Leaky Random Oracle
(Extended Abstract)

Kazuki Yoneyamal'*, Satoshi Miyagawa?**, and Kazuo Ohta!

! The University of Electro-Communications.
2 NTT DoCoMo, Inc.
yoneyama@ice.uec.ac. jp

Abstract. This work focuses on vulnerability of hash functions due to
sloppy usage or implementation in the real world. If our cryptographic
research community succeeded in development of perfectly secure ran-
dom function as random oracle, it might be broken in some sense by
invalid uses. In this paper, we propose a new variant of the random ora-
cle model in order to analyze security of cryptographic protocols under
the situation of an invalid use of hash functions. Our model allows ad-
versaries to obtain contents of the hash list of input and output pairs ar-
bitrarily. Also, we analyze security of several prevailing protocols (FDH,
OAEP, Cramer-Shoup cryptosystem, Kurosawa-Desmedt cryptosystem,
NAXOS) in our model. As the result of analyses, we clarify that FDH
and Cramer-Shoup cryptosystem are still secure but others are insecure
in our model. This result shows the separation between our model and
the standard model.

Keywords: random oracle model, standard model, hash list, provable
security, leakage.

1 Introduction

Hash functions are one of most important building blocks of cryptographic pro-
tocols. Indeed, hash functions are widely used various protocols, e.g., digital
signature, public-key cryptosystem, authenticated key exchange, etc.

In the practical sense, hash functions are used in order to hide private in-
formation to other parities in the protocol. The spreading use of transaction
by small electronic devices has been encouraging researchers to develop an ef-
ficient and practical security system in a limited resources environment. Since
computational costs of hash functions are lower than that of public-key cryp-
tosystem, hash functions is received much attention to construct protocols for
such low-power devices.

In the theoretical sense, hash functions are frequently modeled as random
oracles [I]. Random oracle is an idealized random function which is usable for

* Supported by JSPS Research Fellowships for Young Scientists.
** This work was partially done while the author was a student at the University of
Electro-Communications, Japan.

J. Back et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 226{-240, [2008.
© Springer-Verlag Berlin Heidelberg 2008

Leaky Random Oracle 227

parties and adversaries in the protocol. We use random oracle model (ROM)
(i.e., executed with random oracles) as a technique in order to prove security of
various protocols. Mostly, proofs with ROM are easier than the model without
random oracles, i.e., the standard model (SM), and can provide tight security
reductions. Thus, ROM is a useful tool for the provable security.

On the other hand, Canetti et al. [2J3] showed that there are digital signature
schemes and public-key cryptosystems which are secure in ROM but insecure if
random oracles are instantiated by real hash functions. Thus, recently, proofs
with ROM may seem to be unfavorable for practical uses. However, since to
prove security of protocols in SM is generally hard, ROM still has an important
role to design new protocols as the guideline for the provable security.

1.1 Motivation

Canetti et al.’s impossibility result would be avoidable if a perfectly secure hash
function which has all capabilities of random oracles was developed. If so, does
the protocol which is proved security in ROM keep its security if random ora-
cles are instantiated by such perfectly secure hash functions? However, in the
practical scenario, an unexpected event may occur on hash functions but does
not occur on random oracles. In particular, we focus on vulnerability of hash
functions due to sloppy usage or implementation in the real world.

Canetti and Krawczyk [4] formulated a security notion of authenticated key
exchange. Their definition captured security under the situation where an
ephemeral secret information (local randomness) is leaked. These leakages may
occur in the case of that a storage or memory which save a local randomness is
attacked by various types of attack or the case of that a randomness generator
is corrupted. Note that, such a type of vulnerability is not caused by errors of
protocol itself but caused by sloppy usages or implementations.

In this work, we apply this view to hash functions. That is, we consider the
situation that pairs of inputs and outputs (contents of the hash list) of hash
functions can be leaked to adversaries. These leakages may also occur by sloppy
usages or implementations. For example, the hash list may remain in the memory
for reuse of hash values in order to reduce computational costs or for failing to
release temporary memory area, then contents of the memory may be revealed
by various attacks, e.g., malicious Trojan Horse programs, Cold Boot Attacks
[5]. Thus, even if we successfully developed exceedingly secure hash functions,
such a leakage might be possible.

In this paper, we formulate a new model capturing the above situation in
order to discuss security (or insecurity) of protocols which use hash functions as
building blocks when such a leakage of the hash list occurs. In order to concen-
trate effects of the leakage, we suppose that hash functions are ideal as random
oracles but contents of the hash list can be leaked to adversaries. By using this
model, we give a new criterion of security in ROM and analyze several prevailing
protocols.

228 K. Yoneyama, S. Miyagawa, and K. Ohta

1.2 Owur Contribution

Our main contributions are formulating a new variant of ROM, named leaky ran-
dom oracle model (LROM), to capture the leakage of the hash list and analyzing
security and insecurity of prevailing protocols in our model.

Leaky Random Oracle Model. Our model (LROM) allows adversaries to
obtain contents of the hash list of input and output pairs in arbitrary timings.
Thus, virtually, adversaries always can observe the addition of each hash value
and can know the timing of the addition. We model the ordinary query in order
to obtain a hash value to (leaky) random oracle as hash query and the special
query in order to obtain contents of hash list to leaky random oracle as leak
query. Therefore, LROM is trivially stronger than ROM, i.e., a secure protocol
in LROM is also secure in ROM.

Security Analyses of Protocols. By using LROM, we can confirm whether
each cryptographic protocol is secure or not if the leakage of the hash list occurs.
In this paper, we choose five prevailing protocols for analyzing security in LROM
and obtain the result of analyses as follows;

— FDH: is secure in both ROM and LROM,

— OAEP: is secure in ROM but insecure in LROM,

— Cramer-Shoup cryptosystem: is secure in both SM and LROM,

— Kurosawa-Desmedt cryptosystem: is secure in SM but insecure in
LROM, and

NAXOS: is secure in ROM but insecure in LROM.

Separation from the standard model. Our result of analyses shows the
separation between our model and the standard model because of two following
observations;

— FDH is secure in LROM under the assumption of trapdoor permutation.
However, Dodis et al. [6] showed that FDH is not provable in SM under the
same assumption.

— Kurosawa-Desmedt cryptosystem is secure in SM under the DDH assump-
tion, the assumption of universal hash function family and the assumption
of symmetric key encryption. However, Kurosawa-Desmedt cryptosystem is
insecure in LROM by instantiating hash functions by leaky random oracles
under same assumptions.

Difference from randomness revealing. Also, our result shows the differ-
ence between our model and ROM under randomness revealing because of the
following observation;

— NAXOS is secure in ROM under the leakage of local randomness. However,
NAXOS is insecure in LROM even if there is no leakage of local randomness.

Leaky Random Oracle 229

1.3 Related Works

Some studies consider modeling of weak random oracles and analyze protocols in
their model. Nielsen [7] introduced the non-programmable random oracle model
by restricting the simulation of random oracle as the simulator can only set
answers of random oracles according to some restriction. Liskov [8] showed the
way to construct weak hash functions by adding an additional oracle which
can break some property of random oracles, e.g., one-wayness and collision-
resistance. Pasini and Vaudenay [9] applied Liskov’s model into analyses of the
hash-and-sign paradigm. Unruh [I0] formulated a variant of ROM by giving
oracle-dependent auxiliary inputs to adversaries. In this setting, adversaries can
get an auxiliary input that can contain information about the random oracle.
Numayama et al. [I1] relaxed Liskov’s model and analyzed digital signature
schemes in their model.

Therefore, previous works studied on effects into security of various protocols
by vulnerability of hash functions itself. On the other hand, our LROM is dif-
ferent with these on the point of that LROM focuses on vulnerability of hash
functions due to sloppy usages or implementations.

2 Leaky Random Oracle Model

ROM is one of techniques for provable security under idealized hash functions
by using random oracles. Random oracle models truly idealized hash function
which locally has the hash list of inputs and outputs. LROM is a variant of ROM
which allows adversaries to obtain contents of the hash list in arbitrary timing.
Thus, adversaries can correspond an input to the random oracle and an output
(hash value). The definition of LROM is as follows;

Definition 1 (Leaky Random Oracle Model). LROM is a model assuming
the leaky random oracle. We suppose a hash function H : X — Y such that
x; € X,y €Y (iis an index), and X and Y are both finite sets. Also, let Ly
be the hash list of H. We say H is a leaky random oracle if H can be simulated
by the following procedure;
Initialization: Ly «— L
Hash query: For a hash query x; to H, behave as follows;
<[f v, € Ly >
Find y; corresponding to x; from Ly and output y; as the answer to the hash
query.
<If X; € Ly >
Choose y; € Y randomly, add the pair (z;,y;) to Ly and output y; as the

answer to the hash query.
Leak query: For a leak query to H, output all contents of the hash list.

3 Security Analysis of FDH in LROM

Full Domain Hash (FDH) [I] is secure signature scheme in ROM. In this section,
we consider security of FDH in LROM.

230 K. Yoneyama, S. Miyagawa, and K. Ohta

3.1 FDH

FDH is based on trapdoor one-way permutations. The description of FDH is as
follows:

Key generation: For input k, output a signing key (sk = f~!) and a veri-
fication key (vk = f) such that (f, f~', Dom) <« G(1*) where Dom is the
domain of f and G is a trapdoor permutation generator.

Signature generation: For input a message m € {0, 1}*, compute y = H(m)
and output a signature ¢ = f~1(y) where H : {0,1}* — Dom is a hash
function.

Signature verification: For inputs a message m and a signature o, compute
y = f(o), verify ¢/ z H (m). If the verification is valid, output 1, otherwise,
output 0.

In [, security of FDH in ROM is proved as follows;

Lemma 1 (Security of FDH in ROM [I). If a trapdoor permutation f is
one-way, then FDH is existentially unforgeable under adaptively chosen message
attacks (EUF-ACMA) where H is modeled as the random oracle.

3.2 Security of FDH in LROM
We can also prove the security of FDH in LROM like in ROM.

Theorem 1 (Security of FDH in LROM). If a trapdoor permutation f is
one-way, then FDH satisfies EUF-ACMA[Y

Proof. Let F be a forger which breaks EUF-ACMA of FDH. We construct an
inverter 7 which breaks one-way security of the trapdoor permutation f, i.e.,
given (f, Dom,y) T outputs f~'(y). We suppose that F does not repeat the
same query as previous hash queries to the leaky random oracle H or as previous
signing queries to the signing oracle SO. Let Ly be the local hash list of the
leaky random oracle H. Ly consists of tuples (z;, H(x;), z;) (0 < i < qg) where
z; 1s an intermediate valueE The concrete construction of 7 is as follows. Note
that, “ % ” in a tuple (z, *, *) means wildcard.

Input: (f, Dom,y) s.t. (f, f~%, Dom) « G(1¥) and y & Dom
Output: f~1(y)

Step 0: * kil {0,qg — 1}, Ly —1L (L is null string), i < 0.
Step 1: Send f to F as the input.

Step 2: When F asks a hash query x; to H, then behave as follows:
<If ((xq,*,%) & L) A (T #1) >

! In this paper, we omit concrete security bounds in the proof owing to lack of space.

2 The hash list which F can access has the different form (i.e., the hash list consists
of (x;, H(x;))) than Lg because z; is only used for the proof and does not appear
in the real protocol.

Leaky Random Oracle 231

Generate z; € Dom and compute w; = f(z;). Add (z;, w;, z;) to Ly and

return w; to F as the answer. 7 «— 7 + 1.
<If ((mg, %, %) & L) A (*=1) >
Generate w; € Dom. Add (z;,y,error) to Ly and return y to F as the
answer. ¢ < ¢ + 1.
<If (mi,%,%) € Lg >
Find w’ corresponding to z; from Ly and return w’ to F as the answer.
i— i+ 1.

Step 3: When F asks a signing query x; to SO, then behave as follows:
<If (m;,*,%) € Lg >
Find 2’ corresponding to x; from Lg. If 2’ = error, then abort. Otherwise,
return 2’ to F as the answer. ¢ «— ¢ + 1.
<If (x;,%,%) & Lp >
Generate z; € Dom and compute w; = f(z;). Add (z;,w;, z) to Ly and
return z; to F as the answer. ¢ «— 7 + 1.

Step 4: When F asks a leak query to H, then hand all pairs of input and
output {(z,w)} to F. Note that, do not hand intermediate value z.

Step 5: When F outputs (z*,0*), then check y < fle®). if y = f(o*), then
output o* as f~1(y). Otherwise, abort.

We show the success probability of Z.

In Step 4, 7 has to return the hash list to F as this simulation is indistin-
guishable from the output of the leaky random oracle. Then, each output value
w is uniformly distributing on Dom because z is uniformly chosen from Dom
and f is a permutation. Thus, this simulation is perfect.

Abortl denote the event which Z aborts for any query in Step 3, Abort2 denote
the event which Z aborts in Step 5 and let Abort = Abortl V Abort2. Then, we
estimate the probability which Z does not abort (Pr[—Abortl] and Pr[—Abort2]).

By the simulation, the event which Z aborts in Step 3 occurs with g tas
per every query to the signing oracle. Therefore, the probability that the event
which Z does not abort in Step 3 occurs for all queries to the signing oracle
(Pr[-Abort1]) is (1 — 1)as,

qH+4qs
By the simulation, the event which Z does not abort in Step 5 occurs with qz

because the event occurs only in the case of that y = f(¢*) holds.
Thus, we obtain

¢ = Pr[Ver"PH (z* 0%, f) = 1 A ~Abort]
= Pr[VerPH (2* o, f) = 1|-Abort] - Pr[-Abort]
= ¢ - Pr[-Abort]
= ¢ - Pr[=Abortl A —Abort2]
= ¢ - Pr[=Abortl] Pr[-Abort2]
e 1

=€ - 1_
(qu +gs qH

232 K. Yoneyama, S. Miyagawa, and K. Ohta

where Ver? PH is the verification algorithm of FDH, €’ is the success probability

of 7 and e is the success probability of F. O

By the same reason, we can also prove security of PFDH [12] in LROM.

4 Security Analysis of OAEP in LROM

Optimal Asymmetric Encryption Padding (OAEP) [13] is secure padding scheme
for asymmetric encryptions in ROM. In this section, we consider security of
OAEP in LROM.

4.1 OAEP

OAEP is based on trapdoor partial-domain one-way permutations. We omit
the detailed definition of trapdoor partial-domain one-way permutations. Please
refer to [14].

The description of OAEP is as follows:

Key generation: For input k, output an encryption key (ek = f) and a
decryption key (dk = f~1) such that (f, =1, Dom = {0,1}%0 x {0,1}F1) «
G(1%) where G is a trapdoor permutation generator and ko + k1 < k.

Encryption: For input a message m € {0,1}", generate randomness r ki3
{0,1}%, compute x* = (m||0*) ® G(r) and y = r @ H(z), and output a
ciphertext ¢ = f(2) for z = z||y where “ || 7 means concatenation, H :
{0,137k — 10, 1}*0 and G : {0,1}% — {0,1}"*# are hash functions, and
n==k—]ﬂo — k1.

Decryption: For inputs a ciphertext ¢, compute z = f~!(c), parse z as x|y
and reconstruct r = y®H (x) where |x| = n+k1 and |y| = ko. If [tDG(r)]k, <
0*1 holds, output m = [z @ G(r)]"™ as the plaintext corresponding to ¢ where
[a]® denotes the b least significant bits of a and [a], denotes the b most
significant bits of a. Otherwise, reject the decryption as an invalid ciphertext.

In [14], security of OAEP in ROM is proved as follows;

Lemma 2 (Security of OAEP in ROM [14]). If the trapdoor permutation f
is partial-domain one-way, then OAEP satisfies IND-CCA where H and G are
modeled as random oracles.

4.2 Security of OAEP in LROM

OAEP is secure in ROM but, indeed, is insecure in LROM. More specifically,
we can show OAEP does not even satisfy one-wayness under chosen-plaintext
attacks (OW-CPA) in LROM.

Theorem 2 (Security of OAEP in LROM). Even if the trapdoor permu-
tation f is partial-domain one-way, OAEP does not satisfy OW-CPA where H
and G are modeled as leaky random oracles.

Leaky Random Oracle 233

Proof. We construct an adversary A which successfully plays OW-CPA game by
using leak queries to H and G. Let L and Lg be hash lists of leaky random
oracles H and G respectively. Ly contains tuples of (z;, H(z;)) (0 <i < gy —1)
and L contains tuples of (r;, G(r;)) (0 < j < gg — 1) where gg is the number
of queries to H and g¢ is the number of queries to G. The construction of A is
as follows;

Input : f

Output : m

Step 1: In arbitrary timing, output (challenge, state) and obtain the challenge
ciphertext ¢* of a plaintext m™.

Step 2 : Given input f and c¢*, ask the leak query to H and G, obtain Ly and
Lg, and compute m* as follows; For each content (z;, H(z;)), (r;, G(r;)) of
Ly and Lg, compute ¢’ = f(z;||(r; & H(z;))). If find the pair ((r*, G(r*)),
(z*, H(x*))) such that ((¢/ = ¢*) A ([z; ® G(r;)]k, = 0%1)) holds, compute
m* = [z* ® G(r*)]".

Step 3 : Output m* as the plaintext of ¢*.

*

Therefore, A can obtain m* corresponding to c*.

We show the success probability of A. When m* is encrypted to c¢*, r* and z*
such that z* = (m*||0*) @ G(r*) are certainly asked to G and H respectively
because c¢* is generated obeying the protocol description. Thus, Ly and Lg
contain the pair ((r*, G(r*)), (*, H(z*))) such that ((¢' = ¢*)A([z; B G(r})]k, =
0%1)) holds, and A can obtain m* without fail. Therefore, A successfully plays
the OW-CPA game. O

By the similar procedure (i.e., same procedure as the simulation of the decryption
oracle in the proof in ROM), we can also show insecurity of Fujisaki-Okamoto
conversion [15] in LROM.

5 Security Analysis of Cramer-Shoup cryptosystem in
LROM

Cramer-Shoup cryptosystem [16] is secure asymmetric encryption scheme in SM.
In this section, we consider security of Cramer-Shoup cryptosystem in LROM.

5.1 Cramer-Shoup Cryptosystem

Cramer-Shoup cryptosystem is based on the Decisional Diffie-Hellman (DDH)

assumption and universal one-way hash function family. We omit the definition

of DDH assumption and universal one-way hash function. Please refer to [16].
The description of Cramer-Shoup cryptosystem is as follows:

Key generation: For input k, generate a k-bit prime ¢. Choose g1,92 € G
randomly and generate a decryption key (dk = (x1,22,y1,¥2,2) € Z5) and
public information (c,d, h) such that ¢ = gi'g5%, d = g¥'¢4* and h = gj.
Next, choose a hash function H from a family of universal one-way hash
functions and output an encryption key ek = (g1, g2,¢,d, h, H) and the de-

cryption key dk.

234 K. Yoneyama, S. Miyagawa, and K. Ohta

Encryption: For input a message m € G, choose r €r Z,, compute u; = g7,
uz = g5, e = h"m, a = H(u1,uz,e) and v = ¢"d"®, and output a ciphertext
¢ = (u1,uz,e,v).

Decryption: For inputs a ciphertext ¢c= (u1, ug, e, v), compute a = H (u1, us, €)
and verify whether u U < v holds or not by using x1, x2,y1,y2 €
Zq. If the verification holds, then output the message m = ufz by using
z € Zq. Else if, reject the decryption as an invalid ciphertext L.

Ti1t+yi1a, Tat+y20
1 2

In [I6], security of Cramer-Shoup cryptosystem in SM is proved as follows;

Lemma 3 (Security of Cramer-Shoup cryptosystem in SM [16]). If the
hash function H is chosen from a family of universal one-way hash functions
and the DDH assumption of the group G holds, then Cramer-Shoup cryptosystem
satisfies IND-CCA.

5.2 Security of Cramer-Shoup Cryptosystem in LROM
We can also prove security of Cramer-Shoup cryptosystem in LROM like in SM.

Theorem 3 (Security of Cramer-Shoup cryptosystem in LROM). If
the DDH assumption of the group G holds, then Cramer-Shoup cryptosystem
satisfies IND-CCA where H is modeled as a leaky random oracle.

Owing to lack of space, we will give the proof of Theorem [3]in the full version.
The outline of the proof is similar to the proof of Lemma [3]

The intuition of the reason why we can prove the security of Cramer-Shoup
cryptosystem in LROM as same as SM is as follows; In the case of OAEP,
we can construct the successful adversary by applying the simulation of the
decryption oracle in the proof in SM. However, in the case of Cramer-Shoup
cryptosystem, the simulation of the decryption oracle does not need information
of the hash lists. Moreover, all inputs and outputs of hash function H are publicly
known because a ciphertext contains (u1, ug, ¢) which are the inputs to the hash
function. Naturally, adversaries can know the input and the output in each
session. Therefore, the leak query in LROM cannot be advantage of adversaries.

6 Security Analysis of Kurosawa-Desmedt Cryptosystem
in LROM

Kurosawa-Desmedt cryptosystem [I7] is secure hybrid encryption scheme in
SM. In this section, we consider security of Kurosawa-Desmedt cryptosystem
in LROM.

6.1 Kurosawa-Desmedt Cryptosystem

Kurosawa-Desmedt cryptosystem is based on the DDH assumption, a special
type of universal one-way hash functions, and a symmetric key encryption scheme
which satisfies IND-CCA and e-rejection secure for negligible e. We omit the

Leaky Random Oracle 235

detailed definition of IND-CCA and e-rejection for symmetric key encryption
schemes. Please refer to [I7]. The description of Kurosawa-Desmedt cryptosys-
tem is as follows:

Key generation: For input k, randomly choose two distinct generators g1, g2
of G and (z1,22,91,%2) € Zj, and compute a = g1 g5*,b = g{'g3>. Next,
choose a hash function H from a family of a special type of universal one-way
hash functions, and output an encryption key ek = (g1, g2,a,b, H) and the

decryption key dk = (z1, 2,91, y2)-

Encryption: For input a message m € {0,1}", generate randomness r ¥id Zq,
compute u; = g7, ue = g5, @« = H(ui,u2), v = a"b"*, K = G(v) and the
encryption y of m under the key K using a symmetric key encryption scheme
SKE, and output a ciphertext ¢ = (u1,us, X).

Decryption: For inputs a ciphertext ¢, compute o« = H(uj,uz), v =
u Y32t K — G(v). Next, decrypt x under the key K using SKE
and output the resulting decryption.

In [I7], security of Kurosawa-Desmedt cryptosystem in SM is proved as follows;

Lemma 4 (Security of Kurosawa-Desmedt cryptosystem in SM [17])
If the hash function H is chosen from a family of a special type of universal one-
way hash functions, the hash function G is uniformly distributed over {0,1}* if v
is uniformly distributed over G, SKE satisfies IND-CCA and e-rejection secure
for negligible €, and the DDH assumption of the group G holds, then Kurosawa-
Desmedt cryptosystem satisfies IND-CCA.

6.2 Security of Kurosawa-Desmedt Cryptosystem in LROM

Kurosawa-Desmedt cryptosystem is secure in ROM but, indeed, is insecure in
LROM. More specifically, we can show Kurosawa-Desmedt cryptosystem does
not even satisfy OW-CPA in LROM.

Theorem 4 (Security of Kurosawa-Desmedt cryptosystem in LROM).
Even if SKE satisfies IND-CCA and e-rejection secure for negligible €, and the
DDH assumption of the group G holds, Kurosawa-Desmedt cryptosystem does
not satisfy OW-CPA where H and G are modeled as leaky random oracles.

Proof. We construct an adversary A which successfully plays OW-CPA game by
using the leak query to G. Let L and L¢ be hash lists of leaky random oracles
H and G respectively. Lg contains tuples of ((u1,us2)i, H((u1,u2);)) (0 <14 <
g — 1) and Lg contains tuples of (v;, G(v;)) (0 < j < gg — 1) where ¢g is the
number of queries to H and g¢ is the number of queries to G. The construction
of A is as follows;

Input: ¢1,92,a,b

Output: m*

Step 1: Ask the leak query to G, obtain Lg. Then, immediately, output
(challenge, state) and obtain the challenge ciphertext ¢* = (u1,us2,x) of a
plaintext m*.

236 K. Yoneyama, S. Miyagawa, and K. Ohta

Step 2: Ask again the leak query to G, obtain L, and compare L and L.
If there is a content (v*, G(v*)) in L}, but (v*, G(v*)) is not in L, deal with
G(v*) as K*. Then, decrypt y under the key K* using SKE and output the
resulting decryption m*.

Step 3: Output m* as the plaintext of c*.

Therefore, A can obtain m* corresponding to c*.

We show the success probability of 4. When m* is encrypted to ¢*, v* such
that K* = G(v*) is certainly asked to G because ¢* is generated obeying the
protocol description. Thus, L contains (v*, G(v*)) such that ¢* is the ciphertext
of the plaintext m*, and A can obtain m* without fail by observing the hash list
of G step by step. Therefore, A successfully plays the OW-CPA game. a

7 Security Analysis of NAXOS in LROM

NAXOS [I8] is a secure authenticated key exchange scheme against the leakage
of ephemeral private keys (session-specific secret information) in ROM. In this
section, we consider security of NAXOS and similar schemes in LROM.

7.1 Security Notion of Authenticated Key Exchange Schemes

Security definitions of authenticated key exchange schemes are studied in many
literatures. NAXOS is proven to be secure in the sense of a strong definition,
called strong AKE security. Strong AKE security captures various desirable se-
curity requirements like resistance to the leakage of ephemeral private keys. We
omit the detailed definition of strong AKE security. Please refer to [I8]. Here,
we define a very weak security notion of authenticated key exchange schemes as
follows.

Definition 2 (One-way security against passive attacks). An authenti-
cated key exchange scheme for parties I and R is one-way secure against passive at-
tacks if the following property holds; For any adversary A, Pr[(SK, transcript) «—
(I & R); SK' — A(transcript); SK' = SK| < negl., where (I < R) is a hon-
est execution of the scheme outputting the transcript between I and R and the
session key SK.

Note that, this definition only captures the minimum security requirement for
authenticated key exchange schemes.

7.2 NAXOS

NAXOS is based on the Gap Diffie-Hellman (GDH) assumption. We omit the
detailed definition of the GDH assumption. Please refer to [19]. The description
of NAXOS is as follows:

Interaction: For input k, the parties I and R pick ephemeral secret keys
esk; and eskp at random from {0,1}*. Then the parties exchange values
gHileskrskr) and gH(eskr.skr) where sk; and skg are static secret keys of I
and R respectively, and H : {0,1}* — Z, is a hash function.

Leaky Random Oracle 237

Key derivation: The parties check ifreceived values are in the group G and only
compute the session keys if the check succeeds. The session key SK € {0, 1}*
is Computed as G(gH(eskR,skR)skI , gH(eskI ,sk[)skR7 gH(eskI ,skr)H (eskr ,skR)’ I,

R) where G : {0,1}* — {0,1}* is a hash function.
In [I8], security of NAXOS in ROM is proved as follows;

Lemma 5 (Security of NAXOS in ROM [18]). If the GDH assumption of
the group G holds, then NAXOS satisfies strong AKFE security where H and G
are modeled as random oracles.

7.3 Security of NAXOS in LROM

NAXOS is secure in ROM but, indeed, is insecure in LROM. More specifically,
we can show NAXOS does not even satisfy one-way security against passive
attacks in LROM.

Theorem 5 (Security of NAXOS in LROM). Even if the GDH assumption
of the group G holds, NAXOS does not satisfy one-way security against passive
attacks where H and G are modeled as leaky random oracles.

Proof. We construct an passive adversary A which successfully plays one-way

security game by using leak queries to H and G. Let Ly and Lg be hash

lists of leaky random oracles H and G respectively. Ly contains tuples of

((esk, sk)i, H((esk, sk);)) (0 < ¢ < gg — 1) and L contains tuples of ((Gy,

Go, Gs, IDn, IDQ)]‘7 G((G1, Go, Gs, IDy, IDQ)j)) (0 < j < gg — 1) where

qg is the number of queries to H and ¢q¢ is the number of queries to G. The

construction of A is as follows;

Input: transcript* = (gH(esk1:5k1) and g (eskk.skk))

Output: SK*

Step 1: Ask the leak query to H and obtain Lgy. For each con-
tent ((esk,sk);, H((esk,sk);)) of Ly, if find the pair 4; and 42 such

that gH((esk,sk:)il) _ gH(esk;,sk;) and gH((esk:,sk)iZ) — gH(esk}},sk}}) then
compute Gx{ _ (gH(esk}‘%,sk}‘%))skil , G; _ (gH(esk;,sk;))ski2 and G; _
gH((esk,sk)il VH ((esk,sk)q,))

Step 2: Ask the leak query to G and obtain Lg. For each content ((G1, G2,
Gg, ID17 IDQ)]‘, G((Gh G27 Gg, IDl, IDQ)])) of ﬁG, if ﬁnd] such that
G1 = G7, Gy = G5 and G3 = G5 then deal with G((G1, G2, Gs, 1Dy,
IDQ)j) as SK*.

Step 3: Output SK* as the session key.

Therefore, A can obtain SK* of the challenge session.

We show the success probability of A. When SK* is generated, (esk, sk);,,
(esk, sk);, and (G, G5, G%, I,R); such that g ((esksk)iy) — gH(esky,ski)
gH(esksk)iy) — gH(eski,shR) G = G, Gy = G% and G5 = G% are certainly asked
to H and G because SK™ is generated obeying the protocol description. Thus, Lg
contains ((Gl, GQ, Gg, IDl, IDQ)j, G((Gl, G27 G37 IDl, IDQ)])) such that SK*
= G((G1, G2, G3,IDy, ID5);), and A can obtain SK* without fail. Therefore, A
successfully plays the one-way security game under the passive attack. a

238 K. Yoneyama, S. Miyagawa, and K. Ohta

By the similar procedure (i.e., obtaining all secret information), we can also show
insecurity of CMQV [20] in LROM.

8 Discussion

8.1 Difference of Effects on Security

In LROM, though FDH and Cramer-Shoup cryptosystem can be proven security,
OAEP, Kurosawa-Desmedt cryptosystem and NAXOS are insecure.

Our attack to OAEP in LROM is based on the simulation of the decryption
oracle in the proof of Lemma [2l Most of asymmetric encryption schemes which
are secure in ROM realize the simulation of the decryption oracle in the proof
without knowledge of the decryption key by using contents of hash lists. There-
fore, by the same behavior as the simulator in the proof in ROM, the adversary
can decrypt the challenge ciphertext without knowledge of the decryption key
because the adversary can observe contents of the hash list in LROM. Our at-
tack to Kurosawa-Desmedt cryptosystem is simpler than one to OAEP. Since
Kurosawa-Desmedt cryptosystem can be proven security in SM, the simulation
of the decryption oracle does not need to use contents of hash lists. However,
the hash value of G has to be secret for external entities because the hash value
is used the key of symmetric key encryption part. Thus, if contents of the hash
list are leaked, the plaintext of any ciphertext is easily decrypted by adversaries.
Also, NAXOS falls into the similar condition as Kurosawa-Desmedt cryptosys-
tem, i.e., all secret information of parties are leaked from the hash list.

On the other hand, FDH is different with these protocols in the following
points; Firstly, though we have to simulate the signing oracle without knowledge
of the signing key in the security proof of FDH, the simulation does not need
to use contents of the hash list. Secondly, in the signing procedure the input of
the hash function and the corresponding hash value are not secret information
because the input is the message to be signed. Therefore, if contents of the hash
list is available to adversaries, it does not become any advantage of adversaries.
Thus, we can prove security of FDH in LROM. The case of Cramer-Shoup cryp-
tosystem is also similar to the case of FDH. Since Cramer-Shoup cryptosystem
can be proven security in SM, we can simulate the decryption oracle without
contents of the hash list. Moreover, in the encryption procedure the inputs of
the hash function and the corresponding hash value are not secret information
because the inputs are contained in the ciphertext. Thus, we can prove security
of Cramer-Shoup cryptosystem in LROM.

Hence, in order to prove security of a protocol in LROM, it is important that
we can realize all the simulation without contents of the hash list, and the input
of the hash function and the corresponding hash value are not secret information.

8.2 Relation between the Standard Model

From the modeling, the proof of a protocol in LROM implies the proof of the
protocol in ROM trivially. Moreover, LROM is independent from SM. Our re-
sult of analyses shows the separation between LROM and SM because of two

Leaky Random Oracle 239

following observations; Firstly, FDH is secure in LROM under the assumption of
trapdoor permutation. However, Dodis et al. [6] showed that FDH is not prov-
able in SM under the same assumption. Thus, we obtain that the proof of a
protocol in LROM does not implies the proof of the protocol in SM.

Next, Kurosawa-Desmedt cryptosystem is secure in SM under the DDH as-
sumption, the assumption of universal hash function family and the assumption
of symmetric key encryption. However, Kurosawa-Desmedt cryptosystem is in-
secure in LROM by instantiating hash functions by leaky random oracles under
same assumptions. Thus, we obtain that the proof of a protocol in SM does not
implies the proof of the protocol in LROM.

Therefore, LROM is independent from SM. We have to check whether a new
protocol is secure in LROM even if the protocol is known to be secure in SM.

8.3 Relation between Randomness Revealing

At first sight, it may seem that the leakage of contents of the hash list is cor-
responding to randomness revealing because it often happen that the inputs
of hash functions contains local randomness. Thus, it may seem that LROM is
same as ROM under randomness revealing. Indeed, these are different. Our result
of analyses shows the difference between LROM and ROM under randomness
revealing because of the following observation;

NAXOS is secure in ROM under the leakage of local randomness. However,
NAXOS is insecure in LROM even if there is no leakage of local randomness.
Thus, we obtain that the proof of a protocol in ROM under randomness revealing
does not implies the proof of the protocol in LROM.

Therefore, we have to check whether a new protocol is secure or not in LROM
even if the protocol is known to be secure in ROM under randomness revealing.

9 Further Works

A remaining problem of future works is more detailed analyses of protocols under
the leakage. For example, though OAEP is insecure if both random oracles H
and G are instantiated by leaky random oracles, OAEP may be secure if either
of two random oracles is only instantiated by the leaky random oracle. Indeed,
Boldyreva and Fischlin [21] showed that OAEP is secure if either of two random
oracles is instantiated by the real hash function and the other remain as the
random oracle.

References

1. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Design-
ing Efficient Protocols. In: ACM Conference on Computer and Communications
Security 1993, pp. 62-73 (1993)

2. Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle Methodology, Revisited
(Preliminary Version). In: STOC 1998, pp. 131-140 (1998)

3. Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle Methodology, Revisited.
J. ACM 51(4), 557-594 (2004)

240

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

K. Yoneyama, S. Miyagawa, and K. Ohta

Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453-474. Springer, Heidelberg (2001)

Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A.,Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest We Remember: Cold Boot At-
tacks on Encryption Keys. In: 17th USENIX Security Symposium, pp. 45-60 (2008)
Dodis, Y., Oliveira, R., Pietrzak, K.: On the Generic Insecurity of the Full Domain
Hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449-466. Springer,
Heidelberg (2005)

Nielsen, J.B.: Separating Random Oracle Proofs from Complexity Theoretic
Proofs: The Non-committing Encryption Case. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 111-126. Springer, Heidelberg (2002)

Liskov, M.: Constructing an Ideal Hash Function from Weak Ideal Compression
Functions. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp.
358-375. Springer, Heidelberg (2007)

Pasini, S., Vaudenay, S.: Hash-and-Sign with Weak Hashing Made Secure. In:
Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp.
338-354. Springer, Heidelberg (2007)

Unruh, D.: Random Oracles and Auxiliary Input. In: Menezes, A. (ed.) CRYPTO
2007. LNCS, vol. 4622, pp. 205-223. Springer, Heidelberg (2007)

Numayama, A., Isshiki, T., Tanaka, K.: Security of Digital Signature Schemes
in Weakened Random Oracle Models. In: Cramer, R. (ed.) PKC 2008. LNCS,
vol. 4939, pp. 268-287. Springer, Heidelberg (2008)

Coron, J.S.: Optimal Security Proofs for PSS and Other Signature Schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272-287. Springer,
Heidelberg (2002)

Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92-111. Springer, Heidelberg (1995)
Fujisaki, E., Okamoto, T., Pointcheval, D.; Stern, J.: RSA-OAEP Is Secure under
the RSA Assumption. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
260-274. Springer, Heidelberg (2001)

Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric En-
cryption Schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537—
554. Springer, Heidelberg (1999)

Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure
Against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 13-25. Springer, Heidelberg (1998)

Kurosawa, K., Desmedt, Y.: A New Paradigm of Hybrid Encryption Scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426-442. Springer, Hei-
delberg (2004)

LaMacchia, B., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key
Exchange. In: Provsec 2007, pp. 1-16 (2007)

Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for
the Security of Cryptographic Schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 104-118. Springer, Heidelberg (2001)

Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol from
(H)MQV and NAXOS. In: Des. Codes Cryptography, vol. 46(3), pp. 329-342 (2008)
Boldyreva, A., Fischlin, M.: Analysis of Random Oracle Instantiation Scenarios for
OAEP and Other Practical Schemes. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 412-429. Springer, Heidelberg (2005)

	Leaky Random Oracle
	Introduction
	Motivation
	Our Contribution
	Related Works

	Leaky Random Oracle Model
	Security Analysis of FDH in LROM
	FDH
	Security of FDH in LROM

	Security Analysis of OAEP in LROM
	OAEP
	Security of OAEP in LROM

	Security Analysis of Cramer-Shoup cryptosystem in LROM
	Cramer-Shoup Cryptosystem
	Security of Cramer-Shoup Cryptosystem in LROM

	Security Analysis of Kurosawa-Desmedt Cryptosystem in LROM
	Kurosawa-Desmedt Cryptosystem
	Security of Kurosawa-Desmedt Cryptosystem in LROM

	Security Analysis of NAXOS in LROM
	Security Notion of Authenticated Key Exchange Schemes
	NAXOS
	Security of NAXOS in LROM

	Discussion
	Difference of Effects on Security
	Relation between the Standard Model
	Relation between Randomness Revealing

	Further Works

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

