

Lecture Notes in Computer Science 5324
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Joonsang Baek Feng Bao Kefei Chen
Xuejia Lai (Eds.)

Provable Security
Second International Conference, ProvSec 2008
Shanghai, China, October 30 - November 1, 2008
Proceedings

13

Volume Editors

Joonsang Baek
Feng Bao
Institute for Infocomm Research
1 Fusionopolis Way, 21-01 Connexis
Singapore 138632, Singapore
E-mail: {jsbaek, baofeng}@i2r.a-star.edu.sg

Kefei Chen
Xuejia Lai
Shanghai Jiao Tong University
Department of Computer Science and Engineering
800 Dong Chuan Road
Shanghai, 200240, China
E-mail: {chen-kf, lai-xj}@cs.sjtu.edu.cn

Library of Congress Control Number: 2008937905

CR Subject Classification (1998): E.3, K.6.5, I.1, I.2.2

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-88732-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-88732-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12551750 06/3180 5 4 3 2 1 0

Preface

The second international conference on provable security, ProvSec 2008, was held
in Shanghai, China, during October 30th – November 1st, 2008. The conference
was sponsored by Shanghai Jiao Tong University (SJTU) in cooperation with the
Chinese Association for Cryptologic Research (CACR) and the Natural Science
Foundation of China (NSFC).

The aim of ProvSec is to provide a platform for researchers, scholars, and
practitioners to exchange ideas and extend knowledge on provable security, which
is an important research area in cryptography. The first ProvSec was held in
Wollongong, Australia, in 2007.

This year, the conference received 79 papers and the program committee
selected 25 papers during eight weeks’ thorough reviewing process. The authors
of the selected papers are from 12 different countries: Australia, Belgium, China,
Estonia, France, Germany, India, Japan, Norway, Singapore, the UK, and the
USA. We are grateful to the members of the program committee for their many
hours of valuable time and hard work.

In addition to the regular conference program, the conference hosted two
invited talks:

– Kenny Paterson (University of London, Royal Holloway): Non-interactive
Key Distribution and Identity-Based Encryption: A Historical Perspective

– Phillip Rogaway (University of California, Davis): Blockcipher Modes of Op-
eration: Culture and Counter-Culture in Modern Cryptography.

The conference was also one of the special events for the 50th anniversary of
the Department of Computer Science at SJTU.

We extend our gratitude to all the people involved in organizing ProvSec
from the Department of Computer Science and Engineering and the Lab for
Information Security of Shanghai Jiao Tong University, in particular to Yu Long,
Yanfei Zheng, Meiju Chen, Zhihua Su, and Bo Zhu for their great efforts in
making the conference run smoothly.

Last but not least, we thank all the authors for submitting their interesting
papers to ProvSec 2008, many of which were of good quality but only a few of
which could be accepted due to lack of space in the program.

October 2008 Joonsang Baek
Feng Bao

Kefei Chen
Xuejia Lai

Second International Conference on Provable
Security 2008 (ProvSec 2008)

General Chair

Xuejia Lai Shanghai Jiao Tong University, China

Program Chairs

Feng Bao Institute for Infocomm Research, Singapore
Kefei Chen Shanghai Jiao Tong University, China

Publicity Chair

Joonsang Baek Institute for Infocomm Research, Singapore

Program Committee

Joonsang Baek Institute for Infocomm Research, Singapore
Tom Berson Anagram Laboratories, USA
Lily Chen NIST, USA
Liqun Chen Hewlett-Packard Laboratories, UK
Robert Deng Singapore Management University, Singapore
Dengguo Feng Chinese Academy of Sciences, China
David Galindo University of Malaga, Spain
Akinori Kawachi Tokyo Institute of Technology, Japan
Aggelos Kiayias University of Connecticut, USA
Kwangjo Kim ICU, Korea
Miroslaw Kutylowski Wroclaw University of Technology, Poland
Fabien Laguillaumie University of Caen, France
Ninghui Li Purdue University, USA
Helger Lipmaa University College London, UK
Shengli Liu Shanghai Jiao Tong University, China
Javier Lopez University of Malaga, Spain
Yi Mu University of Wollongong, Australia
David Naccache ENS, France
Antonio Nicolosi Stevens Institute of Technology, USA
Juanma Gonzalez Nieto Queensland University of Technology, Australia
Tatsuaki Okamoto NTT Labs, Japan
Kenny Paterson Royal Holloway, UK
Olivier Pereira UCL, Belgium
Giuseppe Persiano Università di Salerno, Italy

VIII Organization

Raphael C.W. Phan EPFL, Switzerland
Kui Ren Illinois Institute of Technology, USA
Kouichi Sakurai Kyushu University, Japan
Alice Silverberg U.C. Irvine, USA
Ron Steinfeld Macquarie University, Australia
Willy Susilo University of Wollongong, Australia
Damien Vergnaud ENS, France
Jorge Villar Universitat Politecnica de Catalunya, Spain
Huaxiong Wang Nanyang Technological University, Singapore
Duncan Wong City University of Hong Kong, China
Tzong-Chen Wu NTUST, Taiwan
Shouhuai Xu University of Texas at San Antonio, USA
Fangguo Zhang Sun Yat-sen University, China
Rui Zhang AIST, Japan
Yunlei Zhao Fudan University, China
Huafei Zhu Institute for Infocomm Research, Singapore

External Referees

Man Ho Au
Przemys�law B�laśkiewicz
Colin Boyd
Shaoying Cai
Debrup Chakraborty
Kim-Kwang Raymond

Choo
Dang Nguyen Duc
Nelly Fazio
Zheng Gong
Choudary Gorantla
Jens Groth
Fuchun Guo
Hua Guo
Ryotaro Hayashi
Takato Hirano
Dennis Hofheinz
Xuan Hong

Qiong Huang
Xinyi Huang
Emeline Hufschmitt
Takashi Kitagawa
Marek Klonowski
Divyan M. Konidala
Micha�l Koza
Hyunrok Lee
David Lefranc
Jin Li
Vo Duc Liem
Yu Long
Olivier de Marneffe
Giacomo de Meulenaer
Paul Morrissey
Mridul Nandi
Kazuto Ogawa
Ayoub Otmani

Ray Perlner
Yi Qian
Ying Qui
Peter van Rossum
Chunhua Su
Hirotoshi Takebe
Xiao Tan
Qian Wang
Puwen Wei
Jian Weng
Pawe�l Wlaź
Wei Wu
Guomin Yang
Yanjiang Yang
Tsz Hon Yuen
Yao Zai
Xingwen Zhao
Hong-Sheng Zhou

Organizing Committee

Zhihua Su Shanghai Jiao Tong University, China
Meiju Chen Shanghai Jiao Tong University, China
Yanfei Zheng Shanghai Jiao Tong University, China
Yu Long Shanghai Jiao Tong University, China
Bo Zhu Shanghai Jiao Tong University, China

Table of Contents

Encryption

Generalized ElGamal Public Key Cryptosystem Based on a New
Diffie-Hellman Problem . 1

Huawei Huang, Bo Yang, Shenglin Zhu, and Guozhen Xiao

Tweakable Pseudorandom Permutation from Generalized Feistel
Structure . 22

Atsushi Mitsuda and Tetsu Iwata

Timed-Release Encryption Revisited . 38
Sherman S.M. Chow and S.M. Yiu

Efficient and Provably Secure Certificateless Multi-receiver
Signcryption . 52

S. Sharmila Deva Selvi, S. Sree Vivek, Deepanshu Shukla, and
Pandu Rangan Chandrasekaran

A CCA Secure Hybrid Damg̊ard’s ElGamal Encryption 68
Yvo Desmedt and Duong Hieu Phan

Signature
Construction of Yet Another Forward Secure Signature Scheme Using
Bilinear Maps . 83

Jia Yu, Fanyu Kong, Xiangguo Cheng, Rong Hao, and Guowen Li

Optimal Online/Offline Signature: How to Sign a Message without
Online Computation . 98

Fuchun Guo and Yi Mu

Round-Optimal Blind Signatures from Waters Signatures 112
Kristian Gjøsteen and Lillian Kr̊akmo

Secure Proxy Multi-signature Scheme in the Standard Model 127
Zhenhua Liu, Yupu Hu, and Hua Ma

Server-Aided Verification Signatures: Definitions and New
Constructions . 141

Wei Wu, Yi Mu, Willy Susilo, and Xinyi Huang

Analysis

On Proofs of Security for DAA Schemes . 156
Liqun Chen, Paul Morrissey, and Nigel P. Smart

X Table of Contents

Cryptanalysis of Vo-Kim Forward Secure Signature in ICISC 2005 176
Jia Yu, Fanyu Kong, Xiangguo Cheng, Rong Hao, and Guowen Li

Computationally Sound Symbolic Analysis of Probabilistic Protocols
with Ideal Setups . 185

Zhengqin Luo

On the Equivalence of Generic Group Models . 200
Tibor Jager and Jörg Schwenk

The Analysis of an Efficient and Provably Secure ID-Based Threshold
Signcryption Scheme and Its Secure Version . 210

ZhenChao Zhu, Yuqing Zhang, and Fengjiao Wang

Application of Hash Functions

Leaky Random Oracle (Extended Abstract) . 226
Kazuki Yoneyama, Satoshi Miyagawa, and Kazuo Ohta

How to Use Merkle-Damg̊ard—On the Security Relations between
Signature Schemes and Their Inner Hash Functions 241

Emmanuel Bresson, Benôıt Chevallier-Mames, Christophe Clavier,
Aline Gouget, Pascal Paillier, and Thomas Peyrin

Can We Construct Unbounded Time-Stamping Schemes from
Collision-Free Hash Functions? . 254

Ahto Buldas and Margus Niitsoo

Universal Composability

Relationship of Three Cryptographic Channels in the UC Framework . . . 268
Waka Nagao, Yoshifumi Manabe, and Tatsuaki Okamoto

A Universally Composable Framework for the Analysis of
Browser-Based Security Protocols . 283

Sebastian Gajek

Threshold Homomorphic Encryption in the Universally Composable
Cryptographic Library . 298

Peeter Laud and Long Ngo

Universally Composable Security Analysis of TLS . 313
Sebastian Gajek, Mark Manulis, Olivier Pereira,
Ahmad-Reza Sadeghi, and Jörg Schwenk

Round Optimal Universally Composable Oblivious Transfer
Protocols . 328

Huafei Zhu

Table of Contents XI

Applications

A Tamper-Evident Voting Machine Resistant to Covert Channels 335
Wei Han, Tao Hao, Dong Zheng, Kefei Chen, and Xiaofeng Chen

Self-healing Key Distribution with Revocation and Resistance to the
Collusion Attack in Wireless Sensor Networks . 345

Wei Du and Mingxing He

Author Index . 361

Generalized ElGamal Public Key Cryptosystem
Based on a New Diffie-Hellman Problem�

Huawei Huang1,2, Bo Yang1, Shenglin Zhu1, and Guozhen Xiao2

1 College of Information, South China Agricultural University,
Guangzhou 510642, China

2 State Key Lab. of Integrated Service Networks, Xidian University,
Xi’an, 710071, China

hwhuang7809@gmail.com, byang@scau.edu.cn

zhusl@scau.edu.cn, gzxiao@xidian.edu.cn

Abstract. This paper proposes a new generalized ElGamal public key
encryption scheme based on a new Diffie-Hellman problem, so-called
EDDH problem, which DDH problem can be reduced to. This scheme is
one-way if and only if ECDH assumption holds and it is semantically se-
cure in the standard model if and only if EDDH assumption holds. Since
EDDH assumption still holds for generic bilinear groups, this encryption
scheme adds to the growing toolkit of provable security primitives that
can be used by the protocol designer looking to build complex secure
systems with a sound basis.

Keywords and phrases: public key cryptosystem, matrix semigroup
action, DDH problem, semantically secure.

1 Introduction

Diffie and Hellman introduced the concept of public key cryptography in their
landmark paper of 1976 [4]. They showed how to construct a public key cryp-
tosystem (PKC) using a trapdoor one-way function. In 1985, ElGamal [5] pro-
posed the renowned ElGamal cryptosystem which has been widely used and
studied for the last two decades.

The discrete logarithm (DL) problem is the basic ingredient of many cryptog-
raphy protocols such as Diffie-Hellman key agreement protocol, ElGamal public
key cryptosystem, digital signature algorithm (DSA) and ElGamal’s signature
scheme. The CDH assumption was introduced informally by [4]. Since then,
there have been many papers that deal with the DL and CDH assumptions,
and cryptographic applications based on them. The DDH assumption appears
to have first surfaced in the cryptographic literature in [2], although as that
paper notes, the DDH assumption is actually needed to prove the security of
a number of previously proposed protocols. Indeed, the famous Diffie-Hellman
key exchange cannot be proved secure in any reasonable and standard way just
� Project supported by the nature science foundation of China (No. 60573043;

60773175; 60773003).

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 1–21, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 H. Huang et al.

based on the CDH assumption: the DDH assumption (or some variant thereof) is
required. And the well-known encryption scheme of ElGamal relies on the DDH
for its security against passive attacks (i.e., semantic security).

Although Shoup [14] shows that the DDH problem is hard in a generic model
of computation, Joux and Nguyen [8] proves that the DDH assumption is a much
stronger hypothesis than the CDH assumption. Joux and Nguyen show that there
are some very special families of elliptic curves for which the DDH assumption
does not hold, but for which the CDH assumption still appears to stand. In
fact, in all bilinear group for which there exists a computable pairing, DDH
problem is solvable in polynomial time, hence in bilinear group DDH assumption
does not hold. These facts cast some doubt on the DDH assumption in general.
Many cryptographers propose other Diffie-Hellman problem. For example, Boneh
and Boyen [1] proposed linear DDH assumption and proved that linear DDH
assumption is weaker than DDH assumption in generic bilinear groups. Shacham
[13] studied further the linear DDH assumption and presented a generalization
of it into a family of progressively weaker assumptions.

In this paper we present a new generalized ElGamal PKC that can also be
proven semantically secure in the standard model under a new decisional Diffie-
Hellman problem which we call EDDH problem. The DDH problem can be
reduced to EDDH problem and EDDH assumption is weaker than DDH as-
sumption in generic bilinear groups. For generic groups in Shoup model, the
lower bound on the computational complexity of EDDH problem is less than
that of linear DDH problem.

This paper is structured as follows. Firstly, in Section 2, we cover some cryp-
tographic preliminaries. Section 3 defines the complexity assumptions on which
the security of the new PKC relies. Section 4 describes the new scheme. Finally,
Section 5 analyses its security..

2 Preliminaries

Throughout this paper, we employ some terminologies and notions in [3].
Z denotes the ring of integers. Z≥0 denotes the set of non-negative integers.

For a prime q, Fq denotes the finite field of integers modulo q.
We write ν ← α to denote the algorithmic action of assigning the value of α

to the variable ν.
Let X be a finite probability space, i.e., a probability space on a finite set S.

For α ∈ S, we let PrX [α] denote the probability that X assigns to α, and for
S′ ⊂ s, we let PrX [S′] denote the probability that X assigns to S′.

We write ν
R← X to denote the algorithmic action of sampling an element

of S according to the distribution X , and assigning the result of this sampling
experiment to the variable ν. We sometimes write ν1, ..., νk

R← X as a shorthand
for ν1

R← X ;...;νk
R← X .

For any finite set S, U(S) denotes the uniform distribution on S. We write
ν

R← S as a shorthand for ν
R← U(S).

Generalized ElGamal Public Key Cryptosystem 3

For any probability space X on a finite set S, we denote by [X] the subset of
elements of S that are assigned non-zero probability by X , i.e., the “support”
of X .

If X1, X2, ..., Xk are finite probability spaces, and φ is a k-ary predicate, then
we write

Pr[φ(ν1, ..., νk) : ν1
R← X1; ...; νk

R← Xk]

to denote the probability that φ(ν1, ..., νk) holds when ν1 is sampled from X1,
ν2 is sampled from X2, etc.

For λ ∈ Z≥0, 1λ denotes the bit string consisting of λ copies of the bit 1. The
string 1λ will often be an input to an algorithm: this is a technical device that
allows a polynomial-time algorithm to run in time bounded by a polynomial in
λ, even if there are no other inputs to the algorithm, or those inputs happen to
be very short.

A function F mapping non-negative integers to non-negative reals is called
negligible if for all positive numbers c, there exists an integer λ0(c) ≥ 0 such that
for all λ > λ0(c), we have F (λ) < 1/λc.

To understand some intractability assumptions of this paper in a general but
precise way, we introduce the notion of a computational group scheme of [3].

Definition 2.1. A computational group scheme G specifies a sequence (Sλ)λ∈Z≥0

of group distributions. For every value of a security parameter λ ∈ Z≥0, Sλ is
a probability distribution of group descriptions. A group description Γ specifies
a finite abelian group Ĝ, along with a prime-order subgroup G, a generator g of
G, and the order q of G. We will write Γ [Ĝ; G; g; q] to indicate that Γ specifies
Ĝ, G, g, and q as above. As usual, mathematical objects like a group description
Γ and elements of a group Ĝ are represented for computational purposes as bit
strings bounded in length by a polynomial in λ.

The group scheme should also provide several algorithms:

• a deterministic, polynomial-time algorithm for computing the group opera-
tion that takes as input 1λ for λ ∈ Z≥0, Γ [Ĝ, G, g, q] ∈ [Sλ], along with
h1, h2 ∈ Ĝ, and outputs the group element h1 · h2 ∈ Ĝ;

• a deterministic, polynomial-time algorithm for computing the group inversion
operation that takes as input 1λ for λ ∈ Z≥0, Γ [Ĝ, G, g, q] ∈ [Sλ], and h ∈ Ĝ,
and outputs h−1 ∈ Ĝ;

• a deterministic, polynomial-time algorithm that takes as input 1λ for λ ∈
Z≥0, Γ [Ĝ, G, g, q] ∈ [Sλ], and α ∈ {0, 1}∗, and determines if α is a valid
binary encoding of an element of Ĝ;

• a deterministic, polynomial-time algorithm that takes as input 1λ for λ ∈
Z≥0, Γ [Ĝ, G, g, q] ∈ [Sλ], and h ∈ Ĝ, and determines if h ∈ Gn;

• a deterministic, polynomial-time algorithm that takes as input 1λ for λ ∈
Z≥0, Γ [Ĝ, G, g, q] ∈ [Sλ], and outputs g, q and A;

• a probabilistic, polynomial-time approximate sampling algorithm Ŝ that on
input 1λ approximately samples Sλ. The distributions Sλ and Ŝ(1λ) should
be statistically close; that is, the statistical distance Δ(Sλ, Ŝ(1λ)) should be
a negligible function in λ.

4 H. Huang et al.

Let G be a computational group scheme, specifying a sequence (Sλ)λ∈Z≥0 of
group distributions. For all λ ∈ Z≥0, and for all Γ [Ĝ, G, g, q] ∈ [Sλ], we define
the sets Pλ,Γ and Qλ,Γ as follows:

Pλ,Γ := {(gx, gy, gxy) ∈ G3|x, y ∈ Fq};
Qλ,Γ := G3.

For all 0/1-valued, probabilistic, polynomial-time algorithms A , and for all λ ∈
Z≥0, we define the DDH advantage of A against G at λ as

AdvDDHG,A (λ) :=

|Pr[τ = 1 : Γ
R← [Sλ]; ρ R← Pλ,Γ ; τ R← A (1λ, Γ, ρ)]−

Pr[τ = 1 : Γ
R← [Sλ]; ρ R← Qλ,Γ ; τ R← A (1λ, Γ, ρ)]|.

The DDH assumption for G is this: For every probabilistic, polynomial-time,
0/1-valued algorithm A , the function AdvDDHG,A (λ) is negligible in λ.

For all 0/1-valued, probabilistic, polynomial-time algorithms A , for all λ ∈
Z≥0, and for all Γ [Ĝ, G, g, q] ∈ [Sλ], we define the DDH advantage of A against
G at λ given Γ as

AdvDDHG,A (λ|Γ) := |Pr[τ = 1 : ρ
R← Pλ,Γ ;τ

R← A (1λ, Γ, ρ)]−

Pr[τ = 1 : ρ
R← Qλ,Γ ; τ R← A (1λ, Γ, ρ)]|.

Definition 2.2. An encryption scheme (G , E , D) consists of the following three
polynomial-time (in k) algorithms:

1 A key generation algorithm G that on input 1λ outputs a pair of binary
strings (e, d). The string e is called the encryption or public key, and d the
corresponding decryption or secret key. G is probabilistic.

2 An encryption algorithm E that takes as inputs 1λ, an encryption key e from
G , a message m ∈ {0, 1}∗ , and outputs a ciphertext c. E can be probabilistic.

3 A decryption algorithm D that takes as inputs 1λ, a decryption key d and
a ciphertext c, and outputs a binary string m′, such that for every (e, d) ←
G (1λ),

Pr[m′ = D(1λ, d, E (1λ, e, m)) �= m]
is negligible. D is deterministic.

For simplicity, in what follows we drop the term 1λ from the input to the
algorithms.

Definition 2.3. An encryption scheme (G , E , D) is said to be one-way if for all
efficient algorithms A , for every α > 0 and sufficiently large λ,

Pr[A (e, c) = D(d, c)] <
1
λα

,

where c ← E (e, m), (e, d) ← G (1λ) and m ← M .

Generalized ElGamal Public Key Cryptosystem 5

In 1984, Goldwasser and Micali [7] proposed a practical definition of security,
semantic security, also known as polynomial indistinguishability.

Definition 2.4. A public key cryptosystem (G , E , D) is polynomial time indis-
tinguishable if for every pair of efficient algorithms A , M , for every α > 0 and
sufficiently large λ,

Pr[A (e, ma, mb, c) = m] <
1
2

+
1
λα

,

where (e, d) ← G (1λ), {ma, mb} ← M (1λ), m ← {ma, mb} and c ← E (e, m).

Fujisaki and Okamoto [6] described a generic transformation to achieve chosen-
ciphertext security in the random oracle model from any semantically secure
scheme.

3 Complexity Assumptions

3.1 A Class of Vector Space over Finite Field Fq2

In general, the companion matrix of a monic polynomial f(x) = a0 + a1x + x2

of positive degree 2 over a field is defined to be the 2× 2 matrix

A =
(

0 −a0

1 −a1

)
.

It is well known in linear algebra that A satisfies the equation f(A) = 0; that is,
a0I + a1A + A2 = 0, where I is the 2× 2 identity matrix.

Let Fp be a finite field with p = q2, where q is the characteristic of Fp. If A is
the companion matrix of a monic irreducible polynomial f over Fq of degree 2,
then f(A) = 0, and therefore A can play the role of a root of f . The polynomials
in A over Fq of degree less than 2 yield a representation of the elements of Fp,
that is,

Fp
∼= Fq[A] = {x0I + x1A|x0, x1 ∈ Fq}.

For more details, see [9].
Let Ĝ be a finite cyclic group and G be a q-order subgroup of Ĝ where q is

a prime. Then Ĝ2 is also a finite group and G2 is a subgroup of Ĝ2. For any
a = (a1, a2) ∈ Ĝ2, a−1 = (a−1

1 , a−1
2).

Let A be the companion matrix of a monic irreducible polynomial over finite
field Fq of degree 2. Let g = (g1, g2) ∈ Gn and B = (bij)2×2 ∈ Fq[A]. We define
an action of the finite field Fq[A] on the group G2 as follows

B ∗ g = (
2∏

j=1

g
b1j

j ,

2∏
j=1

g
b2j

j).

The operation “∗” is an action of Fq[A] on G2 (see [10,11]). It is easy to verify
that G2 is a vector space over finite filed Fq[A] with respect to the action.

6 H. Huang et al.

Proposition 3.1. Let A be the companion matrix of a monic irreducible poly-
nomial over finite field Fq of degree n. Let G2 be a vector space over finite field
Fq[A] as above. Then for any b ∈ G2 and g = (g1, g2) ∈ G2 where g1, g2 are
generators of G, there exists a unique element X ∈ Fq[A] such that X ∗ g = b.
That is, G2 is a 1-dimensional vector space over finite field Fq[A].

Proof. Let g = (g1, g2) ∈ G2 and g1, g2 are generators of G. Consider the map
ψ : (Fq[A], +) → G2; ψ(X) = X ∗ g.

Let X, Y ∈ Fq[A]. Then by the definition of vector space, ψ(X + Y) = (X +
Y) ∗ g = (X ∗ g)(Y ∗ g) = ψ(X)ψ(Y).

Assume that X ∗ g = Y ∗ g for some X, Y ∈ Fq[A]. By the definition of
vector space, (X − Y) ∗ g = 1G2 . It follows that X − Y = 0Fq [A]. (Assume that
X−Y �= 0Fq [A]. Then (X −Y)−1[(X−Y) ∗ g] = (X−Y)−1 ∗ 1G2 = 1G2 . On the
other hand, (X − Y)−1[(X − Y) ∗ g] = [(X − Y)−1(X − Y)] ∗ g = 1Fq [A] ∗ g = g.
So we deduce g = (g1, g2) = 1G2 , which contradicts the condition that g1, g2 are
generators of G.) Hence X = Y . Therefore, ψ is an injective homomorphism.

Since A is the companion matrix of a monic irreducible polynomial over finite
field Fq of degree 2, we have Fq2 ∼= Fq[A]. So |Fq[A]| = |G2| = q2. Hence
(Fq[A], +) ∼= G2 and the proposition holds.

3.2 Generalized Computational Group Schemes

In this subsection, we propose the notion of a generalized computational group
scheme. It is the natural generalization of computational group scheme in [3].

Definition 3.2. A generalized computational group scheme G specifies a se-
quence (Sλ)λ∈Z≥0 of generalized group distributions. For every value of a se-
curity parameter λ ∈ Z≥0, Sλ is a probability distribution of generalized group
descriptions. A generalized group description Γ specifies

(1) a finite abelian group Ĝ, along with a prime-order subgroup G,
(2) a generator g of G2 with g = (g1, g2) such that g1, g2 are not equal each

other,
(3) the order q of G,
(4) and the companion matrix A of a monic irreducible polynomial over finite

field Fq of degree 2.

We will write Γ [Ĝ, G, g, q, A] to indicate that Γ specifies G, G, g, q and A as
above. The generalized computational group scheme should also provide several
algorithms:

• a deterministic, polynomial-time algorithm for computing the group opera-
tion that takes as input 1λ for λ ∈ Z≥0, Γ [Ĝ, G, g, q, A] ∈ [Sλ], along with
h1, h2 ∈ Ĝ2, and outputs the group element h1 · h2 ∈ Ĝ2;

• a deterministic, polynomial-time algorithm for computing the group inver-
sion operation that takes as input 1λ for λ ∈ Z≥0, Γ [Ĝ, G, g, q, A] ∈ [Sλ],
and h ∈ Ĝ2, and outputs h−1 ∈ Ĝ2;

Generalized ElGamal Public Key Cryptosystem 7

• a deterministic, polynomial-time algorithm that takes as input 1λ for λ ∈
Z≥0, Γ [Ĝ, G, g, q, A] ∈ [Sλ], and α ∈ {0, 1}∗, and determines if α is a valid
binary encoding of an element of Ĝ2;

• a deterministic, polynomial-time algorithm that takes as input 1λ for λ ∈
Z≥0, Γ [Ĝ, G, g, q, A] ∈ [Sλ], and h ∈ Ĝ2, and determines if h ∈ G2;

• a deterministic, polynomial-time algorithm that takes as input 1λ for λ ∈
Z≥0, Γ [Ĝ, G, g, q, A] ∈ [Sλ], and outputs g, q and A;

• a probabilistic, polynomial-time approximate sampling algorithm Ŝ that on
input 1λ approximately samples Sλ. The distributions Sλ and Ŝ(1λ) should
be statistically close; that is, the statistical distance Δ(Sλ, Ŝ(1λ)) should be
a negligible function in λ.

It is clear that for a generalized computational group scheme G specifying a
sequence (Sλ)λ∈Z≥0 of generalized group distributions Γ , there is a correspond-
ing computational group scheme G′ specifying a sequence (S′

λ)λ∈Z≥0 of group
distributions Γ ′. And any computational group scheme can be easily extended
to a generalized computational group scheme. For example, we can obtain some
generalized computational group schemes from the computational group schemes
in [3].

3.3 ECDH Problem and ECDH Assumption

Definition 3.3. (ECDH problem (ECDHP)). Let G be a generalized computa-
tional group scheme, specifying a sequence (Sλ)λ∈Z≥0 of generalized group dis-
tributions. Let Γ [Ĝ, G, g, q, A] ∈ [Sλ]. Given (X ∗ g), (Y ∗ g) ∈ G2 for some
X, Y ∈ Fq[A], find (XY) ∗ g.

For all probabilistic, polynomial-time algorithms A , and for all λ ∈ Z≥0, we
define the ECDH advantage of A against G at λ as

AdvECDHG,A (λ) := Pr[c = (XY) ∗ g : Γ [Ĝ, G, g, q, A] R← [Sλ];

X, Y
R← Fq[A]; c R← A (1λ, Γ, X ∗ g, Y ∗ g)].

Definition 3.4. (ECDH assumption). The ECDH assumption for G is this:
For every probabilistic, polynomial-time algorithm A , the function
AdvECDHG,A (λ) is negligible in λ.

Theorem 3.5. CDH assumption (for a computational group scheme G′) ⇒
ECDH assumption (for the generalized computational group scheme G).

Proof. Assume that the ECDH assumption does not hold for the generalized
computational group scheme G′. Then there exists a probabilistic algorithm A
such that for some fixed c > 0 and for all sufficiently large λ

Pr[c=(XY)∗g : Γ [Ĝ, G, g, q, A] R← [Sλ]; X, Y
R←Fq [A]; c R← A (1λ, Γ, X∗g, Y ∗g)] >1/λc.

8 H. Huang et al.

Let Γ ′[Ĝ, G, γ, q] R← [S′
λ], x, y

R← Fq. For the input (1λ, Γ ′, γx, γy), we define
A ′ as follows:

1. Generate a companion matrix A of a random irreducible polynomial over
finite field Fq of degree 2.

2. Generate randomly a generator g2 ∈ G such that γ, g2 are not equal each
other. Select x2, y2 ∈ Fq uniformly at random.

3. Denote g = (γ, g2). Denote

ḣ = (γx, gx2
2), ḧ = (γy, gy2

2).

Select R, S ∈ Fq[A] uniformly at random. Compute

h1 = ḣ · (R ∗ g), h2 = ḧ · (R ∗ g).

4. Invoke A on input (1λ, Γ [Ĝ, G, g, q, A], h1, h2) and get output h. Compute

h′ = h · [(−S) ∗ ḣ] · [(−R) ∗ ḧ] · [(−SR) ∗ g].

5. Output c′ = (h′)1, where (h′)1 denotes the first component of h′.

By the definition of A ′, we know that when Γ ′[Ĝ, γ, g, q] is distributed uni-
formly in [S′

λ], the corresponding Γ [Ĝ, G, g, q, A] is distributed uniformly in [Sλ].
And the matrices X = diag(x, x2) + R and Y = diag(y, y2) + S are also dis-
tributed uniformly in Fq[A]. Hence we have

AdvCDHG′,A ′(λ) : = Pr[c′ = γxy : Γ ′[Ĝ,G, γ, q] R← [S′
λ];x, y

R← Fq; c′
R← A (1λ, Γ ′, γx, γy)]

= Pr[h = (XY) ∗ g : h
R← A (1λ, Γ [Ĝ,G, g, q, A], h1, h2)]

>
1
λc

3.4 EDDH Problem and EDDH Assumption

In this subsection, we propose a new generalized DDH problem and analyze the
relationship between it and DDH problem.

Definition 3.6. (Extended DDH problem (EDDHP)) Let G be a generalized
computational group scheme, specifying a sequence (Sλ)λ∈Z≥0 of generalized
group distributions. Let Γ [Ĝ, G, g, q, A] ∈ [Sλ]. Given (X∗g), (Y ∗g), (Z∗g) ∈ G2

for some X, Y, Z ∈ Fq[A], decide whether (XY) ∗ g = Z ∗ g.

For all λ ∈ Z≥0, and for all Γ [Ĝ, G, g, q, A] ∈ [Sλ], we define the sets Dλ,Γ and
Tλ,Γ as follows:

Dλ,Γ := {(X ∗ g, Y ∗ g, (XY) ∗ g) ∈ (G2)3|X, Y ∈ Fq[A]};
Tλ,Γ := (G2)3.

The set Dλ,Γ is called the set of “EDH triples.” Also, for ρ ∈ (G2)3, define
EDHPλ,Γ (ρ) = 1 if ρ ∈ Dλ,Γ , and otherwise, define EDHPλ,Γ (ρ) = 0.

Generalized ElGamal Public Key Cryptosystem 9

For all 0/1-valued, probabilistic, polynomial-time algorithms A , and for all
λ ∈ Z≥0, we define the EDDH advantage of A against G at λ as

AdvEDDHG,A (λ) :=

|Pr[τ = 1 : Γ
R← [Sλ]; ρ R← Dλ,Γ ; τ R← A (1λ, Γ, ρ)]−

Pr[τ = 1 : Γ
R← [Sλ]; ρ R← Tλ,Γ ; τ R← A (1λ, Γ, ρ)]|.

Definition 3.7. (EDDH assumption) The EDDH assumption for G is this:
For every probabilistic, polynomial-time, 0/1-valued algorithm A , the function
AdvEDDHG,A (λ) is negligible in λ.

For all 0/1-valued, probabilistic, polynomial-time algorithms A , for all λ ∈ Z≥0,
and for all Γ [Ĝ, G, g, q, A] ∈ [Sλ], we define the EDDH advantage of A against
G at λ given Γ as

AdvEDDHG,A (λ|Γ) := |Pr[τ = 1 : ρ
R← Dλ,Γ ; τ R← A (1λ, Γ, ρ)]−

Pr[τ = 1 : ρ
R← Tλ,Γ ; τ R← A (1λ, Γ, ρ)]|.

Now we discuss the random self-reducibility property of the EDDH problem,
and its implications. The following lemma states the random self-reducibility
property for the EDDH problem.

Lemma 3.8. There exists a probabilistic, polynomial-time algorithm RSR such
that for all λ ∈ Z≥0, for all Γ ∈ [Sλ], and for all ρ ∈ Tλ,Γ , the distribution
RSR(1λ, Γ, ρ) is U(Dλ,Γ) if ρ ∈ Dλ,Γ , and is U(Tλ,Γ) if ρ �∈ Dλ,Γ .

Proof. The algorithm RSR is very simple. Given 1λ, the generalized group de-
scription Γ [Ĝ, G, g, q, A], and ρ = (X ∗ g, Y ∗ g, Z ∗ g) ∈ (G2)3, the algorithm
chooses S1, S2 and R uniformly in Fq[A] and computes (X ′ ∗ g, Y ′ ∗ g, Z ′ ∗ g) ∈
(G2)3 as follows:

X ′ ∗ g = [R ∗ (X ∗ g)](S1 ∗ g)
Y ′ ∗ g = (Y ∗ g)(S2 ∗ g)
Z ′ ∗ g = [R ∗ (Z ∗ g)][(RS2) ∗ (X ∗ g)][S1 ∗ (Y ∗ g)][(S1S2) ∗ g].

Let Z = XY + E for some E ∈ Fq[A] then:

X ′ = RX + S1, Y ′ = Y + S2, Z ′ = X ′Y ′ + ER.

If E = 0Fq [A] we have that X ′ and Y ′ are uniformly distributed in Fq [A] and
Z ′ = X ′Y ′. If E �= 0Fq [A], then X ′, Y ′ and Z ′ are all uniformly distributed in
Fq[A] (since Fq[A] is a finite field).

The implication of the random self-reduction of EDDH problem is that if EDH
tuples can be efficiently distinguished from random tuples with a non-negligible
advantage, then EDH tuples can be efficiently recognized with negligible error
probability. More formally, we have the following:

10 H. Huang et al.

Theorem 3.9. For every be a 0/1-valued, probabilistic, polynomial-time algo-
rithm A , and every polynomial P (with integer coefficients, taking positive values
on Z≥0), there exists a 0/1-valued, probabilistic, polynomial-time algorithm A1

such that for all λ ∈ Z≥0, for all Γ ∈ [Sλ], for all ρ ∈ Tλ,Γ , and for all κ ∈ Z≥0,

if AdvEDDHG,A (λ|Γ) ≥ 1/P (λ), then Pr[τ �= EDHPλ,Γ (ρ) : τ
R← A1(1λ, Γ, ρ, 1κ)] ≤ 2−κ.

Proof. Let λ ∈ Z≥0 and Γ [Ĝ, G, g, q, A] ∈ [Sλ]. Assume that
AdvEDDHG,A (λ|Γ) ≥ 1/P (λ). Then

|Pr[τ = 1 : ρ
R← Dλ,Γ ; τ R← A (1λ, Γ, ρ)]−Pr[τ = 1 : ρ

R← Tλ,Γ ; τ R← A (1λ, Γ, ρ)]| ≥ 1/P (λ).

By Lemma 3.10, there exists a probabilistic polynomial-time algorithm R such
that for any δ = (X ∗ g, Y ∗ g, Z ∗ g) ∈ Tλ,Γ \ Dλ,Γ :

|Pr[τ = 1 : τ
R← A (R(1λ, Γ, δ′))]− Pr[τ = 1 : τ

R← A (R(1λ, Γ, δ))]| ≥ 1/P (λ),

where δ′ = (X ∗g, Y ∗g, (XY)∗g). Now the probabilities are only taken over the
random bits of A and R. Therefore, by standard methods of amplification we
can define a probabilistic algorithm A1 such that for any δ = (X∗g, Y ∗g, Z∗g) ∈
Tλ,Γ \ Dλ,Γ :

|Pr[τ = 1 : τ
R← A1(1λ, Γ, δ′, 1κ)]− Pr[τ = 1 : τ

R← A1(1λ, Γ, δ, 1κ)]| ≥ 1− 2−κ.

On any input 1λ, Γ, δ and 1κ, the out put of A1 is essentially a threshold function
of O(P (λ)2κ) independent values - A (R(1λ, Γ, δ)). It is clear that A1 satisfies
the conditions required in Theorem.

Theorem 3.10. DDH assumption (for a computational group scheme G′) ⇒
EDDH assumption (for the generalized computational group scheme G).

Proof. Assume that the EDDH assumption does not hold for the generalized
group scheme G. Then there exists a 0/1-valued probabilistic algorithm A such
that for some fixed c > 0 and for all sufficiently large λ

|Pr[τ = 1 : Γ
R← [Sλ]; ρ1

R← Dλ,Γ ; τ R← A (1λ, Γ, ρ1)]−

Pr[τ = 1 : Γ
R← [Sλ]; ρ2

R← Tλ,Γ ; τ R← A (1λ, Γ, ρ2)]| > 1/λc.

For all λ ∈ Z≥0, and for all Γ ′[Ĝ, G, γ, q] ∈ [S′
λ], we define

Pλ,Γ ′ := {(γx, γy, γxy)|x, y ∈ Fq, x �= 0};
Qλ,Γ ′ := {(γa, γb, γc)|a, b, c ∈ Fq, a �= 0, c �= ab}.

Let Γ ′[Ĝ, G, γ, q] ∈ [S′
λ]. For the input (1λ, Γ ′, γx, ρ) (where ρ = (ρ1, ρ2, ρ3) is

in either Pλ,Γ ′ or Qλ,Γ ′), we define A ′ as follows:
1. Generate a companion matrix A of a random irreducible polynomial over

finite field Fq of degree 2.

Generalized ElGamal Public Key Cryptosystem 11

2. Generate randomly a generator g2 ∈ G such that γ, g2 are not equal each
other. Select u2, v2 ∈ Fq uniformly at random. Denote g = (γ, g2). Denote

ρ′1 =: (ρ1, g
u2
2), ρ′2 =: (ρ2, g

v2
2), ρ′3 =: (ρ3, g

u2v2
2).

Denote ρ′ = (ρ′1, ρ
′
2, ρ

′
3).

4. Invoke the random self-reducibility algorithm RSR on input
(1λ, Γ [Ĝ, G, g, q, A], ρ′) and get output �.

5. Invoke A on input (1λ, Γ [Ĝ, G, g, q, A], �).
6. Output whatever A outputs.
By the definition of A ′, we know that when Γ ′[Ĝ, γ, g, q] is distributed uni-

formly in [S′
λ], the corresponding Γ [Ĝ, G, g, q, A] is distributed uniformly in [Sλ].

By Lemma 3.3, we know that � is distributed uniformly in Dλ,Γ when ρ′ is dis-
tributed uniformly in Pλ,Γ ′ and � is distributed uniformly in Tλ,Γ when ρ′ is
distributed uniformly in Qλ,Γ ′ . Hence we

AdvDDH′
G′,A ′(λ) = |Pr[τ = 1 : Γ ′ R← [S′

λ]; ρ R← Pλ,Γ ′ ; τ R← A ′(1λ, Γ ′, ρ)]−

Pr[τ = 1 : Γ ′ R← [S′
λ]; ρ̂ R← Qλ,Γ ′ ; τ R← A ′(1λ, Γ ′, ρ̂)]|

= |Pr[τ = 1 : τ
R← A (1λ, Γ, �)]− Pr[τ = 1 : τ

R← A (1λ, Γ, �̂)]|

>
1
λc

By Lemma 1 of [3], this implies that the DDH assumption for the computational
group scheme G′ does not hold.

4 New Generalized ElGamal Public Key Cryptosystem

New scheme makes use of a generalized computational group scheme G as
described in section 3, defining a sequence (Sλ)λ∈Z≥0 of distributions of
generalized group descriptions, and providing a sampling algorithm Ŝ, where
the output distribution Ŝ(1λ) closely approximates Sλ.

(1) Key generation algorithm G
On input 1λ for λ ∈ Z≥0, compute

Γ [Ĝ, G, g, q, A] R← Ŝ(1λ); B
R← Fq[A]; h = B ∗ g

and output the public key e = (Γ, h) and the secret key d = (Γ, B).

(2) Encryption algorithm E
Given 1λ for λ ∈ Z≥0, a public key e = (Γ, h) along with a message m ∈ G2,

compute
R

R← Fq[A]; c1 = R ∗ g; c2 = (R ∗ h)m

and output the ciphertext c = (c1, c2).

12 H. Huang et al.

(3) Decryption algorithm D
Given 1λ for λ ∈ Z≥0, a secret key d = (Γ, B) along with a ciphertext c,

compute f = (B ∗ c1)−1, m = fc2 and output m.

Remark. Note that this encryption scheme has a restricted message space:
messages are elements of the group G2. It is straightforward to verify that this
encryption scheme satisfies the basic requirements that any public key encryption
scheme should satisfy. We can verify that decryption algorithm actually decrypts
to the original message m. By the fact that “ ∗ ” is an action of the commutative
semigroup (Fq [A], ·) on the group G2, we have

(B ∗ c1)−1c2 = (B ∗ (R ∗ g))−1(R ∗ h)m
= ((BR) ∗ g)−1(R ∗ (B ∗ g))m
= ((BR) ∗ g)−1((RB) ∗ g)m
= m.

5 Security of the Scheme

In this section we show that the new PKC is one-way if and only if ECDH
assumption holds and it is semantically secure EDDH assumption holds.

Theorem 5.1. The new generalized ElGamal public-key encryption scheme is
one-way if and only if ECDH assumption holds.

Proof. Assume that ECDH assumption does not hold. Then there is a proba-
bilistic polynomial algorithm A such that for some fixed θ > 0, for all sufficiently
large λ,

AdvECDHG,A(λ) >
1
λθ

.

This means that

Pr[h = (XY)∗g|Γ [Ĝ,G, g, q, A] R← Ŝ(1λ); X,Y
R← Fq[A];h R← A(1λ, Γ,X∗g, Y ∗g)] >

1
λθ

.

Given public key e = (Γ, h) and ciphertext c = (c1, c2), where h = B ∗ g,
c1 = R ∗ g, we construct an algorithm B as follows

B(e, c) = [A(1λ, Γ, h, c1)]−1 · c2.

If e = (Γ [Ĝ, G, g, q, A], h) R← G (1λ), d = (Γ, B) R← G (1λ), then Γ [Ĝ, G, g, q, A] R←
[Sλ], B, R

R← Fq[A]. It follows that for the fixed θ > 0 and all sufficiently large λ

Pr[B(e, c) = D(d, c)] = Pr[A(1λ, Γ, h, c1) = (RB) ∗ g] >
1
λθ

,

where e = (Γ [Ĝ, G, g, q, A], h) R← G (1λ), d = (Γ, B) R← G (1λ), m
R← G2 and

c = (c1, c2)
R← E (e, m).

Generalized ElGamal Public Key Cryptosystem 13

Conversely, assume that this new generalized ElGamal encryption scheme
is not one-way. Then by the definition 1.3 there is a probabilistic polynomial
algorithm C such that for some fixed θ > 0, for all sufficiently large λ,

Pr[C(e, c) = m] >
1
λθ

(1)

where e = (Γ [Ĝ, G, g, q, A], h) R← G (1λ), m
R← G2 and c = (c1, c2)

R← E (e, m).
Let Γ [Ĝ, G, g, q, A] ∈ [Sλ] and X, Y ∈ Fq[A]. For the input (1λ, Γ, X ∗g, Y ∗g),

we construct an algorithm D as follows:
1. Select R, S ∈ Fq[A] uniformly at random. Compute h1 = (X + R) ∗ g and

h2 = (Y + S) ∗ g.
2. Denote e = (Γ, h2). Invoke C on input (1λ, e, (h1, 1)) and get output w.
3. Compute and output w−1 · [(−S) ∗ (X ∗ g)] · [(−R) ∗ (Y ∗ g)] · [(−SR) ∗ g].

Since

(h1, 1) = ((X + R) ∗ g, [(X + R) ∗ ((Y + S) ∗ g)] · [((X + R)(Y + S)) ∗ g]−1),

(h1, 1) is a ciphertext of m = [((X + R)(Y + S)) ∗ g]−1 on the public key e =
(Γ, h2). If the output of C is m = [((X + R)(Y + S)) ∗ g]−1, then

w−1 · [(−S) ∗ (X ∗ g)] · [(−R) ∗ (Y ∗ g)] · [(−SR) ∗ g]
= [((X + R)(Y + S)) ∗ g] · [(−S) ∗ (X ∗ g)] · [(−R) ∗ (Y ∗ g)] · [(−SR) ∗ g]
= (XY) ∗ g

When Γ [Ĝ, G, g, q, A] R← [Sλ] and X, Y
R← Fq[A], the distributions of e = (Γ, h2),

m = [((X + R)(Y + S)) ∗ g]−1 and (h1, 1) are the same as that of the e, m, c in
equation (1). Therefore, for the same fixed θ as above, for sufficiently large λ,
we have

Pr[D(1λ, Γ, X ∗ g, Y ∗ g) = (XY) ∗ g]
= Pr[C((Γ, h2), (h1, 1)) = [((X + R)(Y + S)) ∗ g]−1]
> 1

λθ ,

where Γ [Ĝ, G, g, q, A] R← [Sλ] and X, Y
R← Fq[A]. This contradicts ECDH

assumption.

Theorem 5.2. The new generalized ElGamal public-key encryption scheme is
semantically secure if and only if EDDH assumption holds.

Proof. (⇒) Assume that the scheme is not semantically secure. According to
Definition 1.4, this means that there exist a probabilistic polynomial algorithm
M and AD such that for some fixed θ > 0, for all sufficiently large λ,

Pr[AD(e, ma, mb, c) = m] >
1
2

+
1
λθ

, (2)

where e = (Γ [Ĝ, G, g, q, A], h) R← G (1λ), {ma, mb} R← M (1λ), m
R← {ma, mb}

and c = (c1, c2)
R← E (e, m). Then we can construct another efficient algorithm

AS that uses AD to contradict the EDDH assumption.

14 H. Huang et al.

By the key generation algorithm, we know that if Γ
R← [Sλ] and ρ =

(ρ1, ρ2, ρ3)
R← Tλ,Γ then (Γ, ρ2) has the same distribution as e = (Γ, h).

Let Γ [Ĝ, G, g, q, A] ∈ [Sλ]. It is easy to verify that for any m ∈ G2 and
ρ = (ρ1, ρ2, ρ3) ∈ Tλ,Γ , (ρ1, ρ3 · m) is a valid encryption of m on the public
key (Γ, ρ2) if and only if ρ ∈ Dλ,Γ .

Let Γ
R← [Sλ] and ρ = (ρ1, ρ2, ρ3) ∈ Tλ,Γ . We define AS as

AS(1λ, Γ, ρ) =
{

1 if AD((Γ, ρ2), ma, mb, (ρ1, ρ3 ·m)) = m;
0 otherwise,

where m ∈ {ma, mb}. Then, for the same fixed θ, for all sufficiently large λ,

AdvEDDHG,AS
(λ) : = |Pr[τ = 1 : Γ

R← [Sλ]; ρ R← Dλ,Γ ; τ R← AS(1λ, Γ, ρ)]−
Pr[τ = 1 : Γ

R← [Sλ]; ρ R← Tλ,Γ ; τ R← AS(1λ, Γ, ρ)]|
= |Pr[ν = m : Γ

R← [Sλ]; ρ R← Dλ,Γ ; ν R← AD((Γ, ρ2),ma,mb, (ρ1, ρ3 ·m))]
− Pr[ν = m : Γ

R← [Sλ]; ρ′ R← Tλ,Γ ; ν R← AD((Γ, ρ′2),ma,mb, (ρ′1, ρ
′
3 ·m))]|

> (1
2 + 1

kα)− 1
2 ,

(3)

where {ma, mb} R← M (1λ) and m
R← {ma, mb}.

Now we prove (3) holds. Since the distribution of (ρ1, ρ3m) is the same as
that of c = (c1, c2) in (2), we have

|Pr[ν = m : Γ
R← [Sλ]; ρ R← Dλ,Γ ; ν R← AD((Γ, ρ2), ma, mb, (ρ1, ρ3·m))] >

1
2
+

1
kα

.

On the other hand, (ρ′1, ρ′3 · m) represents the encryption of a random message
in G2 \{m}, and hence, except with negligible probability, it does not reveal any
information about m. Therefore the probability that AD outputs the correct m
in such case is essentially 1/2. So (3) holds. It contradict the EDDH assumption.

(⇐) Assume that EDDH assumption does not holds. By Theorem **, there
is a 0/1-valued, probabilistic, polynomial-time algorithm B such that for all
λ ∈ Z≥0, Γ ∈ [Sλ], for all ρ ∈ Tλ,Γ , and κ ∈ Z≥0,

Pr[τ �= EDHPλ,Γ (ρ) : τ
R← B(1λ, Γ, ρ, 1κ)] ≤ 2−κ.

Let a public key e = (Γ [Ĝ, G, g, q, A], h), where h = B∗g. Select at random two
messages m0, m1 ∈ G2. Suppose that their ciphertexts are (R0 ∗ g, (R0 ∗ h)mi)
and (R1 ∗ g, (R1 ∗ h)m1−i), where i

R← {0, 1} and R0, R1
R← Fq[A]. We will

efficiently distinguish the ciphertexts of m0 and m1 by B.
Select at random V

R← Fq[A], and compute

(V ∗ g) · h, [V ∗ (R0 ∗ g)] · (R0 ∗ h) ·mim
−1
0 .

Since G2 is a vector space on Fq[A], we have

(V ∗ g) · h = (V ∗ g)(B ∗ g) = (V + B) ∗ g

Generalized ElGamal Public Key Cryptosystem 15

and

[V ∗ (R0 ∗ g)] · (R0 ∗ h) ·mim
−1
0 = [(V R0) ∗ g] · (R0 ∗ (B ∗ g)) ·mim

−1
0

= [(V R0) ∗ g] · ((R0B) ∗ g) ·mim
−1
0

= [(V R0 + R0B) ∗ g] ·mim
−1
0

= [(R0(V + B)) ∗ g] ·mim
−1
0 .

If mi = m0, then i = 0 and it means that the first ciphertext is corresponding
to the first message. In this case,

Pr[B(1λ, e, {R0 ∗ g, (V ∗ g)h, [V ∗ (R0 ∗ g)] · (R0 ∗ h) ·mim
−1
0 }) �= 1] <

1
2κ

.

If mi �= m0, then i = 1 and it means that the first ciphertext is corresponding
to the second message. In this case,

Pr[B(1λ, e, {R0 ∗ g, (V ∗ g)h, [V ∗ (R0 ∗ g)] · (R0 ∗ h) ·mim
−1
0 }) �= 0] <

1
2κ

.

This means that we can efficiently distinguish the corresponding ciphertexts of
m0, m1 and it contradicts the semantic security of the new generalized ElGamal
PKC.

Let p, q be prime numbers and q|p− 1. If we adopt Ĝ = Z∗
p and G is the q-order

subgroup of Z∗
p , then we can compare the original ElGamal scheme, the linear

ElGamal scheme [13] and our new generalized ElGamal scheme as follows:

The comparison of ElGamal encryption schemes

Scheme ElGamal [5] Linear ElGamal [13] This generalized ElGamal
Secret-key length 1 2 2
Encryption 2E 3E 4ME
Decryption 1E 1ME 2ME
Message expansion double triplicity double
Assumption CDH, DDH CDH, Linear DDH ECDH, EDDH

(An element of Zq denotes a unit of secret-key length; E denotes exponentiation;
ME denotes multi-exponentiations.)

We can obtain chosen ciphertext security by applying the generic scheme
of Fujisaki and Okamoto [6] at practically no extra computational cost in the
random oracle model.

References

1. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

2. Brands, S.: An efficient off-line electronic cash system based on the representation
problem. CWI Technical Report, CS-R9323 (1993)

3. Cramer, R., Shoup, V.: Design and Analysis of Practical Public-Key Encryption
Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM J. of Comput-
ing 33, 167–226 (2003)

16 H. Huang et al.

4. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inform.
Theory 22(6), 644–654 (1976)

5. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inform. Theory 31(4), 469–472 (1985)

6. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption
at minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp.
53–68. Springer, Heidelberg (1999)

7. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

8. Joux, A., Nguyen, K.: Separating Decision Diffie-Hellman from Diffie-Hellman in
cryptographic groups. J. Cryptology 16(4), 239–247 (2003)

9. Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cam-
bridge University Press, Cambridge (1986)

10. Maze, G., Monico, C., Rosenthal, J.: A public key cryptosystem based on actions
by semigroups. In: Proceedings of the 2002 IEEE International Symposium on
Information Theory, Lausanne, Switzerland, p. 484 (2002)

11. Maze, G., Monico, C., Rosenthal, J.: Public key cryptography based on simple
modules over simple rings. In: Proceedings of the 2002 Mathematical Theory of
Networks and System, pp. 8–16. University of Notre Dame, Notre Dame (2002)

12. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press Series on Discrete Mathematics and its Applications. CRC
Press, Boca Raton (1997)

13. Schacham, H.: A Cramer-Shoup encryption scheme from the linear assumption
and from progressively weaker linear variants, http://eprint.iacr.org/2007/

074.pdf

14. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: McCur-
ley, K.S., Ziegler, C.D. (eds.) Advances in Cryptology 1981 - 1997. LNCS, vol. 1440,
pp. 256–266. Springer, Heidelberg (1999)

Appendix: EDDH Problem in Generic Bilinear Groups

To provide more confidence in the EDDH assumption, we prove a lower bound
on the computational complexity of the EDDH problem for generic groups in the
sense of Shoup [14]. In this model, elements of group appear to be encoded as
unique random strings, so that no property other than equality can be directly
tested by the adversary.

We first review a few concepts related to bilinear maps.
1. G1 and G2 are two (multiplicative) cyclic groups of prime order q;
2. g1 is a generator of G1 and g2 is a generator of G2;
3. ψ is a computable isomorphism from G2 to G1, with ψ(g2) = g1; and
4. e is a computable map e : G1 ×G2 → GT with the following properties:
**Bilinearity: for all u ∈ G1, v ∈ G2 and a, b ∈ Z, e(ua, vb) = e(u, v)ab.
** Non-degeneracy: e(g1, g2) �= 1.
Throughout the paper, we consider bilinear maps e : G1 × G2 → GT where

all groups G1, G2, GT are multiplicative and of prime order q.
We say that two groups (G1, G2) as above are a bilinear group pair if the

group action in G1 and G2, the map ψ, and the bilinear map e are all efficiently
computable. In what follows, we consider only the case of G1 = G2 = G. It is

http://eprint.iacr.org/2007/074.pdf
http://eprint.iacr.org/2007/074.pdf

Generalized ElGamal Public Key Cryptosystem 17

clear that we can chose ψ to be identical map and g1 = g2 = g ∈ G. It is known
that DDH assumption does not hold in the bilinear groups.

Proposition A. For a generalized computational group scheme G, the EDDH
problem is equivalent to the following problem: Let G be a cyclic group of prime
order q, g a generator of G, λ1, λ2 ∈ F ∗

q , t(x) = x2 − ax − b a irreducible
polynomial over Fq. Given gλ1 , gλ2 , gλ1u1+bλ2v1 , gλ2u1+(aλ2+λ1)v1 , gλ1u2+bλ2v2 ,
gλ2u2+(aλ2+λ1)v2 , gc1 , gc2 ∈ G, where u1, v1, u2, v2, c1, c2 ∈ F ∗

q , decide whether
c1 = u2(λ1u1 + bλ2v1) + bv2(λ1v1 + λ2u1 + aλ2v1) and c2 = v1(λ1u2 + bλ2v2) +
(u1 + av1)(λ1v2 + λ2u2 + aλ2v2) hold simultaneously.

Proof. Let G be a generalized computational group scheme, specifying a sequence
(Sλ)λ∈Z≥0 of generalized group distributions. Then EDDH problem is as follows:
Let Γ [Ĝ, G, ĝ, q, A] ∈ [Sλ]. Given (X ∗ ĝ), (Y ∗ ĝ), (Z ∗ ĝ) ∈ G2 for some X, Y, Z ∈
Fq[A], decide whether (XY) ∗ ĝ = Z ∗ ĝ.

Let g be a generator of G. Assume that ĝ = (gλ1 , gλ2), where λ1, λ2 ∈ F ∗
q .

Let A be the companion matrix of an irreducible polynomial t(x) = x2 − ax −
b over Fq. Let X = u1I + v1A, Y = u2I + v2A, where u1, v1, u2, v2 ∈ F ∗

q .
Then it is easy to verify that X ∗ ĝ = (gλ1u1+bλ2v1 , gλ2u1+(aλ2+λ1)v1), Y ∗ ĝ =
(gλ1u2+bλ2v2 , gλ2u2+(aλ2+λ1)v2),

(XY)∗ĝ = (gu2(λ1u1+bλ2v1)+bv2(λ1v1+λ2u1+aλ2v1), gv1(λ1u2+bλ2v2)+(u1+av1)(λ1v2+λ2u2+aλ2v2)).

Assume that Z ∗ ĝ = (gc1 , gc2), where c1, c2 ∈ F ∗
q . Then to decide whether

Z∗ĝ = (XY)∗ĝ is equivalent to decide whether c1 = u2(λ1u1+bλ2v1)+bv2(λ1v1+
λ2u1 +aλ2v1) and c2 = v1(λ1u2 + bλ2v2)+ (u1 +av1)(λ1v2 +λ2u2 +aλ2v2) hold
simultaneously.

Let G be a bilinear group, g a generator of G and e : G × G → GT is a
bilinear map. In the generic group model, elements of G and GT appear to
be encoded as unique random strings, so that no property other than equality
can be directly tested by the adversary. Three oracles are assumed to perform
operations between group elements, such as computing the group action in each
of the groups G, GT , as well as the bilinear pairing e : G×G → GT .

The opaque encoding of the elements of G is modeled as an injective function
ξ1 : Fq → Ξ1, where Ξ1 ⊂ 0, 1∗, which maps all x ∈ Fq to the string represen-
tation ξ1(gx) of gx ∈ G. Analogous maps ξT : Fq → ΞT for GT is also defined.
The attacker A communicates with the oracles using the ξ-representations of the
group elements only.

Letλ1,λ2,u1,v1,u2,v2, c1, c2
R← F ∗

q ,T0 = gu2(λ1u1+bλ2v1)+bv2(λ1v1+λ2u1+aλ2v1),

T1 = gc1, S0 = gv1(λ1u2+bλ2v2)+(u1+av1)(λ1v2+λ2u2+aλ2v2), S1 = gc2, and d1, d2
R←

{0, 1}. We show that no generic algorithm A that is given the encodings of gλ1 ,
gλ2 , gλ1u1+bλ2v1 , gλ2u1+(aλ2+λ1)v1 , gλ1u2+bλ2v2 , gλ2u2+(aλ2+λ1)v2 , Td1, T1−d1 , Sd2 ,
S1−d2 and makesup to r oraclequeries can guess the value of d1, d2 with probability
greater than 1/4 +O(r4/q2).

18 H. Huang et al.

Theorem B. Let A be an algorithm that solves EDDH problem in the generic
group model. Assume that ξ1, ξT are random encoding functions for G, GT . If A
makes a total of at most r queries to the oracles computing the group action in
G, GT , and the bilinear pairing e, then∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
A

⎛⎜⎜⎝
q, ξ1(1), ξ1(λ1), ξ1(λ2), ξ1(λ1u1 + bλ2v1)

ξ1(λ2u1 + (aλ2 + λ1)v1)
ξ1(λ1u2 + bλ2v2), ξ1(λ2u2 + (aλ2 + λ1)v2)

ξ1(t0), ξ1(t1), ξ1(s0), ξ1(s1)

⎞⎟⎟⎠ = (d1, d2) :

λ1, λ2, u1, v1, u2, v2, c1, c2
R← F ∗

q ; d1, d2
R← {0, 1}; t1−d1 = c1; s1−d2 = c2

td1 = u2(λ1u1 + bλ2v1) + bv2(λ1v1 + λ2u1 + aλ2v1)
sd2 = v1(λ1u2 + bλ2v2) + (u1 + av1)(λ1v2 + λ2u2 + aλ2v2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 1

4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ 16(r + 11)4

q2

Proof. Consider an algorithm B that plays the following game with A.
B maintains three lists of pairs, L1 = {(F1,i, ξ1,i) : i = 0, ..., τ1 − 1}, L2 =
{(F2,i, ξ2,i) : i = 0, ..., τ2 − 1}, under the invariant that, at step τ in the game,
τ1 + τ2 = τ + 11. Here, the F∗,∗ ∈ Fq[Λ1, Λ2, U1, V1, U2, V2, T0, T1, S0, S1] are
polynomials in the indeterminates Λ1, Λ2, U1, V1, U2, V2, T0, T1, S0, S1 with coef-
ficients in Fq. The ξ∗,∗ ∈ {0, 1}∗ are arbitrary distinct strings.

The lists are initialized at step τ = 0 by initializing τ1 = 11, τ2 = 0 and setting
F1,0 = 1, F1,1 = Λ1, F1,2 = Λ2, F1,3 = Λ1U1 + bΛ2V1, F1,4 = Λ2U1 + (aΛ2 +
Λ1)V1, F1,5 = Λ1U2 + bΛ2V2, F1,6 = Λ2U2 + (aΛ2 + Λ1)V2, F1,7 = T0, F1,8 =
T1, F1,9 = S0, F1,10 = S1. The corresponding strings are set to arbitrary distinct
strings in {0, 1}∗.

We may assume that A only makes oracle queries on strings previously ob-
tained form B, since B can make them arbitrarily hard to guess. We note that
B can determine the index i of any given string ξ1,i in L1 (or ξ2,i in L2), where
ties between multiple matches are broken arbitrarily.
B starts the game by providing A with the encodings ξ1,i (i = 0, 1, ..., 10).

The simulator B responds to algorithm A’s queries as follows.

Group action. Given two operands ξ1,i and ξ1,j with 0 ≤ i, j < τ1, compute
F1,τ1 ← F1,i +F1,j . If F1,τ1 = F1,l for some l < τ1, set ξ1,τ1 ← ξ1,l; otherwise, set
ξ1,τ1 to a string in {0, 1}∗\{ξ1,0, ..., ξ1,τ1−1}. Add (F1,τ1 , ξ1,τ1) to the list L1 and
give ξ1,τ1 to A, then increment τ1 by one. Group action queries in GT is treated
similarly.

Inversion. Given a string ξ1,i with 0 ≤ i < τ1, compute F1,τ1 ← −F1,i. If
F1,τ1 = F1,l for some l < τ1, set ξ1,τ1 ← ξ1,l; otherwise, set ξ1,τ1 to a string
in {0, 1}∗\{ξ1,0, ..., ξ1,τ1−1}. Add (F1,τ1 , ξ1,τ1) to the list L1 and give ξ1,τ1 to A,
then increment τ1 by one. Inversion in GT is handled analogously.

Bilinear map. Given two operands ξ1,i and ξ1,j with 0 ≤ i, j < τ1, compute
the product F2,τ2 ← F1,iF1,j . If F2,τ2 = F2,l for some l < τ2, set ξ2,τ2 ← ξ2,l;
otherwise, set ξ2,τ2 to a string in {0, 1}∗\{ξ2,0, ..., ξ2,τ2−1}. Add (F2,τ2 , ξ2,τ2) to
the list L2 and give ξ2,τ2 to A, then increment τ2 by one.

Observe that at any time in the game, the total degree of any polynomial in
each of the two lists is bounded as follows: deg(F1,i) ≤ 2, deg(F2,i) ≤ 4.

Generalized ElGamal Public Key Cryptosystem 19

After at most r queries, A terminates and returns a guess d̂1, d̂2 ∈ {0, 1}. At
this point B chooses random λ1, λ2, u1, v1, u2, v2, c1, c2 ← Fq. For d1, d2 ∈ {0, 1},
consider

td1 = u2(λ1u1 + bλ2v1) + bv2(λ1v1 + λ2u1 + aλ2v1), t1−d1 = c1

and

sd2 = v1(λ1u2 + bλ2v2) + (u1 + av1)(λ1v2 + λ2u2 + aλ2v2), s1−d2 = c2

The simulation provided by B is perfect and reveals nothing to A about d1

unless the chosen random values for the indeterminates give rise to a non-trivial
equality relation between the simulated group elements that was not revealed to
A, i.e., when we assign

Λ1 ← λ1, Λ2 ← λ2, U1 ← u1, V1 ← v1, U2 ← u2, V2 ← v2

and either

T0 ← u2(λ1u1 + bλ2v1) + bv2(λ1v1 + λ2u1 + aλ2v1), T1 ← c1

or the converse

T1 ← u2(λ1u1 + bλ2v1) + bv2(λ1v1 + λ2u1 + aλ2v1), T0 ← c1

This happens only if for some i, j one of the following holds:

1. F1,i(λ1, λ2, u1, v1, u2, v2, t, c1, 0, 0) − F1,j(λ1, λ2, u1, v1, u2, v2, t, c1, 0, 0) = 0,
yet F1,i �= F1,j ,

2. F2,i(λ1, λ2, u1, v1, u2, v2, t, c1, 0, 0) − F2,j(λ1, λ2, u1, v1, u2, v2, t, c1, 0, 0) = 0,
yet F2,i �= F2,j ,

3. F1,i(λ1, λ2, u1, v1, u2, v2, c1, t, 0, 0) − F1,j(λ1, λ2, u1, v1, u2, v2, c1, t, 0, 0) = 0,
yet F1,i �= F1,j ,

4. F2,i(λ1, λ2, u1, v1, u2, v2, c1, t, 0, 0) − F2,j(λ1, λ2, u1, v1, u2, v2, c1, t, 0, 0) = 0,
yet F2,i �= F2,j .

Similarly, the simulation provided by B is perfect and reveals nothing to A
about d2 unless the chosen random values for the indeterminates give rise to a
non-trivial equality relation between the simulated group elements that was not
revealed to A, i.e., when we assign

Λ1 ← λ1, Λ2 ← λ2, U1 ← u1, V1 ← v1, U2 ← u2, V2 ← v2

and either

S0 ← v1(λ1u2 + bλ2v2) + (u1 + av1)(λ1v2 + λ2u2 + aλ2v2), S1 ← c2

or the converse

S1 ← v1(λ1u2 + bλ2v2) + (u1 + av1)(λ1v2 + λ2u2 + aλ2v2), S0 ← c2

20 H. Huang et al.

This happens only if for some i, j one of the following holds:

1. F1,i(λ1, λ2, u1, v1, u2, v2, 0, 0, s, c2) − F1,j(λ1, λ2, u1, v1, u2, v2, 0, 0, s, c2) = 0,
yet F1,i �= F1,j ,

2. F2,i(λ1, λ2, u1, v1, u2, v2, 0, 0, s, c2) − F2,j(λ1, λ2, u1, v1, u2, v2, 0, 0, s, c2) = 0,
yet F2,i �= F2,j ,

3. F1,i(λ1, λ2, u1, v1, u2, v2, 0, 0, c2, s) − F1,j(λ1, λ2, u1, v1, u2, v2, 0, 0, c2, s) = 0,
yet F1,i �= F1,j ,

4. F2,i(λ1, λ2, u1, v1, u2, v2, 0, 0, c2, s) − F2,j(λ1, λ2, u1, v1, u2, v2, 0, 0, c2, s) = 0,
yet F2,i �= F2,j .

We first need to argue that the adversary is unable to engineer any of the
above equalities, so that they can only occur due to an unfortunate random
choice of λ1, λ2, u1, v1, u2, v2, c1, c2. First, observe that the adversary can only
manipulate the polynomials on the two lists through additions and subtrac-
tions (disguised as multiplications and divisions in the groups G, GT as well as
multiplications between polynomials which are not the result of a previous mul-
tiplication (disguised as pairings between elements of G). Now, notice that in the
initial population of the lists, the only occurrence of the variable U1, V1 is within
the polynomial F1,3 = Λ1U1 + bΛ2V1, F1,4 = Λ2U1 + (aΛ2 + Λ1)V1 and the only
occurrence of the variable U2, V2 is within the polynomial F1,5 = Λ1U2 + bΛ2V2,
F1,6 = Λ2U2 + (aΛ2 + Λ1)V2. Notice that

U2(Λ1U1 + bΛ2V1) + bV2(Λ1V1 + Λ2U1 + aΛ2V1) = U2F1,3 + bV2F1,4.

Since t(x) = x2−ax−b is an irreducible polynomial over Fq, we have b �= 0. It is
clear that the adversary is unable to generate the polynomial i(U2F1,3 +bV2F1,4)
for any i ∈ F ∗

q . Next, we prove that the adversary is unable to generate the
polynomial F (U2F1,3 + bV2F1,4), where F is a polynomial of degree at least 1 in
L1, L2. Since the polynomials in L1, L2 have degree at most 4, F is a polynomial
of degree at most 1. So we assume that F = mΛ1 + nΛ2 (m, n �= 0). Compute

(mΛ1 +nΛ2)(U2F1,3 +bV2F1,4) = mΛ1U2F1,3 +nΛ2U2F1,3 +mbΛ1V2F1,4 +nbΛ2V2F1,4.

Notice that Λ1U2F1,3, Λ2U2F1,3, Λ1V2F1,4 and Λ2V2F1,4 can be obtained by
F1,5F1,3, F1,6F1,3, F1,5F1,4 and F1,6F1,4 respectively. It follows that the adversary
can obtained the polynomial (mΛ1 + nΛ2)(U2F1,3 + bV2F1,4) by computing

mF1,5F1,3 + nF1,6F1,3 + mbF1,5F1,4 + nbF1,6F1,4.

Notice that

mF1,5F1,3 +nF1,6F1,3 +mbF1,5F1,4 +nbF1,6F1,4 = (mF1,5 +nF1,6)(F1,3 +bF1,4).

Assume that (mF1,5 + nF1,6)(F1,3 + bF1,4) = (mΛ1 + nΛ2)(U2F1,3 + bV2F1,4).
Then we can deduce m = 0 and n = 0 by comparing the coefficients of both
sides. This contradicts m, n �= 0. It follows that given the available operations, in
the two group representations the adversary is unable to generate the polynomial
F (U2F1,3+bV2F1,4) for any non-zero polynomial F of degree at most 1. Similarly,

V1(Λ1U2 +bΛ2V2)+(U1+aV1)(Λ1V2 +Λ2U2 +aΛ2V2) = V1F1,5 +(U1 +aV1)F1,6.

Generalized ElGamal Public Key Cryptosystem 21

The adversary is unable to generate the polynomial F (V1F1,5 + (U1 + aV1)F1,6)
for any non zero polynomial F of degree at most 1.

It remains only to bound the probability that a random choice of
λ1, λ2, u1, v1, u2, v2, c1, c2 will cause some two distinct polynomials to have the
same value. All polynomials in L1 have degree at most 2, so any two such poly-
nomials F1,i and F1,j are such that F1,i(...) = F1,j(...) with probability at most
2/p over the choice of values. Similarly, all polynomials in L2 have degree at most
4, so any two such polynomials F2,i and F2,j are such that F2,i(...) = F2,j(...)
with probability at most 4/p. The lists are populated initially with 11 values. If
the adversary makes r queries to its oracles then the lists contain at most r +11
entries, so a sum over all pairs of entries gives a bound on the success probability
of the adversary:

ε ≤
[
2
(

r + 11
2

)
4
q

]2

<
16(r + 11)2

q2

Remark. It is clear that for generic groups in Shoup model, the lower bound
on the computational complexity of EDDH problem is less than that on the
computational complexity of Linear DDH problem (see [1]), since 8(r + 9)2/q >
16(r + 11)4/q2 for r q.

Tweakable Pseudorandom Permutation from
Generalized Feistel Structure

Atsushi Mitsuda and Tetsu Iwata

Dept. of Computational Science and Engineering,
Nagoya University

Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
a mituda@nuee.nagoya-u.ac.jp, iwata@cse.nagoya-u.ac.jp

Abstract. Tweakable pseudorandom permutations have wide applica-
tions such as the disk sector encryption, and the underlying primitive
for efficient MACs and authenticated encryption schemes. Goldenberg
et al. showed constructions of a tweakable pseudorandom permutation
based on the Feistel structure. In this paper, we explore the possibility of
designing tweakable pseudorandom permutations based on the General-
ized Feistel Structure. We show that tweakable pseudorandom permuta-
tions can be obtained without increasing the number of rounds compared
to the non-tweakable versions. We also present designs that take multiple
tweaks as input.

Keywords: Luby-Rackoff theory, tweakable blockcipher, generalized
Feistel structure, security proofs.

1 Introduction

A Tweakable BlockCipher, or a TBC, formalized by Liskov, Rivest, and Wag-
ner [15], is a blockcipher that takes an additional input called a tweak. A con-
ventional blockcipher takes a key and a plaintext as inputs, while a TBC takes a
key, a plaintext and a tweak as inputs. TBCs have wide applications. Liskov et
al. described how they can be used to implement secure symmetric encryption
and authenticated encryption schemes [15]. Rogaway showed that an efficient
message authentication code and an authenticated encryption scheme can be
constructed from them [22]. Halevi and Rogaway [11,12] suggested an appli-
cation to disk sector encryption. Bellare and Kohno pointed out the relation
between TBCs and blockciphers that are secure against related-key attacks [1].

For the conventional blockcipher, it is a PseudoRandom Permutation, or a
PRP, if the adversary with chosen plaintext attacks cannot distinguish it from
a random permutation, and it is a Strong PRP, or an SPRP, if the adversary
with chosen plaintext/ciphertext attacks cannot distinguish it from a random
permutation. For TBCs, the tweak is a public data known to the adversary, and
a TBC is considered secure if it is indistinguishable from a family of random
permutations indexed by the tweak. Specifically, a TBC is a Tweakable PRP,
or a TPRP, if it is indistinguishable against adversary with chosen plaintext

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 22–37, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Tweakable Pseudorandom Permutation from Generalized Feistel Structure 23

attacks, and it is a Tweakable SPRP, or a TSPRP, if it is indistinguishable
against adversary with chosen plaintext/ciphertext attacks.

There are mainly three approaches to design TBCs. One is to start from
the conventional blockcipher, and use it as a black-box to obtain a TBC. This
approach was taken in [15], giving two constructions for TBCs. XE and XEX
are also TBCs constructed from the conventional blockcipher [22]. Another ap-
proach is the direct construction, where one designs a TBC from the scratch.
HPC [24] was the first to introduce an auxiliary blockcipher input called a
“spice.” Mercy [5] is another example, however both ciphers known to have weak-
nesses [26,13,8]. The last approach is in between the former two approaches.
Goldenberg et al. [6] suggested the constructions based on the Feistel struc-
ture [7], showing that the constructions are provably secure in the Luby-Rackoff
sense [16], in contrast to the scratch designs, while the blockcipher is not used
as a black-box.

Our Contributions. In this paper, we explore the possibility of designing TBCs
that are provably secure, in the Luby-Rackoff sense, based on the General-
ized Feistel Structure, or the GFS. The structure was adopted in the design
of RC6 [21], and more recently in HIGHT [14] and CLEFIA [25]. The structure
is suitable for hardware efficient blockciphers, as it allows smaller F-functions
compared to the Feistel structure. We follow the design strategy from [6], i.e., we
directly XOR the tweak to some of the data lines, which allows efficient tweak
updates. The provable security of non-tweakable GFS was analyzed by Zheng,
Matsumoto, and Imai [28]1. It was proved that, if the GFS has d data lines,
then (d + 1) rounds are enough for a PRP. Moriai and Vaudenay proved that 2d
rounds are enough for an SPRP [19]. One of our main theoretical contributions
is to present the designs of TPRPs and TSPRPs without increasing the number
of rounds needed for the non-tweakable PRP/SPRP. That is, our TPRP has
(d + 1) rounds and TSPRP has 2d rounds. The Feistel structure, in contrast,
was shown to be a PRP with three rounds, and SPRP with four rounds [16], and
the tweakable version cannot be constructed with these number of rounds [15].
Indeed, the constructions in [15] are four rounds for a TPRP, and six rounds for
a TSPRP, which are both shown to be optimal. See Table 1 for a comparison of
required number of rounds.

As with [6], our designs use the concept of universal hash functions [2], and
the core of the proof is to show that the (d − 1)-round GFS yields a universal
hash function. It requires careful treatments of case analysis, which we show by
constructing a series of pseudocodes. The technique might be of independent
interest, as it may be useful in proving the security of similar constructions.

We also consider the problem of handling longer tweaks, the problem ad-
dressed in [6]. Certain applications require different, specific tweak sizes. For
example, in TAE mode [15], each tweak holds a variety of information such that
each tweak is unique. Thus, one may want to allow longer tweaks to include
more information. Now [6] shows that for the Feistel structure, it is impossible
1 The construction we consider in this paper is called “Type-2 Generalized Feistel

Structure” in [28].

24 A. Mitsuda and T. Iwata

Table 1. Summary of the previous results and our results on the required number of
rounds. GFS denotes the Generalized Feistel Structure with d data lines. Our results
show that tweakable versions do not require increasing the number of rounds.

Feistel structure GFS
(non-tweakable) PRP three [16] d + 1 [28]

Tweakable PRP four [15] d + 1 (This paper)
(non-tweakable) SPRP four [16] 2d [19]

Tweakable SPRP six [15] 2d (This paper)

to input multiple tweaks without increasing the number of rounds. In contrast,
for GFS, we present constructions that take multiple tweaks without increasing
the number of rounds and still maintain the provable security. We show that
a linear code plays a crucial role in the design, which may be seen as another
technical contribution that might be applied to the designs based on similar
structures. We also present constructions for multiple tweaks by increasing the
number of rounds. Finally, in the Appendix, we show some negative results on
the construction of TPRPs.

Other Related Works. A tweakable enciphering scheme [11,12] is closely related
to TBCs. The tweakable enciphering scheme uses a conventional blockcipher (or
possibly a TBC) as a blackbox, and thus they can be viewed as a blockcipher
mode of operation. They take a tweak and a message as inputs, where the mes-
sage length can vary. There are a number of proposals [3,4,9,10,17,18,23,27]. The
primary interest of this paper (and [15]) is the blockcipher itself, a lower level
primitive than the tweakable enciphering schemes.

2 Preliminaries

For any positive integer n, let {0, 1}n be the set of all n-bit strings. For any
integers i and j such that i ≤ j, let [i, j] be the set {s | i ≤ s ≤ j}, and [i, j)
be {s | i ≤ s < j}. Similarly, let e[i, j] be the set {s | i ≤ s ≤ j and s is even},
and let o[i, j] be {s | i ≤ s ≤ j and s is odd}. We also define e[i, j) and o[i, j)
analogously. For a set S, s

R← S is the selection of s from S uniformly at random.
A tweakable blockcipher, or a TBC in short, is a function E : K×T ×{0, 1}n →

{0, 1}n, whereK is the key space and T is the tweak space, and for any key K ∈ K
and any tweak T ∈ T , E(K, T, ·) = EK(T, ·) is a permutation over {0, 1}n.

We follow the security notion from [15]. We consider two attack scenarios;
chosen-plaintext attacks (CPA) and chosen-plaintext/ciphertext attacks (CCA).
Let Perm(n) be the set of all permutations over {0, 1}n, and let Perm(T , n) be
the set of all functions Π : T ×{0, 1}n → {0, 1}n such that for any tweak T ∈ T ,
Π(T, ·) ∈ Perm(n). That is, when we write Π

R← Perm(T , n), then for each
T ∈ T , Π(T, ·) is a random permutation over {0, 1}n. We also let Func(n) be
the set of all functions from {0, 1}n to {0, 1}n.

Tweakable Pseudorandom Permutation from Generalized Feistel Structure 25

An adversary A is a (possibly probabilistic) algorithm with access to one or
more oracles. Oracles are written as superscripts.

Definition 1. Let E : K × T × {0, 1}n → {0, 1}n be a TBC. For any CPA-
adversary A, define Advtprp

E (A) def= |PE − PΠ |, where

– PE
def= Pr(K R← K; AEK(·,·) = 1), and

– PΠ
def= Pr(Π R← Perm(T , n); AΠ(·,·) = 1).

We also define Advtprp
E (q) def= maxA{Advtprp

E (A)}, where the maximum is taken
over all adversaries that make at most q queries.

Definition 2. Let E : K × T × {0, 1}n → {0, 1}n be a TBC. For any CCA-
adversary A, define Advtsprp

E (A) def= |PE − PΠ |, where

– PE
def= Pr(K R← K; AEK(·,·),E−1

K (·,·) = 1), and
– PΠ

def= Pr(Π R← Perm(T , n); AΠ(·,·),Π−1(·,·) = 1).

We also define Advtsprp
E (q) def= maxA{Advtsprp

E (A)}, where the maximum is
taken over all adversaries that make at most q queries.

We say E is a Tweakable PseudoRandom Permutation (TPRP) if Advtprp
E (q)

is sufficiently small, and E is a Tweakable Strong PseudoRandom Permutation
(TSPRP) if Advtsprp

E (q) is sufficiently small.

3 Generalized Feistel Structure

We consider the Generalized Feistel Structure, or the GFS in short, which is
parameterized by R and d. GFSR,d has R rounds in total, and has d data lines,
where d ≥ 4 is even, and each data line is n bits. It takes fr,i ∈ Func(n) as the key,
where r ∈ [0, R) and i ∈ [0, d/2). A plaintext and a ciphertext are dn bits, i.e., it
takes a plaintext x0 = (x0,0, x0,1, . . . , x0,d−1) ∈ ({0, 1}n)d, and outputs a cipher-
text xR = (xR,0, xR,1, . . . , xR,d−1) ∈ ({0, 1}n)d. The r-th round of GFSR,d, de-
noted RF , takes the intermediate value xr = (xr,0, xr,1, . . . , xr,d−1) ∈ ({0, 1}n)d

as the input, and produces the output xr+1 = (xr+1,0, xr+1,1, . . . , xr+1,d−1) ∈
({0, 1}n)d defined by

xr+1,i =

{
xr,i+1 ⊕ fr,i/2(xr,i) if i ∈ e[0, d),
xr,i+1 otherwise,

where r ∈ [0, R) and we assume that mod d is taken to the second index in xr,i,
i.e., xr,d corresponds to xr,0 (We also use the same convention for other vari-
ables). Therefore, the r-th round RF uses d/2 F-functions fr,0, fr,1, . . . , fr,d/2−1.
Throughout this paper, we assume that F-functions, fr,i’s, are random functions,
i.e., fr,i is uniformly chosen at random from Func(n), and thus fr,i

R← Func(n).

26 A. Mitsuda and T. Iwata

3.1 Tweakable Blockcipher from Generalized Feistel Structure

We consider tweakable blockciphers based on GFSR,d, where the tweaks are
directly XOR-ed to the data lines. For GFSR,d, define the locations Lr,i and
L̃r,i as in Fig. 1, where r ∈ [0, R] and i ∈ [0, d) for Lr,i, and r ∈ [0, R) and
i ∈ e[0, d) for L̃r,i. Let this set be ΛR, i.e.,

ΛR
def= {Lr,i | r ∈ [0, R] and i ∈ [0, d)} ∪ {L̃i,r | r ∈ [0, R) and i ∈ e[0, d)}.

Let T λ be the XOR of all the tweaks used at location λ ∈ ΛR. The construction
we consider is:

xr+1,i =

{
xr,i+1 ⊕ T Lr,i+1 ⊕ fr,i/2(xr,i ⊕ T Lr,i ⊕ T L̃r,i) if i ∈ e[0, d),
xr,i+1 ⊕ T Lr,i+1 otherwise.

See Fig. 2 for an illustration.

fr,0

xr,d−2 xr,d−1xr,0 xr,1

fr, d
2−1fr,1

xr,2 xr,3

xr+1,0 xr+1,1 xr+1,2 xr+1,d−2 xr+1,d−1xr+1,d−3

Lr,0 Lr,1 Lr,2 Lr,3 Lr,d−2 Lr,d−1

L̃r,0 L̃r,2 L̃r,d−2

Fig. 1. Definition of the locations Lr,i and L̃r,i

fr,0

T Lr,0 T Lr,1 T Lr,d−2 T Lr,d−1

T L̃r,0 T L̃r,d−2

xr,d−2 xr,d−1xr,0 xr,1

fr, d
2−1fr,1

T Lr,2 T Lr,3

T L̃r,2

xr,2 xr,3

xr+1,0 xr+1,1 xr+1,2 xr+1,d−2 xr+1,d−1xr+1,d−3

Fig. 2. The construction we consider in this paper

We use GFSR,d(λ) to refer to GFSR,d, where a tweak T λ is XOR-ed at the lo-
cation λ ∈ ΛR. To denote XOR-ing multiple tweaks, we write GFSR,d(λ1, . . . , λτ)
or GFSR,d(Λ), where Λ is a set such that Λ ⊆ ΛR. Thus, in such a structure, the

Tweakable Pseudorandom Permutation from Generalized Feistel Structure 27

tweak size is τn bits. When we XOR the same tweak at two or more locations,
we write GFSR,d(λ1 + λ2), where the implication of using the compound loca-
tion λ1 + λ2 is that T λ1 = T λ2 . In ΛR, we have listed all tweaks at L̃r,i locations,
however, as in the Feistel structure, we do not have to consider these locations.

Lemma 1. For any i ∈ e[0, d) and r ∈ [0, R), L̃r,i = Lr,i + Lr+1,i−1. Similarly,
for any i ∈ o[0, d) and r ∈ [0, R), Lr,i = Lr+1,i−1.

Since these locations are equivalent, we will use them interchangeably.

Lemma 2. For all R, without loss of generality, we can consider only structures
that never use the tweak locations {L0,i | i ∈ e[0, d)}, {L1,i | i ∈ e[0, d)}, or
{LR,i | i ∈ [0, d)}, even in compound locations, and even when considering CCA
security.

Proof. We can simulate oracle queries with or without the tweaks in these lo-
cations. To simulate a query (T, x0,0, x0,1, . . . , x0,d−1) ∈ T × ({0, 1}n)d to a
structure with these locations, we make a query

(x0,0 ⊕ T L0,0, x0,1 ⊕ T L1,0, . . . , x0,d−2 ⊕ T L0,d−2, x0,d−1 ⊕ T L1,d−2)

to the structure without these tweaks to obtain (xR,0, xR,1, . . . , xR,d−1), and we
return (xR,0⊕T LR,0, xR,1⊕T LR,1, . . . , xR,d−1⊕T LR,d−1). Decryption queries can
be simulated similarly. ��

The set of tweak locations we need to consider is thus reduced, and we re-define
ΛR as ΛR

def= {Lr,i | r ∈ [2, R) and i ∈ e[0, d)}.
For any Λ ∈ ΛR, we define the inverse of GFSR,d(Λ), which we denote

GFS−1
R,d(Λ). For a given key and a tweak, GFSR,d(Λ) defines a permutation over

({0, 1}n)d, and GFS−1
R,d(Λ) is the inverse of this permutation, i.e., GFS−1

R,d(Λ)
takes a ciphertext xR ∈ ({0, 1}n)d to return a plaintext x0 ∈ ({0, 1}n)d.

3.2 Almost Universal Hash Function [2]

We consider a function H : K × T × {0, 1}dn → {0, 1}dn, where for any key
K ∈ K, H(K, ·, ·) = HK(·, ·) takes (T, x) ∈ T × {0, 1}dn as input and outputs
y = (y0, . . . , yd−1) ∈ {0, 1}dn, and for any key K ∈ K and any tweak T ∈ T ,
HK(T, ·) is a permutation over {0, 1}dn.

Definition 3. We say that H is ε-AUe (Almost Universal for Even indices)
if, for any (T, x) and (T ′, x′) such that (T, x) �= (T ′, x′), we have Pr(K R←
K; yi = y′

i for some i ∈ e[0, d)) ≤ ε. Similarly, we say H is ε-AUo (Almost Uni-
versal for Odd indices) if Pr(K R← K; yi = y′

i for some i ∈ o[0, d)) ≤ ε.

In other words, Pr(K R← K; yi �= y′
i for any i ∈ e[0, d)) > 1 − ε holds for ε-AUe

function H , and Pr(K R← K; yi �= y′
i for any i ∈ o[0, d)) > 1 − ε holds for ε-AUo

function H .
We also define the following universal hash function which is a weaker version

of the above definition.

28 A. Mitsuda and T. Iwata

Definition 4. H is ε-AWU (Almost Weakly Universal) if, for any (T, x) and
(T ′, x′) such that (T, x) �= (T ′, x′), Pr(K R← K; yi = y′

i for all i ∈ [0, d)) ≤ ε.

In other words, Pr(K R← K; yi �= y′
i for some i ∈ [0, d)) > 1− ε holds for ε-AWU

function H . These hash functions will be useful in simplifying the statements of
our results and the security proofs.

4 Tweakable Blockciphers with CPA Security

In this section, we describe constructions of TBCs based on the GFS. We start
with the following lemma, which shows that constructing ε-AUe hash function
H is enough to construct a TPRP based on the GFS.

Lemma 3. Let H : K×T ×{0, 1}dn → {0, 1}dn be any ε-AUe function, and let
E = RF ◦RF ◦H. Then Advtprp

E (q) ≤ 2q2ε.

Intuitively, H ensures that the inputs of F-functions in the second last RF are
all distinct. This implies that, if we let (xR,0, xR,1, . . . , xR,d−1) be the output of
RF ◦RF ◦H , then xR,i for i ∈ o[0, d) are truly random n-bit strings. Similarly,
since xR,i for i ∈ o[0, d) are random strings, we rarely have collisions at the
inputs of F-functions in the last RF , and thus xR,i for i ∈ e[0, d) are random. A
proof is similar to the proof of [20, Theorem 3.1] and hence omitted.

The next lemma shows that an ε-AUe hash function can be constructed from
the (d− 1)-round GFS.

Lemma 4. For any a, b ∈ e[0, d) such that a �= b, H = GFSd−1,d(L2,a + L2,b)
is ε-AUe for ε = d2/2n+1.

A proof is based on the counting argument. We derive the lower bound on the
number of fr,i’s such that xd−1,j �= x′

d−1,j holds for all j ∈ e[0, d), by constructing
a series of pseudocodes. A complete proof is given in the next section.

We now present our construction of a TPRP.

Theorem 1. Let E = GFSd+1,d(L2,a + L2,b), where a, b ∈ e[0, d) and a �= b.
Then Advtprp

E (q) ≤ q2d2/2n.

Proof. We see that E can be seen as E = RF ◦RF ◦GFSd−1,d(L2,a+L2,b). Since
we know that GFSd−1,d(L2,a + L2,b) is ε-AUe for ε = d2/2n+1 from Lemma 4,
by substituting ε = d2/2n+1 in Lemma 3, we obtain the result. ��

For example, GFS 5,4(L2,a + L2,b) and GFS 9,8(L2,a + L2,b) are TPRPs.

5 Proof of Lemma 4

H = GFSd−1,d(L2,a + L2,b) takes {fr,j | r ∈ [0, d− 1) and j ∈ [0, d/2)} as a
key. We consider two inputs (T, x0), (T ′, x′

0) ∈ {0, 1}n × ({0, 1}n)d such that
(T, x0) �= (T ′, x′

0), x0 = (x0,0, . . . , x0,d−1), and x′
0 = (x′

0,0, . . . , x
′
0,d−1). Now let

Tweakable Pseudorandom Permutation from Generalized Feistel Structure 29

000 for j = d/2− 2 downto 0
010 for r = 0 to d− 2j − 2
020 fix fr,j arbitrarily
030 fix f0,d/2−1 s.t. xd−j−1,j �= x′

d−j−1,j for all j ∈ e[0, d)
040 if d− 2 ∈ {a, b}
050 then fix f1,d/2−1 s.t. x2,d−2 ⊕ T �= x′

2,d−2 ⊕ T ′

060 else fix f1,d/2−1 s.t. x2,d−2 �= x′
2,d−2

070 for r = 2 to d− 2
080 fix fr,d/2−1 s.t. xr+1,d−2 �= x′

r+1,d−2

090 for j = d/2− 2 downto 0
100 for r = d− 2j − 1 to d− 2
110 fix fr,j s.t. xr+1,2j �= x′

r+1,2j

Fig. 3. Pseudocode for the Case x0,d−2 �= x′
0,d−2

xd−1 = (xd−1,0, . . . , xd−1,d−1), x′
d−1 = (x′

d−1,0, . . . , x
′
d−1,d−1) ∈ ({0, 1}n)d be the

corresponding outputs. The proof is based on the counting argument, where we
derive the lower bound on the number of fr,i’s such that xd−1,j �= x′

d−1,j holds
for all j ∈ e[0, d). We consider three cases depending on the values of (T, x0) and
(T ′, x′

0); Case x0,i �= x′
0,i for some i ∈ e[0, d), Case x0,i = x′

0,i for all i ∈ e[0, d)
and x0,j �= x′

0,j for some j ∈ o[0, d), and Case x0 = x′
0 and T �= T ′.

We first consider the Case x0,i �= x′
0,i for some i ∈ e[0, d). Without loss of

generality, we assume i = d − 2, i.e., x0,d−2 �= x′
0,d−2, since other cases are the

rotation of this case. We fix fr,j ’s according to the pseudocode given in Fig. 3.
The pseudocode was designed to meet the following requirements;

– We fix fr,j ’s to meet some condition, and its inputs and other values related
to the condition are already fixed so that the condition can be satisfied. For
example, if we want to satisfy fr,j(x)⊕ x′ �= fr,j(y)⊕ y′, then x, x′, y, y′ are
all fixed constants such that x �= y.

– When we fix fr,j , its condition (e.g., xd−j−1,j �= x′
d−j−1,j for j ∈ e[0, d) in

line 030) can be satisfied solely on fr,j, and no other F-functions.
– xd−1,j �= x′

d−1,j holds for all j ∈ e[0, d).

We now count the number of fr,j’s that can be fixed in the pseudocode. Let
Nf be the number of all functions over {0, 1}n, i.e., Nf = #Func(n) = (2n)2

n

.
In lines 000–020, we have N

3+5+···+(d−1)
f = N

(d−2)(d+2)/4
f choices of fr,j’s

since they can be any functions.
In line 030, since we have at most d/2 conditions to satisfy, we have at least

Nf (1 − d/2n+1) choices of f0,d/2−1. To see this, we know that the inputs of
f0,d/2−1 satisfy x0,d−2 �= x′

0,d−2. Now for any constant z ∈ {0, 1}n, we have
Nf/2n choices of f0,d/2−1 that satisfy f0,d/2−1(x0,d−2) ⊕ f0,d/2−1(x′

0,d−2) = z.
The d/2 conditions in line 030 can be seen as if we have at most d/2 bad values
of z, and thus we have at most dNf/2n+1 bad choices of f0,d/2−1.

In lines 040–060, we know that the corresponding inputs of f1,d/2−1 satisfy
x1,d−2 �= x′

1,d−2 from line 030. Thus in both cases, we have Nf (1−1/2n) choices
of f1,d/2−1 that satisfy the desired condition.

30 A. Mitsuda and T. Iwata

000 fix f0,d/2−1 arbitrarily
010 for j = d/2− 2 downto 0
020 for r = 0 to d− 2j − 3
030 fix fr,j arbitrarily
040 fix fd−2j−2,j s.t. xd−2j−1,2j �= x′

d−2j−1,2j

050 if d− 2 ∈ {a, b}
060 then fix f1,d/2−1 s.t. x2,d−2 ⊕ T �= x′

2,d−2 ⊕ T ′

070 else fix f1,d/2−1 s.t. x2,d−2 �= x′
2,d−2

080 for r = 2 to d− 2
090 fix fr,d/2−1 s.t. xr+1,d−2 �= x′

r+1,d−2

100 for j = d/2− 2 downto 0
110 for r = d− 2j − 1 to d− 2
120 fix fr,j s.t. xr+1,2j �= x′

r+1,2j

Fig. 4. Pseudocode for the Case x0,i = x′
0,i for all i ∈ e[0, d) and x0,d−1 �= x′

0,d−1

In lines 070–080, since the inputs are fixed to be distinct when we choose
fr,d/2−1, we have Nf (1 − 1/2n) choices of fr,d/2−1 for each r ∈ [2, d − 2].
This implies we have Nd−3

f (1 − 1/2n)d−3 ≥ Nd−3
f (1 − (d − 3)/2n) choices of

f2,d/2−1, . . . , fd−2,d/2−1.
With the similar reasoning, since we fix 2+4+ · · ·+(d−4) = (d−4)(d−2)/4

fr,j’s in lines 090–110, we have N
(d−4)(d−2)/4
f (1− (d− 4)(d− 2)/2n+2) choices.

Now Pr(fr,j
R← Func(n); xd−1,j �= x′

d−1,j for all j ∈ e[0, d)) is at least(
1− d

2n+1

)(
1− 1

2n

)(
1− d− 3

2n

)(
1− (d− 4)(d− 2)

2n+2

)
≥ 1− d2

2n+2
(1)

in this case.
We next consider the Case x0,i = x′

0,i for all i ∈ e[0, d) and x0,j �= x′
0,j for some

j ∈ o[0, d). Without loss of generality, we assume j = d− 1, i.e, x0,d−1 �= x′
0,d−1.

As in the previous case, we fix fr,j ’s according to the pseudocode given in Fig. 4.
By counting the number of fr,j’s that can be fixed in the pseudocode, we see
that Pr(fr,j

R← Func(n); xd−1,j �= x′
d−1,j for all j ∈ e[0, d)) is at least(

1− d− 2
2n+1

)(
1− 1

2n

)(
1− d− 3

2n

)(
1− (d− 4)(d− 2)

2n+2

)
≥ 1− d2 − 4

2n+2
. (2)

We next consider the last case x0 = x′
0 and T �= T ′. Without loss of generality,

we assume a ∈ e[0, d− 2) and b = d− 2, and use the pseudocode in Fig. 5.
Note that we have (x2,0 ⊕ x′

2,0, . . . , x2,d−1 ⊕ x′
2,d−1) = (0n, . . . , 0n) after the

line 010. The pseudocode can be seen as using the pseudocode in Fig 3 twice;
one for x2,j and x′

2,j with j ∈ [0, a− 2], and the other for j ∈ [a + 2, d− 4]. Now
all the fr,j’s in lines 000–070 are fixed arbitrarily, and we only have conditions
after the line 080. For lines 080–100, we have (d−3)+(d−5)+ · · ·+(d−a−3) =
(2d− a− 6)(a + 2)/4 conditions, and we have (d− 3) + (d− 5) + · · ·+ (a + 1) =
(d + a− 2)(d− a− 2)/4 conditions in lines 110–130. Therefore, we have at most

Tweakable Pseudorandom Permutation from Generalized Feistel Structure 31

000 for j = 0 to d/2− 1
010 fix f0,j and f1,j arbitrarily
020 for j = 0 to a/2− 1
030 for r = 2 to a− 2j + 1
040 fix fr,j arbitrarily
050 for j = a/2 + 1 to d/2− 2
060 for r = 2 to d− 2j − 1
070 fix fr,j arbitrarily
080 for j = a/2 downto 0
090 for r = a− 2j + 2 to d− 2
100 fix fr,j s.t. xr+1,2j �= x′

r+1,2j

110 for j = d/2− 1 downto a/2 + 1
120 for r = d− 2j to d− 2
130 fix fr,j s.t. xr+1,2j �= x′

r+1,2j

Fig. 5. Pseudocode for the Case x0 = x′
0 and T �= T ′

((2d−a−6)(a+2)+(d+a−2)(d−a−2))/4 conditions, which is at most 3d2/8 ≤
d2/2 by taking the maximum over a ∈ e[0, d− 2). We conclude that the number
of fr,j ’s that can be fixed in the pseudocode is at least N

d(d−1)/2
f (1− 1/2n)d2/2,

and thus Pr(fr,j
R← Func(n); xd−1,j �= x′

d−1,j for all j ∈ e[0, d)) is at least

(
1− 1

2n

)d2/2

≥ 1− d2

2n+1
. (3)

Finally, we conclude the proof by taking the minimum of (1), (2), and (3). ��

6 Tweakable Blockciphers with CCA Security

In this section, we consider the construction of TSPRPs. We first present the
following lemma, which shows that constructing ε-AUe hash function H1 and
ε-AUo hash function H2 is enough to construct a TSPRP based on the GFS,
where for a fixed key and a tweak, H2 is a permutation over ({0, 1}d)n and its
inverse is denoted H−1

2 .

Lemma 5. Let H1 : K×T ×{0, 1}dn → {0, 1}dn be any ε-AUe function, H2 : K×
T ×{0, 1}dn → {0, 1}dn be any ε-AUo function, and let E = H−1

2 ◦RF ◦RF ◦H1,
where the tweak space of E is T , and we use the same tweak for both H1 and
H2. Then Advtsprp

E (q) ≤ 2q2ε.

A proof is similar to the proof of [20, Theorem 3.2] by adopting the tweak, and
hence omitted. The next lemma shows the construction of an ε-AUo hash from
the decryption of the (d− 1)-round GFS.

Lemma 6. For any a, b ∈ e[0, d) such that a �= b, H = GFS−1
d−1,d(Ld−2,a +

Ld−2,b) is ε-AUo for ε = d2/2n+1.

32 A. Mitsuda and T. Iwata

A proof is very similar to the proof of Lemma 4 and omitted. We now present
our construction of a TSPRP.

Theorem 2. Let a, b, a′, b′ ∈ e[0, d), where a �= b and a′ �= b′, and let E =
GFS 2d,d(L2,a + L2,b + L2d−1,a′ + L2d−1,b′). Then Advtsprp

E (q) ≤ q2d2/2n.

Proof. Since E can be seen as E = GFSd−1,d(Ld−2,a′ + Ld−2,b′) ◦ RF ◦ RF ◦
GFSd−1,d(L2,a + L2,b), from Lemma 5 and Lemma 6, we obtain the result. ��

For example, GFS 8,4(L2,a+L2,b+L7,a′+L7,b′) and GFS 16,8(L2,a+L2,b+L15,a′+
L15,b′) are TSPRPs.

7 How to Input Multiple Tweaks

So far, all tweaks were assumed to be one data line in length. It may be desirable
however, to have longer tweaks. In this section, we present such constructions.

7.1 Multiple Tweaks without Increasing the Number of Rounds

We first consider constructions without increasing the number of rounds.
For r ≥ 2, let Lr = (Lr,0, Lr,2, . . . , Lr,d−2) be the locations. In this section, we

are particularly interested in the case r = 2, i.e., L2 = (L2,0, L2,2, . . . , L2,d−2).
Let T = (T1, T2, . . . , Tτ) be a τn-bit tweak. Let C be a τ × d/2 matrix with

0/1 elements. We consider to XOR the i-th element of T ·C to the i-th element of
L2. That is, we consider T2 = (T L2,0 , T L2,2, . . . , T L2,d−2) = T ·C, or, equivalently,
we consider L2 · Ct ⊆ ΛR.

For example, if d = 8, τ = 2, and

C =
(

1 1 0 0
0 1 1 0

)
,

then T = (T1, T2), and T L2,0 = T1, T
L2,2 = T1 ⊕ T2, T

L2,4 = T2, T
L2,6 = 0n, or

equivalently, L2 · Ct = (L2,0 + L2,2, L2,2 + L2,4).
We have the following lemma.

Lemma 7. Let C be a τ×d/2 matrix, and consider Λ = L2 ·Ct. Suppose that the
following condition holds; For any distinct tweaks T, T ′ ∈ ({0, 1}n)τ , there are at
least two distinct indices i, j ∈ e[0, d) such that T L2,i �= T ′L2,i and T L2,j �= T ′L2,j ,
where (T L2,0 , T L2,2 , . . . , T L2,d−2) = T ·C and (T ′L2,0 , T ′L2,2, . . . , T ′L2,d−2) = T ′ ·C.
Then, GFSd−1,d(Λ) is ε-AUe for ε = d2/2n+1.

This lemma can be proved similarly to Lemma 4. We next show that a linear
code can be used as C in Lemma 7.

Lemma 8. Let G be a generator matrix of a (d/2, d/2 − 1, 2) linear code, and
let Λ = L2 · Gt. Then GFSd−1,d(Λ) is ε-AUe for ε = d2/2n+1, where it takes a
(d/2− 1)n-bit tweak.

Tweakable Pseudorandom Permutation from Generalized Feistel Structure 33

Proof. Consider two distinct tweaks T, T ′ ∈ ({0, 1}n)d/2−1, and let T2 = T · G
and T ′

2 = T ′ · G. Since G is a (d/2 − 1) × d/2 matrix with minimum Hamming
distance 2, we have at least two nonzero elements in T2 ⊕ T ′

2 = (T ⊕ T ′) · G.
Therefore, the condition in Lemma 7 is satisfied, and we obtain the result. ��

We next show our construction of a TPRP based on Lemma 8.

Theorem 3. Let G be a generator matrix of a (d/2, d/2− 1, 2) linear code, and
let Λ = L2 · Gt. Then for E = GFSd+1,d(Λ), we have Advtprp

E (q) ≤ q2d2/2n.

Proof. We see that E = RF ◦ RF ◦ GFSd−1,d(Λ). Since GFSd−1,d(Λ) is ε-AUe

for ε = d2/2n+1 from Lemma 8, by using Lemma 3, we obtain the result. ��

By following the similar argument to Sec. 6, we also obtain a TSPRP.

Theorem 4. Let G be a generator matrix of a (d/2, d/2− 1, 2) linear code, and
let Λ = (L2 + L2d−1) · Gt. Then for E = GFS 2d,d(Λ), Advtsprp

E (q) ≤ q2d2/2n.

For example, GFS 9,8(L2,0 + L2,2, L2,2 + L2,4, L2,4 + L2,6) is a TPRP, and
GFS 16,8(L2,0 + L2,2 + L15,0 + L15,2, L2,2 + L2,4 + L15,2 + L15,4, L2,4 + L2,6 +
L15,4 + L15,6) is a TSPRP, where they take a 3n-bit tweak, and G is given by

G =

⎛⎝1 1 0 0
0 1 1 0
0 0 1 1

⎞⎠
for both cases.

7.2 Multiple Tweaks with Increasing the Number of Rounds

We finally consider constructions by increasing the number of rounds. We show
that our construction can take additional dn/2-bit tweak as its input by adding
one round.

The following lemma shows a construction of an ε-AWU function.

Lemma 9. Let l ≥ 2 be an integer. Then GFS l,d(L2,L3, . . . ,Ll) is ε-AWU for
ε = l/2n, and it takes a (l − 1)dn/2-bit tweak.

This can be proved similarly to the proof of Lemma 4 and Lemma 7, and hence
the proof is omitted.

We next show that the composition of an ε1-AWU function and an ε2-AUe

function yields an (ε1 + ε2)-AUe function.

Lemma 10. Let H1 be any ε1-AWU function with a tweak space T1, and H2

be any ε2-AUe function with a tweak space T2. Then, H2 ◦ H1 is an ε-AUe for
ε = ε1 + ε2 with a tweak space T1 × T2.

34 A. Mitsuda and T. Iwata

Proof. We first fix some terminology. Let (T1, X) ∈ T1×{0, 1}dn be the input of
H1, and Z ∈ {0, 1}dn be its output. Similarly, let (T2, Z) ∈ T2 × {0, 1}dn be the
input of H2, and Y = (y0, . . . , yd−1) ∈ {0, 1}dn be its output. That is, H2 ◦H1

takes ((T1, T2), X) as input, and outputs Y . Let ((T1, T2), X) and ((T ′
1, T

′
2), X

′)
be distinct inputs. We consider two cases; Case X �= X ′ or T1 �= T ′

1, and Case
X = X ′, T1 = T ′

1, and T2 �= T ′
2.

For the first case, from Lemma 9, we have Z �= Z ′ with probability 1 − ε1.
Then Pr(yi �= y′

i for any i ∈ e[0, d)) is at least (1− ε1)(1− ε2) ≥ 1− (ε1 + ε2).
For the second case, Pr(yi �= y′

i for any i ∈ e[0, d)) is at least 1 − ε2, and we
have the claimed bound. ��

We next show our TPRP based on Lemma 8, Lemma 9, and Lemma 10.

Theorem 5. Let l ≥ 2 be an integer, and let G be a generator matrix of a
(d/2, d/2−1, 2) linear code. Then for E = GFS l+d+1,d(L2,L3, . . . ,Ll,Ll+2 · Gt),

Advtprp
E (q) ≤ q2d2

2n
+

2lq2

2n
,

where it takes a (ld/2− 1)n-bit tweak.

Proof. We see that E = RF ◦RF ◦GFS l+d−1,d(L2,L3, . . . ,Ll,Ll+2 · Gt). From
Lemma 8, Lemma 9, and Lemma 10, GFS l+d−1,d(L2,L3, . . . ,Ll,Ll+2 · Gt) is
ε-AUe for ε = (d2 + 2l)/2n+1. From Lemma 3, we obtain the result. ��

We also obtain the following construction of a TSPRP, which can be proved by
following the similar argument to Sec. 6.

Theorem 6. Let l ≥ 2 be an integer, and let G be a generator matrix of a
(d/2, d/2 − 1, 2) linear code. Then for E = GFS 2d+2l,d(L2 + L2d+2l−1,L3 +
L2d+2l−2, . . . ,Ll + L2d+l+1, (Ll+2 + L2d+l−1) · Gt), we have

Advtprp
E (q) ≤ q2d2

2n
+

2lq2

2n
,

where it takes a (ld/2− 1)n-bit tweak.

8 Conclusions

In this paper, we considered the problem of constructing TPRPs and TSPRPs
from the GFS. Our basic construction of a TPRP in Theorem 1 shows that
(d + 1) rounds are enough, and a TSPRP in Theorem 2 shows that 2d rounds
are enough. We also studied how we can handle multiple tweaks with/without
increasing the number of rounds and still maintain the provable security. It
would be interesting to see designs based on other structures, including the SPN
(Substitution-Permutation Network) of the AES.

Tweakable Pseudorandom Permutation from Generalized Feistel Structure 35

References

1. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 491–506. Springer, Heidelberg (2003)

2. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. JCSS 18, 265–278
(1979)

3. Chakraborty, D., Sarkar, P.: HCH: A new tweakable enciphering scheme using the
hash-encrypt-hash approach. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 287–302. Springer, Heidelberg (2006)

4. Chakraborty, D., Sarkar, P.: A new mode of encryption providing a tweakable
strong pseudo-random permutation. In: Robshaw, M. (ed.) FSE 2006. LNCS,
vol. 4047, pp. 293–309. Springer, Heidelberg (2006)

5. Crowley, P.: Mercy: A fast large block cipher for disk sector encryption. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 49–63. Springer, Heidelberg
(2001)

6. Goldenberg, D., Hohenberger, S., Liskov, M., Schwartz, E.C., Seyalioglu, H.: On
tweaking Luby-Rackoff blockciphers. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 342–356. Springer, Heidelberg (2007)

7. Feistel, H.: Cryptography and computer privacy. Scientific American, 15–23 (1973)
8. Fluhrer, S.R.: Cryptanalysis of the Mercy block cipher. In: Matsui, M. (ed.) FSE

2001. LNCS, vol. 2355, pp. 21–40. Springer, Heidelberg (2002)
9. Halevi, S.: EME∗: Extending EME to handle arbitrary-length messages with asso-

ciated data. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS,
vol. 3348, pp. 315–327. Springer, Heidelberg (2004)

10. Halevi, S.: Invertible universal hashing and the TET encryption mode. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 412–429. Springer, Heidelberg (2007)

11. Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)

12. Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004)

13. D’Halluin, C., Bijnens, G., Preneel, B., Rijmen, V.: Equivalent keys of HPC. In:
Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716,
pp. 29–42. Springer, Heidelberg (1999)

14. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.S., Lee, C., Chang, D., Lee,
J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A new block cipher suitable for
low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249,
pp. 46–59. Springer, Heidelberg (2006)

15. Liskov, M., Rivest, R., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

16. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM J. on Computing 17(2), 373–386 (1988)

17. Minematsu, K.: Improved security analysis of XEX and LRW modes. In: Biham, E.,
Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 96–113. Springer, Heidelberg
(2007)

18. Minematsu, K., Matsushima, T.: Tweakable enciphering schemes from hash-sum-
expansion. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007.
LNCS, vol. 4859, pp. 252–267. Springer, Heidelberg (2007)

19. Moriai, S., Vaudenay, S.: On the pseudorandomness of top-level schemes of block
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 289–302.
Springer, Heidelberg (2000)

36 A. Mitsuda and T. Iwata

20. Naor, M., Reingold, O.: On the construction of pseudorandom permutations: Luby-
Rackoff revisited. J. Cryptology 12(1), 29–66 (1999)

21. Rivest, R.L., Robshaw, M.J.B., Sidney, R., Yin, Y.L.: The RC6 block cipher. Sub-
mission to AES (1998), http://www.rsa.com/

22. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
mode OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

23. Sarkar, P.: Improving upon the TET mode of operation. In: Nam, K.-H., Rhee, G.
(eds.) ICISC 2007. LNCS, vol. 4817, pp. 180–192. Springer, Heidelberg (2007)

24. Schroeppel, R.: The Hasty Pudding Cipher. NIST AES proposal (1998), http://
www.cs.arizona.edu/∼rcs/hpc

25. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit block-
cipher CLEFIA. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195.
Springer, Heidelberg (2007)

26. Wagner, D.: Equivalent keys in HPC. Presentation at the rump session of AES2,
Rome (1999)

27. Wang, P., Feng, D., Wu, W.: HCTR: A variable-input-length enciphering mode.
In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 175–188.
Springer, Heidelberg (2005)

28. Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers prov-
ably secure and not relying on any unproved hypotheses. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, Heidelberg (1990)

A Negative Results on Tweakable Blockciphers with
CPA Security

In this appendix, we present negative results on the constructions of TBCs based
on the GFS.

In the following lemma, we show that GFSR,d cannot be a TPRP if the tweaks
are located in the last (d− 1) rounds in a triangular way. Let Σr,i be any subset
of {Lr,j | j ∈ e[i, d)}.

Lemma 11. Let R ≥ d− 1. Then GFSR,d(ΣR−1,0, ΣR−2,1, . . . , ΣR−d+1,d−2) is
not a TPRP.

Proof. Suppose that ΣR−d+1,d−2 �= ∅ and T is XOR-ed at location LR−d+1,d−2.
Consider two inputs (T, x) ∈ T × ({0, 1}n)d and (T ′, x) ∈ T × ({0, 1}n)d, where
T �= T ′ and other tweaks (if any) are all fixed to 0n. Let (xR,0, xR,1, . . . , xR,d−1)
and (x′

R,0, x
′
R,1, . . . , x

′
R,d−1) be the corresponding ciphertexts. Then, it is easy

to verify that we always have xR,d−1 ⊕ x′
R,d−1 = T ⊕ T ′, which allows trivial

distinguishing attack. It is also easy to verify that a similar attack can be applied
for other locations. ��

We next show that, for any tweak location, d rounds are not enough to construct
a TPRP.

http://www.rsa.com/
http://www.cs.arizona.edu/~rcs/hpc
http://www.cs.arizona.edu/~rcs/hpc

Tweakable Pseudorandom Permutation from Generalized Feistel Structure 37

Lemma 12. For any Λ ⊆ Λd, GFSd,d(Λ) is not a TPRP.

Proof. If we set all tweaks to 0n, GFSd,d(Λ) is equivalent to GFSd,d. Now it
is easy to see that d-round GFS with d data lines is not a PRP. Consider two
plaintexts x = (x0,0, x0,1, . . . , x0,d−1) and x′ = (x′

0,0, x
′
0,1, . . . , x

′
0,d−1), where

x0,i = x′
0,i for all i ∈ [0, d− 1) but x0,d−1 �= x′

0,d−1. We see that the correspond-
ing ciphertexts (xd,0, xd,1, . . . , xd,d−1) and (x′

d,0, x
′
d,1, . . . , x

′
d,d−1) always satisfy

xd,d−1 ⊕ x′
d,d−1 = x0,d−1 ⊕ x′

0,d−1. ��

Timed-Release Encryption Revisited

Sherman S.M. Chow1 and S.M. Yiu2

1 Department of Computer Science
Courant Institute of Mathematical Sciences

New York University, NY 10012, USA
schow@cs.nyu.edu

2 Department of Computer Science
University of Hong Kong
Pokfulam, Hong Kong

smyiu@cs.hku.hk

Abstract. Timed-release encryption (TRE) is a two-factor encryption
scheme combining public key encryption and time-dependent encryption
– decryption requires a trapdoor which is kept confidential by a time-
server until at an appointed time. This paper revisits two recent results.

In ESORICS 2007, Chalkias et al. proposed an efficient anonymous
TRE scheme. Unfortunately, we show the security threats of their scheme
in the presence of a curious time-server and an impatient recipient.

Recently, Chow et al. proposed an encryption scheme in the standard
model which can be used as TRE. Nevertheless, only confidentiality is
guaranteed. We demonstrate how to support pre-open capability, which
is often desirable in applications of TRE. Our extension also enables only
the recipient to know the release-time from the ciphertext. This feature
is not considered in previous notion of release-time confidentiality.

Keywords: Timed-release encryption, release-time confidentiality.

1 Introduction

This paper considers the problem of sending information into the future, i.e.
encrypting a message so that it cannot be decrypted before a future time chosen
by the sender, and after that time only the designated recipient can decrypt
it. This can be generally resolved by two means. The first one is to require the
intended recipient to invest a significant amount of time to do the computation
necessary for the decryption; however, this approach is very computationally
expensive, and the release-time varies with the computing power of the recipient,
thus is not precisely controllable. Instead of relying on the computational effort
of the recipients, the second one depends on their knowledge, such that a special
piece of information is withheld from the recipient until the designated time. It
can be trivially done if the senders are permanently online, instead we assign
this job to a trusted third party, which is also known as time server. We want
a solution that does not require too much help from the time server. Ideally,
the time server only publishes some system parameters but does not interact

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 38–51, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Timed-Release Encryption Revisited 39

with each sender; and for each time a certain (set of) ciphertext should become
decryptable, it only publishes a single time-dependent trapdoor but not anything
specific to each ciphertext. Cryptographic techniques make such a timed-release
encryption (TRE) system possible. The applications of TRE can be broadly
classified into two categories.

Rapid Dissemination of Information. The size of the time-dependent trap-
door is small compared with the ciphertext (even of text message, due to the
inherent ciphertext expansion in probabilistic encryption). With TRE, one can
send the bulky ciphertext beforehand, without worrying the leakage of the con-
fidential information. When it should be made public, a small trapdoor can be
made available to a potentially large set of recipients. This avoids the problem
of any network impedance at the release time. Examples of applicable scenarios
are abundant, such as strategic business plans, news agencies timed publica-
tions, licensed software updates, scheduled payments, or “casual” applications
like internet contests, where participants should not see the challenge before the
designated time.

Commitment of Confidential Information. Commitment of confidential
information is needed in many scenarios, such as sealed-bid auction, electronic
lotteries, legal will, certified e-mail [18], etc. One can view the ciphertext as a
kind of commitment made by the sender. In TRE, the decryption algorithm
deterministically recovers the message from the ciphertext by a time-dependent
trapdoor and the user’s private key. Once the ciphertext is sent, there is no
chance for the message sender to change the message that will be obtained from
the decryption by the recipient later.

A special class of TRE scheme supports pre-open capability [14,18], which
means that the sender can help the recipient to decrypt the ciphertext by pub-
lishing a pre-open key. Since the pre-open key is given by the sender, it may give
an opportunity to the sender to somehow control what message will be output by
the decryption algorithm by manipulating the pre-open key. Using a TRE with
pre-open capability as a way to commit some confidential information requires
the TRE scheme to be binding.

1.1 Related Work

The concept of TRE was suggested by May [19] in 1993, and other timed-release
cryptographic protocols were later proposed [2,4,15,16]. Early TRE schemes
[12,20] either require multiple-round interaction with the time-server, or are
computationally expensive. The first attempt to construct a non-interactive TRE
was made in [3], but it has neither formal security model nor proof. The formal
model of confidentiality is later considered independently by Cheon et al. [7] and
Cathalo et al. [5]. The former focuses on authenticated TRE. Ignoring authenti-
cation, the latter one is stronger than the implicit non-authenticated version of
the former. Cathalo et al. [5] also formalizes the release-time confidentiality.

In many applications of TRE, it is desirable to have a pre-open mechanism
that the sender can enable the recipient to decrypt the ciphertext before the

40 S.S.M. Chow and S.M. Yiu

pre-specified release-time, without re-sending the plaintext. For TRE with such
pre-open capability [18], the sender gets hold of a pre-open key that can func-
tionally substitute the role of the system’s time-dependent trapdoor, for the ci-
phertext prepared by him/her. The concept of pre-open capability is introduced
to the TRE paradigm by [18]. However, the scheme of [18] does not consider the
security threat that the sender can give a pre-open key which opens the cipher-
text to another message that is different from the one originally being encrypted.
This deficiency is pointed out by [14], where the property of binding is formally
defined and a scheme with binding pre-open key is proposed.

Recently, Chalkias et al. proposed an efficient TRE scheme [6] in the random
oracle model (ROM). Based on the observation that many TRE schemes are
based on certificateless encryption (CLE) mechanism, Chow et al. [9] proposed
a new CLE model which is general enough to support TRE. They also proposed
a concrete hierarchical CLE scheme which can be used as TRE with a hierarchy
of time-identifiers, resulting the first provably secure (hierarchical) TRE scheme
in the standard model. Moreover, their scheme supports the option of parial de-
cryption by the time-server – instead of releasing a system-wide time-dependent
trapdoor, the time-server can partially decrypt a particular ciphertext without
leaking any information which helps the decryption of any other ciphertext. This
essentially gives the time-server another mode of operation, e.g. it can charge
the decryptor for each decryption. However, their generic CLE model omits pre-
open capability because it does not make a good sense in the context of CLE.
For a survey of major CLE constructions in the literature, one may refer to [11].

Apart from CLE and TRE, another example of two-factor encryption is token-
controlled encryption (TCE) [1,8,17], which can be used to substitute TRE in
some cases, e.g. when the sender is willing to interact with a trusted agent.
Chow [8] proposed a TCE scheme in the standard model. Interested readers are
referred to [8] for a survey and the applicabilities of TCE.

1.2 Contributions

In this paper, we investigate a number of aspects in the TRE paradigm.

Attack: Power of Strong Decryption. Chalkias et al.’s scheme is claimed
to achieve indistinguishability against adaptive chosen ciphertext even if the ad-
versary is entitled to access a strong decryption oracle. Nevertheless, we show
attacks against their scheme compromising these properties. While the first at-
tack can only be launched by an impatient recipient with an “imaginary” strong
decryption oracle, we show how this vulnerability can be exploited by a curious
time-server. We also discuss a possible fix.

Definition: Practical Consideration of Release-time Confidentiality. In
the aspect of formalization, we give a new formal definition of release-time con-
fidentiality. Existing schemes either assume the recipient learns the release-time
from out-of-band channel, or the time is sent in clear with the ciphertext. We
refine the syntax of TRE and give the corresponding security definition so that

Timed-Release Encryption Revisited 41

only the intended recipient can learn the release-time from the ciphertext, but
not any other parties including a curious time-server.

Scheme: Pre-Open Capability. Chow et al.’s study focuses on the relation-
ship between the confidentiality of CLE and TRE; other features of TRE are
not covered. We demonstrate how to incorporate Chow et al.’s (CRR) scheme
with pre-open capability and our practice-oriented release-time confidentiality.

2 Security Models of Timed-Release Encryption

2.1 Syntax of Timed-Release Encryption

Definition 1. A TRE scheme (with pre-open capability) is defined by the fol-
lowing quintuple (sextuple) of probabilistic polynomial time (PPT) algorithms:

– Setup (run by the server) is a probabilistic algorithm which takes a security
parameter 1λ, outputs a master secret key Msk, and the global parameters
Pub. We assume that λ is implicit in Pub and all other algorithms take Pub
implicitly as an input.

– Extract (run by the server) is a possibly probabilistic algorithm which takes
the master secret key Msk and a string T ∈ {0, 1}∗, outputs a trapdoor key
dT associated with the time-identifier T .

– KeyGen (run by a user) is a probabilistic algorithm which generates a pri-
vate/public key pair (sku, pku).

– Enc (run by a sender) is a probabilistic algorithm which takes a message
m from some implicit message space, an identifier T ∈ {0, 1}∗, and the
receiver’s public key pku as input, returns a ciphertext C (and its pre-open
key VC , if pre-open capability is supported).

– PreOpen (run by a receiver) is a possibly probabilistic algorithm supported
by a TRE with pre-open capability, it takes the ciphertext C, the receiver’s
private key sku and a pre-open key VC as input, returns either the plaintext,
an invalid flag ⊥V denoting VC is an invalid pre-open key, or an invalid flag
⊥C denoting the ciphertext is invalid.

– Dec (run by a receiver) is a deterministic algorithm which takes the ciphertext
C, the receiver’s private key sku and a trapdoor key dT as input, returns
either the plaintext or an invalid flag ⊥C.

Correctness requires Dec(C, sk, Extract(Msk, T)) = PreOpen(C, sk, VC) = m

for all λ ∈ N, all (Pub, Msk) $← Setup(1λ), all (sk, pk) $← KeyGen, all message

m, all string T in {0, 1}∗ and all (C, VC) $← Enc(m, T, pk).

2.2 Confidentiality

Following common practice, we consider the following two kinds of adversaries. A
Type-I adversary models any coalition of rogue users, and who aims to break the
confidentiality of a user’s ciphertext. A Type-II adversary that models a curious

42 S.S.M. Chow and S.M. Yiu

time server, who also aims to break the confidentiality of a user’s ciphertext.
Security against these adversaries are modeled by the experiment below executed
between a simulator and an adversary of type X ∈ {I, II}, denoting whether
an PPT adversary A = (Afind,Aguess) is of Type-I or Type-II. The auxiliary
information Aux depends on X.

Definition 2. Experiment ExpCCA−X
A (λ)

(Pub, Msk) $← Setup(1λ)
(m0, m1, pk∗, T ∗, state)← AExtractO(·),DecO(·,·,·)

find (Pub, Aux)

b
$← {0, 1}, C∗ $← Enc(mb, T

∗, pk∗)
b′ ← AExtractO(·),DecO(·,·,·)

guess (C∗, state)
If (|m0| �= |m1|) ∨ (b �= b′) then return 0 else return 1

where ExtractO oracle takes a time-identifier T ∈ {0, 1}∗ as input and returns
its trapdoor dT ; a DecO oracle takes a ciphertext C, a time-identifier T , and a
public key pk, and outputs Dec(C, sk, dT) where sk is the secret key that matches
pk, and C may or may not be encrypted under T and pk.

Below are the formal definitions of indistinguishability against adaptive
chosen-ciphertext attack (IND-CCA), which captures the confidentiality of TRE
against these two types of adversary.

Definition 3. A timed-release encryption scheme is (t, qE , qD, ε) IND-CCA se-
cure against a Type-I adversary if |Pr[ExpCCA−I

A (λ) = 1]− 1
2 | ≤ ε for all t-time

adversary A making at most qE extraction queries and qD decryption queries,
subjects to the following constraints:

1. Aux = ∅, i.e. no auxiliary information is given to the adversary.
2. No ExtractO(T ∗) query throughout the game.
3. No DecO(C∗, T ∗, pk∗) query throughout the game.

Definition 4. A timed-release encryption scheme is (t, qD, ε) IND-CCA secure
against a Type-II adversary if |Pr[ExpCCA−II

A (λ) = 1]− 1
2 | ≤ ε for all t-time ad-

versary A making at most qD decryption queries, but no DecO(C∗, T ∗, pk∗) query

throughout the game, with Aux = (Msk, pk∗), where (sk∗, pk∗) $← KeyGen(1λ) is
executed by the simulator.

2.3 Pre-open Capability

The addition of pre-open capability affects the security models of confidentiality.
In [14], it has been shown that a TRE scheme which is IND-CCA secure against
a curious time server implies its IND-CCA security against an outsider attacker
(i.e. with neither the master secret key nor the intended recipient’s private key).
Besides, a Type-I adversary can supply its own public key to be challenged with,
which naturally means it knows the corresponding private key and hence it is
not entitled to have the pre-open key (or it knows both pieces of secret). So it
is sufficient to alter the Type-II adversary model.

Timed-Release Encryption Revisited 43

Definition 5. Experiment ExpCCA−II−PO
A (λ)

(Pub, Msk) $← Setup(1λ)

(sk∗, pk∗) $← KeyGen(1λ)
(m0, m1, pk∗, T ∗, state)← APreOpenO(·,·,·),DecO(·,·,·)

find (Pub, Aux = (Msk, pk∗))

b
$← {0, 1}, (C∗, VC∗) $← Enc(mb, T

∗, pk∗),
b′ ← APreOpenO(·,·,·),DecO(·,·,·)

guess ((C∗, VC∗), state)
If (|m0| �= |m1|) ∨ (b �= b′) then return 0 else return 1

where PreOpenO oracle takes a ciphertext C, a pre-open key VC , and a public
key pk, and outputs PreOpen(C, sk, VC) where sk is the secret key that matches
pk, and VC may or may not be the pre-open key of C; DecO oracle is defined as
in Definition 2.

Definition 6. A timed-release encryption scheme with pre-open capability is
(t, qD, ε) IND-CCA secure against a Type-II adversary if |Pr[ExpCCA−II

A (λ) =
1]− 1

2 | ≤ ε for all t-time adversary A making at most qK public key queries and
qD decryption queries, subjects to the following conditions:

1. No PreOpenO(C∗, VC∗ , pk∗) query throughout the game.
2. No DecO(C∗, T ∗, pk∗) query throughout the game.

Definition 7. A TRE scheme is binding if the following probability is negligible
for all PPT algorithm A:

Pr[(C∗, T ∗, VC∗)← A(Pub)(Pub, Msk) $← Setup(1λ)
∧ PreOpen(C∗, sk, VC∗) �= {Dec(C∗, sk, Extract(Msk, T ∗)),⊥V ,⊥C}].

2.4 Release-Time Confidentiality

Release-time confidentiality protects the release-time from being known to any-
one but the recipient. In order to let the recipient to know the release-time
from the ciphertext, we need to add an algorithm called GetTime to the TRE
framework, which outputs a time T taking a ciphertext and a secret key as in-
put. Correctness requires GetTime(Enc(m, T, pk), sk) = T for all �, n ∈ N, all
Pub given by Setup(1�, n), all (sk, pk) given by KeyGen, all message m, and all
identifier T in {0, 1}∗.

The formal security requirement is similar to that in [5], but on top of that
we need to add an GetTimeO oracle that takes a ciphertext and a public key of
the adversary’s choice. Basically, instead of encrypting one of the two messages
under the fixed identifier, all given by the adversary, in the challenge ciphertext; a
fixed message is encrypted under one of the two identifiers. The adversary’s goal
is to tell which identifier is randomly chosen by the challenger. Security is only
defined against a Type-II adversary. For any Type-I adversary, it can replace the
challenge public key pk∗, and hence obtaining T from GetTime(C, sk∗) is trivial.

44 S.S.M. Chow and S.M. Yiu

Definition 8. Experiment ExpRTC−II
A (λ)

(Pub, Msk) $← Setup(1λ),
(m∗, pk∗, T ∗

0 , T ∗
1 , state)← AGetTimeO(·,·,·),DecO(·,·,·)

find (Pub, Aux = (Msk, pk∗))

b
$← {0, 1}, C∗ $← Enc(m∗, T ∗

b , pk∗), b′ ← AGetTimeO(·,·,·),DecO(·,·,·)
guess (C∗, state)

If b �= b′ then return 0 else return 1

Definition 9. A timed-release encryption scheme is (t, qD, ε) RTC-CCA secure
against a Type-II adversary if |Pr[ExpRTC−II

A (λ) = 1] − 1
2 | ≤ ε for all t-time

adversary A making at most qD decryption queries, subjects to the following
conditions:

1. No GetTime(C∗, pk∗) query throughout the game.
2. No Dec(C∗, T ∗, pk∗) query throughout the game, where T ∗ ∈ {T ∗

0 , T ∗
1 }.

3 Analysis of a Recent TRE Scheme in ESORICS ’07

3.1 Review

We first review how the ciphertext is constructed in the TRE scheme proposed
by Chalkias et al. [6].

Setup(1λ, 1λ0): Given security parameters λ and λ0, where λ0 is a polynomially-
bounded function of λ, generate G and GT which are two multiplicative groups
with a bilinear map ê as defined before. They are of the same order p, which is
a prime and 2λ < p < 2λ+1. The public parameters Pub and the master secret
key Msk are given by

Pub = (λ, λ0, p, G, GT , ê(·, ·), P, S = P s, H1(·), H2(·), H3(·), H4(·)), Msk = s.

where s ∈R Zp, P is an arbitrary generator of G, H1(·), H2(·), H3(·), H4(·) are
cryptographic hash functions modeled as random oracles. Their domains and
ranges will be clear from the description of the other algorithms.

Extract(Msk, T): Given a time-identifier T , the time-dependent trapdoor is dT =
P

1
(s+t) , where t = H1(T).

KeyGen(): Pick sk ∈R Z∗
p, return (sk, gsk) as the private/public key pair.

Enc(m, T, pk): To encrypt a message m under time T and a public key pk:

1. Compute t = H1(T) ∈ Z∗
p;

2. Choose x ∈R {0, 1}λ0 and h = H2(m||x||T) ∈ {0, 1}2λ;
3. Treat h̄ as the 2λ-bit integer value of h, parse it as r1||r2, where r1, r2 ∈ Z∗

p;
4. Compute c1 = (S · P t)r1 and c2 = P r2 ;
5. Compute d = H3(ê(P, P)r1) ∈ Z∗

p;

Timed-Release Encryption Revisited 45

6. Compute K = H4(pk(d·r2)) and c3 = (m||x||h)⊕K;
7. Return C = (c1, c2, c3, T).

Dec(C, dT , sk): To decrypt C using the trapdoor dT and the secret key sk:

1. Compute d = H3(ê(c1, dT));
2. Compute K = H4(c

(d·sk)
2);

3. Parse c3 ⊕K as m||x||h;
4. Return m if H2(m||x||T) = h.

3.2 Attacks

Even though there is a checking of H2(m||x||T) = h, there is no checking whether
r1 in c1 = (S · P t)r1 and r2 in c2 = P r2 are really from the 2λ-bit integer value
of h. Our attacks exploit this fact. Given the challenge C∗ = (c∗1, c

∗
2, c

∗
3, T

∗) that
is encrypted under the public key pk∗, our first attack proceeds as follows.

Attack 1 (with a strong decryption oracle)

1. Randomly choose z ∈ Zp;
2. Compute c′2 = c∗2

z;
3. Query the decryption oracle to decrypt (c∗1, c′2, c∗3, T ∗) with respect to the

replaced public key pk∗1/z.

Suppose pk∗ = gsk∗ , the adversary does not know the secret key sk∗/z corre-
sponding to (pk∗)1/z . However, in the security model ([6, Definition 2]), the
adversary is entitled with a decryption oracle that can decrypt any ciphertext
except the challenge one, under any public key without supplying the corre-
sponding private key. So this is a legitimate decryption query.

We claim that the decryption oracle will just return the message encrypted
inside the challenge ciphertext. To see this, the decryption oracle computes d =
H3(ê(c∗1, dT∗)) and K = H4(c′2

(d·sk′)) = H4(c∗2
z(d·sk∗/z)) = H4(c∗2

(d·sk∗)), which is
exactly the K computed by Dec(C∗, dT∗ , sk∗).

Attack 2 (by a curious time-server)
Following the reasoning of the above attack, a curious time server can launch a
similar attack without the strong decryption oracle of a replaced public key.

1. Compute t∗ = H1(T ∗) ∈ Z∗
p;

2. Randomly choose z ∈ Zp;
3. Compute c′1 = (S · P t∗)z

4. Compute d′ = H3(ê(P, P)z) ∈ Z∗
p;

5. Recover d∗ = H3(ê(c∗1, dT∗));
6. Compute c′2 = c∗2

(d∗/d′);
7. Query the decryption oracle to decrypt (c′1, c

′
2, c

∗
3, T

∗) with respect to original
public key pk∗.

46 S.S.M. Chow and S.M. Yiu

To see the correctness, the decryption oracle computes d = H3(ê(c′1, dT∗)) =
H3(ê(P, P)z) = d′ and K = H4(c′2

(d′·sk′)) = H4(c∗2
(d∗·sk∗·d′/d′)) = H4(c∗2

(d∗·sk∗)),
which is exactly the K computed by Dec(C∗, dT∗ , sk∗).

Here we pinpoint the flaw in the proof of CCA security in [6]. The adversary
never query H4 directly in the above attacks; however, the proof in [6] assumes
that the adversary would have to request H4 for a special value which lets the
simulator to solve the underlying computational problem.

It is possible to fix the scheme by requiring the decryption algorithm to return
m if and only if c1 = (S · P t)r1 and r2 in c2 = P r2 where r1||r2 = h̄ and h̄
is the 2λ-bit integer value of h. However, it adds two exponentiations in the
decryption algorithm and lessens the purported advantage of their scheme. We
remark that the encryption algorithm is unaffected and is still more efficient
than other existing schemes.

4 Augmenting Chow et al.’s TRE Scheme with
Pre-open Capability and Release-Time Confidentiality

4.1 Preliminaries

Let G be a multiplicative group of prime order p and GT be a multiplicative
group also of order p. We assume the existence of an efficiently computable
bilinear map ê : G×G→ GT such that

1. Bilinearity: For all u, v ∈ G and r, s ∈ Zp, ê(ur, vs) = ê(u, v)rs.
2. Non-degeneracy: ê(u, v) �= 1GT for all u, v ∈ G \ {1G}.

For the security of our scheme, the following problem is assumed to be in-
tractable in such groups.

Definition 10. The Modified Decision 3-Party Diffie-Hellman Problem
(3-MDDH) in G is to decide if Z = gαβγ given (g, gα, gβ, gγ , gβγ/α, Z) ∈ G6.

Compared with the original 3-DDH problem, an extra element gβγ/α is included
in the problem instance.

Our scheme also requires a hash function H drawn from a family of collision
resistant hash functions.

Definition 11. A hash function H
$← H(k) is collision resistant if for all PPT

algorithms C the advantage

AdvCR
C (k) = Pr[H(x) = H(y) ∧ x �= y|(x, y) $← C(1k, H) ∧H

$← H(k)]

is negligible as a function of the security parameter k.

4.2 Construction

Below we reuse the basic version of the CRR scheme, which only supports a
single-level of time-identifier and with two partial decryption algorithms com-
bined into a single one. These simplifications give us back the CLE scheme

Timed-Release Encryption Revisited 47

proposed by [13]; however, it has been pointed out that a generic transformation
from CLE to TRE is unlikely to be provable secure [5] and Chow et al.’s notion
of general CLE filled this gap [9]. Even though the scheme is defined based on
n-bit time identifiers, one can use a collision-resistant hash function which maps
from {0, 1}∗ to {0, 1}n for time identifiers of arbitrary length.

Capabilities for pre-opening and recovering the release-time have been added
in the below description. We also changed the input of the hash function to
provide release-time confidentiality, the change seems to spoil the nice feature of
public ciphertext validity checking, which may harm CCA security, but it will
be justified in our security proof.

– Setup(1λ): Let G, GT be two multiplicative groups with a bilinear map ê as
defined before. They are of the same order p, which is a prime and 2λ < p <
2λ+1. Pick the following components:

• Encryption key: choose two generators g, g2 ∈R G.
• Master public key: choose an exponent α ∈R Zq and set g1 = gα.
• Hash key for time-identifier: pick (� + 1) G elements

��

U =
(u′, u1, · · · , u�). Let T = t1 · · · t�. Define Fu(T) = u′∏�

j=1 u
tj

j .
• Hash key for ciphertext validity: pick

��

V = (v′, v1, · · · , v�) ∈R G�+1.
This vector defines Fv(w) = v′

∏�
j=1 vj

bj where w is an �-bit string
b1b2 · · · b�.

• Key-derivation function (KDF): In addition to the above basic pa-
rameters which also present in the CRR scheme, we need a KDF K :
GT → {0, 1}n+k+1, which we assume that the output of K is compu-
tationally indistinguishable from a random distribution when the input
comes from a uniformly distribution. We also assume an implicit one-to-
one mapping between G and {0, 1}k+1,

The output is: Msk = gα
2 , Pub = 〈λ, q, G, GT , ê(·, ·), �, H(·), K(·), g, g1, g2,

��

U,
��

V 〉. Same as [9], we require the discrete logarithms (with respect to g)
of all G elements in Pub except g, g1 to be unknown to the time-server. In
particular, the knowledge of the discrete logarithm of g2 with respect to g
enables the time-server to retrieve the release-time of a ciphertext. In prac-
tice, these elements can be generated from a pseudorandom function of a
public seed.

– Extract(Msk, T): Pick r ∈R Z∗
q , return DT = 〈d1, d2〉 = 〈g2

α · Fu(T)r, gr〉.
– KeyGen: Pick sk ∈R Z∗

q and pk = 〈X, Y 〉 = 〈gsk, g1
sk〉.

– Enc(M, T, 〈X, Y 〉):
1. Check if pk is valid by e(X, g1) = e(g, Y), return ⊥ if not.
2. Pick s ∈R Z∗

q , compute k = K(ê(X, g2)s).
3. Return 〈C1, C2, τ, σ〉 = 〈M · ê(Y, g2)s, (T ||Fu(T)s)⊕k, gs, Fv(w)s〉 where

w = H(C1||C2||k||pk).
4. Pre-open key is computed as VC = gs

1.

48 S.S.M. Chow and S.M. Yiu

– GetTime(〈C1, C2, τ, σ〉, sk):
1. Compute k′ = K(ê(τ, g2)sk).
2. Parse C2 ⊕ k′ as (T ′||fT ′).
3. Check if ê(τ, Fu(T ′)Fv(w′)) = ê(g, fT ′σ) where w′ = H(C1||C2||k′||pk).
4. Return ⊥C if inequality holds or any parsing is not possible.
5. Otherwise return the time T ′ and auxiliary data fT ′ .

– PreOpen(〈C1, C2, τ, σ〉, sk, VC):
1. Check if the pre-open key is valid by ê(VC , g) = ê(g1, τ), returns ⊥V if

it does not hold.
2. Return ⊥C if GetTime(〈C1, C2, τ, σ〉, sk) returns ⊥C ; otherwise, return

m← C1/ê(VC , g2)sk.
– Dec(〈C1, C2, τ, σ〉, 〈d1, d2〉, sk):

1. Compute GetTime(〈C1, C2, τ, σ〉, sk) to get fT ′ .
2. Return⊥C if GetTime returns⊥C ; otherwise, return m =C1·{ ê(τ,d2)

ê(fT ′ ,d1)
}sk.

4.3 Discussions on the Security Properties

It is easy to see that the ciphertext is binding with the pre-open key. Given τ ,
the random factor in a valid ciphertext is uniquely fixed. From the pre-open key
validity checking ê(VC , g) = ê(g1, τ) and the bilinearity, VC must be in a correct
form. Hence, the probability for breaking the binding property is zero.

We have the following theorems for the security of our modified scheme.

Theorem 1. Our scheme is secure against Type-I attack (Definition 3) if 3-
MDDH problem is intractable.

Theorem 2. Our scheme is secure against Type-II attack (Definition 6) if 3-
DDH problem is intractable.

Theorem 3. Our scheme is RTC-II-secure (Definition 9) if 3-DDH problem is
intractable.

The detailed proof of all these three theorems are all similar to the single proof
in [10]. We claim that the proof for mode II in [10] is general enough to cover
both cases for our Type-II attack: CCA-II-PO and RTC-II. To see, the first attack
concerns about the indistinguishability of the messages, which is encrypted by
ê(Y ∗, g2)γ ; and the second is about that of the time periods, which is encrypted
by ê(X∗, g2)γ . Note that in the Type-II simulation, the challenger knows the
master secret key α such that Y ∗ = (X∗)α. Both of them have the problem
instance embedded. The ability to distinguish one of them in the respective
mode of attack gives the solution of the underlying hard problem. This point
can be seen in the second last game of the proof.

Here we highlight the changes of the proof in [10] we should make for our
case. The new things in the security proof include:

1. all decryption oracles including GetTime
2. the new well-formness checking of the ciphertext (to output w, the hash H

now takes ê(X, g2)s as part of the input, but not just public information)

Timed-Release Encryption Revisited 49

3. the last term is not related to the time (the hash H does not take T as input)
4. the simulation of the pre-open oracle and the pre-open key
5. the simulation of the challenge ciphertext in a new format

For the first two issues, even though the term FU (T)s is now hidden by
K(ê(X, g2)s) and it seems that the ciphertext validity cannot be checked, the
simulator S only takes C1 and τ to compute gs

2 (in [10, Game 6]), and hence
the term K(ê(X, g2)s) can be recovered. Specifically, S computes ê(Y, g2)s as
ê(Y, (σ/τKv(w))

1
Jv(w)), we thus have ê(X, (σ/τKv(w))

1
Jv(w)) = ê(X, g2)s. The

same is true for computing w for well-formness checking.
Intuitively, the malleable XOR cipher can be used in C2 since the decryption

algorithms checks the σ term, which is computed from the hash taking C2 as
part of the input. It is possible for the adversary to change T in C2; however,
the adversary needs to change the T embedded in Fu(T)s as well.

When PreOpen oracle is queried upon a valid pre-open key corresponding to
the ciphertext to be decrypted, the whole thing can be simulated by DecO oracle.
From the discussion of binding property, we have a robust method to rule out
invalid pre-open key, and hence the simulation is perfect too.

The pre-open key of the challenge ciphertext to be given to a Type-II adver-
sary can be computed by τα = gγ

1 , since α is known in Type-II simulation.
Lastly, what remains is to show the simulation of the challenge ciphertext in a

new format for a Type-II adversary. This is done in different way (in [10, Game
8]) according to the type of the adversary. For Type-I, S computes ê(X, g2)γ by
ê(Y ∗, gβγ/α) = ê((X∗)α, gβγ/α) = ê(X∗, gβ)γ = ê(X∗, g2)γ . That is the reason
we require a modified version of 3-DDH assumption. For Type-II, since Y ∗ =
(X∗)α, S can easily obtain ê(X∗, g2)γ by (ê(Y ∗, g2)γ)

1
α .

5 Conclusion

This paper revisits two recent results in TRE. We demonstrate an “imaginary”
attack which makes use of a strong decryption oracle on Chalkias et al.’s TRE
scheme, and show how this vulnerability can be exploited by a curious time-
server in a more realistic attack. We then equip Chow et al.’s TRE scheme in
the standard model with pre-open capability and release-time confidentiality,
some features that are desirable in practical applications.

Since the release-time of a ciphertext is something that the intended recip-
ient should know, we do not assume it is sent in out-of-band channel, instead
it should be encrypted in the ciphertext. We formalize this notion of release-
time confidentiality, and show it can be obtained similar to how we get message
confidentiality. We leverage the fact that a kind of double-encryption is done
in TRE, so nothing like an anonymous identity-based encryption is used as a
building block. It is also interesting to see that the public ciphertext validity
checking is “removed” but the security is still preserved.

50 S.S.M. Chow and S.M. Yiu

References

1. Baek, J., Safavi-Naini, R., Susilo, W.: Token-Controlled Public Key Encryption.
In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds.) ISPEC 2005. LNCS, vol. 3439,
pp. 386–397. Springer, Heidelberg (2005)

2. Bellare, M., Goldwasser, S.: Verifiable Partial Key Escrow. In: ACM Conference
on Computer and Communications Security, pp. 78–91 (1997)

3. Blake, I.F., Chan, A.C.-F.: Scalable, Server-Passive, User-Anonymous Timed Re-
lease Cryptography. In: ICDCS 2005, pp. 504–513. IEEE Computer Society Press,
Los Alamitos (2005)

4. Boneh, D., Naor, M.: Timed Commitments. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000)

5. Cathalo, J., Libert, B., Quisquater, J.-J.: Efficient and Non-interactive Timed-
Release Encryption. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005.
LNCS, vol. 3783, pp. 291–303. Springer, Heidelberg (2005)

6. Chalkias, K., Hristu-Varsakelis, D., Stephanides, G.: Improved Anonymous Timed-
Release Encryption. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS,
vol. 4734, pp. 311–326. Springer, Heidelberg (2007)

7. Cheon, J.H., Hopper, N., Kim, Y., Osipko, I.: Timed-Release and Key-Insulated
Public Key Encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS,
vol. 4107, pp. 191–205. Springer, Heidelberg (2006)

8. Chow, S.S.M.: Token-Controlled Public Key Encryption in the Standard Model.
In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS,
vol. 4779, pp. 315–332. Springer, Heidelberg (2007)

9. Chow, S.S.M., Roth, V., Rieffel, E.: General Certificateless Encryption and Timed-
Release Encryption. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008.
LNCS, vol. 5229, pp. 126–143. Springer, Heidelberg (2008)

10. Chow, S.S.M., Roth, V., Rieffel, E.G.: General Certificateless Encryption and
Timed-Release Encryption. Cryptology ePrint Archive, Report 2008/023 (2008)

11. Chow, S.S.M.: Certificateless Encryption. In: Identity-Based Cryptography. IOS
Press, Amsterdam (2008)

12. Di Crescenzo, G., Ostrovsky, R., Rajagopalan, S.: Conditional Oblivious Transfer
and Timed-Release Encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 74–89. Springer, Heidelberg (1999)

13. Dent, A.W., Libert, B., Paterson, K.G.: Certificateless Encryption Schemes
Strongly Secure in the Standard Model. In: Cramer, R. (ed.) PKC 2008. LNCS,
vol. 4939, pp. 344–359. Springer, Heidelberg (2008),
http://eprint.iacr.org/2007/121

14. Dent, A.W., Tang, Q.: Revisiting the Security Model for Timed-Release Public-Key
Encryption with Pre-Open Capability. In: Garay, J.A., Lenstra, A.K., Mambo, M.,
Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 158–174. Springer, Heidelberg
(2007)

15. Dodis, Y., Yum, D.H.: Time Capsule Signature. In: S. Patrick, A., Yung, M. (eds.)
FC 2005. LNCS, vol. 3570, pp. 57–71. Springer, Heidelberg (2005)

16. Dwork, C., Naor, M.: Pricing via Processing or Combatting Junk Mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993)

17. Galindo, D., Herranz, J.: A Generic Construction for Token-Controlled Public Key
Encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp.
177–190. Springer, Heidelberg (2006)

http://eprint.iacr.org/2007/121

Timed-Release Encryption Revisited 51

18. Hwang, Y.H., Yum, D.H., Lee, P.J.: Timed-Release Encryption with Pre-open Ca-
pability and Its Application to Certified E-mail System. In: Zhou, J., López, J.,
Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 344–358. Springer,
Heidelberg (2005)

19. May, T.: Time-release Crypto, Manuscript (February 1993),
http://www.cyphernet.org/cyphernomicon/chapter14/14.5.html

20. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock Puzzles and Timed-release
Crypto. Technical Report MIT/LCS/TR-684, Massachusetts Institute of Technol-
ogy (1996)

http://www.cyphernet.org/cyphernomicon/chapter14/14.5.html

Efficient and Provably Secure Certificateless
Multi-receiver Signcryption

S. Sharmila Deva Selvi1, S. Sree Vivek1,	, Deepanshu Shukla2,		,
and Pandu Rangan Chandrasekaran1,	

Department of Computer Science and Engineering,
Indian Institute of Technology Madras

sharmila@cse.iitm.ac.in, svivek@cse.iitm.ac.in, prangan@iitm.ac.in
and Institute of Technology Banaras Hindu University

deepanshus.itbhu@gmail.com

Abstract. Certificateless cryptography aims at combining the advan-
tages of identity based and public key cryptography, so as to avoid the
key escrow problem inherent in the identity based system and cumber-
some certificate management in public key infrastructure. Signcryption
achieves confidentiality and authentication simultaneously in an efficient
manner. Multi-receiver signcryption demands signcrypting the same mes-
sage efficiently for a large number of receivers. In this paper, we propose
the first efficient certificateless multi-receiver signcryption scheme and
prove it secure in the random oracle model. Our scheme does not re-
quire pairing to signcrypt a message for any number of receivers. We are
considering a more realistic adversarial model and proving the security
against insider attacks, which guarantees non-repudiation and forward
secrecy.

Keywords: Certificateless, Signcryption, Multi-receiver, Bilinear
Pairing.

1 Introduction

Signcryption proposed by Zheng in [3] is a cryptographic primitive providing sig-
nature and encryption simultaneously, at a lower computational cost and com-
munication overhead than the signature-then-encryption approach. A proper
signcryption scheme should provide confidentiality as well as authentication and
non-repudiation. Besides this, security model for signcryption should consider
insider attacks also i.e. a corrupted receiver should not be able to forge a valid
signcryption from any legal user on a message that was not already sent by that
user. Sometimes forward secrecy is also a desired property, which requires that
even if a sender’s secret key is exposed at some point of time, the past messages
sent by him should remain secret.
� Work supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Se-

cure Communication and Computation sponsored by Department of Information
Technology, Government of India.

�� Work supported by INAE undergraduate mentoring programme.

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 52–67, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Efficient and Provably Secure Certificateless Multi-receiver Signcryption 53

Need for multi-receiver signcryption arises when the same message is to be sent
to a large number of receivers. Consider the case of a company in which there are
several managers and each of them has to send authenticated and confidential
report to a large number of employees. In this case, simply signcrypting the
message for each receiver will be highly inefficient. Therefore, there is a need
to design efficient schemes for this task. In this paper, we propose an efficient
multi-receiver signcryption scheme(CLMSC) in certificateless setting.

Related works: The concept of multi-receiver setting was formalized by Bellare
et al. in [18]. The naive way to do this is to simply process the message for all the
n receivers, which is very inefficient. In [11], Kurosawa showed that one could use
”randomness re-use” technique to design multi-receiver encryption schemes. This
saves bandwidth and minimizes the computation cost. Almost all the signcryption
schemes are based on bilinear pairings. Therefore, even after using ”randomness
re-use” we end up with n pairings, which is also inefficient. In [9], Zheng proposed
a signcryption scheme for multiple recipients. In [10], Duan et al. proposed an ef-
ficient identity based multi-receiver signcryption scheme. In [2], Yu et al. propose
an identity based signcryption scheme for multiple receivers. In [13], the scheme
in [2] is shown to be insecure and a fix is also given for the same.

Since the introduction of certificateless cryptography by Al-Riyami and
Paterson[1] in 2003, many good encryption and signature schemes [19][21][20]
have been proposed in certificateless setting. In 2008, Barbosa et al. proposed
the first certificateless signcryption scheme [12] and gave the security model for
the same. But they proved the security of their scheme in slightly weaker model.
In [12], while proving confidentiality, access to signcryption oracle was not given
to the adversary. It is desirable to allow the adversary to access the signcryption
oracle because the adversary may get some extra information about senders se-
cret key by querying the signcryption oracle. Besides this limitation, [12] cannot
be directly adapted for multi-receiver settings.

Our Contribution: In this paper, we introduce the notion of certificateless
multi-receiver signcryption(CLMSC) and give a security model for the same. We
also propose a concrete, efficient scheme and prove its security against insider
attacks in random oracle model. We also show that our scheme is efficient than
the naive extension of [12] for multi-receiver settings. Even for single receiver our
scheme is more efficient than [12]. We have also shown that our scheme is efficient
than few existing identity based multi-receiver signcryption schemes [10][13].

2 Preliminaries

2.1 Computational Assumptions

In this section, we recall the computational assumptions related to bilinear maps
[16] that are relevant to the security of our scheme:

1. Strong Diffie-Hellman Problem (SDHP). SDH problem is a stronger
version of DHI(Diffie-Hellman Inversion problem)[16]. Given (P, aP) ∈ G2

1 for

54 S.S.D. Selvi et al.

any random a ∈ Z∗
q , the SDH problem in G1 is to compute

(
h, (a + h)−1P

)
,

h ∈ Z∗
Q.

The advantage of any probabilistic polynomial time algorithmA in solving
the SDH problem in G1 is defined as:

AdvSDH
A = Pr

[
A(P, aP) =

(
h, (a + h)−1P

)
| a, h ∈ Z∗

q

]
We say that SDH is (t, ε) hard if for any t time probabilistic algorithm A,
the advantage AdvSDH

A < ε.
2. Collusion Attack Algorithm with k-traitors (k-CAA). Given (P, aP,

(h1 + a)−1P, . . ., (hk + a)−1P) ∈ Gk+2
1 for any random a ∈ Z∗

q and known
values h1, . . . , hk ∈ Z∗

q , the k-CAA problem in G1 is to compute (a + h)−1P
for some h /∈ {h1, . . . , hk}.

The advantage of any probabilistic polynomial time algorithm A in solv-
ing the k-CAA problem in G1 is defined as:

Advk−CAA
A = Pr[A(P, aP, (h1 + a)−1P, . . . , (hk + a)−1P, h1, . . . , hk)

= (a + h)−1P | a, h ∈ Z∗
q , h /∈ {h1, . . . , hk}]

We say that k-CAA is (t, ε) hard if for any t time probabilistic algorithm
A, the advantage Advk−CAA

A < ε.
3. Modified BDHI for k-values (k-mBDHIP). k-mBDHIP is the bilinear

variant of the k-CAA problem [22]. Given (P, sP, (h1 + s)−1P, . . ., (hk +
s)−1P) ∈ Gk+2

1 for any random s ∈ Z∗
q and known values h1, . . . , hk ∈ Z∗

q , the

k-mBDHIP problem is to compute ê(P, P)(s+h)−1

for some h /∈ {h1, . . . , hk}.
The advantage of any probabilistic polynomial time algorithm A in solv-

ing the k-mBDHIP problem in is defined as:

Advk−mBDHIP
A = Pr[A(P, sP, (h1 + s)−1P, . . . , (hk + s)−1P, h1, . . . , hk)

= ê(P, P)(s+h)−1

| s, h ∈ Z∗
q , h /∈ {h1, . . . , hk}]

We say that k-mBDHIP is (t, ε) hard if for any t time probabilistic algo-
rithm A, the advantage Advk−mBDHIP

A < ε.
4. Gap Bilinear Diffie-Hellman Problem (GBDHP). [12] Given (P, aP,

bP, cP) ∈ G4
1 for any random a, b, c ∈ Z∗

q , the GBDH problem in (G1, G2, ê)
is to compute ê(P, P)abc given access to DBDH oracle OΓ which on input
(P, aP, bP, cP, T) ∈ G4

1 ×G2 outputs 1 if T = ê(P, P)abc and 0 otherwise.
The advantage of any probabilistic polynomial time algorithmA in solving

the GBDH problem in (G1, G2, ê) is defined as:

AdvGBDH
A (OΓ , qDBDH) = Pr

h
AOΓ (P, aP, bP, cP) = ê(P, P)abc | a, b, c ∈ Z∗

q

i

where qDBDH is the number of queries to the decisional oracle. We say that
GBDHP is (t, ε, qDBDH) hard if for any t time probabilistic algorithm A
asking qDBDH oracle queries, advantage Advk−CAA

A < ε.

Efficient and Provably Secure Certificateless Multi-receiver Signcryption 55

3 Certificateless Multi-receiver Signcryption

3.1 Framework of Certificateless Multi-receiver Signcryption

Any generic certificateless multi-receiver signcryption scheme is a five tuple of
probabilistic polynomial time algorithms defined as follows-

1. Setup(1κ): This algorithm is run by the KGC. It takes as input the secu-
rity parameter 1κ and returns the KGC’s master secret key Msk, master
public key Mpk, public parameters Params and a description of message
space(MCLMSC) and cipher-text space (CCLMSC).

2. Partial Private Key Extract(IDi, Msk, Params): This algorithm is run
by the KGC. It takes as input Msk, Params, a string IDi ∈ {0, 1}∗ and
returns a partial private key Di.

3. Key Extract(IDi, Di, Params): This algorithm is run by the user. It takes
as input the partial private key of the user and returns a public key PKi

and a secret value xi. The full secret key of the user is set to SKi = 〈xi, Di〉.
4. Signcrypt(m, IDS, SKS, PKS , L = {ID1, ID2, . . . , IDn} , PK1, . . . , PKn,

Params): The signcryption algorithm takes as input a message
m ∈ MCLMSC , identity IDS and the full secret key SKS of the sender,
a list L of the receiver identities and their public keys and returns a cipher-
text σ ∈ CCLMSC .

5. Designcrypt(σ, SKR, IDR, PKR, IDS , PKS, L): This is a deterministic al-
gorithm which takes as input the ciphertext σ, receivers full secret key SKR,
identity IDR, the public key PKR of the receiver, list of receivers L, the iden-
tity IDS and the public key PKS of the sender and returns either a plaintext
m ∈MCLMSC or an error symbol ⊥.

For consistency, we require that
if σ = Signcrypt(m, IDS, SKS, PKS , L = {IDR1 , . . . , IDRn} , PK1, . . . , PKn,
Params), then m = Designcrypt (σ, SKRi , IDRi , PKRi , IDS , PKS, L) for 1 ≤
i ≤ n.

3.2 Security Model for Certificateless Multi-receiver Signcryption

Now, we describe the security model for certificateless multi-receiver signcryp-
tion. In our model we consider the security against selective identity attack.
Although it is a slightly weaker model, it is the common approach prevalent in
the literature [9] [10] [2] [15] for multiple-receiver settings. It means that adver-
sary reveals in advance the challenge identity. This was first proposed by Canetti
et al. in [14] and extended to selective multi-identity attack in [10]. In selective
multi-identity attack it is assumed that adversary outputs the set of receiver
identities to be attacked in advance. However our model is different from [14]
because in our model adversary is required to submit the list of target identities
after seeing the master public key. However, in Canetti et al.’s paper, the adver-
sary is required to submit an identity before seeing the master public key. We
consider a stronger adversary as it can choose the list of target identities based

56 S.S.D. Selvi et al.

on its knowledge of public parameters. Following the trend in literature [2] [4]
[6] [7] [8], we do not consider the attacks targeting the signcryptions where the
sender is same as one of the receivers. We also disallow the signcryption queries,
where both sender and one or more of the receivers belong to the challenge set.
In confidentiality and unforgeability game we provide access to the following six
oracles :

1. Extract Partial Private Key: On input of an identity IDi, this oracle
returns the partial private key Di generated using the Partial Private Key
Extract algorithm.

2. Extract Secret Key: On input of an identity IDi, this oracle returns the
full secret key SKi = 〈xi, Di〉 of the identity using the appropriate algo-
rithms.

3. Request Public Key: On input of an identity IDi, this oracle returns the
corresponding public key PKi associated with IDi. If such a key does not
exist then it is constructed using Key Extract algorithm.

4. Replace Public Key: On input of an identity IDi and a valid public key
PK ′

i, this oracle replaces the public key associated with IDi with PK ′
i. If

such a key does not exist then it is generated using the Key Extract algorithm
and then the public key corresponding to IDi is replaced with PK ′

i.
5. Signcrypt: On input of a message, a sender’s identity IDS and a set of re-

ceiver identities L = {IDR1 , IDR2 , . . . , IDRn}, this oracle returns the result
of running the signcryption algorithm on the message, sender’s full secret
key and the receiver’s public parameters.

6. Designcrypt: On input of a ciphertext, a sender’s identity IDS and a re-
ceiver’s identity IDR, this oracle returns the result of running the Design-
crypt algorithm on the ciphertext, the sender’s public parameters and the
receiver’s full secret key.

Next, we give the security definitions. Following the trend in literature we
also consider Type-I and Type-II adversary. Roughly speaking Type-I adversary
models a common user who is not in possession of the master secret key Msk
and a type-II adversary models the honest but curious KGC.

Confidentiality: Security game that captures the confidentiality is based on
the ciphertext indistinguishability. We define it separately for Type-I and Type-
II adversary:
Type-I: A certificateless multi-receiver signcryption scheme is Type-I-iCCA2
secure if every probabilistic polynomial-time attacker A has negligible advantage
in winning the IND-CLMSC-iCCA2-I game. A type-I adversary is given access
to all the 6 oracles defined above under the following constraints-

1. Adversary does not have access to master secret key Msk.
2. No Extract Secret Key query is allowed on any of the challenge identities.
3. Adversary is not allowed to ask Extract Partial Private Key query for any

of the challenge identities.

Efficient and Provably Secure Certificateless Multi-receiver Signcryption 57

IND-CLMSC-iCCA2-I game played between the challenger C and the adversary
A is defined below:

Setup: Challenger C runs the setup algorithm to generate master secret key
Msk and public parameters Params. C gives Params to A while keeping Msk
secret. After receiving Params A outputs list of target identities denoted by
L∗ = {ID∗

1 , ID∗
2 , . . . , ID∗

n} respectively. C interacts with A in two phases:
Phase1: A is given access to all the six oracles. A adaptively queries the oracles
consistent with the constraints described above.
Challenge: A outputs two equal length messages m0, m1 and an arbitrary
sender’s identity IDS . C randomly chooses a bit b ∈R {0, 1} and computes a
signcryption

σ∗ = Signcrypt (mb, IDS , SKS, PKS , L = {ID∗
1 , . . . , ID∗

n} , PK∗
1 , . . . , PK∗

n)

σ∗ is sent to A as challenge.
Phase2:A adaptively queries the oracles consistent with the constraints de-
scribed above. Besides this it cannot query Designcrypt on σ∗ for any ID ∈
{ID∗

1 , ID∗
2 , . . . , ID∗

n}.
Guess: A outputs a bit b′ at the end of the game. A wins if b = b′. The
advantage of A is defined as-

AdvIND−CLMSC−iCCA2−I
A = |2Pr [b = b′]− 1|

Type-II: A certificateless multi-receiver signcryption scheme is Type-II-iCCA2
secure if every probabilistic polynomial-time attacker A has negligible advantage
in winning the IND-CLMSC-iCCA2-II game. A type-II adversary is given access
to all the 6 oracles defined above and master secret key Msk under the following
constraints-

1. No Extract Secret Key query is allowed on any of the challenge identities.
2. No Replace Public Key query is allowed on any of the challenge identities

before the challenge phase.

IND-CLMSC-iCCA2-II game played between the challenger C and the adversary
A is same as the IND-CLMSC-iCCA2-I game with the restrictions mentioned
above

The advantage of A is defined as-

AdvIND−CLMSC−iCCA2−II
A = |2Pr [b = b′]− 1|

Authenticity: Strong existential unforgeability(sEUF-CLMSC-iCMA) game
captures the authenticity as a security requirement for any certificateless multi-
receiver signcryption. By strong unforgeability we mean that adversary should
not be able to signcrypt a message on behalf of a sender even if it knows the
secret keys of all the receivers. The game is defined as below:

Type-I: A certificateless multi-receiver signcryption scheme is Type-I-sEUF-
iCMA-I secure if every probabilistic polynomial-time attacker F has negligible
advantage in winning the sEUF-CLMSC-iCMA-I game. A type-I adversary is
given access to all the 6 oracles defined above under the following constraints:

58 S.S.D. Selvi et al.

1. Adversary does not have access to master secret key Msk.
2. No Extract Secret Key query is allowed on any of the challenge identities.
3. Adversary is not allowed to ask Extract Partial Private Key query for any

of the challenge identities.

sEUF-CLMSC-iCMA-I game played between the challenger C and the adversary
F is defined below:

Setup: Challenger C runs the setup algorithm to generate master secret key
Msk and public parameters Params. C gives Params to F while keeping Msk
secret. After receiving Params F outputs list of target identities denoted by
L∗ = {ID∗

1 , ID∗
2 , . . . , ID∗

n} respectively. C interacts with F in two phases:
Attack: F is given access to all the six oracles. F adaptively queries the oracles
consistent with the constraints described above.
Forgery: F outputs a signature σ∗ and n arbitrary receiver’s identities L =
{IDR1 , . . . , IDRn}(there exists atleast one receiver IDRi such that, IDRi /∈ L∗).
F wins if Designcrypt(σ∗, SKRi , IDRi , PKRi , ID∗

j , PK∗
j , L) returns m for i, j ∈

{1, . . . , n} and σ∗ was not the output of any signcrypt query Signcrypt(m, ID∗
i ,

L = {IDR1 , . . . , IDRn}).That is, F wins if it outputs a valid signcryption from
a target identity to the set of receiver identities L by itself.

AdvsEUF−CLMSC−iCMA−II
F is defined as the probability that F wins the

above game.
Type-II: A certificateless multi-receiver signcryption scheme is Type-II-sEUF-
iCMA-I secure if every probabilistic polynomial-time attacker F has negligible
advantage in winning the sEUF-CLMSC-iCMA-II game. A type-II adversary is
given access to all the 6 oracles defined above and the master secret key Msk
under the following constraints-

1. No Extract Secret Key query is allowed on any of the challenge identities.
2. Adversary is not allowed to ask Replace Public Key for any of the challenge

identities.

sEUF-CLMSC-iCMA-II game played between the challenger C and the adversary
F is same as sEUF-CLMSC-iCMA-I with the restrictions given above.
AdvsEUF−CLMSC−iCMA−II

F is defined as the probability that F wins the sEUF-
CLMSC-iCMA-II game.

4 Certificateless Multi-receiver Signcryption Scheme
(CLMSC)

In this section, we present a new certificateless multi-receiver signcryption scheme
(CLMSC). In this scheme the ciphertext σ consists of two parts, first part c is
common to all the users and second part is a n tuple. The ith component di of the
n tuple is specific to IDi. For designcrypting, the receiver does the following: 1)
Extracts the common part. 2) Identifies it’s rank i in the list L. 3) Extracts the
ith component and then runs the designcryption algorithm. Note that the form
of the ciphertext in our scheme is similar to the one proposed in [10], but our

Efficient and Provably Secure Certificateless Multi-receiver Signcryption 59

scheme is entirely different from [10] in all other details. The CLMSC consists
of the five algorithms that are given below.
Setup(1κ): On providing security parameter 1κ as input, the KGC chooses
two groups G1 and G2 of prime order q, two random generators P and Q of
G1 such that P �= Q and a bilinear map ê : G1 × G1 → G2. It then com-
putes g = ê(P, Q) ∈ G2 and defines five hash functions H1 : {0, 1}∗ → Z∗

q ,
H2 : Z∗

q×G2×{0, 1}∗ → Z∗
q , H3 : {0, 1}m×G2×{0, 1}∗×G2×G1×{0, 1}∗ → Z∗

q ,
H4 : Z∗

q × {0, 1}∗ → Z∗
q , H5 : G2 × G2 × G2 × {0, 1}∗ → {0, 1}k1+k2 , where

k1 and k2 are the number of bits required to represent G1 and Z∗
q elements

respectively. Then KGC chooses s ∈R Z∗
q as the master secret key and sets

Ppub = sP . The KGC now publishes the public parameters Params of the sys-
tem as 〈G1, G2, P, Q, Ppub, ê : G1 ×G1 → G2, g, H1, H2, H3, H4, H5〉.
Partial Private Key Extract(IDi, msk, Params): On input IDi, the par-
tial private key of user with identity IDi is computed as Di = (qi + s)−1

Q,
where qi = H1 (IDi).
Key Extract(IDi, Di, Params): This algorithm is run by each user to com-
pute his private and public keys. The user IDi chooses xi ∈R Z∗

q and sets his
private key SKi = 〈xi, Di〉 and sets his public key as Pki = 〈PKi1, PKi2〉 =
〈gxi , xiTi〉, where Ti = (qi + s)P .
Signcrypt(m, IDS, SKS, PKS, L = {IDR1 , IDR2 , . . . , IDRn}, PKR1 , PKR2 ,
. . . , PKRn , Params):

1. Choose r1 ∈R Z∗
q and compute ω = gr1

2. Set r2 = H2(r1, ω, IDS) and h3 = H3(m, ω, r2, IDS, PKS1, PKS2, L)
3. Compute ZS =

r1

(xS + h3)
DS

4. Compute c = H4(r2, IDS)⊕m
5. Repeat the following steps for all IDRi ∈ L, i = 1, 2, . . . , n.

(a) Parse PKRi as 〈PKi1, PKi2〉
(b) Set h5i = H5(gr1 , (PKi1)r1 , PKi1, IDRi)
(c) Compute di1 = r1(qi + s)P and di2 = h5i ⊕ r2‖ZS

(d) Set di = 〈di1, di2〉
6. Return ciphertext σ = 〈c, d1, d2, . . . , dn, L〉.

Designcrypt(σ = 〈c, d1, d2, . . . , dn, L〉, IDS, IDi, SKi, Params):

1. Parse di as 〈di1, di2〉 and SKi as 〈xi, Di〉
2. Compute ω′ = ê (di1, Di) and (ω′)xi = (PKi1)r1

3. Set h′
5i = H5(ω′, (ω′)xi , PKi1, IDi)

4. Compute r′2‖Z ′
S = h′

5i ⊕ di2

5. Compute m′ = c⊕H4(r′2, IDS)
6. Set h′

3 = H3(m′, ω′, r′2, IDS , PKS1, PKS2, L)
7. If ê(PKS2 + h′

3(qS + s)P, Z ′
S) = ω′ then return m′, else return ⊥.

5 Security Results

Theorem 1. If an IND-CLMSC-iCCA2-I adversary A has advantage ε against
our scheme running in time τ and asking qHi (i = 1, 2, 3, 4, 5) queries to random

60 S.S.D. Selvi et al.

oracles Hi (i = 1, 2, 3, 4, 5), qsc signcryption queries, qdsc designcryption queries,
qske extract secret key queries, qppe partial private key extract queries, qpk public
key request queries and qpkr public key replacement queries, then there exists an
algorithm C that solves the k −mBDHIP for k = qH1 − n, with advantage

ε′ >
ε

(2nqsc + qH3 + qH5)

(
1− qsc (nqsc + qH3)

2k2

)(
1− qdsc

(
1

2k2
+

1
2k1+k2

))
and with time

τ ′ < τ + O (qpk + nqsc + qdsc) .tp + O (qpk + nqsc + qdsc + n) .tsm+

O(qpk + nqsc + qdsc).te

where tp, tsm, te are the cost of pairing computation, scalar multiplication in
G1 and exponentiation in G2, n is the number of receivers in the challenge set
and k1, k2 are the number of bits needed to represent elements of G1 and Z∗

q

respectively.

Proof
Algorithm C takes as input an instance (P, sP, (q1 + s)−1P, . . . , (qk + s)−1P, q1,
. . . , qk) of k-mBDHIP and interacts with A.
Setup: C sets Ppub = sP, Q = tP and sends the system parameters 〈P, Q, Ppub,
G1, G2, ê〉 to A. A then outputs a set of target identities, L∗ = {ID∗

1 , . . . , ID∗
n}.

C chooses q∗1 , . . . , q∗n ∈R Z∗
q .

Phase1: C simulates A’s queries as follows:

H1 queries: On input IDi, if an entry corresponding to IDi is present in L1,
then C retrieves qi from L1 and returns qi. Else, if IDi = ID∗

j (j = 1, . . . , n), then
C returns q∗j and stores

〈
j, ID∗

j , q∗j ,⊥,⊥,⊥, bi = 0
〉

in L1. Otherwise, returns qi,
stores 〈 i, IDi, qi,⊥,⊥,⊥, bi = 0〉 in L1. The three ⊥ entries are for storing public
keys PKi1, PKi2 and user secret key xi. The bi is a marker bit used to denote
whether the public keys have been replaced or not.
H2 queries: On input (r, ω, ID), C returns the previously defined value if a
tuple corresponding to (r, ω, ID) exists in L2 . Otherwise, it returns a random
h2 ∈R Z∗

q and stores the entry 〈h2, r, ω, ID〉 in L2.
H3 queries: On input (m, ω, r2, IDS , PKS1, PKS2, L = (IDR1 , . . . , IDRn)), C
checks whether a tuple of the form 〈h3, m, ω, r2, IDS , PKS1, PKS2, L = (IDR1 ,
. . . , IDRn), c, h4〉 exists in L3. If it exists in L3, then return h3. Otherwise, select
a random h3 ∈R Z∗

q and return h3. Also, for convenience in responding to the
designcryption queries, compute h4 by calling the H4 oracle on (r2, IDS) and
c = m⊕ h4. Add 〈h3, m, ω, r2, IDS , PKS1, PKS2, L = (IDR1 , . . . , IDRn), c, h4〉
to the list L3.
H4 queries: On input (r2, ID), C returns the previously defined h4 if a tuple
of the form 〈h4, r2, ID〉 exists in the list L4. Otherwise, it returns a random
h4 ∈R Z∗

q and stores the entry 〈h4, r2, ID〉 in L4.
H5 queries: On input (gr, gr.xRi , PKRi1, IDRi), C returns the previously defined
h5, if a tuple of the form 〈h5, g

r, gr.xRi , PKRi1 , IDRi〉 exists in L5. Otherwise,

Efficient and Provably Secure Certificateless Multi-receiver Signcryption 61

it returns a random h5 ∈R Z∗
q and stores the entry 〈h5, g

r, gr.xRi , PKRi1 , IDRi〉
in L5.
Request Public Key queries: On input IDi, challenger returns the tuple
〈PKi1, PKi2〉 if an entry of the form 〈i, IDi, qi, PKi1, PKi2, xi, bi〉 exists in L1.
Otherwise, it retrieves the entry 〈i, IDi, qi, . . .〉 from L1 and selects a random
xi ∈R Z∗

q and computes PKi1 = ê (P, Q)xi , PKi2 = xi (qiP + Ppub). C returns
the public key 〈PKi1, PKi2〉 and updates the tuple corresponding to IDi in L1

with PKi1, PKi2, xi.
Replace Public Key queries: On input IDi and a valid public key tuple
〈PK ′

i1, PK ′
i2〉, C checks whether public key fields of tuple coresponding to IDi

in L1 is empty or not. If it is not empty, then C replaces the public keys in the
tuple corresponding to IDi in list L1 with PK ′

i1, PK ′
i2 and the marker bit bi is

set to 1. Else, if public key fields are empty then generate the public keys using
Request Public Key oracle and then replace the public key of IDi with PK ′

i1

and PK ′
i2 using Replace Public Key oracle.

Extract Partial Private Key queries: On input IDi, if (IDi = ID∗
j , j =

1, . . . , n), then abort. Otherwise, retrieve the tuple 〈i, IDi, qi, . . .〉 from L1 and

return
t

(qi + s)
P .

Extract Secret Key queries: On input IDi, if IDi = ID∗
j , j = 1, . . . , n then

aborts. Otherwise, C retrieves the entry 〈i, IDi, qi, PKi1, PKi2, xi, bi〉 from L1.

If b = 0, then C returns
〈

t

(qi + s)
P, xi

〉
. Else, if b=1, public key of the identity

IDi has been replaced and C asks A for the secret key x′
i and returns the tuple

accordingly.
Signcrypt queries: On input (m, IDS, L = IDR1 , IDR2 , . . . , IDRn). If IDS =
IDRi (i = 1, . . . , n) or (IDS ∈ L∗ and one or more of IDRi ∈ L∗, i = 1, . . . , n),
then abort. Else, if IDS �= ID∗

j (j = 1, . . . , n), then C knows the secret key of the
sender and does the computations as per the signcryption algorithm to return the
ciphertext σ = 〈c, d1, d2, . . . , dn, L〉. Otherwise, if IDS = ID∗

j for j ∈ {1, . . . , n},
C does not know the secret key of the sender and hence it generates the ciphertext
as follows:
C retrieves the entry

〈
j, ID∗

j , q∗j , PK∗
j1, PK∗

j2, x
∗
j , b

∗
j

〉
from L1 and selects r2, r̂ ∈R

Z∗
q . C computes h4 by calling oracle H4 with the input (r2, ID∗

j) and c = h4⊕m.
C executes the following steps for each receiver IDRi :

1. Retrieves the tuple 〈i, IDRi, qi, PKi1, PKi2, xi, bi〉 from L1 and selects a ran-
dom h3i ∈R Z∗

q .

2. Computes ZRi =
r̂

(qi + s)
Q, di1 = r̂

(
x∗

j + h3i

)
.
(
q∗j P + Ppub

)
and ωi =

ê

(
di1,

t

(qi + s)
P

)
.

3. Stores (r2, ωi, IDS) in L2 . Computes h5i by calling H5 oracle with (ωi, ω
xi

i ,
PKi1, IDRi) as input and di2 = (r2‖ZRi)⊕h5i. Note that if bi = 1, then the
public key of the receiver has been replaced and challenger asks A for the x′

i

and uses it in place of the x value stored in the tuple. C sets di = 〈di1, di2〉.

62 S.S.D. Selvi et al.

4. Add 〈h3i, m, ωi, r2, IDS , PKS1, PKS2, L = (IDR1 , . . . , IDRn) , c, h4i〉 in L2.
(C fails if H3 is already defined on any of such entries, but this happens only

with probability
(n.qsc + qH3)

2k2
). C sends σ = 〈c, d1, d2, . . . , dn, L〉 to A.

Designcrypt queries: On input ciphertext σ, a sender’s identity IDS and a
receiver’s identity IDR. C extracts c, dR = 〈dR1 , dR2〉 and L from σ. If IDR �=
ID∗

j (j = 1, . . . , n) then C knows the secret key of the receiver and hence it follows
the Designcrypt algorithm for designcrypting σ. Otherwise, C searches in L3 for
all tuples
〈h′

3, m
′, ω′, r′2, IDS , PKS1, PKS2, L = (IDR1 , . . . , IDRn) , c, h′

4〉, having c and L.
If no such tuple is found, then σ is rejected. Otherwise, it looks for the en-
try 〈h5, ω

′,−, PKR1, IDR〉 in L5, reject if no such entry is found. Compute
r2‖ZS = dR2 ⊕ h5. If r2 = r′2 and ZS passes the verification test, then return m,
else reject σ. Note that a valid ciphertext is rejected with probability at-most

qdsc

(
1

2k2
+

1
2k1+k2

)
across the game.

Challenge. A outputs two messages {m0, m1} with an arbitrary sender’s iden-
tity IDS(IDS �= ID∗

j , j = 1, . . . , n) for whichA wants C to generate the challenge
ciphertext. C selects c ∈R {0, 1}n, ZS ∈R G1, to return to A the signcryp-
tion σ∗ = 〈c, d1, d2, . . . , dn, L = {ID∗

1 , . . . , ID∗
n}〉. C computes dj = 〈dj1 , dj2〉for

j = 1, . . . , n as follows:

1. C chooses γj ∈ Z∗
q . Sets dj1 = γjP . If we define γj = r1j .(q∗j + s), then we

can check that dj1 = r1j .(q∗j + s)P has the proper form.
2. C chooses dj2 ∈R {0, 1}k1+k2 . Stores the pair

(
γj , ID∗

j

)
.

A cannot recognize that σ∗ is not the proper signcryption until unless it queries
H3 or H5 on ωj = ê (P, Q)r1j , ID∗

j (j = 1, . . . , n).
Phase2:C simulates A’s queries as in Phase1, except that A is not allowed to
ask Designcrypt queries on σ∗ for ID∗

j (j = 1, . . . , n).
Guess:Finally, A outputs a bit, which is ignored by C. Standard arguments can
show that a successful A is very likely to query H3 or H5 on ωj = ê (P, Q)r1j ,
ID∗

j (j = 1, . . . , n) if the simulation is indistinguishable from a real attack
environment.
C fetches a random entry 〈h3, m, ω, r2, IDS , PKS1, PKS2, L = (IDR1 , . . . , IDRn) ,
c, h4〉 or〈h5, ω, ωxi , ., IDi〉 from lists L3 or L5.

With probability
1

(2.n.qsc + qH3 + qH5)
(as L3, L5 contains no more than n.qsc +

qH3 , n.qsc+qH5 elements respectively by construction), the chosen entry contains
the right elements ωj = ê(P, Q)r1j , ID∗

j . C retrieves the pair
(
γj , ID∗

j

)
. Now, C

calculates

(ê(P, Q)r1j)(γj .t)−1

=
“
ê(P, Q)γj(q∗j +s)−1

”(γj .t)−1

=
“
ê(P, P)(γj .t)(q∗j +s)−1

”(γj .t)−1

= ê(P, P)(q
∗
j +s)−1

. C returns
“
q∗j , ê(P, P)(q

∗
j +s)−1

”
as its output.

Efficient and Provably Secure Certificateless Multi-receiver Signcryption 63

Now, we analyze the success probability of C. Let S be the event that A outputs
the correct bit b′ = b.

Simulation fails if any of the following event occurs:
1. E1:Extract Partial Private Key query for some challenge Identity has been
queried.
2. E2:Extract Secret Key query for some challenge Identity queried.
3. E3: Simulation is aborted because both sender and one or more of the receivers
belong to the challenge set in some signcryption queries.
4. E4: Simulation is aborted due to the H3 collisions in Signcryption queries.
5. E5: C rejects a valid ciphertext at some point of the game.
6. E6: C chooses the correct tuple from L3 or L5.

We clearly have Pr[S] = ε and S implies ¬E1 ∧ ¬E2 ∧ ¬E3.Also, we have

Pr[E4] ≤
qsc (nqsc + qH3)

2k
as there are a total of qsc signcryption queries and

atmost nqsc + qH3 entries are there in L3. It is already observed that Pr[E5] ≤

qdsc

(
1

2k2
+

1
2k1+k2

)
as an invalid rejection occurs only when A is able to guess

hash value of one of the H2 or H5 correctly. It has already been argued that

Pr[E6] ≤
1

(2nqsc + qH3 + qH5)
. Now, the advantage ε of C is defined as.

ε′ = Pr[S ∧ ¬E1 ∧ ¬E2 ∧ ¬E3 ∧ ¬E4 ∧ ¬E5 ∧ E6]

Therefore, we obtain the bound

ε′ >
ε

(2nqsc + qH3 + qH5)

(
1− qsc (nqsc + qH3)

2k2

)(
1− qdsc

(
1

2k2
+

1
2k1+k2

))
.

Also, as we have to compute atmost n parings, n scalar multiplications, n
exponentiations for simulating signcryption queries, atmost 1 parings,1 scalar
multiplications,1 exponentiations for simulating each public key request query.
Similarly, atmost 1 paring,1 scalar multiplication and 1 exponentiation is re-
quired for simulating designcryption queries. n scalar multiplications are needed
during Challenge phase. So we obtain the desired bound on the time τ ′

τ ′ < τ + O (qpk + nqsc + qdsc) .tp + O (qpk + nqsc + qdsc + n) .tsm+

O (qpk + nqsc + qdsc) .te

�

Theorem 2. If an IND-CLMSC-iCCA2-II adversary A has advantage ε against
our scheme running in time τ and asking qHi (i = 1, 2, 3, 4, 5) hash queries to
random oracles Hi (i = 1, 2, 3, 4, 5), qsc signcryption queries, qdsc designcryption
queries, qske extract secret key queries, qppe partial private key extract queries,
qpk public key request queries and qpkr public key replacement queries, then there
exist an algorithm C that solves the GBDHP with advantage ε′ and time τ ′

ε′ > ε

(
1− qsc (nqsc + qH3)

2k2

)(
1− qdsc

(
1

2k2
+

1
2k1+k2

))

64 S.S.D. Selvi et al.

τ ′ < τ + O (qpk + nqsc + qdsc) .tp + O (qpk + nqsc + qdsc + n) .tsm+

O (qpk + nqsc + qdsc) .te

with atmost (nqsc + qH5) calls to DBDH oracle OΓ . Here tp, tsm, te are the costs
of pairing computation, scalar multiplication in G1 and exponentiation in G2, n
is the number of receivers in the challenge set and k1, k2 are the number of bits
needed to represent elements of G1 and Z∗

q respectively.

Proof. Proof is omitted due to page limitation and is given in the full version
of this paper.

Theorem 3. If an sEUF-CLMSC-iCMA-I adversary F has advantage ε against
our scheme running in time τ and asking qHi (i = 1, 2, 3, 4, 5) hash queries to
random oracles Hi (i = 1, 2, 3, 4, 5), qsc signcryption queries, qdsc designcryption
queries, qske extract secret key queries, qppe partial private key extract queries,
qpk public key request queries and qpkr public key replacement queries, then there
exist an algorithm C that solves the k − CAA problem for k = qH1 with an
advantage

ε′ >
1
n

“
ε− n

2k2
− n

2k1+k2

”
.

„
1− qsc (nqsc + qH3)

2k2

« „
1− qdsc

„
1

2k2
+

1
2k1+k2

««

and with time

τ ′ < τ + O (qpk + nqsc + qdsc) .tp + O (qpk + nqsc + qdsc) .tsm+

O (qpk + nqsc + qdsc) .te

where tp, tsm, te are the cost of pairing computation, scalar multiplication in
G1 and exponentiation in G2, n is the number of receivers in the challenge set
and k1, k2 are the number of bits needed to represent elements of G1 and Z∗

q

respectively.

Proof. Proof is omitted due to page limitation and is given in the full version
of this paper.

Theorem 4. If an sEUF-CLMSC-iCMA-II adversary F has advantage ε against
our scheme running in time τ and asking qHi (i = 1, 2, 3, 4, 5) hash queries to
random oracles Hi (i = 1, 2, 3, 4, 5), qsc signcryption queries, qdsc designcryption
queries, qske extract secret key queries, qppe partial private key extract queries,
qpk public key request queries and qpkr public key replacement queries, then there
exist an algorithm C that solves the SDH problem with advantage

ε′ >
1
n

“
ε− n

2k2
− n

2k1+k2

”
.

„
1− qsc (nqsc + qH3)

2k2

« „
1− qdsc

„
1

2k2
+

1
2k1+k2

««

and time

τ ′ < τ + O (qpk + nqsc + qdsc) .tp + O (qpk + nqsc + qdsc) .tsm+

O (qpk + nqsc + qdsc) .te

Efficient and Provably Secure Certificateless Multi-receiver Signcryption 65

where tp, tsm, te are the cost of pairing computation, scalar multiplication in
G1 and exponentiation in G2, n is the number of receivers in the challenge set
and k1, k2 are the number of bits needed to represent elements of G1 and Z∗

q

respectively.

Proof. Proof is omitted due to page limitation and is given in the full version
of this paper.

6 Efficiency Analysis and Comparison

In this section, we compare the efficiency of our scheme(CLMSC) with the related
schemes. [12] is the only certificateless signcryption scheme available till date
and no certificateless multi-receiver signcryption scheme is available. Hence we
compare our scheme with the naive extension of [12] for multi-receiver setting in
Table 1. Also, we have [10] and [13] to be the two recent efficient identity based
multi-receiver signcryption schemes. We compare the efficiency of our scheme
with [10] and [13] in Table 2. However, it should be noted that the ciphertext
size in our scheme is almost twice the ciphertext size of [13].

Table 1. Efficiency Comparison with [12]

Scheme Signcrypt Designcrypt
PA SM GE MG PA SM GE MG

BF CLSC(SR) 1 4 1 2 5 1 - 2
BF CLSC(MR) n 3n+1 n 3n+1 5 1 - 2
CLMSC(SR) - 2 2 - 2 1 1 -
CLMSC(MR) - n n+1 - 2 1 1 -

BF CLSC(SR) - Single Receiver [12]
BF CLSC(MR) - Naive Extension of [12] to Multi-receiver
CLMSC(SR) - CLMSC Single Receiver
CLMSC(MR) - CLMSC Multi-receiver

Table 2. Efficiency Comparison with [10] and [13]

Scheme Signcrypt Designcrypt
PA SM GE MG PA SM GE MG

DC IBMSC 1 4+n - n+2 4 1 - 1
SS IBMSC 1 3+n 1 n+1 4 1 - -
CLMSC - n n+1 - 2 1 1 -

DC IBMSC - Identity based multi-receiver signcryption in [10]
SS IBMSC - Identity based multi-receiver signcryption in [13]
CLMSC - CLMSC Multi-receiver

66 S.S.D. Selvi et al.

7 Conclusion

We have presented an efficient and provably secure certificateless multi-receiver
signcryption scheme and a security model for the same. We have proved the secu-
rity of our scheme in random oracle model under insider attacks. In our security
model, we have considered the selective multi-identity attack for confidentiality
and unforgeability. In the proposed model, we have considered the type-I adver-
sary which is not allowed to query the partial private key oracle for the challenge
identities. In the literature, a different type of type-I adversary (say type-I’) has
also been considered. Type-I’ adversary can query either the Replace Public Key
oracle or Partial Private Key Extract oracle for the challenge identities. It will
be interesting to see whether such type of an adversary can be considered in
the case of multi-receiver signcryption also. We have proved the security of our
scheme in random oracle model against the selective identity attack. Designing
certificateless multi-receiver signcryption schemes which can be proved secure
in standard model against adaptive identity attacks is another interesting open
problem.

References

1. Al-Riyami, S.S., Paterson, K.G.: Certificateless Public-Key Cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

2. Yu, Y., Yang, B., Huang, X., Zhang, M.: Efficient identity-based signcryption
scheme for multiple receivers. In: Xiao, B., Yang, L.T., Ma, J., Muller-Schloer,
C., Hua, Y. (eds.) ATC 2007. LNCS, vol. 4610, pp. 13–21. Springer, Heidelberg
(2007)

3. Zheng, Y.: Digital signcryption or How to achieve cost (signature & Encrytpion)
� cost(signature) + cost(encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

4. Malone-Lee, J., Mao, M.: Two birds one stone: signcryption using RSA. In: Joye,
M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 211–226. Springer, Heidelberg (2003)

5. Malone-Lee, J.: Identity based signcryption. Cryptology ePrint Archive. Report
2002/098 (2002)

6. Libert, B., Quisquator, J.J.: A new identity based signcryption scheme from pair-
ings. In: 2003 IEEE information theory workshop, Paris, France, pp. 155–158 (2003)

7. Boyen, X.: Multipurpose identity based signcryption: a swiss army knife for identity
based cryptography. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 383–
399. Springer, Heidelberg (2003)

8. Barreto, P.S.L.M., Libert, B., McCullagh, N., Quisquater, J.J.: Efficient and
provably-secure identity based signatures and signcryption from bilinear maps.
In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 515–532. Springer, Hei-
delberg (2005)

9. Zheng, Y.: Signcryption and its applications in efficient public key solutions. In:
Okamoto, E. (ed.) ISW 1997. LNCS, vol. 1396, pp. 291–312. Springer, Heidelberg
(1998)

10. Duan, S., Cao, Z.: Efficient and provably secure multi-receiver identity-based sign-
cryption. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058,
pp. 195–206. Springer, Heidelberg (2006)

Efficient and Provably Secure Certificateless Multi-receiver Signcryption 67

11. Kurosawa, K.: Multi-recipient public-key encryption with shortened ciphertext. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 48–63. Springer,
Heidelberg (2002)

12. Barbosa, M., Farshim, P.: Certificateless Signcryption. In: Conference on Computer
and Communications Security archive Proceedings of the, ACM symposium on
Information, Computer and Communications Security (2008)

13. Selvi, S.S.D., Vivek, S.S., Gopalakrishnan, R., Karuturi, N.N., Rangan,
C.P.: Cryptanalysis of ID-Based Signcryption Scheme for Multiple Receivers,
http://eprint.iacr.org/2008/238.pdf

14. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

15. Baek, J., Naini, R., Susilo, W.: Efficient Multi-Receiver Identity-Based Encryption
and Its Application to Broadcast Encryption. In: Batten, L.M., Safavi-Naini, R.
(eds.) ACISP 2006. LNCS, vol. 4058, pp. 1611–3349. Springer, Heidelberg (2006)

16. Dutta, R., Barua, R., Sarkar, P.: Pairing-Based Cryptographic Protocols: A Survey,
http://eprint.iacr.org/2004/064.pdf

17. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 80–98. Springer,
Heidelberg (2002)

18. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user set-
ting: Security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

19. Dent, A.W.: A Survey of Certificateless Encryption Schemes and Security Model,
eprint.iacr.org/2006/211.pdf

20. Dent, A.W., Libert, B., Paterson, K.G.: Certificateless Encryption Schemes
Strongly Secure in the Standard Model. In: Cramer, R. (ed.) PKC 2008. LNCS,
vol. 4939, pp. 344–359. Springer, Heidelberg (2008)

21. Libert, B., Quisquate, J.-J.: On Constructing Certificateless Cryptosystems from
Identity Based Encryption. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 474–490. Springer, Heidelberg (2006)

22. Chow, S.S.M., Hui, L.C.K., Yiu, S.M., Chow, K.P.: Two Improved Partially Blind
Signature Schemes from Bilinear Pairings. In: Boyd, C., González Nieto, J.M. (eds.)
ACISP 2005. LNCS, vol. 3574, pp. 316–328. Springer, Heidelberg (2005)

http://eprint.iacr.org/2008/238.pdf
http://eprint.iacr.org/2004/064.pdf
eprint.iacr.org/2006/211.pdf

A CCA Secure Hybrid Damg̊ard’s ElGamal
Encryption

Yvo Desmedt1,	 and Duong Hieu Phan2,		

1 University College London
Gower Street, London WC1E 6BT, United Kingdom

2 University of Paris 8
2, rue de la Libertè 93526 - Saint-Denis cedex 02, France

hieu.phan@univ-paris8.fr

Abstract. ElGamal encryption, by its efficiency, is one of the most
used schemes in cryptographic applications. However, the original El-
Gamal scheme is only provably secure against passive attacks. Damg̊ard
proposed a slight modification of ElGamal encryption scheme (named
Damg̊ard’s ElGamal scheme) that provides security against non-adaptive
chosen ciphertext attacks under a knowledge-of-exponent assumption.
Recently, the CCA1-security of Damg̊ard’s ElGamal scheme has been
proven under more standard assumptions.

In thispaper,we study theopenproblemofCCA2-security ofDamg̊ard’s
ElGamal. By employing a data encapsulation mechanism, we prove that
the resulted hybrid Damg̊ard’s ElGamal Encryption is secure against
adaptive chosen ciphertext attacks. The down side is that the proof of
security is based on a knowledge-of-exponent assumption. In terms of
efficiency, this scheme is more efficient (e.g. one exponentiation less in
encryption) than Kurosawa-Desmedt scheme, the most efficient scheme
in the standard model so far.

1 Introduction

ElGamal encryption was introduced by ElGamal in 1985 [7] as a variant of Diffie-
Hellman key exchange. Since then, it has become one of the two most extensively
used for cryptographic applications, besides RSA [17].

The notion of semantic security, introduced by Goldwasser and Micali [11],
captures the intuition that an adversary should not be able to obtain any par-
tial information about the underlying plaintext of a challenge ciphertext. At the
same time, various kinds of attack have been modeled and the strongest for-
malized attack is a chosen ciphertext attack where the adversary is given access
to a decryption oracle that allows him to obtain the decryptions of his chosen

� The author is BT Professor of Information Security and is also funded by EPSRC
EP/C538285/1.

�� Part of this research was done while being at University College London, Adastral
Campus.

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 68–82, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A CCA Secure Hybrid Damg̊ard’s ElGamal Encryption 69

ciphertexts (with a natural restriction that these chosen ciphertexts are differ-
ent from the challenge ciphertext). There are two kinds of chosen ciphertext
attack: non-adaptive attacks or lunchtime attacks [15], denoted CCA1, where the
access to the decryption oracle is limited until the challenge is known; and adap-
tive chosen-ciphertext attack [16], denoted CCA2 or CCA where adversaries have
access to decryption oracle before and after receiving the challenge.

The original ElGamal scheme was proven to be semantically secure against
passive adversaries and there was the open question whether it is secure against
CCA1 attacks.

In [5] Damg̊ard proposed a variant of the ElGamal encryption scheme (later
called Damg̊ard’s ElGamal Encryption), by only adding an exponentiation to
ciphertexts, and provided a proof of security against non-adaptive chosen cipher-
text attacks. This proof requires however an informal assumption of knowledge-
of-exponent assumption. Later, Bellare and Palacio [2] formalized this notion,
calling it the Diffie-Hellman knowledge (DHK for short) assumption, and pro-
vided a formal proof of security against non-adaptive chosen ciphertext attacks
for Damg̊ard’s ElGamal Encryption. Dent [6] has shown that the DHK assump-
tion holds in generic groups. Recently, Gjøsteen [10], Wu and Stinson [21], Lip-
maa [14] improved the security results of Damg̊ard’s ElGamal Encryption but
all of these works only concern CCA1 security.

The Damg̊ard’s ElGamal encryption is obviously not CCA secure because it
is homomorphic. An important problem is thus to consider a simple variant of
Damg̊ard’s ElGamal encryption that could achieve CCA security, as this security
level is well-admitted to be the standard notion for confidentiality in cryptogra-
phy. We investigate in this paper the natural issue of using Damg̊ard’s ElGamal
encryption in a hybrid framework.

A hybrid encryption scheme [20] employs public-key encryption techniques
to derive a shared key that is then used to encrypt the actual messages using
symmetric-key techniques. It can thus take advantage of symmetric encryption
to encrypt arbitrary long messages. In [4], a formal treatment of hybrid schemes
was proposed, composed of two parts : first, a KEM (Key Encapsulation Mecha-
nism) is invoked to encrypt a random key; second, a DEM (Data Encapsulation
Mechanism) is performed to encrypt messages using a symmetric encryption
scheme. Kurosawa-Desmedt [13] proposed later a hybrid variant of the Cramer-
Shoup scheme [3] in the KEM/DEM framework which results in the most efficient
scheme in the standard model so far.

Contribution. We propose a hybrid Damg̊ard’s ElGamal Encryption, i.e., em-
bedding a DEM in the Damg̊ard’s ElGamal Encryption, and show that this
scheme achieves CCA security. The proposed scheme is more efficient than the
Kurosawa-Desmedt scheme in many aspects: it requires one less exponentiation,
it needs no target collision resistance, it produces shorter secret keys and public
keys.

The security proof for our proposed hybrid Damg̊ard’s ElGamal scheme has
to be however based on an extension of DHK assumption (which is an another

70 Y. Desmedt and D.H. Phan

formalization of the KEA3 assumption in [1]). We give a proof of the hardness of
this assumption in generic groups. Although this kind of proof in generic groups
can be seen as a minimum requirement for the use of an assumption in a security
proof, we strongly believe that the hybrid Damg̊ard’s ElGamal scheme would be
very useful in practice and deserves to be investigated further.

2 Notation and Standard Definitions

In this section, we recall the formalization of the most important security notion
for asymmetric encryption, namely the CCA security.

Firstly, let us briefly remind that a public-key encryption scheme π is defined
by three algorithms: the key generation algorithm K(1λ), which on the security
parameter λ, produces a pair of matching public and private keys (pk, sk); the
encryption algorithm Epk(m; r) which outputs a ciphertext c corresponding to
the plaintext m ∈M, using random coins r ∈ R; and the decryption algorithm
Dsk(c) which outputs the plaintext m associated to the ciphertext c.

Security Notions. Semantic security (a.k.a. polynomial security or indistin-
guishability of encryptions [11], denoted IND) is considered to be the standard
notion: if the attacker has some a priori information about the plaintext, it
should not learn more from the view of the ciphertext. More formally, this secu-
rity notion requires the computational indistinguishability between two strings,
chosen by the adversary, one of which has been encrypted. The adversary needs
to decide which one has been actually encrypted with a probability significantly
higher than one half: the advantage Advind

π (A), where the adversary A is seen as
a 2-stage Turing machine (A1,A2) whose running time is bounded by a poly-
nomial function in λ, should be a negligible function in λ. Formally, with λ the
security parameter:

Advind
π (A) = 2× Pr

[
(pk, sk) ← K(1λ), (m0, m1, s) ← A1(pk),
b

R← {0, 1}, c = Epk(mb) : A2(m0, m1, s, c) = b

]
− 1.

On the other hand, an attacker can employ various kinds of attacks, depending
on thee available information. Since we are considering asymmetric encryptions,
the adversary can encrypt any plaintext of its choice with the public key, hence
the basic chosen-plaintext attack. The strongest formalized attack can have a
polynomial access to the decryption oracle (except the challenge ciphertext c =
Epk(mb)), adaptive chosen-ciphertext attacks [16], denoted CCA or CCA2 (by
opposition to the earlier non-adaptive chosen-ciphertext attacks or lunchtime
attacks or [15], denoted CCA1, where the access to the decryption oracle is
limited until the challenge is known.)

The strongest security notion for asymmetric encryptions is thus the semantic
security against adaptive chosen-ciphertext attacks denoted IND-CCA or CCA
security. In this paper, as we deal with this security notion, the adversary A is
allowed to access the decryption oracle.

Denote maxA(Advind
π (A)) by Advind−cca

π (λ). The CCA security of π requires
that Advind−cca

π (λ) is a negligible function in λ.

A CCA Secure Hybrid Damg̊ard’s ElGamal Encryption 71

3 Construction

In the following sections, one assumes having a group generator G which, on
input 1λ, returns (g, q) satisfying that g is a generator of a cyclic group Gq = 〈g〉
of prime order q, and 2λ−1 < q < 2λ.

3.1 Damg̊ard’s ElGamal Encryption [5]

First of all, we recall Damg̊ard’s ElGamal Encryption.

Key Generation K(1λ): (g, q) ← G(1λ), random elements x, y ∈ Zq are also
chosen.
Secret Key: sk = (x, y)
Public Key: pk = (g, c = gx, d = gy)

Encryption: Given a message m, the encryption runs as follows. First, it chooses
r

R← Zq and then computes:

u1 = gr, u2 = cr, e = dr ·m

The outputted ciphertext is (u1, u2, e)
Decryption: Given a ciphertext (u1, u2, e), the decryption runs as follows.

First, it tests if u2 = ux
1 . If this condition does not hold, the decryption

algorithm outputs “reject”; otherwise it computes:

K = H(uy
1), m = K−1 · e

and outputs m.

3.2 Hybrid Damg̊ard’s ElGamal Encryption

We now propose a hybrid variant of the above Damg̊ard’s ElGamal Encryption.
We just replace, in the encryption of Damg̊ard’s ElGamal scheme, the operation
e = dr · m by a symmetric encryption of m under the key K = H(dr), where
H is randomly chosen from a universal familly of hash functions. The detailed
description follows.
In our scheme, we make use of:

– a Data Encapsulation Mechanism (DEM). A DEM is a symmetric key en-
cryption scheme, with encryption algorithm E and decryption algorithm D,
such that for the key K ∈ KD (KD is key space of DEM whose size depends
on λ) and the plaintext m ∈ {0, 1}	, e := EK(m) is the encryption of m
under K, and for key K ∈ KD and the ciphertext e ∈ {0, 1}	, m := DK(m)
is the decryption of e under K.
For our purpose, we require that DEM is CCA secure, i.e. the advantage
to distinguish EK(m0) from EK(m1) should be a negligible function in λ,
(i.e. given the challenge ciphertext EK(mb) for a random bit b, hard to
guess b) for randomly chosen K and adversarially chosen m0 and m1 (where

72 Y. Desmedt and D.H. Phan

m0 and m1 are of equal length but different), even though the adversary has
access to the decryption oracle for its chosen ciphertext (except the challenge
ciphertext). We denote this advantage by Advind−cca

dem (λ).
Unlike the case of public-key, secure symmetric encryption schemes against
chosen-ciphertext attacks can be easily built out of weaker primitives: all one
needs is a secure symmetric encryption scheme against passive adversaries,
and a secure message authentication code (MAC).

– a key derivation function H which maps an element V ∈ Gq to H(V) ∈
KD. We require that it’s hard to distinguish H(V) from K ′, where V and
K ′ are both randomly chosen. We can thus use H as a function from a
universal family of hash functions Hλand let H = {Hλ}λ∈N. In other words,
we denote by Advind

H (λ) the maximum advantage of all adversaries, whose
running times are bounded by a polynomial function in λ, to distinguish
H(V) from K ′, where V and K ′ and H ∈ Hλ are randomly chosen, and
assume that Advind

H (λ) is a negligible function in λ. However, we will need
some more requirements about H which will be described in Section 4.

We now describe our proposed scheme:

Key Generation K(1λ): (g, q) ← G(1λ), random elements x, y ∈ Zq are also
chosen. Next a hash function H is randomly chosen from a universal family
of hash functions Hλ.
Secret Key: sk = (x, y)
Public Key: pk = (H, g, c = gx, d = gy)

Encryption: Given a message m, the encryption runs as follows. First, it chooses
r

R← Zq and then it computes:

u1 = gr, u2 = cr, K = H(dr), e = EK(m)

The ciphertext is (u1, u2, e)
Decryption: Given a ciphertext (u1, u2, e), the decryption runs as follows.

First, it tests if u2 = ux
1 . If this condition does not hold, the decryption

algorithm outputs “reject”; otherwise it computes:

K = uy
1 , m = DK(e)

and outputs m.

3.3 Comparision with Kurosawa-Desmedt Scheme

We briefly recall the Kurosawa-Desmedt scheme which makes use of:

– a CCA secure DEM.
– a key derivation function H which is a universal one-way hash function [9].
– a target collision resistance function TCR : Gq × Gq → Zq: given u1 := gr1

and u2 := gr2 , for random r1, r2 ∈ Zq, it is hard to find (u′
1, u

′
2) ∈ Gq × Gq \

{(u1, u2)} such that H(u′
1, u

′
2) = H(u1, u2)

A CCA Secure Hybrid Damg̊ard’s ElGamal Encryption 73

We now describe their scheme: one uses a group generator G′, which on input
1λ, returns (g1, g2, q) where g1, g2 are two generators of the cyclic group 〈g〉 of
order q, and 2λ−1 < q < 2λ.

Key Generation K(1λ): (g1, g2, q) ← G(1λ), random elements x1, x2, y1, y2 ∈
Zq are also chosen.
Secret Key: sk = (x1, x2, y1, y2)
Public Key: pk = (H, TCR, g1, g2, c = gx1

1 gx2
2 , d = gy1

1 gy2
2)

Encryption: Given a message m, the encryption runs as follows. First, it chooses
r

R← Zq and then it computes:

u1 = gr
1, u2 = gr

2, α = TCR(u1, u2)

v = crdrα, K = H(v), e = EK(m)

The ciphertext is (u1, u2, e)
Decryption: Given a ciphertext (u1, u2, e), the decryption runs as follows.

First, it computes

α = TCR(u1, u2), v = ux1+y1α
1 ux2+y2α

2 , K = H(v)

and then m = DK(e) (m may be “reject”).

Comparison. In terms of efficiency, our scheme has the following advantages over
the Kurosawa-Desmedt one:

Key Size: The secret key contains two group elements, compared to four group
elements in the Kurosawa-Desmedt scheme. Our scheme needs one group
generator, compared to two group generators in Kurosawa-Desmedt scheme
and does not need to use the TCR function, the public key is thus shorter.

Encryption Computation: We get rid of the TCR function. Moreover, in
our scheme v = dr while in the Kurosawa-Desmedt scheme v = crdrα.
We can thus save one exponentiation. A secondary advantage is that, in
our scheme, the values u1, u2, d could be computed in parallel, while in the
Kurosawa-Desmedt scheme, one should first compute u1, u2, then compute
α = TCR(u1, u2), and finally compute v.

Decryption Computation: We also get rid of the computation of the TCR
function. Otherwise, both schemes need two exponentiations. However, in
our scheme, as all exponentiations are with respect to the same base, the
algorithm can be executed faster.

4 Assumptions Used in the Security Analyses

4.1 Hashed Decisional Diffie-Hellman Assumption

We first recall the definition of the Hashed Diffie-Hellman (HDDH) problem
needed for the sake of this work.

74 Y. Desmedt and D.H. Phan

Assumption 1 (Hashed Decisional Diffie-Hellman Assumption)
Assume that there is no adversary that can effectively distinguish the two follow-
ing distributions:

– (g, q) ← G(1λ) and a hash function H ;
– the distribution RH of random elements in G4

q : (g, ga, gb, H(Z)), for ran-

domly distributed a, b
R← Zq, Z

R← Gq;
– the distribution DH of tuples elements in G4

q : (g, ga, gb, H(gab)), for randomly

distributed a, b
R← Zq.

In other words, for all probabilistic algorithms A whose running times are
bounded by a polynomial function in λ, we define Advhddh

G (A) the advantage that
A can distinguish the two above distributions. The HDDH assumption states that
Advhddh

G (λ) = maxA(Advhddh
G (A)) is a negligible function in λ.

For our scheme, we need to use the following variant of the HDDH assumption:

Assumption 2 (Modified Hashed Decisional Diffie-Hellman: MHDDH)
Assume that there is no adversary that can effectively distinguish the two follow-
ing distributions:

– (g, q) ← G(1λ) and a hash function H;
– the distribution RMH of random elements in G6

q : (g, ga, gb, gc, gac, H(Z)),

for randomly distributed a, b, c
R← Zq, Z

R← Gq;
– the distribution DMH of tuples elements in G6

q : (g, ga, gb, gc, gac, H(gbc)), for

randomly distributed a, b, c
R← Zq.

In other words, for all probabilistic algorithms A whose running times are bounded
by a polynomial function in λ, we define Advmhddh

G (A) the advantage that A
can distinguish the two above distributions. The MHDDH assumption states that
Advmhddh

G (λ) = maxA(Advmhddh
G (A)) is a negligible function in λ.

Proposition 3. The MHDDH and the HDDH assumptions are equivalent:

Advhddh
G (λ) = Advmhddh

G (λ)

Proof. The proof is quite trivial:

– Suppose that there is a MHDDH distinguisher for RMH and DMH , we con-
struct an HDDH distinguisher for RH and DH as follows. Given an instance
(g, gb, gc, Z), one randomly chooses a

R← Zq, computes ga, gac, then gives
(g, ga, gb, gc, gac, Z) to MHDDH distinguisher and finally outputs what the
MHDDH distinguisher returns. Thus:

Advhddh
G (λ) ≤ Advmhddh

G (λ)

– Inversely, suppose that there is a HDDH distinguisher for RH and DH , we
construct an MHDDH distinguisher for RMH and DMH as follows. Given an

A CCA Secure Hybrid Damg̊ard’s ElGamal Encryption 75

instance (g, ga, gb, gc, gac, U), one just gives (g, ga, gc, U) to HDDH distin-
guisher and outputs what the HDDH distinguisher returns. Thus:

Advmhddh
G (λ) ≤ Advhddh

G (λ) ��

We also need to introduce another assumption about the function H .

Assumption 4 (Extended Hashed Decisional Diffie-Hellman: EHDDH)
Assume that there is no adversary that can effectively distinguish the two follow-
ing distributions REH and DEH :

– (g, q) ← G(1λ) and a hash function H;
– an element U ∈ Gq, U �= 1 and an element v ∈ Z	

q adversarially chosen;
– the distribution REH of random elements in G4

q : (g, ga, gb, H(gab), H(Z)),

for randomly distributed a, b
R← Zq, Z

R← Gq;
– the distribution DEH of tuples elements in G6

q : (g, ga, gb, H(gab), H(Ugabv)),

for randomly distributed a, b
R← Zq.

In other words, for all probabilistic algorithms A whose running times are bounded
by a polynomial function in λ, we define Advehddh

G (A) the advantage that A
can distinguish the two above distributions. The EHDDH assumption states that
Advehddh

G (λ) = maxA(Advehddh
G (A)) is a negligible function in λ.

4.2 Diffie-Hellman Knowledge Assumption (DHK)

We now recall the definition of Diffie-Hellman Knowledge Assumptions.
For A, B, C ∈ Gq, we say that (A, B, C) is a DH-triple if there exists a, b ∈ Zq

such that A = ga, B = gb and C = gab. We say that (B, C) is a DH-pair relative
to A if (A, B, C) is a DH-triple (throughout the text, when we say (A, B, C)
is a DH-triple, we assume the base g to be fixed and known). We also write
C = DH(A, B). One way for an adversary A taking input g, A to output a
DH-pair (B, C) relative to A is to pick (and thus “know”) some b ∈ Zq, set
B = gb and C = Ab, and output (B, C). Damg̊ard [5] makes an assumption
which, informally, implies that this is the “only” way that a polynomial-time
adversary A, given (g, A), can output a DH-pair (B, C) relative to A.

Bellare and Palacio [2] provide a formalization of this assumption that we
refer to as the DHK (DHK stands for Diffie-Hellman Knowledge) assumption: the
adversaryA, given (g, A), interacts with an extractor A	, querying it adaptively,
where A	 is an algorithm that takes a pair of group elements and some state
information (the state of A	 is denoted by St[A]), and returns an exponent and
a new state.

Experiment Expdhk
G,A,A�(λ)

Below, A,A	 are polynomial-time probabilistic algorithms (whose running times
are bounded by a polynomial function in λ).

76 Y. Desmedt and D.H. Phan

– (g, q) ← G(1λ); a
R← Zq, A = ga.

– Choose coins R[A], R[A] for A;A	, respectively ; St[A] ← ((g, A), R[A]).
– Run A on input g, A and coins R[A] until it halts, replying to its oracle

queries as follows:
If A makes query (B, C) then:
• (b, St[A]) ← A	((B, C), St[A]; R[A])
• If C = Ba and B �= gb then return 1,

else return b to A as the reply.
– Return 0

Assumption 5 (DHK). We define the DHK-advantage of A relative to A	 as:

Advdhk
G,A,A�(λ) = Pr[Expdhk

G,A,A�(λ) = 1]

We say that Gq satisfies the DHK assumption if for every polynomial-time dhk-
adversary A, there exists a polynomial-time dhk-extractor A	 such that
Advdhk

G,A,A�(λ) is a negligible function in λ.

We define Advdhk
G (λ) = maxA(minA�(Advdhk

G,A,A�(λ))). The DHK assumption can
be expressed as: Advdhk

G (λ) is a negligible function in λ.

4.3 Extended DHK Assumptions

We now consider an extension of the DHK assumption that we refer to as EDHK
(EDHK stands for Extended Diffie-Hellman Knowledge). The adversary is now
given not only (g, A) but also a DH-pair (B, C) relative to A. One way for an
adversary A taking input (g, A), a pair (B, C) relative to A, to output a DH-
pair (B′, C′) relative to A is to pick (and thus “know”) some x, y ∈ Zq, and set
B′ = Bxgy and C′ = CxAy.

Bellare and Palacio [1] introduced an assumption saying that this is the “only”
way that a polynomial-time adversary A, given g, A and a pair (B, C) relative
to A, can output a DH-pair B′, C′ relative to A. Their formalization in [1]
(called KEA3 assumption) is for non-randomized adversaries. For our purpose of
dealing with probabilistic adversaries, we reuse the terms in [2] to formalize this
assumption.

Considering an adversary A, given (g, A) and a pair (B, C) relative to A,
interacts with an extractor A	, queries it adaptively, where A	 is an algorithm
that takes a tuple of group elements (g, A, B, C) and some state information (the
state of A	 is denoted by St[A]), and finally returns two exponents and a new
state.

Experiment Expedhk
G,A,A�(λ)

Below, A,A	 are probabilistic algorithms whose running times are bounded by
a polynomial function in λ.

– (g, q) ← G(1λ); a, b
R← Zq, A = ga, B = gb, C = gab.

A CCA Secure Hybrid Damg̊ard’s ElGamal Encryption 77

– Choose coins R[A], R[A] for A;A	, respectively ; St[A] ← ((g, A, B, C),
R[A]).

– Run A on input g, A and coins R[A] until it halts, replying to its oracle
queries as follows:
If A makes query (B′, C′) then:
• (x||y, St[A]) ← A	((B′, C′), St[A]; R[A])
• If (C = Ba and C′ = B′a): if (B′ = Bxgy and C′ = CxAy)) then return

x||y,
else return 1, as the reply, to A.

– Return 0

Assumption 6 (EDHK). We define the EDHK-advantage of A relative to A	

as:
Advedhk

G,A,A�(λ) = Pr[Expedhk
G,A,A�(λ) = 1]

We say that Gq satisfies the EDHK assumption if for every polynomial-time
edhk-adversary A, there exists a polynomial-time edhk-extractor A	 such that
Advedhk

G,A,A�(λ) is a negligible function in λ.

We define Advedhk
G (λ) = maxA(minA�(Advedhk

G,A,A�(λ))).The EDHK assumption
can be expressed as: Advedhk

G (λ) is a negligible function in λ.

5 Security of the Hybrid Damg̊ard’s ElGamal Encryption

Theorem 7. The Hybrid Damg̊ard’s ElGamal encryption is CCA secure assum-
ing that:

1. the HDDH and EHDDH assumptions hold, and
2. the DHK and EDHK assumptions hold, and
3. the DEM is CCA secure.

Proof. We use the Game hopping technique.

Game G0: The simulator runs the real IND-CCA attack game. The key gen-
eration algorithm in Damg̊ard’s ElGamal encryption scheme generates a secret
key sk = (x, y) and a corresponding public key pk = (H, g, c = gx, d = gy). The
simulator is given both the secret key sk = (x, y) and the public key pk and
it generates random coins R[A] and R[A]. The simulator runs the adversary
A = (A1,A2) on input pk and coins R[A]. When A1 outputs a pair of messages
(m0, m1), the simulator produces a challenge ciphertext by flipping a coin b and
producing a ciphertext of mb. This ciphertext (u	

1, u
	
2, e

) comes from a random
string r	 R← Zq:

u	
1 = gr�

, u	
2 = cr�

, K	 = H(dr�

), e	 = EK�(mb)

On input (u	
1, u

	
2, e

), A2 outputs bit b′. We note that the adversary can sub-
mit decryption queries in both stages, before and after receiving the challenge
ciphertext.

78 Y. Desmedt and D.H. Phan

We denote by S0 the event b′ = b and use the same notation Sn in any game
Gn below. Note that the adversary is given access to the decryption oracle Dsk

during both steps of the attack.

Pr[S0] =
1
2
×
(
Advind-cca

π (A) + 1
)

.

Game G1: In this game, we simulate the decryption oracle without making
use of the secret key. The input of the simulator is just the public key. In order to
simulate the decryption queries, the simulator will use the DHK Extractor in the
first stage (before receiving the challenge) and the EDHK Extractor in the second
stage (after receiving the challenge (u	

1, u
	
2, e

)). The state of the extractor A	 in
the first stage is set to be St[A] ← ((g, c), R[A]) and the state of the extractor
A	 in the second stage will be set to be St[A] ← ((g, c, u	

1, u
	
2), R[A]). We now

describe the simulation of the decryption oracle:

– Decryption queries in the first stage (the queries submitted by A1): when-
ever the adversary submits a query (u1, u2, e), the simulator runs the DHK
ExtractorA	((u1, u2), St[A], R[A]). If the Expdhk

G,A,A�(λ) outputs 0 or 1, the
simulator rejects this ciphertext. If the Expdhk

G,A,A�(λ) outputs r, the simulator
computes K = H(dr) and outputs m = DK(m).

– Decryption queries in the second stage: whenever the adversary submits a
query (u1, u2, e), the simulator uses EDHK Extractor A	((u1, u2), St[A],
R[A]). If the Expedhk

G,A,A�(λ) outputs 0, the simulator rejects this ciphertext.
If the Expedhk

G,A,A�(λ) outputs (r1||r2):
• r2 = 0, the simulator simply computes K = H(dr1) and outputs m =

DK(e)
• if r2 �= 0: u1 = gr1(u	

1)
r2 and u2 = cr1(u	

2)
r2 = DH(c, u1). The session

key K = H(DH(d, u1)) = H(dr1(u	
2)

r2). The simulator decrypts e under
a hashed random session key (hash of a random group element of Gq) and
returns the resulted plaintext to the adversary. Under EHDDH, it’s easy
to see that the adversary cannot distinguish H(dr1(u	

2)
r2) from H(R),

where R
R← Gq.

Therefore, under the DHK, EDHK and EHDDH assumptions, the adversary can-
not distinguish the two games G1 and G0:

|Pr[S1]− Pr[S0] | ≤ Advdhk
G (λ) + Advedhk

G (λ) + nqAdvehddh
G (λ),

where nq is the maximum number of decryption queries that the adversary could
make.

Game G2: One now replaces the challenge (u	
1 = gr�

, u	
2 = gr�x, K	 =

H(gyr�

)) by a random challenge (u	
1, u

	
2 = gr�x, K	 = H(V)), where V 	 R←

G. The simulation of the decryption oracle is kept unchanged. Therefore, un-
der the MHDDH assumption, i.e. it is hard to distinguish (g, u	

1 = gr�

, d =
gy, c = gx, u	

2 = gr�x, K	 = H(gyr�

)) from a random challenge (g, u	
1, d =

A CCA Secure Hybrid Damg̊ard’s ElGamal Encryption 79

gy, c = gx, u	
2 = gr�x, K	 = H(V)), the two games G2 and G1 are indis-

tinguishable. Because of the equivalence between MHDDH and HDDH assump-
tions(Proposition 3), we have:

|Pr[S2]− Pr[S1] | ≤ Advhddh
G (λ),

Game G3: In this Game, we replace K	 by a random key in KD. In the
previous game, the key K	 is chosen as K	 = H(V) for a random V 	, the
distance between two games G3 and G2 is thus:

|Pr[S3]− Pr[S2] | ≤ Advind
H (λ)

Game G4: Finally, we replace mb in e	 = EK�(mb) by a random message
m	. As the key K	 is randomly chosen, the distance between the two games G4

and G3 is:
|Pr[S4]− Pr[S3] | ≤ Advind−cca

dem (λ)

In this game, the output of A2 follows a distribution that does not depend on b.
Accordingly, Pr[S4] = 1/2. ��

6 Hardness of the EDHK Problem in the Generic Group
Model

The hardness of the DHK problem has been proven by Dent [6] in generic groups.
In this section, we prove that the EDHK assumption also holds in generic groups.
In the generic group model [19], elements of Gq appear to be encoded as unique
random strings, so that no property other than equality can be directly tested
by the adversary. An oracle is assumed to perform operations between group
elements, i.e. the group action in the group Gq. The encoding of the elements
of Gq is modeled as an injective function ξ : Zp → Σ, where Σ ⊂ {0, 1}∗, which
maps all a ∈ Zp to the string representation ξ(ga) of ga ∈ G.

Let us first recall a lemma [18,19] that proofs in generic groups often rely on.

Lemma 8 ([18,19]). Let F (x1, x2, ..., xm) be a polynomial of total degree d ≥
1. Then the probability that F (x1, x2, ..., xm) = 0 mod n for randomly chosen
values (x1, x2, ..., xm) in Zn is bounded above by d/p where p is the largest prime
dividing n.

We now show that the EDHK assumption holds in a generic group.

Theorem 9. The EDHK assumption holds in a generic group.

Proof. The extractor A	 keeps track of the oracle queries of A as polynomials.
A	 maintains a list of pair L = {(Fi, ξi) : i = 0, 1, ..., τ − 1)}, where Fi are
polynomials of degree ≤ 2 in Zq[x, y, z1, .., zm]. We set F0 = 1, F1 = x, F2 =
y, F3 = xy and τ = 4, m = 0. The corresponding ξ0, ξ1, ξ2, ξ3 are set to be
arbitrary distinct strings in {0, 1}∗. A	 starts the game by providing A with the
strings ξ0, ξ1, ξ2, ξ3. Each query of A is a group action.

80 Y. Desmedt and D.H. Phan

A	 answers group action queries as follows:
When A makes queries on strings that have not been in the list, those strings

will be added to the list and assigned new variables: each time a new string
appears, we denote it by ξτ and assign a new variable zm+1 to the element ξτ ,
we add (Fτ = zm, ξτ) to the list L and then increment τ and m by one.

We can now assume that A makes queries on strings in the list. Given a
multiply/divide selection bit and two operands ξi, ξj with 0 ≤ i, j ≤ τ − 1, we
compute Fτ = Fi + Fj ∈ Zq[x, y, z1, .., zm] or Fτ = Fi − Fj ∈ Zq[x, y, z1, .., zm]
depending on whether a multiplication or a division is requested. If Fτ = F� for
some � < τ , we set ξτ = ξ�; otherwise, we set ξτ to a string in {0, 1}∗ distinct
from ξ0, ξ1, ..., ξτ . We add (Fτ , ξτ) to L and give ξτ to A, then increment τ by
one.
A terminates and returns a pair ξi, ξj where 0 ≤ i, j < τ . Let Fi, Fj be the

corresponding polynomial in the list L. Note that if A’s answer is correct then
necessarily:

Fi(x, y, xy, z1, z2, ..., zm) = xFj(x, y, xy, z1, z2, ..., zm)

Denote F 	(x, y, z1, z2, ..., zτ) = Fi(x, y, z1, z2, ..., zτ)− xFj(x, y, xy, z1, z2, ..., zτ).

Case 1: F 	 is identical to 0. From the above simulation, Fi, Fj should have the
following form:

– Fi(x, y, xy, z1, z2, ..., zm) = ci0 + αix + βiy + γixy + ci1z1 + ... + cimzm

– Fi(x, y, xy, z1, z2, ..., zm) = cj0 + αjx + βjy + γjxy + cj1z1 + ... + cjmzm

Therefore: F 	(x, y, z1, z2, ..., zτ) = ci0 + (αi − cj0)x + (γi − βj)xy + βiy −
αjx

2− γjxz + ci1z1 + ...+ cimzm − cj1xz1− ...− cjmxzm − γjx
2y. We deduce

thus:

– βi = γj = ci1 = ... = cim = cj1 = ... = cjm = 0
– αi = cj0(= r1)
– γi = βj(= r2)

Fi = r1x + r2xy, Fj = r1 + r2y. As Fi, Fj have this form, A	 could easily
extract and outputs r1||r2.

Case 2: F 	 is not identical to 0. In this case, F 	(x, y, z1, z2, ..., zτ) = 0 is a
non-trivial equation. At this point, A	 chooses randomly x	, y	, z	

1 , z	
2 , ..., z	

m.
The simulation provided by B is perfect unless the instantiation x ← x	, y ←
y	, z1 ← z	

1 , ..., zm ← z	
m creates an equality relation between the simulated

group elements that was not revealed to A. The success probability of A is
thus bounded by the probability that any of the following holds:

– Fi(x	, y	, z	
1 , ..., z	

m) = Fj(x	, y	, z	
1 , ..., z	

m), for some 0 ≤ i, j < τ . From
Lemma 8, this occurs with a probability bounded by τ22/q.

– F 	(x	, y	, z	
1 , ..., z	

m) = 0. From Lemma 8, this occurs with a probability
bounded by 1/q.

��

A CCA Secure Hybrid Damg̊ard’s ElGamal Encryption 81

7 Conclusion

We propose a hybrid Damg̊ard’s ElGamal encryption that is CCA secure. The
proposed scheme is very efficient but its security should be based on an exten-
sion of the DHK assumption, which is quite strong. There are however some
reasons that could convince us about the usefulness of this scheme. Firstly, we
proved that the Extended DHK assumption holds in generic groups. Secondly,
Gjøsteen[10] proposed a new technique of security proof for Damg̊ard’s ElGamal
scheme (against non-adaptive chosen ciphertext) in which the DHK assumption
can be replaced by an assumption of hardness of a new problem, the gap sub-
group membership problem, which is somewhat similar to conventional problems
such as the Gap Diffie-Hellman problem. Therefore, it could be possible that the
Gjøsteen’s technique (or another new technique) would help to replace the EDHK
assumption by a more conventional one1. Finally, note that the HDDH assump-
tion is generally weaker than DDH assumption and might hold even in groups
where DDH problem is easy [8] and that EHDDH, EDHK assumption, though
strong, might also hold in groups where the DDH problem is easy (it seems easy
to prove the hardness of these assumptions in generic groups with pairings, for
example). Therefore, it might happen that our proposed scheme is still secure in
some non-DDH groups.

Acknowledgments

We would like to thank Eike Klitz for helpful discussions.

References

1. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
273–289. Springer, Heidelberg (2004)

2. Bellare, M., Palacio, A.: Towards plaintext-aware public-key encryption without
random oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 48–62.
Springer, Heidelberg (2004)

3. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure
against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

4. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003)

5. Damg̊ard, I.: Towards Practical Public Key Systems Secure against Chosen Ci-
phertext Attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
445–456. Springer, Heidelberg (1992)

6. Dent, A.W.: The Hardness of the DHK Problem in the Generic Group Model.
Cryptology ePrint Archive, Report 2006/156 (2006), http://eprint.iacr.org/

1 An independent work recently posted on ePrint [12] shows indeed that hybrid
Damg̊ard’s ElGamal encryption can be proved under standard assumptions.

http://eprint.iacr.org/

82 Y. Desmedt and D.H. Phan

7. ElGamal, T.: A Public-key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. IEEE Trans. on Information Theory IT-31(4), 469–472 (1985)

8. Gennaro, R., Krawczyk, H., Rabin, T.: Secure Hashed Diffie-Hellman over Non-
DDH Groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027. Springer, Heidelberg (2004)

9. Gennaro, R., Shoup, V.: A note on an encryption scheme of Kuro-
sawa and Desmedt. Cryptology ePrint Archive, Report 2004/194 (2004),
http://eprint.iacr.org/

10. Gjøsteen, K.: A new security proof for damg̊ard’s ElGamal. In: Pointcheval, D.
(ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 150–158. Springer, Heidelberg (2006)

11. Goldwasser, S., Micali, S.: Probabilistic Encryption. Journal of Computer and Sys-
tem Sciences 28, 270–299 (1984)

12. Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: Randomness extraction: A new
paradigm for hybrid encryption. Cryptology ePrint Archive, Report 2008/304
(2008), http://eprint.iacr.org/

13. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004)

14. Lipmaa, H.: On CCA1-Security of Elgamal And Damg̊ard Cryptosystems. Cryp-
tology ePrint Archive, Report 2008/234 (2008), http://eprint.iacr.org/

15. Naor, M., Yung, M.: Public-key Cryptosystems Provably Secure against Chosen
Ciphertext Attack. In: 22nd Annual ACM Symposium on Theory of Computing,
pp. 427–437. ACM Press, New York (1990)

16. Rackoff, C., Simon, D.R.: Non-Interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 433–444. Springer, Heidelberg (1992)

17. Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signa-
tures and Public Key Cryptosystems. Communications of the ACM 21(2), 120–126
(1978)

18. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM 27(4), 701–717 (1980)

19. Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

20. Shoup, V.: Using Hash Functions as a Hedge against Chosen Ciphertext Attack.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 275–288. Springer,
Heidelberg (2000)

21. Wu, J., Stinson, D.: On The Security of The ElGamal Encryption Scheme
and Damgards Variant. Cryptology ePrint Archive, Report 2008/200 (2008),
http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Construction of Yet Another Forward Secure
Signature Scheme Using Bilinear Maps

Jia Yu1, Fanyu Kong2, Xiangguo Cheng1, Rong Hao1, and Guowen Li3

1 College of Information Engineering,
Qingdao University, Qingdao 266071, China

{yujia,chengxg,hr}@qdu.edu.cn
2 Institute of Network Security,

Shandong University, Jinan 250100, China
fanyukong@sdu.edu.cn

3 School of Computer Science and Technology,
Shandong Jianzhu University, Jinan 250101, China

guowenli@gmail.com

Abstract. Forward secure signatures are proposed to deal with the key
exposure problem. Compared to regular signatures, forward secure signa-
tures can protect the security of signatures previous to the time period of
key exposure. The efficiency is an important issue of forward secure sig-
natures. In this paper, we construct yet another forward secure signature
scheme using bilinear maps. In this scheme, all performance parameters
have complexities of log magnitude in terms of the total time periods.
In addition, our scheme needs very few pairing operations in verifying
algorithm, which is very important because the pairing operation is very
time-consuming. At last, we prove that our scheme is forward secure in
random oracle model assuming CDH problem is hard.

Keywords: forward security, computation Diffie-Hellman problem,
bilinear maps, digital signature.

1 Introduction

The secret key exposure has arisen much attention of cryptography researchers
because it threatens the security of digital signatures greatly. Therefore, how to
deduce the damage of key exposure for digital signatures is an important work.
Forward security for digital signatures is one kind of methods widely used. In
forward secure signatures, the whole time is divided into several time periods.
Each secret key is not only used to sign the message in the current time period
but also used to compute the secret key of the next time period by a one-way
function. So the adversary is computationally infeasible to forge any signature
previous the period of key exposure even if the current key is exposed.

Anderson [1] firstly proposed to apply forward security to digital signatures.
Bellare and Miner [2] further formalized forward secure signatures and proposed
a practical scheme. They also provided the definitions of forward secure sig-
natures and its security. Subsequently a lot of constructions of forward secure

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 83–97, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

84 J. Yu et al.

signature schemes [3,4,5,6] were proposed. The scheme [5] had optimal signing
and verifying algorithms at the expense of slower key update. While the scheme
[6] could achieve fast key update with another method but had slower signing
and verifying algorithms. In these schemes, at least one of operations of key
generation, key update, signing and verifying algorithms were linear to the total
number of time periods T. Malkin et al. [7] proposed a forward secure signature
scheme in which the operations of all sub-algorithms were independent of T but
linear to the current time period, where T was the total number of time peri-
ods. With the time period increasing, the efficiency of Malkin’s scheme was still
greatly influenced by T. How to construct a forward secure signature scheme
with higher efficiency has been a hot topic in research for a long time, which
is an open problem presented by Itkis [8]. Hierarchical ID-based cryptography
advocated by Gentry and Silverberg [9] could be used to construct efficient for-
ward secure signature schemes. Based on hierarchical ID-based cryptography [9]
and ke-PKE [10], the first forward secure signature scheme using bilinear maps
was proposed in [11], whose efficiency was balanced across all its aspects be-
cause each parameter in the scheme had a complexity no larger than O(logT) .
Because the pairing operation is time-consuming, reducing the times of pairing
operations in forward secure signature from bilinear maps is very important to
improve efficiency. Another forward secure signature scheme with similar con-
struction was proposed in [12]. Vo and Kim [13] proposed yet another forward
secure signature from bilinear pairings in 2005. They claimed that the opera-
tions of all sub-algorithms in their scheme didn’t increase with T increasing.
Unfortunately, it was proved that the scheme didn’t satisfy the forward secu-
rity [14]. A fine-grained forward-secure signature scheme was proposed in [15],
which allowed the signer to specify which signatures of the current time period
remained valid when revoking the public key. Boyen et al. presented a forward
secure signature with untrusted update in [16]. Libert et al. [17] gave generic
constructions of forward secure signatures in untrusted update environments.

Forward secure symmetric-key encryption and forward secure public key en-
cryption were studied in [18] and [10]. Forward secure threshold signature was
also researched in [19,20,21,22]. Key-insulation [23,24,25,26] and intrusion-resi-
lient cryptography [27,28,29,30] were proposed to achieve a high level of security.
However, these methods needed synchronization and the signer’s communication
with a safe device for each time period. So they were not able to apply to many
scenarios.

Our contribution. We construct yet another forward secure signature scheme
using bilinear maps in this paper. The scheme has nice average performance. We
makes use of the binary tree structure similar to [11], as a result, the scheme has
an advantage that all the complexities of the running times of key generation,
key update, signing and verifying algorithms and the sizes of public key, secret
key, and signature are no more than O(logT) in terms of the total number of
time periods T. Because the scheme is operating over a certain elliptic curve, the
signature size and the secret key size are relatively short. In addition, there are
only triple pairing operations in its verifying algorithm because a new approach

Construction of Yet Another Forward Secure Signature Scheme 85

is performed to derive the local secret key. It is very important because the
pairing operation influences the efficiency of verifying algorithm greatly. The
security of our scheme is based on CDH assumption. It is proved to be forward
secure in random oracle model assume CDH problem is hard.

Organization. In Section 2, we introduce the preliminaries of our work, includ-
ing cryptographic assumptions, forward secure signature scheme and its security.
A concrete description of our scheme is given in Section 3. In addition, the per-
formance analysis and security analysis are given in Section 4 and 5, respectively.
Finally, we conclude the paper in Section 6.

2 Preliminaries

2.1 Cryptographic Assumptions

We give some cryptographic assumptions that are similar to the descriptions in
[9]. Let G1 and G2 be two cyclic groups of some prime order q, where G1 is
represented additively and G2 is represented multiplicatively. And let P ∈ G1

be a generator of G1. A bilinear map ê : G1 ×G1 → G2 satisfies:
1. Bilinear: For all P, Q ∈ G1 and a, b ∈ Z, there is ê(aP, bQ) = ê(P, Q)ab.
2. Non-degenerate: The map does not send all pairs in G1×G1 to the identity

in G2.
3. Computable: There is an efficient algorithm to compute ê(P, Q) for any

P, Q ∈ G1.
Computation Diffie-Hellman (CDH) problem: Given (P, aP, bP), where a, b ∈

Zq, compute abP . The advantage of an algorithm A in solving the CDH problem
in a group G1 is

AdvCDHA = Pr[A(P, aP, bP) = abP |a, b
R←− Zq]

Definition 1 (CDH Assumption). A probabilistic algorithm A is said (t, ε)-
break CDH problem in G1 if A runs at most time t, computes CDH problem with
an advantage of at least ε . We say that G1 is a (t, ε)-secure CDH group if no
probabilistic algorithm A (t, ε)-break CDH problem in G1.

IG is a CDH parameter generator if only it takes security parameter k, outputs
the description of two groups G1 and G2 of the same prime order q and an ad-
missible pairing ê : G1×G1 → G2. We say that IG satisfies the CDH assumption
if for all PPT algorithms A the following probability is negligible:

Pr[A(G1, G2, ê, P, aP, bP) = abP |(G1, G2, ê)← IG(1k), P ← G∗
1, a, b← Zq]

2.2 Forward Secure Signature Scheme

A forward secure signature scheme is a key-evolving signature scheme with spe-
cial security. Different from standard signatures, key-evolving signatures have
an additional algorithm—key update algorithm which takes the current secret

86 J. Yu et al.

key as input and derives a new secret key for the next period. So a key-evolving
signature scheme consists of a key generation algorithm, a key update algorithm,
a signing algorithm and a verifying algorithm. We firstly review the definition
of the key-evolving signature scheme.

Definition 2 (Key-evolving Signature Scheme). A key-evolving signature
scheme is an quadruple of algorithms FSIG=(FSIG.key, FSIG.update, FSIG.sign,
FSIG.verify), where:

1. FSIG.key: the key generation algorithm, is a probabilistic algorithm which
takes as input a security parameter k ∈ N and the total number of time periods
T, and generates a public key PK and the initial secret key SK0.

2. FSIG.update: the key update algorithm, is a probabilistic algorithm which
takes as input the secret key SKj of the current period j, and generates the new
secret key SKj+1 for the next period.

3. FSIG.sign: the signing algorithm, takes as input the secret key SKj of the
current time period j and a message M, and generates a signature < j, sign >
of M for period j. This algorithm may be probabilistic.

4. FSIG.verify: the verifying algorithm, is a deterministic algorithm which
takes as input the public key PK, a message M and a candidate signature <
j, sign >and output 1 when < j, sign > is a valid signature or 0, otherwise.

If < j, σ > is a signature of message M generated by FSIG.sign algorithm, then
FSIG.verifyPK(M, < j, σ >) = 1. Assume SKj always contains both values j
and T.

2.3 Security Definition

If a key-evolving signature scheme is a forward secure signature scheme, then
an adversary is computationally difficult to forge any signature of the previous
period even if she gets the current secret key. Below we indicate the experiment
to evaluate the security of forward secure signature in random oracle model:

From below experiment, the adversary knows the total number of time periods
and the current time period. Adversary F runs in three phases: The first is the
chosen message attack phase (cma). In this phase, F has access to a signature
oracle to query any signature of the message she selects with respect to the
current secret key. At the end of each time period, F can choose to stay in this
phase or go to the next phase. The second phase is the break-in phase. In this
phase, the adversary is given the secret key SKi∗ for the specific time period
i∗ she decides to break in. The last phase is the forgery phase (forge). In this
phase, the adversary needs to output a forgery. The adversary is considered to
be successful if she forges a signature of some new message (that is, not queried
previously) for some time period prior to i∗. The hash function H is viewed as
a random oracle and F can query random oracle H in the whole procedure.

Definition 3 (Forward-security in Random Oracle Model). Let KE-SIG
is a key-evolving signature scheme with security parameter k, number of time
period T. Let H be a random oracle and F be an adversary above described. Let

Construction of Yet Another Forward Secure Signature Scheme 87

Experiment. F-Forge-RO(FSIG, F)

Select H : {0, 1}∗ → {0, 1}l at random
(PK,SK0)

R←− FSIG.keyH(k, · · · , T)
j = 0
Repeat

d← F
H,FSIG.signH

SKj
(.)

(cma, PK)
SKj+1 ← FSIG.updateH(SKj)
j ← j + 1

Until (d=break) or (j = T)
i∗ ← j
(M,< j, sign >)← F H(forge, SKi∗)
If FSIG.verifyH

PK(M, < i, sign >) = 1 and 0 ≤ i < i∗ and M was not queried of
FSIG.signH

SKi
(.) in period i

then
return 1

else
return 0

Succfsig(KE-SIG[k, T], F) denote the probability that above experiment returns
1. Then the insecurity of KE-SIG scheme is function

Insecfsig(KE-SIG[k, T], t, qsig, qhash) = maxF {Succfsig(KE-SIG[k, T], F)}

Where the maximum is taken over all adversaries F satisfies the following condi-
tions: the time for executing the above experiment is at most t; F makes at most
qsig signing queries to the signing oracle and qhash hash queries to the H-oracle.

Above definitions and experiment are taken from [2,3,11] with slight
modifications.

3 The Proposed Forward Secure Signature Scheme

3.1 Notations and Constructions

Our scheme makes use of a binary tree structure, which has been used in many
cryptographic schemes. This structure is firstly suggested to form forward se-
cure signature schemes by Bellare and Miner [2]. It also has been adopted in
[10,11,12,28]. As in [11], for convenience, we define the total number of time
periods T to be a power of 2 (T = 2l). We use a full binary tree with depth l
and present each node with a binary string ζ (the root node is an empty string
ζ = ε). If the depth of node ζ is less than l, then its left and right children are
represented with ζ0 and ζ1, respectively. Each time period i(0 ≤ i ≤ T − 1) can
be represented using a binary string in l bits < i >= i1i2 · · · il, that is, each
leaf < i > from leftmost leaf to the rightmost leaf can represent each period i.

88 J. Yu et al.

The leftmost leaf represents period 0 and the rightmost of leaf represents period
T − 1. The binary presentation of internal node is ζ = ζ1ζ2 · · · ζj(1 ≤ j < l),
where j is the depth of nod ζ.

The root nod ε contains root secret sε and root verification point Q. Each
internal nod ζ contains a node secret sζ , a local secret Sζ ∈ G1, and a verification
point Qζ. The local secret of each leaf nod < i > is sk<i> = (S<i>, Φ<i>),
where Φ<i> = (Qi1 , · · · , Qi1i2···il−1 , Q<i>). All the verification points are not
real secrets, but will be published as a part of signature.

Denote the leaf nod with < i >= i0i1i2 · · · il (where i0 = ε). The full secret
SKi in period consists of (1)s<i> (2)sk<i> (3){ski0i1···ij−11} (for each ij =
0, 1 ≤ j ≤ l). The first two parts are leaf secret and local secret. For each
ij = 0, 1 ≤ j ≤ l, internal node ζ0 = i0i1 · · · ij has a right sibling node ζ1 =
i0i1 · · · ij−11, and we use Ψ(i) denote the set of all right sibling nodes of nod i.
Represent SKi as {s<i>, S<i>, Set<i>, Φ<i>}, where Set<i> = {Sζ |ζ ∈ Ψ(i)}.
Set<i> can evolve the full secrets SKi′ for all periods i′ > i, but can’t evolve
the full secrets for previous periods. The signature can be generated from secret
s<i>,S<i> and Φ<i>. Let the signer secret be {s<i>, S<i>, Set<i>, Φ<i>}, where
Set<i> = {Sζ |ζ ∈ Ψ(i)}. The secrets s<i>,S<i> and Φ<i> in signer secrets are
used to generate signatures, and the secret Set<i> is used to evolve the secret
of the next period.

3.2 Description of the Scheme

Below we give the detailed description of our forward secure signature scheme
using bilinear maps.

(1) algorithm FSIG.key(k, l, T)
Begin

Run IG(1k) to generate additive group G1 and multiplicative group G2

with same prime order q and an admissible pairing ê : G1 ×G1 → G2.
Select cryptographic hash functions H1 : {0, 1}∗ ×G1 → Z∗

q ,
H2 : G1 → G1, H3 : {0, 1}∗ ×G1 → G1.
Select generator P ∈R G1 and secret sε ∈R Z∗

q , and let
Q = sεP , Sε = sεH2(Q).
Let the public key be PK = {G1, G2, ê, H1, H2, H3, P, Q}.
Select s0, s1 ∈R Z∗

q , and compute Q0 = s0P , Q1 = s1P .
Compute S0 = Sε + s0H1(0, Q0)H2(Q) and S1 = Sε + s1H1(1, Q1)H2(Q).
For j = 1 to l − 1

Select s0j0, s0j1 ∈R Z∗
q , and compute Q0j0 = s0j0P , Q0j1 = s0j1P .

Compute S0j0 = S0j + s0j0H1(0j0, Q0j0)H2(Q) ,
and S0j1 = S0j + s0j1H1(0j1, Q0j1)H2(Q).

Set SK0 = {S0l , Set0l , Φ0l} , where Φ0l = (Q0, · · · , Q0l−1 , Q0l), and
Set0l = (< S1, Q1 >, < S01, Q01 >, · · · , < S0l−11, Q0l−11 >).
Erase all interim data, and return PK, SK0.

End

Construction of Yet Another Forward Secure Signature Scheme 89

(2) algorithm FSIG.update(SKi)
Begin

If i = T − 1 then
Let SKT = φ.

Else
Parse < i >= i0i1i2 · · · il, (i0 = ε), SKi = {S<i>, Set<i>, Φ<i>},
and Φ<i> = (Qi1 , · · · , Qi1i2···il−1 , Q<i>).
If il = 0 then

Find < S<i+1>, Q<i+1> > from Set<i>,
and set Set<i+1> = Set<i> − {< S<i+1>, Q<i+1> >}.
Set Φ<i+1> = (Φ<i> − {Q<i>}) ∪ {Q<i+1>}.
Set SKi+1 = (S<i+1>, Set<i+1>, Φ<i+1>).

Else
Find the maximal j(1 ≤ j < l) satisfying ij = 0,
and let η = i0i1 · · · ij−11, (i0 = ε). Here < i + 1 >= η0l−j .
Find < Sη, Qη > from Set<i>,
and set Set<i+1> = Set<i> − {< Sη, Qη >}.
Set Φ<i+1> = Φ<i> − {Qi1i2···ij , Qi1i2···ij1, · · · , Qi1i2···ij1l−j−1 , Q<i>}.
For m = 1 to l − j

Select sη0m , sη0m−11 ∈R Zq , and compute
Qη0m = sη0mP ,
Qη0m−11 = sη0m−11P ,
Sη0m = Sη0m−1 + sη0mH1(η0m, Qη0m)H2(Q),
and Sη0m−11 = Sη0m−1 + sη0m−11H1(η0m−11, Qη0m−11)H2(Q),
Set Set<i+1> = Set<i+1> ∪ {< Sη0m−11, Qη0m−11 >},
and Φ<i+1> = Φ<i+1> ∪ {Qη0m}.

Set SKi+1 = {S<i+1>, Set<i+1>, Φ<i+1>}.
Erase all interim data, and return SKi+1.

End

(3) algorithm FSIG.sign(i, SKi, M)
Begin

Parse < i >= i1i2 · · · il, SKi = {S<i>, Set<i>, Φ<i>}.
Select r ∈R Z∗

q , and compute U = rP .
Compute V = S<i> + rH3(i1i2 · · · il||M, U).
Return signature < i, sign = (U,V, Φ<i>) > .

End

(4) algorithm FSIG.verify(M, PK, < i, sign >)
Begin

Parse < i >= i1i2 · · · il,sign = (U, V, Φ<i>),
and Φ<i> = (Qi1 , · · · , Qi1i2···il−1 , Q<i>).
Verify

ê(P, V) = ê(Q +
∑l

j=1 H1(i1i2 · · · ij , Qi1i2···ij)Qi1i2···ij , H2(Q))
·ê(U, H3(i1i2 · · · il||M, U))

If it holds, return “valid”;
Otherwise, return “ invalid”.

End

90 J. Yu et al.

4 Performance Analysis

The proposed scheme is based on the binary tree structure that has been used
in [10,11,28], so it enjoys a particular advantage of this structure. The scheme
has a nice average performance, that is, there is no cost parameters including
key generation time, key update time, signing time, verifying time, and sig-
nature size, public key size, secret storage size has a complexity more than
O(logT) in terms of the total number of time periods T in this scheme. In
schemes [2,3,5,6,7] that don’t use this structure, at least one in key generation,
key update, signing and verifying algorithms have a complexity of O(T) with
the current period increasing. Our scheme is more efficient in verifying algo-
rithm because there are only triple pairing operations compared with O(logT)
pairing operations in scheme [11] with the similar binary tree structure. It is
very important because the pairing operation is very time-consuming. Further-
more, the verifying algorithm can be further optimized by precomputing and
storing ê(Q +

∑l
j=1 H1(i1i2 · · · ij , Qi1i2···ij)Qi1i2···ij , H2(Q)) after the verifier re-

ceives the first signature from the signer at the corresponding time period. In
addition, the scheme is operating over a certain elliptic curve, thus, it possesses
the traits of short signature based on bilinear pairing. When T is not very large,
the signature size and the secret key size are very short. The following table
gives a brief performance comparison with scheme [11] which is based on the
same construction and computation assumption with our scheme. We consider
the cost in terms of the number of scalar multiplications and pairing computa-
tions in the group G1. In the following table, we name our FSIG scheme before
precomputation as FSIG A and the scheme after precomputation as FSIG B.
Use S to present the scalar multiplication in G1 and use P to present the pairing
computation.

Table 1. Performance comparisons (in terms of T)

Parameters Scheme in [11] FSIG A FSIG B

Key generation time O(logT)S O(logT)S O(logT)S
Key update time O(logT)S O(logT)S O(logT)S
Sign time S 2S S
Verify time O(logT)P O(logT)S + 3P 2P
Signature size (bits) O(logT)k O(logT)k O(logT)k
Public Key size (bits) O(logT)k O(logT)k O(logT)k
Secret Key size (bits) O(logT)k O(logT)k O(logT)k

5 Security Analysis

Theorem 1. Assume < i, sign = (U, V, Φ<i>) > is a signature of message M
for period i generated by signing algorithm. Then FSIG.verify(M, PK, < i, sign =
(U, V, Φ<i>) >) =“valid”.

Construction of Yet Another Forward Secure Signature Scheme 91

Proof

ê(P, V)
= ê(P, S<i> + rH3(i1i2 · · · il||M, U))
= ê(P, S<i>) · ê(P, rH3(i1i2 · · · il||M, U))

= ê(P, sεH2(Q) +
∑l

j=1
si1i2···ij H1(i1i2 · · · ij, Qi1i2···ij)H2(Q))

·ê(rP, H3(i1i2 · · · il||M, U))

= ê(P, (sε +
∑l

j=1
si1i2···ij H1(i1i2 · · · ij , Qi1i2···ij))H2(Q))

·ê(rP, H3(i1i2 · · · il||M, U))

= ê(sεP +
∑l

j=1
si1i2···ij H1(i1i2 · · · ij , Qi1i2···ij)P, H2(Q))

·ê(U, H3(i1i2 · · · il||M, U))

= ê(Q +
∑l

j=1
H1(i1i2 · · · ij , Qi1i2···ij)Qi1i2···ij , H2(Q))

·ê(U, H3(i1i2 · · · il||M, U))

Let the length of prime q be k bits. In order to simplify the efficiency analysis,
we assume a group operation on G1 is at most the time of O(kn) bit operation.

Theorem 2. If there is a forger F which runs in time at most t, asking at
most qsig signing queries and qhash random oracle H3 − oracle queries, such as
Succfsig(KE-SIG[k, T], F) > ε, then there exists an adversary A that (t′, ε′)-break
CDH problem in group G1, where

t′ = t + O(max {qsiglogT, qhash} · kn + max{logT, qsig} · k2)

ε′ =
1
T

(ε− qsig(qhash − 1)
q − 1

)

Proof. As discussed in [3,11], we assume that hash query (i1i2 · · · il||M, U) must
be made simultaneously when F makes signing query of message M for period
i, where < i >= i1i2 · · · il. It may make the number of hash queries be increased
to qhash + qsig. Assume F maintains all necessary records and can’t query the
same hash twice.

We view H2 as an ordinary hash function and H3 as a random oracle in the
proof. Furthermore, replace H1 by (l + 1)-wise independent hash function in
function family [31].

Firstly, the algorithm A is given parameters (G1, G2, ê) and (P, Q = sεP =
αP, P ′ = H2(Q) = βP) generated by IG, and the goal of A is to compute αβP ,
where α = sε, β ∈ Zq are unknown to A and F. A runs F as a subroutine. A
selects a total time periods T and guesses the time period i∗ randomly at which
F asks the break-in queries. The probability that her guess is right is 1/T . Let
< i∗ >= i∗1i

∗
2 · · · i∗l .

A selects at random hi∗1i∗2 ···i∗l , yi∗1i∗2 ···i∗l ∈ Z∗
q , and hi∗1i∗2 ···i∗j−11, yi∗1i∗2 ···i∗j−11 in

Z∗
q where 1 ≤ j ≤ l and i∗j = 0. A randomly selects hash function H1 from a

92 J. Yu et al.

(l + 1)-wise independent hash function family with the following constraints for
1 ≤ j ≤ l and i∗j = 0.

H1(i∗1i∗2 · · · i∗j−11, Qi∗1i∗2 ···i∗j−11) = hi∗1i∗2 ···i∗j−11,
H1(i∗1i∗2 · · · i∗l , Qi∗1i∗2 ···i∗l) = hi∗1i∗2 ···i∗l , where
Qi∗1i∗2 ···i∗j−11 = 1/hi∗1i∗2 ···i∗j−11(yi∗1i∗2 ···i∗j−11P − P ′),
Qi∗1i∗2 ···i∗l = 1/hi∗1i∗2 ···i∗l (yi∗1 i∗2 ···i∗l P − P ′).
A provides PK = (G1, G2, ê, P, Q) and the total number of time period T to F.
A maintains two tables: H3 table, and signing oracle table to answer the

queries from F. The element in H3 oracle table is tuple (< j > ||M, U, h, λ, ϕ),
where < j > ||M and U represent the input values of the query, h represents the
output value of this query and the values λ, ϕ present two temporary variables.

The simulation of H3 queries. When F queries H3 hash oracle, A must
guarantee the answer is random. If F queries H3 oracle at a point (< i > ||M, U).
A does as following:

1. If (< i > ||M, U) has already appeared on a tuple (< i > ||M, U, h, λ, ϕ) in
H3 table, then A responds H3(i1i2 · · · il||M, U) = h ∈ G1 to F.

2. Else selects λ ∈R Zq computes h = λP and adds (< i > ||M, U, h, λ, ∗) to
H3 table. A responds H3(i1i2 · · · il||M, U) = h ∈ G1 to F.

Signing requires. When A requires the signature of < M, i >, F does as
follows:

1. If i �= i∗, A selects λ, ϕ ∈R Z∗
q , and computes h = λP − (1/ϕ)P ′, U = ϕQ.

If H3(i1i2 · · · il||M, U) has been defined, then A aborts.
A adds (< i > ||M, U, h, λ, ϕ) to the H3 table. A selects si1i2···ij ∈R Z∗

q (1 ≤
j ≤ l)(If hasn’t selected), and sets Φ<i> = {si1P, si1i2P, · · · , si1i2···il

P}, then
computes V = ϕλQ +

∑l
j=1 si1i2···ij H1(i1i2 · · · ij, Qi1i2···ij)P ′.

It is because:
V = sεH2(Q)+

∑l
j=1 si1i2···ij H1(i1i2 · · · ij , Qi1i2···ij)H2(Q)+rH3(i1i2 · · · il||M, U)

= sεP
′ +

∑l
j=1 si1i2···ij H1(i1i2 · · · ij , Qi1i2···ij)P ′ + sεϕ(λP − (1/ϕ)P ′)

= ϕλQ +
∑l

j=1 si1i2···ij H1(i1i2 · · · ij, Qi1i2···ij)P ′

Finally, A sends sign = (U, V, Φ<i>) to F. Obviously, A can provide the
signature to F though she can’t compute αP ′ = αβP .

2. If i = i∗, selects λ, ϕ ∈R Z∗
q , and computes h = λP , U = ϕQ, and adds (<

i∗ > ||M, U, h, λ, ϕ) to the H3 table. A has set Qi∗1i∗2 ···i∗l = 1/hi∗1i∗2 ···i∗l (yi∗1i∗2 ···i∗l P−
P ′). She selects si∗1i∗2 ···i∗j ∈R Z∗

q (1 ≤ j ≤ l − 1) (if hasn’t selected) and sets
Φ<i∗> = {si∗1

P, si∗1i∗2
P, · · · , si∗1i∗2 ···i∗l−1

P, Qi∗1 i∗2 ···i∗l }, then computes

V =
∑l−1

j=1 si∗1 i∗2 ···i∗j H1(i∗1i
∗
2 · · · i∗j , Qi∗1i∗2 ···i∗j)P ′ + yi∗1i∗2 ···i∗l P ′ + λU

It is because:
V = S<i∗> + rH3(i∗1i∗2 · · · i∗l ||M, U)

= sεH2(Q) +
∑l

j=1 si∗1i∗2 ···i∗j H1(i∗1i∗2 · · · i∗j , Qi∗1i∗2 ···i∗j)H2(Q)
+rH3(i∗1i∗2 · · · il||M, U)

= sεH2(Q) +
∑l−1

j=1 si∗1i∗2 ···i∗j H1(i∗1i∗2 · · · i∗j , Qi∗1i∗2 ···i∗j)H2(Q)
+si∗1i∗2 ···i∗l H1(i∗1i

∗
2 · · · i∗l , Qi∗1i∗2 ···i∗l)H2(Q) + rh

Construction of Yet Another Forward Secure Signature Scheme 93

= sεP
′ +

∑l−1
j=1 si∗1i∗2 ···i∗j H1(i∗1i

∗
2 · · · i∗j , Qi∗1i∗2 ···i∗j)P ′

+1/hi∗1i∗2 ···i∗l (yi∗1 i∗2 ···i∗l − sε)hi∗1 i∗2 ···i∗l P ′ + rλP

=
∑l−1

j=1 si∗1i∗2 ···i∗j H1(i∗1i
∗
2 · · · i∗j , Qi∗1i∗2 ···i∗j)P ′ + yi∗1i∗2 ···i∗l P ′ + λU

Finally, A sends sign = (U, V, Φ<i>) to F.

Break-in Phase. When F finishes the cma phase and comes to the break-in
phase, A does as follows in order to provide SKi∗ to F :

A has known S<i∗> =
∑l−1

j=1 si∗1i∗2 ···i∗j H1(i∗1i∗2 · · · i∗j , Qi∗1i∗2 ···i∗j)P ′ + yi∗1i∗2 ···i∗l P ′,
Φ<i∗> = {si∗1

P, si∗1i∗2
P, · · · , si∗1i∗2 ···i∗l−1

P, Qi∗1i∗2 ···i∗l }. For each j such as ij = 0 and
(1 ≤ j ≤ l), A has set Qi∗1i∗2 ···i∗j−11 = 1/hi∗1i∗2 ···i∗j−11(yi∗1i∗2 ···i∗j−11P − P ′), and then

sets Si∗1i∗2 ···i∗j−11 =
∑j−1

m=1 si∗1i∗2 ···i∗mH1(i∗1i
∗
2 · · · i∗m, Qi∗1i∗2 ···i∗m)P ′ + yi∗1i∗2 ···i∗j−11P

′, A
sets Set<i∗> =

⋃
1≤j≤l,ij=0{< Si∗1i∗2 ···i∗j−11, Qi∗1i∗2 ···i∗j−11 >}.

Since

Si∗1i∗2 ···i∗j−11 = sεH2(Q) +
∑j−1

m=1
si∗1i∗2 ···i∗mH1(i∗1i

∗
2 · · · i∗m, Qi∗1i∗2 ···i∗m)H2(Q)

+si∗1i∗2 ···i∗j−11H1(i∗1i
∗
2 · · · i∗j−11, Qi∗1i∗2 ···i∗j−11)H2(Q)

= sεP
′ +

∑j−1

m=1
si∗1i∗2 ···i∗mH1(i∗1i

∗
2 · · · i∗m, Qi∗1i∗2 ···i∗m)P ′

+1/hi∗1i∗2 ···i∗j−11(yi∗1i∗2 ···i∗j−11 − sε)hi∗1i∗2 ···i∗j−11P
′

=
∑j−1

m=1
si∗1i∗2 ···i∗mH1(i∗1i

∗
2 · · · i∗m, Qi∗1i∗2 ···i∗m)P ′ + yi∗1i∗2 ···i∗j−11P

′

Therefore, she can provide the secret key SKi∗ = (S<i∗>, Set<i∗>, Φ<i∗>) in
this period to F.

Forge Phase. After above procedure, if A guesses the correct break-in period
i∗, F outputs a valid forgery sign = (U, V, Φ<i>) for < i, M > . The probability
to output the valid forgery without querying H3 hash oracle at a point (< i >
||M, U) is negligible. So F can find the tuple (< i > ||M, U, h, λ, ∗) in H3 table.
Then
ê(P, V) = ê(Q +

∑l
j=1 H1(i1i2 · · · ij, Qi1i2···ij)Qi1i2···ij , H2(Q))

·ê(U, H3(i1i2 · · · il||M, U)) ⇒
ê(P, V) = ê(sεP +

∑l
j=1 H1(i1i2 · · · ij , Qi1i2···ij)si1i2···ij P, H2(Q))

·ê(rP, H3(i1i2 · · · il||M, U)) ⇒
ê(P, V) = ê(P, sεH2(Q) +

∑l
j=1 si1i2···ij H1(i1i2 · · · ij , Qi1i2···ij)H2(Q))

·ê(P, rH3(i1i2 · · · il||M, U)) ⇒
V = sεH2(Q) +

∑l
j=1 si1i2···ij H1(i1i2 · · · ij, Qi1i2···ij)H2(Q)

+rH3(i1i2 · · · il||M, U) ⇒
V = sεP

′ +
∑l

j=1 si1i2···ij H1(i1i2 · · · ij , Qi1i2···ij)P ′ + rH3(i1i2 · · · il||M, rP) ⇒
V = αβP+

∑l
j=1 si1i2···ij H1(i1i2 · · · ij, Qi1i2···ij)P ′+rh ⇒

V = αβP +
∑l

j=1 si1i2···ij H1(i1i2 · · · ij , Qi1i2···ij)P ′+rλP ⇒
αβP = V −

∑l
j=1 si1i2···ij H1(i1i2 · · · ij , Qi1i2···ij)P ′ + λU

Thus, A can succeed in computing αβP . The construction completes.

94 J. Yu et al.

The running time analysis. The total running time of A contains the running
time t of F plus the following time.

(1) The time of selecting H1 function: there are O(l) times of inverse oper-
ations on Z∗

q , multiplicative and minus operations in G1. Therefore, the total
time is at most O((k2 + kn)logT).

(2) The time of direct H3 oracle queries: there are at most qhash multiplicative
operations on G1 in the total. So the total time is at most O(qhash · kn).

(3) The time of signing oracle queries: There need qsig times of inverse op-
erations on Z∗

q , multiplicative and minus operations in G1 for the indirect H3

oracle queries generated by signing queries. So it needs O((k2 + kn)qsig) time.
In addition, qsigO(l) times of multiplicative and additive operations in G1 are
needed. It needs O(qsig · logT · kn) time. So the total time in these cases is
O(qsig · logT · kn + qsigk

2).
(4) The time of break-in queries: There need O(l) times of inverse operations

on Z∗
q , multiplicative, plus and minus operations in G1. So the total time is at

most O((k2 + kn)logT).
(5) The time of solving CDH problem: The total time is no more than O(logT ·

kn) .
As we have analyzed, the total running time of A is at most t′ = t +

O(max{qsig logT, qhash} · kn + max{logT, qsig} · k2).

The success probability analysis. We analyze the following three events and
compute the probability for A to succeed.
Event E1: When F queries the signature oracle, A aborts. There is Pr[E1] ≤
(qhash − 1) · qsig/(q − 1).

In H3 table A maintains, the number of queries generated not by signing
algorithm is qhash − qsig . Therefore, when the k-th signature query happens, in
the worst case, there are at most qhash − qsig + k− 1 of H3 queries defined. The
probability for A to abort the k-th (k ∈ {1, 2, · · · , qsig}) signature query is at
most (qhash−qsig+k−1)/(q−1), where q−1 is the size of the domain from which
U (actually ϕ) is selected (that is the elements number of Z∗

q). Let εk denote the
event that A aborts the k -th signature query. The following description is right:

Pr[E1] = Pr[ε1 ∪ ε2 · · · ∪ εqsig] ≤
∑qsig

k=1 Pr[εk] =
∑qsig

k=1
(qhash−qsig+k−1)

q−1 =
qsig(qhash− 1

2 qsig− 1
2)

q−1 ≤ qsig(qhash−1)
q−1

Event E2: F outputs d = break and the break-in phase is period i∗. There
is Pr[E2] = 1/T .

F can’t distinguish the simulation given by A from the real world, so the
probability that period b which A guesses is equal to the period in which F
enters her break-in phase is 1/T .

Event E3: When A doesn’t abort, F succeeds to forge a valid signature for
a new message in period j, where 1 ≤ j < b . Obviously, there is Pr[E3] ≥ ε.

Construction of Yet Another Forward Secure Signature Scheme 95

Therefore, the probability for A to solve CDH problem is at least:

Pr[E2] · Pr[Ē1] · Pr[E3] ≥
1
T

(ε− εPr[E1]) ≥
1
T

(ε− Pr[E1])

≥ 1
T

(ε− qsig(qhash − 1)
q − 1

) = ε′

Therefore, the theorem follows.

Theorem 3. Let KE-SIG[k,T] present our forward secure signature scheme
with security parameter k and the total number of time periods T. For any t,
qsig and qhash, the following relation holds:

Insecfsig(KE-SIG[k, T], t, qsig, qhash) ≤ T · InsecCDH(k, t′) +
q − 1

qsig(qhash − 1)

where t′ = t + O(max{qsig logT, qhash} · kn + max{logT, qsig} · k2).

Proof. Let InsecCDH(k, t′) = ε′, that is, there is not an adversary A that can
(t′, ε′)-break CDH problem in group G1, From theorem 2, we can know that for
any adversary F, the following relation holds:

Succfsig(KE-SIG[k, T], F) ≤ ε = Tε′ +
q − 1

qsig(qhash − 1)

= T · InsecCDH(k, t′) +
q − 1

qsig(qhash − 1)

So we can get

Insecfsig(KE-SIG[k, T], t, qsig, qhash) ≤ T · InsecCDH(k, t′) +
q − 1

qsig(qhash − 1)

where t′ = t + O(max{qsiglogT, qhash} · kn + max{logT, qsig} · k2).

6 Conclusions

Forward secure signature can protect the security of signatures pertaining to
previous periods even if the current secret key is exposed. This paper constructs
yet another forward secure signature scheme using bilinear maps, which has a
nice average performance, that is, there is no cost parameters having a complex-
ity more than O(logT). In addition, the verifying algorithm only needs three
times of pairing operations. The security of the scheme is based on CDH as-
sumption. We prove that the constructed scheme is forward secure in random
oracle assuming CDH problem is hard.

Acknowledgments. We would like to thank anonymous referees of the second
international conference on provable security (ProvSec 2008) for the suggestions
to improve this paper. This research is supported by National Natural Science
Foundation of China (60703089) and the National High-Tech R & D Program
(863 Program) of China (2006AA012110).

96 J. Yu et al.

References

1. Anderson, R.: Two remarks on public key cryptology. Invited Lecture. In: The 4th
ACM Conference on Computer and Communications Security (1997)

2. Bellare, M., Miner, S.: A forward-secure digital signature scheme. In: Wiener, M.J.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999)

3. Abdalla, M., Reyzin, L.: A new forward-secure digital signature scheme. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 116–129. Springer,
Heidelberg (2000)

4. Krawczyk, H.: Simple forward-secure signatures for any signature scheme. In: the
7th ACM Conference on Computer and Communications Security, pp. 108–115.
ACM Press, New York (2000)

5. Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and verify-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 499–514. Springer,
Heidelberg (2001)

6. Kozlov, A., Reyzin, L.: Forward-secure signatures with fast key update. In: Cimato,
S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 247–262. Springer,
Heidelberg (2003)

7. Maklin, T., Micciancio, D., Miner, S.: Efficient generic forward-secure signatures
with an unbounded number of time periods. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002)

8. Itkis, G.: Forward Security: Adaptive Cryptography-Time Evolution. The Hand-
book of Information Security (2005),
http://www.cs.bu.edu/faculty/itkis/pap/forward-secure-survey.pdf

9. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

10. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

11. Hu, F., Wu, C.H., Irwin, J.D.: A new forward secure signature scheme using bilinear
maps. Cryptology ePrint Archive, Report 2003/188 (2003)

12. Kang, B.G., Park, J.H., Halm, S.G.: A new forward secure signature scheme. Cryp-
tology ePrint Archive, Report 2004/183 (2004)

13. Vo, D.L., Kim, K.: Yet another forward secure signature from bilinear pairings. In:
Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 441–455. Springer,
Heidelberg (2006)

14. Yu, J., Kong, F.Y., Cheng, X.G., Hao, R., Li, G.W.: Cryptanalysis of Vo-Kim
Forward Secure Signature in ICISC2005. In: Baek, J., Bao, F., Chen, K., Lai, X.
(eds.) ProvSec 2008. LNCS, vol. 5324. Springer, Heidelberg (2008)

15. Camenisch, J., Koprowski, M.: Fine-grained forward-secure signature schemes
without random oracles. Discrete Applied Mathematics 154(2), 175–188 (2006)

16. Boyen, X., Shacham, H., Shen, E., Waters, B.: Forward Secure Signatures with Un-
trusted Update. In: The 13th ACM conference on Computer and communications
security, pp. 191–200. ACM Press, New York (2006)

17. Libert, B., Jacques, J., Yung, M.: Forward-Secure Signatures in Untrusted Update
Environments: Efficient and Generic Constructions. In: The 14th ACM conference
on Computer and communications security, pp. 266–275. ACM Press, New York
(2007)

18. Bellare, M., Yee, B.: Forward-security in private-key cryptography. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1–18. Springer, Heidelberg (2003)

http://www.cs.bu.edu/faculty/itkis/pap/forward-secure-survey.pdf

Construction of Yet Another Forward Secure Signature Scheme 97

19. Abdalla, M., Miner, S., Namprempre, C.: Forward-secure threshold signature
schemes. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 441–456.
Springer, Heidelberg (2001)

20. Tzeng, Z.J., Tzeng, W.G.: Robust forward signature schemes with proactive secu-
rity. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 264–276. Springer, Heidel-
berg (2001)

21. Wang, H., Qiu, G., Feng, D., Xiao, G.: Cryptanalysis of Tzeng-Tzeng Forward-
Secure Signature Schemes. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences E89-A(3), 822–825 (2006)

22. Yu, J., Kong, F., Hao, R.: Forward Secure Threshold Signature Scheme from Bilin-
ear Pairings. In: Wang, Y., Cheung, Y.-m., Liu, H. (eds.) CIS 2006. LNCS (LNAI),
vol. 4456, pp. 587–597. Springer, Heidelberg (2007)

23. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer,
Heidelberg (2002)

24. Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong key-insulated signature scheme. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 130–144. Springer, Heidelberg
(2002)

25. Zhou, Y., Cao, Z., Chai, Z.: Identity Based Key Insulated Signature. In: Chen,
K., Deng, R., Lai, X., Zhou, J. (eds.) ISPEC 2006. LNCS, vol. 3903, pp. 226–234.
Springer, Heidelberg (2006)

26. Libert, B., Quisquater, J., Yung, M.: Parallel Key-Insulated Public Key Encryption
Without Random Oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 298–314. Springer, Heidelberg (2007)

27. Itkis, G., Reyzin, L.: SiBIR: Signer-base intrusion-resilient signatures. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 499–514. Springer, Heidelberg (2002)

28. Dodis, Y., Franklin, M., Katz, J., Miyaji, A., Yung, M.: Intrusion resilient public-
key encryption. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 19–32.
Springer, Heidelberg (2003)

29. Dodis, Y., Franklin, M., Katz, J., Miyaji, A., Yung, M.: A generic construction
for intrusion-resilient public-key encryption. In: Okamoto, T. (ed.) CT-RSA 2004.
LNCS, vol. 2964, pp. 81–98. Springer, Heidelberg (2004)

30. Itkis, G.: Intrusion-resilient signature: Generic constructions, or Defeating a strong
adversary with minimal assumption. In: Cimato, S., Galdi, C., Persiano, G. (eds.)
SCN 2002. LNCS, vol. 2576, pp. 102–118. Springer, Heidelberg (2003)

31. Indyk, P.: A Small Approximately Min-Wise Independent Family of Hash Func-
tions. Journal of Algorithms 38(1), 84–90 (2001)

Optimal Online/Offline Signature: How to Sign a
Message without Online Computation

Fuchun Guo1 and Yi Mu2

1 Key Lab of Network Security and Cryptology
School of Mathematics and Computer Science

Fujian Normal University, Fuzhou, China
fuchunguo1982@gmail.com

2 Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Wollongong NSW 2522, Australia
ymu@uow.edu.au

Abstract. We propose a novel notion of signature named Optimal On-
line/Offline Signature. The new notion can be seen as an extension to the
notion of online/offline signature, where our signature scheme allows all
necessary computations to be carried out in the offline phase before the
message is available and the signer does not need to conduct any compu-
tation to construct the final signature in the online phase. Although the
same feature can be achieved from a one-time signature scheme, the large
signature size of a one-time signature is a disadvantage. In this paper, we
provide a solution that allows our signature to be aggregated into a short
length (about 320 bits); hence it demonstrates a better applicability. We
also give a generic construction and then extend it to an identity-based
scenario.

1 Introduction

Digital signature schemes play an important role in information security and
have exhibited many applications. In a usual signature generation, the signer
inputs his private signing key and a message into a secure computer that then
outputs the corresponding signature with some computation according to the
signing algorithm. Such computation requires a private computer with a reason-
able computation power. In practice, there could be a situation, where such a
computer is not available.

Let us take a look at the following scenario. Suppose Bob is a signer and uses
his secure private PC as the secure device for signing messages. When he has
to travel, he can carry his private signing key along with the signing software
stored in a USB drive. His signing could be conducted on a public computer.
Unfortunately, the public computer can not be trusted. What Bob wishes is that
he could conduct the signing without the help of a powerful computer.

If we allow Bob to carry a low-power device such as a PDA, then Bob could
product a signature efficiently using a general online/offline signature scheme

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 98–111, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Optimal Online/Offline Signature 99

where the signing only required a simple computation through the PDA. The
notion of online/offline signature was first introduced by Even, Goldreich and
Micali [7], and the idea is to perform the signature generation in two phases.
The first phase is performed offline, before the message to be signed is given,
and the second phase is performed online, after the message to be signed becomes
available. Online/offline signature schemes are useful in many applications that
the signer has a very limited response time or limited computation power. In
2001, Shamir and Tauman [14] introduced a “hash-sign-switch” paradigm using
a “chameleon hash function” or chameleon hash and proposed a generic on-
line/offline signature scheme. The online phase is typically very fast and can be
based on modular multiplications only.

Using such a general online/offline signature scheme, Bob only has to carry out
modular multiplications after messages are presented. This is not a problem if Bob
has been equipped with a private PDA with a reasonable computational power.
However, if Bob’s low-power device cannot even handle modular arithmetic, the
problem will not be resolved. It is not an easy task for Bob to conduct the modular
computation to generate his secure signature by hand. It would be desirable if
even modular arithmetic is not required to generate a secure signature.

We notice the nice property of one-time signature, which could be a candi-
date to our solution. The notion of one-time signature was first introduced by
Lamport in [11]. Even et al. [7] later adopted the idea to construct online/offline
signatures. Similarly to a normal online/offline signature, a signing operation is
split into two phases, but the online phase requires no computation!

We outline the one-time signature as follows. The generation of a one-time
signature requires to use cryptographic hash functions. Let H : {0, 1}l → {0, 1}n

(l ≥ n) be a secure one-way hash function. For each time, the signer randomly
chooses n pair of l-bit strings (x10, x11), (x20, x21), · · · , (xn0, xn1) and sets the
public key to be (

H(x10) H(x20) · · · H(xn0)
H(x11) H(x21) · · · H(xn1)

)
.

To sign a n-bit message M ∈ {0, 1}n, let M [i] be the ith bit of M . The signature is

σM =
(
x1M [1], x2M [2], · · · , xnM [n]

)
.

The signature length is about 3n elements for a message of n bits. Therefore, it
becomes impractical when the message size is large.

In this paper, we propose a new online/offline signature scheme named Opti-
mal Online/Offline Signature. For simplicity, we denote by O-3 the new signature
scheme. Similarly to other online/offline signatures, the signature scheme can be
divided into the offline phase (before the message is presented) and the online
phase (after the message is known to the signer). Like a one-time signature,
the final signature can be extracted from the pre-computed parameters and the
bit-structure of the message requiring no computation in the online phase. The
major difference with a traditional one-time signature is that the size of O-3 is
very short.

100 F. Guo and Y. Mu

The contributions of this paper are as follows:

– We construct an O-3 signature scheme and reduce its security to the Com-
putational Diffie-Hellman (CDH) assumption in the standard model. Our
construction follows the framework of the Waters signature scheme [15]. In
his scheme, he used one n-length vector with different combinations to de-
note different messages, while we choose two n-length vectors in order to
achieve a fixed number signature elements to satisfy the property of our O-3
signature.

– We show how to construct an O-3 signature from any provably-secure sig-
nature scheme. If the generic signature scheme is the short signature scheme
[2], then, the O-3 signature will be as short as 320 bits.

– We show how to extend an O-3 signature to Identity-Based O-3 Signature. In
2006, Paterson and Schuldt [13] proposed a direct construction of Identity-
Based Signature from the Waters signature scheme. Using their idea, we
extend the O-3 signature to identity-based O-3 signature.

The rest of the paper is organized as follows. The detailed definition of O-3
signature and some preliminaries are provided in Section 2. A general descrip-
tion and construction of O-3 signature and its security proof are presented in
Section 3. The generic construction of O-3 signature is described in Section 4. An
identity-based O-3 signature is presented in Section 5. The conclusion is given
in Section 6.

2 Definitions

In this section, we give the definition of O-3 signature scheme and define its
security and complexity assumption.

2.1 O-3 Signature

Definition 1. The O-3 signature scheme can be described as the following three
algorithms: KeyGen, Sign and Verify.

KeyGen: Take as input a security parameter and output a random pair of
public and private keys (PK, SK).

Sign: This algorithm is divided into two phases:

– Offline Phase: On input SK, output a set of elements, denoted by W .
– Online Phase: On input the message M and the setW , select a set of elements
UM from W according to the message and delete unselected elements in W .
The signature on M is UM .

Verify: On input the signature (M,UM) and the public key PK, output accept
if UM correctly maps to M ; otherwise output reject.

Optimal Online/Offline Signature 101

Similarly to a normal signature scheme, the security of the O-3 signature
scheme is modeled with unforgeability under a chosen message attack and a
game between a challenger C and an adversary A which is described as follows.

Setup: The challenger C runs algorithm KeyGen to obtain a pair of public key
and secret key (PK, SK). The adversary A is given PK.

Queries: A makes a signature query on message Mi of her choice. C responds
to each query with a signature UMi . A can ask qs message queries at most.

Forgery: A outputs a signature pair (M∗,UM∗) and wins the game if

1. A did not make a signature query on M∗;
2. UM∗ is a valid signature on M∗ for PK.

We define AdvA as the probability that A wins in the above game.

Definition 2. An O-3 signature scheme is (ε, t, qs)-secure against forgery under
a chosen message attack if no forger (ε, t, qs)-breaks it, where the forger A runs in
time at most t and makes at most qs signature queries with advantage AdvA ≤ ε.

2.2 Bilinear Map

Let G and GT be two cyclic groups of prime order p. Let g be a generator of G.
A map e : G×G → GT is called a bilinear map if this map satisfies the following
properties:

– Bilinear: for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab;
– Non-degeneracy: e(g, g) �= 1. In other words, if g be a generator of G, then

e(g, g) generates GT ;
– Computability: It is efficient to compute e(u, v) for all u, v ∈ G.

2.3 Complexity

The security of our O-3 signature scheme will be reduced to the hardness of
the Computational Diffie-Hellman (CDH) problem in the group in which the
signature is constructed. We briefly review the definition of the CDH problem
here:

Definition 3. Let G be the group defined as above with a generator g and ele-
ments ga, gb ∈ G where a, b are selected uniformly at random from Zp, the CDH
problem in G is to compute gab.

Definition 4. We say that the (ε, t)-CDH assumption holds in the group of G
if there is no algorithm running in time t at most can solve the CDH problem in
G with the probability at least ε.

102 F. Guo and Y. Mu

3 O-3 Signature

In this section, we show the construction of O-3 signature scheme and then prove
its security under the CDH assumption in the standard model.

3.1 Scheme

Let e : G × G → GT be the bilinear map, g be the corresponding generator in
G and p be the order of G, GT . The O-3 signature scheme can be described as
follows:

KeyGen: Randomly choose an integer α ∈ Zp and generators g2, u0 ∈ G, and
set g1 = gα. Randomly choose n pair of different generators of G:[

(u10, u11), (u20, u21), · · · , (un0, un1)
]
.

The public key PK and the secret key SK are defined as the following tuple

PK =
(
g, g1, g2, u0, (u10, u11), (u20, u21), · · · , (un0, un1)

)
, SK = gα

2 .

Sign: The signing is divided into the offline phase for pre-computation and the
online phase for signature extraction.

– Offline Phase

• Randomly choose two n-length vectors (μ1, μ2, · · · , μn) ∈ Zn
p and (ν1, ν2,

· · · , νn) ∈ Zn
p such that

μ1 + μ2 + · · ·+ μn = ν1 + ν2 + · · ·+ νn = 1 (mod p);

• Pick a random r ∈ Zp, and compute τ = gr and the following 2n values:

(σi0, σi1) =
(
gμiα
2 (uνi

0 ui0)r, gμiα
2 (uνi

0 ui1)r
)
, for all i = 1, 2, · · · , n;

• Store the following 2n + 1 elements:

W =
(
(σ10, σ11), (σ20, σ21), · · · , (σn0, σn1), τ

)
.

– Online Phase: Given the message M ∈ {0, 1}n, let M [i] be the ith bit of
M ∈ {0, 1}n, the signature is generated as the follows:

• Output the following n + 1 elements as the signature on M :

UM =
(
σ1M [1], σ2M [2], · · · , σnM [n], τ

)
;

• Clear the other n elements.

Optimal Online/Offline Signature 103

Verify: Given the signature (M,UM) and the public key PK, the verification is
as the following:

– Output

στ =
n∏

i=1

σiM [i] =
n∏

i=1

gμiα
2 (uνi

0 uiM [i])r = gα
2

(
u0

n∏
i=1

uiM [i]

)r

;

– Accept the signature if the following equation holds

e(στ , g) = e(g1, g2)e(u0

n∏
i=1

uiM [i], τ);

– The final signature on M is (στ , τ).

Efficiency: The signing cost is 2n multi-exponentiations and one exponentia-
tion in the offline phase but null in the online phase. The verification cost is n
multiplications and two bilinear pairings when e(g1, g2) is one of the PK pa-
rameters. Furthermore, all public parameters in PK excluding g1 can be shared
by all users in a signature system and the individual public key for a single user
in this system will be as short as one element of g1. When the bilinear pairing
defined in [2] is applied in our scheme, the signature size of the two elements
(στ , τ) will be as short as 320 bits.

3.2 Security

We now show the security of our scheme in the standard model. The main idea of
the proof is similar to the Waters IBE [15,13] scheme but more complicated. The
challenge is how to simulate the pieces of signature σ1M [1], σ2M [2], · · · , σnM [n].

Theorem 1. Our O-3 signature scheme is (ε, t, qs)-secure, assuming that the
(ε′, t′)-CDH assumption holds, where

ε′ ≥ 1
4qs(n + 1)

, t′ = t + O(qsnte),

and n is the length of message and te is the time for an exponentiation.

Proof. Suppose there exists a (ε, t, qs)-forger A against our scheme. We construct
an algorithm B that solves the CDH problem. Algorithm B is given as input
a random triple (g, ga, gb) ∈ G3 and B’s goal is to output gab. B works by
interacting with A as follows:

Setup: B sets m = 2qs and randomly chooses an integer k between 0 and n.
We assume that m(n + 1) < p for the given qs and n. It then chooses two n-
length vectors x0 = (x10, x20, · · · , xn0) and x1 = (x11, x21, · · · , xn1), where all
the elements of x0 and x1 are chosen uniformly at random from the integers
between 0 and m − 1 and a value x′, chosen uniformly at random between 0

104 F. Guo and Y. Mu

and m− 1. Additionally, B chooses a random y′ ∈ Zp and two n-length vectors
y0 = (y10, y20, · · · , yn0) and y1 = (y11, y21, · · · , yn1), where all the elements of
y0 and y1 are chosen at random in Zp.

For a message M ∈ {0, 1}n, let M [i] be the ith bit of M . Define the following
two functions

F (M) = x′ +
n∑

i=1

xiM [i] −mk,

K(M) = y′ +
n∑

i=1

yiM [i].

Now, B sets the public key PK to be: g1 = ga, g2 = gb, u0 = gx′−mk
1 gy′

and

(ui0, ui1) =
(
gxi0
1 gyi0 , gxi1

1 gyi1

)
, for all i = 1, 2, · · · , n.

From the perspective of the adversary, the distribution of PK is identical to
the real construction. Given the message M , the equation

u0

n∏
i=1

uiM [i] = g
F (M)
1 gK(M)

holds. The PK parameters are all sent to the forger A.

Queries: The forger A issues qs signature queries in an adaptive choice. On
receiving the signature query on M , if F (M) = 0 (mod m), abort; otherwise, B
picks a random r ∈ Zp and does the following:

– Randomly choose the n-length vector (ν1, ν2, · · · , νn) ∈ Zn
p such that

ν1 + ν2 + · · ·+ νn = 1 (mod p);

– Set another n-length vector (μ1, μ2, · · · , μn) ∈ Zn
p to be

μi =
νi(x′ −mk) + xiM [i]

F (M)
(mod p),

and we have

μ1 + μ2 + · · ·+ μn (mod p)

=
(x′ −mk)

∑n
i=1 νi +

∑n
i=1 xiM [i]

F (M)
(mod p)

=
x′ −mk +

∑n
i=1 xiM [i]

F (M)
(mod p)

= 1 (mod p);

Optimal Online/Offline Signature 105

– B computes and sends the tuple of UM = (σ1M [1], σ2M [2], · · · , σnM [n], τ) as
the signature of M to the forger, where

σiM [i] = g
(νi(x

′−mk)+xiM[i])r
1 · g−

y′νi+yiM[i]
F (M)

2 · g(y′νi+yiM[i])r,

τ = gr · g
− 1

F (M)
2 .

Let r̃ = r − b
F (M) . We have

g
(νi(x

′−mk)+xiM[i])r
1 · g

− y′νi+yiM[i]
F (M)

2 · g(y′νi+yiM[i])r

=
(
g

νi(x
′−mk)+xiM[i]

1

)r

·
(
gy′νi+yiM[i]

)r

· g
−y′νi+yiM[i]

F (M)
2

= g
νi(x

′−mk)+xiM[i]
F (M) ·ab ·

(
g

νi(x
′−mk)+xiM[i]

1

)r− b
F (M) ·

(
gy′νi+yiM[i]

)r− b
F (M)

= g

νi(x
′−mk)+xiM[i]

F (M) ·a
2

(
g

νi(x
′−mk)+xiM[i]

1 gy′νi+yiM[i]

)r− b
F (M)

= g

νi(x
′−mk)+xiM[i]

F (M) ·a
2

(
g
(x′−mk)νi

1 gy′νig
xiM[i]
1 gyiM[i]

)er
= gμiα

2 (uνi
0 uiM [i])er

= σiM [i]

and
gr · g−

1
F (M)

2 = gr− b
F (M) = ger = τ.

So, the tuple (σ1M [1], σ2M [2], · · · , σnM [n], τ) is a correct signature on M and B
sends it to the forger A. There are n uniformly random and independent values
in total (ν1, ν2, · · · , νn−1, r) in the σ1M [1], σ2M [2], · · · , σnM [n] simulation, so the
simulation is identical to the real construction from the adversary’s perspective.

Forgery: If B does not abort in the query phase, A will output a valid signature
(σ∗

τ , τ∗) on a message M∗ with probability ε at least. If F (M∗) �= 0 (mod p),
abort; otherwise, F (M∗) = 0 (mod p) and B computes and outputs the challenge
value gab by

σ∗
τ

(τ∗)K(M∗)
=

gα
2 (u0

∏n
i=1 uiM∗[i])r

grK(M∗)

=
ga
2 (gF (M∗)

1 gK(M∗))r

grK(M∗)

= gab,

which is the solution to the CDH assumption.

We have completed the simulation of the scheme. In the following step, we
will analyze the bound of probability that B does not abort following the way

106 F. Guo and Y. Mu

of [13]. In the phase of signature queries, it requires that for each query on M
have F (M) �= 0 (mod m) and F (M∗) = 0 (mod p) in the phase of forgery. Let
M1, M2, · · · , Mqs be the signature queries and M∗ be the forged message, define
the events Ai and A∗ as

Ai : F (Mi) �= 0 (mod m)
A∗ : F (M∗) = 0 (mod p).

According to the definition of our simulation, the probability of B not aborting
is

Pr[¬ abort] = Pr
[qs∧

i=1

Ai

∧
A∗

]
.

The definition of m(n + 1) ≤ p implicates the transformation from F (M) =
0 (mod p) to F (M) = 0 (mod m), and the definition of F (M) = x′+

∑n
i=1 xiM [i]−

mk gives that if F (M) = 0 (mod m) (x′ +
∑n

i=1 xiM [i] −mk = tm for some t) ,
there exists an unique choice of k such that F (M) = 0 (mod p). Since x′, x0, x1

and k are randomly chosen, we have

Pr[A∗] = Pr
[
F (M∗) = 0 (mod p) ∧ F (M∗) = 0 (mod m)

]
= Pr

[
F (M∗) = 0(mod m)

]
Pr
[
F (M∗) = 0(mod p)|F (M∗) = 0(mod m)

]
=

1
m
· 1
n + 1

and the inequality

Pr[
qs∧

i=1

Ai|A∗] = 1− Pr[
qs∨

i=1

¬Ai|A∗]

≥ 1−
qs∑

i=1

Pr[¬Ai|A∗].

When Ai and Aj are evaluated in two different messages, the probabilities of
F (Mi) = 0 (mod m) and F (Mj) = 0 (mod m) are independent since the sum
of F (Mi) and F (Mj) will be different in one random value at least. So, we have
Pr[¬Ai|A∗] = 1

m and then

Pr[
qs∧

i=1

Ai

∧
A∗] = Pr[A∗]Pr[

qs∧
i=1

Ai|A∗]

≥ 1
m(n + 1)

· (1− qs

m
)

and due to m = 2qs, we have that

Pr[¬ abort] = Pr[
qs∧

i=1

Ai

∧
A∗] ≥ 1

4qs(n + 1)
.

Optimal Online/Offline Signature 107

If the simulation does not abort, A will create a valid forged signature with
probability ε at least and B can compute gab from the forged signature as shown
above with the probability at least ε′ = ε

4qs(n+1) .

The time complexity of B is mainly dominated by the exponentiations in
signature queries. Since there are O(n) exponentiations for each query, and then
for the number of qs queries, the time complexity of B is t + O

(
qsnte

)
.

This completes the full proof. �

4 Generic Construction

In this section, we show how to achieve the generic construction of O-3 signature
from any provably-secure signature scheme. The generic O-3 signature scheme
consists of the four algorithms: SysGen, KeyGen, Sign and Verify for the
system parameters generation, private signing key generation, signing message
and signature verification, respectively.

4.1 Generic Scheme

SysGen: Let (G,S,V) be any provably secure signature scheme. Randomly
choose n pair of different bit stings:

(u10, u11), (u20, u21), · · · , (un0, un1) ∈ {0, 1}∗ × {0, 1}∗.

The system parameters are

SP =
{
G,S,V , (u10, u11), (u20, u21), · · · , (un0, un1)

}
.

KeyGen: On input a secure parameter, run the key generation algorithm of the
original signature scheme G to obtain a pair of public and private keys (PK, SK).

Sign: The signing is divided into the offline phase for pre-computation and the
online phase for full signature extraction.

– Offline Phase

• Randomly choose a bit sting τ ∈ {0, 1}n and output the following 2n
signatures

(σi0, σi1) =
(
SSK(τ, ui0),SSK(τ, ui1)

)
, for all i = 1, 2, · · · , n;

• Store the following 2n signatures and τ :

W =
(
(σ10, σ11), (σ20, σ21), · · · , (σn0, σn1), τ

)
.

– Online Phase: Given the message M ∈ {0, 1}n, let M [i] be the ith bit of
M ∈ {0, 1}n, the signature is unfolded as the follows:

108 F. Guo and Y. Mu

• Output the following n signatures and τ as the signature of M :

UM =
(
σ1M [1], σ2M [2], · · · , σnM [n], τ

)
;

• Clear the other n elements.

Verify: Given the signature (M,UM), public key PK and system parameters
SP , accept the signature if the ith signature σiM [i] on (τ, uiM [i]) is correct for
all i = 1, 2, · · · , n.

4.2 Security and Efficiency

In the above signature construction, it requires that the signer should choose
different bit strings for each signing process; otherwise, any adversary can forge
a new signature easily. For example, there are two signatures on UM1 and UM2

with same bit string τ on 4-bit message M1 = 1111 and M2 = 0000, respectively,
then the adversary can forge any signature because the elements in UM1 and UM2

are the same as the pre-computed signature elements stored in the offline phase.
From above, we know that the signer actually signs n different signatures

first to combine a new final signature. Now, suppose a forger A can forge a
valid signature UM∗ on new message M∗ using random bit string τ∗. If τ∗ is
different from the random strings in queries phase, it is obvious that the forger
outputs a forged signature on a new message; otherwise, there must have one
element σjM [j] (signature) at least in UM∗ , such that it has never be unfolded
to the forger. That is, it must contain a valid piece of signature on new message
(τ∗, ujM [j]) forged by A herself, where τ∗ is new or the signer (simulator) never
sent its signature to the forger. Thus, the forgery on σjM [j] will be contrary to
the provably-secure signature and we have that the generic construction of O-3
signature scheme is secure too.

For its efficiency in verification, we can adopt a batch verification signature
scheme [8,5], where the cost on verifying n signatures of different messages is
less than conducting them one by one. For its length in store, we can adopt a
signature scheme with the property of aggregation [4], where n different signa-
tures on different messages can be aggregated into a single signature. A short
provably-secure signature scheme with both properties can be found in [2] and
our final signature length will be as short as 320 bits.

5 Identity-Based O-3 Signature

The identity-based O-3 signature scheme consists of the four algorithms: Setup,
KeyGen, Sign and Verify for the setup of the system, key generation, signing
and verification, respectively.

The construction of the identity-based O-3 signature is similar to the Pater-
son-Schuldt’s identity-based signature from the Waters signature scheme. Be-
cause of this, it is not hard to achieve the security proof by following their idea
and our proof in Section 3. Therefore, we omit the security proof.

Optimal Online/Offline Signature 109

Setup: Randomly choose an integer α ∈ Zp and generators g2, I0, u0 ∈ G, and
set g1 = gα. Choose at random 3n different generators of G:[

(I1, I2, · · · , In), (u10, u11), (u20, u21), · · · , (un0, un1)
]
.

The public parameters params and the master secret key K are defined as:

params =
(
g, g1, g2, I0, I1, · · · , In, u0, (u10, u11), · · · , (un0, un1)

)
, K = gα

2 .

KeyGen: Given the identity ID = {0, 1}n, let I[i] be the ith bit of ID and
let I ⊂ {1, 2, · · · , n} to be the set that I[i] = 1. To construct the private key,
randomly choose s ∈ Zp and output

dID = (d1, d2) =
(
gα
2 (I0

∏
i∈I

Ii)s, gs
)
;

Sign: The signing is divided into the offline phase for pre-computation and the
online phase for the signature extraction.

– Offline Phase:
• Randomly choose two n-length vectors (μ1, μ2, · · · , μn) ∈ Zn

p and (ν1, ν2,
· · · , νn) ∈ Zn

p such that

μ1 + μ2 + · · ·+ μn = ν1 + ν2 + · · ·+ νn = 1 (mod p).

• Given the private key dID = (d1, d2) of ID ∈ {0, 1}n, pick a random
r ∈ Zp, and compute τ = gr and the following 2n values:

(σi0, σi1) =
(
dμi

1 (uνi
0 ui0)r, dμi

1 (uνi
0 ui1)r

)
, for all i = 1, 2, · · · , n.

• Store the following 2n + 2 elements:

W =
(
(σ10, σ11), (σ20, σ21), · · · , (σn0, σn1), d2, τ

)
.

– Online Phase: Given the message M ∈ {0, 1}n, let M [i] be the ith bit of
M ∈ {0, 1}n, the signature is unfolded as the follows:

• Output the following n + 2 elements as the signature on M :

UM =
(
σ1M [1], σ2M [2], · · · , σnM [n], d2, τ

)
;

• Clear the other n elements.

Verification: Given the signature (M,UM) and the identity ID ∈ {0, 1}n, the
verification is as the following:

– Output

στ =
n∏

i=1

σiM [i] =
n∏

i=1

dμi

1 (uνi
0 uiM [i])r = gα

2

(
I0

∏
i∈I

Ii

)s(
u0

n∏
i=1

uiM [i]

)r

;

110 F. Guo and Y. Mu

– Accept the signature if the following equation holds

e(στ , g) = e(g1, g2)e(I0

∏
i∈I

Ii, d2)e(u0

n∏
i=1

uiM [i], τ);

– The final signature on M is (στ , d2, τ).

6 Conclusion

In this paper, we presented the notion of O-3 signature. Similarly to a traditional
online/offline signature, an O-3 signature is divided into two phases. The feature
of O-3 signature is that no computation is required in the online phase. Although
the same properties can be achieved from a one-time signature scheme, our
signature can be very short. We also showed how to construct a generic O-3
signature and extended the notion to identity-based O-3 signature. Although
the O-3 signature scheme requires to manage more parameters in the offline
phase than a traditional online/offline signature, there is no doubt that it has
great applicability.

Acknowledgement. The authors would like to thank the anonymous reviewers
of ProvSec 2008 for their helpful comments on this work.

References

1. Boneh, D., Boyen, X.: Efficient selective-id secure identity based encryption without
random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

2. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

3. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C.,
Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

4. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

5. Camenisch, J., Hohenberger, S., Pedersen, M.: Batch Verification of Short Sig-
natures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 246–263.
Springer, Heidelberg (2007)

6. Chen, X., Zhang, F., Susilo, W., Mu, Y.: Efficient Generic online/offline Signatures
Without Key Exposure. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521,
pp. 18–30. Springer, Heidelberg (2007)

7. Even, S., Goldreich, O., Micali, S.: Online/offline digital signatures. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 263–275. Springer, Heidelberg (1990)

8. Fiat, A.: Batch RSA. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp.
175–185. Springer, Heidelberg (1990)

9. Harn, L.: Batch verifying multiple DSA digital signatures. Electronics Let-
ters 34(9), 870–871 (1998)

Optimal Online/Offline Signature 111

10. Harn, L.: Batch verifying multiple RSA digital signatures. Electronics Let-
ters 34(12), 1219–1220 (1998)

11. Lamport, L.: Constructing digital signatures from a one-way function. Technical
Report SRI-CSL-98, SRI International Computer Science Laboratory (October
1979)

12. Naor, D., Shenhavy, A., Woolz, A.: One-Time Signatures Revisited:Have They
Become Practical?, http://eprint.iacr.org/2005/442

13. Paterson, K., Schuldt, J.: Efficient identity-based signatures secure in the standard
model. In: Batten, L., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp.
207–222. Springer, Heidelberg (2006)

14. Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)

15. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 320–329. Springer, Heidelberg
(2005)

http://eprint.iacr.org/2005/442

Round-Optimal Blind Signatures from Waters
Signatures

Kristian Gjøsteen and Lillian Kr̊akmo

Dept. of Mathematical Sciences, NTNU

Abstract. We present a round-optimal blind signature scheme based
on Waters’ signature scheme. Our construction resembles that of Fis-
chlin [10], but does not rely on generic non-interactive zero-knowledge
proofs. In addition to a common reference string, our scheme requires a
registered public key for the signer.

Keywords: Blind signatures, Waters signatures.

1 Introduction

The idea of blind signatures was proposed by Chaum [8] as a key ingredient
for anonymous electronic cash applications. Blind signatures allow a bank to
issue signatures without seeing the content of the signed documents, and at the
same time prevent users from forging signatures. The security of blind signatures
was first formalized by Pointcheval and Stern [17] and later by Juels, Luby and
Ostrovsky [13], resulting in the notions blindness and non-forgeability. Since
then, a number of blind signature schemes have been proposed, some in the
random oracle model [1,4,5,17], and some without random oracles [7,10,12,14,15].
Most of the above mentioned schemes use three or more moves, and proving
security under concurrent executions of the signature generation protocol has
often been difficult. Notably, this problem is avoided in schemes requiring only
two moves, i.e. round-optimal schemes.

Recently, Fischlin [10] proposed a round-optimal blind signature scheme in the
common reference string model. This scheme uses generic non-interactive zero-
knowledge (NIZK) proofs, which makes it quite impractical. Our contribution
is a concrete round-optimal scheme based on Waters’ signature scheme [18].
Waters’ scheme is weakly unforgeable, in the sense that signatures may easily
be randomized. This property makes Waters’ scheme a natural starting point
for constructing a blind signature scheme. In our scheme, to obtain a blind
signature on a message, the user computes a commitment to the message, based
on Waters’ hash function. The signer’s response is essentially a signature on
the commitment. Finally, the user obtains a blind signature from the signer’s
response, by simultaneously unblinding the commitment and randomizing the
resulting Waters signature.

In order to obtain provable security, the user is also required to compute a
NIZK proof that the commitment was honestly generated. The proof is obtained

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 112–126, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Round-Optimal Blind Signatures from Waters Signatures 113

by applying Linear encryption [6] as an extractable commitment scheme, and by
compiling a suitable Σ-protocol using the technique developped by Damg̊ard et
al. [9]. Consequently, we need a common reference string and a registered public
key for the signer. In typical applications of blind signature schemes, where
the signer is a bank, it seems reasonable to assume that the user has access to
some reliable public information about the bank. Hence we do not consider the
requirement of a registered public key to be a significant inconvenience.

The main drawback with our scheme is that a moderate number of NIZK
proofs must be generated and verified as part of the signature generation proto-
col. A major advantage, however, is that verifying signatures is no more expensive
than for Waters signatures.

2 Preliminaries

2.1 Bilinear Groups

Let G be a multiplicative cyclic group of prime order p, and let g be a generator
of G. We say that G is a bilinear group if the group operation in G is efficiently
computable, and if there exists a multiplicative cyclic group G1 of order p and
an efficiently computable non-degenerate bilinear map e : G × G → G1, i.e.
for all u, v ∈ G and a, b ∈ {0, . . . , p − 1}, we have e(ua, vb) = e(u, v)ab, and
e(g, g) �= 1.

2.2 Signature Schemes and Their Security

We refer to [13] for a formal definition of a signature scheme S, and note that
we use the following notation: S = (Gen ,Sign,Verify), where Gen(1τ) outputs
(sk, pk), Sign(sk, m) outputs σ, and Verify(pk, m, σ) outputs accept/reject .

In our work we need the notion existential unforgeability under an adaptive
chosen message attack (UF-CMA) as defined by Goldwasser, Micali and Rivest
in [11], which is defined by the experiment Expuf-cma

S,A (τ), given in Figure 1.
In this experiment the adversary A has access to the signing oracle OS , which
takes a message as input and outputs a signature on the message under sk. It is
required that OS was never queried with the message m.

We define the success rate of A in breaking S with respect to UF-CMA as

Succuf-cma
S,A (τ) = Pr

[
Expuf-cma

S,A (τ) = 1
]
.

Definition 1. The scheme S is said to be (t, q, ε)-secure with respect to UF-
CMA if no A running in time t and making at most q oracle queries has success
rate at least ε.

Waters’ Signature Scheme: The security of Waters’ signature scheme is based
on the Computational Diffie Hellmann (CDH) assumption and does not rely on
random oracles [18]. We review the scheme below.

114 K. Gjøsteen and L. Kr̊akmo

Key Generation: Let G be a bilinear group of order p, where p has length τ ,
and let e : G×G → G1 be the corresponding efficiently computable bilinear map.
To generate the public key, the algorithm GenW chooses a random generator
g ∈ G and a random α ∈ {0, . . . , p − 1} and lets g1 = gα. Additionally, for
some appropriate n, it chooses random g2, u

′, u1, . . . , un ∈ G and lets U =
(u1, . . . , un). The public key is (g, g1, g2, u

′, U) and the secret key is gα
2 .

Signature Generation: Upon input of a message m of length n, the algorithm
SignW chooses a random r ∈ {0, . . . , p − 1} and computes the signature σ as
σ = (σ1, σ2) = (gα

2 (u′∏n
i=1 umi

i)r
, gr), where mi denotes the i’th bit of m.

Signature Verification: To verify a signature σ = (σ1, σ2) on a message m,
the algorithm VerifyW checks that e(σ1, g) = e(σ2, u

′∏n
i=1 umi

i)·e(g1, g2). If this
holds, it outputs accept , otherwise it outputs reject .

Assume that a signature (σ1, σ2) on a message m is generated according to
the above scheme. Note that, if we randomly choose r∗ ∈ {0, . . . , p− 1} and let
(σ∗

1 , σ∗
2) = (σ1(u′∏n

i=1 umi

i)r∗
, σ2g

r∗
), (σ∗

1 , σ∗
2) is a new, uniformly distributed

signature on m. This property is exploited in our blind signature scheme.
We refer to [18] for a formal definition of the CDH problem and the related

complexity assumption. Waters’ scheme is known to be (t, q, ε)-secure with re-
spect to UF-CMA if the (t, ε

16(n+1)q)-CDH assumption holds in G.

2.3 Public Key Encryption Schemes and Their Security

We refer to [3] for a formal definition of a public key encryption scheme PKE ,
and note that we use the following notation: PKE = (Gen,Enc,Dec), where
Gen(1τ) outputs (sk, pk), Enc(pk, m) outputs c, and Dec(sk, c) outputs m/ ⊥.

We need the security notion real-or-random indistinguishability under a
chosen plaintext attack (ROR-CPA), which is defined by the experiment
Expror-cpa

PKE,A(τ) given in Figure 1. In this experiment, the adversary A has ac-
cess to the oracle Ob

ror (initialized with a hidden bit b) which takes as input a
message m. If b = 0, it outputs an encryption of a randomly chosen string of
length |m| under pk. A new random string is chosen for each query. If b = 1, it
outputs an encryption of m under pk. We define the advantage of A in breaking
PKE with respect to ROR-CPA as

Advror-cpa
PKE,A(τ) =

∣∣∣Pr
[
Expror-cpa

PKE,A(τ) = 1|b = 1
]
− Pr

[
Expror-cpa

PKE,A(τ) = 1|b = 0
]∣∣∣.

Definition 2. The scheme PKE is said to be (t, q, ε)-secure with respect to
ROR-CPA if no A running in time t and making at most q oracle queries has
advantage at least ε.

Linear Encryption: Linear encryption was proposed by Boneh, Boyen and
Shacham in [6] as a natural extension of ElGamal encryption. While ElGa-
mal encryption relies on the Decision Diffie Hellman (DDH) problem, Linear
encryption relies on the Decision Linear Diffie Hellman (DLDH) problem, which
is believed to be hard even in bilinear groups where the DDH problem is easy.

Round-Optimal Blind Signatures from Waters Signatures 115

Expuf-cma
S,A (τ):

1. (sk, pk)← Gen(1τ).
2. (m, σ)← AOS (pk).
3. If Verify(pk, m, σ) = accept then

return 1, otherwise return 0.

Expror-cpa
PKE,A(τ)

1. (sk, pk)← Gen(1τ)
2. b← {0, 1}
3. b′ ← AOb

ror(pk)
4. Return b′.

Expnf
BS,A(τ):

1. crs ← D(1τ).
2. (pkKS , skKS)← KS(1τ).
3. (pk, sk)← Gen(1τ).
4. Let A(1τ , crs, pkKS , pk) engage in

polynomially many (in τ) parallel
interactive protocols, with
polynomially many (in τ) copies of
Signer(pk, sk), where A decides in
an adaptive manner when to stop.
Let l be the number of executions,
where Signer outputs completed .

5. A outputs a collection
{(m1, σ(m1)), . . . , (mk, σ(mk))},
subject to the constraint that
mi �= mj for 1 ≤ i < j ≤ k, and
Verify(pk, mi, σ(mi)) outputs accept
for 1 ≤ i ≤ k.

Expb
BS,A(τ):

1. crs ← D(1τ).
2. Run A on input (1τ , crs).
3. pk, r, (m0, m1)← A.
4. (skKS , pkKS)← KS(1τ , r).
5. b← {0, 1}.
6. Let A engage in two parallel

interactive protocols, the first with
User(pk, mb) and the second with
User(pk, m1−b).

7. If the first User outputs σ(mb) and
the second User outputs σ(m1−b),
then give {σ(m0), σ(m1)} to A as
additional input.

8. A outputs a bit b′.

Fig. 1. Experiments for security definitions

We refer to [6] for a formal definition of the DLDH problem and the related
complexity assumption.

In the Linear encryption (LE) scheme, GenL outputs (skL, pkL), where pkL

is a triple of randomly chosen generators α1, α2, β ∈ G, where G is a group of
prime order p, and p has length τ . skL is the exponents a1, a2 ∈ {0, . . . , p − 1}
such that αa1

1 = αa2
2 = β. Upon input of a message m ∈ G, EncL chooses random

values r, s ∈ {0, . . . , p− 1}, and outputs the triple (y1, y2, y3) = (αr
1, α

s
2, β

r+sm).
Upon input of a ciphertext (y1, y2, y3), DecL outputs y3y

−a1
1 y−a2

2 .
It can be shown that, for all t, q polynomial in τ , the LE scheme is (t, q, ε)-

secure with respect to ROR-CPA, for some ε negligible in τ , if the corresponding
holds for the DLDH problem in G.

2.4 Setup Assumptions

The Common Reference String Model: Let D be a probabilistic polynomial-
time algorithm which takes a security parameter 1τ as input and outputs a
value crs , chosen according to some publicly known distribution. In the common
reference string (CRS) model, we assume that all parties have access to a trusted

116 K. Gjøsteen and L. Kr̊akmo

functionality FD
crs, which initially runs D(1τ) and obtains crs , and later gives

crs to any party asking for it.

The Registered Public Key Model: We also review the registered public-key model,
according to [9], and note that its relation to the common reference string model
is discussed in [2].

Let KS be a probabilistic polynomial-time algorithm which takes a security
parameter 1τ as input and outputs a pair (sk, pk) of private and public keys.

In the registered public-key model, we assume that all parties have access to
a trusted functionality FKS

reg , which can be invoked to register own key pairs and
to retrieve the public keys of others. In order to register a key pair, the registrant
privately sends FKS

reg the random coins r used to create his key pair. FKS
reg then

runs KS (1τ , r), stores the resulting public key together with the identity of the
registrant, and later gives the public key to any party asking for it.

2.5 Compilation of Σ-Protocols in the Registered Public Key
Model

According to [9], a Σ-protocol for a relation R is an interactive proof-system
for the language LR = {x|∃w : (x, w) ∈ R}. The conversations are on the form
(a, e, z), where a and z are messages sent by the prover P , while e is a random
challenge sent by the verifier V . Additionally, a Σ-protocol has the properties
relaxed special soundness and special honest-verifier zero-knowledge. We refer
to [9] for a formal definition of these properties, and note that perfect honest-
verifier zero-knowledge is a stronger variant of honest-verifier zero-knowledge,
where the conversations output by the simulator are identically distributed as
conversations between P and V .

We now briefly review the technique developed by Damg̊ard et al. [9] for com-
piling Σ-protocols into non-interactive zero-knowledge arguments. Their tech-
nique works in the registered public-key model, and we refer to [9] for a formal
definition of a non-interactive system for the relation R with key setup KS ,
along with the desired properties of such a system: correctness, zero-knowledge
and soundness.

We note that the compilation technique only applies to Σ-protocols with the
additional property of linear answer, i.e. it requires that P ’s final message z is
a sequence of integers which are linearly obtained from the challenge e.

The high-level idea of the technique is the following: It is assumed that V
has initially registered a public key pkKS with the functionality FKS

reg described
above. pkKS is on the form (pk, c), where pk is a public key of a homomor-
phic encryption scheme, and c is an encryption under pk of a randomly chosen
challenge e. The corresponding private key is (sk, e), where sk is the private
key corresponding to pk. To compute a proof, P first obtains pkKS from FKS

reg ,
and computes the first message a according to the Σ-protocol. Then, P exploits
the homomorphic property of the encryption scheme, and the fact that the Σ-
protocol has linear answer, to obtain an encrypted response to the challenge e
encrypted in c. The encrypted response may in turn be decrypted and checked

Round-Optimal Blind Signatures from Waters Signatures 117

as usual by V . This technique is illustrated in Chapter 4.2, where we describe
the compiled Σ-protocol used in our blind signature scheme.

As for showing that the compiled protocol has the desired properties, we
note that correctness of the above system follows directly from completeness of
the involved Σ-protocol. Furthermore, since a simulator running V obtains the
random coins intended for FKS

reg , he obtains V ’s private key, and in particular the
challenge e. Hence, to simulate a proof for a statement x, he may run an honest-
verifier simulator for the Σ-protocol on input (x, e) to obtain a conversation
(a, e, z) from which a correctly distributed proof is directly obtained. This means
that zero-knowledge (for arbitrary verifiers) of the compiled protocol follows from
honest-verifier zero-knowledge of the original Σ-protocol. Proving soundness is
more involved, but it basically boils down to the assumed security of the involved
encryption scheme. We refer to [9] for detailed proofs of the above properties for
the general construction. As for the particular construction used in our blind
signature scheme, proofs are omitted due to space limitations.

3 Blind Signature Schemes and Their Security

Our definition of a blind signature scheme corresponds to the one given by JLO
in [13], modified to fit our model, where all parties are assumed to have access
to the trusted functionalities FD

crs and FKS
reg defined earlier, and where the signer

is initially required to register a public key pkKS with FKS
reg .

Definition 3 (Blind Signature Scheme). A blind signature scheme BS is a
tuple (Gen,Signer ,User ,Verify ,KS ,D) with the following properties:

– Gen is a probabilistic polynomial time algorithm, which takes as input a
security parameter τ (encoded as 1τ), and outputs a pair (pk, sk) of public
and secret keys.

– Signer and User are a pair of polynomially-bounded probabilistic interactive
Turing machines, given as common input a public key pk. In addition, Signer
is given a corresponding secret key sk, and User is given a message m. The
length of all inputs must be polynomial in the security parameter τ . Signer
and User interact according to the protocol. At the end of the interaction,
Signer outputs either completed or not completed and User outputs either
fail or σ(m).

– Verify is a deterministic polynomial time algorithm, which takes as input a
public key pk, a message m and a signature σ(m), and outputs either accept
or reject, indicating whether σ(m) is a valid signature on the message m.

– D and KS are the algorithms parameterizing FD
crs and FKS

reg .

It is required that for any message m, and for all key pairs (pk, sk) output by
Gen, if both Signer and User follow the protocol, then Signer (pk, sk) outputs
completed, User(pk, m) outputs σ(m), and Verify(pk, m, σ(m)) outputs accept.

JLO formalized the security of blind signature schemes using the notions blind-
ness and non-forgeability. Informally, a scheme has blindness if it is infeasible

118 K. Gjøsteen and L. Kr̊akmo

for a malicious signer to determine the order of which two messages are signed
by interaction with an honest user. A scheme has non-forgeability if, given l
interactions with an honest signer, it is infeasible for a malicious user to produce
more than l valid signatures.

Non-forgeability for blind signature schemes in our model is formally defined
using the experiment Expnf

BS,A(τ) given in Figure 1. We point out that this
is weak non-forgeability, since we require that the k signatures output by the
adversary correspond to different messages. A is said to win the experiment if
k > l. We define the success rate of the adversary A in breaking BS with respect
to non-forgeability as

Succnf
BS,A(τ) = Pr [k > l] .

Definition 4 (Non-forgeability). The scheme BS is said to be (t, q, ε)-secure
with respect to non-forgeability if no A running in time t, engaging in at most q
protocols where Signer outputs completed, has success rate at least ε.

As for blindness in our model, we need the experiment Expb
BS,A(τ) given in

Figure 1. We define the advantage of A in breaking BS with respect to blindness
as

Advb
BS,A(τ) =

∣∣∣Pr [b′ = 1|b = 1]− Pr [b′ = 1|b = 0]
∣∣∣.

Definition 5 (Blindness). The scheme BS is said to be (t, ε)-secure with re-
spect to blindness if no A running in time t has advantage at least ε.

4 Our Blind Signature Scheme

In this section we present our blind signature scheme, which is based on Waters’
signature scheme. We note that, since the signatures generated by our scheme
are in fact Waters signatures, we only obtain weak non-forgeability, as signatures
may easily be randomized.

A construction similar to ours was earlier proposed by Okamoto [15]. However,
Okamoto’s scheme is less concrete, and the possibility of turning the scheme into
a round-optimal one is not addressed.

4.1 A Sketch of Our Scheme

We start by briefly outlining the idea of our scheme. To obtain a blind signature
on a message m, the user commits to m and sends the resulting commitment c to
the user, along with a proof π that c was honestly generated. The signer responds
with (σ′

1, σ
′
2), which is essentially a signature on the commitment. In the final step,

the user obtains a blind signature (σ1, σ2) on m, by simultaneously unblinding the
commitment and randomizing the resulting signature. The signature generation
protocol is sketched in Figure 2, where we note that the key pair (skBS , pkBS) is
generated exactly as (skW , pkW) in Waters’ signature scheme.

Round-Optimal Blind Signatures from Waters Signatures 119

Signer User
pkBS = (g, g1, g2, u

′, U) pkBS = (g, g1, g2, u
′, U)

skBS = gα
2 m = m1m2 . . . mn ∈ {0, 1}n

Choose t
r←− {0, . . . , p− 1}

Let c = gt
n∏

i=1

umi
i

Check that u′c �= 1
Compute a proof π of correctness of c

(c,π)←−−−−−
Verify π

Choose r
r←− {0, . . . , p− 1}

Let σ′
1 = gα

2 (u′c)r

Let σ′
2 = gr

Output

completed/not completed
(σ′

1,σ′
2)−−−−−−−→

Choose r′
r←− {0, . . . , p− 1}

Let σ1 = σ′
1σ

′−t
2 (u′

n∏
i=1

umi
i)r′

Let σ2 = σ′
2g

r′

Check that

e(σ1, g) = e(σ2, u
′

n∏
i=1

umi
i) · e(g1, g2)

Output (σ1, σ2)/fail

Fig. 2. The signature generation protocol

We proceed by explaining the high-level idea of the proof π. Let Anf be an
adversary trying to break the non-forgeability of our scheme. In order to achieve
provable security, π is constructed such that a simulator running a copy of Anf

can extract the message m and the exponent t. This extractability is obtained
by having the user commit to m and t by encrypting them, using a public key
obtained from the common reference string. Given m and t, the simulator can use
a signing oracle for Waters’ signature scheme to obtain a correctly distributed
response (σ′

1, σ
′
2), hence the non-forgeability of our scheme reduces to the UF-

CMA security of Waters’ scheme.
The proof π should convince the verifier (in this case Signer) that c was

honestly generated. If we let tτ−1 . . . to be the bit representation of t, that is,
t =

∑τ−1
i=0 ti2i, this amounts to proving that c = g

Pτ−1
i=0 ti2

i ∏n
i=1 umi

i for known

120 K. Gjøsteen and L. Kr̊akmo

bits ti, 0 ≤ i ≤ τ − 1, and mi, 1 ≤ i ≤ n. This is obtained by having the prover
(in this case User) commit to each of the values gti , 0 ≤ i ≤ τ − 1, and umi

i ,
1 ≤ i ≤ n, prove correctness of each of the involved commitments, and then
prove that c in fact contains the committed values.

Let EncL(m, r, s) denote the Linear encryption of the message m ∈ G with
randomness (r, s) under the public key (α1, α2, β). Recall that, with this nota-
tion, EncL(m, r, s) = (αr

1, α
s
2, β

r+sm), and note that this encryption scheme is
homomorphic, i.e.

EncL(m, r, s) · EncL(m′, r′, s′) = EncL(mm′, r + r′, s + s).

The prover commits to gti , 0 ≤ i ≤ τ − 1, by choosing random values ri, si ∈
{0, . . . , p− 1} and computing

Ti = EncL(gti , ri, si) = (αri
1 , αsi

2 , βri+sigti).

Similarly, the prover commits to umi

i , 1 ≤ i ≤ n, by choosing random values
r′i, s

′
i ∈ {0, . . . , p− 1} and computing

Mi = EncL(umi

i , r′i, s
′
i) = (αr′

i
1 , α

s′
i

2 , βr′
i+s′

iumi

i).

Correctness of each of the above commitments can be proved using a suitable Σ-
protocol. Moreover, since we want our proof π to be non-interactive, we apply the
technique developped by Damg̊ard et al. for compiling Σ-protocols into NIZK
proofs.

As for proving that c in fact contains the committed values, note that, by
letting r∗ =

∑τ−1
i=0 ri2i +

∑n
i=1 r′i and s∗ =

∑τ−1
i=0 si2i +

∑n
i=1 s′i, we have

τ−1∏
i=0

T 2i

i

n∏
i=1

Mi = (αr∗

1 , αs∗

2 , βr∗+s∗
gt

n∏
i=1

umi

i),

i.e.
∏τ−1

i=0 T 2i

i

∏n
i=1 Mi is a commitment to gt

∏n
i=1 umi

i . This means that the
prover can prove the correctness of c by opening this commitment, that is, by
including r∗ and s∗ in π. In this way, assuming that the verifier has accepted all
of the above NIZK proofs, he can conclude that c was honestly generated if and
only if

EncL(c, r∗, s∗) = (αr∗

1 , αs∗

2 , βr∗+s∗
c) =

l−i∏
i=0

T 2i

i

n∏
i=1

Mi.

4.2 The Protocol compile(ΣOR)

The proof π in our blind signature scheme includes proofs of correctness of
several commitments, all on the form (y1, y2, y3) = (αr

1, α
s
2, β

r+sub), where α1,
α2, β and u are publicly known elements of a bilinear group G of known prime
order p, r, s ∈ {0, . . . , p − 1} are secret exponents, and b is a secret bit. We

Round-Optimal Blind Signatures from Waters Signatures 121

proceed by constructing a Σ-protocol for proving correctness of a commitment
on the above form. To this end, we apply the so-called OR-construction, briefly
reviewed here according to [9]. Given Σ-protocols Σl and Σr for relations Rl and
Rr, the OR-construction yields a Σ-protocol ΣOR for the relation ROR defined
by

((xl, xr), (wl, wr)) ∈ ROR ⇔ (xl, wl) ∈ Rl ∨ (xr , wr) ∈ Rr.

Let RL be the relation defined by

(x, w) = ((x1, x2, x3), (r, s)) ∈ RL ⇔ x1 = αr
1, x2 = αs

2, x3 = βr+s.

We note that, for a commitment (y1, y2, y3), we have

(y1, y2, y3) = (αr
1, α

s
2, β

r+s) ⇔ ((y1, y2, y3), (r, s)) ∈ RL

and

(y1, y2, y3) = (αr
1, α

s
2, β

r+su) ⇔ ((y1, y2,
y3

u
), (r, s)) ∈ RL.

This means that a suitable protocol ΣOR for our purpose is obtained by com-
posing Σ-protocols for RL, where we let x3 = y3 in one protocol and x3 = y3

u in
the other.

A Σ-protocol ΣL for RL is presented in Figure 3. It is straight-forward to show
that ΣL has completeness, relaxed special soundness and perfect honest-verifier
Zero-Knowledge.

The protocol ΣOR is constructed in a standard way from the two suitable
instances of ΣL, and it is not hard to show that completeness, relaxed special
soundness and perfect honest-verifier zero-knowledge of ΣOR follow from the cor-
responding properties of ΣL. Due to space limitations, we do not give a complete
description of ΣOR. We simply note that ΣOR has conversations on the form
(a, e, (z1, z2, . . . , z6)), where zi is linearly obtained from e for all i, 1 ≤ i ≤ 6. This
means that ΣOR has linear answer, so we may apply the compilation technique
of Damg̊ard et al.

We now describe the compilation of the protocol ΣOR. The homomorphic
encryption scheme used in the compilation is Paillier’s encryption scheme [16].
We refer to [16] for a description of this scheme. It is assumed that the verifier
has initially registered a public key with FKS

reg , where the key setup algorithm
KS is defined as follows:

KS (1τ): Generate a keypair (skP , pkP) for Paillier encryption, by running
the key generation algorithm with 2τ as input. Choose a random challenge e ∈
{0, . . . , p−1}. Also, let c be a Paillier encryption of e under pkP . The public key
is (pkP , c) and the private key is (skP , e).

Due to the homomorphic property of Paillier encryption, and the fact that
ΣOR is with linear answer, it is possible to execute the prover’s side of the proto-
col given only the encryption c of the challenge e. First, the prover computes his
first message a. Then, denoting by EncP (pkP , m) a random Paillier encryption

122 K. Gjøsteen and L. Kr̊akmo

P V

(x1, x2, x3) (x1, x2, x3)
(r, s)

Choose r′, s′
r←− {0, . . . , p− 1}

Let

a1 ← αr′
1

a2 ← αs′
2

a3 ← βr′+s′

a1,a2,a3−−−−−−−−−→
Choose e

r←− {0, . . . , p− 1}
e←−−−−−

Let
z1 ← r′ + rc

z2 ← s′ + sc
z1,z2−−−−−−−→

Check if
αz1

1 = xe
1a1

αz2
2 = xe

2a2

βz1+z2 = xe
3a3

and accept or reject accordingly

Fig. 3. The protocol ΣL

of m under pkP , and assuming that the component zi of his response z is given
by zi = ui + vie, he can compute an encryption of zi as EncP (pkP , ui) · cvi .

The compiled protocol is defined below. We remind the reader that ΣOR has
conversations on the form (a, e, (z1, z2, . . . , z6)), where, for each i, 1 ≤ i ≤ 6,
zi = ui + vie for some ui, vi ∈ {0, . . . , p− 1}.

Protocol Compile(ΣOR):

1. On input of a statement/witness pair (x, w), P gets V ’s public key (pkP , c)
from FKS

reg and computes the first message a according to ΣOR. Then, for
i such that 1 ≤ i ≤ 6, P computes EncP ((pkP , ui) · cvi), and lets ci be a
randomization of the resulting encryption. P sends x, π to V , where π =
(a, (c1, . . . , c6)).

2. On input of a statement x and a proof π = (a, (c1, . . . , c6)), for i such that
1 ≤ i ≤ 6, V lets z′i be the Paillier decryption of ci under sk. Then V verifies
that the conversation (a, e, (z′1, . . . , z′6)) would be accepted by the verifier of
ΣOR upon input x, and accepts or rejects accordingly.

Round-Optimal Blind Signatures from Waters Signatures 123

We need a result from [9] based on the following assumption: ’HPaillier is 2-
harder than Gdlog’. Due to space limitations, we refer to [9] for formal definitions
of the involved terms. Loosely speaking, it is assumed that, given an algorithm
A that solves the discrete logarithm (DLOG) problem for moduli of length τ ,
there is no algorithm that breaks Paillier encryption for moduli of length 2τ ,
with runtime comparable to that of A. We note that, as defined in [9], Gdlog

addresses the DLOG problem in the subgroup of Zp of order p′, where p and
p′ are primes, and p = 2p′ + 1. Since our Σ-protocol involves a bilinear group,
we need a modified version of Gdlog, addressing the DLOG problem in a general
bilinear group of prime order. We call this modified version G∗

dlog. By arguing as
in [9], the following assumption seems reasonable.

Assumption 1: HPaillier is 2-harder than G∗
dlog.

We obtain the following result, analogous to Theorem 1, Theorem 2 and Corol-
lary 1 in [9].

Theorem 1. compile(ΣOR) has correctness and perfect zero-knowledge (in the
registered public-key model). Furthermore, under Assumption 1, compile(ΣOR)
is sound for O(log τ) executions.

The proof of the above theorem is omitted due to space limitations. We note
that, when it comes to proving soundness, we have slightly modified the defini-
tion in [9], so it better suits our application. That is, we consider the following
experiment, where P̃ is a probabilistic, polynomial-time adversary:

1. (skKS , pkKS) r←− KS(1τ)
2. Run P̃ on input (1τ , pkKS).
3. Repeat until P̃ stops: P̃ outputs (xi, πi), 1 ≤ i ≤ m(k), for some polynomial

m. Run V (1τ , x, πi, skKS), 1 ≤ i ≤ m(k). If V (1τ , xi, πi, skKS) = 1 for all i,
then give 1 to P̃ , otherwise give 0 to P̃ .

In the original experiment, P̃ is only allowed to output one statement/proof pair
at a time. The reason why we allow for a polynomial number of pairs is that
the prover in our blind signature scheme does not learn whether each pair is
accepted or not.

4.3 Our Scheme

A detailed description of our blind signature scheme is given below. Recall that,
in our model, it is assumed that Signer and User have access to the trusted
functionalities FD

crs and FKS
reg defined earlier. Furthermore, Signer is initially

required to register a public key pkKS with the functionality FKS
reg .

Common Reference String: The algorithm D takes 1τ as input, randomly
chooses α1, α2, β ← G and lets crs ← α1||α2||β.

124 K. Gjøsteen and L. Kr̊akmo

Key Setup: The algorithm KS works exactly as in compile(ΣOR), i.e. the public
and secret keys are pkKS = (pkP , c) and skKS = (skP , e).

Key Generation: The algorithm Gen works exactly as in Waters’ signature
scheme, i.e. the public and secret keys are pkBS = (g, g1, g2, u

′, U) and skBS =
gα
2 .

Signature Generation: User takes (pkBS , m) as input and lets m1m2 . . . mn

be the bit representation of m. He randomly chooses t ← {0, . . . , p−1}, and lets
c ← gt

∏n
i=1 umi

i . He checks that u′c �= 1. If this holds, he continues. Otherwise,
he starts over, choosing a new t. Then he generates a proof π of correctness of
c as follows: Let tτ−1 . . . to be the bit representation of t, that is, t =

∑τ−1
i=0 ti2i.

User gets crs = α1||α2||β from FD
crs, chooses random values ri, si ∈ {0, . . . , p−1}

and computes, for all i, 0 ≤ i ≤ τ − 1,

Ti = (αri
1 , αsi

2 , βri+sigti).

Similarly, he chooses random values r′i, s
′
i ∈ {0, . . . , p− 1} and computes, for all

i, 1 ≤ i ≤ n,

Mi = (αr′
i

1 , α
s′

i
2 , βr′

i+s′
iumi

i).

He also computes

r∗ =
τ−1∑
i=0

ri2i +
n∑

i=1

r′i, s∗ =
τ−1∑
i=0

si2i +
n∑

i=1

s′i.

User then computes, for all i, 0 ≤ i ≤ τ − 1, a proof πTi according to
Compile(ΣOR) on input (Ti, (ri, si)). Moreover, for all i, 1 ≤ i ≤ n, he com-
putes a proof πMi according to Compile(ΣOR) on input (Mi, (r′i, s

′
i)). Finally,

he lets π = ((T0, πT0), . . . , (Tτ−1, πTτ−1), (M1, πM1), . . . , (Mn, πMn), r∗, s∗), sends
(c, π) to Signer and waits.

Signer gets (pkBS , skBS) as input. Upon receiving (c, π) from User , he verifies
π by the following procedure: First, he verifies each of the pairs (Ti, πTi), 0 ≤
i ≤ τ − 1, and (Mi, πMi), 1 ≤ i ≤ n, according to Compile(ΣOR). If all pairs are
accepted, he continues. Otherwise, he outputs not completed and stops. He gets
crs = α1||α2||β from FD

crs and checks if

(αr∗

1 , αs∗

2 , βr∗+s∗
c) =

τ−1∏
i=0

T 2i

i

n∏
i=1

Mi.

If this holds, he concludes that c was honestly generated and continues. Other-
wise, he outputs not completed and stops. He randomly chooses r ← {0, . . . , p−
1}. He then lets σ′

1 = gα
2 (u′c)r and σ′

2 = gr, outputs completed , sends (σ′
1, σ

′
2)

to User and stops.
Upon receiving (σ′

1, σ
′
2) from Signer , User randomly chooses r′ ← {0, . . . , p−

1}. He lets σ1 = σ′
1σ

′−t
2 (u′∏n

i=1 umi

i)r′
and σ2 = σ′

2g
r′

. He then checks if

e(σ1, g) = e(σ2, u
′

n∏
i=1

umi

i) · e(g1, g2).

Round-Optimal Blind Signatures from Waters Signatures 125

If this holds, he outputs (σ1, σ2) and stops. Otherwise, he outputs fail and stops.

Signature Verification: The algorithm Verify works exactly as in Waters’
scheme, i.e. to verify a signature σ = (σ1, σ2) on a message m, it checks that

e(σ1, g) = e(σ2, u
′

n∏
i=1

umi

i) · e(g1, g2).

If this holds, it outputs accept , otherwise it outputs reject .
We obtain the following results.

Theorem 2. Under Assumption 1, and if Waters’ scheme is (q′, t′, ε′)-secure
with respect to UF-CMA, then our blind signature scheme is (l, t, ε)-secure with
respect to non-forgeability, where q′ = l = O(log τ), t′ = t + poly(τ) and ε′ =
(1− ρ)ε, where ρ is a negligible function in τ .

Theorem 3. If the LE scheme is (1, t′, ε′)-secure with respect to ROR-CPA,
then our blind signature scheme is (t, ε)-secure with respect to blindness, where
t′ = t + poly(τ), and ε′ = ε

2n+2τ .

Due to space limitations, the proofs of the above results are not included. As
explained earlier, the non-forgeability of our scheme reduces to the UF-CMA
security of Waters’ scheme, since a simulator can extract the message m and the
exponent t from a proof π computed by the user. As for blindness, the proof
uses a standard hybrid argument for reducing the blindness of our scheme to
the ROR-CPA security of the LE-scheme. That is, we assume that there is an
adversary Ab against the blindness of our blind signature scheme, and define a
series of games. In the first game, Ab runs in the experiment Expb

BS,A(τ), where
b = 0, and in the last game, Ab runs in the experiment Expb

BS,A(τ), where
b = 1. We show that, if Ab can distinguish two consecutive games, then we can
construct an adversary breaking the ROR-CPA security of the LE scheme.

We note that the restriction on l in Theorem 2 is due to the restriction to
O(log τ) executions in Theorem 1. However, the authors of [9] show that, under a
stronger non-standard assumption, their compiled protocol for proving equality
of discrete logarithms is sound for an arbitrary polynomial number of executions.
Their strategy also applies to the protocol compile(ΣOR). Hence, under this
assumption, we achieve non-forgeability for an arbitrary polynomial l. We refer
to [9] for more details.

References

1. Abe, M.: A Secure Three-Move Blind Signature Scheme for Polynomially Many
Signatures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–
151. Springer, Heidelberg (2001)

2. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally Composable Protocols
with Relaxed Set-Up Assumptions. In: FOCS 2004: Proceedings of the 45th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2004), Washington,
DC, USA, pp. 186–195. IEEE Computer Society Press, Los Alamitos (2004)

126 K. Gjøsteen and L. Kr̊akmo

3. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations Among Notions
of Security for Public-Key Encryption Schemes. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

4. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The Power of RSA In-
version Oracles and the Security of Chaum’s RSA-Based Blind Signature Scheme.
In: Syverson, P.F. (ed.) FC 2001. LNCS, vol. 2339, pp. 319–338. Springer, Heidel-
berg (2002)

5. Boldyreva, A.: Threshold Signatures, Multisignatures and Blind Signatures Based
on the Gap-Diffie-Hellman-Group Signature Scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

6. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures, pp. 41–55 (2004)
7. Camenisch, J., Koprowski, M., Warinschi, B.: Efficient Blind Signatures Without

Random Oracles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352,
pp. 134–148. Springer, Heidelberg (2005)

8. Chaum, D.: Blind Signatures for Untraceable Payments. In: Advances in
Cryptology-Crypto 1982, pp. 199–203 (1982)

9. Damg̊ard, I., Fazio, N., Nicolosi, A.: Non-Interactive Zero-Knowledge from Homo-
morphic Encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 41–59. Springer, Heidelberg (2006)

10. Fischlin, M.: Round-Optimal Composable Blind Signatures in the Common Refer-
ence String Model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117. Springer,
Heidelberg (2006)

11. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM J. Comput. 17(2), 281–308 (1988)

12. Hazay, C., Katz, J., Koo, C.-Y., Lindell, Y.: Concurrently-Secure Blind Signatures
Without Random Oracles or Setup Assumptions. In: Vadhan, S.P. (ed.) TCC 2007.
LNCS, vol. 4392, pp. 323–341. Springer, Heidelberg (2007)

13. Juels, A., Luby, M., Ostrovsky, R.: Security of Blind Digital Signatures (Extended
Abstract). In: McCurley, K.S., Ziegler, C.D. (eds.) Advances in Cryptology 1981 -
1997. LNCS, vol. 1440, pp. 150–164. Springer, Heidelberg (1999)

14. Kiayias, A., Zhou, H.-S.: Concurrent Blind Signatures Without Random Oracles.
In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 49–62. Springer,
Heidelberg (2006)

15. Okamoto, T.: Efficient Blind and Partially Blind Signatures Without Random Or-
acles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99.
Springer, Heidelberg (2006)

16. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) Advances in Cryptology - EUROCRYPT 1999. LNCS,
vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

17. Pointcheval, D., Stern, J.: Provably Secure Blind Signature Schemes. In: Kim, K.-c.,
Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 252–265. Springer,
Heidelberg (1996)

18. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:
Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 114–127. Springer, Hei-
delberg (2008)

Secure Proxy Multi-signature Scheme in the
Standard Model

Zhenhua Liu1,2, Yupu Hu2, and Hua Ma1

1 Applied Mathematics Department,Xidian University,
Xi’an, Shaanxi 710071,China

2 The Ministry of Education Key Laboratory of Computer Networks
and Information Security, Xidian University, Xi’an 710071, China

zhualiu@hotmail.com, yphu@mail.xidian.edu.cn

Abstract. In electronic world, proxy signature is a solution of delega-
tion of signing capabilities. Proxy multi-signature schemes allow a proxy
signer to generate a proxy signature on behalf of two or more origi-
nal signers. However, the security of the known proxy multi-signature
schemes is proven in the random oracle which does not imply security in
the real world. In this paper, we present a proxy multi-signature scheme
in the standard model. The size of a proxy multi-signature is indepen-
dent of the number of the original signers. Our scheme is existentially
unforgeable against chosen message attack and chosen warrant attack
based on the hardness of the well known CDH problem in the standard
model.

Keywords: proxy multi-signature, standard model, bilinear pairings,
provable security.

1 Introduction

The concept of proxy signature was first introduced by Mambo, Usuda and
Okamoto in 1996[12]. In the proxy signature scheme, an original signer is al-
lowed to authorize a designated person as his proxy signer. Then the proxy
signer is able to sign on behalf of the original signer. Since then, many proxy
signature schemes have been proposed [2,4,9,11,13,14,17]. Proxy signatures can
combine other special signatures to obtain some new types of proxy signatures.
Till now, there are various kinds of proxy signature schemes have been proposed
[6,10,19,21,22].

Proxy multi-signature was also introduced by Yi et al. in 2000 [20]. In a proxy
multi-signature scheme, a designated proxy signer can generate the signature on
behalf of a group of original signers. Proxy multi-signatures can play important
role in the following scenario: A company releases a document that may involve
the financial department, engineering department, and program office, etc. The
document must be signed jointly by these entities, or signed by a proxy signer
authorized by these entities. One solution to the later case of this problem is to
use a proxy multi-signature scheme.

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 127–140, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

128 Z. Liu, Y. Hu, and H. Ma

Although many new proxy multi-signature schemes and improvements have
been proposed[7,5,3,8,18] since 2000, most of them do not fully meet the desired
security requirement and their security are all argued by presenting attacks that
fail, which only provide very weak guarantee. In 2003, Boldyreva, Palacio, and
Warinschi[2] presented the formal definition and security notion for proxy sig-
nature, i.e., the existential unforgeability against an adaptive chosen-message
attack, which was the first work on proxy signature in the provable security di-
rection. In 2006, the formal security model for proxy multi-signature schemes is
presented due to Cao and Cao[3], Wang and Cao [18], respectively. Their model
is an adapted version of the model of Boldyreva, Palacio and Warinschi[2]. One
drawback of both proxy multi-signature schemes is that they are provably secure
only in the random oracle model and thus there is only a heuristic argument for
their security. Consequently, to design a provably secure proxy multi-signature
scheme based on standard intractability assumptions is both of theoretical and
practical importance.

As a natural extension of the efforts to provide secure schemes without the use
of random oracles, we give the first proxy multi-signature scheme that is provably
secure based on the difficulty of CDH problem in the standard model. Our
construction derive from novel adaptations of the signature scheme of Waters
[16] and the ID-based signature scheme of Paterson and Schuldt [15].

The paper will proceed as follows. In Section 2 we will give some preliminary
works. Section 3 recalls the general proxy multi-signature schemes and secure
model. We will present our proxy multi-signature scheme in the standard model
in Section 4 and provide its formal security analysis in Section 5. Finally, we
conclude our paper in Sections 6.

2 Preliminaries

we review some fundamental backgrounds required in this paper, namely bilinear
pairing and complexity assumption.

2.1 Bilinear Pairings

Let G and GT be two groups of prime order p and let g be a generator of G. The
map e : G×G → GT is said to be an admissible bilinear pairing if the following
three conditions hold true:

(1) e is bilinear, i.e. e(ga, gb) = e(g, g)ab for all a, b ∈ Zp.
(2) e is non-degenerate, i.e. e(g, g) = 1GT .
(3) e is efficiently computable.

We say that (G, GT) are bilinear groups if there exists the bilinear pairing,
e : G × G → GT as above, and e, and the group action in G and GT can be
computed efficiently. See [1] for more details on the construction of such pairings.

Secure Proxy Multi-signature Scheme in the Standard Model 129

2.2 Complexity Assumption

Definition 1. Computational Diffie Hellman (CDH) Problem in G. Given
g, ga, gb ∈ G for some unknown a, b ∈ Zp, compute gab ∈ G. The success proba-
bility of a polynomial algorithm C in solving the CDH problem in G is denoted:

SuccCDH
C,G = Pr[C(g, ga, gb) = gab : a, b ∈ Zp]

Definition 2. Computational Diffie Hellman (CDH) Assumption in G. Given
g, ga, gb ∈ G, for some unknown a, b ∈ Zp, SuccCDH

C,G is negligible.

3 Formal Model of Proxy Multi-signature

We first define the general proxy multi-signature schemes. In a proxy multi-
signature scheme, there are n original signers and a proxy signer. Let A1, A2,
· · · , An be the n original signers, and B be a proxy signer designated by all
original signers Ai(i ∈ {1, 2, · · · , n}). The definition details the components of a
proxy multi-signature scheme.

Definition 3. Proxy multi-signature scheme. A proxy multi-signature scheme
is a tuple PMS = (Gen, Sign, V erify, ProxyKeyGen, ProxyMultiSign,
ProxyMultiV erify).

Gen: On input of a security parameter 1k, the algorithm produces pub-
lic/private key pairs. The public and private key pairs for the original signers
and the proxy signer are (pkA1 , skA1), · · · , (pkAn , skAn), (pkB , skB).

Sign: This is a (possibly) randomized standard signing algorithm. On input of a
secret key sk and a message M ∈ {0, 1}∗, the algorithm outputs a signature σ.

Verify: This is a deterministic standard verification algorithm. On input of
a message/signature pair (M, σ), the algorithm outputs 1 if σ is a valid
signature for M relative to pk, and outputs 0 otherwise.

ProxyKeyGen: It is a protocol between all original signers and the proxy
signer formed by a group of interactive randomized algorithms. All original
signers and the proxy signer input the public keys pkA1 , pkA2 , · · · , pkAn , pkB,
and the delegation warrant ω which includes the restrictions on the class
of messages delegated, the identities of the original signers and the proxy
signer, and the period of delegation, etc. Every original signer takes as input
his secret key skAi(i ∈ {1, 2, · · · , n}). The proxy signer also takes as input
his secret key skB. As a result, the proxy signer outputs a proxy signing key
skp that the proxy signer uses it to produce proxy multi-signature on behalf
of all original signers.

ProxyMultiSign: This is a (possibly) randomized algorithm. On input of a
proxy signing key skp, a warrant ω ∈ {0, 1}∗ and a message M ∈ {0, 1}∗
which satisfies ω, the algorithm outputs a proxy multi-signature pσ.

ProxyMultiVerify: This is a deterministic proxy multi-signature verification
algorithm. On input of a proxy multi-signature (pkA1 , pkA2 , · · · , pkAn , pkB,
ω, M, pσ), the algorithm outputs 1 if pσ is a valid proxy multi-signature

130 Z. Liu, Y. Hu, and H. Ma

for M by the proxy signer on behalf of all original signers, and outputs 0
otherwise.

3.1 Security Model

We now review the formal security model for proxy multi-signature schemes due
to Cao and Cao[3]. Their model is an adapted version of the model of Boldyreva,
Palacio and Warinschi[2].

In this model, we assume there are totally n + 1 participants and there is no
secure channel. In a seemingly extreme case the adversary is working against a
single honest user, say user 1, and can select and register keys for all other users.
Notice that this is without loss of generality since any attack that can be carried
out in the presence of more honest users, can be performed by having some of
the users under the control of the adversary behave honestly. So, in our model,
the adversary A is given a public key pk1 relative to user 1. Then A can choose
the other n private keys sk2, · · · , skn+1 and register the corresponding public
keys pk2, · · · , pkn+1 to the certification authority. But he must output both of
the public keys and the matching secret keys or prove his knowledge of the
corresponding secret keys. The adversary is also given access to three oracles: a
standard signing oracle, a delegation oracle, and a proxy multi-signature oracle.
The adversary’s goal is the existential forgery of a standard signature relative to
pk1 or a proxy multi-signature. His advantage, AdvUF

PMS(A), is defined to be his
probability of success in the following game against a challenger C.

Setup: C runs Gen on input 1k to produce public/ secret key pair (pk1, sk1)
relative to user 1, k is a security parameter, C keeps sk1 secret and provides
A with the public key pk1.

Certification queries: A provides key pairs (pk2, sk2), · · · , (pkn+1, skn+1) in
order to certify pk2, · · · , pkn+1 which are all different from the challenged
key pk1.

Signing queries: A can query oracle OS(sk1, ·) on message M of his choice,
and obtain a standard signature for M by user 1, σ = Sign(sk1, M). Then
C adds the message M to a list Squ.

Delegation queries
– A can request to interact with user 1, user 1 playing the role of one of the

original signers. Without loss of generality, we assume the proxy signer
is user n + 1, and the original signers are all user i(i ∈ {1, 2, · · · , n}). C
responds by running algorithm ProxyKeyGen, the input of warrant ω
is chosen by A. Eventually outputs the corresponding proxy signing key
skp, then (ω, skp) is added to a list Warro.

– A can request to interact with user 1, user 1 playing the role of a proxy
signer. The original signers are all user i(i ∈ {2, · · · , n + 1}). C responds
by running algorithm ProxyKeyGen, taken warrant ω of user 1 is chosen
by A as input. Eventually, outputs a proxy private key skp, then adds
(ω, skp) to a list Warrp. We emphasize that A does not have access to
the element of Warrp.

Secure Proxy Multi-signature Scheme in the Standard Model 131

Proxy multi-signature queries: A can make a query (ω, M) to the oracle
OPMS(skp, ·), where exist a skp such that (ω, skp) ∈ Warrp and M satisfies
ω. Eventually output a proxy multi-signature pσ on message M . Then the
query (ω, M) is added to a list PMSqu.

Output: Eventually, A halts, outputting any one the following forges:
– A outputs a valid standard signature (M∗, σ∗) where V erify(pk1, M

∗,
σ∗) = 1 and M was not queried to oracle OS(sk1, ·),i.e. M∗ /∈ Squ. So A
forges user 1’s standard signature.

– A outputs a valid proxy multi-signature (pk2, · · · , pkn+1, pk1, ω
∗, M∗,

pσ∗) on message M∗ under warrant ω∗ by user 1 on behalf of all users
i(i ∈ {2, · · · , n+1}), and (ω∗, M∗) /∈ PMSqu. So A forges a valid proxy
multi-signature and user 1 plays the role of proxy signer. But in fact
user 1 didn’t sign the message M∗ under the warrant ω∗ on behalf of
the original signer group. This is a chosen-message attack.

– A outputs a valid proxy multi-signature (pk1, pk2, · · · , pkn+1, ω
∗, M∗,

pσ∗) on message M∗ under warrant ω∗. Without loss of generality, we
assume the proxy signer is user n + 1, the original signers are users i(i ∈
{1, 2, · · · , n}) (user 1 is one of the original signers), where ω∗ /∈ Warro.
So A forges a proxy multi-signature and user 1 plays the role of one of the
original signers. But in fact user 1 didn’t delegate his signing capability
corresponding to ω∗ to user n + 1. This is a chosen-warrant attack.

Definition 4. Secure proxy multi-signature. A proxy multi-signature forger
A(t, qPMS , qS , qD, n, ε) breaks an n-user proxy multi-signature scheme in an
adaptive chosen-message attack and an adaptive chosen-warrant attack model
if: A runs in time at most t, A makes at most qS queries to the signing queries,
at most qD queries to the delegation queries, and at most qPMS queries to the
proxy multi-signature queries; AdvUF

PMS(A) is at least ε; and the forged proxy
multi-signature is by at most n users in which one is the proxy signers. A proxy
multi-signature scheme is (t, qPMS , qS , qD, n, ε)-secure against existential forgery
in an adaptive chosen-message attack and an adaptive chosen-warrant attack
model if no forger breaks it. We formalize it as the existential unforgeability
against an adaptive chosen-message attack and an adaptive chosen-warrant at-
tack (PMS-UF-CMA-CWA).

4 A Secure Proxy Multi-signature Scheme

In this section, we will construct a new proxy multi-signature scheme in the
standard model based on the schemes[15,16]. It is assumed that n original signers
A1, A2, · · · , An jointly ask a proxy signer B to carry out signing a document
M for them altogether, and a verifier Carol checks the validity of the created
signatures.

Setup: Let (G, GT) be bilinear groups defined in Section 2.1, where |G| =
|GT | = p for some prime p, g is the generator of G. e denotes the bi-
linear pairing G × G → GT . The messages M to be signed in this

132 Z. Liu, Y. Hu, and H. Ma

scheme will be represented as bitstrings of length m. Furthermore, picks
2m + 2 random elements u′, v′, u1, u2, · · · , um, v1, v2, · · · , vm ∈R G and set
u = (u1, u2, · · · , um), v = (v1, v2, · · · , vm). Then the common parameter
Para = (G, GT , p, g, e, u′, v′,u,v).For 1 ≤ ∀i ≤ n, Ai has public key pk

(i)
a =

(pk
(i)
ax , pk

(i)
ay) = (gx(i)

a , gy(i)
a) and secret key sk

(i)
a = (sk(i)

ax , sk
(i)
ay) = (x(i)

a , y
(i)
a)

such that x
(i)
a , y

(i)
a ∈R Z∗

p. Similarly, B’s public key is pkb = (pkbx, pkby) =
(gxb , gyb) and the secret key is skb = (skbx, skby) = (xb, yb).

Sign: Let M be an m-bit message to be signed and Mj denote the j-th bit
of M , and M ⊆ {1, 2, · · · , m} be the set of all j for which Mj = 1, the
standard signature is generated as follows. First, a random r ∈ Z∗

p is cho-
sen. Then the standard signature is constructed as: σ = (σ1, σ2) where
σ1 = gskxsky (u′ ∏

j∈M
uj)r, σ2 = gr. Here skx, sky denote the secret key of

the signer.
Verify: Check whether σ = (σ1, σ2) is a signature for a message M . The

signature is accepted if

e(σ1, g) = e(pkx, pky)e(u′ ∏
j∈M

uj , σ2)

ProxyKeyGen
– Warrant: For delegating the signing capability to the proxy signer, the

original signers first make a warrant ω which includes the restrictions on
the class of messages delegated, the original signers and proxy signer’s
identities and public keys, the period of validity,etc.

– SubProxyKeyGen: Let ω be an m-bit message to be signed by the the
original signer Ai and ωj denote the j-th bit of ω, and W ⊆ {1, · · · , m}
be the set of all j for which ωj = 1, a signature is generated as follows.
A random ri ∈ Z∗

p is chosen, then the signature is constructed as:

σ
(i)
ω = (σ(i)

ω1 , σ
(i)
ω2) = (gx(i)

a y(i)
a (u′ ∏

j∈W
uj)ri , gri)

then sends (ω, σ
(i)
ω) to the proxy signer B.

– SubProKeyVerify: After received (ω, σ
(i)
ω), B checks whether

e(σ(i)
ω1 , g) = e(pk

(i)
ax , pk

(i)
ay)e(u′ ∏

j∈W
uj , σ

(i)
ω2)

If (ω, σ
(i)
ω) is valid, he accept it as a valid proxy and continues;

otherwise, he requests a valid one from Ai, or he terminates this
protocol.

– ProxyKeyGen: If B confirms the validity of all (ω, σ
(i)
ω)(i = 1, 2, · · · , n),

he computes σω = (σω1 , σω2) = (
n∏

i=1

σ
(i)
ω1 ,

n∏
i=1

σ
(i)
ω2). Then picks a random

number r′ ∈ Z∗
p, he computes the proxy signing key as:
skp = (skp1 , skp2) = (gxbybσω1(u

′ ∏
j∈W

uj)r′
, σω2g

r′
)

Secure Proxy Multi-signature Scheme in the Standard Model 133

ProxyMultiSign: Let M be an m-bit message to be signed by the original sign-
ers A1, A2, · · · , An and Mk denote the k-th bit of M , and M⊆ {1, 2, · · · , m}
be the set of all k for which Mk = 1, the proxy signature is generated as
follows. A random value rm ∈ Zp is chosen, then the signature is constructed
as:

pσ=(pσ1, pσ2, pσ3) = (skp1(v
′ ∏
k∈M

vk)rm , skp2 , g
rm)

=(g
nP

i=1
x(i)

a y(i)
a

gxbyb(u′ ∏
j∈W

uj)
Pn

i=1 ri+r′
(v′

∏
k∈M

vk)rm , g

nP
i=1

ri+r′

, grm)

ProxyMultiVerify: Given the public keys (pk
(1)
a , pk

(2)
a , · · · , pk

(n)
a , pkb), a

warrant ω ∈ {0, 1}m, a message M ∈ {0, 1}m, and a signature pσ =
(pσ1, pσ2, pσ3), a verifier accept pσ if the following equality holds:

e(pσ1, g) =
n∏

i=1

e(pk(i)
ax , pk(i)

ay)e(pkbx, pkby)e(u′ ∏
j∈W

uj , pσ2)e(v′
∏

k∈M
vk, pσ3)

It is easy to see that a signature constructed with the ProxyMultiSign algo-
rithm will be accepted by a verifier. Thus the scheme is correct.

5 Security Analysis

We will prove that our proxy multi-signature scheme is existentially unforgeable
under an adaptive chosen-message and adaptive chosen- warrant attack in the
standard model, given that the computational Diffie-Hellman problem is hard,
by using the approach of [16,15].

Theorem 1. The proxy multi-signature scheme of Section 4 is
(t, qS , qPMS , qD, ε)-secure, assuming that (ε′, t′)-CDH assumption holds in
G, where:

ε′ ≥ ε
16qP MS(qS+qP MS+qD)(m+1)2

t′ = t +O((m(qS + qPMS + qD) + n(qPMS + qD))ρ + (qS + qPMS + qD)τ)

and ρ and τ are the time of a multiplication and an exponentiation in
G, respectively.

Proof. Suppose there exists an (t, qS , qPMS , qD, ε)-forger A for our proxy multi-
signature scheme. We will construct an algorithm C which will use A to solve
the CDH problem. The algorithm C will be given a group G, a generator g and
the elements ga and gb. To be able to use A to compute gab, C must be able to
simulate a challenger for A. C will response A’s queries as following.

Setup: Let l1 = 2(qPMS + qS + qD) and l2 = 2qPMS . C randomly chooses
(1) two integers k1 and k2 (0 ≤ k1, k2 ≤ m). We will assume that

134 Z. Liu, Y. Hu, and H. Ma

l1(m + 1) < p and l2(m + 1) < p for the given values of qPMS , qS and m.
(2) an integer x′ ∈ Zl1 ; an m-dimensional vector X = (xj)(xj ∈ Zl1)
(3) an integer z′ ∈ Zl2 ; an m-dimensional vector Z = (zk)(zk ∈ Zl2)
(4) two integers y′, w′ ∈ Zp; an m-dimensional vector Y = (yj)(yj ∈ Zp)
and m-dimensional vector W = (wk)(wk ∈ Zp)
For ease of analysis, we define the following functions:

F (M) = (p− l1k1) + x′ +
∑

j∈M
xj and J(M) = y′ +

∑
j∈M

yj

K(M) = (p− l2k2) + z′ +
∑

k∈M
zk and L(M) = w′ +

∑
k∈M

wk

Then the challenger assigns a set of public parameters as follows.

g1 = ga g2 = gb

u′ = g
(p−l1k1)+x′

2 gy′
uj = g

xj

2 gyj (1 ≤ j ≤ m)
v′ = g

(p−l2k2)+z′

2 gw′
vk = gzk

2 gwk(1 ≤ k ≤ m)

Note that these public parameters will have the same distribution as in
the game between the challenger and A. C assigns the user 1’s public key
pk

(1)
a = (pk

(1)
ax , pk

(1)
ay) = (g1, g2) where ga, gb are the input of the CDH

problem. Hence for any message M , the following equations:

u′ ∏
j∈M

uj = g
F (M)
2 gJ(M) and v′

∏
k∈M

vk = g
K(M)
2 gL(M)

hold. Then C returns user 1’s public key pk
(1)
a , all public parameters

to A. C runs A on input pk
(1)
a , answering all of A’s queries in any order and

any number of times as follow. The lists Warro, Squ, PMSqu, Warrp are
all empty at first and maintained by C:

Certification queries: A wishes to certify some public key pk
(i)
a (i ∈

{2, · · · , n + 1}), providing also its corresponding private key sk
(i)
a (i ∈

{2, · · · , n + 1}). C checks that the private key is indeed the correct one and
if so registers (pk

(i)
a , sk

(i)
a)(i ∈ {2, · · · , n + 1}) in its list of certified keypairs.

Signature queries: A issues standard signature queries with pk
(1)
a on message

M , and let M be an m-bit message and Mj denote the j-th bit of M , and
M⊆ {1, · · · , m} be the set of all j such that Mj = 1. C responds to this query
by Oracle OS(sk(1)

a , ·) as follows. Upon receiving an answer σ, C forwards
the response to A. The message M is added to a list Squ.
– If F (M) �= 0 mod l1, C can construct a signature by choosing a random

r ∈ Zp and computing:
σ = (σ1, σ2) = (g−J(M)/F (M)

1 (u′ ∏
j∈M

uj)r , g
−1/F (M)
1 gr)

Secure Proxy Multi-signature Scheme in the Standard Model 135

Writing r̃ = r−a/F (M), it can be verified that defining σ in this manner
yields a valid signature on M , since:

σ1 = g
−J(M)/F (M)
1 (u′ ∏

j∈M
uj)r = g

−J(M)/F (M)
1 (gF (M)

2 gJ(M))r

= ga
2 (gF (M)

2 gJ(M))−a/F (M)(gF (M)
2 gJ(M))r =ga

2(gF (M)
2 gJ(M))r−a/F (M)

= ga
2 (u′ ∏

j∈M
uj)er

and σ2 = g
−1/F (M)
1 gr = gr−a/F (M) = ger

– If F (M) = 0 mod p, C, the above computation cannot be performed and
the simulator will abort. To make the analysis of the simulation easier,
we will force the simulator to abort whenever F (M) = 0 mod l1. Since
l1(m + 1) < p implies 0 ≤ l1k1 < p and 0 ≤ x′ +

∑
j∈M

xj < p, it is easy

to see that F (M) = 0 mod p implies that F (M) = 0 mod l1. Hence,
F (M) �= 0 mod l1 implies F (M) �= 0 mod p, so the former condition
will be a sufficient requirement to ensure that a signature for M can be
constructed.

Delegation queries

– If A requests to interact with user 1, user 1 playing the role of one of the
original signers. We assume that user n + 1 is the proxy signer. A creates
a warrant ω, and requests user 1 to sign the warrant ω. C queries ω to
its signing oracle OS(sk(1)

a , ·). Upon receiving an answer σ, it forwards
(ω, σ) to A and add the warrant ω to Warro.

– If A requests to interact with user 1, user 1 playing the role of the proxy
signer, the original signers are user i(i = 2, · · · , n+1). A outputs a war-
rant ω and computes the signature σ

(i)
ω = (σ(i)

ω1 , σ
(i)
ω2) for warrant ω under

secret key sk
(i)
a (i = 2, · · · , n + 1). Then sends (ω, σ

(2)
ω , · · · , σ

(n+1)
ω) to C.

After receiving (ω, σ
(2)
ω , · · · , σ

(n+1)
ω), C check the validity by e(g, σ

(i)
ω1) =

e(pk
(i)
ax , pk

(i)
ay)e(u′ ∏

j∈W
uj , σ

(i)
ω2), and computes σω = (

n+1∏
i=2

σ
(i)
ω1 ,

n+1∏
i=2

σ
(i)
ω2) .

If so, C adds the warrant ω to list Warrp.
Proxy multi-signature queries: A requests a proxy multi-signature on

(ω, M), where ω ∈ Warrp, M satisfies ω, and user 1 is the proxy signer. C
responds to this query as follows:

– If F (ω) �= 0 mod l1, C can just construct a signature for ω as in a sig-
nature query, and then use the ProxyKeyGen algorithm to create a
proxy signing key skp on ω as follows. C chooses a random rω ∈ Zp and
computes:
σ′

ω = (σ′
ω1

, σ′
ω2

) = (g
−J(ω)
F (ω)

1 (u′ ∏
j∈W

uj)rω , g
−1

F (ω)

1 grω) and skp = (σω1σ
′
ω1

, σω2σ
′
ω2

)

where σω = (σω1 , σω2). Then C can use the ProxyMultiSign algorithm
to create a proxy signature on M .

136 Z. Liu, Y. Hu, and H. Ma

– If F (ω) = 0 mod l1, C will try to construct a proxy multi-signature in
a similar way to the construction of a standard signature in a standard
signature query. If K(M) �= 0 mod l2, this implies K(M) �= 0 mod p. C
can construct the proxy multi-signature by choosing a random r ∈ Zp

and computing:

pσ = (pσ1, pσ2, pσ3) = (σω1g
−L(M)/K(M)
1 (v′

∏
k∈M

vk)r, σω2 , g
−1/K(M)
1 gr)

= (ga
2σω1(v

′ ∏
k∈M

vk)er, σω2 , g
er)

where r̃ = r − a/K(M). Then C sends (ω, pσ) to A as the answer.
If K(M) = 0 mod l2, the simulator will simply abort.
Then this query (ω, M) is added to a list PMSqu which is maintained
by C.

Eventually, A outputs a forgery. If C does not abort as a consequence of one of
the queries above, the simulation for A is perfect. Since A has a non-negligible
advantage, at least one of the following events will occur with non-negligible
probability.

– E1: A outputs a forgery of the form (M∗, σ∗), where σ∗ = (σ∗
1 , σ∗

2),
V erify(pk

(1)
a , M∗, σ∗) = 1, and M∗ was not queried to Oracle OS(sk(1)

a , ·).
If E1 occurs, A forges user 1’s signature σ∗ = (σ∗

1 , σ∗
2) on M∗.

If F (M∗) �= 0 mod p then C will abort. If on the other hand,
F (M∗) = 0 mod p, C computes and outputs

σ∗
1

(σ∗
2)J(M∗) =

ga
2 (u′ Q

j∈M
uj)

r

gJ(M∗)r = ga
2 = gab

which is the solution to the given CDH problem.
– E2: A outputs a forgery of the form (pk

(2)
a , · · · , pk

(n+1)
a , pk

(1)
a , ω∗

1 , M
∗
1 , pσ∗),

where pσ∗ = (pσ∗
1 , pσ∗

2 , pσ∗
3), ProxyMultiV erify(pk

(2)
a , · · · , pk

(n+1)
a , pk

(1)
a ,

ω∗
1 , M∗

1 , pσ∗) = 1 and (ω∗
1 , M∗

1) /∈ PMSqu. The user 1 is the proxy signer,

C can compute g

n+1P
i=2

x(i)
a y(i)

a

because C has stored the secret key sk
(i)
a =

(gx(i)
a , gy(i)

a), i ∈ {2, · · · , n + 1}.
If E2 occurs, A forges user 1’s proxy multi-signature. If F (ω∗

1) �= 0 mod p or
K(M∗

1) �= 0 mod p then C will abort. If on the other hand, F (ω∗
1) = 0 mod p

and K(M∗
1) = 0 mod p, C computes and outputs

pσ∗
1

g

n+1P

i=2
x
(i)
a y

(i)
a

(pσ∗
2)J(ω∗

1)(pσ∗
3)L(M∗

1)

=
ga
2 ·g

n+1P

i=2
x
(i)
a y

(i)
a

(u′ Q

j∈W1

uj)

n+1P

i=2
ri+r′

(v′ Q

k∈M1

vk)rm

g

n+1P

i=2
x
(i)
a y

(i)
a

(gJ(ω∗
1))

n+1P

i=2
ri+r′

gL(M∗
1)rm

= ga
2 = gab

– E3: A outputs a forgery of the form (pk
(1)
a , pk

(2)
a , · · · , pk

(n+1)
a , ω∗

2 , M
∗
2 , pσ′),

where pσ′ = (pσ′
1, pσ′

2, pσ′
3), ProxyMultiV erify(pk

(1)
a , pk

(2)
a , · · · , pk

(n+1)
a ,

Secure Proxy Multi-signature Scheme in the Standard Model 137

ω∗
2 , M∗

2 , pσ∗
M2

) = 1 and ω∗
2 /∈ Warro. The user 1 is one of the original

signers, C can compute g

n+1P
i=2

x(i)
a y(i)

a

because C has stored the secret key sk
(i)
a =

(gx(i)
a , gy(i)

a), i ∈ {2, · · · , n + 1}.
If E3 occurs, A forges a proxy multi-signature on behalf of user 1. If F (ω∗

2) �=
0 mod p or K(M∗

2) �= 0 mod p then C will abort. If on the other hand,
F (ω∗

2) = 0 mod p and K(M∗
2) = 0 mod p, C computes and outputs

pσ′
1

g

n+1P

i=2
x
(i)
a y

(i)
a

(pσ′
2)J(ω∗

2)(pσ′
3)L(M∗

1)

=
g

n+1P

i=2
x
(i)
a y

(i)
a

(ga
2)(u′ Q

j∈W2

uj)

n+1P

i=2
ri+r′

(v′ Q

k∈M2

vk)rm

g

n+1P

i=2
x
(i)
a y

(i)
a

(gJ(ω∗
2))

n+1P

i=2
ri+r′

gL(M∗
2)rm

= ga
2 = gab

This completes the description of the simulation. It remains to analyze the
probability of C not aborting. For the simulation to complete without aborting,
we require that the following cases happen.

– A1: F (M) �= 0 mod l1 during signature queries;
– A2: F (ω) �= 0 mod l1 during delegation queries;
– A3: F (ω) �= 0 mod l1 or K(M) �= 0 mod l2 during proxy multi-signature

queries;
– B: A forges user 1’s signature;
– B∗: F (M∗) = 0 mod p;
– C: A generates a valid proxy multi-signature forgery, where user 1 is the

proxy signer;
– C∗: F (ω∗

1) = 0 mod p and K(M∗
1) = 0 mod p;

– D: A generates a valid proxy multi-signature forgery, where user 1 is one of
all original signers;

– D∗: F (ω∗
2) = 0 mod p and K(M∗

2) = 0 mod p;

We denote A = A1 ∧ A2 ∧ A3. Thus, the successful probability of C is
Pr[A ∧ B ∧ B∗] + Pr[A ∧ C ∧ C∗] + Pr[A ∧ D ∧ D∗], A’s advantage is
Pr[B|A] + Pr[C|A] + Pr[D|A] ≥ ε, and

Pr[A] = Pr[
qS∧
i=1

F (Mi) �= 0
qPMS+qD∧

i=1

F (ωi) �= 0
qP MS∧
j=1

K(Mj) �= 0]

= Pr[
qS∧
i=1

F (Mi) �= 0
qPMS+qD∧

i=1

F (ωi) �= 0]Pr[
qP MS∧
j=1

K(Mj) �= 0]

= (1− Pr[
qS∨
i=1

F (Mi) = 0
qP MS+qD∨

i=1

F (ωi) = 0])(1− Pr[
qP MS∨
j=1

K(Mj) = 0])

≥ (1−
qS∑
i=1

Pr[F (Mi) = 0]−
qP MS+qD∑

i=1

Pr[F (ωi) = 0])(1−
qP MS∑
j=1

Pr[K(Mj) = 0])

= (1− qS + qPMS + qD

l1
)(1 − qPMS

l2
)

138 Z. Liu, Y. Hu, and H. Ma

Pr[B∗|A ∧B] = Pr[F (M∗) = 0 mod p|A ∧B]
= Pr[F (M∗) = 0 mod p ∧ F (M∗) = 0 mod l1|A ∧B]

=
1

l1(m + 1)

Pr[C∗|A ∧ C] = Pr[F (ω∗
1) = 0 mod p ∧K(M∗

1) = 0 mod p|A ∧ C]
= Pr[F (ω∗

1) = 0 mod p|A ∧ C]Pr[K(M∗
1) = 0 mod p|A ∧ C]

=
1

l1(m + 1)
1

l2(m + 1)

Pr[D∗|A ∧D] = Pr[F (ω∗
2) = 0 mod p ∧K(M∗

2) = 0 mod p|A ∧D]
= Pr[F (ω∗

2) = 0 mod p|A ∧D]Pr[K(M∗
2) = 0 mod p|A ∧D]

=
1

l1(m + 1)
1

l2(m + 1)

Let l1 = 2(qS + qPMS + qD) and l2 = 2qPMS . Hence, we have

Pr[A ∧B ∧B∗] = Pr[A]Pr[B|A]Pr[B∗ |A ∧B]

≥ (1− qS + qPMS + qD

l1
)(1− qPMS

l2
)

1
l1(m + 1)

Pr[B|A]

=
1

8(qS + qPMS + qD)(m + 1)
Pr[B|A]

Pr[A ∧ C ∧ C∗] = Pr[A]Pr[C|A]Pr[C∗ |A ∧ C]

≥ (1− qS + qPMS + qD

l1
)(1 − qPMS

l2
)

1
l1(m + 1)

1
l2(m + 1)

Pr[C|A]

=
1

16qPMS(qS + qPMS + qD)(m + 1)2
Pr[C|A]

Pr[A ∧D ∧D∗] = Pr[A]Pr[D|A]Pr[D∗ |A ∧D]

≥ (1 − qS + qPMS + qD

l1
)(1− qPMS

l2
)

1
l1(m + 1)

1
l2(m + 1)

Pr[D∗|A]

=
1

16qPMS(qS + qPMS + qD)(m + 1)2
Pr[D∗|A]

and we get that

Pr[C succeed] = Pr[A ∧B ∧B∗] + Pr[A ∧ C ∧ C∗] + Pr[A ∧D ∧D∗]

≥ 1
8(qS + qPMS + qD)(m + 1)

Pr[B|A] +
1

16qPMS(qS + qPMS + qD)(m + 1)2
Pr[C|A]

+
1

16qPMS(qS + qPMS + qD)(m + 1)2
Pr[D|A]

≥ 1
16qPMS(qS + qPMS + qD)(m + 1)2

(Pr[B|A] + Pr[C|A] + Pr[D|A])

≥ ε

16qPMS(qS + qPMS + qD)(m + 1)2

Secure Proxy Multi-signature Scheme in the Standard Model 139

Algorithm C is successful whenever A is. Algorithm C’s running time is that
of A, plus the overhead in handling A’s qS Signature queries, qD Delegation
queries and qPMS ProxyMultiSign queries. Since there are O(m) multiplications
and O(1) exponentiations in the Signature queries, O(m + n) multiplications
and O(1) exponentiations in the Delegation queries and ProxyMultiSign queries,
the time complexity of C is

t′ = t +O((m(qS + qPMS + qD) + n(qPMS + qD))ρ + (qS + qPMS + qD)τ)

where ρ and τ are the time of a multiplication and an exponentiation in
G, respectively.

6 Conclusions

In this paper, we proposed proxy multi-signature scheme in the standard model
based on signature scheme [16,15]. We showed that our scheme is unforgeable
against adaptively chosen message attacks and adaptively chosen warrant at-
tacks. To our best knowledge, this is the first proxy multi-signature scheme that
can be proven secure in the standard model. The size of a proxy multi-signature
is independent of the number of the original signers.

Acknowledgment

The authors would like to thank anonymous reference of ProvSec2008 for their
value comments and suggestions that improve the presentation of this paper.

This work was supported by National Natural Science Foundation of China
under Grants No.60473029 and the National Basic Research Program (973 Pro-
gram) of China under Grants No.2007CB311201.

References

1. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

2. Boldyreva, A., Palacio, A., Warinschi, B.: Secure proxy signature schemes for del-
egation of signing rights, http://eprint.iacr.org/2003/096

3. Cao, F., Cao, Z.: Security model of proxy-multi signature schemes. In: Pointcheval,
D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301, pp. 144–152. Springer,
Heidelberg (2006)

4. Huang, X., Susilo, W., Mu, Y., Wu, W.: Proxy signature without random oracles.
In: Cao, J., Stojmenovic, I., Jia, X., Das, S.K. (eds.) MSN 2006. LNCS, vol. 4325,
pp. 473–484. Springer, Heidelberg (2006)

5. Hsu, C., Wu, T., He, W.: New proxy multi-signature scheme. Applied Mathematics
and Computation 162, 1201–1206 (2005)

6. Hsu, C., Wu, T., Wu, T.: New nonrepudiable threshold proxy signature scheme
with known signers. Journal of Systems and Software 58(2,1), 119–124 (2001)

http://eprint.iacr.org/2003/096

140 Z. Liu, Y. Hu, and H. Ma

7. Ji, J., Li, D., Wang, M.: New proxy multi-signature, multi-proxy signature and
multi-proxy multi-signature schemes from bilinear pairings. Chinese Journal of
Computers 27(10), 1429–1435 (2004)

8. Ji, J., Li, D.: A new proxy multi-signature scheme. Journal of Computer Research
and Development 41(4), 715–719 (2004)

9. Lee, J., Cheon, J., Kim, S.: An analysis of proxy signatures: Is a secure channel
necessary? RSA 2003. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 68–79.
Springer, Heidelberg (2003)

10. Li, X., Chen, K., Sun, L.: Certificateless signature and proxy signature schemes
from bilinear pairings. Lithuanian Mathematical Journal 45(1), 76–83 (2005)

11. Lee, B., Kim, H., Kim, K.: Strong proxy signature and its applications. In: SCIS
2001, pp. 603–608 (2001)

12. Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures: delegation of the power to
sign messages. IEICE Transactions on Fundamentals of Electronic Communications
and Computer Science E79-A(9), 1338–1354 (1996)

13. Okamoto, T., Inomata, A., Okamoto, E.: A proposal of short proxy signature using
pairing. In: ITCC 2005, pp. 631–635. IEEE Computer Society, Los Alamitos (2005)

14. Okamoto, T., Tada, M., Okamoto, E.: Extended proxy signatures for smart cards.
In: Zheng, Y., Mambo, M. (eds.) ISW 1999. LNCS, vol. 1729, pp. 247–258. Springer,
Heidelberg (1999)

15. Paterson, K.G., Schuldt, J.C.N.: Efficient identity-based signature secure in the
standard model. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS,
vol. 4058, pp. 207–222. Springer, Heidelberg (2006)

16. Waters, B.: Efficient Identity-based encryption without random oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

17. Wang, G., Bao, F., Zhou, J., Deng, R.H.: Security analysis of some proxy signa-
tures. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 305–319.
Springer, Heidelberg (2004)

18. Wang, Q., Cao, Z.: Formal model of proxy multi-signature and a construction.
Chinese Journal of Computer 29(9), 1928–1935 (2006)

19. Wang, H., Pieprzyk, J.: Efficient one-time proxy signatures. In: Laih, C.-S. (ed.)
ASIACRYPT 2003. LNCS, vol. 2894, pp. 507–522. Springer, Heidelberg (2003)

20. Yi, L., Bai, G., Xiao, G.: Proxy multi-signature scheme: a new type of proxy
signature scheme. Electronics Letters 36(6), 527–528 (2000)

21. Zhang, F., Kim, K.: Efficient ID-based blind signature and proxy signature from
bilinear pairings. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS,
vol. 2727, pp. 218–219. Springer, Heidelberg (2003)

22. Zhang, F., Safavi-Naini, R., Lin, C.: New proxy signature, proxy blind signature
and proxy ring signature schemes from bilinear pairings, http://eprint.iacr.

org/2003/104

http://eprint.iacr.org/2003/104
http://eprint.iacr.org/2003/104

Server-Aided Verification Signatures:
Definitions and New Constructions

Wei Wu, Yi Mu, Willy Susilo, and Xinyi Huang

Centre for Computer and Information Security Research
School of Computer Science & Software Engineering

University of Wollongong, Australia
{ww986,ymu,wsusilo,xh068}@uow.edu.au

Abstract. A server-aided verification signature scheme consists of a dig-
ital signature scheme and a server-aided verification protocol. By execut-
ing the server-aided verification protocol with the server, one can perform
the verification of signatures with less computational cost compared to
the original verification algorithm. This mechanism is therefore indis-
pensable for low-power devices such as smart cards. The contributions
of this paper are manyfold. Firstly, we introduce and define the existen-
tial unforgeability of server-aided verification signatures. We prove that
the new notion includes the existing security requirements in server-aided
verification signatures. Then, we analyze the Girault-Lefranc scheme in
Asiacrypt 2005 and show that their scheme can be made secure in our
model, but the computational cost is more than the claimed in the origi-
nal scheme. After that, we propose the first server-aided verification BLS,
which is existentially unforgeable in the random oracle model under the
Bilinear Diffie-Hellman assumption. Finally, we consider the collusion
and adaptive chosen message attack in server-aided verification signa-
tures. For the first time in the literature, the security of server-aided
verification signatures against such attacks is defined. We provide a con-
crete construction of a server-aided verification BLS secure against the
collusion and chosen message attack.

Keywords: Server-aided computation, server-aided verification, BLS,
ZSS, untrusted server, random oracle.

1 Introduction

Cryptographic protocols introduce extra computational costs to computer sys-
tems. It would be desirable if such cost could be reduced to a level that does not
affect the overall performance of a computer system. Although applying cryp-
tographic protocols to normal computer systems is not a problem, low power
devices such as smart cards and mobile terminals require an additional care
when cryptographic protocols are applied.

Techniques such as pre-computation and off-line computation have been
adopted in order to improve the efficiency of the cryptographic protocols. These

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 141–155, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

142 W. Wu et al.

techniques can indeed improve the performance of cryptographic protocols. How-
ever, the computational requirement of many cryptographic systems with excel-
lent security features still remain too heavy to low-power devices. One example is
the pairing on elliptic curves. Due to its nice properties, pairing has been widely
used in the recent research of cryptography, in particular in the construction of
identity-based encryption and short signatures. However, pairings are compu-
tationally expensive. Reducing computational cost in pairing cryptography is a
challenging task.

A promising solution is Server-aided Computation, where the client fulfils
cryptographic operations with the help of a powerful server. If the server is
fully-trusted, it could be done easily by allowing a secure channel between the
client and the server, where the server can do anything for the client. However,
in the real word, the client could be facing an untrusted server that could try to
extract the secret of the client (in case of server-aided signing) or respond with
a false result (in case of server-aided verification).

Many schemes about server-aided computation [1,4,5,9,10,12,14,15,16,17,20]
have been found in the literature. Amongst those, the server-aided verification
signature SAV-Σ attracts our attention. SAV-Σ generally consists of a digital
signature scheme and a server-aided verification protocol. One can perform the
signature verification with less computational cost by executing the server-aided
verification protocol with the server. The notion of server-aided verification was
introduced by Quisquater and De Soete [18] in order to speed up RSA verifica-
tion with a small exponent. In Eurocrypt 1995, Lim and Lee proposed efficient
protocols for speeding up the verification of identity proofs and signatures in
discrete-logarithm-based identification schemes, based on the “randomization”
of the verification equation [13]. Girault and Quisquater [8] proposed another
different approach, which does not require pre-computation or randomization.
Their server-aided verification protocol is computationally secure based on the
hardness of a sub-problem of the initial underlying problem of the signature
scheme. Hohenberger and Lysyanskaya considered the sever-aided verification
under the situation that the server is made of two untrusted software packages,
which are assumed not to communicate with each other [13]. Under this as-
sumption, it allows a very light public computation task (typically one modular
multiplication in the Schnorr scheme). Girault and Lefranc [7] proposed a more
generalized model of server-aided verification without the assumption in [13].
A generic server-aided verification protocol for digital signatures from bilinear
maps was also proposed [7]. Their protocol can be applied to signature schemes
with the similar construction as the BB signature [2] and the ZSS signature [21].

Motivations & Contributions
The motivation of this paper is to define the security of server-aided verification
signatures and construct new schemes that satisfy our security model. Firstly,
we introduce and define the existential unforgeability of server-aided verification
signatures (or, EUF-SAV-Σ for short). We prove that EUF-SAV-Σ implies the

Server-Aided Verification Signatures: Definitions and New Constructions 143

existential unforgeability of signature scheme and the soundness of server-aided
verification protocol. Our definition of EUF-SAV-Σ follows the same assumption
in [7]; that is, the server does not have any valid signature of that message when
it tries to prove that an invalid signature of the message is valid. Under this
assumption, an existential unforgeable server-aided verification signature scheme
ensures that even the server is not able to create a signature of a new message
which can be proved valid by using the server-aided verification protocol.

Secondly, we consider the security of the ZSS signature [21] with the server-
aided protocol proposed in [7]. Our analysis shows that the server-aided verifi-
cation ZSS in [7] can be secure in our model, at the cost of more computational
cost than that required in [7]. This is because the server in our model is allowed
to execute the server-aided verification protocol with the verifier before proving
the verifier that an invalid signature is valid. Thus, the malicious server in our
model have more advantages than that considered in [7].

Thirdly, we introduce the server-aided verification to the BLS signature [3]
and provide the first construction of server-aided verification BLS. We prove
that our protocol is existentially unforgeable in the random oracle model, under
the Bilinear Diffie-Hellman assumption.

We finally define a new type of attack for server-aided verification signatures,
namely, collusion and adaptive chosen message attacks. This is the first time
such attacks are considered and defined in server-aided verification signatures.
Previous definitions (including EUF-SAV-Σ) are all based on the assumption that
the malicious server does not have any valid signature of the message when it
tries to prove an invalid signature of that message is valid. Our second model
removes this assumption and allows the server to collude with the signer. A
concrete construction of server-aided verification BLS secure against this attack
is also proposed in this paper.

Paper Organization
The rest of this paper is organized as follows. In Section 2, we define the notion
of server-aided verification signature scheme (SAV-Σ) whose existential unforge-
ability is defined in Section 3. We then analyze the existential unforgeability of
a previously proposed SAV-Σ in Section 3. A new construction of existentially
unforgeable SAV-Σ and its security analysis are given in Section 4. After that,
we define the collusion and adaptive chosen message attacks in Section 5. A
concrete construction of SAV-Σ secure against the new attack is also given in
Section 5. Finally, we conclude this paper in Section 6.

2 Server-Aided Verification Signatures

In this section, we will review the definition of signature schemes and define
server-aided verification signatures.

144 W. Wu et al.

2.1 Syntax of a Signature Scheme Σ

A signature scheme Σ consists of the following algorithms:

Parameter-Generation: ParamGen(1k) → param.
This algorithm takes as input a security parameter k and returns a string
param which denotes the common scheme parameters, including the descrip-
tion of the message space M and the signature space Ω, etc. param is shared
among all the users in the system.

Key-Generation: KeyGen(param) → (sk, pk).
This algorithm takes as input the system parameter param and returns a
secret/public key-pair (sk, pk) for a user in the system.

Signature-Generation: Sign(param, m, sk, pk) = σ.
This algorithm takes as input the system parameter param, the message m
and the key pair (sk, pk), and returns a signature σ.

Signature-Verification: Verify(param, m, σ, pk) → {Valid, Invalid}.
This algorithm takes as input the system parameter param, the
message/signatrue pair (m, σ) and the public key pk, and returns Valid or
Invalid. σ is said to be a valid signature of m under pk if Verify outputs
Valid. Otherwise, σ is said to be invalid.

Completeness. Any signature properly generated by Sign can always pass
through the verification in Verify. That is, Verify(param, m,Sign(param, m,
sk, pk), pk) = Valid.

Existential unforgeability of Σ. The standard notion of security for a signa-
ture scheme is called existential unforgeability under adaptive chosen message
attacks [11], which is defined using the following game between a challenger C
and an adversary A.

Setup. The challenger C runs the algorithm ParamGen and KeyGen to
obtain system parameter param and one key pair (sk, pk). The adversary A
is given param and pk.

Queries. Proceeding adaptively, the adversary A can request signatures of at
most qs messages. For each sign query mi ∈ {m1, · · · , mqs}, the challenger
C returns σi = Sign(param, mi, sk, pk) as response.

Output. Eventually, the adversary A outputs a pair (m∗, σ∗) and wins the
game if:
1. m∗ /∈ {m1, · · · , mqs}; and
2. Verify(param, m∗, σ∗, pk) = Valid.

We define Σ-AdvA to be the probability that the adversary A wins the above
game, taken over the coin tosses made by A and the challenger.

Definition 1. A forger A is said to (t, qs, ε)-break a signature scheme if A runs
in time at most t, A makes at most qs signature queries, and Σ-AdvA is at
least ε. A signature scheme is (t, qs, ε)-existentially unforgeable against adaptive
chosen message attacks if there exists no forger that (t, qs, ε)-breaks it.

Server-Aided Verification Signatures: Definitions and New Constructions 145

2.2 Syntax of a Server-Aided Verification Signature Scheme SAV-Σ

A server-aided verification signature scheme SAV-Σ consists of six algorithms:
ParamGen, KeyGen, Sign, Verify, SA-Verifier-Setup, and SA-Verify.
The first four algorithms are the same as those in an ordinary signature scheme
Σ defined in Section 2.1, and the last two are defined as follows:

Server-Aided-Verifier-Setup: SA-Verifier-Setup(param) → VString.
This algorithm takes as input the system parameter param and returns the
bit string VString, which contains the information that can be pre-computed
by the verifier. Note that VString might be the same as param if no pre-
computation is required.

Server-Aided Verification: SA-Verify(Server(param), Verifier(m,σ,pk,VString))
→ {Valid, Invalid}.
SA-Verify is an interactive protocol between Server and Verifier, who
only has a limited computational ability and is not able to perform all com-
putations in Verify alone. Given the message/signatrue pair (m, σ), as well
as the public key pk and the inner information VString, Verifier checks
the validity of σ with the help of Server by running SA-Verify. SA-Verify
returns Valid if Server can convince Verifier that σ is valid. Otherwise,
σ is said to be invalid.

Completeness. There are two types of completeness in SAV-Σ:

1. Completeness of Σ. Any signature properly generated by Sign can always
pass through the verification in Verify. That is,

Verify(param, m,Sign(param, m, sk, pk), pk) = Valid.

2. Completeness of SA-Verify. An honest server can correctly convince the
verifier about the validness (or, invalidness) of a signature. That is,

SA-Verify(Server(param), Verifier(m,σ,pk,VString))
= Verify(param, m, σ, pk).

2.3 Computational-Saving in SAV-Σ

Computational-Saving, probably, is the most obvious property that can dis-
tinguish a server-aided verification signature scheme SAV-Σ from an ordinary
signature scheme Σ. This property enables the verifier in SAV-Σ to check the
validness of signatures in a more computational efficient way than in Σ. This
property is formally defined below.

Definition 2 (Computational-Saving). Let Φ-Verify and Φ-SA-Verify de-
note the verifier’s computational cost in Verify and SA-Verify, respectively. A
server-aided verification signature scheme SAV-Σ is said to be Computational-
Saving if Φ-SA-Verify is strictly less than Φ-Verify, i.e., Φ-SA-Verify <
Φ-Verify.

146 W. Wu et al.

3 Existentially Unforgeable SAV-Σ

It is clear that the security of SAV-Σ must include two security notions: existen-
tial unforgeability of Σ (EUF-Σ) and the soundness of SA-Verify (Soundness-
SA-Verify). The former is the same as that in Definition 1, while the latter is
a new notion and only appears in the scenario of SAV-Σ. As usual, the notion
soundness requires that the server should not be able to use SA-Verify to con-
vince the verifier that an invalid signature is valid. The formal definition of the
soundness depends on the assumption about the server. Below we will give the
first security model of SAV-Σ under the same assumption in [7]. We will define
another model under different assumptions in Section 5.

3.1 Definition of Existential Unforgeability of SAV-Σ

Our first model is following the assumption in [7], namely, the server does not
know the valid signature of the message when it tries to use SA-Verify to con-
vince the verifier that an invalid signature of that message is valid. Under this
assumption, it is not necessary to consider EUF-Σ and Soundness-SA-Verify
separately. Instead, we will give a unified notion, called the existential unforge-
ability of SAV-Σ (or, EUF-SAV-Σ for short), which implies EUF-Σ and Soundness-
SA-Verify.

Briefly speaking, EUF-SAV-Σ requires that the adversary should not be (com-
putationally) capable of producing a signature of a new message which can be
proved as Valid by SA-Verify, even the adversary acts as Server. A formal
game-based definition is as the following.

Setup. The challenger C runs the algorithm ParamGen, KeyGen and SA-
Verifier-Setup to obtain system parameter param, one key pair (sk, pk)
and VString. The adversary A is given param and pk.

Queries. The adversary A can make the following queries:
Signature Queries. Proceeding adaptively, the adversary A can request

signatures of at most qs messages. For each sign query mi ∈ {m1, · · · ,
mqs}, the challenger C returns σi = Sign(param, mi, sk, pk) as response.

Server-Aided Verification Queries. Proceeding adaptively, the adver-
sary A can make at most qv server-aided verification queries. For each
query (m, σ), the challenger C responds by executing SA-Verify with
the adversary A, where the adversary A acts as Server and the chal-
lenger C acts as Verifier. At the end of each execution, the challenger
returns the output of SA-Verify to the adversary A.

Output. Eventually, the adversary A outputs a pair (m∗, σ∗) and wins the
game if:
1. m∗ /∈ {m1, · · · , mqs}; and
2. SA-Verify(A(param,InnerInfo), C(m∗,σ∗,pk,VString)) = Valid, where

InnerInfo refers to the inner information of A (e.g., the random ele-
ment) in the generation of σ∗.

Server-Aided Verification Signatures: Definitions and New Constructions 147

We define SAV-Σ-AdvA to be the probability that the adversary A wins in the
above game, taken over the coin tosses made by A and the challenger.

Definition 3. A forger A is said to (t, qs, qv, ε)-break a SAV-Σ, if A runs in
time at most t, makes at most qs signature queries, qv server-aided verification
queries, and SAV-Σ-AdvA is at least ε. A SAV-Σ is (t, qs, qv, ε)-existentially un-
forgeable under adaptive chosen message attacks if there exists no forger that
(t, qs, qv, ε)-breaks it.

When discussing security in the random oracle model, we add a fourth parameter
qh to denote an upper bound on the number of queries that the adversary makes
to the random oracle.

Remarks on EUF-SAV-Σ. We note that in Setup, VString is not given to the
adversary. This is due to the concern that VString might contain some private
information of the verifier, which must be kept as secret in sever-aided verifica-
tion signatures. We will show in Section 3.3 that the adversary defined in the
above model is stronger than that in [7].

3.2 Further Observations on EUF-SAV-Σ

We will show the relationship among EUF-SAV-Σ, EUF-Σ and Soundness-SA-
Verify.

It is self-evident that EUF-SAV-Σ guarantees Soundness-SA-Verify. Other-
wise, if there is an adversary can prove an invalid signature is valid by SA-Verify
with success probability ε, then it can also break the existential unforgeability of
SAV-Σ with the same probability. We now prove that EUF-SAV-Σ also implies
EUF-Σ.

Theorem 1. If SAV-Σ is (t, qs, qv, ε)-existentially unforgeable, then Σ is
(t, qs, ε)-existentially unforgeable.

Proof. Let the ordinary signature scheme Σ =(ParamGen, KeyGen, Sign,
Verify), and its sever-aided verification counterpart SAV-Σ=(Σ, SA-Verifier-
Setup, SA-Verify). We prove the correctness of this theorem by converting a
(t, qs, ε) forger ΣA to a (t, qs, 0, ε) forger SAV-ΣA.

As defined in the game in Section 3.1, SAV-ΣA will obtain (param, pk) from
its challenger of SAV-Σ. Then, SAV-ΣA acts as the challenger of ΣA as following.

Setup. (param, pk) is given to ΣA.
Queries. For each signature query mi from ΣA, SAV-ΣA forwards mi

to its challenger as a signature query of SAV-Σ. As defined, σi =
Sign(param, m, sk, pk) will be returned as the answer. SAV-ΣA then for-
wards σi to ΣA. It is clear that each signature query from ΣA can be correctly
answered.

Output. After making queries, ΣA will output a pair (m∗, σ∗). SAV-ΣA sets
(m∗, σ∗) as its own output.

148 W. Wu et al.

If ΣA (t, qs, ε)-breaks the signature scheme Σ, then m∗ is not one of the signature
queries and Pr[Verify(param, m∗, σ∗, pk) = Valid] ≥ ε. Due to the complete-
ness of SAV-Σ, if Verify(param, m∗, σ∗, pk) = Valid, then SA-Verify will
return Valid as well. Therefore, SAV-ΣA wins the game with the same probabil-
ity ε, without making any server-aided verification queries. This completes the
proof.

3.3 Analysis of the SAV-Σ in Asiacrypt’05

In this section, we consider the existential unforgeability of the generic SAV-
Σ proposed by Girault and Lefranc [7]. Their server-aided verification protocol
applies to signature schemes whose verification algorithms are similar to those in
ZSS [21] and BB [2] signatures. We first review some fundamental backgrounds
which are related in the protocol.

Bilinear Mapping: Let G1 and GT be two groups of prime order p and let g
be a generator of G1. The map e : G1 × G1 → GT is said to be an admissible
bilinear mapping if the following three conditions hold true:

– e is bilinear, i.e., e(ga, gb) = e(g, g)ab for all a, b ∈ ZZp.
– e is non-degenerate, i.e., e(g, g) �= 1GT .
– e is efficiently computable.

We say that (G1, GT) are bilinear groups if there exists the bilinear mapping
e : G1 ×G1 → GT as above, and e, and the group action in G1 and GT can be
computed efficiently. Such groups can be built from Weil pairing or Tate pairing
on elliptic curves.

The Description of SAV-ZSS [7]

1. ParamGen: Let (G1, GT) be bilinear groups where |G1| = |GT | = p, for
some prime number p ≥ 2k, k be the system security number and g be
the generator of G1. e denotes the bilinear map G1 × G1 → GT . There is
one cryptographic hash function h : {0, 1}∗ → ZZp. The system parameter
param = (G1, GT , k, g, p, e, h).

2. KeyGen: The signer picks a random number x ∈ ZZ∗
p and keeps it as the

secret key. The public key is set as pk = gx.
3. Sign: For a message m to be signed, the signer uses its secret key to generate

the signature σ = g
1

h(m)+x .
4. Verify: For a message/signature pair (m, σ), everyone can check whether

e(σ, gh(m) · pk) ?= e(g, g). If the equation holds, output Valid. Otherwise,
output Invalid.

5. SA-Verifier-Setup: Given the system parameter param = (G1, GT , k, g, p,
e, h), the verifier picks a random integer t in ZZp and computes K1 = e(g, g)t.
The VString is (t, K1).

6. SA-Verify: The verifier and the server interact with each other using the
protocol described in Figure 1.

Server-Aided Verification Signatures: Definitions and New Constructions 149

Verifier (VString: (t, K1)) Server (param)

Input:

R = (gh(m) · pk)t σ,R−→ K2 = e(σ, R)
K2←−

Output:
Valid, if K1 = K2

Invalid, otherwise.

Fig. 1. SA-Verify in SAV-ZSS [7]

Security of SAV-ZSS [7]. We now show that SAV-ZSS [7] is insecure in the model
defined in Section 3.1, if the same (t, K1) is used in each execution of SA-Verify
described in Figure 1.

We first briefly review the security conclusion of SAV-ZSS proved in [7]:

1. A malicious server is not able to prove a verifier that an invalid signature of
a message m is valid by using SA-Verify in Figure 1, if

2. the server does not know the ZSS signature of m and k-BCAA problem is
hard (Please refer to [7] for the definition of k-BCAA).

However, the malicious server considered in [7] is not allowed to execute SA-
Verify with the verifier, before it tries to prove the verifier that an invalid signa-
ture is valid. We believe this restriction is not reasonable as the verifier in the real
world would execute SA-Verify with the server for several times. In the model
defined in Section 3.1, we allow the adversary (acting as the server) to choose
any message-signature pair, and execute SA-Verify with the challenger (acting
as the verifier). This is analogous to the definition of existentially unforgeablity,
where the forger is allowed to obtain valid signatures of messages chosen by it-
self. Under this model, SAV-ZSS [7] will be insecure1 if the same (t, K1) is used
in SA-Verify in Figure 1. The following shows how the adversary in our model
can break the existential unforgeability of SAV-ZSS [7]:

1. The adversary A first issues a signature query on a message m. Let the
response from the challenger be σ.

2. A makes a sever-aided verification request (m, σ). As shown in SA-Verify
in Figure 1, the challenger will send the adversary R = (gh(m) · pk)t.

3. A computes K2 = e(σ, R). As σ is a valid ZSS signature of m, K1 = K2 =
e(g, g)t.

4. With the knowledge of K1, A is able to prove that any invalid signature is
valid if the same (t, K1) is used in SA-Verify. To do that, A just sends K1

to the challenger in every execution of SA-Verify. Thus, A can always win
the game defined in Section 3.1.

1 SAV-ZSS in [7] is still secure against the adversary defined in [7]. However, the
adversary in [7] is weaker than the one defined in this paper.

150 W. Wu et al.

It is clear that the above attack will not work if the verifier pre-computes qv + 1
pairs (t, K1) in SAV-ZSS [7] and the adversary is allowed to make at most qv

server-aided verification queries. This will require more storage space of the
verifier. Alternatively, the verifier can choose different t, and compute (gH(m) ·
pk)t and e(g, g)t in each execution of SA-Verify. This however will lead to one
more exponentiation in GT than the computational cost of the verifier claimed
in [7].

4 Existentially Unforgeable SAV-BLS

In this section we will propose a new server-aided verification signature scheme:
SAV-BLS.

4.1 Complexity Assumptions

The bilinear mapping we used in our protocol is the same as that defined in
Section 3.3.

Bilinear Diffie-Hellman Problem (BDH): Given (g, ga, gb, gc) for some
a, b, c ∈ ZZ∗

p, compute e(g, g)abc ∈ GT . An algorithm A has advantage ε in
solving BDH on (G1, GT) if

Pr[A(g, ga, gb, gc) = e(g, g)abc] ≥ ε

where the probability is over the random choice of a, b, c ∈ ZZ∗
p, the random

choice of generator g ∈ G1, and the random bits of A.

Bilinear Diffie-Hellman Assumption: The (t, ε)-BDH assumption holds on
(G1, GT) if no t-time adversary has advantage at least ε in solving BDH on
(G1, GT).

4.2 Description of Existentially Unforgeable SAV-BLS

Our scheme is based on the BLS signature [3]. The description of our protocol
is as following.

1. ParamGen: Let (G1, GT) be bilinear groups where |G1| = |GT | = p, for
some prime number p ≥ 2k, k be the system security number and g be
the generator of G1. e denotes the bilinear map G1 × G1 → GT . There is
one cryptographic hash function H : {0, 1}∗ → G1. The system parameter
param = (G1, GT , k, g, p, e, H).

2. KeyGen: The signer picks a random number x ∈ ZZ∗
p and keeps it as the

secret key. The public key is set as pk = gx.
3. Sign: For a message m to be signed, the signer uses its secret key to generate

the signature σ = H(m)x.
4. Verify: For a message/signature pair (m, σ), everyone can check whether

e(σ, g) ?= e(H(m), pk). If the equation holds, output Valid. Otherwise, out-
put Invalid.

Server-Aided Verification Signatures: Definitions and New Constructions 151

Verifier (VString: (r, R)) Server (param)

Input:

(m,σ), pk, param
σ,R−→
K1←− K1 = e(σ, R)

Compute:
K2 = e(H(m), pk)r

Output:
Valid, if K1 = K2;
Invalid, otherwise.

Fig. 2. SA-Verify in SAV-BLS with EUF

5. SA-Verifier-Setup: Given the system parameter (G1, GT , k, g, p, e, H), the
verifier V randomly chooses r ∈ ZZp and sets R = gr. The VString is (r, R).

6. SA-Verify: The verifier V and the server S interact with each other using
the protocol described in Figure 2.
Note that R is precomputed and the verifier sends the same R to the server
in server-aided verification of different message-signature pairs.

Computational-Saving. The verifier in SAV-BLS described above needs to
compute one pairing, one exponentiation on GT , and one map-to-point hash. It
is obvious that Φ- SA-Verify< Φ-Verify.

Security Proof of Existentially Unforgeable SAV-BLS

Theorem 2. The SAV-BLS signature scheme is (t, qs, qv, qh, ε)-existentially un-
forgeable against adaptive chosen message attacks, if (t+c(G1,GT)(qh+2qs+2qv+
1), ε

eqv(qs+1))-BDH assumption holds on (G1, GT). Here, c(G1,GT) is a constant
that depends on (G1, GT) and e is the base of natural logarithm.

Proof. We omit the proof due to the page limitation.

Remark: One can use our method to construct a SAV-Waters’ signature [19].

5 SAV-Σ Secure against Collusion and Adaptive Chosen
Message Attacks

One assumption in previous definitions (including Definition 3) is that the server
does not know any valid signature of the message m, when it tries to use SA-
Verify to convince the verifier that an invalid signature of m is valid. In this
section, we address our attention on the security of SAV-Σ against the collu-
sion between the server and the signer, and propose a server-aided verification
protocol secure against this attack.

152 W. Wu et al.

5.1 Definition of the Security of SAV-Σ against Collusion and
Adaptive Chosen Message Attacks

If we allow the server and the signer to collude, the server will have valid sig-
natures of any messages. Thus, it is impossible to give a unified security notion
to capture both EUF-Σ and Soundness-SA-Verify simultaneously. With this in
mind, we now define the soundness of the server-aided verification protocol SA-
Verify against collusion and adaptive chosen message attacks. In the game, the
adversary is given the secret key of the signer.

Setup. The challenger C runs the algorithm ParamGen, KeyGen and SA-
Verifier-Setup to obtain system parameter param, one key pair (sk, pk)
and VString. The adversary A is given param and (sk, pk).

Queries. The adversary A only needs to make Server-Aided Verification
Queries. Proceeding adaptively, the adversary A can make at most qv such
queries. The challenger C responds each query in the same way as described
in Definition 3.

Output. The adversary A will output a message m∗. We denote Ωm∗ as
the set of valid signatures of m∗. The challenger C chooses a random el-
ement σ∗ in Ω \ Ωm∗ as the response to the adversary A. That is, σ∗

is a random invalid signature of m∗. We say A wins the game if SA-
Verify(A, C(m∗,σ∗,pk,VString)) = Valid.

We define Soundness-SA-Verify-AdvA to be the probability that the adversary
A wins in the above game, taken over the coin tosses made by A and the chal-
lenger.

Definition 4. An adversary A is said to (t, qv, ε)-break the soundness of SA-
Verify in a SAV-Σ if A runs in time at most t, makes at most qv server-
aided verification queries, and Soundness-SA-Verify-AdvA is at least ε. The
SA-Verify in a SAV-Σ is (t, qv, ε)-sound against collusion and adaptive chosen
message attacks if there exists no adversary that (t, qv, ε)-breaks it.

Definition 5. SAV-Σ is (t, qs, qv, ε)-secure against collusion and adaptive cho-
sen message attacks if Σ is (t, qs, ε)-existentially unforgeable against adaptive
chosen message attacks and its server-aided verification protocol SA-Verify is
(t, qv, ε)-sound against collusion and adaptive chosen message attacks.

5.2 SAV-BLS Secure against Collusion and Adaptive Chosen
Message Attacks

We now give a server-aided verification protocol for the BLS signature [3], which
is secure against the collusion and adaptive chosen message attacks.

1. ParamGen, KeyGen, Sign, Verify: these algorithms are the same as de-
fined in Section 4.2.

2. SA-Verifier-Setup: Given the system parameter (G1, GT , k, g, p, e, H), the
verifier V computes K1 = e(g, g). The VString is K1.

3. SA-Verify: The verifier V and the server S interact with each other using
the protocol described in Figure 3.

Server-Aided Verification Signatures: Definitions and New Constructions 153

Verifier (VString: K1) Server (param)

Input:
(m, σ), pk, param

Compute:

r ∈R ZZp, σ′ = σ · gr m,σ′,pk−→
K2 = e(σ′, g)

K2,K3←− K3 = e(H(m), pk)
Output:
Valid, if K2 = K3 ·Kr

1

Invalid, otherwise.

Fig. 3. SA-Verify in SAV-BLS with Soundness

Computational-Saving. The verifier in SAV-BLS described above only needs
to compute one multiplication on G1, one (fixed-base) exponentiation on G1, one
multiplication on GT and one (fixed-based) exponentiation on GT . In particular,
there is no pairing or map-to-point operation. Thus, Φ- SA-Verify< Φ-Verify.

Security Proof of SAV-BLS Against Collusion and Chosen Message
Attacks
We only need to show that the server-aided verification protocol in Figure 3 is
sound against collusion and adaptive chosen message attacks.

Theorem 3. The server-aided verification protocol described in Figure 3 is
(t, qv, 1

p−1)-sound against collusion and adaptive chosen message attacks.

Proof. We omit the proof due to the page limitation.

Remark: One can use our method to construct a SAV-Waters’ signature [19].
We can easily improve the model described above by allowing the adversary to
choose the signature σ∗ in Ω \ Ωm∗ and the adversary wins the game if it can
prove the invalid signature to be valid. Unfortunately, until now we cannot find
a corresponding SAV signature scheme which is secure against such adversary.

6 Conclusion

This paper focused on server-aided verification signatures. We formally defined
the existential unforgeability of server-aided verification signatures which is
proved to include the existing security requirements in the server-aided verifica-
tion signatures. Then, we analyzed the Girault-Lefranc scheme from Asiacrypt
2005 and proposed the first server-aided verification BLS, which was existen-
tially unforgeable in the random oracle model under the Bilinear Diffie-Hellman
assumption. Finally, for the first time, we introduced and defined the security

154 W. Wu et al.

of server-aided verification signatures against the collusion and adaptive chosen
message attack. A concrete construction of server-aided verification BLS secure
against such attack was also presented.

References

1. Anderson, R.J.: An Attack on Server-Assisted Authentication Protocols. Electronic
Letters 28(15), 1473 (1992)

2. Boneh, D., Boyen, X.: Short Signatures without Random Oracles. In: Cachin,
C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 382–400.
Springer, Heidelberg (2004)

3. Boneh, D., Lynn, G., Shacham, H.: Short Signature from The Weil Pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

4. Burns, J., Mitchell, C.J.: Parameter Selection for Server-Aided RSA Computation
Schemes. IEEE Transaction on Computers 43, 147–163 (1994)

5. Beguin, P., Quisquater, J.-J.: Fast Server-Aided RSA Signatures Secure Against
Active Attacks. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp.
57–69. Springer, Heidelberg (1995)

6. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure
Against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

7. Girault, M., Lefranc, D.: Server-Aided Verification: Theory and Practice. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 605–623. Springer, Heidelberg
(2005)

8. Girault, M., Quisquater, J.J.: GQ + GPS = new ideas + new protocols. In: Euro-
crypt 2002 - Rump Session (2002)

9. Girault, M., Paillès, J.C.: On-line/Off-line RSA-like. In: International Workshop
on Coding and Cryptography (2003)

10. Gennaro, R., Rabin, T., Krawczyk, H.: RSA-Based Undeniable Signatrues. Journal
of Cryptology 13(4), 397–416 (2000)

11. Goldwasser, S., Micali, S., Rivest, R.: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM J. Comput. 17(2), 281–308 (1988)

12. Kawamura, S., Shimbo, A.: Fast Server-Aided Secret Computation Protocols for
Modular Exponentiation. IEEE Journal on selected areas communications 11
(1993)

13. Lim, C.H., Lee, P.J.: Security and Performance of Server-Aided RSA Computation
Protocols. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 70–83.
Springer, Heidelberg (1995)

14. Matsumoto, T., Imai, H., Laih, C.-S., Yen, S.-M.: On Verifiable Implicit Asking
Protocols for RSA Computation. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT
1992. LNCS, vol. 718, pp. 296–307. Springer, Heidelberg (1993)

15. Matsumoto, T., Kato, K., Imai, H.: Speeding Up Secret Computation with Insecure
Auxiliary Devices. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp.
497–506. Springer, Heidelberg (1990)

16. Nguyen, P., Stern, J.: The Béguin-Quisquater Server-Aided RSA Protocol from
Crypto95 is not Secure. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS,
vol. 1514, pp. 372–379. Springer, Heidelberg (1998)

Server-Aided Verification Signatures: Definitions and New Constructions 155

17. Pfitamann, B., Waidner, M.: Attacks on Protocols for Sever-Aided RSA Compu-
tation. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 153–162.
Springer, Heidelberg (1993)

18. Quisquater, J.-J., De Soete, M.: Speeding Up Smart Card RSA Computation with
Insecure Coprosessors. In: Proceedings of Smart Cards 2000 , pp. 191–197 (1989)

19. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

20. Yen, S.-M., Laih, C.-S.: More about the Active Attack on the Server-Aided Secret
Computation Protocol. Electronic Letters, 2250 (1992)

21. Zhang, F., Safavi-Naini, R., Susilo, W.: An Efficient Signature Scheme from Bilin-
ear Pairing and its Applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004.
LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)

On Proofs of Security for DAA Schemes�

Liqun Chen1, Paul Morrissey2, and Nigel P. Smart2

1 Hewlett-Packard Laboratories,
Filton Road,
Stoke Gifford,

Bristol, BS34 8QZ,
United Kingdom

liqun.chen@hp.com
2 Computer Science Department,

Woodland Road,
University of Bristol,
Bristol, BS8 1UB,
United Kingdom

{paulm,nigel}@cs.bris.ac.uk

Abstract. Direct anonymous attestation (DAA) is a mechanism for a
remote user to provide a verifier with some assurance it is using software
and/or hardware from trusted sets of software and/or hardware respec-
tively. In addition, the user is able to control if and when a verifier is
able to link two signatures: to determine whether or not they were pro-
duced by the same platform. The verifier is never able to tell which which
particular platform produced a given signature or pair of signatures.

We first address a problem with the proof of security for the original
DAA scheme of Brickell, Camenisch and Chen. In particular, we con-
struct an adversary that can tell if its in a simulation or not. We then
provide the necessary changes to the simulator such that the adversary
can no longer do this and prove this fact, hence repairing the proof.

Our main contribution is a security analysis of the Chen, Morrissey
and Smart (CMS) DAA scheme. This scheme uses asymmetric bilinear
pairings and was proposed without a proof of security. We use the well
established simulation based security model of Brickell, Camenisch and
Chen and also use a similar proof technique to theirs. We prove the
CMS scheme is secure in the random oracle model relative to the bilinear
Lysyanskaya, Rivest, Sahai and Wolf (LRSW) assumption, the hardness
of discrete logarithms in the groups used and collision resistance of the
hash functions used in the scheme.

1 Introduction

The huge growth in the number and type of services available on the internet,
such as online shopping, social networking and online secure backup/storage,

� The second and third author would like to thank EPSRC, eCrypt and HP Labs for
partially supporting the work in this paper.

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 156–175, 2008.
© Springer-Verlag Berlin Heidelberg 2008

On Proofs of Security for DAA Schemes 157

has led to a growth in the number and type of security threats posed to any
given service provider. As a result, service providers may require a given user to
provide some assurance that they can be trusted. One way of achieving this is
to use trusted computing.

The particular use of trusted computing we look at in this paper is direct
anonymous attestation (DAA). This provides a mechanism for a remote user to
anonymously assure some verifier that it is using software and hardware from
specified sets of trusted software and hardware respectively. In addition DAA
allows for user controlled linkability of signatures. This means the user controls
when a verifier can tell if a given pair of signatures were produced by the same
platform. Under no circumstances can a verifier tell which platform produced a
given signature.

RelatedWork. Brickell, Camenisch and Chen proposed the first DAA scheme [3]
which uses the Camenisch – Lysyanskaya (CL) signature scheme [7]. In [3] this
scheme and a security model for DAA schemes were proposed and the scheme
proved secure under the decisional Diffie–Hellman and strong RSA assumptions.
The DAA security model proposed in [3] was a simulation based one using real
and ideal system executions, and requiring that no computationally bounded
environment can distinguish if it is in the real system with a real adversary
or an ideal system with a simulator. Camenisch and Groth [6] later improved
the performance of the scheme of [3] by introducing randomisation into the CL
signature scheme. Backes, Maffei and Unruh [1] used a mechanised technique to
analyse the scheme of [3]. Other works have looked at different security aspects
of DAA schemes [4,12], efficiency improvements [4,5,10] and different uses [2,11].

The most efficient DAA scheme to date is that of Chen, Morrissey and
Smart [9]. This is based on the scheme of [4,5] but uses asymmetric bilinear
maps as opposed to symmetric ones. This move to the asymmetric setting al-
lows for a number of efficiency improvements and simplifications. In particular
the scheme of [9] requires extremely little work from the trusted platform module
(TPM). The TPM only has to perform operations in one standard sized ellip-
tic curve group and does not have to perform any expensive operations such as
pairings. The scheme of [9] was presented without a proof of security.

Our Contribution. There are two main contributions in this paper. The first
concerns a problem with the proof of security of the original DAA scheme [3].
The second is a proof of security of the CMS DAA scheme [9]. We describe the
details of each separately.

Fixing the Proof of [3]. The first DAA scheme of Brickell, Camenisch and
Chen [3] uses an RSA based method to compute signatures of knowledge. We first
take a look at the proof of security for this scheme. Proofs such as this are prone
to error; they require a high level of detail and present many opportunities for
potential problems. In particular we find this proof contains a minor flaw which
allows for the construction of an adversary that can tell it is run in a simulation
with high probability. Following this we provide a different way of constructing
the simulator that avoids this problem. Finally we provide a proof that this

158 L. Chen, P. Morrissey, and N.P. Smart

adversary cannot tell if it is in a simulation or not. In short we repair the proof
security of the original DAA scheme of [3].

A Proof of Security of the CMS DAA Scheme. The CMS DAA scheme of
[9] is an optimised DAA scheme developed from the scheme of [4,5] and obtained
by moving to the asymmetric pairings setting. The main contribution of this
paper is the first proof of security for the CMS scheme.

Our proof uses the real/ideal system model and the simulation paradigm as
in [3]. The reason we choose this model is to ensure we completely capture the
full behaviour of the system. Other security models for DAA schemes do exist
such as that of [4] but it is not yet clear how this relates to the more established
security model of [3]. Our proof is in some ways similar to that of [3] but with a
few important differences. Most notably, in the simulation of the Sign protocol
the simulator can only partially forge signatures, and hence embed the hard
problem, when a Join protocol has been run with an honest issuer. A similar
case arises in the Verify algorithm simulation. One important consequence of
the simplicity of the CMS scheme is that our proof of security is also much
simpler than that of the original scheme [3]. This makes our proof less likely to
contain any minor errors in the details. Specifically, we prove the CMS scheme is
secure, in the random oracle model, relative to the bilinear LRSW assumption,
the hardness of discrete logarithms in one of the groups chosen for the scheme
and the collision resistance of the hash functions used in the scheme.

Paper Overview. Some notational conventions and preliminaries are given in
Section 2. We give an overview of the execution and security model for DAA
schemes from [3] in Section 3. In Section 4 we look at the proof of security for
the DAA scheme of [3]. Finally, we give a security analysis of the CMS scheme
[9] in Section 5.

2 Notation and Preliminaries

In this section we describe any notational conventions we use throughout the
paper. We then briefly review the bilinear LRSW assumption and the definition
of a DAA scheme.

Notation. If S is any set then we denote the action of sampling an element
from S uniformly at random and assigning the result to the variable x as x

¢← S.
If A is any algorithm then we denote the action of obtaining x by running
A on inputs y1, . . . , yn, with access to oracles O1(·),O2(·), . . . ,Om(·), as x ←
AO1(·),O2(·),...,Om(·)(y1, . . . , yn). We write {0, 1}t for the set of binary strings of
length t and {0, 1}∗ for the set of binary strings of arbitrary length and use the
abbreviations d.p.t. for deterministic polynomial time and p.p.t. for probabilistic
polynomial time.

Throughout we let G1 = 〈P1〉, G2 = 〈P2〉 and GT be groups of large prime
exponent q ≈ 2t for security parameter t. We further assume that the discrete
logarithm in these groups is believed to be hard. The groups G1, G2 will be

On Proofs of Security for DAA Schemes 159

written additively and the group GT multiplicatively. If G is some group then
we use the notation G× to mean the non-identity elements of G. If G is some ring
or field we take G× to mean the non-zero elements of G (non-identity elements
for the addition operation) and G∗ to be the multiplicative subgroup of G.

Definition 1 (Pairing). A pairing (or bilinear map) is a map t̂ : G1×G2→GT

such that:
(1) The map t̂ is bilinear. This means that ∀ P, P ′ ∈ G1 and ∀ Q, Q′ ∈ G2 that

• t̂(P + P ′, Q) = t̂(P, Q) · t̂(P ′, Q) ∈ GT .

• t̂(P, Q + Q′) = t̂(P, Q) · t̂(P, Q′) ∈ GT .

(2) The map t̂ is non-degenerate. This means that
• ∀ P ∈ G×

1 ∃ Q ∈ G2 such that t̂(P, Q) �= 1GT ∈ GT .
• ∀ Q ∈ G×

2 ∃ P ∈ G1 such that t̂(P, Q) �= 1GT ∈ GT .
(3) The map ê is computable i.e. there exist some polynomial time algorithm to

compute t̂(P, Q) ∈ GT for all (P, Q) ∈ G1 ×G2.

Bilinear LRSW Assumption. Here we briefly review the bilinear LRSW
assumption first proposed as a variant of the LRSW assumption in [8]. For this
we define the oracleOX,Y (·) which on input f ∈ Zq outputs a triple (A, y ·A, (x+
fxy)A) where A

¢← G1, X = x · P1 and Y = y · P2. We then have the following
definition.

Definition 2 (bilinear LRSW Advantage). We define the bilinear LRSW
advantage AdvbLRSW

A (t) of an adversary A against (G1, G2, P1, P2, q, t̂) as

Pr

⎡⎣x, y
¢← Zq; X←xP1, Y←yP2; (f, A, B, C)←AOX,Y (·)(G1, G2, P1, P2, q, t̂)

∧
(
f �∈ Q, f ∈ Z×

q , A ∈ G1, B = y ·A, C = (x + fxy) · A
) ⎤⎦

where Q is the set of queries that A made to OX,Y (·) and q ≈ 2t.

We then say a tuple (G1, G2, P1, P2, q, t̂) satisfies the bilinear LRSW assumption
if for any p.p.t. adversary A its advantage AdvbLRSW

A (t) is negligible in t.

General DAA Schemes. We refer to the entities in a DAA scheme as players.
We first review the description of each type of player as given in [5]. We then
review the formal definition of a DAA scheme from [9].

The DAA Players. We only give a brief description of each type of DAA player
here. For a more detailed description the reader is referred to [5]. A general DAA
scheme has a set of players that consists of:
• A set of users U = M×H where each ui = (mi, hi) ∈ U consists of

• A TPM module mi ∈M with endorsement key eki and seed DaaSeedi where
M is the set of TPM modules in the scheme.

• A host hi ∈ H which has a counter cnti, a set of commitments {comm}i and
a set of credentials {cre}i and where H is the set of hosts in the scheme.

160 L. Chen, P. Morrissey, and N.P. Smart

• A set of issuers I. Each Ik ∈ I has a public and private key pair (ipkk, iskk)
and long term fixed public parameter Kk (for example the long term public key
of this issuer). Each Ik ∈ I also maintains a local list of rogue TPM internal
secret values RogueList(Ik).

• A set of verifiers V . Each Vj ∈ V maintains a set of basenames {bsn}j and a
local list of rogue TPM internal secret values RogueList(Vj). Each Vj ∈ V may
also optionally maintain a list of received signature and message pairs (this
may be used to to trade memory for computational efficiency when linking
signatures).

We assume that initially the sets {comm}i and {cre}i are empty for all Ui ∈ U ,
the lists RogueList(Ik) are empty for all Ik ∈ I, and the sets {bsn}j and lists
RogueList(Vj) are empty for all Vj ∈ V .

The set {bsn}j is used to achieve user controlled linkability of signatures.
A given player may be corrupted or honest. We take corruption to mean the
adversary knows the full internal state of that player and as a result, once a
player is corrupted, the adversary takes over the role of that player. We say a
user ui = (mi, hi) is fully corrupted if both hi and mi are corrupted and partially
corrupted if only hi is corrupted. We assume it is easier to break into a host than
a TPM module and as a result do not model the case of an honest host with a
corrupt TPM.

Formal Definition of a DAA Scheme. We now recall the formal definition
of a DAA scheme from [9].

Definition 3 (Daa Scheme). Formally, we define a Daa scheme to be a tuple of
protocols and algorithms Daa = (Setup, Join, Sign, Verify, Link, RogueTag) where:
• Setup(1t) is a p.p.t. system setup algorithm. For security parameter t this

outputs a set of system parameters par containing all of the issuer public keys
ipkk and the various parameter spaces. This algorithm also sets up and securely
distributes each of the issuer secret keys iskk.

• Join(ui, Ik) is a 3 party protocol between a TPM, a host and an issuer. In a
correct initial run with honest players the host should obtain an additional
valid commitment and an additional valid credential. In correct subsequent
runs an existing commitment and an existing credential should be replaced by
newer ones.

• Sign(ui, msg) is a 2 party protocol between a TPM and a host used to generate
a signature of knowledge on msg. In a correct run with honest players the
signature of knowledge will be constructed according to some basename for
some specified verifier that may or may not allow the signature to be linked
to other signatures with this same verifier.

• Verify(σ, msg) is a d.p.t. or p.p.t. verification algorithm that allows a given
verifier to verify the signature of knowledge σ of a credential on msg intended
for that verifier with a specific basename. The verification process will involve
checking the signature against RogueList(Vj). This algorithm returns either
accept or reject . If the verifier is maintaining a list of signatures received then
it will add any correctly verified signatures to this list.

On Proofs of Security for DAA Schemes 161

• Link(σ0, σ1) is a d.p.t. linking algorithm that returns either linked, unlinked
or ⊥. The algorithm should return ⊥ if either signature was produced with a
rogue key, return linked if both are valid signatures and the user who pro-
duced them wanted these to be linkable to each other, and return unlinked
otherwise.

• RogueTag(f, σ) is a d.p.t. rogue tagging algorithm that returns true if σ is
a valid signature that was produced using the TPM secret value f and false
otherwise.

For correctness we require that if
• A user ui ∈ U engages in a run of Join with Ik resulting in ui obtaining a

commitment comm on a TPM secret value f and a credential cre corresponding
to f .

• The user ui then creates two signatures σb on two messages msgb for b ∈ {0, 1}
intended for verifier Vj ∈ V with basename bsn.

• The secret TPM value f used to compute these is such that f �∈ RogueList(Vj).
Then Verify(σ0, msg0)= Verify(σ1, msg1)= accept and if bsn �=⊥ then Link(σ0, σ1)
= linked.

3 DAA Execution and Security Model

In this section we give a detailed description of the real/ideal system model [3]
for DAA schemes.

Real System Execution for a DAA Scheme. For the real system we model
a set of players consisting of nU users ui ∈ U each with a host hi and corre-
sponding TPM module mi, a set of nV verifiers Vj ∈ V and a set of nI issuers
Ik ∈ I. The honest players in the system receive inputs from and send outputs
to the environment Env. Honest players also run cryptographic protocols with
each other and perform cryptographic computations themselves according to the
description of the DAA scheme. We model an adversary A as a p.p.t. algorithm
that controls a number of corrupt players. Since the adversary controls the set
of corrupt players then it will arbitrarily interact with other players and Env.

Ideal System Execution for a DAA Scheme. In the ideal system we have
the same set of players as in the real system. In addition there exists some
trusted third party T . The main difference to the real system is players engage
in protocol runs and perform cryptographic computations by passing inputs to
T and receiving outputs from T rather than perform these themselves according
to the scheme.

The trusted third party T provides the functionality we want from a secure
DAA scheme by maintaining a number of lists and making decisions based on
these lists. These lists include a list CorruptTPM of endorsement key and counter
pairs, a list of signatures issued Signatures, a list of members Members and a rogue
list RogueList.

162 L. Chen, P. Morrissey, and N.P. Smart

We assume whenever a TPM is corrupted it tells T by sending its index i
(which we use as an identifier) to T who adds this to CorruptTPM. The entries
of Signatures have the form (σ, msg, i, cnt, Vj , bsn) and each is intended to mean
T computed a signature σ on a message msg on behalf of the user with identifier
i and using internal secret value corresponding to cnt intended for the verifier Vj

and that is linkable to all other signatures with Vj that have the same basename
bsn ∈ {0, 1}∗ ∪ ⊥ (providing bsn �=⊥). The entries of RogueList will contain
TPM identifier and counter pairs. The list Members also contains identifier and
counter pairs and is essentially a list of those TPM’s that T has issued credentials
to on behalf of issuers. Intuitively, the list CorruptTPM is a list of TPM’s for
which the adversary has complete control and hence knows all values of internal
secrets for each value of counter. On the other hand, the list RogueList will be a
list of TPM and internal secret pairs that have been compromised. The adversary
may only know a single value of internal secret for a rogue TPM. To this end,
T uses CorruptTPM to decide if a given identifier and counter pair should be
added to RogueList or not. The trusted third party then performs the following
functionality on behalf of players:

Setup. Any corrupted TPM modules inform T of this by sending their identifier
i to T who adds this to CorruptTPM.
Join. The host hi contacts T with the identifier i and counter cnt and requests
to become a member with respect to cnt and issuer Ik ∈ I. Next T sends cnt
to mi and asks if it wants to join with respect to cnt. The module mi informs
T of its decision and if it wants to join T consults the list CorruptTPM and if
i ∈ CorruptTPM adds an entry (i, cnt) to RogueList, sends to Ik the pair (i, cnt),
and informs Ik if (i, cnt) ∈ RogueList or not. The issuer Ik then makes a decision
as to whether (i, cnt) can become a member or not and informs T of this. If
Ik decides that (i, cnt) can become a member then T adds (i, cnt) to Members.
Finally T informs hi of the decision.
Sign/Verify. A given host requests to sign a message msg for a verifier Vj with
basename bsn using a given pair (i, cnt) by sending to T a tuple (msg, i, cnt, Vj).

• If (i, cnt) �∈ Members then T denies the request and replies to hi with ⊥.

• Else if (i, cnt) ∈ Members then T forwards msg and cnt to the relevant TPM
and asks if it wants to sign with respect to cnt. If so then T asks hi for a
basename with which to produce the signature.

• If (i, cnt) ∈ RogueList then T informs Vj that msg has been signed by a rogue
TPM.

• If bsn =⊥ then T first generates a random σ and next adds a new entry
(σ, msg, i, cnt, Vj ,⊥) to Signatures. Next T informs Vj that msg was signed
with respect to bsn.

• Else if bsn �=⊥ then T generates a random σ, adds (σ, msg, i, cnt, Vj , bsn) to
Signatures then informs Vj that msg was signed with respect to bsn.

Link. A given verifier Vj requests a linkage decision from T by submitting two
signatures (σ0, σ1) to T . If there exists two entries on Signatures of the form

On Proofs of Security for DAA Schemes 163

(σb, msgb, i, cnt, Vj , bsnb) for some i, cnti and b ∈ {0, 1} and bsn0 = bsn1 �=⊥
then T returns linked and otherwise returns unlinked to Vj .
RogueTag. When the rogue tagging oracleOR wishes to add an entry to RogueList
it submits a pair (i, cnt) to T . Then T informs OR as to whether i ∈ CorruptTPM
or not. If there is such an entry and (i, cnt) ∈ Members then OR adds (i, cnt) to
RogueList and otherwise does not.

Note that the signature and verification functionality provided by T is given
together. The reason why is we want that each signature is only presented for
verification once, to the intended verifier, and that no signatures are produced
and then not presented for verification. Also note that during the Join and Sign
operations the trusted third party asks a module if it wants to join or sign a
message respectively. We assume that if a module asked does not belong to the
host that is asking then the module refuses and otherwise agrees.

Securely Implementing Functionality. Intuitively, we say a system is secure
if its behaviour is computationally indistinguishable from a an ideal DAA system.
The formal definition of a secure implementation of a DAA scheme is then as
follows.

Definition 4 (Secure Implementation). A given DAA scheme Daa is a se-
cure implementation if for every computationally bounded environment Env and
every p.p.t. adversary A there exists some simulator S, that controls the same set
of players in an ideal–system as A does in a real–system, such that Env cannot
distinguish whether it is run in the real–system and interacts with A or whether
it is run in an ideal–system and interacts with S.

We assume the trusted third party T in an ideal system is in some sense “invisi-
ble” to the environment since otherwise the environment can trivially distinguish
real from ideal systems. To this end any protocols for which message are passed
through T appear as if they are passed directly between players and any com-
putations performed by T on behalf of players appear as if they are performed
by the players themselves.

4 A Note on the Proof of the Scheme of [3]

In this section we take a detailed look at the proof of security for the original
DAA scheme as given in [3]. The notation we use to describe parts of this proof
and of the scheme are taken directly from [3]. Due to space constraints we do not
repeat the notational conventions or describe the scheme but refer the reader to
[3] for a full description.

In [3] a proof of security is presented for the proposed DAA scheme. In this
proof the simulator S, acting in the ideal system, is given black box access to
the real system adversary A. The simulator attempts to forge all signatures
constructed using an honest TPM for which any interaction with A is required.
There are two situations where a signature is partially forged by S: one case of the
Sign protocol and one case of the Verify protocol. In this section we first describe

164 L. Chen, P. Morrissey, and N.P. Smart

the necessary details of how these signatures are constructed in a real protocol
run. We then construct an adversary that can distinguish if it is in a simulation or
not with overwhelming probability based on the way these signature forgeries are
constructed by the simulator. Finally we present an alternative method of forging
such partial signatures that avoids this problem and prove that the adversary
can no longer distinguish if it is in a simulation or not when this method is used.

Overview of Signature Construction in [3]. We only describe the details
of how the values T̃1t, T̃1 and T̂1 are computed during signing and verification
with a TPM mi and a host hi. This is because these parameters are the only
important ones in our arguments. Informally, during a correct run of the Sign
protocol of [3] mi first computes a value T̃1t and passes this to hi. Next hi

computes the value of T̃1 from T̃1t and uses this as part of the signature. Upon
verification the verifier will compute a value T̂1 and, if the hash function H used
is collision resistant, with overwhelming probability the signature will verify if
and only if T̃1 = T̂1. We now describe the details. The values T̃1t, T̃1 and T̂1 are
computed as

T̃1t = R
rf0
0 R

rf1
1 Srv (mod n)

T̃1 = T̃1tT
re
1 h−rew (mod n)

T̂1 = Z−cT se+c2le−1

1 R
sf0
0 R

sf1
1 Ssvh−sew (mod n).

We use the following relations

T1 = Ahw (mod n) se = re + c(e− 2le−1)
si = ri + ci for i ∈ {ew, f0, f1, sv}
T se+c2le−1

1 = T re
1 T ce

1 (mod n) Z = AeRf0
0 Rf1

1 Ssv (mod n).

Then, if the signature is computed correctly, T̃1 = T̂1 follows from

T̂1 = Z−cT se+c2le−1

1 R
sf0
0 R

sf1
1 Ssvh−sew (mod n)

= (AeRf0
0 Rf1

1 Sv)−cT re
1 T ce

1 R
sf0
0 R

sf1
1 Ssvh−sew (mod n)

= A−ecT re
1 (Ahw)ceR

sf0−cf0

0 R
sf1−cf1

1 ssv−cvh−sew (mod n)
= T re

1 hcewR
rf0
0 R

rf1
1 Srvh−sew (mod n)

= T re
1 T̃1th

−rew = T̃1 (mod n).

Constructing an Adversary that can Distinguish. We first recall the nec-
essary details of the description of S in the proof of [3] during the simulation
of a Sign protocol run. In the case we are concerned with S is simulating the
behaviour of an honest TPM to A who is performing computations on behalf
of a corrupt host. The simulator and adversary are aiming to work together to
produce a signature of knowledge as part of the signing protocol. We are par-
ticularly concerned with the computation of the value T̃1. In step 3 (c) of the
description of S it computes T̃1t = Z−cR

sf0
0 R

sf1
1 Ssv (mod n) and passes this to

A along with some other parameters.
At this point A may either compute what it thinks is a correct signature for

this particular run or not. If A computes what it thinks is a correct signature
then it will compute T̃1 = T̃1tT

re
1 h−rew (mod n). During verification an honest

On Proofs of Security for DAA Schemes 165

verifier will compute T̂1 = Z−cT se+c2le−1

1 R
sf0
0 R

sf1
1 Ssvh−sew (mod n). The sig-

nature provided only verifies correctly if T̂1 = T̃1. However, due to the way S
constructs T̃1t, if A computes what it thinks is a correct signature from T̃1t, then
T̃1 = T̂1 with only negligible probability in the size of n and hence the signature
will not verify with overwhelming probability. The following computations, all
modulo n, demonstrate why this is the case

T̂1 = Z−cT re
1 T ce

1 R
sf0
0 R

sf1
1 Ssvh−sew = T̃1tT

re
1 T ce

1 h−sew

= T̃1tT
re
1 (Ahw)ceh−sew = T̃1tT

re
1 Aceh−rew

= T̃1A
ce = T̃1 ⇔ Ace = 1

To construct an adversary that can tell it is run in a simulation we simply have
it compute T̂1 and compare this to the value T̃1. If T̂1 �= T̃1 (mod n) and Ace �= 1
(mod n) then A knows it is in a simulation. The adversary can compute Ace and
T̂1 since all values required to compute these are known to both host and TPM.
Furthermore, if T̂1 = T̃1A

ce (mod n) then the adversary knows the exact details
of how the simulator is trying to forge its part of the signature. This check does
not give the adversary any information if Ace = 1 (mod n) which will happen
with very small probability for sufficiently large n.

Repairing the Proof. To correct the proof of [3] we alter the way S computes
T̃1t such that, when A is computing a valid signature using this, T̃1 = T̂1. This
can be done by S computing T̃1t = R

sf0
0 R

sf1
1 SsvZ−cAec (mod n). The simulator

will always know A and e since the credential sent to the host will be encrypted
under eki and will be passed to the simulator for decryption. We then have the
following Lemma.

Lemma 1. If the value T̃1t is computed by S as T̃1t = R
sf0
0 R

sf1
1 SsvZ−cAec

(mod n) in the proof of security of the scheme of [3] then no polynomially
bounded adversary can tell it is run in a simulation.

Proof. Firstly, when S computes T̃1t as T̃1t = R
sf0
0 R

sf1
1 SsvZ−cAec (mod n) its

easy to see that the value T̃1 that the adversary computes from this, when it is
computing what it thinks is a correct signature, is such that T̃1 = T̂1 (mod n).
Secondly, since all of the values chosen by S that are different from those in a
real run of the protocol are chosen in the same way as in [3], the same argument
from [3] that the adversary cannot distinguish based on these applies. �

5 Security Analysis of the CMS Scheme

In this section we give a security analysis of the CMS DAA scheme [9]. The
notation we use to describe the scheme is the same as that of [9].

We briefly Recall some of the main points of the CMS scheme. The Setup
algorithm sets up all system parameters. In particular, this selects the groups
for the scheme G1, G2, GT , the pairing to be used t̂ : G1 × G2 �→ GT and the
the hash functions in the scheme H1, H2, H3 and H4. During the Join protocol
the TPM computes a Schorr signature of knowledge on the secret value f to

166 L. Chen, P. Morrissey, and N.P. Smart

produce the commitment and the issuer computes a bilinear CL signature on
this commitment to produce the credential. This credential is then checked by
the host. For the Sign protocol the host and TPM work together to produce a
signature of knowledge of the discrete logarithm f to some base in G1. This is
done using only a single mask value as opposed to two mask values in [5]. The
Verify algorithm checks correctness of a signature of knowledge and checks this
against the list of rogue TPM values. The Link algorithm verifies correctness of
a pair of signatures and checks if they were computed using the same basename
or not and the RogueTag checks if a given signature was produced with a given
value of TPM secret f . For a full description of the CMS scheme we refer to the
reader to [9].

We are now able to state the main result of this paper regarding the security
of the CMS DAA scheme.

Theorem 1. The CMS DAA scheme is secure in the random oracle model under
the bilinear LRSW assumption in (G1, G2, P1, P2, t̂), the hardness of discrete
logarithms in G1 and if the hash functions H3 and H4 are collision resistant.

Proof. We first give an overview of the proof. To prove the theorem we need to
show that for every adversary A in the real system there exists a simulator S
in the ideal system such that the environment cannot tell which system it is in
and such that the adversary cannot tell it is in a simulation. We assume a given
adversary A exists and S has access to A as a black box. The simulator then
has to simulate the behaviour of the honest players to A such that A cannot
tell it is run in a simulation. The simulator allows A to perform computations
and run protocols for the corrupted players and controls the random oracles.
The simulator also interacts with T . In this case the simulator has to perfectly
simulate the behaviour of the corrupted players to T in the ideal system such
that the environment cannot tell if it is run in a real or ideal system.

To construct the proof we first describe the operation of the simulator S and
its interaction with the environment Env and the adversary A by describing how
S handles the communications according to combinations of player corruptions.
We use the notation (ihM) to describe the communication and computations
between a corrupted initiator (lower case i), a corrupt host (lower case h) and
an honest TPM (upper case M). This corresponds to a partially corrupted user
communicating with a corrupt issuer. We then prove that the simulator will
not abort outputting “failure X” for X ∈ {1, 2, 3, 4, 5}. Each such failure event
corresponds to the adversary being able to solve some hard problem that is
embedded into the interaction between the adversary and simulator. Finally
we prove A cannot tell it is run in a simulation and the environment cannot
distinguish if it is run in a real system with A or in an ideal system with S
constructed from A.

Answering Random Oracle Queries. To handle random oracle queries S
maintains a number of, initially empty, lists HListi for i ∈ {1, 2, 3, 4}. Each
corresponds to a list of input and output pairs used in the simulation of one of
the 4 random oracles.

On Proofs of Security for DAA Schemes 167

Algorithm 1. GetRand Algorithm.
Input: A tuple (f, bsn)
Output: A value r′ ∈ Zq

if ∃ (r′, f, F, bsn) ∈ HList2 then1

return r′;2

else if ∃ (r′,⊥, F, bsn) ∈ HList2 and F = f · P1 then3

replace (r′,⊥, F, bsn) with (r′, f, F, bsn);4

return r′;5

else if ∃ (⊥,⊥, F,⊥) ∈ HList2 and F = f · P1 then6

choose r′
¢← Zq then replace (⊥,⊥, F,⊥) with (r′, f, F, bsn);7

return r′;8

else9

r′
¢← Zq; F←f · P1;10

add (r′, f, F, bsn) to HList2;11

return r′;12

Queries to the oracles H1, H3 and H4 are answered in the obvious manner.
Particular care must be taken with queries to H2 since in some cases S will
simulate protocols with an unknown value of f yet still need to be able to
answer queries in a consistent manner.

The entries of HList2 are tuples of the form (r′, f, F, bsn) where r′ ∈ Zq, f ∈
Zq, F ∈ G1 and bsn ∈ {0, 1}∗. We define algorithm 1 to aid in the answering H2

queries.
When the adversary makes a query H2(f‖bsn) the simulator makes a query

GetRand(f, bsn) and replies with the returned value of r′.

Simulation of the Setup Algorithm. During the Setup the behaviour of S
is according to the corruption state of the issuer Ik running the algorithm. The
simulator performs an ideal system setup to T and a real system setup to A.
For the ideal system setup S informs T which modules are corrupted by sending
eki to T for each one controlled by S. For the real system simulation to A the
simulator performs the following:

(1) First S simulates the generation of the system wide parameters by executing
steps 1 to 3 of the Setup algorithm and storing/passing the parameters to A.

(2) For each corrupted issuer Ik (case (i)) A will pass the values ipkk to S after
performing step 4 of Setup. For each honest mi the setup is simulated to A by
S selecting values for each DaaSeedi and setting cnti = 0. For each corrupted
user ui = (mi, hi) the simulator runs the ideal system Join protocol with
Ik using cnti = 0. This is to ensure that these users actually run the Join
protocol at least once: the simulator would not be aware of whether they did
or did not otherwise. None of the honest parties in the ideal system will note
any of this so this does not give the environment a method of distinguishing
the system.

(3) For each honest issuer Ik (case (I)) the simulator also has to simulate the
generation of public and private key pairs to A. This is done as in step 4 of

168 L. Chen, P. Morrissey, and N.P. Smart

the Setup algorithm and the relevant values stored and passed to A. For each
corrupted mi the simulator has to simulate the ideal system setup to T by
setting cnti = 0 in the ideal system.

Simulation of the Join Protocol. We are able to distinguish 4 cases of
corruption states for players for which we need to describe the behaviour of S.

Case (iHM). The issuer is corrupted but the user is not. The simulator has to
play the role of the host and module to A and has to play the role of the issuer
to T . The simulator first receives a pair (i, cnt) and information as to whether
the module is tagged as a rogue for that pair from T . The simulator then does
the following:

• Begins a simulated run of the real Join protocol by playing the role of ui =
(mi, hi) with A playing the role of the corrupt initiator. Since the user is
honest S will know DaaSeedi and will correctly compute and store a value for
comm = (F, c, s).

• Eventually S should receive a credential (if A decides to continue) from A and
inform T that it allows (i, cnt) to be added to Members. Otherwise S informs
T that (i, cnti) cannot become a member.

Case (Ihm). Here S has to play the part of the honest issuer Ik to A who controls
a fully corrupted user ui = (mi, hi) and the part of ui user to T . The simulator
will receive a value for a commitment comm from A. The simulator then does
the following:

• Engages in a real system Join protocol with A up until the point where S has
to send a credential to A. If this run of the real system Join protocol aborts
before this point then S needs to do nothing more.

• If comm has been used previously for user ui then S makes a request to T to
become a member with the identifier i for ui and the counter value cnt for the
run where comm was previously used.

• If comm has not been previously used then S makes a request to T to become
a member for i and cnt + 1.

• T will then interact with the ideal system issuer Ik that S is simulating to A
and eventually returns a decision to S as to whether i can become a member
with respect to the counter value submitted.

• If the pair submitted to T is allowed to become a member then S simulates
the generation of a credential (it can do this since Ik is honest and hence S
knows the value of iskk) and passes this to A. Otherwise S informs A it cannot
become a member.

Case (IhM). In this case the simulator forges the production of a commitment
for an unknown value of f using its power over the random oracles then correctly
simulates a credential and forges a value of E for unknown f using the issuer
secret key values. The simulator plays the role of mi and Ik to A and the role
of hi to T .

On Proofs of Security for DAA Schemes 169

• The simulator first receives a request to become a member from A then, acting
as the honest issuer, generates nI

¢← {0, 1}t, assigns commreq←(nI , Kk, X, Y)
and returns this to A.

• The adversary will then pass a value of comm′
req back to S as the response

from the issuer (note this may be different to the commreq chosen by S in the
previous step). The simulator then performs any necessary checks on this and
if it fails then S informs A it does not want to join in this case. Then, acting
as hi in the ideal system, makes a query to T to join with some counter value
and upon receiving a request to join from T , acting as mi, informs T it does
not want to join in this case.

• The simulator then has to choose a value of F for which it does not know the
corresponding value f . It does this by choosing F

¢← G1 until � (∗, f, F, ∗) ∈
HList2 then adds an entry (⊥,⊥, F,⊥) to HList2.

• The simulator then forges the production of a commitment by choosing s, c
¢←

Zq, computing U = sP1 − cF and str = 1‖X‖Y ‖nI then patching the random
oracle for H1 such that c = H1(str‖F‖U). Finally comm←(F, c, s) and comm
is passed to A.

• Next S, acting as Ik, should receive some commitment comm′ from A (again
A may have modified the one passed to it). If comm′ fails any of the checks
the issuer performs on it then S replies to inform A that it cannot become a
member. Otherwise S increments cnti and makes a request to T to become
a member with respect to cnti and i (acting as the corrupt host in the ideal
system).

• If S receives a decision that it cannot become a member with respect to i
and cnti then S, acting as Ik, informs A that it cannot become a member.
Otherwise S computes the credential by selecting r

¢← Zq, assigning A←rP1,
B←yA and C←(xA+rxyF) and cre = (A, B, C). Then computes E←Eeki

(cre)
and passes this to A.

• The simulator, acting as mi, should then receive a value E ′ from A (which
may be modified from E). It then performs any checks on this and if these fail
aborts the run and otherwise forges E using E←ryF and returns this to A.

We note that we have to forge a commitment that validates correctly since
the adversary may decide to check the validity of this before passing it to the
issuer and if we don’t correctly forge it then the adversary will be able to notice
it is not run in the real system.
Case (ihM). In this case S does not forge the production of a commitment or
credential: it is unable to since the issuer is controlled by A. Instead S simulates
a correct run of the Join protocol with A. The simulator, acting as mi, will first
receive a value of nI from A, acting as hi, as part of a commitment request. The
simulator then does the following:

• Correctly simulates the TPM side of the join protocol to produce a commit-
ment. During this a value (r′, f, F, bsn) will be added to HList2.

170 L. Chen, P. Morrissey, and N.P. Smart

• Sends a value for identifier and counter to T as a joining request. The response
from T will be sent back to S.

• The simulator then responds to A with the value of commitment computed
and continues to simulate the protocol as mi. If the adversary sends a value
of E that correctly decrypts to a valid credential to the simulator (where A is
playing the role of hi) then S responds to T to inform it that the endorsement
key and counter pair can join and if not then informs T it cannot.

• The simulator then computes the value for E and responds to the adversary
with this.

Simulation of Sign. For the simulation of the Sign protocol we only need to
consider the case (hM). This is because when both hi and mi are corrupted the
adversary will control all communication and computations without the aid of
S and in the case where neither is corrupted then hi and mi will communicate
directly with T . Also, as mentioned earlier, we do not consider a corrupt TPM
with an honest host. The behaviour of S in this case depends upon the corruption
state of the issuer that the Join protocol (that the current value of f corresponds
to) was run with.

The simulator behaves as follows:

• The simulator will receive as input a value bsn from A (acting as the host).
If no Join protocol has been successfully finished by mi with the issuer Ik

(i.e. with the counter value corresponding to Ik in the ideal system) then the
simulator rejects the request.

• Otherwise the behaviour of S depends upon whether the Join protocol was
run with an honest or corrupt issuer. If the issuer was honest (case (IhM) in
the Join protocol) then S forges the signature using the (forged) value of E
computed during this Join protocol as follows:
(a) The simulator has to assign a value of r′ to the value of bsn received.

If bsn =⊥ then S assigns r′ ¢← Zq. Else if bsn �=⊥ then S first retrieves
the value of F for any of the Join protocols run with ui and Ik (these
will all be the same). The simulator then checks HList2 and if there is
an entry (∗, f, F, ∗) then A is able to compute discrete logs in G1 so S
aborts outputting “failure 1”. Otherwise there will be at least one entry
(r∗,⊥, F, bsn∗) on HList2. If bsn = bsn∗ then S uses r′ = r∗ and otherwise
selects r′ ¢← Zq and adds (r′,⊥, F, bsn) to HList2.

(b) Next S selects c, s
¢← Zq, computes D = sB − cE (where B corresponds

to the credential for E) and sends r′ and D′ = r′ ·D to A.
(c) The simulator will then receive a value of c′ back from A and selects nT

¢←
{0, 1}t then patches the random oracle for H4 such that c = H4(c′‖nT‖msg).

(d) Next S has to simulate the part of hi to T . It does this by making a
request to T to sign msg with respect to cnti. If T informs S that mi is
ready to sign and requests a basename then S postpones the answer to T
(S will answer this call only when it has seen a signature from A during
the verification protocol) and replies to A, as mi, with (c, s, nT).

On Proofs of Security for DAA Schemes 171

Otherwise if the Join protocol was run with a corrupt issuer then the S simu-
lates the production of a valid signature as follows:

(a) In this case the run of the Join protocol would have required S to choose a
value of f and the simulator simulates the TPM part of the signing protocol
correctly right up to the point where the value of c is computed using H4.

(b) Next S has to simulate the corrupted host part of the signing protocol with
T . It does this by making a request to T , as hi, to sign msg with respect
to cnt. If T informs S that mi is ready to sign and requests a basename
then S postpones the answer to T (S will answer this call only when it has
seen a signature from A during the verification protocol) and replies to A,
as mi, with (c, s, nT).

Simulation of Verify. For this we have two main cases. The first is an honest
verifier, controlled by S, that receives a signature from a corrupted host which
we denote case (V). The second is an adversarially controlled verifier where the
simulator wants to verify a signature for an honest host which we denote case (v).

Case (v). Since Vj is corrupt ui must be honest. The simulator will receive a
notification from T that a user signed msg with respect to basename bsn. This
will be towards the end of a run of the signing protocol of the completely honest
user with T . The simulator S then has to simulate the production of a signature
in the real system to A on behalf of ui that correctly verifies. To do this the
value of credential that the signature is on must correctly verify. This can only
be forged for the case where the user obtains this credential from an honest
issuer (under the control of S) since otherwise, the adversary can simply check
if ρ′c = t̂(A′ + E′, X) or not. Hence, once again, in the case where we have an
honest issuer we are able to forge the signature and in the case of an adversarially
controlled issuer we have to correctly simulate the signature.

For the case where the signature was produced with an honest issuer the
simulator forges the signature as follows.
(1) First S, acting as hi, has to select or compute a validly produced, but forged,

credential cre = (A, B, C) and obtain the corresponding value E. If no cre-
dential has been obtained by the simulator for the correct issuer then the
simulator first simulates a Join protocol for the case of (IHM) by using its
powers over the random oracles and selecting a value of F for unknown f in
a similar way to the Join forgery of the case (IhM). Otherwise S selects a
random credential issued by the specific issuer cre = (A, B, C) and obtains
the corresponding E.

(2) Next S chooses a value of r′. If bsn =⊥ then S sets r′ ¢← Zq. If bsn �=⊥ then S
first retrieves the value of F for any of the Join protocols run with mi, hi and
Ik (these will all be the same). The simulator then checks HList2 and if there
is an entry (∗, f, F, ∗) then the adversary is able to compute discrete logs in
G1 so S aborts outputting “failure 1”. Otherwise there will be an (at least
one) entry (r∗,⊥, F, bsn∗). If bsn = bsn∗ then S uses r′ = r∗ and otherwise

172 L. Chen, P. Morrissey, and N.P. Smart

selects r′ ¢← Zq and adds an entry (r′,⊥, F, bsn). The value of r′, bsn, cre and
F should now all correctly relate to each other for an unknown value of f .

(3) The simulator then sets D = sB − cE, computes A′ = r′A, B′ = r′B, C′ =
r′C, E′ = rE, D′ = r′D, ρ′a = t̂(A′, X), ρ′b = t̂(B′, X) and ρ′c = t̂(C′, P2). The
simulator selects s, c, c′ ¢← Zq and computes τ = (ρ′b)

s · (ρ′c/ρ′a)−c.

(4) Next S fixes the relevant random oracles by choosing nV
¢← {0, 1}t then

fixing H3 such that c′ = H3(ipkk‖A′‖B′‖C′‖D′‖E′‖ρ′a‖ρ′b‖ρ′c‖τ‖nV). Then S
selects nT

¢← {0, 1}t and sets c = H4(c′‖nT‖msg).

(5) Finally S outputs the signature σ = (A′, B′, C′, E′, c, s, nV , nT).

For the case of an adversarially controlled issuer the simulator has to simulate
a correct signature production. Since this corresponds to a Join protocol of the
case (iHM) the simulator will either already have a validly produced credential
or will simply engage in a run of the Join protocol for this case to obtain one.
The simulator then engages in a correct run of the Sign protocol to produce a
signature σ for a known value of f .
Case (V). Here S will receive a new signature σ from A on a message msg with
respect to a basename bsn. We bear in mind that this means the host must be
corrupted but not necessarily the TPM and throughout will distinguish cases
based on this. The simulator first performs a verification check except for the
checking for rogue values. If this check fails then S can just ignore the signature.
Otherwise S performs the rogue check. There are two cases for the behaviour
of S depending on whether the signature was produced by a value of f on the
rogue list for this verifier or not.

• If the signature fails the rogue check then this could be either due to mi being
under the control of A as well as hi or that the adversary was able to obtain
f by some other means. However, during the rogue tagging simulation, if the
adversary is able to find f for an honest TPM then S would abort outputting
a failure and hence we need only consider the case where both mi and hi

are corrupt. When the signature fails the rogue check the simulator is able to
obtain the value of f used. The simulator has to then find which mi to associate
the signature to and ensure that in the ideal system any required signature
calls are made and that the simulated rogue list, SimRogueList, agrees with
RogueList maintained by T . The simulator does this based on the corruption
state of the issuer Ik that issued the credential for the signature.

• If Ik was honest (controlled by S in the production of the credential signed)
then there will be some entry on HList1 with a value F such that F = f ·P1

where f is the value for which σ failed the rogue check. Once this value of F
is found S can identify which mi produced σ in its simulation and obtain i
and cnt. Once it has these it makes a call to T as hi to sign msg with respect
to cnt and bsn and adds an entry (f, i, cnti) to SimRogueList.

Note the same value of f must be used for the credential issued and for
σ since σ correctly verified. If one value of f was used for the credential and

On Proofs of Security for DAA Schemes 173

another for the signature on this credential then we would have τ ′ �= τ† in
the verification algorithm.

• If Ik was corrupt there would have been no communication with S, up to
this point, from the user for the particular value of credential on which the
signature is made. In this case S is free to choose any corrupt TPM value
i and counter value cnt to associate the signature to for a user that is not
already a member with respect to cnt. The simulator then makes a call to T
to make this user a member and then tags the user as rogue. The user then
makes a call to T as the host to sign msg with respect to cnt and bsn.

• If σ passes the rogue check then S checks if it has seen the tuple (c, s, nT)
used in the signature. If so this will be in a signature forgery/simulation with
an honest mi or that this signature has been re-submitted.

• If σ was simply re-submitted then S need do nothing (the signature should
already be assigned to a user).

• If (c, s, nT) was used by S as part of an honest mi part of a Sign protocol
and S still owes T a reply for a basename for this signature then S replies
to T as the corresponding hi with the value of bsn.

• If (c, s, nT) was used by S as part of an honest mi part of a Sign protocol
but S does not owe T a reply for this signature then the adversary must be
able to produce multiple distinct signatures for the same tuple (c, s, nT) and
hence must be able to forge signatures by producing new signatures from
old signatures so S terminates outputting “failure 2”.
If (c, s, nT) are new then σ was completely produced by A for a corrupted

mi that has correctly verified. The simulator has to assign the pair to a “free”
corrupted mi and counter value and proceeds as follows.

• If bsn =⊥ then S can select any corrupted mi and value of cnt such that mi is
corrupted but not tagged as rogue for cnt. Then, acting as the corresponding
corrupted host hi, S initiates the signing of msg with respect to cnt and bsn
with T .

• If bsn �=⊥ then S can select any corrupted mi and counter value cnt such
that mi is not tagged as rogue with respect to cnt and S has not yet triggered
a signature call to T as hi with respect to cnt and bsn. If it finds such a
“free” module and counter value then it initiates the signing of msg with
respect to bsn and cnt with T as the host. If there is no such module and
cnt pair and the issuer, for the credential used in the signature, is honest
(controlled by S), then A must be able to forge signatures and S terminates
outputting “failure 3”. If this is the case and the issuer is corrupt, then S
can simply generate such a pair by letting some corrupt mi and hi join with
respect to some free counter value cnt.

Simulation of RogueTag. We assume that RogueTag will only be run by S
when S is simulating an honest Vj and is given a tuple (A, B, C, E, f) from A.
The simulator has to first decide if this is a validly issued credential on f . It
does this by checking that t̂(A, Y) = t̂(B, P2) and t̂(A + E, X) = t̂(C, P2) for

174 L. Chen, P. Morrissey, and N.P. Smart

that issuer. If any of these do not hold then S can ignore this. Otherwise we
distinguish if the tuple was issued by a corrupt or honest issuer Ik or not issued
at all.

Case (I). If, in addition to the issuer being honest, there is some honest mi with
a value of F such that F = f · P1 then S will have simulated the Join protocol
for an unknown value of f and hence the adversary must be able to compute
discrete logs so S aborts outputting “failure 4”.

Otherwise f must correspond to a corrupted mi. Since Ik is honest S will
have a list of all values of F used in issued credentials. The simulator uses this
to find which ui this rogue value of f corresponds to. The simulator then makes
a query to T to advise that this user should be tagged as rogue with respect to
the relevant counter and encapsulation key. If no such value of F exists then the
adversary must have been able to forge a valid credential without the aid of the
issuer. In this case S aborts outputting “failure 5”.
Case (i). Here S checks to see if it has seen values of B′ and E′ in a signature
such that E′ = f ·B′. There may be several such pairs for the same host (by using
the same credential for multiple signatures and different hosts since the value of
f is a rogue value). If so S selects one of these hosts and tags the corresponding
mi as rogue with T . Otherwise S stores f without assigning it to a user and
waits until this credential is used for a signature verification to identify the user
who it belongs to.

The proof the the theorem then follows from the description of the simulator
S and Lemmas 2 and 3. �
We then have the following two Lemmas.

Lemma 2. If the bilinear LRSW assumption holds for groups G1 = 〈P1〉, G2 =
〈P2〉, GT of large prime order q and the pairing t̂ : G1×G2 �→ GT and the discrete
logarithm assumption holds in G1 then S will abort with negligible probability.

Proof. For the proof of this we argue that S will abort outputting “failure X”
for X ∈ {1, 2, 3, 4, 5}. We do this by analysing the conditions under which each
failure event happens and concluding that these will each occurs with negligible
probability. The details are given in the full (ePrint) version of this paper. �
Lemma 3. In an execution of the above system with simulator S no computa-
tionally bounded environment can distinguish if it’s run in the real system with
a real adversary or in an ideal system with a simulator provided the adversary
used by S does not abort. Furthermore, no p.p.t. adversary can distinguish if it
is run in a simulation of the scheme or in an actual execution of the scheme.

Proof. The proof that the environment cannot distinguish the system it is run in
follows from S copying the exact equivalent behaviour of A in the ideal system
providing A does not abort. For the proof that A cannot tell it is run in a
simulation we argue that each of the inputs given to A that are different from
those in an actual run of the scheme are computationally indistinguishable from
those given in the simulation. The details are given in the full (ePrint) version
of this paper. �

On Proofs of Security for DAA Schemes 175

Acknowledgements. The second and third authors would like to thank the
EPSRC, eCrypt and HP Labs for partially supporting the work in this paper.
Most of the work in this paper was done whilst the second author was on place-
ment with HP Labs.

References

1. Backes, M., Maffei, M., Unruh, D.: Zero Knowledge in the Applied Pi–Calculus and
Automated Verification of the Direct Anonymous Attestation Protocol. Cryptology
ePrint Archive. Report 2007/289 (2007), http://eprint.iacr.org/2007/289

2. Balfe, S., Lakhani, A.D., Paterson, K.G.: Securing Peer-to-Peer Networks using
Trusted Computing. In: Mitchell, C. (ed.) Trusted Computing, ch. 10, pp. 271–
298. IEEE Computer Society Press, Los Alamitos (2005)

3. Brickell, E., Camenisch, J., Chen, L.: Direct Anonymous Attestation. In: Proceed-
ings of the 11th ACM Conference on Computer and Communications Security, pp.
132–145. ACM Press, New York (2004)

4. Brickell, E., Chen, L., Li, J.: Simplified Security Notions for Direct Anonymous
Attestation and a Concrete Scheme from Pairings. Cryptology ePrint Archive.
Report 2008/104 (2008), http://eprint.iacr.org/2008/104

5. Brickell, E., Chen, L., Li, J.: A New Direct Anonymous Attestation Scheme from
Bilinear Maps. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS,
vol. 4968, pp. 166–178. Springer, Heidelberg (2008)

6. Camenisch, J., Groth, J.: Group Signatures: Better efficiency and new Theoretical
Aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 122–135.
Springer, Heidelberg (2005)

7. Camenisch, J., Lysyanskaya, A.: A Signature Scheme with Efficient Protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003)

8. Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials
from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

9. Chen, L., Morrissey, P., Smart, N.P.: Pairings in Trusted Computing. In: Galbraith,
S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 1–17. Springer,
Heidelberg (2008)

10. Ge, H., Tate, S.R.: A Direct Anonymous Attestation Scheme for Embedded De-
vices. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, Springer,
Heidelberg (2007)

11. Leung, A., Mitchell, C.J.: Ninja: Non-Identity Based, Privacy Preserving Authenti-
cation for Ubiquitous Environments. In: Krumm, J., Abowd, G.D., Seneviratne, A.,
Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 73–90. Springer, Heidelberg
(2007)

12. Smyth, B., Chen, L., Ryan, M.: Direct Anonymous Attestation (DAA): Ensuring
Privacy with Corrupt Administrators. In: Stajano, F., Meadows, C., Capkun, S.,
Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp. 218–231. Springer, Heidelberg
(2007)

http://eprint.iacr.org/2007/289
http://eprint.iacr.org/2008/104

Cryptanalysis of Vo-Kim Forward Secure
Signature in ICISC 2005

Jia Yu1, Fanyu Kong2, Xiangguo Cheng1, Rong Hao1, and Guowen Li3

1 College of Information Engineering,
Qingdao University, Qingdao 266071, China

{yujia,chengxg,hr}@qdu.edu.cn
2 Institute of Network Security,

Shandong University, Jinan 250100, China
fanyukong@sdu.edu.cn

3 School of Computer Science and Technology,
Shandong Jianzhu University, Jinan 250101, China

guowenli@gmail.com

Abstract. D. L. Vo and K. Kim proposed a forward secure signature
scheme from bilinear pairings in annual International Conference on In-
formation Security and Cryptology 2005. They claimed that their scheme
satisfies several merits including requiring the general security parame-
ters only independent to the total number of time periods and performing
key evolving for unlimited time periods while maintaining sizes of keys
and signature fixed. They also claimed this scheme is forward secure
under the assumption of computational Diffie-Hellman problem. In this
paper, we analyze the security of this scheme and point out this scheme
doesn’t satisfy the forward security.

Keywords: forward security; digital signature; provable security; key
exposure.

1 Introduction

Digital signatures are playing increasingly important role in many electronic
applications such as e-commerce, digital checks and digital cash. Unfortunately,
for regular digital signatures, if the secret key is exposed, not only are all future
signatures pertaining to the compromised key invalid, but also all signatures
previously signed as well because verifier cannot know a signature is produced
before or after the compromise. Exposure of secret keys threatens the security
of digital signatures greatly. However, key exposure seems unavoidable in reality
especially with ever-increasingly use of portable and unprotected devices. It is
much easier for an adversary to break into storage system to get the secret key
than to attack the real cryptographic system. Forward secure signatures are
proposed to reduce the damage of key exposure. The whole lifetime of signature
is divided into multiple time periods. The current secret key is only used for
signing messages in this period. At the end of this period, a new secret key is

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 176–184, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Cryptanalysis of Vo-Kim Forward Secure Signature in ICISC 2005 177

produced from the old one by a key update algorithm, while the public key is
fixed during the whole lifetime. Therefore, the exposure of the current secret key
doesn’t affect the security of the signatures signed in previous periods.

Forward secure signatures can provide potential benefits to many applications
such as Certificate Authority (CA). The CA uses its secret key to sign public
key certificates of users and certificate revocation lists. The secret key of the CA
is usually used for a long time because it is very difficult for the CA to use the
new secret key to re-sign all public key certificates of the users. The secret key
exposure of ordinary signature would bright devastating consequence in the CA.
Fortunately, forward secure signature can greatly reduce the damage of secret
key exposure of the CA because all signatures of previous time periods needn’t
be reissued.

Forward secure signature, firstly proposed by Anderson in an invited lecture [1]
and formalized by Bellare and Miner [2] has received much attention. There
are two categories of methods to construct the forward secure signature: one is
based on modifying special signature scheme; while the other employs ordinary
signature scheme as a black box. Schemes [2,3,4,5,6,7] belong to the first category.
These schemes based on special signatures such as Ong-Schnoor signature [8]
or Guilou-Quisquater signature [9] make use of different techniques to improve
the efficiency of key update time or signing and verifying time. In the second
category, some method is used to certify (such as by a chain of certificates) the
current public key for a particular time period. Schemes [10,11,12,13] belong to
this category. These schemes usually need large storage space for storing the
current certificates and the keys for issuing future certificates. The verifying
algorithms in these schemes need long time because the entire certificate chain
has to be verifying in this procedure.

In ICISC2005, Vo and Kim [14] proposed yet another forward secure signature
scheme from bilinear pairings. They claimed that their signature scheme had
many good merits and was proved to be forward secure assuming CDH problem
is hard. In this work, we point out their scheme doesn’t satisfy the forward
security of signatures.

In the forthcoming section we introduce forward secure signature scheme and
its security. A description of Vo-Kim scheme is given in Section 3. In section
4, we give two attacking algorithms for this scheme. In section 5, we give the
further analysis of security proof in [14]. Finally, section 6 concludes this paper.

2 Forward Secure Signature Scheme and Its Security

Forward secure signatures can evolve the secret key periodically while keeping
the public key unchanged throughout the whole lifetime. The whole lifetime of
the signature is divided into many time periods. In each time period, it performs
an additional key update algorithm to update the secret key, and then deletes the
old secret key. Forward security arises from the fact that the secret key update
is one-way and it is computationally infeasible for an adversary to compute the
secret keys previous key-exposure period from the exposed secret key. Below

178 J. Yu et al.

we will give some informal descriptions of the forward secure signature and it
security. The formal descriptions can be referred to [2,3].

Forward secure signature scheme is a key-evolving signature scheme that con-
sists of four algorithms. The first algorithm is key generation algorithm in which
some security parameters are taken as input and output the secret key in the
first period. In the second (key update) algorithm, input the secret key in the
current period and output the secret key in the next period. In the third (sign-
ing) algorithm, input a time period, a secret key and a message, and output a
signature of the message for this time period. In the last (verifying) algorithm,
input the public key, a message and a candidate signature, and outputs 1 when
the signature is a valid signature or 0, otherwise.

Forward secure signature scheme satisfies that an adaptive chosen-message
adversary is computationally infeasible to forge a signature of some previous
period even if she discovers the secret key for the current time period.

In the experiment of security analysis, assume that the adversary runs in the
following phases: In the chosen message attack phase, the adversary can query
a signature oracle to obtain the signature of any message corresponding to the
current period. At the end of each time period, the adversary can select to stay
in this phase or go to the next period. In the break-in phase, the adversary is
given the secret key for the break-in period. In the forgery phase, if the adversary
outputs a forgery of a new message for a time period prior to break-in period,
then we say the adversary succeeds. If the adversary can’t forge a new message
for a time period prior to break-in period with a non-negligible probability, then
it means the signature scheme satisfies forward security.

3 Review of Vo-Kim Scheme

Following the definition of key-evolving signature scheme, Vo and Kim’s forward
secure signature scheme is a quadruple of algorithms (FSIG.key, FSIG.update,
FSIG.sign, FSIG.verify), where

(1)FSIG.key: key generation algorithm. Input a security parameter k, and
output initial public key and secret key pair (SK0, PK).

Run a parameter generator IG to generate groups G1, G2 of some prime order
q and an admissible pairing ê : G1 ×G1 → G2.

Select a generator P ∈ G1 and three random values s, t, r0 ∈R Z∗
q . Compute

Q = sP , T = tP .
Set PK = {G1, G2, ê, P, Q, T}. Choose two hash functions H1 : {0, 1}∗ → Z∗

q ,
H2 : {0, 1}∗ × {0, 1}∗ ×G1 → G1.

Compute s0 = s + r0H1(0); t0 = t− r0H1(0); V0 = t0Q0.
Erase s, t, r0, t0.
Set SK0 ← (s0, V0, Q0).
Output initial public key and secret key pair (SK0, PK).

(2) FSIG.update: Input the public key PK, the current time period i and the
secret key SKi−1 for the previous period. Output the current secret key SKi.

Cryptanalysis of Vo-Kim Forward Secure Signature in ICISC 2005 179

Parse SKi−1 as (si−1, Vi−1, Qi−1).
Select ri ∈R Z∗

q and compute

si = si−1 + riH1(i);
Qi = Qi−1 + riH1(i)P ;
Vi = Vi−1 + riH1(i)(T −Qi−1 −Qi).

Erase si−1, ri, Qi−1, Vi−1.
Output the current secret key SKi = (si, Vi, Qi).

(3)FSIG.sign: Input a message M, the current time period i and the current
secret key SKi. Output the signature < i, σ > for message M in the period i.

Parse SKi as (si, Vi, Qi).
Set U = Qi.
Compute

α = siQi + Vi, and β = siH2(i, M, U).
The signer outputs a signature < i, σ = (U, α, β) >.

(4)FSIG.verify: Input a signature < i, σ > in period i for a message M.
Parse σ as (U, α, β) and verify

ê(α, P) = ê(U, T + Q);
ê(β, P) = ê(H2(i, M, U), U + Q).

If these equations work then return 1, else return 0.

4 The Attacking Algorithms

We construct an adversary F who randomly selects a time period b to break
in. The adversary can get the secret key in period b according to the security
experiment in Section 2. We assume the secret key is SKb = (sb, Vb, Qb).Two
attacking algorithms for the forward security of Vo and Kim’s scheme are given
below. The first can forge the signature for any message in time period b − 1
and the second can forge the signature for any message in any time period i s.t.
0 ≤ i < b. In fact, the first algorithm can be viewed as a special case of the
second algorithm.

4.1 The First Algorithm

We firstly give an algorithm to forge any message M in time period b − 1. The
adversary F does as follows:

(1)Randomly selects r′b ∈R Z∗
q , and computes

s′b−1 = sb − r′bH1(b);
Q′

b−1 = Qb − r′bH1(b)P ;
V ′

b−1 = Vb + sbQb − s′b−1Q
′
b−1 − r′bH1(b)(T + Q).

180 J. Yu et al.

(2) She selects (s′b−1, V
′
b−1, Q

′
b−1) as the secret key in time period b − 1 even

if she doesn’t know the real secret key of this period.
(3)Let U = Q′

b−1 . She computes

α = s′b−1Q
′
b−1 + V ′

b−1, and β = s′b−1H2(b − 1, M, U).

(4) The adversary F outputs a signature < b− 1, σ = (U, α, β) > as a forgery
of message M in time period b−1. The forgery can pass the verification because

ê(α, P)
= ê(s′b−1Q

′
b−1 + V ′

b−1, P)
= ê(s′b−1Q

′
b−1 + Vb + sbQb − s′b−1Q

′
b−1 − r′bH1(b)(T + Q), P)

= ê(Vb + sbQb − r′bH1(b)(T + Q), P)
= ê((s + t)Qb − r′bH1(b)(s + t)P, P)
= ê(Qb − r′bH1(b)P, (s + t)P)
= ê(Q′

b−1, Q + T)
= ê(U, Q + T)

and

ê(β, P)
= ê(s′b−1H2(b− 1, M, U), P)
= ê(H2(b− 1, M, U), (sb − r′bH1(b))P)
= ê(H2(b− 1, M, U), sbP − r′bH1(b)P)
= ê(H2(b− 1, M, U), Qb + Q− r′bH1(b)P)
= ê(H2(b− 1, M, U), Q′

b−1 + Q)
= ê(H2(b− 1, M, U), U + Q)

Here equations Vb + sbQ = (s + t)Qb, sbP = Qb + Q hold because

Vb + sbQ

= Vb + (sb−1 + rbH1(b))Q

= Vb−1 + rbH1(b)(T −Qb−1 −Qb) + (s +
∑b

i=0
riH1(i))Qb

= Vb−1 + rbH1(b)(T −Qb−1) + sQb +
∑b−1

i=0
riH1(i)Qb

= Vb−1 + rbH1(b)(T −Qb−1) + sQb +
∑b−1

i=0
riH1(i)(Qb−1 + rbH1(b)P)

= Vb−1 + rbH1(b)(T −Qb−1) + sQb +
∑b−1

i=0
riH1(i)Qb−1

+rbH1(b)
∑b−1

i=0
riH1(i)P

= Vb−1 + rbH1(b)T +
∑b−1

i=0
riH1(i)Qb−1 + s(Qb−1 + rbH1(b))

Cryptanalysis of Vo-Kim Forward Secure Signature in ICISC 2005 181

= Vb−1 + sb−1Qb−1 + rbH1(b)T + srbH1(b)
...

= V0 + s0Q0 +
∑b

i=1
riH1(i)T + s

∑b

i=1
riH1(i)

= V0 +
∑b

i=1
riH1(i)T + (s + r0H1(0))Q0 + s

∑b

i=1
riH1(i)

= V0 +
∑b

i=1
riH1(i)T + r0H1(0)Q0 + s

∑b

i=0
riH1(i)

= V0 +
∑b

i=1
riH1(i)T + r0H1(0)Q0 + sQb

= (t0 + r0H1(0))Q0 +
∑b

i=1
riH1(i)T + sQb

= tr0H1(0)P +
∑b

i=1
riH1(i)T + sQb

=
∑b

i=0
riH1(i)T + sQb

= t
∑b

i=0
riH1(i)P + sQb

= (s + t)Qb

sbP

= (sb−1 + rbH1(b))P
= (sb−2 + rb−1H1(b − 1) + rbH1(b))P
...

= (s +
∑b

i=0
riH1(i))P

=
∑b

i=0
riH1(i)P + sP

= Qb + Q

Above verifying procedure can be got from [14].

4.2 The Second Algorithm

In addition, we give another more general algorithm to forge any message M in
any time period i s.t. 0 ≤ i < b. The adversary F does as follows:

(1)Randomly selects r′i ∈R Z∗
q , and computes

s′i = sb − r′iH1(i)
Q′

i = Qb − r′iH1(i)P
V ′

i = Vb + sbQb − s′iQ
′
i − r′iH1(i)(T + Q).

(2) She selects (s′i, V
′
i , Q′

i) as the secret key in time period i even if she doesn’t
know the real secret key in time period i.

182 J. Yu et al.

(3)Let U = Q′
i . She computes

α = s′iQ
′
i+V ′

i , and β = s′iH2(i, M, U).

(4) The adversary F outputs a signature < i, σ = (U, α, β) > as a forgery of
message M in time period i. The forgery can pass the verification because

ê(α, P)
= ê(s′iQ

′
i + V ′

i , P)
= ê(s′iQ

′
i + Vb + sbQb − s′iQ

′
i − r′iH1(i)(T + Q), P)

= ê(Vb + sbQb − r′iH1(i)(T + Q), P)
= ê((s + t)Qb − r′iH1(i)(s + t)P, P)
= ê(Qb − r′iH1(i)P, (s + t)P)
= ê(Q′

i, Q + T)
= ê(U, Q + T)

and

ê(β, P)
= ê(s′iH2(i, M, U), P)
= ê(H2(i, M, U), (sb − r′iH1(i))P)
= ê(H2(i, M, U), sbP − r′iH1(i)P)
= ê(H2(i, M, U), Qb + Q− r′iH1(i)P)
= ê(H2(i, M, U), Q′

i + Q)
= ê(H2(i, M, U), U + Q)

5 The Further Analysis of Security Proof in [14]

In their security analysis, to break CDH problem in the additive group G1, an
adversary A is given P, P ′ = aP , Q′ = bP , where a,b randomly chosen and
remain unknown to A. The task of A is to drive S′ = abP with the help of the
forger F. A provides the public key to F and answer its hash queries, signing
queries, and breakin query. First, A guesses a random i > 0 at which F will ask
for breakin query. Then A sets the public key PK = (G1, G2, ê, P, Q, T) , where
Q = Q′ . A provides PK to F and runs it. A can answer the hash queries and
the signing queries since it controls the hash will. In order to answer a signature
query number n on a message M ′

n
during the time period j′n < n. A selects

randomly: xj′n , yj′n , sj′n ∈R Z∗
q , and computes U ′

n = yj′nP , α′
n = yj′n(Q + T),

β′
n = xj′n(U ′

n + Q), V ′
n = α′

n − sj′nP , h′
n = xj′nP for answer the signature query.

A guesses a random index g′, and hopes the forgery is based on g′-th hash query.
A makes this hash value special, i.e., P ′. In forgery phase, F outputs a forgery
< i′, σ′ > on a message Mg′ , where σ′ = (U ′, α′, β′) and i′ < i. They assume U ′

equals to the one in time period i′ < i, in which A has queried for signatures

Cryptanalysis of Vo-Kim Forward Secure Signature in ICISC 2005 183

and A has value U ′ = y′P in that time period, otherwise A fails. Then A can
compute abP = β′ − y−1P ′.

Analysis: However, the probability that A succeeds to compute abP = β′ −
y−1P ′ is negligible because the probability that U ′ equals to the one in time
period i′ < i in which A has queried for signatures is negligible. The reason is
that A has no ability to control F to perform choosing message query. Therefore,
F may not query any signature in time period i′ at all. It is the main mistake
in their proof. Therefore, their security theorem doesn’t hold.

6 Conclusions

In this paper, we firstly introduce forward secure signature and its security. And
then descript Vo-Kim forward secure signature in ICISC 2005. At last we analyze
the security of this scheme. By giving two attacking algorithms, we can draw a
conclusion that this scheme is not forward secure. Therefore, how to construct
a forward secure signature whose full performance parameters including key
generation time, key update time, signing time, verifying time, the signature size,
the public key size, and the secret key size are all independent of the total number
of time periods T and don’t change with the current time period increasing is
still an open problem [16].

Acknowledgments. We would like to thank anonymous referees of the second
international conference on provable security (ProvSec 2008) for the suggestions
to improve this paper. This research is supported by National Natural Science
Foundation of China (60703089) and the National High-Tech R & D Program
(863 Program) of China (2006AA012110).

References

1. Anderson, R.: Two remarks on public key cryptology. Invited Lecture. In: The 4th
ACM Conference on Computer and Communications Security (1997)

2. Bellare, M., Miner, S.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999)

3. Abdalla, M., Reyzin, L.: A new forward-secure digital signature scheme. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 116–129. Springer,
Heidelberg (2000)

4. Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and verify-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 499–514. Springer,
Heidelberg (2001)

5. Kozlov, A., Reyzin, L.: Forward-secure signatures with fast key update. In: Cimato,
S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 247–262. Springer,
Heidelberg (2003)

6. Kang, B.G., Park, J.H., Halm, S.G.: A new forward secure signature scheme. Cryp-
tology ePrint Archive, Report 2004/183 (2004)

7. Camenisch, J., Koprowski, M.: Fine-grained forward-secure signature schemes
without ran-dom oracles. Discrete Applied Mathematics 154(2), 175–188 (2006)

184 J. Yu et al.

8. Ong, H., Schnorr, C.P.: Fast signature generation with a fiat Shamir-like scheme. In:
Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 432–440. Springer,
Heidelberg (1991)

9. Guillou, L.C., Quisquatr, J.J.: A paradoxical identity-based signature scheme re-
sulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS,
vol. 403, pp. 216–231. Springer, Heidelberg (1990)

10. Krawczyk, H.: Simple forward-secure signatures for any signature scheme. In: the
7th ACM conference on Computer and Communications Security, pp. 108–115.
ACM Press, New York (2000)

11. Maklin, T., Micciancio, D., Miner, S.: Efficient generic forward-secure signatures
with an unbounded number of time periods. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002)

12. Boyen, X., Shacham, H., Shen, E., Waters, B.: Forward Secure Signatures with Un-
trusted Update. In: The 13th ACM conference on Computer and communications
security, pp. 191–200. ACM Press, New York (2006)

13. Libert, B., Jacques, J., Yung, M.: Forward-Secure Signatures in Untrusted Update
Envi-ronments: Efficient and Generic Constructions. In: The 14th ACM conference
on Computer and communications security, pp. 266–275. ACM Press, New York
(2007)

14. Vo, D.L., Kim, K.: Yet another forward secure signature from bilinear pairings. In:
Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 441–455. Springer,
Heidelberg (2006)

15. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
effi-cient protocols. In: The First ACM Conference on Computer and Communica-
tions Secu-rity, pp. 62–73. ACM Press, New York (1993)

16. Itkis, G.: Forward Security: Adaptive Cryptography-Time Evolution.
Invited chapter for the Handbook of Information Security (2005),
http://www.cs.bu.edu/faculty/itkis/pap/forward-secure-survey.pdf

http://www.cs.bu.edu/faculty/itkis/pap/forward-secure-survey.pdf

Computationally Sound Symbolic Analysis of
Probabilistic Protocols with Ideal Setups�

Zhengqin Luo

INRIA Sophia-Antipolis
Zhengqin.Luo@sophia.inria.fr

Abstract. Recently, many approaches have been proposed for building
simple symbolic proofs of cryptographic protocols with computational
soundness. However, most of them support only bare-bone execution
model without any ideal setup, such as the existence of authenticated
channel, and only deterministic protocols. Thus many protocols are not
expressible in those models. Following the work of Canetti and Herzog [1],
we propose a probabilistic symbolic model for analyzing cryptographic
protocols and a general way of incorporating ideal setups by using a
probabilistic process calculus. Each ideal setup in the symbolic model
will correspond to an ideal functionality in the computational model.
Furthermore, we show the computational faithfulness of this symbolic
model with respect to a hybrid computational model in which ideal func-
tionalities are employed.

1 Introduction

Proving whether cryptographic protocols are secure is one of the central prob-
lems in modern cryptography. Over the last two decades, there are mainly two
views on analyzing these protocols. On the one hand, although the computa-
tional approach provides a rigorous framework for defining and proving security
properties, proofs often involve tedious reductions from probabilistic algorithms
to underlying cryptographic schemes, which are generally hard to be automated.
On the other hand, the formal method approach proposes a much simpler model
for describing and analyzing protocols by using abstract term algebra for mod-
eling perfect cryptography, opening doors to numerous automated tools (or par-
tially automated) in this area. However, the adversary’s behavior is restricted
by a pre-defined set of operations, which might not capture all possible attacks
in the computational model.

Recently, researchers have been making efforts on linking these two approaches,
enjoying the simplicity of the formal approach and the rigor in the computa-
tional approach at the same time. We confine us now on the method of obtaining
soundness results of Dolev-Yao [2] style model with respect to the computational
model. The seminal work is proposed by Abadi and Rogaway in [3]. They pro-
pose a simple language of encryption terms, and show that equivalence between
� This work was partially done when the author was at Shanghai Jiao Tong University.

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 185–199, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

186 Z. Luo

symbolic terms implies computational indistinguishability between ensembles
generated by replacing formal encryptions with concrete schemes. Their work
only addresses the case of symmetric encryption in the presence of a passive
adversary. Subsequently, it is significantly extended to deal with public-key en-
cryption scheme, signature scheme even in the presence of an active adversary
[4,5,6,7,8,9,10].

Previous works focus on soundness results of symbolic abstraction of encryp-
tion or signature in deterministic protocol models. However, a large number of
protocols utilize randomization at their behavioral level, or employ basic cryp-
tographic protocols as building blocks, such as coin-tossing protocol, or even
assume the existence of authenticated channel or anonymous channel.

In this work, we consider to introduce probability into the symbolic model to
address the expressiveness of internal probabilistic behaviors in protocols. And
then we consider to introduce ideal setups for modeling network assumptions and
simple two-party protocols as cryptographic building blocks. The notion of ideal
setup is inspired by the ideal functionality in the Universally Composable (UC)
security framework [11], a computational framework for designing and analyzing
protocols. In that framework, ideal functionality can be used to characterize net-
work assumptions as well as specify security requirements of protocols. Similarly,
the ideal setups in our framework play two important roles:

– Modeling network assumptions, such as authenticated channel, anonymous
channel, and etc.

– Modeling cryptographic protocols as basic building blocks, such as coin-
tossing protocol, oblivious transfer protocol, and zero-knowledge proof pro-
tocol, for constructing large and complex protocols.

Ideal setups should capture appropriate intuitions for each tasks. It provides a
modular approach for analyzing symbolic protocols: when analyzing a protocol
which invokes basic cryptographic protocols mentioned above, we can analyze
only an “abstract” protocol using corresponding ideal setups, and then claim
that the original protocol satisfies same properties as the “abstract” protocol.
We follow the approach of Canetti and Herzog [1], using the UC framework as
the underlying computational framework.

The contributions of our paper are:

– We define a simple language for describing protocol programs which can be
both interpreted in the symbolic model and the computational model. By
the language, we are able to express multi-party protocols in which parties
can make internal probabilistic choice, employ public-key encryption and
signature, or use ideal setups. The language supports two ideal setups: au-
thenticated channel and coin-tossing protocol (Section 3).

– We show how to interpret protocol programs in our symbolic model by using
a subset of the Probabilistic Applied Pi (PAPi) calculus [12]. Each ideal setup
is implemented by an auxiliary process (Section 4).

– We also explain how to translate protocol programs into a certain hybrid
model of the UC framework, in which ideal functionalities corresponding to
ideal setups in the symbolic model (Section 5).

Computationally Sound Symbolic Analysis 187

– We finally demonstrate the faithfulness of our symbolic model with re-
spect to the hybrid model. That is, almost all attacks in the hybrid model
can be interpreted in the symbolic model, except for negligible probability
(Section 6).

Related works. The efforts on linking the symbolic approach and the compu-
tational one, especially showing soundness results of Dolev-Yao model with re-
spect to certain computational model, were initiated by Abadi and Rogaway
[3], and were extended by [4,5,6,7,8,9,10] in several aspects. Backes, Pfitzmann
and Waidner proposed an abstract cryptographic library based on the reactive
simutability setting [13,14,15]. Their symbolic model supports nested operation
of cryptographic primitives, such as symmetric and public-key encryption, sig-
nature, and message authenticated code under arbitrary active adversary. They
also demonstrated for several protocols that Dolev-Yao style proof implies the
computational security [16,17,18]. Based on the UC framework, Canetti and
Herzog established the soundness of symbolic analysis with respect to the UC
framework [1]. However, they only considered a restricted class of protocols and
only support certified public-key encryption. Patil extended it to handle also
standard signature [19].

2 Background

This section provides necessary background information on the topic. We first in-
troduce a subset of the PAPi calculus. We then briefly review the UC framework
and the Universally Composable Symbolic Analysis (UCSA) framework.

2.1 A Subset of PAPi Calculus

The applied pi calculus is an extension of the pure pi calculus. It introduces
terms and equations over terms for modeling cryptographic primitives, and uses
techniques in process algebra to reason about distributed systems and proto-
cols. The PAPi extends it into a probabilistic framework, allowing analysis of
probabilistic processes.

The basics elements in the PAPi calculus are a set of names, a set variables,
and a signature Σ which consist of a finite set of function symbols with arities.
Terms can be defined by applying function symbols in Σ on names, variables
and terms. We can equip a given signature Σ with an equational theory E to
relate two terms which are syntactically different but semantically equivalent.

The grammar of plain processes and extended processes are given below:

P, Q ::= 0
∣∣ ū〈M〉.P

∣∣ u(x).P
∣∣ P ⊕ 1

2
Q

∣∣ !P
∣∣

P |Q
∣∣ νn.P

∣∣ if M = N then P else Q

A, B ::= P
∣∣ νn.A

∣∣ νx.A
∣∣ A|B

∣∣ {M/x}

188 Z. Luo

Comparing to the original grammar of plain process in the PAPi calculus, we
omit the non-deterministic choice operator, and confine the probabilistic choice
operator ⊕p to only one half probabilistic operator ⊕ 1

2
. Extending the plain

processes with active substitution {M/x}, we are able to reason about the static
knowledge exposed by a certain process. An evaluation context C[] is a process
with a hole under restriction or parallel composition. For space reason, we do
not present the semantics of PAPi here, it can be found in [12,20,21]

2.2 The UC Framework and UCSA Framework

The UC framework provides a general methodology for designing and analyzing
cryptographic protocols, especially asserting whether a given protocol securely
realizes its security specification. The most salient feature of this framework is
the strong composable property, by which one can ensure that a protocol still
maintains its security properties when being executed in an arbitrary unpre-
dictable environment, or being composed in a modular way. An comprehensive
overview of the UC framework can be found in [11].

The UCSA framework facilitates the universal composition theorem to sim-
plify their framework of sound symbolic analysis. The symbolic Dolev-Yao model
is a simplified model for analyzing two-party deterministic protocol which uses
only public-key encryption. Each protocol peer is defined by a mapping from
current state and incoming messages to outgoing messages. The adversary is
only limited to a set of symbolic operations according to the rules representing
its limitation with respect to perfect cryptography.

Instead of establishing the computational faithfulness of the symbolic model
with respect to a concrete computational model using concrete public-key en-
cryption scheme, the UCSA shows that the symbolic model is faithful for a
hybrid model in the UC framework. The hybrid model uses FCPKE for ideal-
ized encryption service which is secure unconditionally, even in the presence
of a computational unbounded adversary. Since FCPKE can be UC-realized by
any CCA-secure1 encryption scheme, it serves as a “bridge” between the sym-
bolic model and the concrete model: when we obtain a sound symbolic proof
of protocol in the hybrid model, we can facilitate the UC theorem to replace
each instance of FCPKE to an instance of CCA-secure encryption scheme, while
maintaining the security in a computational sense at the same time.

3 A Simple Language for Probabilistic Protocols

We first present a simple language for describing behavior of probabilistic proto-
cols. The language can be used to describe high-level codes of protocols without
any implementation detail of network communication and underlying cryptog-
raphy. We could compile a protocol program either into symbolic model by
using abstract term algebra, or into computational model by using concrete
cryptographic schemes.
1 Chosen Ciphertext Attack.

Computationally Sound Symbolic Analysis 189

Definition 1 (Protocol Program). Fixed a finite set of identifier of parties
C = {A, B, . . . , M}, a protocol program is defined by a function P = {(A, PA), (B, PB),
. . . , (M, PM)}, mapping each identifer to a program defined by the grammar below,
where x, m, c, s, b represent variables for different types of values.

R ::= A | B | . . . | M
B ::= true | false
I ::= x := newnonce() | x := encrypt(m, R) | x := decrypt(c) |

x := sign(m) | x := verify(m, s, R) | x := pair(m1, m2) |
x := fst(m) | x := snd(m) | x := R | x := B

E ::= input(x) | output(m) | send(m) | recv(x) |
senda(m, R) | recva(x, R) | coini(b, R) | coinr(b, R)

P ::= I | E | P ; P | if x = y then P else P | prob(P ; P)

Internal Computations. The grammar structure I defines atomic internal com-
putation for protocol parties. A party could generate a fresh random nonce by
command newnonce. It could also encrypt a message with someone’s public-key
by encrypt, or decrypt a ciphertext with its own private-key by decrypt. We
assume that each party’s identity is bound to its public-key, which cannot be
revealed to others. Thus, we use an identity of a party instead of a public-key
when encrypting. The commands for generating and verifying signatures, sign
and verify, are similar to the case of public-key encryption. pair, fst and snd
are standard paring operation.

External Interactions. input and output are used to obtain input from the envi-
ronment and return output to it. send and recv model the sending and receiving
over an adversary-controlled network. Intuitively, it models an asynchronous net-
work, and the adversary could learn, intercept, modify, and re-schedule messages
over this network.

Ideal Setups. In addition to common external interactions, we introduce two
ideal setups. The first one is the ideal setup of authenticated channel. A party
could send an authenticated message m to party B by command senda(m, B),
and could wait to receive an authenticated message from party B by recva(x, B)
and store it in x. By our assumption, the adversary should not be able to modify
or reproduce authenticated messages, but it can learn and intercept them. The
second one is the ideal setup of coin-tossing protocol. Commands coini and
coinr allow two parties to initiate an ideal coin-tossing protocol as initiator and
responder, respectively. By assumptions, the adversary should not be able to
influence the fairness of the common coin by any means.

Control Flows. We provide three types of control flows here. The sequential exe-
cution (P1; P2) and conditional execution (if M = N then P1 else P2) are usual.
Command prob(P1, P2) means executing P1 with probability 0.5 and executing P2
with the rest. The reason why we only model one half choice here is that choices
with arbitrary probability could always be approximated by multiple one half
choices.

190 Z. Luo

For example, a simple challenge-response protocol can be described as follows:

A’s program : B’s program :

Na = newnonce(); recv(m′
1);

x1 = pair(Na, B); x′
1 = decrypt(m′

1);
m1 = encrypt(x1, B); N = fst(x′

1);
send(m1); send(N);
recv(m2);
if m2 = Na then output(true);

Fig. 1. Protocol program for a simple challenge-response protocol

4 Symbolic Interpretation

In this section, we show how to translate a protocol program into a symbolic
protocol in our symbolic model which is described by the subset of PAPi calculus
introduced in Section 2.1. The abstract term algebra is modeled by an equational
theory. Each single party is modeled by a process in the calculus. Also, we
demonstrate how to characterize ideal setups by auxiliary processes.

Equational theory. We use two types of function symbol for different purposes,
as showed below.

– Constant: true/0, false/0, garb/0.
– Cryptographic operator: enc/2, dec/2, pk/1, sign/2, ver/3, vk/1, pair/2,

fst/1, snd/1.

The number followed by each function symbol indicates its arity. The true and
false are boolean constants. grab refers to ill-formed terms such as an inap-
propriate decrypted term. The operations of encryption, signature and paring
are defined in a usual way. The cryptography is modeled in a Dolev-Yao style
as being perfect. The equations are given in Figure 2. These equations are fairly

fst(pair(x, y)) = x
snd(pair(x, y)) = y
dec(enc(x, pk(y)), y) = x
ver(x, sign(x, y), vk(y)) = true

Fig. 2. Equational theory E for symbolic protocols

standard for those primitives. The function symbol pk maps user’s private key
to its public key. One can use dec and its private key to decrypt a message en-
crypted under corresponding public key. Without the private key, the adversary
cannot learn anything about the message. The case for signature is similar. In
addition, we require that improperly operated terms equate to garb, such as
decryption of a non-encrypted term.

Computationally Sound Symbolic Analysis 191

Translating protocol program. Given a protocol program P for identity set C. For
every R ∈ C, we translate P(R) to a process SR which uses the following channel
names to interact with other processes.

– inputR, outputR: Obtaining inputs and returning outputs;
– sendR, recvR: Sending and receiving over the adversary-controlled network;
– senda

RA, recva
AR: Sending and receiving authenticated messages with A, for

A ∈ C;
– tossi

RA, tossr
AR: Initiating and responding coin-tossing with A, for A ∈ C.

First, internal computations in P(R) will be translated to operations of function
symbols according to the equational theory E. Then, external interactions will
be translated to interactions on channels defined above. Finally, control flows in
P(R) are expressible in PAPi calculus.

Definition 2 (Symbolic interpretation of protocol program). Given an
identity R ∈ C, a single protocol program P(R) can be inductively translated to a
process SR by rules defined in Appendix A.

In Appendix A, We also give the translation of the simple challenge-response
protocol in Figure 1.

Modeling ideal setups. We construct auxiliary processes to capture the intuition
of our ideal setups of authenticated channel and coin-tossing protocols.

When channels are authenticated, if B receives a message m from A, A must
have sent m before. Furthermore, if A sent m to B only k times, then B will
not receive m more than k times. Notice that the secrecy of those transmitted
messages is not guaranteed, and messages are transmitted asynchronously. We
use the following process to help A and B to exchange a message over channel
senda

AB and recva
AB.

Aa
s(A, B) ::= senda

AB(x).
νc.(adva

AB〈(x, c)〉.
c(y).
if y = x then recva

AB〈x〉)

The channels senda
AB and recva

AB will be restricted between parties and the auxil-
iary process only, which are invisible to the adversary. Thus, the adversary can-
not modify or reproduce a message. However, it can learn the message through
channel adva

AB. The fresh channel name c is used to distinguish different instances
of the auxiliary processes between the same two participants. We use replica-
tion operator to allow each participant in set C being able to send and receive
unlimited number of messages.

Aa ::=
∏

A,B∈C,A �=B

!Aa
s(A, B)

For the ideal setup of coin-tossing protocol, it requires that two parties should
be able to generate an unbiased random bit value. The adversary should not be

192 Z. Luo

able to influence the result by any means. The auxiliary processes for generating
a single bit can be defined as follows.

At
half (A, B, x) ::= νc.

(
tossi

AB().advi
AB〈c〉.c().tossi

AB〈x〉
)
|

νc.
(
tossr

AB().advr
AB〈c〉.c().tossr

AB〈x〉
)

At
s(A, B) ::= At

half (A, B, true)⊕0.5 At
half (A, B, false)

The participant A initiates an instance of the ideal protocol via the channel name
tossi

AB. Upon the request of the adversary, A receives an unbiased random bit.
Then, the participant B as a responder gets the same random bit via channel
tossr

AB upon the request of the adversary. It can be seen that the choice of the
random bit is independent to the behavior of the adversary. By using replication,
we obtain an ideal process enabling each pair of parties to generate arbitrary
long random strings.

At ::=
∏

A,B∈C,A �=B

!At
s(A, B)

Adversary and executions. Given all the processes of the participants in the
protocol, the process denoting whole protocol can be defined as follows, where
V contains channel name between parties and auxiliary processes, which should
not be observed by the adversary:

S = νV .
(
SA | SB | . . . | SM | Aa | Ai

)
The adversary could freely interact with S by the following free channel names:

– sendA, recvA: Controlling the insecure network;
– adva

AB: Influence the auxiliary process of an authenticated channel;
– advi

AB, advr
BA: Influence the auxiliary process of an instance of coin-tossing

protocol;

Naturally, the adversary can be modeled as a process Padv, which only contains
free channel name described above. Also, we could construct an environment
process Penv that provides input to each user process SR and receives outputs
from them. We require that Penv contains only channel name inputR and outputR,
for R ∈ C. Given the adversary process Padv, an environment processPenv, we can
construct a context Cenv

adv [] = (Padv|Penv|). Thus the execution of the protocol
in the presence of the adversary can be seen as the interaction between S and
Cenv

adv [].

5 Computational (Hybrid) Interpretation

Next, we define the computational model in our framework. It is a hybrid model
in the UC framework which supports ideal functionalities. We elaborate ideal

Computationally Sound Symbolic Analysis 193

functionalities for our ideal setups, and then present how to interpret protocol
programs in this model. Notice that we do not directly translate symbolic pro-
tocols to concrete protocols, avoiding implementation details in the symbolic
models.

Ideal functionalities for encryption and signature. Recall that public-key encryp-
tion scheme and signature scheme denote cryptographic primitives which can be
implemented by local algorithms. Our formulation of these operations is the same
as the original UCSA framework [1,19]. The public-key encryption is modeled by
the certified public-key encryption functionality FCPKE, and the digital signature
is modeled by the certification functionality FCERT. As we have assumed, these
functionalities do not deal with key issues, and provide unconditional security,
in which ciphertext (or signature) bears no computational relation to plaintext.
Each party uses identities during encrypting/decrypting and signing/verifying.
Note that FCPKE can be securely realized by a CCA-secure encryption scheme
with a trusted key-registration service. Similarly, FCERT can be securely realized
by a CMA-secure2. We do not give the detail definitions here, interested readers
are refer to [1,19].

Ideal functionalities for ideal setups. For the ideal setup of authenticated chan-
nel, we present the authenticated communication ideal functionality FAUTH, as
shown in Figure 3. It is originally formulated by Canetti in [11]. We omit the case

Functionality FAUTH

1. Upon receiving an input (Send, sid, m) from party P , do: If sid =
(P, R, sid′) for some R, then generate a public delayed output
(Send, sid, m) to R and halt. Otherwise ignore the input.

Fig. 3. Authenticated Communication Ideal functionality

of corrupted parties, since we do not consider party corruption in our symbolic
model. One could see that the behavior of an instance of FAUTH between A and
B is essentially identical to the ideal process Aa

s(A, B).
For the ideal setup of coin-tossing protocol. We present the coin-tossing ideal

functionality FCT, as shown in Figure 4. This functionality can be thought as a
“bridge” between a concrete cryptographic protocol of coin-tossing and the ideal
process of coin tossing in our symbolic model. We can see that the coin is gen-
erated independently by FCT, which is certainly uncorrelated to the adversary’s
behavior.

Executing protocol program. Given a protocol program P with a set of identity
C, we specify an Interactive Turing Machine to interpret for a single protocol
program P(R) for each R ∈ C.
2 Chosen Message Attack.

194 Z. Luo

Functionality FCT

FCT proceeds as follows, running with parties P and R.

1. Upon receiving an input (Toss, sid, P, R) from party P , randomly choose
a bit value r, and send (Tossed, sid, P) to the adversary S.

2. Upon receiving (Result, sid, P), send (Tossed, sid, r) to P .
3. Upon receiving an input (Toss, sid, P, R) from party R, send

(Tossed, sid, R) to the adversary S.
4. Upon receiving (Result, sid, R), send (Tossed, sid, r) to R.

Fig. 4. Coin-tossing Ideal Functionality

We briefly sketch how this machine performs. Given a single protocol program
P(R), ITM MR maintains a memory state Σ which maps each variable occurred
in P(R) into a concrete bit-string, with PIDR as its concrete party identifier. Each
bit-string is tagged with its type in order to maintain a structure of each message
as in the abstract term algebra. For example, a bit-string c of ciphertext will be
recorded as 〈“ciphertext”, c〉, and bit-string r of random nonce will be recorded
as 〈“nonce”, r〉. At the beginning, each variable is mapped to an uninitiated
value. Then MR starts to interpret commands P(R) one by one, updating the
memory state. Commands related to cryptographic operations and ideal setups
will be executed as calls to appropriate instances of ideal functionalities.

– x = encrypt(m, A): Send (Encrypt, PIDA, m) toFCPKE, receive c, and update
x with 〈“ciphertext”, c〉.

– x = decrypt(c): If the value of c is 〈“ciphertext”, c′〉, then send
(Decrypt, PIDR, c′) toFCPKE, receive m, and update x with m.

– x = sign(m): Send (Sign, PIDR, m) to FCERT, receive s, and update x with
〈“signature”, s〉.

– x = verify(m, s, A): If the value of s is 〈“signature”, s′〉, then send
(Verify, PIDA, m, s′) toFCERT, receive b, and update x with 〈“boolean”, b〉.

– sendR(m, A): Send (Send, 〈R, A〉, m) toFAUTH.
– recvR(x, A): Receive m fromFAUTH, and update x with m.
– coini(b, A): Send (Toss, 〈R, A〉) to FCT, receive b, and update x with
〈“boolean”, b〉

– coinr(b, A): Send (Toss, 〈A, R〉) to FCT, receive b, and update x with
〈“boolean”, b〉

Particularly, when it encounters a prob(P1, P2) command, it flips a coin and de-
cides which branch to follow. Rest of these commands are executed in a standard
way. Thus, we could obtain a set of ITMs Ph = {MA, MB, . . . , MM} for executing
the protocol program in the hybrid model.

Computationally Sound Symbolic Analysis 195

6 Faithfulness of the Symbolic Model

In this section, we first define execution traces of symbolic protocol and hybrid
protocol, and then we show our symbolic model is faithful with respect to our
hybrid model.

Definition 3 (Trace of symbolic protocol). Let Ps = {SA,SB, . . . ,SM} be a
symbolic protocol. Given the adversary process Padv and the environment pro-
cess Penv, the execution of the protocol can be viewed as interaction between
the process S = νV .

(
SA | SB | . . . | SM | Aa | Ai

)
and the context Cenv

adv [] =
(Padv|Penv|) under a scheduler F for resolving non-determinism. Given a ter-
minating execution e = S α1−→μ1 S2

α2−→μ2 · · ·
αk−−→μk

Sk, the symbolic trace tr(e)
is defined as: tr(e) = tr(α1); tr(α2); . . . ; tr(αk). The definition of tr is given
in Appendix B3.
Let STRACEF,Padv

Ps,Penv
be the random variable of symbolic traces, such that for

every terminated execution e:

Pr[STRACEF,Padv

Ps,Penv
= tr(e)] = ProbF

S (e)

We show that the adversary’s power is limited by the equational theory in our
symbolic model.

Proposition 1 (Closure property). Given a symbolic trace t, such that

Pr[STRACEF,Padv

Ps,Penv
= t] > 0

Let ti in t be an adversary event with term M . Let φ be the frame recovered from
t1, . . . , ti−1. Then we have

φ M

Proof. It is straightforward since the adversary Padv is also a legal PAPi process.
��

For the execution trace of hybrid protocols, we record activations of each entity
in a sequential manner.

Definition 4 (Traces of hybrid protocols). Let P = {MA, MB, . . . , MM} be a
hybrid protocol. Given the environment Z, the input z, a security parameter k.
Let rc be random inputs for Z, FCPKE, and FCERT, rb be random inputs for each
party and FCT. The execution trace TRACEP,Z(z, k, rc, rb) can be inductively
defined by rules given in Appendix C.
Let TRACEPh,Z(k, z)∗ be the random variable describing TRACEPh,Z(k, z, rc, rb)
when rc and rb are uniformly chosen.

Then, we define a mapping from hybrid traces to symbolic traces, translating
each concrete event in hybrid traces into a symbolic event. Furthermore, we also
define the validity of translated trace.
3 The execution trace and its probability are defined in [12].

196 Z. Luo

Definition 5 (Mapping from hybrid trace to symbolic trace). Let t be
a hybrid trace of an execution of hybrid protocol Ph. We inductively define the
mapping of t to a symbolic trace symb(t) in two steps:

1. First, we translate each concrete string in each hybrid event ti to corre-
sponding symbolic terms, inductively by defining a partial mapping f from
bit-strings to symbolic terms. Recall that we use a type tag for different types
of values, this could help us to reconstruct symbolic terms using function
symbols. We map all ill-formed bit-string to garbage term garb.

2. Secondly, we convert each hybrid event Ei to a symbolic interaction ti, re-
placing concrete string in Ei into corresponding symbolic terms using f . If ti
is an adversary event with term M which does not satisfy closure property,
then set ti = [“fail”, M]

If t is a random variable of hybrid traces, then symb(t) would be random variable
of symbolic traces.

Definition 6 (Valid symbolic traces). Given a symbolic protocol Ps and a
symbolic traces symb(t) generated from hybrid trace t. We say that t is valid for
Ps if and only if there exist an adversary process Padv, an environment processes
Penc, and a scheduler F , such that

Pr[STRACEF,Padv

Ps,Penv
= symb(t)] > 0

Otherwise, we say that t is not valid for Ps.

Now, we are ready to state the faithfulness theorem of our symbolic model.
Intuitively, the theorem says that all but a negligible fraction of hybrid traces can
be interpreted in our symbolic model. Therefore, the limited symbolic adversary
precisely captures the ability of a more powerful adversary in the hybrid model.
Relying on this, it is suffice to analyze protocols in the symbolic model, and
then claim that its hybrid counterpart satisfies same properties as the symbolic
protocol.

Theorem 1 (Faithfulness of the symbolic model). For all protocol program
P, environments Z, and inputs z of length polynomial in the security parameter
k,

Pr[t← TRACEPh,Z(k, z)∗ : symb(t) is not valid for Ps] ≤ ε(k)

where ε is negligible4.

7 Conclusions

In this paper, we have presented a probabilistic framework for computationally
sound symbolic analysis of security protocols. We introduced ideal setups for
modeling network assumptions as well as two-party cryptographic primitives,
and we then showed how to interpret them in both symbolic model and hybrid
model. Finally we demonstrated that our symbolic model is faithful with respect
to the hybrid model.
4 ε is negligible if ∀c ≥ 0.∃kc s.t. ∀k ≥ kc.ε(k) ≤ k−c.

Computationally Sound Symbolic Analysis 197

For future research directions, one promising direction is to introduce more
ideal setups to the symbolic model, such as anonymous channel, blind signa-
ture scheme, commitment protocol, or even zero-knowledge proof protocol. An-
other interesting direction is to develop automated verification technique for the
probabilistic symbolic model to obtain sound automated proof of cryptographic
protocols.
Acknowledgment. The author would like to thank Xiaojuan Cai for helpful dis-
cussion while evaluating this work. The author also thank Jun Pang and Tamara
Rezk for insightful comments. Finally, many thanks to the anonymous referees
for helpful feedback.

References

1. Canetti, R., Herzog, J.: Universally composable symbolic analysis of mutual au-
thentication and key-exchange protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 380–403. Springer, Heidelberg (2006)

2. Dolev, D., Yao, A.C.-C.: On the security of public key protocols (extended ab-
stract). In: FOCS, pp. 350–357 (1981)

3. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computa-
tional soundness of formal encryption). In: Watanabe, O., Hagiya, M., Ito, T., van
Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872, pp. 3–22. Springer,
Heidelberg (2000)

4. Abadi, M., Jürjens, J.: Formal eavesdropping and its computational interpretation.
In: Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 82–94.
Springer, Heidelberg (2001)

5. Horvitz, O., Gligor, V.D.: Weak key authenticity and the computational complete-
ness of formal encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 530–547. Springer, Heidelberg (2003)

6. Micciancio, D., Warinschi, B.: Completeness theorems for the abadi-rogaway lan-
guage of encrypted expressions. Journal of Computer Security 12(1), 99–130 (2004)

7. Micciancio, D., Warinschi, B.: Soundness of formal encryption in the presence of
active adversaries. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 133–151.
Springer, Heidelberg (2004)

8. Janvier, R., Lakhnech, Y., Mazaré, L.: Completing the picture: Soundness of formal
encryption in the presence of active adversaries. In: Sagiv, M. (ed.) ESOP 2005.
LNCS, vol. 3444, pp. 172–185. Springer, Heidelberg (2005)

9. Kremer, S., Mazaré, L.: Adaptive soundness of static equivalence. In: Biskup, J.,
López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 610–625. Springer, Heidel-
berg (2007)

10. Comon-Lundh, H., Cortier, V.: Computational soundness of observational equiva-
lence. Technical report, INRIA (2008)

11. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145 (2001)

12. Goubault-Larrecq, J., Palamidessi, C., Troina, A.: A probabilistic applied pi-
calculus. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 175–190. Springer,
Heidelberg (2007)

13. Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library with
nested operations. In: CCS, pp. 220–230 (2003)

14. Backes, M., Pfitzmann, B.: Symmetric encryption in a simulatable dolev-yao style
cryptographic library. In: CSFW, pp. 204–218 (2004)

198 Z. Luo

15. Backes, M., Pfitzmann, B., Waidner, M.: Symmetric authentication in a simulatable
dolev-yao-style cryptographic library. Int. J. Inf. Sec. 4, 135–154 (2005)

16. Backes, M., Pfitzmann, B.: A cryptographically sound security proof of the
needham-schroeder-lowe public-key protocol. In: Pandya, P.K., Radhakrishnan, J.
(eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 1–12. Springer, Heidelberg (2003)

17. Backes, M., Dürmuth, M.: A cryptographically sound dolev-yao style security proof
of an electronic payment system. In: CSFW, pp. 78–93 (2005)

18. Backes, M.: A cryptographically sound dolev-yao style security proof of the otway-
rees protocol. In: Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.) ES-
ORICS 2004. LNCS, vol. 3193, pp. 89–108. Springer, Heidelberg (2004)

19. Patil, A.: On symbolic analysis of cryptographic protocols. Master’s thesis, Mas-
sachusetts Institute of Technology (2006)

20. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
POPL, pp. 104–115 (2001)

21. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational
theories. Theor. Comput. Sci. 367(1–2), 2–32 (2006)

A Translation Rules for Symbolic Interpretation

– Translating internal computations:
• symb(newnonce()) = νN.νx.({N/x}|)
• symb(encrypt(m, A)) = νx.({enc(m, PKA)/x}|)
• symb(decrypt(c)) = νx.({dec(m, SKA)/x}|)
• symb(sign(m)) = νx.({sign(m, SigKA)/x}|)
• symb(verify(m, s, A)) = νx.({ver(m, s, V erKA)/x}|)
• symb(pair(m1, m2)) = νx.({pair(m1, m2)/x}|)
• symb(fst(m)) = νx.({fst(m)/x}|)
• symb(snd(m)) = νx.({snd(m)/x}|)

– Translating external interactions:
• symb(input(x)) = inputR(x).()
• symb(output(m)) = outputR〈m〉.()
• symb(send(m)) = sendR〈m〉.()
• symb(recv(x)) = recvR(x).()
• symb(senda(m, A)) = sendRA〈m〉.()
• symb(recva(x, A)) = recvAR(x).()
• symb(coini(b, A)) = tossi

RA〈〉.tossi
RA(b).()

• symb(coinr(b, A)) = tossr
RA〈〉.tossr

RA(b).()
– Translating control flow:

• symb(P1; P2) = symb(P1)[symb(P2)]
• symb(if M = N then P1 else P2)

= if M = N then symb(P1) else symb(P2)
• symb(prob(P1; P2)) = symb(P1)⊕0.5 symb(P2)

– Key distribution:
• PKR[] ::= νSKR. ({pk(SKR)/PKR} |)
• SigKR[] ::= νSigKR. ({vk(SigKR)/V erKR} |)

– Finally, SR ::= SigKR [PKR [symb(P(R))[0]]]

Computationally Sound Symbolic Analysis 199

Examples For protocol in Figure 1, the corresponding processes are:

SA ::= νN.νNa.({N/Na}| SB ::= recvB(m′
1).

νx1.({pair(Na, B)/x1}| νx′
1.({dec(m, SKB)/x′

1}|
νm1.({enc(x1, PKB)/m1}| νN.({fst(m′

1)/x′
1}|

sendA〈m1〉. sendA〈N〉))
recvR(x).
if x = Na then sendA〈true〉)))

B Definition of tr(·) in Section 6

– tr
(
sendA〈M〉

)
= [“send”, A, M]

– tr (recvA(M)) = [“adv-deliver”, A, M]
– tr

(
adva

AB〈M, c〉
)

= [“auth-send”, A, B, M]
– tr (inputA(M)) = [“input”, A, M]; tr

(
outputA〈M〉

)
= [“output”, A, M]

– tr
(
advi

AB〈c, b〉
)

= [“toss-i”, A, B, b]; tr
(
advr

AB〈c, b〉
)

= [“toss-r”, A, B, b]

– tr (c(M)) = [“adv-auth”, A, B, M], if c occurs in adva
AB〈M, c〉 previously.

– tr (c()) = [“adv-tossed-i”, A, B, b], if c occurs in advi
AB〈c, b〉 previously.

– tr (c()) = [“adv-tossed-r”, A, B, b], if c occurs in advr
AB〈c, b〉 previously.

C Rules for Defining Hybrid Traces

– At the beginning, the trace t is empty.
– If the environment provides m as input to party R, then append trace t with

event E = 〈“input”, R, m〉.
– If the adversary is activated:

• If it delivers a message m to party R, then let E = 〈“adv-deliver”, R, m〉.
• If it delivers a authenticated message m from party S to R, then let
E = 〈“adv-auth”, S, R, m〉.

• If it delivers coin-tossing result b to initiator S with responder R, then
let E = 〈“adv-tossed-i”, S, R, b〉

• If it delivers coin-tossing result b to responder R with initiator S, then
let E = 〈“adv-tossed-r”, S, R, b〉

– If party R is activated:
• If it outputs to the environment message m, then let E =
〈“output”, R, m〉.

• If its send message m over insecure network, then let E = 〈“send”, R, m〉.
– If FAUTH is activated, and S wants to send m to R, then let E =
〈“send-auth”, S, R, m〉.

– If FCT is activated,
• S wants to initiate coin-tossing with R, then let E = 〈“toss-i”, S, R〉.
• R acts as the responder with S, then let E = 〈“toss-r”, S, R〉.

– If FCPKE is activated,
• If S encrypts with (Encrypt, PIDR, m), and FCPKE returns c, then let
E = 〈“ciphertext”, PIDR, m, c〉.

• If S decrypts with (Decrypt, PIDS, c), and FCPKE returns m, then let
E = 〈“decrypt”, PIDS, c, m〉.

– The case for FCERT is similar.

On the Equivalence of Generic Group Models

Tibor Jager and Jörg Schwenk

Horst Görtz Institute for IT Security
Ruhr-University Bochum, Germany

Abstract. The generic group model (GGM) is a commonly used tool
in cryptography, especially in the analysis of fundamental cryptographic
problems, such as the complexity of the discrete logarithm problem [1,2,3]
or the relationship between breaking RSA and factoring integers [4,5,6].
Moreover, the GGM is frequently used to gain confidence in the se-
curity of newly introduced computational problems or cryptosystems
[7,8,9,10,11]. The GGM serves basically as an idealization of an abstract
algebraic group: An algorithm is restricted to basic group operations,
such as computing the group law, checking for equality of elements, and
possibly additional operations, without being able to exploit any specific
property of a given group representation.

Different models formalizing the notion of generic groups have been
proposed in the literature. Although all models aim to capture the same
notion, it is not obvious that a security proof in one model implies se-
curity in the other model. Thus the validity of a proven statement may
depend on the choice of the model. In this paper we prove the equivalence
of the models proposed by Shoup [2] and Maurer [3].

1 Introduction

The security of asymmetric cryptographic systems depends on the intractability
of certain computational problems. Many widely used cryptographic assump-
tions, such as the Diffie-Hellman assumption [12] and the RSA assumption [13],
are unproven in a general model of computation (e.g. the Turing machine model).
Therefore more restricted models have been considered. One such restricted
model is the generic group model (GGM). In this model a class of algorithms is
considered that run on an algebraic group, without exploiting specific properties
of a given group representation. This implies that the algorithm works for all rep-
resentation of the group in a similar way. Well-known examples of generic group
algorithms for computing discrete logarithms are Shank’s Baby-Step Giant-Step
algorithm [14] and the Pollard’s Rho algorithm [15]. In contrast, index calculus
algorithms [16] for the multiplicative group Z∗

p of integers modulo p, for instance,
use the fact that group elements are represented as integers that have a prime
factorization, and that integer factorization is compatible with the group oper-
ation. There are groups, such as certain elliptic curve groups over finite fields,
where essentially no better algorithms that generic algorithms are known. Thus,
in this sense the GGM can be seen as an adequate idealization of this class of
groups.

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 200–209, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Equivalence of Generic Group Models 201

The GGM has been used frequently to gain confidence in newly introduced
cryptographic assumptions [10,11] or to prove the security of cryptosystems
[7,8,9]. On the one hand, one may argue that a proof in the generic group model
yields no gain for practical security, since in practise always a concrete represen-
tation of group elements is given. There are even examples of (contrived) schemes
which are provably secure in the GGM, but insecure when the generic group is
instantiated by a concrete group (with given representation of elements) [17,18].
However, when used in a right manner the GGM can be seen as a valuable
tool. Very useful applications with high relevance for cryptography are, for in-
stance, the analysis of the intrinsic hardness of computational problems such as
the discrete logarithm or the Diffie-Hellman problem [2,3] or root extraction in
groups and rings [4,5,6]. The GGM serves also as a method to gain confidence
in newly introduced problems, such as [10,11], thus providing evidence that the
new problem may indeed be of cryptographic interest. Moreover, the GGM is
especially interesting when the relationship between problems is studied, e.g.
see [19,20,21,22]. For instance, a reduction from computing discrete logarithms
to solving the Diffie-Hellman problem in the GGM would imply the equivalence
of both problems in all groups.

Different abstract models of computation to formalize the notion of generic
group algorithms have been proposed in the literature [1,2,3]. While the work
of Nechaev [1] is targeted solely to the discrete logarithm problem, and thus (to
our best knowledge) no further application of the model has shown up in the
literature, the models proposed by Shoup [2] and Maurer [3] are more flexible. In
this work we consider the models presented in [2] and [3]. Derivatives, especially
of [2], have been adapted repeatedly in the literature, e.g. [4,5,10,11,21,22].

Although all models aim to capture the same notion, it is not obvious that a
security proof in one model implies security in the other model.Thus the validity
of a proven statement may depend on the choice of the model. This situation is
not satisfactory, since a cryptographer needs to decide on using one model and
then has to worry about whether solely the choice of the model has influenced
the validity of the result. Alternatively, all results (including existing results)
have to be proven in both models, which is not satisfactory as well. Thus it is
important to consider the relationship between both models in order to be able to
interpretate proofs in the GGM. An equivalence proof of two coexisting models
is especially interesting, since this enables the prover to choose the adequate
model for the desired result, without the need of worrying about whether the
validity of the proof depends on the choice of the model. In this paper we prove
the equivalence of the two GGM models proposed in [2] and [3].

1.1 Related Work

The generic group model was introduced by Nechaev [1].Nechaev used a proof
technique based on the theory of graphs to prove an exponential lower bound
on the time complexity of generic algorithms for the discrete logarithm problem.
Later, Shoup used a more general and more flexible generic model to re-prove
the generic hardness of the discrete logarithm problem and, in addition, the

202 T. Jager and J. Schwenk

Diffie-Hellman problem [2]. As noted by Shoup, a proof in the model described
in [2] implies that the proven result holds in the model of Nechaev [1] as well.
Another variant of the generic group model was proposed by Maurer [3], who
augmented the results of Shoup, for instance by considering the hardness of the
discrete logarithm problem in presence of a decisional Diffie-Hellman oracle.

The GGM is commonly used to give evidence that well-known or newly intro-
duced cryptographic assumptions are indeed valid. Dent [10] has proven that the
Diffie-Hellman knowledge problem is secure in the GGM. Boneh and Boyen [11]
extended the Shoup model to prove the hardness of the SDH assumption in
groups G1, G2, GT where there exists a bilinear pairing map e : G1 ×G2 → GT .
Leander and Rupp [5] adapted the GGM to rings to prove the generic equiva-
lence of breaking the strong low-exponent RSA assumption and factoring inte-
gers. Later Altmann et al. [22] augmented these techniques to show that solving
the black-box ring extraction problem is at least as hard as factoring integers.
Moreover, the GGM served as a tool to prove the security of cryptosystems with
high practical relevance, such as signed ElGamal [7], ECIES [8], and ECDSA [9].

Fischlin [17] and Dent [18] shed some criticism on the GGM by construct-
ing computational problems and cryptosystems which are provably secure in
the GGM, but insecure whenever the generic group is replaced with a concrete
group. Koblitz and Menezes note in [23] that the constructions considered in [17]
and [18] are contrived and violate standard cryptographic practise, thus these
results can be seen as reminders that a proof in the generic group model should
be viewed with the same caution as security proofs in the random oracle model,
rather than rendering the GGM approach useless.

1.2 Our Contribution

In this paper we consider the generic group models proposed by Shoup [2] and
Maurer [3], and prove the equivalence of both models. More precisely, we show
for if for some computational problem π there exists an efficient algorithm in
model A, then there exists an efficient algorithm for π in model B. This implies
the validity of upper complexity bounds as well as lower complexity bounds on
generic algorithms in both models, when proven in one model.

2 Generic Group Models

There are two basic requirements when the notion of generic group algorithms
is modeled formally:

1. The algorithm which intends to solve a given problem instance must not be
able to exploit any property of a given representation of group elements, i.e.
the group representation must be hidden.

2. Nevertheless, the algorithm must be able to perform computations on group
elements. That is, the algorithm must (at least) be able to perform the group
operation and check for equality of elements without knowing a concrete
representation of the group elements.

On the Equivalence of Generic Group Models 203

When considering the models exactly as described in [2] and [3] we see that
both are actually not comparable. The reason for this is that Maurer has formu-
lated the model in [3] in high generality, allowing the model to be specified for
the computation of arbitrary functions and relations on group elements, while
Shoup has modeled only a few operations and relations explicitly (i.e., perform-
ing the group operation and checking for equality of elements) without modeling
the possibility of extending the model by additional operations. In the follow-
ing section we describe the Shoup model in a more general way, thus slightly
deviating from the original description, but still using the basic concept of [2].

2.1 Shoup’s Generic Group Model

The generic group model described in this section was proposed by Shoup in [2].
The original model allows only for computing the group operation and checking
for equality of elements. Several extensions of this model have been used in the
literature, e.g. [5,22]. Subsequently we will describe a simple generalization of
the original model from [2] in order to capture the possibility of extending the
model by additional operations, and to make the Shoup model comparable to
the Maurer model [3].

The construction is motivated by the fact that the elements of a group must
be represented in some way in order to be able to perform computations on
group elements. A general way of representing elements, e.g. in a computer, are
bitstrings. Thus, a representation of a group can be seen as a bijective map from
the group to the set of bistrings without loss of generality. Shoup has based his
model on this notion in the following way:

Let (G, ◦) be a group of order n and let Sn ⊆ {0, 1}	log |G|
 be a set of n
different bit strings. Let

σ : G→ Sn

be a bijective encoding function, chosen at random among all possible functions,
which encodes group elements as random, but unique binary strings. The random
encoding ensures that the group G has only the defined properties of an abstract
group.

In order to be able perform computations on randomly encoded group ele-
ments we assume an oracle O that computes operations from some operation set
Π on bit strings representing group elements. A typical operation, for instance,
would be the binary function computing the group law on encoded elements,
i.e. Π = {◦}. Moreover, the oracle may compute relations from some relation
set Σ on encoded elements. For instance, a query to a decisional Diffie-Hellman
oracle can be modeled as a relation. The equality relation is always included in
the relation set implicitly, since the bijectivity of the encoding function allows
to check for equality of elements by checking for equality of encodings.

Definition 1 (Generic Group Algorithm in Shoup’s Model). A generic
group algorithm A is a (possibly probabilistic) algorithm which takes as input a
r-tuple of encoded group elements (σ(x1), . . . , σ(xr)), xi ∈ G, 1 ≤ i ≤ r. The
oracle may query a generic group oracle O to perform computation operations
in Π and relations in Σ on encoded group elements.

204 T. Jager and J. Schwenk

Thus, the algorithm receives a r-tuple of encoded group elements as input, and
may query the oracleO to perform computations on randomly encoded elements.
The input to a generic group algorithm is usually the public part of a problem
instance that should be solved by the algorithm.

An algorithm A makes a computation query to the oracle O by specifying a t-
ary operation f ∈ Π and t encoded group elements σ(x1), . . . , σ(xt). The oracle
O computes z = f(x1, . . . , xt) and returns σ(z). A makes a relation query to
O by specifying t encoded group elements σ(x1), . . . , σ(xt) and a t-ary relation
ρ ∈ Σ. O returns ρ(x1, . . . , xt).

It is assumed that A has unbounded memory capacity, the time complexity
of A is measured by the number of oracle queries.

Example 1. The discrete logarithm problem in a cyclic group (G, ◦) of order
n in Shoup’s generic group model can be stated as follows: Given a primitive
element σ(1), an encoded group element σ(x) with x ∈R Zn, and the group
order n, determine x. The oracle O computes the group law, i.e. Π := {◦} and
Σ := {=}.

Example 2. The Diffie-Hellman problem in a cyclic group (G, ◦) of order n in
presence of a decisional Diffie-Hellman oracle (gap Diffie-Hellman problem) can
be stated as: Given a primitive element σ(1), encoded group elements σ(x) and
σ(y) with x, y ∈R Zn, and the group order n, compute σ(z), where z ≡ xy mod n.
The oracle O computes the group law and answers decisional Diffie-Hellman
queries, i.e. Π := {◦} and Σ := {=, DDH(·, ·, ·)} with DDH(σ(x), σ(y), σ(z)) =
1 if z ≡ xy mod n and DDH(σ(x), σ(y), σ(z)) = 0 if z �≡ xy mod n.

2.2 Maurer’s Generic Group Model

The generic group model described in this section was proposed by Maurer in [3].
The model is characterized by an oracle O that maintains an internal list L ⊆ G,
where (G, ◦) is a group. Let Li denote the i-th element of the list. The list L is
initialized with r values L1, . . . , Lr corresponding to the given problem instance.

The algorithm A receives a set of pointers to the list elements Li for i ∈
{1, . . . , r} as input and may query the oracle for two types of operations:

1. Computation operations, for instance application of the group law on group
elements stored in the list L.

2. Queries on the internal state, i.e., queries for relations on stored elements
(e.g., the equality relation).

Definition 2 (Generic Group Algorithm in Maurer’s Model). A generic
algorithm is a (possibly probabilistic) algorithm A which takes as input r indices
(1, ..., r) pointing to list elements L1, ..., Lr. The algorithm may query the oracle
O for computation operations on internal state variables from Π, and queries
on the internal state from a relation set Σ.

The algorithm queries a computation operation by selecting a t-ary operation
f ∈ Π as well as t+1 indices i1, ..., it+1. The oracle computes f(Li1 , ..., Lit) and

On the Equivalence of Generic Group Models 205

stores the result in the variable Lit+1 . To query a relation the algorithm selects a
t-ary relation ρ ∈ Σ as well as t indices i1, ..., it. The query is replied by O with
ρ(Li1 , ..., Lit). We assume that the equality relation “=” is always included in
the relation set Σ. The complexity of an algorithm is measured by the number
of oracle queries.

Example 3. The discrete logarithm problem in a cyclic group (G, ◦) of order n
in Maurer’s generic group model can be stated as follows: Let L1 := 1, L2 := x
with x ∈R Zn, determine x. The oracle O computes only the group law and the
equality relation, i.e. Π := {◦} and Σ := {=}.

Example 4. The Diffie-Hellman problem in a cyclic group (G, ◦) of order n in
presence of a decisional Diffie-Hellman oracle can be stated as: Let L1 := 1,
L2 := x and L3 := y with x, y ∈R Zn, output i such that Li ≡ xy mod n.
The oracle O computes the group law and the equality relation, and provides a
decisional Diffie-Hellman oracle, i.e. Π := {◦} and Σ := {=, DDH(·, ·, ·)}, where
DDH(x, y, z) = 1 if z ≡ xy mod n and DDH(x, y, z) = 0 if z �≡ xy mod n.

3 The Equivalence of Generic Group Models

In this section we will show that both models described above may be utilized
equivalently. Throughout this section let AS and OS be an algorithm and an
oracle according to the description of Shoup’s model in Section 2.1, and AM and
OM be an algorithm and an oracle according to Maurer’s model as described in
Section 2.2. We suppose that both oracles provide identical operation sets Π and
Σ, and that both oracles use isomorphic groups for the internal representation
of elements.

We construct polynomial-time interfaces IM2S and IS2M converting the input
and output of OS to the input and output of OM , and vice versa, such that AS

can interact with OM using IS2M , and AM can interact with OS using IM2S .
This implies

1. Equivalence of upper complexity bounds: If there exists an algorithm
running running in polynomial time in some parameter κ (i.e. performing at
most m = poly(κ) oracle queries) in model A, then there exists an algorithm
running in model B in time polynomial in κ.

2. Equivalence of lower complexity bounds: Suppose a lower complex-
ity bound (e.g. exponential/subexponential in some parameter κ) has been
proven in one model. Then this implies a lower bound in the other model
that differs at most by some factor polynomial in κ. This can easily be proven
by contradiction. For instance, suppose there exists a exponential-time lower
complexity bound in model A and a polynomial-time algorithm in model B.
Since a polynomial-time algorithm in model B implies a polynomial-time
algorithm in model A this leads to a contradiction.

206 T. Jager and J. Schwenk

3.1 From Maurer’s GGM to Shoup’s GGM

At first we show that there exists an efficient interface IM2S that has access to
OS and simulates the oracle OM efficiently.

Theorem 1. Suppose there exists an algorithm AM that makes at most m
queries to OM and has success probability α. Then there exists an algorithm
AS performing at most m queries to an oracle OS having success probability α.

Proof. We construct an interface IM2S that internally uses an OS for the com-
putation of the operations in Π and relations in Σ, and provides an input and
output interface that is equivalent to an OM which provides access to the same
group as OS and the same operation set Π and relation set Σ. IM2S uses only
operations that can be performed by an algorithm in Shoup’s model. Thus we
can regard the combination of AM and IM2S as an algorithm AS compliant to
the Shoup model.
IM2S maintains a list L ⊆ Sn, where Sn is the set of encoding bit strings

used by OS . At the beginning of the game the interface receives a r-tuple
(σ(x1), . . . , σ(xr)) of encoded elements from OS . The interface stores the en-
codings in the list, such that Li = σ(xi) for 1 ≤ i ≤ r. The algorithm AM

receives the indices 1, . . . , r as input.
The interface now answers the oracle queries of AM in the following way:

1. Whenever the algorithm specifies indices i1, . . . , it+1 and a t-ary operation
f ∈ Π to query a computation, the interface determines the respective en-
codings by list lookup and queries the oracle to perform the computation
f(Li1 , . . . , Lit). The result is stored at Lit+1 .

2. When the algorithm queries a t-ary relation ρ ∈ Σ by specifying t list indices
i1, . . . , it, the interface determines the respective encodings by list lookup
and queries the oracle OS for the relation ρ(Li1 , . . . , Lit). The reply of OS

is forwarded to AM .

It is easy to see that the view of AM when interacting with IM2S is identical to
the view when interacting with a real oracle OM . For each query of an operation
f ∈ Π and for each query of a relation ρ ∈ Σ made by AM the interface performs
one oracle query to OS . Since IM2S provides a perfect simulation of OM , the
success probability of AM is equal when interacting either with OM or with
IM2S . ��

3.2 From Shoup’s GGM to Maurer’s GGM

Now consider the case where the interface has access to an oracle OM and
simulates an oracle OS . We show that there exists an efficient interface IS2M

that has access to OM and simulates the oracle OS efficiently.

Theorem 2. Suppose there exists an algorithm AS making at most m queries
to oracle OS and having success probability α. Then there exists an algorithm
AM having success probability α and performing at most m2 + r2 queries to an
oracle OM , where r is the number of group elements that AS receives as input.

On the Equivalence of Generic Group Models 207

Proof. We construct an interface IS2M that internally uses an OM for the com-
putation of the operations in Π and relations in Σ, and provides an input and
output interface that is equivalent to an OS . Now IS2M uses only operations
that can be performed by an algorithm in Maurer’s model. Thus we can regard
the combination of AS and IS2M as an algorithm AM compliant to the Shoup
model. IS2M maintains a list E ⊆ {0, 1}	log |G|
. The list internally used by OM

is denoted L. We denote the i-th element in E and L with Ei and Li, respectively.
At the beginning of the game the interface receives a r-tuple of indices from

OM . Now the interface queries the oracle OM for the equality relation on all
pairs of received indices. More precisely, for i from 1 to r the oracle proceeds as
follows:

1. The oracle checks whether there exists j ∈ {1, . . . , r} such that j < i and
Lj = Li. If this is true, the oracle sets Ei := Ej .

2. Otherwise a new random encoding Ei ∈R {0, 1}	log |G|
\E is assigned to i.

Note that this procedure can be performed by querying OM for the equality
relation at most r(r − 1)/2 < r2 times.

The interface answers the queries of AS in the following way:

1. Whenever the algorithm queries the computation of a t-ary operation f ∈ Π
by submitting t encodings Ei1 , . . . , Eit , the oracle performs the following
steps:
(a) The interface receives E1, . . . , Et as input and determines the respective

indices i1, . . . , it by list lookup. Note that the same group element may
appear multiple times in L, and thus a group element may have multiple
equivalent indices pointing to the same group element. The interface
simply takes the first index that is found.

(b) Then the interface queries the oracle OM for the computation L|L|+1 =
f(i1, . . . , it), where |L| denotes the length of the list L. The result is
stored in the next free list element L|L|+1 of OM .

(c) For each index 1 ≤ i ≤ |L| the interface queries the oracle whether Li =
L|L|+1. If this equality holds for some Li, then the respective encoding is
appended to the list again: E|L|+1 := Ei. The algorithm receives E|L|+1

as reply.
(d) Otherwise a new encoding E|L|+1 ∈R {0, 1}	log |G|
\E is chosen at ran-

dom. The algorithm receives E|L|+1 as reply.
2. Whenever the algorithm queries a t-ary relation ρ ∈ Σ by submitting t

encodings Ei1 , . . . , Eit , the interface determines the respective indices by list
lookup and queries the oracle OM for the relation ρ(i1, . . . , it). The reply of
OM is forwarded to AS .

Note that the time complexity of an interface simulating OS is larger than the
complexity of an interface which simulates OM . This is due to the fact that the
interface has to check for equality of elements after each computation operation.
Suppose that an algorithm queries at most m queries. After the i-th computation
operation the interface has to query the equality relation at most i − 1 times

208 T. Jager and J. Schwenk

in order determine equal elements. There are at most m elements in the list,
therefore the total number of equality checks is bounded by m(m− 1)/2 < m2.
Note that IS2M simulates a real OS oracle perfectly, thus the success probability
of AS is equal when interacting either with OS or with IS2M . ��

4 Conclusions

We have considered the two generic group models proposed in [2] and [3] and have
proven that both models are equivalent. The proof itself is quite straightforward,
especially after having given easily comparable descriptions of both models in
Sections 2.1 and 2.2. Hence the main contribution of this paper shall be merely
seen as evidence that a cryptographer intending to prove a statement in the
generic group model may choose the model that suits the used proving technique
and the desired result best, without worrying about whether the validity of the
proof depends on the choice of the model.

Moreover, though the model of Maurer has not yet received as much attention
as the Shoup model, we believe that the way of formalizing the notion of generic
groups used by Maurer in [3] is sometimes slightly advantageous in the sense
that the prover has to deal with less technical details. To give a short example, a
typical proving technique in the GGM introduces a simulation game where group
elements are replaced with polynomials which are implicitly evaluated with some
group elements that correspond to the given problem instance, e.g. see [2,3,5].
Now it may happen that several polynomials correspond to the same group ele-
ment. In Shoup’s model an algorithm submits random encodings corresponding
to some group elements in order to query a computation or relation. However,
since one group element may correspond to several polynomials, it is not clear to
which polynomials the queried computation operation should be applied. Thus,
the prover has to deal with this problem by describing a procedure that deter-
mines to which polynomial the queried operation should be applied (though it
usually suffices to simply take the first polynomial with matching encoding). In
contrast, in Maurer’s model a prover does not have to deal with this, since the
algorithm submits list indices, each corresponding to unique polynomials.

References

1. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes 55(2), 165–172 (1994)

2. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

3. Maurer, U.M.: Abstract models of computation in cryptography. In: Smart, N.P.
(ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Hei-
delberg (2005)

4. Damg̊ard, I., Koprowski, M.: Generic lower bounds for root extraction and sig-
nature schemes in general groups. In: Knudsen, L.R. (ed.) EUROCRYPT 2002.
LNCS, vol. 2332, pp. 256–271. Springer, Heidelberg (2002)

On the Equivalence of Generic Group Models 209

5. Leander, G., Rupp, A.: On the equivalence of RSA and factoring regarding generic
ring algorithms. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 241–251. Springer, Heidelberg (2006)

6. Aggarwal, D., Maurer, U.: Factoring is equivalent to generic RSA. Cryptology
ePrint Archive, Report 2008/260 (2008), http://eprint.iacr.org/

7. Schnorr, C.P., Jakobsson, M.: Security of signed elgamal encryption. In: [24], pp.
73–89

8. Smart, N.P.: The exact security of ECIES in the generic group model. In: Honary,
B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 73–84. Springer,
Heidelberg (2001)

9. Brown, D.R.L.: Generic groups, collision resistance, and ECDSA. Des. Codes Cryp-
tography 35(1), 119–152 (2005)

10. Dent, A.W.: The hardness of the DHK problem in the generic group model. Cryp-
tology ePrint Archive, Report 2006/156 (2006), http://eprint.iacr.org/.

11. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH as-
sumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

12. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory 22, 644–654 (1976)

13. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)

14. Shanks, D.: Class number, a theory of factorization, and genera. In: Lewis, D.J.
(ed.) 1969 Number Theory Institute. Proceedings of Symposia in Pure Mathe-
matics, Providence, Rhode Island, vol. 20, pp. 415–440. American Mathematical
Society (1971)

15. Pollard, J.M.: A Monte Carlo method for factorization. BIT 15, 331–334 (1975)
16. Odlyzko, A.M.: Discrete logarithms in finite fields and their cryptographic signif-

icance. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS,
vol. 209, pp. 224–314. Springer, Heidelberg (1985)

17. Fischlin, M.: A note on security proofs in the generic model. In: [24] pp. 458–469
18. Dent, A.W.: Adapting the weaknesses of the random oracle model to the generic

group model. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 100–109.
Springer, Heidelberg (2002)

19. Maurer, U.M.: Towards the equivalence of breaking the Diffie-Hellman protocol and
computing discrete algorithms. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS,
vol. 839, pp. 271–281. Springer, Heidelberg (1994)

20. Boneh, D., Lipton, R.J.: Algorithms for black-box fields and their application to
cryptography (extended abstract). In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 283–297. Springer, Heidelberg (1996)

21. Maurer, U.M., Wolf, S.: Lower bounds on generic algorithms in groups. In: Nyberg,
K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 72–84. Springer, Heidelberg
(1998)

22. Altmann, K., Jager, T., Rupp, A.: On black-box ring extraction and integer
factorization. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 437–448. Springer, Heidelberg (2008)

23. Koblitz, N., Menezes, A.: Another look at generic groups. Advances in Mathematics
of Communications 1, 13–28 (2007)

24. Okamoto, T. (ed.): ASIACRYPT 2000. LNCS, vol. 1976. Springer, Heidelberg
(2000)

http://eprint.iacr.org/
http://eprint.iacr.org/

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 210–225, 2008.
© Springer-Verlag Berlin Heidelberg 2008

The Analysis of an Efficient and Provably Secure
ID-Based Threshold Signcryption Scheme

and Its Secure Version∗

ZhenChao Zhu1, Yuqing Zhang2,∗∗, and Fengjiao Wang2

1 Key Lab of Computer Networks and Information Security of
Ministry of Education, Xidian University, Xi’an, 710071, P.R. China
2 National Computer Network Intrusion Protection Center, GUCAS,

Beijing 100049, P.R. China
zhangyq@gucas.ac.cn

Abstract. In this paper,we analyze an identity-based threshold signcryption
(IDTSC)scheme proposed in ICCCAS’2008, although Li and Yu pointed out
that the scheme is the first provably secure scheme which is secure against
adaptive chosen ciphertext attacks and secure in the sense of unforgeability,
we show that the signcryption in the scheme is easily forged by the appointed
clerk who is one of the members , the clerk can impersonate the members to
forge valid signcryption to any receiver, then we give a secure version which
we prove its confidentiality under the Decisional Bilinear Diffie-Hellman
assumption and its unforgeability under the Computational Diffie-Hellman
assumption in the random oracle model. Scheme turns out to be more efficient
than the previously proposed schemes.

Keywords: Identity based cryptography, signcryption , provably secure.

1 Introduction

In 1984, Shamir introduced identity-based cryptosystems [1]. The idea was to allow
using users’ identity information serve as public key. These systems have a trusted
private key generator (PKG) whose task is to initialize the system and generate
master/public key pair. Given the master secret key, the PKG can compute users’
private key from their identity information. In such schemes, the key management
procedures are simplified. Since then, several practical identity-based signature
schemes have been proposed, but a satisfying identity-based encryption scheme [2]
from bilinear maps was first introduced untill 2001.

Signcryption is a new paradigm in public key cryptography, which was first
proposed by Zheng in 1997 [3]. It can simultaneously fulfill both the functions of
digital signature and public key encryption in a logically single step, and with a cost

∗
 This work is supported in part by The National Natural Science Foundation of China (60573048,

60773135, 90718007); The High Technology Research and Development Program of China
(863 Program) (2007AA01Z427，2007AA01Z450).

∗∗
 Corresponding author.

 The Analysis of an Efficient and Provably Secure IDTSC Scheme 211

significantly lower than that required by the traditional signature then-encryption
approach. Since then, several efficient signcryption schemes were proposed. Malone-
Lee [4] proposed an identity-based signcryption scheme that can offer non-
repudiation. Libert and Quisquater [5] proposed an identity–based signcryption
scheme that satisfies semantic security. Combining the threshold technique with
identity-based signcryption approach, Duan et al. [6] devised an identity-based
threshold signcryption scheme. However, Duan et al.’s scheme still adopts the method
that the master key is shared among n parties, and non-repudiation and semantic
security cannot be provided. In 2005, Peng and Li [7] proposed an ID-based threshold
signcryption scheme based on Libert and Quisquater’s ID-based signcryption scheme
[8]. However, Peng and Li’ scheme [7] does not provide the forward security, that is,
anyone who obtains the sender’s private key can recover the original message of a
signcrypted text. In addition, both Duan et al.’s scheme [6] and Peng and Li’s scheme
[7] do not consider the formal models and security proofs. Ma et al. [9] also proposed
a threshold signcryption scheme using the bilinear pairings. However, Ma et al.’s
scheme [9] is not ID-based. In 2008, Li and Yu first gives a provably secure ID-based
threshold signcryption scheme [10] based on the bilinear pairings and proves its
confidentiality under the Decisional Bilinear Diffie-Hellman assumption and its
unforgeability under the Computational Diffie-Hellman assumption in the random
oracle model.

Our contributions: In this paper, we point out that LY scheme [10] is not secure for
the signcryption can be easily forged by the appointed clerk, who is one of the
members and the clerk can impersonate the members to forge valid signcryption to
any receiver, then we give a secure version which satisfies confidentiality under the
DBDHP assumption and unforgeability under the CDHP assumption in the random
oracle model. Our scheme also turns out to be more efficient than the previously
proposed schemes.

Roadmap: The paper is organized as follows: In section 2 we give some
mathematical background which will be used in the paper, the formal model and
security notions of ID-based threshold signcryption scheme will be given in the
section 3, LY scheme[10] will be presented and discussed in section 4, then we present
our secure scheme in section 5, the security of the proposed scheme is proved under
the DBDH and CDHP assumptions and the efficiency is discussed in this section too,
section 6 concludes the paper.

2 Preliminaries

2.1 Bilinear Pairings

Bilinear pairing is an important primitive for many cryptographic schemes. In this
section, we briefly review some preliminaries that will be used throughout this paper.

Let 1G be an additive group of prime order q , generated by p , and let 2G be a

multiplicative group with the same order q. We assume that there is a bilinear map e

from 211 GGG →× with the following properties:

212 Z. Zhu, Y. Zhang, and F. Wang

(1) Bilinearity: Which means given elements 1 2 3 1, ,A A A G∈ , we have

1 2 3 1 3 2 3(,) (,) (,)e A A A e A A e A A+ = ⋅ , 1 2 3 1 2 1 3(,) (,) (,)e A A A e A A e A A+ = ⋅ ;

(2) Non-degeneracy: There exists 1 2 1,A A G∈ such that
21 2(,) 1Ge A A ≠ ;

(3) Computability: Which means that there exists an efficient algorithm to

compute 1 2(,)e A A , 1 2 1,A A G∀ ∈ .

Such pairings can be derived from Weil or Tate pairings on an elliptic curve over
finite field.

2.2 Related Complexity Assumptions

We consider the following problems in the group 1G of prime order q, generated

by p .

Definition 1. The Decisional Bilinear Diffie-Hellman problem (DBDHP) is, given a

generator p of a group G , a tuple (, ,)aP bP cP and an element 2h G∈ , to decide

whether (,)abch e P P= .

Definition 2. Given a generator p of a group G and a tuple (,)aP bP , the

Computational Diffie-Hellman problem (CDHP) is to compute abP .

Definition 3. The modified Generalized Bilinear Inversion (mGBI) problem: Given

2h G∈ and 1P G∈ , computes 1S G∈ such that (,)h e P S= .

3 Formal Model and Security Notions of IDTSC Scheme

3.1 Generic Scheme

A generic ID-based threshold signcryption scheme consists of the following five
algorithms.

Setup: Given a security parameter k , the private key generator (PKG) generates
the system’s public parameters params . Among the parameters produced by Setup

there is a key PubP that is made public. There is also a corresponding master

key s which is kept secret.

Extract: Given an identity ID , the PKG computes the corresponding private key

IDS and transmits it to its owner in a secure way.

Keydis: Given a private key IDS associated with an identity ID , the number of

signcryption members n and a threshold parameter t , this algorithm generates

n shares of IDS and provides each one to the signcryption members 1,... nM M . It

 The Analysis of an Efficient and Provably Secure IDTSC Scheme 213

also generates a set of verification keys that can be used to check the validity of each
shared private key. We denote the shared private keys and the matching verification

keys by 1,...{ }i i nS = and 1,...{ }i i ny = , respectively. Note that each (,)i iS y is sent to iM ,

then iM publishes iy but keeps iS secret.

Signcrypt: Give a message m, the private keys of t members 1,...{ }i i nS = in a sender

group AU with identity AID , a receiver’s identity BID , it outputs an ID-

based (,)t n threshold signcryptionσ on the message m .

Unsigncrypt: Give a ciphertextσ , the private key of the receiver
BIDS , the identity

of the sender group AID , it outputs the plaintext m or the symbol“ ⊥ ”. Ifσ is an

invalid ciphertext between the group AU and the receiver. We make the consistency

constraint that

If 1,...(,{ } ,)i i n BSigncrypt m S IDσ == , then (, ,)
BA IDm Unsigncrypt ID Sσ= .

3.2 Security Notions

We use the security notions for ID-based threshold signcryption schemes from LY
scheme [10] directly, they are indistinguishability against adaptive chosen ciphertext
attacks, unforgeability against adaptive chosen messages attacks and the robustness.

Definition 4 (Confidentiality). An ID-based threshold signcryption scheme (IDTSC)
is said to have the indistinguishability against adaptive chosen ciphertext attacks
property (IND-IDTSC-CCA2) if no polynomially bounded adversary has a non-
negligible advantage in the following game.

1) The challenger C runs the Setup algorithm with a security parameter k and
sends the system parameters to the adversary A .

2) A performs a polynomially bounded number of queries (these queries may be
made adaptively, i.e. each query may depend on the answers to the previous queries).

Key extraction queries: A chooses an identity ID .C computes IDS and sends it to A .

Signcryption queries: A produces a sender group iU with identity iID , an identity

jID and a plaintext m. C computes ()
iID iS Extract ID= and runs Keydis to output

n shared private keys 1,...{ }i i nS = .C sends 1,...(,{ } ,)i i n jSigncrypt m S ID= to A.

Unsigncryption queries: A produces a sender group iU with identity iID , an identity

jID , and a ciphertextσ , C generates the private key ()
jID jS Extract ID= and

sends the result of (, ,)
ji IDUnsigncrypt ID Sσ to A (this result can be

the“ ⊥ ”symbol ifσ is an invalid ciphertext)

214 Z. Zhu, Y. Zhang, and F. Wang

3) A generates two equal length plaintexts 0 1,m m , a sender group AU with

identity AID , and an identity BID on which he wants to be challenged. He can not

have asked the private key corresponding to BID in the first stage.

4)C takes a bit {0,1}Rb∈ and runs Keydis to output n shared private keys

1,...{ }i i nS = , C sends the result of 1,...(,{ } ,)b i i n BSigncrypt m S IDσ == to A .

5) A can ask a polynomially bounded number of queries adaptively again as in

the first stage. he cannot make a key extraction query on BID and cannot make an

unsigncryption query onσ to obtain the corresponding plaintext.

6) Finally, A produces a bit {0,1}Rb′∈ and wins the game if b b′= . The

advantage of A is defined as () 2 [] 1rAdv A P b b′= = − , where ()Adv A denotes

the probability that b b′= , Notice that the adversary is allowed to make a key

extraction query on identity AID in the above definition. On the other hand, it ensures

the forward security of the scheme, i.e. confidentiality is preserved in case the
sender’s private key becomes compromised.

Definition 5 (Unforgeability). An ID-based threshold signcryption scheme (IDTSC)
is said to have the existential unforgeability against adaptive chosen messages attacks
(EUF-IDTSC-CMA) if no polynomially bounded adversary has a non-negligible
advantage in the following game.

1) The challenger C runs the Setup algorithm with a security parameter k and
sends the system parameters to A .

2) A corrupts 1t − members in the sender group.
3) A performs a polynomially bounded number of queries (these queries may be

made adaptively, i.e. each query may depend on the answer to the previous queries).

Key extraction queries: As that in the Definition 4.

Private keys queries to the corrupted members: A chooses an identity
ID . C computes ()IDS Extract ID= and runs Keydis to output n shared private keys

1,...{ }i i nS = , C sends iS for 1,... 1i t= − to A .

Signcryption (Unsigncryption) queries: As that in the Definition 4.

4) Finally, A produces a new triple (, ,)A BID ID σ (i.e. a triple that was not

produced by the signcryption oracle), where the private key of AID was not asked in

the second stage and wins the game if the result of the

(, ,)
BA IDUnsigncrypt ID Sσ is not the“ ⊥ ”symbol.

The advantage of A is defined as the probability that it wins. Note that the

adversary is allowed to make a key extraction query on the identity BID in the above

 The Analysis of an Efficient and Provably Secure IDTSC Scheme 215

definition. Again, this condition corresponds to the stringent requirement of insider
security for signcryption [11].

Definition 6 (Robustness). An ID-based (,)t n threshold signcryption scheme

(IDTSC) is said to be robust if it computes a correct output even in the presence of a
malicious adversary that makes the 1t − corrupted members deviate from the normal
execution.

4 The LY Scheme and Its Security Analysis

4.1 The LY Scheme

The following paragraphs show the details of LY scheme [10].

Setup: Given k , PKG chooses groups 1G and 2G of prime order q (with 1G

additive and 2G multiplicative), a generator P of 1G , a bilinear map

1 1 2ˆ :e G G G× → , a secure symmetric cipher (,)E D and hash functions
*

1 1:{0,1}H G→ , 1
2 2: {0,1}nH G → , * *

3 :{0,1} qH Z→ . PKG chooses a

master-key *
R qs Z∈ and computes pubP sP= . Then PKG publishes system

parameters 1 2 1 1 2 3ˆ{ , , , , , , , , , , }pubG G n e P P E D H H H and keeps s secret.

Extract: Given an identity ID , PKG computes 1()IDQ H ID= and the private key

ID IDS sQ= . Then PKG sends the private key to its owner in a secure way.

Keydis: Suppose a threshold t and n satisfy1 t n q≤ ≤ ≤ . To share the private key

AIDS among the group AU , the trusted dealer performs the steps below:

1) Choose *
1 1 1,... t RF F G− ∈ , construct 1

1 1() ...
A

t
ID tF x S xF x F−

−= + + + and

compute ()iS F i= for 0,...,i n= . Note that 0 AIDS S= .

2) Send iS to iM for 0,...,i n= secretly. Broadcast 0 ˆ(,)
AIDy e S P= and

ˆ(,)j jy e F P= for 1,..., 1j t= − .

3) Each iM then checks whether his share iS is valid by checking whether
1

0
ˆ(,)

jt i
i jj

e S P y
−

=
= ∏ . If iS is not valid, iM broadcasts an error and requests a new

one.

Signcrypt: We assume that 1,... tM M are the t members who want to cooperate to

signcrypt a message m on behalf of the group AU , each iM (1)i t≤ ≤ uses Cheng et

al.’s ID-based signature scheme[14] to generate the partial signature and an appointed

216 Z. Zhu, Y. Zhang, and F. Wang

clerk C who is one of the t members, combines the partial signatures to generate the
final threshold signcryption.

1) Each iM chooses *
i R qx Z∈ , computes 1i iR x P= and 2i i pubR x P= and sends

1 2(,)i iR R to C .

2) C computes 1 1
1

t

i
i

R R
=

=∑ , 2 2
1

t

i
i

R R
=

=∑ 2ˆ(,)
BIDe R Qτ = , 2 ()k H τ= ,

()kc E m= ， 3 1(, ,)h H m R k= . Then C sends h to iM , 1,...,i t= .

3) iM computes the partial signature i i pub i iW x P h Sη= + and sends it to C ,

where 1

1,
() mod

t

i j j i
j i j qη −

= ≠
= − −∏ .

4) When receiving iM ’s partial signature iW , C verifies its correctness by

checking if the following equation holds:
1

1
0

ˆ ˆ(,) (,) ()
j

i

t
hi

i i pub
j

e P W e R P y η
−

=

= ⋅ ∏ .

If all signatures are verified to be legal, C computes
1

t

ii
W W

=
=∑ , otherwise

rejects it and requests a valid one. The final threshold signcryption is 1(, ,)c R Wσ =

Unsigncrypt: When receiving 1(, ,)c R Wσ = , Bob follows the steps below.

1) Compute 1ˆ(,)
BIDe R Sτ = and 2 ()k H τ= .

2) Recover ()km D c= .

3) Compute 3 1(, ,)h H m R k= and acceptσ if and only if the following equation

holds: 1ˆ ˆ(,) (,)
AID pube W P e R hQ P= + .

4.2 Security Analysis of the LY Scheme

The security risks depend on whether the clerkC is an honest clerk, we suppose C is the

jM , in the first signcryption process, C receives 1 2(,)i iR R′ ′ from iM 1,... ,i t i j= ≠ ,

C chooses *
j R qx Z′ ∈ , computes 1 j jR x P′ ′= , 2 j j pubR x P′ ′= ,

1 1
1

t

i
i

R R
=

′ ′=∑ ,

2 2
1

t

i
i

R R
=

′ ′=∑ , 2ˆ(,)
BIDe R Qτ ′′ = , 2 ()k H τ′ ′= , 1()kc E m′′ = ,

1 3 1 1(, ,)h H m R k′ ′= . Then C sends 1h to iM for 1,...,i t= . Each iM computes

the partial signature 1i i pub i iW x P h Sη′ ′= + , 1

1,
() mod

t

i j j i
j i j qη −

= ≠
= − −∏ and

 The Analysis of an Efficient and Provably Secure IDTSC Scheme 217

sends it toC . When receiving iM ’s partial signature iW ′ , C verifies by checking if the

following equation holds:
1

1
0

ˆ ˆ(,) (,) ()
j

i

t
hi

i i pub
j

e P W e R P y η
−

=

′ ′= ⋅ ∏ , otherwise rejects it

and requests a valid one .If all signatures are verified to be legal, C computes

1

t

ii
W W

=
′′ =∑ . The final signcryption is 1(, ,)c R Wσ ′′ ′ ′= .

In the second threshold signcryption process, C receives * *
1 2(,)i iR R from every iM ,

C will chooses * *
j R qx Z∈ , computes * *

1 j jR x P= , * *
2 j j pubR x P= , * *

1 1
1

t

i
i

R R
=

=∑ ,

* *
2 2

1

t

i
i

R R
=

=∑ , * *
2ˆ(,)

BIDe R Qτ = , * *
2 ()k H τ= , * *

2 3 2 1(, ,)h H m R k= ，C will

checks whether 1h and 2h are coprime, if not, chooses another ** *
j R qx Z∈ , if yes, C

computes *
*

2()
k

c E m= and sends 2h to iM , 1,...,i t= . Each iM computes the partial

signature * *
2i i pub i iW x P h Sη= + , 1

1,
() mod

t

i j j i
j i j qη −

= ≠
= − −∏ and sends it

toC . When receiving iM ’s signature *
iW , C verifies its correctness by checking whether

the following equation holds:
1

* *
1

0

ˆ ˆ(,) (,) ()
j

i

t
hi

i i pub
j

e P W e R P y η
−

=

= ⋅ ∏ . If all signatures

are verified to be legal,C computes
*

*

1

t

ii
W W

=
=∑ , otherwise rejects it and requests a

valid one. The final threshold signcryption is * * * *
1(, ,)c R Wσ = . In the third threshold

signcryption process, the clerk can impersonate all the t members to forge any valid

signcryption to any receiver, for the 1h and 2h are coprime, so there are two numbers
*, R qa b Z∈ which make the following equation holds: 1 2 1a h b h⋅ + ⋅ = . So we get the

value i iSη , 1,...,i t= , i j≠ from the following equations:

* *
2

* * * *
2 2i 1

* *
2 i i 2 1

2

* *
1 2 i 2 2

1 2

W

W W

(W) ()

() , 1,...

i i pub i i

i i pub i i i ipub i i

i i pub pub i i i

i pub

i i i i i i i

i i i i

W x P h S

W x P W R h Sx P h S

R x P x P R h S

R x P

a h S b h S a R b W R

a h b h S S i

η

ηη

η

η η
η η

⎧ = +
⎪

′ ⎧⎪ − = − =′= +⎪ ⎪⇒⎨ ⎨ ′ ′ ′= ′− = − =⎪ ⎪⎩
⎪ ′ ′=⎪⎩

′ ′⇒ ⋅ + ⋅ = ⋅ − + ⋅ −
= ⋅ + ⋅ ⋅ = = , ,t i j≠

218 Z. Zhu, Y. Zhang, and F. Wang

So to iM ’s new signature i i pub i iW x P h Sη= + , the part of i pubx P can be chosen

by C itself, and the part of i ih Sη can be computed by i ih Sη⋅ while the values h

and i iSη are known to C . C can impersonate all the t members to forge any valid

signcryption to any receiver.

5 Our Improved Scheme and Its Analysis

In this section, we first present our improved scheme, and then give the security
proofs based on the DBDHP and CDHP, the efficiency analysis will be in the last part
of this section.

5.1 Our Scheme

The proposed scheme involves four roles: PKG , a trusted dealer, a sender group

1{ ,... }A nU M M= with the identity AID and a receiver Bob with identity BID . The

following shows the details of our scheme.

Setup, Extract, Keydis: These algorithms are same as the LY scheme [10];

Signcrypt: Without loss of generality, we assume that 1,... tM M are the t members

who want to cooperate to signcrypt a message m on behalf of the group AU ,

each iM generate the partial signature and an appointed clerk C combines the partial

signatures to generate the final threshold signcryption.

1) iM chooses *
i R qx Z∈ , computes 1i iR x P= , 2 ˆ(,)

Bi ID i pubR e Q x P= and sends

1 2(,)i iR R to C ;

2) C computes 1 1
1

t

i
i

R R
=

=∑ , 2 2
1

t

i
i

R R
=

= ∏ , 2 2()k H R= , ()kc E m= ,

3 (,)h H m k= . Then C sends h to iM for 1,...,i t= ;

3) iM computes i i pub i iW x P h Sη= + , 1

1,
() mod

t

i j j i
j i j qη −

= ≠
= − −∏ ;

4) When receiving iM ’s signature iW ,C verifies its correctness by checking whether

equation holds:
1

1
0

ˆ ˆ(,) (,) ()
j

i

t
hi

i i pub
j

e P W e R P y η
−

=

= ⋅ ∏ ，if all partial signatures are

verified to be legal, C computes
1

t

ii
W W

=
=∑ , otherwise rejects it and requests a valid

one. The final signcryption is 1(, ,)c R Wσ = .

 The Analysis of an Efficient and Provably Secure IDTSC Scheme 219

Unsigncrypt: When receiving 1(, ,)c R Wσ = , Bob follows the steps below.

1) Computes 2 1ˆ(,)
BIDR e R S= , 2 2()k H R= ;

2) Recovers ()km D c= ;

 3) Computes 3(,)h H m k= and acceptsσ if and only if the following equation

holds: 1 1ˆ ˆ ˆ ˆ(,) (,) (,) (,)
A A

h
pub ID pub pub IDe W P e R P e Q P e P R h Q= ⋅ = + ⋅ .

5.2 Security Analysis

The correctness can be easily verified, the security analysis will focus on the
following theorems.

5.2.1 Confidentiality

Theorem 1 (Confidentiality). We assume that an adversary A who is able to
distinguish ciphertext during the game of Definition 4 with an advantage ε when

running in a time t and asking at most
1Hq 1H queries, at most

2Hq 2H queries, at

most
3Hq 3H queries, at most Kq key extraction queries, at most Sq signcryption

queries and at most Uq unsigncryption queries. There will be a distinguisher C

which can solve the DBDHP with an advantage

1 1

1

(2)(1) 1 1
() ((1))()

2 2 2 2

k
U U U
k k

H H

q q q
Adv C

q q

εε
+

− −+≥ − − =
⋅

 in a time

3

2
ˆ((3))H S S U eO t q q q q T+ ⋅ + + , where êT denotes the computation time of the

bilinear map.
The proof will be presented in the Appendix A.

5.2.2 Unforgeability
The acceptable security notion for signature schemes is unforgeability under chosen
message attack. Hess[12] presented an unforgeability notion for identity-based
signature against chosen message attack (UF-IDS-CMA). After that, Beak and
Zheng[13] defined unforgeability notion for IDTHS against chosen message attack
(UF-IDTHS-CMA) and gave the relationship between UF-IDS-CMA and UF-
IDTHS-CMA through Simulatability, and they had proved the following Lemma 1.
From these results, we can prove the following Theorem 2.

Definition 7. An ID-based threshold signature scheme is said to be simulatable if the
following conditions hold.

1) The private key distribution is simulatable: given the system parameters
params and the identity ID , there exists a simulator which can simulate the view of
the adversary on an execution of private key distribution.

2) The threshold signature generation is simulatable: given the system
parameters params, the identity ID , the message m , the corresponding signature

220 Z. Zhu, Y. Zhang, and F. Wang

1(,)R W , 1t − shares of the private key that matches to ID of the corrupted members,

and the corresponding verification keys, there exists a simulator which can simulate
the view of the adversary on an execution of threshold signature generation.

Lemma 1. If the identity-based threshold signature (IDTHS) scheme is simulatable
and the corresponding identity-based signature scheme is UF-IDS-CMA secure, then
the IDTHS is UF-IDTHS-CMA secure.

Theorem 2. Our identity-based threshold signcryption scheme satisfies unforgeability
under CDHP in the random oracle model.

Proof. The proposed scheme uses Cheng et al.’s ID based signature scheme[14]. Cheng
et al.’s scheme has been proved to be secure in the sense of unforgeability under the
Computational Diffie-Hellman (CDH) assumption in the random oracle model.
Therefore, we only need to prove the proposed scheme is simulatable. Our scheme
uses Baek and Zheng’s private key distribution scheme[14]. Baek and Zheng have
proved that their private key distribution scheme is simulatable in [13]. Now, we
prove the threshold signature generation is simulatable. Given the system parameters

params, the identity AID , the message m , the encryption key k , the corresponding

signature 1(,)R W , 1t − shares 1,2,... 1{ }i i tS = − of the private key
AIDS , the

corresponding verification keys ,....{ }j j o ty = . The adversary computes

3(,)h H m k= , i i pub i iW x P h Sη= + , 1,..., 1i t= − . Let ()f x be a polynomial of

degree 1t − such that (0)f W= , () if i W= , 1,..., 1i t= − . The adversary can

compute () if i W= , ,.....i t n= . So, the proposed scheme is secure in the sense of

unforgeability.

Theorem 3 (Robustness). The proposed ID-based threshold signcryption scheme is
robust against an adversary which is allowed to corrupt any 1t − members ,

where 2 1n t≥ − .

Proof: In the Keydis phase, each member iM can validate his private key share iS

using the published verification keys{ }
0,1,.... 1j j t

y
= −

. In the Signcrypt phase, any

1t − or fewer members can not generate a valid signcryption, and only t or more

members can generate a valid signcryption. The clerk C first verifies all the partial

signatures by
1

1
0

ˆ ˆ(,) (,) ()
j

i

t
hi

i i pub
j

e P W e R P y η
−

=

= ⋅ ∏ and then chooses the valid ones

to generate a threshold signcryption. Even if having corrupted up to 1t − members,
the adversary still cannot produce a valid threshold signcryption. While the clerk
C can get t valid partial signatures, thus can produce a valid threshold signcryption.

 The Analysis of an Efficient and Provably Secure IDTSC Scheme 221

5.3 Efficiency Analysis

We mainly consider the pairing operations which cost far more than the others
operations such as point scalar multiplications, exponentiations, and etc. From the
Table.1 in the Appendix B, we can see that both Duan et al.’s scheme[6] and Peng and
Li’s scheme[7] need 3t + 4 pairing computations while our scheme only needs 2t+3
pairing computations. The proposed scheme is more efficient than Duan et al.’s
scheme[6] and Peng and Li’s scheme[7]. Notice that the schemes proposed in [6] and
[7] do not give provable security proofs, also we notice that our scheme is a little
more efficient than the LY scheme [10].

6 Conclusion

Although Li and Yu pointed out that the scheme [10] they proposed in ICCCAS’2008
is the first provably secure ID-based threshold signcryption scheme, which is secure
against adaptive chosen ciphertext attacks and secure in the sense of unforgeability,
we show that signcryption is easily forged by the appointed clerk who is one of the
members and then give a secure version which we prove its confidentiality under the
Decisional Bilinear Diffie-Hellman assumption and its unforgeability under the
Computational Diffie-Hellman assumption in the random oracle model. The scheme
turns out to be more efficient than the previously proposed schemes.

References

[1] Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 341–349. Springer, Heidelberg
(1985)

[2] Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

[3] Zheng, Y.: Digital signcryption or how to achieve cost(signature& encryption)
cost(signature) +cost(encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS,
vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

[4] Malone-Lee, J.: Identity-based signcryption. Cryptology ePrint Archive (2002),
http://eprint.iacr.org/2002/098/

[5] Libert, B., Quisquater, J.J.: New identity based signcryption schemes from
Pairings.Cryptology ePrint Archive (2003),
http://eprint.iacr.org/2003/023/

[6] Duan, S., Cao, Z., Lu, R.: Robust ID-based threshold signcryption scheme form Pairings.
In: Proceedings of the 3rd international conference on Information security(Infosecu
2004), pp. 33–37. ACM Press, New York (2004)

[7] Peng, C., Li, X.: An identity-based threshold signcryption scheme with semantic security.
In: Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y.-m., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C.
(eds.) CIS 2005. LNCS (LNAI), vol. 3802, pp. 173–179. Springer, Heidelberg (2005)

[8] Libert, B., Quisquater, J.J.: A new identity based signcryption schemes from pairings. In:
Proc. 2003 IEEE information theory workshop, Paris, France, pp. 155–158 (2003)

222 Z. Zhu, Y. Zhang, and F. Wang

[9] Ma, C., Chen, K., Zheng, D., Liu, S.: Efficient and proactive threshold signcryption. In:
Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 233–243.
Springer, Heidelberg (2005)

[10] Li, F., Yu, Y.: An efficient and provably secure ID-Based threshold signcryption scheme.
In: Proc. International Conference on Communications, Circuits and Systems 2008 (IEEE
ICCCAS 2008) (2008); Cryptology ePrint Archive,

 http://eprint.iacr.org/2008/187
[11] An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In:

Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer,
Heidelberg (2002)

[12] Hess, F.: Efficient identity based signature schemes based on pairings. In: Nyberg, K.,
Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidelberg
(2003)

[13] Baek, J., Zheng, Y.: Identity-based threshold signature scheme from the bilinear pairings.
In: IAS 2004 track of ITCC 2004. IEEE Computer Society, pp. 124–128 (2004)

[14] Cheng, X., Liu, J., Wang, X.: An identity-based signature and its threshold version. In:
Proc.19th International Conference on Advanced Information Networking and
Applications -AINA 2005, pp. 973–977 (2005)

Appendix A

Proof. We assume that C receives a random instance (, , , ;)P aP bP cP h of the

DBDHP, his goal is to decide whether ˆ(,)abch e P P= or not. C will run A as a

subroutine and act as A ’s challenger in the IND-IDTSC-CCA2 game. During the

game, A will consult C for answers to the random oracles 1H , 2H and 3H . These

answers are randomly generated, but to maintain the consistency and to avoid

collision, C keeps three lists 1L , 2L , 3L respectively to store the answers. The

following assumptions are made.

1) A will ask for 1()H ID before ID is used in any key extraction query,

signcryption query and unsigncryption query.
2) Ciphertext returned from a signcryption query will not be used by A in an

unsigncryption query.

At the beginning of the game, C gives A the system parameters with pubP cP= ,

c is unknown to C . This value simulates the master-key value for the PKG . Then,

C chooses a random number
1

{1,2,..., }Hj q∈ , A asks a polynomially bounded

number of 1H queries on identities of his choice. At the j-th 1H query, C answers

by 1()jH ID bP= . For queries 1()eH ID with e j≠ , C chooses *
e R qb Z∈ , puts

the pair (;)e eID b in list 1L and answers 1()e eH ID b P= . We now explain how the

other kinds of queries are treated byC .

 The Analysis of an Efficient and Provably Secure IDTSC Scheme 223

2H queries: On a 2 2,()eH R query, C searches a pair 2,(,)e eR k in the list 2L . If such

a pair is found, C answers ek , otherwise he answers A by a random binary

sequence 1{0,1}n
Rk ∈ such that no entry (,)eR k exists in 2L (in order to avoid

collisions on 2H) and puts the pair (,)eR k into 2L .

3H queries: On a 3(,)e eH m k query, C checks if there exists 3,(, ,)e e em k h in 3L .

If such a tuple is found , C answers 3,eh , otherwise he chooses *
e R qh Z∈ , gives it as

an answer to the query and puts the tuple 1,(, ,)e e em R h into 3L .

Key extraction queries: A asks a question ()eExtract ID , if e jID ID= , then C

fails and stops. If e jID ID≠ , then the list 1L must contain a pair (,)e eID b for some

eb (this indicates C previously answered 1()e eH ID b P= on an 1H query on eID .

The private key corresponding to eID is e pub eb P cb P⋅ = , it is computed by C and

returned to A .

Signcryption queries: At any time, A can perform a signcryption query for a

plaintext m , a sender group AU with identity AID and a receiver with identity BID .

We have the following three cases to consider.

– Case 1: A jID ID≠ . C computes the private key
AIDS corresponding to AID

by running the key extraction query algorithm. C runs Keydis to output n shared

private keys 1,...,{ }i i nS = , finally, C answers the query by a call to

1,...(,{ } ,)
Bi i t IDSigncrypt m S Q= .

– Case 2: A jID ID= and B jID ID≠ . C chooses *, R qx h Z′′∈ and computes

1 AIDR xP h Q′′= − ⋅ , pubW x P= ⋅ and 2 1ˆ(,)
BIDR e R S= (C could obtain

BIDS

from the key extraction algorithm because B jID ID≠). C runs the 2H simulation

algorithm to find 2 2()k H R= and computes ()kc E m= . C then checks

if 3L already contains a tuple (, ,)e em k h′ with h h′′ ′≠ . In this case, C repeats the

process with another random pair (,)x h′′′ until finding a tuple (, ,)e em k h′′′ whose

first three elements do not appear in a tuple of the list 3L . This process repeats at most

3H Sq q+ times as 3L contains at most
3H Sq q+ entries (A can issue

3Hq 3H queries

and Sq signcryption queries, while each signcryption query contains a

single 3H query). When an appropriate pair (,)x h′′ is found, the ciphertext

224 Z. Zhu, Y. Zhang, and F. Wang

1(, ,)c R Wσ = appears to be valid from A ’s viewpoint. C has to compute one

pairing operation for each iteration of the process.

– Case 3: A jID ID= and B jID ID= . C chooses *, R qx h Z′ ′∈ , computes

1 AIDR x P h Q′ ′ ′= − ⋅ , pubW x P′ ′= ⋅ , and chooses 2 2RR G′ ∈ , 1{0,1}n
Rk′ ∈ such

that no entry (,)k′⋅ is in 2L and computes ()kc E m′= . C then checks if 3L already

contains a tuple 1(, ,)m R h′ , If not, C puts the tuple 1(, ,)m R h′ into 3L and

2(,)R k′ ′ into 2L . Otherwise, C chooses another random pair (,)x h′ ′ and repeats

the process as above until he finds a tuple 1(, ,)m R h′ whose first two elements do not

appear in an entry of 3L . Once an appropriate pair (,)x h′ ′ is found, C gives the

ciphertext 1(, ,)c R Wσ ′′ ′ ′= to A . As A will not ask for the unsigncryption ofσ ′ ,

he will never see thatσ ′ is not a valid ciphertext of the plaintext m for

identities AID and BID .

Unsigncryption queries: For a unsigncryption query on a ciphertext
* * * *

1(, ,)c R Wσ = between a sender group with identity AID and a receiver with

identity BID . We have the following two cases to consider.

–Case 1: B jID ID= . C always answers A that *σ is invalid.

–Case 2: B jID ID≠ . C computes * *
2 1ˆ(,)

BIDR e R S= (C could obtain
BIDS

from the key extraction algorithm, because B jID ID≠). C then runs the 2H

simulation algorithm to obtain * *
2 2()k H R= and computes *

* ()
k

m D c= . Finally,

C runs the 3H simulation algorithm to obtain * * *
3(,)h H m k= and checks whether

** *
1ˆ ˆ ˆ(,) (,) (,)

A

h
pub ID pube W P e R P e Q P= ⋅ holds. If the above equation does not

hold, C rejects the ciphertext. Otherwise C returns *m . It is easy to see that, for all

queries, the probability to reject a valid ciphertext does not exceed
1

U

H

q
q .

After the first stage, A picks a pair of identities on which he wishes to be

challenged. Note that C fails if A has asked a key extraction query on jID during the

first stage. We know that the probability for C not to fail in this stage

is 1

1

()H K

H

q q
q

−
, furthermore, with a probability exactly

1

1
()H Kq q− , A

 The Analysis of an Efficient and Provably Secure IDTSC Scheme 225

chooses to be challenged on the pair (,)i jID ID with i j≠ . Hence the probability

that A ’s response is helpful to C is
1

1
Hq . If A has submitted a key extraction query

on jID , C fails , because he is unable to answer the question. On the other hand,

if A does not choose (,)i jID ID as target identities, C fails too. A outputs two

plaintexts 0m and 1m . C chooses {0,1}Rb∈ and signcrypts bm and sets 1R aP′ = ,

obtains 2 ()k H h′ = (where h is C candidate for the DBDH problem) from the

2H simulation algorithm, and computes ()b k bc E m′= .Then C chooses 2RW G′∈

and sends the ciphertext 1(, ,)bc R Wσ ′′ ′= to A .

A then performs a second series of queries. At the end of the simulation, he
produces a bitb′ for which he believes the relation

1,...(,{ } ,)b i i t jSigncrypt m S IDσ ′ =′ = holds. At this moment, if b b′ = , C outputs

ˆ(,)abch e P P= is true , and the DBDH problem has been solved, otherwise C stops

and outputs “failure”.
Taking into account all the probabilities that C will not fail its simulation, the

probability that A chooses to be challenged on the pair (,)i jID ID , and also the

probability that A wins the IND-IDTSC-CCA2 game, the value of ()Adv C is

calculated as follows:

1 1

1

(2)(1) 1 1
() ((1))()

2 2 2 2

k
U U U
k k

H H

q q q
Adv C

q q

εε
+

− −+≥ − − =
⋅

Appendix B

Table 1. Efficiency comparison

The schemes Signcrypt Unsigncrypt Provable security

(Y/N)

Against Clerk attacks

(Y/N)

Duan et al. [6] 3t 4 N Y

Peng and Li [7] 3t 4 N Y

LY[10] 2t+1 3 Y N

Our scheme 2t 3 Y Y

Leaky Random Oracle
(Extended Abstract)

Kazuki Yoneyama1,	, Satoshi Miyagawa2,		, and Kazuo Ohta1

1 The University of Electro-Communications.
2 NTT DoCoMo, Inc.

yoneyama@ice.uec.ac.jp

Abstract. This work focuses on vulnerability of hash functions due to
sloppy usage or implementation in the real world. If our cryptographic
research community succeeded in development of perfectly secure ran-
dom function as random oracle, it might be broken in some sense by
invalid uses. In this paper, we propose a new variant of the random ora-
cle model in order to analyze security of cryptographic protocols under
the situation of an invalid use of hash functions. Our model allows ad-
versaries to obtain contents of the hash list of input and output pairs ar-
bitrarily. Also, we analyze security of several prevailing protocols (FDH,
OAEP, Cramer-Shoup cryptosystem, Kurosawa-Desmedt cryptosystem,
NAXOS) in our model. As the result of analyses, we clarify that FDH
and Cramer-Shoup cryptosystem are still secure but others are insecure
in our model. This result shows the separation between our model and
the standard model.

Keywords: random oracle model, standard model, hash list, provable
security, leakage.

1 Introduction

Hash functions are one of most important building blocks of cryptographic pro-
tocols. Indeed, hash functions are widely used various protocols, e.g., digital
signature, public-key cryptosystem, authenticated key exchange, etc.

In the practical sense, hash functions are used in order to hide private in-
formation to other parities in the protocol. The spreading use of transaction
by small electronic devices has been encouraging researchers to develop an ef-
ficient and practical security system in a limited resources environment. Since
computational costs of hash functions are lower than that of public-key cryp-
tosystem, hash functions is received much attention to construct protocols for
such low-power devices.

In the theoretical sense, hash functions are frequently modeled as random
oracles [1]. Random oracle is an idealized random function which is usable for
� Supported by JSPS Research Fellowships for Young Scientists.

�� This work was partially done while the author was a student at the University of
Electro-Communications, Japan.

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 226–240, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Leaky Random Oracle 227

parties and adversaries in the protocol. We use random oracle model (ROM)
(i.e., executed with random oracles) as a technique in order to prove security of
various protocols. Mostly, proofs with ROM are easier than the model without
random oracles, i.e., the standard model (SM), and can provide tight security
reductions. Thus, ROM is a useful tool for the provable security.

On the other hand, Canetti et al. [2,3] showed that there are digital signature
schemes and public-key cryptosystems which are secure in ROM but insecure if
random oracles are instantiated by real hash functions. Thus, recently, proofs
with ROM may seem to be unfavorable for practical uses. However, since to
prove security of protocols in SM is generally hard, ROM still has an important
role to design new protocols as the guideline for the provable security.

1.1 Motivation

Canetti et al.’s impossibility result would be avoidable if a perfectly secure hash
function which has all capabilities of random oracles was developed. If so, does
the protocol which is proved security in ROM keep its security if random ora-
cles are instantiated by such perfectly secure hash functions? However, in the
practical scenario, an unexpected event may occur on hash functions but does
not occur on random oracles. In particular, we focus on vulnerability of hash
functions due to sloppy usage or implementation in the real world.

Canetti and Krawczyk [4] formulated a security notion of authenticated key
exchange. Their definition captured security under the situation where an
ephemeral secret information (local randomness) is leaked. These leakages may
occur in the case of that a storage or memory which save a local randomness is
attacked by various types of attack or the case of that a randomness generator
is corrupted. Note that, such a type of vulnerability is not caused by errors of
protocol itself but caused by sloppy usages or implementations.

In this work, we apply this view to hash functions. That is, we consider the
situation that pairs of inputs and outputs (contents of the hash list) of hash
functions can be leaked to adversaries. These leakages may also occur by sloppy
usages or implementations. For example, the hash list may remain in the memory
for reuse of hash values in order to reduce computational costs or for failing to
release temporary memory area, then contents of the memory may be revealed
by various attacks, e.g., malicious Trojan Horse programs, Cold Boot Attacks
[5]. Thus, even if we successfully developed exceedingly secure hash functions,
such a leakage might be possible.

In this paper, we formulate a new model capturing the above situation in
order to discuss security (or insecurity) of protocols which use hash functions as
building blocks when such a leakage of the hash list occurs. In order to concen-
trate effects of the leakage, we suppose that hash functions are ideal as random
oracles but contents of the hash list can be leaked to adversaries. By using this
model, we give a new criterion of security in ROM and analyze several prevailing
protocols.

228 K. Yoneyama, S. Miyagawa, and K. Ohta

1.2 Our Contribution

Our main contributions are formulating a new variant of ROM, named leaky ran-
dom oracle model (LROM), to capture the leakage of the hash list and analyzing
security and insecurity of prevailing protocols in our model.

Leaky Random Oracle Model. Our model (LROM) allows adversaries to
obtain contents of the hash list of input and output pairs in arbitrary timings.
Thus, virtually, adversaries always can observe the addition of each hash value
and can know the timing of the addition. We model the ordinary query in order
to obtain a hash value to (leaky) random oracle as hash query and the special
query in order to obtain contents of hash list to leaky random oracle as leak
query. Therefore, LROM is trivially stronger than ROM, i.e., a secure protocol
in LROM is also secure in ROM.

Security Analyses of Protocols. By using LROM, we can confirm whether
each cryptographic protocol is secure or not if the leakage of the hash list occurs.
In this paper, we choose five prevailing protocols for analyzing security in LROM
and obtain the result of analyses as follows;

– FDH: is secure in both ROM and LROM,
– OAEP: is secure in ROM but insecure in LROM,
– Cramer-Shoup cryptosystem: is secure in both SM and LROM,
– Kurosawa-Desmedt cryptosystem: is secure in SM but insecure in

LROM, and
– NAXOS: is secure in ROM but insecure in LROM.

Separation from the standard model. Our result of analyses shows the
separation between our model and the standard model because of two following
observations;

– FDH is secure in LROM under the assumption of trapdoor permutation.
However, Dodis et al. [6] showed that FDH is not provable in SM under the
same assumption.

– Kurosawa-Desmedt cryptosystem is secure in SM under the DDH assump-
tion, the assumption of universal hash function family and the assumption
of symmetric key encryption. However, Kurosawa-Desmedt cryptosystem is
insecure in LROM by instantiating hash functions by leaky random oracles
under same assumptions.

Difference from randomness revealing. Also, our result shows the differ-
ence between our model and ROM under randomness revealing because of the
following observation;

– NAXOS is secure in ROM under the leakage of local randomness. However,
NAXOS is insecure in LROM even if there is no leakage of local randomness.

Leaky Random Oracle 229

1.3 Related Works

Some studies consider modeling of weak random oracles and analyze protocols in
their model. Nielsen [7] introduced the non-programmable random oracle model
by restricting the simulation of random oracle as the simulator can only set
answers of random oracles according to some restriction. Liskov [8] showed the
way to construct weak hash functions by adding an additional oracle which
can break some property of random oracles, e.g., one-wayness and collision-
resistance. Pasini and Vaudenay [9] applied Liskov’s model into analyses of the
hash-and-sign paradigm. Unruh [10] formulated a variant of ROM by giving
oracle-dependent auxiliary inputs to adversaries. In this setting, adversaries can
get an auxiliary input that can contain information about the random oracle.
Numayama et al. [11] relaxed Liskov’s model and analyzed digital signature
schemes in their model.

Therefore, previous works studied on effects into security of various protocols
by vulnerability of hash functions itself. On the other hand, our LROM is dif-
ferent with these on the point of that LROM focuses on vulnerability of hash
functions due to sloppy usages or implementations.

2 Leaky Random Oracle Model

ROM is one of techniques for provable security under idealized hash functions
by using random oracles. Random oracle models truly idealized hash function
which locally has the hash list of inputs and outputs. LROM is a variant of ROM
which allows adversaries to obtain contents of the hash list in arbitrary timing.
Thus, adversaries can correspond an input to the random oracle and an output
(hash value). The definition of LROM is as follows;

Definition 1 (Leaky Random Oracle Model). LROM is a model assuming
the leaky random oracle. We suppose a hash function H : X → Y such that
xi ∈ X, yi ∈ Y (i is an index), and X and Y are both finite sets. Also, let LH

be the hash list of H. We say H is a leaky random oracle if H can be simulated
by the following procedure;

Initialization: LH ← ⊥
Hash query: For a hash query xi to H, behave as follows;

<If xi ∈ LH >
Find yi corresponding to xi from LH and output yi as the answer to the hash
query.
<If xi �∈ LH >
Choose yi ∈ Y randomly, add the pair (xi, yi) to LH and output yi as the
answer to the hash query.

Leak query: For a leak query to H, output all contents of the hash list.

3 Security Analysis of FDH in LROM

Full Domain Hash (FDH) [1] is secure signature scheme in ROM. In this section,
we consider security of FDH in LROM.

230 K. Yoneyama, S. Miyagawa, and K. Ohta

3.1 FDH

FDH is based on trapdoor one-way permutations. The description of FDH is as
follows:

Key generation: For input k, output a signing key (sk = f−1) and a veri-
fication key (vk = f) such that (f, f−1, Dom) ← G(1k) where Dom is the
domain of f and G is a trapdoor permutation generator.

Signature generation: For input a message m ∈ {0, 1}∗, compute y = H(m)
and output a signature σ = f−1(y) where H : {0, 1}∗ → Dom is a hash
function.

Signature verification: For inputs a message m and a signature σ, compute
y′ = f(σ), verify y′ ?= H(m). If the verification is valid, output 1, otherwise,
output 0.

In [1], security of FDH in ROM is proved as follows;

Lemma 1 (Security of FDH in ROM [1]). If a trapdoor permutation f is
one-way, then FDH is existentially unforgeable under adaptively chosen message
attacks (EUF-ACMA) where H is modeled as the random oracle.

3.2 Security of FDH in LROM

We can also prove the security of FDH in LROM like in ROM.

Theorem 1 (Security of FDH in LROM). If a trapdoor permutation f is
one-way, then FDH satisfies EUF-ACMA.1

Proof. Let F be a forger which breaks EUF-ACMA of FDH. We construct an
inverter I which breaks one-way security of the trapdoor permutation f , i.e.,
given (f, Dom, y) I outputs f−1(y). We suppose that F does not repeat the
same query as previous hash queries to the leaky random oracle H or as previous
signing queries to the signing oracle SO. Let LH be the local hash list of the
leaky random oracle H . LH consists of tuples (xi, H(xi), zi) (0 ≤ i ≤ qH) where
zi is an intermediate value.2 The concrete construction of I is as follows. Note
that, “ ∗ ” in a tuple (x, ∗, ∗) means wildcard.

Input: (f, Dom, y) s.t. (f, f−1, Dom) ← G(1k) and y
R← Dom

Output: f−1(y)
Step 0: i∗ R← {0, qH − 1}, LH ←⊥ (⊥ is null string), i ← 0.
Step 1: Send f to F as the input.
Step 2: When F asks a hash query xi to H , then behave as follows:

<If ((xi, ∗, ∗) /∈ LH) ∧ (i∗ �= i) >

1 In this paper, we omit concrete security bounds in the proof owing to lack of space.
2 The hash list which F can access has the different form (i.e., the hash list consists

of (xi, H(xi))) than LH because zi is only used for the proof and does not appear
in the real protocol.

Leaky Random Oracle 231

Generate zi ∈ Dom and compute wi = f(zi). Add (xi, wi, zi) to LH and
return wi to F as the answer. i ← i + 1.
<If ((xi, ∗, ∗) /∈ LH) ∧ (i∗ = i) >
Generate wi ∈ Dom. Add (xi, y, error) to LH and return y to F as the
answer. i ← i + 1.
<If (xi, ∗, ∗) ∈ LH >
Find w′ corresponding to xi from LH and return w′ to F as the answer.
i ← i + 1.

Step 3: When F asks a signing query xi to SO, then behave as follows:
<If (xi, ∗, ∗) ∈ LH >
Find z′ corresponding to xi from LH . If z′ = error, then abort. Otherwise,
return z′ to F as the answer. i ← i + 1.
<If (xi, ∗, ∗) /∈ LH >
Generate zi ∈ Dom and compute wi = f(zi). Add (xi, wi, zi) to LH and
return zi to F as the answer. i ← i + 1.

Step 4: When F asks a leak query to H , then hand all pairs of input and
output {(x, w)} to F . Note that, do not hand intermediate value z.

Step 5: When F outputs (x∗, σ∗), then check y
?= f(σ∗). if y = f(σ∗), then

output σ∗ as f−1(y). Otherwise, abort.

We show the success probability of I.
In Step 4, I has to return the hash list to F as this simulation is indistin-

guishable from the output of the leaky random oracle. Then, each output value
w is uniformly distributing on Dom because z is uniformly chosen from Dom
and f is a permutation. Thus, this simulation is perfect.

Abort1 denote the event which I aborts for any query in Step 3, Abort2 denote
the event which I aborts in Step 5 and let Abort = Abort1 ∨ Abort2. Then, we
estimate the probability which I does not abort (Pr[¬Abort1] and Pr[¬Abort2]).

By the simulation, the event which I aborts in Step 3 occurs with 1
qH+qS

per every query to the signing oracle. Therefore, the probability that the event
which I does not abort in Step 3 occurs for all queries to the signing oracle
(Pr[¬Abort1]) is (1− 1

qH+qS
)qS .

By the simulation, the event which I does not abort in Step 5 occurs with 1
qH

because the event occurs only in the case of that y = f(σ∗) holds.
Thus, we obtain

ε′ = Pr[VerFDH(x∗, σ∗, f) = 1 ∧ ¬Abort]
= Pr[VerFDH(x∗, σ∗, f) = 1|¬Abort] · Pr[¬Abort]
= ε · Pr[¬Abort]
= ε · Pr[¬Abort1 ∧ ¬Abort2]
= ε · Pr[¬Abort1] Pr[¬Abort2]

= ε ·
(
1− 1

qH + qS

)qS · 1
qH

232 K. Yoneyama, S. Miyagawa, and K. Ohta

where VerFDH is the verification algorithm of FDH, ε′ is the success probability
of I and ε is the success probability of F . ��

By the same reason, we can also prove security of PFDH [12] in LROM.

4 Security Analysis of OAEP in LROM

Optimal Asymmetric Encryption Padding (OAEP) [13] is secure padding scheme
for asymmetric encryptions in ROM. In this section, we consider security of
OAEP in LROM.

4.1 OAEP

OAEP is based on trapdoor partial-domain one-way permutations. We omit
the detailed definition of trapdoor partial-domain one-way permutations. Please
refer to [14].

The description of OAEP is as follows:
Key generation: For input k, output an encryption key (ek = f) and a

decryption key (dk = f−1) such that (f, f−1, Dom = {0, 1}k0 × {0, 1}k1) ←
G(1k) where G is a trapdoor permutation generator and k0 + k1 < k.

Encryption: For input a message m ∈ {0, 1}n, generate randomness r
R←

{0, 1}k0, compute x = (m||0k1) ⊕ G(r) and y = r ⊕ H(x), and output a
ciphertext c = f(z) for z = x||y where “ || ” means concatenation, H :
{0, 1}n+k1 → {0, 1}k0 and G : {0, 1}k0 → {0, 1}n+k1 are hash functions, and
n = k − k0 − k1.

Decryption: For inputs a ciphertext c, compute z = f−1(c), parse z as x||y
and reconstruct r = y⊕H(x) where |x| = n+k1 and |y| = k0. If [x⊕G(r)]k1

?=
0k1 holds, output m = [x⊕G(r)]n as the plaintext corresponding to c where
[a]b denotes the b least significant bits of a and [a]b denotes the b most
significant bits of a. Otherwise, reject the decryption as an invalid ciphertext.

In [14], security of OAEP in ROM is proved as follows;

Lemma 2 (Security of OAEP in ROM [14]). If the trapdoor permutation f
is partial-domain one-way, then OAEP satisfies IND-CCA where H and G are
modeled as random oracles.

4.2 Security of OAEP in LROM

OAEP is secure in ROM but, indeed, is insecure in LROM. More specifically,
we can show OAEP does not even satisfy one-wayness under chosen-plaintext
attacks (OW-CPA) in LROM.

Theorem 2 (Security of OAEP in LROM). Even if the trapdoor permu-
tation f is partial-domain one-way, OAEP does not satisfy OW-CPA where H
and G are modeled as leaky random oracles.

Leaky Random Oracle 233

Proof. We construct an adversary A which successfully plays OW-CPA game by
using leak queries to H and G. Let LH and LG be hash lists of leaky random
oracles H and G respectively. LH contains tuples of (xi, H(xi)) (0 ≤ i ≤ qH −1)
and LG contains tuples of (rj , G(rj)) (0 ≤ j ≤ qG − 1) where qH is the number
of queries to H and qG is the number of queries to G. The construction of A is
as follows;

Input : f
Output : m∗
Step 1 : In arbitrary timing, output (challenge, state) and obtain the challenge

ciphertext c∗ of a plaintext m∗.
Step 2 : Given input f and c∗, ask the leak query to H and G, obtain LH and
LG, and compute m∗ as follows; For each content (xi, H(xi)), (rj , G(rj)) of
LH and LG, compute c′ = f(xi||(rj ⊕H(xi))). If find the pair ((r∗, G(r∗)),
(x∗, H(x∗))) such that ((c′ = c∗) ∧ ([xi ⊕ G(rj)]k1 = 0k1)) holds, compute
m∗ = [x∗ ⊕G(r∗)]n.

Step 3 : Output m∗ as the plaintext of c∗.

Therefore, A can obtain m∗ corresponding to c∗.
We show the success probability of A. When m∗ is encrypted to c∗, r∗ and x∗

such that x∗ = (m∗||0k1) ⊕ G(r∗) are certainly asked to G and H respectively
because c∗ is generated obeying the protocol description. Thus, LH and LG

contain the pair ((r∗, G(r∗)), (x∗, H(x∗))) such that ((c′ = c∗)∧([xi⊕G(rj)]k1 =
0k1)) holds, and A can obtain m∗ without fail. Therefore, A successfully plays
the OW-CPA game. ��
By the similar procedure (i.e., same procedure as the simulation of the decryption
oracle in the proof in ROM), we can also show insecurity of Fujisaki-Okamoto
conversion [15] in LROM.

5 Security Analysis of Cramer-Shoup cryptosystem in
LROM

Cramer-Shoup cryptosystem [16] is secure asymmetric encryption scheme in SM.
In this section, we consider security of Cramer-Shoup cryptosystem in LROM.

5.1 Cramer-Shoup Cryptosystem

Cramer-Shoup cryptosystem is based on the Decisional Diffie-Hellman (DDH)
assumption and universal one-way hash function family. We omit the definition
of DDH assumption and universal one-way hash function. Please refer to [16].

The description of Cramer-Shoup cryptosystem is as follows:
Key generation: For input k, generate a k-bit prime q. Choose g1, g2 ∈ G

randomly and generate a decryption key (dk = (x1, x2, y1, y2, z) ∈ Z5
q) and

public information (c, d, h) such that c = gx1
1 gx2

2 , d = gy1
1 gy2

2 and h = gz
1 .

Next, choose a hash function H from a family of universal one-way hash
functions and output an encryption key ek = (g1, g2, c, d, h, H) and the de-
cryption key dk.

234 K. Yoneyama, S. Miyagawa, and K. Ohta

Encryption: For input a message m ∈ G, choose r ∈R Zq, compute u1 = gr
1 ,

u2 = gr
2 , e = hrm, α = H(u1, u2, e) and v = crdrα, and output a ciphertext

c = (u1, u2, e, v).
Decryption: For inputs a ciphertext c=(u1, u2, e, v), compute α=H(u1, u2, e)

and verify whether ux1+y1α
1 ux2+y2α

2
?= v holds or not by using x1, x2, y1, y2 ∈

Zq. If the verification holds, then output the message m = e
u1z by using

z ∈ Zq. Else if, reject the decryption as an invalid ciphertext ⊥.

In [16], security of Cramer-Shoup cryptosystem in SM is proved as follows;

Lemma 3 (Security of Cramer-Shoup cryptosystem in SM [16]). If the
hash function H is chosen from a family of universal one-way hash functions
and the DDH assumption of the group G holds, then Cramer-Shoup cryptosystem
satisfies IND-CCA.

5.2 Security of Cramer-Shoup Cryptosystem in LROM

We can also prove security of Cramer-Shoup cryptosystem in LROM like in SM.

Theorem 3 (Security of Cramer-Shoup cryptosystem in LROM). If
the DDH assumption of the group G holds, then Cramer-Shoup cryptosystem
satisfies IND-CCA where H is modeled as a leaky random oracle.

Owing to lack of space, we will give the proof of Theorem 3 in the full version.
The outline of the proof is similar to the proof of Lemma 3.

The intuition of the reason why we can prove the security of Cramer-Shoup
cryptosystem in LROM as same as SM is as follows; In the case of OAEP,
we can construct the successful adversary by applying the simulation of the
decryption oracle in the proof in SM. However, in the case of Cramer-Shoup
cryptosystem, the simulation of the decryption oracle does not need information
of the hash lists. Moreover, all inputs and outputs of hash function H are publicly
known because a ciphertext contains (u1, u2, e) which are the inputs to the hash
function. Naturally, adversaries can know the input and the output in each
session. Therefore, the leak query in LROM cannot be advantage of adversaries.

6 Security Analysis of Kurosawa-Desmedt Cryptosystem
in LROM

Kurosawa-Desmedt cryptosystem [17] is secure hybrid encryption scheme in
SM. In this section, we consider security of Kurosawa-Desmedt cryptosystem
in LROM.

6.1 Kurosawa-Desmedt Cryptosystem

Kurosawa-Desmedt cryptosystem is based on the DDH assumption, a special
type of universal one-way hash functions, and a symmetric key encryption scheme
which satisfies IND-CCA and ε-rejection secure for negligible ε. We omit the

Leaky Random Oracle 235

detailed definition of IND-CCA and ε-rejection for symmetric key encryption
schemes. Please refer to [17]. The description of Kurosawa-Desmedt cryptosys-
tem is as follows:
Key generation: For input k, randomly choose two distinct generators g1, g2

of G and (x1, x2, y1, y2) ∈ Z4
q , and compute a = gx1

1 gx2
2 , b = gy1

1 gy2
2 . Next,

choose a hash function H from a family of a special type of universal one-way
hash functions, and output an encryption key ek = (g1, g2, a, b, H) and the
decryption key dk = (x1, x2, y1, y2).

Encryption: For input a message m ∈ {0, 1}n, generate randomness r
R← Zq,

compute u1 = gr
1 , u2 = gr

2, α = H(u1, u2), v = arbrα, K = G(v) and the
encryption χ of m under the key K using a symmetric key encryption scheme
SKE, and output a ciphertext c = (u1, u2, χ).

Decryption: For inputs a ciphertext c, compute α = H(u1, u2), v =
ux1+y1α

1 ux2+y2α
2 , K = G(v). Next, decrypt χ under the key K using SKE

and output the resulting decryption.

In [17], security of Kurosawa-Desmedt cryptosystem in SM is proved as follows;

Lemma 4 (Security of Kurosawa-Desmedt cryptosystem in SM [17])
If the hash function H is chosen from a family of a special type of universal one-
way hash functions, the hash function G is uniformly distributed over {0, 1}k if v
is uniformly distributed over G, SKE satisfies IND-CCA and ε-rejection secure
for negligible ε, and the DDH assumption of the group G holds, then Kurosawa-
Desmedt cryptosystem satisfies IND-CCA.

6.2 Security of Kurosawa-Desmedt Cryptosystem in LROM

Kurosawa-Desmedt cryptosystem is secure in ROM but, indeed, is insecure in
LROM. More specifically, we can show Kurosawa-Desmedt cryptosystem does
not even satisfy OW-CPA in LROM.

Theorem 4 (Security of Kurosawa-Desmedt cryptosystem in LROM).
Even if SKE satisfies IND-CCA and ε-rejection secure for negligible ε, and the
DDH assumption of the group G holds, Kurosawa-Desmedt cryptosystem does
not satisfy OW-CPA where H and G are modeled as leaky random oracles.

Proof. We construct an adversary A which successfully plays OW-CPA game by
using the leak query to G. Let LH and LG be hash lists of leaky random oracles
H and G respectively. LH contains tuples of ((u1, u2)i, H((u1, u2)i)) (0 ≤ i ≤
qH − 1) and LG contains tuples of (vj , G(vj)) (0 ≤ j ≤ qG − 1) where qH is the
number of queries to H and qG is the number of queries to G. The construction
of A is as follows;

Input: g1, g2, a, b
Output: m∗

Step 1: Ask the leak query to G, obtain LG. Then, immediately, output
(challenge, state) and obtain the challenge ciphertext c∗ = (u1, u2, χ) of a
plaintext m∗.

236 K. Yoneyama, S. Miyagawa, and K. Ohta

Step 2: Ask again the leak query to G, obtain L′
G, and compare LG and L′

G.
If there is a content (v∗, G(v∗)) in L′

G but (v∗, G(v∗)) is not in LG, deal with
G(v∗) as K∗. Then, decrypt χ under the key K∗ using SKE and output the
resulting decryption m∗.

Step 3: Output m∗ as the plaintext of c∗.

Therefore, A can obtain m∗ corresponding to c∗.
We show the success probability of A. When m∗ is encrypted to c∗, v∗ such

that K∗ = G(v∗) is certainly asked to G because c∗ is generated obeying the
protocol description. Thus, LG contains (v∗, G(v∗)) such that c∗ is the ciphertext
of the plaintext m∗, and A can obtain m∗ without fail by observing the hash list
of G step by step. Therefore, A successfully plays the OW-CPA game. ��

7 Security Analysis of NAXOS in LROM

NAXOS [18] is a secure authenticated key exchange scheme against the leakage
of ephemeral private keys (session-specific secret information) in ROM. In this
section, we consider security of NAXOS and similar schemes in LROM.

7.1 Security Notion of Authenticated Key Exchange Schemes

Security definitions of authenticated key exchange schemes are studied in many
literatures. NAXOS is proven to be secure in the sense of a strong definition,
called strong AKE security. Strong AKE security captures various desirable se-
curity requirements like resistance to the leakage of ephemeral private keys. We
omit the detailed definition of strong AKE security. Please refer to [18]. Here,
we define a very weak security notion of authenticated key exchange schemes as
follows.

Definition 2 (One-way security against passive attacks). An authenti-
cated key exchange scheme for parties I and R is one-way secure against passive at-
tacks if the following property holds; For any adversaryA, Pr[(SK, transcript) ←
〈I ⇔ R〉; SK ′ ← A(transcript); SK ′ = SK] ≤ negl., where 〈I ⇔ R〉 is a hon-
est execution of the scheme outputting the transcript between I and R and the
session key SK.

Note that, this definition only captures the minimum security requirement for
authenticated key exchange schemes.

7.2 NAXOS

NAXOS is based on the Gap Diffie-Hellman (GDH) assumption. We omit the
detailed definition of the GDH assumption. Please refer to [19]. The description
of NAXOS is as follows:
Interaction: For input k, the parties I and R pick ephemeral secret keys

eskI and eskR at random from {0, 1}k. Then the parties exchange values
gH(eskI ,skI) and gH(eskR ,skR) where skI and skR are static secret keys of I
and R respectively, and H : {0, 1}∗ → Zq is a hash function.

Leaky Random Oracle 237

Key derivation: The parties check if received values are in the group G and only
compute the session keys if the check succeeds. The session key SK ∈ {0, 1}k

is computed as G(gH(eskR ,skR)skI , gH(eskI ,skI)skR , gH(eskI ,skI)H(eskR ,skR), I,
R) where G : {0, 1}∗ → {0, 1}k is a hash function.

In [18], security of NAXOS in ROM is proved as follows;

Lemma 5 (Security of NAXOS in ROM [18]). If the GDH assumption of
the group G holds, then NAXOS satisfies strong AKE security where H and G
are modeled as random oracles.

7.3 Security of NAXOS in LROM

NAXOS is secure in ROM but, indeed, is insecure in LROM. More specifically,
we can show NAXOS does not even satisfy one-way security against passive
attacks in LROM.

Theorem 5 (Security of NAXOS in LROM). Even if the GDH assumption
of the group G holds, NAXOS does not satisfy one-way security against passive
attacks where H and G are modeled as leaky random oracles.

Proof. We construct an passive adversary A which successfully plays one-way
security game by using leak queries to H and G. Let LH and LG be hash
lists of leaky random oracles H and G respectively. LH contains tuples of
((esk, sk)i, H((esk, sk)i)) (0 ≤ i ≤ qH − 1) and LG contains tuples of ((G1,
G2, G3, ID1, ID2)j , G((G1, G2, G3, ID1, ID2)j)) (0 ≤ j ≤ qG − 1) where
qH is the number of queries to H and qG is the number of queries to G. The
construction of A is as follows;
Input: transcript∗ = (gH(esk∗

I ,sk∗
I) and gH(esk∗

R,sk∗
R))

Output: SK∗
Step 1: Ask the leak query to H and obtain LH . For each con-

tent ((esk, sk)i, H((esk, sk)i)) of LH , if find the pair i1 and i2 such
that gH((esk,sk)i1) = gH(esk∗

I ,sk∗
I) and gH((esk,sk)i2) = gH(esk∗

R,sk∗
R) then

compute G∗
1 = (gH(esk∗

R,sk∗
R))ski1 , G∗

2 = (gH(esk∗
I ,sk∗

I))ski2 and G∗
3 =

gH((esk,sk)i1)H((esk,sk)i2).
Step 2: Ask the leak query to G and obtain LG. For each content ((G1, G2,

G3, ID1, ID2)j , G((G1, G2, G3, ID1, ID2)j)) of LG, if find j such that
G1 = G∗

1, G2 = G∗
2 and G3 = G∗

3 then deal with G((G1, G2, G3, ID1,
ID2)j) as SK∗.

Step 3: Output SK∗ as the session key.

Therefore, A can obtain SK∗ of the challenge session.
We show the success probability of A. When SK∗ is generated, (esk, sk)i1 ,

(esk, sk)i2 and (G∗
1, G∗

2, G∗
3, I, R)j such that gH((esk,sk)i1) = gH(esk∗

I ,sk∗
I),

gH((esk,sk)i2) = gH(esk∗
R,sk∗

R), G1 = G∗
1, G2 = G∗

2 and G3 = G∗
3 are certainly asked

to H and G because SK∗ is generated obeying the protocol description. Thus, LG

contains ((G1, G2, G3, ID1, ID2)j , G((G1, G2, G3, ID1, ID2)j)) such that SK∗

= G((G1, G2, G3, ID1, ID2)j), and A can obtain SK∗ without fail. Therefore,A
successfully plays the one-way security game under the passive attack. ��

238 K. Yoneyama, S. Miyagawa, and K. Ohta

By the similar procedure (i.e., obtaining all secret information), we can also show
insecurity of CMQV [20] in LROM.

8 Discussion

8.1 Difference of Effects on Security

In LROM, though FDH and Cramer-Shoup cryptosystem can be proven security,
OAEP, Kurosawa-Desmedt cryptosystem and NAXOS are insecure.

Our attack to OAEP in LROM is based on the simulation of the decryption
oracle in the proof of Lemma 2. Most of asymmetric encryption schemes which
are secure in ROM realize the simulation of the decryption oracle in the proof
without knowledge of the decryption key by using contents of hash lists. There-
fore, by the same behavior as the simulator in the proof in ROM, the adversary
can decrypt the challenge ciphertext without knowledge of the decryption key
because the adversary can observe contents of the hash list in LROM. Our at-
tack to Kurosawa-Desmedt cryptosystem is simpler than one to OAEP. Since
Kurosawa-Desmedt cryptosystem can be proven security in SM, the simulation
of the decryption oracle does not need to use contents of hash lists. However,
the hash value of G has to be secret for external entities because the hash value
is used the key of symmetric key encryption part. Thus, if contents of the hash
list are leaked, the plaintext of any ciphertext is easily decrypted by adversaries.
Also, NAXOS falls into the similar condition as Kurosawa-Desmedt cryptosys-
tem, i.e., all secret information of parties are leaked from the hash list.

On the other hand, FDH is different with these protocols in the following
points; Firstly, though we have to simulate the signing oracle without knowledge
of the signing key in the security proof of FDH, the simulation does not need
to use contents of the hash list. Secondly, in the signing procedure the input of
the hash function and the corresponding hash value are not secret information
because the input is the message to be signed. Therefore, if contents of the hash
list is available to adversaries, it does not become any advantage of adversaries.
Thus, we can prove security of FDH in LROM. The case of Cramer-Shoup cryp-
tosystem is also similar to the case of FDH. Since Cramer-Shoup cryptosystem
can be proven security in SM, we can simulate the decryption oracle without
contents of the hash list. Moreover, in the encryption procedure the inputs of
the hash function and the corresponding hash value are not secret information
because the inputs are contained in the ciphertext. Thus, we can prove security
of Cramer-Shoup cryptosystem in LROM.

Hence, in order to prove security of a protocol in LROM, it is important that
we can realize all the simulation without contents of the hash list, and the input
of the hash function and the corresponding hash value are not secret information.

8.2 Relation between the Standard Model

From the modeling, the proof of a protocol in LROM implies the proof of the
protocol in ROM trivially. Moreover, LROM is independent from SM. Our re-
sult of analyses shows the separation between LROM and SM because of two

Leaky Random Oracle 239

following observations; Firstly, FDH is secure in LROM under the assumption of
trapdoor permutation. However, Dodis et al. [6] showed that FDH is not prov-
able in SM under the same assumption. Thus, we obtain that the proof of a
protocol in LROM does not implies the proof of the protocol in SM.

Next, Kurosawa-Desmedt cryptosystem is secure in SM under the DDH as-
sumption, the assumption of universal hash function family and the assumption
of symmetric key encryption. However, Kurosawa-Desmedt cryptosystem is in-
secure in LROM by instantiating hash functions by leaky random oracles under
same assumptions. Thus, we obtain that the proof of a protocol in SM does not
implies the proof of the protocol in LROM.

Therefore, LROM is independent from SM. We have to check whether a new
protocol is secure in LROM even if the protocol is known to be secure in SM.

8.3 Relation between Randomness Revealing

At first sight, it may seem that the leakage of contents of the hash list is cor-
responding to randomness revealing because it often happen that the inputs
of hash functions contains local randomness. Thus, it may seem that LROM is
same as ROM under randomness revealing. Indeed, these are different. Our result
of analyses shows the difference between LROM and ROM under randomness
revealing because of the following observation;

NAXOS is secure in ROM under the leakage of local randomness. However,
NAXOS is insecure in LROM even if there is no leakage of local randomness.
Thus, we obtain that the proof of a protocol in ROM under randomness revealing
does not implies the proof of the protocol in LROM.

Therefore, we have to check whether a new protocol is secure or not in LROM
even if the protocol is known to be secure in ROM under randomness revealing.

9 Further Works

A remaining problem of future works is more detailed analyses of protocols under
the leakage. For example, though OAEP is insecure if both random oracles H
and G are instantiated by leaky random oracles, OAEP may be secure if either
of two random oracles is only instantiated by the leaky random oracle. Indeed,
Boldyreva and Fischlin [21] showed that OAEP is secure if either of two random
oracles is instantiated by the real hash function and the other remain as the
random oracle.

References

1. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Design-
ing Efficient Protocols. In: ACM Conference on Computer and Communications
Security 1993, pp. 62–73 (1993)

2. Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle Methodology, Revisited
(Preliminary Version). In: STOC 1998, pp. 131–140 (1998)

3. Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle Methodology, Revisited.
J. ACM 51(4), 557–594 (2004)

240 K. Yoneyama, S. Miyagawa, and K. Ohta

4. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

5. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman,A.J.,Appelbaum, J., Felten,E.W.: LestWeRemember:ColdBootAt-
tacks on Encryption Keys. In: 17th USENIX Security Symposium, pp. 45–60 (2008)

6. Dodis, Y., Oliveira, R., Pietrzak, K.: On the Generic Insecurity of the Full Domain
Hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer,
Heidelberg (2005)

7. Nielsen, J.B.: Separating Random Oracle Proofs from Complexity Theoretic
Proofs: The Non-committing Encryption Case. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

8. Liskov, M.: Constructing an Ideal Hash Function from Weak Ideal Compression
Functions. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp.
358–375. Springer, Heidelberg (2007)

9. Pasini, S., Vaudenay, S.: Hash-and-Sign with Weak Hashing Made Secure. In:
Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp.
338–354. Springer, Heidelberg (2007)

10. Unruh, D.: Random Oracles and Auxiliary Input. In: Menezes, A. (ed.) CRYPTO
2007. LNCS, vol. 4622, pp. 205–223. Springer, Heidelberg (2007)

11. Numayama, A., Isshiki, T., Tanaka, K.: Security of Digital Signature Schemes
in Weakened Random Oracle Models. In: Cramer, R. (ed.) PKC 2008. LNCS,
vol. 4939, pp. 268–287. Springer, Heidelberg (2008)

12. Coron, J.S.: Optimal Security Proofs for PSS and Other Signature Schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer,
Heidelberg (2002)

13. Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

14. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP Is Secure under
the RSA Assumption. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
260–274. Springer, Heidelberg (2001)

15. Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric En-
cryption Schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–
554. Springer, Heidelberg (1999)

16. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure
Against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

17. Kurosawa, K., Desmedt, Y.: A New Paradigm of Hybrid Encryption Scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004)

18. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key
Exchange. In: Provsec 2007, pp. 1–16 (2007)

19. Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for
the Security of Cryptographic Schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 104–118. Springer, Heidelberg (2001)

20. Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol from
(H)MQV and NAXOS. In: Des. Codes Cryptography, vol. 46(3), pp. 329–342 (2008)

21. Boldyreva, A., Fischlin, M.: Analysis of Random Oracle Instantiation Scenarios for
OAEP and Other Practical Schemes. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 412–429. Springer, Heidelberg (2005)

How to Use Merkle-Damgård — On the Security
Relations between Signature Schemes and Their Inner

Hash Functions

Emmanuel Bresson1, Benoı̂t Chevallier-Mames1, Christophe Clavier2,
Aline Gouget3, Pascal Paillier3, and Thomas Peyrin4

1 DCSSI, 51 bd. De la Tour Maubourg, 75700 Paris Cedex 07, France
2 Gemalto, 6 rue de la Verrerie, 92190 Meudon, France
3 Gemalto, Avenue du Jujubier, 13705 La Ciotat, France

4 Orange Labs, 38-40 rue du Général Leclerc, 92794 Issy-les-Moulineaux, France

Abstract. This paper reports a thorough standard-model investigation on how at-
tacks on hash functions impact the security of hash-and-sign signature schemes.
We identify two important properties that appear to be crucial in analyzing the
nature of security relations between signature schemes and their inner hash func-
tions: primitiveness and injectivity. We then investigate the security relations in
the general case of hash-and-sign signatures and in the particular case of first-
hash-then-sign signatures, showing a gap of security guarantees between the two
paradigms. We subsequently apply our results on two operating modes to con-
struct a hash function family from a hash function based on the well-known
Merkle-Damgård construction (such as MD5 and SHA-1). For completeness, we
give concrete attack workloads for attacking operating modes used in practical
implementations of signature schemes.

1 Introduction

Undoubtedly, hash functions constitute an essential component of all sorts of systems
and constructions in cryptography. Recently, a number of attacks on practical hash func-
tions such as MD5 or SHA-1 have been reported [4,24,27]. The role played by hash
functions in the overall security of a system is, in many constructions, so badly under-
stood that it is not obvious at all to see how that system suffers from being based on
broken or weakened hash functions.

The goal of our work is to explore the interplay between the security of a cryp-
tographic system S = S[H1, . . . , Hn] based on hash functions H1, . . . , Hn and the
security of H1, . . . , Hn. Assuming for instance that a scheme S involves a unique hash
function H , we want to determine how the security of H relates to the one of S. This
amounts to computationally connect security notions for S with security notions for H .
These connections between S and H can be categorized into four types: attack, security
proof, impossibility of attack and impossibility of security proof. In this paper, we focus
on the first two links.

In Section 2, we give several definitions on provable security and on hash function
and signature security notions. In Section 3, we analyze the security link between sig-
nature schemes and hash functions, for two types of signature schemes we define. In

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 241–253, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

242 E. Bresson et al.

Section 4, we refine our study on the special case of Merkle-Damgård construction. As
expressed in the conclusion, the security relations we expose in this paper confirm the
intuition that all signature schemes are not implicated on the same level by the recent
attacks on hash functions.

2 Preliminaries

2.1 Provable Security Statements

We adopt the concrete-security setting [20], as opposed to the asymptotic one. A con-
crete black-box reductionR between two computational problems P1 and P2 is a prob-
abilistic algorithmR which solves P1 given black-box access to an oracle which solves
P2. We write P1 ⇐R P2 when R is known to reduce P1 to P2 with efficient (or tight)
reduction cost. P1 ⇐ P2 states that an efficient R exists such that P1 ⇐R P2 and
P1 ⇔ P2 means P1 ⇐ P2 and P1 ⇒ P2. All reductions considered in this paper are
concrete and fully black-box.

A provable-security statement P1 ⇐ P2, where P1, P2 are two computational prob-
lems, indicates that if an efficient solver for P2 exists then an efficient solver for P1

exists as well, which is meaningful when P1 is believed to be hard. When efficient
solvers for P1 are known to exist, by contrast, we claim that P1 ⇐ P2 is still meaning-
ful if (a) an efficient solver for P1 exists but is unknown1, (b) the proof of P1 ⇐ P2 is
constructive meaning that an explicit black-box reduction R is given.

2.2 Hash Functions and Related Security Notions

In the following, {0, 1}∗ denotes the set of finite bitstrings, and {0, 1}m denotes the set
of m-bit strings. A function H is a hash function if it maps {0, 1}∗ to {0, 1}m for some
integer m > 0 called the output size of H . For n > 0, let Un be the uniform distribution
over {0, 1}n and for any 0 ≤ t ≤ 2n, let us pose Sn,t = {m ∈ {0, 1}m : |H−1(m) ∩
{0, 1}n| = t}. We define the bias of H , denoted by δn(H), as the statistical L1-distance
between H(Un) and Um, i.e. δn(H) = ‖H(Un)− Um‖1 =

∑2n

t=0 |Sn,t|
∣∣ t
2n − 1

2m

∣∣.
A hash function family is a function F : {0, 1}∗ × {0, 1}r → {0, 1}m for in-

tegers m, r > 0 such that for any r ∈ {0, 1}r, F (·, r) is a hash function of out-
put size m. The second argument r in F (M, r) is called the index (or key) of F .
Let n > 0, we define two statistical bias for F : δn(F) = ‖F (Un, Ur)− Um‖1 and
δ+
n (F) = maxr∈{0,1}r ‖F (Un, r) − Um‖1 (hence δn(F) ≤ δ+

n (F)).
We adopt the convention that security problems are parameterized by the bitsize of

their inputs (written as subscripts) and/or their outputs (written as superscripts). The
classical security notions for hash function are preimage resistance (PRE), 2nd-pre-
image resistance (SEC) and Collision resistance (COL).

Given Find Such that

PREn [H] m M H(M) = m
SECn2

n1 [H] M1 M2(�= M1) H(M2) = H(M1)
COLn1,n2 [H] − M1, M2 M1 �= M2 and H(M1) = H(M2)

where m ∈ {0, 1}m, M ∈ {0, 1}n, Mi ∈ {0, 1}ni

1 This relates to Rogaway’s human ignorance paradigm, see [20].

How to Use Merkle-Damgård — On the Security Relations 243

When extending the security notions PRE, SEC and COL to hash function families,
three definitional variants appear which we call existential (E- · · ·), universal (U- · · ·)
and absolute (A- · · ·), as indicated below.

Given Find Such that

E-PREn [F] m M, r F (M,r) = m
U-PREn [F] m, r M F (M,r) = m

E-SECn2
n1 [F] M1 M2, r F (M2, r) = F (M1, r)

U-SECn2
n1 [F] M1, r M2 F (M2, r) = F (M1, r)

A-SECn2
n1 [F] M1 M2 ∀r, F (M2, r) = F (M1, r)

E-COLn1,n2 [F] − M1, M2, r F (M2, r) = F (M1, r)
U-COLn1,n2 [F] r M1, M2 F (M2, r) = F (M1, r)
A-COLn1,n2 [F] − M1, M2 ∀r, F (M2, r) = F (M1, r)

where m ∈ {0, 1}m, M ∈ {0, 1}n, Mi ∈ {0, 1}ni , r ∈ {0, 1}r, M1 �= M2

The relations between the security notions for a hash function (resp. a hash function
family) are summarized in Theorem 1.

Theorem 1. Let H be a hash function. Then, for any n1, n2 > 0, we have:

COLn1,n2 [H] ⇐ SECn2
n1 [H] ⇐� PREn2 [H] ,

where the⇐
 reduction is tight only if H has sufficiently small bias2 δn1(H). Let F be
a hash function family. Then, for any n1, n2 > 0, we have:

E-PREn2 [F] ⇐ U-PREn2 [F]
⇓ �

if δ+
n1

(F) is small enough

E-SECn2
n1 [F] ⇐ U-SECn2

n1 [F] ⇐ A-SECn2
n1 [F]

⇓ ⇓ ⇓
E-COLn1,n2 [F] ⇐ U-COLn1,n2 [F] ⇐ A-COLn1,n2 [F]

Most of the relations given in Theorem 1 are rather intuitive and can be proved using
very standard reduction techniques.

2.3 Signature Schemes and Related Security Notions

A signature scheme Σ with message space M ⊆ {0, 1}∗ is defined as Σ �
(Σ.Gen, Σ.Sign, Σ.Ver) such that Σ.Gen() is a probabilistic algorithm that out-
puts a pair of strings (pk, sk), a signature on message M ∈ M is an s-bit string
σ = Σ.Sign(sk, M, u) where u ← {0, 1}u, and Σ.Ver(pk, M, σ) outputs 1 if σ =
Σ.Sign(sk, M, u) for some u ∈ {0, 1}u, 0 otherwise.

We now take a closer look at the inner computations of a signature scheme by defin-
ing the notion of two-step signature which seems totally unrestrictive as we do not know
any example of a non-two-step signature scheme.

Definition 2 (Two-step signature scheme). A signature scheme Σ � (Σ.Gen,
Σ.Sign, Σ.Ver) with message space M ⊆ {0, 1}∗ is said to be two-step if there ex-
ist four deterministic algorithms Σ1, Σ2, Υ1 and Υ2 such that:

2 Well-known counterexamples can be constructed when this condition is not fulfilled, see [17].

244 E. Bresson et al.

(i) For any pair (M, u) ∈ M× {0, 1}u, Σ.Sign(sk, M, u) = Σ2(sk, M, r, aux) where
(r, aux) = Σ1(sk, u), aux ∈ {0, 1}∗ and r ∈ {0, 1}r.

(ii) Σ.Ver(pk, M, σ) = Υ2(pk, M, σ, r̂) where r̂ = Υ1(pk, σ);
(iii) If there exists u ∈ {0, 1}u such that σ = Σ.Sign(sk, M, u) then r = r̂.

The type of Σ is (m, u, r, s) if M = {0, 1}m and (∗, u, r, s) if M = {0, 1}∗.

We now properly define the notion of hash-and-sign signature that captures virtually all
known signature schemes.

Definition 3 (Hash-and-Sign). A hash-and-sign signature scheme is a pair S =
〈F, Σ〉 where F : {0, 1}∗ × {0, 1}r → {0, 1}m is a hash function family and Σ is
a two-step signature scheme of type (m, u, r, s) for integers u, s > 0. The key genera-
tion of S is identical to the one of Σ. Let Σ1, Σ2, Υ1, Υ2 be the inner functions of Σ. A
signature on M ∈ {0, 1}∗ is computed as σ = Σ2(sk, m, r, aux) where m = F (M, r),
(r, aux) = Σ1(sk, u) and u ← {0, 1}u. S.Ver(pk, M, σ) first computes r̂ = Υ1(pk, σ),
then m̂ = F (M, r̂) and outputs Υ2(pk, m̂, σ, r̂).

We finally consider the notion of first-hash-then-sign signatures as a particular case of
hash-and-sign signatures. Both paradigms are depicted on Fig. 1. A first-hash-then-sign
signature is defined to be a hash-and-sign signature where the index space of F is not
used i.e. F (M, r) = H(M). Hence the hash function family collapses to a single hash
function. The notion of first-hash-then-sign signature captures several well-known sig-
nature designs including Full Domain hash (FDH) and Boneh-Lynn-Shacham (BLS).

1

2

r

m

u

1

2

r

u

m

S = < F , >

F

M

m

m

H

M

S = < H , >

aux aux

Fig. 1. The hash-and-sign (left) and first-hash-then-sign (right) paradigms

We extend the common security notions of unforgeability, elaborating on the semi-
nal work of Goldwasser et al. [10]. We consider the three usual adversarial resources:
Key Only Attack (KOA) where the adversary is given nothing but a public key, Known
Message Attack (KMA), where the adversary is given a list of random and pairwise
distinct message-signature pairs (M1, σ1), . . . , (M�, σ�), and Chosen Message Attack
(CMA) where the adversary is given adaptive access to a signing oracle. KMAn denotes
the restriction of KMA to messages M1, . . . , M� uniformly distributed over {0, 1}n (we

How to Use Merkle-Damgård — On the Security Relations 245

define CMAn similarly). We distinguish four adversarial goals: Universal Forgery (UF),
Existential Forgery (EF), Universal Repudiation (UR) and lastly Existential Repudia-
tion (ER) defined as indicated below.

Given Find Such that

UF M ∈M σ σ is a valid signature on
UFn M ∈ {0, 1}n σ the message M

EF − M ∈M, σ σ is a valid signature on
EFn − M ∈ {0, 1}n, σ the message M

UR M1 ∈M M2 ∈M, σ M2 �= M1 and σ is valid
URn2

n1 M1 ∈ {0, 1}n1 M2 ∈ {0, 1}n2 , σ on both M1 and M2

ER − M1 ∈M, M2 ∈ M, σ M2 �= M1 and σ is valid
ERn1,n2 − M1 ∈ {0, 1}n1 , M2 ∈ {0, 1}n2 , σ on both M1 and M2

where n, n1, n2 > 0

We view security notions as computational problems; this allows to relate these no-
tions using reductions. For instance UF-KMA [S] is the problem of computing a uni-
versal forgery under known message attack. In the case of KMA or CMA, we denote
by �-GOAL-ATK [S] the problem of breaking GOAL in no more than � calls to the re-
source defined by ATK. In the case of UR and ER, no adversarial resource is defined,
as the adversary can choose the secret/public key pair. Fig. 2 displays the well-known
black-box (and constructive) reductions among security levels. Indices n1, n2 reflecting
the case M = {0, 1}∗ are to be removed if M = {0, 1}m.

URn2
n1 [S] , URn1

n2 [S]

⇓
ERn1,n2 [S]

UFn1 -CMA [S] ⇐ UFn1 -KMAn2 [S] ⇐ UFn1 -KOA [S]

⇓ ⇓ ⇓
EFn1 -CMA [S] ⇐ EFn1 -KMAn2 [S] ⇐ EFn1 -KOA [S]

Fig. 2. Black-box relations among security notions for signature schemes

3 Analyzing Security Relations for Hash-and-Sign Signatures

In this section, we first identify two core properties that will be crucial in analyzing
security relations between a signature scheme and its inner hash function. We then
explicit how some attacks on hash functions can be turned into attacks on signature
schemes, and on the positive side, how some attacks on signatures are impossible unless
some attacks on hash functions can be made efficient.

3.1 Identified Properties

It appears that most signature schemes used in practice, beside being hash-and-sign
schemes, also fulfill two other properties that we call primitiveness and injectivity.

246 E. Bresson et al.

Definition 4 (Primitiveness). Let S = 〈F, Σ〉 be a probabilistic hash-and-sign signa-
ture scheme and let Σ1, Σ2, Υ1, Υ2 be the inner functions of Σ. S is said to be primitive
when a probabilistic algorithm S.Prim is known which, for any key pair (pk, sk), takes
pk as input and outputs a random pair (m, σ = Σ.Sign(sk, m, u)) such that (a) m is
uniformly distributed over {0, 1}m; (b) u is uniformly distributed over {0, 1}u.

Note that S being primitive implies that Σ is existentially forgeable. In essence, if
S = 〈F, Σ〉 is primitive then replacing F by the identity function structurally destroys
the EF-KOA security of the modified scheme. This notion also captures the intuition
that F somehow plays an important role in the EF-KOA security of S. Furthermore,
primitiveness is often the property that allows simulatability and makes security proofs
possible in the random oracle model.

Definition 5 (Injectivity). Let S = 〈F, Σ〉 be a probabilistic hash-and-sign signature
scheme and Σ1, Σ2, Υ1, Υ2 as above. S is said to be injective when for any key pair
(pk, sk) and any σ ∈ {0, 1}s, there exists at most one pair (m, r) ∈ {0, 1}m × {0, 1}r

such that σ = Σ2(sk, m, r, aux) and (r, aux) = Σ1(sk, u) for some u, aux.

We review and characterize some of the most common signature schemes. Our classifi-
cation results are summarized on Table 1.

Table 1. A classification of common signature schemes

Hash-and-Sign Signature Scheme First-Hash-then-Sign Primitive Injective

Schnorr [22] X X
FDH [2] X X X

PFDH [6] X X
PSS [3] X X

EMSA-PSS [3] X X X
BLS [5] X X X

Generic DSA [1,19] X X
ElGamal Type I [17] X X X
ElGamal Type II [17] X X

GQ [11] X X
GHR [9] X X
CS [7] X

3.2 Attacks and Positive Security Relations for Hash-and-Sign Signatures

Our goal is to relate the security of S = 〈F, Σ〉 to the one of its hash component F ,
the underlying signature scheme Σ being seen as a fixed parameter. The first type of
connection between security notions for S with security notions for H is referred to
as an attack. An attack is defined as an efficient reduction Break(H) ⇒ Break(S)
that makes explicit how an attack of a given type on a hash function H is enough
to break the scheme S in a prescribed way. The attacks we found are summarized in
Lemma 6.

Lemma 6 (Black-box attacks). Let S = 〈F, Σ〉 be a hash-and-sign signature scheme
as per Definition 3. Then for any integers n1, n2 > 0,

How to Use Merkle-Damgård — On the Security Relations 247

A-COLn1,n2 [F] ⇒ 1-EFn1 -CMA [S] , 1-EFn2 -CMA [S] , (1)

U-COLn1,n2 [F] ⇒ ERn1,n2 [S] , (2)

A-SECn2
n1 [F] ⇒ 1-UFn1 -CMA [S] , (3)

U-SECn2
n1 [F] ⇒ 1-EFn2 -KMAn1 [S] , URn2

n1 [S] . (4)

Lemma 7 (The case of primitive signatures). Let S = 〈F, Σ〉 be a hash-and-sign
signature scheme and assume that S is primitive. Then in addition to the above we
have, for any n > 0,

U-PREn [F] ⇒ EFn-KOA [S] .

We now state positive security relations between S and F . A security proof is defined
as an efficient reduction Break(H) ⇐ Break(S) which means that there is no attack
of a certain type on S unless one finds a particular weakness in H . It seems unlikely
(although we do not disprove it) that security proofs exist which relate the unforgeability
of S to F in the general case. However, assuming that S is injective is enough to show
that non-repudiation can be guaranteed under security assumptions on F .

Lemma 8 (The case of injective signatures). Let S be a probabilistic hash-and-sign
signature scheme and assume S is injective. Then for any n1, n2 > 0,

E-COLn1,n2 [F] ⇐ ERn1,n2 [S] and E-SECn2
n1 [F] ⇐ URn2

n1 [S] .

The proofs of Lemmas 7 and 8 for hash-and-sign signature schemes can be found in
Appendix A.

3.3 Attacks and Security Proof for First-Hash-Then-Sign Signatures

We now move on to the particular case of first-hash-then-sign signatures. Our goal is
now to exhaust the security reductions standing between a first-hash-then-sign scheme
S = 〈H, Σ〉 and its inner hash function H . Again, the signature scheme Σ plays the
role of a parameter here.

The reductions stated in Lemmas 6 and 7, which show how breaking certain security
properties of F allows to break S, can be simplified in the particular case of a first-hash-
then-sign scheme S = 〈H, Σ〉. In this case indeed, in addition to the above, it holds that
for any integers n1, n2 > 0:

COLn1,n2 [H] ⇒ 1-EFn1 -CMA [S] , 1-EFn2 -CMA [S] , ERn1,n2 [S] (5)

SECn2
n1 [H] ⇒ 1-UFn1 -CMA [S] , 1-EFn2 -KMAn1 [S] , URn2

n1 [S] (6)

In the same way, the positive security relations between S and F presented in
Lemma 8 can be adapted to the particular case of first-hash-then-sign signatures. A
direct corollary of these results and the relations of (5) and (6) is a security proof for
injective signatures meaning that the levels of repudiation of S can be guaranteed under
security assumptions on H .

248 E. Bresson et al.

Lemma 9 (Security proofs for injective signatures). Let S be a first-hash-then-sign
signature scheme and assume S is injective. Then for any n1, n2 > 0,

SECn2
n1 [H]⇔ URn2

n1 [S] and COLn1,n2 [H]⇔ ERn1,n2 [S] .

In some sense, the general hash-and-sign paradigm inherently offers better security
guarantees than the particular case of first-hash-then-sign signatures. For instance,
breaking S in the EF-CMA sense is easy if H is not collision-resistant in the case
S = 〈H, Σ〉. Breaking the same security level for S = 〈F, Σ〉, however, seems to re-
quire the generation of absolute collisions for F , a much stronger weakness. Overall,
given a fixed-size signature scheme Σ, it seems largely preferable to domain-extend it in
the general hash-and-sign paradigm for which security is obtained under much weaker
assumptions on the security of the inner hash component than in the first-hash-then-sign
paradigm.

4 Merkle-Damgård-Based Hash Function Families

This section specifically considers Merkle-Damgård (MD) embodiments of F ; this is
motivated by the fact that most practical hash functions rely on some variant of the MD
construction. We then apply the results presented in Section 3 to analyze two practical
instantiations of F using a MD-hash function. Based on these reductions, we display
the effective workload of the best known attacks against F in every instantiation.

4.1 Hash Function Families Based on Merkle-Damgård

Before considering Merkle-Damgård hash functions, we first relate the security of a
hash function family F , constructed from an arbitrary hash function H to the one of H .
There are many ways one may attempt to construct a hash function family F using a
hash function H . The two most “natural” constructions are F (M, r) = H(M‖r) and
F (M, r) = H(r‖M).

Construction of a Hash Function Family. Let H : {0, 1}∗ → {0, 1}m be a hash
function. We construct a wide class of hash function families as follows. Let F be the
hash function family defined on M ∈ {0, 1}∗ and r ∈ {0, 1}r (the index bitsize r being
arbitrary) as F (M, r) = H([[M, r]]), where [[M, r]] is an (|M | + r)-bit (one-to-one)
encoding of the pair (M, r) ∈ {0, 1}∗ × {0, 1}r. Then, for any n1, n2 > 0, we have :

PREn2+r [H] ⇔ E-PREn2 [F]

SECn2+r
n1+r [H] ⇐ U-SECn2

n1 [F]

COLn1+r,n2+r [H]⇐ E-COLn1,n2 [F]

Iterative Hash Functions. Most hash functions used in practice are iterative hash
functions built from compression functions. Let f : {0, 1}m × {0, 1}b → {0, 1}m be a
compression function. Given an arbitrary function g : {0, 1}∗ → ({0, 1}b)∗ and IV0 ∈
{0, 1}m, the iterated hash function H constructed from (f, g, IV0) is the hash function
defined for M ∈ {0, 1}∗ by H(M) = ht where g(M) = X1|| . . . ||Xt, h0 = IV0

and hi = f(hi−1, Xi) for i ∈ [1.. t]. We call b the block size of H and we write
H = ITER [f, g, IV0].

How to Use Merkle-Damgård — On the Security Relations 249

MD-based Hash Functions. The basic and strengthened Merkle-Damgård construc-
tions [8,18] are a specific case of iterated hashing using specific functions g = g0 or
g = gs defined as follows. For any M ∈ {0, 1}∗, g0(M) is obtained by appending to
M as many 0-bits as necessary to yield a #|M |/b$-block string. Let a < b be a size
parameter. Given M ∈ {0, 1}∗, gs(M) is formed by appending a single 1-bit to M and
as many 0-bits as required so that the length of the so-obtained string is congruent to
(b− a) modulo b. Then the bitlength of M , seen as an a-bit string, is appended.

Appending a logical length-block prior to hashing, called MD-strengthening, aims
at preventing collision and pseudo-collision attacks which find colliding messages of
different length (e.g. see [12,14]). The protection it seems to offer justifies the practical
use of MD-strengthening in common hash functions.

Let us now fix f : {0, 1}m × {0, 1}b → {0, 1}m and IV0 ∈ {0, 1}m. The related
Merkle-Damgård hash function without MD-strengthening is the hash function H0 =
ITER [f, g0, IV0]. Its counterpart with MD-strengthening is the hash function Hs =
ITER [f, gs, IV0].

Definition 10 (Collision-propagating paddings). Let k1, k2 > 0. A padding function
g : {0, 1}∗ → ({0, 1}b)∗ is said to be (k1, k2)-collision-propagating when for any
compression function f : {0, 1}m×{0, 1}b → {0, 1}m and any IV0 ∈ {0, 1}m, the hash
function H = ITER [f, g, IV0] is such that for any k1-block string M1 ∈ {0, 1}k1·b

and k2-block string M2 ∈ {0, 1}k2·b, if H(M1) = H(M2) then H(g(M1)‖M) =
H(g(M2)‖M) for any M ∈ {0, 1}∗.

Proposition 11. It holds that g0 is a (k1, k2)-collision-propagating padding for any
k1, k2 > 0 and gs is a (k, k)-collision-propagating padding for any k > 0.

Hence, it is rather obvious that MD-strengthening is not enough to thwart attacks based
on propagating collisions. In fact, all known second preimage or collision-finding at-
tacks against MD-hash functions with MD-strengthening generate messages with the
same block length. It turns out that for any n = k · b > 0, we have PREn+b [H0] ⇐
PREn [Hs], SECn

n [Hs] ⇐ SECn
n [H0] and COLn,n [Hs] ⇐ COLn,n [H0]. We restrict

ourselves to instantiations of F based on Hs = ITER [f, gs, IV0], knowing in advance
that all recent SEC and COL attacks against H0, which retrieve same-length colliding
messages, equally apply to the simplified setting H0 = ITER [f, g0, IV0].

4.2 MD Instantiation with Operating Mode F (M, r) = Hs(M ‖ r)

Let Hs = ITER [f, gs, IV0] be an MD hash function with MD strengthening and F
defined on {0, 1}∗ × {0, 1}r as F (M, r) = Hs(M‖r). Then for any n = k · b > 0,

A-SECn+b
n+b [F] ⇐ A-SECn

n [F] ⇐ SECn
n [H0] ⇒ SECn

n [Hs]
⇓ ⇓

A-COLn+b,n+b [F] ⇐ COLn,n [Hs] ⇐ COLn,n [H0]

It is easily seen that a hash-and-sign signature scheme S = 〈F, Σ〉 based on the
operating mode F (M, r) = Hs(M‖r) yields in reality a first-hash-then-sign scheme
on message subspaces M ∈ {0, 1}k·b. Indeed posing Hs,IV = ITER [f, gs, IV], it is

250 E. Bresson et al.

obvious that if |M | = k · b then Hs(M‖r) = Hs,m(r) where m = H0,IV0(M). Thus,
on these subspaces, σ = S.Sign(sk, M, u) = Σ2(sk, F (M, r), r, aux) where (r, aux) =
Σ1(sk, u) can be reformulated as σ = Σ2(sk, Hs,m(r), r, aux) = Σ′

2(sk, m, u) where
m = H0(M).

Lemma 12. Let S = 〈F, Σ〉. If F (M, r) = Hs(M‖r) then S = 〈H0, Σ
′〉 on message

subspaces {0, 1}k·b with k > 0 for some signature scheme Σ′.

Thus, in the case F (M, r) = Hs(M‖r), the security benefits inherent to using the
general hash-and-sign paradigm are completely lost. For any n = k · b > 0, one has

1-EFn-CMA [S] , ERn [S] ⇐ COLn,n [H0] ,

1-UFn-CMA [S] , 1-EFn-KMA [S] , URn [S] ⇐ SECn
n [H0] .

4.3 MD Instantiation with Operating Mode F (M, r) = Hs(r ‖ M)

When looking at constructions such as F (M, r) = Hs(r‖M), we first examine the
“absolute”-like properties, A-SECn

n [F] and A-COLn,n [F]. Following the definition,
finding absolute collisions means that the mappings r �→ F (Mi, r) are the same for
two messages M1, M2. We can provide an upper-bound for the security by noticing
that there is at most 2n such mappings (viewed as parameterized by M of length n).
The total number of r-bit-to-m-bit mappings being (2m)2

r
, two mappings coincide with

reasonable probability as soon as n ≈ m2r, which is beyond practical lengths.

Claim. Let F be defined as F (M, r) = Hs(r‖M) and let S = 〈F, Σ〉. Combining the
security statements of Lemmas 6 and 7, we conclude that there is no known way to
break S in any sense even if H0 is COLn,n-, SECn

n- and PREn- broken.

Clearly, this strongly suggests to prefer the second operating mode over the first one in
practice.

4.4 Concrete Security Figures for Two Instantiations of F (M, r)

We display on Table 2 concrete security workloads for effectively attacking F (m, r)
under current knowledge for the two instantiations F (m, r) = H(M‖r) and F (m, r) =
H(r‖M), where H is chosen to be MD4, MD5, SHA-0 or SHA-1. We evaluate the
expected running time τHs of the attack algorithm when imposing a success probability
εHs heuristically close to one. For instance, for F (M, r) = MD5(M‖r), U-COLn,n [F]
is known to be (230,% 1)-broken for n = 2 · 512 i.e. for two-block messages. The
message bitsize n is fixed to 2 · 512 for all figures except for MD4 where n = 1 · 512.

The best attacks known are Sasaki’s new message difference for MD4 [21], Klima’s
tunnels for MD5 [13], Wang’s attack on SHA-0 [26], and the latest improvements over
Wang’s SHA-1 attack [27,16]. Complexity 260 for SHA-1 is (announced) in [16]. Com-
plexity 233 for SHA-0 is given in [15]. The target collision attack against MD5 by
Stevens et al. [23] can be used to generate solutions for E-SEC [F] if r is long enough
(at least 4192 bits). A similar attack can certainly be done on MD4. ∞ indicates per-
fect security. Empty cells denote that we are not aware of an attack more efficient than
generic attacks.

How to Use Merkle-Damgård — On the Security Relations 251

Table 2. Expected running time of attacks

Hs(M ||r) Hs(r||M)

MD4 MD5 SHA-0 SHA-1 MD4 MD5 SHA-0 SHA-1

A-SECn
n [F] ∞ ∞ ∞ ∞

E-SECn
n [F] 252 258

A-COLn,n [F] 21 230 233 260 ∞ ∞ ∞ ∞
U-COLn,n [F] 21 230 233 260 21 230 233 260

E-COLn,n [F] 21 230 233 260 21 230 233 260

5 Conclusion

This investigation on how recent attacks on hash functions may impact on signature
schemes is particularly fruitful. We have first properly defined hash-and-sign signatures
and the particular case of first-hash-then-sign signatures, and identified two core proper-
ties; injectivity and primitiveness. For each of these categories (and notably for schemes
such as FDH, PSS and Schnorr), we have shown how their security relates to the one of
their inner hash component. We then focused on the case of hash functions based on the
Merkle-Damgård domain extender (such as MDx and SHAx). Enlightening the security
properties of popular operating modes, i.e. the ones one would try first to construct a
hash function family, we identified F (M, r) = Hs(M‖r) as (by far) the worst operat-
ing mode in terms of security guarantees. Thus a concrete conclusion of our work is the
suggestion of using F (M, r) = Hs(r‖M) or more intricate operating modes.

Acknowledgments

This work is part of the SAPHIR project (http://www.crypto-hash.fr), partly
funded by the French National Research Agency (ANR). The authors would like to
thank all the members of the project for fruitful discussions.

References

1. ANSI X9.62-1998. Public key cryptography for the financial services industry: The elliptic
curve digital signature algorithm (1998)

2. Bellare, M., Rogaway, P.: The exact security of digital signatures - how to sign with RSA and
Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer,
Heidelberg (1996)

3. Bellare, M., Rogaway, P.: PSS: Provably secure encoding method for digital signatures. In:
IEEE P1363a (submission) (August 1998)

4. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions of SHA-0
and Reduced SHA-1. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 36–57.
Springer, Heidelberg (2005)

http://www.crypto-hash.fr

252 E. Bresson et al.

5. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)

6. Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In: Knudsen, L.R.
(ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer, Heidelberg (2002)

7. Cramer, R., Shoup, V.: Signature Schemes Based on the Strong RSA Assumption. In: ACM
Conference on Computer and Communications Security, pp. 46–51 (1999)

8. Damgård, I.: A Design Principle for Hash Functions. In: McCurley, K.S., Ziegler, C.D. (eds.)
Advances in Cryptology 1981 - 1997. LNCS, vol. 1440, pp. 416–427. Springer, Heidelberg
(1999)

9. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signature without the random oracle.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–139. Springer, Heidelberg
(1999)

10. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive
chosen-message attacks. SIAM J. of Computing 17(2), 281–308 (1988)

11. Guillou, L., Quisquater, J.-J.: A “paradoxical” identity-based signature scheme resulting
from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 216–
231. Springer, Heidelberg (1990)

12. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less than 2n

work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 474–490. Springer,
Heidelberg (2005)

13. Klima, V.: Tunnels in Hash Functions: MD5 Collisions Within a Minute,
http://eprint.iacr.org/2006/105

14. Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

15. Manuel, S., Peyrin, T.: Collisions on SHA-0 in one hour. FSE 2008 (to appear, 2008)
16. Mendel, F., Rechberger, C., Rijmen, V.: Update on SHA-1. In: Rump Session of Crypto 2007

(2007)
17. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography.

CRC Press, Boca Raton (1997)
18. Merkle, R.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS,

vol. 435, pp. 428–446. Springer, Heidelberg (1990)
19. National Institute of Standards and Technology. Digital Signature Standard (DSS). FIPS —

Publication 186 (May 1994)
20. Rogaway, P.: Formalizing Human Ignorance. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006.

LNCS, vol. 4341, pp. 211–228. Springer, Heidelberg (2006)
21. Sasaki, Y., Wang, L., Ohta, Y., Kunihiro, N.: New messages difference for MD4. In:

Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 329–348. Springer, Heidelberg (2007)
22. Schnorr, C.P.: Efficient signatures generation by smart cards. Journal of Cryptology 4(3),

161–174 (1991)
23. Stevens, M., Lenstra, A., de Weger, B.: Chosen-prefix Collisions for MD5 and Colliding

X.509 Certificates for Different Identities. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS,
vol. 4515, pp. 1–22. Springer, Heidelberg (2007)

24. Wang, X.Y., Yu, H.B.: How to Break MD5 and Other Hash Functions. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

25. Wang, X.Y., Lai, X.J., Feng, D., Chen, H., Yu, X.: Cryptanalysis for Hash Functions MD4 and
RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 1–18. Springer,
Heidelberg (2005)

26. Wang, X.Y., Yu, H.B., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg (2005)

27. Wang, X.Y., Yin, Y.L., Yu, H.B.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

http://eprint.iacr.org/2006/105

How to Use Merkle-Damgård — On the Security Relations 253

A Proofs of Lemmas 7 and 8

We adopt the concrete-security setting [20], as opposed to the asymptotic one. Given
a computational problem P , a probabilistic algorithm is said to (τ, ε)-solve P when it
halts after at most τ elementary steps and outputs a solution of P with success probabil-
ity at least ε. A concrete black-box3 reduction R between two computational problems
P1 and P2 is a probabilistic algorithm R which (τ1, ε1)-solves P1 given black-box ac-
cess to an oracle (τ2, ε2)-solving P2.

A.1 Proof of Lemma 7

Proof (U-PREn [F]⇒ EFn-KOA [S]). Let us assume a black-box access to AF which
(τF , εF)-breaks U-PREn [F]. We build an EFn-KOA adversary AS which (τS , εS)-
breaks S where εS = εF and τS = τF + Time (S.Prim) + Time (S.Ver). AS is
given a random key pk ← S.Gen(). Since S is primitive, AS can generate a random
pair (m, σ = S.Sign(sk, m, u)) by running S.Prim(pk). Note that m is uniformly dis-
tributed over {0, 1}m and u is uniform over {0, 1}u, thereby making r = Υ1(pk, σ)
uniform over {0, 1}r. Now AS runs AF (m, r) to construct M ∈ {0, 1}n such that
F (M, r) = m. AS then outputs (M, σ). ��

A.2 Proof of Lemma 8

Proof (E-COLn1,n2 [F] ⇐ ERn1,n2 [S]). Let us assume an adversary AS which
(τS , εS)-breaks ERn1,n2 [S]. We build an existential collision-finder AF which
(τF , εF)-breaks E-COLn1,n2 [F] with εF = εS and τF = τS + Time (S.Gen) +
+Time (S.Ver). AF generates a random key pair (pk, sk) ← S.Gen() and runs
AS(pk, sk). If AS outputs (M1, M2, σ) where M1 ∈ {0, 1}n1 , M2 ∈ {0, 1}n2 ,
M2 �= M1 and σ is a valid signature on M1 and M2, then AF computes r = Υ1(pk, σ)
and outputs (M1, M2, r). If σ is a signature on M1 and M2 simultaneously then
σ = Σ2(sk, F (M1, r1), r1, aux1) = Σ2(sk, F (M2, r2), r2, aux2) for some aux1, aux2

and r1, r2 ∈ {0, 1}r. Since S is injective, one must have r1 = r2 = r and F (M1, r) =
F (M2, r) so that (M1, M2, r) is an (n1, n2)-existential collision. ��

Proof (E-SECn2
n1

[F] ⇐ URn2
n1

[S]). Assuming a (τS , εS)-universal repudiator AS ,
we build an algorithm AF which (τF , εF)-breaks E-SECn2

n1
[F] with εF = εS and

τF = τS + Time (S.Gen) + Time (S.Ver). Given a random message M1 ← {0, 1}n1 ,
AF generates a random key pair (pk, sk)← S.Gen() and runs AS(pk, sk, M1) to con-
struct a pair (M2, σ) where M2 ∈ {0, 1}n2 , M2 �= M1 and σ is a valid signature
on M1 and M2. In this case, AF computes r = Υ1(pk, σ) and outputs (M2, r). σ
being a signature on both M1 and M2 implies σ = Σ2(sk, F (M1, r1), r1, aux1) =
Σ2(sk, F (M2, r2), r2, aux2) for some aux1, aux2 and r1, r2 ∈ {0, 1}r. Since S is injec-
tive, one must have r1 = r2 = r and F (M1, r) = F (M2, r) so that (M2, r) yields an
n2-bit second preimage of F (M1, r). ��

3 All reductions considered in this paper are concrete and fully black-box.

Can We Construct Unbounded Time-Stamping Schemes
from Collision-Free Hash Functions?

Ahto Buldas1,2,3 and Margus Niitsoo1,3,	

1 University of Tartu, Liivi 2, 50409 Tartu, Estonia
ahto.buldas@ut.ee

2 Tallin University of Technology, Raja 15, 12618 Tallinn, Estonia
3 Cybernetica AS, Akadeemia tee 21, 12618 Tallinn, Estonia

margus.niitsoo@cyber.ee

Abstract. It has been known for quite some time that collision-resistance of hash
functions does not seem to give any actual security guarantees for unbounded
hash-tree time-stamping, where the size of the hash-tree created by the time-
stamping service is not explicitly restricted. We focus on the possibility of show-
ing that there exist no black-box reductions of unbounded time-stamping schemes
to collision-free hash functions. We propose an oracle that is probably suitable for
such a separation and give strong evidence in support of that. However, the exis-
tence of a separation still remains open. We introduce the problem and give a con-
struction of the oracle relative to which there seem to be no secure time-stamping
schemes but there still exist collision-free hash function families. Although we
rule out many useful collision-finding strategies (relative to the oracle) and the
conjecture seems quite probable after that, there still remains a possibility that
the oracle can be abused by some very smartly constructed wrappers. We also
argue why it is probably very hard to give a correct proof for our conjecture.

1 Introduction

Suppose you are an inventor and you just had a brilliant idea. You want to protect
yourself against someone later claiming to have had that same idea, but earlier. If he
honestly claims so there is nothing you can do. To avoid dishonest claims of this type, it
would be sufficient to tie your idea to the time at which you discovered it, i.e., to time-
stamp the idea. Simplistic time-stamping schemes use trusted authorities that receive
documents, add time stamps to them and sign the time-stamped documents digitally.
Assuming that the signature scheme is secure and the authority is trustworthy, this is a
good scheme and has indeed been used in paperwork for hundreds of years—notaries
and patent offices follow such a scheme.

Over the centuries, inventors who did not want to reveal their ideas to authorities
discovered many ingenious ways of securely time-stamping documents. For example,
sending documents to themselves in sealed envelopes and keeping them sealed until
the documents should be used as evidence in courts. A digital analog of this scheme

� Both authors supported by Estonian SF grant no. 6944, by EU FP6-15964: “AEOLUS”, and
by the European Regional Development Fund.

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 254–267, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Can We Construct Unbounded Time-Stamping Schemes 255

is meant to send a hash value of the invention to the central authority instead of the
document. Assuming that the hash function is hard to inverse, no useful information
about the invention is revealed. When the time stamp needs to be verified, the full
document is presented and everyone is able to check that the time-stamped hash value
represents this particular document.

Even this is insufficient for the most paranoid inventors. The main concern is that it
is rather easy for corrupted authorities to issue back-dated time stamps, so that it might
be possible to create a document today and claim that it was created yesterday. Hence, it
is reasonable to require that even the authority itself is unable to forge time stamps. The
first time-stamping scheme that achieved this was proposed by Haber and Stornetta [6]
and was extensively scrutinized [1,7,2]. The main idea of their scheme was to publish
the hash value of the document in daily newspapers instead of letting the authorities sign
them. As it is almost impossible to change the contents of yesterday’s newspapers the
scheme is secure without any trustworthiness assumptions. To increase the efficiency of
this scheme, all hash values that were intended to be published can be hashed together
to a single hash value by using Merkle hash trees [10] instead of publishing all hash
values separately.

It was widely believed that the security of such a hash-and-published scheme is a
straightforward implication of the collision-freeness of the hash function until it was
shown by Buldas and Saarepera [4] that this is not the case—the conventional black
box techniques will certainly fail to give such proofs. It has also been shown [3,5] that
the collision-freeness property is probably unnecessary for creating secure hash-and-
publish time-stamping schemes.

The main aim of this paper is to explore the possibility that no constructions of se-
cure hash functions for this scheme could be made from collision resistant functions.
Section 2 introduces the required notions and definitions. Section 3 describes the hash-
and-publish time-stamping scheme and the security condition that is required from the
hash function. Section 4 gives an overview of cryptographic reductions and how to
prove their impossibility via oracle separation. Section 5 gives a description of an or-
acle that is the most promising candidate for the separation at hand. Next sections try
to argue why this oracle is probably insufficient for finding collisions to every single
hash function. Section 6 discusses the possibility of using disperser graphs to abuse the
oracle. Section 7 shows that such type of adversary and also a much wider class of ad-
versaries will fail to do so if the oracle is carefully chosen. Sections 8 rules out some
more abusing-strategies. Section 10 discusses the possibility of moving towards to the
complete solution of the conjecture.

2 Notation and Definitions

If P (x) is a predicate of some kind, then [P (x)] is 1 if P (x) holds and 0 otherwise
(the Iverson symbol). By Pn we denote the set of unordered pairs from {0, 1}n. By
x ← D we mean that x is chosen randomly according to a distribution D. If A is a
probabilistic function or a Turing machine, then x ← A(y) means that x is chosen
according to the output distribution of A on an input y. By Un we denote the uni-
form distribution on {0, 1}n. If D1, . . . ,Dm are distributions and F (x1, . . . , xm) is a

256 A. Buldas and M. Niitsoo

predicate, then Pr[x1 ← D1, . . . , xm ← Dm: F (x1, . . . , xm)] denotes the probability
that F (x1, . . . , xm) is true after the ordered assignment of x1, . . . , xm. For functions
f, g: N → R, we write f(k) = O(g(k)) if there are c, k0 ∈ R, so that f(k) ≤ cg(k)
(∀k > k0). We write f(k) = ω(g(k)) if lim

k→∞
g(k)
f(k) = 0. If f(k) = k−ω(1), then f is

negligible. A Turing machine M is polynomial-time (poly-time) if it runs in time kO(1),
where k denotes the input size.

By an oracle Turing machine we mean an incompletely specified Turing machine
S that comprises calls to oracles. The description can be completed by defining the
oracle as a function O: {0, 1}∗ → {0, 1}∗. In this case, the machine is denoted by SO.
The function y ← O(x) is not necessarily computable but may still have assigned a
conditional running time t(x), which does not reflect the actual amount of computations
needed to produce y from x. The running time of SO comprises the conditional running
time of oracle calls – each call O(x) takes t(x) steps. An oracle O is poly-time if
t(x) =|x |O(1), where |x | denotes the bit-length of x. We say that S is a poly-time
oracle machine if SO runs in poly-time, whenever O is poly-time. A primitive P is a
class of (not necessarily computable by ordinary Turing machines) functions intended
to perform a security related task (e.g. data confidentiality, integrity etc.). Each primitive
P is characterized by the success δ(k) of an adversary A. An instance f of a primitive
P is secure if every poly-time adversary can break f only with a negligible success.
Let O be an oracle. We say that f is secure relative to O if every poly-time oracle
adversary AO can break f only with negligible success. A distribution family {Dk}k∈N

is poly-sampleable if there is a poly-time D with output distribution D(1k) ≡ Dk. We
call functions of type h: {0, 1}n → {0, 1}m hash functions if n − m = ω(log(n)).
We say that x1, x2 ∈ {0, 1}n form a collision for h: {0, 1}n → {0, 1}m if x1 �= x2

and h(x1) = h(x2). We say that a family χ of hash functions h : {0, 1}n → {0, 1}m

(n > m) is collision resistant if for every poly-time adversary A can find collisions for
a randomly chosen h ← χ with negligible probability, i.e., for every adversary A we
have Pr[h ← χ, (x0, x1) ← A(h) : x0 �= x1, h(x0) = h(x1)] = m−ω(1).

3 Hash and Publish Time-Stamping

A hash-and-publish time-stamping involves three parties: a Client C, a Server S and
a repository R and gives two procedures - one for creating a time stamp and one for
verifying it. Inspired by real newspapers, R is assumed to be write-once, i.e., if a hash
value r was once published in R, it cannot be deleted or changed later. The server S is
a middle-man between clients and R and is not assumed to be trusted.

The scheme uses two functions: a client side hash function hc : {0, 1}∗ → {0, 1}k

used by clients to get hash values of the documents and a server side hash function
h: {0, 1}2k → {0, 1}k that is used for computing the published hash value. In this
work, we only study the properties of h by assuming that each client request xi is a
hash hc(Xi) of a document Xi of arbitrary length. We model h as a function with two
inputs and one output of length k and write h(x1, x2) = y, where x1, x2, y ∈ {0, 1}k.
Hash trees can then be represented as circuits where each wire (output of an h-gate)
carries k bits simultaneously. A hash circuit transforms a list x1, . . . , xm of k-bit inputs
(client requests) to a single k-bit output rt (root value), where t is the time unit (round)

Can We Construct Unbounded Time-Stamping Schemes 257

during which the requests were received by the server. Having received the requests
x1, . . . , xm, the server computes rt and publishes it in the write-once repositoryR. We
assume that the shape of the hash tree is chosen by S and is not restricted anyhow. This
is why the scheme is called unbounded.

After publishing rt in R, the server sends each client a certificate, that is a 4-tuple
c = (x, t, n, z), where x is the request, t is the number of the round, n = n1n2 . . . nl

is a bit-string that describes the path from x down to the root and z = (z1, . . . , zl) ∈
({0, 1}k)l is the list of sibling hash values that are needed to verify the path. For exam-
ple, the certificate of x4 in Fig. 1 is c = (x4, t, 101, (z1, z2, z3)).

h

h h

h

h

h h h

h

h h

h

h

x1

x2 x3 x5 x6 x8

x7

x9

z2

z1

x10

y2

y3 z3

z4 = rt

x4

h

h

h

...

... ...

0..01 0..10 1..01 1..111..000..110..00 1..10

Fig. 1. A tree with a path marked from x4 (left) and the complete hash tree with 2k leaves (right)

The verification procedure takes as input a document X and a certificate c = (x, t,
n, z). As the first step it is verified that x = hc(X). The verification then proceeds by
defining y1 := x and then inductively computing a sequence y2, . . . , yl+1 so that:

yi+1 :=
{

h(zi, yi) if ni = 0
h(yi, zi) if ni = 1 . (1)

We denote this computation by yl+1 = V (x, n, z). Finally, it is checked whether yl+1

coincides with the hash value rt stored in R.

Security condition for time-stamping schemes [4] can directly be transformed into the
so-called chain-resistance condition for the server-side hash function h:

Definition 1. A hash function h : {0, 1}2k → {0, 1}k is chain resistant if for every
poly-sampleable distribution family Dk (on {0, 1}k) with ω(log k) bits of min-entropy
and for every poly-time A = (A1, A2)

Pr[(r, a) = A1, x ← Dk, (n, z) = A2(x, a) : V (x, n, z) = r] = k−ω(1) . (2)

The question whether such hash functions exist or can be constructed from collision-
free hash functions remains an open problem. It was proved [4] that black-box reduc-
tions are unable to prove that every collision-resistant function is chain-resistant. This
paper studies the possibility of going one step further—showing that chain-resistant
functions cannot be constructed from collision-free functions in a black-box way.

258 A. Buldas and M. Niitsoo

4 Cryptographic Reductions and Oracle Separation

To rule out the possibility of black-box reductions we first have to define black-box
reductions properly. Assume we have to construct a primitive P from a base primitive
Q. It is a common cryptographic practice first to give a construction G that uses an
implementation f of Q and creates an implementation h = Gf of P and then show
that if h is insecure as P , then f has to be insecure as Q. This guarantees that if there
exist secure implementations of Q, there also exist secure implementations of P , so the
existence ofP is reduced to the existence ofQ. This leads to the following formalization
[8]:

Definition 2. We say that there exists a black-box reduction of a primitive P to a prim-
itive Q if there exist polynomial-time oracle machines G and S such that the next two
statements hold:

Correctness: For any implementation f ∈ FQ we have that Gf ∈ FP .
Security: For any implementation f ∈ FQ and any adversary A, if A P-breaks Gf ,

then SA,f Q-breaks f .

Here, S is the construction of the adversary that has access to f and A. Most classical
reduction results fit into this model.

Oracle Separation. The idea of proving that such a reduction cannot exist comes from
complexity theory where the main tool for proving such theorems is the so-called oracle
separation method. It exploits the fact that black-box reductions stay valid in all relative
worlds, i.e., computational models in which the ordinary Turing machines have access
to oracles. To see this, assume that there exists a black box reduction from P to Q that
is not relativizing. Then there exists such an oracle O that Q exists relative to it but P
does not. Let f ∈ FQ be an efficient and secure implementation of Q relative to O. It
then follows from the black-box reduction that there exists Gf ∈ FP for which there
is an adversary AO,f that breaks it. Then SA,f,O is an adversary for f that breaks it,
which is a contradiction since we assumed f to be secure relative to O. So, in order to
rule out a black-box reduction from P to Q it is sufficient to find an oracle that breaks
all instances of P while leaving at least one instance of Q secure. See [13] for more
details about reduction types and separations.

Such an argument was first used by Impagliazzo and Rudich [9] to show that there
exist no black-box reductions of key establishment protocols to one-way functions, and
was later used many times to rule out other black-box reductions. For example, Simon
[14] showed that collision-free hash functions cannot be reduced to one-way permuta-
tions in a black-box way. In our case, we need an oracle that breaks chain resistance but
leaves at least one function collision-free.

Hsiao and Reyzin [8] gave a rather powerful separation theorem. We extend it even
further to show the full power of the approach and demonstrate exactly what would be
required to rule out a black-box reduction.

Theorem 1. If for all polynomial-time oracle machine pairs R = (G, S) there exist
AR and fR such that

Can We Construct Unbounded Time-Stamping Schemes 259

(a) fR implements Q
(b) There is a polynomial-time oracle machine DAR,fR that breaks GfR .
(c) There is no polynomial-time oracle machine B such that BAR,fR breaks fR,

then there exist no black-box reductions from P to Q.

Proof. Assume to the contrary that a black-box reduction exists. Then there exists a pair
of oracle machines R0 = (G0, S0) that realizes the reduction. Then Gg

0 implements P
whenever g implements Q and by the assumptions there exist f = fR0 and A = AR0 .
Then by (a) f implements Q and Gf

0 implements P . By (b) there exists a polynomial-
time oracle machine DA,f that breaks Gf

0 . Then by the assumption that we have a fully

black-box reduction, SDA,f ,f
0 = BA,f breaks f . However, (c) claims no such B can

exist, thus giving us a contradiction. ��

As is evident from the theorem, we can actually vary the oracle we construct based
on the machines that realize the construction and that the oracle only has to be helpful
for one specific function. Also, the G part of the reduction has only a limited access
to the oracle, only being able to use the original implementation of primitive Q. This
theorem along with these remarks is the main motivation behind the direction of our
further analysis.

5 Hash Tree Oracle

There is one natural candidate for an oracle that breaks a function H in terms of
chain-resistance—the one that constructs a full tree from all 2n possible n-bit requests
(Fig. 1, right), returns the root value, and is ready to output any certificate on demand.
We can formalize this oracle as a triple O = (O1,O2,O3) such that O1 returns the root
value of a tree constructed for the hash function H and O2(x) gives a certificate (n, z)
for x by taking the path from that tree starting from the input x. It is clear that such an
oracle will break H in the chain-resistance sense with probability 1. We also add a third
part O3 to the oracle which would implement a truly random function h from some
well-chosen hash function family and assume H is given access to it. By Theorem 1 all
we would need in this case is to show that the hash function supplied by O3 is hard to
break even if O1 and O2 are available. Note that h does not have to be poly-time.

The approach may seem very promising. However, it turns out that if the oracle
indeed gives out the root of a full tree (a tree with all the possible inputs x) from O1,
such an oracle can always be exploited to find a collision. We state the result as a
theorem:

Theorem 2. Let h : {0, 1}n → {0, 1}m be a hash function (m < n). Then there exists
a poly-time oracle machine Hh : {0, 1}4n → {0, 1}2n such that O1(Hh) returns a
collision for h.

Proof. Define Hh so that on input x1‖x2‖x3‖x4 (where xi ∈ {0, 1}n) the machine Hh

returns x1‖x2 if (x1, x2) is a collision for h, otherwise, Hh returns x3‖x4. It is clear
that if a collision is presented to Hh as a left or right input, it will output a collision.

260 A. Buldas and M. Niitsoo

Since O1 outputs the root value of the full tree, every possible 2n-bit string (including
collisions) is given as input to Hh at some leaf of the hash tree and hence at least
one collision will propagate to the root of the tree. Since m < n, there certainly exists
a collision. ��

hh

Hh

...

hh

Hh

...hh

Hh

...

hh

Hh

...

hh

Hh

...

hh

Hh

...

2k-bit input

k-bit output

...

...

X2 X3 X4 XN

Collision for h

X1

Fig. 2. Hash adversary and how it finds collisions for h : {0, 1}2k → {0, 1}k by using N =
2k/p(k) different k-bit inputs X1 . . . XN

Theorem 2 shows that the full tree oracle can always be abused to find collisions
for any hash function. Note, however, that we do not need to break the chain-resistance
property with probability one. This means that we are allowed to fail to produce a
certificate for some inputs x for O2 as long as we can produce a certificate with a non-
negligible probability. This means that the tree does not need to be full, but it still needs
to be quite large—a polynomial fraction 1

p(k) of all possible 2k inputs. This motivates
the following definition:

Definition 3 (Hash-Tree Oracle). By a hash-tree oracle we mean any oracle O =
(O1,O2,O3) such that

– O1 returns the root value of a hash-tree of size 2k/kO(1) constructed for the hash
function H : {0, 1}2k → {0, 1}k

– O2(x) gives a certificate (n, z) for x by taking the path from that tree starting from
the input x; and

– O3 gives access to a truly random function f chosen from a good collision-resistant
family of (possibly non poly-time) hash functions.

As Theorem 1 is our general guide, the hash-tree oracle is defined in terms of a fixed H .
Normally, this H would be constructed by applying the black-box reduction to h = O3.
We thus expect H itself to work in polynomial time where we assume that an O3 query
takes constant time.

As we showed, information leak from O1 is clearly a problem in some cases. Al-
though we do not have to construct the whole tree, it should still be of exponential size.

Can We Construct Unbounded Time-Stamping Schemes 261

Hence, if H is cleverly constructed, then O1 outputs the result of an exponential com-
putation. We thus turn our main attention to poly-time functions H that have access to
h and are constructed for abusing O to find collisions to h. We call such functions hash
adversaries (Fig. 2).

6 Disperser Adversary

The number of collisions for h can be much less than a polynomial fraction of all input
pairs. For example, if h is a near-regular function, then the collisions form an exponen-
tially small fraction of all input pairs. Thus, the hash-tree oracle can be constructed so
that no collisions occur in the leaves of the tree. In order to improve the construction
used in Theorem. 2 it is natural to consider the following generalization. Suppose we
check more than one pair per each input but still pass on our findings so that if a colli-
sion is ever found, it will propagate to the root. It is suitable to explain this idea in terms
of graph theory.

Suppose we are trying to construct H : {0, 1}2k → {0, 1}k that finds collisions for
h: {0, 1}n → {0, 1}m. Since we are trying to mimic the previous construction, assume
that for each x ∈ {0, 1}k the function has a set of pairs in h it will check for collisions,
and if it finds one it will pass that same value x down. We can then construct a bipartite
graph. Let Pn be the set of unordered pairs from {0, 1}n (so |Pn| = 2n−1(2n − 1))
and let G = ({0, 1}k, Pn, E) be the bipartite graph such that (x, (y1, y2)) ∈ E iff
H checks the pair (y1, y2) when given x as input. To find collisions successfully, we

would like that every subset of {0, 1}k with at least 2k

p(n) elements has nearly all the

elements of {0, 1}2n as its neighbors—so that at least one collision would be among
the neighbors. This means that no matter what inputs are given to the tree, assuming that
there are at least 2k

p(n) of them, a collision will certainly be found. There is one additional
constraint—we can check only a polynomially bounded number of pairs because H is
expected to be poly-time. It turns out that such graphs have been considered before in
other applications.

Definition 4. We call a bipartite graph D = (V1, V2, E) a (K, ε)-disperser if the
neighbor set N(U) of every U ⊂ V1 with cardinality K has at least (1 − ε)|V2| el-
ements.

Dispersers are mainly used as theoretical tools for randomized complexity classes or
for extracting randomness from weak sources. They are generally considered alongside
extractors, which have a similar but stronger requirements. Both types of graphs are
often used in complexity theory and cryptography and there are numerous good surveys
about their properties, constructions and bounds [12]. In our case, we are looking for
a K = 2k

p(n) disperser graph with as small ε as possible. It turns out that there are
well-known lower bounds on all the parameters of disperser graphs.

Let D be the average degree of a vertex in V1. Note first that in our case to cover
enough of V2, we need KD ≥ (1 − ε)|V2| since otherwise there are not enough
neighbors. Since most of the time some neighbors overlap, this would be an idealis-
tic scenario. As it turns out, there are much stricter bounds for the parameters. In fact,
Radhakrishnan and Ta-Shma give the following theoretical bounds in [11]:

262 A. Buldas and M. Niitsoo

Theorem 3. Suppose that G = (V1, V2, E) is a (K, ε)-disperser with N = |V1| and
M = |V2|. Let D be the average degree of a vertex in V1.

(a) Assume that K < N and D < (1−ε)M
2 (so G is not trivial). If 1

M ε < 1
2 , then

D ≥ 1
ε log N

K−1 .

(b) Assume that K ≤ N
2 and D ≤ M

4 . Then DK
M ≥ c log 1

ε for some c.

We try to apply these bounds to see how far the previously presented adversary idea
could bring us. Let q(n) be the polynomial by which D is bounded. From (a) we then
find that q(n) ≥ c 1

ε log(n) for some constant c and thus ε ≥ c log(n)
q(n) ≥ 1

q′(n) for some

polynomial q′(n). This means we can guarantee that all but 1
q′(n) of the possible pairs

are covered. Simple combinatorics states that a hash function h: {0, 1}n → {0, 1}m

has at least 2n−1(2m − 1) collisions which form less than a polynomial fraction of all
the input pairs for h. This means that an adversary based on the disperser construction
fails to find a collision. In the next section, we prove a more general result that all such
collision pair-checking approaches will fail to abuse O for finding collisions.

7 Infeasibility of the Pair Checking Approach

If we could pick exactly what pairs we checked, then we could guarantee we will find a
collision with 2n+m+1 queries. This is easy to prove by noting that collision pairs form
a graph with 2m cliques at least one of which has to contain at least 2n−m vertices.
Therefore, if we take the Turan graph – that is, a complete (2n−m − 1)-partite graph
with 2n vertices divided as evenly as possible among the subsets – it has no cliques of
size 2n−m . Then, if we check all the pairs corresponding to edges in its complement
graph, finding one collision is guaranteed.

Regardless of potentially exponential amount of computations that the tree oracle is
able to perform, the set of pairs that we want to check is still limited. We will prove that
any hash adversary that just checks input pairs for collisions will be unsuccessful if we
use a well-constructed oracle.

First, we define such an adversary. We note that if it only checks whether certain pairs
of inputs form a collision, then we can replace the oracle part h = O3 with a simple
collision-check oracle ch such that ch(x, y) = 1 iff x and y form a collision. In this
case, to construct O1 and O2, all we have to ensure is that the tree is formed in a way
that ch can always answer 0. In case we have few enough queries and answer all of them
negatively, then it follows that the collision-resistance of h = O3 is preserved. It turns
out that if we only use the collision-check oracle, this problem is (nearly) equivalent to
trying to find a good enough disperser.

Lemma 1. Let F be a family of hash functions h : {0, 1}n → {0, 1}m such that for
any hash adversary H and for all but an ε fraction of h ∈ F there exists a subset K
of cardinality δ22k such that for all x ∈ K no call to ch made by H(x) covers a real
collision for h. Then we can construct a tree with at least δ22k inputs for any hash
adversary H ′ such that no collisions are checked during its execution. The reverse also
holds.

Can We Construct Unbounded Time-Stamping Schemes 263

Proof. Let H : {0, 1}2k → {0, 1}k be any hash adversary. We construct a full Merkle
tree of Hc0 such that every possible input x ∈ {0, 1}2k is presented to it exactly once.
We use the dummy oracle c0 that always returns 0. Based on that tree, we define H ′(x)
to do all the calculations and calls to the oracle c done by Hc0 on the path from H(x)
down to the root. Since H makes at most a polynomial number of calls to the oracle
and the path is of length k, H ′ is also a hash adversary. We can therefore extract a δ22k

cardinality subset K for which H ′ will not ask for any actual collision of h from c (for
all but an ε fraction of h ∈ F). We construct the hash tree for H as the union of all the
paths in the Merkle tree that begin from vertices in K . Since no collisions are found on
these paths due to the construction of the set K , these paths are the same as those in
the original Merkle tree constructed with the dummy oracle c0. This means that their
union indeed forms a proper tree and since no path finds a collision, the tree built as
their union also fails to find one.

The inverse is straightforward. Let H : {0, 1}2k → {0, 1}k be a hash adversary and
for some h : {0, 1}n → {0, 1}m we can find a tree with at least δ22k different inputs
so that no collisions are found. If we just take the set of inputs given to it, we have the
required subset of cardinality K for H . ��
This lemma shows that instead of trying to construct a tree, we should concentrate all
our efforts to just finding a subset of input pairs with the required size and properties,
because once we can do so for any hash adversary, we can also construct a tree. This
removes one dimension of complexity and allows us to use graph theory again. The
proof was carried out for full inputs of length 2k but if we can construct a tree from a
polynomial fraction of them, it also contains a polynomial fraction of different single
inputs of length k.

Theorem 4. Assume that H : {0, 1}2k → {0, 1}k is a hash adversary with an oracle
ch for h where h : {0, 1}n → {0, 1}m is chosen uniformly from a family of hash
functionsF . We also assume that for every pair (x, y) ∈ {0, 1}2n, x �= y the probability
that c(x, y) = 1 is 2−ω(log(n)). Then the probability of not being able to construct a tree
that does not show any collisions is negligible.

Proof. Let N(x1, x2) be the number of different inputs of H on which it checks for the
collision c(x1, x2). It is clear that

∑
(x,y)∈{0,1}4n N(x, y) ≤ p(n)22k since there are

a total of 22k different possible inputs and for each input the number of calls to ch is
bounded by a polynomial p(n). We calculate the expected value of the number of inputs
Np that will lead to a collision being detected in their branch:

E[Np] ≤
∑
h∈F

Pr[h]
∑

(x,y)∈Pn

N(x, y)[h(x) = h(y)]

=
∑

(x,y)∈Pn

N(x, y)
∑
h∈F

Pr[h][h(x) = h(y)] =

=
∑

(x,y)∈Pn

N(x, y)2−ω(log(n)) ≤ p(n)22k−ω(log(n)) .

Using the Markov inequality we get that Pr[Np ≥ 22k−1] ≤ p(n)21−ω(log(n)). Hence,
a subtree with at least half of all the different inputs fed to it that fails to find a collision

264 A. Buldas and M. Niitsoo

can be found for all but a p(n)21−ω(log(n)) fraction of h. Using the previous theorem
now gives us the promised result with δ = 1

2 . ��

Roughly, this theorem says that given any fixed hash adversary, the oracle can avoid
revealing the collisions directly. This does not, however, rule out that one can find col-
lisions from such trees indirectly. We now extend the construction given so far to rule
out this as well.

Theorem 5. Under the assumptions of the previous theorem, the probability of finding
a collision can be made negligibly small.

Proof. Let 2−d be the collision probability in the previous proof. For each h ∈ F we
randomly choose a set Fh ⊂ F of size 20.5d and try to avoid all of their collisions
instead of just those for h itself. The probability of randomly choosing a collision for
one of them from the set of all possible pairs is 2−d ·20.5d = 2−0.5d and if d = ω(log n),
then so is 0.5d. This means that the argumentation of the theorem will still go through
and that we can still avoid the set of forbidden pairs for all but a super-polynomial
fraction of h ∈ F . This, however, also means that each such avoiding tree could be valid
for any of the 20.5d possible hash functions in F instead of just one and considering the
construction and size of F , the average chance of guessing a collision correctly only
knowing the set Fh that h belongs to it is still negligible. ��

This means that an adversary that only uses the pair-checking approach can always be
fooled. This only rules out a one rather simplistic approach for the adversary trying to
abuse the oracle. In the next sections we study if our approach could be extended or
improved in any way.

8 Other Possible Types of Hash-Adversaries

The result at the end of the previous section means that the approach we tried for con-
structing the adversary for collision-resistance needs to be altered. We have to abandon
the strategy of just checking pairs and try to do something more clever. As it turns
out, however, this approach can be used to rule out a few other seemingly promising
approaches.

8.1 Input-Output Pair Check

There is a lexicographic total ordering of fixed-length bit-strings. One idea of how to
find collisions is that we could try to find the maximum and minimum inputs that pro-
duce a given output. This can be done by asking by Hh questions of the form h(x) =?y,
where x ∈ {0, 1}n, y ∈ {0, 1}m. If we formalize that in the form of a so-called equality
oracle eh(x, y), the same argument as presented for the collision oracle c can be carried
out nearly word for word to show that this approach has as little potential as our previ-
ous one, since as before, we can almost always find trees such that only 0 is answered
by e. In this case, the infeasibility of collision-finding does not follow as easily though.
We note that it would take 2m − 1 queries of this type that were answered negatively to

Can We Construct Unbounded Time-Stamping Schemes 265

determine the value h(x). Therefore, there is a possibility that the adversary finally ob-
tains the value of h(x) during the tree-computations. However, the argument given for
ch in Theorem 5 that looked at collisions for a large set of a randomly chosen h′ ∈ F
instead of a single h could again be used rather effectively to rule out the equality ora-
cle giving enough useful information. As for the case of multiple calls to the oracle, the
same vulnerability clearly exists as with the collision oracle.

8.2 Output Comparison

The approach of finding the minimum or maximum of some values gives us another
idea of what to try to rule out. Suppose H only asks questions of the form h(x) > h(y),
where < is the lexicographic order. In this case, we can also construct a binary greater-
than oracle g(x, y) to answer queries of this type. There is one very important difference
between this oracle and the previous two (i.e., c and e). In c and e, the answers were
clearly asymmetric in the amount of information they gave away, i.e., 0 was a ”safe”
answer and if we could avoid ever answering 1, the oracle could not be exploited. In this
case, both answers 0 and 1 give out a nearly equal information, so always answering 0
is just as dangerous as always answering 1.

This means that in order to fool the hash adversary we have to re-check all previous
g-calls. We note that Theorem 1 essentially relies on our ability to ”fake” safe answers
so we could get a static tree structure. As we remember from Theorem 2, if we honestly
answer the queries in the full tree, then H is able to guarantee a collision in the root.
We also note that the greater-than oracle can be used to emulate the collision oracle as
c(x, y) = 1 happens exactly when g(x, y) = 0 and g(y, x) = 0. This means that to
use the same technique, we have to find a way to fake the oracle answers consistently
enough that a ”correct” subtree (where all the answers were correct) could be extracted
but yet falsely enough that the hash adversary will not have a collision in the root.

There is indeed a way to do so. We extend h : {0, 1}n → {0, 1}m to a new function
h′: {0, 1}n → {0, 1}m+n such that the most significant bits of h′(x) correspond to the
output of h(x), but the least significant ones are chosen randomly with a constraint
that h′ is injective. So, no output corresponds to two different inputs. We then answer
g(x, y) queries based on h′ instead of h. Clearly, we have to clean the tree from all the
answers that say g(x, y) when h(x) = h(y) but this is essentially the same as clearing
the tree from all the queries where c(x, y) = 1.

Still, a small problem remains—the argument used to prove that the answers given
by the oracle do not uniquely determine the collisions by some indirect means does not
work as it did before. The original idea needs a slight modification. Instead of choos-
ing a random hash function intoFh, we choose another hash function in such a way that
consistent answers can still be given rather easily for g. To be precise, we try to avoid an-
swering queries such that h(x) and h(y) differ only in the last 0.5d bits where 2−d is the
collision probability. Essentially the same argumentation as before could then be used.
Intuition behind this approach is that instead of h we simply consider a hash function
h′′ : {0, 1}n → {0, 1}m−0.5d for which we eliminate the collisions in the tree. Since
we remove any oracle queries that distinguish between the collisions within a class of
size 20.5d of output values, it is easy (but rather technical) to prove that even knowing
all the information given out by the oracle the chance of finding a collision is negligible.

266 A. Buldas and M. Niitsoo

8.3 Using All Three Approaches

We note that we can also rule out all the constructions that use a combination of all
three oracles c, e, and g, then the last step in Theorem 4 can be changed to use δ = 4

5 .
Then we can choose the sets separately for all three oracles, so that none of them gives
enough information and then take their union which is of size at least a fraction δ′ = 1

5 .
This can be done even after the tricks used in Theorem 5 and its analogs have been taken
into account. Therefore, this paper rules out any hash adversary constructions that use
only on these three oracles and do not use any additional types of information. This
seems to rule out most of the simple ways of exploiting the oracle, so if the tree oracle
does not work, the adversary that can use it to break collision-resistance for O3 has to
be fairly clever.

8.4 Input-Output Comparison

One obvious generalization of the input-output check oracle e would be the so-called
input-output comparison oracle that answers questions of type h(x) > y?. This oracle
has one strength over the others—while it would take 2m−1 queries to know the actual
value of h(x) using the e-oracle and even more for the other two, it only takes roughly
m queries to find h(x) using the input-output comparison oracle, because we can do
binary search. This means that we could easily interchange between a binary oracle of
this type and a full oracle for h since we can compute one from the other in polynomial
time. Therefore, if we could learn to somehow fake this oracle in the same sense as
we have faked the three previous ones, it would give us a full proof of the separation
we have been seeking. It should then be no surprise that this oracle seems to be much
harder to fake and we do not know any efficient ways of doing so.

9 Discussion

The results presented so far leave the possibility of oracle separation between un-
bounded hash-tree time-stamping and collision-free hash functions in a rather ambigu-
ous state—the proposed hash-tree oracle (Def. 3) seems to be hard to exploit, but at the
same time, it seems nearly as impossible to rule out a hash-adversary that nonetheless
does it. There is still one more approach that may lead to some further results. We note
that for any possible construction presented to the oracle, the probability of it giving
any information about the collisions of h supplied by the oracle taken over all possible
inputs nearly always has to be negligible—if it is not, we could do without any oracles
by simply choosing a random input, using the function on it and trying to deduce a col-
lision based on that. We essentially proved this fact for collision checking adversaries in
Theorem 4 and then extended it to other oracle types. Therefore, one might try consid-
ering an oracle where the root value supplied by O1 is generated randomly. In this case,
however, the certificates given out by O2 might help in breaking h a bit more than they
do on average and the advantage gained in such a way seems surprisingly hard to bound.
The initial results in this direction seem somewhat promising but nothing concrete has
come out of that approach yet. At the moment it seems that the problem needs more
complicated mathematical machinery, perhaps some information theoretical bounds or

Can We Construct Unbounded Time-Stamping Schemes 267

even Kolmogorov Complexity may come into play. However, there may still be better
choices for the separation oracle that could lead to easier proofs of separation.

References

1. Bayer, D., Haber, S., Stornetta, W.-S.: Improving the efficiency and reliability of digital time-
stamping. In: Sequences II: Methods in Communication, Security, and Computer Science,
pp. 329–334. Springer, Heidelberg (1993)

2. Buldas, A., Laud, P., Lipmaa, H., Villemson, J.: Time-Stamping with Binary Linking
Schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 486–501. Springer,
Heidelberg (1998)

3. Buldas, A., Laur, S.: Do broken hash functions affect the security of time-stamping schemes?
In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 50–65. Springer,
Heidelberg (2006)

4. Buldas, A., Saarepera, M.: On Provably Secure Time-Stamping Schemes. In: Lee, P.J. (ed.)
ASIACRYPT 2004. LNCS, vol. 3329, pp. 500–514. Springer, Heidelberg (2004)

5. Buldas, A., Jürgenson, A.: Does secure time-stamping imply collision-free hash functions?
In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 138–150.
Springer, Heidelberg (2007)

6. Haber, S., Stornetta, W.-S.: How to time-stamp a digital document. Journal of Cryptol-
ogy 3(2), 99–111 (1991)

7. Haber, S., Stornetta, W.-S.: Secure Names for Bit-Strings. In: ACM Conference on Computer
and Communications Security, pp. 28–35 (1997)

8. Hsiao, C.-Y., Reyzin, L.: Finding Collisions on a Public Road, or Do Secure Hash Functions
Need Secret Coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 92–105.
Springer, Heidelberg (2004)

9. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations.
In: Proceedings of 21st Annual ACM Symposium on the Theory of Computing, pp. 44–61
(1989)

10. Merkle, R.C.: Protocols for public-key cryptosystems. In: Proceedings of the 1980 IEEE
Symposium on Security and Privacy, pp. 122–134 (1980)

11. Radhakrishnan, J., Ta-Shma, A.: Bounds for dispersers, extractors, and depth-two supercon-
centrators. SIAM Journal on Discrete Mathematics 13(1), 2–24 (2000)

12. Shaltiel, R.: Recent Developments in Explicit Constructions of Extractors. In: Bulletin of the
EATCS, vol. 77, pp. 67–95 (2002)

13. Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between cryptographic primi-
tives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004)

14. Simon, D.: Finding Collisions on a One-Way Street: Can Secure Hash Functions Be Based
on General Assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp.
334–345. Springer, Heidelberg (1998)

Relationship of Three Cryptographic Channels
in the UC Framework

Waka Nagao1, Yoshifumi Manabe1,2, and Tatsuaki Okamoto1,2

1 Graduate School of Informatics, Kyoto University
Yoshida-honmachi, Kyoto, 606-8501 Japan
w-nagao@ai.soc.i.kyoto-u.ac.jp

2 NTT Labs, Nippon Telegraph and Telephone Corporation
3-9-11 Midori-cho, Musashino, Tokyo, 180-8585 Japan

{manabe.yoshifumi,okamoto.tatsuaki}@lab.ntt.co.jp

Abstract. The relationship of three cryptographic channels, secure channels
(SC), anonymous channels (AC) and direction-indeterminable channels (DIC),
was investigated by Okamoto. He showed that the three cryptographic chan-
nels are reducible to each other, but did not consider communication schedules
clearly as well as composable security. This paper refines the relationship of the
three channels in the light of communication schedules and composable security.
We model parties by the task-probabilistic input/output automata (PIOA) to treat
communication schedules, and adopt the universally composable (UC) frame-
work by Canetti to treat composable security. We show that a class of anonymous
channels, two-anonymous channels (2AC), and DIC are reducible to each other
under any schedule and that DIC and SC are reducible to each other under some
types of schedules, in the UC framework with the PIOA model.

Keywords: Secure Channel (SC), Two-Anonymous Channel (2AC), Direction-
Indeterminable Channel (DIC), Universal Composability (UC), Probabilistic In-
put/Output Automaton (PIOA).

1 Introduction

One of the most important results in cryptography is the relationship among compu-
tational cryptographic assumptions. For example, several of the most important cryp-
tographic primitives such as pseudo-random generators, secure bit-commitment, and
secure signature schemes have been proven to exist if and only if one-way functions
exist [8,9,10,11,13].

Apart from the computational assumptions made in the above-mentioned works,
some physical or unconditionally secure assumptions and primitives, which rely on no
computational condition/assumption, are known to be essential in unconditionally se-
cure (or information theoretically) cryptography. For example, unconditionally secure
multi-party protocols can be constructed assuming secure channels [1,7].

The relationship of such physical (unconditionally secure) assumptions for channels
has been studied by [12]. The paper shows that three physical assumptions about chan-
nels are equivalent (or reducible to each other). Here, the three physical assumptions are

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 268–282, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Relationship of Three Cryptographic Channels in the UC Framework 269

the existence of the anonymous channel(AC), direction-indeterminable channel(DIC),
and secure channel(SC).

However, paper [12] did not consider communication schedules clearly as well as
composable security, although the communication schedule like synchronous or asyn-
chronous communication is critical in the reductions of the three channels, and compos-
able security is crucial for channels since channels are always lower level components
of systems and applications.

In this paper, we refine the relationship of the three channels in the light of commu-
nication schedules and composable security.

This paper adopts the universally composable (UC) framework by Canetti [2] to
treat composable security, since UC is the most powerful and well-studied framework
for composable security and is flexible enough to cover the security of physical (uncon-
ditionally secure) primitives like channels.

Although parties are usually modeled by interactive Turing machines (ITMs) in the
standard settings in cryptography including the UC framework [2], this paper models
parties by not ITMs but by task-probabilistic input/output automata (PIOA) [3,4,5,6]
to treat communication schedules. This is because: ITMs cannot treat flexible commu-
nication schedules like various types of asynchronous and nondeterministic schedules,
but task PIOA is one of the most powerful models to treat a variety of communication
schedules. The master schedule in task PIOA can control timing of activation among
party with flexible schedule.

This paper shows that a class of anonymous channels, two-anonymous channels
(2AC), and DIC are reducible to each other under any schedule in the UC framework
with the PIOA model. We also show that DIC and SC are reducible to each other under
some types of schedules in the UC framework with the PIOA model.

2 Preliminaries

This section introduces the basic notion of (task) Probabilistic Input/Output Automata
(PIOA) and security notion of Universally Composability(UC). (See papers [6] and [2]
for PIOA and UC, respectively, if you need more details.)

2.1 (Task) Probabilistic I/O Automata

We recall the basic definitions of PIOA and task-PIOA from [3,4,6].

Definition 1 [Probabilistic I/O Automaton (PIOA)]. Let Q, q, I, O, H and D be,
respectively, a countable set of states, a start state (satisfying q ∈ Q), a countable set of
input actions, a countable set of output actions, a countable set of internal actions and
a transition relation satisfying D ⊆ Q × (I ∪ O ∪ H) × Disc(Q), where Disc(Q) is the
set of discrete probability measures on Q. Let PIOA P be the tuple of (Q, q, I,O,H,D).

Definition 2 [Task Probabilistic I/O Automaton (Task PIOA)]. Let T = (P,R) be
a task-PIOA , where P = (Q, q, I,O,H,D) is a PIOA (satisfying the transition deter-
minism and input enabling properties), and R is an equivalence relation on the locally-
controlled actions L = O ∪ H.

270 W. Nagao, Y. Manabe, and T. Okamoto

Execution Fragment and Trace. Let qi and ai for i ∈ {0, 1, 2, · · · } be states and actions,
respectively. We consider that an execution fragment of task-PIOA T is the following
infinite or finite sequence α = q0a1q1a2 If the sequence α is a finite sequence, the
last state of α is denoted by lst(α). If α is a finite sequence with lst(α) = qi+1, for
each (qi, ai+1, qi+1) there exists a transition (qi, ai+1, μ) ∈ D with qi+1 ∈ supp(μ), where
supp(μ) is a support of μ. If there exists an execution fragment α of an automaton P, we
denote by trace(α) the input and output (external actions) sequence obtained from α.

In this paper, we formally model parties P1, · · · , Pn in a protocol by task-PIOA
T1, · · · , Tn. Each party Pi has a local scheduler ρi for the task-PIOA Ti. There exists
a master scheduler M for all parties, P1, · · · , Pn in a protocol.

Definition 3 [Local Scheduler]. Let T be a closed task-PIOA for a party P. A local
scheduler, ρ, for T is defined to be a finite or infinite sequence of tasks, t1, t2, · · · ; i.e.,
ρ = t1, t2, · · · . ρ specifies the executing order of tasks in T . (We often omit the explicit
description of ρ in the specification of a task-PIOA if ρ is trivial from the specification.)

Definition 4 [Master Scheduler]. A master scheduler, M, is defined to be a finite or
infinite sequence of party identifiers, i1, i2, · · · ; i.e., M = i1, i2, · · · . M grobally specifies
the executing order of tasks in a protocol of (P1, · · · , Pn) with preserving the local
schedulings of all parties.

For example, let ρi of party i be ti1, ti2, · · · (i = 1, 2, 3), and M = 1, 2, 2, 2, 3, 1, 1, 3.
Then the grobal executing order of task is t11, t21, t22, t23, t31, t12, t13, t32.

The master schedule is not under the control of adversary although the local schedule
is under the control of adversary. In other words, the adversary can not to intervene the
master schedule, but he can encumber the local schedule.

2.2 Universal Composability

UC Security. Let Env, Adv, and S im be an environment, an adversary, and a simulator,
respectively. Let Real denote the output of environment Env when interacting with ad-
versary Adv and parties Init and Rec running channel protocol π. Let Ideal denote the
output of environment Env after interacting in the ideal world with simulator S im and
ideal functionalityF . We say that Real UC-realizes F , if for any adversary Adv ∈ PPT
(probabilistic polynomial time) there exists a simulator S im ∈ PPT such that for any
environment Env ∈ PPT , IdealF ,S im,Env ≈ Realπ,Adv,Env, where ≈ denotes statistically
indistinguishable and PPT denotes a class of polynomial-time bounded machines.

Hereafter, we use the bold style, Real and Ideal, to express systems of the PIOA
notion to distinguish the real and ideal world of UC security. We then use the roman
style also means the task-PIOA to divide the notions between task-PIOA and UC notion.

3 Three Cryptographic Channels and Definitions

3.1 Secure Channel (SC)

A secure channel is a channel such that the initiator (message sender) and the receiver
can safely transmit messages to each other without the content being retrieved by a third

Relationship of Three Cryptographic Channels in the UC Framework 271

party or adversary. This secure channel consists of three sessions, establish session, data
sending session, and expire session: 1. The establish session creates a session between
the initiator and the receiver to start message sending. 2. The data sending session sends
a message to the receiver safely. 3. The expire session terminates the the existing session
and clears the secret key.

Definition 5. The code for secure channel, FSC, is defined in Fig. 1. (X̄, where (X ∈
Init,Rec}), means that if X = Init then X̄ = Rec else if X = Rec then X̄ = Init.)

Code for Secure Channel Functionality, FSC, where X ∈ {Init,Rec} and

sidSC = (Init,Rec, sid′SC).

State: estcondX ∈ {⊥,	}, initially ⊥, active ∈ {⊥,	}, initially ⊥, okcondAdv ∈ {⊥,	}, initially ⊥, mes ∈
({0, 1}) ∪ {⊥}, initially ⊥, ntask ∈ ({0, 1}∗) ∪ {⊥}, initially ⊥
Transitions:
– Establish Session:
ESS1. receive(EstablishSC, sidSC)X Precondition: active = ⊥, Effect: estcondX � 	, If estcondX = 	 for

all X then active � 	.

ESS2. send(SID, sidSC)Adv Precondition:active = 	, Effect: none

– Data Sending Session:
DSS1. receive(Send, sidSC,m)X Precondition:active = 	 and mes = ⊥, Effect: mes � m

DSS2. send(Send, sidSC, |m|)Adv Precondition: active = 	, mes � ⊥, okcondAdv = ⊥ and m � mes, Effect:
none

DSS3. receive(Response, sidSC, ok)Adv Precondition:active = 	 and okcondAdv = ⊥, Effect: okcondAdv �
	

DSS4. send(Receive, sidSC,mes)X Precondition: active,mes = 	 and okcondAdv � ⊥, Effect: mes and
okcondAdv � ⊥

– Expire Session:
EXS1. receive(ExpireSC, sidSC)X Precondition: active � ⊥ and mes = ⊥, Effect: ntask � EXS2

EXS2. send(ExpireSC, sidSC)Adv Precondition: ntask = EXS2, Effect: active, ntask and estcondX � ⊥ for
all X

Fig. 1. Code for Secure Channel Functionality, FSC

3.2 Two-Anonymous Channel (2AC)

An anonymous channel is one of the three cryptographic channels and is able to send
some messages to the receiver from unknown senders (”anonymously”). The adversary
can know the identity of the receiver and the message content, but cannot know who
sent the message to the receiver. When two senders and a receiver anonymously com-
municate by a channel, we say the channel is a two-anonymous channel. That is, one of
the two senders sends a message to the receiver. Note that two-anonymous channel can
also be used when the receiver and one of the senders is the same process.

Definition 6. The code for two-anonymous channel, F2AC, is defined in Fig. 2.

3.3 Direction-Indeterminable Channel (DIC)

A direction-indeterminable channel is one of the three cryptographic channels and is
able to send some messages to the receiver direction-indeterminably. The adversary can

272 W. Nagao, Y. Manabe, and T. Okamoto

Code for Two Anonymous Channel Functionality, F2AC, where for X ∈ {Initi ,Rec} and
sid2AC = ({Init1, Init2},Rec, sid′2AC).

State: estcondX ∈ {⊥,	}, initially ⊥, okcondAdv ∈ {⊥,	}, initially ⊥, mes ∈ ({0, 1}) ∪ {⊥}, initially ⊥,
active ∈ {⊥,	}, initially ⊥, ntask ∈ ({0, 1}∗) ∪ {⊥}, initially ⊥
Transitions:
– Establish Session:
ESS1. receive(Establish2AC, sid2AC)X Precondition: active = ⊥ and ntask = ⊥, Effect: estcondX � 	 If

estcondX for all X then active � 	.

ESS2. send(SID, sid2AC)Adv Precondition: active = 	 and ntask = ESS2, Effect: ntask � ⊥
– Data Sending Session:
DSS1. receive(Send, sid2AC,m)Initi (i ∈ {1, 2}) Precondition: active = 	, mes = ⊥ and ntask = ⊥, Effect:

mes � m and ntask � DSS2

DSS2. send(Send, sid2AC,mes)Adv Precondition: okcondAdv = ⊥, mes � m and ntask = DSS2, Effect:
ntask � DSS3

DSS3. receive(Response, sid2AC, ok)Adv Precondition: ntask = DSS3, Effect: okcondAdv � 	 and ntask �
DSS4

DSS4. send(Receive, sid2AC,mes)Rec Precondition: ntask = DSS4, Effect: okcondAdv, mes and ntask � ⊥
– Expire Session:
EXS1. receive(Expire2AC, sid2AC)X Precondition: active = 	, mes and ntask = ⊥, Effect: ntask � EXS2

EXS2. send(Expire2AC, sid2AC)Adv Precondition: ntask = EXS2, Effect: active, estcondX and ntask � ⊥
for all X

Fig. 2. Code for Two Anonymous Channel Functionality, F2AC

know the identities of both parties and the transmitted message, but cannot know who
the sender was. That is, the direction of message transmission is indeterminable.

Definition 7. The code for direction-indeterminable channel, FDIC, is defined in Fig. 3.

3.4 Security Definitions

We define the security notion on PIOA considering the synchronous and asynchronous
schedule as follows:

Definition 8 [Perfect Implementation]. Let Env, Real and Ideal be an environment
task-PIOA, a real protocol task-PIOA system and an ideal functionality task-PIOA sys-
tem, respectively. Let sch be the some (synchronous or asynchronous) schedule. We
say that Real perfectly implements Ideal under some (synchronous or asynchronous)
schedule (or Real ≤sch.0 Ideal), if trace(Real||Env) = trace(Ideal||Env) for every envi-
ronment Env under synchronous or asynchronous schedule.

Definition 9 [Perfect Hybrid Implementation]. Let Hybrid be a real protocol task-
PIOA system with hybrid model. We say that Hybrid perfectly hybrid implements Ideal
under some (synchronous or asynchronous) schedule (or Hyb. ≤sch.0 Ideal}), if trace
(Hybrid||Env) = trace(Ideal||Env) for every environment Env under some (synchro-
nous or asynchronous) schedule.

Relationship of Three Cryptographic Channels in the UC Framework 273

Code for Direction-Indeterminable Channel Functionality, FDIC,

where X ∈ {Init,Rec} and sidDIC = ({Init,Rec}, sid′DIC).

State: estcondX ∈ {⊥,	}, initially ⊥, mes ∈ ({0, 1}) ∪ {⊥}, initially ⊥, okcondAdv ∈ {⊥,	}, initially ⊥,
active ∈ {⊥,	}, initially ⊥, ntask ∈ ({0, 1}∗) ∪ {⊥}, initially ⊥
Transitions:
– Establish Session:
ESS1. receive(EstablishDIC, sidDIC)X Precondition: active = ⊥ and ntask = ⊥, Effect: estcondX � 	 If

estcondX = 	 for all X then active � 	 and ntask � ESS2.

ESS2. send(SID, sidDIC)Adv Precondition: active = 	 and ntask = ESS2, Effect: ntask � ⊥
– Data Sending Session:
DSS1. receive(Send, sidDIC,m)X Precondition: active = 	, mes and ntask = ⊥, Effect: mes � m and

ntask � DSS2

DSS2. send(Send, sidDIC,m)Adv Precondition: okcondAdv = ⊥, mes � m and ntask = DSS2, Effect:
ntask � DSS3

DSS3. receive(Response, sidDIC, ok)Adv Precondition: ntask = DSS3, Effect: okcondAdv � 	 and ntask �
DSS4

DSS4. send(Send, sidDIC,mes)X Precondition: ntask = DSS4, Effect: okcondAdv, mes and ntask � ⊥
– Expire Session:
EXS1. receive(ExpireDIC, sidDIC)X Precondition: active = 	, mes = ⊥ and ntask = ⊥, Effect: ntask �

EXS2

EXS2. send(ExpireDIC, sidDIC)Adv Precondition: ntask = EXS2, Effect: active, estcondX and ntask � ⊥
for all X

Fig. 3. Code for Direction-Indeterminable Channel Functionality, FDIC

4 Equivalence between DIC and 2AC

In this section, we prove that the direction indeterminable channel (DIC) is equivalent
to the two-anonymous channel (2AC) under any schedule. That is, the task-PIOA of
DIC perfectly implements the task-PIOA of 2AC under any schedule. To prove this,
we show two reductions of DIC to 2AC and 2AC to DIC. Here, we consider the one
bit message exchange, that is, |m| = 1. Informally, the reduction of DIC to 2AC is
proven as follows: The direction-indeterminable property is made by using two 2AC
functionalities, FI2AC and FR2AC. Here, the two senders of FI2AC are Init and Rec, and the
receiver of FI2AC is Init. Then, the two senders of FR2AC are Init and Rec, and the receiver
of FR2AC is Rec. When Init sends a message to the receiver Rec, Init sends the message
by FI2AC and FR2AC. That is, FI2AC forwards the message to Init and FR2AC forwards the
message to Rec. The adversary cannot detect the message direction because Init and
Rec receive the same message m transfered by the two 2ACs. The other reduction, 2AC
to DIC, is proven as follows: First, the message sending party (Init1 or Init2) sends a
message m to the other party by DIC. Init1 and Init2 then send m to the receiver Rec
directly. The adversary cannot detect which is the sender because the message direction
among senders Init1 and Init2 is indeterminable.

4.1 Reduction of DIC to 2AC

Let πDIC be a protocol of direction-indeterminable channel. We assume that MπDIC , the
master schedule of πDIC, is any schedule. Let InitDIC and RecDIC be the initiator’s code

274 W. Nagao, Y. Manabe, and T. Okamoto

and receiver’s code for a real system, respectively, see Fig.4, Fig.5. Let InitDIC and
RecDIC be the initiator’s code and receiver’s code for an ideal system, respectively, see
Fig.7 and Fig.8. Finally, let AdvDIC and SimDIC be the adversary’s code and the simu-
lator’s code in Fig.6 and Fig.9, respectively. Let RealDIC and IdealDIC be a direction-
indeterminable channel protocol system and a direction-indeterminable channel func-
tionality system, respectively, defined as follows:

RealDIC � InitDIC||RecDIC ||AdvDIC||FI2AC||FR2AC,

IdealDIC � InitDIC||RecDIC||SimDIC||FDIC.

Code for Initiator of Direction-Indeterminable Channel, InitDIC, where X ∈ {I, R},
where sidDIC = ({Init,Rec}, sid′DIC), sidI2AC = ({Init,Rec}, Init, sid′I2AC) and sidR2AC = ({Init,Rec},Rec, sid′R2AC).

State: smes, rmes ∈ {0, 1}∗ ∪ {⊥}, initially ⊥, ntask ∈ ({0, 1}∗) ∪ {⊥}, initially ⊥, active ∈ {⊥,	}, initially ⊥
Transitions:
– Establish Session:
ESS1. in(EstablishDIC, sidDIC)Init Precondition: active, ntask = ⊥, Effect: ntask � ESS2

ESS2. send(Establish2AC, sidX2AC)FX2AC
Precondition: ntask = ESS2 (Note that each task for X ∈ {I,R}

activates arbitrarily order. Hereafter, we stand by this manner.), Effect: active � 	 and ntask � ⊥
– Data Sending Session:
DSS1. in(Send, sidDIC,m)Init Precondition: active = 	, smes and ntask = ⊥, Effect: smes � m and ntask �

DSS2

DSS2. send(Send, sidX2AC,m)FX2AC
Precondition: m � smes and ntask = DSS2, Effect: ntask � ⊥

DSS3. receive(Receive, sidI2AC,m)FI2AC
Precondition: active = 	, rmes and ntask = ⊥, Effect: If smes = ⊥,

then rmes � m and ntask � DSS4. Else smes � ⊥ and ntask � ⊥
DSS4. out(Receive, sidDIC, r)Init Precondition: r � rmes and ntask = DSS4, Effect: rmes and ntask � ⊥
– Expire Session:
EXS1. in(ExpireDIC, sidDIC)Init Precondition: active = 	 and ntask = ⊥, Effect: ntask � EXS2

EXS2. send(Expire2AC, sidX2AC)FX2AC
Precondition: ntask = EXS2, Effect: active and ntask � ⊥

Fig. 4. Code for Initiator of Direction-Indeterminable Channel, InitDIC

Tasks InitDIC and RecDIC relay the input messages from the environment to the ideal
functionality task and relay the receive messages from the ideal functionality task to the
environment as interface parties in the ideal system.

Theorem 1. Direction-indeterminable channel protocol system RealDIC perfectly hy-
brid implements direction-indeterminable channel functionality system IdealDIC with
respect to adaptive adversary under any master schedule. (A direction-indeterminable
channel is reducible to a two-anonymous channel with respect to adaptive adversary
under any master schedule.)

Let εR and εI be discrete probability measures on finite executions of RealDIC||Env and
IdealDIC||Env, respectively. We prove the Theorem 1 by showing that εR and εI satisfy
the trace distribution property : tdist(εR) = tdist(εI). Here, we define correspondence R
between the states in RealDIC||Env and the states in IdealDIC||Env. We say (εR, εI) ∈ R if
and only if for every s ∈ supp.lst(εR) and u ∈ supp.lst(εI), all of the state correspondences
in the Table 1 hold. We then prove R is a simulation relation in Lemma 1.

Relationship of Three Cryptographic Channels in the UC Framework 275

Code for Receiver of Direction-Indeterminable Channel, RecDIC, where sidDIC = ({Init,Rec}, sid′DIC),
sidI2AC = ({Init,Rec}, Init, sid′I2AC) and sidR2AC = ({Init,Rec},Rec, sid′R2AC).

State: smes, rmes ∈ {0, 1}∗ ∪ {⊥}, initially ⊥, ntask ∈ ({0, 1}∗) ∪ {⊥}, initially ⊥, active ∈ {⊥,	}, initially ⊥
Transitions:
– Establish Session:
ESS1. in(EstablishDIC, sidDIC)Rec Precondition: active and ntask = ⊥, Effect: ntask � ESS2

ESS2. send(Establish2AC, sidX2AC)FX2AC
Precondition: ntask = ESS2, Effect: active � 	 and ntask � ⊥

– Data Sending Session:
DSS1. in(Send, sidDIC,m)Rec Precondition: active = 	, smes and ntask = ⊥, Effect: smes � m and ntask �

DSS2

DSS2. send(Send, sidX2AC,m)FX2AC
Precondition: m � smes and ntask = DSS2, Effect: ntask � ⊥

DSS3. receive(Receive, sidR2AC,m)FR2AC
Precondition: active = 	, rmes and ntask = ⊥, Effect: If smes = ⊥,

then rmes � m and ntask � DSS4. Else smes � ⊥ and ntask � ⊥.

DSS4. out(Receive, sidDIC, r)Rec Precondition: r � rmes and ntask = DSS4, Effect: rmes, ntask � ⊥
– Expire Session:
EXS1. in(ExpireDIC, sidDIC)Rec Precondition: active = 	 and ntask = ⊥, Effect: ntask � EXS2

EXS2. send(Expire2AC, sidX2AC)FX2AC
Precondition: ntask = EXS2, Effect: active and ntask � ⊥

Fig. 5. Code for Receiver of Direction-Indeterminable Channel, RecDIC

Code fot Adversary for Direction Indeterminable Channel, AdvDIC, where X ∈ {I, R}, where sidI2AC = ({I1 , I2}, I1 , sid
′
2AC)

and sidR2AC = ({I1 , I2}, I2 , sid
′
2AC).

State: active ∈ {⊥,	}, initially ⊥, ntask ∈ ({0, 1}∗) ∪ {⊥}, initially ⊥, smesX ∈ ({0, 1}) ∪ {⊥}, initially ⊥
Transitions:
– Establish Session:
ESS1. receive(SID, sidX2AC)FX2AC

Precondition: active = ⊥, Effect:active � 	
– Data Sending Session:
DSS1. receive(Send, sidX2AC,mes)FX2AC

Precondition: active = 	, ntask = ⊥, Effect: smesX � mes and

ntask � DSS2

DSS2. send(Response, sidX2AC, ok)FX2AC
Precondition: ntask = DSS2, Effect: ntask � ⊥

– Expire Session:
EXS1. receive(Expire2AC, sidX2AC)FX2AC

Precondition: active = 	, Effect: active � ⊥
– Other tasks:
This adversary makes other arbitary tasks.

Fig. 6. Code fot Adversary for Direction Indeterminable Channel, AdvDIC

Lemma 1. The relation R defined above is a simulation relation from RealDIC||Env to
IdealDIC||Env. For each step of RealDIC||Env, the step in the establish, data sending and
expire session correspond with at most two steps of IdealDIC||Env. This means that there
is a mapping corrtasks under the relation R such that, for every ρ, T , |corrtasks(ρ, T)| ≤
2, where ρ is a local schedule.

Proof. (sketch)
We prove that R is a simulation relation from RealDIC||Env to IdealDIC||Env using the
mapping corrtasks : R∗RealDIC ||Env×RRealDIC ||Env → R∗IdealDIC ||Env, which is defined as follows
(we write hereafter T =corr. T ′ alternating to write corrtasks(ρ, T) = T ′.):

276 W. Nagao, Y. Manabe, and T. Okamoto

Code for ideal Initiator of Direction-Indeterminable Channel, InitDIC, where sidDIC = ({Init,Rec}, sid′DIC).

State: smes, rmes ∈ {0, 1}∗ ∪ {⊥}, initially ⊥, ntask ∈ ({0, 1}∗) ∪ {⊥}, initially ⊥, active ∈ {⊥,	}, initially ⊥
Transitions:
– Establish Session:
ESS1. in(EstablishDIC, sidDIC)Init Precondition: active, ntask = ⊥, Effect: ntask � ESS2

ESS2. send(EstablishDIC, sidDIC)FDIC Precondition: ntask = ESS2, Effect: active � 	 and ntask � ⊥
– Data Sending Session:
DSS1. in(Send, sidDIC,m)Init Precondition: active = 	, smes and ntask = ⊥, Effect: smes � m and ntask �

DSS2

DSS2. send(Send, sidDIC,m)FDIC Precondition: m � smes and ntask = DSS2, Effect: smes and ntask � ⊥
DSS3. receive(Send, sidDIC,m)FDIC Precondition: active = 	, rmes and ntask = ⊥, Effect: rmes � m and

ntask � DSS4

DSS4. out(Receive, sidDIC,m)Init Precondition: m � rmes and ntask = DSS4, Effect: rmes and ntask � ⊥
– Expire Session:
EXS1. in(ExpireDIC, sidDIC)Init Precondition: active = 	 and ntask = ⊥, Effect:ntask � EXS2

EXS2. send(ExpireDIC, sidDIC)FDIC Precondition: ntask = EXS2, Effect: active and ntask � ⊥

Fig. 7. Code for Initiator of Direction-Indeterminable Channel, InitDIC

Code for ideal Receiver of Direction-Indeterminable Channel, RecDIC, where sidDIC = ({Init,Rec}, sid′DIC).

State: smes, rmes ∈ {0, 1}∗ ∪ {⊥}, initially ⊥, ntask ∈ ({0, 1}∗) ∪ {⊥}, initially ⊥, active ∈ {⊥,	}, initially ⊥
Transitions:
– Establish Session:
ESS1. in(EstablishDIC, sidDIC)Rec Precondition: active and ntask = ⊥, Effect: ntask � ESS2

ESS2. send(EstablishDIC, sidDIC)FDIC Precondition: ntask = ESS2, Effect: active � 	 and ntask � ⊥
– Data Sending Session:
DSS1. in(Send, sidDIC,m)Rec Precondition:active = 	, smes and ntask = ⊥, Effect: smes � m and ntask �

DSS2

DSS2. send(Send, sidDIC,m)FDIC Precondition: m � smes and ntask = DSS2, Effect: smes and ntask � ⊥
DSS3. receive(Send, sidDIC,m)FDIC Precondition: rmes and ntask = ⊥, Effect: rmes � m and ntask �

DSS4

DSS4. out(Receive, sidDIC,m)Rec Precondition: m � rmes and ntask = DSS4, Effect: rmes ntask � ⊥
– Expire Session:
EXS1. in(ExpireDIC, sidDIC)Rec Precondition: active = 	, smes, rmes and ntask = ⊥, Effect:ntask � EXS2

EXS2. send(ExpireDIC, sidDIC)FDIC Precondition: ntask = EXS2, Effect: active and ntask � ⊥

Fig. 8. Code for ideal Receiver of Direction-Indeterminable Channel, RecDIC

For any (ρ, T) ∈ (R∗RealDIC ||Env×RRealDIC ||Env), the following task correspondences hold.

1. Establish Session
(a) InitDIC.send(Establish2AC , sidX2AC)FX2AC

=corr. InitDIC.send(EstablishDIC , sidDIC)FDIC

(b) RecDIC.send(Establish2AC , sidX2AC)FX2AC
=corr. RecDIC.send(EstablishDIC , sidDIC)FDIC

(c) FX2AC.send(SID, sid2AC)Adv =corr. FDIC.send(SID, sidDIC)Adv

2. Data Sending Session
(a) InitDIC.send(Send, sidX2AC,m)FX2AC

=corr. InitDIC.send(Send, sidDIC,m)FDIC

(b) RecDIC.send(Send, sidX2AC,m)FX2AC
=corr. RecDIC.send(Send, sidDIC,m)FDIC

Relationship of Three Cryptographic Channels in the UC Framework 277

Code for Simulator for Direction Indeterminable Channel, SimDIC, where sidDIC = ({Init,Rec}, sid′DIC).

State: active ∈ {⊥,	}, initially ⊥, smes ∈ {0, 1}∗ ∪ {⊥}, initially ⊥, ntask ∈ ({0, 1}∗) ∪ {⊥}, initially ⊥
Other arbitrary variables; call ”new” variables.

Transitions:
– Establish Session:
ESS1. receive(SID, sidDIC)FDIC Precondition: active and ntask = ⊥, Effect:active � 	 This task generates

the parties Init and Rec in the RealDIC system to simulate the real world. To make establish session in

the simulation world, inputs in(EstablishDIC, sidDIC)Init and in(EstablishDIC, sidDIC)Rec to Init and
Rec, respectively. Finally, the parties establish the two 2ACs in the simulation world.

– Data Sending Session:
DSS1. receive(Send, sidDIC,m)FDIC Precondition: active = 	, ntask = ⊥, Effect: smes � m and ntask �

DSS2

DSS2. simulation(Send, sidDIC,mes) Precondition: mes � smes and ntask = DSS2, Effect: This task inputs
in(Send, sidDIC,m)Init to Init in the simulation world. During the simulation, if the adversary in this sim-

ulation wants to output message to the environment, this simulator outputs the message after receiving

from the adversary. After simulating the real world, the simulator receives out(Receive, sidDIC, r)Rec
from the receiver Rec and sets ntask � DSS3

DSS3. send(Response, sidDIC, ok)FDIC Precondition: ntask = DSS3, Effect: ntask � ⊥
– Expire Session:
EXS1. receive(ExpireDIC, sidDIC)FDIC Precondition: active = 	, Effect: active � ⊥
– Other tasks:
This simulator makes arbitary tasks to simulate the real world protocol system RealDIC. The tasks can be the
input and output tasks with the internal tasks copied from RealDIC. Espectialy, this simulator can output the
message from the adversary in the simiulating world to the environment.

Fig. 9. Code fot Simulator for Direction Indeterminable Channel, SimDIC

(c) FX2AC.send(Send, sid2AC ,mes)Adv

=corr. FDIC.send(Send, sidDIC,m)Adv · SimDIC.simulation(Send, sidDIC,mes)
(d) FX2AC.send(Receive, sid2AC,mes)Rec =corr. FDIC.send(Send, sidDIC,mes)X

(e) InitDIC.out(Receive, sidDIC, r)Init =corr. InitDIC.out(Receive, sidDIC ,m)Init

(f) RecDIC.out(Receive, sidDIC , r)Rec =corr. RecDIC.out(Receive, sidDIC ,mes)Rec
(g) AdvDIC.send(Response, sidX2AC, ok)FX2AC

=corr. SimDIC.send(Response, sidDIC , ok)FDIC

3. Expire Session
(a) InitDIC.send(Expire2AC , sidX2AC)FX2AC

=corr. InitDIC.send(ExpireDIC , sidDIC)FDIC

(b) RecDIC.send(Expire2AC , sidX2AC)FX2AC
=corr. RecDIC.send(ExpireDIC , sidDIC)FDIC

(c) FX2AC.send(Expire2AC , sid2AC)Adv =corr. FDIC.send(ExpireDIC , sidDIC)Adv

4. All tasks of environment Env in RealDIC are correspondent with the tasks of environment in
IdealDIC.

The simulation of SimDIC is perfectly done for establish session, data sending session
and expire session with respect to the no corruption, static corruption and adaptive
corruption by adversary.

1. No corruption
First, in the establish session, environment Env sends the establish session mes-
sage in(EstablishDIC, sidDIC)Init and in(EstablishDIC, sidDIC)Rec to the initiator

InitDIC and the receiver RecDIC, respectively. They send the establish session mes-
sages send(EstablishDIC, sidDIC)FDIC to FDIC. They send send(SID, sidDIC)Adv to

278 W. Nagao, Y. Manabe, and T. Okamoto

Table 1. State correspondence : Reduction of DIC to 2AC

Functionality Receiver
(a) u.FDIC.estcondInit = s.FX2AC.estcondIniti (k) u.RecDIC.smes = s.RecDIC.smes
(b) u.FDIC.estcondRec = s.FX2AC.estcondRec (l) u.RecDIC.rmes = s.RecDIC.rmes
(c) u.FDIC.okcondAdv = s.FX2AC.okcondAdv (m) u.RecDIC.active = s.RecDIC.active
(d) u.FDIC.active = s.FX2AC.active (n) u.RecDIC.ntask = s.RecDIC.ntask
(e) u.FDIC.mes = s.FX2AC.mes
(f) u.FDIC.ntask = s.FX2AC.ntask

Initiator Adversary and Env
(g) u.InitDIC.smes = s.InitDIC.smes (o) u.SimDIC = s.AdvDIC

(h) u.InitDIC.rmes = s.InitDIC.rmes (p) u.SimDIC.FX2AC.∗ = s.FX2AC.∗
(i) u.InitDIC.active = s.InitDIC.active (q) u.SimDIC.InitDIC.∗ = s.InitDIC.∗
(j) u.InitDIC.ntask = s.InitDIC.ntask (r) u.SimDIC.RecDIC.∗ = s.RecDIC.∗

(s) u.SimDIC.AdvDIC.∗ = s.AdvDIC.∗
(t) u.Env = s.Env

Note that ntask ∈ {ESS1,ESS2,DSS1,DSS2,DSS3,DSS4,EXS1,EXS2}, i ∈ {1, 2}
and X ∈ {I,R}.

the SimDIC. After SimDIC receives the message, SimDIC generates the parties Init
and Rec in his simulation world to make the real world situation which Init and
Rec exchange messages by using F2AC. SimDIC then make establish session in the
simulation world. That is, he inputs two messages, in(EstablishDIC, sidDIC)Init

and in(EstablishDIC, sidDIC)Rec, to Init and Rec, respectively. Finally, the parties
establish two 2ACs in the simulation world.

Next, in the data sending session, Env sends the message in(Send, sidDIC,m)Init

(or in(Send, sidDIC,m)Rec) to InitDIC (or RecDIC). InitDIC sends send(Send, sidDIC,
m)FDIC to FDIC. FDIC then sends send(Send, sidDIC,m)Adv to SimDIC. After receiv-
ing the message, SimDIC executes simulation(Send, sidDIC,mes) to mimic the data
sending session of the real world. That is, he inputs the message in(Send, sidDIC,
m)Init (or in(Send, sidDIC,m)Rec) to Init and Rec in the simulation world.

Finally, in the expire session, Env sends the messages in(ExpireDIC, sidDIC)Init

and in(ExpireDIC, sidDIC)Rec to InitDIC and RecDIC, respectively. They relay the
message send(ExpireDIC, sidDIC)FDIC to FDIC. After receiving send(ExpireDIC,
sidDIC)Adv from FDIC, SimDIC expires the session in the simulation world. That
is, he inputs the messgae in(ExpireDIC, sidDIC)Init and in(ExpireDIC, sidDIC)Rec to
Init and Rec in the simulation world.

2. Static corruption
In this case, the advesary corrupt some parties before the protocol starts. This case
also is simulated by the simulator, but the direction of message sending does not
conceal to the advesary.

3. Adaptive corruption
In this case, the advesary corrupt some parties when he want to do so. This case
also is simulated by the simulator, but the direction of message sending does not
conceal to the advesary after he corrupts some parties.

Relationship of Three Cryptographic Channels in the UC Framework 279

As a result, the simulation is perfectly done because SimDIC can simulate the real
world from the information message through FDIC. The tasks of the real world perfectly
correspond with the the tasks of ideal world. That is,

RealDIC||Env Hyb. ≤MπDIC

0 IdealDIC||Env.

The task sequence of the system RealDIC||Env are perfectively corresponded with the
task sequence of the system IdealDIC||Env under the schedule MπDIC . Formally, to prove
that R is simulation relation from RealDIC||Env to IdealDIC||Env, we need to show R
satisfies start condition and step condition for each corresponding tasks, but we omit to
mention it due to the paper limitation. See full paper that will be available soon.

4.2 Reduction of 2AC to DIC

Let π2AC be a protocol of two-anonymous channel. We assume that Mπ2AC , the master
schedule of π2AC, is any schedule. Let Init2AC and Rec2AC be the initiator’s code and
receiver’s code for a real system, respectively. Let Init2AC and Rec2AC be the initia-
tor’s code and receiver’s code for an ideal system, respectively. Finally, let Adv2AC and
Sim2AC be the adversary’s code and the simulator’s code, respectively. Let Real2AC and
Ideal2AC be a two-anonymous channel protocol system and a two-anonymous channel
functionality system, respectively, defined as follows:

Real2AC � Init2AC||Rec2AC||Adv2AC||FDIC,
Ideal2AC � Init2AC||Rec2AC||Sim2AC||F2AC.

Tasks Init2AC and Rec2AC relay the input messages from the environment to the ideal
functionality task and relay the messages received from the ideal functionality task to
the environment as interface parties in the ideal system. Several codes for each tasks are
omitted in this paper, see full paper version.

Theorem 2. Two-anonymous channel protocol system Real2AC perfectly hybrid im-
plements two-anonymous channel functionality system Ideal2AC with respect to adap-
tive adversary under any master schedule. (An anonymous channel is reducible to a
direction-indeterminable channel with respect to adaptive adversary under any master
schedule.)

The proof of theorem 2 is described like theorem 1. We omit the proof in this paper, see
the full paper version.

5 Equivalence between DIC and SC

In this section, we prove that the direction indeterminable channel (DIC) is equivalent to
secure channel (SC) under a specific type of some schedules. That is, the task-PIOA of
DIC perfectly implements task-PIOA of SC under an asynchronous schedule. To prove
this, we show two reductions of SC to DIC and one of DIC to SC. Here, we consider
the one bit message exchange, that is, |m| = 1. Informally, the reduction of SC to DIC
is proven as follows: To make the channel between Init and Rec secure, the parties

280 W. Nagao, Y. Manabe, and T. Okamoto

exchange a random bit (as a secret shared key) by DIC. The encrypted message by the
shared key is exchanged using a public channel. The communication is done not by a
DIC channel but by a public channel. When the next message sending is occured, party
restart from key exchange. Here, the key exchange is done under the master schedule.
After the key exchange, the cipher text generated by the secret key is sent. The other
reduction of DIC to SC is proven as follows: the parties Init and Rec exchange two
messages by SC. The one is the message m which the sender wants to send. The other
message is a dummy message to conceal the message direction. That is, sender Init
sends message m and the receiver sends dummy message s under a specific type of
schedules by M. We make a random message s by FSRC. Note that, the adversary cannot
know the direction of message because the messages are exchanged under a specific
type of schedules. In this section, we need to consider the schedules (key exchange
schedule and message exchange schedule) to avoid some infromation to adversary. In
the UC framework, all schedule is under control of adversary. So, we use task PIOA
framework.

5.1 Reduction of SC to DIC

Let n be the number of parties. Let Mpsync(t∗1, · · · , t∗n) and Mrasync(t∗1, · · · , t∗n) be master
schedules, respectively, where t∗i is a task in party Pi.

Definition 10. [Mpsync(t∗1, · · · , t∗n)] Let t∗i be a task in party Pi. Let ptask(t∗i) be the
task just before t∗i in the local scheduler ρi. For example, let ρi = ti1, ti2, ti3 for party Pi.
Then ptask(ti3) is the task ti2.

– 1. Alignment property: After the master scheduler M activates ptask(t∗i), M does
not activate Pi until all of ptask(t∗1), · · · , ptask(t∗n) are scheduled. This situation say
that M satisfies the alinment property for the specified tasks t∗1, . . . , t

∗
n.

– 2. Random executing property: The master scheduler, M, grobally executes the
specified tasks, t∗1, . . . , t

∗
n in a random order. Note that the other tasks are not sched-

uled until all of the specified tasks, t∗1, . . . , t
∗
n, finish executing.

Mpsync(t∗1, · · · , t∗n) is defined to be a master schedule such that a master scheduler M
satisfies the avobe mentioned two properties for the specified tasks t∗1, . . . , t

∗
n.

Definition 11. [Mrasync(t∗1, · · · , t∗n, k)] Let k be a integer. Let t∗i be a task specified by
ρi for party Pi. Let ci be the number of times t∗i is scheduled by M. M schedules the task
acctivations of t∗1, · · · , t∗n so that |ci − c j| ≤ k for all i, j in a random order.

We need to consider like chernov bound property if we treat this master schedule to use
the message exchange or key exchange among party.

Let πSC be a protocol of secure channel. Let MπSC be Mpsync(send(Send, sidDIC,
s)FDIC , send(Send, sidDIC, t)FDIC). Let InitSC and RecSC be the initiator’s code and re-
ceiver’s code for a real system, respectively. Let InitDIC and RecDIC be the initiator’s
code and receiver’s code for an ideal system, respectively. Finally, let AdvSC, SimSC

and FSRC be the adversary’s code, the simulator’s code and the random bit generator’s

Relationship of Three Cryptographic Channels in the UC Framework 281

code, respectively. Let RealSC and IdealSC be a secure channel protocol system and a
secure channel functionality system, respectively, defined as follows:

RealSC � InitSC||RecSC ||AdvSC||FSRC||FDIC,
IdealSC � InitSC||RecSC||SimSC ||FSC.

Tasks InitSC and RecSC relay the input messages from the environment to the ideal
functionality task and relay the receive messages from the ideal functionality task to
the environment, respectively, as interface parties in the ideal system. Several codes for
each tasks are omitted in this paper, see full paper version.

Theorem 3. Secure channel protocol system RealSC perfectly hybrid implements se-
cure channel functionality system IdealSC with respect to adaptive adversary under a
master schedule Mpsync(send(Send, sidDIC, s)FDIC , send(Send, sidDIC, t)FDIC). (A secure
channel is reducible to a direction-indeterminable channel with respect to adaptive ad-
versary under a master schedule Mpsync(send(Send, sidDICs)FDIC , send(Send, sidDIC,
t)FDIC).)

The proof of theorem 3 is described like theorem 1. We omit the proof in this paper, see
the full paper version. The master schedule can be Mrasync instead of Mpsync.

5.2 Reduction of DIC to SC

Let π′DIC be a protocol of direction-indeterminable channel. Let Mpsync(send(Send,
sidSC,m)FSC , send(Send, sidSC,m)FSC) be the master schedule for π′DIC.

Let Init′DIC and Rec′DIC be the initiator’s code and receiver’s code for a real system, re-
spectively. Let Init′DIC and Rec′DIC be the initiator’s code and receiver’s code for an ideal
system, respectively. Finally, let Adv′DIC and Sim′DIC be the adversary’s code and the
simulator’s code, respectively. Let Real′

DIC
and Ideal′

DIC
be a direction-indeterminable

channel protocol system and a direction-indeterminable channel functionality system
defined, respectively, as follows:

Real′
DIC
� Init′DIC||Rec′DIC||Adv′DIC||FSRC||FSC,

Ideal′
DIC
� Init′DIC||Rec′DIC||Sim′DIC||FDIC.

Tasks Init′DIC and Rec′DIC relay the input messages from the environment to the ideal
functionality task and relay the receive messages from the ideal functionality task to
the environment, respectively, as interface parties in the ideal system. Several codes for
each tasks are omitted in this paper, see full paper version.

Theorem 4. Direction-indeterminable channel protocol system Real′
DIC

perfectly hy-
brid implements direction-indeterminable channel functionality system Ideal′

DIC
with

respect to adaptive adversary under a master schedule Mpsync(send(Send, sidSC,m)FSC ,
send(Send, sidSC,m)FSC). (A direction-indeterminable channel is reducible to a secure
channel with respect to adaptive adversary under a master schedule Mpsync(send(Send,
sidSC,m)FSC , send(Send, sidSC,m)FSC).)

The proof of theorem 4 is described like theorem 1. We omit the proof in this paper, see
the full paper version.

282 W. Nagao, Y. Manabe, and T. Okamoto

6 Conclusion

This paper studied the relationship of the three cryptographic channels, secure channels
(SC), two-anonymous channels (2AC) and direction-indeterminable channels (DIC),
by considering communication schedules and composable security. For this purpose,
we adopted the universally composable (UC) framework with the task-probabilistic in-
put/output automata (PIOA) model. We showed that the three channels are reducible to
each other under some types of schedules in the UC framework with the PIOA model.

References

1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-Cryptographic
Fault-Tolerant Distributed Computation. In: Proc. of STOC, pp. 1–10 (1988)

2. Canetti, R.: Universally Composable Security: A New paradigm for Cryptographic Protocols.
42nd FOCS, IACR ePrint Archive 2000/067 (2001), http://eprint.iacr.org

3. Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, N., Pereira, O., Segala, R.: Taskstruc-
tured probabilistic I/O automata. In: Proc. of WODES 2006 (2006)

4. Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, N., Pereira, O., Segala, R.: Time-
bounded task-PIOAs: a framework for analyzing security protocols. In: Dolev, S. (ed.) DISC
2006. LNCS, vol. 4167, pp. 238–253. Springer, Heidelberg (2006)

5. Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, N., Pereira, O., Segala, R.: Using
probabilistic I/O automata to analyze an oblivious transfer protocol. Technical Report MIT-
CSAIL-TR-2006-046, CSAIL, MIT, 2006. This is the revised version of Technical Reports
MIT-LCS-TR-1001a and MIT-LCS-TR-1001 (2006)

6. Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, N., Pereira, O., Segala,
R.: Using Task-Structured Probabilistic I/O Automata to Analyze an Oblivious Trans-
fer Protocol. This is a revised version of Technical Report MIT-CSAIL-TR-2006-046,
http://eprint.iacr.org

7. Chaum, D., Crépeau, C., Damgård, I.: Multiparty Unconditionally Secure Protocols. In: Proc.
of STOC, pp. 11–19 (1988)

8. Håstad, J.: Pseudo-Random Generators under Uniform Assumptions. In: Proc. of STOC
(1990)

9. Impagliazzo, R., Levin, L., Luby, M.: Pseudo-Random Number Generation from One-Way
Functions. In: Proc. of STOC, pp. 12–24 (1989)

10. Naor, M.: Bit Commitment Using Pseudo-Randomness. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 128–136. Springer, Heidelberg (1990)

11. Naor, M., Yung, M.: Universal One-Way Hash Functions and Their Cryptographic Applica-
tions. In: Proc. of STOC, pp. 33–43 (1989)

12. Okamoto, T.: On the Relationship among Cryptographic Physical Assumptions. In: Ng,
K.W., Balasubramanian, N.V., Raghavan, P., Chin, F.Y.L. (eds.) ISAAC 1993. LNCS,
vol. 762, pp. 369–378. Springer, Heidelberg (1993)

13. Rompel, J.: One-Way Functions are Necessary and Sufficient for Secure Signature. In: Proc.
of STOC, pp. 387–394 (1990)

http://eprint.iacr.org
http://eprint.iacr.org

A Universally Composable Framework for the
Analysis of Browser-Based Security Protocols�

Sebastian Gajek		

Horst Görtz Institute for IT Security
Ruhr University Bochum, Germany

sebastian.gajek@nds.rub.de

Abstract. Browser-based security protocols perform cryptographic
tasks within the constraints of commodity browsers. They are the bearer
protocols for many security critical applications on the Internet. Roughly
speaking, they are the offspring of key exchange and secure sessions pro-
tocols. Although browser-based protocols are widely deployed, their se-
curity has not been formally proved. We provide a security model for the
analysis of browser-based protocols based on the Universal Composabil-
ity framework.

Keywords: Universal Composability, browser-based protocols, security
model.

1 Introduction

The World Wide Web has become an important means in modern society. Among
the technologies that have proliferated recently are browser-based applications.
They exploit the advantages of a client application with standard interfaces in
order to interact with distributed systems. Protocols realizable within the con-
straint of commodity browsers are called browser-based protocols. They lay the
foundations for numerous Web applications (e.g. eCommerce, eVoting). Browser-
based security protocols are the offspring of key exchange and secure sessions
protocols. They transfer numerous cryptographic protocols to concrete appli-
cations using the design principles of the layered Internet approach. Impor-
tant examples include federated identity management protocols which adopt
the Needham-Schroeder-Loewe protocol, calling a trusted third party in order
to receive an authentication token whereby the primitives to realize the protocols
are limited to a set of network protocols (e.g. TCP, SSL/TLS) and some minor
browser functionalities.

Although in many Internet settings browser-based protocols carry highly vital
and sensitive information (e.g. credit card numbers, passwords, votes), their
security is still unproven. The security analysis on browser-based protocols is

� Please contact the author for the full version.
�� The author was supported by the European Commission (IST-2002-507932

ECRYPT).

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 283–297, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

284 S. Gajek

typically based on informal vulnerability analyses. Whenever flaws in browser-
based schemes are reported, countermeasures are introduced leading to a costly
and inconvenient revision of the broken scheme. However, it is well-known that
security proofs, but not vulnerability analyses give the desired guarantee for the
security. Unfortunately, the lack of precise protocol definitions and of underlying
formal models hampers the systematic design and a cryptographically faithful
analysis of browser-based protocols—even though elaborated security models
and methods already exist (e.g. [8,2,17,14,3,20,4]).

Many obstacles must be overcome in order to transfer these techniques to
browser-based protocols. Traditional analyses of cryptographic protocols pre-
suppose the existence of protocol machines that precisely execute the protocol
specification (unless the machine is corrupt), without its integration in a more
comprehensive system and relation to surrounding protocols. By contrast, the
browser machine operates as an auxiliary device for the user with its own be-
havior that influences protocol security. The browser mediates messages coming
from the user and the server. It responds to a set of predefined messages, adds
some information, merges messages from different protocol layers and sessions,
stores long-term and short-term secrets, and most notably is controllable by the
invocation of scripts. In order to assist the user, the browser enforces certain
security policies. These policies are related to underlying network protocols and
contribute to the security of browser-based protocols. In fact, many protocol vul-
nerabilities have been exposed by considering the subtleties of nested network
protocols which do not necessarily have a cryptographic purpose [18,11,21]. An-
other obstacle arises from the fact that the user performs some cryptographic
tasks. Browser-based protocols prefer the anonymous user model of authentica-
tion [20]. The browser does not implicitly authenticate to the server, but executes
a higher-layer protocol to send some password over a server-only authenticated
channel. The user (on behalf of a protocol machine) authenticates the server and
thus becomes an active protocol participant. Hence, certain assumptions must
be made about the user and her behavior.

Contribution. We present a security model for the analysis of browser-based
protocols. Our work is inspired by the Universal Composability (UC) frame-
work [3] which is based on the ideal-world/real-world paradigm. In the real world,
parties execute a protocol in order to complete a cryptographic task, while in the
ideal world, parties use a trusted ideal functionality for the computation of the
same task. A protocol is said to be secure if any attack on a real protocol can also
be carried out in the ideal model. Since the behavior in the ideal world is consid-
ered to be safe security of the real protocol is implied. The main attraction of the
model is that security holds under general composition with arbitrary protocols
and players. Our contribution is to transfer the theory of the widely deployed UC
framework to a concrete security model for the analysis of browser-based security
protocols (BBUC). Since browser-based protocols follow the design principles of
the layered Internet approach and synthesize (cryptographic) tasks from multiple
protocol layers, we define a ”crypto API” of security-relevant ideal functionali-
ties. They capture native browser functionalities, are useful for the composition

A Universally Composable Framework for the Analysis 285

of browser-based security protocols, and considerably simply their analysis. In
detail, our contribution includes:

1. We present a socket functionality that bootstraps higher-level protocols,
a secure communication sessions functionality that captures the task of
SSL/TLS, and an identity resolution functionality that mimics the task of
domain name resolution protocols. We explicitly take into account browser
scripting functionalities and devise a model for the aggregation of mes-
sages from potentially dishonest players. This provision ensures that native
browser-based protocols can be simulated (e.g. cookie-based and form-based
secure communication sessions).

2. We revise the traditional role of the client and consider the user and the
browser to be two distinct players. Our definition of user behavior is generic
and captures the task that the user reveals her secrets when she identifies a
perceivable human authenticator (ideal user model) or a set thereof which
are in some predefined domain (relaxed user model). The definitions are
independent of our framework and transferable to the analysis of protocols
in which the user is an active participant and her behavior has an impact
on the security of the protocol.

3. We extend the meanwhile classical adversarial model for key exchange and
secure sessions protocols as proposed in, e.g., [20] to the setting where the ad-
versary is able to attack certain functionalities. Our model includes attacks
against the user, who potentially discloses her credentials (e.g. phishing),
attacks against the identity resolution mechanism which influences certain
browser security policies and the composition of scripting functionalities (e.g.
DNS spoofing), and attacks against the server, enabling injections of mali-
cious messages into a secure communication (e.g. cross-site-scripting).

The generic specification of our BBUC model has the advantages that changes
in commodity browsers due to updates and add-ons can be easily captured by
reformulating the presented functionalities and augmenting our model with ad-
ditional functionalities.

2 Relation to Previous Work

Groß, Pfitzmann and Sadeghi have proposed a browser model [12] that is based
on the Reactive Simulatability framework due to Pfitzmann and Waidner [17].
Their work represents the first attempt to lay a firm foundation for the analysis of
browser-based protocols. Basically, their work captures a state machine model
of the HTTP protocol. The underlying communication channels are provided
by an ideal channel machine. The authors do not demonstrate that real-world
protocols, such as TCP and TLS, securely emulate such functionality. Further,
the authors exclude relevant network functionalities. In particular, they do not
consider identity resolution mechanisms. These are of prime interest for the
enforcement of the browser-based security policies. In addition, their model ne-
glects some very important browser functionalities. Most notably, it includes

286 S. Gajek

message aggregation and script execution by the browser. Moreover, their model
makes strong assumptions about user behavior, i.e. users are assumed to vali-
date the server identity. However, this assumption clashes with recent research
results which show that average Internet users are unable to deal properly with
the verification process. Lastly, the paper considers a weak adversarial model.
Due to the fact that relevant network and browser functionalities are not cap-
tured, many practical attacks are omitted which have led to security breaches
of browser-based protocols.

Another relevant paper has been published by Gajek et. al. [10]. These au-
thors propose a browser-based model based on the Bellare and Rogaway model
for key exchange [2]. Their work includes a real-user model that is comparable
with our relaxed certificate user model (see Section 3.3). Although the authors
make a first attempt to capture relaxed user behavior and approach real-world
assumptions, they do not consider all feasible adversaries. In particular, they
exclude corruptive behavior. Further, their work does not provide any composi-
tion guarantees. However, these are required in order to decrease the analytical
complexity, especially for multi-party browser-based protocols such as federated
identity management protocols.

3 BBUC Model

In this section, we specify a toolkit of functionalities that serve as primitives for
the composition of browser-based security protocols. We assume the familiarity
with the UC framework and browser-based protocols.

3.1 Notations

Let A be an algorithm. By y ← A(x) we denote that y was obtained by running A
on input x; x|y denotes the concatenations of two elements x and y and x◦y the
expansion of value x with a constant y. Let pi : N → N, i ∈ N be a polynomial
and k the security parameter. By x

r← {0, 1}pi(k) we denote a value by selecting
a random element from {0, 1}pi(k). We consider the server S, the browser B,
and the human user U as participants of a browser-based security protocol π.
The players are represented by Interactive Turing Machines (ITMs) as described
in [3]. Contrary to the current cryptographic literature, we explicitly model the
user U as a stand-alone ITM. (Clearly, the user ITM has a limited contingent of
functionalities. We discuss the issue in Section 3.3). By C we sometimes denote
the client given by a pair (U, B). Further, the players may have different roles. By
I we denote the initiator, i.e. the invoking player, and by R the responder, i.e. the
reacting player. By ⊥ we denote the anonymous identity, i.e. a player who does
not reveal its identity. Let P ∈ (I, R) be a set consisting of the two identities I and
R. By P̄ we denote the inverse, i.e. (R, I). Let F be the specification of an ideal
functionality. Then, we refer to a responder-only authenticated functionality as
F1, a mutual authenticated as F2, and a hybrid thereof as F (1,2).

A Universally Composable Framework for the Analysis 287

3.2 Network Services

While many theoretical models underline the abstraction of real-world protocols
and thus differ in many concerns, the design of browser-based protocols especially
for the purpose of security is constricted within the well-defined architecture of
the layered Internet approach where layers provide and consume certain ser-
vices and offer surrounding layers their functionalities through interfaces. Given
the abstract description of the interfaces, different network and communication
protocols realize the services.

Following this approach, we describe the functionalities according to the most
relevant services we expect from the layers. Clearly, we would have wished to
specify for each Internet layer an ideal functionality. However, such a treatment
would have unnecessarily complicated our model without a contribution to the
security of browser-based protocols. One of the reasons is that the network and
lower layer protocols send messages in clear. Consequently, the adversary can
freely manipulate the messages. In fact, the functionalities on these layers are
captured by the adversary’s ability to send, modify and delay messages in arbi-
trary directions. We therefor focus on the higher-layer functionalities and look
about their real-world realizations in commodity browsers.

We start with the formulation of the identity resolution functionality FIR. It
allows for linking dynamic to static identities and mimics the task of domain
and address resolution protocols as offered by the DNS protocol. Next, we for-
mulate a socket functionality that feeds any surrounding protocol with a globally
unique session identifier. The functionality is useful to establish an active con-
nection and captures a service which is provided among others by the 4-way
TCP handshake protocol. Lastly, we present a secure communication function-
ality that ensures secure message transmission. It captures the service provided
by the transport security layer protocols. In commodity browser, the TLS proto-
col emulates the transport security layer, and thus is the heart of browser-based
security protocols. The presented functionalities are intrinsic browser primitives
to establish a secure connection between two parties and lay the first foundations
for browser-based security protocols.

Dynamic Identity Resolution. On the Internet, there exist many different
mechanisms to address a distributed machine. Apparently, this is due to the fact
that browsers aggregate protocols from different layers and each protocol layer
may have its own type of identification mechanism to name the target machine.
Prominent examples include MAC, IP addresses or domain names. Commonly,
these mechanisms are dynamic, i.e. one can resolve the types of identifiers by
executing a resolution protocol. Unfortunately, these concepts have a techni-
cal character and are inconvenient for average users, browsing on the Internet.
Against this background, unified resource locators (URLs) have been introduced.
They provide users with ease of use quantifiers to contact peer machines.

Definition 1. Let URL ⊇ PROT OCOL × (DOMAIN ∪ ADDRESS) ×
PAT H × PORT × AT T RIBUT E denote the domain of unified resource lo-
cators. Then PROT OCOL denotes the set of protocols, DOMAIN the set of

288 S. Gajek

domain names, ADDRESS the set of IP addresses, PAT H the set of directories
to access a file, PORT the set of ports, and AT T RIBUT E the set of attributes
for parameterizing surrounding processes.

Throughout the remainder of the paper, we will use URL ∈ URL to address a
target machine. We do not make any restrictions on the unified resource locator
except that it is unique. Conversely, different URLs may point to the same
target machine. In order to resolve the ultimate target machine, we formulate a
resolution functionality FIR that captures the dynamic resolution of URLs. This
process is essential for aggregation of content, as we will see in Section 3.4.

Description of the Identity Resolution Functionality. We illustrate functionality
FIR in the full version. The functionality maintains a database of all domains
and addresses T ir, and resolves domains into addresses through the resolution
function t. Note that the functionality does not provide any security guarantees
except that it checks that a resolution is valid, i.e. within the universe of pre-
defined domains and addresses. Further, the functionality enables the adversary
to fix the resolved identity. Although browsers and servers implement several
techniques to prevent a false DNS look-ups, it has been shown that the protec-
tion measures are vulnerable. An attacker can easily thwart the countermeasures
and fake the resolution [16,15]. This is a straight consequence from the fact that
the adversary controls the network and the DNS protocol provides no message
authenticity. It is a simple ping-pong protocol that transports messages in clear.1

Theorem 1. Protocol DNS securely realizes FIR.

The proof including a specification of the DNS protocol appears in the full
version.

Connection Establishment. When a real-world protocol wishes to set up
a connection, it must specify the end point address of that entity. To provide
higher-level functionalities with a standard set of primitives for connection estab-
lishment, sockets have been introduced. Sockets describe an interface for higher-
level protocols such that they can be implemented on different networks without
having to worry about the network configuration. Sockets enable applications to
perform inter-process communication, most commonly across a computer net-
work. All modern operating systems have some implementation of the socket
interface, as it became the standard interface for connecting to the Internet.
This interface implementation is implicit for transport layer protocols, and it is
therefore one of the fundamental technologies underlying the Internet.

Definition 2. Let SOCKET denote the socket space in the domainADDRESS×
PORT ⊂ URL. Then Socket ∈ SOCKET denotes a socket, Socket.Address
the socket address, and Socket.Port the socket port.

1 There are some initiatives to incorporate cryptography into DNS (aka DNSSEC).
However, the protocol is not widely implemented.

A Universally Composable Framework for the Analysis 289

In order to capture the task of connection establishment, we formulate the socket
functionality FSOCKET. It assures that a session identifier between two players is
established so that requests by other functionalities arrive at the respective peer.
Technically, it serves with some “setup information” to bootstrap the higher-level
functionalities. Given a globally unique session identifier is a central point for
the composition of arbitrary protocol functionalities under the security defini-
tion of universal composability. Otherwise, it could not be guaranteed that a
protocol remains secure when run concurrently with arbitrary other protocols.
A dishonest player could fix an identifier which has been used in the past or
origins from a concurrently running session. We present a specification of the
socket functionality in the full version.

Description of the Socket Functionality. The functionality securely negotiates
the session identifier sid between two players. In order to ensure that no party
reuses the session identifier, FSOCKET maintains a repository T sid of all session
identifiers. Basically, the socket functionality is a relaxation of the init function-
ality Barak et. al. propose for protocol initialization in the UC framework [1].
The relaxation includes the following properties: Firstly, it is sufficient that the
invocation of the socket functionality is locally unique, when the functionality is
parameterized by globally unique identities. Since these identities are part of the
input, the resulting value is globally unique. The negotiated channel identifier
cid is locally unique between two players. Secondly, the output is independent
of the invoking functionality. An arbitrary functionality may employ the session
identifier for invocation. Hence, additional mechanisms are necessary to associate
the session identifier with some functionality. (Here, the browser determines the
association.) Thirdly, we add a release subroutine to update T sid and erase the
session identifier. This, however, is only for the purpose of completeness. Techni-
cally, one may think of a scheduler that deletes entries after the session timed-out
or either player has suggested terminating the connection.

We highlight some additional properties of FSOCKET in the following: The
functionality exists in a single instance per player and is invoked with a fixed
identifier and the name of the owner of that instance (we leave out from the def-
inition for simplicity). Otherwise, it would be infeasible to manage a database
T sid that prevails the uniqueness of all active sessions. Further, the adversary
opts for the session identifier, unless the session identifier is not used. The func-
tionality simply captures the fact that there are no colluding sessions between
the session initiator and the responder. It makes no security guarantees about
the peer identity. In fact, the initiator can end up with a connection to a peer
which was chosen by the adversary, and the adversary can release the connection
at any time. This captures the fact that the adversary controls the network and
is capable of sending, intercepting or delaying transmitted messages. The under-
lying transport protocols (and lower layer protocols) do not provide any cryp-
tographic mechanisms to prevent that the adversary controls the message flow.
Even though some non-cryptographic measures are implemented in browsers
and servers, they do not protect against manipulation. Prevailed examples that
demonstrate the security deficiencies of transport and lower layer protocols are

290 S. Gajek

TCP spoofing and TCP flooding where the adversary chooses an arbitrary IP
address and sends arbitrary messages on behalf of the party, respectively.

Theorem 2. Protocol TCP 4−way securely realizes FSOCKET.

The proof including the specification of the 4-way TCP handshake appears in
the full version.

Secure Message Transfer. The transport security layer enables higher-level
protocols to communicate across a distributed network in a way that endpoint
authentication and transmission privacy is guaranteed in order for preventing
eavesdropping, tampering, and message forgery. It is natural to establish these
security requirements for the duration of a session where in each session the
players exchange a number of messages. We capture the task by specifying a
universal secure communication sessions functionality in the full version.

Description of the Secure Communication Sessions Functionality. The function-
ality guarantees that the adversary gains no information other than some leakage
information of the message sent while intercepting the session. A leakage func-
tion l(m) constraints the disclosure of side channel information and the trans-
mitted plaintext m. In particular, the information leakage includes the length
of message m and some message flow information that allow the adversary to
determine the transmitted messages’ source and destination. A pendant to the
real world is that the adversary gains some network information about the chan-
nel from lower-layers protocols. Real Web browsers reveal several information
encompassed in higher-level protocol headers (e.g. HTTP) which are necessar-
ily sent while the server is informed to establish a secure protocol. Prominent
examples are the type of browser or the referrer identity. Further, the function-
ality notifies the players, when a secure session is established. The technicality
is necessary to convey surrounding processes the signal that they shall start the
transmission.

The main difference to the secure communication session functionality pro-
posed by Canetti [3] is that F (1,2)

SCS is universal in the sense that it handles both,
a uni- and bi-directional model of authentication. The model of authentication is
determined by the invocation of the initiator with either its own or an anonymous
identity. Further, the players learn the peer identity from the functionality’s out-
put. By contrast to related protocols (e.g. SSH), initiator and responder do not
know the peer’s public key in advance, but learn it in the TLS handshake. Conse-
quently, the adversary can frame an impersonation attack against the initiator,
if the responder only authenticates. In which case, the initiator is parameter-
ized with an anonymous identity, i.e. IDI=⊥. Then, the functionality grants the
adversary the privilege to mount an impersonation query. It implies that the
adversary is enabled to fix a message, unless the message has been delivered by
an uncorrupted party. This provision ensures that the adversary cannot mimic
other uncorrupted players.

A Universally Composable Framework for the Analysis 291

Theorem 3. Protocol TLS securely realizes F (1,2)
SCS .

A sketch of the proof including the specification of the TLS protocol appears in
the full version. A full proof appeared in [19].

3.3 Modeling User Behavior: A First Attempt

Some browser-based protocols involve the user into the protocol execution and
certain assumptions must be made about the behavior. The necessity for taking
into account the user behavior is due to the fact that the adversary may mount
attacks that target the user. Among the user challenges of interest is the question
of responder authentication. The attacker queries the user whether she interacts
with an honest or a spoofed party (“phishing attacks”). Formulating a rigorous
model that captures user behavior obviously raises various issues that are both
technical and philosophical. For instance which human abilities can we model?
Should we narrow down the user behavior to certain skills, say perceive certain
objects and how do we model the quality of skills? Moreover, do users behave
correctly in the sense that they always behave in the same way? The problem
becomes even more elaborate when the behavior shall be quantified with respect
to a security parameter. In this work we go for a simplistic approach. We wish
to capture the task that a user outputs a secret stored in her memory when
she recognizes a human perceivable authenticator (HPA).2 A human perceivable
authenticator is some auditive or visual identifier, the user is able to detect. Her
secrets are low-entropy credentials in the sense of passwords. We capture the
task by formulating the human recognition functionality FREC. An illustration
of this functionality is presented in the full version.

Description of the Human Recognition Functionality. The human recognition
functionality FREC maintains a database of the user secrets and authenticators
taken from the domains D and W , respectively. The functionality is param-
eterized by the credential disclosure function t. It maps a human perceivable
authenticator to the user secret. Here, we make the assumption that the user
outputs the same secret when she is invoked with an appropriate HPA. To quan-
tify an appropriate authenticator, we define the indistinguishability of human
perceivable authenticators.

Definition 3 (HPA Indistinguishability). For any user U and w, w∗ ∈ W,
we say w and w∗ are perfectly human-indistinguishable (’=’), if we have

|Pr[U(w, w) = 1]− |Pr[U(w, w∗) = 1]| = 0,

and relaxed human-indistinguishable (’≈’), if there exists κ0 ∈ N and polynomial
τ, N → N, such that for all κ > κ0 we have

|Pr[U(w, w) = 1]− |Pr[U(w, w∗) = 1]| < 1
τ(κ) .

2 An interesting and for the present model relevant problem for future work would
be to consider user skills to solve human puzzles (e.g. CAPTCHAs). First attempts
to formalize and quantify that behavior have been proposed by Canetti, Halevi and
Steiner [5].

292 S. Gajek

By W∗ ⊆ W we denote the subset of all HPAs which are human-indistinguishable
to some w ∈ W.

The definition makes the formulation of an ideal and relaxed user model possible.
The ideal user model describes a deterministic user who outputs a secret when
the user is invoked with an authenticator which is identical to the authenticator
stored in her memory. By contrast, the relaxed user model alleviates the behavior
and handles “human imperfections”. Consider the following example. Let w be
an authenticator that consists of an image, and let w∗ be the same image, but
marginally compressed (whereby we assume that the probability to guess the
authenticator grows with its size). Some users would be able to distinguish w∗

and w whereas some would fail. To capture the fuzziness and quantify the human
failure, the user reveals the secret in the relaxed model upon invocation with an
authenticator in the range W∗ of the authenticator stored in her memory.

Obviously, the goal is to opt for human perceivable authenticators that are
appropriate for most of the users and one has to conduct user experiments deter-
mining the appropriateness. In context of browser-based protocols some usability
studies have been recently inferred. They turned out that the average Internet
user is not able to identify a server based on digital certificates. Unfortunately,
digital certificates are of prime interest for server authentication. The user does
not understand the meaning of cryptographic identifiers, but prefers to authenti-
cate servers on the base of non-cryptographic human perceivable authenticators
as she is used to do in the physical world where identities are provided in an eas-
ily recognizable fashion in the sense of brands and logos. See [7,22,13] for more
discussions. Arguably, an ideal user behavior model where the user properly ver-
ifies digital server certificates, does not capture realistic assumptions and asks
for a relaxation. Otherwise, it is questionable whether a security proof has much
strength.3 In order to incorporate these insights and lay a firm foundation for
the analysis of browser-based protocols, we transfer the results to the presented
definitions and devise an ideal and relaxed certificate user model.

Definition 4. Let FREC be the recognition functionality and let W be parame-
terized by the set of valid digital certificates. We say a protocol π is secure in the
“ideal certificate user model”, if π is secure in the FREC-hybrid model, assuming
the ideal user model. We say a protocol π is secure in the “relaxed certificate
user model”, if π is secure in the FREC-hybrid model, assuming the relaxed user
model and W∗=W.

The ideal certificate user model captures the fact that the user outputs a rec-
ognized query, whenever the server identity matches the identity provided by
the digital certificate. (This model is identical to the ideal user model presented
in [12].) By contrast, the relaxed certificate user model makes weaker assump-
tions about the user and her behavior. (This model is identical to the relaxed

3 Carl Ellison coined at CRYPTO 2005 Rump Session the term ceremony to denote the
paradigm that a provably secure cryptosystem becomes insecure when it is interfaced
to a user [9].

A Universally Composable Framework for the Analysis 293

user model from [10]). It says that the user accepts any certificate, since they
are not relaxed human indistinguishable. In which case, user-aware protocols
which convey different authenticators and build on relaxed assumptions have to
be designed. This is an open research problem.

3.4 Modeling Browser Behavior: The Aggregation of Messages

On application layer, messages are composed from different communication ses-
sions with arbitrary players and aggregated to a single document. Therefore,
the browser machine extracts document objects4 from the messages and merges
them to a Web page. Today’s browsers support dynamic aggregation of docu-
ment objects due to the broad portfolio of scripting functionalities. These script-
ing functionalities permit not only access to the document object model, but also
provide access to sophisticated browser functionalities. Most notably, it includes
access to the browser’s user and network interface, including privileges to cache,
cookies, and site history, and the Document Object Model.5 In order to capture
these browser subtleties, we define a script as follows:

Definition 5. Let SCRIPT denote the space of scripts. Then we say a script
scr ∈ SCRIPT is a sequence of scripting functionalities 〈Fscr

1 , . . . ,Fscr
n 〉, n ∈

N. A scripting functionality Fscr is a functionality in the standard UC sense
and captures the tasks we expect from real-world scripts.

In the remaining of the paper we do not distinguish between static or dynamic
document objects. We use the term script to denote a static object, a dynamic
object, or a set thereof. The execution of scripts is constricted to a sandbox model
and the intercommunication of functionalities is constrained to the same origin
policy (SOP) security policy. Otherwise, a functionality from a dishonest player
could intercept an honest functionality and subvert their output. Informally,
the SOP security policy ensures that there is no communication via scripting
functionalities between objects that have different domains, protocols, or ports.
A formal description of the SOP enforcing functionality FSOP appears in the full
version.

Description of the SOP Access Policy Functionality. The functionality stores a
table of security contexts T acc and verifies that an invoking scripting function-
ality gains access to another functionality Fscr when it is in the same security
context. The security context is defined by the SOP policy. That means that
scripting functionalities have access to surrounding functionalities, when they
have been invoked by the same protocol on the same port and from the same
domain. Otherwise, the access is prevented and FSOP discards the access re-
quest. When FSOP grants access to some functionality Fscr, then the invoking
functionality is able to instantiate Fscr with arbitrary input. In addition, it can
read, delay and write the output.
4 One can think of HTML tags, JavaScript or Java Applet functions that invoke certain

functionality when processed by the browser rendering engine.
5 See http://demo.nds.rub.de/dmitm for more details.

http://demo.nds.rub.de/dmitm

294 S. Gajek

3.5 Functional Corruption Model

The model of execution does not specify the behavior of the players upon cor-
ruption. However, the composition theorem applies to any behavior including
the case that the adversary corrupts a player in spite of the fact that protocol
π does not protect against compromise. In the presented model we restrict our
attention to static corruptions, i.e. the identities of the corrupted players are
known prior to the protocol execution. Adapting a stronger model where the ad-
versary adaptively corrupts the players may be accomplished by reformulating
the functionalities in the sense of relaxed UC security [6].

Typically, the adversary gains access to the internal state of the player upon
corruption. Browser-based protocols mandate for a more fine-gained considera-
tion. The adversary operates on different protocol layers and thus is feasible to
exploit different functionalities. To this end, we present a natural extension of
the standard corruption model for key exchange protocols to the browser-based
setting. We classify corruptions according to the compromised functionality:

– Functionality F (1,2)
SCS . When the adversary corrupts the secure communica-

tion sessions functionality, we distinguish between the cases:
• Slack Corruption. The adversary has neither access to the long-term

nor ephemeral secrets. It has only access to message m. Then, the ad-
versary controls the functionalities which are invoked by the message.
More precisely, whenever a party receives a message, it processes the
message according to the protocol specification. This process may stip-
ulate new processes, leading to the invocation of subroutine calls which
are expressed in terms of functionalities here. Slack corruptions capture
the fact that the adversary exploits flaws of higher-level protocols in or-
der to compromise functionalities provided by these higher-level levels
or their subroutines. (In terms of browser-based protocols, these attacks
are coined cross-site-scripting, request forgery or SQL injection attacks.)
In order to capture a finer-grained intuition of slack corruptions, we dis-
tinguish between
∗ Left (Initiator) Slack Corruption. The adversary fixes the message

sent to the initiator. Consequently, it has access to the browser’s
scripting functionalities the response messages invoke. Then, FSOP

does not apply (because the adversary is in the same security con-
text as the corrupted party). This adversary could learn sensitive
information from the browser scripting functionalities.

∗ Right (Responder) Slack Corruption. The adversary fixes the mes-
sage received by the responder. It has access to the server’s func-
tionalities. This adversary could reveal secret information from the
server functionalities. For instance, the adversary could compromise
the password file of a database server.

When the adversary has compromised a party in this model, the adver-
sary gains access to the higher-layer functionalities. It then operates like
a man-in-the-middle between the environment and the functionality F

A Universally Composable Framework for the Analysis 295

(or a set thereof) provided by the higher layer. This implies that the
adversary is capable of sending the following queries:
∗ Read(F , in/out): The adversary reads input or output values of func-

tionality F that are sent over F ’s input interfaces in (resp. output
interface out). In other words, before the environment invokes a func-
tionality F with some initial value, this query is first forwarded to the
adversary. Similarly, before the functionality sends the output query
to the environment, this message is first forwarded to the adversary.

∗ Write(F , in/out, value): The adversary writes value on the input in-
terface in (or output interface out) according to the specification of
functionality F . Before the environment feeds a functionality with
some value, the adversary rewrites this value. When the functional-
ity produces some output, the adversary overwrites this output with
a value of his choice.

∗ Intercept(F): The adversary intercepts the events triggered by func-
tionality F . First, the adversary is notified about the event. Then,
the adversary may decide to delay the event or determine the mo-
ment of delivery the event is triggered to the environment.

∗ Invoke(F , value): The adversary invokes arbitrary other functionality
parameterized with some initial value.the processing of message m
would enable.

• Weak Corruption. The adversary has access to the long-term secrets and
message m. This model captures PKI attacks where the adversary has
convinced a trusted third party (e.g. a certification authority function-
ality) to bind its identity to an honest player.

• Strong Corruption. The adversary has access to the long-term, ephemeral
secrets, and message m. This model reflects the strongest corruption
model in which the adversary has access to the complete internal state.

Weak and strong corruption address the key exchange functionality which
composes to the secure sessions functionality. The security goal of two party
key exchange protocols against weak corruption attacks is to prevent that
the adversary learns the session keys from prior sessions with the knowledge
of the long-term secrets. The security goal of secure communication session
protocols against slack corruptions is to prevent the adversary from learning
crucial information being transferred through the functionality.

– Functionality FIR. The adversary poisons the identity resolution and is
able to fix a fake look-up repository. Consequently, it can lure the initiator
to an arbitrary responder. Considering corruptions for a functionality that
allows the adversary to determine the output of the resolution functionality
seems to capture a trivial task at first glance. The reason is that we wish
to analyze browser-based protocols where the adversary does not adaptively
fake the identity resolution, but has compromised the functionality in the
past. Consequently, we are not restricted to analyze protocols in front of pas-
sive adversaries under the condition that the identities are falsely resolved.
We will refer to as the subverted identity corruption model.

296 S. Gajek

– Functionality FREC. The adversary reveals secrets provided by the user. It
gains no additional information. We will refer to as the user corruption model.
It is important to note that this model is equivalent to the relaxed certificate
user model and a strengthening of the weak corruption model, provided
certificates are used. There is no need to use certified identities anymore.
The user accepts any certified identity and reveals the secret. Obviously,
in the user corruption model we consider a naive user. This user may be
easily tricked to disclose her secrets. In particular, in the user corruption
model we assume that the user is susceptible to social engineering attacks.
The security goal of protocols in this model is to prevent the adversary from
impersonating the user despite knowledge of her secrets.

4 Conclusion

Browser-based protocols are a prevailed class of security protocols in practice.
Surprisingly, there has been less effort so far to prove security from a formal point
of view. To diminish the gap, we proposed a model for the composable analysis of
browser-based protocols. We elaborated basic functionalities for the composition
of browser-based protocols. We also presented a functional corruption model
that captures the basic threats of today’s browser-based and Internet protocols.
Our corruption model augments the meanwhile classical model for simulation-
based key exchange from, e.g., [20] and considers corruptions of the user, who
knows some low-entropy secret, corruptions of the identity resolution service
which resolves domain names, and corruptions of the application server which
allows to inject messages into a secure communication without revealing the
session keys. An interesting challenge and issue of primary relevance for Internet
applications is to prove protocols secure even though the adversary has corrupted
some functionalities. The presented model lays a first foundation to formally
carry out such proofs.

Another interesting topic for future work is to define variants of the secure
communication sessions functionality for form-based and cookie-based authenti-
cated channels and demonstrate that browsers securely emulate these function-
alities. In the form-based model, the user enters her password into a Web form
triggered by a protocol running on top of TLS. In the cookie-based model the
browser appends instead of the password a cookie, i.e. a browser-specific long-
term secret stored by the server in a prior session. These authentication models
round off the mechanisms in today’s browsers to establish a secure channel.

References

1. Barak, B., Lindell, Y., Rabin, T.: Protocol initialization for the framework of
universal composability. Cryptology ePrint Archive, Report 2004/006 (2004),
http://eprint.iacr.org/

2. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

http://eprint.iacr.org/

A Universally Composable Framework for the Analysis 297

3. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145. IEEE Computer Society, Los Alamitos (2001)

4. Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, N., Pereira, O., Segala, R.:
Analyzing Security Protocols Using Time-Bounded Task-PIOAs. Discrete Event
Dynamic Systems 18(1), 111–159 (2008)

5. Canetti, R., Halevi, S., Steiner, M.: Mitigating dictionary attacks on password-
protected local storage. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
160–179. Springer, Heidelberg (2006)

6. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
337–351. Springer, Heidelberg (2002)

7. Dhamija, R., Tygar, J.D., Hearst, M.A.: Why phishing works. In: CHI, pp. 581–590.
ACM, New York (2006)

8. Dolev, D., Yao, A.C.-C.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2), 198–207 (1983)

9. Ellison, C.: Ceremony design and analysis. Cryptology ePrint Archive, Report
2007/399 (2007)

10. Gajek, S., Manulis, M., Sadeghi, A.-R., Schwenk, J.: Provably secure browser-
based user-aware mutual authentication over TLS. In: ASIACCS, pp. 300–311.
ACM Press, New York (2008)

11. Gross, T., Pfitzmann, B.: SAML artifact information flow revisited. In: IEEE Work-
shop on Web Services Security, Berkeley, USA (May 2006); Appeared also as IBM
Research Report RZ 3643 (#99653) 01/03/06, IBM Research Division, Zurich (Jan-
uary 2006)

12. Groß, T., Pfitzmann, B., Sadeghi, A.-R.: Browser model for security analysis of
browser-based protocols. In: de Capitani di Vimercati, S., Syverson, P.F., Goll-
mann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 489–508. Springer, Heidel-
berg (2005)

13. Herzberg, A.: Why Johnny can’t surf, safely? (Work in Progress) (2007)
14. Herzberg, A., Yoffe, I.: Layered specifications, design and analysis of security pro-

tocols. Cryptology ePrint Archive, Report 2006/398 (2006)
15. Jackson, C., Barth, A., Bortz, A., Shao, W., Boneh, D.: Protecting browsers from

dns rebinding attacks. In: CCS 2007, pp. 421–431. ACM, New York (2007)
16. Karlof, C., Shankar, U., Tygar, J.D., Wagner, D.: Dynamic pharming attacks and

locked same-origin policies for web browsers. In: CCS 2007, pp. 58–71. ACM, New
York (2007)

17. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its
application to secure message transmission. In: IEEE Symposium on Security and
Privacy, pp. 184–200 (2001)

18. Pfitzmann, B., Waidner, M.: Analysis of liberty single-sign-on with enabled clients.
IEEE Internet Computing 7(6), 38–44 (2003)

19. Sebastian Gajek, M.M., Pereira, O.: Universally composable security analysis of
tls—secure sessions with handshake and record layer protocols. Cryptology ePrint
Archive, Report 2008/251 (2008), http://eprint.iacr.org/

20. Shoup, V.: On formal models for secure key exchange (version 4). Technical report,
IBM Research Report RZ 3120, November 15 (1999)

21. Soghoian, C., Jakobsson, M.: A deceit-augmented man in the middle attack against
bank of america’s sitekey service (2007)

22. Stuart Schechter, A.O., Dhamija, R., Fischer, I.: The emperor’s new security indi-
cators. In: Symposium on Security and Privacy, pp. 51–65. IEEE Computer Society,
Los Alamitos (2007)

http://eprint.iacr.org/

Threshold Homomorphic Encryption in the
Universally Composable Cryptographic Library

Peeter Laud1,2,	 and Long Ngo1

1 Tartu University
2 Cybernetica AS

peeter.laud@ut.ee, ngothanglong@yahoo.com

Abstract. The universally composable cryptographic library by Backes,
Pfitzmann and Waidner provides Dolev-Yao-like, but cryptographically
sound abstractions to common cryptographic primitives like encryptions
and signatures. The library has been used to give the correctness proofs
of various protocols; while the arguments in such proofs are similar to
the ones done with the Dolev-Yao model that has been researched for a
couple of decades already, the conclusions that such arguments provide
are cryptographically sound.

Various interesting protocols, for example e-voting, make extensive use
of primitives that the library currently does not provide. The library can
certainly be extended, and in this paper we provide one such extension —
we add threshold homomorphic encryption to the universally composable
cryptographic library and demonstrate its usefulness by (re)proving the
security of a well-known e-voting protocol.

1 Introduction

Cryptographic protocol verification is an error-prone task. A tractable way of
doing it usually involves employing some abstraction of cryptographic opera-
tions, for example using the Dolev-Yao model [23]. In this model, messages are
modeled as terms over a certain algebra, possibly with some cancellation rules,
and possible operations are defined over the structure of those terms. This ap-
proach makes it simple to use formal methods to analyse the protocol, but the
question of soundness of the abstraction has not been satisfactorily solved yet.
On the other hand, computational methods can produce computationally sound
proofs, but are complex and error-prone.

There exists a sound abstraction of cryptographic operations — the univer-
sally composable cryptographic library [7,11,12] — that has the abstraction level
comparable to the Dolev-Yao model. The first version of this library contained
signature and public-key encryption schemes. Later, the library has been ex-
tended to some more primitives common in the Dolev-Yao model, and shown
that it can not unconditionally have some special primitives.
� Supported by Estonian Science Foundation, grant #6944, and European Union

through the European Regional Development Fund and the 6th Framework Pro-
gramme project AEOLUS (FP6-IST-15964).

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 298–312, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Threshold Homomorphic Encryption 299

In this paper we extend the library to have threshold homomorphic encryp-
tion. The extension involves adding some new commands to the library, while
maintaining its abstraction level. We show that the extended library is still
computationally sound. It is suitable for the analysis of important classes of
protocols, for example electronic voting, auctions or lotteries. A separate contri-
bution of this paper is also the actual introduction of a possible Dolev-Yao style
abstraction for threshold homomorphic encryption.

2 Related Work

The model of universal composability alias reactive simulatability was proposed
by Canetti [20] and by Pfitzmann et al [13,34]. The model has been used to define
sound abstractions of various cryptographic primitives. Among the most cele-
brated abstractions is the universally composable cryptographic library [7,11,12]
providing Dolev-Yao-style abstractions for common cryptographic primitives,
namely symmetric and asymmetric encryption, signatures, MACs, nonces. The
library has been used in the security proofs for some protocols: Needham-
Schroeder-Lowe protocol (asymmetric) [6], the Otway-Rees protocol (symmet-
ric) [2], the strengthened Yahalom protocol (real secrecy) [10], a payment system
[3]. There have also been approaches in using the library to construct secure sys-
tems [1,5,30,35]. It is also known that certain primitives cannot be reasonably
abstracted by such a library [8,14]. Recently, the notion of Conditional Reactive
Simulatability [4] has been proposed, providing soundness only for a certain class
of users and potentially allowing to abstract more primitives.

Threshold homomorphic encryption [22,33] is one of the most versatile cryp-
tographic primitives, combining the distribution of trust with the ability to com-
bine plaintexts under encryption. An overview of using this primitive in e-voting
is given in [32]. Such e-voting protocols have been proved to be universally
composable [27]. In these proofs, the security requirement put on the thresh-
old homomorphic encryption primitive has basically been security under chosen
plaintext attacks (IND-TCPA) [24,25]. We are not aware of any attempts to
abstract this primitive in the Dolev-Yao-style.

3 UC Cryptographic Library

In the treatment of reactive simulatability [34] the systems are modeled as sets
of structures. A structure Str is a collection of probabilistic interactive Turing
machines. Each of the machines has a number of input and output ports ; an in-
put and output port with the same name (which must not repeat) form a secure
communication channel between corresponding machines. Authentic or insecure
channels are modeled using secure channels. A port in the structure may also
be unconnected; a certain subset S of such ports are called the free ports. The
structure provides the intended service over those ports. The rest of unconnected
ports represent the possible weaknesses of the structure; the adversary will con-
nect to those ports. A configuration of (Str , S) is a closed collection (i.e. no

300 P. Laud and L. Ngo

unconnected ports), consisting of the machines in Str , a machine H representing
the users of the service (called the environment in [20]) and connecting only to
the free ports of the structure, and an adversarial machine A. There may also be
connection(s) between H and A. The view of the user H in some configuration C,
denoted viewC(H), is the distribution of the sequence of messages on the ports
of H.

Given two structures Str and Str ′ with the same set S of free ports, we say
that Str is at least as secure as Str ′ if for all H and A there exists an adversary
S, such that viewStr‖H‖A(H) ≈ viewStr ′‖H‖S(H), where ≈ denotes computational
indistinguishability [26]. The simulatability is black-box if there exists a single
machine Sim, called the simulator, such that Sim‖A is a suitable choice for S, for
all H and A. The at least as secure as-relation is lifted to systems in the natural
way. The central result of the theory of UC is the composition theorem. It states
that if we replace a substructure of some structure with something that is at
least as secure, then the entire resulting structure is also at least as secure as
the original one.

When modeling and analysing systems, one speaks about real and ideal struc-
tures. The real structure reflects the distribution of components in the real world,
with each participant typically having one or several machines implementing the
cryptographic operations and protocol logic. A typical ideal structure consists of
a single machine that “obviously” satisfies the security requirements we have put
on the system. A well-designed ideal structure also has a simple internal state
and does not use hard-to-analyse operations (e.g. random number generation).
One has to show that the real structure is at least as secure as the ideal structure.
While analysing a system, one may locate the real structures it is using, replace
them with the corresponding ideal structures (using the composition theorem)
and analyse the resulting ideal system instead.

The simulatable cryptographic library [12] is such a (set of) pair(s) of real
and ideal structures. The ideal structure quite precisely imitates the Dolev-Yao
terms used to abstract the cryptographic messages. The main part of the ideal
machine T Hn for n participants is the database of terms. For each term that
has ever been created by one of the participants or the adversary, it records its
outermost constructor and immediate subterms. The library also records which
parties know which term; if a party knows a term then it has a handle to it.
These handles are generated as needed and are themselves devoid of information
(they are just consecutive integers). Hence all message transmissions have to
happen through the library, which has to translate the handles. For a term t, let
thndu be its handle for the user u; u may be omitted if it is clear from the context.
All parties can store “raw” bit-strings in the database (called the payloads) and
retrieve their contents, construct new terms and decompose them. The rules for
the possibility of composing and decomposing terms are very similar to the rules
in the Dolev-Yao model. The adversary has some extra commands in its disposal,
for example, creating garbage terms or invalid ciphertexts. The machine T Hn

has the input port inui? and the output port outui ! for communicating with the
i-th user and the ports ina? and outa! for communicating with the adversary. In

Threshold Homomorphic Encryption 301

the real structure, the users still access the terms through the handles (because
the real and the ideal interfaces must be the same), but there is a machine Mi for
each participant Pi. Bit-strings are used to represent cryptographic messages; the
machines use them to communicate with each other (and with the adversary).
The cryptographic operations are implemented using conventional primitives.
Each secure channel between two parties is modeled by one, each authentic or
insecure channel by two (from the transmitter to the adversary, and from the
transmitter or the adversary to the receiver) communication channels.

In the model of asynchronous relative simulatability [34], the machines them-
selves are in charge of scheduling. The scheduling is channel-based, each channel
is scheduled by a certain machine. Whenever a machine finishes its step and
stores the newly generated messages in the buffers of channels it has output
ports for, it may also clock at most one of the channels it schedules. The first
message in the buffer of that channel is then delivered to its recipient and this
machine is the next to run. If this buffer is empty or if no channel was clocked
then the control passes to a designated machine (usually the adversary) called
the master scheduler. Such clocking mechanism is very versatile and allows one
to model both network delays (channel is clocked by the adversary) and API
calls (there is a channel in each direction between two machines, clocked by
their transmitters and scheduled each time they are written to). The commands
from the user H to T Hn / Mi are made through API calls. The machine T Hn

also communicates with the adversary using API calls. In the real structure, the
machine Mi clocks the channels from itself to the adversary, while the channels
from the adversary or between two machines are clocked by the adversary.

More details on the asynchronous relative simulatability and the UC cryp-
tographic library can be found in [34,12], as well as in the full version of this
paper [31].

4 Adding Threshold Homomorphic Encryption

4.1 The Cryptographic Primitives

A (t, w)-threshold (�, �)-homomorphic encryption primitive is a tuple of al-
gorithms (K, E ,D,Z,V , C) where the key generation algorithm K returns a new
public key pk , secret keys sk1, . . . , skw and (public) verification keys vk1, . . . , vkw

at each invocation; the encryption Epk (m, r) returns the encryption of the mes-
sage m under the public key pk with the random coins r; the decryption Dski

(c)
returns the i-th decryption share dsi of the ciphertext c, the correctness of de-
cryption can be verified by invoking Vvki

(ds i, pi, c) where pi = Zski
(c); the share

combination algorithm C takes any t decryption shares dsi1 , . . . , ds it and com-
bines them into the plaintext m. For any (pk, sk1, . . . , skw, vk1, . . . , vkw) possi-
bly returned by K, the algorithms must satisfy the following conditions [27]. The
cryptosystem of [22] can be used here.

– Correctness: If c = Epk (m, r) and ds i = Dski
(c) then C(ds i1 , . . . , ds it) = m.

– Homomorphism: Let ci = Epk (mi, ri). Then c1 � c2 is a valid ciphertext
corresponding to the plaintext m1 � m2.

302 P. Laud and L. Ngo

– Correct decryption: Let c = Epk (m, r), ds i = Dsk i
(c) and pi = Zsk i

(c). Then
Vvki

(ds i, pi, c) = true.
– Simulatability: there exists and algorithm S taking as inputs any m, c, and

ds i1 , . . . , ds it′−1
(t′ ≤ t) and returning the (simulated) decryption shares for

the rest of the authorities, such that any t of the shares will be combined to
m and the simulated shares are indistinguishable from the real shares even
to someone with the knowledge of sk1, . . . , sk it′−1

.
– IND-CPA-security, even if the adversary has learned up to t− 1 secret keys.

To ease the presentation, we will in the following assume that vk i = (pk , i). I.e.
the public key includes the verification keys.

A non-interactive zero-knowledge (NIZK) proof is a message, constructed by
a party (the prover) that convinces any other party that the prover knows the
witness for the membership of a certain bit-string in a certain language, without
leaking any other information.

4.2 Ideal Library

We extend the machine T Hn to accommodate the new primitive. The extension
involves introducing new message constructors for the kinds of data created
by the new primitive, as well as commands for generating keys, encrypting,
and decrypting messages, verifying and combining shares and performing the
homomorphic operations. Foreseeing the application of the extended library in
the analyses of various protocols, where the participants must show that the
plaintext in the ciphertexts they have produced comes from a restricted set, we
parameterize the library with a predicate V over bit-strings, giving their validity.
The library allows one to encrypt only the payloads, because it is far from clear
what the �-combination of non-payload terms should be. The extension adds
several new commands and term constructors to T Hn.

To initiate the generation of a new key, a party u (or the adversary; all com-
mands available to a party are also available to the adversary) invokes the com-
mand gen enc thres keylist(a1, . . . , aw), where ai indicates who receives the i-th
share of the secret key (its either a user or the adversary with the adversary
receiving at most t − 1 shares). Upon receiving that command, T Hn adds to
the database a new public key pk (constructor thpk, no arguments) and secret
key shares sk i (constructor thsk, arguments pk , i, ai) for 1 ≤ i ≤ w. It sends
to the adversary the command keylist notify(pk hnd, u, a1, . . . , aw, skhnd

i1 , . . . , skhnd
ik

)
where sk i1 , . . . , sk ik

are the secret key shares intended for the adversary. As
this command abstracts a certain multiparty computation protocol, the adver-
sary controls when a user learns the key shares intended for it. The adver-
sary may later send a command adv learn share(pk hnd, j), causing T Hn to send
learn share(pk hnd, a1, . . . , aw, skhnd

i1 , . . . , skhnd
ik

) the user uj , where sk i1 , . . . , sk ik
are

intended for it. The adversary can also generate invalid keys by invoking the com-
mand adv gen key(). This causes T Hn to generate just a single new term for a
public key (constructor thpk) and return its handle to the adversary.

The encryption is straightforward: a command encth(pk hnd, mhnd) causes T Hn

to create a new term c with the constructor thciph and the arguments pk and

Threshold Homomorphic Encryption 303

m. But T Hn verifies before that pk is a public key, m is a payload, and V(m)
holds. If the verification is unsuccessful, an error is returned. In addition to c,
T Hn also creates a term p = nizkv(c) embodying the NIZK proof of correctness
of the validity of m. The handles of both c and p are returned. The adversary can
also generate an invalid ciphertext or proof — the commands adv invenc(pkhnd, l)
and adv invproof(pk hnd, l) return handles to terms c and p, respectively, where
c = thciph(pk , l) and p = nizkv(l). Here l is the intended length of the plaintext.
The plaintext itself does not have to be present. Similarly to [12], it is possible
to find the public key from a ciphertext using the command keyofth, and it is
impossible to use the secret key shares for anything else than decryption.

The decryption command is more complex — it is decth(skhnd, chnd
1 , phnd

1 , . . . ,
chnd
k , phnd

k), where c1, . . . , ck are ciphertexts and p1, . . . , pk are NIZK proofs.
T Hn verifies that all ciphertexts are created with the public key pk , where
sk is the term thsk(pk , j,). T Hn also verifies that pi = nizkv(ci) (for all
i). If some pi was an invalid proof (had only a length argument) then
T Hn sends adv findwit(chnda

i , phnda
i) to the adversary and expects to receive

adv foundwit(chnda
i , phnda

i , mhnda
i). If mi is the plaintext of ci then T Hn changes pi

into nizkv(ci) and accepts it. While constructing the adv foundwit(. . .)-answer,
the adversary is allowed to parse the terms and store new payloads, but not com-
municate with H. If the checks succeed then T Hn creates a new payload term d
whose payload is the �-combination of the plaintexts of c1, . . . , ck. It also creates
new terms ds (plaintext share; constructor thshare, arguments d, j, c1, . . . , ck)
and dp (proof of correctness of decryption, constructor sharepr, argument ds)
and returns the handles to the last two terms. The adversary can also use the
command adv decth to decrypt; it takes the same arguments, except for NIZK
proofs of plaintext validity, and returns a plaintext share and proof of correct-
ness of decryption. The adversary can also construct an invalid share by in-
voking adv invshare(l, j, chnd

1 , . . . , chnd
k), where l is the length of the plaintext, j

is the position of the plaintext share and c1, . . . , ck are the ciphertexts from
whose combination the plaintext share has been apparently obtained. This com-
mand verifies that c1, . . . , ck have the same public key, adds a single new term
(constructor thshare, arguments ⊥, j, c1, . . . , ck) to the database and returns the
handle to it. An invalid proof of correctness of decryption can also be created
by the adversary by invoking adv invdp(); it creates a new sharepr-term without
arguments. A valid proof can be transformed by invoking adv transdp(dphnd); it
creates a copy of the term dp and returns a handle to it.

Finally, there is the command to combine plaintext shares: when receiving
combine(dshnd

1 , dphnd
1 , . . . , dshnd

t , dphnd
t , pk hnd), T Hn checks that the decryption

shares correspond to the same set of ciphertexts, that they are different, and
that the public key is the one that was used to create the ciphertexts. If these
checks pass then there are two options. If pk was created by the command
gen enc thres keylist then T Hn checks that all proofs of correctness of decryp-
tion point to their respective decryption shares. If all checks pass, then a handle
to the payload d referenced by all ds i is returned. If pk was created by the com-
mand adv gen key then T Hn forwards the combine-command to the adversary

304 P. Laud and L. Ngo

(translating the handles in the process) and forwards its answer (which must be
a handle to a payload, or ⊥) back to the user.

The adversary can also invoke a command adv parse(thnd) for any term for
which it has a handle. In most cases, T Hn answers with the type of t, as well
as with t’s arguments (the subterms are translated into handles). Only if t is
a ciphertext and the adversary does not know enough plaintext and key shares
to decrypt, is the adversary given no handle to the plaintext, but is given only
the length of the plaintext. Similarly, if t is a plaintext share (its arguments
are the plaintext and the ciphertexts whose combination is decrypted) and the
adversary is unable to find the plaintext (for the same reasons as above), is the
plaintext omitted from the answer of T Hn.

Remark. We assume that while the ideal adversary processes an adv findwit-
command, its behavior is somehow constrained. Such assumptions on the ideal-
process adversary are relatively wide-spread, but little-researched. They ap-
peared already in the original report introducing universal composability [19],
where the ideal signature functionality FSIG assumed the adversary to return
a bit-string representing the signature when asked so. The rationale of putting
such restrictions on the ideal adversary are twofold. First, they make the ideal
functionality more secure, and second, this restricted class of ideal adversaries is
large enough to take into account all possible real adversaries — the composition
of the simulator and the real adversary will always belong to this restricted class.
We will see more examples of such constraints in Sec. 4.3.

4.3 Real (or Hybrid) Library

The real library for n participants consists mainly of n machines M1, . . . , Mn

where Mi, having the ports inui? and outui ! handles the cryptographic tasks for
the i-th participant. The machines Mi work as in [12], but they also have to
be extended to cope with the new commands. Additionally, we will use certain
ideal functionalities for some tasks. These functionalities also have universally
composable implementations, with the help of the composition theorem we will
get the entire implementation of the real library (in the common reference string
model [21]).

We make use of the NIZK functionality FR
NIZK [28], where R is the witness

relation. It works as follows. On input prove(x, w) from some party (including
the adversary) it first verifies whether (x, w) ∈ R. If not then it ignores the
input. Otherwise it sends proof(x) to the adversary and expects it to return
some bit-string π. FR

NIZK stores (x, π) and returns π (representing the proof) to
the querying party. To verify a proof, a party submits verify?(x, π) to FR

NIZK.
If (x, π) has been stored, it returns “yes”. Otherwise FR

NIZK sends witness(x, π)
to the adversary and expects it to return some witness w. If (x, w) ∈ R then
FR

NIZK stores (x, π) and returns “yes”, otherwise it returns “no”. While answering
to the queries from FR

NIZK, the adversary is not allowed to change its state
or communicate with other machines. In other words, the adversary will not
remember that it has answered those queries. The simulator given in [28] satisfies
this property.

Threshold Homomorphic Encryption 305

Our real structure contains two machines realizing FNIZK, with different wit-
ness relations. F1

NIZK is used to give validity proofs of ciphertexts; its witnessing
relation is R1 = {((pk , c), (m, r)) | c = Epk(m, r) ∧ V(m)}. The machine F2

NIZK

is used to construct the correctness proofs for decryption; its witnessing relation
is R2 = {((ds , c, pk , j), p) | V(pk ,j)(ds , p, c) = true}. Those machines have con-
nections to and from the machines M1, . . . , Mn, as well as the adversary. All
communication over those connections is through API calls (subroutine-style),
i.e. the sender on a channel also clocks that channel.

Our real structure also contains a machine FKEY serving as the ideal func-
tionality for distributed key generation. It also has connections to and from
the machines M1, . . . , Mn and the adversary. The connections from Mi and be-
tween FKEY and the adversary are clocked subroutine-style. However, as FKEY

represents a distributed protocol, the connections from it to machines Mi are
clocked by the adversary. FKEY accepts a single command keygen(a1, . . . , aw)
from one of the machines M1, . . . , Mn or the adversary. Here a1, . . . , aw have
the same meaning as by gen enc thres keylist. It responds by generating a set
of keys pk , sk1, . . . , skw and sending to the adversary and all parties mentioned
among a1, . . . , aw the public key and all secret key shares intended for this party.
Protocols implementing FKEY are given e.g. in [37].

Recall that the state of the machines Mi mainly consisted of a dictionary
that mapped handles of messages to bit-strings; we assume that the type of each
message can be uniquely determined from the bit-string representing it. Let us
now describe how Mi processes commands from H. The key-generation command
gen enc thres keylist(a1, . . . , aw) is forwarded to FKEY as keygen(a1, . . . , aw). If
some answer is received from FKEY (recall that this answer is scheduled by
the adversary) then the received public key and secret key shares are stored
together with new handles generated for them (we assume that each secret key
share includes its position). The handles are also sent to the user as arguments
of the command learn share.

The command encth(pkhnd,mhnd) is realized by performing the same checks
as the ideal library, generating random coins r, calling c∗ ← Epk (m), submitting
(pk , c∗) together with the witness (m, r) to F1

NIZK, getting back p∗, generating
new handles chnd and phnd, and storing chnd �→ (c∗, pk) and phnd �→ (p∗, c∗). Fi-
nally, Mi returns chnd and phnd. Note that the NIZK proof includes the ciphertext.
The command keyofth is straightforward to implement.

Decryption decth(skhnd, chnd
1 , phnd

1 , . . . , chnd
k , phnd

k) is done by checking all the
proofs pi with the help of F1

NIZK, combining the ciphertexts as c = c1 � · · ·� ck,
decrypting c as ds∗ = Dsk (c), finding the proof of correctness by dp◦ = Zsk (c),
turning it into a NIZK proof of correctness by submitting (ds∗, c, (pk , j)) with
the witness dp◦ to F2

NIZK and getting back dp∗ (here j is the position of
sk among the secret key shares; Mi has stored it alongside sk), generat-
ing new handles dshnd and dphnd, and storing dshnd �→ (ds∗, j, c1, . . . , ck) and
dphnd �→ (dp∗, ds∗, j, c1, . . . , ck). Here j is the position of the secret key share
sk (stored together with it). The newly generated handles are returned. Again
note that the proof contains its subject plaintext share which in turn contains

306 P. Laud and L. Ngo

the ciphertexts it was generated from. Finally combine (whose argument was
a list of handles to plaintext shares, correctness proofs of decryption, and the
public key) is implemented by verifying all the proofs with the help of F2

NIZK

and combining the shares using the algorithm C.

Theorem 1. The real structure consisting of machines M1, . . . , Mn, F1
NIZK,

F2
NIZK, FKEY is at least as secure (in the black-box sense) as the ideal struc-

ture consisting of the machine T Hn.

5 The Simulator

Theorem 1 is proved by constructing a suitable simulator Sim. The main task of
the simulator is to translate between the views of the real and the ideal adversary.
Whenever a message is received from T Hn, the simulator has to assign a bit-
string to it and forward it to the real adversary. Whenever a message is received
from the real adversary, the simulator has to parse that message and enter it
into T Hn, receiving a handle for it in the process. Additionally, the scheduling
decisions have to be translated. On the one hand, the simulator Sim has the ports
ina! and outa? to communicate with T Hn (the simulator also clocks the channel
ina). On the other hand, it has all the ports for the real adversary, such that it
can play the machines M1, . . . , Mn, F i

NIZK and FKEY to it. The simulator can be
thought of as containing the copies of those machines, although it is possible to
intervene with their normal operation. In principle, all channels between those
machines also exist, even though both their input and output ports belong to
Sim. If the channel is also clocked by Sim, then one does not have to consider
this channel. But there are also some channels from Sim to Sim (originally from
FKEY to Mi) that are scheduled by the adversary.

The full description of the simulator, as well as its correctness proof is given
in [31]. Here we will only describe some more interesting aspects of its work. The
main part of the state of the simulator is a database, similar to the machines
Mi. It stores the handles of the messages (coinciding with the handles assigned
to terms by T Hn) together with the bit-string representation of those messages.
There may be some additional arguments associated with each entry. The state
of the simulator also includes the states of the “embedded” machines F i

NIZK.
To translate the handles received from T Hn to bit-strings given to the real

adversary, parse the term corresponding to the received handle, generate new
keys, ciphertexts, etc. for all terms that the simulator has not seen before, use the
saved bit-string representations for terms already seen, and combine everything
together using the cryptographic operation corresponding to the constructor of
the term. The simulator may have difficulties if T Hn does not allow it to parse
a certain term. If this term was a ciphertext (and the simulator does not have
access to sufficiently many secret key shares to decrypt it) then translate it by
generating a random ciphertext and let the embedded F1

NIZK give a validity
proof for it. If the untranslatable term was a decryption share then construct
a bit-string corresponding to it by invoking the share simulation algorithm S
(if the simulator can obtain a handle to the plaintext term) or by generating

Threshold Homomorphic Encryption 307

a random bit-string (otherwise). The matching proof of validity is given by the
embedded F2

NIZK, whose operation is modified to not require a witness.
The translation of bit-strings received from the real adversary to terms en-

tered into T Hn is similar — parse the bit-string as much as possible, using the
information already available to the simulator, enter the subterms into T Hn and
finally use a message constructor operation to create the term corresponding to
the entire bit-string (or some other command available to honest users to obtain
a handle to an already existing term). If the simulator cannot fully parse the
received bit-string, then one of the adversarial commands of T Hn has to be used
to construct a suitable term; the set of adversarial commands given in Sec. 4.2
is sufficient for all cases. A bit-string representing a public key that the simu-
lator has not yet seen is entered into T Hn by using the command adv gen key.
A ciphertext encrypted with such a key is entered with the help of the com-
mand adv invenc. This command also returns the handle for a suitable proof
of plaintext validity. If another proof for the same ciphertext is received from
the real adversary then adv invproof is used to create a handle corresponding
to it. The received decryption shares are treated similarly — if the adversary
does not have a handle to the necessary secret key share then the commands for
creating invalid shares and/or validity proofs are used. Note that the choice be-
tween transforming and existing proof (command adv transdp) and generating
an invalid proof (command adv invdp) depends on whether the corresponding
decryption share already has a validity proof in the database of T Hn.

Note that by containing a copy of FKEY, the simulator knows the secret key
shares for all key generations initiated by honest participants (through T Hn), as
well as by the real adversary, if it chose to use the functionality FKEY for it. The
commands adv gen key and adv invproof are only necessary if the real adversary
has generated the keys without any help from the simulator.

6 Example: A Simple e-Voting System

To demonstrate the usefulness of our extension, we construct a simple e-voting
system based on it and prove that it satisfies certain security properties. The
system runs with n voters and w authorities. The functionality of the i-th voter is
implemented by the machine MV

i and the functionality of the j-th authority by
the machine MAU

j . These machines can be seen as parts of the honest user H of
T Hn+w. They receive commands (to vote in a particular way, to start tallying)
from the rest of the honest user, implement the voting protocol, and use our
library to implement the cryptography and networking. In other words, they are
the protocol machines of [30]. Any number of machines MV

i and at most (t− 1)
of the machines MAU

j may be under adversarial control (only static corruptions
are allowed).

Later we will recall a number of security requirements for voting systems and
show that this system (using the ideal library) meets these requirements. By the
composition theorem, the security of the e-voting system is still preserved when
we replace the ideal library with the real one.

308 P. Laud and L. Ngo

votehnd ← store(v)
(chnd, phnd)← encth(pkhnd, votehnd)
shnd ← sign(ks,hnd

i , chnd)
lhnd ← list(shnd, phnd)
for all i ∈ {1, ..., w} do

send i(AUi, l
hnd)

end for

shnd ← list proj(lhnd, 1)
phnd ← list proj(lhnd, 2)
chnd ← msg of sig(shnd)
if verify(shnd, kv,hnd

i , chnd)
and (chnd, phnd) �∈ image(S) then
S ← S ∪ {i �→ (chnd, phnd)}

/* Initially, S is empty */
end if

Fig. 1. Algorithms for sending and receiving a vote

We put an additional condition on the adversary: when interfering with the
communication from voters to authorities, it treats all authorities equally. I.e., it
may block a voter transmitting its vote to the authorities, but it may not allow
the vote to reach some authorities and not reach the others. If the adversary
changes the message sent from a voter to the authorities, all adversaries will
still receive the same message. This restriction models the bulletin board that
is typically used for the voters to publish their (encrypted) votes [27]. We also
assume that the user(s) of MV

i and MAU
j make sure that different phases of

voting (key distribution, voting, tallying) start and end at the same time for
different machines.

Initialization. Each machine MV
i generates a signing and verification key pair

(ks
i , k

v
i) using the command gen sig keypair [12] and sends it to all other parties

over the authentic channel. Some party (or the adversary) invokes
gen enc thres keylist(AU1, . . . , AUw). The authorities will learn their respective
secret key shares sk1, . . . , skw and the encryption key pk . The public key is also
transmitted to the voters in an authentic manner. This might be realized by
having each authority send pk to each voter over an authentic channel and let
the voter accept if it has received the same pk at least t times.

Voting. Fig. 1 (left) describes the actions of MV
i upon receiving the command

vote(v) from the user for the first time (each subsequent time, the command
is ignored). For sending messages to multiple receivers, one has to handle the
scheduling [34], but we will omit the details here. Fig. 1 (right) describes the
actions of MAU

j upon receiving a vote lhnd, apparently from the voter MV
i.

After MAU
j has successfully received the vote of MV

i, it ignores the subsequent
attempts to send it.

Tallying. Fig. 2 (left) describes the actions of MAU
j after receiving the command

to count the votes and publish a share of the final result. As usual, the final result
is presumed to be the �-combination of the votes. Fig. 2 (right) describes how
the votes are combined in any machine.

We see that the system we have thus defined can only be used for a single
voting. It would be straightforward to modify it for several elections, by adding
a session identifier to each command. This session identifier must then be bound
to the messages the parties send to each other, requiring the authorities to also

Threshold Homomorphic Encryption 309

(dshnd, dphnd)←
decth(skhnd, S(1), . . . , S(n))

lhnd ← list(dshnd, dphnd)
for all i ∈ {1, ..., w} do

send i(AUi, l
hnd)

end for
for all i ∈ {1, ..., n} do

send i(Vi, l
hnd)

end for

num shares ← num shares + 1
/* Initially, num shares = 0 */

C ← C ∪ {num shares �→ (dshnd, dphnd)}
if num shares ≥ t then

for all {i1, . . . , it} ⊆ {1, . . .num shares} do
reshnd ← combine(C(i1), . . . , C(it), pkhnd)
if reshnd �= ⊥ then

res← retrieve(reshnd)
Output res to the user and stop

end if
end for

end if

Fig. 2. Algorithms for tallying and for combining the results

sign their messages (plaintext shares). The same key can be used for several
elections, in contrast to [27]. Such possibility is given by the functionality FNIZK,
which can be implemented so, that the simulator has a trapdoor for extracting
witnesses, and does not have to resort to rewinding the user H.

6.1 Security of the e-Voting System

Several security properties have been defined for e-voting protocols. Some prop-
erties can only be satisfied by policies or voting procedures. We only mention
here the security properties in terms of cryptography.

An e-voting protocol should have the following properties [32].

Correctness. The voting results must be computed from only legitimate votes.
Privacy. Voter’s preferences are private.
Coercion-freeness. A voter can not later prove that he/she voted in a par-

ticular way (Then he can not be forced to vote for something he does not
prefer).

Independence. A voter should know his vote.

We claim that the e-voting system described above is secure in the above
sense. Section 6.2 shows the proof. When the e-voting system uses the real library
instead of the abstract one, the properties automatically preserved.

6.2 Proof for the Ideal Setting

The arguments below are quite similar to those in the Dolev-Yao model.

Correctness. The votes that the authority receives from the voters are signed.
Hence the adversary could not change their content. Each authority accepts a
vote from some MV

i only once, hence there are no possibilities for replaying the
votes. Because of the adversary simulating the bulletin board, the same set of
votes reaches each authority. When combining the plaintext shares, the sets of
votes must be the same and at least one of the shares must originate from an
honest authority. The plaintext shares cannot be interfered by the adversary, as
this would invalidate the correctness proofs of decryption.

310 P. Laud and L. Ngo

Privacy. The vote privacy can be defined as the secrecy of payloads [9]. To
achieve it, the inability of the adversary to get handles to the actual votes is
sufficient. But the terms representing the votes are only ever used in the cipher-
texts the voters send to the authorities and possibly also in plaintext shares if
the adversary chooses to decrypt a vote. But the adversary has corrupted at
most (t−1) authorities, hence it cannot combine the shares of a decrypted vote.

After the tallying phase, the adversary learns only the result because all of
authorities just give the decryption shares for the correct result.

Coercion-freeness. After the voting protocol, a voter has handles to his/her
vote, the encrypted vote and the proof of validity of the vote. The only way that
the ideal library allows one to verify that the ciphertext represents the vote, is
to decrypt the ciphertext. The adversary does not have sufficiently many shares
of the decryption key for that.

Independence. The library does not offer any means for a party to change
the plaintext of a ciphertext without decrypting that ciphertext. Hence an ad-
versarial voter cannot change the vote of an honest voter and present it as its
own. An adversarial voter cannot even copy the vote of another voter because
algorithm 1 does not allow repetitions.

7 Discussion and Conclusions

We have extended the UC cryptographic library with threshold homomorphic
encryption. While extending it, we have made some design choices, the optimal-
ity of which can only be decided by using the library in the design and analysis
of protocols. In particular, we have chosen to verify the proofs of validity and
decryption correctness at the time where the ciphertexts and plaintext shares
are actually used. One could imagine the existence of special commands to verify
those proofs, and a condition on the user of the library (leading to conditional
reactive simulatability [4]) to always verify the proofs before decrypting or com-
bining. With the current choice we have avoided introducing the conditions,
thereby making the presentation of the library simpler.

As threshold homomorphic encryption is widely applied, this extended library
can be used in analysing various protocols. It enables us to achieve computation-
ally sound proofs for a larger class of protocols, including e-voting, in an easier
way (by tools or even by hand). As an example, we specify and analyse a simple
e-voting protocol in Appendix 6.

Conditional reactive simulatability puts conditions on the user of some cryp-
tographic primitive with UC-secure abstraction. In this paper we have shown
that it may be equally important to consider restrictions on the possible behav-
ior of the adversary trying to attack the ideal system. We have seen that the
application of the composition theorem may combine those conditions in vari-
ous ways, sometimes leading to their disappearance. This phenomenon certainly
warrants a more thorough investigation.

Threshold Homomorphic Encryption 311

UC cryptographic library, when combined with conditions put on the user and
on the adversary, is one approach possibly leading to machine-assisted verifica-
tion of security of cryptographic protocols and larger systems. A rather different
approach is the sequence-of-games approach [29,16,17,18,36] that has seemingly
received more attention recently. We believe both approaches have their unique
merits and both deserve attention.

References

1. Adão, P., Fournet, C.: Cryptographically sound implementations for communicat-
ing processes. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 83–94. Springer, Heidelberg (2006)

2. Backes, M.: A Cryptographically Sound Dolev-Yao Style Security Proof of the
Otway-Rees Protocol. In: Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R.
(eds.) ESORICS 2004. LNCS, vol. 3193, pp. 89–108. Springer, Heidelberg (2004)

3. Backes, M., Dürmuth, M.: A cryptographically sound Dolev-Yao style security
proof of an electronic payment system. In: CSFW 2005, pp. 78–93 (2005)

4. Backes, M., Dürmuth, M., Hofheinz, D., Küsters, R.: Conditional reactive simu-
latability. Int. J. Inf. Sec. 7(2), 155–169 (2008)

5. Backes, M., Laud, P.: Computationally sound secrecy proofs by mechanized flow
analysis. In: ACM CCS 2006, pp. 370–379 (2006)

6. Backes, M., Pfitzmann, B.: A Cryptographically Sound Security Proof of the
Needham-Schroeder-Lowe Public-Key Protocol. In: Pandya, P.K., Radhakrishnan,
J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 1–12. Springer, Heidelberg (2003)

7. Backes, M., Pfitzmann, B.: Symmetric Encryption in a Simulatable Dolev-Yao
Style Cryptographic Library. In: CSFW 2004, pp. 204–218 (2004)

8. Backes, M., Pfitzmann, B.: Limits of the cryptographic realization of Dolev-Yao-
style XOR. In: de Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 178–196. Springer, Heidelberg (2005)

9. Backes, M., Pfitzmann, B.: Relating Symbolic and Cryptographic Secrecy. In: IEEE
S&P 2005, pp. 171–182 (2005)

10. Backes, M., Pfitzmann, B.: On the cryptographic key secrecy of the strengthened
Yahalom protocol. In: SEC 2006 (IFIP 201), pp. 233–245 (2006)

11. Backes, M., Pfitzmann, B., Waidner, M.: Symmetric authentication within a sim-
ulatable cryptographic library. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS
2003. LNCS, vol. 2808, pp. 271–290. Springer, Heidelberg (2003)

12. Backes, M., Pfitzmann, B., Waidner, M.: A Universally Composable Cryptographic
Library. In: ACM CCS 2003, pp. 220–230 (2003)

13. Backes, M., Pfitzmann, B., Waidner, M.: A General Composition Theorem for
Secure Reactive Systems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 336–
354. Springer, Heidelberg (2004)

14. Backes, M., Pfitzmann, B., Waidner, M.: Limits of the BRSIM/UC soundness of
Dolev-Yao models with hashes. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.)
ESORICS 2006. LNCS, vol. 4189, pp. 404–423. Springer, Heidelberg (2006)

15. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of
Symmetric Encryption. In: FOCS 1997, pp. 394–403 (1997)

16. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

312 P. Laud and L. Ngo

17. Blanchet, B.: A computationally sound mechanized prover for security protocols.
In: IEEE S&P 2006, pp. 140–154 (2006)

18. Blanchet, B.: Computationally sound mechanized proofs of correspondence asser-
tions. In: CSF 2007, pp. 97–111 (2007)

19. Canetti, R.: A unified framework for analyzing security of protocols. In: ECCC,
vol. 8(16) (2001)

20. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In: FOCS 2001, pp. 136–145 (2001)

21. Damg̊ard, I.: Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 424–436. Springer,
Heidelberg (2000)

22. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

23. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions
on Information Theory IT-29(12), 198–208 (1983)

24. Fouque, P.-A., Pointcheval, D.: Threshold Cryptosystems Secure against Chosen-
Ciphertext Attacks. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
351–368. Springer, Heidelberg (2001)

25. Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting
or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer,
Heidelberg (2001)

26. Goldreich, O.: Foundations of Cryptography. Volume 1 - Basic Tools. Cambridge
University Press, Cambridge (2001)

27. Groth, J.: Evaluating security of voting schemes in the universal composability
framework. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 46–60. Springer, Heidelberg (2004)

28. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for np.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006)

29. Laud, P.: Symmetric encryption in automatic analyses for confidentiality against
active adversaries. In: IEEE S&P 2004, pp. 71–85 (2004)

30. Laud, P.: Secrecy Types for a Simulatable Cryptographic Library. In: ACM CCS
2005, pp. 26–35 (2005)

31. Laud, P., Ngo, L.: Threshold Homomorphic Encryption in the Universally Compos-
able Cryptographic Library. Cryptology ePrint Archive, Report 2008/367 (2008)

32. Lipmaa, H.: Secure electronic voting protocols. In: The Handbook of Information
Security. John Wiley & Sons, Chichester (2006)

33. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

34. Pfitzmann, B., Waidner, M.: A Model for Asynchronous Reactive Systems and its
Application to Secure Message Transmission. In: IEEES&P2001, pp. 184–200 (2001)

35. Sprenger, C., Backes, M., Basin, D.A., Pfitzmann, B., Waidner, M.: Cryptograph-
ically sound theorem proving. In: CSFW 2006, pp. 153–166 (2006)

36. Tšahhirov, I., Laud, P.: Application of dependency graphs to security protocol
analysis. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 294–
311. Springer, Heidelberg (2008)

37. Wikström, D.: Universally composable DKG with linear number of exponentia-
tions. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 263–277.
Springer, Heidelberg (2005)

Universally Composable Security Analysis of
TLS�

Sebastian Gajek1, Mark Manulis2, Olivier Pereira2, Ahmad-Reza Sadeghi1,
and Jörg Schwenk1

1 Ruhr University Bochum, Germany
{sebastian.gajek,joerg.schwenk}@nds.rub.de

ahmad.sadeghi@trust.rub.de
2 Université Catholique de Louvain, Belgium

{mark.manulis,olivier.pereira}@uclouvain.be

Abstract. We present a security analysis of the complete TLS protocol
in the Universal Composable security framework. This analysis evalu-
ates the composition of key exchange functionalities realized by the TLS
handshake with the message transmission of the TLS record layer to
emulate secure communication sessions and is based on the adaption
of the secure channel model from Canetti and Krawczyk to the setting
where peer identities are not necessarily known prior the protocol invoca-
tion and may remain undisclosed. Our analysis shows that TLS, includ-
ing the Diffie-Hellman and key transport suites in the uni-directional
and bi-directional models of authentication, securely emulates secure
communication sessions.

Keywords: Universal Composability, TLS/SSL, key exchange, secure
sessions.

1 Introduction

The protocol framework of Transport Layer Security (TLS) [1] serves as fun-
damental primitive for WWW security and has fostered to the most valuable
cryptographic protocol family in practice. The TLS protocol suites enable ap-
plications to communicate across a distributed network in a way that endpoint
authentication and transmission privacy is guaranteed. The main goal of this
paper is to provide a rigorous and generic analysis of TLS’s cryptographically
relevant parts of the protocol framework, namely the handshake and record-layer
protocols. Given the wide deployment of TLS and the fact that it has been de-
signed as contemporary cryptography started to explore provable security, it is
natural that this analysis is of high, practical interest. Since TLS has already
been investigated with respect to certain cryptographic primitives and protocol
abstractions (see below), a general belief is that the framework is secure. Yet,
there is no security proof of the entire TLS protocol and a careful observation

� A full version of this paper is available at http://eprint.iacr.org/2008/251

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 313–327, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

314 S. Gajek et al.

of TLS’s subtleties in the various modes provided by the different cipher suites.
However, such a proof would significantly contribute to the analysis of complex
protocols executed on top of TLS.

Our analysis is carried out in the meanwhile classical model of Universally
Composable (UC) security [2] which guarantees protocol security under gen-
eral composition with arbitrary other protocols. This valuable property stimu-
lated the search for universal protocol design techniques and their realizations
[3,4,5,6,7,8]. On the other hand, there are important impossibility results [3,9]
so that a security proof of TLS in this model is neither obvious nor trivial. Our
work particularly continues the way of Canetti’s and Krawczyk’s consideration
of the Σ-protocol underlying the signature based modes in IPSec [10] and their
model to build up secure channels [11] in the UC model with the exception that
instead of proving single modes, we utilize UC as technique to prove the com-
plete protocol secure in a single proof. Applied to the analysis of TLS, it includes
Diffie-Hellman and encrypted key transport in the uni- or bi-directional model
of authentication which are part of the TLS handshake, and their emulation
to build secure communication protocols realized by the additional TLS record
layer.

The most relevant question is how to reduce the complexity of the proof. Is it
possible to unitize TLS in meaningful protocol fragments such that the composi-
tion theorem allows for an efficient protocol reformulation in the hybrid model?
That means, can we define ideal functionalities that capture the cryptographic
task of some of its fragments and simply reuse these functionalities with the
next fragment? Otherwise, a composite analysis would not make sense so that
we could switch to stand-alone protocol proofs. Fortunately, we answer the ques-
tions in the positive. To this end, we introduce two ideal functionalities, dubbed
the universal key exchange and universal secure communication sessions. The
functionalities are “universal” in the sense that they emulate different key es-
tablishment methods and modes of authentication in a self-contained definition.
We show that the TLS framework including the different modes securely emu-
lates the universal secure sessions functionality in the presence of non-adaptive
adversaries. Our result can significantly simplify security proofs of higher-layer
protocols by employing the composition theorem. We are not aware of any prior
work that evaluates the essential composability property of TLS.

Related Work. Because of its eminent role the TLS framework has been re-
peatedly peer-reviewed. Schneier and Wagner [12] gave the first informal anal-
ysis in the core specification. Bleichenbacher [13] found some weaknesses in the
PKCS#1 standard for RSA encryption as used with some SSL 3.0 handshake
protocols.1 Jonsson and Kaliski [14] showed that the encryption in the revised
PKCS#1.5 standard is secure against chosen cipher attacks in the Random Ora-
cle Model. Krawczyk [15] analyzed the composition of symmetric authentication
and encryption to establish a secure communication channel with TLS record

1 Note that the attack exploited weaknesses of the PKCS#1 standard and not the
TLS protocol.

Universally Composable Security Analysis of TLS 315

layer protocols and found some problems in the case of general composition.
However, these do not apply to the standard cipher suites.

Apart from the analysis of some cryptographic primitives, a line of research
addressed the analysis of dedicated TLS protocols on the basis of cryptographic
abstractions to allow automated proof techniques. Paulson [16] gave an inductive
analysis of a simplified version of TLS, using the theorem proving tool Isabelle.
Mitchell, Shmatikov, and Stern [17] checked TLS, using the finite-state enumera-
tion tool named Murphφ. Ogata and Futatsugi [18] used the interactive theorem
prover OTS/CafeObj to check a simplified version of the key transport hand-
shake protocol through equational reasoning. He et al. [19] provided a proof of
correctness of TLS in conjunction with the IEEE 802.11i wireless networking pro-
tocol, using the Protocol Composition Logic. The drawback these tool-supported
approaches currently share is that the proofs are considerably simplified. They
follow the Dolev-Yao model [20] which represents cryptography as term algebras
and abstracts away the comprehensiveness of the adversary such that the proofs
are not known to be cryptographically sound.

Very recently, Morrissey et al. [21] analyzed in an independent work the modu-
larity of a TLS-related handshake protocol in a game-based style. The handshake
is not exactly conform with the core TLS specification [1] and considers not all
protocol variants. Their work focuses on a generic proof of the iterated session
key constructions. By contrast, our work is of independent interest and practical
relevance. We investigate TLS’s intrinsic compositional property which is to pro-
vide higher-layer protocols with some secure communication functionality. Fur-
thermore, our work addresses the native handshake protocols and additionally
the record layer protocols in different authentication models under the stronger
security notion of universally composable security.

Organization. The remaining sections are structured as follows. Section 2 clarifies
notation and cryptographic building blocks. Section 3 shortly introduces the TLS
protocol family and describes the compositional proof idea. Section 4 is devoted
to the TLS handshake subroutines we use throughout the analysis. Section 5
proves the full framework and Section 6 concludes.

2 Preliminaries

2.1 Notations

The protocols run between two players: a client and a server. A player P may act
as initiator I or responder R. If P is acting as I then by P̄ we denote a player
acting as R and viceversa. An anonymous player, i.e. a party whose identity is
not known is denoted by ⊥. We refer to the handshake protocol structure as π
and the composition with the record-layer protocols as ρ. Additionally, we use
different indices to capture the modes of authentication in ideal functionalities.
We refer to a responder-only authenticated functionality as F1, i.e. a functional-
ity where the responder authenticates to the initiator, but the initiator’s identity
remains unknown. Further, we denote an ideal functionality, where both players
authenticate by F2, and a hybrid functionality of F1 and F2 by F (1,2).

316 S. Gajek et al.

2.2 Cryptographic Building Blocks and Their Constructions

The specification of TLS [1] uses several cryptographic primitives and mandates
or recommends certain instantiations of them as described in the following:

An asymmetric encryption scheme (ENCpkR(), DECskR()) for transporting
the encrypted premaster secret which must be instantiated with the RSA-OAEP
construction (known to provide indistinguishability under adaptive chosen ci-
phertext attacks [14] in the Random Oracle Model). In TLS handshake a pri-
vate key skR is known to the responder R and its public key pkR is signed by a
Certification Authority (CA).

A digital signature scheme (SIGsk(), VERvk()) for entity authentication
which can be instantiated with DSA and RSA-PSS (the latter is known to pro-
vide weak existential unforgeability under chosen message attacks in the Ran-
dom Oracle Model [22]). Each player owns a signing key sk and the respective
verification vk is certified by a CA.

A message authentication code function HMACk() from [23] and a sym-

metric encryption scheme (Ek(), Dk()) which is recommended to be DES or
3DES in different modes and with different key lengths. The construction of sym-
metric authentication with encryption is known to provide weak unforgeability
under chosen message attacks and indistinguishability under chosen plaintext
attacks [15,24].

A pseudo-random function for the key derivation and confirmation, de-
note here by PRFk(). It is evaluated with seed k on an input string li, i ∈ [1, 4]
which is labeled with different publicly known space delimiters and two inde-
pendently chosen random values, i.e. the nonces exchanged in the first protocol,
or a function thereof. The specification defines a special construction based on
HMAC combiners which has been recently proven to be a good randomness
extractor [25].

3 Transport Layer Security

3.1 TLS in a Nutshell

The standard TLS specification [1] comprises handshake, alert, change cipher
spec, and record layer (sub)protocols. The handshake protocol is used to nego-
tiate key material and cryptographic algorithms and the record layer protocol
can then be applied to secure transmitted application data. The change cipher
spec protocol consisting of one message triggers a change in the cryptographic
parameters used by the record layer, while the alert protocol communicates er-
ror messages, whenever a failure during the handshake or message protection
occurs. Thus, the essential cryptographic building blocks for TLS and target to
the presented analysis are the handshake and record layer protocols.

Handshake and Record Layer. The TLS handshake aims at the negotiation of a
common secret called the master secret km which is in turn derived from the the
previously established premaster secret kp. The modularity of the handshake

Universally Composable Security Analysis of TLS 317

Initiator I Responder R

rI
r← {0, 1}p1(k) rI−−−−−−−−−−−−−−−−−−−−−−−−→

rR←−−−−−−−−−−−−−−−−−−−−−−−− rR
r← {0, 1}p2(k)

DHE

g, g
x
, SIGskR

(rI , rR, g, g
x
), R

←−−−−−−−−−−−−−−−−−−−−−−
g

y

−−−−−−−−−−−−−−−−−→
km ← PRFgxy (l1)

DHS
R←−−−−−−−−−−−−−−−−−
gy

−−−−−−−−−−−−−−−−−→
km ← PRFgxy (l1)

EKT
R←−−−−−−−−−−−−−−−−−

ENCpkR
(kp)

−−−−−−−−−−−−−−−−−→
km ← PRFkp (l1)

[SIGskI
(trscrpt), I]∗

−−−−−−−−−−−−−−−−−−−−−−−−→ parse SIGskI
() as σ

IF VERvkI
(trspt, σ) accept

ELSE abort

(kI
e , kI

a, kR
e , kR

a) ← PRFkm (l2)
FI ← PRFkm (l3)

E
kI

e
(FI |HMACkI

a
(FI))

−−−−−−−−−−−−−−−−−−−−−−−−→ parse E
kR

e
() as α

(kI
e , kI

a, kR
e , kR

a) ← PRFkm (l2)
(FI |tI) ← D

kI
e
(α)

IF FI ← PRFkm (l3)
AND tI ← HMACkI

a
(FI)

accept (kI
e , kI

a, kR
e , kR

a)
ELSE abort
FR ← PRFkm (l4)

parse EkR
e

() as β
EkR

e
(FR|HMACkR

a
(FR))

←−−−−−−−−−−−−−−−−−−−−−−−−
(FR|tR) ← D

kR
e

(β)

IF FR ← PRFkm (l4)
AND tR ← HMAC

kR
a

(FR)

accept (kI
e , kI

a, kR
e , kR

a)
ELSE abort

send mj

E
kI

e
(mj |HMACkI

a
(mj))

−−−−−−−−−−−−−−−−−−−−−−−−→ parse E
kI

e
() as γj

(mj |tmj
) ← DkI

e
(γj)

IF tmj
← HMACkI

a
(mj)

receive mj

ELSE abort

parse E
kR

e
() as γj+1

E
kR

e
(mj+1|HMACkR

a
(mj+1))

←−−−−−−−−−−−−−−−−−−−−−−−− send mj+1

(mj+1|tmj+1) ← D
kR

e
(γj+1)

IF tmj+1 ← HMACkR
a

(mj+1)

receive mj+1
ELSE abort

Fig. 1. The TLS protocol including the different subroutines DHE, DHS, and EKT to
establish the master secret km. [·]∗ marks the optional client authentication message.
Event ’abort’ invokes the alert protocol with the respective error message; events ’send’
and ’receive’ trigger interfaces to the application layer.

protocol is captured by the fact that different subroutines are applied to es-
tablish the premaster secret and derive the master secret while the remaining
structure of the handshake is unchanged (see Fig. 1). TLS distinguishes among
the following subroutines: encryption of the premaster secret using the server’s
public key (EKT); static (DHS) or ephemeral signed (DHE) Diffie-Hellman key

318 S. Gajek et al.

exchange. Optionally, TLS allows for the client authentication via a signature
over all received values trscrpt which can be verified using the public key with
the client certificate. The master secret km is then used to derive up to four
cryptographic keys for the record layer: two symmetric encryption keys kP

e (in-
cluding an initialization vector for the block-cipher based encryption), and two
authentication keys kP

a , where P ∈ {I, R}. Finally, client and server confirm the
negotiated security parameters by exchanging their finished messages which are
derived from km and protected via authenticated encryption by the record layer
(i.e. MAC of the plaintext is used as input to the symmetric encryption). The
same protection is then applied to the subsequent application data.

Remark 1. Note that an application message may be fragmented and compressed
when processed by the record layer. Therefore, the record layer encodes sequence
numbers into the fragments and maintains a counter in order to prevent disor-
der. Note also that a key feature of TLS is session resumption in order to reduce
server-sided performance penalties. The client names an earlier session that it
intends to continue; if the server agrees, the previous master secret is used with
the new nonces to generate new key material for the record layer. Though not ex-
plicitly treated in our paper, it is easy to see that the security of the abbreviated
handshake follows from our analysis of the full handshake.

3.2 Roadmap for the Modular Analysis of TLS

The structure of the TLS framework advocates its modular analysis. Intuitively,
the handshake protocol captures the cryptographic task of key exchange and the
composition with the record layer protocol emulates secure transfer of application
messages. However, the straightforward idea to model the complete handshake
protocol as ideal key exchange functionality in order to negotiate the session
keys and compose it with the record layer protocol in order to realize a secure
communication sessions functionality fails in general. The handshake protocol
does not securely realize the ideal key exchange functionality since it uses the
derived session keys to encrypt and authenticate finished messages. Thus, the
environment can test the keys using the finished messages and tell the two worlds
apart.

In our analysis we avoid this obstacle by devising a functionality F (1,2)
KE that

emulates the handshake’s subroutines to negotiate the master secret km (instead
of a straight-line computation of the session keys). F (1,2)

KE captures the fact that
two players receive a random key unless either player is corrupted. Next, we
demonstrate that the subroutines DHE, DHS, and EKT securely realize F (1,2)

KE

(Section 4). Our analysis is focused on responder-only and mutual authenticated
communication which are the authentication modes supported by TLS (apart
from anonymous Diffie-Hellman suites). Since TLS operates in a setting where a
Certificate Authority (CA) is required, we formalize the global setup assumption
by formulating the real-world protocols in F -hybrid models, utilizing the certifi-
cation functionality FCERT, certified public key encryption functionality FCPKE,
and certificate authority functionality FCA, as presented in [26,27].

Universally Composable Security Analysis of TLS 319

The composition with these functionalities to a subroutine protocol is pre-
served by the universal composition with joint state (JUC) theorem, proposed
in [28]. This operation is similar to universal composition with the exception that
multiple instances of a protocol can have a joint state. It is useful in the case of
key exchange when multiple subroutine protocol sessions have access to the same
instance of functionalities FCERT, FCPKE, and FCA that use the same key for
authenticating multiple messages (i.e. the signature, encryption, and deposited
key is the joint state, respectively). Finally, we make use of the composition
theorem and specify the TLS protocol in the F (1,2)

KE -hybrid model. We show that
the reformulated TLS protocol securely realizes the ideal functionality for the
secure communication sessions (Section 5).

4 Analysis of TLS Subroutines

We proceed with the specification of an ideal-world functionality which we hence-
forth call universal key exchange F (1,2)

KE that captures the requirements of the
subroutines DHE, DHS, and EKT. The key exchange functionality F (1,2)

KE is illus-
trated in Fig. 2. It mimics the cryptographic task that the players I and R agree
upon a shared secret μ which is indistinguishable from an independently chosen
value of the same length as long as a party is uncorrupted. There is a large body
of literature that covers ideal key exchange functionalities (e.g. [2,11,27]). F (1,2)

KE

is similar to these functionalities except for:

Functionality F(1,2)
KE

F(1,2)
KE proceeds as follows when parameterized with security parameter k.

– Upon receiving an input (“establish-key”, SID, IDI) from some party, where
IDI ∈ (⊥, I), record IDI as initiator, and send a message (“establish-
session”, SID, IDI) to the adversary. Upon receiving input (“establish-key”,
SID, R) from some other party, record R as responder, and send the message
(“establish-key”, SID, R) to the adversary.

– Upon receiving an answer (“impersonate”, SID, μ̃) from the adversary, do:
If IDI=⊥, record the adversary as initiator and send message (“Key”, SID,
⊥, μ̃) to the responder. Else, ignore the message.

– Upon receiving an answer (“Key”, SID, P , μ̃) from the adversary, where
P is either the initiator or responder, do: If neither initiator nor responder
is corrupted, and there is no recorded key, fix μ uniformly from {0, 1}k.
If either initiator or responder is corrupted, and there is no recorded key,
record μ ← μ̃ as the adversary. Send message (“Key”, SID, P̄ , μ) to P .

Fig. 2. The Universal Key Exchange Functionality. F2
KE is identical to F1

KE except
that it excludes the impersonation query.

320 S. Gajek et al.

First, the players authenticate in a post-specified fashion, i.e. the environment
invokes players with the session identifier SID and optionally their own identity.
A player learns its peer identity while executing the TLS protocol (captured by
the fact that peer identities are given by the functionality and not in the setup).
This is an essential difference of TLS to related protocols (e.g. SSH) where the
players have already negotiated their public keys before the protocol start.

Second, the functionality defines a hybrid notion of authenticated key ex-
change. When the initiator is parameterized with an identity, i.e. IDI=I, the
functionality assures mutual authentication between the initiator and server.
Then, the functionality randomly fixes the (master) key unless a party is corrupt.
On the other hand, when the initiator is invoked with an anonymous identity,
i.e. IDI=⊥, the functionality guarantees a matching conversation between the
responder and some party whose identity is unknown. Consequently, the adver-
sary can impersonate the initiator and fix the master key.2 The corresponding
case in the real world is that the environment instructs the adversary to replay
the key exchange protocol with the exception that it contributes to the pre-
master key. The initiator is unable to terminate the session while the responder
accepts the session. Technically, the functionality deploys the session identifier
SID to determine the anonymous player. Such technicality is only feasible for a
two party functionality. Recall that the SIDs of all Turing machines in a protocol
instance must be identical in the UC framework. Any player participating in the
same session who is not a responder must be a potential initiator.

Third, the functionality is defined for non-adaptively corrupting adversaries
and therefore excludes (perfect) forward secrecy. In fact, this exclusion is pre-
cisely what makes it possible to define a single universal key exchange function-
ality which covers both, key transport and Diffie-Hellman key agreement.

Theorem 1. Protocol EKT in the FCPKE, DHE in the FCERT, and DHS in the
FCA-hybrid model securely realize F1

KE. Protocol EKT in the (FCPKE,FCERT),
DHE in the (FCERT,FCERT), and DHS in the (FCA,FCERT)-hybrid model se-
curely realize F2

KE.

The proof appears in the full version.

5 TLS UC-Realizes Secure Communication Sessions

The natural abstraction of TLS is to allow secure communication between players
in a single protocol instance. While the handshake protocol aims at securely
sharing uniformly distributed session keys, the record layer protocol provides
authenticated encryption of session messages.

2 Note that in case of Diffie-Hellman the key exchange functionality does not consider
key control issues (see [5]). However, this has no impact on the security of secure
communication sessions because the impersonator learns the master key and thus
derives the session keys for the protection of the messages.

Universally Composable Security Analysis of TLS 321

5.1 Universal Secure Communication Sessions

Secure communication sessions have been discussed in [2,11] for the general case
in which all players are authenticated. We refine the functionality and relax
the requirements to the universal model of authentication in the post-specified
setting, where a player learns the identity of its peer during the execution of
the protocol and must cope with impersonation attacks against the initiator,
provided the environment keeps the initiator’s identity secret. In which case,
we have to expect a real-world adversary that plays the role of the initiator by
intercepting the first two protocol rounds, choosing own premaster secret, and
completing the protocol in the normal way. The initiator will be unable to ter-
minate the session. Nevertheless, the responder accepts the session and answers
to the adversary, mimicking arbitrary party. We capture the requirements by
formulating a universal secure communication sessions functionality F (1,2)

SCS in
Fig. 3. Let us highlight some characteristics of F (1,2)

SCS in the following:

Functionality F(1,2)
SCS

F(1,2)
SCS proceeds as follows, when parameterized by a leakage function l :
{0, 1}∗ → {0, 1}∗.

– Upon receiving an input (“establish-session”, SID, IDI) from some party,
where IDI ∈ (⊥, I), record IDI as initiator, and send the message to the
adversary. Upon receiving input (“establish-session”, SID, R) from some
party, record R as responder, and forward the message to the adversary.

– Upon receiving a value (“impersonate”, SID) from the adversary, do:If
(IDI=⊥), check that no ready entry exists, and record the adversary as
initiator. Else ignore the message.

– Upon receiving a value (“send”, SID, m, P̄) from party P , which is either
initiator or responder, check that a record (SID, P , P̄) exists, record ready

(if there is no such entry) and send (“sent”, SID, l(m)) to the adversary
and a private delayed value (“receive”, SID, m, P) to P̄ . Else ignore the
message. If the sender is corrupted, then disclose m to the adversary. Next,
if the adversary provides m′ and no output has been written to the receiver,
then send (“send”, SID, m′, P ′) to the receiver unless P ′ is an identity of
an uncorrupted party.

Fig. 3. The Universal Secure Communication Sessions Functionality

First, the functionality handles a uni- and bi-directional model of authentica-
tion (as in the universal key exchange functionality). The latter is accomplished
by invoking the players with their own identity. The first is realized by invoking
the initiator with an empty identity value ⊥ allowing the adversary to mount an
impersonation attack. The functionality proceeds in the usual way except that
a secure session is established between the adversary and the responder.

322 S. Gajek et al.

Second, the functionality guarantees that the adversary gains no information
other than some side channel information about the transmitted plaintext m,
expressed via a leakage function l(m), when the adversary has neither imperson-
ated nor corrupted a player. In particular, the information leakage includes the
length and sequence number of m and some information concerning the transmit-
ted messages’ source and destination; thus, modeling network information about
the TLS-protected channel from lower-layer protocols and higher-layer protocols
prior to their processing by the record layer. (We remark that the environment
may provide additional leakage information such as the domain name and the
name of the client application. This leakage information may be important upon
composition with a dedicated higher-layer protocol).

Third, the session identifier SID assures that the functionality may address the
initiator even though its identity is undisclosed (because it knows the responder’s
identity and the underlying system model permits a party, i.e. the initiator, to
interact with the functionality with an identical session identifier). This is so
because TLS runs above transport-layer protocols which provide the players
with a globally unique address (e.g. IP address). Furthermore, these protocols
ensure that the channel is locally fresh by exchanging a pair of nonces.

Last, the functionality manages an internal ready state. This technicality en-
sures that in the responder-only model of authentication the adversary cannot
impersonate the initiator after the responder agreed upon the session keys and
switched into the pending state waiting for the transmission.

5.2 Protocol ρ Realizes F(1,2)
SCS

In Fig. 4 we apply Theorem 1 and reformulate protocol ρ in the F (1,2)
KE -hybrid

model. The general Universal Composability theorem guarantees that no prob-
abilistic polynomial time-bounded environment distinguishes between the case
that it observes an instance of TLS executing the subroutines DHE, DHS and
EKT and the case that it interacts with a TLS instance where the subroutines
are replaced by the ideal key exchange functionality. We are now ready to state
our main theorem.

Theorem 2. Protocol ρ in the F (1,2)
KE -hybrid model securely realizes F (1,2)

SCS .

Proof. Let A be a real-world adversary that operates against ρ. We construct an
ideal-world adversary S such that no environment Z can distinguish between the
case that it interacts with A and parties running ρ in the F (1,2)

KE -hybrid model
or with S in the ideal world for F (1,2)

SCS . S runs a simulated copy of A and mimics
an interaction with players executing ρ. It tries to make the internal protocol
simulation consistent with the real protocol execution and the limitation that it
has no information about the transmitted message m other than its length l(m).
The simulator allows the adversaryA to attack the simulated protocol execution
in arbitrary way throughout the simulation. S emulates the protocol execution
in such a way that A thinks that it intercepts a real-world execution of ρ, and

Universally Composable Security Analysis of TLS 323

Protocol ρ

1. Upon activation with query (“establish-session”, SID, IDI) by Z, where
IDI ∈ (⊥, I), the initiator sends the init message (rI) where rI

r← {0, 1}p1(k)

is a nonce. Upon activation with query (“establish-key”, SID, R) by Z, the
responder waits for the receipt of the init message. It responds with own
nonce rR

r← {0, 1}p2(k) and initializes a copy of F(1,2)
KE with session identifier

SIDKE=(rI |rR) by sending query (“establish-key”, SIDKE, R) to F(1,2)
KE .

2. Upon receiving the response message, the initiator calls F(1,2)
KE with session

identifier SIDKE=(rI |rR) on query (“establish-key”, SIDKE, IDI) and waits
for the delivery of output (“Key”, SIDKE, R, μ). It then computes the session
keys (kI

e , kI
a, kR

e , kR
a)← PRFμ(l2) and the finished value FI ← PRFμ(l3). Addi-

tionally, the initiator sends the final initiator message (EkI
e
(FI |HMACkI

a
(FI))).

3. When the responder receives the final initiator message (α), it first waits
for the delivery of (“Key”, SIDKE, IDI , μ) from F(1,2)

KE . Then, the responder
computes in the same way the session keys (kI

e , kI
a, kR

e , kR
a) ← PRFμ(l2) for

the players. It decrypts the final initiator message (FI |tI) ← DkI
e
(α) and

verifies that FI ← PRFμ(l3) and tI ← HMACkI
a
(FI). If the verification fails, it

aborts. Otherwise, it computes the finished value FR ← PRFμ(l4) and sends
the final responder message (EkR

e
(FR|HMACkR

a
(FR))).

4. Upon delivery of the final responder message (β), the initiator decrypts the
message (FR|tR) ← DkR

e
(β). Then, it verifies that FR ← PRFμ(l4) and tR ←

HMACkR
a

(FR). If the verification fails, it aborts.
5. Once the session keys are agreed upon, the sender P ∈ (I, R) waits for

the transmission notification (“send”, SID, m, P̄) from Z. It then sends
EkP

e
(m|tm) whereby message m is authenticated through the tag tm ←

HMACkP
a

(m). Upon receiving the message γ, the receiver P̄ decrypts the mes-
sage (m|tm)← DkP

e
(γ) and verifies that tm ← HMACkP

a
(m). If the verification

fails, it aborts. Otherwise, the receiver accepts the message and makes the
local output (“receive”, SID, m, P) to Z.

Fig. 4. The full TLS Framework Structure, in the F(1,2)
KE -hybrid Model

such that its interaction with Z is distributed computationally indistinguishable
from that observed by the environment in the real-world execution.

In detail, the simulator proceeds in the following way:

1. Simulating invocation of I. Upon receiving (“establish-session”, SID,
IDI) from F (1,2)

SCS , S feeds A with the init message (rI) where rI
r← {0, 1}p1(k).

2. Simulating invocation of R. Upon receiving (“establish-session”, SID, R)
from F (1,2)

SCS , S waits for receipt of an init message (r′I) from A. Then, it
chooses a nonce rR

r← {0, 1}p2(k) and feeds A with the response message
(rR, R). Finally, it calls F (1,2)

KE on query (“establish-key”, SID′KE, R), where
SID′KE=(SID ◦ r′I|rR).

3. Simulating receipt of a response message by I. Upon A delivers the
message (r′R, P ′) to I, S proceeds as follows:

324 S. Gajek et al.

(a) S verifies that I has previously sent the init message (rI).
(b) S checks that P ′=R. Otherwise, it aborts the simulation.
(c) S mimics on behalf of I the master key generation by invoking a copy

of F (1,2)
KE . The master key is obtained by handing F (1,2)

KE the message
(“establish-key”, SIDKE, IDI), where SIDKE=(SID ◦ rI|r′R) and waiting
for the delivery of the response message (“Key”, SIDKE, R, μ). Other-
wise, S terminates with an internal error message (because there was
no matching activation of the same instance of F (1,2)

KE in form of a query
(“establish-key”, SIDKE, R) by the simulator on behalf of the responder).

(d) S defines the master key μ, the session keys (kI
e , kI

a, kR
e , kR

a), and the
finished value FI to be random values Δkm , (ΔkI

e
, ΔkI

a
, ΔkR

e
, ΔkR

a
), and

ΔFI chosen from the appropriate spaces, respectively.
(e) S feeds A with the final initiator message (EΔ

kI
e
(ΔFI |tI)), where tI ←

HMACΔ
kI

a
(ΔFI).

4. Simulating receipt of a final initiator message by R. When A delivers
the message (α) to R, S proceeds as follows:
(a) S verifies that it has previously received an init message (r′I) and sent a

response message (rR, R).
(b) S waits for the master key by mimicking the key establishment process

of F (1,2)
KE . Now we distinguish between the following two distinct cases.

Case 1 (no impersonation): If S receives an answer (“Key”, SIDKE,
IDI , μ) from F (1,2)

KE , then no impersonation attack has occurred. In this
case S uses for km, (kI

e , kI
a, kR

e , kR
a), and FI exactly the same values

Δkm , (ΔkI
e
, ΔkI

a
, ΔkR

e
, ΔkR

a
), and ΔFI that it has chosen on behalf of

the initiator before. Then, it waits for the delivery of the final initiator
message and applies the session keys to decrypt (F ′

I |t′I) ← DΔ
kI

e
(α). S

compares whether F ′
I = ΔFI and t′I = tI . If the verification fails, it

aborts the simulation. Otherwise, it chooses FR to be a random value
ΔFR from the same space and feeds A with the final responder message
(EΔ

kR
e

(ΔFR |tR)) where tR ← HMACΔ
kR

a
(ΔFR). Then, S prepares for the

secure message exchange on behalf of R.
Case 2 (impersonation): If S receives an answer (“Key”, SID′KE, P ′,
μ̃), then the original master key has been modified by the adversary
implying the impersonation attack framing the initiator. In this case
S computes (kI

e , kI
a, kR

e , kR
a), and FI as specified in the protocol, i.e.

(kI
e , kI

a, kR
e , kR

a) ← PRFμ̃(l2), and FI ← PRFμ̃(l3). Then, it waits for the
delivery of the final initiator message and decrypts (F ′

I |t′I) ← DkI
e
(α).

S compares whether F ′
I = FI and t′I = HMACkI

a
(FI). If the verification

fails, it aborts the simulation. Otherwise, S computes FR ← PRFμ̃(l4),
and feeds A with the final responder message (EkR

e
(FR|HMACkR

a
(FR))). Fi-

nally, S sends (“impersonate”, SID) to F (1,2)
SCS . This is exactly the point

in the simulation where the adversary has impersonated the unauthen-
ticated party. Then, S continues the simulation with the exception that
the interaction proceeds with A and I aborts the protocol.

Universally Composable Security Analysis of TLS 325

Note that in all subsequent simulation steps, S uses session keys (kP
e , kP

a)
for P ∈ (I, R) and finished values FI and FR obtained from one of the above
two cases.

5. Simulating receipt of a final responder message by I. When A delivers
the message (β) to an uncorrupted I, S proceeds as follows:
(a) S verifies that it has previously sent an init message (rI),

received a response message (r′R, P ′), and sent a final initiator message
(EΔ

kI
e
(ΔFI |tI)).

(b) S uses its own session keys (ΔkR
e
, ΔkR

a
) to decrypt β obtaining F ′

R|t′R.
Since no responder impersonation attacks may occur it aborts the sim-
ulation if F ′

R �= ΔFR or t′R �= tR whereby ΔFR and tR are the values
used by S on behalf of R in the previous simulation step 4b (case 1).
If the simulation does not abort then S prepares for the secure message
exchange on behalf of I.

6. Simulating Message Transmission. Upon receiving (“sent”, SID, l(m))
from F (1,2)

SCS , S extracts from l(m) the sender and receiver identities. It then
chooses a random message Δm

r← {0, 1}l(m) and feeds A with message
EkP

e
(Δm|tΔm) where tΔm ← HMACkP

a
(Δm).

7. Simulating Message Reception. Upon receiving the message (γ), the
receiver decrypts the message (Δ′

m′ ,t′Δm′) ← DkP
e
(γ) and then verifies that

t′Δm′ ← HMACkP
a
(Δm) using its own keys. If the verification fails, it aborts.

Otherwise, S signals F (1,2)
SCS to send the message.

8. Simulating Static Corruption. If one of the parties gets corrupted, then
S proceeds by emulating a ρ protocol session, just as a honest party would
play it. In particular, S uses the message m transmitted by F (1,2)

SCS in the
emulation of the last protocol round.

The proof of indistinguishability to demonstrate the validity of S appears in the
full version.

6 Conclusion

We have analyzed the TLS protocol family in the framework of Universal Com-
position. We have shown that the complete TLS protocol framework securely
realizes secure communication sessions. Thus, future analysis of composite pro-
tocols can be considerably simplified by calling the secure communication func-
tionality in the hybrid-model reformulation. The composition theorem preserves
that security holds under general composition with arbitrary players. Our analy-
sis is performed under the consideration of static corruptions, since this setting is
suitable for the combined treatment of key transport and Diffie-Hellman protocol
suites specified within the TLS standard. A future work may include consider-
ation of adaptive corruptions, and thus modeling of (perfect) forward secrecy,
which seems to be achievable by the TLS protocol suites based on Diffie-Hellman
but not key transport.

326 S. Gajek et al.

Acknowledgment

We would like to thank Dennis Hofheinz, Aggelos Kiayias, Ralf Küsters, and
Ivan Visconti for fruitful discussions and their valuable feedback. The authors
were supported by the European Commission (IST-2002-507932 ECRYPT).

References

1. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol, Version
1.1. RFC 4346, IETF (2006); Proposed Standard

2. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In: FOCS, pp. 136–145. IEEE Computer Society Press, Los Alamitos
(2001)

3. Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

4. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally Com-
posable Password-Based Key Exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005)

5. Hofheinz, D., Müller-Quade, J., Steinwandt, R.: Initiator-Resilient Universally
Composable Key Exchange. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003.
LNCS, vol. 2808, pp. 61–84. Springer, Heidelberg (2003)

6. Katz, J.: Universally Composable Multi-Party Computation Using Tamper-Proof
Hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007)

7. Canetti, R., Krawczyk, H., Nielsen, J.: Relaxing Chosen-Ciphertext Security. Cryp-
tology ePrint Archive, Report 2003/174 (2003)

8. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally Composable Two-
Party and Multi-Party Secure Computation. In: STOC 2002, pp. 494–503. ACM,
New York (2002)

9. Kidron, D., Lindell, Y.: Impossibility Results for Universal Composability in
Public-Key Models and with Fixed Inputs. Cryptology ePrint Archive, Report
2007/478 (2007)

10. Canetti, R., Krawczyk, H.: Security Analysis of IKE’s Signature-Based Key-
Exchange Protocol. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 143–
161. Springer, Heidelberg (2002)

11. Canetti, R., Krawczyk, H.: Universally Composable Notions of Key Exchange and
Secure Channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 337–351. Springer, Heidelberg (2002)

12. Schneier, B., Wagner, D.: Analysis of the SSL 3.0 Protocol. In: Proceedings of the
2nd USENIX Workshop on Electronic Commerce (1996)

13. Bleichenbacher, D.: Chosen Ciphertext Attacks against Protocols based on the RSA
Encryption Standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 1–12. Springer, Heidelberg (1998)

14. Jonsson, J., Kaliski, B.: On the Security of RSA Encryption in TLS. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 127–142. Springer, Heidelberg (2002)

15. Krawczyk, H.: The Order of Encryption and Authentication for Protecting Com-
munications (or: How Secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 310–331. Springer, Heidelberg (2001)

Universally Composable Security Analysis of TLS 327

16. Paulson, L.C.: Inductive Analysis of the Internet Protocol TLS. ACM Transactions
on Computer and System Security 2(3), 332–351 (1999)

17. Mitchell, J.C., Shmatikov, V., Stern, U.: Finite-State Analysis of SSL 3.0. In: Pro-
ceedings of the 7th Conference on USENIX Security Symposium, p. 16 (1998)

18. Ogata, K., Futatsugi, K.: Equational Approach to Formal Analysis of TLS. In:
ICDCS 2005, pp. 795–804. IEEE Computer Society Press, Los Alamitos (2005)

19. He, C., Sundararajan, M., Datta, A., Derek, A., Mitchell, J.C.: A Modular Cor-
rectness Proof of IEEE 802.11i and TLS. In: ACM Conference on Computer and
Communications Security CCS 2005, pp. 2–15. ACM, New York (2005)

20. Dolev, D., Yao, A.C.C.: On the Security of Public Key Protocols. IEEE Transac-
tions on Information Theory 29(2), 198–207 (1983)

21. Morrissey, P., Smart, N.P., Warinschi, B.: A Modular Security Analysis of the TLS
Handshake Protocol. Cryptology ePrint Archive, Report 2008/236 (2008)

22. Jonsson, J.: Security Proofs for the RSA-PSS Signature Scheme and Its Variants.
Cryptology ePrint Archive, Report 2001/053 (2001)

23. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15.
Springer, Heidelberg (1996)

24. Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among No-
tions and Analysis of the Generic Composition Paradigm. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

25. Fouque, P.A., Pointcheval, D., Zimmer, S.: HMAC is a Randomness Extractor and
Applications to TLS. In: AsiaCCS 2008, pp. 21–32. ACM Press, New York (2008)

26. Canetti, R.: Universally Composable Signature, Certification, and Authen-
tication. In: CSFW 2004, pp. 219–233. IEEE CS, Los Alamitos (2004),
http://eprint.iacr.org/2003/239

27. Canetti, R., Herzog, J.: Universally Composable Symbolic Analysis of Mutual Au-
thentication and Key-Exchange Protocols. In: Halevi, S., Rabin, T. (eds.) TCC
2006. LNCS, vol. 3876, pp. 380–403. Springer, Heidelberg (2006)

28. Canetti, R., Rabin, T.: Universal Composition with Joint State. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)

29. Hansen, S., Skriver, J., Nielson, H.: Using Static Analysis to Validate the SAML
Single Sign-On Protocol. In: Proceedings of the 2005 Workshop on Issues in the
Theory of Security (2005)

30. Groß, T., Pfitzmann, B., Sadeghi, A.R.: Browser Model for Security Analysis of
Browser-Based Protocols. In: de Capitani di Vimercati, S., Syverson, P.F., Goll-
mann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 489–508. Springer, Heidel-
berg (2005)

31. Groß, T., Pfitzmann, B., Sadeghi, A.R.: Proving a WS-Federation Passive Re-
questor Profile with a Browser Model. In: Workshop on Secure Web Services. ACM
Press, New York (2005)

http://eprint.iacr.org/2003/239

Round Optimal Universally Composable
Oblivious Transfer Protocols

Huafei Zhu

C&S Department, I2R, A-STAR, Singapore
huafei@i2r.a-star.edu.sg

Abstract. In this paper, a round optimal oblivious transfer protocol is
proposed and analyzed. Our protocol is built upon the top of an obliv-
ious double-trapdoor encryption scheme (the double-trapdoor informa-
tion consisting of a master key and a local key). The idea behind our
construction is that the master key is used to extract the exact input
messages of a corrupted sender (as a result, a simulator designated for
the corrupted sender is constructed) while the local key is used to extract
the exact input message of a corrupted receiver (as a result, a simula-
tor designated for the corrupted receiver is defined). We show that our
protocol is universally composable in the common reference string model
assuming that the decisional Diffie-Hellman problem over a squared com-
posite modulus of the form N =pq is hard.

Keywords: Double trap-door cryptosystems, oblivious transfer, simula-
tor, universally composable.

1 Introduction

The oblivious transfer introduced by Rabin [15], and extended by Even, Gol-
dreich and Lempel [8] and Brassard, Crépeau and Robert [2] is one of the most
basic and widely used protocol primitives in cryptography. An oblivious trans-
fer protocol allows one party called receiver to get exactly one of the two (or
more) values from another party called the sender. The receiver is oblivious to
the other values while the sender is oblivious to which value was received. The
concept of oblivious transfer protocol stands at the center of the fundamental
results on secure two-party and multi-party computation showing that any effi-
cient functionality can be securely computed ([17] and [10]). Due to its general
importance, the task of constructing efficient oblivious transfer protocols has
attracted much interest.

Naor and Pinkas [12] first constructed efficient oblivious transfer protocols
based on the decisional Diffie-Hellman assumption. Tauman [16] generalized
Naor and Pinkas’ results based on a variety of concrete assumptions building
on the top of projective hash framework of Cramer and Shoup [7]. The primary
drawback of these constructions is that their security is only proven according
to a semi-simulation definition of security (i.e., a receiver security is defined by
requiring that a sender’s view of the protocol when the receiver chooses index

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 328–334, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Round Optimal Universally Composable Oblivious Transfer Protocols 329

σ0 is indistinguishable from a view of protocol when the receiver chooses index
σ1. The sender security follows the real/ideal world paradigm and guarantees
that any malicious receiver in the real world can be mapped to a receiver in
an idealized game in which the oblivious transfer protocol is implemented by a
trusted third party.)

Very recently, Camenisch, Neven and Shelat [3] proposed practical oblivious
transfer protocols that are provable secure according to a full-simulation def-
inition (the security employs the real/ideal world paradigm for both receiver
and the sender. The difficulty in obtaining secure oblivious transfer protocols
in this model is the strict security requirement of simulation based definition).
Subsequently, Green and Hohenberger [9] proposed simulation secure oblivious
string transfer protocols based on a weaker set of static assumptions on bilinear
groups.

Lindell [11] presented the first efficient implementation of fully-simulatable
oblivious bit transfer protocols under the decisional Diffie-Hellman problem, the
Nth residuosity and quadratic residuosity assumptions as well as the assump-
tion of that homomorphic encryption exists. All protocols are nice since they
are provably secure in the presence of malicious adversaries under the real/ideal
model model simulation paradigm without using general zero-knowledge proofs
under standard complexity assumptions. The idea behind Lindell’s construction
is that it makes use of the cut-and-choose technique so that each party is not
required to prove in zero-knowledge and allows a simulator to rewind the mali-
cious party so that an expected polynomial time simulator under the standard
cryptographic primitives can be defined.

Unfortunately, all these schemes mentioned above are NOT known to be se-
cure when composed in parallel and concurrent. For example, the proof technique
presented in [11] explicitly use the rewinding technique that is forbidden for proof
a protocol is universally composable (the environment Z canNOT be rewound at
all). At Crypto’08, a practical implementation of universally composable secure
oblivious transfer protocol is proposed by Peikert, Vaikuntanathan and Waters
[14]. Their protocols are based on a new abstraction called a dual-mode cryp-
tosystem. Such a system starts with a setup phase that produces a common
reference string which is made available to all parties. The cryptosystem is set
up in one of two modes: extraction mode and decryption mode. A crucial of the
dual-mode cryptosystem is that no adversary can distinguish, given the com-
mon reference string between two modes. To prove the sender’s security (secure
against a malicious sender), a simulator must run a trap-door information ex-
tractable algorithm that given a trap-door t, outputs (pk, sk0, sk1), where pk is
a public encryption key and sk0 and sk1 are corresponding secret keys for index
0 and 1 respectively. To prove the receiver’s security (secure against a malicious
receiver), a simulator must run a find-lossy algorithm (i.e., an index informa-
tion extractable algorithm) that given a trap-door t and pk, outputs an index
corresponding to the message-lossy index of pk.

330 H. Zhu

1.1 This Paper

In this paper, we propose a new construction for round optimal oblivious transfer
protocols and show that:

Theorem: Our protocol (described in Section 4) is universally composable in
the common reference string model assuming that the decisional Diffie-Hellman
problem over a squared composite modulus of the form N =pq is hard.

Using Yao-style garble circuit [17], we can use the proposed oblivious transfer
protocol to obtain round optimal universally composable two-party computation
for non-reactive functionalities. That is,

Corollary [14]: There exists a 2-round (respectively, 3-round) protocol that se-
curely realizes any non-reactive functionality F for which only one party receives
output (respectively both parties) in the Fcrs-hybrid model.

Road-map: The rest of this paper is organized as follows: in Section 2, univer-
sally composable framework is sketched. A concrete implementation of oblivious
double decryption cryptosystem is proposed in Section 3; In section 4, a round
optimal universally composable oblivious transfer protocol is presented and an-
alyzed. We conclude this work in Section 5.

2 Universally Composable Model

We work in the standard universally composable framework of Canetti [4]. The
universally composable framework defines a probabilistic polynomial time (PPT)
environment machine Z. Z oversees the execution of a protocol π in the real
world involving PPT parties and a real world adversary A. Z also oversees the
execution of a protocol in the ideal world involving dummy parties and an ideal
world adversary S (a simulator). We refer to [4] for a detailed description of the
executions, and definitions of IDEALF ,S,Z and REALπ,A,Z .

Definition 1. Let F be a functionality. A protocol π is said to universally com-
posable realize F if for any adversary A, there exists a simulator S such that
for all environments Z, the ensemble IDEALF ,S,Z is computationally indistin-
guishable with the ensemble REALπ,A,Z .

The common reference string model Fcrs produces a string with a distribution
that can be sampled by a PPT algorithm D.
Functionality FD

crs (due to [6])
FD

crs runs with parties P1, · · · , Pn and is parametrized by an algorithm D.

– when receiving a message (sid, Pi, Pj) from Pi, let crs ← D(1n) and send
(sid, crs) to Pi and send (crs, Pi, Pj) to the adversary. Next when receiving
(sid, Pi, Pj) from Pj (and only from Pj), send (sid, crs) to pj and to the
adversary, and halt.

Round Optimal Universally Composable Oblivious Transfer Protocols 331

The functionality of an oblivious transfer involves a sender S with input (x0, x1)
and a receiver R with input σ ∈ {0, 1}. R learns xσ and S learns nothing at all.
These requirements are captured by the specification of the oblivious transfer
functionality FOT from [5]
Functionality FOT (due to [5])

– Upon receiving a message (sid, sender, x0, x1) from S, where each xi ∈ {0, 1}l,
store (x0, x1);

– Upon receiving a message (sid, receiver, σ) from R, check if (sid, sender,
· · ·) message was previously sent. If yes, send (sid, xσ) to R and sid to the
adversary and halt. If not, send nothing to R.

3 Oblivious Double-Trapdoor Cryptosystem

Oblivious double trap-door cryptosystem described below constructed from [1].
The proposed oblivious double trap-door cryptosystem is initialized in a trusted
setup phase, which produces a common reference string crs known to all partic-
ipants along with some trap-door information t.

– Setup algorithm Setup: on input a security parameter n, Setup produces
composite modulus of the form N = pq that is a product of two safe primes
p and q. Setupd also outputs two random elements g0 and g1 of order λ(N)
in Z∗

N2 , where λ(·) is Carmichael function. Setup randomly chooses x0, x1 ∈
[0, N2/2] and sets hi = gxi

i mod N2 (i = 0, 1). The common reference string
crs is defined as (g0, h0, g1, h1) and N . The auxiliary trap-door information
is defined as t =(p, q, x0, x1). The auxiliary string (p, q) is called the master
key and (x0, x1) is called a local key.

– Key generation algorithm KeyGen: on input crs and σ ∈ {0, 1}, KeyGen
randomly chooses r ∈ [0, N/4], and computes the cipher-text (g, h) where g
= gr

σ mod N2 and h =hr
σ mod N2. Let pk= (g, h) and sk=r;

– Encryption algorithm Enc, on input crs, a bit b ∈ {0, 1} and a message
m ∈ ZN , Enc performs the following computations:
1) Randomly choosing s, t ∈ [0, N/4];
2) Computing u =gs

bh
t
b, v =gsht(1 + N)m;

The output of Enc is the cipher-text c (=(u, v)) of the message m.
– Decryption algorithm Dec: On input sk and c, Dec recovers the message m

from the equation v/ur mod N2 = 1 + mN

We stress that if b = σ, then the above encryption scheme in essence, is Bresson,
Catalano and Pointcheval’s cryptosystem. Thus, assuming that the decisional
Diffie-Hellman problem defined over a squared composite modulus of the form
N = pq is hard, the scheme described above is semantically secure. In case that
b �= σ, then (gb, hb, g, h) is not a Diffie-Hellman quadruple and the output of
the decryption algorithm is a random message (hence the name of oblivious
double-trapdoor encryption scheme).

332 H. Zhu

4 Oblivious Transfer Protocol

In this section, we describe a round optimal oblivious transfer protocol. We then
show that our round optimal oblivious transfer protocol is universally compos-
able.

4.1 Description of Protocol

Our protocol based on oblivious double trap-door cryptosystem

Inputs:

– The input of a sender S: (sid, ssid, m0, m1), where m0, m1 ∈ ZN ;
– The input of a receiver R: (sid, ssid, σ), where σ ∈ {0, 1};

Initial Step: S is first activated by sending (sid, ssid, S, R) to Fcrs. S gets back
crs and sid (by running the setup algorithm Setup). R then is activated, and
sends (sid, S, R) to Fcrs, and gets back crs and sid.
Step 1: R generates (pk, sk) ← the key generation algorithm KeyGen described
above. R sends pk to S and stores (sid, ssid, sk);
Step 2: S gets (sid, ssid, pk) from R, and then computes cb =Enc(pk, b, mb) for
each b ∈ {0, 1}, and sends (sid, ssid, c0, c1) to R;
Step 3: R gets (sid, ssid, c0, c1) from S and outputs (sid, ssid,Dec(sk, mσ)).

Notice that our protocol is only two rounds, it follows that our protocol is round
optimal.

4.2 The Proof of Security

We claim that

Theorem 1. The oblivious transfer protocol described above is universally com-
posable in the common reference string model assuming that the decisional Diffie-
Hellman problem over a squared composite modulus of the form N =pq is hard.

Proof. We consider the following two cases:

Case 1: Suppose the sender S is corrupted by a statical adversary A, we now
define a simulator simS below (the task of simS is to extract the input messages
of A):

– simS runs the setup algorithm Setup and obtains crs and the corresponding
trapdoor information t, where crs =(N , g0, h0, g1, h1), t =(p, q) such that
N =pq. We remark that in case that the sender S is corrupted, simS needs
not to know the trap-door information (x0, x1) such that hi = gxi

i (i =0, 1).
We also remark that in case that both the sender S and the receiver R are
corrupted, sim needs to know the trap-door information (p, q) and (x0, x1)
such that N = pq and hi = gxi

i (i =0, 1).
– when parties query the ideal functionality Fcrs, return (sid, crs) to them;

Round Optimal Universally Composable Oblivious Transfer Protocols 333

– when a dummy party R is activated on (sid, ssid, crs), simS computes (pk,
sk) as that in the real protocol described above and sends pk to A as it
comes from R;

– when simS obtains (sid, ssid, c0, c1) from A, simS decrypts (c0, c1) using
the auxiliary string (p, q) and gets A’s two input messages (m0, m1);

– simS now forwards (m0, m1) to the ideal functionality FOT.

Since the underlying double encryption scheme is semantically secure, it follows
that the ensemble IDEALF ,S,Z is computationally indistinguishable with the
ensemble REALπ,A,Z .

Case 2: Suppose the receiver R is corrupted by a statical adversary A, we now
define a simulator simR below (the task of simR is now to extract the input
index σ of A):

– simR runs the setup algorithm Setup and obtains crs and the corresponding
trapdoor information t, where crs =(N , g0, h0, g1, h1), t = (x0, x1) such that
hi = gxi

i (i =0, 1). We remark that in case that the receiver R is corrupted,
simR needs not to know the trap-door information (p, q) such that N=pq.
To enable the simulator simR extract input σ of the malicious receiver R,
we allow the simulator simR knows the trapdoor information (x0, x1) such
that hi = gxi

i (i =0, 1). Same remark as above if both the sender S and the
receiver R are corrupted, sim needs to know the trap-door information (p, q)
and (x0, x1) such that N =pq and hi = gxi

i (i =0, 1).
– when parties query the ideal functionality Fcrs, return (sid, crs) to them;
– when simR obtains pk (=g, h), simR tests the validity of the equation h =

gx0 . If the equation is valid, then simR outputs σ =0, otherwise h = gx1 �=
gx0 , in this case, simR outputs σ =1;

– simR now forwards σ to the ideal functionality FOT and receives the output
(sid, ssid, mσ).

– when the dummy S is activated for sub-session (sid, ssid), S looks up the
corresponding σ and mσ, and computes cσ ← Enc(pk, σ, mσ) and c1−σ ←
Enc(pk, 1− σ, 0l)

It is straightforward to verify that ensemble IDEALF ,S,Z is computationally
indistinguishable with the ensemble REALπ,A,Z assuming that the underlying
encryption is semantically secure.

5 Conclusion

We have proposed round optimal oblivious transfer protocols based on the no-
tions of oblivious encryption schemes. We have shown that our protocol is uni-
versally composable in the common reference string model assuming that the
decisional Diffie-Hellman problem over a squared composite modulus of the form
N =pq is hard.

334 H. Zhu

References

1. Bresson, E., Catalano, D., Pointcheval, D.: A Simple Public-Key Cryptosystem
with a Double Trapdoor Decryption Mechanism and Its Applications. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 37–54. Springer, Heidelberg
(2003)

2. Brassard, G., Crépeau, C., Robert, J.-M.: All-or-Nothing Disclosure of Secrets.
In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer,
Heidelberg (1987)

3. Camenisch, J., Neven, G., Shelat, A.: Simulatable Adaptive Oblivious Transfer.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer,
Heidelberg (2007)

4. R. Canetti: a new paradigm for cryptographic protocols. In: FOCS 2001, pp. 136–
145 (2001)

5. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: STOC 2002, pp. 494–503 (2002)

6. Canetti, R., Rabin, T.: Universal Composition with Joint State. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)

7. Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

8. Even, S., Goldreich, O., Lempel, A.: A Randomized Protocol for Signing Contracts.
Commun. ACM 28(6), 637–647 (1985)

9. Green, M., Hohenberger, S.: Blind identity-based encryption and simulatable obliv-
ious transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
265–282. Springer, Heidelberg (2007)

10. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game or A
Completeness Theorem for Protocols with Honest Majority. In: STOC 1987, pp.
218–229 (1987)

11. Lindell, Y.: Efficient Fully-Simulatable Oblivious Transfer. In: Malkin, T.G. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 52–70. Springer, Heidelberg (2008)

12. Naor, M., Pinkas, B.: Computationally Secure Oblivious Transfer. J. Cryptol-
ogy 18(1), 1–35 (2005)

13. Paillie, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

14. Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Com-
posable Oblivious Transfer. Crypto (2008)

15. Michael, O.: Rabin. How to exchange secrets by oblivious transfer. Technical Re-
port TR-81, Aiken Computation Laboratory, Harvard University (1981)

16. Kalai, Y.T.: Smooth Projective Hashing and Two-Message Oblivious Transfer. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer, Hei-
delberg (2005)

17. Yao, A.C.-C.: Protocols for Secure Computations (Extended Abstract). In: FOCS
1982, pp. 160–164 (1982)

A Tamper-Evident Voting Machine Resistant to
Covert Channels�

Wei Han1, Tao Hao1, Dong Zheng1, Kefei Chen1, and Xiaofeng Chen2

1 Shanghai Jiaotong University, Shanghai, 200240, P.R.China
2 Sun Yat-sen University, Guangzhou 510275, P.R.China

Abstract. To provide a high level of security guarantee cryptography
is introduced into the design of the voting machine. The voting machine
based on cryptography is vulnerable to attacks through covert channels.
An adversary may inject malicious codes into the voting machine and
make it leak vote information unnoticeably by exploiting the randomness
used in encryptions and zero-knowledge proofs. In this paper a voting
machine resistant to covert channels is designed. It has the following
properties: Firstly, it is tamper-evident. The randomness used by the
voting machine is generated by the election authority. The inconsistent
use of the randomness can be detected by the voter from examining
a destroyable verification code. Even if malicious codes are run in the
voting machine attacks through subliminal channels are thwarted. Next,
it is voter-verifiable. The voter has the ability to verify if the ballot cast
by the machine is consistent with her intent without doing complicated
cryptographic computation. Finally, the voting system is receipt-free.
Vote-buying and coercion are prevented.

Keywords: electronic voting, covert channel, tamper-evident, receipt-
free.

1 Introduction

Electronic voting will change the way we vote in the near future. Direct Record-
ing Electronic (DRE) voting machines have been widely used in many political
elections in recent years. The inner mechanism of the DRE is opaque to voters,
which results in the debate on the trustworthiness of the machine. One of the
most challenging issues is to design voting systems that can be trusted by human
voters even if the election computers are running malicious codes. There have
been some voting schemes in which a voter can get direct verification that her
vote is correctly recorded by the DRE, such as Neff’s MarkPledge scheme [1] and
Moran-Naor’s scheme [2]. The two schemes are based on cryptography and they
are vulnerable to attacks through covert channels. A corrupt programmer may

� This work is supported by 973 Program (2007CB311201), National Natural Science
Foundation of China (No. 60503006), and NSFC-KOSEF Joint Research Project
(No. 60611140543).

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 335–344, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

336 W. Han et al.

write malicious codes to leak voters’ choices by encoding the randomness used
in encryptions or zero-knowledge proofs in a secret and determinant way. When
she has access to the bulletin board she can deduce the content of an encrypted
ballot by reading publicly available information. We take Moran-Noar’s voting
scheme as an example. A voter operates the DRE in the voting booth as follows:

1. The voter chooses one candidate whom she supports.
2. The voter inputs challenges for other candidates.
3. The voter waits till the DRE prints a commitment to her choice on the

receipt.
4. The voter inputs the challenge for the candidate she chooses.
5. The voter waits till the DRE prints the rest of the receipt. She compares

the challenges in her mind with the challenges printed on the receipt. If they
are consistent she takes the receipt and leaves the voting booth, or else she
complains to the voting authority.

In such a scheme attacks can be mounted through covert channels. We divide
the adversaries into two types: weak adversary and strong adversary. The weak
adversary does not interact with the voter. The weak adversary only injects
malicious codes into the DRE. When the DRE uses randomness it encodes the
voter’s choice into the random string in a private way which is known to the
adversary. A strong adversary may be able to both inject malicious programs
into the DRE and coerce voters. A strong adversary can mount attacks in the
following cases:

Case 1. The adversary can require a coerced voter to use a special challenge
which is recognized by the DRE. Once it knows a voter is coerced, the DRE can
change the vote as it wishes. The coerced voter will not complain even if she
detects the inconsistence.

Case 2. The adversary can control the order of voters entering the voting
booth. The voting order is stored into the DRE. So the DRE can distinguish the
coerced voters and change their ballots.

Case 3. The adversary can make use of timing channels. The time interval
of striking keys on the keyboard of the DRE can be used to identify a coerced
voter.

In this paper, we make the assumption that the arrival of voters is random
so we can ignore case 2. We leave case 3 as an open problem. We only consider
how to defend against the weak adversary and the strong adversary of case 1.

The attacks through covert channels are cumbersome. Public code audit may
mitigate the effect to some extent, however, it is difficult to ascertain that the
audited code is the actual code that gets loaded into the DRE. In order to
escape detection a corrupt software developer may instruct the DRE to switch
its behavior to a correct mode in the course of code test.

To prevent covert channels we can require the randomness used by the DRE
is generated by the voting authority. The voting authority may be composed

A Tamper-Evident Voting Machine Resistant to Covert Channels 337

of several election trustees who generate the randomness via multi-party compu-
tation. In such a way trust is distributed. The construction of witness of correct
randomness use is difficult since it must be done without exposing the ran-
domness used, and it must not introduce new covert channels. Choi, Golle and
Jakobsson presented the design of tamper-evident mix networks with auditable
privacy [3]. Inspired by their ideas, a tamper-evident DRE voting machine is de-
signed in this paper. The voter acts as a verifier who checks that the randomness
used by the DRE is correctly generated by the voting authority.

The rest of the paper is organized as follows: the voting system model is
outlined in section 2. Some building blocks are presented in section 3. The voting
scheme is detailed in section 4. Its security is analyzed in section 5 and the
conclusion is drawn in section 6.

2 System Model

In this paper we consider a 1-out-of-L voting scheme in which a voter chooses a
candidate out of L candidates. Voters cast their ballots in a private voting booth.
The following entities are involved: the voter, the DRE, the voting authority, the
adversary and the assistant verifier.

The voter enters the voting booth and casts a ballot on the DRE. She audits
that all the randomness used by the DRE is generated by the voting authority
and that the DRE casts a ballot as intended.

The DRE generates encrypted ballots and posts them to a public bulletin
board. The DRE prints a cryptographic receipt for the voter.

The voting authority maintains a list of all eligible voters. The authority is
responsible to generate the randomness used by the DRE in encryptions. The
authority sends each voter a verification code out of band, which is used by the
voter to check if the given randomness is used by the DRE.

The assistant verifier is able to execute cryptographic computation. It can be
any third party the voter trusts. When the voter leaves the booth, she gives her
receipt to the verifier. The assistant verifier checks if the receipt is generated in
accordance with some pre-defined rules.

Next we consider communication channels in the voting scheme: The bulletin
board model is widely employed in electronic voting schemes. It is a public
broadcast channel. Only eligible users can append messages on it. Messages
posted cannot be tampered with. In our voting scheme the bulletin board is
used for the authority and the DRE to publish information related to voting.
The voting booth is modeled as an untappable channel between the voter and
the DRE. The adversary can communicates with the DRE before it is deployed
at the polling station. From this moment on, the adversary has no access to the
DRE, and except the bulletin board the DRE has no communication media to
transmit information to the adversary.

338 W. Han et al.

3 Preliminaries

Security requirements. A voting protocol should satisfy the security require-
ments below:

– Eligibility: Only eligible voters can participate in the election, and each eli-
gible voter can cast a single vote.

– Privacy: The content of an individual ballot is kept secret. Only the final
tally result is published.

– Verifiability: The validity of the individual ballot and the tally process can
be verified. When any passive third party can also verify the ballot cast and
the tally, this property is called universal verifiability.

– Robustness: The voting protocol can tolerate corrupt voters and dishonest
authorities to some extent.

– Fairness: The partial results of the tally should not be exposed prior to the
end of the voting phase.

– Receipt-freeness: The voter cannot provide a receipt to convince others how
she casts a ballot. If a voter is given a cryptographic receipt for verification
and the receipt can not be used to convince others that the voter chooses a
particular candidate, the voting protocol still satisfies the receipt-freeness.

Encoding votes. We denote by M a strict upper bound on the number of
voters. We represent L candidates with numbers 0, · · · , L− 1 and encode a vote
on candidate i as M i . Tallying such encoded votes gives us an M-addic repre-

sentation of the result
L−1∑
i=0

viM
i,where vi is the number of votes on candidate i.

Homomorphic encryption. In this paper we make use of a semantically
secure homomorphic threshold cryptosystem. A probabilistic public-key encryp-
tion function E : P × R → C is homomorphic if for all x1, x2 ∈ P, r1, r2 ∈ R,
it holds that E(x1; r1) ⊗ E(x2; r2) = E(x1 + x2; r1 ⊕ r2) , where P is a group
which is the plaintext space, R is a group which is the randomness space, and
C is a group which is the ciphertext space. The group operations in P , in R and
in C are denoted by ”+”, ”⊕” and ”⊗” respectively. Examples of homomorphic
cryptosystems are the additive version [4] of ElGamal [5] and Paillier [6]. They
both are semantically secure and have threshold variants ([7] [8] [9]).

A cut-and-choose zero-knowledge proof protocol. Suppose E is a homo-
morphic encryption function. A prover P presents a verifier V with a ciphertext
c = E(m; r) and claims that it encrypts the plaintext m . By the homomorphic
property P can convince V without disclosing r by the protocol below:

Common input: c
Private input for P : r such that c = E(m; r)
1. P chooses r0, r1 ∈ R at random such that r = r0 ⊕ r1 . P computes

c0 = E(m/2; r0), c1 = c) c0. ”)” is the inverse operation of ”⊗” . P sends c0, c1

to V .

A Tamper-Evident Voting Machine Resistant to Covert Channels 339

2. V chooses b ∈ {0, 1} randomly and sends b to P .
3. P sends r0 to V if b = 0 , sends r1 to V if b = 1. V checks that c = c0 ⊗ c1

and cb = E(m/2; rb).
The protocol is a typical construction with soundness 1/2. It can be repeated

k times to make the error probability achieve 1/2k.

4 The Proposed Voting Scheme

In this section, we present our voting scheme, which consists of the following
steps:

Step 1. Voting system initialization
The voting authority posts the list of eligible voters on the bulletin board. It

generates the key pairs of a homomorphic encryption cryptosystem. The public
key and a cryptographic hash function H are published on the bulletin board
and loaded into the firmware of the DRE. The secret key may be distributed
in a threshold shared manner. The voting authority deploys DREs into polling
stations.

The voting authority generates ballots for each voter as follows:

1. The authority firstly picks r1, r2, ..., rL ∈ R randomly and then generates a
ballot set BS = E(A1; r1), E(A2; r2), ..., E(AL; rL) including encrypted valid
votes. We denote by Ai the coding of candidate i(i = 1, 2, ..., L) for notation
convenience. E(Ai; ri) is a valid encrypted vote for candidate i.

2. The authority generates a unique id for the ballot set BS.
3. For each encrypted ballot E(Ai; ri) , the authority picks k pairs of random

numbers (r(1)
i,0 , r

(1)
i,1), (r(2)

i,0 , r
(2)
i,1),..., (r(k)

i,0 , r
(k)
i,1) such that r

(s)
i,0 +r

(s)
i,1 = ri, where

k is a security parameter and 1 ≤ s ≤ k. The authority then computes the
row vector

[(E(Ai/2; r
(1)
i,0), E(Ai/2; r

(1)
i,1)), (E(Ai/2; r

(2)
i,0), E(Ai/2; r

(2)
i,1)), ..., (E(Ai/2; r

(k)
i,0), E(Ai/2; r

(k)
i,1))].

Note that each element in the row vector is a pair of encryptions on Ai/2
and the equation E(Ai/2; r(s)

i,0) ⊗ E(Ai/2; r(s)
i,1) = E(Ai; ri) holds. All of the

row vectors forms a ballot set matrix

⎡
⎢⎢⎢⎣

(E(A1/2; r
(1)
1,0), E(A1/2; r

(1)
1,1)) (E(A1/2; r

(2)
1,0), E(A1/2; r

(2)
1,1)) ... (E(A1/2; r

(k)
1,0), E(A1/2; r

(k)
1,1))

(E(A2/2; r
(1)
2,0), E(A2/2; r

(1)
2,1)) (E(A2/2; r

(2)
2,0), E(A2/2; r

(2)
2,1)) ... (E(A2/2; r

(k)
2,0), E(A2/2; r

(k)
2,1))

...

(E(AL/2; r
(1)
L,0), E(AL/2; r

(1)
L,1)) (E(AL/2; r

(2)
L,0), E(AL/2; r

(2)
L,1)) ... (E(AL/2; r

(k)
L,0), E(AL/2; r

(k)
L,1))

⎤
⎥⎥⎥⎦

4. The authority computes the hash values of the matrix BSM and presents
the hash values in the form of a matrix

340 W. Han et al.

HBSM =

⎡
⎢⎣ (H(E(A1/2; r

(1)
1,0)), H(E(A1/2; r

(1)
1,1))) · · · (H(E(A1/2; r

(k)
1,0)), H(E(A1/2; r

(k)
1,1)))

· · · · · · · · ·

(H(E(AL/2; r
(1)
L,0)), H(E(AL/2; r

(1)
L,1))) · · · (H(E(AL/2; r

(k)
L,0)), H(E(AL/2; r

(k)
L,1)))

⎤
⎥⎦

The matrix HBSM is the verification code for the DRE. Each row cor-
responds to the encrypted vote for a candidate. The authority prints the
verification code on a sheet of paper and inserts the sheet into an envelope.
The envelope is sealed and the ballot id number is printed on the surface of
the envelope.

Step 2. Casting a ballot
On the election day the authority loads the ballot information including the

id of the ballot set and all of the randomness used in the ballot generation into
the DRE. The sealed envelopes are transported to each polling station.

After a voter’s identity is verified, she is given a sealed envelope. The verifica-
tion code is inside the envelope. The voter generates an k-bit string in a random
manner such as flipping a coin under the inspection of the polling workers. The
voter publishes the string as her challenge which will be used in the voting booth.

The voter enters the voting booth and starts the DRE. The id number shown
on the screen should be equal to the id printed on the envelope. Assume that
the voter chooses the candidate t(1 ≤ t ≤ L) on the DRE. The DRE chooses the
encryption E(At; rt) from the given ballot set BS. The DRE prints E(At; rt) on
the receipt and posts it on the bulletin board. After the encryption is printed,
the voter inputs the k-bit challenge string into the DRE. For the l-th bit bl(l =
1, 2, ...k), if bl = 0, the DRE reveals r

(l)
i,0 in the l-th column of the matrix BSM

(i = 1, 2, ..., L); if bl = 1, the DRE reveals r
(l)
i,1 in the l-th column of the matrix

BSM . The revealed randomness is printed on the receipt. The DRE computes a
matrix BSM ′ as follows: first, let BSM = BSM ′. Next, some elements in BSM ′

will be modified. The t-th row in matrix BSM ′ is not changed. For the i-th row
(i �= t), in each encryption pair (E(Ai/2; r(s)

i,0), E(Ai/2; r(s)
i,1)) (s = 1, 2, ..., k) the

revealed encryptions E(Ai/2; r(s)
i,bs

) are maintained. The unrevealed encryptions

E(Ai/2; r(s)

i,b̄s
) are modified as E(At; rt))E(Ai/2; r(s)

i,bs
). The DRE computes the

hash value of each element in matrix BSM ′ to obtain a matrix HBSM ′. The
challenge and the matrix HBSM ′ are printed on the receipt.

Step 3. Verification inside the voting booth
The voter opens the envelope and takes out the verification code. She com-

pares the matrix HBSM with the matrix HBSM ′ . The t-th row in HBSM
should be the same as that in HBSM ′. In other rows, in each pair of hash val-
ues if bl = 0 the two left components should both be equal to H(E(Ai/2; r(l)

i,0)),

otherwise the two right components should both be equal to H(E(Ai/2; r(l)
i,1)). If

the verification fails the voter must immediately complain to the polling workers.

A Tamper-Evident Voting Machine Resistant to Covert Channels 341

Step 4. Verification outside the voting booth
The voter takes the receipt and goes out of the booth. She destroys the veri-

fication code under the inspection of the polling workers. Polling workers check
that the challenge string printed on the receipt is the same as the one the voter
committed to before entering the booth. If the two challenge strings are inconsis-
tent, the ballot cast by the voter is cancelled and the cancellation is announced
on the bulletin board at once. The voter submits her receipt to the assistant veri-
fier. The verifier checks: 1. The encrypted ballot E(At; rt) on the receipt has been
published on the bulletin board. 2. The matrix HBSM ′ is correctly computed
by the hash function. Note that the verifier can use the revealed randomness
r
(l)
i,bl

to reconstruct the matrix BSM ′. 3. In the matrix BSM ′ E(At; rt) equals
the product of two components in each pair. If any inconsistence is detected, the
assistant verifier will raise an alert and complain to the legal authority on behalf
of the voter.

Step 5. Tallying
When the voting phase ends, the voting authority can aggregate the cipher-

texts of the ballots by the homomorphic property of the cryptosystem. The
aggregated ciphertext may be threshold decrypted by multiple authorities. In
this case a zero-knowledge proof is posted on the bulletin board to convince the
public that the decryption is correctly performed. It is straightforward to extract
the voting result from the plaintext. Using tamper-evident mix networks [3] to
tally is an alternative choice.

Step 6. Verifying the tally
Any passive third party interested in the election can re-compute the aggre-

gated ciphertext and verify the zero-knowledge proof of correct decryption.

5 Security Analysis and Discussions

Firstly, we can prove that the proposed voting scheme satisfies the requirements
of electronic voting:

– Eligibility. The list of eligible voters is published on the bulletin board. The
voter’s identity is verified before she enters the voting booth.

– Privacy. The ballot posted on the bulletin board is encrypted. The verifi-
cation code is destroyed when the voter leaves the booth. The receipt does
not reveal the content of the encrypted ballot.

– Verifiability. The tally can be re-computed and verified by any third party
by using information published on the bulletin board.

– Robustness. The encryptions of ballots are generated by the voting author-
ity. If the DRE fails to encrypt a ballot, the voter can detect the mistake by
comparing the verification code with the receipt.

– Fairness. No single encrypted ballot is decrypted. A voter makes her choice
at her disposal.

342 W. Han et al.

– Receipt-freeness. The encrypted ballot is not generated by the voter. If
the verification code and the receipt can be seen at the same time, the
voter’s choice can be deduced. But the verification code is destroyed. Just
by reading the receipt we can see the probability for each candidate is equal.
So the scheme is receipt-free.

Next we will show the voting scheme is secure against covert channels. The en-
crypted ballot set is generated by the authority. All the computation performed
by the DRE is deterministic. There is no way for the DRE to encode secret
information into the randomness. The voter is forced to generate her challenge
string in a random manner just before she enters the booth. The DRE cannot
distinguish the coerced voters from average voters by recognizing the challenges.

The voting scheme is voter verifiable. The voter can check that the DRE casts
a ballot as intended and that the voting authority generates encrypted ballots
correctly. If the encrypted ballot is inconsistent with the voter’s choice, the DRE
will fail to open the randomness in the matrix BSM with the probability 1−1/2k.
It is easy for the voter to detect the mistake.

In real life thousands of DREs may be deployed at polling stations in a political
election, and DREs may be manufactured by different vendors. It is hard to
examine all the voting machines thoroughly. In the proposed voting scheme
the generation of the encrypted ballots is centralized so the process is ease to
monitor. The DRE is inspected by the voter. The overhead of malicious code
test is decreased.

6 Conclusion

In this paper an electronic voting scheme is presented. Especially, the DRE is
designed to achieve tamper-evidence and the attacks from covert channels are
prevented. The voter verifies that the DRE uses pre-defined randomness by ex-
amining a destroyable verification code. Although the voting scheme is based
on cryptography, it is unnecessary for the voter to do cryptographic computa-
tion. Only the operation of string comparison is performed by the voter. The
complicated cryptographic computation can be carried out by any third party
outside the booth. Although a voter is given a receipt to verify if the ballot is
cast as intended, the receipt cannot be used to convince others which candidate
the voter chooses. The vote-buying and coercion are thwarted.

Acknowledgement

We are grateful to the anonymous referees for their invaluable suggestions.

References

1. Neff, C.A.: Practical high certainty intent verification for encrypted votes (2004),
http://votehere.com/old/vhti/documentation/vsv-2.0.3638.pdf

http://votehere.com/old/vhti/documentation/vsv-2.0.3638.pdf

A Tamper-Evident Voting Machine Resistant to Covert Channels 343

2. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting pri-
vacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer,
Heidelberg (2006)

3. Choi, J.Y., Golle, P., Jakobsson, M.: Auditable privacy: on tamper-evident mix
networks. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp.
126–141. Springer, Heidelberg (2006)

4. Cramer, R., Gennaro, R., Schoenmakers, B.: A Secure and Optimally Efficient
Multi-Authourity Election Scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

5. ElGamal, T.: A Public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

6. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Class. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–239.
Springer, Heidelberg (1999)

7. Pedersen, T.P.: A threshold cryptosystem without a trusted third party. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg
(1991)

8. Fouque, P.A., Poupard, G., Stern, J.: Sharing Decryption in the Context of Voting
or Lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer,
Heidelberg (2001)

9. Damgard, I., Jurik, M.: A Generalisation, a Simplification and Some Applications
of Paillier’s Probabilistic Public-key System. In: Kim, K.-c. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

Appendix A: A Concrete Example

To explain the voting scheme in detail, we give a simple example here. Assume
that there are two candidate and k = 2. The candidates are encoded as A1, A2.
The voting authority works as follows:

1. The voting authority generates the encrypted ballot set BS = E(A1; r1),
E(A2; r2), r1, r2 ∈ R.

2. The voting authority creates an id for the set BS.
3. The voting authority computes the matrix

BSM =

"
(E(A1/2; r

(1)
1,0), E(A1/2; r

(1)
1,1)) (E(A1/2; r

(2)
1,0), E(A1/2; r

(2)
1,1))

(E(A2/2; r
(1)
2,0), E(A2/2; r

(1)
2,1)) (E(A2/2; r

(2)
2,0), E(A2/2; r

(2)
2,1))

#

4. The voting authority computes the matrix

HBSM =

"
(H(E(A1/2; r

(1)
1,0)), H(E(A1/2; r

(1)
1,1))) (H(E(A1/2; r

(2)
1,0)), H(E(A1/2; r

(2)
1,1)))

(H(E(A2/2; r
(1)
2,0)), H(E(A2/2; r

(1)
2,1))) (H(E(A2/2; r

(2)
2,0)), H(E(A2/2; r

(2)
2,1)))

#

The matrix HBSM is printed on the receipt as the verification code.
Assume the voter chooses the candidate A2. The DRE prints E(A2; r2) on the

receipt. If the voter uses the challenge bit string “10”, the randomness revealed

is

[
r
(1)
1,1 r

(2)
1,0

r
(1)
2,1 r

(2)
2,0

]
. The DRE can compute the matrix

344 W. Han et al.

BSM =

"
(E(A1; r1) � E(A1/2; r

(1)
1,1), E(A1/2; r

(1)
1,1)) (E(A1/2; r

(2)
1,0), E(A1; r1) � E(A1/2; r

(2)
1,0))

(E(A2; r2) � E(A2/2; r
(1)
2,1), E(A2/2; r

(1)
2,1)) (E(A2/2; r

(2)
2,0), E(A2; r2) � E(A2/2; r

(2)
2,0))

#

The DRE modifies some values in BSM to obtain the matrix

BSM ′ =

"
(E(A2; r2) � E(A1/2; r

(1)
1,1), E(A1/2; r

(1)
1,1)) (E(A1/2; r

(2)
1,0), E(A2; r2) � E(A1/2; r

(2)
1,0))

(E(A2; r2) � E(A2/2; r
(1)
2,1), E(A2/2; r

(1)
2,1)) (E(A2/2; r

(2)
2,0), E(A2; r2) � E(A2/2; r

(2)
2,0))

#

The DRE computes the matrix

HBSM ′ =[
(H(E(A2; r2) � E(A1/2; r

(1)
1,1)), H(E(A1/2; r

(1)
1,1))) (H(E(A1/2; r

(2)
1,0)), H(E(A2; r2) � E(A1/2; r

(2)
1,0)))

(H(E(A2; r2) � E(A2/2; r
(1)
2,1)), H(E(A2/2; r

(1)
2,1))) (H(E(A2/2; r

(2)
2,0)), H(E(A2; r2) � E(A2/2; r

(2)
2,0)))

]

The voter compares the matrix HBSM with the matrix HBSM ′:

HBSM =24(H(E(A1/2; r
(1)
1,0)), H(E(A1/2; r

(1)
1,1))) (H(E(A1/2; r

(2)
1,0)), H(E(A1/2; r

(2)
1,1)))

(H(E(A2/2; r
(1)
2,0)), H(E(A2/2; r

(1)
2,1))) (H(E(A2/2; r

(2)
2,0)), H(E(A2/2; r

(2)
2,1)))

35

HBSM ′ =

⎡
⎣(H(E(A2; r2) � E(A1/2; r

(1)
1,1)), H(E(A1/2; r

(1)
1,1))) (H(E(A1/2; r

(2)
1,0)), H(E(A2; r2) � E(A1/2; r

(2)
1,0)))

(H(E(A2; r2) � E(A2/2; r
(1)
2,1)), H(E(A2/2; r

(1)
2,1))) (H(E(A2/2; r

(2)
2,0)), H(E(A2; r2) � E(A2/2; r

(2)
2,0)))

⎤
⎦

The challenge string is:“10”
Look at the elements underlined in the two matrixes:
The second row of HBSM is the same as that of HBSM ′.
In the first row, the second element in the first pair and the first element in

the second pair are the same.
If this is the case, the voter is convinced that the DRE uses the randomness

given by the voting authority. There is no randomness generated by the DRE. If
the assistant verifier finds that the matrix HBSM ′ is correctly computed from

the encryption E(A2; r2) and the randomness

[
r
(1)
1,1 r

(2)
1,0

r
(1)
2,1 r

(2)
2,0

]
, the voter is convinced

that the DRE submits a vote on the candidate A2 as her intent with probability
3/4.

Self-healing Key Distribution with Revocation
and Resistance to the Collusion Attack

in Wireless Sensor Networks

Wei Du and Mingxing He

School of Mathematics and Computer Engineering,
Xihua University, 610039, Chengdu, Sichuan, P.R.China

vivian dv@163.com

he mingxing64@yahoo.com.cn

Abstract. In this paper, we analyze an existing constant storage self-
healing key distribution scheme in wireless sensor networks. Then, we
show two attacks and propose a modified scheme to overcome the two
flaws. At last, we propose a new self-healing key distribution scheme
to improve the modified scheme. The most prominent properties of the
new proposed scheme are as follows: achieving forward and backward
secrecy and resisting to a collusion attack. So that a revoked user with
the assistance of the newly joined users cannot get any information of
group session keys which it is not entitled to get.

Keywords: Key distribution, self-healing, collusion attack, security,
WSNs.

1 Introduction

Wireless sensor networks (WSN) consists of a large number sensor nodes with
limited power, computation, storage and communication capabilities. Sensor
nodes can be deployed in many different fields such as military, environment,
health, home and other commercial areas etc. Security in WSN has six chal-
lenges [1]: (i) wireless nature of communication, (ii) resource limitation on sensor
nodes, (iii) very large and dense WSN, (iv) lacking of fixed infrastructure, (v) un-
known network topology prior to deployment, (vi) high risk of physical attacks to
unattended sensors. Moreover, in some deployment scenarios sensor nodes need
to operate under adversarial condition. Security solutions for such applications
depend on existence of strong and efficient key distribution mechanisms.

With the widely development of wireless sensor networks, how to distribute
group session keys for secure communication to large and dynamic groups over
an unreliable, lossy networks becomes a increasing serious issue. Since the huge
mobility of the users and the frequent loss of packets, it is important to guarantee
the reliable transmission of updating group session keys to the authority users. A
popular approach using self-healing mechanism enables a dynamic group of users
to establish a group session key over an unreliable network and allow the non-
revoked users who missed some previous group session keys using their personal

J. Baek et al. (Eds.): ProvSec 2008, LNCS 5324, pp. 345–359, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

346 W. Du and M. He

key and the received broadcast message can still recover the missed group session
keys without requesting additional transmission from the group manager. This
approach reduces the communication overhead and lightens the heavy work of
the group manager.

Our contributions in this paper are as follows. First, we analyze one existing
scheme [10] and present two attacks that can be applied to [10]. Second, we
modify the scheme to achieve the secrecy. Finally, we improve the modified
scheme to propose a new scheme. The new scheme not only achieves forward
and backward secrecy, but also resists to a collusion attack. The property of
resistance to collusion attack is significant in the wireless sensor network, but
few existing self-healing key distribution schemes with revocation in wireless
sensor networks published have this property.

2 Related Work

Self-healing key distribution with revocation capability was firstly proposed by
Staddon et al in [2]. It uses secret sharing [11] blinding the user’s ability to
recover from packet loss of the user’s membership [10]. But the protocol given
in [2] suffers from high overhead in both memory storage and communication
complexity. Later on several other schemes have been proposed in [3], [4], [8], [9],
[15] based on [2]. These protocols have been improved in terms of both memory
storage and communication complexity. Liu et al. [3] applied a novel personal key
distribution approach to the basic scheme of [2], made it more efficient. C.Blundo
[8] first analysis the basic definition in [2] and [3], then argues that it is impossible
for any scheme to achieve the security requirements proposed in [2] and [3],
then proposes a new definition of self-healing key distribution and a different
mechanism [5] for implementing the self-healing approach. C.Blundo in [7] also
shows an attack on [2]’s first scheme. Hong et al.in [5] proposed self-healing key
distribution schemes having less storage and communication complexity.

Recently, more and more schemes [10], [12], [13], [14] of self-healing key dis-
tribution scheme with revocation in wireless sensor networks are proposed. Most
of them adopt the one-way hash functions to generate the group session keys,
which significantly reduce the communication and storage overhead. R.Dutta in
[10] using one way hash key chain function to proposed a constant storage self-
healing key scheme. R.Dutta in [13] largely reduced the communication overhead
by constructing two hash key chain functions. Unfortunately, however, none of
them can resist to the collusion attack. So that a revoked user with the assistance
of the newly joined users can get the information of keys which it is not entitled
to get. The property of resistance to collusion attack is significant in the wireless
sensor network. Because the sensor nodes are lack of the physical protection and
are prone to be compromised by adversaries. It is still a challenge to construct a
self-healing key distribution scheme with the property of resistance to collusion
attack and having tolerant communication and storage overhead.

Self-healing Key Distribution with Revocation in WSNs 347

3 A Original Scheme and Two Attacks

In this section, we firstly recall the scheme given in [10]. Then we will show
that the original scheme [10] has two flaws. One is that any user once becomes
a member can recover the personal secret polynomial after receiving a single
broadcast message. Therefore it can recover all the group session keys no matter
whether it is a non-revoked user or not. The other one is that scheme [10] doesn’t
achieve the backward secrecy [10], so that a newly joined user can compute the
previous group session keys with the knowledge of the future group session keys
and his secret information.

3.1 Review of R.Dutta’s Scheme

Assume that GM is a group manager, U = {U1, U2, ..., Un} is a set of n users
of the network, Ek(·) and Dk(·) respectively, denotes an encryption and corre-
sponding decryption function, which may be regarded as keyed permutations
over Fq under k ∈ Fq(Fq denotes a finite field with order q and q is a large prime
number(q > n)), and f is a random one way permutation over Fq such that
f i(u) �= f j(u) for all positive integers i, j, i �= j and u ∈ Fq,

Setup. First, the group manager (GM) randomly chooses a t-degree polynomial
ψ(x) = a0 + a1x + a2x

2 + ... + atx
t ∈ Fq[x] and also chooses a random initial

session identifier sid0 ∈ Fq;
Then GM sends in a private way to Ui(1 ≤ i ≤ n), sid0 and ψ(i) as Ui’s

secret;
At last, GM selects randomly a prime key K0 ∈ Fq that is kept secret to

himself.

Broadcast in session j(j > 1). GM computes the j-th session identifier
sidj = f(sidj−1), chooses a random number βj ∈ Fq and computes the j-th
group session key Kj = Eβj (Kj−1);

let Rj = {Ur1 , ..., Urwj
} ⊆ U , | Rj |= wj ≤ t be the set of all revoked users

in session j and before session j and r1, ..., rwj be the ID of the revoked users,
such that | Rj |= wj ≤ t. GM broadcasts the following broadcast message Bj:

Bj = Rj ∪ {φj(x) = Aj(x)Kj + sidj · ψ(x)} ∪ {EKj (β1), ..., EKj (βj)} (1)

Where Aj(x) = (x− r1)(x− r2)...(x− rwj). Here the polynomial Aj(x) is called
revocation polynomial and ψ(x) performs the role of masking polynomial. Notice
that each user Ui ∈ U knows a single point, namely ψ(i) on the polynomial ψ(x).

Once a non-revoked user Ui recovers the current group session key Kj, it can
recover the self-healing keys β1, ..., βj.

Group Session Key and Self-Healing Key Recovery in Session j. If
a non-revoked user Ui(1 ≤ i ≤ n) receives the broadcast message Bj , Ui first
computes the session identifier sidj = f(sidj−1) and replaces the previous session

348 W. Du and M. He

identifier sidj−1 by the current sidj for j > 1(in case j=1, sid1 is stored). Then
Ui evaluates φj(x), ψ(x), Aj(x) at point i from Equation (1) to compute the
group session key Kj = (φj(i)− sidj · ψ(i))/Aj(i), where Aj(i) �= 0;

A revoked user who receives the broadcast message can recover neither the
current group session key nor the self-healing keys. Because for any Ui ∈ Rj ,
Aj(i) = 0.

Add Group Members. When GM wants to add a new user starting from
session j, GM chooses a unique identity v ∈ {1, 2, ..., n} for Uv, which is never
used before. Then GM gives the personal key ψ(v) and sidj to Uv through the
secure communication channel between them.

3.2 Attack 1: Launched by Any User

Suppose Ui ∈ U joins the group in session j so that Ui can get its personal
secrets ψ(i) and the session identifier sidj from the group manager via the secure
channel.

After receiving the j-th broadcast message Bj , Ui can compute the j-th group
session key Kj by using Equation (1) at point i. For Aj(i) �= 0, Ui can get
Kj = (φj(i)− sidj · ψ(i))/Aj(i);

Then, Ui recovers the personal secret polynomial ψ(x) easily by evaluating
ψ(x) from Equation (1) and ψ(x) = (φj(x)−Aj(x) ·Kj)/sidj . Because Ui knows
Kj, sidj and Aj(x) can be determined by using the revoked users’IDs from the
broadcast message Bj and Aj(x) = (x− r1)(x− r2)...(x − rwj).

After knowing the structure of personal secret polynomial ψ(x), Ui can get all
the group session keys no matter whether Ui is revoked or not. If Ui is revoked,
it can inject false or forged user’s ID (not really a user’s ID in the networks)
to get all the past and future group session keys easily without being detected.
Because given φj(x), Aj(x) and ψ(x), Kj is a unique value.

So it is dangerous for the group to have the personal secret polynomial ψ(x)
revealed, and it guarantees none secrecy at all and any user can compute any
group session key Kj easily.

C.Blundo in [8] claims that it is impossible for any protocol to achieve the
security requirement that stated in [2] and [3] and this is the root of the flaw
existing in scheme [10]. C.Blundo in [8] also points out that there is none protocol
satisfying the security requirements in [2] and [3] unless the entropy of the group
session key Kj is 0. That is to say, Kj is already known to any user, no matter
what the broadcast message or the user’s personal secret is.

This attack, however, does not work effectively in [2] and [3]. Because unlike
[10], [2] and [3] use different secret polynomials in different sessions, and the used
secret polynomials will not be reused any longer. Therefore, being revealing one
or more used secret polynomial to users has no effect on the future unused secret
polynomials, so it has no effect on the future group session keys.

Self-healing Key Distribution with Revocation in WSNs 349

3.3 Attack 2: Launched by a Newly Joined User

Suppose Uv ∈ U joins the group in session j(j > 1). Now we will show that Uv

can compute the group session key in session (j−1) with the broadcast message
Bj .

After receiving the j-th group session key distribution broadcast message Bj ,
Uv uses Equation (1) to evaluate ψ(v), φj(v) and Aj(x). Thus Uv can computes
the current group session key Kj , since Kj = (φj(v) − sidj · ψ(v))/Aj(v) and
Aj(v) �= 0;

Then Uv decrypts {EKj (β1), ..., EKj (βj)} using Kj respectively to get all the
self-healing keys β1, ..., βj ;

As EK(·) and DK(·) respectively denotes an encryption and corresponding
decryption function with DK(EK(M)) = M and Kj = Eβj (Kj−1), Uv can
decrypt Eβj (Kj−1) by using βj and Kj to get Kj−1 which Uv is not entitled
to get. More seriously, Uv can deduce all the previous group session keys, even
the prime key K0 as follows: Kj−1 = Dβj(Kj) = Dβj(Eβj (Kj−1)),..., K0 =
Dβ1(K1) = Dβ1(Eβ1(K0)) and K0 is chosen by GM and should not be known
to anyone except GM .

This attack sponsored by any newly joined user points out that the scheme
above doesn’t achieve the t-wise backward secrecy [10] which it claims to have.

3.4 A Modified Scheme

We assume that m denotes the maximum of the session numbers. First, we
use m t-degree polynomials, say f1(x), ..., fm(x) ∈ Fq[x] instead of one t-degree
polynomial ψ(x) in [10]. So the secret of any user Ui is si = {f1(i), ..., fm(i)}.
After doing such modification, in session j, all the users in the group have no
knowledge of the future secret polynomials fi(x)(j < i ≤ m) until they recover
the corresponding group session key Kj .

Second, we use one-way hash function to generate the new group session key
instead of using encryption function. More precisely, let H1(·) denote the one-
way hash function, and using Kj = H1(Kj−1, βj) instead of Kj = Eβj (Kj−1).
After doing such a modification, the scheme meets the t-wise backward secrecy
that any user who is newly joined the group cannot compute the previous group
session keys. Because H1(·) is a one-way hash function, given Kj and βj , it is
computationally infeasible to calculate Kj−1. Besides, we remove the session
identifier sidj from the scheme.

Scheme 1: A Modified Self-healing Key Distribution with Revocation
Capability

Assume U = {U1, U2, ..., Un}, a set of universal users in wireless sensor net-
works.

Setup. First, the group manager(GM) randomly chooses m polynomials of de-
gree t, say f1(x), ..., fm(x) ∈ Fq[x] and randomly chooses m numbers β1, ..., βm ∈
Fq;

350 W. Du and M. He

Second, GM sends in a private way, for i = 1, ..., n, to user Ui as personal key
si = {f1(i), ..., fm(i)};

Third, GM chooses a prime key seed K0 and kept it as his own secret;
Then, GM generates the group session keys for session 1 to session m by using

one way hash function H1(·) as follows:

Kj = H1(Kj−1, βj)j=1,...,m (2)

Broadcast: for 1 ≤ j ≤ m. Let Rj = {Ur1 , ..., Urwj
} ⊆ U be a set of revoked

users for session j and before session j and r1, ..., rwj be the ID of the revoked
users, such that | Rj |= wj ≤ t.

In session j, GM broadcasts the following message:

Bj = Rj ∪ {zj(x) = Aj(x)Kj + fj(x)} ∪ {EKj (β1), ..., EKj (βj)} (3)

Where Aj(x) = (x− r1)(x− r2)...(x− rwj). Here the polynomial Aj(x) is called
revocation polynomial and fj(x) performs the role of masking polynomial.

Group Session Key and Self-Healing Key Recovery in Session j. If a
non-revoked user Ui(1 ≤ i ≤ n) receives the broadcast message Bj , Ui evaluates
zj(x), Aj(x) at point i from Equation (3) to compute the group session key
Kj = (zj(i)− fj(i))/Aj(i), where Aj(i) �= 0;

A revoked user who receives the broadcast message can recover neither the
current group session key nor the self-healing keys. Because for any Ui ∈ Rj ,
Aj(i) = 0.

Once a non-revoked user Ui recovers the current group session key Kj, it can
recover the self-healing keys β1, ..., βj.

Add Group Members. When GM wants to add a new user starting from
session j, GM chooses a unique identity v ∈ {1, 2, ..., n} for Uv, which is never
used before. Then GM gives the personal key sv = {fj(v), ..., fm(v)} to Uv

through the secure communication channel between them. Notice that if a user
is revoked in session j, it must be revoked in all future sessions.

We can see that the modified scheme guarantees the security requirements
in [10] and the communication overhead is (t + 1 + j) log q bits which equals to
that of [10]. But as the original scheme [10], the modified scheme is also not
resistant to the collusion attack. The storage overhead of the modified scheme
is (m − j + 1) log q which is not as constant as that of [10]. But according to
the Theorem 5.2 in [5], in an unconditionally secure self-healing key distribution
scheme, every user who belongs to Gj(the non-revoked users in session j) has
to store a personal key of at least (m − j + 1) log q bits, which comes from the
personal key that each group user has to keep.So it is determined by the number
of masking polynomials [3]. Thus the storage overhead of the modified scheme
is one of the optimal one.

Self-healing Key Distribution with Revocation in WSNs 351

4 A New Self-healing Key Distribution with Revocation
and Resistance to the Collusion Attack

In this section, we will improve the modified scheme(Scheme 1) to propose a new
self-healing key distribution scheme which is resistant to the collusion attack.

Instead of allowing all non-revoked users to recover both the current self-
healing key βj and the previous self-healing keys β1, ..., βj−1 as given in Scheme
1, the new proposed scheme only allows users to recover the self-healing keys
that were used after the user joined the group. That is to say, a new user who
joins the group in session j is only allowed to recover the current self-healing
key βj , while an old non-revoked user is allowed to recover both the current
self-healing key βj and the previous self-healing keys since the time it joined the
group.

Table 1. Notations

U : the set of universal users in wireless sensor networks
Ui : user in U

GM : the group manager
n : the total number of users in U and n be a positive integer
m : the maximum of the session numbers and m be a positive integer
t : the maximum number of the compromised users and t be a positive integer

Fq : a finite field with order q and q is a large prime number(q > n)
rj : a random number which GM selects for the user who joins in session j and

rj ∈ Fq , for any i �= j, rj �= ri

αj : a random number which GM selects for the user who joins in session j and
αj ∈ Fq , for any i �= j, αj �= αi

si : the personal secret of user Ui

fj(x) : user’s personal secret polynomial for session j, which is randomly chosen by
GM

Bj : the broadcast message generated by GM during session j

Kj : the group session key in session j generated by GM and Kj = Kj
j−1

K0
j : the seed of the hash key chain in session j

Kj′−1
j : the key from the key chain generated by the GM in session jand only a user

joined the group in session j′(1 ≤ j′ < j) is allowed to get it from the j-th
broadcast

Gj′

j : the masking key of the key Kj′−1
j (1 ≤ j′ < j) from the hash key chain

βj : the self-healing key randomly chosen by the GM for session j used to recover
the group session key Kj = Kj−1

j in session j

Rj : the set of revoked users in and before session j and Rj ⊆ U
H1 : a one-way hash function used to generate the seed of the new group session

key and H1 : {0, 1}∗ → Fq

H : : a one-way hash function and H : {0, 1}∗ → Fq

Ek(·) : an encryption function
Dk(·) : a corresponding decryption function
Aj(x) : the revoked polynomial in session j

352 W. Du and M. He

Now, for clarity, we briefly list some of the symbols used throughout our new
proposed scheme in Table 1. For details, we refer to [10].

4.1 Security Model

Our scheme should provide the following security.

Definition 1: (self-healing key distribution with t-revocation capabil-
ity [10]) A key distribution scheme is a self-healing key distribution with t-
revocation capability if the following conditions are true:

a) For each non-revoked user in session j, the group session key Kj is deter-
mined by the broadcast message Bj and the user’s own secret;

b) What the non-revoked users learn from Bj or their own personal secret
alone cannot determine the group session key Kj ;

c) (t-revocation capability) For each session j, let Rj denotes a set of revoked
users in and before session j, such that | Rj |≤ t, the group manager can generate
a broadcast message Bj such that all the revoked users in Rj cannot recover the
group session key Kj;

d) (self-healing property) Every Ui joins in or before session j1 and not revoked
before session j2(j1 < j2) from broadcast Bj1 and Bj2 , where 1 ≤ j1 < j2, can
recover all the keys Kj(j = j1, ..., j2).

Definition 2: (t-wise forward secrecy [10]) A key distribution scheme guar-
antees forward secrecy if for any set R ⊆ U , where | R |≤ t, and all Ui ∈ R are
revoked in session j, the members in R together cannot get any information
about Kj , even with the knowledge of group session keys before session j.

Definition 3: (t-wise backward secrecy [10]) A group session key distribu-
tion guarantees backward secrecy if for any set J , where | J |≤ t, and all Ui ∈ J
join after session j, the members in J together cannot get any information about
Kj, even with the knowledge of group session keys after session j.

Definition 4: (resistance to the collusion attack [5]) Let B ⊆ Rr∪Rr−1∪
...∪R1 be a coalition of users removed before session r and let C ⊆ Js∪Js+1∪ ...
be a coalition of users who join the group from session s. Let | B ∪ C |≤ t and
B ∪C ⊆ U . Then, such a coalition does not get any information about keys Kj ,
for any r ≤ j < s.

4.2 A New Self-healing Key Distribution with Revocation and
Resistance to the Collusion Attack

Scheme 2: A New Self-healing Key Distribution with Revocation and
Resistance to the Collusion Attack

Assume U = {U1, U2, ..., Un}, a set of universal users in wireless sensor net-
works. Fig 1 illustrate how the Scheme 2 works in session j. This scheme consists

Self-healing Key Distribution with Revocation in WSNs 353

of four phases: Phase 1 - Setup, Phase 2 - Broadcast, Phase 3 - Group Session
Key and Self-Healing Key Recovery in Session j, Phase 4 - Add Group Members.

Fig. 1. The Group Session Key And Self-haling Keys in Session j

Phase 1 - Setup. GM first randomly chooses m polynomials of degree t, say
f1(x), ..., fm(x) ∈ Fq[x] and randomly chooses m numbers r1, ..., rm ∈ Fq and
keep them as his secret.

Second, GM randomly chooses numbers α1, ..., αm ∈ Fq.
Third, GM sends in a private way, for i = 1, ..., n, to user Ui as personal key

si = {αj′ ; rj′ · fj′(i), ..., rj′ · fm(i)}(j′ denotes the session number which the user
joins the group and αj′ ∈ {α1, ..., αm}, rj′ ∈ {r1, ..., rm}). Specifically, a user Uv

who joins in session 1, will receive sv = {α1; r1 · f1(v), ..., r1 · fm(v)} while a user
Uk who joins in session j will receive sk = {αj ; rj · fj(k), ..., rj · fm(k)}. Notice
that none of the user has the knowledge of a single value of rj′ or fj(i), user
only knows rj′ · fj(i)(j = 1, ..., m).

GM then chooses a prime key seeds K0 ∈ Fq and kept it as his own secret;
GM randomly chooses m number β1, ..., βm ∈ Fq;
GM computes m key seeds and the corresponding m key chains by using

two one-way hash functions H1(·) and H(·)(For convenience of description, we
use two hash functions, but in fact they are the same.). For session 1: the key
seed is K0

1 = H1(K0, β1) and key chain is {K0
1}; for session 2: the key seed is

K0
2 = H1(K1, β2) and key chain is {K0

2 , K1
2}; for session j(1 ≤ j ≤ m), the key

seed is:
K0

j = H1(Kj−1, βj) (4)

the key chain for session j(1 ≤ j ≤ m) is:

{K0
j , K1

j , K2
j ..., Kj−1

j }j=1,...,m (5)

where K1
j = H(K0

j), K2
j = H(K1

j) = H2(K0
j), ..., Kj = Kj−1

j = H(Kj−2
j) =

... = Hj−1(K0
j) and Hi(·) denotes applying i times hash operation. Kj = Kj−1

j

is the group session key in session j.
Thus we can see that the size of each key chain equals to the session number

j(1 ≤ j ≤ m). Specifically, in session 1, the size of key chain is 1; in session j,
the size of key chain is j and in session m, the size of key chain is m.

354 W. Du and M. He

Phase 2 - Broadcast (for 1 ≤ j ≤ m). Assume Rj = {Ur1 , ..., Urwj
} ⊆ U

be a set of revoked user in and before session j, and r1, ..., rwj be the IDs of the
revoked users, such that | Rj |= wj ≤ t

GM then generates a masking key sequence {G1
j , G

2
j , ..., G

j−1
j , Gj

j} of size j
for session j by applying XOR on both αj′ and every key from the one-way hash
key chain, where

Gj′

j = Kj′−1
j ⊕ αj′ (j = 1, ..., m; j′ = 1, ..., j) (6)

αj′ denotes the secret of the users who join the group in session j′ and ⊕ denotes
XOR operation.

In session j, GM broadcasts the following message:

Bj = Rj ∪ {zj′

j (x) = Aj(x)Gj′

j + rj′ · fj(x)}j′=1,...,j

∪{EK0
j
(β1), EK1

j
(β2), ..., EKj−1

j
(βj)} (7)

Where Aj(x) = (x− r1)(x− r2)...(x− rwj) Here the polynomial Aj(x) is called
revocation polynomial and rj′ · fj(x) performs the role of masking polynomial.

Phase 3 - Group Session Key and Self-Healing Key Recovery in Ses-
sion j. If a non-revoked user Ui(1 ≤ i ≤ n) who joins the group in session
j′(1 ≤ j′ < j) receives the broadcast message Bj , the user Ui can recover the
group session key and self-healing key as follows:

Ui evaluates zj′

j (x), Aj(x) at point i from Equation (7) to compute the masking

key Gj′

j = (zj′

j (i)− rj′ · fj(i))/Aj(i), where Aj(i) �= 0;

Ui computes Kj′−1
j by applying XOR both on Gj′

j and αj′ as given below

Kj′−1
j = Gj′

j ⊕ αj′ (j = 1, ..., m; j′ = 1, ..., j) (8)

αj′ denotes the secret of the users who join the group in session j′ and ⊕ denotes
XOR operation.

Ui computes all the future keys Ki
j(j

′ − 1 < i ≤ j − 1) from the same key
chain by using one-way hash function H(·)(see Equation (5)) and Kj = Kj−1

j =

Hj−j′ (Kj′−1
j) is the current group session key;

Ui also uses Equation (7) to decrypt {E
Kj′−1

j

(βj′)}j′=1,...,j by using the cor-

responding keys in the current key chain to get the corresponding self-healing
keys {βj′)}j′=1,...,j;

A revoked user who receives the broadcast message can recover neither the
current group session key nor the self-healing keys. Because for any Ui ∈ Rj ,
Aj(i) = 0.

Phase 4 - Add Group Members. When GM wants to add a new user starting
from session j, it chooses a unique identity v ∈ {1, 2, ..., n} for Uv, which is never

Self-healing Key Distribution with Revocation in WSNs 355

used before. Then GM gives the personal key sv = {αj ; rj · fj(v), ..., rj · fm(v)}
to Uv through the secure communication channel between them. Notice that if
a user is revoked in session j, it means that it must be revoked in all future
sessions.

5 Analysis

In this section, we will show that the proposed new scheme satisfies the require-
ments of self-healing key distribution with revocation capacity. Then we will
show that the proposed new scheme also guarantees forward security, backward
security and resistance to the collusion attack.

5.1 Self-healing Property

Assume Ui ∈ U joins the group in session j1 and revoked after session j2(j1 < j2).
Ui receives the broadcast message Bj1(1 ≤ j1) and Bj2(1 ≤ j1 < j2), but missed
the broadcast message Bj(j1 < j < j2). We now show that Ui can still recover
all the missed group session keys Kj = Kj−1

j (j1 < j < j2) as follows to explain
the self-healing property.

(1) After receiving broadcast message Bj1 and Bj2 , Ui can compute the mask-
ing key Gj1

j1
and Gj1

j2
by using Equation (7) as described in Phase 3 in section

4.2;
(2) Ui can compute the group session key Kj1 = Kj1−1

j1
for session j1 and the

key Kj1−1
j2

in session j2 by Equation (8) as described as in Phase 3 in section
4.2;

(3) Ui uses Kj1−1
j2

to generates part of j2-th one-way hash key chain {Kj1
j2

,

Kj1+1
j2

, ..., Kj2−1
j2

} which Ui is entitled to get by using the hash function(see
Equation (5)) and Kj2 = Kj2−1

j2
is the group session key for session j2;

(4) Ui decrypts the {E
K

j1−1
j2

(βj1), ..., EK
j2−1
j2

(βj2)} by using {Kj1−1
j2

, ..., Kj2−1
j2

}
respectively to get the self-healing keys βj1 ,..., βj2 between session j1 and session
j2;

(5) Ui gets all the missed group session keys seeds K0
j (j1 < j < j2) by using

Equation (4) and (5);
(6) Finally, Ui can recover all the missed group session keys Kj = Kj−1

j , for
all j = j1 + 1, j1 + 2, ..., j2 − 1 by using doing step (5) repeatedly.

Thus the proposed new scheme guarantees the self-healing property.

5.2 Forward Secrecy

Consider R ⊆ U , where | R |≤ t, and Ui ∈ R revoked in session j. Then neither a
single user in R nor a set of users in R can get any information about the group
session key Kj(j = j, ..., m), even with the previous group session keys and their
personal secrets. Because the way that users in R to get the j-th group session
key is either getting the corresponding self-healing keys which are all randomly

356 W. Du and M. He

chosen or recovering one of the personal secret polynomials rj′fj(x)(j′ = 1, ..., j),
but we will show that none of the two methods can be obtained.

First, each self-healing key is encrypted by the corresponding group session
key Kj = Kj−1

j and the corresponding group session key is masked by the cor-

responding masking key Gj′

j . But users in R cannot evaluate any of the masking

keys Gj′

j , because for any Ui ∈ Rj , Aj(i) = 0. Therefore, the users in R cannot
know the future group session keys by getting the values of the self-healing keys
unless they guess the corresponding group session key Kj′−1

j rightly.
Second, we will show that it is also impossible for users in R to recover any of

the personal secret polynomials rj′ · fj(x)(j′ = 1, ..., j) in session j. Users in R
have to get at least t + 1 points on each polynomial rj′ · fj(x), but | R |≤ t and
the maximum number of points they can get on each polynomial rj′ · fj(x) is t.
So it is impossible for users in R to recover any of the polynomial rj′ · fj(x).

Therefore, it is impossible for users to recover the future group session keys.
Thus our proposed scheme is forward secure.

5.3 Backward Secrecy

Consider J ⊆ U , where | J |≤ t, and Uv ∈ J joined after session j. Then neither
a single user in J nor a set of users in J cannot get any information about any
previous session key Kj even with all the future session keys and their personal
secret keys.

First, from the broadcast Bj+1, users in J can only get the current group
session key Kj+1 which is the last key in the one-way hash key chain, therefore
user in J can only decrypt the current self-healing key βj+1. As Kj+1 = Kj

j+1 =
H(Kj−1

j+1) = ... = Hj+1(K0
j+1) and K0

j+1 = H1((Kj , βj+1), where H1(·) and H(·)
are two one-way hash functions, it is computationally infeasible for any user in
to compute the previous keys in the key chain, so it is impossible for them to
compute the previous group session keys.

Second, we will show that it is also impossible for users in J to recover the
personal secret polynomials rj ·fj(x). Users in J have to get at least t+1 points
on the polynomial rj ·fj(x), but J join after session j, so all the user in J do not
have any secret keys used in session j. So it is impossible for users in R adopting
this method to recover the polynomial rj · fj(x).

Hence the users in J cannot get the previous group session keys and the
proposed scheme is backward secure.

5.4 Resistance to a Collusion Attack

Consider a set of users B ⊆ Rj1∪Rj1−1∪...∪R1 who revoked in or before session
j1 and a set of users C ⊆ Jj2 ∪ Jj2+1 ∪ ... who join in session j2(B ∪ C ⊆ U).
We will show that if B and C are disjoint and | B ∪C |≤ t, users in B colluding
with the users in C, are unable to recover Kj = Kj−1

j (j1 ≤ j < j2) from the
broadcast message Bj1 and Bj2 .

Self-healing Key Distribution with Revocation in WSNs 357

In order to recover Kj = Kj−1
j (j1 ≤ j < j2), B ∪ C must recover all the self-

healing keys between βj1 and βj2 . However, both B and C don’t have the right
to access these self-healing keys, for they can’t evaluate the keys in the key chain,
thus they can’t use these keys to decrypt the self-healing keys βj(j1 ≤ j < j2).

On one hand, the newly joined user from C can only get the group session key
Kj = Kj−1

j (j ≥ j2) and corresponding self-healing key βj(j ≥ j2)(the same as
described in section 5.3). On the other hand, users who revoked before session
j1 can only get the group session keys Kj = Kj−1

j (j < j1) and βj(j < j < j1)
because for any Ui ∈ B, Aj(i) = 0(j ≥ j1). As a result, all the information they
have putting together does not contain all the self-healing keys between βj1 and
βj2−1, so that they can’t get the group session keys Kj = Kj−1

j (j1 ≤ j < j2). It
is easy to see that the proposed scheme resists to such collusion attack.

6 Efficiency Comparisons with Some Previous Schemes

In this section, we will compare our schemes with other previous ones in different
aspects such as communication complexity, storage overhead, forward security,
backward security and soundness to collusion attack. From table 2, we can see
clearly that the scheme 2 achieves some advantages such as t-wise forward se-
crecy, backward secrecy and resistance to collusion attack, all of which are the
fundamental ingredients in the security requirements.

Table 2. Performance Comparisons

Scheme Storage
Overhead

Communication
Overhead

Group
Ses-
sion
Key
Se-

crecy

For-
ward
Se-

crecy

Back-
ward
Se-

crecy

Resistance
to

Collusion
Attack

C3 of
[2]

(m− j +1)2 log q (mt2 + 2mt + m + t) log q Yes Yes Yes Yes

S3 of
[3]

(m− j + 1) log q (2tj + j) log q Yes Yes Yes Yes

S3 of
[5]

2(m− j +1) log q [(m+j+1)t+(m+1)]log q Yes Yes Yes Yes

[10] 3 log q (t + 1 + j) log q No No No No
[13] (m− j + 1) log q (t + 1) log q Yes Yes Yes No

Scheme
1

(m− j + 1) log q (t + 1 + j) log q Yes Yes Yes No

Scheme
2

(m− j + 2) log q [(t + 1)j + j] log q Yes Yes Yes Yes

The storage requirement in schemes 1 is (m − j + 1) log q bits which is not
constant, But respect to Theorem 5.2 in [5], the storage overhead of the modified
scheme, in some sense, is optimal.

358 W. Du and M. He

As in the original scheme [10], the communication overhead in scheme 1 is
(t + 1 + j) log q bits, which significantly reduce the communication overhead
comparing to some of the previous schemes. However, as the original scheme
[10], scheme 1 does not resist to the collusion attack.

In the proposed scheme 2, the broadcast message Bj consist of a set of revoked
users Rj , j t-degree polynomials {zj′

j }j′=1,...,j, a sequence {E
Kj′−1

j

(βj′)}j′=1,...,j

(see Equation (7)). One can ignore the communication overhead for the broadcast
of the set Rj , because the member IDs can be selected from a small finite field
[3]. So the communication overhead of scheme 2 is [(t + 1)j + j] log q bits.

The communication overhead of scheme 2 is larger than [10]’s results from
the different structure of the broadcast message Bj . First, we adopt j t-degree
polynomials {zj′

j }j′=1,...,j instead of using only one t-degree polynomial in session
j. Second, we use different group session keys to encrypt the corresponding self-
healing keys instead of just using the same current group session key to encrypt
all the self-healing keys. This structure makes it impossible for any old user
and any new one to launch a collusion attack to attain the group session keys
which they are not entitled to get. Because this structure limits the right of the
users to get the self-healing keys. Without the right self-healing keys, no one can
recover the corresponding group session keys. In order to guarantee this property,
the proposed scheme 2, to some extent, sacrifices the communication overhead.
Fortunately, however, the communication complexity of scheme 2 is acceptable
comparing to other previous schemes. We consider this sacrifice is worthwhile,
because the sensor nodes are vulnerable to compromise and an adversary can
easily launch a collusion attack by compromising an old node and a new one.

7 Conclusions

In this paper, we analyze and present two flaws in scheme [10], then we propose
a modified scheme(Scheme 1) to overcome the two flaws. Then we improve the
modified scheme to propose a new self-healing key distribution scheme(Scheme
2). Scheme 2 not only achieves forward secrecy and backward secrecy, but also
resists to the collusion attack. It is significant to have the ability to resist to the
collusion attack in the wireless sensor networks. Because the sensor nodes are
lack of the physical protection and are prone to be compromised by adversaries.

Our future work would be mainly focused on reducing the storage and com-
munication overhead. In addition, we seek way to expand the users’ life time.

Acknowledgments. The work is supported by the National Natural Science
Foundation of China (Grant no. 60773035); the Key Projects Foundation of
Ministry of Education of China (Grant no. 205136). The Foundation of Science
and Technology Bureau of Sichuan Province, China (Grant no. 05JY029-131).

Self-healing Key Distribution with Revocation in WSNs 359

References

1. Camtepe, S., Yener, B.: Key Distribution Mechanisms for Wireless Sensor Net-
works: A Survey. Technical Report, TR-05-07, Rensselaer Polytechnic Institute
(2005)

2. Staddon, J., Miner, S., Franklin, M., Balfanz, D., Malkin, M., Dean, D.: Self-
healing Key Distribution with Revocation. In: Proceedings of IEEE Symposium
on Security and Privacy, pp. 241–257 (2002)

3. Liu, D., Ning, P., Sun, K.: Efficient Self-healing Group Key Distribution with
Revocation Capability. In: Proceedings of the 10th ACM Conference on Computer
and Communications Security, New York, pp. 2003–231 (2003)

4. More, S., Malkin, M., Staddon, J.: Sliding-window Self-healing Key Distribution
with Revocation. In: ACM Workshop on Survivable and Self-regenerative Systems
(2003)

5. Blundo, C., Darco, P., Santis, A.D., Listo, M.: Design of Self-healing Key Distri-
bution Schemes. Des. Codes Cryptography (2004)

6. Blundo, C.: Randomness in Self-Healing Key Distribution Schemes. Theory and
Practice in Information-Theoretic Security, 80–84 (2005)

7. Blundo, C., D’Arco, P., Listo, M.: A Flaw in a Self-Healing Key Distribution
Scheme. In: Proceedings of Information Theory Workshop, Paris, pp. 163–166
(2003)

8. Blundo, C., D’Arco, P., Santis, A., Listo, M.: Definitions and Bounds for Self-
healing Key Distribution. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D.
(eds.) ICALP 2004. LNCS, vol. 3142, pp. 234–245. Springer, Heidelberg (2004)

9. Hong, D., Kang, J.: An Efficient Key Distribution Scheme with Selfhealing Prop-
erty. IEEE Communication Letters 9, 759–761 (2005)

10. Dutta, R., Wu, Y., Mukhopadhyay, S.: Constant Storage Self-Healing Key Dis-
tribution with Revocation in Wireless Sensor Network. In: IEEE International
Conference on Communications, 2007, pp. 1323–1332 (2007)

11. Shamir, A.: How to share a secret. Communications of ACM 22, 612–613 (1979)
12. Xukai, Z., Yuan-Shun, D.: A Robust and Stateless Self-Healing Group Key Man-

agement Scheme. In: International Conference on Communication Technology, pp.
1–4 (2006)

13. Dutta, R., Chang, E., Mukhopadhyay, S.: Efficient Self-healing Key Distribution
with Revocation for Wireless Sensor Networks Using One Way Hash Chains. In:
Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 385–400. Springer,
Heidelberg (2007)

14. Chadha, A., Yonghe, L., Das, S.K.: Group Key Distribution via Local Collaboration
in Wireless Sensor Networks. In: Second Annual IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and Networks, pp. 46–54 (2005)

15. Biming, T., Mingxing, H.: A Self-healing Key Distribution Scheme with Novel
Properties. International Journal of Network Security 7(1), 115–120 (2008)

Author Index

Bresson, Emmanuel 241
Buldas, Ahto 254

Chen, Kefei 335
Chen, Liqun 156
Chen, Xiaofeng 335
Cheng, Xiangguo 83, 176
Chevallier-Mames, Benôıt 241
Chow, Sherman S.M. 38
Clavier, Christophe 241

Desmedt, Yvo 68
Du, Wei 345

Gajek, Sebastian 283, 313
Gjøsteen, Kristian 112
Gouget, Aline 241
Guo, Fuchun 98

Han, Wei 335
Hao, Rong 83, 176
Hao, Tao 335
He, Mingxing 345
Hu, Yupu 127
Huang, Huawei 1
Huang, Xinyi 141

Iwata, Tetsu 22

Jager, Tibor 200

Kong, Fanyu 83, 176
Kr̊akmo, Lillian 112

Laud, Peeter 298
Li, Guowen 83, 176
Liu, Zhenhua 127
Luo, Zhengqin 185

Ma, Hua 127
Manabe, Yoshifumi 268
Manulis, Mark 313
Mitsuda, Atsushi 22

Miyagawa, Satoshi 226
Morrissey, Paul 156
Mu, Yi 98, 141

Nagao, Waka 268
Ngo, Long 298
Niitsoo, Margus 254

Ohta, Kazuo 226
Okamoto, Tatsuaki 268

Paillier, Pascal 241
Pereira, Olivier 313
Peyrin, Thomas 241
Phan, Duong Hieu 68

Rangan Chandrasekaran, Pandu 52

Sadeghi, Ahmad-Reza 313
Schwenk, Jörg 200, 313
Selvi, S. Sharmila Deva 52
Shukla, Deepanshu 52
Smart, Nigel P. 156
Susilo, Willy 141

Vivek, S. Sree 52

Wang, Fengjiao 210
Wu, Wei 141

Xiao, Guozhen 1

Yang, Bo 1
Yiu, S.M. 38
Yoneyama, Kazuki 226
Yu, Jia 83, 176

Zhang, Yuqing 210
Zheng, Dong 335
Zhu, Huafei 328
Zhu, Shenglin 1
Zhu, ZhenChao 210

	Title Page
	Preface
	Second International Conference on Provable Security 2008 (ProvSec 2008)
	Table of Contents
	Encryption
	Generalized ElGamal Public Key Cryptosystem Based on a New Diffie-Hellman Problem
	Introduction
	Preliminaries
	Complexity Assumptions
	A Class of Vector Space over Finite Field \F_q^2
	Generalized Computational Group Schemes
	ECDH Problem and ECDH Assumption
	EDDH Problem and EDDH Assumption

	New Generalized ElGamal Public Key Cryptosystem
	Security of the Scheme
	References

	Tweakable Pseudorandom Permutation from Generalized Feistel Structure
	Introduction
	Preliminaries
	Generalized Feistel Structure
	Tweakable Blockcipher from Generalized Feistel Structure
	Almost Universal Hash Function [2]

	Tweakable Blockciphers with CPA Security
	Proof of Lemma 4
	Tweakable Blockciphers with CCA Security
	How to Input Multiple Tweaks
	Multiple Tweaks without Increasing the Number of Rounds
	Multiple Tweaks with Increasing the Number of Rounds

	Conclusions
	References

	Timed-Release Encryption Revisited
	Introduction
	Related Work
	Contributions

	Security Models of Timed-Release Encryption
	Syntax of Timed-Release Encryption
	Confidentiality
	Pre-open Capability
	Release-Time Confidentiality

	Analysis of a Recent TRE Scheme in ESORICS ’07
	Review
	Attacks

	Augmenting Chow $\et al.’s$ TRE Scheme with Pre-open Capability and Release-Time Confidentiality
	Preliminaries
	Construction
	Discussions on the Security Properties

	Conclusion
	References

	Efficient and Provably Secure Certificateless Multi-receiver Signcryption
	Introduction
	Preliminaries
	Computational Assumptions

	Certificateless Multi-receiver Signcryption
	Framework of Certificateless Multi-receiver Signcryption
	Security Model for Certificateless Multi-receiver Signcryption

	Certificateless Multi-receiver Signcryption Scheme (CLMSC)
	Security Results
	Efficiency Analysis and Comparison
	Conclusion
	References

	A CCA Secure Hybrid Damg$\{aa}$rd’s ElGamal Encryption
	Introduction
	Notation and Standard Definitions
	Construction
	Damg$\{aa}$ard’s ElGamal Encryption [5]
	Hybrid Damg$\{aa}$rd’s ElGamal Encryption
	Comparision with Kurosawa-Desmedt Scheme

	Assumptions Used in the Security Analyses
	Hashed Decisional Diffie-Hellman Assumption
	Diffie-Hellman Knowledge Assumption (DHK)
	Extended \DHK Assumptions

	Security of the Hybrid Damg$\{aa}$rd’s ElGamal Encryption
	Hardness of the \EDHK Problem in the Generic Group Model
	Conclusion
	References

	Signature
	Construction of Yet Another Forward Secure Signature Scheme Using Bilinear Maps
	Introduction
	Preliminaries
	Cryptographic Assumptions
	Forward Secure Signature Scheme
	Security Definition

	The Proposed Forward Secure Signature Scheme
	Notations and Constructions
	Description of the Scheme

	Performance Analysis
	Security Analysis
	Conclusions
	References

	Optimal Online/Offline Signature: How to Sign a Message without Online Computation
	Introduction
	Definitions
	O-3 Signature
	Bilinear Map
	Complexity

	O-3 Signature
	Scheme
	Security

	Generic Construction
	Generic Scheme
	Security and Efficiency

	Identity-Based O-3 Signature
	Conclusion
	References

	Round-Optimal Blind Signatures from Waters Signatures
	Introduction
	Preliminaries
	Bilinear Groups
	Signature Schemes and Their Security
	Public Key Encryption Schemes and Their Security
	Setup Assumptions
	Compilation of Σ-Protocols in the Registered Public Key Model

	Blind Signature Schemes and Their Security
	Our Blind Signature Scheme
	A Sketch of Our Scheme
	The Protocol compile (ΣOR)
	Our Scheme

	References

	Secure Proxy Multi-signature Scheme in the Standard Model
	Introduction
	Preliminaries
	Bilinear Pairings
	Complexity Assumption

	Formal Model of Proxy Multi-signature
	Security Model

	A Secure Proxy Multi-signature Scheme
	Security Analysis
	Conclusions
	References

	Server-Aided Verification Signatures: Definitions and New Constructions
	Introduction
	Server-Aided Verification Signatures
	Syntax of a Signature Scheme Σ
	Syntax of a Server-Aided Verification Signature Scheme $\SAV-\Sigma$
	Computational-Saving in $\SAV-\Sigma$

	Existentially Unforgeable $\SAV-\Sigma$
	Definition of Existential Unforgeability of $\SAV-\Sigma$
	Further Observations on $\EUF-SAV-\Sigma$
	Analysis of the $\SAV-\Sigma$ in Asiacrypt’05

	Existentially Unforgeable SAV-BLS
	Complexity Assumptions
	Description of Existentially Unforgeable SAV-BLS

	$\SAV-\Sigma$ Secure against Collusion and Adaptive Chosen Message Attacks
	Definition of the Security of $\SAV-\Sigma$ against Collusion and Adaptive Chosen Message Attacks
	SAV-BLS Secure against Collusion and Adaptive Chosen Message Attacks

	Conclusion
	References

	Analysis
	On Proofs of Security for DAA Schemes
	Introduction
	Notation and Preliminaries
	DAA Execution and Security Model
	A Note on the Proof of the Scheme of [3]
	Security Analysis of the CMS Scheme
	References

	Cryptanalysis of Vo-Kim Forward Secure Signature in ICISC 2005
	Introduction
	Forward Secure Signature Scheme and Its Security
	Review of Vo-Kim Scheme
	The Attacking Algorithms
	The First Algorithm
	The Second Algorithm

	The Further Analysis of Security Proof in [14]
	Conclusions
	References

	Computationally Sound Symbolic Analysis of Probabilistic Protocols with Ideal Setups
	Introduction
	Background
	A Subset of PAPi Calculus
	The UC Framework and UCSA Framework

	A Simple Language for Probabilistic Protocols
	Symbolic Interpretation
	Computational (Hybrid) Interpretation
	Faithfulness of the Symbolic Model
	Conclusions
	References

	On the Equivalence of Generic Group Models
	Introduction
	Related Work
	Our Contribution

	Generic Group Models
	Shoup’s Generic Group Model
	Maurer’s Generic Group Model

	The Equivalence of Generic Group Models
	From Maurer’s GGM to Shoup’s GGM
	From Shoup’s GGM to Maurer’s GGM

	Conclusions
	References

	The Analysis of an Efficient and Provably Secure ID-Based Threshold Signcryption Scheme and Its Secure Version
	Introduction
	Preliminaries
	Bilinear Pairings
	Related Complexity Assumptions

	Formal Model and Security Notions of IDTSC Scheme
	Generic Scheme
	Security Notions

	The LY Scheme and Its Security Analysis
	The LY Scheme
	Security Analysis of the LY Scheme

	Our Improved Scheme and Its Analysis
	Our Scheme
	Security Analysis
	Efficiency Analysis

	Conclusion
	References

	Application of Hash Functions
	Leaky Random Oracle
	Introduction
	Motivation
	Our Contribution
	Related Works

	Leaky Random Oracle Model
	Security Analysis of FDH in LROM
	FDH
	Security of FDH in LROM

	Security Analysis of OAEP in LROM
	OAEP
	Security of OAEP in LROM

	Security Analysis of Cramer-Shoup cryptosystem in LROM
	Cramer-Shoup Cryptosystem
	Security of Cramer-Shoup Cryptosystem in LROM

	Security Analysis of Kurosawa-Desmedt Cryptosystem in LROM
	Kurosawa-Desmedt Cryptosystem
	Security of Kurosawa-Desmedt Cryptosystem in LROM

	Security Analysis of NAXOS in LROM
	Security Notion of Authenticated Key Exchange Schemes
	NAXOS
	Security of NAXOS in LROM

	Discussion
	Difference of Effects on Security
	Relation between the Standard Model
	Relation between Randomness Revealing

	FurtherWorks
	References

	How to Use Merkle-Damg°ard—On the Security Relations between Signature Schemes and Their Inner Hash Functions
	Introduction
	Preliminaries
	Provable Security Statements
	Hash Functions and Related Security Notions
	Signature Schemes and Related Security Notions

	Analyzing Security Relations for Hash-and-Sign Signatures
	Identified Properties
	Attacks and Positive Security Relations for Hash-and-Sign Signatures
	Attacks and Security Proof for First-Hash-Then-Sign Signatures

	Merkle-Damg$\{aa}$rd-Based Hash Function Families
	Hash Function Families Based on Merkle-Damg$\{aa}$rd
	MDInstantiation with Operating Mode F(M, r) = $\H_s(M || r)$
	MDInstantiation with Operating Mode F(M, r) = $\H_s(r || M)$
	Concrete Security Figures for Two Instantiations of F(M, r)

	Conclusion
	References

	Can We Construct Unbounded Time-Stamping Schemes from Collision-Free Hash Functions?
	Introduction
	Notation and Definitions
	Hash and Publish Time-Stamping
	Cryptographic Reductions and Oracle Separation
	Hash Tree Oracle
	Disperser Adversary
	Infeasibility of the Pair Checking Approach
	Other Possible Types of Hash-Adversaries
	Input-Output Pair Check
	Output Comparison
	Using All Three Approaches
	Input-Output Comparison

	Discussion
	References

	Universal Composability
	Relationship of Three Cryptographic Channels in the UC Framework
	Introduction
	Preliminaries
	(Task) Probabilistic I/O Automata
	Universal Composability

	Three Cryptographic Channels and Definitions
	Secure Channel (SC)
	Two-Anonymous Channel (2AC)
	Direction-Indeterminable Channel (DIC)
	Security Definitions

	Equivalence between DIC and 2AC
	Reduction of DIC to 2AC
	Reduction of 2AC to DIC

	Equivalence between DIC and SC
	Reduction of SC to DIC
	Reduction of DIC to SC

	Conclusion
	References

	A Universally Composable Framework for the Analysis of Browser-Based Security Protocols
	Introduction
	Relation to Previous Work
	BBUC Model
	Notations
	Network Services
	Modeling User Behavior: A First Attempt
	Modeling Browser Behavior: The Aggregation of Messages
	Functional Corruption Model

	Conclusion
	References

	Threshold Homomorphic Encryption in the Universally Composable Cryptographic Library
	Introduction
	Related Work
	UC Cryptographic Library
	Adding Threshold Homomorphic Encryption
	The Cryptographic Primitives
	Ideal Library
	Real (or Hybrid) Library

	The Simulator
	Example: A Simple e-Voting System
	Security of the e-Voting System
	Proof for the Ideal Setting

	Discussion and Conclusions
	References

	Universally Composable Security Analysis of TLS
	Introduction
	Preliminaries
	Notations
	Cryptographic Building Blocks and Their Constructions

	Transport Layer Security
	TLS in a Nutshell
	Roadmap for the Modular Analysis of TLS

	Analysis of TLS Subroutines
	TLS UC-Realizes Secure Communication Sessions
	Universal Secure Communication Sessions
	Protocol \TLSc Realizes \Fscs

	Conclusion
	References

	Round Optimal Universally Composable Oblivious Transfer Protocols
	Introduction
	This Paper

	Universally Composable Model
	Oblivious Double-Trapdoor Cryptosystem
	Oblivious Transfer Protocol
	Description of Protocol
	The Proof of Security

	Conclusion
	References

	Applications
	A Tamper-Evident Voting Machine Resistant to Covert Channels
	Introduction
	System Model
	Preliminaries
	The Proposed Voting Scheme
	Security Analysis and Discussions
	Conclusion
	References

	Self-healing Key Distribution with Revocation and Resistance to the Collusion Attack in Wireless Sensor Networks
	Introduction
	Related Work
	A Original Scheme and Two Attacks
	Review of R.Dutta’s Scheme
	Attack 1: Launched by Any User
	Attack 2: Launched by a Newly Joined User
	A Modified Scheme

	A New Self-healing Key Distribution with Revocation and Resistance to the Collusion Attack
	Security Model
	A New Self-healing Key Distribution with Revocation and Resistance to the Collusion Attack

	Analysis
	Self-healing Property
	Forward Secrecy
	Backward Secrecy
	Resistance to a Collusion Attack

	Efficiency Comparisons with Some Previous Schemes
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

