, however, it is
important to be critical not only about appropriate application domains,
but also about the quality of the resulting approximate reasoning pro-
cedures. With different approximate reasoning algorithms discussed and
developed in the literature, it needs to be clarified how these approaches
can be compared, i.e. what it means that one approximate reasoning ap-
proach is better than some other. In this paper, we will formally define
such a foundation for approximate reasoning research. We will clarify –
by means of notions from statistics – how different approximate algo-
rithms can be compared, and ground the most fundamental notions in
the field formally. We will also exemplify what a corresponding statistical
comparison of algorithms would look like.

1 Introduction

In different application areas of Semantic Technologies, the requirements for
reasoning services may be quite distinct; while in certain fields (as in safety-
critical technical descriptions) soundness and completeness are to be rated as
crucial constraints, in other fields less precise answers could be acceptable if this
would result in a faster response behaviour.

Introducing approximate reasoning in the Semantic Web field is motivated by
the following observation: most nowadays’ specification languages for ontologies
are quite expressive, reasoning tasks are supposed to be very costly with respect
to time and other resources – this being a crucial problem in the presence of large-
scale data. As a prominent example, note that reasoning in most description
logics which include general concept inclusion axioms (which is simply standard
today, and e.g. the case in OWL DL) is at least EXPTIME complete, and if
nominals are involved (as for OWL DL) even NEXPTIME complete. Although
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those worst case time complexities are not likely to be thoroughly relevant for the
average behaviour on real-life problems, this indicates that not every specifiable
problem can be solved with moderate effort.

In many cases, however, the time costs will be the most critical ones, as a user
will not be willing to wait arbitrarily long for an answer. More likely, she would
be prone to accept “controlled inaccuracies” as a tradeoff for quicker response
behaviour. However, the current standard reasoning tools (though highly opti-
mized for accurate, i.e., sound and complete reasoning) do not comply with this
kind of approach: in an all-or-nothing manner, they provide the whole answer to
the problem after the complete computation. It would be desirable, however, to
have reasoning systems at hand which can generate good approximate answers
in less time, or even provide “anytime behaviour”, which means the capability of
yielding approximate answers to reasoning queries during ongoing computation:
as time proceeds, the answer will be continuously refined to a more and more
accurate state until finally the precise result is reached. Clearly, one has to define
this kind of behaviour (and especially the notion of the intermediate inaccuracy)
more formally.

These ideas of approximate reasoning are currently cause for controversial
discussions. On the one hand, it is argued that soundness and completeness of
Semantic Web reasoning is not to be sacrificed at all, in order to stay within
the precise bounds of the specified formal semantics. On the other hand, it is
argued that the nature of many emerging Semantic Web applications involves
data which is not necessarily entirely accurate, and at the same time is crit-
ical in terms of response time, so that sacrificing reasoning precision appears
natural [1].

Another suggestion to avoid the necessity is to restrict knowledge represen-
tation to so-called tractable fragments that allow for fast sound and complete
reasoning. Although this might be useful in scenarios where all essential knowl-
edge can be modelled within the restricted fragment, in general there are strong
arguments in favor of the usage of expressive formalisms:

– Real and comprehensive declarative modelling should be possible. A content
expert wanting to describe a domain as comprehensive and as precisely as
possible will not want to worry about limiting scalability or computability
effects.

– As research proceeds, more efficient reasoning algorithms might become
available that could be able to more efficiently deal with expressive specifi-
cation formalisms. Having elaborated specifications at hand enables to reuse
the knowledge in a more advanced way.

– Finally, elaborated knowledge specifications using expressive logics can re-
duce engineering effort by horizontal reuse: Knowledge bases could then be
employed for different purposes because the knowledge is already there. How-
ever, if only shallow modelling is used, updates would require overhead effort.

From our perspective, it depends on the specifics of the problem at hand whether
approximate reasoning solutions can or should be used. We see clear potential
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in the fields of information retrieval, semantic search, as well as ontology engi-
neering support, to name just a few examples.

At the same time, however, we would like to advocate that allowing for un-
sound and/or incomplete reasoning procedures in such applications must not lead
to arbitrary “guessing” or to deduction algorithms which are not well-understood.
Quite on the contrary, we argue that in particular for approximate reasoning,
it is of utmost importance to provide ways of determining how feasible the ap-
proximations are, i.e. of what quality the answers given by such algorithms can
be expected to be.

Obviously, soundness and completeness with respect to the given formal se-
mantics of the underlying knowledge representation languages cannot be used
as a measure for assessing the quality of approximate reasoning procedures.
Instead, they must be evaluated experimentally, and analysed by statistical
means.

In this paper, we thus lay the foundations for a statistical approach to evaluat-
ing approximate reasoning algorithms. We will do this in a very abstract manner,
which can be made concrete in different ways, depending on the considered use
case. At the same time, we will use this statistical perspective to precisely define
approximate reasoning notions which to date have remained quite vague. We
furthermore show that our mathematical modelling can be used for guiding the
development of composed approximate reasoning systems. In the end, our math-
ematical modelling can be used for rigorous comparative statistical evaluation
of approximate reasoning algorithms.

As a word of caution, let us remark that the notion approximate reasoning
bears two different meanings in two different communities. Often, the notion is
associated with uncertainty reasoning e.g. in the sense of fuzzy or probabilistic
approaches. The notion of approximate reasoning we use in this paper refers
to approximate reasoning algorithms on data which is not uncertain in this
sense.1

While approximate reasoning methods for propositional and first-order logic
have been proposed (see e.g. [2,3,4,5,6,7,8,9,10]), they are only now being applied
in the context of OWL reasoning for Semantic Web technologies. Notable recent
papers papers in this area are [11,12,13,14,15,16,17,18] — and to the best of our
knowledge, this list should be almost exhaustive.

The paper is structured as follows. In Section 2, we will establish a math-
ematical framework as a foundation for approximate reasoning notions and
evaluation. In Section 3 we will discuss composition of approximate reason-
ing algorithms from the perspective of our framework. In Section 4 we show
how to instantiate our framework by means of an example. We conclude in
Section 5.

1 Perhaps introducing the notion of qualitative approximate reasoning – to replace
approximate reasoning in our sense – would help to clarify matters. In order to be
consistent with the literature, however, we prefer to use the established notion for
now.
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2 A Mathematical Framework for the Study of
Approximate Reasoning

In this section, we will establish a mathematical framework. By doing this, we
will provide a formal basis for central notions of the field and establish guidance
for lines of further research in that area.

First, let us stipulate some abbreviations which we will use in the sequel: let
IR+ = {x ∈ IR : x ≥ 0} and IR+

∞ = {x ∈ IR : x ≥ 0} ∪ {+∞}.
First of all, we have to come up with a general and generic formalization of the

notion of a reasoning task. Intuitively, this is just a question (or query) posed to
a system that manages a knowledge base, which is supposed to deliver an answer
after some processing time. The (maybe gradual) validity of the given answer
can be evaluated by investigating its compliance with an abstract semantics.
We will extend this classical conceptualisation in the following way: we allow an
algorithm to – roughly spoken – change or refine its output as time proceeds, thus
capturing the notion of anytime behaviour, as a central concept in approximate
reasoning. Yet in doing so, we have to take care not to lose the possibility of
formalizing “classical” termination. We solve this by stipulating that every output
of the system shall be accompanied by the information, whether this output is
the ultimate one.

In the sequel we will formalize those intuitions. By the term input space we
denote the set of possible concrete reasoning tasks. Formally, we define the input
space as a probability space (Ω, P ), where Ω is some set (of inputs) and P is
a probability measure on Ω. The probability P (ω) encodes how often a specific
input (knowledge base, query) ω occurs in practice resp. how relevant it is for
practical purposes. Naturally, information about the probability distribution of
inputs will be difficult to obtain in practice (since, e.g., in general there can be
infinitely many different inputs). So rules of thumb, like giving short queries a
higher probability than long ones, or using some kind of established benchmarks,
will have to be used until more systematic data is available.

The use of having a probability on the set of inputs is quite obvious: as already
stated before, correctness of results cannot be guaranteed in the approximate
case. So in order to estimate how good an algorithm performs in practice, it is
not only important, how much the given answer to a specific input deviates from
the correct one, but also how likely (or: how often) that particular input will be
given to the system. Certainly, a wrong (or strongly deviant) answer to an input
will be more tolerable if it occurs less often.

For actual evaluations, one will often use a discrete probability space. For the
general case – for developing the theory in the sequel – we will assume that
all occurring functions are measurable (i.e. integrals over them exist), which is
obviously a very mild assumption from a computer science perspective.

The output space comprises all possible answers to any of the problems
from the input space. In our abstract framework, we define it simply as a set X .
A function e : X×X → IR+ – which we call error function – gives a quantitative
measure as to what extent an output deviates from the desired output (as given
by a sound and complete algorithm). More precisely, the real number e(x, y)
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stands for the error in the answer x, assuming that y would be the correct answer.
For all x ∈ X we assume e(x, x) = 0, but we place no further constraints on
e. It will be determined by the problem under investigation, though a suitable
example could be 1 − f , where f is the f-measure as known from information
retrieval. In cases, it might be also useful to put more constraints on the error
function, one could e.g. require it to be a metric,2 if the output space has a
structure where this seems reasonable.

We will assess the usefulness of an approximate reasoning algorithm mainly by
looking at two aspects: Runtime and error when computing an answer. By intro-
ducing the error function, we are able to formalize the fact that out of two wrong
answers one might still be better than the other since it is “closer” to the correct
result. While this might not seem to make much sense in some cases (e.g. when
considering the output set {true, false} or other nominal scales3), it might by quite
valuable in others: When we consider an instance retrieval task, the outputs will
be sets of domain individuals. Obviously, one would be more satisfied with an an-
swer where just one element out of hundred is missing (compared to the correct
answer) than with a set containing, say, only non-instances.

We assume X to contain a distinguished element ⊥ which denotes no output.
This is an issue of “backward compatibility”, since classical algorithms – and also
many approximate reasoning algorithms – usually do not display any output until
termination. So, to include them into our framework, we define them to deliver
⊥ before giving the ultimate result. ⊥ will also be used as output value in case
the algorithm does not terminate on the given input.

Since by this definition, ⊥ contains no real information, one could argue about
additional constraints for the error function with respect to this distinguished
element, e.g., e(⊥, y) ≥ supx∈X{e(x, y)} or even e(⊥, y) ≥ supx,z∈X{e(x, z)}.
We do not need to impose these in general, however.

After having formalized inputs and outputs for problems, we now come to
the actual algorithms. In order not to unnecessarily overcomplicate our formal
considerations, we make some additional assumptions: We assume that hard-
ware etc. is fixed, i.e., in our abstraction, an algorithm is always considered to
include the hard- and software environment it is run in. I.e., we can, for exam-
ple, assign any algorithm-input pair an exact runtime (which may be infinite).
This assumption basically corresponds to a “laboratory” setting for experiments,
which abstracts from variables currently not under investigation.

So, let A be a set of algorithms. To every algorithm a ∈ A we assign an
IO-function fa : Ω × IR+ → X × 2 with 2 := {0, 1}. Hereby, fa(ω, t) = (x, b)
means that the algorithm a applied to the input (task, problem, . . . ) ω yields
the result x after running time t together with the information whether the
algorithm has already reached its final output (b = 1) or not yet (b = 0). As a
natural constraint, we require fa to additionally satisfy the condition that for
all t2 ≥ t1 we have that

2 I.e. A distance function as used in the mathematical theory of metric spaces.
3 Although also these cases can seamlessly be covered by choosing a discrete error

function.
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fa(ω, t1) = (x, 1) implies fa(ω, t2) = (x, 1),

i.e. after having indicated termination, the output of the algorithm (including
the termination statement) will not change anymore. For convenience we write
f res

a (ω, t) = x and f term
a (ω, t) = b, if fa(ω, t) = (x, b).

By f0 : Ω → X we denote the correct output function, which is deter-
mined by some external specification or formal semantics of the problem. This
enables us to verify the (level of) correctness of an answer x ∈ X with respect
to a particular input ω by determining e(x, f0(ω)) – the smaller the respective
value, the better the answer. By our standing condition on e, e(x, f0(ω)) = 0
ensures f0(ω) = x coinciding with the intuition.

To any algorithm a, we assign a runtime function �a : Ω → IR+
∞ by setting

�a(ω) = inf{t | f term
a (ω, t) = 1},

being the smallest time, at which the algorithm a applied to input ω indicates its
termination.4 Note that this implies �a(ω) = ∞ whenever we have f term

a (ω, t) = 0
for all t ∈ IR+. Algorithms, for which for all ω ∈ Ω we have that �a(ω) < ∞ and
f res

a (ω, t) = ⊥ for all t < �a(ω) are called one-answer algorithms: They give
only one output which is not ⊥, and are guaranteed to terminate5 in finite time.

Clearly, for a given time t, the expression e(f res
a (ω, t), f0(ω)) provides a mea-

sure of how much the current result provided by the algorithm diverges from the
correct solution. Moreover, it is quite straightforward to extend this notion to
the whole input space (by taking into account the occurrence probability of the
single inputs). This is done by the next definition.

The defect δ(a, t) associated with an algorithm a ∈ A at a time
point t is given by

δ : A×IR+→IR+
∞ : δ(a, t)=E(e(f res

a (ω, t), f0(ω)))=
∑
ω∈Ω

e(f res
a (ω, t), f0(ω))P (ω).

Note that E denotes the expected value, which is calculated by the rightmost
formula.6 Furthermore, one can even abstract from the time and take the results
after waiting “arbitrarily long”: The (ultimate) defect of an algorithm a ∈ A
is given by

δ : A → IR+
∞ : δ(a) = lim sup

t→∞
δ(a, t).

4 We make the reasonable assumption that f res
a is right-continuous.

5 We impose termination here because our main interest is in reasoning with description
logics for the Semantic Web. The same notion without imposing termination would
also be reasonable, for other settings.

6 The sum could easily be generalised to an integral – with P being a probability
measure –, however it is reasonable to expect that Ω is discrete, and hence the sum
suffices.
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By the constraint put on the IO-function we get

δ(a) = E(e(f res
a (ω, �a(ω)), f0(ω))) =

∑
ω∈Ω

e(f res
a (ω, �a(ω)), f0(ω))P (ω).

if a terminates for every input.

2.1 Comparing Algorithms after Termination

For a, b ∈ A, we say that a is more precise than b if it has smaller ultimate
defect, i.e. if

δ(a) ≤ δ(b).

Furthermore, it is often interesting to have an estimate on the runtime of an
algorithm. Again it is reasonable to incorporate the problems’ probabilities into
this consideration. So we define the average runtime7 of algorithm a by

α(a) = E(�a(ω)) =
∑
ω∈Ω

�a(ω)P (ω).

This justifies to say that a is quicker than b if

α(a) ≤ α(b).

Note that this does not mean that a terminates earlier than b on every input.
Instead, it says that when calling the algorithm very often, the overall time when
using a will be smaller than when using b – weighted by the importance of the
input as measured by P .

Throughout the considerations made until here, it has become clear that there
are two dimensions along which approximate reasoning algorithms can be as-
sessed or compared: runtime behaviour and accuracy of the result. Clearly, an
algorithm will be deemed better, if it outperforms another one with respect to
the following criterion:

Definition 1. For a, b ∈ A, we say that a is strongly better than b if a is
more precise than b and a is quicker than b.

The just given definition is very strict; a more flexible one will be given below,
when we introduce the notion that an algorithm a is better than an algorithm b.

2.2 Anytime Behaviour

The definitions just given in Section 2.1 compare algorithms after termination,
i.e. anytime behaviour of the algorithms is not considered. In order to look at
anytime aspects, we need to consider the continuum of time points from initiating
the anytime algorithm to its termination.
7 We are aware that in some cases, it might be more informative to estimate the

runtime behaviour via other statistical measures as e.g. the median.
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For a, b ∈ A, we say that a is more precise than b at time point t if it
has smaller defect wrt. a and t, i.e. if

δ(a, t) ≤ δ(b, t).

We say that a ∈ A realises a defectless approximation if

lim
t→∞

δ(a, t) = 0.

Note that δ(a) = 0 in this case.

Definition 2. We say that an algorithm a ∈ A is an anytime algorithm if
it realizes a defectless approximation. We say that it is a monotonic anytime
algorithm if it is an anytime algorithm and furthermore δ(a, t) is monotoni-
cally decreasing in t, i.e. if δ(a, ·) ↘ 0.

Obviously, is is reasonable to say about two algorithms a and b – be they anytime
or not –, that (1) a is better than b if a is more precise than b at any time point. A
less strict – and apparently more reasonable – requirement accumulates the dif-
ference between a and b over the entire runtime, stating that (2) a is better than
b if

∑
ω∈Ω P (ω)

∫ max{	a(ω),	b(ω)}
t=0 (e(f res

a (ω, t), f0(ω))− e(f res
b (ω, t), f0(ω))dt ≤ 0.

We find formula (2) still not satisfactory as it ignores the reasonable assumption
that some time points might be more important than others, i.e. they need to
be weighted more strongly. Formally, this is done by using a different measure
for the integral or – equivalently – a density function f̄ : R+ → R+, which mod-
ifies the integral. Summarizing, we now define for two (not necessarily anytime)
algorithms a and b that (3) a is better than b (wrt. a given density function
f̄) if

∑
ω∈Ω

P (ω)
∫ max{	a(ω),	b(ω)}

t=0

(
e(f res

a (ω, t), f0(ω))− e(f res
b (ω, t), f0(ω))

)
f̄(t)dt ≤ 0.

Our definition (3) specialises to the case in (2) for the constant density function
f̄ ≡ 1. We cannot capture (1) with our definition by one specific choice of f̄ , so
in the case of (1) we simply say that a is more precise than b at any time point.8

Clearly, the choice of the density function depends on the considered scenario.
In cases where only a fixed time ttimeout can be waited before a decision has to
be made based on the results acquired so far, the value f̄(t) of density function
would be set to zero for all t ≥ ttimeout. Usually earlier results are preferred to
later ones which would justify the choice of an f̄ that is monotonically decreasing.

3 Anytime Algorithms by Composition

Realised approximate reasoning systems are often not anytime. However, it is
possible to obtain anytime behaviour by composing one-answer algorithms.
8 However, (1) could be formulated in terms of (3) as a being better than b for all

Dirac delta functions that have their singularity at a nonnegative place.
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Assume that a number of algorithms ai (i = 1, . . . , n) is given. Furthermore,
assume there is an oracle algorithm c whose behaviour can be described
by a function c : (X × 2)n → X × 2 which combines a vector of outputs
(a1(ω, t), . . . , an(ω, t)) of the algorithms ai and yields a single output. Given
an input ω, the invocation of all ai in parallel and the subsequent call of the
oracle algorithm yield a new algorithm ca1,...,an with IO-function

fca1,...,an
(ω, t) = c(a1(ω, t), . . . , an(ω, t)).

The definition just given is very general in order to allow for a very free combi-
nation, depending on the algorithms which are being combined. For the general
setting, we impose only the very general constraint that for all x1, . . . , xn ∈ X
we have

c((x1, 1), . . . , (xn, 1)) = (x, 1)

for some x, and also that the natural constraint from page 155 on the corre-
sponding IO-function fca1,...,an

is satisfied. This is just to ensure �ca1,...,an
(ω) ≤

max{�a1 , . . . , �an}, i.e. the “combiner” indicates termination at the latest when-
ever all of the single input algorithms ai do so.

It is more interesting to look at more concrete instances of oracles. Assume
now that a1, . . . , an−1 are one-answer algorithms and that an is an (always ter-
minating) sound and complete algorithm. Let c be such that

c(a1(ω, �an(ω)), . . . , an−1(ω, �an(ω)), an(ω, �an(ω))) = (f res
an

(ω), 1).

Then it is easy to see that ca1,...,an is anytime.
If we know about soundness or completeness properties of the algorithms

a1, . . . , an−1, then it is also possible to guarantee that ca1,...,an is monotonic
anytime. This can be achieved in several ways, and we give one specific example
based on ABox reasoning in description logics:

Assume that each input consist of a class description C over some description
logic L, and each output consists of a set of (named) individuals. For construct-
ing an oracle from such algorithms, we will actually consider as outputs pairs
(A, B) of sets of individuals. Intuitively, A contains only individuals which are
known to belong to the extension of C, while B constitutes an individual set
which is known to contain all individuals in the extension of C. A single out-
put (set) A can be equated with the output pair (A, A). Now let a1, . . . , an be
sound9 but incomplete10 one-answer algorithms over L, let b1, . . . , bm be com-
plete but unsound one-answer algorithms over L and let a be a sound, complete
and terminating algorithm over L, i.e. f res

a (C, �a) – which we denote by Ca –
contains exactly all named individuals that are in the extension of C as a logical
9 We mean soundness in the following sense: If the set I of individuals is the correct

answer, then the algorithms yields as output a pair (A,A) of sets with A ⊆ I .
10 We mean completeness in the following sense: If the set I of individuals is the correct

answer, then the algorithms yields as output a pair (A,A) of sets with I ⊆ A.
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consequence of the given knowledge base. Under this assumption, we know that
f res

ai
(C, �ai ) = (Cai , I) and f res

bj
(C, �bj ) = (∅, Cbj ) for some sets Cai and Cbj ,

where I stands for the set of all (known) individuals, and furthermore we know
that Cai ⊆ Ca ⊆ Cbj for all i, j.

The oracle c is now defined as follows.

c(a1(C, t), . . . , an(C, t), b1(C, t), . . . , bm(C, t), a(C, t))

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

((f res
a (C, t), f res

a (C, t)), 1) for t ≥ �a(C),
((upper , lower ), term) for t < �a(C)

where lower =
⋃

(Ai,Bi,1)=fai
(C,t) Ai,

upper =
⋂

(Aj ,Bj ,1)=fbj
(C,t) Bj ,

term = 1 if lower = upper , otherwise 0.

Note that the empty set union is by definition the empty set, while the empty
set intersection is by definition I.

In words, the oracle realises the following behaviour: if the sound and complete
subalgorithm has terminated, display its result. Before, use the lower resp. up-
per bounds delivered by the sound resp. complete algorithms to calculate one
intermediate lower and one intermediate upper bound. If those two happen to
coincide, the correct result has been found and may terminate without waiting
for a’s termination. This squeezing in of the correct result now also explains why
we have chosen to work with pairs of sets as outputs.

As error function, we might use the sum of the symmetric difference between
A and A0, respectively between B and A0, i.e.

e((A, B), (A0, A0)) = |A0 \A|+ |B \A0|.

We could also use a value constructed from similar intuitions like precision and
recall in information retrieval, but for our simple example, this error function
suffices. It is indeed now straightforward to see that ca1,...,an,b1,...,bm,a is mono-
tonic anytime. It is also clear that ca1,...,an,b1,...,bm,a is more precise than any of
the ai and bj , at all time points.

4 An Example

In this section, we will instantiate the very general framework established in
the preceding sections. We will use the presented techniques to compare three
approximate reasoning algorithms and compose a (simple) anytime algorithm
following the example at the end of Section 3.

Consider the three algorithms Screech-all, Screech-none and KAON2,
as discussed in [19]. We do not intend to give any details here, and it shall
suffice to mention that these are one-answer algorithms for reasoning with the
description logic SHIQ, and the task considered is instance retrieval for named
classes. Screech-all is complete but unsound, Screech-none is sound but
incomplete, and KAON2 is sound and complete.
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Following the general framework, we first have to stipulate the probability
space (Ω, P ) for our case. Here we introduce the first simplifying assumptions,
which are admittedly arguable, but will suffice for the example:

– We consider only one knowledge base, namely the well-known Wine ontology.
Further evaluation data is available [19] but will not be taken into account
for the illustrating example.

– As queries, we consider only instance retrieval tasks, i.e. given an atomic
class description, we query for the set of individuals which can be inferred
to be instances of that class. Hence Ω – the query space – consists of named
classes C of the Wine ontology the instances of which are to be retrieved:
Ω = C. Examples for named classes in this ontology are e.g. Chardonnay,
StEmilion or Grape.

– All those instance retrieval queries ω ∈ Ω are assumed to be equally probable
to be asked to the system, hence

P (ω) =
1
|C| for all ω ∈ Ω.

Obviously, the probability of a query could also be assumed differently, e.g.
correlating with the number of instances the respective class has. Neverthe-
less, for the sake of simplicity we will stick to the equidistributional approach.

Obviously, the output space X consists of subsets of the set of individuals I from
the Wine ontology together with the no-output symbol ⊥: X = 2I∪{⊥}. As the
error function e comparing an algorithm’s output I with the correct one I0, we
use the inverted value of the common f-measure, i.e.

e(I, I0) := 1− 2 · precision · recall
precision + recall

where (as usual)

precision :=
|I ∩ I0|
|I| and recall :=

|I ∩ I0|
|I0|

.

According to the proposed handling of ⊥, we stipulate the overall “worst-case
distance”: e(⊥, I0) = 1 for all I ⊆ I.

As mentioned before, the setA of considered algorithms comprises three items:

A = {KAON2, Screech-all, Screech-none}

For every of those algorithms we carried out comprehensive evaluations: we
queried for the class extensions of every named class and stored the results
as well as the time needed. By their nature none of the considered algorithms
exhibits a genuine anytime behavior, however, instead of displaying the “honest”
⊥ during their calculation period, they could be made to display an arbitrary
intermediate result. It is straightforward to choose the empty set in order to
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obtain better results: most class extensions will be by far smaller than half of
the individual set, hence the distance of the correct result to the empty set will
be a rather good guess.

Hence, for any algorithm a of the above three and any class name C let IC

denote be the set of retrieved instances and tC denote the measured runtime for
accomplishing this task. Then we can define the IO-function as

fa(C, t) =
{

(∅, 0) if t < tC
(IC , 1) otherwise.

The values of the correct output function f0 can be found via KAON2, as this
algorithm is known to be sound and complete. Moreover, the runtime functions
ρa(C) of course coincide in our case with the runtimes tC measured in the first
place. Since all of the considered algorithms are known to terminate, no ρa will
ever take the value ∞.

After this preconsiderations, we are ready to carry out some calculations esti-
mating the quality of the considered algorithms. Figure 1 shows a plot depicting
the decrease of the defect for all the three algorithms. As expected, there is an
ultimate defect for the two screech variants, namely 0.013 for Screech-none
and 0.015 for Screech-all, i.e. with respect to the terminology introduced ear-
lier, we can say that Screech-none is more precise than Screech-all. While
the defect of KAON2 is initially greater than those of the screech variants, it
becomes better than them at about 6 seconds and decreases to zero defect after
about 7 seconds. In other words, Screech-all is more precise than KAON2
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at all time points less than 6 seconds. A first conclusion from this would be:
if a user is willing to wait for 7 seconds for an answer (which then would be
guaranteed to be correct) KAON2 would be the best choice, otherwise (if time
is crucial and precision not), screech-all might be a better choice as it shows
the quickest defect decrease.

If we now assume a time-critical application where responses coming in later
than, say, 5 seconds are ignored, we can describe this by the fact that Screech-
all is better than KAON2 with respect to the density function

f̄(x) =

{
1 0 ≤ x ≤ 5,

0 otherwise.

Considering the fact that Screech-all is complete, Screech-none is sound,
and KAON2 is both, we can now utilise a variant of the oracle given in the
example from Section 3. The behaviour of the combined algorithm can in this
simple case be described as follows. It indicates termination whenever one of the
following occurs:

– KAON2 has terminated. Then the KAON2 result is displayed as solution.
– Both Screech-all and Screech-none have terminated with the same

result. In this case, the common result will be displayed as the final one.

If none of above is the case, the experimental findings suggest to choose the
Screech-none result as intermediate figure. The algorithm obtained that way
is anytime and more (or equally) precise than any of the single algorithms at all
time points.

5 Conclusions

Approaches to approximate reasoning tackle the problem of scalability of de-
ducing implicit knowledge. Especially if this is done on the basis of large-scale
knowledge bases or even the whole Web, often the restriction to 100% correct-
ness has to be abandoned for complexity reasons, in particular if quick answers
to posed questions are required. Anytime algorithms try to fulfill both needs
(speed and correctness) by providing intermediate results during runtime and
continually refining them.

In our paper, we have provided solid mathematical foundations for the as-
sessment and comparison of approximate reasoning algorithms with respect to
correctness, runtime and anytime behaviour. We are confident that this general
framework can serve as a means to classify algorithms w.r.t. their respective
characteristics and help in deciding which algorithm best matches the demands
of a concrete reasoning scenario.

As opposed to our example scenario, in most practical cases, it will be unfeasi-
ble or even impossible to measure the whole input space as it will be too large or
even infinite. That is where statistical considerations come into play: one has to
identify and measure representative samples of the input space. The first part of
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this is far from trivial: for fixed settings with frequently queried knowledge bases,
such a sample could be determined by protocolling the actually posed queries
over a certain period of time. Another way would be to very roughly estimate a
distribution based on plausible arguments. Respective heuristics would be: (1)
the more complex a query the more unlikely, (2) queries of similar structure are
similarly frequent resp. likely, (3) due to some bias in human conceptual think-
ing, certain logical connectives (e.g. conjunction) are preferred to others (e.g.
disjunction, negation) which also gives an opportunity to estimate a query’s fre-
quency based on the connectives it contains. Admittedly, those heuristics are
still rather vague and more thorough research is needed to improve reliability of
such estimates.

In general, the proposed intelligent combination of several algorithms with
different soundness/completeness properties (as well as being specialised to cer-
tain logical fragments) can increase speed and might help avoid heavy-weight
reasoning in cases. We are confident, that this idea can be easily generalised
to reasoning tasks other than instance retrieval. Obviously, this strategy comes
with an immediate opportunity of parallelisation even if the single algorithms
have to be treated as black boxes. Hence, this approach could also be conceived
as a somewhat exotic approach to distributed reasoning.
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Abstract. With the increasing interest in expressive ontologies for the
Semantic Web, it is critical to develop scalable and efficient ontology rea-
soning techniques that can properly cope with very high data volumes.
For certain application domains, approximate reasoning solutions, which
trade soundness or completeness for inctreased reasoning speed, will help
to deal with the high computational complexities which state of the art
ontology reasoning tools have to face. In this paper, we present a com-
prehensive overview of the Screech approach to approximate reasoning
with OWL ontologies, which is based on the KAON2 algorithms, facili-
tating a compilation of OWL DL TBoxes into Datalog, which is tractable
in terms of data complexity. We present three different instantiations of
the Screech approach, and report on experiments which show that the
gain in efficiency outweighs the number of introduced mistakes in the
reasoning process.

1 Introduction

Scalability of reasoning remains one of the major obstacles in leveraging the full
power of the Web Ontology Language OWL [1] for practical applications. Indeed,
large-scale applications normally use only a fragment of OWL which is very shal-
low in logical terms, and thus cannot employ the more sophisticated reasoning
mechanisms for accessing knowledge which is implicit in knowledge bases. While
the use of such shallow techniques already has added value, it would be preferable
if the more complex logical constructors in the language could also be used. Con-
sequently, scalability of OWL reasoning needs to be investigated on a broad front
in order to advance the state of the art by several orders of magnitude.

Among the many possible approaches to address scalability, one of them
concerns the use of logic programming for this purpose. This can be traced
back to the work on Description Logic Programs (DLP) [2,3], which are a naive
Horn fragment of OWL DL.1 Along the same lines lies the OWL DL-fragment
� Research reported in this paper was supported by the EU in the IST project NeOn

(IST-2006-027595, http://www.neon-project.org/)), by the Deutsche Forschungs-
gemeinschaft (DFG) under the ReaSem project, and by the the German Fed-
eral Ministry of Education and Research (BMBF) under the Theseus project,
http://theseus-programm.de.

1 Some recent developments can be found in [4,5,6].
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Horn-SHIQ [7,8], which is based on the sophisticated transformation algorithms
implemented in the KAON2-system2 [8,9]. Horn-SHIQ is strictly more expres-
sive than DLP and allows, for example, the free use of existential role restrictions.

At the same time, a different effort to leveraging Horn logic for OWL reasoning
rests on the idea of approximate reasoning, which presupposes an application
scenario where speed is so important that it becomes reasonable to allow some
incorrect inferences in order to speed up the reasoning. Our implementation is
called Screech [10], and it is based on the idea of approximating an OWL DL
knowledge base by Horn clauses. Initial experiments reported in [10] – and briefly
in [11] – have shown that Screech indeed improves runtime in some cases, but
further evaluations had been missing so far.

In this paper, we introduce two new variants of the Screech approach (in
Sections 2 and 3), resulting in three related algorithms, which can be used in
combination for approximate OWL reasoning. We will then report on experi-
ments (in Section 4) which we performed for all approaches. They show that
all three variants of Screech indeed result in significant speed-up under only a
very small number of introduced mistakes.

2 The Screech Approach

2.1 The KAON2-Transformation

Reasoning with KAON2 is based on special-purpose algorithms which have been
designed for dealing with large ABoxes. They are detailed in [8] and we present
a birds’ eyes perspective here, which suffices for our purposes. The underlying
rationale of the algorithms is that algorithms for deductive databases have proven
to be efficient in dealing with large numbers of facts. The KAON2 approach
utilises this by transforming OWL DL ontologies to disjunctive datalog, and
by the subsequent application of the mentioned and established algorithms for
dealing with disjunctive datalog.

A birds’ eyes perspective on the KAON2 approach is depicted in Figure 1.
KAON2 can handle SHIQ(D) ontologies,which corresponds roughly to OWL DL
without nominals. The TBox, together with a query are processed by the sophisti-
cated KAON2-transformation algorithm which returns a disjunctive datalog pro-
gram. This, together with an ABox, is then fed into a disjunctive datalog reasoner
which eventually returns an answer to the query.

In some cases, e.g. when querying for instances of named classes, the query
does not need to be fed into the transformation algorithm but instead needs
to be taken into account only by the datalog reaoner. This allows to compute
the disjunctive datalog program offline, such that only the disjunctive datalog
engine needs to be invoked for answering the query. All experiments we report
on have been performed this way, i.e. they assume an offline transformation of
the TBox prior to the experiments.

2 http://kaon2.semanticweb.org
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Fig. 1. KAON2 approach to reasoning

The program returned by the transformation algorithm is in general not log-
ically equivalent to the input TBox. The exact relationship is given below in
Theorem 1 due to [8]. Note that statement (b) suffices for our purposes. It also
shows that the KAON2 datalog reasoning engine can in principle be replaced by
other (sound and complete) reasoning engines without changing the results of
the inference process.

Theorem 1. Let K be a SHIQ(D) TBox and D(K) be the datalog output of
the KAON2 transformation algorithm on input K. Then the following claims
hold.

(a) K is unsatisfiable if and only if D(K) is unsatisfiable.
(b) K |= α if and only if D(K) |= α, where α is of the form A(a) or R(a, b), for

A a named concept and R a simple role.
(c) K |= C(a) for a nonatomic concept C if and only if, for Q a new atomic

concept, D(K ∪ {C � Q}) |= Q(a).

Convenient access to the KAON2 transformation algorithm is given by means
of the KAON2 OWL Tool3 dlpconvert,4 which can also produce F-Logic [12]
serialisations which can be used with F-Logic engines like OntoBroker.

2.2 Approximate OWL-Reasoning with Screech

Due to the inherent high complexity of reasoning with ontologies, it is to be
expected that some application settings will defy even the smartest approaches
for achieving sound and complete scalable algorithms. The method of choice for
dealing with such situations is to use approximate reasoning, which trades cor-
rectness for time, but in a controlled and well-understood way [13]. Approximate
Reasoning is indeed recently receiving rising attention from Semantic Web re-
searchers, due to the obvious suitable use cases in this application domain. For
some recent work, see e.g. [14,15,16,17,18,19].
3 http://owltools.ontoware.org/
4 http://logic.aifb.uni-karlsruhe.de/wiki/Dlpconvert

http://owltools.ontoware.org/
http://logic.aifb.uni-karlsruhe.de/wiki/Dlpconvert
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The Screech approach for instance retrieval is based on the fact that data
complexity is polynomial for non-disjunctive datalog, while for OWL DL it is
coNP complete even in the absence of nominals [7]. Screech utilises the KAON2
algorithms, but rather than doing (expensive) exact reasoning over the resulting
disjunctive datalog knowledge base, it does approximate reasoning by treating
disjunctive rules as if they were non-disjunctive ones, i.e. the disjunctive rules
are approximated by Horn rules.

We will first describe the basic variant of Screech, which was introduced in
[10], and which we call Screech-all here. Screech-all is complete, but may
be unsound in cases. Its data complexity is polynomial. Two other variants of
Screech, Schreech-none and Screech-one, will be described in Section 3.

Screech-all uses a modified notion of split program [20] in order to deal
with the disjunctive datalog. Given a rule

H1 ∨ · · · ∨Hm ← A1, . . . , Ak,

as an output of the KAON2 transformation algorithm, the derived split rules are
defined as:

H1 ← A1, . . . , Ak . . . Hm ← A1, . . . , Ak.

For a given disjunctive program P its split program P ′ is defined as the collection
of all split rules derived from rules in P . It can be easily shown that for instance
retrieval tasks, the result obtained by using the split program instead of the
original one is complete but may be unsound. As the following proposition shows,
this is even the case if all integrity constraints, i.e. rules of the form

← B1, . . . , Bn

are removed from the split program.

Proposition 1. Consider a SHIQ(D) knowledge base K that is logically con-
sistent, let D(K) denote a disjunctive datalog program obtained by applying
KAON2 to K, and let P be the logic program obtained from D(K) by Screech-
all. Then P has a least Herbrand model which satisfies any atomic formula that
is true in some minimal Herbrand model of D(K).

Especially, P entails all atomic formulae that are true in all (minimal) mod-
els of D(K), i.e. Screech-all is complete for instance retrieval on consistent
SHIQ(D) knowledge bases.

Proof. First, note that we can restrict to propositional programs obtained as the
(finite) ground instantiations of the relevant datalog programs. Hence it suffices
to consider propositional models.

The fact that P has a least Herbrand model is a standard conclusion from the
fact that P is a definite logic program. To show the rest of the claim, consider
any minimal Herbrand model M of the ground instantiation of D(K) (note that
K has some Herbrand model by consistency, and that some of those must be
minial since only finitely many ground interpretations exist). Define a ground
program QM as follows:
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QM = {Hi ← B1∧. . .∧Bm ∈ P | M |= B1∧. . .∧Bm and M |= Hi, 1 ≤ i ≤ n)}.

We claim that QM is a definite program with least Herbrand model M. Clearly
QM is definite (thus has some least Herbrand model), and has M as a Herbrand
model. But obviously any Herbrand model of QM that is strictly smaller than M
would also satisfy all rules of D(K), thus contradicting the assumed minimality
of M.

Now clearly QM is a subset of the screeched program P , and hence any
Herbrand model of P must be greater or equal to the least Herbrand model M
of QM. Since M was arbitrary, this shows the claim. ��

It is possible to also deal with nominals, i.e. with OWL DL (aka SHOIN (D))
approximately. This was mentioned in [10], but for our purposes it will suffice
to consider SHIQ knowledge bases only, which covers a significant portion of
OWL DL.

Putting the pieces together, Screech-all utilises the following subsequent
steps for approximate ABox reasoning for SHIQ.

1. Apply transformations as in the KAON2 system in order to obtain a negation-
free disjunctive datalog program.

2. Obtain the split program as described above.
3. Do reasoning with the split program, e.g. using the KAON2 datalog engine.

Given a TBox K, the split program obtained from K by steps 1 and 2 is
called the screeched version of K. The first two steps can be considered to be
preprocessing steps for setting up the intensional part of the database. ABox
reasoning is then done in step 3. The resulting approach has the following theo-
retical features:

– It is complete with respect to OWL DL semantics.
– Data complexity is polynomial.

A prototype implementation of our approach is available as the Screech-
all OWL approximate reasoner.5 It is part of the KAON2 OWL Tools. We can
convert a SHIQ ontology into a disjunctive datalog program, e.g. by using the
KAON2 OWL Tool dlpconvert with the -x switch. Screech-all then accesses
the results of the translation through the KAON2 API, creates the corresponding
split programs and serializes them as Horn logic programs in Edinburgh Prolog
syntax or in F-Logic [21,22] syntax. We need to mention, however, that in general
support for concrete domains and other features like integrity constraints is not
necessarily implemented in off-the-shelf logic programming systems. In these
cases, concrete domains etc. cannot be used. The KAON2 OWL Tool ded, for
example, performs a language weakening step by removing all concrete domains,
and may come in handy in such situations.

5 http://logic.aifb.uni-karlsruhe.de/screech
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serbian � croatian � european
eucitizen � european

german � french � beneluxian � eucitizen
beneluxian ≡ luxembourgian � dutch � belgian (1)

serbian(ljiljana) serbian(nenad) german(philipp) french(julien)
chinese(yue) german(peter) german(stephan) mongolian(tuvshintur)

indian(anupriya) belgian(saartje) german(raphael) chinese(guilin)

Fig. 2. Example ontology

2.3 A Simple Example

We demonstrate the approach on a simple OWL DL ontology. It contains only
a class hierarchy and an ABox, and no roles, but this will suffice to display the
main issues.

The ontology is shown in Figure 2, and its intended meaning is self-explanatory.
Note that line (1) translates into the four clauses

luxembourgian(x) ∨ dutch(x) ∨ belgian(x) ← beneluxian(x), (2)
beneluxian(x) ← luxembourgian(x),
beneluxian(x) ← dutch(x),

and beneluxian(x) ← belgian(x).

Thus, our approach changes the ontology by treating the disjunctions in line (2)
as conjunctions. Effectively, this means that the rule (2) is replaced by the three
rules

luxembourgian(x) ← beneluxian(x),
dutch(x) ← beneluxian(x),

and belgian(x) ← beneluxian(x).

This change affects the soundness of the reasoning procedure. However, in the
example most of the ABox consequences which can be derived by the approxi-
mation are still correct. Indeed, there are only two derivable facts which do not
follow from the knowledge base by classical reasoning, namely dutch(saartje)
and luxemburgian(saartje). All other derivable facts are correct.

3 Variants of Screech

We will now introduce two other variants of Screech, besides Screech-all
introduced above. These other variants are called Screech-none and Screech-
one.

Screech-none is defined by simply removing all disjunctive rules (and all in-
tegrity constraints) after the transformation by the KAON2-algorithm. For the



Approximate OWL-Reasoning with Screech 171

example from Section 2.3, this means that rule (2) is simply deleted. The resulting
reasoning procedure is sound, but incomplete, on SHIQ knowledge bases.

Screech-one is defined by replacing each disjuntive rules by exactly one
of the split rules. This selection can be done randomly, but will be most useful
if the system has some knowledge – probably of statistical nature – on the size
of the extensions of the named classes.6 For our example from Section 2.3, when
considering rule (2) we can use the additional knowledge that there are more
dutch people than belgians or luxenbourgians, thus this rule is replaced by the
single rule

dutch(x) ← beneluxian(x).

We also remove all integrity constraints after the translation. The resulting rea-
soning proceedure is neither sound nor complete. We thus obtain the following
result.

Proposition 2. Instance retrieval with Schreech-none is sound but incom-
plete. Instance retrieval with Schreech-one in general is neither sound nor
complete.

Proof. Soundness of Schreech-none is immediate from the fact that calcula-
tions are performed on a subset of the computed clauses, together with mono-
tonicity of the employed datalog variant. For all other claims it is easy to find
counterexamples. ��
The properties of Screech are summarised in Table 1.

Table 1. Screech variants and their basic properties

variant description sound complete
Screech-all use all of the split rules no yes
Screech-none use none of the split rules yes no
Screech-one use one of the split rules no no

From a theoretical point of view, it would be satisfying to characterize the de-
scribed approximations in terms of extremal bounds in certain logical fragments.
However, we remark that the unsound screech variants do not yield greatest Horn
lower bounds in the sense of [23] w.r.t. the disjunctive datalog program, not even
if we modify the definition to allow only definite Horn rules. As a counterexample
for Screech-all, consider the program {← C(a), C(a)∨C(b) ←}. Its screeched
version is {C(a) ←, C(b) ←}, but its greatest lower bound in the sense of [23]
would be {C(b) ←}. Analogously, we note that Screech-one yields no greatest
lower bound, even if integrity constraints are included (which obviously makes
the procedure complete while still being unsound). To see this, consider the pro-
gram {C(a) ←, C(b) ←,← A(a),← B(b), A(x) ∨B(x) ← C(x)}. Its (extended)
Screech-one versions are {C(a) ←, C(b) ←,← A(a),← B(b), A(x) ← C(x)}
and {C(a) ←, C(b) ←,← A(a),← B(b), B(x) ← C(x)}, but its greatest lower
bound would be {C(a) ←, C(b) ←, B(a) ←, A(b) ←}.
6 This was suggested by Michael Sintek.
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3.1 Expected Results

Prior to performing our experiments – which we will report in Section 4 – we
formulated the expected outcome from the different variants of Screech.

– Screech-one – assuming the mentioned knowledge about the size of the
extensions of atomic classes – compared to Screech-all should show overall
less errors for some suitable knowledge bases. We also expected Screech-
one to be quicker than Screech-all.

– Screech-none should be quicker than Screech-all and Screech-one.
We expected that the number of errors should be comparable with Screech-
all, but more severe than Screech-one.

We furthermore expected, that the parallel execution of the two variants
Screech-all and Screech-none should help to determine exact answers in
some cases quicker than using the KAON2 datalog reasoner. This expectation
is based on the following fact: If the extensions of some class C as computed
by Screech-all and Screech-none are of the same size, then the computed
extensions are actually correct (sound and complete) with respect to the original
knowledge base.

4 Experimental Evaluation

An approximate reasoning procedure needs to be evaluated on real data from
practical applications. Handcrafted examples are of only limited use as the ap-
plicability of approximate methods depends on the structure inherent in the
experimental data.

So we evaluated some popular publicly available ontologies. In some cases we
had to cautiously modify them in order to enable KAON2 to perform reasoning
tasks on them, but the general approach was to first use KAON2 for transforming
the TBoxes to disjunctive datalog. Also offline, a screeched version of the TBox
was produced. We then invoked the KAON2 disjunctive datalog engine on both
the resulting disjunctive datalog program and on the screeched version, to obtain
a comparison of performance.7

For all our experiments, we used a T60p IBM Thinkpad with 1.9GB of RAM,
with the Java 2 Runtime Environment, Standard Edition (build 1.5.0_09-b03).

4.1 Results in a Nutshell

We performed comprehensive experiments with GALEN, WINE, DOLCE, and
SEMINTEC. Before we report in more detail, we list a summary of the results.

– Screech-all shows an average speedup in the range between 8 and 67%,
depending on the queried class and the ontology under consideration, while
38 to 100% of the computed answers are correct. Most interestingly, a higher
speedup usually seemed to correlate with less errors.

7 The raw data of the experiments can be found online under
http://logic.aifb.uni-karlsruhe.de/wiki/Screech.
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– Screech-one compared to Screech-all has overall less errors. In most
cases, all correct class members are retrieved. Runtime is similar to Screech-
all.

– Screech-none compared to Screech-all shows similar run-time. In most
cases, the extensions are computed correctly – with the exception of WINE,
for which we get 2% missing answers.

– Running Screech-all and Screech-none in parallel and comparing the
results, allows the following: If the computed extensions are of the same size,
then we know that all (and only correct) class members have been found.
This is the case for more than 76% of all classes we computed.

Fig. 3. Performance comparison for SCREECH-ALL and KAON2. Top: absolute re-
trieval times. Bottom: Screech-ALL retrieval times as percentage of KAON2 retrieval
times. The ordinate gives the number of classes for which this percentage was achieved,
e.g. for 40 classes the percentage was around 75%.

4.2 GALEN

We first report on our experiments with the OWL DL version of the GALEN
Upper Ontology.8 As it is a TBox ontology only, we populated GALEN’s 175
classes randomly with 500 individuals.9 GALEN does not contain nominals or
concrete domains. GALEN has 673 axioms (the population added another 500).
8 http://www.cs.man.ac.uk/∼rector/ontologies/simple-top-bio/
9 Using the pop KAON2 OWL tool.
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After the TBox translation to disjunctive datalog we obtained ca. 1833 dis-
junctive datalog rules,10 ca. 52 of which contained disjunctions.11 The Screech-
all split resulted in 113 new rules, replacing the disjunctive ones. 149 integrity
constraints were also removed.

Figure 3 shows the runtime for each named classe taken by Screech-ALL
and KAON2. Note the times for the first retrieved named class in Figure 3 (top),
which is considerably higher for KAON2 than for Screech-ALL. The reason for
this is that on the first run KAON2 performs the TBox translation (see Figure
1). The translated TBox is then stored, and thus does not need to be repeated
for subsequent queries of extensions of named classes according to Theorem 1.

Table 2. Summary of the three Screech versions on GALEN. miss indicates the
elements of the extensions which were not found by the approximation, corr indi-
cates those which were correctly found, and more indicates those which were incor-
rectly computed to be part of the extension. time gives the runtime (in ms) for the
respective Screech version, while KAON2 gives the runtime (in ms) using the dis-
junctive rules. f-meas is the f-measure known from information retrieval, computed
as (2 · precision · recall)/(precision + recall) with precision = corr/(corr + more) and
recall = corr/number of actual instances, corr.class gives the fraction of classes for
which the extension was computed correctly, and time/KAON2 is the ratio between
time and KAON2.

Variant miss corr more time KAON2 f-meas corr.class time/KAON2
Screech-all 0 5187 465 255132 1007527 0.957 0.78 0.25
Screech-one 5 5182 134 277009 1007527 0.987 0.98 0.27
Screech-none 10 5177 0 244994 1007527 0.999 0.78 0.24

We then queried all named classes for their extensions using the KAON2
datalog engine, both for processing the disjunctive datalog program and for
the various splits. The relative runtimes by SCREECH-ALL in percentage of
KAON2 runtime is displayed in Figure 3 (right). It shows the distribution of the
retrieval times: For 143 classes of all the queried classes, SCREECH-ALL has
50% time saving while it is 75% for 95 classes. A summary of the results can be
seen in Table 2. For 137 of the 175 classes (i.e. 78%), the computed extensions
under Screech-all and Screech-none had the same number of elements,
which allows to conclude – without using the disjunctive rules – that for those
classes the extensions were computed correctly. For some classes, so for the
class Physical-occurrent-entity, computing the extension under Screech-
all saved 99% of the runtime.

While the different versions of Screech have about the same runtime, the
differences in the number of introduced errors is remarkable. Indeed, Screech-
none makes almost no mistakes. The parallel execution of Screech-none and
10 The exact numbers differ slightly on different runs, as the KAON2 translation algo-

rithm is non-deterministic. Here it was between 1737 and 1909.
11 The number of disjunctive rules ranged between 51 and 81 on different runs.
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Table 3. Summary of the three Screech versions on DOLCE. For the legend, see
Table 2.

Variant miss corr more time KAON2 f-meas. corr.class time/KAON2
Screech-all 0 3697 2256 472941 516064 0.766 0.76 0.92
Screech-one 0 3697 512 425748 516064 0.935 1.0 0.82
Screech-none 0 3697 0 397260 516064 1.0 1.0 0.77

Screech-all, as mentioned, allows to compute the correct extensions of 78%
of the classes – and to know that the computations are correct – in less than a
quarter of the time needed by using the unmodified knowledge base.

4.3 DOLCE

DOLCE12 (a Descriptive Ontology for Linguistic and Cognitive Engineering) is a
foundational ontology, developed by the Laboratory for Applied Ontology in the
Institute of Cognitive Sciences and Technology of the Italian National Research
Council. In full, it exceeds the reasoning capabilities of current reasoners, hence
we used a fraction for our experiments consisting of 1552 axioms. Since DOLCE
is a pure TBox-Ontology, we randomly populated it with 502 individuals to be
able to carry out instance retrieval.

The conversion into disjunctive datalog yielded ca. 1774 rules13 of which ca. 71
are disjunctive.14 The Screech-all split resulted in 178 new rules, replacing
the disjunctive ones. We also removed ca. 189 integrity constraints.15

As before, we queried all named classes for their extensions using the KAON2
datalog engine, both for processing the disjunctive datalogprogramand for the var-
ious splits. Table 3 summarizes. In Screech-all, 93 of the 123 classes (i.e. 76%)
are correctly queried, while in Screech-one 100 classes are correctly queried.

Remarkable under DOLCE is that Screech-none makes no mistakes, while
the runtime improvement is rather mild. This indicates that the disjunctive
knowledge in DOLCE does not contribute any results.

4.4 WINE

The next ontology we tested was the WINE ontology.16 It is a well-known ontol-
ogy containing a classification of wines. Moreover, it is one of the rare ontologies
with both an ABox and a nontrivial TBox. It also contains nominals, which we
removed in an approximate way following [10].17 The resulting ontology contains

12 http://www.loa-cnr.it/DOLCE.html
13 1774–1788.
14 71–73.
15 188–190.
16 http://www.schemaweb.info/schema/SchemaDetails.aspx?id=62
17 We used the TBox after that processing as baseline, since we are interested in the

comparion of the different versions of Screech.

http://www.loa-cnr.it/DOLCE.html
http://www.schemaweb.info/schema/SchemaDetails.aspx?id=62
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Table 4. Summary of the three Screech versions on WINE. For the legend, see
Table 2.

Variant miss corr more time KAON2 f-meas. corr.class time/KAON2
Screech-all 0 30627 1353 588562 707476 0.978 0.93 0.83
Screech-one 0 30627 615 494456 707476 0.990 0.94 0.70
Screech-none 697 29930 0 504914 707476 0.988 0.90 0.71

20762 axioms, including functionality, disjunctions, and existential quantifiers.
The corresponding ABox contains 6601 axioms.

The translation procedure into disjunctive datalog produces altogether ca. 554
rules,18 among them 24 disjunctive ones. The Screech-all split resulted in 48
new rules, replacing the disjunctive ones. We removed 3 integrity constraints
after the translation.

As before, we queried all named classes for their extensions using the KAON2
datalog engine, both for processing the disjunctive datalog program and for the
various splits. A summary of the results can be seen in Table 4. For 130 of the 140
classes (83%), under Screech-all we obtained 1353 incorrect extensions, while
under Screech-one 132 classes are correct queried. Under Screech-none, the
number of the classes correctly queried is 126, and totally 697 extensions were
missing.

WINE is the only ontology we tested for which Screech-none resulted in
mildly significant number of mistakes. However, recall is still at 0.977, i.e. very
good. Considering the fact that WINE was created to show the expressiveness
of OWL DL, it is remarkable that all three Screech versions show a very low
amount of errors, while runtime increases by 28.6–34.5%. For some classes – e.g.
for Chianti, over 91% of the runtime was saved using Screech-all.

4.5 SEMINTEC

We also considered an ontology, the translation of which turned out to not
contain proper disjunctive rules. Nevertheless, removing integrity constraints
is supposed to result in improving runtime behaviour (while in this case even
preserving soundness).

So, the last ontology we considered is from the SEMINTEC project19 at
the university of Poznan and concerns financial services. Its TBox contains
130702 axioms of comparably simple structure, apart from some functionality
constraints which require equality reasoning. The ABox contains 71764 axioms.
The TBox translation generated 217 rules, all of them being Horn, among which
were 113 integrity constraints.

As before, we queried all named classes for their extensions using the KAON2
datalog engine, both for processing the disjunctive datalog program and for the
various splits. A summary of the results can be seen in Table 5. As in the case

18 526–572.
19 http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm
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Table 5. Summary of Screech on SEMINTEC – note that all three versions of
Screech coincide, since no disjuntive rules are produced by the translation. For the
legend, see Table 2.

Variant miss corr more time KAON2 f-meas. corr.class time/KAON2
Screecha-all 0 51184 0 31353 94981 1.0 1.0 0.33
Screech-one 0 51184 0 32200 94981 1.0 1.0 0.33
Screech-none 0 51184 0 32032 94981 1.0 1.0 0.33

Table 6. Summary of Screech on VICODI – note that all three versions of Screech
coincide, since no disjuntive rules are produced by the translation. For the legend, see
Table 2.

Variant miss corr more time KAON2 f-meas. corr.class time/KAON2
Screech-all 0 282564 0 3228 7192 1.0 1.0 0.45
Screech-one 0 282564 0 3295 7192 1.0 1.0 0.46
Screech-none 0 282564 0 3346 7192 1.0 1.0 0.47

Table 7. Overview of Screech evaluations. Mark that for due to the completeness
of Screech-all, the recall values are always 100% as well as the precision values for
Screech-none due to its soundness. Moreover, the three Screech variants coincide
in the case of the SEMINTEC ontology.

Screech-all Screech-one Screech-none

ontology
time
saved precision recall

time
saved precision recall

time
saved precision recall

GALEN 74.6% 91.7% 100% 72.5% 97.4% 99.9% 76.5% 100% 99.8%
DOLCE 29.1% 62.1% 100% 17.5% 87.8% 100% 23.0% 100% 100%
WINE 34.5% 95.8% 100% 30.1% 98.0% 100% 28.6% 100% 97.7%
SEMINTEC 69.9% 100% 100% 66.0% 100% 100% 66.2% 100% 100%
VICODI 55.1% 100% 100% 54.1% 100% 100% 53.4% 100% 100%

of absence of disjunctive rules all three variants of Screech coincide, for all of
the 60 classes, the extensions were computed correctly.

For SEMINTEC, we achieve a performance improvement of 54% while the
computation remains correct. For some classes – in particular for some with very
small extensions, computing the extension under Screech-all saved about 95%
of the runtime. For some classes with larger extension – like Leasing, 92% of
runtime was saved.

4.6 VICODI

Another ontology containing no disjunctive rules is the VICODI ontology. But
it has a large ABox. It also has no integrity constraints. Hence, the knowledge
bases generated are the same; as given in Table 3 they resulted in a datalog
program with 223 Horn rules. Like SEMINTEC, for all of the 194 classes, the
extensions were computed correctly in each Screech variant. The performance
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gain for Screech-all, Screech-one and Screech-none is 55.1%, 54.4% and
53.4%, respectively.

5 Conclusions

Motivated by the obvious need for techniques enhancing the scalability of reason-
ing related tasks, we have investigated three variants of the Screech approach
to approximate reasoning in OWL ontologies.

On the theoretical side, we gave the completeness result for Screech-all
and the soundness result for Screech-none, yet a desirable characterisation of
the approximations in terms of extremal bounds following the theory of Horn-
approximations was shown not to hold by providing counterexamples.

However, on the practical side the obtained results were promising: the per-
formance improvement is stable over all ontologies which we included in our
experiments. The performance gain varied between 29.1 and 76.5%, while the
amount of correctly retrieved classes was above 76% for all but one of the on-
tologies – see Table 7. It is encouraging to see that the approach appears to be
feasible even for the sophisticated WINE ontology, and also for the SEMINTEC
ontology, although in the latter case we only remove integrity constraints. Con-
cerning the comparatively bad results on DOLCE, we note that the results are
quite counterintuitive. One would naively expect that performance improvements
go hand-in-hand with loss of precision. However, for DOLCE we measured both
the least runtime improvement and the worst performance in terms of correct-
ness. Concerning correctness, we suspect that the comparatively large number of
incorrect answers is caused by the fact that DOLCE uses a large number of com-
plete partitions of the form A ≡ A1�· · ·�An, where all the Ai are also specified
to be mutually disjoint. It is intuitively clear that this kind of axioms introduces
disjunctive (non-Horn-style and therefore harder to approximate) information
on the one hand and integrity constraints (those being neglected in our approx-
imation) on the other. However, this does not in itself explain why we did not
observe a higher speedup. This indicates that the properties of ontologies which
lead to performance improvement through screeching must be less straightfor-
ward than initially expected. For a clarification, more evaluations taking into
account a wider range of ontologies with differing characteristics w.r.t. expres-
sivity, used language features, or statistical measures like degree of population
will lead to substantial hypotheses.

In general, we see a great potential in the strategy to combine various (pos-
sibly approximate) algorithms having known properties as soundness and/or
completeness maybe with respect to differing types of queries. For instance, the
proposed “sandwich technique” can be used to solve instance retrieval tasks in
some cases even without calling the more costly sound and complete reasoners.
If the sets of individuals IS and IC retrieved by two algorithms—one of those
being sound and the other one complete—coincide, the result is known to be
exact. But even if not, the result is at least partly determined (as all elements of
IS are definitely instances and all individuals not in IC are not) and it might be
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beneficial to query a sound and complete reasoner for class membership only for
individuals of the set IC \ IS of individuals for which class membership is still
undecided. Clearly, the strategy to combine several approximate algorithms will
be especially reasonable if parallel computation architectures are available.
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Abstract. The need to reason with knowledge expressed in both Logic
Programming (LP) and Description Logics (DLs) paradigms on the Se-
mantic Web lead to several integrating formalisms, e.g., Description
Logic programs (dl-programs) allow a logic program to retrieve results
from and feed results to a DL knowledge base. Two functional extensions
of dl-programs are hex programs and fuzzy dl-programs. The former ab-
stract away from DLs, allowing for general external queries, the latter
deal with the uncertain, vague, and inconsistent nature of knowledge on
the Web by means of fuzzy logic mechanisms. In this paper, we gener-
alize both hex programs and fuzzy dl-programs to fuzzy hex programs:
a LP-based paradigm, supporting both fuzziness as well as reasoning
with external sources. We define basic syntax and semantics and ana-
lyze the framework semantically, e.g., by investigating the complexity.
Additionally, we provide a translation from fuzzy hex programs to hex
programs, enabling an implementation via the dlvhex reasoner. Finally,
we illustrate the use of fuzzy hex programs for ranking services by using
them to model non-functional properties of services and user preferences.

1 Introduction

Logic Programming (LP) [2] and Description Logics (DLs) [1] are two of the main
underlying knowledge representation and reasoning paradigms of the Semantic
Web, a machine-understandable instead of just machine-readable Web [4]. Logic
Programming underlies, for example, several variants of the Web Service Model-
ing Language WSML [6] and Description Logics form the basis of the ontology
language OWL-DL [3].

As the Semantic Web is about understanding knowledge and automatizing
inferences from this knowledge, it is not surprising that there is a lot of interest
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in the integration of these paradigms (see, e.g., [5] for an overview). One of these
integrating approaches are Description Logic Programs, dubbed dl-programs [11],
that take a LP view on a DL knowledge base: logic programs are able to query
DL knowledge bases via dl-atoms. Moreover, dl-atoms can stream knowledge
from the logic program to the DL knowledge base, where it can be used to make
additional DL inferences (which can then in turn be used in the LP deduction
process). In effect, there is a bi-directional stream of information between the
logic program and the DL knowledge base.

In [10], dl-programs were generalized to hex programs. hex programs combine
higher-order reasoning - naively put, they allow for variables to appear in the
predicate position, enabling thus meta-reasoning over concepts - and external
atoms. The latter generalize dl-atoms as they do not just access DL knowledge
bases but are associated with any external function - one can use them, e.g., to
query RDF repositories or SQL databases.

Another extension to dl-programs was inspired by the uncertainty, vagueness,
and inconsistency of the (Semantic) Web. As anyone can produce knowledge on
the Web, it is impossible to ensure that all knowledge on the Web is logically true.
Moreover, often there is a need (as there is in real-life) to express vague concepts,
such as very, beautiful, or old/young; a need that is not met by traditional two-
valued logics like LP or DLs. And finally, the Web is inconsistent: source A
might have another (contradicting) opinion than source B on a topic. Together
with the need for integrating approaches, this lead to so-called fuzzy dl-programs
[14,12]. Fuzzy dl-programs extend dl-programs by allowing to query fuzzy DLs
[17] and by using fuzzy dl-rules on the LP side.

Intuitively, fuzzy dl-rules use combination strategies instead of the usual con-
junction, disjunction, and negation in normal LP rules. Those combination strate-
gies do nothing else than computing a resulting truth value based on two (or one,
in the case of the negation strategy) input truth values, where truth values, in
contrast with two-valued logics, range over the interval [0, 1]. For example, in nor-
mal LP, a rule fail ← not study, smart where study is false (or 0) and smart is
true, results in a truth value of 1 for fail . A fuzzy variant could be fail ←⊗G

not�L study ⊗G smart ≥ 0.5 where ⊗G is the Gödel conjunction (which takes
the minimum of two values) and .L is the Lukasiewizc negation (which takes the
complement of a value w.r.t. 1). If study has a fuzzy value of 0.4 and smart of 0.9,
we would have that not�L study has a value of 0.6. The value 0.5 indicates to what
extent the rule should be satisfied. Using ⊗G we would have that the value of the
body (the part to the right of ←) has to be 0.5 ⊗G 0.6 ⊗G 0.9 = 0.5 and that
the value of fail should be at least this value (0.5) in order to make the fuzzy rule
satisfied. Note that the value 0.5 that indicates to which degree a rule should be
satisfied is used to calculate the value of the body.

In this paper, we generalize both extensions - from dl-programs to hex pro-
grams and from dl-programs to fuzzy dl-programs - to fuzzy hex programs.
Fuzzy hex programs thus support higher-order reasoning, reasoning with exter-
nal sources like DL knowledge bases or in general with external functions (e.g.,
sum, max ), and fuzzy reasoning. We establish the basic syntax and semantics



Ranking Services Using Fuzzy Hex Programs 183

of such programs and show that the complexity of disjunction-free fuzzy hex
programs, under equal conditions for the external predicates and appropriately
behaving fuzzy combination strategies, is the same as for disjunction-free hex
programs, namely NEXPTIME-complete.

We furthermore establish a translation from fuzzy hex programs to hex pro-
grams, basically writing the combination strategies as external predicates that
can be computed by external functions. This enables reasoning with fuzzy hex
programs using the dlvhex [9] reasoner for hex programs.

To show the applicability of fuzzy hex programs, we use them to describe
non-functional properties of Web services, enabling better ranking of services.
A service is a provision of value to a client [15], e.g., the delivery of a package
with some specified constraints. Service ranking is then the process which gen-
erates an ordered list of services out of the candidate services set according to
user’s preferences. As ranking criteria, specified by the user, various aspects of a
service description can be used. We differentiate between (1) functional, (2) be-
havioral, and (3) non-functional. The functional description contains the formal
specification of what exactly the service can do. The behavioral description is
about how the functionality of the service can be achieved in terms of interaction
with the service as well as in terms of functionality required from other services.
Finally, the non-functional description captures constraints over the previous
two [7]. For example, in case of a shipping service, invoking its functionality
(shipping a package) might be constrained by paying a certain amount (price as
non-functional property).

As part of our previous work [18], we have proposed an approach for the service
ranking problem based on the evaluation of non-functional properties such as
price, response time, liability, etc. Rules encoding conditions and constraints
over multiple non-functional properties are used to model both users and service
provides perspectives. Although this modeling approach is useful for modeling
some of the multitude of non-functional properties such as liability/contractual
obligations, for properties, like price or delivery time, a more natural choice to
express requests and preferences requires a formalism for handling vagueness and
imprecision, e.g., imagine a provider advertising ”the cheapest service”. Another
issue is that service descriptions, besides fuzzy information, often need to refer
to external libraries and data sources. Fuzzy hex programs address exactly these
requirements.

The remainder of the paper starts with an introduction to hex programs
in Section 2. Section 3 defines fuzzy hex programs with its basic properties.
In Section 4, we show that fuzzy hex programs generalize both hex programs
and fuzzy dl-programs, and Section 5 gives complexity results for fuzzy hex
programs as well as a translation from fuzzy hex programs to hex programs,
allowing an implementation using dlvhex. Section 6 contains an application of
fuzzy hex programs to the problem of ranking services and we give directions
for further research in Section 7. Proofs of the key results can be found at
http://www.kr.tuwien.ac.at/staff/heymans/fuzzy-hex-proofs.pdf.

http://www.kr.tuwien.ac.at/staff/heymans/fuzzy-hex-proofs.pdf
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2 Preliminaries: HEX Programs

We introduce hex programs as in [10]. Assume the existence of 3 mutually dis-
joint sets C,X , and G, consisting of constants, variables, and external predicates
respectively. A term is either a constant a ∈ C or a variable X ∈ X , denoted with
symbols starting with lower-case or upper-case letters respectively. A higher-order
atom is of the form t0(t1, . . . , tn) for terms ti, 0 ≤ i ≤ n. If t0 is a constant, we
call t0(t1, . . . , tn) an ordinary atom. An external predicate from G starts with the
symbol #, e.g., #g or #sqrt , where each external predicate has an associated in-
put and output arity. An external atom is of the form #g[t1, . . . , tn](s1, . . . , sm)
where t1, . . . , tn is the input list of terms for the input arity n of #g and s1, . . . , sm

is the output list of terms for the output arity m of #g.
A rule r is of the form:

a1 ∨ . . . ∨ ak ← b1 , . . . , bn , not bn+1 , . . . , not bm (1)

where a1, . . . , ak are higher-order atoms, and b1, . . . , bm are higher-order or ex-
ternal atoms. The head of r is head(r) = {a1, . . . , ak}, and the body of r is
body(r) = body+(r) ∪ body−(r) with body+(r) = {b1, . . . , bn} and body−(r) =
{bn+1, . . . , bm}. A rule is ordinary if it only contains ordinary atoms. If k = 1
we call the rule disjunction-free. A (disjunction-free) hex program is a finite set
P of (disjunction-free) rules.

An atom (higher-order or external), rule, or program, is ground if no variables
appear in it. A grounding of a program P is a ground program gr(P ) that
contains all possible ground rules resulting from replacing the variables in those
rules with all possible constants from C. The Herbrand Base of P , denoted BP ,
is the set of all possible ground versions of atoms (higher-order or external)
occuring in P using constants of C. Note that the Herbrand Base only contains
ordinary atoms and external atoms. If C, X , or G are not explicitly given, we
assume they are implicitly given by the program P under consideration.

An interpretation I of a program P is a set I ⊆ BP of ordinary atoms (i.e., no
external atoms). We say that I is a model of a ground ordinary atom a, denoted
I |= a, if a ∈ I.

We associate with every external predicate symbol #g ∈ G, an (n +m +1)-ary
function f#g , that assigns a tuple (I, y1, . . . , yn, x1, . . . , xm) to 0 or 1, with n the
input arity of #g and m the output arity of #g, I an interpretation, and yi, xj con-
stants. I is then a model of a ground external atom a = #g[y1, . . . , yn](x1, . . . , xm),
denoted I |= a, if and only if f#g(I, y1, . . . , yn, x1, . . . , xm) = 1. For a ground atom
(possibly external) a, we have I |= not a iff I �|= a. This definition extends for sets
containing ground ordinary and ground external atoms as usual.

We say that a ground rule r is satisfied by I, denoted I |= r, if, whenever
I |= body+(r) ∪ not body−(r), we have that there is a ai, 1 ≤ i ≤ k, such that
I |= ai. For a hex program P , I is a model of P , denoted I |= P , iff I |= r for each
r ∈ gr(P ). We define the FLP-reduct P I of a program w.r.t an interpretation I
as all rules r ∈ gr(P ) such that I |= body+(r)∪not body−(r). An interpretation
I of P is an answer set of P iff I is a minimal model of P I .
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3 Fuzzy HEX Programs

We use the definition of fuzzy dl-rules from [14,12] as an inspiration to extend
hex programs to fuzzy hex programs, and we start by identifying different
combination strategies :

– The negation strategy . : [0, 1] → [0, 1], where we call .v, v ∈ [0, 1], the
negation of v. The negation strategy has to be antitonic, i.e., if v1 ≤ v2,
then .v1 ≥ .v2. Furthermore, we have that .1 = 0 and .0 = 1. Particular
negation strategies ([17]) are, for example, the Lukasiewizc negation .L,
defined by .Lx = 1 − x, or the Gödel negation .G, defined by .0 = 1 and
.x = 0 if x > 0.

– The conjunction strategy ⊗ : [0, 1] × [0, 1] → [0, 1], where we call v1 ⊗ v2,
v1, v2 ∈ [0, 1], the conjunction of v1 and v2. The conjunction strategy has to
be commutative, associative, and monotone (if v1 ≤ v′1 and v2 ≤ v′2, then
v1⊗v2 ≤ v′1⊗v′2). Furthermore, we need to have that v⊗1 = v and v⊗0 = 0.
Particular conjunction strategies (also called t-norms [17]) are, for example,
the Lukasiewizc conjunction ⊗L, defined by x ⊗L y = max (x + y − 1, 0),
the Gödel conjunction ⊗G, defined by x⊗G y = min (x, y), and the product
conjunction ⊗P , defined by x⊗P y = x.y.

– The disjunction strategy ⊕ : [0, 1] × [0, 1] → [0, 1], where we call v1 ⊕ v2,
v1, v2 ∈ [0, 1], the disjunction of v1 and v2. The disjunction strategy has
to be commutative, associative, and monotone (if v1 ≤ v′1 and v2 ≤ v′2,
then v1 ⊕ v2 ≤ v′1 ⊕ v′2). Furthermore, we need to have that v ⊕ 1 = 1 and
v⊕0 = v. Particular disjunction strategies (also called s-norms [17]) are, for
example, the Lukasiewizc disjunction ⊕L, defined by x⊕Ly = min (x + y, 1),
the Gödel disjunction ⊕G, defined by x ⊕G y = max (x, y), and the product
disjunction ⊕P , defined by x⊕P y = x + y − x.y.

Definition 1. A fuzzy rule r is of the form

a1 ⊕1 . . .⊕k−1 ak ←⊗0 b1 ⊗1 . . .⊗n−1 bn

⊗nnot�n+1 bn+1 ⊗n+1 . . .⊗m−1 not�m bm ≥ v (2)

where a1, . . . , ak are higher-order atoms, b1, . . . , bm are higher-order, external
atoms, or elements from [0, 1], and v ∈ [0, 1]. The head and body of r is
defined as before. A (disjunction-free) fuzzy hex program is a finite set P of
(disjunction-free) fuzzy rules.

Note that a fuzzy rule can contain different negation strategies; the order of
evaluation of such strategies will be left-to-right.

Ground atoms, rules, programs, as well as a grounding are defined similarly
as for hex programs.

A fuzzy interpretation of a fuzzy hex program is a mapping I : OP ⊆ BP →
[0, 1] where OP are the ordinary atoms in BP . Define I ⊆ J for fuzzy interpre-
tations I and J of P , if I(a) ≤ J(a) for each a ∈ OP . We call I minimal if
there is no interpretation J �= I such that J ⊆ I. The fuzzy value vI of a ground
ordinary atom a w.r.t. an interpretation I is vI(a) = I(a).
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We associate with every external predicate symbol #g ∈ G, an (n + m + 1)-
ary function f#g , that assigns a tuple (I, y1, . . . , yn, x1, . . . , xm) to [0, 1], with n
the input arity of #g and m the output arity of #g, I a fuzzy interpretation, and
yi, xj constants. The fuzzy value vI of a ground external atom a = #g[y1, . . . , yn]
(x1, . . . , xm) w.r.t. an interpretation I is vI(a) = f#g(I, y1, . . . , yn, x1, . . . , xm).
We complete the definition of vI by defining it for values v from [0, 1] as
vI(v) = v.

A fuzzy interpretation I satisfies a ground fuzzy rule (2) iff

vI(a1)⊕1 . . .⊕k−1 vI(ak) ≥ v ⊗0 vI(b1)⊗1 . . .⊗n−1 vI(bn)
⊗n.n+1vI(bn+1)⊗n+1 . . .⊗m−1 .mvI(bm) . (3)

A fuzzy interpretation I is a fuzzy model1 of a fuzzy hex program P if it satisfies
every rule in gr(P ).

The FLP-reduct P I of a fuzzy hex program w.r.t a fuzzy interpretation I are
all rules r ∈ gr (P ) of the form (2) where

v ⊗0 vI(b1)⊗1 . . .⊗n−1 vI(bn)⊗n.n+1vI(bn+1)⊗n+1 . . .⊗m−1 .mvI(bm) > 0 .

We can then define fuzzy answer sets as follows:

Definition 2. Let P be a fuzzy hex program. A fuzzy interpretation I of P is
a fuzzy answer set of P iff I is a minimal fuzzy model of P I .

Example 1. Take P with rules a←⊗P not�L b ≥ 1 and b←⊗P not�L a ≥ 1 . One
can check that a fuzzy interpretation I1 with I1(a) = 0.8 and I1(b) = 0 is not
a model of P and thus not a fuzzy answer set. On the other hand, I2 with
I2(a) = 0.6 and I2(b) = 0.4 is a fuzzy answer set.

Example 2. Take the program P with rule a←⊗P not�L a ≥ 1 . Although the
normal program a ← not a has no answer sets, the fuzzy version of this program
has a fuzzy answer set I where I(a) = 1

2 , i.e., if one is equally unsure about a
as about not a, the contradicting rule is no longer relevant.

A positive fuzzy hex program is a program without negation strategies.
We have that for positive programs the FLP-reduct has no influence on the

fuzzy answer sets:

Proposition 1. Let P be a positive fuzzy hex program. Then, M is a fuzzy
answer set of P iff M is a minimal fuzzy model of P .

Proposition 1 does not necessarily hold if P is not positive as one can see from the
fuzzy program a←⊗P not� a ≥ 1 where we define . as follows: .x = 1 for x <
0.1 and x = 0 for x ≥ 0.1.

1 We will omit the modifier fuzzy if it is clear from the context.
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4 Fuzzy HEX Programs Generalize HEX Programs and
Fuzzy dl-Programs

To show that hex programs are properly embedded in fuzzy hex programs
we introduce a crisp conjunction x ⊗c y = 1 if x = 1 ∧ y = 1 and 0 else, a
crisp disjunction x ⊕c y = 1 if x = 1 ∨ y = 1 and 0 else, and a crisp negation
.cx = 0 if x = 1 and 1 else.

Proposition 2. The crisp conjunction (disjunction, negation) is a well-defined
conjunction (disjunction, negation) strategy.

For a hex program P we define its fuzzy version P f as follows:

Definition 3. Let P be a hex program. Then, P f consists of the rules

a1 ⊕c . . .⊕c ak ←⊗c bf
1 ⊗c . . .⊗c bf

n⊗cnot�c bf
n+1 ⊗c . . .⊗c not�c bf

m ≥ 1 (4)

for every rule of the form (1) in P , where bf
i , 1 ≤ i ≤ m, is defined such that

bf
i = bi when bi is not external, and, if bi = #g[t1, . . . , tn](s1, . . . , sm) then bf

i =
#gf [t1, . . . , tn](s1, . . . , sm) where #gf is associated with the external function f#gf

that assigns, for any fuzzy interpretation I, the tuple (I, y1, . . . , yn, x1, . . . , xm) to
the value f#g(I ′, y1, . . . , yn, x1, . . . , xm) where a ∈ I ′ iff I(a) = 1, a ∈ OP .

Proposition 3. Let P be a hex program. Then, M is an answer set of P iff
Mf is a fuzzy answer set of P f where Mf : OP → [0, 1] is such that Mf (a) = 1
if a ∈ M and Mf (a) = 0 otherwise.

Proposition 3 shows that fuzzy hex programs are layered on hex programs.
Description Logic Programs (dl-programs for short) [11] is a formalism that

allows to combine DL knowledge bases with logic programs. Roughly, in a dl-
program the logic program can query the DL knowledge base, while possibly
feeding deductions from the logic program as input to it. As dl-programs can be
embedded in hex programs [10], and the fuzzy rules we consider are syntactically
and semantically similar in spirit as the fuzzy rules used in [12], it comes as no
surprise that the so-called fuzzy dl-programs from [12] can be embedded in fuzzy
hex programs.

We briefly introduce fuzzy dl-programs and refer the reader for more details
to [12]. A fuzzy dl-program (L, P ) consists of a fuzzy description logic knowledge
base L and a finite set of ground fuzzy rules P . We again refer to [12] for more
details on fuzzy DLs, and retain from [12] that L comes associated with a models
operator |= such that one can express statements L |= C(t) ≥ v for a concept C
and a term t and statements L |= R(t1, t2) ≥ v for a role R and terms t1 and
t2; v is a value from some [0, 1]2. Intuitively, one can deduce statements from L

2 Note that [12] restricts itself to a set TVn = {0, 1
n
, . . . , 1}. We will later restrict

ourselves also to this set instead of considering [0, 1], but for showing that fuzzy dl-
programs are embedded in fuzzy hex programs we can safely take the more general
interval [0, 1].
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that indicate to what fuzzy degree v, the term t belongs to the concept C (or
(t1, t2) belongs to R).

Fuzzy dl-rules in P are of the form (2) with the following modifications:

– No non-ordinary higher-order or external atoms appear in P ,
– Atoms may also be dl-atoms DL[S1 ∪ p1, . . . , Sn ∪ pn; Q](d), where Si are

concepts or roles, pi are unary or binary predicates (unary if Si is a concept,
binary if Si is a role), Q and d are either a concept and a term or a role and
a pair of terms. .

For a fuzzy interpretation I of P , the value vI(a) of a ground dl-atom a =
DL[S1 ∪ p1, . . . , Sn ∪ pn; Q](d) w.r.t. L is defined as the maximum value
v ∈ [0, 1] such that L∪

⋃m
i=1 Ai(I) |= Q(d) ≥ v with Ai(I) = {Si(ei) ≥ I(pi(ei)) |

I(pi(ei)) > 0} where ei is a constant or a pair of constants depending on the ar-
ity of pi. Intuitively, we query the DL knowledge base L where the fuzzy degrees
of the concepts/roles Si are augmented with what we know from P (i.e., via the
pi predicates) to find out what the fuzzy degree v is of membership of d in Q.

A fuzzy answer set of such a fuzzy dl-program is then defined analogous to
our fuzzy answer sets where dl-atoms a have the value vI(a) w.r.t. L as defined
above.

Similar as in [10], we can replace dl-atoms a = DL[S1∪p1, . . . , Sn∪pn; Q](d) by
external atoms #aL[ ](d) such that the associated external function f#aL(I, d) =
v iff L ∪

⋃m
i=1 Ai(I) |= Q(d) ≥ v. For a fuzzy dl-program (L, P ), let P# be the

program obtained from P by replacing all dl-atoms a = DL[S1 ∪ p1, . . . , Sn ∪
pn; Q](d) by their external version #aL[ ](d).

Proposition 4. Let (L, P ) be a fuzzy dl-program. Then, M is a fuzzy answer
set of (L, P ) iff M is a fuzzy answer set of P#.

5 Complexity and Reasoning

We restrict ourselves in the following to the fixed set TVn = {0, 1
n , 2

n , . . . , 1} in-
stead of the interval [0, 1], and we assume, similar as in [13], that the combination
strategies are closed in TVn. Note that the Lukasiewizc and Gödel combination
strategies are all closed, but, for example, the production conjunction is not: on
TV3 we have that 1

3 ⊗P
2
3 = 2

9 �∈ TV3. Additionally, we assume that external
functions f#g, associated with external predicates #g, are defined as functions
f#g : TVn → TVn.

For combination strategies ⊗ and ., we assume the existence of external
atoms #⊗[X, Y ](Z) and #.[X ](Z), with associated external functions to {0, 1}
defined as follows for a fuzzy interpretation I: f#⊗(I, X, Y, Z) = 1 iff X⊗Y = Z
and f#�(I, X, Z) = 1 iff .X = Z.

Additionally, we define a #max [X ](Y ) atom such that f#max (I, X, Y ) = 1 if
Y = max {v | X(v) ∈ I}, i.e., Y is the maximum value that the argument of an
X-atom can take.
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We transform a disjunction-free fuzzy hex program P in a hex program P h:

Definition 4. Let P be a disjunction-free fuzzy hex program. We take C = TVn.
Then P h consists of rules

σa (x ) ← (5)

for each non-external atom a ∈ gr(P )3 where x = a if a ∈ TVn and x = 0
otherwise, rules

σa(X ) ← #gh [y1 , . . . , yn ](x1 , . . . , xm , X ) (6)

for each external atom a = #g[y1, . . . , yn](x1, . . . , xm) ∈ gr(P ), where

f#gh (Ih, y1, . . . , yn, x1, . . . , xm, x) = 1 iff f#g(I, y1, . . . , yn, x1, . . . , xm) = x ,

for any interpretation Ih of P h and I its fuzzy variant defined such that, for a
non-external atom a, I(a) = max {y | σa(y) ∈ Ih}, and for each rule with non-
empty body of the form (2) in gr (P ), rules

σa(Um) ←
σb1(X1), #max [σb1 ](X1), . . . ,
σbm(Ym), #max [σbm ](Ym), #.m[Ym](Xm), #⊗0[Um−1, v](Um),
#⊗1[X1, X2](U1), #⊗2[U1, X3](U2), . . . , #⊗n−1[Um−2, Xm](Um−1)

(7)

for rules with empty body, we introduce σa(Um) ← #⊗0[1, v](Um), and finally
rules

σa (x − 1
n

) ← σa (x ) (8)

for all non-external atoms a ∈ gr(P ) and for all x �= 0 ∈ TVn.

Intuitively, the rules (5) make sure that the initial fuzzy value of a non-external
atom a is equal to its fuzzy value if a ∈ TVn or 0 otherwise, where the value
of an atom a is encoded using the binary predicate σa. Note that atoms from
P are treated as constants in P h (that are, however, not used to ground the
transformed program, see the defintion of C for P h). Similarly, the rules in (6)
ensure that the values of the external atoms are correctly set. The rules in (7)
compute the value of the head atom a based on the maximum values of its body
atom, i.e., we assume implicitly that the actual fuzzy value of an atom is the
maximum value that is present in the interpretation for that atom (using again
the σ-encoding for values). We use the external atoms that correspond to the
combination strategies to compute the value of the body and impose that the
value of the body is equal to the value of the head, namely Um. Note that for
satisfaction of fuzzy rules the value of the head just needs to be greater than
or equal the value of the body; we impose equality to ensure minimality of the
fuzzy interpretation. The case where the value of an a is actually bigger than
3 Grounding w.r.t. the original C of P , i.e., not w.r.t. the new C = TVn.
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Um is covered by the rules in (8) that also introduce any lower values for a
value x.

Note that this is a different reduction than the one in [13] from fuzzy dl-
programs to dl-programs, where additionally to the closedness restrictions, all
combination strategies have to be the ones from Zadeh’s logic (i.e., ⊗ = min,⊕ =
max, and . = complement). Our reduction is more general in this sense as it
only requires closedness. However, the reduction in [13] allows for disjunctive
program, which we do not handle.

We can compute fuzzy answer sets of a fuzzy hex program by computing the
answer sets of the corresponding hex program:

Proposition 5. Let P be a disjunction-free fuzzy hex program with closed com-
bination strategies. Then, M is a fuzzy answer set of P iff Mh = {σ(a, x) |
M(a) = y, 0 ≤ x ≤ y} is an answer set of P h. Vice versa, Mh is an an-
swer set of P h iff M is a fuzzy answer set of P where M is defined such that
M(a) = max {y | σa(y) ∈ Mh}.

Using the dlvhex [9] reasoner for reasoning with hex programs, this proposition
thus gives us a method to reason with fuzzy hex programs as well, in particular
by translating them first to hex programs. Some provisos we have to make in this
respect are that the original external functions have to be computable, as well as
the external functions associated with the combination strategies. Moreover, the
sets of constants, variables, and external predicates under consideration should
be finite in order to ensure a finite P h (note that P itself is by definition finite).

Using the complexity results for hex programs in [10] and the reduction of
hex programs to fuzzy hex programs in Proposition 3 we get the following
hardness results for different classes of fuzzy hex programs.

Proposition 6. Deciding whether a fuzzy hex program without external atoms
has a fuzzy answer set is NEXPTIMENP-hard and NEXPTIME-hard if the program
is disjunction-free.

For programs with external atoms #g, we can deduce the same hardness results
if the corresponding function f#g is decidable in exponential time in |C|.

Proposition 7. Deciding whether a fuzzy hex program, where for every #g ∈ G
the function f#g is decidable in exponential time in |C|, has a fuzzy answer set
is NEXPTIMENP-hard and NEXPTIME-hard if the program is disjunction-free.

From the complexity perspective, we even introduce in the absence of external
atoms in a fuzzy hex program P external atoms in the translation P h to compute
the combination strategies as well as the maximum value of an atom. The #max
external function is not introducing extra complexity as the maximum can be
calculated in linear time in the size of gr(P ). However, the combination strategies
can add extra complexity, or lead to undecidability of checking whether there
exists a fuzzy answer set in case they are undecidable - note, however, they do
not depend on the program at hand. We restrict ourselves thus to combination-
computable combination strategies:
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Definition 5. A combination strategy ⊗ (⊕,.) on TVn is combination-
computable if it is closed and its corresponding external function f#⊗ (f#⊕,
f#�) is decidable in polynomial time. We call a fuzzy hex program combination-
computable if its combination strategies are combination-computable.

Note that for all the combination strategies we treated in this paper the corre-
sponding functions are decidable in polynomial time, assuming the numbers are
encoded in unary format.

Proposition 8. Deciding whether a combination-computable disjunction-free
fuzzy hex program without external atoms has a fuzzy answer set is in NEXPTIME.

Proof. The size of the program P h is linear in the size of gr(P ), such that, since
the size of gr(P ) is in general exponential in the size of P and C, the size of
P h is exponential in the size of P and C. Since we assume that TVn is fixed, we
get that the size of gr(P h) is polynomial in the size of P h, and thus, the size of
gr(P h) is exponential in the size of P and C.

Using Proposition 5, checking whether there is a fuzzy answer set of a fuzzy
hex program P , amounts to checking whether there is an answer set of gr(P h),
the latter can be done by a non-deterministic Turing machine in time that is
polynomial in the size of gr(P h) (see, e.g., [10] and [8]). Since the size of gr(P h)
is exponential in the size of P and C, we have that checking whether there is
an answer set of gr(P h) can be done by a non-deterministic Turing machine in
time that is exponential in the size of P and C, i.e., in NEXPTIME. ��

Using Propositions 6 and 8, we have the following:

Corollary 1. Deciding whether a combination-computable disjunction-free fuzzy
hexprogramwithoutexternalatomshasafuzzyanswer set, isNEXPTIME-complete.

External atoms in the fuzzy hex program can introduce complexity, or even
undecidability. For fuzzy hex programs where each external predicate #g cor-
responds to a function f#g that is decidable in a complexity class C in the size
of C, we have the following results, again using Proposition 5 and [10]:

Proposition 9. Deciding whether a combination-computable disjunction-free
fuzzy hex program where each external predicate #g corresponds to a function
f#g that is decidable in a complexity class C in the size of C has a fuzzy answer
set is in NEXPTIMEC .

If we restrict ourselves to functions decidable in exponential time, we get, sim-
ilar as in [10], that the exponential grounding covers for the complexity of the
functions:

Proposition 10. Deciding whether a combination-computable disjunction-free
fuzzy hex program where each external predicate #g corresponds to a function
f#g that is decidable in exponential time in the size of C has a fuzzy answer set
is in NEXPTIME.
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Using Propositions 7 and 10, we then have the following:

Corollary 2. Deciding whether a combination-computable disjunction-free fuzzy
hex program where each external predicate #g corresponds to a function f#g that is
decidable in exponential time in the size of C has a fuzzy answer set is NEXPTIME-
complete.

6 Applications: Service Ranking

In this section, we illustrate the use of fuzzy hex programs to rank services.
We model non-functional properties of services and user preferences as fuzzy
hex programs. For each fuzzy hex program containing both service description
and user preferences represented as rules, the ranking mechanism finds the fuzzy
answer sets and their degree of fuzzy match. Based on these degrees, as a final
step, the ranked list of corresponding services is constructed.

Assume a user wants to ship a package from Innsbruck to Vienna. The object
to be shipped has a value of around 1000 euro according to user’s estimation. The
weight of the package is 3 Kg and the dimensions are 10/20/10 cm. Furthermore,
the user has the following preferences: (1) he wants to pay at most around 70
euro for the service, (2) he wants to pay cash, (3) he wants the package to be
ensured in case lost or damage, and (4) he expects the package to be delivered
in at most around 36 hours.

Additionally, we have two shipping services Muller and Runner that poten-
tially could satisfy the user’s request. The delivery price for each of the two
services depends on the weight, dimension of the package, the distance and de-
livery time requested by the client. The Muller provider presents the following
conditions: (1) if the value of the package is at least around 1200 euro and the
client payment method is cash the client gets at most 3% discount or free dam-
age insurance, (2) the client has to buy both lost and damage insurances, (3)
if the delivery time requested by the user is at least around 40 hours, the user
gets a 2% discount from the delivery price. The Runner provider presents the
following ones: (1) if the value of the package is at least around 1100 euro and
the client payment method is cash the client gets at most 4% discount, (2) the
client has to buy at least the damage insurance.

The following set of rules represent the background, shared knowledge:

distance(vienna, innsbruck , 485 ) ←⊗L ≥ 1

hasWeight(pack , 3 ) ←⊗L ≥ 1

hasDimension(pack , 10 , 20 , 10 ) ←⊗L ≥ 1

hasValue(pack) ←⊗L around1000 (pack) ≥ 1

hasInsurance(package, lost , 5 ) ←⊗L ≥ 0.8

hasInsurance(package, damage, 5 ) ←⊗L ≥ 0.8

hasInsurance(X , full ,A) ←⊗L

hasInsurance(X , lost , B)⊗L

hasInsurance(X , damage, C )⊗L

#sum[B, C](A) ≥ 1
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paymentCash ←⊗L ≥ 1

paymentCreditcard ←⊗L ≥ 1

hasPayment(X , paymentCash)

⊕LhasPayment(X , paymentCreditcard) ←⊗L ≥ 1

where around1000 = Tri(900 , 1000 , 1100 ), and Tri is the triangle function spec-
ified in [14]. Note that the rules defining the insurance values in case of lost or
damage package have a degree of truth of 0.8. This because, e.g., the exact insur-
ance values are provided by third parties, such as external insurance companies,
and service providers have an imprecise knowledge about these values.

The user request and preferences can be encoded as follows:

query(X ) ←⊗L package(X ) ⊗L hasDeliveryPrice(X , PD )⊗L

leqAbout70 (PD ) ⊗L hasInsurance(X , full , IF )⊗L

hasDeliveryTime(X ,TD ) ⊗L leqAbout36 (TD )

hasPayment(X , paymentCash) ≥ 1

In the previous program, we again use a function defined in [14], namely the
L-function: leqAbout36 = L(36, 43) and leqAbout70 = L(70, 75) to specify that
the expected delivery time to be at most around 36 hours and the expected
delivery price to be at most around 70 euro. The predicate query collects all
packages that fulfill the constraints mentioned above.

The Muller service provider restrictions and preferences are encoded as
follows:

discountV (X , 3 )⊕LhasInsurance(X , damage, 0 ) ←⊗L around1200 (X )⊗L

hasPayment(X , paymentCash) ≥ 1

discountT (X , 2 ) ←⊗L not�L leqAbout40 (TD)⊗L

hasDeliveryTime(X ,TD) ≥ 1

totalDiscount(X ,D) ←⊗L discountV (X ,B) ⊗L discountT (X ,C )⊗L

#sum[B, C](D) ≥ 1

price(X ,P) ←⊗L hasWeight(X ,W ) ⊗L hasDimension(X ,DL,DW ,DH )⊗L

distance(Start ,End ,Dist) ⊗L hasDeliveryTime(X ,TD)⊗L

#deliveryP [W ,DL,DW ,DH ,Dist ,TD , fM ](PD)⊗L

#disc[PD ,D ](P1 ) ⊗L hasInsurance(X , damage,P2 )⊗L

hasInsurance(X , lost ,P3 ) ⊗L #sum[P1 ,P2 ,P3 ](P) ≥ 1

The first rule contains a disjunction in the head used to specify that either a 3%
discount for shipping or a free damage insurance is offered. The delivery price
computation is done by an external predicate #deliveryP [w, diml, dimw, dimh,
dis, timereq

del , f ](P ), where w is the weight of the package, [diml ,dimw ,dimh ] is
the dimension of the package, dis is the distance from source to destination,
timereq

del is the delivery time requested by the client, f is the formula that defines
the price computation and P is the computed delivery price for the package.
External predicate #disc computes a discounted price given an initial price
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Algorithm 1: Fuzzy Ranking
Data: Set of services SSer, User request Q, Background knowledge K,

represented all as fuzzy hex programs.
Result: Order list of services LSer.
begin

1 Ω ←− ∅, where Ω is a set of tuples [service,score] , λ - the set of NFPs
user is interested in;

2 β ←− ∅, is a set of quadruples [service,nfp,nfpvalue,degree];
3 for s ∈ SSer do
4 for nfp ∈ λ do
5 if nfp ∈ s.nfps then
6 fuzzyprog = extractNfp(s, nfp) ∪ K;
7 [s, nfp, nfpvalue, degree] ⇐ evaluate(fuzzyprog, Q);

10 β = β ∪ [s, nfp, nfpvalue, degree];
end
else

11 β = β ∪ [s, nfp, 0, 1];
end

end

end
12 for s ∈ β do
13 scores = 0;
14 for nfp ∈ β do
15 nfpvalue = β.getNFPV alue(s, nfp);
16 nfpvaluemax = max(β.npf);
17 scores = scores + degree ∗ nfpvalue

nfpvaluemax
;

end
18 Ω = Ω ∪ [s, scores];

end
19 LSer ←− sort(Ω);

end

and a discount. fM is the formula used by service Muller to define how the
delivery price should be computed. around1200 (X ) is defined similarly as the
other around predicates, i.e., around1200 (X ) = Tri(1000 , 1200 , 1300 ).

Note that the used combination strategies used so far are Lukasiewizc strate-
gies. However, in our example, one could have used different combination strate-
gies, yielding different results though. The Runner service conditions can be
encoded similarly as the Muller descriptions.

We assume that prior to the service ranking process a discovery process is per-
formed. The discovery process identifies relevant services given a user request by
considering semantic descriptions of functional and non-functional aspects of both
services and requests. The actual ranking process is presented in Algorithm 1.

First, a fuzzy hex program containing the background knowledge and a ser-
vice non-functional property description is created for each service and each of
its non-functional properties requested by the user (line 6). In the next step
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(line 7), the query representing user preferences is evaluated given each program
created before. The atoms representing non-functional properties of service are
grounded as a result of the previous step and a degree of truth is associated with
each of them. Quadruples of form [service, nfp, nfpvalue, degree] are generated.
If the non-functional property is not present in the service description the gen-
erated quadruple is of form [service, nfp, 0, 1] - the degree of truth is 1 since
we know for sure that the value of the NFP is 0 for the given service. The final
part of the algorithm (line 15 - line 17) computes an aggregated score for each
services, performing first a normalization of the NFPs values and incorporating
the degree of truth of every ground atom (line 7). The results are collected in
a set of tuples, where each tuple contains the service id and the service score
(line 18). Finally, service scores are sorted and the final ranked list of services is
returned (line 19).

The problems of service ranking and selection has been addressed in numerous
approaches. Many of them have pointed out the need of fuzzy logic in modeling
service descriptions and user preferences. For example, in [16] a fuzzy description
logic approach is proposed for automating matching in e-marketplaces. In [19]
multiple Quality of Service (QoS) values of services are evaluated and a fuzzy
multi-attribute decision making algorithm is proposed to select the best ser-
vices. The approach does not provide a flexible enough mechanism to model
user preferences and services as proposed in our current work. In [20] fuzzy logic
is used to evaluate the degree of matching between QoS provided by services and
requested by clients. However, the approach is UDDI-based lacking sufficient ex-
pressivity for declarative reasoning with user preferences. Furthermore, none of
the approaches mentioned before provides support for integration of external
data sources or libraries, which is often required in real world settings.

7 Directions for Further Research

As future work, we plan to develop a reasoner for fuzzy hex programs based
on the dlvhex reasoner, using the translation of fuzzy hex programs to hex
programs presented in this paper. The implementation of the service ranking
algorithm presented in Section 6 together with the evaluation of the approach is
also left for the future.
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Abstract. We present –on the base of previous papers– a framework
for markup, interchange, execution, and interoperability of Active Rules,
namely, Event-Condition-Action (ECA) Rules over semantically different
sublanguages for expressing events, conditions, and actions. The contri-
bution of the present paper is the extension of the MARS meta model
of component languages to a meta model of services and an informa-
tional infrastructure that is required for a most general framework for
specifying and executing active rules over heterogeneous languages. The
approach is implemented in the MARS prototype.

1 Introduction

Rule Markup and Rule Interchange is a highly relevant topic. While a systematic
and comprehensive framework for markup of derivation rules, production rules,
etc. is developing, no clear direction came up until now for active rules. The main
reason for this shortcoming is that the requirements on the markup of active
rules, where we consider the most prominent model of Event-Condition-Action
(ECA) Rules, are significantly more demanding: For the general case, composite
events and composite actions, or even processes have to be considered. For both
of them, there is a wide variety of specification formalisms. MARS (Modular
Active Rules for the Semantic Web) aims at handling this matter by following a
modular approach for rule markup, considering the markup and ontology on the
generic rule level separately from the markup and ontologies of the components,
and also covers this heterogeneity and openness by a meta-level ontology.

We start the presentation with a condensed overview of MARS ECA rules.
We then present the ontology of language classes, service types, and tasks that
are involved in a most generic approach for active rules and underlies the oper-
ational solution. Finally, we give an overview of the languages implemented in
the demonstrator prototype.

Overview – ECA Rules in MARS. For reason of space, we omit details about the
semantics of ECA Rules in MARS completely (these can be found in [6, 3, 1]):
it is sufficient to know that a set of tuples of variable bindings, similar to the
semantics of Datalog Rules, is initialized by the event detection, extended and
restricted by queries and tests, and propagated to the action component as
illustrated in Figure 1.

D. Calvanese and G. Lausen (Eds.): RR 2008, LNCS 5341, pp. 197–204, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

{fritzen,may,schenk}@informatik.uni-goettingen.de


198 O. Fritzen, W. May, and F. Schenk

action(X1, . . . , Xn, . . . , Xk) ←
event(X1, . . . , Xn), query(X1, . . . , Xn, . . . , Xk), test(X1, . . . , Xn, . . . , Xk) .

<eca:Event>

event component
binds X1, . . . , Xn

</eca:Event>

⇒

<eca:Query>

query component
over X1, . . . , Xn, . . . , Xk

join vars: X1, . . . , Xn

binds Xn+1, . . . , Xk

</eca:Query>

⇒
<eca:Test>

over X1, . . . , Xk

</eca:Test>

⇒

<eca:Action>

action component
uses X1, . . . , Xk

</eca:Action>

(Composite) Event
Detection Engine Query Engine Action/Process

Engine

register
event

component

upon
detection:
result
variables

send
query

receive
result

send
action
+vars

Fig. 1. Use of Variables in an ECA Rule

The focus of the present paper is on the types of formalisms in which rules and
their subexpressions/components are described, and on a generic ontology and
operational handling of heterogeneous languages. A more detailed and formal
description of the following can be found in [6, 3, 1].

Figure 2 shows the core structure of ECA rules in MARS and the corre-
sponding types of languages. While the semantics of the ECA rules provides the
global semantics, the components are expressed in appropriate languages, that
are handled by specific services.

Event Component. For the specification of events, event algebras are commonly
used [8]. Two levels of specifications are combined (cf. Fig. 3): The specifica-
tion of the (algebraic) structure of the composite event is given as a temporal
combination of specifications of the contributing atomic events.

Action Component. The action component specifies the actual reaction to be
taken. For that, process definition languages over atomic actions are commonly

Rule Model ECARule ECAEngine

EventComponent ConditionComponent ActionComponent

Query Test

Event
Language

Query
Language

Test
Language

Action
Language

Languages Model
Language

Name, URI
Processor

1 0..1 1..*

* 0..1

�

�

�

�

uses uses uses uses

impl by

impl by

Fig. 2. ECA Rule Components and Corresponding Languages (from [6])
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ECA Rule

EventExpression
Query
Expr.

Action
Expr.

Atomic
Event

Matcher

Atomic
Event

Specification

Composite
Event

Specification

Composite
Event

Detector

Domain
Event

Domain
Ontology

Atomic
Event

Specification
Formalism

EventComposer

cardinality

EventAlgebra

�

� k

1

1..*

describes

from

uses

Fig. 3. Event Component: Languages (from [3])

used. The specification of a process, which e.g. includes branching or waiting
for a response, can also require the specification of queries to be executed, and
of events to be waited for. For that, MARS allows waiting for specified events
and evaluation of queries and conditions as regular, executable components of a
process; again represented by nested XML expressions (cf. [3]).

<eca:Rule xmlns:eca=“http://www.semwebtech.org/languages/2006/eca-ml#”>

<eca:Event>

<snoopy:Sequence xmlns:snoopy=“http://.../languages/2006/snoopy#”
xmlns:travel=“http://.../domains/2006/travel#”>

<xmq:Event xmlns:xmq=“http://.../domains/2006/xmlql#”>

<travel:DelayedFlight travel:code=“{$flight}”/> </xmq:Event>

<xmq:Event xmlns:xmq=“http://.../domains/2006/xmlql#”>

<travel:CanceledFlight travel:code=“{$flight}”/>

</xmq:Event>

</snoopy:Sequence>

</eca:Event>

<eca:Query>

query spec

</eca:Query>

<eca:Action>

action spec

</eca:Action>

</eca:Rule>

xmlns:eca•– rule level

•

action spec◦
query◦

xmlns:snoop – event spec•

• •
atomic event specs

+ occurrences of
domain namespaces

Fig. 4. Nesting of Language Subtrees
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Language Borders. Rules and (sub)expressions are represented by XML trees.
The conceptual borders are manifested in language borders between the ECA
level language and the nested components’ languages. The E, C and A com-
ponents of the rule are subtrees in different languages, corresponding to XML
namespaces, as illustrated in Figure 4 (whose details are discussed below in Ex-
ample 1). Analogous conceptual borders are found between composite expressions
(by e.g., event algebras) and atomic subexpressions.

Example 1 (Nested Languages: Event Component). The sample rule in Fig. 4
illustrates the nesting: the rule reacts on a composite event (specified in the
SNOOP [4] event algebra as a sequence) “if a flight is first delayed and later
cancelled”, and binds the flight number. Two XML-QL-style [5] match expres-
sions contribute the atomic event specifications.

2 The Meta-level: Languages, Services, Tasks

There are languages of different types (rules, events, queries/tests, actions), and
granularity levels (composite, atomic). Every rule instance uses the ECA-ML rule
language and some languages of the other types in a semantically appropriate
embedding structure. MARS aims at allowing to embed arbitrary such languages
of appropriate types by only minimal restrictions on the languages, the services
that implement them, and with minimal administrative overhead:

– the information flow between the ECA engine and the event, query, test,
and action components is provided by (i) XML language fragments, and (ii)
current variable bindings (cf. Fig. 1),

– a comprehensive ontology of language types, service types and tasks,
– an open, service-oriented architecture, and
– a Language and Service Registry (LSR) that holds information about actual

services and how to do the actual communication with them.

The XML namespaces are used to identify the language of an XML fragment:
namespaces are the languages’ URIs. The concrete languages are related to ac-
tual services, and the namespace information of a fragment to be processed is
used to select and address an appropriate processor. All necessary information
what to do with an embedded fragment of a “foreign language” is contained in
(i) the language fragment (via the namespace of its root element), (ii) the local
knowledge of the currently processing service (i.e., what it expects the fragment
to be, and what it wants to do with it), and (iii) the LSR information.

2.1 Languages Types, Service Types, and Tasks

For every type of language there is a specific type of services that provides a
specific set of tasks, independent from the concrete language.
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MARS Services Tasks:
→
register-rule

users,
clients

<eca:Rule> ECA Engine
<eca:Event>

composite event spec in event algebra (ex.: SNOOP)

</eca:Event>

:

</eca:Rule>

↑
receive-detected-event

↓
register-for-eventSNOOP Composite Event Detection Service:

<snoopy:...> contains

atomic event spec in some formalism (ex.: XML-QL)
</snoopy:...>

↑
receive-detected-event

Domain Nodes,
Domain Brokers

Atomic Event Matcher for XML-QL

↓
register-for-event

→
receive-event

register
ECA rule

register composite
event spec

upon detection:
variable bindings

register atomic event spec upon matching:
variable bindings

events

Fig. 5. Processing Event Components and Events

Event Specification Languages (specifications of composite or atomic
events): composite event specifications are processed by Composite Event De-
tection Engines (CEDs); atomic event specifications are processed by Atomic
Event Matchers (AEMs). In both cases, event specifications can be registered
there. Upon occurrence/detection of the event, the registrant will be notified.

Query/Test Languages are handled by query engines. Queries can be sent
there, they are answered (synchronously or asynchronously).

Action Languages: Composite and atomic actions are processed by action
services. Action specifications can be submitted there for execution.

Additionally, there are the Domain Languages : every domain defines a language
that consists of the names of actions, classes/properties/predicates, and events.
Domain services carry out the real “businesses”, e.g., airlines or universities,
by answering queries, executing (atomic) actions, and emitting (atomic) events.
Domain Brokers [2] implement a portal functionality for a given domain.

Example 2 (Tasks in Event Processing). The architecture part that is relevant
for handling events is shown in Figure 5. When a rule is registered at an ECA
engine, the ECA engine registers the event component at a Composite Event
Detection Engine (CED) that understands the respective language (in the ex-
ample: SNOOP). The CED registers the embedded Atomic Event Specifications
(AESs) at appropriate Atomic Event Matchers (AEMs) that implement the
Atomic Event Specification Languages (AESLs); (in the example: XML-QL).
The AEMs determine the domains of the events specified by the AESs and con-
tact appropriate domain brokers to be informed by them about these events. The
domain brokers forward relevant atomic events to the AEMs, the AEMs match
them against the specifications and inform the CEDs, and the CEDs process the
results and inform the ECA engine when a composite event has been detected.
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Composite
Event

Spec. Lang.
LanguageType ServiceType

Comp. Event
Det. Engine

SNOOP

Language

namespace-

URI

Service
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Task

name

register-
for-event

receive-
detected-

event

woodstock

TaskDescription

actualURL,

comm. attributes
Task Descriptions

see Section 2.2

Task Descriptions
see Section 2.2

is-a

is-a

is-a

impl by
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is-a

meta-
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*
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*

has task descr
*

described by*

Fig. 6. MARS Ontology of Languages and Services

The MARS Languages and Services Ontology is shown in Figure 6; sample in-
stances are denoted by dashed boxes. Figure 7 shows the most important tasks
for each service type; additionally, the actual communication flow is indicated.

2.2 Actual Processing

The actual process of determining an appropriate service for handling an embed-
ded component or fragment and organizing the communication is based on the
Language and Service Registry (LSR) where for each language the concrete infor-
mation about available services is managed. The communication payload consists
of the fragment (including its language identification via the namespace) and the

Language Rule Composite Atomic Query/Test Process AtomicAct. Domain
Type: Languages Event Languages Languages Languages Languages

Service Type: Rule Composite Atomic Query/Test Composite Atomic Domain
Task: Engines Event Detectors Services Action Services Brokers Nodes

register-rule P

register-for-event C P/C P/C C P
rec-detected-ev. P C/P C P
receive-event P C/P
(SendEvent) Do

eval-query/test C P/C C P/C P
(answer-query) Do
rec-query-answer P C/P P C/P

execute-action C P/C P/C P/C P

P: Provides task ; C: Calls task – asynchronous answers will be sent to another task
Arrows from C to P of the same service type represent communication between different
services of the same type (e.g., nesting of different event algebras).
Do: does something (inherent behavior of domain nodes).

Fig. 7. Services and Tasks
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<mars:EventAlgebra rdf:about=“http://.../languages/2006/snoopy#” >

<mars:is-implemented-by>

<mars:CompositeEventDetectionEngine xml:base=“http://.../services/2007/woodstock/”
rdf:about=“http://www.semwebtech.org/services/2007/woodstock”>

<has-task-description> <TaskDescription>

<describes-task rdf:resource=“&mars;/ced#register-event-pattern”/>

<provided-at rdf:resource=“register”/> <input>element register</input>

<Reply-To>body</Reply-To> <Subject>body</Subject>

<variables>*</variables>

</TaskDescription> </has-task-description>

:
</mars:CompositeEventDetectionEngine>

<mars:is-implemented-by>

</mars:EventAlgebra>

Fig. 8. MARS LSR: LSR entry with Service Description Fragment for SNOOP

variable bindings; in case that the answer will be returned asynchronously, an
identifying subject is also needed. For asynchronous answers, the payload is the
answer (in XML markup) and the identifying subject. Operationally, this is per-
formed in a generic way by a Generic Request Handler (GRH) (implemented by
a Java class that is used by all sample services).

Communication Information about Concrete Tasks. Given an embedded frag-
ment in some language to be processed, the namespace of the fragment is used
to obtain a service description of an appropriate service from the LSR. For every
concrete task of an actual service, the communication information is given in the
Task Description, cf. Figure 8:

– the actual URL (as a service supports multiple tasks, each of them may have
an own URL, which is not necessarily related to the service’s URI),

– whether it supports to submit a set of tuples of variables,
– information about the required message format:

• send reply-to address and subject in the message header or in the body,
• whether it requires a certain wrapper element for the message body,

– whether it will answer synchronously or asynchronously.

All MARS ontologies and an LSR snapshot in XML/RDF syntax can be found at
http://www.dbis.informatik.uni-goettingen.de/MARS/#mars-ontologies.

Example 3. When the above rule is registered at the ECA engine, the event com-
ponent <snoopy:Sequence> is to be registered at the appropriate CED. The ECA
engine asks the LSR for a service that implements SNOOP (using the namespace
URI) to get the complete service description of the “woodstock” SNOOP engine
as shown in Figure 8. The ECA engine (or more detailed, its GRH) takes the task
description for the task ced#register-event-pattern that describes how to format
the request, and that it has to be sent to http://www.semwebtech.org/services/
2007/woodstock/register. In the task description, the <variables> entry in-
dicates whether a set of tuples can be sent, or if only one tuple at a time can

http://www.dbis.informatik.uni-goettingen.de/MARS/#mars-ontologies
2007/woodstock/register
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be processed. The communication of the detected events is done analogously via
the receive-detected-event task of the ECA engine.

2.3 A Comprehensive Set of Sample Languages

The MARS demonstrator provides several sample languages on the XML
and RDF level (cf. the online LSR, and the online demo interface at http://www.
semwebtech.org/mars/frontend/): An XML-QL-style [5] pattern-based mech-
anism for specification of atomic event patterns, queries, and atomic actions, the
SNOOP event algebra [4] for Composite Event Specifications, XPath and XQuery
for opaque queries (i.e., non-markuppedCDATAcontents), and theCCS – Calculus
of Communicating Systems process algebra [7] for Composite Actions. The archi-
tecture of the application domain level, consisting of domain nodes and domain
brokers, is described in [2]. The MARS framework is open for foreign component
languages andother sublanguages.Languages thathaveanXMLmarkup smoothly
integrate as shown above.

3 Conclusion

We described an open, XML-based framework for rule markup in a heterogeneous,
multi-language setting. The key concept is an ontology of language types, corre-
sponding service types, and language-type-specific tasks.Communicationbetween
the respectiveWeb Services is established at runtime based on the information con-
tained in the rule markup and the Languages and Service Registry.
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Abstract. In this paper we discuss how to reduce redundancy in the
process and in the results of mining the Semantic Web data. In partic-
ular, we argue that the availability of the domain knowledge should not
be disregarded during data mining process. As the case study we show
how to integrate the semantic redundancy reduction techniques into our
approach to mining association rules from the hybrid knowledge bases
represented in OWL with rules.

1 Introduction

The methods for mining the Semantic Web data should be able to operate on the
representation languages lying in the Semantic Web stack. Hence, they should
take into account the relations existing in ”linked” data and incorporate, into the
data mining process, domain knowledge represented in Web Ontology Language
(OWL) and rule languages (Rule Interchange Format RIF, Semantic Web Rule
Language SWRL). Due to first order nature of the representation formalisms un-
derlying the languages from the Semantic Web stack (e.g. description logics), the
algorithms of data mining in this setting are supposed to follow into relational
data mining category. Data mining methods typically perform a kind of search
through the space of hypotheses. In relational setting, in comparison to simple
representations, like ”attribute-value” one, the space of hypotheses may be very
large. In case of expressive languages it becomes very expensive to generate and
test all syntactically valid hypotheses. Moreover, managing all discovered pat-
terns may become hard to the user which contradicts the premier goal of data
mining which is to summarize and explain the data.

In fact, it is not neccesserily needed that all syntactically valid hypotheses
are generated and discovered. Many of them may cover the same examples, that
is may be equivalent. In this paper, we discuss the issues related to semantic
redundancy in the context of mining relational frequent patterns and relational
association rules from the Semantic Web. The main contribution of this paper
is the identification and the incorporation of the semantic redundancy tech-
niques into our proposed framework to mining frequent patterns and association
rules from hybrid knowledge bases represented in description logics with DL-safe
rules. The framework was originally presented in [3]. The algorithms for mining
patterns within the framework were proposed in [4].

D. Calvanese and G. Lausen (Eds.): RR 2008, LNCS 5341, pp. 205–213, 2008.
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2 Preliminaries

Representation of Data and Patterns. We assume mining patterns and
rules in a combined knowledge base (KB, P ), where KB is description logics
component and P is a program containing a set of positive (disjunctive) Datalog
rules. The formalism used in our approach is that of DL-safe rules [7], but with
the subset of description logics restricted to SHIF . Example (KB, P ), further
exploited in the discussion of the problems with redundancy and in the discussion
of the solutions, is presented below.

Example 1 (Example knowledge base (KB, P )). Given is a knowledge base de-
scribing bank services. Non-DL-predicates names start with prefix p . All rules
in P are DL-safe, that is applicable only to explicitly introduced individuals.

Terminology in KB
Client ≡ ∃ isOwnerOf A client is defined as an owner of something.

 	 ∀ isOwnerOf.(Account � CreditCard) The range of isOwnerOf is a disjunction of

Account and CreditCard.

∃isOwnerOf − 	 Property Having an owner means being a property.
Gold 	 CreditCard Gold is a subclass of CreditCard.

relative ≡ relative− The role relative is symmetric.

 	 ∀ relative.Person The range of relative is Person.

Account 	 ∃ isOwnerOf − All accounts have an owner.

Account ≡ ¬ Person Account is disjoint with Person.
Account ≡ ¬ CreditCard Account is disjoint with CreditCard.
Person ≡ ¬ CreditCard Person is disjoint with CreditCard.

Assertions in KB
Person(Anna). Anna is a person.
isOwnerOf(Anna,account1). Anna is an owner of account1.
relative(Anna,Marek). Anna is a relative of Marek.

Person(Jan). Jan is a person.
isOwnerOf(Jan,creditcard1). Jan is an owner of creditcard1.

Person(Marek). Marek is a person.
isOwnerOf(Marek,account1). Marek is an owner of account1.

Account(account2). Account2 is an account.

Axioms in P
p familyAccount(x,y,z)← Account(x), p familyAccount is an account that is

isOwnerOf(y,x), isOwnerOf(z,x), relative(y,z) co-owned by at least two relatives.

p man(x) ∨ p woman(x) ← Person(x) A person is either a man or a woman.

p sharedAccount(x,y,z) ← p familyAccount(x,y,z) Family account is a shared account.

Usually the task of mining association rules is composed of two steps: finding
frequent patterns and generating association rules from the discovered patterns.
The patterns in our approach have the form of conjunctive queries over combined
knowledge base (KB, P ). The answer set of the query contains individuals of
a user-specified reference concept Ĉ. We assume that the queries are positive,
that is do not contain negative literals. Moreover, we assume that the queries are
DL-safe, that is all variables in such a query are bound to individuals explicitly
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occurring in the knowledge base, even if they are not returned as part of the
query answer. Let Q1 and Q2 be such patterns that Q1 ⊆ Q2, that is the set
of atoms of query Q1 is the subset of atoms of query Q2. Relational association
rule, query extension [2], is an implication of the form Q1 → Q2.

Example 2 (Example patterns and rules). Consider the knowledge base (KB, P )
from Example 1. Assuming that Person is the reference concept Ĉ, the following
patterns, queries over (KB, P ), may be built:

Qref (key) =? − Person(key)

Q1(key) =? − Person(key), isOwnerOf(key, x)

Q2(key) =? − Person(key), isOwnerOf(key, x), p familyAccount(x, key, z)

where Qref is a trivial query, reference query, that counts the number of instances
of the reference concept. Below is the example association rule:

?−Person(key), isOwnerOf(key, x) →?−Person(key), isOwnerOf(key, x), Account(x)

The meaning of the rule is that “whenever a person is an owner of something he
or she may be possibly an owner of the account”.

With regards to our work presented in [4], patterns, that is conjunctive queries,
have been extended here from the ones over KB to the ones over (KB, P ).
What follows, the conjunctive queries, as presented in this paper, can contain
intensional predicates from Disjunctive Datalog program P , that is also n-ary
predicates.

Task Formulation. The task of frequent pattern discovery is to find all pat-
terns whose support exceeds a minimum support threshold minsup, specified by
the user, that is to find all frequent patterns. The task of frequent and confident
association rule discovery is to find all frequent rules whose confidence exceeds a
given minimum confidence threshold, minconf. The support of query Q with re-
spect to the knowledge base (KB, P ) is defined as the ratio between the number
of instances of reference concept Ĉ that satisfy query Q and the total number
of instances of reference concept Ĉ. The support of association rule Q1 → Q2 is
the support of query Q1. The confidence of the association rule Q1 → Q2 w.r.t
combined knowledge base (KB, P ) is computed as the ratio of the support of
Q2 to the support of Q1.

3 Semantic Redundancy in Mining Frequent Relational
Patterns

In this section we will focus on mining frequent patterns. As association rules
are postprocessed from the patterns, the semantic redundancies in rules may be
directly inherited from those generated while mining patterns. Let us identify
the points where one can search for the reasons for semantic redundancy while
mining frequent patterns, which are as follows: (1) representation language, used
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by mining algorithm, unable to catch the relationships holding in a knowledge
base; (2) generality measure between patterns unable to catch the redundancy
in a single pattern as well as in a set of patterns; (3) data mining algorithm that
does not make use of the semantic relationships holding in a knowledge base
and/or does not efficiently/fully employ the generality measure. Let us discuss
these points in the context of frequent pattern mining from the Semantic Web.

Representation of Domain Knowledge. Originally, most of the methods for
mining frequent relational patterns have been designed to operate on knowl-
edge bases represented as Logic Programs (generally in Datalog variant) or just
used first order logic notation. Examples are WARMR [2], FARMER [8] and
c-armr [9]. Thus, by definition, they are not able to use domain knowledge of
the form of description logics axioms that could not be rewritten into Datalog.
Datalog rules require all variables to be universally quantified and thus it is
impossible to assert the existence of unknown individuals. For example, it is im-
possible to assert that all accounts must have an owner. Let us show the example
how the inability to handle all the relationships represented in a knowledge base
may affect redundancy. Consider the following pattern:

Q(x) =? − Account(x), P roperty(x)

The second literal of Q is semantically redundant, as from the knowledge base we
already know that every account is a property. In the knowledge base it is stated
that if something has an owner, than it is a property. Moreover, it is stated that
every account has an owner. For example, account2 is a property, even if there is
nowhere written so, and the owner of account2 is nowhere specified. In Datalog
such deduction, in order to catch the redundancy, is impossible.

SPADA [6] (its further version is named AL-QuIn [5]) has been the only ap-
proach so far that has aimed at frequent pattern discovery in combined knowl-
edge base, consisting of Datalog and description logics. SPADA/AL-QuIn uses
AL-log, which is the combination of Datalog with ALC description logics lan-
guage. Patterns in SPADA/AL-QuIn are represented as constrained Datalog
clauses.

Generality Measure. Generality measure between patterns is used in frequent
pattern mining systems to build more specific patterns from more general ones.
Most of the relational data mining methods, e.g. WARMR and FARMER, during
generation of patterns use θ-subsumption as the generalitymeasure. θ-subsumption
is a syntactic generality relation and as such is not strong enough to capture seman-
tic redundancies. Consider the knowledge base from Example 1. For such setting
WARMR discovers queries like the one presented below:

Q(y) =? − p woman(y), p familyAccount(x, y, z), p sharedAccount(x, y, z)

In the domain knowledge p familyAccount is defined as a type of p shared
Account. This makes second literal of Q, p sharedAccount(x, y, z), semantically
redundant. Query Q is the example of a redundancy in a single pattern. Using syn-
tactic generality measure generates redundancy effects in a set of patterns, too.
Consider, for example, the following, semantically equivalent queries that would
be both discovered in WARMR:

Q0(y) =? − p woman(y), p familyAccount(x, y, z)
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Q(y) =? − p woman(y), p familyAccount(x, y, z), p sharedAccount(x, y, z)

In c-armr, semantic generality measure is used, that have similar effect as gen-
eralized subsumption [1]. It allows to avoid the abovementioned redundancies as
well as in a single pattern as in a set of patterns. SPADA has been conceived to
use semantic generality measure (query containment), too, but it does not fully
use it in an algorithm for pattern mining what is discussed in next paragraph.

Algorithms. Relational frequent pattern mining algorithms usually generate
patterns according to a specification in a declarative bias. Declarative bias al-
lows to specify the set of atom templates describing the atoms to be used in
queries. Common solution is to take one atom template after the other to build
the refinements of a query, in order in which the templates are stored in a declar-
ative bias directives. Such solution is adopted in WARMR, FARMER, c-armr.
However, the solution does not make use of a semantic relationships between
predicates in atoms, causing redundant computations. Consider the patterns:

Q1(y) =? − p woman(y), p sharedAccount(x, y, z)

Q2(y) =? − p woman(y), p familyAccount(x, y, z)

Assume that pattern Q1 has been found infrequent. Thus, generating pattern
Q2 is useless, since p familyAccount is more specific than p sharedAccount.
C-armr would generate and test both queries anyway. If some taxonomic in-
formation would be used to systematically generate refinements, the redundant
computation could be avoided. In SPADA, taxonomic information is used only
with regards to concept hierarchies. That is, patterns are refined by replacing
more general concepts by more specific ones in the constraints of the constrained
Datalog clause. Any technique using taxonomic information is not reported with
regards to the Datalog predicates. It means, the same scheme of refining pat-
terns, described above, is applied in SPADA/AL-QuIn, too.

Another point, related to the above one, is that SPADA, despite of being
conceived to use semantic generality measure, does not apply it to prune seman-
tically redundant patterns. It is not used either to prune patterns semantically
redundant, due to redundant literals nor to prune semantically equivalent pat-
terns. That is, similar pattern as described in last paragraph w.r.t. WARMR,
would be generated by SPADA:

q(y) ← p woman(y), p familyAccount(x, y, z), p sharedAccount(x, y, z) & Client(y)

Also, there is no solution in SPADA algorithm to check the redundancy using
the knowledge linking Datalog and description logics component (like the rule
defining p familyAccount). The following clause may be generated:

q(x) ← p familyAccount(x, y, z), p woman(y) & Account(x), Client(y)

while from the (KB, P ) already follows the constraint Client on variable y.

4 Dealing with Redundancy in Mining Frequent Patterns
from the Semantic Web

Representation of Domain Knowledge. DL-safe rules combine description
logics with (Disjunctive) Datalog. Hence, this formalism does not introduce any
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restrictions described in previous section. Recall, that WARMR, FARMER and
c-armr operate only on Datalog. SPADA/AL-QuIn uses AL-log, what restricts
its patterns to contain only DL concepts, but any roles. In turn, both, concepts
and roles, are allowed in our patterns. In our (KB, P ), DL-atoms may occur in
the body and in rule heads as well, which is not possible in AL-log, which allows
only for concepts to be used as constraints in the body of a clause. The internal
representation language used in SPADA/AL-QuIn corresponds to Datalog, while
that used in our method to, more expressive, Disjunctive Datalog.

Testing Query Satisfiability. In our approach, before submitting a query to
test its frequency, we employ a knowledge base to perform semantic tests. First
test consists of determining query satisfiability, further ones test for semantic
redundancy in a single pattern or in a set of patterns.

The test for checking satisfiability of query Q with regards to knowledge
base (KB, P ) consists of checking whether (KB, P ) ∪ ∃x,y : Q is satisfiable,
that is, whether there is a model of (KB, P ) in which there is some valuation
for distinguished variables x and nondistinguished variables y. In practice, the
satisfiability test is performed as defined below.

Definition 1. Query Q(x,y) =? − B1, ..., Bn, where Bi denote atoms of the
query, is satisfiable w.r.t. combined knowledge base (KB, P ) iff (KB, P )
∪B1θ, ..., Bnθ is satisfiable, where θ is a Skolem substitution.

For example, we know apriori that it is useless to submit the following query as
it cannot have any answer due to its unsatisfiability:

Q(x) =? − Person(x),Account(x)

Semantic Generality Measure. The starting point for applying the tech-
niques for semantic redundancy reduction is choosing semantically-aware gen-
erality measure. We define a generality measure between two patterns as query
containment (or subsumption) relation.

Definition 2 (Generality Relation). Given two queries Q1 and Q2 we say
that query Q1 is at least as general as query Q2 under query containment, Q1 0
Q2, iff query Q2 is contained in query Q1.

Since the generality relation between two patterns is defined in terms of query
containment it relies on query answering. The query answering procedure [7]
takes into account background theory in a form of a combined knowledge base
(KB, P ), with respect to which the queries are to be evaluated.

Inpractice, in our approach, the test of generalitybetween twopatterns (queries)
relies on the assumption that the queries areDL-safe.DL-safe queries are queries
without truly undistinguished variables. That is, even though one can specify the
variableswhosebindings are supposed tobe returned in the answer set, thebindings
of the remaining variables (undistinguished ones) are also computed. Taking into
account the abovementioned feature, query containment can be tested as follows.
Let’s assume that it is tested whether Q1(x,y1) is contained in Q2(x,y2), where x
and yi denote distinguished and undistinguished variables respectively. Then it is
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asserted Q1(a,b) where a and b are new individuals, and tested whether a is the
answer to query Q2. For example, query Q2 from Example 2 is contained in query
Q1, hence Q1 is more general than Q2 (Q1 0 Q2). The inverse does not hold.

Semantic generality measure serves to perform tests for semantic redundancy
before submitting the query. Similarly as proposed in c-armr, we test generated
queries to obtain only those that are not semantically redundant. Firstly, we check
whether a query has redundant literals, that is the ones that can be deduced from
the other literals in a query. Secondly, we check whether there are frequent queries
already found in earlier steps that are semantically equivalent to a newly generated
candidate. To avoid the former kind of redundancy, generated queries are tested for
semantic freeness. Only those of them that are semantically free are kept for further
processing.The notion of semantic freeness has been introduced in [9]. It is adapted
to our setting as follows.

Definition 3 (Semantically Free Pattern). A pattern Q is semantically free
or s-free w.r.t combined knowledge base (KB, P ) if there is no pattern Q′, with
any literal(s) from Q removed, such that Q 0 Q′ (Q is more general than Q′).

Let us consider the following queries to the knowledge base from Example 1:

Q1(key) =? − Account(key), isOwnerOf(x, key)

Q2(key) =? − Account(key), isOwnerOf(x, key), Client(x)

Query Q1 is s-free. Query Q2 is not because of literal Client(x) that can be
deduced from other literals of Q2. More specifically, Client(x) can be deduced
from literal isOwnerOf(x, key) as from the axioms in the knowledge base follows
that any object being asserted to domain of isOwnerOf is a Client.

Testing whether a query is semantically equivalent to already found frequent
one is performed by a search on a set of already found, frequent patterns.

Using Taxonomies. In our method, we propose to use concept and role
taxonomies from KB to systematically build pattern refinements. The refinements
are not generated based on a flat list of atom templates, but based on tree-shaped
taxonomies of predicates. If a “superclass” refinement of some predicate is found
infrequent, its “subclass” is not tested. Consider the following queries:

Q1(key) =? − Person(key), isOwnerOf(key, x), CreditCard(x)

Q2(key) =? − Person(key), isOwnerOf(key, x), Gold(x)

If query Q1 is found infrequent, then, its specialization Q2, is not generated at
all, due to subclass relation between Gold and CreditCard.

Implementation. Figure 1 presents chosen experimental results (no semantics
from (KB, P ) used during candidate patterns generation, NO SEM, w.r.t. seman-
tic techniques described in this section applied, SEM ). The patterns were built
from all predicates with any extension. The maxiumum length of patterns was 4.
The reference concepts for FINANCIAL1 and rLUBM2 datasets were respectively
1 http://www.cs.put.poznan.pl/alawrynowicz/financial.owl
2 LUBM benchmark, number of universities set to 1, with rules from

http://pellet.owldl.com/papers/kolovski06extending.pdf
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number of patterns reduction runtime(s) speedup

NO_SEM SEM NO_SEM/SEM
cand freq cand freq cand freq

FINANCIAL 2786 479 219 68 12.7x 7.0x 2931.59 533.00 5.5x

rLUBM 2885 789 974 169 3.0x 4.7x 9713.03 2232.36 4.3x

NO_SEM/SEMNO_SEM SEM

Fig. 1. Experimental results

Client and Person, the minsup thresholds 0.2 and 0.3.
The release of our method with semantic redundancy reduction features,

SEMINTEC-ARM (SEMINTEC-Association Rule Miner), is available as the
source code in Java3, together with the results of the experimental evaluation.
As an underlying reasoning engine, KAON2 4 is used.

Summary. Finally, in Table 1, we provide the comparison of the semantics-
related features of the approaches to relational frequent pattern mining.

Table 1. Semantic features of the approaches to relational frequent pattern mining
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WARMR x
FARMER x
c-armr x x x x
SPADA/AL-QuIn x x x x
SEMINTEC-ARM x x x x x x x

5 Conclusions

We have discussed the semantic redundancy reduction techniques in the context
of mining relational frequent patterns and association rules from the Seman-
tic Web. The experimental evaluation shows that application of the techniques
allows to achieve less, more compact results in a shorter time.
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Abstract. In recent years, many researchers in the area of reasoning
have focussed on the adoption of rule languages for the Semantic Web
that led to remarkable approaches offering various functionality. On one
hand, this included language elements of the rule part itself like con-
texts, higher-orderness, and non-monotonic negation. On the other hand,
the proper integration with ontology languages like RDF and OWL had
to consider language-specific properties like disjunctivity as well as the
demand for using existing external components. The paper proposes a
Triple-oriented hybrid language that integrates the mentioned language
elements of both aspects following the expressiveness of locally stratified
datalog. It introduces fixpoint semantics as well as pragmatic extensions
for defining transformations between fact bases. A partial implementa-
tion is based on stratified, semi-naive evaluation, and static filtering.

1 Introduction

Many mature approaches from the area of rules languages and reasoning have
been utilized for the purposes of the semantic web. Core elements like higher-
orderness, disjunction and non-monotonic negation have been investigated and
combined. Examples for higher-order languages in our scope are HiLog, F-Logic,
and HEX [1][2][3]. Disjunction plays the crucial role in dealing with ontology
languages like OWL as a web-customized standardization of Description Logics
(DL) [4]. Combining DL and rule languages without constraining its possibilities
to define arbitrary predicates are reflected in recent approaches like KAON2,
DL+Log, HEX, and DatalogDL [5][6][3][7]. Whereas the first three ones are based
on disjunctive datalog and support homogenous rule integration the last one is
based on Horn Logic and supports hybrid integration. Non-monotonic negation
is provided by DL+Log and HEX. Moreover, HEX introduces a concept for
integrating existing external components like OWL reasoners or RDF bases.
The language Triple [8] introduces contexts for semantic web applications in the
spirit of early roots [9]. Especially the concept of parameterized contexts enables
an elegant way to express transformations between information representable by
fact sets and rules.
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As argued in the corresponding research of existing approaches every men-
tioned language element is highly useful for semantic web applications based
on rules and DL. We want to propose a hybrid approach that pragmatically
comprises not only a subset but all language elements, namely contexts (in the
sense of [8]), higher-orderness, non-monotonic negation, and disjunctivity. One
essential constraint for us was to follow the expressiveness of (locally) strati-
fied datalog which enables us to reuse widely-used techniques for an efficient
reasoner. The organization of the paper is as follows: section 2 presents syntax
and examples. Section 3 defines the semantics of our language by a fixpoint
procedure. Some pragmatic aspects concerning transformations are presented in
section 4.

2 Syntax

Basic Elements. The alphabet of the language consists of disjoint sets of con-
stants C,variables V, and the usual punctation marks. Elements of C can
have the form of RDF resources, i. e., a namespace can be prefixed. If v ∈
V, c1, . . . , cn ∈ C (n ≥ 1) then the expression v<c1, . . . , cn> is called filtered
variable. A term is a constant or a (filtered) variable. If t0, . . . , tn(n ≥ 0) are
terms the tuple form (t0 . . . tn) is called filtered tuple (short f-tuple). Let a, b be
f-tuples. Then a @ b is called (contextual higher-order) atom1 where b denotes
the context of a. We have a designated default context c ∈ C. The extension to
rules is done as usual: A literal is either an atom A (positive literal) or negated
atom (not A) (negative literal) and (not A)+ := A . Let A be an atom and
L1, . . . , Ln literals (n ≥ 0) then A ← L1, . . . , Ln is called rule with head A
and body L1, . . . , Ln. A rule has to fulfil the datalog safety condition, i. e., all
variables in the head atom have to occur in some positive literal of the rule body.

For more convenient usage we define (analogous to Triple) some syntacti-
cal abbreviations. An rule fragment R is of form (a0 ← a1, . . . , am, L1, . . . , Ln)
consisting of an f-tuple a0, f-tuples a1, . . . , am (possibly preceded by not) and
literals L1, . . . , Ln (m, n ≥ 0). The corresponding defragmented rule wrt. to
an f-tuple b is R(b) = (a0@b ← a1@b, . . . , am@b, L1, . . . , Ln). One can state a
group of rule fragments @b{R1 . . . Ro} with f-tuple b �= c and o ≥ 1. Such
a group stands for the conjunction of R

(b)
1 , . . . , R

(b)
o (b is also called internal

context).

External Contexts. Access to external data sources will be provided by so-
called external contexts. We distinguish between two disjoint kinds of external
contexts C̄, C̄∨ ⊆ C. Whereas C̄, called set of normal external contexts, is
used for integrating external relations as usual, the set of disjunctive external
contexts C̄∨ is used for integrating external sources which allow for specifying
disjunctions. The latter can be used for embedding OWL.

1 As in HEX we also allow for the classical notation t0(t1, . . . , tn). Furthermore unary
f-tuples (x) can be abbreviated with x.
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(SSN Prop<age, sg, child> V),(SSN favoriteCar Car)
← (SSN Prop V) @ families, sportyType(SSN) @ carsAndSports,

sportyCar(Car) @ carsAndSports.

@ families {
(SSN age Age),(SSN sg Gen),
(SSN child Child) ←

person(SSN, Age) @ db,
parent(Child, SSN) @ db,
sg(SSN, Gen).

sg(X, Y) ←
sg(YP, XP),
parent(X, XP) @ db,
parent(Y, YP) @ db.

sg(X, X) ← person(X, ) @ db.
}

@ carsAndSports {
sportyType(X) ←

(X hobby sport) @ rdf.
sportyCar(X) ←

individual(X) @ owln,
sportVariant(X) @ owl

sportyCar(X) ←
individual(X) @ owln,
roverVariant(X) @ owl.

}

Fig. 1. Language Examples with External Contexts

The restriction for the usage is given by the following constraints: besides the
datalog safety it is required that variables of atoms within disjunctive external
context have to occur in body atoms set in normal external or internal con-
texts. We call this property d-safety. If the external context is given by an OWL
ontology then d-safety coincides with DL-safety [5].

Fig. 1 shows an example with four external contexts. It make use of the
Lloyd-Topor abbreviation stating conjunctions in the head [10]. We follow the
convention that upper case letters denote variables. The program use the normal
external contexts db, rdf, owln (person database, RDF base for hobbies, and car
variants, respectively). The disjunctive external context owl refers to the same
car variants.

The program defines two internal contexts and a rule in the default context.
Context families defines triples according to person and parent from the external
db context. The carsAndSports context specifies the sportiness of persons based
on the RDF specification and the sportiness of cars based on the OWL ontology.
Note that the owl context has to be declared as disjunctive because otherwise
we would not be able to incorporate possible OWL entailments like (sportVari-

ant� roverVariant)(car524). Predicates like individual which do not require consider-
ation of disjunctivity can be accessed via normal external contexts. Finally, the
rule in default context defines triples for sporty persons based on the contexts
described above and sketched by the tree fragment in the lower right corner
of fig. 1.



A TRIPLE-Oriented Approach 217

3 Fixpoint Semantics

Before we come to the fixpoint procedure we have to consider filtered variables and
context parts of atoms at the level of unification. We adopt the classical definitions
of variable substitution and term unification (see also [10]) but from now on the
filter part of variables is taken into account. Let v<c1, . . . , cn> be a filtered variable.
Then a variable substitution θ has to fulfil vθ ∈ {c1, . . . , cn} and an application
of θ removes the filter part, i. e., (v<c1, . . . , cn>))θ = c for v/c ∈ θ, c ∈ C . Let
(t0 . . . tn) be an f-tuple and a@ b be an atom then (t0 . . . tn)θ = (t0θ . . . tnθ)
and (a@ b)θ = aθ @ bθ, respectively. Clearly, a@ b = c@d iff a = c and b = d. The
extension to unification and the definition of ground f-tuples, atoms, and programs
is done as usual. Note that we stay at ’datalog level’ in comparison to Triple, i. e.,
functions symbols are not introduced.

Because negation is allowed in we have to impose restrictions to the structure
of programs. On one hand, it has to be avoided that negation is used in conjunc-
tion with disjunctive contexts. On the other hand, classical stratification has to
be adapted to higher-orderness. For this purposes the dependency graph GP of a
program P is defined as follows.2 Every rule of P is a node. There is an arc from
rule r1 to rule r2 if the head of r2 is f-unifiable with the atom of some body literal
L of r1. The arc is called negative if L is negative, otherwise positive. If r2 contains
a body literal in disjunctive external context then the arc is called disjunctive. A
program P is stratified if GP does not contain a cyclic path with negative arcs. P
is said to be admissible if is stratified and GP does not contain a path with both
a negative arc and a disjunctive arc.

The semantics of a normal external context b is given by the set of ground f-
tuples provided by the external system (denoted with Ext(b)). They are merged
into E = {a@b | b ∈ C̄, a ∈ Ext(b)}. We furthermore assume that E is finite.
Preparing the definition of the fixpoint procedure a construct for dealing with
disjunctive external contexts has to be introduced: the expression A � T with
ground atom A and a set of ground f-tuples T is called dependent atom. We
now come to the definition when a dependent atom can be derived. Let P be
an admissible program and r = (A ← B1, . . . , Bm, C1, . . . , Cn, D1, . . . , Do) a
ground rule of P with Bi, Cj , Dk in internal, normal external, and disjunctive
external context, respectively (m, n, o ≥ 0). Let I be a set of dependent atoms.
We say that the dependent atom

A �
⋃

i=1,...,m
Si

⋃
j=1,...,o

{tj}

is derivable with respect to r and I if the following conditions hold

(i) Bi is positive: (Bi � Si) ∈ I, otherwise (B+
i � ∅) /∈ I and Si = ∅

(i = 1, . . . , m).

(ii) Cj ∈ E , if Cj positive, otherwise C+
j /∈ E , for j = 1, . . . , n.

(iii) tk @d = Dk with disjunctive external context d, for k = 1, . . . , o.
2 In the context of this paper it is sufficient to treat rules as nodes instead of considering

the fine grain graph as in [3].
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We allow only one disjunctive external context in (iii) for the sake of techni-
cal simplicity. This restriction can be weakened later by aggregate disjunctive
contexts and treat them separately. Following the classical approaches the im-
mediate consequence operator TP(I) is defined by

TP(I) = {X | r ∈ P, and dependent atom X is derivable wrt. r and I} ∪ I .

Given a partition P = P1 ∪ . . . ∪ Pn with strata Pi (i = 1, . . . , n) we finally
compute the least fixpoint of the immediate consequence operator for every stra-
tum in ascending order, assuming that the lowest stratum is P1. More precisely,
let the sequence I1 = T ω

P1(∅), I2 = T ω
P2(I1), . . . , In = T ω

Pn(In−1) be given, where
T ω

X denotes the least fixpoint of TX (cf. [11]),3 the semantics of a program P,
denoted by Sem(P), is equal In.

So far the procedure yields a set of dependent atoms where only normal con-
texts are resolved according to definition of E . The question if a set of ground
f-tuples is derivable from its disjunctive context has to be answered separately.
Let P be a program and let D denote the external component which answers if a
logical expression (in disjunctive normal form) over ground f-tuples is derivable,
i. e., D has to accept Disj (X1, . . . , Xn) where Xi is interpreted as a conjunction
of f-tuples. Then an atom A is derivable from P if

• (A � ∅) ∈ Sem(P) or

• there exists an k ≥ 1 such that (A � T1), . . . , (A � Tk) ∈ Sem(P)
and Disj (T1, . . . , Tk) is derivable from D.

Note that d-safety, which is DL-safety for arbitrary disjunctive components,
guarantees grounding. In the case of description logic special transformations
like folding, as described in [7], could be performed during the derivation step
defined by (i)-(iii) above.

4 Pragmatics

One of the properties an ontology language (with rules) should have is the abil-
ity to express transformations. Generally, every representation of information in
form of sets of logical facts and rules can be the source for such transforma-
tions. An example from the automotive area is described in [12]. Transforma-
tions in the area of UML/MDA are described in [13][14]. As already shown in
Figure 1 the rule in default context can be viewed as an transformation rule for
the facts which are valid in internal contexts families and carsAndSports. Of course,
one can build compositions of transformations by chaining contexts where the
top context can be parameterized. But what we really want is to be able to
parameterize the whole chain. Let us assume the following abstract example of
two contexts.

3 It exists due to the fact that the set of dependent atoms together with ⊆ forms a
complete lattice and TX is monotone wrt. a stratum.
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@ f(X){r(. . .) ← r(. . .)@X, p̄ .}

@ g(X){r(. . .) ← r(. . .)@X. q̄ .}

The first context defines the r-relation4 based on the context stated as a pa-
rameter X and modified according to remaining atoms p̄. The second context
does the same but with q̄ instead. If a transformation combining both contexts
is needed the following expression can be stated.

← r(. . .)@s1 where s1 := r(. . .)@f(s2), s2 := r(. . .)@ g(a).

It first builds the context s2 by querying r(. . .)@g(a) and then s1 is constructed
by querying r(. . .)@f(s2). This mechanism enables the composition of arbitrary
contexts for the purpose of fact transformations without skolemization based on
function symbols.

A first partial implementation of the language is realized under the name
Jorl5. Our support for filtered variables as a language construct suggested the
use of static filtering [15]. The filter propagation algorithm was slightly adapted
to the higher-orderness of rules and to filtered variables.

5 Related Work

Our approach was mainly influence by Triple [8]. One of the strengths of Triple
is the ability to express transformations by parametrization of contexts. Triple
realizes it by using terms as context expressions and allowing skolemization based
on function symbols. Jorl aimed at staying at datalog level where context parts
are expressed by f-tuples which are essentially classical function-free, (syntactical)
higher-order atoms. To compose parameterized contexts we use where-chains in-
stead of (chained) skolemization. The context approach is also comparable with
the F-Logic implementation FLORA2 [16] and its module concept, but there only
constants are allowed to define modules although it has to be noted that discus-
sions are ongoing6 to allow first-order terms but no higher-orderness. Jorl does
not support reification as Triple and FLORA2 but offer in addition disjunctive
external contexts.

Concerning external components Jorl is influenced by the language
HEX [3]. HEX offers higher expressivity due to the fact that disjunctive datalog
with non-monotonic negation builds the base. Moreover, external components
(or external predicates) can retrieve program predicate extensions which make
HEX a homogenous language. In contrast to Jorl it does not supportcontexts.

4 An concrete example could be the triple-relation in conjunction with RDF.
5 Jönköping Rule Language

(demo at http://hem.hj.se/~bill/Jot/Jorl/Tryout/JORLTryoutApplet.html);
planned as a part of the Jönköping Ontology Toolkit JOT
(http://hem.hj.se/~bill/Jot/Site/jot-test-1.html).

6 http://forum.projects.semwebcentral.org/forum-modules.html.
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Furthermore, full external disjunctivity is unsupported, i. e., given the rules a ← p
and a ← q (p, q external predicates) atom a cannot be derived if disjunction p ∨ q
is valid.

KAON2 [5] enables DL-reasoning by transformation to disjunctive datalog. As
our approach it requires DL-safety. In contrast to our approach KAON2 fully inte-
grates rules and DL just like DL+Log [6] which extends KAON2 with non-
monotonic negation and weak safety (existential variables in DL-atoms). However,
it has no support for contexts and higher-orderness, but it has to be remarked that
higher-orderness could be introduced by [17].

Finally, DatalogDL [7] is an hybrid language extending the AL+log [18]
approach.Concerning the reasoningprocedure it is very similar to Jorlbut it bases
on classical SLD-resolution instead of bottom-up evaluation which do not allow for
recursive programs. Contexts, higher-orderness, and negation are not supported.
Its strength is given by the fact that no extra safety condition apart from datalog
safety is required. An elaborate handling of DL expressions during the reasoning
process is proposed which allows for having existential variables in DL atoms. Ex-
ternal components are supported in order to solve DL queries.

6 Future Work

Possible directions for future work are manifold. Concerning disjunctivity the ap-
proach should be extended by dealing with optimizations and transformations on
the level of disjunctive expressions itself (in the sense of [7]). There is also the ques-
tion which other kinds of disjunctive systems apart from DL or propositional logic
in the direction of [19] could be incorporated. Concerning contexts it is of inter-
est wether Jorl could be extended to serve as an model transformation language
in the area of UML whose models be easily represented by fact sets in the sense
of [13]. Also our restrictions in using non-monotonic negation could be weakened
in order to use it in conjunction with disjunctive external contexts. Finally, wewant
to investigate to which extent the hybridness of Jorl can be weakened, leading to
so-called bidirectional contexts.
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Abstract. Description logics are a family of knowledge representation formal-
ism which descended from semantic networks. During the past decade, the
important reasoning problems such as satisfiability and subsumption have been
handled by tableau-like algorithms. Description logics are practical monotonic
logics which, though imparting strong and conclusive reasoning mechanisms,
lack the flexibility of non-monotonic reasoning mechanisms. In recent years, the
study of inconsistency handling in description logics becomes more and more
important. Some technologies are being applied to handle inconsistency in de-
scription logic. Quasi-classical logic, which allows the derivation of nontriv-
ial classical inferences from inconsistent information, supports many important
proof rules such as modus tollens, modus ponens, and disjunctive syllogism. In
this paper, we consider the characters of ALC with Quasi-classical semantics and
develop a sound and complete tableau algorithm for paraconsistent reasoning in
ALC.

1 Introduction

Paraconsistent reasoning is important in handling inconsistent information, and there
have been a number of proposals for paraconsistent logics(for a review see [5]). There
are also many different approaches and technologies for handling inconsistency in de-
scription logics. For example, key paraconsistent logics such as Cω [4] achieve non-
trivializable property by weakening the classical connectives, particularly negation.
ALC4 [11] yields to the insight that inconsistency is natural phenomenon in realis-
tic data and supports the non-trivializable property. However they fail in useful proof
rules such as disjunctive syllogism and intuitive equivalences, i.e., ¬α ∨ β ≡ α → β.

Quasi-classical (or QC) logic restricts the proof theory [3,7]. In this restriction, de-
compositional rules cannot follow compositional proof rules. Reasoning with incon-
sistencies arising in applications is a very important direction. For example, there are
some technologies such as systems development [6] and reasoning with structured
text [8]. The first-order logic version of paraconsistent logic and the semantic tableau
for first-order QC logic have been discussed by Anthony Hunter [9]). And Anthony
Hunter provides a general characterization of inconsistency, based on quasi-classical
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logic (a form of paraconsistent logic with a more expressive semantics than Belnaps
four-valued logic [2], and unlike other paraconsistent logics, allows the connectives to
appear to behave as classical connectives) [10].

In this paper, we present a description logic version of paraconsistent logic. First we
give strong and weak semantic for ALC and then develop a semantic tableau of the
proof theory, called QC semantic tableau which is used to handle instance checking.

The contents of this paper are summarized as follows. In Section 2, ALC as a basic
knowledge representation is introduced. In Section 3, the definition of QC entailment is
introduced which is help handle an ontology with inconsistency in ALC . In Section 4,
we introduce a QC semantic tableau in order to handle instance checking of an ontology
with only ABox. And we conclude terminability, soundness and completeness of QC
semantic tableau in instance checking. In Section 5, we conclude our works. Due to
space limitation, some proofs are only sketched, and their detailed proofs can be found
at http://www.is.pku.edu.cn/∼zxw/QCTableau.pdf.

2 The Description Logic ALC

We briefly review notation and terminology of the description logic ALC, but we ba-
sically assume that the reader is familiar with description logics. For comprehensive
background reading, please refer to [1].

Given a set of atomic concepts (or concept names), a set of roles (or role names), and
a set of individuals,special symbols � and ⊥ refer to the top concept and the bottom
concept, respectively. Complex concepts in ALC can be formed from these inductively
as follows.

1. �, ⊥, and each atomic concept are concepts;
2. If C, D are concepts, then C �D, C �D, and ¬C are concepts;
3. If C is a concept and R is a role, then ∀R.C and ∃R.C are concepts.

An ALC ontology consists of a set of assertions, called the ABox of the ontology,
and a set of inclusion axioms, called the TBox of the ontology. Assertions are of the
form C(a) or R(a, b), where a, b are individuals and C and R are concepts and roles,
respectively. Inclusion axioms are of the form C � D, where C and D are concepts.
Informally, an assertion C(a) means that the individual a is an instance of concept
C, and an assertion R(a, b) means that individual a is related with individual b via
the property R. The inclusion axiom C � D means that each individual of C is an
individual of D.

The formal definition of the (model-theoretic) semantics of ALC is given by means
of interpretations I = (ΔI , ·I) consisting of a non-empty domain ΔI and a mapping ·I
satisfying the conditions in Table 1, interpreting concepts as subsets of the domain and
roles as binary relations on the domain. An interpretation satisfies an ALC ontology
(i.e. is a model of the ontology) iff it satisfies each axiom in both the ABox and the
TBox. An ontology is called satisfiable (unsatisfiable) iff there exists (does not exist)
such a model. In ALC , reasoning tasks, i.e. the derivation of logical consequences, can
be reduced to satisfiability checking of ontologies in [1].

http://www.is.pku.edu.cn/~zxw/QCTableau.pdf
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Table 1. Syntax and semantics of ALC

Syntax Semantics

A AI ⊆ ΔI

R RI ⊆ ΔI × ΔI

o oI ∈ ΔI

� ΔI

⊥ ∅
C1 � C2 CI

1 ∩ CI
2

C1 � C2 CI
1 ∪ CI

2

¬C ΔI \ CI

∃R.C {x | ∃y, (x, y) ∈ RI and y ∈ CI}
∀R.C {x | ∀y, (x, y) ∈ RI implies y ∈ CI}

Syntax Semantics

C1 � C2 CI
1 ⊆ CI

2

C(a) aI ∈ CI

R(a, b) (aI , bI) ∈ RI

3 QC Description Logic

QC description logic is a development of QC logic [7].

Definition 1. Let A be a primitive concept, and let ∼ be a complementation operation
such that ∼ A is ¬A and ∼ (¬A) is A.

The∼ operator is not a part of the object language, but it makes some definitions clearer.

Definition 2 (Focus). Let A1 � · · · � An be a concept that includes a literal disjunct
Ai. The focus of A1 � · · · �An by Ai, denoted ⊗(A1 � · · · �An, Ai) is defined as the
concept obtained by removing Ai from A1 � · · · �An. In the case of a clause with just
one disjunct, we assume ⊗(A1, A1) = ⊥.

In the following, let S be a subset of ΔI and we write S = ΔI\S.
The notion of a model in QC description logic is based on the QC interpretation.

Definition 3 (Strong Interpretation). A strong interpretation I is a pair I = (ΔI , ·I)
with ΔI as domain, where ·I is a function assigning elements of ΔI to individuals, and
subsets of (ΔI)2 to concepts, such that the conditions in Table 2 are satisfied.

Definition 4 (Strong Satisfaction). For a strong interpretation I in ALC, we define
strong satisfaction |=s as follows, where A1, . . . , An, A are literals, R is a role and an
individual a.

I |=s A(a) iff a ∈ +A, where AI = 〈+A,−A〉
I |=s R(a, b) iff (a, b) ∈ +R, where RI = 〈+R,−R〉
I |=s (C �D)(a) iff I |=s C(a) and I |=s D(a)
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Table 2. QC Strong Semantics of Concepts

Syntax Strong Semantics

A AI = 〈+A,−A〉,
where +A,−A ⊆ ΔI

R RI = 〈+R,−R〉,
where +R,−R ⊆ ΔI × ΔI

o oI ∈ ΔI

� 〈ΔI , ∅〉
⊥ 〈∅, ΔI〉

C1 � C2 〈+C1 ∩ +C2, (−C1 ∪ −C2)

∩(−C1 ∪ +C2) ∩ (+C1 ∪ −C2)〉,
if CI

i = 〈+Ci,−Ci〉 for i = 1, 2,
C1 � C2 〈(+C1 ∪ +C2) ∩ (−C1 ∪ +C2)

∩(+C1 ∪ −C2),−C1 ∩ −C2〉,
if CI

i = 〈+Ci,−Ci〉 for i = 1, 2,
¬C (¬C)I = 〈−C, +C〉, if CI = 〈+C,−C〉
∃R.C 〈{x | ∃y, (x, y) ∈ +R and y ∈ +C},

{x | ∀y, (x, y) ∈ +R implies y ∈ −C}〉
∀R.C 〈{x | ∀y, (x, y) ∈ +R implies y ∈ +C},

{x | ∃y, (x, y) ∈ +R and y ∈ −C}〉

Syntax Semantics

C � D +C ⊆ +D,−D ⊆ −C

where CI = 〈+C,−C〉,DI = 〈+D,−D〉
C(a) a ∈ +C, CI = 〈+C,−C〉

R(a, b) (a, b) ∈ +R, RI = 〈+R,−R〉

I |=s C � D iff I |=s C(a) implies I |=s D(a) and I |=s ¬D(a) implies I |=s

¬C(a)
I |=s (A1�· · ·�An)(a) iff [I |=s A1(a) or . . . or I |=s An(a)] and ∀i . 1 ≤ i ≤ n

[I |=s∼ Ai(a) implies I |=s ⊗((A1 � · · · �An)(a), Ai(a))].

Definition 5 (Weak Interpretation). Weak interpretation I is a pair I = (ΔI , ·I) with
ΔI as domain, where ·I is a function assigning elements of ΔI to individuals, and
subsets of (ΔI)2 to concepts, such that the conditions in Table 3 are satisfied.

The definition for weak satisfaction is similar to strong satisfaction. The main difference
is that the definition of disjunction is less restricted.

Definition 6 (Weak Satisfaction). For a weak interpretation I , we define weak satis-
faction |=w as follows, where A1, . . . , An, A are literals, R is a role and an individual
a.

I |=w A(a) iff a ∈ +A
I |=w R(a, b) iff (a, b) ∈ +R
I |=w (C �D)(a) iff I |=w C(a) and I |=w D(a)
I |=w C � D iff I |=w C(a) implies I |=w D(a)
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Table 3. QC Weak Semantics of Concepts

Syntax Weak Semantics

A AI = 〈+A,−A〉,
where +A,−A ⊆ ΔI

R RI = 〈+R,−R〉,
where +R,−R ⊆ ΔI × ΔI

o oI ∈ ΔI

� 〈ΔI , ∅〉
⊥ 〈∅, ΔI〉

C1 � C2 〈+C1 ∩ +C2,−C1 ∪ −C2〉,
if CI

i = 〈+Ci,−Ci〉 for i = 1, 2
C1 � C2 〈+C1 ∪ +C2,−C1 ∩ −C2〉,

if CI
i = 〈+Ci,−Ci〉 for i = 1, 2

¬C (¬C)I = 〈−C, +C〉, if CI = 〈+C,−C〉
∃R.C 〈{x | ∃y, (x, y) ∈ +R and y ∈ +C},

{x | ∀y, (x, y) ∈ +R implies y ∈ −C}〉
∀R.C 〈{x | ∀y, (x, y) ∈ +R implies y ∈ +C},

{x | ∃y, (x, y) ∈ +R and y ∈ −C}〉

Syntax Semantics

C � D +C ⊆ +D,where CI = 〈+C,−C〉,
DI = 〈+D,−D〉

C(a) a ∈ +C, CI = 〈+C,−C〉
R(a, b) (a, b) ∈ +R, RI = 〈+R,−R〉

I |=w (A1 � · · · �An)(a) iff [I |=w A1(a) or . . . or I |=w An(a)].

In the following, we introduce two QC models: strong QC model and weak QC model
in order to define QC entailment.

Definition 7 (Strong QC Model). Let I = (ΔI , ·I) and O be an ontology, i.e., O =
(ABox, TBox). I is a strong QC model of O, denoted by I |=s O iff for any C �
D ∈ TBox and for any C(a), R(a, b) ∈ ABox, I |=s C � D, I |=s C(a) and
I |=s R(a, b).

Definition 8 (Weak QC Model). Let I = (ΔI , ·I) and O is an ontology, i.e., O =
(ABox, TBox). I is a weak QC model of O, denoted by I |=w O iff for any C �
D ∈ TBox and for any C(a), R(a, b) ∈ ABox, I |=w C � D, I |=w C(a) and
I |=w R(a, b).

Definition 9 (QC Entailment). Let |=QC be an entailment relation, called QC entail-
ment relation, defined as follows:

{α1, . . . , αn} |=QC β iff for every interpretation I
if I |=s αi for all i (1 ≤ i ≤ n) then I |=w β.

where αi, β are formulae in ABox.
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We can show that |=QC is non-trivializable in the sense that when O is classically
inconsistent, it is not the case every formula in ALC is entailed by |=QC .

Example 1. Let O = {B(a),¬B(a)} and A(a) be primitive concepts in ALC. So
B(a)�¬B(a) is classically inconsistent. However it is not the case that O |=QC A(a)
holds, since O |=QC (B � ¬B)(a), but O |=QC A(a).

Example 2. Let O = ∅. Now consider the classical � = (A � ¬A)(a). Here O |=QC

(A � ¬A)(a) does not hold. Since ∅ strongly satisfies every formula in O, but ∅ does
not weakly satisfy (A � ¬A)(a).

4 Tableau Algorithm for Quasi-classical ALC
Definition 10 (Instance Checking). Let O is an ontology, C is a concept and a is an
individual in ALC . Instance checking is a question to check whether a is an instance of
C or not under the ontology O, i.e., O |=QC C(a).

Definition 11 (Subsumption). Let O is an ontology and C, D is a concept, for all
interpretation I , if I |=s O and CI ⊆ DI , i.e., I |=s O and I |=w C � D, then C is
subsumed by D under the ontology O, denoted by O |=QC C � D.

In order to provide an automated proof procedure, we adapt the tableau approach for
ALC that was developed by introducing some new transformation rules.

Definition 12. The set of signed formulae of ALC is denoted ALC∗ and is defined as
ALC ∪ {α∗|α ∈ ALC}.

We will regard the formulae in ALC∗ without the ∗ symbol as satisfiable and the for-
mulae in ALC∗ with the ∗ symbol as unsatisfiable.

Definition 13. We further extend the weak satisfaction and strong satisfaction relations
as follows where C, D is a concept and a is an individual in ALC.

I |=s C∗(a) iff I �|=s C(a), I |=w C∗(a) iff I �|=w C(a)

I |=s (C � D)∗ iff I �|=s C � D, I |=w (C � D)∗ iff I �|=w C � D

It will be convenient to assume that all concept descriptions are in negation normal form
(NNF), i.e., that negation occurs only directly in front of concept names.

Definition 14 (Quasi-Classical Transformation Rule). Let an ontologyO be (A, T );
C1, C2, C be concepts; R be role and x, y, z be individuals. Quasi-classical (QC) trans-
formation rules are defined in Table 4.

Proposition 1 (Soundness). Let A be an ABox and A′ be obtained from A by using
a QC transformation rule in each step. Then A is consistent iff A′ is consistent.

Definition 15 (Complete). An ABoxA is called complete iff none of the QC transfor-
mation rules of Table 4 applies to it.
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Table 4. QC Transformation Rules in ALC

The →�-rule
Condition: A contains (C1 � C2)(x), but not both C1(x) and C2(x).
Action: A′ := A ∪ {C1(x), C2(x)}.
The →∃-rule
Condition: A contains (∃R.C)(x), but there is no individual name z

such that C(z) and R(x, z) are in A.
Action: A′ := A ∪ {C(y), R(x, y)} where y is an individual name

not occurring in A.
The →∀-rule
Condition: A contains (∀R.C)(x) and R(x, y), but not contain C(y).
Action: A′ := A ∪ {C(y)}.
The →QC-rule
Condition: A contains (C1 � C2)(x) and ∼ C1(x).
Action: A′ := A ∪ {C2(x)}.
The →∗

�-rule
Condition: A contains (C1 � C2)

∗(x), but not both C∗
1 (x) and C∗

2 (x).
Action: A′ := A ∪ {C∗

1 (x)},A′′ := A∪ {C∗
2 (x)}.

The →∗
�-rule

Condition: A contains (C1 � C2)
∗(x), but not both C∗

1 (x) and C∗
2 (x).

Action: A′ := A ∪ {C∗
1 (x), C∗

2 (x)}.
The →∗

∃-rule
Condition: A contains (∃R.C)∗(x) and R(x, y), but not contain C∗(y).
Action: A′ := A ∪ {C∗(y)}.
The →∗

∀-rule
Condition: A contains (∀R.C)∗(x), but there is no individual name z

such that C∗(z) and R(x, z) are in A.
Action: A′ := A ∪ {C∗(y),R(x, y)} where y is an individual name

not occurring in A.

Definition 16 (Closed). An ABoxA contains a clash iff {C(x), C∗(x)} ⊆ A for some
concept C and for some individual x. An ABoxA is called closed if it contains a clash,
and open otherwise.

Proposition 2 (Completeness). If an ABox A is complete and closed then A is
inconsistent.

Proposition 3 (Terminability). The tableau algorithm terminates after finite steps us-
ing QC transformation rules, i.e., there cannot be an infinite sequence of rule
application.

So a finite sequence denoted by S of ABoxs, which is (A1,A2, . . . ,An), is obtained
from A by using QC transformation rules every step. We conclude that the tableau
algorithm for QC ALC is sound and complete.

Theorem 1. LetA be an ABox and α be a query.A′, which is obtained fromA∪{α∗}
by using the tableau algorithm, is closed iff A entails α under the QC semantic, i.e.,
A |=QC α.
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In the following, we only consider the question about instance checking in ABox, that
is, T can be regarded as the empty set.The problem of instance checking whether a is an
instance of C under QC semantics or not can be transformed into the problem whether
A entails C(a) or not. So we can reduce the instance checking to the consistency prob-
lem for ABox because there is the following connection.

Corollary 1. Let A be an ABox, C be a concept and a be an individual in ALC.
A |=QC C(a) iff A ∪ {C∗(a)} is inconsistent.

5 Conclusions

In this paper, we have introduced QC into DLs in order to handle ALC with inconsis-
tency. We have defined QC DLs and its strong semantic and weak semantics. By using
strong interpretation |=s and weak interpretation |=w, QC entailment |=QC has been
depicted naturally. In the second part, we have developed a new tableau called by QC
semantic tableau, which is different from classical tableaus of DLs to handle instance
checking an ontologyO with only ABox, i.e., its Tbox is null. We have concluded ter-
minability, soundness and completeness of QC semantic tableau in instance checking.
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1 Introduction and Related Work

This paper presents a novel approach for semantic web service composition based
on the formalism of fluent calculus. We show how the planning capabilities of
the fluent calculus can be used to automatically generate an abstract composition
model. For describing the capabilities of web services we have used an OWL-S
ontology. Based on the OWL-S ontology semantics, we encode the web service
description in the fluent calculus formalism and provide a planning strategy for
service composition. To test our composition method, we have implemented an
experimental framework that automatically composes and executes web services.
Our approach is similar with McIlraiths [2] in terms of computational model,
both approaches having the roots in the theory of situation calculus, but the
two solutions are complementary. In the situation calculus, the successor state
axioms describe how a particular fluent may be changed by an action, whereas
the state update axioms of the fluent calculus describe which fluents are changed
by an action. The two approaches also differ in the way to evaluate the conditions
in the programming languages (GOLOG and FLUX) that implement the two
formalisms. For condition evaluation, GOLOG applies the principle of regression,
while FLUX [3] uses the principle of progression. Using regression is efficient for
short action sequences, but the computational effort increases with the number of
performed actions, while by using progression, the computational effort remains
the same, independently of the number of performed actions.

2 Web Service Composition with the Fluent Calculus

A fluent calculus planning problem can be described, like in the classical plan-
ning, by the (S, G, A, PE) tuple, where S is the initial state of the world, G is
the goal to be achieved, A is a set of possible actions which may be executed to
achieve the goal, and PE is a set of preconditions and effects. In the fluent calcu-
lus, the preconditions are encoded as action precondition axioms specifying the
necessary conditions for executing action a in state S. The fluent calculus effects
are encoded as state update axioms. Based on these assumptions, we have devel-
oped the BkComposition algorithm as a fluent calculus composition algorithm
using backtracking search. The composition algorithm starts by considering the
input parameters encoded as a list of fluents that represent the initial state Z0,
and tries to reach the goal state Z which contains all the user specified outputs.
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In every intermediate state, the algorithm performs two important operations:
(1) it verifies whether the preconditions of an action in this current state are
satisfied in order to include the action in the compositional plan, and (2) the
effect of the included action is applied to the current state in order to produce a
state transition. The fluent calculus knowledge base used in the planning process
is automatically generated from the OWL-S service descriptions. The mapping
rules to automatically translate an OWL-S atomic process into an equivalent flu-
ent calculus service specification are presented in Table 1. An OWL-S composite
process can also be translated into the formalism of fluent calculus, a translation
scheme for composite processes being presented in one of our previous work [1].
To validate our approach for automatic web service composition based on the
fluent calculus formalism, we have developed an experimental prototype that
integrates the translation algorithm, the fluent calculus planning technique, a
user interface and an execution engine. The framework has been tested on a trip
planning scenario and on an eBookshop processing scenario.

Table 1. The translation of OWL-S atomic process into the fluent calculus

OWL-S concepts Fluent calculus concepts Comments

Atomic Process Action
Inputs Inputs and knowledge Input parameters of the actions

preconditions and action precondition axioms
Outputs Knowledge effects State update axioms
Preconditions Physical preconditions Action precondition axioms
Effects Physical effects State update axioms

3 Conclusions

In this paper we have presented a new approach for automatic web service com-
position based on the fluent calculus. The main contributions of our work consist
of the translation algorithm from the OWL-S semantic web service descriptions
into the fluent calculus formalism, and a fluent calculus based planning strategy.
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1   Introduction  

Rules in the Web have become a mainstream topic since inference rules are marked 
up for e-commerce and are identified as a design issue of the semantic web [7]. 
SWRL [4] is incapable of representing the imprecision and uncertainty, and a single 
membership degree in fuzzy sets [6] is inaccurate to represent the imprecise knowl-
edge. Based on vague sets [2] which employ membership degree intervals to represent 
fuzzy information, we propose a fuzzy extension of SWRL⎯vague-SWRL. What’s 
more, weights in f-SWRL [5] have no power to represent the importance of member-
ship degrees. In order to modify the membership degrees and to balance and supple-
ment the weights of vague classes and properties (i.e., first degree weights), we  
present the notion of second degree weight to represent weights of the membership 
degrees in vague-SWRL. In addition, we extend RuleML to express vague-SWRL.  

2   Vague-SWRL 

Vague rules are of the form antecedent→consequent, where antecedent has the form 
of conjunctions of atoms, and consequent is an atomic consequent. And all the atoms 
can have weights (i.e., numbers between 0 and 1). The general form of vague rule is 
as follows: 

Where [ ]
0...

*
i n

ii fdwvc
=
∧ and [ ]

0...

*
j n

jjvp fdw
=
∧ are conjunctions of vague classes and 

vague properties, respectively. vc, vp, w and fdw stand for vague class, vague prop-
erty, weight, and first degree weight, respectively. When given membership degrees 
of vague classes and properties, second degree weights are correspondingly obtained 
to modify these membership degrees and to balance first degree weights. vcv, sdw and 
vpv are vague class value, second degree weight and vague property value, respec-
tively. Because the membership degree values of vague classes and properties are 
represented by membership degree intervals, in order to express semantics of vague-
SWRL conveniently, we also employ intervals to represent single-valued weight. And 
omitting a weight is equivalent to specifying an interval [1, 1]. 
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0... 0...
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In what follows, we discuss the semantic of vague rule (1): a vague interpretation I    
satisfies 
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≤， ，
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Where f (fdw,sdw,d) is the function of first degree weight, second degree weight and 
vague membership degrees, wt(a,b)=sup{x|t(a,x)≤b}is R-implication, w represents the 
weight of atomic consequent, c(I) stands for the interpretation of vague class or vague 
property, and f and wt should satisfy equation: w(t(a,w(a,b),b)=[1,1]. 

Based on RuleML 0.9 [3] and existing uncertainty extension for RuleML in [1], we 
extend RuelML with the first degree weight, second degree weight and membership 
degrees. We introduce <fdw>…</fdw> and <sdw>…</sdw> into RuleML to repre-
sent the first degree weight and the second degree weight, respectively. Also,  
<degree>…</degree> stands for the degrees of vague classes or properties. In addi-
tion, <weight>…</weight> represents the weight of atomic consequent. 

3   Conclusion  

Based on vague sets, this paper has proposed vague-SWRL, presented second degree 
weight to modify the membership degrees of vague classes and vague properties and 
extended RuleML to represent vague-SWRL. Vague-SWRL combining vague sets 
with SWRL suffices to employ membership degree intervals to represent fuzzy 
knowledge more accurately. What’s more, second degree weight can balance and 
supplement first degree weight. And, vague-SWRL is an acceptable format for RIF.   
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Abstract. Reasoning in Ambient Computing environments requires for-
mal models that represent ambient agents as autonomous logic-based en-
tities, and support sharing and distributed reasoning with the available
ambiguous context information. This paper presents an approach from
the field of Multi-Context Systems that handles these requirements by
modeling contexts as local rule theories in a P2P system and mappings
through which the agents exchange context information as defeasible
rules, and by performing some type of distributed defeasible reasoning.

1 Motivation

The study of ambient computing environments has introduced new research chal-
lenges in the field of Distributed Artificial Intelligence. These are mainly caused
by the imperfect nature of context and the special characteristics of the agents
that provide and process this knowledge. Context may be unknown, ambiguous,
imprecise, and erroneous. The ambient agents are expected to have different
goals, experiences and perceptive capabilities and may use distinct vocabularies.
Due to the highly dynamic and open nature of the environment, they are not
able to know a priori all other entities that are present at a specific time instance
nor can they communicate directly with all of them. So far, most pervasive com-
puting frameworks have followed fully centralized approaches for managing and
reasoning about context, which helped them to achieve better control, and better
coordination between the participating entities. However, such solutions cannot
meet the demanding requirements of ambient environments. The dynamics of the
network and the unreliable and restricted wireless communications inevitably
lead to fully distributed solutions.

2 Proposed Reasoning Approach

We propose a fully distributed approach for reasoning in ambient computing
environments, which is based on the Multi-Context Systems (MCS ) paradigm.
Our approach models a MCS P as a collection of distributed local rule theories
Pi in a P2P system: P = {Pi}, i = 1, 2, ..., n. Each system node (context) has
a proper distinct vocabulary Vi and a unique identifier i. Each local theory is a
set of rules that contain only local literals (literals from the local vocabulary).
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These are of the form: rl
i : a1

i , a
2
i , ...a

n−1
i → an

i where i denotes the node identifier.
These rules express local knowledge and are interpreted in the classical sense:
whenever the premises of a local rule derive as logical consequences of the local
theory, then so does the conclusion of the rule. Each node also defines mappings
that associate its local literals with literals from the vocabulary of other nodes
(foreign literals). The mappings are modeled as defeasible rules of the form:
rm
i : a1

i , a
2
j , ...a

n−1
k ⇒ an

i . The above mapping rule is defined by Pi, and associates
some of its own local literals with some of the local literals of Pj , Pk and other
system nodes. Finally, each node Pi defines a trust level order Ti, which includes
a subset of the system nodes, and expresses the trust that Pi has in the other
system nodes. This is of the form: Ti = [Pk, Pl, ..., Pn]. A node Pk is considered
more trusted by Pi than node Pl if Pk precedes Pl in this list.

Even if it is assumed that each node’s local theory is consistent, this will
not necessarily hold for the global knowledge base. The unification of the local
context theories may result in inconsistencies caused by the mappings. Previous
works on MCS either neglected this problem ([1,2]), or did not use any prefer-
ence or priority mechanism to resolve the conflicts ([3]). Based on the model that
we describe above, we propose four alternative strategies that use context and
trust information from the system nodes to resolve potential conflicts. We have
implemented the strategies in four versions of a Logic Programming algorithm
for query evaluation. The Single Answers strategy requires each node to return
only the truth value of the literal it is queried about. When a node receives two
conflicting answers from two different nodes, it resolves the conflict by compar-
ing the trust it has in the two nodes. The Strength of Answers strategy requires
the queried node to return additional information about whether the computed
answer derives from the local theory of the queried node or from its mappings.
In the Propagating Supportive Sets strategy, a queried node also returns a set
of node ids describing the most trusted (according to its own trust level order-
ing) course of reasoning that leads to the computed answer. The querying node
computes its confidence in the returned answer based on the trust it has in the
nodes contained in this set. Finally, in the Complex Supportive Sets strategy, the
queried node returns all possible courses of reasoning that lead to the computed
answer. The most trusted course is then determined by the node that issues
the query. The analysis of the four algorithms reveals a tradeoff between the
extent of context knowledge that each strategy exploits to resolve the potential
conflicts, and the computational overhead that it imposes on the system nodes.
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Abstract. We introduce the recursive, rule-based RDF query language
RDFLog. RDFLog extends previous RDF query languages by arbitrary
quantifier alternation: blank nodes may occur in the scope of all, some,
or none of the universal variables of a rule. In addition RDFLog is aware
of important RDF features such as the distinction between blank nodes,
literals and URIs or the RDFS vocabulary. The semantics of RDFLog is
closed (every answer is an RDF graph), but lifts RDF’s restrictions on
literal and blank node occurrences for intermediary data. We show how
to define a sound and complete operational semantics that can be im-
plemented using existing logic programming techniques. Using RDFLog
we classify previous approaches to RDF querying along their support for
blank node construction and show equivalence between languages with
full quantifier alternation and languages with only ∀∃ rules.

1 Introduction

With the staggering amount of data available in RDF form on the Web, the
second indispensable ingredient becomes the easy selection and processing of
RDF data. For that purpose, a large number of RDF query languages has been
proposed. In this paper, we add a further exemplar: RDFLog extends datalog to
support the distinguishing features of RDF such as blank nodes and the logical
core [1] of the RDFS vocabulary. In RDFLog, Blank nodes can be constructed by
existentially quantified variables in rule heads. RDFLog allows full alternation
between existential and universal quantifiers in a rule. This sharply contrasts
with previous approaches to rule-based query languages that either do not sup-
port blank nodes (in rule heads) at all [2], or only a limited form of quantifier
alternation [3].

To illustrate the benefits of full quantifier alternation, imagine an information
system about university courses. We distinguish three types of rules with exis-
tential quantifiers (and thus blank nodes) based on the alternation of universal
and existential quantifiers:

(1) “Someone knows each professor” can be represented in RDFLog as

∃stu∀prof ((prof , rdf:type, uni:professor) → (stu, foaf:knows, prof )) (1)

D. Calvanese and G. Lausen (Eds.): RR 2008, LNCS 5341, pp. 236–237, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Taming Existence in RDF Querying 237

We call such rules ∃∀ rules. Some approaches such as [5] are limited to rules
of this form. We show that a recursive rule language that is limited to these
kind of rules is strictly less expressive than a language that allows rules also of
the form discussed under (2) and (3). The gain is that languages with only ∃∀
rules are still decidable. However, we also show that there are larger fragments
of RDFLog that are still decidable.
(2) Imagine, that we would like to state that each lecture must be “practiced”
by another course (such as a tutorial or practice lab) without knowing more
about that course. This statement can not be expressed by ∃∀ rules. In RDFLog
it can be represented as

∀lec∃crs
(
(lec, rdf:type, uni:lecture) → (crs , uni:practices, lec)

)
(2)

Such rules are referred to as ∀∃ rules. Recent proposals for rule extensions to
SPARQL are limited to this form, if they consider blank nodes in rule heads at
all. The reason is that in SPARQL CONSTRUCT patterns a fresh blank node is
constructed for every binding of the universal variables.
(3) To the best of our knowledge, RDFLog is the first RDF query language that
supports the third kind of rules, where quantifiers are allowed to alternate freely:
This allows to express statements such as, for each lecture there is a course that
“practices” that lecture and is attended by all students attending the lecture.
This is represented in RDFLog as

∀lec∃crs∀stu
(
(lec, rdf:type, uni:lecture) ∧ (stu, uni:attends, lec) →

(crs , uni:practices, lec) ∧ (stu, uni:attends, crs)
)

(3)

We show (for the first time) that rules with full quantifier alternation can be
normalized to ∀∃ form. Thus full quantifier alternation does not add to the
expressiveness of RDFLog. Rather, for all languages with ∀∃ rules it comes by
virtue of the rewriting presented here for free, despite being considerably more
convenient for the programmer.
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1 Introduction

Uncertainty reasoning and inconsistency handling are two important problems that of-
ten occur in the applications of the Semantic Web, such as the areas like medicine
and biology [2]. Possibilistic description logics, first proposed by Hollunder in [1], are
extension of description logics with possibilistic semantics. It is well-known that possi-
bilistic logic is a powerful logical framework for dealing with uncertainty and handling
inconsistency.

In this paper, we propose a tableau algorithm for possibilistic DL ALC. We give
tableau expansion rules for computing the inconsistency degree of a possibilistic ALC-
ABox. We show that our algorithm is sound and complete.

2 Tableau Algorithms for Inference in Possibilistic DL
ALC-ABoxes

In this section, we extend tableau expansion rules for DLALC to possibilistic DLALC.
Let A be a possibilistic ALC-ABox. Without loss of generality, we assume that all the
concepts appearing in A are in negation normal form (NNF).

To compute the inconsistency degree of A, we construct a completion forest FA
fromA. Each node x in the completion forest is labelled with a set of weighted concepts
L(x) and each edge 〈x, y〉 is labelled with a set of weighted role names L(〈x, y〉). If a
weighted concept Cα is in L(x), it means that x belongs to concept C with necessity
degree α. Similar comment is applied to weighted role names. The completion forest
FA is initialized such that it contains a root node xa, with L(xa) = {Cα|((C(a), α) ∈
A}, for each individual a occurring in A, and an edge 〈xa, xb〉, with L(〈xa, xb〉) =
{rα : (r(a, b), α)∈A}, for each pair (a, b) of individual names for which L(〈xa, xb〉)
is non-empty. We then apply the following expansion rules:

– �-rule: if
– [1] (C1 � C2)α ∈ L(x), x is not blocked, and
– [2] there are no β ≥ α and γ ≥ α such that {(C1)β , (C2)γ} ⊆ L(x)
– then set L(x) = L(x) ∪ {(C1)α, (C2)α}

� Guilin Qi is partially supported by the EU under the IST project NeOn and the X-Media
project, and Jeff Z. Pan is partially supported by the EU MOST project.
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– �-rule: if
– [1] (C1 � C2)α ∈ L(x), x is not blocked, and
– [2] there are no β ≥ α and γ ≥ α such that {(C1)β , (C2)γ} ⊆ L(x)
– then set L(x) = L(x) ∪ {Cα} for some C ∈ {C1, C2}

– ∃-rule: if
– [1] (∃r.C)α ∈ L(x), x is not blocked, and
– [2] there is no y such that rβ ∈ L(〈x, y〉) where β ≥ α and Cγ ∈ L(y) where
γ ≥ α,
– then create a new node y with L(〈x, y〉) = {rα} and L(y) = {Cα}

– ∀-rule: if
– [1] (∀r.C)α ∈ L(x), x is not blocked, and
– [2] there is a y such that rβ ∈ L(〈x, y〉) with Cγ �∈ L(y) for γ ≥ min(α, β),
– then set L(y) = L(y) ∪ {Cmin(α,β)}

The tableau algorithm stops when it encounters a clash: a completion forest F in which
{Aα, (¬A)β} ⊆ L(x) for some node x and some concept name A, where α, β > 0. In
this case, the completion forest contains an inconsistency and the inconsistency degree,
denoted dInc(F), is min(α, β). If the algorithm stops and all of the forest i (i = 1, ..., n)
contain an inconsistency with inconsistency degree αi (in this case αi > 0), then the
inconsistency degree ofA is min(α1, ..., αn). Otherwise, if the algorithm stops and there
is a forest that does not contain an inconsistency, then the possibilistic ALC-ABox is
consistent.

In our algorithm, it is very critical to expand the weighted concept in a right order.
That is, we apply tableau rules to expand those concepts with the highest weight first,
then those concepts with the second highest weight, and so on. For each individual name
in A, the forest contains a root node, which will be called as old nodes. The nodes that
are created by the ∃-rule are called new nodes. To ensure that our algorithm only requires
space polynomial in |A|, we apply tableau expansion rules in the following order:

– apply the �-rule and the �-rule to old nodes as long as possible and check for clash;
– treat each old node in turn, generate all the necessary direct successors of it in a

depth first manner by applying the ∃-rule and the ∀-rule, and check for clash;
– successively handle the successors in the same way.

Given a complete forest FA, we can transform it to a possibilistic ALC-ABox AF as
follows AF = ∪L(xa)∈FA{(C(a), α) : Cα ∈ L(xa)} ∪L(〈xa,xb〉)∈FA {(r(a, b), α) :
rα ∈ L(〈xa, xb〉)}. Then Inc(FA) = Inc(AF ) is the inconsistency degree of FA.

Theorem 1. (Soundness and Completeness) Let M = {F1
A, ...,Fn

A} be a set of com-
plete forests constructed from A by application of tableau expansion rules. Suppose
M′ is a set of complete forests obtained from M by application of a tableau expan-
sion rule. If Inc(M) = α then Inc(M′) = α. Let dInc(F i

A) = αi, then we have
dInc(M) = Inc(M), where dInc(M) = min{α1, ..., αn}.
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