

Communications
in Computer and Information Science 18

Latifa Boursas Mark Carlson
Wolfgang Hommel Michelle Sibilla
Kes Wold (Eds.)

Systems and Virtualization
Management
Standards and New Technologies

Second International Workshop, SVM 2008
Munich, Germany, October 21-22, 2008
Proceedings

13

Volume Editors

Latifa Boursas
Wolfgang Hommel
Leibniz-Rechenzentrum (LRZ)
Boltzmannstraße 1, 85748 Garching, Germany
E-mail: {latifa.boursas, wolfgang.hommel}@lrz-muenchen.de

Mark Carlson
Sun Microsystems, Inc.
500 Eldorado Boulevard, Broomfield, CO 80021, USA
E-mail: mark.carlson@sun.com

Michelle Sibilla
IRIT, Université Paul Sabatier
118 Route de Narbonne, 31062 Toulouse CEDEX 9, France
E-mail: sibilla@irit.fr

Kes Wold
Distributed Management Task Force, Inc.
1001 SW 5th Avenue, Suite 1100, Portland, OR 97204, USA
E-mail: kes@woldconsulting.com

Library of Congress Control Number: 2008937459

CR Subject Classification (1998): D.4, C.3, F.1, H.5, C.2

ISSN 1865-0929
ISBN-10 3-540-88707-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-88707-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12548743 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of the Second International DMTF Acad-
emic Alliance Workshop on Systems and Virtualization Management: Standards
and New Technologies (SVM 2008) held in Munich, Germany, during October
21–22, 2008.

The SVM 2008 proceedings are intended for use by students of systems and
virtualization management. The reader is presumed to have a basic knowledge
of systems management technologies and standards at the level provided, for
example, the Common Information Model (CIM) standard for modeling man-
agement resources. The student of systems management will find here material
that could be included in an advanced study program. These proceedings should
furthermore allow students to acquire an appreciation of the breadth and variety
of systems and virtualization management research.

The proceedings also illuminate related standards and research issues, an-
swering questions such as: what are the implications of virtualization for distrib-
uted systems management, which advances in information models and protocols
aid in managing virtualization, what new problems will we incur when managing
virtualized systems and services, and how might management itself benefit from
virtualization? Topics related to managing distributed systems, virtualization of
distributed resources/services and work in management standardization are also
highlighted.

There were 15 regular paper submissions. These went through an active re-
view process, with each submission reviewed by at least three members of the
Program Committee. We also sought external reviews from experts in certain
areas. All these inputs were used by the Program Committee in selecting a final
program with 13 regular papers.

We gratefully acknowledge the support of the Leibniz-Rechenzentrum der
Bayerischen Akademie der Wissenschaften (LRZ), headed by Prof. Dr. Heinz-
Gerd Hegering, through the provision of facilities and other resources, and our
sponsor, the Distributed Management Task Force (DMTF).

Many individuals were very generous with their time and expertise. We thank
the Program Committee and the external reviewers for their efforts in the assess-
ment and evaluation needed to put together the technical program. We thank
Dr. Wolfgang Hommel for his support in planning the logistics and his advice
on organizing the conference.

We would especially like to thank the members of the MNM-Team for the
local organization. We thank the system developers for creating and supporting

VI Preface

the invaluable EasyChair conference management system. Finally, we thank
Springer for providing complimentary copies of the proceedings of SVM 2008.

October 2008 Latifa Boursas
Mark Carlson

Wolfgang Hommel
Michelle Sibilla

Kes Wold

Organization

The SVM 2008 workshop was organized by the DMTF Academic Alliance in co-
operation with the Leibniz Super Comupting Centre and took place in Garching
near Munich in Germany.

Organization Committee

Latifa Boursas Munich University of Technology, Germany
Mark Carlson Sun Microsystems, USA
Jeff Hilland Hewlett-Packard Company, USA
Wolfgang Hommel Leibniz Supercomputing Centre, Germany
Michelle Sibilla Paul Sabatier University, France
Ellen Stokes IBM, USA
Kes Wold Wold Consulting, USA

Program Committee

Nazim Agoulmine University of Evry Val d’Essone, France
Latifa Boursas Munich University of Technology, Germany
Mark Carlson Sun Microsystems, Inc., USA
Vitalian A. Danciu Ludwig Maximilians University, Germany
Olivier Festor INRIA Lorraine, France
Heinz-Gerd Hegering Leibniz Supercomputing Centre, Germany
Wolfgang Hommel Leibniz Supercomputing Centre, Germany
Jorge E. López de Vergara Autonomous University of Madrid, Spain
Andreas Maier IBM, Germany
Gregorio Martinez University of Murcia (UMU), Spain
Jishnu Mukerji Hewlett Packard, USA
Michelle Sibilla Paul Sabatier University, France
Carlos Westphall UFSC, Brazil

Referees

Javier Aracil
Walter Fuertes
Francisco Gomez Arribas

Sponsoring Institutions

The Distributed Management Task Force (DMTF).

Table of Contents

Systems and Virtualization Management: Standards
and New Technologies

Virtual Execution Environments and the Negotiation of Service Level
Agreements in Grid Systems . 1

Dominic Battré, Matthias Hovestadt, Axel Keller, Odej Kao, and
Kerstin Voss

An Extension of XACML to Improve the Performance of Decision
Making Processes When Dealing with Stable Conditions 13

Romain Laborde and Thierry Desprats

LVD: A Lightweight Virtual Desktop Management Architecture 25
Xiaofei Liao, Xianjie Xiong, Hai Jin, and Liting Hu

CIM-Based Resource Information Management for Integrated Access
Control Manager . 37

Fumio Machida, Kumiko Tadano, Masahiro Kawato,
Takayuki Ishikawa, Yoichiro Morita, and Masayuki Nakae

Scenario-Based Distributed Virtualization Management Architecture
for Multi-host Environments . 49

Fermı́n Galán, David Fernández, Miguel Ferrer, and
Francisco J. Mart́ın

Web Service Distributed Management Framework for Autonomic
Server Virtualization . 61

Bogdan Solomon, Dan Ionescu, Marin Litoiu, and Mircea Mihaescu

Virtual System Environments . 72
Geoffroy Vallée, Thomas Naughton, Hong Ong, Anand Tikotekar,
Christian Engelmann, Wesley Bland, Ferrol Aderholdt, and
Stephen L. Scott

Authentication in Virtual Organizations: A Reputation Based PKI
Interconnection Model . 84

Ahmad Samer Wazan, Romain Laborde, Francois Barrere, and
AbdelMalek Benzekri

Business Service Management in a Service Oriented, Virtualized
World . 96

Vincent Kowalski

X Table of Contents

A Control of a Mono and Multi Scale Measurement of a Grid 102
Imene Elloumi, Sahobimaholy Ravelomanana, Manel Jelliti,
Michelle Sibilla, and Thierry Desprats

A Resource Management Mechanism and Its Implementation for
Virtual Machines . 113

Zhigang Wang, Chuliang Weng, Yu Wang, and Minglu Li

VNEC - A Virtual Network Experiment Controller 119
François Gagnon, Tomas Dej, and Babak Esfandiari

Update on System Virtualization Management . 125
Michael Johanssen

Author Index . 135

Virtual Execution Environments and

the Negotiation of Service Level Agreements
in Grid Systems�

Dominic Battré1, Matthias Hovestadt1, Axel Keller2, Odej Kao1,
and Kerstin Voss2

1 Technische Universität Berlin, Germany
{battre,maho,okao}@cs.tu-berlin.de

2 Paderborn Center for Parallel Computing, Universität Paderborn, Germany
{kel,kerstinv}@uni-paderborn.de

Abstract. Service Level Agreements (SLAs) have focal importance if
the commercial customer should be attracted to the Grid. An SLA-aware
resource management system has already been realize, able to fulfill the
SLA of jobs even in the case of resource failures. For this, it is able
to migrate checkpointed jobs over the Grid. At this, virtual execution
environments allow to increase the number of potential migration tar-
gets significantly. In this paper we outline the concept of such virtual
execution environments and focus on the SLA negotiation aspects.

1 Introduction

At least in the academic domain, Grid systems evolved as a commonly accepted
working instrument. Universities are providing their resources to Grid systems,
enabling researchers to easily access them, e. g. for executing compute intensive
simulations. In the commercial domain however, the Grid systems are not widely
used yet, at best limited to small island solutions.

The commercial potential of Grid computing however has been recognized al-
ready in the early days of Grid computing. Firstly, companies like IBM, Hewlett
Packard, and Microsoft investing noticeable efforts on research and the support
of research communities. Secondly, already in 2003 the European Commission
(EC) convened a group of experts to clarify the demands of future Grid sys-
tems and which properties and capabilities are missing in current existing Grid
infrastructures. Their work resulted in the idea of the Next Generation Grid
(NGG) [1,2,3]. This work clearly identified that guaranteed provision of relia-
bility, transparency, and Quality of Service (QoS) is an important demand for
successfully commercialize future Grid systems. In particular, commercial users
will not use a Grid system for computing business critical jobs if it is operating
on the best-effort approach only.
� This work has been partially supported by the EU within the 6th Framework Pro-

gramme under contract IST-031772 “Advanced Risk Assessment and Management
for Trustable Grids” (AssessGrid).

L. Boursas et al. (Eds.): SVM 2008, CCIS 18, pp. 1–12, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 D. Battré et al.

Service level agreements (SLAs) are powerful instruments for describing the
obligations and expectations of customer and provider within a commercial busi-
ness relationship [4], e. g. specifying the QoS requirement profile of a job. Modern
resource management systems (RMS) are working on the best-effort approach,
not giving any guarantees on job completion to the user. Since these RMS are
offering their resources to Grid systems, Grid middleware has only limited means
in fulfilling all terms of negotiated SLAs.

The EC-funded project HPC4U [5] focused on closing this gap between the
requirements of SLA-enabled Grid middleware and the capabilities of RMS,
started working on an SLA-aware RMS, utilizing the mechanisms of process-,
storage- and network-subsystems for realizing application-transparent fault tol-
erance. The project finished successfully in 2008, having an SLA-aware Grid
fabric as its major outcome. The core of this Grid fabric is an SLA-aware RMS,
able to fulfill the terms of negotiated SLAs also in the case of resource failures.
For this, the RMS is acting as an active Grid resource, migrating jobs affected
by outages transparently to other Grid resources, as long as these Grid providers
agree on all terms of the SLA bound to the job to be migrated.

This system is using the Globus toolkit as Grid middleware, fully functional,
and available as open source. However, the system currently requires a target
resource which is very similar to the source resource, since the project uses kernel-
level checkpointing mechanisms. Due to the heterogeneous nature of Grids, only
a small subset of resources are eligible migration targets. Increasing the number
of potential migration targets would directly increase the level of fault tolerance
and reliability.

In this scope we introduced the concept of virtual execution environments.
Instead of executing the compute job directly on the compute node of a clus-
ter system, a virtualized environment is established which complies to the re-
quirements of the job to be migrated. In this paper, we will first highlight the
architecture of the HPC4U cluster system and outline the concept of virtual
execution environments. In the main part we will describe how the requirements
on these environments for the particular migration subject can be integrated
into the SLA negotiation process. The paper ends with an overview about re-
lated work and a short conclusion.

2 SLA-Aware Resource Management

For the realization of an SLA-aware RMS, the project decided to use the
planning-based RMS OpenCCS [6]. A new scheduler has been implemented,
assigning jobs to resources according to their SLAs. Since the RMS has to guar-
antee the SLA-compliance also in case of resource outages, the HPC4U system
does not only encompass the OpenCCS RMS, but also subsystems providing
QoS and fault tolerance on storage, network, and process layer.

At this, checkpointing of running applications is the core functionality for
providing fault tolerance. Without any checkpoints available, the results of a
running application are lost in case of resource outages. In the light of long

Virtual Execution Environments 3

running jobs, potentially running over weeks, using numerous computers of a
cluster in parallel, the total number of lost compute hours can be immense.
Therefore the RMS will regularly checkpoint the running application (e. g. by
creating one checkpoint every 60 minutes). In case of a resource outage, the
application can be restarted from the latest checkpointed state.

Since the checkpoint dataset must encompass not only the process memory
and state, but also the network and storage, an orchestrated operation of all
subsystems is mandatory to ensure consistency. In this process, the process sub-
system first stops the running application, so that the state of the application
remains fixed, not changing over the execution of the checkpoint operation. Now,
the process subsystem creates a kernel-level process checkpoint of the running
application. In case of MPI-parallel applications, this checkpoint consists of an
image of all parallel running processes as well as the network state. After this, the
application’s storage partition is saved, so that a consistent image of the appli-
cation environment has been generated. Finally, the process subsystem unblocks
the application, so that its computation resumes.

This mechanism is fully implemented and operational. In the verification and
validation tests of the HPC4U project it has proven to be applicable also to
commercial applications, where the user may not recompile or relink the code.
In fact, the entire checkpointing remains transparent for the user who does not
have to modify his application nor the way of starting it.

This way of checkpointing an application might be problematic for applica-
tions communicating with cluster-external entities. Since the application remains
stopped during the entire checkpointing process, it may not communicate with
external processes. Depending on the duration of the checkpoint operation, this
may result in timeout errors. However, the typical application targeted with
this mechanism only communication within the cluster, e. g. in case of parallel
applications.

2.1 Migration and Compatibility Profile

In contrast to application level checkpointing, a kernel-level checkpointed process
can not be restarted on arbitrary target systems. Beside high level characteristics
like operating system or processor type, the target machine has to be compatible
with regard to versions of installed libraries and tools. When a checkpointed job
is restarted on an incompatible resource, the job would directly crash at best.
In the worst case, the application would resume its computation but return
incorrect results.

An obvious way to face this situation and ensure a successful restart on the
target machine is to request identical machines. At this, the hardware of a suit-
able target machine must be identical to the source machine. The same holds
for the software installation. Both machines have to have identical operating
systems with identical upgrade levels (e. g. RedHat AS4, upgrade 2). These re-
quirements are fulfilled as long as the job is restarted within the same cluster
system, since such clusters are usually homogeneously configured.

4 D. Battré et al.

However, the HPC4U system may not only restart the job on the same clus-
ter, but on any cluster within the same administrative domain or even on any
resource within the Grid. In the case of restarting within the same administra-
tive domain, compatibility can be configured statically (e. g. jobs of cluster A
may be restarted on cluster B), because administrators know about the partic-
ular configuration. When migrating to Grid resources, a dynamic mechanism is
mandatory.

The HPC4U project introduced the compatibility profile, holding compatibil-
ity requirements of the checkpoint dataset on the target resource. This ranges
from high-level requirements like operating systems, processor architecture, or
available main memory, up to low-level requirements like version information of
loaded system libraries. When migrating over the Grid, this profile is part of the
SLA negotiation process. Hence, if the remote system accepts the SLA request,
it confirms to provide a resource compatible to the checkpoint dataset.

3 Virtual Execution Environments

The previous section underlined the difficulties of retrieving compatible resources
for migration within Grid systems. Only if the target resource matches the com-
patibility profile, the checkpointed job may be migrated.

It is common practise that Grid resources are operated under a decentral-
ized autonomy of local resource providers. Hence, local administrators decide on
the operating system to be installed on compute resources. Moreover, is is the
responsibility of local resource administrators to install updates, e. g. applying
available patches to the local compute node environment. This local autonomy
is the root cause of the difficulty of finding compatible resources. Since each
difference in the operating system patchlevel impacts the compatibility for the
migration process, it would be beneficial to have commonly accepted and avail-
able execution environments, guaranteeing the compatibility regarding paths and
libraries.

This goal can be achieved by using virtualization technology on the compute
resources. Instead of executing applications directly on a compute node, a virtual
system is started first. Within this virtual system arbitrary operating systems
can be started. The application then is started within this virtual system envi-
ronment. This way, it is possible to start the application within a well-defined
system environment.

The concept of virtual execution environments (VEEs) has been implemented
in a first version, allowing to execute a job within a virtualized system environ-
ment on a compute node. The realization implies a number of additional re-
quirements for the RMS, particularly for the daemons running on the compute
nodes, where the virtual machine is to be established at runtime. To limit the
impact on the overall system, a major design principle was to keep the existence
of virtualized components as transparent as possible.

On the compute node we have OpenCCS daemons responsible for managing
the nodes and executing jobs. The central component here is the Node Session

Virtual Execution Environments 5

Manager (NSM), building a linking element between the daemons running on the
front-end node and the compute node. It does not only configure and monitor
the node, it also invokes the Execution Manager (EM) daemon, if an application
needs to be started. This EM then runs with user privileges and executes the
commands specified by the user.

For achieving VEE transparency, the tasks of the NSM have been enhanced
to handle VEE-related jobs. This VEE-enabled NSM is called NSM+. The first
task of the NSM+ in case of VEE-bound jobs is the establishment of the virtual
machine on the compute node. For this it invokes commands specified in the
OpenCCS configuration file. In the scope of this implementation, the Xen system
has been used. Hence, the NSM+ running in Dom0 starts the image of the
specified VEE as DomU.

Once the DomU has started, a second NSM+ is started within the DomU,
responsible for performing all classic NSM tasks like node configuration or EM
invocation. However, the NSM+ running in DomU does not communicate with
other OpenCCS daemons directly, but uses the NSM+ running in Dom0 as
communication proxy. Hence, the NSM+ running in Dom0 is called proxy-mode
NSM+, whereas the NSM+ running in DomU is called VM-mode NSM+.

4 SLA Negotiation Aspects

The Grid communityhas identified the need for a standard forSLA description and
negotiation.This led to thedevelopmentofWS-Agreement/-Negotiation [7].These
upcoming standards rely on the Web Services Resource Framework (WSRF).

This WS-Agreement protocol now has been extended to allow flexible SLA
negotiation schemes between contractors and service providers. Briefly, modi-
fications consist in the addition of one operation: getQuote(). This is only an
extension, which allows to change the original single-round acceptance model
to a two-phase acceptance model. This introduce the negotiation possibility, in
other words the bargaining capability.

The protocol implemented within the EC-funded AssessGrid project, used
for realizing the migration using virtual execution environments, is a two-phase
commit negotiation. The user first requests a template from the provider, which
gives the provider capabilities. The user then describes his specific needs in
a quote request. The quote sent by the provider gives the offer made by the
provider, based on the request made by the user. The user is then able to accept
this quote, and sign it. The SLA contract is then signed if the provider accepts
the user’s signed SLA.

4.1 Original WS-Agreement Protocol

The Web Services Agreement Specification (WS-Agreement, or WSAG for short)
was produced by the GRAAP working group in the Open Grid Forum (OGF).
The version on which is based the Assessgrid negotiation is the draft version of
April 2007. The WS-Agreement protocol is based on a single round offer, accept

6 D. Battré et al.

Fig. 1. Negotiation Sequence Diagram

message exchange between the negotiating parties. The basic synchronous wsag:
CreateAgreement() operation directly captures this exchange, as can be seen in
the following diagram:

The WS-Agreement specification supports additional asynchronous patterns,
but the semantics of this abstract exchange is always the same: the initiator
sends an obligating offer, with explicit terms of agreement, which the responder
may accept or reject by unilateral decision. The agreement relationship is in
place as soon as the responder decides to accept.

The agreement initiator can operate either on behalf of a service consumer or
a service provider. As depicted in the sequence diagram in figure 1 , the initiator
first requests the SLA template from the agreement responder querying a property
of the AgreementFactory WS resource - calling getResourceProperty(). Then the
initiator fills in the template taking into account the corresponding creation con-
straints. The result is the SLA Offer, that is sent by the initiator to the responder
by calling createAgreement() operation. Now the responder is free to accept the
offer (by returning an EPR to an Agreement resource) or to reject it by sending
a fault response. The initiator is now bound to the agreement and he can inspect
its properties. Considering the most usual case in which the initiator is the service
consumer, a user could start using the service once the service state is ready.

4.2 Protocol Extension

The effort made by the AssessGrid team to develop a flexible and robust
SLA negotiation protocol, can be seen as a continuation of work within the

Virtual Execution Environments 7

Fig. 2. Enhanced Negotiation Sequence Diagram

WS-Agreement specification. The extended protocol answers the requirements
where a negotiation before a final agreement is needed.

The agreement mechanism within the WS-Agreement draft specification does
not meet the negotiation requirement. The main drawback comes from the single
round offer, accept agreement mechanism.This has an important consequence:
there is no possibility for a service consumer to request offers from different
providers so that he can choose the best one among them. In order to do so, he
would have to become the agreement initiator and would have to call createA-
greement() from several providers to propose some SLA to each. The problem
is that he would then be bound to every provider that decides to accept. The
concept of SLA quote does not exist in the WS-Agreement draft specification, it
is not possible for a consumer to simply ask a provider what his terms would be
without being committed to the provider by this action. In the real word, nego-
tiation processes usually begin by the initiator asking non-committing questions
to the other party.

8 D. Battré et al.

The solution proposed has been to introduce the concept of SLA quote into
the agreement mechanism. The concept of this enhancement is depicted in
figure 2. The getQuotes() methods offers the end-user the possibilty to have
a first evaluation of a request for service. Based on this first quote, the user can
then decide to accept it using the createAgreement() method. If the provider’s
quote is not satisfactory, a new quote can be requested by entering a new quote
request, with slightly different parameters.

4.3 Negotiation on Virtual Execution Environments

The central component of this new infrastructure is a central system image repos-
itory, holding system images of different operating systems, e. g. commonly used
Linux distributions in different versions and different patchlevels (cf. figure 3).
Each of these images has a unique ID. The contents of this image repository can
be published within the Grid using well established mechanisms like resource
information catalogues. Since these information services are public, not only a
single provider is able to access the contents, but all Grid stakeholders.

Already at SLA negotiation time, the service customer now has the oppor-
tunity to specify a system image to be established at execution time, instead
of the current practise of not knowing if the job will be executed on an up-to-
date Debian system or an outdated SuSE. Hence, the customer can test his job
in the specified environment by establishing the image from the system image
repository locally, being sure that the job will succeed and return the expected
results.

Providers will typically only support a subset of images from the image repos-
itory, e. g. images of distributions that are known by the system administrators,
or that have proven to run stable on the compute resources. Providers are free in
the selection of supported system images, which are then published in the Grid
resource information catalogue.

Fig. 3. Virtual System Repository

Virtual Execution Environments 9

At level of Grid middleware the customer requested virtual system ID has
to be matched against the provider supported characteristics of their resources,
like it is already common practise with all other system parameters like number
of nodes or amount of main memory. Hence, currently existing matching mech-
anisms, e. g. used by Grid broker systems, can be used for also matching the
virtual system IDs.

If a provider agrees on an SLA specifying a virtual system image ID, it has to
establish the specified system image at runtime on the compute node and then
execute the user job within the specified environment. If the customer did not
specify any image ID, the provider may choose a default virtual system to be
executed on the compute node. In this case, the customer does not have any
knowledge about the system that is used for executing his job, but this only
corresponds to the current situation.

At runtime, the virtual system is then established on the compute node,
so that all job checkpoints can be executed in a well defined and well known
environment. Hence, all dependencies of the checkpointed job on the system
environment are known, since the system has been executed in the specified
virtual environment.

This is particularly beneficial for the migration process, since it is no longer
mandatory to generate a compatibility profile, as explained in the previous sec-
tion. Instead of querying for libraries or library versions, the resource provider
is able to query for resources that can execute the particular virtual system ID.
Hence, instead of describing requirements on a compatible environment, now the
compatible environment can be requested directly.

In case of a resource failure, the provider first tries to identify job to be
migrated. The goal is to release them from the current schedule, so that the
remaining resources suffice the requirements of the remaining jobs, so that their
SLAs can be fulfilled. Regarding the SLA-bound jobs to be migrated, the terms
of their SLAs are subject of the SLA negotiation process between the migrating
provider and the provider taking over the job.

Particularly this virtual system ID is part of the SLA negotiation process of
the source and the target resource provider, which is providing the migration
target resources. If the target resource provider agrees on the SLA, it agrees on
establishing the specified virtual system on the compute node at runtime, where
the checkpointed job is to be resumed. This mechanism also applies to all further
migration operations of this job, e. g. if the new resource provider again has to
query the Grid for backup resources due to resource failures. At the bottom line,
the job is only migrated, if the target provider agrees on all terms, so that -
thanks to the migration capabilities - all SLAs of all jobs are fulfilled.

In practise, resource failures in a cluster system typically affect more than
only one single job, making the handling of multiple affected jobs necessary.
However, it is not necessarily the best choice to migrate the job that has been
directly affected by the resource outage (e. g. the time between job completion
and SLA-specified deadline does not allow migration). Instead, the system should

10 D. Battré et al.

pay attention to factors like revenue or remaining time between job completion
and deadline.

The scheduler of the RMS takes these factors as heuristic for selecting an
order to remove jobs from the system, which overlap with the jobs affected by
the outage (including the job itself). As long as the revenue loss caused by
migration is smaller than the penalty which has to be paid for violating the SLA
of the failure affected job, the job qualifies for the migration candidate set, if the
RMS is also able to get an SLA offer of some other provider.

If a set has been identified, which migration allows the fulfillment of the SLA
of the affected job, the RMS tries to get SLA offers from other providers. If this
is successful, the migration can be initiated. Otherwise the RMS has to remove
the respective jobs from the set, continuing with the set generation. If no set can
be found, the already agreed SLA offers are canceled.

5 Related Work

In [2], important requirements for the Next Generation Grid (NGG) were de-
scribed, i. e. Grids to be successfully deployed in commercial environments.
Mandatory prerequisites of such Grids are flexibility, transparency, reliability,
and the application of SLAs to guarantee a negotiated QoS level. The Grid
community has identified the need for a standard for SLA description and nego-
tiation. This led to the development of WS-Agreement [7].

The usage of virtualization technology at provider level within RMSs has
been described in [8]. Here the Xen virtual machine monitor is used for increas-
ing system utilization and response time of a cluster system operated with the
Sun Grid Engine RMS. Long running sequential jobs are executed in a virtual-
ized environment and suspended for executing short running parallel jobs. This
work underlined the general applicability of virtualization technology on com-
pute nodes, but did not address fault tolerance nor the execution of parallel
applications within virtual environments.

The benefits of using virtual machines for running applications in the Grid
had been addressed from the perspective of virtual organizations in [9]. Their im-
plementation uses VM-based workspaces configured with Xen hypervisors [10],
which offer a client to create and manage other virtual machines. VM images are
configured for specific applications and deployed as Edge Services. By using the
VOMS credentials of a VO administrator, deployed VM images can be accessed
and applications of the end-user can be executed without additional configura-
tion effort. This work has a similar approach as our developments since it aims
to increase the flexibility of the resource usage and also considers the negotia-
tion of resource requirements. However, the capability of using fault-tolerance
mechanisms for the provisioning of SLAs is left out of consideration.

The deployment of a configured VM on a hypervisor has no significant over-
head since it can be performed in less than a second [11] which is comparable
to the overhead of Grid tools. The deployment can be realized by using pre-
configured VM images or refining configuration which influences the flexibility

Virtual Execution Environments 11

and deployment time. In [12] an XML description is presented which should
balance both aspects. Here, the flexibility is pointed out as an important issue
if brokers configure the workspaces according to end-users requirements. Our
system uses pre-configured VM images. However, generally no constraints exist
concerning the approach for the description and deployment of the workspaces.

6 Conclusion

Introducing SLA mechanisms to all levels of the Grid is a prerequisite for at-
tracting the commercial user to use Grid environments. For the level of Grid
fabric, the project HPC4U realized an RMS able to negotiate on SLAs, ensuring
their fulfillment also in the case of resource outages by migrating jobs even to
resources over the Grid. Since kernel-level checkpointing is used for realizing ap-
plication transparent fault tolerance mechanisms, the target migration resource
has to be highly compatible to the source resource. Due to the heterogeneous
nature of the Grid, this requirement significantly limits the number of available
spare resources.

The concept of virtual execution environments allows to execute a job in an
environment, which complies to all requirements of a job. As long as a provider is
able to execute a given virtual environment on the compute nodes of his cluster
system, the system qualified as potential migration target. This increases the
number of spare resources, thus also increasing the overall level of fault tolerance
and reliability.

The mechanisms presented in this paper preserve the local autonomy of re-
source administrators, who still can decide which virtual system should be sup-
ported. Moreover already available resource querying mechanisms within the
Grid can be used for finding resource providers supporting a specific virtual
execution environment. SLA negotiation mechanisms and resource scheduling
presented in this paper ensure that the migrated job successfully resumes at the
target resource, so that no SLA is violated.

The system described here has been implemented in the scope of the Assess-
Grid project. It uses the Globus toolkit and the OpenCCS resource manage-
ment system. Currently, virtual execution environments are defined statically at
provider level. In the next step, this static configuration will be superseded by
establishing image repositories at Grid middleware level.

References

1. Priol, T., Snelling, D.: Next Generation Grids: European Grids Research 2005-2010
(2003), ftp://ftp.cordis.lu/pub/ist/docs/ngg eg final.pdf

2. Jeffery, K.(ed.): Next Generation Grids 2: Requirements and Options for European
Grids Research 2005-2010 and Beyond (2004),
ftp://ftp.cordis.lu/pub/ist/docs/ngg2 eg final.pdf

3. De Roure, D.(ed.): Future for European Grids: GRIDs and Service Oriented Knowl-
edge Utilities. Technical report, Expert Group Report for the European Commis-
sion, Brussel (2006)

ftp://ftp.cordis.lu/pub/ist/docs/ngg_eg_final.pdf
ftp://ftp.cordis.lu/pub/ist/docs/ngg2_eg_final.pdf

12 D. Battré et al.

4. Sahai, A., Graupner, S., Machiraju, V., van Moorsel, A.: Specifying and Monitoring
Guarantees in Commercial Grids through SLA. Technical Report HPL-2002-324,
Internet Systems and Storage Laboratory, HP Laboratories Palo Alto (2002)

5. Highly Predictable Cluster for Internet-Grids (HPC4U), EU-funded project IST-
511531, http://www.hpc4u.org

6. Open Computing Center Software (OpenCCS), http://www.openccs.eu
7. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T.,

Pruyne, J., Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specifica-
tion (WS-Agreement) (2007), http://www.ogf.org/documents/GFD.107.pdf

8. Fallenbeck, N., Picht, H.J., Smith, M., Freisleben, B.: Xen and the Art of Cluster
Scheduling. In: Second International Workshop on Virtualization Technology in
Distributed Computing (VTDC 2006) (2006)

9. Freeman, T., Keahey, K., Foster, I.T., Rana, A., Sotomoayor, B., Wuerthwein, F.:
Division of labor: Tools for growing and scaling grids. In: Dan, A., Lamersdorf, W.
(eds.) ICSOC 2006. LNCS, vol. 4294, pp. 40–51. Springer, Heidelberg (2006)

10. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP 2003: Pro-
ceedings of the nineteenth ACM symposium on Operating systems principles, pp.
164–177. ACM, New York (2003)

11. Keahey, K., Foster, I., Freeman, T., Zhang, X., Galron, D.: Virtual workspaces in
the grid. In: 11th International Euro-Par Conference (2005)

12. Keahey, K., Foster, I., Freeman, T., Zhang, X.: Virtual workspaces: Achieving qual-
ity of service and quality of life in the grid. Sci. Program. 13(4), 265–275 (2005)

http://www.hpc4u.org
http://www.openccs.eu
http://www.ogf.org/documents/GFD.107.pdf

L. Boursas et al. (Eds.): SVM 2008, CCIS 18, pp. 13–24, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Extension of XACML to Improve
the Performance of Decision Making Processes

When Dealing with Stable Conditions

Romain Laborde and Thierry Desprats

IRIT UMR 5505, Université Paul Sabatier
118 route de Narbonne, 31062 Toulouse cedex 9, France

{laborde,desprats}@irit.fr

Abstract. XACML (eXtensible Access Control Markup Language) is an XML-
based language for access control that has been standardized by OASIS. In this
language, any entities involved in access control (i.e. users, resources, actions
and environment) are specified by a set of attributes. This specification also in-
cludes the description of an architecture that explains how the policy decision
point (PDP) retrieves the needed attributes values when it evaluates the policy
to take its authorization decision. In this paper, we show that retrieving attrib-
utes values using a synchronous method as it is stated in XACML specification
can be a bottleneck to the performance of the authorization decision making
process. Especially, it is true when getting an attribute value is long and when
the changing of this value doesn’t impact the policy result frequently. Thus, we
propose an improvement of the XACML architecture. It uses an asynchronous
approach that accelerates the decision making process when PDP deals with ex-
pressions that include such attributes. Experimental results prove the perform-
ance is improved.

Keywords: XACML – Policy based Management – Access Control.

1 Introduction

Today, resources and services are complex and heterogeneous. Users are changeable
and members of multiple organizations. To fit these requirements, access control
models and access control solutions have followed the evolution of the environment
to protect. Traditional Identity Based Access Control (IBAC) models [1] have been
replaced by new models like Role-based Access Control Models (RBAC) [2] and
more recently Attribute Based Access Control models (ABAC) [3]. Unlike IBAC and
RBAC, the ABAC model can define permissions based on just about any security
relevant characteristics of requestors, actions, resources, and environment, known as
attributes. This approach makes ABAC scalable and flexible and thus more suitable
for distributed, open systems that are identity-less like the Internet (where subjects are
identified by their characteristics, such as those substantiated by certificates).

XACML (eXtensible Access Control Markup Language) is an XML-based lan-
guage for access control that has been standardized by OASIS [4]. XACML policies

14 R. Laborde and T. Desprats

are ABAC-Based. XACML specification also includes the description of an architec-
ture that explains the attributes values are retrieved using a query/response approach
during the decision making process. This synchronous method is a bottleneck to the
performance of the authorization decision making process for attributes whose
process for retrieving the value is long and the changing of its value doesn’t impact
the policy evaluation frequently. We name stable conditions the policy conditions
whose results change rarely.

Thus, the XACML architecture should be improved in order to accelerate the deci-
sion making process when it evaluates these attributes. We build our approach on 1)
removing the stable conditions from the evaluated policy and 2) adding the ability to
adopt an event driven behaviour to XACML. The idea is to benefit from asynchro-
nous notification mechanisms to inform the decision making process the value of a
stable condition attribute has changed in such way the value of the associated stable
condition has also changed.

This paper extends the concepts introduced in [14]. Especially it refines the defini-
tion of stable conditions and provides a profile to identify them. In addition, it
proposes an experiment that proves this idea enhances the performance of the deci-
sion making process.

The rest of the paper is organized as follow. Section 2 introduces the XACML
policy language and its architecture. Section 3 presents a scenario that points out the
performance issue and provides a generic definition of stable conditions. Section 4
describes an enhancement of the XACML architecture to deal with stable conditions,
and then it presents our implementations of both synchronous and asynchronous
approaches for the scenario. Experiments prove the asynchronous approach is more
efficient for stable conditions. Finally, section 6 describes the related works and
section 7 concludes the paper.

2 XACML Standard Overview

XACML describes both an attribute-Based access control policy language and a re-
quest/response language. In addition to the request/response language, XACML
provides a management architecture that describes the different entities and their roles
related to the decision making process.

2.1 The XACML Policy Language

XACML policy language is used to describe general access control requirements in
term of constraints on attributes. Specifically, attributes could be any characteristics
of the subject, resource, action, or environment in which the access request is made.
Considering attributes allows the language to be very flexible. Moreover, XACML
language is extensible. It has standard extension points for defining new functions,
data types, combining logic, etc.

At the root of all XACML policies is a policy or a policy set. A policy set is a con-
tainer that can hold other policies or policy sets, as well as references to policies
found in remote locations. A policy represents a single access control policy,
expressed through a set of rules. Because a policy set or policy may contain multiple

 An Extension of XACML to Improve the Performance of Decision Making Process 15

policies or rules, each of which may evaluate to different access control decisions,
XACML needs some way of reconciling the decisions each makes. This is done
through a collection of combining algorithms. Each algorithm represents a different
way of combining multiple decisions into a single decision. XACML specification
provides six algorithms: Deny-overrides, Ordered-deny-overrides, Permit-overrides,
Ordered-permit-overrides, First-applicable and Only-one-applicable. It is also
possible to define new algorithms.

In order to make the search of the policy rule that applies to a given request more
efficient, XACML has introduced the concept of target. A target is basically a set of
simple requirements for the subject, resource and action that must be met for a policy
set, policy or rule. Targets use simple boolean functions that are fast to evaluate. For
example, a target can restrict the scope of a security policy to the service FTP only.
The idea behind this concept is to find out quickly the policy rule to evaluate in a
complex policy set or policy.

Once the request matches the targets of a policy set, one of its policies and rules to-
gether, the rule is evaluated. The core of a policy rule is its condition section which is a
boolean expression like the targets. However, conditions may include more complex
expressions on the attributes of subjects, resources, actions, and also environment.

Finally, the decision returned can be: (1) not applicable if no policy set or policy
applies; (2) indeterminate if there is an error or a missing attribute; (3) permit or deny
as specified in the applied rule. In addition to the authorization decision, the reply can
contain an obligation section. We don’t detail this feature that is out of the scope of
this article.

2.2 The XACML Management Architecture

XACML specification proposes also a management architecture that is described by a
data-flow model. A simplified version of this model is depicted in Fig. 2(a).

The model operates by the following steps: (1) Policy Administration Points (PAP)
write policies and policy sets and make them available to the Policy Decision Point
(PDP). These policies or policy sets represent the complete policy for a specified
target; (2) The access requester sends a request for access to the Policy Enforcement
Point (PEP); (3) The PEP sends the request for access to the context handler in its na-
tive request format, optionally including attributes of the subjects, resource, action
and environment; (4) The context handler constructs a standard XACML request con-
text and sends it to the PDP; (5) The PDP requests any additional subject, resource,
action and environment attributes from the context handler; (6) The context handler
requests the attributes from a Policy Information Point (PIP); (7) The PIP obtains the
requested attributes; (8) The PIP returns the requested attributes to the context
handler; (9) The context handler sends the requested attributes. The PDP evaluates the
policy; (10) The PDP returns the standard XACML response context (including the
authorization decision) to the context handler; (11) The context handler translates
the response context to the native response format of the PEP. The context handler
returns the response to the PEP that enforces the authorization decision.

The way the PDP gets the required attributes values when it evaluates the policy
can constitute a bottleneck to the performance of the decision making process. We
introduce an example to point out the issues.

16 R. Laborde and T. Desprats

3 Notion of Stable Condition

3.1 Example of a Scenario

In this example, we consider the management of a FTP server protected by an
XACML-Based access control solution as illustrated in Fig. 1. The FTP server holds
two directories: private and public. The private directory contains confidential files
about the organization whereas files that are accessible to everybody are stored in the
public directory.

Fig. 1. Architecture of the example

The policy states that users with role “corporate” can access to any files in the
private directory. Files in the public directory can be accessed by anybody unless the
network is too busy, which means the bandwidth use rate on the edge router is greater
than 60%. This last constraint protects the network from the congestion in order to en-
sure people from the organization to be able to access any files in the private directory
at any time. The used XACML policy is described in [14].

The edge router hosts an SNMP agent that provides the bandwidth rate. In order to
simplify our example, we consider that there is a management object that carries this
value. Actually, this is not true in most cases and the standard Management Informa-
tion Bases (MIB) imply the SNMP manager to send several requests to calculate this
value [5].

Considering the XACML dataflow model and mainly steps 5 to 10, every time a
user accesses any file in the public directory, the context handler needs to ask the PIP
the value of the bandwidth use rate. The PIP, which also acts the role of SNMP

 An Extension of XACML to Improve the Performance of Decision Making Process 17

manager, gets this value by sending a message SNMP GET-REQUEST. When the
SNMP agent receives the request, it looks in its MIBs and returns the value through a
message SNMP GET-RESPONSE. Then, the PIP can reply to the context handler that
can provide the attribute to the PDP. Now the PDP can evaluate the policy.

The main issue is this process consumes both time and network bandwidth. In
addition, the network is busy being an exceptional event emphasizes the uselessness
of systematically evaluating the bandwidth use rate. The next section analyzes the
characteristics of such kind of attributes.

3.2 Definitions

As the example above shows, it is not necessary to evaluate each time if the band-
width use rate is greater than 60% because this state should be exceptional. We name
stable conditions this kind of constraints.

Definition 1: A stable condition can be viewed as an expression that always returns
the same result during a given period considered to be long.

In our example, the condition “the bandwidth use rate is less than 60%” is mostly
always true. Another example, which is more common, could be “the current time
should be between 7:00 and 19:00”. This example is less demonstrative because the
requesting process is faster. This comes from the current time value is given by a
process running on the same machine as the XACML access control solution. But,
like the bandwidth example, this expression returns always true from 7:00 until 19:00
and always false between 19:00 and 7:00.

How to identify/characterize a stable condition? First, we define intrinsic attributes
of request as the attributes sent by the PEP to the Context Handler in an authorization
request. Authorization requests contain at least attributes about the requesting subject,
the target resources and the planed action. In our example, the role of the user, the
name of the resource and the name of the action are intrinsic attributes. Based on this
definition, we characterize a stable condition as:

Definition 2: A stable condition is an expression where every argument does not di-
rectly or indirectly depend on the value of one of the intrinsic attributes of the request.

A condition has to satisfy both definitions 1 and 2 to be considered as stable.
Definition 2 implies that a stable condition can contain only environmental attrib-

utes. Any subject attribute that is not present in a PEP’s request should be retrieved
using one of the subject attribute inside the request, which means a subject attribute
depends on the value of an intrinsic attribute. The same reasoning can be applied to
resources and actions attributes.

As a consequence, a stable condition can occur only inside a XACML condition
element because XACML target elements only consider subject, resource and action
attributes.

We call eligible stable condition a condition that satisfies definition 2. In addition
to this static characteristic, definition 1 implies the analysis of the successive results
returned by eligible stable conditions evaluations to check their invariance.

18 R. Laborde and T. Desprats

4 XACML Extensions

4.1 Proposed Architecture

The evaluation of stable conditions being useless, we propose to enhance the XACML
framework in such a way stable conditions are considered only when it’s necessary.
In addition, we want enhanced XACML systems to be still compliant with the
original XACML specification.

Our idea is: (1) remove stable conditions from the policy evaluated by the PDP; (2)
and modify this policy according the changes of stable conditions values.

Let R be a policy rule that includes a stable condition C. Let R-True (resp. R-False)
be rule R without C when C returns true (resp. false). For example, rule PublicAccess
will be divided into rules PublicAccess-True when the network is operational and
PublicAccess-False when it is congested. See [14] for these rules.

In reaction to this event, the PIP will reflect the stable condition changing within
the XACML framework by alerting the PAP (See NotificationMessage in Fig. 3),
which is the entity responsible of the policy administration. The PAP should be able
to dynamically modify of the rule(s) (R-True into R-False or vice-versa) concerned by
this changing. The PAP stores both R-True and R-False. It can also read a configura-
tion file that indicates what rule(s) should be changed for each notification message.

In order to make the PDP switches R-True to R-False (and vice-versa), we add
XACML the ability to adopt an event driven behavior. The idea is to benefit from
asynchronous notification mechanisms to deal with management of stable conditions.

First, we make the PIP being able to be notified by some environment attribute
value providers. It can receive notification messages that inform it the value of a
stable condition attribute has changed in such way the value of the associated stable
condition has also changed.

Fig. 2. (a) Simplified XACML data flow model (b) Proposed architecture

This new architecture allows the PDP to use either R-True or either R-False during
policy evaluation without neither having to consider C nor having – a fortiori - to
retrieve the values of the stable condition attributes in C as it should have achieved in
the case of R evaluation. The decision to use either R-True or R-False is dynamically
driven by the significant changes of the stable condition attribute values. In Fig. 2.(b)

 An Extension of XACML to Improve the Performance of Decision Making Process 19

we show the impacts of our proposition on the XACML standard framework are lim-
ited. Classical entities behaviors and interactions between them are not modified. The
behavior of both PAP and PIP has been enhanced without enabling their standard ac-
tivities. The OASIS standard roles of management entities are conserved. The PIP is
still acting as an information collector, and the PAP as the policy administration point.

Initially, the PAP sets the PDP with a policy that includes R-True or R-False de-
pending on what the value is when the status of the system is operational. The PIP has
subscribed to a trusted Environment Attribute Provider (EAP) its interest to be noti-
fied when C is changing. The PIP is listening for relevant notification messages
issued from the EAP. When such a notification is received, the PIP builds a specific
XACML-based message mentioning the C condition and its current value. This mes-
sage is then sent to the PAP. This latter evaluates the value of the condition. If the
value is false, it changes the current policy by using the R-False rule. When it is true,
R-True is loaded. Note that during this process, no synchronous interaction is
achieved between the XACML framework and the EAP concerned by the stable con-
dition attributes. The evaluation process concerning the non stable condition attributes
is achieved in the standard way.

4.2 Description of the Implementations

In order to prove our approach is more efficient, we have implemented two prototypes
for the scenario described in section 3 using the synchronous and the asynchronous
methods. Our testing environment is the following one:

• For the edge router, a PC with a Pentium Core 2 Duo 2.13GHz, 1Gbyte RAM and
Linux Kubuntu DAPPER 6.06.1 LTS. We use NET-SNMP version 5.2.1.2
(http://net-snmp.sourceforge.net/) that provides an SNMP agent and a command
line tool to send SNMP traps.

• For the FTP server, is a PC with a Pentium Core 2 Duo 1.66 GHz, 1Gbyte RAM
and Windows XP Pro. We use the sun’s XACML implementation version 1.2 (
http://sunxacml.sourceforge.net/) that provides an XACML PDP and also a java
API for implementing PEPs, PIPs and PAPs. In addition, we use the java API
SNMP4J version 1.8.2 (http://www.snmp4j.org/) to implement the SNMP client
and the SNMP trap server.

• For the network, Ethernet 100Mbps network. The router is connected to the FTP
server using a switch (there is no router between them).

Prototype 1: The Basic XACML Architecture
The architecture of the first prototype is described in Fig. 1. Each time any one wants
to access the public directory, the PDP asks the specific PIP to request the MIB value
of the current bandwidth rate. Because NET-SNMP only provides the standard MIB
we have simulated it by implementing a PIP that only requests the IF-MIB::ifInOctets
MIB object (i.e. the number of bytes in the input interface). We suggest to read [5] to
get the real process for calculating the bandwidth value. When IF-MIB::ifInOctets
modulo 100 is less than 90, the PIP responds a value less than 60 else it sends a value
bigger than 60. Finally, the PDP evaluates the policy.

20 R. Laborde and T. Desprats

Internet
Internal
Network

SNMP
Agent

Secured
SNMPv3

Trap

Router

Corporate

Public

Notification
aware

PIP
Validated
SNMPv3

Trap

Notification
aware PAP

Thread

Notification that
informs the PAP on

usedBW>60%

PDP

Modification of Rule:
PublicAccess

FTP Server

SNMP
Trap

Server

<xs:element name="NotificationMessage" type="NotificationMessageType"/>
<xs:complexType name=" NotificationMessageType ">
<xs:attribute name="StableConditionID" type="xs:anyURI" use="required"/>
<xs:attribute name="Value" type="xs:string" use="required"/>
</xs:complexType>

Fig. 3. Example of implementation

Prototype 2: The Extended XACML Architecture
The architecture of the second prototype is depicted in Fig. 3. SNMPv3 traps are sent
from the edge router to an SNMP trap server that runs on the FTP server. In respect
with our definition of a trusted EAP, we have chosen to use SNMPv3 traps because
this version provides authentication, integrity, confidentiality and anti-replay mecha-
nisms [6]. In this prototype, we have used MD5 for authentication and DES for confi-
dentiality. Traps are sent to alternatively indicate the bandwidth use rate is greater
than 60% (OID:.iso.org.dod.internet.experimental.siera.bw.greater60) and traps that
indicate the bandwidth use rate is less than 60% (OID:
.iso.org.dod.internet.experimental .siera.bw.less60).

When traps are received by the SNMP trap server, they are validated (integrity and
confidentiality) and forwarded to the notification aware PIP. Then, the PIP translates
OID of the stable condition changing to its associated standardized notification mes-
sage. The PIP informs the PAP of the changing that is identified by the URN. Finally,
the PAP modifies the public access rule. When the received notification is <Notifica-
tionMessageStableConditionID = urn:irit:siera:notification:name:bwlessthan60
Value=“false”/>, the new rule denies the access to the public directory. When the no-
tification is <NotificationMessageStableConditionID =
urn:irit:siera:notification:name:bwlessthan60 Value=“true”/>, the access is granted.

4.3 Experimental Tests

Our experimentation consists in three tests:

Test1 - Using the first prototype, we send five times one hundred requests “a user
wants to access the public directory”. We calculate for each request the time for
getting the response.
Test2 – Using the second prototype, we send five times one hundred requests “a user
wants to access the public directory”. We calculate for each request the time for
getting the response.
Test3 - Using the second prototype, we send five times one hundred traps (alterna-
tively .iso.org.dod.internet.experimental.siera.bw.greater60 and

 An Extension of XACML to Improve the Performance of Decision Making Process 21

4,701

199

18

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time in µs

Trap analysis + Modification of the policy (Prototype 2)

Decision process without SNMP request (Prototype 2)

Decision process including the SNMP request (Prototype1)

Fig. 4. Experimental results

.iso.org.dod.internet.experimental.siera.bw.less60). We calculate for each trap the
time for analyzing the trap and modifying the policy.

Fig. 4. provides the average time in microseconds for each test (column 1, 2 and 3
are respectively the average time for test 1, 2 and 3). It is interesting to note the
impact of the SNMP request/response process handling (i.e. the creation of the SNMP
request, the SNMP agent process and the analysis of the SNMP response) on the deci-
sion making process. The decision process making without the stable condition is 23
times faster. Especially, these tests have been performed in 100Mbps Ethernet net-
work that does not include any high level intermediate device, which could slow
down the SNMP messages. Also, the process of receiving a trap, analyzing it and
modifying the policy is short according the global decision process. It represents 0.3%
of the decision process that includes the SNMP request (test1) and 8.7% of the
decision process without SNMP request (test2).

4.4 Analysis

Based on our experimental results, we can conclude our approach, which extends the
XACML framework to support asynchronous notifications, enhances the perform-
ances of:

1. the decision making process. The ratio between our extension and the basic
XACML framework is extensive (1/23 in our test scenario).

2. the underlying network. When the PIP sends to a remote server a request for each
user’s request, at least two messages are sent over the network (in test1, we have
sent 2*500=1000 SNMP messages). Notifications require only one message to be
opportunely transferred on the network (in our case, only one SNMP trap is sent
and only when it is necessary.)

By giving capabilities to XACML systems to benefit from asynchronous notifica-
tion processing, we increase their ability to deal with scalability. This leads a
XACML server able to process more requests during the same time. In our scenario, a
simple calculus indicates a PDP can evaluate up to 5000 requests “a user wants to
access the public directory” per second in our extended XACML prototype, which
uses asynchronous notifications, compare to only 212 requests per second with the
basic XACML architecture with synchronous messages. Thus, it allows administra-
tors to consider fine grain rules – considering environment attributes – when they
specify access control policies. Particularly, it gives them credits that exceptional
situations in policies will not inevitably slow down the XACML server.

22 R. Laborde and T. Desprats

5 Related Works

Privileges Management Infrastructure (PMI) solutions (e.g. PERMIS [7] or Akenti
[8]) propose two ways for retrieving attributes: the push and pull models. Their archi-
tecture is slightly different from XACML as there is no context handler and no PIP
explicitly mentioned. Thus, the PEP talks directly to the PDP. In the push model, the
PEP provides the PDP all the attributes. For example, the PEP sends an attribute cer-
tificates with the Distinguished Name (DN) of the user and its roles. In the pull
model, the PEP provides some of attributes. The PDP completes the list of the
required attributes. In this case, the PEP only sends the DN of the user and the PDP
gets the attributes certificate in a LDAP repository based on the user DN. Environ-
ment attributes are limited to time or date.

Important research works have been carried out to deal with specific requirements in
context-sensitive environments like mobile and pervasive computing, ambient intelli-
gent systems or smart spaces. They focus on proposing “context-aware” architectures
and/or frameworks. It means the context leads the behaviour of the system. Inspired
from the PMI push model, Al Muthadi et al. [9] have proposed a “Context Provider”
that can get contextual information from either sensors or others data sources. The “In-
ference Engine”, which is the core of their context-aware security systems, can either
query a Context Provider for context values or ask it to be notified when a condition
changes. However, they do not explain when/why request/query or notification mes-
sages should be used. No mechanism improves the decision making process. The same
approach is adopted in [10] where a “Dynamic Context Service” is a trusted entity used
for acquiring context information either directly or via a third party. A policy governs
the frequency at which the context is acquired and updated and specifies some thresh-
olds for notifying the core system. However, when a condition changes, the whole pol-
icy is re-evaluated that is a bottleneck for high speed environments.

Covington et al. have proposed in their initial works a PMI pull-like model named
Generalized RBAC [11]. This model adds environment roles that can be activated or
not. They use caching techniques and add some mechanisms to estimate the freshness
of their values. The approach improves the performance of the decision making proc-
ess because deactivated environment roles are not considered during the evaluation
process. But, caching techniques cannot be used in our context, as stable condition
changing notifications should be considered immediately. More recently, Convington
and Sastry have proposed the Contextual ABAC (CABAC) model [12] that is the
update of GRBAC principles to the ABAC model. In the same way, environment at-
tributes could be activated/deactivated. They just propose a conceptual access control
model that doesn’t deals with implementation issues. Despite, they point out the fact
that some of environment attributes need to be evaluated every time while others are
subject to non changing conditions during a entire session, no clear ratiocination has
been developed on this subject.

6 Conclusion

We have shown in this article that all the attributes should not be retrieved in the same
manner. We have defined what stable conditions are and why they should not be

 An Extension of XACML to Improve the Performance of Decision Making Process 23

treated by the XACML systems like usual conditions. We have provided an architec-
ture that improves the performance of the decision making process when it deals with
stable conditions. This architecture is compliant with existing XACML specification.
Finally, we have presented our test environment, and our experimentations that prove
our solution is better.

However, our solution has two drawbacks: the administrator should know which of
the conditions are stable and (s)he needs to configure the EAP, the PIP and PAP. As a
consequence, it is more difficult to specify a policy now.

Our future work, stimulated by the results of this experimentation, will focus on
automating this process. The administrator will specify a security policy without tak-
ing into account the existence of stable conditions. The decision making process will
monitor the results of each eligible stable condition to provide information for
automatically detecting stable conditions. When a stable condition is found, an opti-
mization process will configure the EAP, the PIP and the PAP to use asynchronous
notification mechanisms. This works aim to endow an XACML framework with a
self-optimizing behaviour, which is one of the Autonomic computing properties de-
fined in [13]. This objective brings many issues such as how to provide an implemen-
tation that automatically detects if a condition is stable or not based on the
characterization given in definitions 1 and 2.

Others perspectives concern how to dynamically change the communication
between the PIP and the extended EAP from being synchronous to asynchronous.
Moreover, our current study is limited to SNMP notification based EAPs. Because
many management solutions (e.g. NAGIOS, WBEM Server, WebServices, etc…) ex-
ist, we have to define an integrated approach to bring on the interoperability between
all these different notifications sources and our extended XACML EAP.

References

[1] Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in Operating Systems. Communi-
cation of the ACM (1976)

[2] Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed NIST
Standard for Role-Based Access Control. ACM TISSEC 4(3), 222–274 (2001)

[3] Wang, L., Wijesekera, D., Jajodia, S.: A Logic-based Framework for Attribute based Ac-
cess Control. In: 2nd ACM Workshop on FMSE (2004)

[4] eXtensible Access Control Markup Language (XACML) version 2.0, OASIS Standard
(February 2005), http://docs.oasis-open.org/xacml/2.0/access_con
trol-xacml-2.0-core-spec-os

[5] How To Calculate Bandwidth Utilization Using SNMP, CISCO TN 8141 (2005),
http://www.cisco.com/warp/public/477/SNMP/calculate_
bandwidth_snmp.htm

[6] Blumenthal, U., Wijnen, B.: User-based Security Model (USM) for version 3 of the Sim-
ple Network Management Protocol (SNMPv3), IETF RFC 3414 (2002)

[7] Chadwick, D., Zhao, G., Otenko, S., Laborde, R., Su, L., Nguyen, T.-A.: Building a
Modular Authorisation Infrastructure. In: The UK e-Science All Hands Meeting (2006)

[8] Thompson, M.R., Essiari, A., Mudumbai, S.: Certificate-based Authorization Policy in a
PKI Environment. ACM TISSEC 6(4) (2003)

24 R. Laborde and T. Desprats

[9] Al-Muhtadi, J., Ranganathan, A., Campbell, R., Mickunas, M.D.: Cerberus: A Context-
Aware Scheme for Smart Spaces. In: 1st IEEE International Conference on Pervasive
Computing and Commmunications (PerCom 2003) (2003)

[10] Wullens, C., Looi, M., Clark, A.: Towards Context-aware Security: An Authorization for
Intranet Environments. In: 2nd IEEE annual conference on Pervasive Computing and
Communications workshops (PerComW 2004) (2004)

[11] Convington, M.J., Fogla, P., Zhan, Z., Ahamad, M.: A Context-aware Security Architec-
ture for Engineering Applications. In: 18th annual Computer Security Applications Con-
ference (ACSAC 2002) (2002)

[12] Convington, M.J., Sastry, M.R.: A Contextual Attribute –Based Access Control Model.
In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4278,
pp. 1996–2006. Springer, Heidelberg (2006)

[13] Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer 36(1), 41–
50 (2003)

[14] Laborde, R., Desprats, T.: Dealing with Stable Environmental Conditions in XACML
Systems. In: ICSNC 2007 (2007)

L. Boursas et al. (Eds.): SVM 2008, CCIS 18, pp. 25–36, 2008.
© Springer-Verlag Berlin Heidelberg 2008

LVD: A Lightweight Virtual Desktop Management
Architecture*

Xiaofei Liao, Xianjie Xiong, Hai Jin, and Liting Hu

Services Computing Technology and System Lab
Cluster and Grid Computing Lab

School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan, 430074, China

{xfliao,hjin}@hust.edu.cn

Abstract. Rapid improvements in network bandwidth, ubiquitous security haz-
ards and high total cost of ownership of personal computers have created a
growing market for desktop virtualization. We present the LVD, a system that
combines the virtualization technology and inexpensive personal computers
(PCs) to realize a lightweight virtual desktop system. Compared with the
previous thin client systems, LVD supports the backup, mobility, suspending
and resuming of per-user’s working environment; it supports the customization
of operating system and applications for each user; it supports synchronous us-
ing of incompatible applications on different platforms; it achieves great saving
in power consumption. LVD consists of five modules--- the template-based VM
repository, the data center, the application cluster, the VM central manager, and
the client terminal, in which we have proposed wRFB protocol, magnet algo-
rithm and the like to perform the above functions. We have implemented LVD
in a cluster with VMs and compared its performance against widely used com-
mercial approaches. Experimental results demonstrate that LVD is effective in
performing the functions while imposing little overhead.

Keywords: RDP, desktop virtualization, virtual machine.

1 Introduction

Although server virtualization is now a mainstream technology for data centers and
cluster computing communities, desktop virtualization has attracted considerable atten-
tion for recent years, both academically [9] and commercially. Desktop virtualization
has the potential to offer a new, cost efficient paradigm shift to ease the demand for the
resources while maximizing return on investment. Combining the potential cost

* This work is supported in part by National Natural Science Foundation of China (NSFC)

under grants No.60703050, National 973 Basic Research Program of China under grant
No.2007CB310900, Hubei Natural Science Foundation under grant No.2007ABD009, the
Ministry of Education-Intel information technology special research fund under grant
No.MOE-INTEL-08-06 and Wuhan Chengguang Plan under grant No.200850731350.

26 X. Liao et al.

savings with other advantages such as disaster recovery, robustness, scalability, and
security make this an attractive computing model to deploy.

However, the architecture of current virtual desktop systems imposes fundamental
limitations on the customization, convenience, acceleration of pixel data transfers and
energy-savings, so the challenges remain as below.

First, most virtual desktop systems fail to support users to customize their own
environments and back up them, not to mention the function of suspend/resume. The
following scenarios happen frequently: people have different working environments at
home, at the office and during the trip. At home, one may want a PC with more enter-
tainment software, while at the office a PC with corporate applications is needed. Fur-
thermore, people should logically suspend a machine at one Internet site, then travel to
some other sites and resume on another machine. We call the hypothetical capability
suspend/resume. Nevertheless, some previous work ignores the above needs. Collec-
tive [4] deploys the system disk for each user, the contents of which at every boot are
made identical including the image’s operating system and applications.

Second, it is impossible to interact with incompatible applications of different
operating systems synchronous without switching the platforms. The reason lies in that
the server side of all virtual desktop systems uses the remote display protocol to trans-
fer full-screens to the client side. Hence the user has to face multiple screens and
switch among them.

The third shortcoming follows from the second. As a large granularity transferring
unit, full-screens increase the amount of data transmitted, resulting in more bandwidth
consumption and performance degradation. As a matter of fact, only the application
GUI that the user interacts with needs to be transmitted.

Finally, most virtual desktop systems fail to consider the reduction of power
consumption of the data center. Undoubtedly, green computing has been a hot idea in
cluster computing for recent years. Anecdotal evidence from data center operators [7]
indicates that a significant fraction of the operation cost of these centers is due to
power consumption and cooling. To lower the cost of management, we should give
prominence to the problem of power consumption.

For the first challenge, WebOS is a good option to get rid of the space limit. How-
ever, since all operations are performed by JAVASCRIPT which is less than 1/50 of
Java, 1/200 of php and 1/500 of C for speed, WebOS can only be applied to deal with
lightweight programs. Besides, high network latency will lead to slow response time.
For the second challenge, VDI [14] combines server virtualization with remote presen-
tation technology. However, the user still has to face two operating platform screens
while interacts with applications on different platforms. Little previous work concerns
the third challenge. For the fourth challenge, lots of previous works have been done to
reduce the power consumption, from the perspective of both local techniques and
cluster-wide techniques [11]. Nonetheless, previous schemes seldom take advantage of
the virtualization technology and the characteristic of particular platform to save the
energy.

We propose lightweight virtual desktop management architecture (LVD) to address
the challenges. Our model consists of five modules: the template-based VM repository
(TVR), the data center (DC), the application cluster (APPC), the VM central manager
(VCM), and the client terminal. The key technologies behind these modules include
wRFB protocol, Magnet algorithm and the like. LVD provides a comprehensive suite
of important functions:

 LVD: A Lightweight Virtual Desktop Management Architecture 27

 Backs up, suspends, resumes per-user working environment (see TVR).
 Supports rolling back to different working environment by continuous backup

at different working locations (see DC).
 Supports using incompatible application of heterogeneous platforms in a sin-

gle platform (see APPC).
 Saves energy in a dynamical and global way (see VCM).

We have implemented LVD in the cluster with VMs and measured its performance
on real applications. We also have compared our LVD prototype system against the
most current and widely-used virtual desktop systems, including Microsoft Remote
Desktop, Citrix MetaFrameXP and Sun Ray. Experimental results demonstrate that
LVD is effective in performing the functions while imposing little overhead.

The rest of this paper is organized as follows. Section 2 discusses the related work.
The LVD architecture is described in Section 3. Section 4 evaluates the performance.
We conclude our work in Section 5.

2 Related Works

Virtual machine can simulate all the hardware components, like memory, disk, CPU
and so on. A computer with virtual machine monitor installed can simulate several
virtual machines at the same time. Each of these simulated virtual machines can
independently install operating system, run applications simultaneously. The virtual
machine monitor could suspend the virtual machine managed by the VMM, and re-
sume one virtual machine which has been suspended before. The VMM could take a
snapshot of a virtual machine’s memory state, and restore the machine state to the state
when the snapshot is created.

We divide the previous virtual desktop techniques into two groups: the physical
machine based (PM-based) techniques and virtual machine based (VM-based) tech-
niques. The PM-based techniques use the remote display protocol or WebOS
approach to realize the desktop virtualization, whereas VM-based techniques improve
the traditional work by deploying the virtual machines in the server side or client side
and thus benefits from better fault isolation and higher resource utilization.

Remote display protocol based technique. As the earliest desktop virtualization tech-
nique, the thin client computing model uses a remote display protocol to communicate
between a server and a client over the network. The protocol allows graphical dis-
plays to be virtualized and served across a network to a client device, while the appli-
cation logic is executed on the server. Typical thin client protocols include VNC [12],
RDP, THINC [1], pTHINC [8] and the like. Since the technique mainly depends on
continuous display synchronization between user interface on the client and
application logic on the server, how to increase the display efficiency is the main
challenge. Being the first thin client capable of transparently playing full screen video
and audio at full frame rate in both LAN and WAN environments, THINC is the
groundwork of other solutions.

WebOS based technique. WebOS is another fashion that can quickly build on-demand
virtual desktop environments using web technology. A WebOS is also known as a
webtop, and Ebrahim Ezzy‘s definition probably explains it best: “A webtop (derived

28 X. Liao et al.

from “desktop”) pushes that replication to its limit. Also known as a WebOS, it is
basically a virtual desktop on the web. It is a simple, less bloated, less featured and
remotely accessible operating environment that runs in a browser. It delivers a rich
desktop-like experience, coupled with various built-in applications.” Typical WebOS
systems include YouOS [5], EyeOS, Glide [6] and Orca desktop [10]. The advantage
lies in that less bandwidth consumption and better cost-performance. However, the
drawback is obvious: since a web application executes the front end on the client, and
the back end on the server, it fails to be compatible with the original applications and
thus requires the reprogramming of them.

In sum, PM-based technique has drawbacks including that (1) the user’s working
environment can not be suspended and resumed; (2) the full screen image is transmit-
ted from the server side to the client side resulting in a great amount of transferring
data and degradation of the system performance.

Server virtualization based technique. To simplify administration and to reduce man-
agement and operating costs while maintaining reliability and safeguarding against
disasters, the significant benefits of server virtualization technology is now being
applied for companies’ desktop users. Virtual Desktop Infrastructure (VDI) is such an
integrated desktop virtualization solution combining server virtualization with remote
presentation technology. The desktop operating systems and applications run inside
the virtual machines and the server side distributes such VMs to each user on the
client side. Users use a remote display protocol to access the VM on the server and
the server returns the full features of the VMs.

Client virtualization based technique. The typical systems are Internet Sus-
pend/Resume (ISR) [13] designed by CMU and Collective designed by Stanford. ISR
is a mobile computing technology which can preserve one’s uniquely customized
computing environment as one package and then moves it to different locations. ISR
is implemented by layering virtual machine technology on distributed file system
technology. It enables a hands-free approach to mobile computing in which commod-
ity hardware may be widely deployed for transient use. Through rapid and easy per-
sonalization and depersonalization of anonymous hardware, a user is able to suspend
work at one machine and to resume it at another.

Generally, server virtualization based technique (1) trades off the user’s ability to
customize their own environment; (2) forces the user to switch among multiple plat-
forms while the user wants to run incompatible applications of different operating
systems. Client virtualization based technique requires a powerful client side running
the VM.

3 LVD Design

The motivation of designing LVD is to solve the challenges discussed above: (1) how
the applications be customized and configurable freely by the end user; (2) how
per-user states be backed up in a storage-saving way and an optional data-sharing
way; (3) how the incompatible applications running on different operating systems be
used by the end user at the same time without switching the platforms; (4) how the
great savings be achieved in power consumption by our scheduling policy; (5) how
the application display commands be transmitted effectively.

 LVD: A Lightweight Virtual Desktop Management Architecture 29

3.1 Overview

As illustrated in Fig.1, LVD system consists of template-based VM repository (TVR),
data center, application cluster (APPC), VM central manager (VCM), and client
terminal. We start by showing how LVD works from a user’s perspective.

Fig. 1. Architecture of LVD system

When a user logs in at the first time, firstly, he is presented with a list of appliances
by the VCM on which he can click to begin constructing his personal working envi-
ronment. Second, the VCM informs the template-based VM repository to create the
customized VM image including the operating system and applications. Meanwhile,
the VCM chooses an appropriate physical machine to boot the image among all the
application servers in the cluster on the basis of load balancing and energy saving.
Third, the user accesses the running VM using our remote display protocol (wRFB).
The user transmits the commands to the VM and the VM returns the application
window updates to the user interface. Finally, when the end user exits, his working
environment consisting of the user image and user data is backed up in the data center.

If the user has already logged in previously, he fetches and runs the latest copies of
VM image from the data center over the Internet, or resumes the suspended VM
image locally when the network is unavailable.

3.2 Template-Based VM Repository (TVR)

The template-based VM repository is responsible for customized VM image provision
and updating. TVR contains all versions of various operating systems and software.
Once a user’s request arrives, the ordered operating platform and applications (or
components) will be encapsulated and thus a unique VM image is created.

Moreover, TVR need to be updated constantly. All software upgrades, be they
small or big, is accomplished in our system with the same mechanism. The system

30 X. Liao et al.

administrator prepares a new version of the appliance and deposits it in the repository.
TVR can inform the user that a new version of the appliance is available, encouraging
the user to reconstruct the working environment, or the TVR can even force a recon-
struction to disallow use of the older version.

This update approach has some advantages over package and patch systems like
yum [15], RPM [2], Windows Installer, and Windows Update. Patches may fail on
some users’ computers because of interactions with user-installed software. Our
updates are guaranteed to move the appliance to a new consistent state. Users running
older versions are unaffected until they perform a reconstruction.

3.3 Data Center (DC)

The data center performs the following functions:

 Backs up per-user state in terms of copies of VM images.
 Separates per-user VM image into system data and user data.

From the view of the data organization, we use the NFS protocol to store the data,
which is fast, reliable and simple to support demand paging of large objects, like the
images. For our prototype, NFS has the following advantage: in a typical computing
session, a user may not access most of the virtual disk image. We arrange the disk data
in a tree of small files, only a small number of these files will need to be transmitted to
the booted VM in the application cluster. The on-demand transmission mode helps a
lot when the bandwidth is limited.

From the view of the data type, the data in DC is divided into two parts: system data
and user data. The system data consists of an operating system and all installed appli-
cations. User data consists of a user’s profile, preferences, and private files. The sepa-
ration has the following advantages: (1) the files in the user data repository could be
classified and protected according to their security sensibility; (2) if a user wants to
share his data, e.g. movies and files, others can get access to them through NFS
conveniently.

3.4 Application Cluster (APPC)

After the customized VM image is created by TVR, or fetched from DC, APPC will
boot a customized VM on one of its physical machine to provide service to the remote
end user. The highlights of APPC module is an advanced remote display protocol
wRFB (window-based remote frame buffer).

In the previous virtual desktop systems, such as VDI, Sun Desktop Virtualization
Solution and Windows Vista Enterprise Centralized Desktop (VECD) [4], each user is
assigned to a virtual desktop. If the customer wants to use applications of other plat-
forms, he faces multiple desktops from different VMs and has to switch among them.
Unlike the previous work, wRFB grabs and transfers the application GUI images from
multiple VMs to the client side. Then all these window images will be merged and
displayed on a single virtual desktop, as illustrated in Fig.2(a).

 LVD: A Lightweight Virtual Desktop Management Architecture 31

(a) (b)

Fig. 2. (a) wRFB protocol; (b) The logic diagram of VCM

3.5 VM Central Manager (VCM)

VCM provides the follows interfaces, as illustrated in Fig.2(b): 1) client-side interface:
authenticating the user and keeping the working records of each user. For example, a
user may login to the client in Hong Kong, work for a while, log out, travel a great
distance to Seattle, login, work, log out, and come back to Hong Kong. It is highly
possible that he wants to resume the working environment in Hong Kong a few days
ago rather than Seattle. Therefore, it is necessary to trace each user’s records at differ-
ent locations; 2) server-side interface: locating and scheduling the VMs in APPC dy-
namically in a load balancing and energy saving way.

Undoubtedly, the concept of green computing has attracted much attention recently
in cluster computing. The migration of the VM inspires us with a novel method called
Magnet to reduce the power consumption, which has been introduced in detail in our
previous work [16]. The key technique is to consolidate the load among the nodes on a
multilayer ring-based overlay and then keep the redundant nodes in low power state
like deep sleep or shut down.

3.6 Client Terminal

The client terminal can be any form of computing hardware, from desktops to hand-
held or wearable computers. The highlights of the client terminal module lie in as
follows. On high bandwidth (e.g., 100Mbps) networks, the system performs well, the
challenge here is that a terminal may be disconnected from the network or the band-
width is highly occupied. We provide the following solutions: (1) if the terminal is
mobile computers like laptop, store the latest VM image locally; (2) if the terminal is
a thin-client, compare to the standard operating system and application software (e.g.,
Windows 2000 and the Microsoft Office suite), the user specific files are a very small
fraction of the image size. Therefore, we distribute the large standard disk image-
based blocks widely over the network which can be accessed at high bandwidth from

32 X. Liao et al.

a nearby site. Only the much smaller user specific state needs to be transmitted at low
bandwidth from the data center.

4 Performance Evaluation

We provide some quantitative measurement of the system to give a sense of how the
system behaves and study the system performance in a various network environment.

As shown in Fig.3, our testbed consists of six computers connected on a switched
Fast Ethernet network: two thin clients, a data center, a virtual central manager, a
packet monitor, a template-based VM repository, a network emulator for emulating
various network environments, an application server, and a web server used for testing
web applications. All computers have an AMD Athlon 3500+ processor and 1GB DDR
RAM. Storage is accessed via iSCSI protocol from a NetApp F840 network attached
storage server (NAS). The guest kernel is Linux 2.4.18 ported to UM-Linux, and the
host kernel for UM-Linux is a modified version of Linux 2.4.18. The virtual machine is
configured to use 512MB of RAM, the memory page size is 4KB, page fault service
time is 10ms, and the context switch time is 0.1ms.

Fig. 3. Tested configuration

We have assessed the LVD display performance in a various network environment.
We run each of the three application benchmarks on the baseline PC platform and the
five thin client platforms on different operating systems. The five specific platform
configurations considered are PC running LVD on Linux (LVD), Microsoft Terminal

Table 1. Characteristics of the application benchmarks

Benchmark Type Application Benchmark Operation
Latency benchmark Java applet Typing a character, scrolling text, filling a

screen region. Downloading an image
Web-based
benchmark

Web text page load Downloading a sequence of 54 web pages.
Scrolling down 200 pixels

Multimedia-oriented
benchmark

Flash benchmark Streaming a 98 KB Macromedia Flash
animation chip from the server side (uses
vector graphics and contains 315 550*400
frames)

 LVD: A Lightweight Virtual Desktop Management Architecture 33

Services RDP 5.0 on Windows 2000 (RDP Win2K), Citrix Metaframe 1.8 running on
Windows 2000 (Citrix Win2K), LapLink 2000 on Windows NT 4.0 Terminal Server
Edition (LapLink WinNT), and Sun Ray.

As illustrated in Table 1, we use a simple Java latency benchmark to measure the
latency of basic operations on a thin client platform and a selection of benchmarks
from the Ziff-Davis i-Bench benchmark suite to provide a measure of web-based and
multimedia-oriented application performance.

4.1 Latency Benchmark Results

We measure both the latency and the data transferred for each of the four operations:
draw letter, fill red box, scroll text, and load bitmap. These results are shown in
Fig.4(a) and Fig.4(b), respectively.

Advantage. Compared with other platforms, LVD is able to complete any operations
within 100ms, including the basic draw letter, fill box, and scroll text operations.
Comparing Fig.4(a) with Fig.4(b), we can see that the latency and the data transferred
are not at all correlated in many cases. While LVD had less latency for most of the
tests, it also requires more data transfer.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
 RDP Win2K
 Citrix Win 2K
 LapLink WinNT
 LVD
 Sun Ray

La
te

nc
y

(s
)

Letter A Red Box Fill Text Scroll Bitmap Load

2.5

0.1

1

10

100

1000

84
.3

3.
2

1.
2

0.
4

 RDP Win2K
 Citrix Win 2K
 LapLink WinNT
 LVD
 Sun Ray

D
at

a
tr

an
sf

er
re

d
(K

B
)

Letter A Red Box Fill Text Scroll Bitmap Load

(a) (b)

Fig. 4. (a) Latency test time to completion; b) Latency test data transferred

4.2 Web Page Load Benchmark Results

We measure the total time required to display all 109 web pages of the web bench-
mark and logs complete packet traces using the packet monitor. Fig.5(a) and Fig.5(b)
illustrate the total normalized web page download times and total data transferred for
each run, respectively.

As shown in Fig.5(a), almost all of the platforms complete the web benchmark in
less than 50 seconds at network bandwidths of 4 Mbps or greater, corresponding to an
average of less than half a second per page.

Limits. At network bandwidths below 4 Mbps, the performance of the thin client
platforms begins to degrade. As shown in Fig.5(a) and Fig.5(b), LVD does not take

34 X. Liao et al.

longer to complete the web benchmark at lower bandwidth, but instead lose data
resulting in missed or incomplete screen updates. On the other hand, RDP and Citrix
behave in a similar manner by taking longer to complete the web benchmark as the
network bandwidth decreases, but continuing to send the same amount of data even at
lower bandwidths.

50

100

150

200

250

300

350

400

34
1

20
3

29
7

74
3

 128 kbps
 256 kbps
 512 kbps
 1.5 mbps
 10 mbps
 100 mbps

Lo
ad

 ti
m

e
(s

)

LVD RDP
Win2K

Citrix
Win2K

LapLink
WinNT

Sun Ray

41

2
5

55

364
5

2
4 37

39
7

51
2

 0

5

10

15

20

25

30

35

50
.3

50
.2

 128 kbps
 256 kbps
 512 kbps
 1.5 mbps
 10 mbps
 100 mbps

D
at

a
tr

an
sf

er
re

d
(M

B
)

LVD RDP
Win2K

Citrix
Win2K

LapLink
WinNT

Sun Ray

(a) (b)

Fig. 5. (a) Web page load time; (b) web page data transferred

In general, the LVD results indicate that for web-based applications, a pixel-based
encoding approach could encode screen updates with comparable efficiency as
graphics-based encoding approaches.

4.3 Flash Benchmark Results

We run the flash animation test on each of the thin client platforms via network, and
also run the benchmark on the baseline platforms for comparison. The results are
illustrated in Fig.6(a) and Fig.6(b).

0

2

4

6

8

10

12

14

16

18

20
 128 kbps
 256 kbps
 512 kbps
 1.5 mbps
 10 mbps
 100 mbps

F
ra

m
e

ra
te

 (
fp

s)

LVD RDP
Win2K

Citrix
Win2K

LapLink
WinNT

Sun Ray

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

28
.6

28
.9

 128 kbps
 256 kbps
 512 kbps
 1.5 mbps
 10 mbps
 100 mbps

D
at

a
tr

an
sf

er
re

d
(M

B
)

LVD RDP
Win2K

Citrix
Win2K

LapLink
WinNT

Sun Ray

29
.4

29
.0

(a) (b)

Fig. 6. (a) Flash test frame rate; (b) Flash test data transferred

 LVD: A Lightweight Virtual Desktop Management Architecture 35

We find that a frame rate close to 16fps produced good subjective results, with
smooth display, no skipped screens, and no tearing or jerky movement. The 100KB
animation is downloaded completely to the server prior to playback, so the bandwidth
does not affect the frame rate on the baseline.

Limits. With the web test results, LVD is slightly less efficient than the platforms
with graphics based encodings. LVD maintains an almost constant rate for the
benchmark at all bandwidths, but drops many screens on the client’s display at
the low end of the range. Its performance is only comparable in smoothness to the
baseline when the data transferred reaches a plateau. In general, LVD system experi-
ences a similar fall-off in performance at bandwidth 128kbps or below, indicating that
LAN bandwidths are required to support multimedia applications.

4.4 Power Reduction Results

After analyzing the characteristics of workflow of LVD, we have proposed a new
schedule policy called Magnet for cluster with VMs to achieve the energy savings
[16]. We apply the policy to the application cluster. The experimental measurements
show that the new method can reduce the power consumption by 74.8% over base at
most with certain adjustably acceptable overhead.

5 Conclusions

This paper presents LVD, a prototype of system management architecture for manag-
ing desktop computers. This paper concentrates on the design issues of a complete
system. By combing wRFB protocol and Magnet algorithm and other techniques of
virtualization, LVD provides several novel functions including backup, mobility,
suspending and resuming of per-user’s working environment, the customization of
working environment and the synchronous using of incompatible applications on
different platforms. Besides, it achieves great saving in power consumption. In the
future, we will try to optimize the display performance by exploring more intelligent
schemes. Also, we will analyze the strategies of the migration of multiple VMs to
achieve more energy savings and better load balancing.

References

1. Baratto, R., Kim, L., Nieh, J.: THINC: A Virtual Display Architecture for Thin-Client
Computing. In: Proceedings of 20th ACM Symposium on Operating Systems Principles,
pp. 277–290. ACM Press, United Kingdom (2005)

2. Bailey, E.: Maximum RPM. SAMS, Indianapolis (1997)
3. Ponder, W.: Sun Desktop Virtualization Solution: Desktop Virtualization Blueprint. Sun

Microsystems (2006)
4. Chandra, R., Zeldovich, N., Sapuntzakis, C., Lam, M.S.: The Collective: A Cache-Based

System Management Architecture. In: Proceedings of the 2nd Symposium on Networked
Systems Design and Implementation, pp. 259–272. ACM Press, Boston (2005)

5. eyeOS project, http://www.eyeOS.org/

36 X. Liao et al.

6. Glide project, http://www.glidedigital.com/
7. Hopkins, M.: The On Site Energy Generation Option. The Data Center Journal, http://

datacenterjournal.com/NewsArticle.asp?article_id=66 (2004)
8. Kim, J., Baratto, R.A., Nieh, J.: pTHINC: a thin-client architecture for mobile wireless

web. In: Proceedings of the 15th International World Wide Web Conference, pp. 143–152.
ACM Press, Edinburgh (2006)

9. Nieh, J., Yang, S.J., Novik, N.: Measuring thin-client performance using slow-motion
benchmarking. ACM Transactions on Computer Systems 21(1), 87–115 (2003)

10. Orca desktop, http://www.orcaa.com/
11. Pinheiro, E., Bianchini, R., Carrera, E., Heath, T.: Dynamic Cluster Reconfiguration for

Power and Performance. In: Benini, L., Kandemir, M., Ramanujam, J. (eds.) Compilers
and Operating Systems for Low Power. Kluwer Academic Publishers, Norwell (2003)

12. Richardson, T., Stafford-Fraser, Q., Wood, K.R., Hopper, A.: Virtual network computing.
IEEE Internet Computing 2(1), 33–38 (1998)

13. Satyanaranyanan, M.: Pervasive Personal Computing in an Internet Suspend/Resume Sys-
tem. IEEE Internet Computing 11(2), 16–25 (2007)

14. VMware Virtual Desktop Infrastructure Partners,
 http://www.vmware.com/partners/alliances/solutions/

15. Yellowdog, http://linux.duke.edu/projects/yum/
16. Hu, L., Jin, H., Liao, X.: Magnet: A Novel Scheduling Policy for Power Reduction in

Cluster with Virtual Machines. In: Proceedings of the 9th IEEE/ACM Conference on Clus-
ter 2008. IEEE Press, Tokyo (2008)

L. Boursas et al. (Eds.): SVM 2008, CCIS 18, pp. 37–48, 2008.
© Springer-Verlag Berlin Heidelberg 2008

CIM-Based Resource Information Management for
Integrated Access Control Manager

Fumio Machida1, Kumiko Tadano1, Masahiro Kawato1, Takayuki Ishikawa2,
Yoichiro Morita3, and Masayuki Nakae3

1 NEC Service Platforms Research Laboratories
2 NEC Business Inovation Center

3 NEC Common Platform Software Research Laboratories
1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa, Japan
{h-machida@ab, k-tadano@bq, m-kawato@ap,

t-ishikawa@eb, y-morita@dc, m-nakae@bp}.jp.nec.com

Abstract. An architecture for CIM-based integrated access control middleware
is proposed. The proposed architecture employs CIM standards for managing
several access control modules for different resources uniformly in consolidated
server environments. CIM standards allow the user of the middleware to look
up the target resource information through the common interface, to describe
abstract policy with grouping the same type of resources together, and to trans-
late the abstract policy to detailed configurations for each access control module
automatically. We evaluated the feasibility of the proposed architecture by a pi-
lot implementation for file access control systems. According to the findings of
the evaluation, we propose an extension of the CIM_Directory class to improve
operations for exploring directories on user interfaces of the middleware.

Keywords: Access control, Common Information Model, Server consolidation.

1 Introduction

Security and reliability of systems in consolidated server environments using virtual-
ization are major concerns. Many companies still hesitate to introduce virtual ma-
chines for server consolidation owing to concerns for vulnerability of virtualization
software and spreading of security incidents or performance problems across the
systems. To protect consolidated systems from security threats, system administrators
conventionally install several security management tools and configure them in com-
pliance with organizational security guidelines. Configuring such kind of security
management tools properly is not an easy task, even though the systems do not
include virtual machines.

The Secure Platform project (SPF) tackles this issue by developing security
management middleware with secure components for operating systems and virtual-
ization software. To achieve effective security management for consolidated server
environments, systems need integrated management middleware for enforcing consis-
tent security policies over the systems as well as secure components such as secure

38 F. Machida et al.

OS and secure hypervisor. Since the middleware aims to cooperate with some existing
secure components, such as SELinux [1], as well, the architecture is designed with
interoperability in mind.

This paper focuses on the architecture of an integrated access control manager
(IAM) that can handle multiple access control modules in the same manner in
accordance with the CIM standard [8]. Access control modules are used in various
contexts, such as service access control, file access control, and network filters. The
IAM provides a common interface for manipulating a security policy in user-friendly
style and a function for converting the policy into specific configurations for individ-
ual access control modules. To handle the management information used in the indi-
vidual access control module in the standardized way, the IAM adopts CIM standards
as an abstract model for the target systems. CIM standards allow IAM to collect in-
formation on the access control target systematically, to make groups of resources that
have the same properties, and to link the abstract information to specific information.

We illustrate the effectiveness of the CIM-based IAM architecture through a pilot
implementation of the architecture focusing on the file access control. With the find-
ings of the implementation, we propose an extension model of CIM_Directory with
an additional property that indicates the list of files and directories contained in the
directory. The extension enables effective directory search on a GUI for policy
manipulation.

The rest of this paper is organized as follows. Section 2 describes the requirements
for an integrated access control manager and the proposed architecture of IAM.
Section 3 presents CIM-based resource information models for the IAM targeting file
access control. Section 4 gives the details of our implementation, and Section 5
presents the results of experiments. Finally, the summary of this paper is outlined in
Section 6.

2 Integrated Access Control

This section clarifies the requirements for the architecture of the integrated access
control and describes the IAM architecture designed in the SPF project.

2.1 Requirements

In consolidated server environments, access control modules for security management
are installed on many servers and virtual machines. They are distributed not only over
servers but also over software layers. The access control module for an OS layer such
as SELinux does not achieve sufficient security in a virtual machine because attacks
from a privileged virtual machine or other virtual machines are not preventable. Ad-
ministrators have to configure all access control modules distributed from the virtual-
ization layer to the application layer by consistent policies. From the view point of
ease of use for administrators, we summarize the requirements for the middleware
that integrates management of access control as follows.

CIM-Based Resource Information Management for Integrated Access Control Manager 39

 Management integration
Capability of managing multiple and several types of access control modules
from a central console on the client workstation. This capability contributes to
reducing the complex tasks required for configuring multiple access control
modules consistently.

 Policy abstraction
Introduction of an abstract policy that is applicable to different access control
modules. The policy abstraction conduces to the easy manipulation of policies
without the need for concern about specific styles and formats defined by indi-
vidual access control modules. By using the abstract policy, dependencies and
consistencies of policies can be checked easily.

 Operation automation
Automation of operations such as lookup of target resource information and
configuration of access control modules. The automation contributes to reduc-
ing the tasks of administrators. Operations such as resource information search
and policy configuration are potentially performed automatically.

Besides the listed three requirements, administrators have several requirements,
such as performance, strength of security, availability, and scalability. The above
three requirements are especially important for improving manageability of access
control modules in consolidated server environments.

2.2 Related Work

Linux Security Module (LSM) [2] provides a general framework for enhancing the
security of Linux systems. Several security modules, such as SELinux and AppArmor
[3], are based on this framework. Similarly, Xen Security Module (XSM) provides a
framework for enhancing the security of virtualized environments using Xen. ACM
[4] and Flask [5] are implemented by using this interface. Security administrators can
protect against unauthorized access by configuring these security modules properly
and consistently; however, this kind of configuration is a very complex task and a
burden on administrators.

Although integrated access control systems for distributed systems have been stud-
ied by several researchers [6] [7], there is no work addressesing the architecture for
integrated access control for different resources in consolidated server environments.
Accordingly, we propose an architecture for an integrated access control system that
assumes the use of a standardized resource information model to handle different
resources.

2.3 Proposed Architecture

Figure 1 shows the architecture of the integrated access control manager (IAM) we
designed in consideration of the above requirements. The IAM is comprised of Policy
Manager, Resource Information Manager and ID Manager. The components of IAM
interact with Agents run on the target server.

Policy Manager provides an interface for manipulating the abstract policy using
user information from ID Manager and target resource information from Resource
Information Manager. The abstract policy is interpreted into specific configurations

40 F. Machida et al.

for individual access control modules with the help of a pluggable module containing
interpretation rules.

Resource Information Manager provides a consistent view of the target resource
information and associations between them based on the standardized information
model. By modeling the property of the access control module, the Resource Informa-
tion Manager enables Policy Manager to handle different types of access control in
the same manner.

Fig. 1. Architecture overview of the integrated access control manager (IAM)

ID Manager is a directory service that manages users, groups, and organizational
information. The user information is used to compose the abstract policy and may be
translated to a system-specific ID or accounts at the interpretation.

Agents are separated into two functional components: Resource Information
Agents and Policy Deployment Agents. Resource Information Agent interacts with
Resource Information Manager to provide the target resource information. Policy
Deployment Agent is called by Policy Manager to receive a specific configuration for
the target access control module and configure it properly. The functionality of
Resource Information Agent varies according to the type of target resources while the
functionality of Policy Deployment Agent varies with the access control modules.

2.4 Interactions

Manipulation of abstract policies and deployment the policies to an individual access
control module are achieved by the interactions between the components of the IAM.

In the policy manipulation process, Policy Manager queries ID Manager to get the
user information that is used as a “subject” of an abstract policy. At the same time,
Policy Manager collects target resource information from Resource Information

Access control
module

Resource Information
Manager Policy Manager ID Manager

Agents

Administrator

Operating system

Access control
moduleAgents Virtualization

Access control
moduleAgents Application Server

Target server

Access control
module

Agents

Operating system

Target server

Resource
Information

User
information

Resource
Information

configuration

CIM-Based Resource Information Management for Integrated Access Control Manager 41

Manager. The target resource information is grouped together as resource group that
is used as an “object” of the abstract policy. Administrators make policies by
correlating the subject, the object and “action” that are given according to resource
categories.

In the policy deployment process, Policy Manager queries Resource Information
Manager to get the properties and capabilities of the target access control module. The
obtained information is used to translate the abstract policy into the specific configu-
rations for the target module. After generation of the specific configurations, Policy
Manager sends them to Policy Deployment Agent, which configures the target
module according to the received configuration data.

Note that the components and interactions mentioned above do not depend on the
specific implementation of the access control module. If the information model and
protocol are designed with standardized technologies, the IAM architecture is
applicable to various access control systems.

3 Information Model for File Access Control

This section introduces the CIM model for expressing the management information
used in a concrete use case of the proposed IAM architecture. The use case focuses on
the integrated file access control system. Files and directories as the target resource of
the IAM are modeled using the CIM model.

3.1 Scenario

As a pilot implementation of the IAM architecture, we designed the integrated access
control middleware targeting to file access control on an operating system. We as-
sumed use of an OS reference monitor that is a file access control module using
access control list (ACL). The OS reference monitor is also developed in the SPF
project.

The main goal of the pilot implementation is to manage distributed multiple OS
reference monitors through IAM architecture. OS reference monitors are installed in
each target server. To interface the OS reference monitors, Agents are installed on
each target server. The set of IAM server components, namely, Policy Manager, Re-
source Information Manager, and ID Manager, are running on the administrator’s
workstation.

In the context of the file access control, subject of the abstract policy is user ac-
count of each operating system while object is a group of files and directories. Action
of the abstract policy is s set of file system operations that are limited by the file
system type. Since we used Linux ext3 file system in the target server, the supported
operations are "read", "write", and "execute". Administrator manipulates the abstract
policy with specifying the subject, the object and the action.

In the deployment phase, the abstract policy is converted to ACLs for the OS refer-
ence monitor by Policy Manager, which calls Resource Information Manager to get
the information of the target OS reference monitor: address, version, supported sub-
ject type and object type. The resource information model used in this scenario is
shown in the following subsections.

42 F. Machida et al.

3.2 File and Directory

We apply CIM to express the target resource information. The target resources of the
OS reference monitor are files and directories. They are modeled in the CIM standard
as depicted in Fig. 2. CIM_Directory inherits CIM_LogicalFile and logically repre-
sents a group of files contained in it. This model is suitable for the IAM because both
files and directories have a potential to be the target of access control. Policy Manager
can handle the target resource information as a instance of CIM_LogicalFile in the
same way.

Fig. 2. CIM classes for directories and files

We propose an extension of the CIM_Diretory from an operational viewpoint. The
current CIM_Directory has a component relationship to multiple CIM_LogicalFile
(i.e. DirectoryContainsFile). To lookup the files and subdirectories contained in a
certain directory, it is necessary to retrieve all CIM_LogicalFile instances that have
component relationships with the CIM instance of this directory. The operation to get
all related instances is too inefficient for only looking up the contents list of the direc-
tory. Accordingly, we added a new property, "FileList", which is an array of string
describing the file name contained in the directory (see SPF_Directory in Fig. 2). This
new property allows a user interface for directory browsing in order to show the
contents of the directory simply by getting an instance of the target CIM_Directory.

3.3 Reference Monitor

For translation of policies to specific ACLs, the property information of the OS refer-
ence monitor is needed. Since the OS reference monitor is implemented as Linux
Security Module (LSM), the model for the OS reference monitor is defined by
extending CIM_SoftwareElement, as shown in Fig. 3.

SPF_ReferenceMonitor inherits the properties, such as Name and Version, of
CIM_SoftwareElement. The types of subject and object supported by the OS refer-
ence monitor are expressed within the SPF_RMTagetSettingData extended from
CIM_SettingData. SPF_RMTargetSettingData has two new properties: "SubjectType"
and "ObjectType". The values of the new properties are strings that identify the types
of subject and object. In our implementation, SubjectType is set to "OU=accounts",

CIM_LogicalFile

CIM_Directory CIM_DataFile CIM_SymbolicLink CIM_DeviceFile

*

0..1

DirectoryContainsFile

SPF_Directory

FileList New property for list of contained files and directories

CIM-Based Resource Information Management for Integrated Access Control Manager 43

Fig. 3. CIM class definition of OS reference monitor extending CIM_SoftwareElement

which corresponds to the type information managed in ID Manager, and ObjectType
is set to "CIM_LogicalFile", which represents files and directories.

3.4 File Access Capabilities

In the policy manipulation step, Policy Manager has to handle the set of actions for
abstract policy. For the file access operations supported by the ext3 file system, the
action corresponds to the set of operations: "read", "write", and "execute". We used
CIM_Capabilities to express the set of actions for abstract policy. Policy Manager se-
lects an operation as action of the abstract policy from the instance of CIM_Capabilities.
Capabilities for file systems are modeled as SPF_FilesystemCapabilities that
has three boolean properties, namely, "ReadSupported", "WriteSupported", and
"ExecuteSupported" (See Fig. 4).

Fig. 4. CIM class definition for file access capabilities

4 Implementation

4.1 Overview

An overview of the IAM implementation is shown in Fig. 5. All components of IAM
are implemented by Java except for the scripts that are executed in Agents, which are
called from Policy Manager and Resource Information Manager through web service
interfaces. Policy Manager has an XML database to store the abstract policies format-
ted with XACML [9], while Resource Information Manager has a mechanism for a

SPF_ReferenceMonitor SPF_RMTargetSettingData

SubjectType
ResourceType

CIM_ElementSettingData

CIM_SoftwareElement

Name
Version
…

CIM_SettingData

InstanceID
ElementName

CIM_Capabilities

InstanceID
ElementName

SPF_FileSystemCapabilities

ReadSupported
WriteSupported
ExecuteSupported

ElementCapabilities
CIM_FileSystem

Name
CreationClassName
CSCreationClassName
CSName
FileSystemType

44 F. Machida et al.

<Policy PolicyId="uuid-837423801-4837290">
<Target>
<Subjects>
<Subject>
<SubjectMatch MatchId="string-match">
<SubjectAttributeDesignator … />
<AttributeValue>

AGlobalRoleId</AttributeValue>
</SubjectMatch>

</Subject>
</Subjects>
<Resources><AnyResources/></Resources>
<Actions><AnyActions/></Actions>
</Target>
<Rule RuleId="rule-1" effect="deny">
<Target>
<Subjects><AnySubjects/></Subjects>
<Resources>
<Resource>
<ResourceMatch MatchId="string-match">
<ResourceAttributeDesignator .. />
<AttributeValue>

AGlobalResourceId</AttributeValue>
</ResourceMatch>

</Resource>
</Resouces>
<Actions>
<Action>read</Action>
<Action>write</Action>

</Actions>
</Target>

</Rule>
</Policy>

XACML policy

Administrator’s Workstation

administrator

Policy Manager

User
info

Policy Repository
(XML-DB)

Policy Generator

Policy Deployer plugin

Resource Information
Manager

cache

Xpath/XQuery

Manipulate and deploy policies

Target server

Policy Deployment AgentResource Information Agent

Agents

scriptsscripts

SOAP/HTTP SOAP/HTTP

Fig. 5. Overview of the IAM implementation

Java instance cache. CIM-XML format is used for an expression of CIM-based re-
source information. Policy Manager queries resource information by using
XPath/XQuery. Since the current implementation does not include ID Manager, the
user information is configured in Policy Manager.

4.2 Agents

Agents are implemented as web services on Apache Axis containers. When Resource
Information Agent receives a request to collect resource information, the Agent runs
scripts corresponding to requested CIM classes to get information and generate
CIM-XML formatted resource information. On the other hand, Policy Deployment
Agent executes the scripts to overwrite the ACLs when Policy Manager sends the new
ACLs.

4.3 Resource Information Manager

Resource Information Manager supports two types of resource information collection:
synchronous and asynchronous. Synchronous collection gets resource information
on demand according to the query from Policy Manager. Most volatile resource in-
formation, such as an instance of file information, is collected by synchronous. Asyn-
chronous collection gets resource information automatically by collection schedule
and stores it in the cache. And nonvolatile resource information, such as an instance
of a computer system, is collected by asynchronous collection.

Resource Information Manager provides an interface to query resource infor-
mation by XPath/XQuery. The implementation of Resource Information Manager is

CIM-Based Resource Information Management for Integrated Access Control Manager 45

extensible to handle the non-CIM-based resource information because the implemen-
tation accepts schema-independent queries.

4.4 Policy Manager

Policy Manager consists of Policy Generator, Policy Deployer, and Policy Repository.
Policy Generator assists administrators in describing role-based policies with brows-
ing resource information and user information, and it stores the descriptions in the
form of XACML in Policy Repository. Policy Deployer translates the XACML policy
descriptions to ACLs automatically and sends them to Policy Deployment Agent.
Policy Deployer takes a plug-in architecture to support access control modules having
different capabilities and ACL formats. Each plug-in has policy translation rules for a
corresponding access control module. An appropriate plug-in is picked up in accor-
dance with the information of the access control modules modeled in Section 3.3.

5 Experimental Evaluation

This section demonstrates the user interfaces of the IAM implementation and experi-
mental results of the performance evaluation in our test bed.

5.1 Policy Manipulation on GUI

The GUI for the IAM has a Resource Group Editor, shown in Fig. 6, to make groups
of files and directories that are target resources of access control. Administrator cre-
ates a new group on the left frame, which shows the list of defined resource groups,
and then chooses the files and directories to be grouped by exploring the tree on the
right frame. Owing to the additional property of SPF_Directory, Resource Group
Editor is able to reduce lots of queries for showing the contents list in a directory.

With these resource groups, instead of individual resource IDs, administrators can
easily describe abstract policies in Abstract Policy Editor (Fig. 7).

Fig. 6. Making resource groups on the Resource Group Editor

46 F. Machida et al.

Fig. 7. Describing abstract policies on Abstract Policy Editor

Created policies can be deployed to the target servers by modifying a deployment
schedule or by button click on demand. When the policy deployment process starts by
button click or by the arranged schedule, the abstract policy is translated to ACLs
automatically according to the translation rules stored in the plug-in of Policy
Manager, and the ACLs are distributed to the target servers through communications
with Policy Deployment Agent.

5.2 Query Performance

Query response time is an important factor in the usability of the IAM. The process of
policy manipulation, especially the operations on Resource Group Editor, invokes lots
of resource information queries. The efficiency of policy generation as well as the
usability of the UI depends on the performance of resource information query.

In light of these facts, we evaluated the performance of Resource Information
Manager by measuring the response time of each XPath/XQuery which is used in the
policy manipulation scenario. Figure 8 summarizes the testing configuration, and
Table 1 lists the queries invoked in the scenario and corresponding results.

Client

CPU Pentium4 3.2GHz

Memory 1 GB

OS Fedora Core 6

Client workstation Target server

Virtual Machine HostMachine

CPU Intel Xeon 3GHz Intel Xeon 3GHz

Memory 512 MB 2 GB

OS Cent OS 5 Windows Server 2003
VMware Player

VM

Xpath/XQuery

results

Fig. 8. Configuration of the test bed for measurements of response time

CIM-Based Resource Information Management for Integrated Access Control Manager 47

Table 1. Response time of each query for Resource Information Manager

Query target XQuery Response
time (sec)

Instances of computer
systems

for $instance in
//INSTANCE[@CLASSNAME="CIM_ComputerSystem"]
return {$instance}

2.493

An instance of root
directory

for $instance in
//INSTANCE[@CLASSNAME="SPF_Directory"]
let $value := $in-
stance/PROPERTY[@NAME="Name"]/VALUE
where $value = "/"
return {$instance}

2.435

All instances just below
root directory

for $instance in
//INSTANCE[@CLASSNAME="SPF_Directory"]
let $value := $in-
stance/PROPERTY[@NAME="Name"]/VALUE
where $value = "/etc" or $value = "/bin" or $value = "/lib"
or $value = "/OPT" or $value = "/dev" or …

5.770

An instance of file access
capabilities

for $instanceFSC in
//INSTANCE[@CLASSNAME="SPF_FileSystemCapabili
ties"] ….

2.523

An instance of setting
data for reference monitor

for $instanceRMTSD in
//INSTANCE[@CLASSNAME="SPF_RMTargetSettingD
ata"] ….

2.532

Most of queries take only 2.5 seconds to get the results, except for the query to get
all directory instances just below the root directory. Unless the “FileList” of the
SPF_Directory is used, it is necessary to invoke this inefficient query to show the list
of the contents under the root directory on the Resource Group Editor instead of get-
ting only an instance of root directory. As a result, we conclude that the "FileList"
property of SPF_Directory contributes to improving the performance of each direc-
tory exploration more than twice.

6 Conclusion

A suitable IAM architecture for an integrated access control management system in
consolidated server environments is proposed. The proposed architecture employs
CIM standards for managing various types of access control modules. In a pilot
implementation for integrated file access control, we apply CIM to model the file and
directory information, reference monitor, and capabilities of file system. To explore
the directories without retrieving redundant CIM instances, we propose an extension
of the current CIM_Directory class definition. As a result of this extension, the
efficiency of lookup for the contents of each directory significantly improves.

The future work includes further integration with access control modules for
virtual machines, different OS and application servers. The IAM architecture has a
potential to adapt some different access control modules by adding the agents and the
plug-ins. Moreover, scalability of the IAM architecture is another important issue. We
improve the IAM implementation to manage lots of servers more efficiently.

48 F. Machida et al.

Acknowledgments. This work is a part of the Secure Platform project supported by
Japanese ministry of Economy, Trade and Industry, and Association for Super-
Advanced Electronics Technologies. The IAM architecture and the information
retrieval interfaces for access control modules were developed with much help of T.
Hatakeyama, M. Yuhara, T. Aizawa, and T. Kurita of Fujitsu Limited.

References

1. Loscocco, P., Smalley, S.: Integrating Flexible Support for Security Policies into the Linux
Operating System. In: Proceedings of the FREENIX Track: 2001 USENIX Annual Techni-
cal Conference, pp. 29–42 (2001)

2. Wright, C., Cowan, C., Morris, J., Smalley, S., Hartman, G.K.: Linux Security Modules:
General Security Support for the Linux Kernel. In: Proceedings of the 11th USENIX Secu-
rity Symposium, pp. 17–31 (2002)

3. AppArmor,
http://www.novell.com/linux/security/apparmor/overview.html

4. Sailer, R., Jaeger, T., Valdez, E., Caceres, R., Perez, R., Berger, S., Griffin, J.L., Doorn, L.:
Building a MAC-Based Security Architecture for the Xen Open-Source Hypervisor. In:
Proceedings of the 21st Annual Computer Security Applications Conference (CSAC), pp.
276–285 (2005)

5. Spencer, R., Loscocco, P., Smalley, S., Hibler, M., Anderson, D., Lepreau, J.: The Flask
Security Architecture: System support for diverse security policies. In: Proceedings of The
Eighth USENIX Security Symposium, pp. 123–139 (1999)

6. Jing, J., Gail-Joon, A.: Towards Secure Information Sharing and Management in Grid Envi-
ronments. In: Proceedings of Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom 2006), pp. 1–7 (2006)

7. Ryutov, T., Neuman, C.: Representation and Evaluation of Security Policies for Distributed
System Services. In: Proceedings of DARPA Information Survivability Conference and Ex-
position, pp. 172–183 (2000)

8. Common Information Model (CIM) Standards,
 http://www.dmtf.org/standards/cim/

9. eXtensible Access Control Markup Language (XACML), http://www.oasis-open.
org/committees/tc_home.php?wg_abbrev=xacml

L. Boursas et al. (Eds.): SVM 2008, CCIS 18, pp. 49–60, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Scenario-Based Distributed Virtualization Management
Architecture for Multi-host Environments

Fermín Galán1, David Fernández2, Miguel Ferrer2, and Francisco J. Martín2

1 Telefónica Investigación y Desarrollo (TID)
2 Departamento de Ingeniería de Sistemas Telemáticos (DIT),

Universidad Politécnica de Madrid (UPM)
fermin@tid.es, {david,mferrer,fjmartin}@dit.upm.es

Abstract. Traditional virtual scenario management tools (VNUML, NetKit,
MLN, etc.) normally consider mono-host deployment (i.e. the entire virtualized
scenario deployed in the same physical host). In this paper, the work carried out
in the EDIV project, dealing with the development of a multi-host evolution of
the Virtual Network User Mode Linux (VNUML) tool, is presented. Following
an overview of virtual scenario-based management, the distributed deployment
management architecture, detailing the main components, its interfaces and op-
erations, is described. Additionally, details on the actual implementation and the
results achieved so far are provided, assessing the feasibility and advantages of
the system. Finally a proposal to evolve the tool towards DMTF virtualization
related standards (CIM-based virtualization management and OVF) is outlined.

Keywords: Distributed management, virtualization, VNUML, CIM manage-
ment, OVF, User Mode Linux.

1 Introduction

Scenario-based virtualization management tools (e.g. VNUML [1], NetKit [2] or
MLN [3]) are essential in research and education. In such environments the ability to
provide experimentation scenarios involving arbitrary and complex topologies com-
posed of virtual machines in a quick and inexpensive way is dramatically useful.
These tools are quite different from “conventional” virtualization management infra-
structure tools (e.g., VirtualCenter [4]), which are oriented to production data center
environments and more focused on achieving optimal performance for final users than
in topological flexibility during development and testing stages.

In this context, a scenario can be defined as the formal specification (e.g. using
eXtended Markup Language –XML) of a set of virtual machines along with their
interconnection within a given topology. Furthermore a scenario-based virtualization
management tool is one aimed at processing scenario specifications in order to be
deployed in a physical infrastructure and provide further management. Traditional
tools (such as the ones cited in the previous paragraph) normally consider mono-host
deployment alone (i.e. the entire scenario deployed in the same physical host).

50 F. Galán et al.

Although this is the straightforward approach, it imposes severe scalability problems,
making it very difficult to build large scenarios composed of tens or hundreds of vir-
tual machines. In this case, the only possibility is to split the large scenario in smaller
pieces, breaking the management integrity (because of each sub-scenario having to be
manually managed independently) and thus increasing complexity.

In order to avoid this limitation, the EDIV (Spanish acronym for Distributed Sce-
narios with VNUML) project, a partnership between Telefónica I+D and UPM starting
in January 2008 and based upon our previous work [5], has developed an evolution of
VNUML to allow the management of virtualization scenarios deployed on multi-host
distributed infrastructure. One of the main design requirements is transparency, so
users accustomed to use basic VNUML (i.e. mono-host) will be able to work with
EDIV in minutes.

This paper provides a thorough description of the EDIV architecture and its sce-
nario management operations, as well as practical details of a fully functional proto-
type implementation and its first experimental results: several reference scenarios
have been tested over a simple cluster made of three hosts, allowing to analyze how
they are split depending on the segmentation algorithm used, and showing how EDIV
improves the basic mono-host deployment model of VNUML. Additionally, consider-
ing that aligning EDIV-based distributed management with recent virtualization-
related standards from DMTF (Distributed Management Task Force) will be a very
interesting approach to improve its interoperability, a possible evolution towards
CIM (Common Information Model)-based virtualization management and Open
Virtualization Format (OVF) is also analyzed in the paper.

The remaining sections of the paper are structured as follows. Firstly Section 2
describes the EDIV architecture, detailing its main components and the interfaces
among them, paying special attention to VNUML tool installed in deployment hosts.
Section 3 describes the different management operations. Section 4 provides the im-
plementation details and Section 5 includes the subsequent experimental results.
Finally, Section 6 presents the proposal to align EDIV with DMTF standards and
Section 7 closes the paper with the main conclusions and future working lines.

2 Architectural Design

This section describes the architecture in which the EDIV multi-host deployment
system is based. The physical layout is shown in Fig. 1 and consists of a cluster of N
physical deployment hosts plus a deployment controller. The latter is a logical entity
that can be collocated in one of the deployment hosts or located in a physically sepa-
rated element, as it is shown in the figure. All elements are connected to a common
programmable switch-based backplane through trunk physical interfaces able to mul-
tiplex 802.1q VLANs [6].

In the following subsections the different elements in the architecture (deployment
hosts, deployment controller and interconnection backplane) are described. Later, in
Section 5, the example configuration made of three hosts and one controller that has
been used to develop and validate the prototype is presented.

 Scenario-Based Distributed Virtualization Management Architecture 51

Switch-based interconnection backplane
(supporting 802.1q VLAN)

…

Deployment hosts (N)

Deployment
controllertrunk

management
network

Fig. 1. EDIV physical layout

2.1 Deployment Hosts

Deployment hosts are GNU/Linux systems in which virtual machines belonging to
deployed scenarios are run. They have the VNUML tool installed, along with the
additional components required for its operation (UML kernels and root filesystems
for virtual machines).

VNUML [1] is a general purpose open source tool designed to help building virtual
network scenarios that are automatically deployed in a single host. It is based on User
Mode Linux (UML) [7], a virtualization technique to run virtual Linux machines over
a Linux host. The tool is made of two main components: the XML based VNUML
language that enables to describe the virtual network scenario; and the interpreter of
the language (actually a shell command) that parsers the description and builds and
manages the scenario, relieving the user of all complex UML details.

The tool implements three scenario management modes, which are applied on
scenario specifications (either written by users themselves in conventional VNUML
utilization or provided through the H interface described in Section 2.2): deploy, to
start the virtual network scenario in the host; execution, to execute programmed
command sequences on scenario virtual machines and copying files to them; and
undeploy, to dismantle the scenario, releasing the host resources.

Regarding VNUML specifications, they are composed of two main sections:
virtual networks and virtual machines (a complete reference of the VNUML language
can be found in [1]). The virtual networks that interconnect virtual machines among
them or with the host network interfaces are defined using the <net> tag. Virtual
networks are implemented by means of virtual software bridges running on the host
machine. The <vm> tag is later used to describe each virtual machine. The language
enables to describe their main characteristics in terms of: the kernel and the filesystem
that are run (<kernel> and <filesystem> tags), the network interfaces used (<if> tag)
and the addresses associated with them, either IPv4 or IPv6 (<ipv4> and <ipv6>
tags), as well as the IP routes (<route> tag). Besides virtual machine specifications
can include <filetree> and <exec> tags to define files to be copied from the host to
the virtual machines and user defined commands to be executed on them.

Additionally to VNUML tool, some other software packages are also required in
the deployment hosts (e.g., vconfig, to create VLAN specific sub-interfaces in the
physical trunk). Finally note that in order to implement the H interface some specific

52 F. Galán et al.

services or process could be needed (in particular, a SSH/SCP based interface requires
a SSH daemon).

2.2 Deployment Controller

The deployment controller manages the distributed virtualization scenario, providing
the interface for the user and implementing the operations to deploy, execute com-
mands and undeploy (described in Section 3). It is implemented in a modular way
(Fig. 2), composed by several functional entities (coordinator, segmentator and data-
base), described below along with their inner and external interfaces.

VNUMLVNUML
VNUMLVNUML

VNUMLVNUML

Coordinator

Switches

Deployment hostsDB

Deployment controller

U

D
S

H

W

SegmentatorSegmentatorSegmentator

Scenario specifications
(VNUML language)

Fig. 2. Deployment controller architecture and logical interfaces

Coordinator. It is the main module of EDIV. It implements the user interface (U) and
coordinates the rest of the modules in order to perform the operation requested by the
user. As already stated in Section 1, one of the main design requirements for EDIV is
transparency for VNUML users. This means that the U interface must be as close as
possible to conventional (i.e. mono-host) VNUML utilization. Thus the invocation of
the deployment controller is performed through a shell command, using the same
XML scenario specification language and management operations (deploy, undeploy
and execute) than VNUML does (see Section 2.1).

The coordinator also interacts with external hosts and switches (using the H and W
interfaces, respectively). Both interfaces are based on remote command and file copy-
ing protocols (e.g. SSH, SCP and rsync are the usual ones for GNU/Linux based
hosts, while switch vendors typically use SNMP, telnet or TFTP), over a dedicated
network (named management network), which can be associated to a preconfigured
VLAN (as shown in Fig. 1) or being a physically separated network (as used in the
experimental setup described in Section 5). It is assumed that IP connectivity in the
management network is preconfigured in all hosts and deployment controller before
starting operation.

Segmentator. This module performs the segmentation of the virtual scenario, decid-
ing in which host each virtual machine will be deployed. Using the S interface, the
coordinator provides the VNUML specification to the segmentator, which processes it

 Scenario-Based Distributed Virtualization Management Architecture 53

according to the segmentation algorithm selected (opaque from the point of view of
the coordinator module), returning a table in which each <vm> in the specification is
assigned to one of the hosts.

The main advantage of the deployment controller modular design is that it enables
to easily add new modules implementing new segmentation algorithms, as long as
they meet the S interface (consisting in just one primitive, SPLIT, as detailed in
Section 3). Moreover several segmentator modules could be available at the same
time, allowing the user to choose the most convenient among them when invoking the
deployment controller (e.g. with an algorithm selector argument in the U interface
command line).

Database. It stores persistent information between controller executions. In particu-
lar, it stores the per-host sub-specification fragments running in each host (associated
to the scenario they belong to), the list of available VLAN IDs to implement
inter-host virtual networks and arbitrary parameters that segmentation algorithms
might need (e.g. host statistical load information).

Fig. 2 shows the database as an inner component to the deployment controller, al-
though actually it could be set outside (e.g. in order to take advantage of centralized
backup policies). Regarding the D interface, it depends on the database implementa-
tion (e.g. SQL for a SQL-based database).

2.3 Switches

The programmable switch backplane provides physical interconnection among
deployment hosts and controller. It is composed of a set of Ethernet switches but, as
long as it provides end-to-end 801.2q trunks among each deployment host and con-
troller, the internal switch backplane interconnection topology is not relevant (even
just one switch could be used if the number of hosts is low).

If the VLANs used by EDIV to interconnect virtual machines running on different
hosts need to be explicitly managed in the switches by the deployment controller, the
W interface (between coordinator and switches) has to be implemented, so the coor-
dinator can enable (or disable) specific VLAN IDs in the switches. Alternatively it
can be assumed that all VLAN IDs in the operational range of the controller are
always enabled in the switches. In this case, the W interface is unnecessary (this is the
simplest approach, but it might not be desirable due to security concerns).

3 Detailed Operation Sequences

This section details the two basic EDIV scenario management operations: deploy and
undeploy, considering a simple setup made of two deployment hosts. The third opera-
tion (execution) is not shown for the sake of briefness, although it is very close to
undeploy.

The deployment of the scenario (Fig. 3) starts with a user command through the U
interface, specifying the desired scenario (SC) as argument. As a preparatory step, the
coordinator accesses the database in order to get pre-deployment information (e.g.
algorithms parameters, list of free VLANs, etc.). Then SC specification is provided to

54 F. Galán et al.

the segmentator in the SPLIT primitive. The segmentator returns a mapping, which
basically is a table in which each virtual machine in SC is assigned to one of the
deployment hosts (in this case, either H1 or H2).

Next the coordinator splits the SC XML into per-host fragments (SC1 and SC2),
each one containing the <vm> tags of the virtual machines assigned to each host (H1
and H2) and the <net> tags corresponding to intra-host and inter-host virtual net-
works (inter-host virtual networks required a slight modification in <net> tags,
see [5] for details).

In the next step the H interface is used to create inter-host networks. Basically, for
each network a free VLAN ID is chosen, creating the needed subinterfaces in each
host (by issuing the CREATE_VLAN_SUBIF primitive which maps to vconfig
command), and, optionally, enabling the VLAN in the switches through the W inter-
face (issuing an ENABLE_VLAN primitive). Later a VNUML deploy operation on
each host is invoked using the corresponding scenario fragment (SC1 and SC2).

The coordinator issues operations in H and S interfaces in parallel, waiting for all
operations to finish. Once finished, it performs some post-deployment operations
(mainly storing SC1 and SC2 and the newly used VLANs IDs in the database, associ-
ating them with the name of the distributed scenario as key) and finishes reporting the
outcome of the deployment operation (“OK” in case of success) to the user.

Coor Seg H1 H2 SW

OPER(‘deploy’,SC)

SPLIT_REQ(SC, param)

segmentator algorithm maps vms in XML to
hosts (generating a mapping table)SPLIT_RSP(mapping))

split XML in two
fragment (SC1, SC2) as
specified in mapping CREATE_VLAN_SUBIF (…)

RUN_VNUML(‘deploy’,SC1)
CREATE_VLAN_SUBIF (…)
RUN_VNUML(‘deploy’,SC2)

ENABLE_VLAN (…)

get pre-deployment information

RESULT(‘OK’)

wait all responses

store SC1 y SC2 associated with the distributed scenario name (eg., ‘tutorial’)
store VLAN IDs allocated to the scenario

Fig. 3. Deployment operation sequence

Regarding undeployment (Fig. 4), the user only needs to provide the name of the
scenario, because the fragments of the XML specifications (SC1 and SC2) are stored
in the database, as described above, at deployment time. In addition, the coordinator
also obtains the list of VLAN IDs used by inter-host networks in the scenario. With
all this information gathered, the coordinator:

• executes a VNUML undeploy operation on each host through the H interface
• releases inter-host VLAN IDs (DESTROY_VLAN_SUBIF) and, if needed,

disables the VLANs in the switches through the W interface

 Scenario-Based Distributed Virtualization Management Architecture 55

Once all the previous parallel operations have finished, it cleans the database
information associated with the undeployed scenario (i.e. removing SC1, SC2 and the
inter-host VLAN ID list) and reports the final result to the user.

It is important to note that, as the undeployment (and execution) operation does not
require providing the original scenario XML filename, the risk of incoherence (e.g.
trying to undeploy an scenario using a different specification than the one used to
deploy it) is eliminated, improving in this way the original VNUML behaviour.

Coor H1 H2 SW

OPER(‘udeploy’,
‘tutorial’)

RUN_VNUML(‘undeploy’,SC1)
DESTROY_VLAN_SUBIF (…)

RUN_VNUML(‘udeploy’,SC2)
DESTROY_VLAN_SUBIF (…)

DISABLE_VLAN (…)

remove SC1 y SC2
release VLAN IDs used by the scenario

RESULT(‘OK’)

get SC1 and SC2 and VLAN IDs (which were associated to ‘tutorial’ at deployment time)

wait all responses

Fig. 4. Undeployment operation sequence

4 Implementation

A fully functional prototype of the deployment controller (implementing all the mod-
ules and interfaces described in Section 2.2) has been developed; details are provided
in this section.

Both the coordinator and segmentator modules are implemented in Perl (as
the original VNUML is), being the S interface based on the Perl module API (i.e. the
coordinator acts as the main program and each segmentator algorithm is encapsulated
in a corresponding .pm file). Two different segmentation modules have been imple-
mented, each one involving a different algorithm: round robin (sequentially allocates
each virtual machine to one of the deployment hosts) and weighted round robin (a
variation of the previous, in which the host CPU load measures are used to weight the
allocation, so more loaded deployment hosts would get lower share of virtual ma-
chines). Segmentation algorithms can be complemented using explicit allocation
rules. This feature allows users to provide indications on how the deployment should
be performed (e.g. “virtual machines A and B must be deployed in the same host”),
acting as restrictions to the segmentation process.

The deployment controller uses a configuration file with the following information:

• deployment hosts cluster characteristics (e.g. number of hosts, CPU, memory,
management network IP address, etc.),

• range of VLAN IDs available for inter-host virtual networks in the intercon-
nection switches

• default segmentation algorithm

56 F. Galán et al.

Regarding the database, a MySQL database implementation has been selected, so
the D interface is based on the standard modules used in Perl to access MySQL
databases.

Regarding external interfaces, the H interface is based on SCP (to copy the
VNUML sub-specifications) and SSH (to issue commands). The optional W interface
has not been implemented, assuming that the range of VLAN IDs specified in the
configuration file is enabled in the interconnecting switched.

Finally it is worth mentioning that the deployment controller not only implements
the management operations described in Section 3, but also provides centralized
access to the consoles of all the virtual machines in each scenario, by using SSH port
redirection mechanisms. In this way, the user can access text-based or xterm-based
virtual machine consoles in the same way he is accustomed to use with basic
VNUML.

5 Results

In order to validate the EDIV deployment controller implementation described in the
previous section and to show that the behavior of the segmentation algorithms is as
expected, several experiments have been performed.

The experimental setup (shown in Fig. 5) is composed of three deployment hosts
(H1, H2 and H3), consisting on Xeon 3.4 GHz dual core 4GB RAM machines, inter-
connected through a single switch supporting VLANs. The management network is
physically independent, using different physical interfaces. Both deployment hosts
and deployment controller run in Ubuntu 7.10 GNU/Linux operating system.

H1 H2 H3

Switch

eth1

eth1
eth1

eth0

Devices
• Switch HP Procurve 2650
• Host Dell PowerEdge 860 Xeon 3040 (dual core, 2.4 GHz)

eth0 eth0

Deployment
controller

Large scenario (51 VMs)

Management
network

Management
network

Small scenario (6 VMs)

Fig. 5. Experimental setup

In order to perform the tests, two complementary scenarios (small and large) have
been used, both taken from the VNUML examples library at [1]. The small scenario is
a BGP routing testbed used to test routing daemons (specifically bgpd) and it is
composed of 6 virtual machines. The large scenario is a networking laboratory for

 Scenario-Based Distributed Virtualization Management Architecture 57

OSPF dynamic routing tests, used in grade courses at DIT UPM, resembling the to-
pology of a distributed organization and involving 51 virtual machines.

The deployment of both scenarios has been performed using round robin and
weighted round robin algorithms, considering several host load distribution situations
(the results are shown in Table 1). In the table, low (L) implies CPU is free almost all
the time (around 0% use); medium (M), around 50%; and high (H), used almost all the
time (around 100%). In order to set the proper load value, hosts have been stressed
using cpuburn tool [8].

Table 1. Experiments results

Deployment host loads Round-Robin Weighted
Round Robin

L1 L2 L3 H1 H2 H3 H1 H2 H3
L L L 2 2 2 2 2 2

M M M 2 2 2 2 2 2
H L L 2 2 2 1 3 2

Small
scenario
(6 VMs)

H M M 2 2 2 2 2 2
L L L 17 17 17 17 17 17

M M M 17 17 17 17 17 17

H L L 17 17 17 7 22 22

Large
scenario
(51 VMs)

H M M 17 17 17 13 19 19

It can be demonstrated that the round robin algorithm always performs a uniform
distribution, so each host gets the same number of virtual machines (2 in the case of
the small scenario, 17 for the large one). In the case of weighted round robin a uni-
form distribution is also obtained when the relative load value is the same in all hosts
(i.e. L/L/L and M/M/M). However, with dissimilar loads, the more loaded host gets
the lowest number of virtual machines, and the difference between the number
allocated to the most loaded and the less loaded is proportional to the load difference.
Therefore, in the large scenario, the most loaded hosts (H1) get 7 virtual machines in
H/L/L case, while obtaining 13 in the H/M/M (because in the latter the load difference
is smaller). It is worth noting that, for the small scenario, this effect is almost negligi-
ble (only in the H/L/L case), given it is composed only of 6 virtual machines.

Finally the deployment time (i.e. the time elapsed since the user invokes EDIV de-
ployment controller until the scenario is finally deployed and ready for use) has been
analyzed. Using conventional VNUML mono-hosts deployment, the small scenario
takes around 42 seconds to boot, while the larger one takes around 282. However,
using weighted round robin, this time can be lowered to 17 and 130s respectively (in
the L/L/L, M/M/M and H/L/L cases), thus achieving a 50-60% significant saving. In
the H/M/M the time still being short in the large scenario case (135s), while it rises to
43s in the small scenario. This can be explained because in the large scenario the most
loaded host is running a significant smaller number of virtual machines than in the
other hosts (so deployment time is almost the same), while for the small scenario the
most loaded host runs the same number of machines as the others, which implies a
higher deployment time, close to the one in VNUML mono-host case.

58 F. Galán et al.

In summary, the tests carried out have proved that both algorithms behave as
expected, being the weighted algorithm more adequate when virtual machine deploy-
ment has to compensate the CPU load in each host.

6 EDIV Alignment with DMTF Standards

Although the EDIV implementation described so far provides a sound approach to
scenario-based distributed virtualization management (as proven by the results shown
in Section 5), it could be enhanced by aligning it with some DMTF standards. In this
line, possible modifications to the current architecture and the expected advantages
are described in this section.

One of the current EDIV limitations is that only UML-based virtual machines can
be deployed, due to the use of VNUML as the tool in charge of per-host local de-
ployments. Given that DMTF is developing a set of standards in order to provide an
interoperable management of virtualized infrastructure based on CIM, one possible
EDIV improvement could be to consider CIM-based deployment hosts in addition to
VNUML-based hosts (as shown in Fig. 6). Instead of using SSH/SCP in the H inter-
face (which is quite opaque from a management point of view) the interface would be
based on WBEM standard protocols, particularly CIM-XML or CIM-SOAP [9]. In
addition, a WBEM server would be run in these deployment hosts, including in the
repository the CIM virtualization model described in the CIM virtualization profiles
[10]. A provider able to manage CIM-based virtual machines would be required, such
as libvirt-cim [11], which could be integrated in any standard CIMOM (due to it im-
plements the Common Manageability Provider Interface –CMPI) and would allow
managing virtual machines based on other technologies different from UML, such as
KVM [12], Xen [13] or OpenVZ [14]. Note that this enhancement could imply small
modifications in the VNUML language, mainly in the <vm> tags, using a new type
attribute in order to specify the virtualization technology (e.g., <vm type=“xen”>).

Another DMTF standard that would be interesting to consider from the EDIV point
of view is OVF [15], which provides a common hypervisor-neutral open virtual ma-
chine format, fostering the adoption of virtual appliances (i.e. pre-configured software
stacks comprising one or more virtual machines to provide self-contained services) as
new software release and management model (e.g. through the development of virtual
appliance lifecycle management tools). Using OVF-based virtual machines in EDIV
scenarios could provide two benefits. Firstly it would enable to design scenarios in
which the virtual machines are actually virtual appliances highly optimized for spe-
cific purposes (e.g. dynamic routing stacks, firewalls, etc.) provided by third-parties,
relieving users from much of the installation and configuration effort. Secondly the
use of the same packaging format in EDIV scenarios than in pre-production and pro-
duction environments would reduce the evolution gap through the development life-
cycle. Thus, once OVF virtual machines have been tested and tuned in the EDIV
scenario, packages can be smoothly migrated to pre-production (in order to finish the
tests in an environment that mirrors the production layout) and finally production,
dramatically reducing the time-to-market of new architectures and services.

 Scenario-Based Distributed Virtualization Management Architecture 59

Deployment
controller

VNUMLVNUML VNUML-based
deployment host

(UML virtual machines)

U

H

CIM
Virt. Model

WBEM
Server

Provider
(e.g l bvirt-cim)

CIM-based
deployment host

(CIM-manageable VMs)

H’

(SSH/SCP)

Scenario specifications
(VNUML language with minor

mofidications in <vm>)

(CIM-XML or
CIM-SOAP)

CMPI, Java, …

i

Fig. 6. CIM-based deployment hosts in the EDIV architecture

The EDIV evolution towards OVF consists on including OVF-encoded virtual ma-
chines in EDIV scenario specifications and is aligned with the CIM-based deployment
hosts enhancement described above. Thus a new type of virtual machines would be
considered (e.g. <vm type=“ovf”>) including a reference to the virtual machine in the
OVF file and a CIM-based provider able to manage OVF packages. In this way, the
power of OVF virtual appliances would be integrated in EDIV scenarios without
involving severe modifications in the deployment controller logic. Moreover, in case
of reusing multi-VM OVF appliances involving topology descriptions (it is worth
noting that OVF descriptors allow to define arbitrary topologies equivalent
to VNUML ones, although in a less intuitive way), a translator from OVF descriptors
to VNUML language (both XML-based) could be developed.

Note that the aforementioned modifications would extend the EDIV management
capabilities (from UML to any virtualization technology supporting CIM manage-
ment, with a special interest in OVF virtual appliances), but keeping the two main
EDIV assets: the VNUML language (with small modifications) as high level descrip-
tive scenario specification language and the segmentation modules (where the virtual
machine allocation logic is encapsulated). Moreover these improvements could
co-exist with the currently existing VNUML-based deployment hosts, considering
two variants of the H interface (as shown in Fig. 6).

7 Conclusions and Future Work

The present paper has described EDIV: an scenario-based distributed virtualization
management architecture based on a deployment controller. Apart from the detailed
description of the architecture, its modules, interfaces and operation sequences, the
paper provides several results that assess the feasibility of the approach and its advan-
tages compared to the mono-host traditional deployment.

As main conclusions, firstly the EDIV distributed management approach allows to
deploy very large and complex scenarios (e.g. hundreds of virtual machines), which
would be very difficult or impossible to build in a single host due to the resources it
would require. Secondly deployment times can be dramatically reduced (around
50-60% saving), as shown in Section 5.

60 F. Galán et al.

Another advantage of EDIV is its transparency for the user: the deployment con-
troller offers a user interface very similar to the one offered by VNUML, allowing a
VNUML user to switch to EDIV in minutes. Indeed users only have to worry about
the high-level scenario design, because the low-level deployment details are hidden
by both EDIV and VNUML.

Another important feature of EDIV, derived from its modularity, is the clear sepa-
ration between the deployment controller logic and the segmentation algorithm,
thanks to the S interface. This fact allows segmentator developers to focus on provid-
ing highly optimized algorithms without any concern about the controller deployment
logic which uses such algorithms, and, on the contrary, to optimize and extend the
deployment logic (e.g. new operations or new user interfaces) without worrying about
the segmentation step.

As future working lines, the main one is to align EDIV with DMTF standards as
described in Section 6 in order to take advantage of interoperable virtualization man-
agement. Other secondary goals are to fix some issues in the current prototype (e.g.
implement the optional W interface) or implement filesystem and kernel management
(currently, they are preinstalled in deployment hosts, only scenario specifications are
copied through the H interface).

Acknowledgments. This work is supported by the Business Oriented Infrastructure
(BOI) group within the Business Support Systems (BSS) unit at Telefónica I+D.

References

1. Virtual Network User Mode Linux (VNUML), http://www.dit.upm.es/vnuml
2. Pizzonia, M., Rimondini, M.: Netkit: Easy Emulation of Complex Networks on Inexpen-

sive Hardware. In: TridentCom 2008, Innsbruck, Austria (March 2008)
3. Begnumm, K.M.: Managing Large Networks of Virtual Machines. In: Proc. of 20th Large

Installation System Administration Conf (LISA 2006), USENIX, December 2006, pp.
205–214 (2006)

4. VMware VirtualCenter, http://www.vmware.com/products/vi/vc
5. Galán, F., Fernández, D.: Distributed Virtualization Scenarios Using VNUML. In: First

System and Virtualization Management Workshop (SVM 2007), Toulouse, France
(October 2007)

6. IEEE, Virtual Local Area Networks. IEEE standard 802.1q (2001)
7. Dike, J.: User Mode Linux (UML). Prentice-Hall, Englewood Cliffs (2006)
8. CPU Burn-in Homepage, http://users.bigpond.net.au/CPUBURN
9. DMTF, CIM Operations over HTTP, DSP0200 v1.3.0c (September 2007)

10. DMTF, CIM System Virtualization Model White Paper, DSP2013 v1.0.0, (November
2007)

11. Libvirt-cim, http://libvirt.org/CIM
12. Kivity, A., et al.: KVM: the Linux Virtual Machine Monitor. In: Proc. of the 2007 Linux

Symposium, pp. 225–230 (June 2007)
13. Barham, P., et al.: Xen and the Art of Virtualization. In: Proc. of the 19th ACM Sympo-

sium on Operating Systems Principles (SOSP 2003), pp. 164–177. ACM, New York
(October 2003)

14. OpenVZ, http://openvz.org
15. DMTF, Open Virtualization Format Specification, DSP0243, v1.0.0b (July 2008)

Web Service Distributed Management

Framework for Autonomic Server Virtualization

Bogdan Solomon1, Dan Ionescu1, Marin Litoiu2, and Mircea Mihaescu3

1 NCCTLab, University of Ottawa, 800 King Edward Avenue,
Ottawa ON K1N 6N5, Canada

2 IBM CAS, Toronto
3 IBM USA, Sommers

Abstract. Virtualization for the x86 platform has imposed itself re-
cently as a new technology that can improve the usage of machines in
data centers and decrease the cost and energy of running a high num-
ber of servers. Similar to virtualization, autonomic computing and more
specifically self-optimization, aims to improve server farm usage through
provisioning and deprovisioning of instances as needed by the system.
Autonomic systems are able to determine the optimal number of server
machines - real or virtual - to use at a given time, and add or remove
servers from a cluster in order to achieve optimal usage. While pro-
visioning and deprovisioning of servers is very important, the way the
autonomic system is built is also very important, as a robust and open
framework is needed. One such management framework is the Web Ser-
vice Distributed Management (WSDM) system, which is an open stan-
dard of the Organization for the Advancement of Structured Information
Standards (OASIS). This paper presents an open framework built on top
of the WSDM specification, which aims to provide self-optimization for
applications servers residing on virtual machines.

1 Introduction

Server virtualization is not a new technology, it was first invented in the 1960s
by IBM in order to deal with multitasking and time sharing for the very expen-
sive mainframes of that age. In 1998 virtualization was “rediscovered” for the
x86 platform by VMWare, but due to instruction translation the approach taken
was slow when compared to bare metal performance. More recently, advances in
the form of paravirtualization and direct hardware support for both AMD and
Intel processors in the form of AMD-V and Inter-VT technologies have allowed
virtual machines to reach near bare metal performance. With such performance,
virtual machines offer a number of benefits over running one operating system
with one application server on one server machine in the form of better utiliza-
tion of the hardware at all times, less power consumption, better security and
fault tolerance through the use of sandboxed virtual machines. The push for
virtualization is accompanied by a shift to Hardware as a Service (HaaS) seen in
projects like Amazon’s Elastic Compute Cloud (EC2) [1] and FlexiScale. Both

L. Boursas et al. (Eds.): SVM 2008, CCIS 18, pp. 61–71, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

62 B. Solomon et al.

EC2 and FlexiScale provide developers with a virtual machine in which they can
set up their execution system, in terms of operating system, application server
and applications. After the virtual machine is deployed new virtual machines
from the base image can be created when they are needed and removed when
they are unused. The process of addition and removal however has to be done
by a human being. Through the use of these services organizations can pay only
for the CPU time and bandwidth that they use, and at the same time ensure
the availability of their application.

Recent initial public offering of VMware Inc. shows clearly that virtualiza-
tion is increasingly important to businesses. Two major players in the industry,
VMware and Microsoft Corp., are offering their previously for-pay server prod-
ucts for free, in order to market their more-expensive and more-capable enter-
prise systems. As expected, the server virtualization literature is quite large and
discusses architectures, implementations and performance issues in regards to
various server virtualization architectures.

Operations support system (OSS) for enterprises and service providers were
devised to offer automation of the configuration, provisioning, and management
mechanisms such that a service plan can be implemented with less human efforts.
However, little has been investigated in the area of automating and optimizing
the delivery of server-based applications and resources.

With the introduction of the Autonomic Computing Manifesto [2], a new
field of research was introduced and a series of products started to be marketed.
The research efforts aimed to build intelligent systems capable of self-configuring,
self-healing, self-optimization, and self-protecting themselves. Such systems have
to be able to analyze themselves, determine their state and if needed take the
most appropriate action in order to maintain the Service Level Agreement (SLA).
Critical applications provide guaranteed response times by ensuring that enough
servers are running for the worst possible scenario. While this is extremely in-
efficient since at non peak times most servers will be underutilized, it also does
not guarantee a good response time if the worse case scenario changes. The un-
derutilization of servers also causes extra costs, as all the servers have to be
powered. According to a survey done by the International Data Corporation
(IDC) servers in data centers are on average utilized only 10% to 15% of total
capacity. Self-optimizing systems can be thus applied to clusters of servers in
order to provide a guaranteed response time by adding new servers when more
clients arrive, and removing those servers when the number of clients decreases.
While it would be possible to consider autonomic systems and virtualization as
competing systems with the same goals - improving utilization of servers in dat-
acenters, autonomic systems can be used to provide the automation of creating,
moving and destroying virtual machines.

In the Autonomic Computing Manifesto [2], Paul Horn identified eight key
elements of an autonomic system. One of these elements was the use of open
standards. Since an autonomic system is meant to be used in a heterogeneous
world, various vendors must be able to create their own systems which should

Web Service Distributed Management Framework 63

be managed and interoperate out of the box. This means that the autonomic
solution must be independent of the various system it manages, from both hard-
ware and software perspective. For example there should be no difference be-
tween managing a WebSphere cluster and a Weblogic cluster in order to obtain
a certain response time. This is where the Web Service Distributed Manage-
ment (WSDM) [5] specification comes into play, by providing an open standard
framework which defines a web service architecture which can be used for the
management of distributed resources.

As the process of addition and removal of servers in virtual server environment
is presently done by system operators, there is therefore, a need to provide a
software platform capable of providing self- configuration, self-provisioning, self-
optimization and self-protection mechanisms for a complex IT infrastructure.
Thus, an autonomic computing control technique for the provisioning of virtual
servers on a given hardware platform will be introduced and developed in this
paper. The paper provides a solution for the dynamic load control on VMM
based virtual computing platforms.

The remainder of the paper is structured as follows: Section 2 introduces the
autonomic solution for server virtualization, section 3 shows the architecture
of an autonomic based system for management and optimization of the virtual
cluster. Section 4 describes the implementation of the architecture while section
5 shows some experiments run. Finally section 6 presents the conclusions.

2 Autonomic Server Virtualization

2.1 Challenges

An autonomic self-optimizing cluster has to solve a number of problems. First of
all, such a system must be able to utilize only the server instances that it requires,
and not more. In the case of a virtual machine environment, the system must
use only the minimum number of virtual machines that allow it to provide the
required SLA. At the same time, the virtual machines should be configured in
such a way as to not over utilize the available CPU/memory of the hardware
machine. Second of all, the system must be able to guarantee a certain SLA.
This translates into being able to start the addition of new instances before the
instances are required. Preferably the instances will be up and available just
in time to take the new load. Since creating, starting and configuring a new
instance takes on the order of minutes, the system must be able to predict the
behavior of the system’s future. Third of all, and possibly most important, the
system must be able to deal with a scarcity of resources, provide the required
resources to the critical applications and allow the non critical applications to
degrade gracefully. For a virtual machine system, this means at the same time
allocating more virtual machines for the critical applications and redistributing
the ratio of resources allocated to the various virtual machines to favor the
critical applications.

64 B. Solomon et al.

2.2 Autonomic System Solution

The solution taken in this paper is based on previous work [3], [6], [8] which
sees the autonomic system as a control loop with sensors, filters, controllers and
actuators. The goal of the system is to provide a certain guaranteed response
time to a number of web applications running inside WebSphere 6.1 application
servers, which run on top of Xen virtual instances. In order to achieve its goals,
the system makes a decision regarding what new VMs need to be deployed or how
to modify the resources used by existing VMs. The decision of adding resources
is reached based on a number of factors.

If there are enough resources free in the data center for the required VM,
the decision of what to do is based on where the free resources are. If there
are enough free resources on a machine that already has a VM running the
application needing more resources than the VM is given more resources. If no
such machine exists, than a new VM is created on a machine which has enough
free resources. In the case where none of the above two can be accomplished, the
system calculates a way to add resources to one VM and create a new VM with
the remainder resources. The approach of modifying the CPU usage of various
VMs is similar to the idea in [4]. The approach is extended in this paper, to
include multiple VMs.

If there are not enough resources in the data center, then the system recalcu-
lates the resources required by each application, and shifts the resources in such
a way as to provide the best possible response time for all applications based on
how critical each application is. Figure 1 shows the logic for decision making.

Fig. 1. VM Decision Making

The above solution results in a number of requirements for the autonomic
system:

1. The system must be able to shift resources at run time between various VMs
residing on the same hardware

Web Service Distributed Management Framework 65

2. The system must be able to predict how many virtual resources an applica-
tion will need

3. The system must maintain a map of available hardware and free resources
on hardware

4. The system must provision only as many resources as needed, and add more
resources if required in the future

5. Between adding a new instance and adding more resources to an existing
instance, the second will be preferred

3 An Architecture for Server Virtualization Using a Web
Service Based Autonomic Computing System

In order to build the above system, the architecture used is similar to the one
described in [8] and [7] and is composed from the following seven components:

1. Sensors - two types of sensors are used: one which retrieves data from each
of the application servers running on top the virtual machines. This data
contains information like response time provided by the server, number of
clients and what percentage of the CPU available in the VM the application
server uses. The second sensor measures data from the VM itself in the form
of CPU and memory used by each VM.

2. Filters - in order to modify the data coming from the sensors into data usable
by the rest of the components a filter manager implementing a filter chain
is used. The filter chain calculates information that is not directly available
from the sensors like throughput and think time for the application server.
The filter chain also calculates the average metrics across all servers in an
application server cluster.

3. Coordinator - the coordinator’s role is to provide the main logic of the con-
trol loop and drives the communication between the other components. It
implements an iterative approach, where the state of the system is repeatedly
estimated until two successive estimates are within a certain difference.

4. Model - the model provides a view of the system’s state and is used by the
other components to provide estimates of the future state of the system.

5. Estimator - the estimator uses the model and the current received data from
the filter in order to predict the future state of the system based on a non
linear system.

6. Decision Maker - two decision makers are used and the system switches
between them seemlesly based on the available resources. When there are
available free resources, the decision maker simply decides where to create
a new VM and how much of the underlying system’s resources the VM
will take. The same decision maker decides when to free up VMs that are
no longer needed by the applications. The second decision maker is used to
decide how to repartition the used resources when no free resources are used,

66 B. Solomon et al.

or when insufficient free resources are available. The same decision maker
repartitions resources when a VM’s resources are released, if the system was
previously strained for resources.

7. Actuator - similar to the decision maker, two actuators are used. The first
actuator is responsible for creating new VMs and removing VMs when they
are no longer needed. This actuator is also responsible to configure the VMs
and start the application server and any other necessary applications. The
second actuator takes care of redistributing the CPU time and memory al-
located to each VM.

4 Architecture Implementation

Figure 2 displays the architecture described previously as applied to a cluster
of WebSphere application servers running on top of Xen VMs. In the figure two
VMs, each with an instance of a WebSphere application server are managed.
Each instance has two sensors - one from the WebSphere server and one from

Fig. 2. VM Control Loop

Web Service Distributed Management Framework 67

the Xen virtual machine. The data from the sensors is then aggregated by the
filters and then passed to the estimators to determine the future state of each
of the two applications running on top of the VMs. The estimated data is then
passed to the controller which decides how to modify the resources each of the two
VMs receive. The actuation is done through the use of IBM Tivoli Provisioning
Manager, which runs scripts to adjust the resources received by the VMs.

4.1 Web Service Distributed Management Framework

The implementation of the components described above was done by extending
the Web Service Distributed Management (WSDM) open standard, and the
Apache Muse implementation of the WSDM standard was used for runtime.
Each component is formed from three WSDM resources: a factory component,
a management component and a runtime component. Since each WSDM web
service endpoint is able to support a large number of resources, each with its

Fig. 3. Resource Capabilities

Fig. 4. Sensor Interfaces

68 B. Solomon et al.

Fig. 5. Filter Interfaces

own unique address provided through the use of Web Service Addressing (WS-
A) a factory pattern is used in order to create the components. For example,
the same filter web service application could run two filter managers, each of
them for a different cluster. The factory has two responsibilities: to reply to
queries requesting the available component implementations that can be created
at the endpoint, and to create new components based on a predefined type. Upon
creation of a new component instance, the two resources for the component are
created, the management resource and the execution resource. The management
resource allows the configuring and reconfiguring of the resource as well as start,
pause and stop commands to be sent to the component. The execution resource
performs the runnable logic of the resource. It also sends messages to the other
components that it communicates with. Figure 3 shows the resource architecture
of a web service endpoint for a component. All messaging between components is
done in the form of notifications, through the use of the Web Service Notifications
(WS-N) standard.

Each of the seven components implements the interfaces described in [8].
Figure 4 shows the structure of the sensor component. The sensor component
has one goal, to retrieve data from the monitored entity and process the data
to be passed forward to the filter. One sensor component can be composed of
multiple probes, where each probe monitors and retrieves data for one specific
part of the system. In the case of an application server, there could be one probe
monitoring the response time, number of clients, throughput, etc. of a certain
application, and another probe monitoring the underlying system performance
like CPU and memory utilization. Due to the composition of the sensor from
multiple probes, the probes must be synchronized such that the data returned
by the probes represents almost the same moment in time. In order to achieve
this a cyclic barrier is used to ensure the synchronization of data gathering by
the probes.

Like the sensor component, the filter component has only one role - to filter
the measured data into data that can be used by the rest of the control loop. The
structure can be seen in figure 5. In order to provide a certain degree of reusability
and modularity, the autonomic filter implements a filter chain pattern, where
the data is passed successively through a number of filters, each filter taking one
action to modify the data. For example, in the WebSphere Application Server
cluster example, the data coming from each of the sensors represents the total
values for a certain metric since the server had started. What is required by
the rest of the control loop is an incremental value for the previous pooling

Web Service Distributed Management Framework 69

period. Furthermore, the control loop requires a number of metrics that are
not directly available from the sensor, but which can be calculated from the
measured metrics, and also require an average value for the whole cluster and
not values per server. Each of the above calculations can be abstractized into
three separate filters, which can then be chained.

The estimator, model, coordinator and actuator structure is very simple and
not shown in this paper. Each of these components implements one function
related to its role in the control loop. For example, the coordinator has one
function visible outside - coordinate - which takes care of coordinating the control
logic and communications between the other components.

5 Experiments

Some simple experiments were run to see the behavior of the system. The testing
system was built using Xen Server 3.1 as the host system, with Fedora 8 guests

Fig. 6. Test bed

Fig. 7. Clients Fig. 8. Response time Fig. 9. Predicted server
instances

70 B. Solomon et al.

systems running WebSphere Application 6.1 servers. The Trade 6 benchmarking
application was then run on top of WebSphere servers and was monitored.
Figure 6 shows the test-bed used. The two WebSphere Application Servers reside
on one Xen VMM, and have a front end Http server which distributes the requests
to the two backend serves. Since the Trade6 application is a three tier application
a DB2 backend stores the persistent information for the application. The sensors
are then deployed on one server, and the rest of the components are deployed on
another server. Tivoli is also set up on a separate machine from the control loop
logic.

Figures 7 through 9 show the way the number of clients, response time and
number of predicted server instances vary for one of the two applications running
on VMs. From these figures it can be seen that the average response time, as
expected, is correlated with the number of clients. It can also be seen that the
control loop smooths the high variability of the response time values, resulting
in a relative small number of changes to the VMs.

6 Conclusions

This paper has presented a solution for combining an autonomic computing in-
frastructure for self-optimization with server virtualization in order to achieve
optimal server usage in data centers. The autonomic infrastructure is based on
open standards and uses web services for management of the virtual server re-
sources. Both the addressing of the components that form the autonomic system
and the messaging between the components is based on web service standards
and form a SOA, where the components represent services that can be created,
started, stopped and deployed on the fly. By using a two layered approach to
optimization, based on whether there exist free resources for new VMs or not,
the system described here can guarantee that the resources are used in such a
way as to both provide adequate SLAs, and optimize the critical applications
first. At the same time, this solution ensures that only the required resources are
used and not any more. By combining server virtualization and self-optimization
only the required resources of a hardware server are used for each VM instance,
and as more resources are needed by various applications the autonomic infras-
tructure can provide them based on SLAs. The autonomic infrastructure can
also resolve resource conflicts between VMs.

7 Future Work

Future work will include building a more thorough test-bed for the solution de-
scribed in this paper, that will optimize a number of Java based web applications
running on top of multiple VMs. The test-bed will then be used to measure the
performance of the proposed solution in terms of resources used, power con-
sumption and meeting of SLAs for the web applications.

Web Service Distributed Management Framework 71

References

1. Amazon. Amazon Web Services: Elastic Compute Cloud,
http://aws.amazon.com/ec2

2. Horn, P.: Autonomic Computing: IBM’s perspective on the State of Information
Technology (October 2001), http://researchweb.watson.ibm.com/autonomic/

3. Litoiu, M., Woodside, M., Zheng, T.: Hierarchical model-based autonomic control of
software systems. In: ACM ICSE Workshop on Design and Evolution of Autonomic
Software (2005)

4. Menasce, D.A., Bennani, M.N.: Autonomic virtualized environments. In: ICAS 2006:
Proceedings of the International Conference on Autonomic and Autonomous Sys-
tems, Washington, DC, USA, p. 28. IEEE Computer Society, Los Alamitos (2006)

5. OASIS. OASIS Web Services Distributed Management (WSDM),
http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsdm

6. Solomon, B., Ionescu, D., Litoiu, M., Mihaescu, M.: Decentralized predictive con-
trol of autonomic computing environments. In: 4th International Information and
Telecommunication Technologies Symposium, pp. 94–103 (December 2006)

7. Solomon, B., Ionescu, D., Litoiu, M., Mihaescu, M.: An autonomic computing ap-
proach to server virtualization. In: 5th International Information and Telecommu-
nication Technologies Symposium, pp. 87–94 (December 2007)

8. Solomon, B., Ionescu, D., Litoiu, M., Mihaescu, M.: Towards a real-time reference
architecture for autonomic systems. In: 29th International Conference on Software
Engineering and Workshops (2007)

http://aws.amazon.com/ec2
http://researchweb.watson.ibm.com/autonomic/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm

Virtual System Environments

Geoffroy Vallée, Thomas Naughton, Hong Ong, Anand Tikotekar,
Christian Engelmann, Wesley Bland, Ferrol Aderholdt, and Stephen L. Scott�

Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
{valleegr,naughtont,hongong,tikotekaraa,engelmannc,blandwb,

aderholtwf,scottsl}@ornl.gov
http://www.ornl.gov

Abstract. Distributed and parallel systems are typically managed with “static”
settings: the operating system (OS) and the runtime environment (RTE) are spec-
ified at a given time and cannot be changed to fit an application’s needs. This
means that every time application developers want to use their application on a
new execution platform, the application has to be ported to this new environment,
which may be expensive in terms of application modifications and developer time.
However, the science resides in the applications and not in the OS or the RTE.
Therefore, it should be beneficial to adapt the OS and the RTE to the application
instead of adapting the applications to the OS and the RTE.

This document presents the concept of Virtual System Environments (VSE),
which enables application developers to specify and create a virtual environment
that properly fits their application’s needs. For that four challenges have to be ad-
dressed: (i) definition of the VSE itself by the application developers, (ii) deploy-
ment of the VSE, (iii) system administration for the platform, and (iv) protection
of the platform from the running VSE. We therefore present an integrated tool for
the definition and deployment of VSEs on top of traditional and virtual (i.e., using
system-level virtualization) execution platforms. This tool provides the capability
to choose the degree of delegation for system administration tasks and the degree
of protection from the application (e.g., using virtual machines).

To summarize, the VSE concept enables the customization of the OS/RTE
used for the execution of application by users without compromising local system
administration rules and execution platform protection constraints.

1 Introduction

The architecture for modern distributed and parallel execution platforms differ from
single head node/multiple compute nodes Beowulf clusters to distributed Grids and
large-scale system with specialized nodes (e.g., I/O nodes). Several tools are available
for the management of such platforms [6,8,10,11].

Furthermore, as different system solutions emerge on top of traditional computing
platforms, such as system-level virtualization, system management tools have also been
extended [15]. While these enhancements allow for the deployment of environments on

� ORNL’s research sponsored by the Laboratory Directed Research and Development Program
of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the U. S. De-
partment of Energy under Contract No. DE-AC05-00OR22725.

L. Boursas et al. (Eds.): SVM 2008, CCIS 18, pp. 72–83, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.ornl.gov

Virtual System Environments 73

new platforms like virtual machines, they are lacking in terms of customizability –
specifically from the perspective of application developers.

Because of that, with current system management solutions, application developers
do not gain any flexibility. Applications still have to be ported every time developers
want to use a new execution platform. However, the science resides in the applications,
not in the system software for the execution platforms. Based on this contrast, it is
critical to provide a solution that allows application developers to customize their ex-
ecution environment that will then be deployed on top of the execution platforms. In
other words, the operating system (OS) and the runtime environment (RTE) have to be
adapted to the application and not the application adapted to the OS and the RTE of a
specific platform.

To address this issue we propose the concept of a virtual system environment (VSE),
which decomposes these challenges into two different aspects: (i) the definition of the
environment needed to run the application, both according to application developers and
system administrators perspective – this high-level description is actually very agnostic
about the system configuration of the target system for application execution, and (ii)
the deployment of a defined VSE on a target environment. We currently support disk-
full/disk-less and physical/virtual systems; and also system partitioning (e.g., I/O nodes
versus login nodes versus compute nodes).

The remainder of this paper is organized as follows: Section 2 presents how a VSE
can be defined by both application developers and system administrators. Section 3
presents a tool for the deployment of VSEs on top of various system configurations
(i.e., physical/virtual, disk-less/disk-full). Section 4 presents VSE benefits for system
administration. Section 5 presents the effect of the VSE concept on system protection.
Section 7 concludes.

2 Virtual System Environment Definition

An application is typically designed to be executed with a specific version of an OS and
RTE. For instance, an MPI application can be designed to run on top of RedHat Enter-
prise Linux 4.0 with LAM/MPI 7.1.3. This kind of information is decided by developers
in order to simplify development. It also means that every time another environment has
to be used, most likely the application will have to be modified, ported.

On the other hand, computing centers today provide different execution platforms:
clusters, shared memory systems, or even large-scale high-performance systems such as
Cray XT or IBM BlueGene systems. Each of these systems typically provide a different
execution environment and applications have to be “adapted” to each of them. However,
the science resides in the applications and therefore application developers should not
have to deal with such porting issues, and should be able to focus on the science.

It is important to decouple the definition of the application’s needs in term of RTE
and what components system administrators want to have in each environment used by
applications.

System-level virtualization provides a first step in that direction, decoupling the en-
vironment used for the execution of the applications and the environment used on top
of the hardware (virtual machines versus host OS). For instance, it is possible to create

74 G. Vallée et al.

a virtual appliance, i.e., a specialized virtual machine for the execution of a given appli-
cation. However, the concept of appliance does not ease the definition of the application
environment; the system within the VM still need to be more or less manually installed.
Furthermore, because of the lack of meta-data defining what the application environ-
ment is, it is not possible to deploy an existing virtual appliance on top of a standard
system (i.e., disk-less or disk-full system).

Additionally, as discussed in Section 6, system management tools have been ex-
tended to support virtual environments but suffer from some significant limitation.
OSCAR-V [15] is such a tool, managing virtual machines and creating images for vir-
tual machines with a minimal system footprint (only needed software is included into
the image), but it is not possible for administrators and users to easily express their def-
inition of execution environments (OSCAR-V recognizes only Beowulf clusters [14],
and not Grids or large-scale systems) and it is still difficult for users & application
developers to define their execution environment1.

The VSE concept aims to address these challenges and has been implemented as an
extension of the OSCAR-V prototype: (i) the VSE fits application needs, no unneces-
sary system footprint in included; (ii) the OS type & version and the RTE are chosen
by application developers and not by system administrators; (iii) system administrators
can check the VSE before deployment; (iv) application developers can define their VSE
off-line from the execution platform; and (v) the VSE can be deployed automatically by
system administrators. Because the VSE implementation is actually a non-intrusive ex-
tension of OSCAR-V, performance for VSE creation and deployment is actually similar
to OSCAR-V performance. Thus, we do not present performance results in this docu-
ment, only the VSE architecture and implementation is described in details. Application
developers define their RTE needs using a high-level language based on XML, which
describes a set of software packages (Package Sets). A package is an abstraction for
the local management of software that aims at easing the installation, configuration and
removal of software in a given local system. More details are presented in Section 2.2.
In mathematical terms, our notion of sets follows the Zermelo-Fraenkel set theory, with
the axiom of choice (ZFC). It means that a collection of “operations” are available for
the package set mechanism. From the usage point of view, only a subset of “operations”
are important: it is possible to combine package sets and get the intersection of pack-
age sets. These operations provide a very flexible method for the definition of complex
VSEs.

2.1 Package Sets Definition

Package Set Combination. It is possible to combine package sets together:

PackageSetA ∪ PackageSetB

This enables the combination of VSE definitions from application developers and sys-
tem administrators (see Figure 1).

1 This may lead to conflicts between applications’ needs and system administrators’ needs; we
do not provide an automatic solution to manage these conflicts since most of the time there are
policy issues.

Virtual System Environments 75

Fig. 1. VSE Definition and Management

For instance, if system administrators, based on local policy, want to include the
Moab software [9] in all VSEs because it is the chosen workload manager used by the
computing center, they can create a VSE definition that will be combined with an appli-
cation’s developers definition. The resulting specification incorporates the constraints
from both the application and system administrators.

Package Set Intersection. It is also possible to define the intersection of package sets:

PackageSetA ∩ PackageSetB

The intersection operation is more suitable for advanced capabilities rather than the
strict definition of a new VSE. For instance, the intersection operation can be used to
identify common software components between several VSEs. That can be used later
on by system administrators in order to identify current needs of application developers
in term of settings of the execution environment, and therefore try to address more
efficiently present needs and anticipate future needs.

Package Set Validation. The package set mechanisms also include basic validation ca-
pabilities in order to ensure that package sets can be correctly combined. This validation
tool is based on a versioning mechanisms (comparison of software version), and a de-
pendency mechanism (set A depends on set B but conflicts with set C).

If users combine several package sets together the system also checks that the Linux
distribution from the different package sets are the same.

Versioning. Users can specify the version of each package within a package set. This
allows for fine grain software management. For instance, application developers can
specify that their application needs a specific version of a library. We provide standard
operators to deal with versioning: equal (eq), superior to (gt), inferior to (lt), superior
or equal to (gte), and inferior or equal to (lte).

76 G. Vallée et al.

2.2 Package Sets Usage

Package sets define a VSE and are used to create a “golden image” which is agnostic of
the target platform execution configuration. The current VSE implementation relies on
OSCAR [10], a system management software.

The package sets implementation actually directly relies on OSCAR Packages (OP-
KGs) which allow one to define a software package for software installation in dis-
tributed or parallel systems, including information such as a list of binary packages,
configuration scripts and versioning information. It typically extends the standard no-
tion of binary packages, adding information about what has to be done to have the
software setup at the global level of the distributed or parallel systems. Note that we
assume application developers provide their application via an OSCAR package.2

The current implementation supports the definition of single package sets and the
combination of package sets. The package set intersection operation has not yet been
implemented.

Package Set Analysis. In order to ease system administration tasks and to track modifi-
cations, information about package sets are stored in a database, the OSCAR Database
(ODA).

The first step for the creation of a VSE is therefore the parsing of the VSE’s XML
file, its validation via XML tools and the update of the OSCAR database. We will see
later that information in the database is used to update a basic image, which ultimately
results in a golden image that matches the VSE definition.

The validation is composed of two phases: (i) the basic validation of the XML file
using standard XML tools, (ii) the validation of the list of OPKGs from the pack-
age set. OSCAR provides a tool (OSCAR Package Downloader - OPD) for managing
OPKG repositories, which can be used to download OPKGs. OPD2, especially devel-
oped for the VSE support, allows us to get the list of all the available OPKGs, for
all supported Linux distributions. OPD2 also saves information about OPKGs into the
database. Based on this list, it is possible to validate package sets (e.g., checking if
OPKGs are available).

Creation of a Basic Golden Image. Based on package sets, a “golden image” [2,10] can
be created and used for the actual deployment of a given VSE. For that, we (i) analyze
the package set(s), (ii) create a basic golden image for the target Linux distribution, and
(iii) install the different OPKGs based on the package set definition.

The creation of basic golden image relies on the OSCAR version of the SystemInst-
aller software [2]. The creation of the basic image is based on the Linux distribution and
the architecture specified in the package set(s). During the image creation, the OSCAR
database (ODA) is updated in order to initialize information about the new image.

Once the basic image is created, and based on information about the package set
from ODA, it is possible to finalize the golden image installing the OPKGs associated
to the package set.

2 OSCAR packages are based on binary packages (e.g., RPMs or Debian packages), the creation
of new OSCAR packages is fairly simple if application developers already provide binary
packages for their application.

Virtual System Environments 77

OSCAR did not have a stand alone tool for OPKG management, initially all OPKGs
were installed directly into the image, using SystemInstaller, without using information
in ODA. We therefore implemented the OSCAR Package Manager (OPM) tool. This
tool queries the database to know the exact status of images, OPKGs and nodes. Based
on this information, OPM installs OPKGs into images but also on remote nodes if nodes
have already been deployed. The image is then ready to be deployed and the database
up-to-date for management purpose.

3 Virtual System Environment Deployment

We target three different platform architectures: (i) Beowulf clusters, (ii) disk-less clus-
ters, and (iii) large-scale systems (i.e., platforms with specialized nodes).

We saw in Section 2 that it is possible to have an XML file which describes the VSE
that has to be deployed and to create the associated golden image. Because we do not
want to have to recreate the image every time we deploy it (for instance to have image
persistence), we take care to separate tools for image creation and mechanisms to de-
ploy them. In other words, the VSE’s XML description is used to generate a “golden
image” on the management node. Then, this golden image is “adapted” to fit the plat-
form architecture. This adaptation is based on the description of the target platform.

3.1 Machine Sets

In order to express the topology of the target system, we introduced the notion of node
sets (also called node groups). This concept, like the package sets concept, follows the
Zermelo-Fraenkel set theory, with the axiom of choice (ZFC). This includes the support
of union and intersection operations on machine sets:

MachineSetA ∪ MachineSetB

MachineSetA ∩ MachineSetB

A key characteristic of node sets is the need to express dependencies between the ma-
chines in the set. To address this issue, we assume that all relationships between nodes
can be expressed as server/client dependencies, i.e., more precisely as a one-to-one de-
pendency (set A is dependent upon set B). For instance, for I/O nodes where three types
of nodes are used (meta-data server, data storage server and compute nodes), two dif-
ferent node sets can be defined: (i) a set for the meta-data server and the data storage
server where the meta-data implements the notion of server for the machine set, the data
storage server being the client; and (ii) a set for the data server (both meta-data and data
storage server) and the compute nodes. To define complex systems (e.g., a large-scale
system composed of login nodes, compute nodes, and I/O nodes), different machine
sets can be defined, one for each type of nodes.

3.2 Image Deployment

Figure 2 shows the overall architecture for VSE deployment mechanism for the support
of Beowulf clusters, disk-less systems and large-scale systems. Note that the figure
includes the relationship with the mechanism for the creation of the golden image.

78 G. Vallée et al.

Fig. 2. Overall Architecture for the Deployment of VSEs

Beowulf Clusters. Beowulf clusters are still the standard architecture for clustering: a
headnode provides all clustering services and compute nodes do the application com-
putation using services from the headnode. This is a standard client/server architecture.

To describe this architecture only two node sets are needed: (i) the headnode, and (ii)
the compute nodes.

Disk-less Clusters. Disk-less clusters may be deployed in many different ways. Cur-
rently, we use the standard NFS-ROOT [3] or RAMFS solutions, which is sufficient for
small to medium sized clusters (we assume that for large-scale systems, the standard
design for such systems is used).

In this case, the system may be categorized into two groups, like for Beowulf clus-
ters: (i) the headnode, or server; (ii) the compute nodes.

The difference with Beowulf clusters is that the image is not “deployed”: the image
is copied on the headnode, making the difference between shared data and modified
data. Then compute nodes are booted and use their own image.

OSCAR did not initially support disk-less clusters. We developed an extension of
OSCAR for the support of NFS-ROOT and RAMFS based disk-less support. This sup-
port is based on the tuning of images on the headnode. A golden image is divided into
two parts: (i) a shared image for the part of the file system that can be shared between
nodes (read-only), and (ii) a private image for the part of the file that needs to be in
read/write mode. It is also possible to fall back to a disk-full solution (logically merg-
ing the two images for deployment).

Large-Scale Systems. For large-scale systems, the situation is different because this
kind of architecture is no longer based on the idea of one single server and many com-
pute nodes. Typically, for this kind of architecture, nodes are grouped into different sets:
compute nodes, “service nodes” (e.g., for the parallel file system), and “login nodes”.

It is possible to describe a server/client dependency relationship between the differ-
ent nodes involved in a single service (for instance the I/O subsystem), combining node
groups together. For instance, PVFS [12] has three kinds of nodes in order to implement
the parallel file system: meta-data server, storage nodes and clients. It is possible to say
that the meta-data server has a server/client dependency and then combine these two

Virtual System Environments 79

into a single node group and create a dependency between this group and the compute
nodes.

The current implementation allows one to describe different node groups and to com-
bine them together. Based on this mechanism and the assignment of one specific image
to a group of nodes, it is possible to deploy complex large-scale systems.

Virtual Systems. Another solution for the deployment of VSEs is the usage of virtual
machines. In this context, the VSE can be instantiated via virtual appliances that can
be viewed as a minimal system configuration specialized for the execution of a given
application. Thus, VSEs can be considered as a specification tool for virtual appliances.

We previously extended OSCAR, creating OSCAR-V [15], to support system-level
virtualization. One of the benefits of OSCAR-V is the ability to support several system-
level virtualization systems via the V2M abstraction layer. This allows one to switch
between virtualization solutions without re-deploying virtual machines.

Combining the concept of VSEs and features from OSCAR-V, users can take full ad-
vantage of virtualization, simplifying the management of virtual systems and improving
the customizability of execution environments.

4 System Management

The administration of computing systems must strike a balance between the required
system aspects and those which are strictly end-user specific. The ultimate goal being to
support users and their computational needs. However, the responsibility of maintaining
the system typically does not lie in the hands of the individual(s) most familiar with the
applications using the resources.

VSEs offer an interesting means by which system administration tasks can be dele-
gated to the end-user who is most aware of the application’s needs. The extent to which
these system administration tasks are delegated may differ based on the approach used
for implementing the VSE, e.g., node partitions, disk-less nodes, virtual machines. The
extent of delegation must be commensurate with the selected protection scheme. For
example, the VSE might be a common system image that users customize and deploy
on a set of disk-less nodes or could be entirely user generated based upon virtual ma-
chine platform specifications. In either case, the proper level of privileges is matched
with the degree of customization by the system administrator.

This provides a basis to use VSEs to improve user control for specialization, which
can be used for systems research testbeds or to simply provide a consistent platform
environment for scientists. A VSE also provides a good basis to empower user expertise,
which is commonly found on large scientific systems. In many situations these users
may require older libraries/compilers or even operating system kernels, which are easily
supported through the use of a VSE.

As presented in Section 2, both the system administrators and the users can define
their own package set and machine sets. These sets are then merged to describe both the
system environment and the hardware partitioning that fits both system administrators
and users needs. In summary, the VSE concept allows more flexible management of the
environment used by applications without compromising the local system administra-
tion policies.

80 G. Vallée et al.

5 Protection

Because the VSE concept enables the customization of different types of systems (e.g.,
disk-full & disk-less Beowulf clusters, virtualized systems), we provide a sliding scale
of protection. In other words, based on the system configuration described via package
sets and machine sets, it is possible to increase or decrease the degree of protection
for both the user and system administrator: (i) system administrators can protect the
execution platform from malicious applications or trust application and give them direct
access to the hardware for performance purpose; and (ii) the application developers can
choose to run the application directly on top of the bare hardware, with the risk to have
to modify the application, or to run in a virtual environment in order to ensure a similar
execution environment on all the VSE enabled platforms.

The protection mechanism is typically tied to the degree of customization supported
by the system, i.e., the more you can change/customize the more likely you may want
to dial the protection level up, ultimately using virtual environments for maximum
isolation (see Table 1).

Table 1. System Characterization According to Protection and System Administration Delegation
Capabilities

System Type Protection Level System Administration Type
Disk-full Beowulf Cluster Low Central system administration
Disk-less Beowulf Cluster Medium Central system administration
Virtual System High Delegation possible

6 Related Work

The HARNESS project [5] studies the launch of a virtual environment at job start,
this virtual environment being installed by the runtime environment for a particular
application. This capability enables the deployment of virtual RTEs that fit application’s
needs. However, this study suffers of limitations in term of flexibility for the creation
of a complete virtual RTE, especially in term of “virtual hardware” (it is not possible
to support solutions based on system-level solutions) and HARNESS does not provide
integrated tools for system deployment.

The Modules system provide environment customization at the level of a user’s com-
mand interpreter (shell) [4]. The Modules system is responsible for managing the dif-
ferences between command shells, e.g., bash, csh. A system administrator provides the
available software and configuration setting via a Tcl file that may be loaded at shell in-
vocation. The users customize their execution environment by loading the appropriate
“modules”, e.g., module load mpi/lam-7.0.6. These command can be made
persistent using a higher level tool like Env-Switcher [10]. While the Modules system
is widely used and quite useful, it is limited to changes that can be made at the command
interpreter level. Therefore, alternate kernel versions or entirely different operating sys-
tems are not an option with this approach.

Virtual System Environments 81

VMPlants [8] is a solution for the management of virtual execution environments in a
grid context. A virtual execution environment is defined by a graph which allows users
to customize their virtual execution that can be then deployed within virtual machines
(using VMWare [16] or User Mode Linux [7,1]). However, VMPlants assumes that a
system already exists on each machine the user will use. VMPlants does not provide any
solution for the management of this system but also does not provide tools and methods
for the interaction between the site system administrator and the application’s users.
It is therefore not possible to enforce the use of specific software within the virtual
machine (for instance the use of a checkpoint/restart solution); it is not possible to
check if the virtual environment defined by the application users is compliant with local
system usage policies, and the management flexibility offered to users is not available
to system administrators. Finally, it is not possible to deploy various type of execution
platforms based on VMPlants, the use of virtual machines is mandatory.

The Collective project [13] is based on the idea of virtual appliances, which are
application specific bundles that an author (vendor) maintains and end-users use with
limited or no administration responsibilities. They employ a virtual machine monitor
(VMM) to provide a trusted computing base and effectively a hardware abstraction
layer (HAL) to ease appliance portability. An appliance is a specialized single purpose
system, e.g., word-processing-appliance, that a user may use but does not maintain (ad-
ministration is done by the appliance author). This concept is similar to that of a VSE,
but differs in scope and how composition is achieved. The VSE is primarily targeted at
HPC environments, whereas the virtual appliances are focused on general purpose desk-
top environments. The appliances are not extended or changed by the user to build up
their environment, instead a collection of separate appliances are used in concert (each
administered independently). Both approaches use virtualization to assist with portabil-
ity and enhance usability. However, the Collective assumes multiple appliances (virtual
machines) could be run simultaneously where the VSE would typically encompass a
single virtual machine.

7 Conclusion

This document presents the concept of a Virtual System Environment (VSE), which has
been implemented via extensions and/or modifications of the OSCAR and OSCAR-V
system management suites. A VSE decouples the definition of the execution environ-
ment from the actual deployment method. Users can therefore define application needs
and constraints in a generic way. On their side, system administrators, depending on the
degree of trust and local management policies, can deploy the VSE into various sys-
tem types (e.g., disk-less versus disk-full systems, physical versus virtual systems) on
specific system partitions. Therefore, VSEs introduce a high degree of customization
for application developers, end-users and system administrators. For that, we introduce
the notion of package sets and machine sets which provide a flexible way to define the
execution environment and the hardware topology, respectively.

To summarize, through the VSE concept, it is possible to revisit the traditional sys-
tem administration rules without compromising the platform protection or increasing

82 G. Vallée et al.

the number of administration tasks. In fact, the system protection can even be increased
when using virtual environments, which can be done without a great deal of man-
agement effort (system-level virtualization is natively supported by OSCAR-V). Sys-
tem administration tasks can also be decreased, delegating some tasks to application
developers.

This is especially useful for virtual systems: the system administrator can define what
is the host OS, without paying attention to the system-level virtualization solution; and
application developers can focus on the definition of the VSE that will be deployed into
the virtual machines.

References

1. Brockmeier, J.: The Definitive Guide to User Mode Linux. APress (2004)
2. Dague, S.: System Installation Suite Massive Installation for Linux. In: The 4th Annual Ot-

tawa Linux Symposium (OLS 2002), Ottawa, Canada, June 26-29 (2002)
3. de Goede, H.: Root over nfs clients & server howto,

http://www.clusterresources.com/pages/products/moab-cluster-
suite/workload-manager.php

4. Furlani, J.L., Osel, P.W.: Abstract Yourself With Modules. In: Proceedings of the 10th Large
Installation Systems Administration Conference (LISA 1996), Chicago, IL, September 29–
October 4, pp. 193–204 (1996)

5. Geist, G.A., Kohl, J.A., Scott, S.L., Papadopoulos, P.M.: HARNESS: Adaptable virtual ma-
chine environment for heterogeneous clusters. Parallel Processing Letters 9(2), 253–273
(1999)

6. Georgiou, Y., Leduc, J., Videau, B., Peyrard, J., Richard, O.: A tool for environment deploy-
ment in clusters and light grids. In: Second Workshop on System Management Tools for
Large-Scale Parallel Systems (SMTPS 2006), Rhodes Island, Greece (April 2006)

7. jorg, H., Oxer, H., Hoxer, H., Buchacker, K., Sieh, V.: Implementing a user mode linux with
minimal changes from original kernel (2002)

8. Krsul, I., Ganguly, A., Zhang, J., Fortes, J.A.B., Figueiredo, R.J.: Vmplants: Providing and
managing virtual machine execution environments for grid computing. In: SC 2004: Pro-
ceedings of the 2004 ACM/IEEE conference on Supercomputing, Washington, DC, USA.
IEEE Computer Society, Los Alamitos (2004)

9. Moab workload manager,
http://www.clusterresources.com/pages/products/moab-cluster-
suite/workload-manager.php

10. Mugler, J., Naughton, T., Scott, S.L., Barrett, B., Lumsdaine, A., Squyres, J.M., des Ligneris,
B., Giraldeau, F., Leangsuksun, C.: OSCAR Clusters. In: Proceedings of the 5th Annual
Ottawa Linux Symposium (OLS 2003), Ottawa, Canada, July 23-26 (2003)

11. Papadopoulos, P.M., Katz, M.J., Bruno, G.: Npaci rocks: tools and techniques for easily
deploying manageable linux clusters. Concurrency and Computation: Practice and Experi-
ence 15(7-8), 707–725 (2003)

12. PVFS: Parallel virtual file system, http://www.parl.clemson.edu/pvfs
13. Sapuntzakis, C., Lam, M.S.: Virtual Appliances in the Collective: A Road to Hassle-free

Computing. In: Proceedings of HotOS 2003: 9th Workshop on Hot Topics in Operating Sys-
tems. USENIX (2003)

http://www.clusterresources.com/pages/products/moab-cluster-suite/workload-manager.php
http://www.clusterresources.com/pages/products/moab-cluster-suite/workload-manager.php
http://www.clusterresources.com/pages/products/moab-cluster-suite/workload-manager.php
http://www.clusterresources.com/pages/products/moab-cluster-suite/workload-manager.php
http://www.parl.clemson.edu/pvfs

Virtual System Environments 83

14. Sterling, T., Savarese, D., Becker, D.J., Dorband, J.E., Ranawake, U.A., Packer, C.V.: BE-
OWULF: A parallel workstation for scientific computation. In: Proceedings of the 24th In-
ternational Conference on Parallel Processing, Oconomowoc, WI, pp. I:11–14 (1995)

15. Vallée, G., Naughton, T., Scott, S.L.: System management software for virtual environments.
In: Proceedings of ACM Conference on Computing Frontiers 2007, Ischia, Italy, May 7-9
(2007)

16. VMware, Inc, http://www.vmware.com

http://www.vmware.com

L. Boursas et al. (Eds.): SVM 2008, CCIS 18, pp. 84–95, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Authentication in Virtual Organizations: A Reputation
Based PKI Interconnection Model

Ahmad Samer Wazan, Romain Laborde, Francois Barrere,
and AbdelMalek Benzekri

IRIT Institute
Toulouse, France

{wazan,laborde,barrere,benzekri}@irit.fr

Abstract. Authentication mechanism constitutes a central part of the virtual or-
ganization work. The PKI technology is used to provide the authentication in
each organization involved in the virtual organization. Different trust models
are proposed to interconnect the different PKIs in order to propagate the trust
between them. While the existing trust models contain many drawbacks, we
propose a new trust model based on the reputation of PKIs.

Keywords: Virtual Organization, PKI, X.509 Certificate, Reputation, Trust
Model.

1 Introduction

The Concept of virtual organization (VO) is a direct consequence of the network
evolution. VO offers a framework to make people belonging to different organiza-
tions to collaborate, share experiences, resources, data as if they were in a single
enterprise. This collaboration means that employee with specific skills from an or-
ganization will access resources provided by another organization in order to fulfill
the objectives of the common project. VO organization being multi administrative
brings security management issues, especially concerning the authentication process.

X.509 certificates and PKI management is widely used by organizations as the au-
thentication technology for identifying their assets, which could be either employee or
machines/servers (Fig.1). They hold an existing PKI infrastructure and skilled admin-
istrators to act as the certification authority (CA). The CA has its own practices for
controlling the validity of the identity specified in the certificates it issues. An entity,
called relying party (RP), within the organization authenticate another entity that
belongs to the same organization, using the X.509 certificate because it trusts its CA
and its CA’s practices.

In the context of VO, where entities belongs to different PKIs managed by differ-
ent CAs, the problem of trust becomes more complex. To facilitate the management
of trust, the authorities of certification can define trust relations between them. Inter-
connecting CAs is a huge problem which is manually performed by security experts
and organizational people, trying to understand if the PKIs have similar quality of
certificate management practices. Indeed, a CA that does not take care of the real

 Authentication in Virtual Organizations 85

identity of the employees when it creates certificates could reduce the overall security
of the partners that have better practices who won’t get assurance about the identity of
people from this organization. Today, the evaluation of the quality is based on differ-
ent documents (the Certificate policies and the Certification practice statement) that
are published by each CA. These documents present the procedures that the CA
claims to follow.

Fig. 1. Virtual Organization

In this article, we propose a new trust model based on the reputation of PKIs and
their practices. We use reputation as a quantitative indicator provided to PKI adminis-
trators to determine the trustworthiness of foreign certificates. Our model includes
both an architectural model that presents the different entities involved in the calcula-
tion of the PKI’s reputation and a calculation process based on the combination of
two formal models.

The rest of this paper is structured as follows. Section2 summarized the different
PKI interconnection approaches. Section 3 analyzes the concepts of trust and reputa-
tion, and presents some computational models. In section 4, an architectural model is
developed. Section 5 exposes how to apply reputation in the context of VO and illus-
trates the model through an example. Finally, section 6 concludes.

2 Trust Models

A relying party (RP) is ensured about the identity of an entity because it does trust the
electronic certificate that contains the name of the entity. In the X.509 certificate
framework, the trust on a certificate is based on the trust the RP has on the certifica-
tion authority (CA) that creates/manages the certificate.

The trust domain of an RP is the set of CAs it does trust. Managing the trust do-
main when it is confined to the organization is not a hard task. When a RP has to
make a transaction with another entity from the same organization, it does trust the
certificate because both have the same CA that they trust. However, in the context of
VO, each organization has its own department or team that plays the role of authority

86 A.S. Wazan et al.

of certification and issues/manages the certificates of all the organization’s assets,
which can be employees and machines or servers as well. This implies that the RP has
to trust the CA of another organization when it makes a transaction with an entity
from another organization. Thus, the trust domains should be extended by intercon-
necting the different organization managed PKIs involved in the VO.

We present in this section the main PKI interconnection models that have been pro-
posed. Although they propose technical approaches for extending trust domains, RP
or its PKI administrator has no quantifiable indicator to decide if extending the trust
domain is secure or not. In addition, trust is total and static in these models.

2.1 Hierarchy Model

In a strict hierarchy, there is one trusted root CA which issues a certificate to subordi-
nate CAs. Those CAs may, depending on the relevant policy, certify other CAs. Each
CA is trusted because the higher CA certifies it can be trusted. Only the root CA must
be trusted on its own. The hierarchical structure means there is a short and definite
path to trace a certificate back to a trusted source.

However, in context of VO, this model suffers the following limitations:

• The root CA cannot constitute a single responsibility point. It cannot take on
all the liabilities of errors caused by the leaf CAs in the different organizations.
In practice, the liability rests an issue between the RP and the individual CA in
the hierarchy,

• The root CA has no authority on the certificates for all the assets of an organi-
zation. The root CA has authority only on the certificates of the assets involved
in the VO but not on the other assets that do not belong to the VO.

2.2 Certificate Trust List Model

The Certificate Trust List (CTL) is a list of CAs’ certificates from a trusted authority.
The list itself is electronically signed to ensure its integrity. While CTLs are simple,
they provide a very useful device for communicating trust.

Trust lists have also given rise to the ‘browser’ model - the most widespread inter-
operable PKI by virtue of web browser applications (such as Internet Explorer, Net-
scape or Firefox). These browsers use a list of pre-loaded certificates from several
dozen of the largest and most reputable CAs such as Verisign, RSA and Thawte.
Almost all e-commerce websites display a certificate issued by those particular CAs.
When a browser visits their site, their certificates are automatically recognized and the
user has some assurance that the web site is from the organization it claims to be.

In context of VO, the management of trust lists is a problem. When a VO is cre-
ated, the administrator must add the CA of each organization involved in the VO to
the list of the trusted CAs for each asset of his/her organization related to the VO.
When the project is over these CAs must be deleted. The situation becomes more
complicated when assets of organizations are part of multiple VOs.

2.3 Cross-Certification Model

Cross-certification is a different approach to interoperability. Instead of a hierarchy,
CAs deal with each other as peers and choose whether or not to trust each other.

 Authentication in Virtual Organizations 87

If they do, the CAs issue cross-certificates to each other. A relying party can then
trace a certificate from an unknown CA back to a local trusted CA. This may be im-
plemented by allowing users to contact their trusted CA’s repository of certificates or
by including a chain of signatures on the certificate itself.

However, achieving interoperability through a mesh of certifications is technically
and logistically challenging. It is not easy for a single pair of CAs to co-ordinate their
policies and technical systems, and as the mesh grows, the number of cross-
certifications grows even faster. If every pair of CAs cross-certifies (to create a fully
meshed network), the number of cross-certifications required is almost n2 (if n is the
number of CAs). Cross certification is most suited when the number of partners in the
VO is limited.

In context of VO, this model requires that all CAs has the same level of quality.
That means the two CAs’ services are regarded as equal with respect to quality of
their certificate management practices (practices to identify the subjects, to store the
keys, to manage revoked certificates, etc.). The complexity involved in the policy
mapping depends on the differences between the policies. However, not all the CAs
can have the same quality.

2.4 Bridge CA Model

The bridge CA model is based around a central (bridging) CA which cross-certifies
with each CA. It functions as a communication channel between each of the CAs.

This combines aspects of both the root model and the cross-certification model. It
provides much of the administrative simplicity of the root model, because it only
requires one pair of cross-certifications for each CA, rather than n2 certifications in a
completely meshed system.

It also provides some of the flexibility of the mesh model because it is not con-
ceived as imposing strict technical requirements on complying CAs. Nevertheless the
bridge must set certain minimum standards for CAs to participate. For example, in
USA, the Federal Bridge CA specifies several different levels of assurance that a CA
can be certified at. The bridge itself is focused on the task of providing interoperability.

A bridge CA playing the role of an administrative root CA, this model suffers from
the same problems as the hierarchy model.

3 Trust, Reputation

Trust and reputation are related, but distinct, concepts. Trust represents an agent’s
individual assessment of the reliability, honesty etc. of another, while reputation is a
social notion corresponding to a group assessment of such issues. In this section we
will explain these two concepts.

3.1 Definitions of Trust and Reputation

Defining trust is quite difficult because it appears in many different forms [9]. In this
article, we consider the definition given by Gambetta [8] that states “Trust is the sub-
jective probability by which an individual, A, expects that another individual, B, per-
forms a given action on which its welfare depends”.

88 A.S. Wazan et al.

Reputation is generally built by combining trust assessments (or recommendations)
given by a group of agents to obtain a single value representing an estimate of reputa-
tion [9]. Consequently, reputation is public information which depends on the rec-
ommendations of the society where the entity is located.

The difference between trust and reputation can be illustrated by the following per-
fectly normal and plausible statements [9]:

(1) “I trust you because of your good reputation.”
(2) “I trust you despite your bad reputation.”

The statements (1) and (2) indicate that the reputation is a quantitative indicator
that allows an entity to decide if it will grant trust or not on another entity. This indi-
cator provides information to evaluate the associated risk. In addition, reputation
being based on external recommendations, this indicator value can evolve all the time
including the period of the life of the VO.

3.2 Computational Models of Trust and Reputation

There are several approaches to calculate reputation, such as:
− Simple Summation or Average of Ratings [1, 2]: the simplest way of

computing which is simply to sum the number of positive ratings and
negative ratings separately, and to keep a total score as the positive score
minus the negative score.

− Bayesian Systems [3]: Bayesian systems take binary ratings as input (i.e.
positive or negative), and are based on computing reputation scores by
statistical updating of beta probability density functions (PDF).

− Discrete Trust Models [4]: in this model, the votes are not continuous
measures but they are discrete verbal.

− Belief Models [5]: this model is related to probability theory, but where
the sum of probabilities over all possible outcomes not necessarily adds
up to 1, and the remaining probability is interpreted as uncertainty.

− Fuzzy Models [6]: Trust and reputation can be represented as linguisti-
cally fuzzy concepts, where membership functions describe to what de-
gree an agent can be described as e.g. trustworthy or not trustworthy.
Fuzzy logic provides rules for reasoning with fuzzy measures of this
type.

− Flow Models [7]: Systems that compute trust or reputation by transitive
iteration through looped or arbitrarily long chains.

The calculation model of reputation must integrate a function:

- To collect the different testimonial estimates from other entities,
- To modulate the impact of each type of information on the final

score of reputation depending on different criteria (date, reliability
of recommendation, etc.).

In addition, the entities that are involved in the calculation of the reputation score
should be determined. The next section presents the architectural model. Then the
calculation model is proposed.

 Authentication in Virtual Organizations 89

4 The Proposed Architectural Model

Several entities in X.509 PKI are involved in the calculus of reputation. We propose
an architecture which includes the various entities that take part in the calculation of
the reputation of X.509 PKI and their interactions (Fig. 2).

Fig. 2. The Proposed Model

4.1 Relying Party (RP)

Relying party represents an offered service or any other type of entity who wants to
verify the identity of another entity holding a certificate signed by an authority
doesn’t belong to its trust domain. In this model, we suppose that the RP gets the
authorization from the administrators of its CA in order to accept or not the certifi-
cate, i.e., the RPs delegate its CA’s administrator to verify the appropriateness of the
certificate.

At the end of each session, the relying parties must vote if the certificate content
was valid and there were not any errors caused by the certifying authority of the cer-
tificate. There are many issues in the work of PKI could be voted by the relying party
such as the availability of the OCSP server used to check the certificate status, the
liabilities taken on by the CA in case of problems, the identity information is mean-
ingful or not, the clarity of the relying party agreement, etc. This vote is communi-
cated to the administrator of the RP’s CA.

4.2 Audit Agency (CPS Quality)

The determination of reputation is an important factor but it is not sufficient. In fact,
RP needs to know also the quality of the procedures followed by the PKI in order to
publish the certificate (CPS quality) [13].

PKI is not only a technical project but also a legislative economic project which is
related to different domains. Consequently the determination of quality requires a
good knowledge on various fields which is impossible to have for a normal person

90 A.S. Wazan et al.

and even sometimes for experts. For example, this person cannot estimate the force of
cryptographic algorithm used to build the public keys.

The most detailed and relevant suggestion for the formal presentation of certificate
policies was described in [10]. Chokhani and Ford [10] enumerated a list of factors
CAs must take into account in order to describe the procedures used to issue and
manage the certificates. These factors include the practices followed by CA to authen-
ticate the users, the policy of the CA, the procedures of safety, the engagements of the
user (for example, the protection of his private key), and legal CA engagements (for
example, guarantees and limitations on the responsibility). PKIs should follow this list
and publish a report called Certificate Practice Statement (CPS). By consulting this
file, a qualified person can decide if the announced procedures in this report are suit-
able or not.

To face this problem, Ball and al [11] have proposed to build an expert system.
This system gives a score between 0 and 1, partly based on this CPS, which represents
quality of the CPS. The system works in two separate stages. The first stage, called
the static stage of calculation, evaluates quality depending on information that a CA
has published about its practices of work. This information is obtained two docu-
ments: the Certificate Policies that the how to use the certificate, and the CPS, which
describes how the CA manages its certificates. A server CPS answers the questions
raised by the expert system depending on the CPS, which is published by CA in the
form of a file XML. The importance of each question was determined by questioning
experts in the field of PKI [12]. The second stage evaluates quality depending on the
real behavior of CAs. This checking must be carried out by a third entity. This is
obtained from an external audit entity that tests the PKI and publishes a signed certifi-
cate of audit [11].

4.3 The Friend CAs (Recommendations)

In order to enrich the computation of reputation of a foreign CA, CA of RP takes into
account the recommendations of theirs friend CAs. These CAs might have collabo-
rated in previous projects with the foreign CA and share their experiences with it.
Consequently CA must maintain a list of friend CAs so that it can calculate the repu-
tation of the foreign CA. This list can be built manually by the administrator of CA
(for example protocols of co-operations between the two CAs).

4.4 Certificate Authority (CA) of RP (Calculating Reputation)

We have decided to make the CA of RP to play a central role in the calculation of the
reputation for several reasons:

• There is already a trusted relation between a RP and its CA.
• RP may have no personal experience with foreign CA.
• CA of RP is more qualified than RP on the activity of certification and thus it

can better evaluate other CAs.
• CA of RP can obtain scores provided by its clients who already worked with

CA foreign.
• CA of RP can set up protocols of co-operation with other CAs, that we call

friend CAs, who can give their feedback about the foreign CA.

 Authentication in Virtual Organizations 91

A CA of RP has a more global view than the RP. It is able to determine any change
of behavior of foreign CA more quickly than the RP itself.

Thus, there are two information sources from which the CA can provide a value of
reputation to its RP.

1. Values provided by the other RPs who have already worked with the foreign
CA,

2. Recommendations from friends CAs.
According to the criticality of the service, the administrator authorizes or not the

RP (service) depending on the reputation and the quality score. That means the ad-
ministrator must define thresholds for each service it has.

5 Reputation in the Context of X.509 PKI

Reputation being based on recommendations given by a group of entities, we should
be able to calculate the score of reputation using one of the model mentioned above.

5.1 Calculation of Reputation

We have chosen belief model to calculate the reputation. Reputation depends on the
recommendations from third parties and these recommendations could be more or less
true. So we have doubt about the recommendation we receive. Belief model calculates
reputation by considering the uncertainty of the received recommendations.

This model define a new term which is named opinion),,,(audbw = where b,
d, u, and a represent respectively belief, disbelief, uncertainty and atomicity.
Where:

]1,0[,,1 ∈=++ udbwhereudb (1)

According to the belief model, the value of atomicity is 0.5 when there are two
possible output values (trustworthy, not trustworthy), consequently in our study the
value of the atomicity is always 0.5.

When an entity A asks the recommendation of entity B about entity X, entity A
computes the reputation of entity X depending on the recommendation of entity B
using the recommendation operator as following:

The opinion),,,(AB
X

AB
X

AB
X

AB
X

AB
X audbw = expresses the opinion about X as result

of recommendation from B where:

B
X

AB
X

B
X

A
B

A
B

A
B

AB
X

B
X

A
B

AB
X

B
X

A
B

AB
X

aa

ubudu

dbd

bbb

=

++=

=

= ,

 (2)

Supposing that entity A receives many recommendations, in this case, it must be
able to consensus all these recommendations using the consensus operator of the
belief model as following:

92 A.S. Wazan et al.

The opinion),,,(,,,,, BA
X

BA
X

BA
X

BA
X

BA
X audbw = represents the opinions of A and B

about X where:

B
X

A
X

B
X

A
X

B
X

A
X

B
X

A
X

B
X

A
X

A
X

B
XBA

X

B
X

A
X

BA
X

A
X

B
X

B
X

A
X

BA
X

A
X

B
X

B
X

A
X

BA
X

uuuu

uuaauaua
a

kuuu

kubudd

kububb

2

)(

)(

)(

)(

,

,

,

,

−+
+−+=

=

+=

+=

 (3)

 1,0, ≠=≠=−+= B
X

A
X

B
X

A
X

B
X

A
X

B
X

A
X uuuuuuuuk

In our case A and B represent the same entity because entity A will have many
opinions about the entity X and it will consensus these opinions by using this operator.

According to the belief model the probability expectation is given by the following
formula:

aubwE +=)((4)

By using this equation we can compute the final result which will represent the
reputation value.

5.2 Controlling the Influence of Old Experiences

When an administrator of a CA evaluates a foreign CA, it records the evaluation in its
own database. When the organization reestablish a collaborative work with the same
organization the old experience must affect also the final reputation, but this effect
must be less important than the recent evaluation.

Tajeddine et al [14] have proposed an approach to combine the reputations with
considering the time parameters.

The reputation value for each category of recommenders degrades with time and
this value converges to a neutral value as time passes. Before using the reputation
values, they must be adjusted as following:.

τ/)(0*)()(tteNVREPNVtREP −−−+= (5)

Where:
- NV: is neutral value.
- t0: the of reputation computing.
- τ: decay factor that determines how quickly and slowly reputation value be-

comes invalid.

5.3 Example

We explain through an example how the reputation score is computed using belief
model and how the administrator authorizes or not the RP to accept or to refuse the
certificate.

Supposing that the relying party RP1 receives a certificate signed by CAforeign1. The
certificate authority of RP1, RP2, and RP3 is CARP. CARP has two friend CAs, named

 Authentication in Virtual Organizations 93

CAfr1 and CAfr2. Because CAforeign1 doesn’t belong to the static trust domain of RP1,
RP1 asks its CA if it can trust or not the certificate sign by CAforeign1.

CARP calculates the reputation depending on the recommendations that it has al-
ready collected about CAforeign1. Before collecting the recommendation the CARP must
set up a structure containing the values of belief, disbelief, and uncertainty for all its
recommenders as following:

Table 1. The recommenders list

Recommender
Id

Belief disbelief uncertainty

RP1 0.8 0.2 0
RP2 0.85 0.15 0
RP3 0.65 0.20 0.15

CAfr1 0.65 0.35 0
CAfr2 0.60 0.40 0

Supposing that recommenders have given the following recommendations, a triple
(belief, disbelief, uncertainty) on CAforeign1 and CAforeign2 as following:

Table 2. Scores given by the recommenders

CA ID Recommender ID Given Score date
CAforeign1 RP1 (0.72, 28, 0) 23-05-2007
CAforeign2 RP2 (0.5, 0.5, 0) 21-05-2007
CAforeign1 RP2 (0.6, 0.4, 0) 20-05-2007
CAforeign1 RP3 (0.75, 0.25, 0) 23-05-2007
CAforeign1 CAfr1 (0.56, 0.44, 0) 23-05-2007
CAforeign1 CAfr2 (0.75, 0.25, 0) 23-05-2007

CARP must revaluate the recommendations according to the belief, disbelief and
uncertainty which are assigned to recommenders by using the recommendation opera-
tor of belief model (equation 2).

Table 3. Evaluation of given score by recommenders using belief model

Recommender ID Result
RP1 (0.576, 0.224, 0.2)
RP2 (0.425, 0.425, 0.15)
RP3 (0.4875, 0.1625, 0.35)

CAfr1 (0.364, 0.286, 0.35)
CAfr2 (0.45, 0.15, 0.4)

In order to calculate the reputation of CAforeign1 from these recommendations we
use the consensus operator of the belief model (equation 3).

94 A.S. Wazan et al.

By the application of the consensus operator we obtain the following result:
w= (b=0.53, d=0.41, u=0.06)

Consequently, the value of reputation which will be returned to the RP will be cal-
culated depending on equation 4 as following:

56.006.0*5.053.0)(=+=wE

According to the criticality of service, the administrator of CA can decide to authorize
or not the RP to use the certificate. The administrator can define set of policy rules
that have the form:

If the reputation (<,>,=) X and quality (<,>,=) Y then authorize or not

6 Conclusion and Future Works

The objective of our work is to create a new trust model based on the reputation sys-
tems to interconnect efficiently PKIs in the context of virtual organizations. In this
paper, we have presented the main drawbacks of the actual interconnection PKI mod-
els. We have analyzed the concepts of trust and reputation and summarized the calcu-
lation models that have been developed.

The reputation of a PKI is a quantifiable trust indicator with a discrete value that is
related to the risk taken by an entity when it accepts a certificate from this PKI. Thus,
trust on certificates is no longer binary and it becomes possible to differentiate the use
of certificates according to service to access. For example, transactions on sensitive
data imply higher trust indicators than transaction on public data.

Our future work will focus on formalizing the policy of acceptance of certificates
that represents the risk accepted by the organization when the entities accept a certifi-
cate. For example, we have to provide user friendly mechanisms to control the impact
of the reputation on the final decision.

From a technical point of view, it will be necessary to specify communications pro-
tocols between the entities implied in the calculation of the reputation to exchange
their information (recommendations, reputation scores, etc). Finally, an important
work will be to determine how these entities will vote and how to incite them to do it.

References

[1] Resnick, P., Zeckhauser, R.: Trust Among Strangers in Internet Transactions: Empirical
Analysis of eBay’s Reputation System. In: Baye, M.R. (ed.) The Economics of the Inter-
net and E-Commerce. Advances in Applied Microeconomics, vol. 11. Elsevier Science,
Amsterdam (2002)

[2] Schneider, J., et al.: Disseminating Trust Information in Wearable Communities. In: Pro-
ceedings of the 2nd International Symposium on Handheld and Ubiquitous Computing
(HUC2K (September 2000)

[3] Jøsang, A., Ismail, R.: The Beta Reputation System. In: Proceedings of the 15th Bled
Electronic Commerce Conference, Bled, Slovenia (June 2002)

[4] Abdul-Rahman, A., Hailes, S.: Supporting Trust in Virtual Communities. In: Proceedings
of the Hawaii International Conference on System Sciences, Maui, Hawaii, January 4-7
(2000)

 Authentication in Virtual Organizations 95

[5] Jøsang, A.: A Logic for Uncertain Probabilities. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 9(3), 279–311 (2001)

[6] Manchala, D.W.: Trust Metrics, Models and Protocols for Electronic Commerce Transac-
tions. In: Proceedings of the 18th International Conference on Distributed Computing
Systems (1998)

[7] Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing
Order to the Web. Technical report, Stanford Digital Library Technologies Project (1998)

[8] Gambetta, D.: Can We Trust Trust? In: Gambetta, D. (ed.) Trust: Making and Breaking
Cooperative Relations, pp. 213–238. Basil Blackwell, Oxford (1990)

[9] Jøsang, A., Ismail, R., Boyd, C.: A Survey of Trust and Reputation Systems for Online
Service Provision. Decision Support Systems (to appear, 2005)

[10] Chokhani, S., Ford, W.: Internet X.509 Public Key Infrastructure Certificate Policy and
Certification Practices Framework. RFC 2527 (March 1999)

[11] Ball, E., Chadwick, D., Basden, A.: The Implementation of a System for Evaluating Trust
in a PKI Environment. Evolaris, vol. 2, pp. 263–279. Springer, Wein (2003)

[12] Chadwick, D.W., Basden, A.: Evaluating Trust in a Public Key Certification Authority.
Computers and Security 20(7), 592–611 (2001)

[13] Ølnes, J.: PKI Interoperability by an Independent, Trusted Validation Authority. In: 5th
Annual PKI R&D Workshop. NIST, Gaithersburg (April 2006)

[14] Tajeddine, A., Kayssi, A., Chehab, A., Artail, H.: PATROL: a comprehensive reputation-
based trust model. Int. J. Internet Technology and Secured Transactions 1(1/2), 108–131
(2007)

L. Boursas et al. (Eds.): SVM 2008, CCIS 18, pp. 96–101, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Business Service Management in a Service Oriented,
Virtualized World

Vincent Kowalski

BMC Software, 2101 CityWest Blvd., Houston, TX 77042
Vincent_Kowalski@bmc.com

Abstract. Business Service Management (BSM) is now recognized as one of
the most important attributes of a comprehensive systems management solution.
Delivering relevant information to business decision makers is now a priority
for management tool and application vendors. Recent trends in enterprise soft-
ware have provided enterprises an opportunity to realize greater efficiencies and
cost savings from their software investments. Additionally, these same
opportunities have created new challenges for systems management software
developers to keep pace with this dynamic environment. In particular, Service
Oriented Architecture (SOA) and Virtualization are having a tremendous im-
pact on how enterprises construct their production environments to leverage
these efficiencies. SOA encourages enterprises to create more agile, recon-
figurable and responsive software solutions, and Virtualization allows these
same enterprises to realize cost savings by reducing the amount of hardware re-
quired, better utilization of existing hardware and reduction of energy consump-
tion. SOA and Virtualization are now mainstream in the corporate computing
environment and systems management tools must account for them in their
complete solutions offering. These management solutions must provide sub-
stantial value to a given business and, SOA and Virtualization must be a part of
any BSM solution. This paper provides the reader with the key ingredients for
creating compelling BSM solutions in a Service Oriented, Virtualized
enterprise.

Keywords: Business Services Management (BSM), Service Oriented Architec-
ture (SOA), Virtualization.

1 Business Service Management

Traditionally, software companies that develop and market systems management tools
have focused more on the traditional IT infrastructure than with the actual business
constituency it serves. Vendors are now responding to more recent demands from
the business for systems management to provide information that supports the actual
business decision-making process. This is an important evolution for IT organiza-
tions. It is difficult to conceive of many, and in some cases any, business processes
that do not make use of IT infrastructure. For example, if an Application Server that
hosts a company’s online shopping cart application is not available, the company
would like to know in dollars, the cost of this downtime. Additionally, understanding

 Business Service Management in a Service Oriented, Virtualized World 97

Fig. 1. Business Service Management (BSM)

which servers are most critical in their business, will allow decision makers to deter-
mine what additional investments (such as redundant servers, monitoring software,
additional headcount) should be made to support the infrastructure.

Figure 1 above is a high-level, but comprehensive depiction of an end-to-end BSM
Solution. A few key things to note about this diagram are the following. First, the
heart of BSM is a Configuration Management Database (CMDB). As mandated by
ITIL, a CMDB is the repository for Configuration Items in a given enterprise. Next, it
is important to note where traditional systems monitoring and management tools fit
into the overall scheme. Such tools depicted at the bottom of the diagram feed into
tools that support ITIL-based activities such as Capacity Planning and Management,
Impact Assessment and Management and Configuration Management. In the upper
half of the diagram (the circle above the CMDB) are the tools that support Service
Management tasks such as Service Desk, Change Management and Service Level

98 V. Kowalski

Management. These all are presented in an integrated Dashboard based view that,
along with Business Analytics ultimately support the business decision-making that is
the objective of BSM. Again, although we need an accurate view into the health and
status of the underlying infrastructure, the main goal of BSM is to provide actionable
data related to the business. One final thing to note: Figure 1 implies a high level of
integration among the various components participating in a BSM solution. Such
integration is well served by the use of Service Oriented Architecture (SOA) as will
be discussed in the next section.

2 Service Oriented Architecture (SOA)

2.1 Conceptual Framework

As depicted in Figure 2[1], Service Oriented Architecture (SOA) is generally the use
of Web Services technology to support the interactions of Service Providers (the blue
octagon in the lower right hand vertex of the triangle) being discoverable and invoke-
able by Service Requestors (the red octagon in the lower left hand vertex of the trian-
gle). To provide this discovery mechanism, a Registry (or Discovery Agency in the
yellow cloud at the top of the diagram) may be used to publish descriptions of ser-
vices. The technology to support Service Oriented Architecture includes:

• Web Services Stack
• Web Services Registry

Fig. 2. Service Oriented Architecture (SOA)

 Business Service Management in a Service Oriented, Virtualized World 99

The Web Services Stack provides the interact relationship between Requestor and
Provider. The Web Services Registry enables Service Providers to publish services
descriptions that can be discovered by potential Service Requestors using the find
operation depicted on the line between Requestor and Discovery Agency. The tech-
nology to support these components is based on the following well-known standards:

• XML (the ASCII protocol upon which all Web Services are built)
• SOAP (for invoking services—the interact operation in the diagram)
• WSDL (for defining the interfaces of services)
• UDDI (for publishing and querying a Registry of services)

2.2 SOA in the Enterprise

Initial efforts related to SOA were in the area of Business-to-Business (B2B) applica-
tions. The thinking was that public Web Services Registries based on UDDI would
expose a number of publicly available services that could be invoked by Web applica-
tions and brokers that would mediate for such applications. Conceivably highly dy-
namic applications could be constructed where providers could come on or off stream
and be bound to applications based on dynamically determined criteria such a cost of
service, quality or availability of service, content provision and so on.

This model found only limited adoption. Instead SOA found a home in corporate
environments where standards-based and interoperable Web Services were seen as a
key enabler to creating integrated solutions that include Web-based access to legacy
applications and data sources and application-to-application communications. Enter-
prises that standardized on Web Services technology and SOA internally found they
could achieve greater agility and higher degrees of data visibility and integration than
were previously attainable.

As use of SOA in the corporate environment has increased so has the complexity
of applications based on SOA. Thus, the need for managing SOA infrastructure has
increased dramatically. Certain aspects of managing SOA infrastructure borrow from
areas with well-known solutions such as Systems Monitoring and Service Level Man-
agement. SOA-based applications present two fundamental challenges that are not
often addressed very well in the Systems Management arena:

• SOA applications are highly distributed
• SOA applications may be orchestrated (based on a representation of a work-

flow or process)

The first of these challenges is further complicated by the fact that Web Services

technology can (and should) be implemented in such a way that you can make no
assumptions about implementation language, underlying infrastructure or even pro-
vider of the Web Services components themselves. This characteristic of being im-
plementation agnostic is a huge advantage to creating interoperable SOA applications,
but complicates the management of those applications. Orchestration (when used) is
a powerful tool for creating SOA applications that are configurable along the path of a
given workflow. Such a workflow can be developed by a Business Analyst, not a
Web Services specialist. Though such applications provide significant advantages to

100 V. Kowalski

developers and users of such applications, the management implications of such ap-
plications is only now starting to be understood. In summary, to get the requisite
comprehensive and holistic visibility into SOA applications, both their highly distrib-
uted and process-oriented natures must be taken into account by any solution purport-
ing to manage them.

2.3 SOA in BSM Solutions

Interestingly, SOA has become a tool for integration within the BSM space as well as
by the Enterprises that BSM is intended to serve. Re-consider Figure 1. The set of
components depicted in such a diagram would indicate a level of complexity that
could be difficult to manage. In fact, with such a set of tools involved it is easy to see
that this could degenerate to the N2 phenomenon where the number of integrations is
on the order of the square of the number of applications being integrated. SOA pro-
vides us a solution to this where we can move from a large set of point-to-point inte-
grations to a more tractable hub-and-spoke architecture as depicted in Figure 3.

Fig. 3. Service Oriented Architecture (SOA) in BSM

3 Virtualization

Most people do not realize that virtualization has been a part of computing for many
years. As early as 1969, IBM had produced the VM/CMS operating system intended
to be a system able to run multiple concurrent operating systems. Despite this long
history, virtualization has only recently become highly prominent part of IT infra-
structure. A number of factors have contributed to virtualization realization, including
the following requirements:

• Consolidation of IT hardware assets
• Maximization of under-utilized IT hardware resources
• Reduction of electrical energy consumption (i.e., Green Data Centers)

Virtualization presents a number of challenges in the management space that include:

• How to know the performance impact of virtualization before you virtualize

SOA

Evolves to

 Business Service Management in a Service Oriented, Virtualized World 101

• Anticipating capacity issues and proactively responding to them before ser-
vice is disrupted

• Reducing the risk of virtualizing
• Rapidly provisioning virtual servers without violating compliance with corpo-

rate policy or government regulations
• Eliminating over-provisioning and uncontrolled virtual server sprawl
• Managing and ensuring end-user performance of applications running on the

virtual infrastructure

Virtual computing resources have some inherent differences from “hard” or physical
computing resources in that they always have a relationship to a hard asset. Although
virtualizing may not incur any hard cost other than disk space, their creation and de-
struction tends to be more dynamic and less disruptive than actual computing assets.
Additionally, since virtual assets are not purchased and expensed as are physical as-
sets, finding data about them in accounting, inventory or asset management databases
is difficult. Given these differences, BSM solutions must make accommodations for
virtualized resources in the following components:

• Discovery (to be able to discover virtual resources)
• CMDB (to model virtual configuration items)
• Capacity Planning and Management (to account for virtual resources in capac-

ity calculations)
• Systems Monitoring and Management (to monitor virtual resources in capac-

ity calculations)
• Service Level Management (to account for virtual resources in determinations

of Service Level Agreement compliance)
• Change Management

4 Summary and Conclusion

It is vital for Systems and Service Management solutions to take into account the special
requirements of SOA and Virtualized computing environments. To engineer and deliver
comprehensive Business Service Management solutions that are relevant to today’s
Data Center, these additional requirements need to be incorporated into the designs of
new versions of existing Systems and Service Management tools as well as serve as a
catalyst for developing tools not yet in the marketplace. Finally, approaches such as
SOA may provide challenges and opportunities with respect to the environments they
support and should be leveraged to provide better-integrated total BSM solutions.

Acknowledgments. The author wishes to acknowledge Lisa McDowell of BMC
Software who reviewed this paper and provided valuable feedback.

Reference

1. Champion, M., Ferris, C., Newcomer, E., Orchard, D.: Web Services Architecture W3C
Working Draft, November 14, W3C (2002),
http://www.w3.org/TR/2002/WD-ws-arch-20021114

L. Boursas et al. (Eds.): SVM 2008, CCIS 18, pp. 102–112, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Control of a Mono and Multi Scale Measurement
of a Grid

Imene Elloumi1,2, Sahobimaholy Ravelomanana1, Manel Jelliti1, Michelle Sibilla1,
and Thierry Desprats1

1 IRIT UMR 5505, Université Paul Sabatier, 31062 Toulouse cedex 9, France
2 Higher School of Communication of Tunis, City of Communication Technologies 2083

Ariana, Tunisie
{elloumi,raveloma,jelliti,sibilla,desprats}@irit.fr

Abstract. The capacity to ensure the seamless mobility with the end-to-end
Quality of Service (QoS) represents a vital criterion of success in the grid use.
In this paper we hence posit a method of monitoring interconnection network of
the grid (cluster, local grid and aggregate grids) in order to control its QoS.
Such monitoring can guarantee a persistent control of the system state of health,
a diagnostic and an optimization pertinent enough for better real time exploita-
tion. A better exploitation is synonymous with identifying networking problems
that affect the application domain. This can be carried out by control measure-
ments as well as mono and multi scale for such metrics as: the bandwidth, CPU
speed and load. The solution proposed, which is a management generic solution
independently from the technologies, aims to automate human expertise and
thereby more autonomy.

Keywords: CIM, Grid, A Dynamic Monitoring, QoS.

1 Introduction

The efficient use of grid resources by and for large applications is a challenging field
of studies currently tackled by several research projects (EGEE1 project, the LHC
project (LCG)2, GRID50003, etc). Indeed, during the development phase, controlling
the intrinsic complexity of the applications and their suitability to grids and/or clusters
is much needed. Within this phase, we will focus on the problems encountered in the
grid implementation process. These are related to monitoring the communication
network and its impacts. The monitoring component plays an important role in in-
creasing reactivity and availability. Seen in this regard, it behooves to monitor a
communication network, which enables the raising of network information towards
lodge services by the grid and thus to get a pertinent analysis (traceability, reproduci-
bility). However, some fundamental criteria for the surveillance of these large-scale

1 EGEE: Enabling Grids for E-sciencE.
2 LCG: grid project for the Large Hadron Collider (LHC) by CERN (the European Laboratory

for Particle Physics).
3 GRID5000: a French national wide experimental grid.

 A Control of a Mono and Multi Scale Measurement of a Grid 103

distributed systems require a new generation and a revision of the software infrastruc-
ture of these grids, namely:

- The tolerance to failures, that is, how to react to different situations altering the
expected requirements. Revising this criterion can continuously ensure the avail-
ability of the service and how to achieve this in a preventive and/or active
manner [1].

- Ensuring a real or pseudo real time diagnostic.
- Optimizing applications and making infrastructures.
- Moving to a larger scale.

Putting aside the availability of the grid, inductive surveillance is the focal point in
our present study. To this end, we must be able to observe, analyze, manage and con-
trol the evolution of state of all network components.

This paper falls into five sections. In section one, we introduce the related work on
the capabilities of monitoring tools. Specifically, we will focus on the effectiveness
and suitability and capabilities of present day monitoring tools in gathering real-time
data required by grid environments. We will also demonstrate why the current moni-
toring tools are insufficient in grid environments, and delineate the non-existence of
tools to combine multiple monitoring sources. It should be noted that the number of
metric network handled has increased. This corroborates the argument that supervi-
sion can not be based on a single metric independently, hence, the need to combine
several network metrics. In Section two, we present a standard model-based monitor-
ing subsuming an integration issue and a multi-dimensional monitoring pattern. In
Section three, we introduce and discuss our contribution regarding mono and multi-
scale monitoring in the grid. In Section four, we present an application illustrating our
proposed monitoring. In the last section, we conclude and present the future work.

2 Related Work

2.1 Shortcomings of the Existing Monitoring Tools

There are several tools that have been applied specifically to grid monitoring, which
meets different needs such as the NWS, Fast, GloPerf, PingER, NetPerf, Performance
Co-Pilot, etc [2] [3] [4] [5] [6]. No tool, however, exists for a rigorous and automatic
real-time analysis, able to recover and rehabilitate incidents. These monitoring tools
are not efficient when applied to grids. Measurement system must be able to:

- Identify and detect the availability of the grid in real time without altering its
services,

- Allow for measurement, integration and aggregation of information, and insure
information pertinence at all levels (from hardware to application levels) in real
time,

- Not only does it collect the charge of the different resources, but rather it predicts
their values in the near future by virtue of statistical methods.

104 I. Elloumi et al.

System measurement could be done through the development of few intrusive
methods of measurement. It stands midway between the quality of monitored infor-
mation and the resources needs of the method used for measuring information.

2.2 Advanced Monitoring Needs

Four major needs were identified:

1. Masking heterogeneity and refine measures of information management, that is,
to cope with the heterogeneity of the information format relative to monitoring
the management entity. A more generic solution is mandated which might consist
a view of information management. Such information model covers the fields of
networks, homogeneous systems and applications. Thus, to get more pertinence,
information aggregation is in order [7].

2. Inductive expertise: an inductive expertise will give the values of a metric net-
work in any time in order to be informed about their evolution before a break-
down [8].

3. Prevention and Adaptation: one (or several) network component(s) in a critical state
for some time (Time Outs) should be reported (trigger alarms) in order to sidestep
any potential problem and thereby mitigate the likelihood of blackouts [9].

4. Diagnosis: diagnosis is a crucial component in monitoring system management.
Put differently, it permits us to track and pinpoint the source of the malfunction
of any network component. Further, it probes the nature and the impact of the
malfunction on the entire system. The implication of this is to adequately correct
or remedy any identified problem [10].

3 A Standard Model-Based Monitoring

3.1 Integration Issue

The integration of heterogeneous management data is fraught with problems: (1)
communication protocol for collecting and retrieving management data is quiet insuf-
ficient and (2) the structure of collected data is heterogeneous (for examples SNMP
SMI, Object oriented). The initiative WBEM4 specified by the Distributed Manage-
ment Task Force (DMTF) provides solutions to these two problems. First, CIM
model5 [11] allows data processing to be based on a unified data model (UML com-
pliant). Then, the architecture of the CIM servers makes possible the storage of details
about integration into the CIM repository which contains descriptions of classes.

Further, seen the implementation of CIM models by some platforms such as Open
Pegasus [12] proves to be successful, our approach will endorse such to tackles the
above-mentioned problems.

4 Distributed Management Task Force, WBEM: Web services for Management

(http://www.dmtf.org/standards/wbem/wsman).
5 Distributed Management Task Force, Common Information Model (CIM) Standards

(http://www.dmtf.org/standards/cim).

 A Control of a Mono and Multi Scale Measurement of a Grid 105

Through the core CIM classes we have three areas (Nework, Application and
System) on which we worked. Fig.1 is an extract of the grid node from the CIM
models. All the classes needed for monitoring each Grid components are present in
CIM. The Processor class is a LogicalDevice representing the processor. It contains
attributes CurrentClockSpeed and LoadPercentage. The LogicalPort class is also a
LogicalDevice which represents the point of connection to a device. It contains attrib-
ute Speed and MaxSpeed which represent the Bandwidth (bandwidth port in bits per
second).

Fig. 1. Outsourcing Supervision of the Grid Network Nodes

3.2 A Multi-dimensional Monitoring Pattern

The DMTF has specified the concept of measuring equipment by the Sensor class.
This class has the following properties (Fig.1): Sensor Type, Current State, and Possi-
ble States and Other Sensor Type-Description. A Sensor is associated with a Logical
Device (for which the measure is undertaken) by the Associated Sensor dependency

106 I. Elloumi et al.

[11]. In this standard specification a subclass Numeric Sensor contains some informa-
tion regarding the levels of criticality, including: Min Threshold No-Critical, Max
Threshold No-Critical, Min Threshold Critical, and Max Threshold-Critical. These
levels represent the threshold limits of each state where the administrator will have
the freedom to configure with respect to his own values (Fig.1). Thus, we have five
states values for the properties.

In addition, the class has the Numeric Sensor Restore Default Threshold () method
which makes it possible to fix or restore all default thresholds defined by the adminis-
trator (Fig.2).

No
Critical

No
Critical

Degraded

Critical

Critical
Degraded

Fatal

Min Threshold No Critical

Max Threshold No Critical

Min Threshold Critical

Max Threshold Critical

Thresholds set for
each property

(Bandwidth, CPU Load and Speed)

Administrator

Fig. 2. Criticality Scale

The subclass Multi State Sensor of Sensor has been identified as a collection of
Sensors. But the DMTF has not specified proprieties in the subclass Multi State Sen-
sor. It may contain two or more Sensors symbolized by the aggregation Collection Of
Sensors (Fig.1). It is also possible to add other thresholds.

3.3 Issues

The class Sensor is a way to monitor the evolution of any property of measurement
type. The association AssociatedSensor cannot specify the property of Logical Device
to which it relates. Moreover, the behavior associated with the Sensor is not clearly
expressed. The class Multi State Sensor allows us to model a multi-scale measure-
ment gathering sensors of the same type. For example, Sensors which measure the
speed of CPU node in a grid computing or the bandwidth Logical Port of the grid, or a
combination of different Sensors types (i.e., CPU load and speed CPU, etc). The class
Sensor can meet the requirement needed to outsource the expression of the influence
of some metrics on the state of a managed entity. To monitor a logical device prop-
erty, the class Sensor will be deployed. More precisely, we will dwell on Logical Port
and Processor. Related to this, the Speed properties (bandwidth) of a Logical Port and
CurrentClockSpeed (CPU speed) and Load Percentage (CPU load) of a processor will
be the main foci.

 A Control of a Mono and Multi Scale Measurement of a Grid 107

4 Dynamic Specification of a Multi-dimensional Monitoring

4.1 Expressing Influence and Control

The use of the previous management information model was specific to monitor Grid
components, but it represents a static view of the managed entities [13]. The influ-
ences of changes (behavior) are not determined. In order to specify such behavior,
the UML State chart diagrams are associated to the CIM classes. In our approach [13]
[15], a State chart diagram can be associated with any object class derived from the
CIM Managed Element class and the transitions triggered by events obtained from the
CIM Indication class. States are situations where invariant conditions are checked.

4.2 Control of a Mono Scale Measurement

To specify the property monitored by a Numeric Sensor, the IRIT_Monitor depend-
ency is added between the Logical Device and Numeric Sensor classes with the type
and name of the monitored property (Fig.1). This dependency stems from the Associ-
ated Sensor dependency that already exists between the Logical Device and Sensor
classes.

Our approach entails that a state chart diagram is associated to the Numeric Sensor
class in order to specify the generic behavior of each Numeric Sensor associated to
any property (Fig.3) [16]. We have identified a combination of possible states to de-
scribe a behavior that can be applied on any monitored property, namely: No Critical,
No Critical Degraded, Critical, Critical Degraded and Fatal. A set of conditions (Ta-
ble.1) controls the transitions from a state to another. Each (monitored) property
change is reported by a CIM_Indication instance which triggers the evaluation of
current state conditions. This applies to properties such as "gauge" to provide greater
temporal logic to the behavior of devices [17].

Fig. 3. Behavior Modelling: A StateChart Diagram Associated to the CIM_NumericSensor
class (See conditions in the Table. 1)

108 I. Elloumi et al.

Table 1. Condition Specified in the StateChart Diagram Associated to the Class
CIM_NumericSensor

Symbol Condition
C1 (Monitor.PropertyName.value) > (MinThresholdNoCritical)
C2 (Monitor.PropertyName.value) <= (MinThresholdNoCritical)
C3 (Monitor.PropertyName.value) > (MaxThresholdNoCritical)
C4 (Monitor.PropertyName.value) <= (MaxThresholdNoCritical)
C5 (Monitor.PropertyName.value) <= (MinThresholdCritical)
C6 (Monitor.PropertyName.value) > (MinThresholdCritical)
C7 (Monitor.PropertyName.value) > (MaxThresholdCritical)
C8 (Monitor.PropertyName.value) <= (MaxThresholdCritical)
C9 (MaxThresholdNoCritical) < (Monitor.PropertyName.value) <= (MinThresholdCritical)

C10 (MinThresholdCritical) < (Monitor.PropertyName.value) <= (MaxThresholdCritical)
C11 (MinThresholdNoCritical) < (Monitor.PropertyName.value) <= (MaxThresholdNoCritical)

4.3 Control of a Multi-scale Measurement

We have associated a state chart diagram with the Multi State Sensor class (Fig.4),
which does not depend on the type of "N" Sensors. We have assigned quantifications
to amplify the most critical in comparison with the least critical. The following sec-
tion provides further explanatory information:

Fig. 4. Behavior Modelling: A StateChart Diagram Associated to the CIM_MultiStateSensor
class (See conditions in the Table. 2)

These conditions are presented in the Table.2.
The values Ni (0<i≤5) correspond to the percentages of having a state No-Critical

or Degraded No-Critical or Critical or Degraded Critical or Fatal (for further details,
see the following section).

Table 2. Condition Specified in the StateChart Diagram Associated to the CIM_ MultiState-
Sensor Class

Symbol Condition
C’1 (N2>=N1) and (N2>N3) and (N2>N4) and (N2>N5)

C’2 (N1>N2) and (N1>N3) and (N1>N4) and (N1>N5)

C’3 (N3>=N1) and (N3>=N2) and (N3>N4) and (N3>N5)

C’4 (N4>=N3) and (N4>=N2) and (N4>=N1) and (N4>N5)

C’5 (N5>=N4) and (N5>=N3) and (N5>=N2) and (N5>=N1)

 A Control of a Mono and Multi Scale Measurement of a Grid 109

4.4 Quantification

With respect to the state chart diagram associated to the Multi State Sensor class, we
will try to quantify the states according to their degree of criticality. That is, we will
cope with a collection of Sensors. To provide greater formalized behavioral logic, it is
strongly recommended that this diagram be able to interpret the significance of the
influence of the state. To this end, the scale of criticality should be used a basis for
interpreting, a case in point, Fatal statement compared to less critical statements. In
practice, this may be reflected, for example, by the followed expertise:

If the statements of Sensors that monitor the bandwidth of the three routers
are: Critical, Critical Degraded and Fatal

 Then the state of MultiStateSensor is Fatal.
 a*x; i=1 if x=Nnc
 b*x; i=2 if x=Nncd
 fi: c*x; i=3 if x=Nc
 d*x; i=4 if x=Ncd

 e*x; i=5 if x=Nf

(1)

 With:
Nnc: Number of no critical state (No-Critical State).
Nncd: Number of degraded no critical state (Degraded No-Critical State).
Nc: Number of critical (Critical State).
Ncd: Number of degraded critical state Degraded Critical State).
Nf: Number of fatal state (Fatal State).
 And (a + b + c + d + e) =100 with a <b <c <d <e, the function F(x):

 n

F(x)= [∑ fi(x)]/100

i=1
(2)

As a result, we find the rates relative to each state with predefined quantifications.
They are calculated by the following reports (with (1) and (2)).

5 Application Example in a Local Grid

Suppose that we have a local grid containing 50 nodes.
So, we will have: 50 Processors, 50 Numeric Sensors to monitor the load (Load

Percentage) CPU, 50 Numeric Sensors to monitor the speed (Current Clock Speed)
CPU; and for Logical Ports, 100 Numeric Sensors associated to monitor the band-
width (Bandwidth).

Hypothesis: For the (predefined) thresholds, it is assumed that the states of the as-
sociated Sensors are as follows (for example):

For Load CPU, current State of Sensors: (Nnc=10, Nncd=7, Nc=14, Ncd=15,
Nf=4).

For CPU Speed, current State of Sensors: (Nnc=7, Nncd=11, Nc=16, Ncd=3,
Nf=13).

110 I. Elloumi et al.

For Bandwidth, current State of Sensors: (Nnc = 12, Nncd=27, Nc=32, Ncd=15,
Nf=14).

And for example weight: a=10, B=15, C=20, D=25, E=30, however, a more spe-
cific study can be made for these weight values. After interpreting the statechart dia-
gram and quantification, the resulting state analysis is presented in Table.3.

Table 3. A Multi-Dimensional State Analysis

MSS
(Bandwidth)

MSS
(Speed CPU)

MSS
(Load CPU)

MSS (MMS
Load and MMS
Speed CPU)

MSS (MMS Load
and MMS Speed and
MMS Bandwidth)

Fi(x)=

 f1(x)=120
 f2(x)=405
 f3(x)=640
f4(x)=375
f5(x)=420

 f1(x)=70
 f2(x) =165
 f3 (x)=320
 f4(x)=75
 f5(x)=390

f1(x)=100
f2(x)=105
f3(x)=280
f4(x)=375
f5(x)=120

f1(x)=0
f2(x)=0
f3(x)=0
f4(x)=1
f5(x)=1

f1(x)=0
f2(x)=1
f3(x)=0
f4(x)=1
f5(x)=1

F(x)=[f1(x)+f2(x)+f3(x)+
 f4(x)+F5(x)]/100

19.6 10.2 9.8 0,02 0,03

N1=f1(x)/F(x) 6,122 6,862 10,204 0 0
 N2=f2(x)/F(x) 20,663 16,172 10,714 0 33,333

 N3=f3(x)/F(x) 32,653 31,372 28,571 0 0
 N4=f4(x)/F(x) 19,132 7,352 38,265 50 33,333
 N5=f5(x)/F(x) 21,428 38,235 12,244 50 33,333
∑Ni, 0<i<6 100 100 100 100 100

Multi-State
Sensor

N2>Ni, (i !=2)
Then his State is

« Degraded
No-Critical »

N5>Ni, (i !=5)
Then his State is

« Fatal »

N4>Ni, (i != 4)
Then his State is

« Degraded
Critical »

N5=N4
Then his State is

« Fatal»

N5=N4 and
N5=N2

Then his State is
« Fatal »

With,
N1: Percentage of having Sensors in states "No-Critical".
N2: Percentage of having Sensors in states "Degraded No-Critical".
N3: Percentage of having Sensors in states "Critical".
N4: Percentage of having Sensors in states "Degraded Critical".
N5: Percentage of having Sensors in states "Fatal".
Thus, an automatic update of composite elements according to the results of the

analysis interpretation presented above in Table.3.

6 Conclusion

In this paper we have presented a solution to identify an inductive and dynamic
monitoring for the multi views and multi purpose grid. The major advantage of our
contribution is that the administrator will have relevant information on the state of
composite network components of the grid (the five states of criticality: No-Critical,
Degraded No-Critical, Critical, Degraded Critical and Fatal). This proposal can dy-
namically control of the CPU resources and the bandwidth to a cluster (with a control
of a single measurement scale), a local grid and an aggregation of grids (with control
of a multi-scale Measurement). These results could carry out different management
operations such as lifting of alarms, repairing the system, etc., hence the inductive
aspect of the monitoring. Therefore, whenever statements Sensors and Multi State
Sensors are archived, it is necessary to analyze them to identify critical states that
persist in setting Time Outs. The latter, once exceeded, needs to be triggered by

 A Control of a Mono and Multi Scale Measurement of a Grid 111

specific alarms either as a warning of the criticality state or a probability of a failure.
Subsequently, we should give much attention to the control of every situation and the
implementation of the necessary and appropriate corrections relative to each type of
problem, for example run the intrinsic sequence of actions, when solved, will allow
the system to acquire more autonomy management components. Hence, we can detect
during the execution of a service "when" a resource has deteriorated and determine its
state.

Fig.5 illustrates three cases of Forward alarme_1 on the state Fatal after a Time
Out = T, alarme_2 on the state Degraded Critical after a Time Out=T and alarme_3 on
the state Critical after a Time Out = T. SNMP Traps (SNMP agent sends an alarm to
the Manager) are examples of these alarms.

Fig. 5. Trigger Alarm

7 Future Work

The present study seems to meet the needs and requirements stated earlier. This study
was implemented to control CPU resources and the bandwidth of the cluster, local
grid and aggregate grid. However we think that we can apply this method to the other
network resources. This can be done following the same approach by limiting the
latency to a specified QoS and adjusting according to demand. We want to explore
the behavior of the approach under different workload conditions and investigate the
appropriate parameters (e.g. controller-Period) for better responses. Much work in-
deed needs to be undertaken to check other performance metrics such as network jitter
and latency.

References

1. Andreozzi, S., Antoniades, D., Ciuffoletti, A., Ghiselli, A., Markatos, E.P., Polychronakis,
M., Trimintzios, P.: Issues about the Integration of Passive and Active Monitoring for Grid
Networks, Heraklion, Greece, Bologna, Italy (2005)

112 I. Elloumi et al.

2. Wolski, R., Spring, N.T., Hayes, J.: The Network Weather Service: A Distributed Re-
source Performance Forecasting Service for Metacomputing. University of California San
Diego and Tennessee Knoxville (2004)

3. Quinson, M.: Automatic Discovery of the characteristics and capabilities of a distributed
computing platform. Ph.D. thesis. Ecole Normale Supérieure de Lyon (December 11,
2003)

4. Foster, I., CarlKesselmany, G.: A Metacomputing Infrastructure Toolkit (2004)
5. Blum, R.: Network Performance Open Source ToolkitUsing Using Netperf, Tcptrace and

NISTnet (2003)
6. Performance Co-Pilot for IA-64 Linux User’s and Administrator’s Guide. Original publi-

cation. Supports the Performance Co-Pilot 2.3 release. Version 2.3 (December 2006)
7. Salehie, M., Tahvildari, L.: Autonomic Computing Emerging Trends and Open Problems.

In: DEAS 2005, Dept. of Elect and Comp. Eng., University of Waterloo, St. Louis, Mis-
souri, USA, May 21 (2005)

8. Bianchi, S.C.S., Jocteur-Monrozier, F., Sibilla, M., Marquié, D.: Improving behaviour
control of complex systems. In: 12th Workshop of HP OpenView University Association,
Porto, July 11-13 (2005)

9. Adi, A., Gilat, D., Ronen, R., Rothblum, R., Sharon, G., Skarbovsky, I.: Modeling nd
Monitoring Dynamic Dependency Environments. In: IEEE International Conference on
Services Computing SCC 2005, Orlando, July 11-15 (2005)

10. Geihs, K.: Towards Model-Driven Management. In: 12th Annual Workshop of HP Soft-
ware University Association, Porto, pp. 237–245 (2005)

11. DMTF Application Working Group, CIM Schema and Specifications, Version 2.16 (2006)
12. Ravelomanana, S., CristinaSordela Bianchi, S., Joumaa, C., Sibilla, M.: A contextual

GRID monitoring by a Model Driven Approach. In: Advanced International Conference
on Telecommunications and International Conference on Internet and Web Applications
and Services, Gosier, Guadeloupe, pp. 37–43. IEEE, Los Alamitos (February 2006)

13. Sibilla, M., Barros de Sales, A., Desprats, T., Marquié, D., Steff, Y., Jocteur-Monrozier,
F., Rivière, A.: CAMELEON: A CIM “Modelware” platform for distributed integrated
management, Academic Alliance Contest winner. In: The Annual DMTF Developers Con-
ference, USA, June 10-12 (2002)

14. Sibilla, M., Barros De Sales, A., Raynaud, Y., Jocteur-Monrozier, F.: An active
CIM_Dependency pattern for a consistence service monitoring. In: Séoul, C., Boutaba, R.,
Kim, S.-B. (eds.) Network Operations and Management Symposium NOMS 2004, April
19-23, pp. 883–884. IEEE, Los Alamitos (2004)

15. Sibilla, M., Jocteur-Monrozier, F.: The supervision experience: Use models at the heart of
systems. In: Dupuis, M. (ed.) Software engineering models and systems, ARAGO. Edi-
tions TEC & DOC, vol. 30, pp. 151–175 (May 2004)

16. Jocteur-Monrozier, F., Bianchi, S.C.S., Sibilla, M., Vidal, P.: Contrôle Dynamique des
Systèmes Complexes par la Modélisation Comportementale. Revue Génie Logiciel, Her-
mès 72, 14–21 (2005)

A Resource Management Mechanism and Its

Implementation for Virtual Machines

Zhigang Wang1, Chuliang Weng2, Yu Wang, and Minglu Li

Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China
felixwang@sjtu.edu.cn1 weng-cl@cs.sjtu.edu.cn2

Abstract. Recently, virtualization technology is growing in popularity.
The virtualization solution such as Xen is becoming more and more ma-
ture, but the virtual machine management tools are not perfect yet,
especially when it comes to the virtual machine cluster management.

This paper presents a friendly tool that we are developing for vir-
tual machine cluster management named VE-manager. VE-manager can
deploy and manage virtual machines in a cluster environment without
considering the differences of the underlying virtualization technology.
Benefiting from live migration technology, VE-manager can also achieve
load balancing at the level of virtual machines.

1 Introduction

Virtual machines (VMs) can provide high security and user isolation which do
not rely on operating systems mechanisms. On the other hand, several differ-
ent VMs with different operating systems are able to run on a single virtual
machine monitor (VMM) at the same time, making it possible to take full ad-
vantage of computing resource, as well as satisfy different execution environment
requirement.

Virtualization technology also can be used in the cluster environment. Cre-
ating several virtual machines in the cluster can expend the physical cluster or
create a new virtual cluster [1] [2] with private network. Even the virtual cluster
can be created or destroyed dynamically when demanded [3]. Applying the vir-
tualization technology into cluster environment introduces a new challenge for
system management. If there are different VMMs such VMware, QEMU [4], Xen
[5] and KVM in the same cluster, Centralized management will be even more
difficult.

In order to meet previous mentioned demands, we design a solution (VE-
manager) which can manage and monitor all the virtual machine in the cluster
on the manager node with graphical user interfaces (GUI). It can also manage
users and processes within a VM. Furthermore, we will monitor the workload
of every VMM and achieve dynamic load balancing through live migration [6]
of VMs.

The rest of this paper is organized as follows. Section 2 presents the overall
architecture of our VE-manager solution. Section 3 describes the implementation

L. Boursas et al. (Eds.): SVM 2008, CCIS 18, pp. 113–118, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

114 Z. Wang et al.

details. Section 4 presents the current progress of our project. The paper ends
with some conclusions and comments of future work.

2 Architecture

The overall architecture of VE-manager is presented in Fig.1.

Fig. 1. The architecture of VE-manager

The overall solution is composed by the follow modules: (1) Virtual Machine
Monitor (VMM). (2) Middleware. (3) Agent, and (4) GUI frontend.

The VMM, middleware and agent are deployed at each computing node of
the cluster while the GUI frontend runs on the manager node.

The underlying VMMs are XEN, KVM or QEMU. In order to hide the differ-
ence of the underlying virtualization technology and provide uniform interface
for higher levels, we introduce a middleware between the VMM and the agent.

Agent is a daemon which accepts the requests from manager, executes the
commands through the interfaces provided by middleware and then returns the
results to manager. It is a bridge between the manager and middleware.

GUI frontend on the manager node is the front-end of our solution which
provides a friendly and effective GUI to administrator. All the virtual machine
management tasks can be carried out on this front-end. It is a cross-platform ap-
plication which can run on Linux, Windows and other popular operating systems.

3 Implementation Details

3.1 Agent and RPC

Agent is a bridge connecting the GUI frontend on the manager node and the
middleware on the computing nodes. In order to send messages between manager
and agent, we choose a lightweight but powerful remote procedure calls (RPC)
protocol XML-RPC [7] as the communication method.

XML-RPC is a popular protocol which uses XML over HTTP to implement
remote procedure calls. It encodes the procedure calls into XML, sends it to a
server using HTTP, and then gets back the response as XML.

XML-RPC works in Client/server mode. In our solution, the client is the GUI
frontend while the server is the agent. We have defined and implemented 29

A Resource Management Mechanism and Its Implementation for VMs 115

function calls in the agent. The number will increase in the future if necessary.
The function calls are not the direct map to the VMM middleware interface.
Some of them are the combination of several VMM middleware APIs, so as to
reduce the number of function calls and the network traffic.

3.2 GUI Frontend

The design of the GUI emphasizes convenience and effectiveness. Manager lists
the VMMs in the cluster and the VMs under each VMM on the left side (as
Fig.3 shows). This list is organized as a tree.

When user clicks one of the VMs, the details will be showed on the right
side. The details are made up by two parts. One includes the running informa-
tion, e.g. the state (running, booted or paused), the usage of CPU and memory
etc. The other is the hardware information, such as the number of vCPUs, the
mount of memory, the MAC and IP address of virtual network. Some hardware
configuration can also be adjusted on the fly.

Creating a new virtual machine can easily be accomplished. A number of
wizard dialogs are used to require the user to set configuration. After all wizard
dialogs are finished, the manager will collect all the configure information of the
new VM, and convert it to XML as the parameter of createVM() RPC. After
RPC finish its job, a new VM will be added to the VMs list.

In order to make it platform independent, the GUI frontend is implemented
in python while the UI is constructed with pyGTK. Since the frontend only
depends on python and pyGTK (XML-RPC is a part of the standard python
library, so there is no especial dependence on the XML-RPC), the manager can
work well on both Linux and Windows without making any changes.

3.3 Middleware

It is not surprising that different VMMs provide different management interfaces.
What is more, there are some differences in different versions of the same VMM.
So a middleware is used to handle these differences.

The middleware of VE-manager is based on the libvirt [8] at present. Libvirt
is an excellent library to interact with the different VMMs. It supports Xen,
QEMU, KVM, LXC, openVZ currently. It provides a stable API to applications
on higher levels.

3.4 System Management

The management in a virtual environment is divided into two parts:

The first part – the system management within a VM, e.g. creating a new
user or monitors the running processes in a VM.

The second part – VMM is involved in this part, e.g. getting the usage of
CPU, memory of a VM or creating a new VM.

116 Z. Wang et al.

Since the former requires information within a VM while the latter one re-
quires information from a VMM, we discuss them separately.

System management within a VM: the system controlling and monitor
within the VM are similar to a normal system management where VM can been
assessed via virtual network. So the standard monitor system can been used.

System management within a VM includes: (1) User and user privilege. (2)
Processes. (3) Services. (4) Files and file share. (5) System update.

VM management within a VMM: In order to support different kinds of
VMMs, a middleware is introduced in VE-manager. VMM and VM level manage-
ments are carried out through a uniform interface provided by the middleware,
not the VMM directly.

VM management includes follow items: Pause or resume the VM, boot or
shutdown the VM, get or set the usage of memory or vCPUs etc.

Fig. 2. More detail of VE-manager

3.5 Live Migration and Load Balancing

Live Migration can transfer of a virtual operating system from one VMM to an-
other with minimal down time. This technology makes it possible to do dynamic
load balancing in a virtual machine cluster. Manager collects the workload in-
formation of each VMM in the cluster, such as the usage of CPU, memory and
network. Given these information, the VMs on the overloaded VMMs can be
migrated to the idle ones by the manager.

3.6 Security

Because the messages transported over HTTP can be easily sniffed, it is danger-
ous to connect a VMM in a unsafe environment. So VE-manager has an option
to use SSL connections to send XML-RPC messages if want to enhance security.

4 Current Progress

According to the implementation details, we have developed a prototype of VE-
manager. The screenshot of current GUI frontend is presented as Fig.3.

A Resource Management Mechanism and Its Implementation for VMs 117

The agent has been implemented completely. And the manager has following
features currently.

(1) Get the running status of the VMMs and VMs, and show all the informa-
tion on the GUI.

(2) User can set the number of vCPUs and the amount of memory for a
specific VM via the GUI.

(3) User can reboot, pause and resume a VM via the GUI.
(4) Deploy a new VM via the GUI frontend.
(5) System management within a VM, e.g. user and processes management.
The following features are under development: Migration of VM and load

balancing, we will accomplish these feature soon.

Fig. 3. The interface of current manager

5 Conclusions and Future Work

We have described a solution of virtual machine cluster management named VE-
manager in this paper. The goal of VE-manager is to manage all the VMMs, the
VMs running on the VMMs and system within the VM effectively and friendly
in a cluster environment. We also consider the deploying of VMs, migration of
VMs and load balancing.

Comparing with other virtual machines management solution [9] [10], VE-
manager has following advantages:

(1) GUI frontend is designed as a thin client. It does not rely on any platform-
dependent library. Furthermore, we implement it with platform-independent pro-
gramming language, so the GUI frontend can run on different platforms without
modifying any code.

118 Z. Wang et al.

(2) Because the GUI frontend does not depend on the VMM middleware,
if our middleware is based on another library in the future, we only need to
implement another agent to co-work with the new middleware. And the GUI
frontend will work as usual.

(3) We consider the management solution in the cluster environment at the
beginning of our design. So we discuss the deploying, migration of VMs and load
balancing in this paper which are import for virtual machines cluster management.

In a cluster environment, fault tolerance is also an import topic, include: (1)
How to detect the abnormal on a VMM and migrate all the VMs on this VMM
to another VMM before it break down. (2) Failure recovery of VMs.

On the other hand, storage pool, network and desktop management is also
the important topic in virtual machines cluster management, we will consider
all of these in the future.

Acknowledgements

This work was supported by National 973 Basic Research Program of China
under grant No.2007CB310900, Huawei Science and Technology Foundation,
and National Natural Science Foundation of China (No.90612018, No.90715030,
No.60503043).

References

1. Krsul, I., Ganguly, A., Zhang, J., Fortes, J.A.B., Figueiredo, R.J.: VMPlants: Pro-
viding and Managing Virtual Machine Execution Environments for Grid Com-
puting. In: Proceedings of the 2004 ACM/IEEE conference on Supercomputing
(November 2004)

2. Zhang, X., Keahey, K., Foster, I., Freeman, T.: Virtual Cluster Workspaces for
Grid Applications, TR-ANL/MCS-P1246-0405 (April 2005)

3. Emeneker, W., Jackson, D., Butikofer, J., Stanzione, D.: Dynamic virtual clustering
with xen and moab. In: Proceedings of ISPA Workshops: Workshop on Xen in HPC
Cluster and Grid Computing Environments (XHPC), pp. 440–451 (2006)

4. Bellard, F.: Qemu, a fast and portable dynamic translators. In: USENIX 2005
Annual Technical Conference, Anaheim, CA, USA (April 2005)

5. Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Pratt, I., Warfield, A.,
Barham, P., Neugebauer, R.: Xen and the art of virtualization. In: Proceedings of
the ACM Symposium on Operating Systems Principles (October 2003)

6. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I.,
Warfield, A.: Live migration of virtual machines. In: Proceedings of the 2nd
USENIX Symposium on Networked Systems Design and Implementation (NSDI
2005) (May 2005)

7. UserLand Software, Inc.: XML-RPC, http://www.xmlrpc.com/
8. libvirt, http://libvirt.org/
9. Virtual Machine Manager, http://virt-manager.et.redhat.com/

10. Vallee, G., Naughton, T., Scott, S.L.: System management software for virtual
environments. In: Proceedings of the 4th international conference on Computing
frontiers (May 2007)

http://www.xmlrpc.com/
http://libvirt.org/
http://virt-manager.et.redhat.com/

VNEC - A Virtual Network Experiment

Controller

François Gagnon�, Tomas Dej, and Babak Esfandiari

Carleton University
fgagnon@sce.carleton.ca

Abstract. This paper presents VNEC, a tool to specify and execute
network experiments in a virtual environment. The user first formulates
the network topology and then provides the tasks that should be per-
formed by the computers together with their execution. Next, VNEC
initializes the environment by powering up and configuring the virtual
machines to match the desired network topology. Finally, commands are
dispatched to the right virtual machines in the specified order. VNEC
provides an environment for several types of research experiments such
as virus propagation patterns and reactions of different targets against
a given attack.

1 Introduction

Many interesting, and sometimes essential, network-related experiments are
costly, time-consuming, and risky. For example, unleashing viruses to study their
spreading behavior allows to improve defense systems, but building physical test
networks is expensive and networks are hard to maintain after a virus infection.
Performing a security penetration test on a sensitive bank server can provide
good insights on potential risks, but can create a security breach on the server.
Deploying a new application in a production environment is usually hazardous,
since it is hard to foresee negative impacts, e.g., downtime of the production
environment due to an error in the application.

In several cases, running these experiments in a virtual environment is suffi-
cient (e.g., virus study and penetration test) or can serve as a dry-run to avoid
costly breakdowns when performing them on the physical network (e.g., appli-
cation deployment).

There are a few existing tools, like VMWare [10], which offer the necessary
components to set up a virtual environment where experiments can be executed.
However, one has to either setup and execute the experiment manually or de-
velop his own controller. This controller is responsible for two main operations:
configuring the network and dispatching tasks to the virtual machines (VM) in
a specific order. Developing such a controller can be quite complex, especially
dispatching tasks to the VM.

� Corresponding author.

L. Boursas et al. (Eds.): SVM 2008, CCIS 18, pp. 119–124, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

120 F. Gagnon, T. Dej, and B. Esfandiari

In this paper we introduce VNEC (Virtual Network Experiment Controller),
a tool that allows the user to easily specify and execute network experiments. An
experiment consists of a network topology containing several computers as well
as a sequence of tasks to be executed in a particular order by the computers of the
network. Once the specification phase is completed, the experiment can be run
in a VMWare virtual environment. VNEC provides a graphical user interface
to specify the topology and the task workflow for an experiment. Moreover,
it takes care of configuring the virtual machines and dispatching tasks to the
corresponding VM.

The main applications driving the development of VNEC are risky network
experiments (e.g., virus propagation and attack scenarios) and data collection
experiments (e.g., operating system fingerprinting and collecting target reactions
against attacks). These applications dictate two important requirements on the
solution:

– Executing the experiment in a confined environment (to avoid infecting phys-
ical machines with viruses).

– Allowing the use of a wide variety of guest operating systems (to collect data
across a wide spectrum of targets).

The rest of the paper is structured as follows: Section 2 discusses related
work in the area of virtualization controller. Section 3 presents VNEC and its
different specification and configuration steps. Finally, a discussion and some
pointers towards future work will conclude the paper.

2 Related Work

We decided to use VMWare virtualization technology because it supports a
very large number of different guest operating systems (OS). Other alternatives
included VirtualPC [2], QEMU and Xen [6] (Chapter 14), UML (User Mode
Linux) [5], and Basilisk [1], but they typically support much fewer guest OS.

Some tools similar to VNEC already exist, but none of them are as generic.
Of particular interest is the following: VMWare VIX API [9], HP SmartFrog
project [8] and the VNUML tool [7].

VIX is an API developed by VMWare to provide some control over the virtual
machines (e.g., power up, file copying, command execution). Unlike VNEC, VIX
is not a controller; it simply provides an API helping one to build a custom
controller. More importantly, the VIX functions allowing communication with a
VM work only if the the VM is running a recent Linux or Windows OS1. This is a
major limitation, since commands cannot be dispatched to all virtual machines.

The SmartFrog project is a general framework to manage distributed systems.
To use VMWare technology, SmartFrog uses a Java wrapper on VIX, thus it can
act as a controller for virtual networks. Since SmartFrog relies entirely on VIX,
it inherits its limitations.
1 These functions requires the VMWare tools to be installed on the VM, and only

recent Linux or Windows VM can install them.

VNEC - A Virtual Network Experiment Controller 121

The VNUML tool (Virtual Network User Mode Linux) is a controller for the
UML virtualization technology. However, since UML supports only Linux guest
OS, VNUML is more limited than SmartFrog.

VNEC is an extension of a custom tool developed at the Communication Re-
search Center [4] in Canada. The earlier version had no graphical interface and
commands could only be dispatched to Windows and Linux virtual machines.
The need to dispatch commands to all virtual machines was the principal moti-
vation to develop VNEC.

There could be other undocumented ad hoc solutions to the creation of vir-
tual network environments. However, we are not aware of a solution combining
both network and task specifications that would work for most guest operating
systems.

Since VNEC uses VMWare, every OS supported as a guest by VMWare can
be used in the experiments. However, unlike VIX, VNEC is able to dispatch
commands to every virtual machine not just to those running Linux or Windows.
This is important for many data gathering experiments such as studying the
reaction of different OS against a given attack and gathering OS fingerprints.

3 Virtual Network Experiment Controller

VNEC has three modules, each one being detailed in corresponding sections
below:

– Network specification (which network topology and VM to use)
– Task workflow specification (which tasks are to be executed by the VM and

in which order)
– Experiment execution (configuring the VM and dispatching commands in

the desired order)

3.1 Network Specification

Figure 1 depicts the network specification environment of VNEC. The network
specification phase consists of three parts:

– Creating the set of components (computers, hubs, and routers) using drag-
and-drop.

– Specifying the network topology by connecting the components according
to some rules (e.g., computers cannot connect to computers, each computer
has at most one connection).

– Associating each computer to a virtual machine (from a set of pre-existing
VM) and providing network settings (e.g., IP address) to the computer2.

In Figure 1, the user connected five machines (in clockwise order from top-
right: FreeBSD NetBSD, OpenBSD, Linux, and Windows) using two hubs and
a router. Routers are implemented using a dedicated VM, while hubs are the
default behavior on a VMWare VMNet. By clicking on a computer icon, it is
possible to overwrite the default configuration (ip address, snapshot, etc.).
2 Default values can be used for network settings.

122 F. Gagnon, T. Dej, and B. Esfandiari

Fig. 1. Snapshot of VNEC - Network Specification

3.2 Task Workflow Specification

The task workflow fulfills two roles: it allows the user to indicate which tasks
should be executed by the virtual machines and to specify the order of execution.
The task workflow is a directed acyclic graph [3] with a single source and a single
sink3 where each node corresponds to a task (Figure 2). The semantics of such a
workflow is that a task is to be executed when all its parent tasks are completed.

A task is either a command task or a control task. Command tasks are exe-
cuted by a virtual machine (e.g., create file, delete file, kill process, open telnet
connection, open web browser, etc.), while control tasks are performed by the
controller to modify the state of a virtual machine (e.g., power on, shut down,
take snapshot, revert to snapshot, clone, etc.). One must assign a task to each
node; this can be done in a custom way by providing the set of command strings
that must be executed or by selecting and configuring a predefined command
structure. A command structure requires some parameters; for instance, the
delete file command structure requires a file name. Each command structure
will be automatically converted into command strings at run time by the VM.
For instance, the command structure to delete the file “name” would translate
to “rm -f name” on a Linux VM and to “del name” on a Windows VM.

A task workflow reads from left to right; a circle represents the execution of
a task by a single given VM, while a rectangle stands for the execution of a
task by all the virtual machines in the network. For instance, the task workflow
shown in Figure 2(a) starts with task A which is executed by all VM (say power
on). Once task A is completed, task B, is performed by a single VM (say Linux
starts recording traffic). Afterwards, task C (say OpenBSD launches a specific
attack against Windows), then task D (say Linux stops recording the traffic) are
executed in sequence. Finally, E (power off) is applied on all virtual machines.

3 A source (resp. sink) is a node with no incoming (resp. outgoing) edges, i.e., a root
(resp. leaf).

VNEC - A Virtual Network Experiment Controller 123

(a) Linear Task Workflow (b) Non-Linear Task Workflow

Fig. 2. Examples of Task Workflows

Controller

Shared
Folder Dispatcher

Fig. 3. VNEC Communication Architecture (based on the network of Figure 1)

A task workflow does not have to be linear as displayed in Figure 2(b). Once
task V is completed, both tasks W and X begin concurrently. Task Y will start
only after both W and X are completed.

3.3 Experiment Execution

Once both the network and the task workflow are specified, the experiment is
ready to be launched. To be able to dispatch commands to any virtual machine,
we implemented two mechanisms to communicate with the virtual machines:
through shared folders (using the VMWare shared folder feature) and through
remote method invocation (using Java RMI).

The VMWare shared folder feature allows the physical host and the virtual
machines to access a common folder. A VM can simply look for a specific file in
the shared folder, parse it and interpret its content. To dispatch a command to
a specific VM, the controller creates a file representing the command and place
it on the shared folder to be processed by the corresponding VM. This process
is both simple and safe. However, the shared folder feature is available only for
some virtual machines (recent versions of Windows and Linux). To circumvent
this limitation, we developed a second mechanism.

In the second mechanism, each virtual machine is running the server side of a
JAVA RMI application; another VM can call the function execute(Command c)
on the server. Unfortunately, the controller (the physical machine) cannot com-
municate directly with the VM through the network (to avoid virus propagation
out of the virtual environment). To address this problem, we include a Linux VM
dedicated to dispatching commands, the dispatcher in Figure 3. The controller
tells the dispatcher, through a shared folder, which task should be executed by
which virtual machine (see dashed lines in Figure 3). Then, the dispatcher for-

124 F. Gagnon, T. Dej, and B. Esfandiari

wards the task to the corresponding VM using the RMI mechanism (see plain
lines in Figure 3).

The two mechanisms are used together to dispatch commands to any VM
while still providing a strong containment of the virtual environment.

4 Conclusion and Future Work

VNEC is a generic and powerful tool. It can handle several types of experiments
with its flexible specification interface. Moreover, it can use a wide variety of
guest operating systems thanks to VMWare virtualization technology, and it
can dispatch commands to all virtual machines. Although VNEC is developed
with specific applications in mind, i.e., virus propagation and data collection, it
will be helpful in several other domains.

We will consider many avenues in the near future. Of particular interest are:

– Develop a module to save and load experiment specifications (probably in
XML). This would also serve as a scripting language, an alternative to the
graphical interface.

– Provide more powerful constructs in the task workflow specification (condi-
tionals, loops, etc.).

– Analyze the workflow to detect basic anomalies, e.g., if a VM is supposed to
execute a command task before it is powered on.

– Monitor the execution of the experiment to detect possible anomalies, i.e.,
if a virtual machine crashes after an attack, we cannot expect it to execute
its subsequent tasks.

– Use multiple virtualization technologies simultaneously, providing a bridge
from one virtual environment to another.

– Deploy the experiment across multiple physical machines, while keeping a
single controller. This would allow bigger experiments to be run easily with-
out relying on expensive servers.

References

[1] Bauer, C.: Basilisk Homepage, basilisk.cebix.net
[2] Carwell, R., Webb, H.: Guide to Microsoft Virtual PC 2007 and Virtual Server

2005. Thomson Course Technology (2007)
[3] Chartrand, G., Lesniak, L.: Graphs & Digraphs. Chapman & Hall, Boca Raton

(2004)
[4] Communication Research Center. CRC Homepage, http://www.crc.ca
[5] Dike, J.: User Mode Linux. Prentice Hall PTR, Englewood Cliffs (2006)
[6] Golden, B.: Virtualization For Dummies. For Dummies (2007)
[7] Lurua, K., Khanvilkar, S.: Virtual Networking with User-Mode Linux. Linux for

you (Networking Expert) (January 2005)
[8] Goldsack, P., et al.: SmartFrog: Configuration and Automatic Ignition of Dis-

tributed Applications. In: HP OVUA 2003 (2003)
[9] VMWare. Introducing the VIX API. VMWorld 2006 (2006)

[10] Warren, S.: The VMWare Workstation 5 Handbook (Networking and Security).
Charles River Media (2005)

basilisk.cebix.net
http://www.crc.ca

L. Boursas et al. (Eds.): SVM 2008, CCIS 18, pp. 125–134, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Update on System Virtualization Management

Michael Johanssen

IBM Deutschland Research & Development GmbH
D71032 Böblingen, Germany
johanssn@de.ibm.com

Abstract. The DMTF System Virtualization, Partitioning and Clustering
(SVPC) Working Group is working on standardizing management interfaces for
the management of system virtualization platforms. This paper outlines the
modeling approach taken by the SVPC working group, briefly presents the cen-
tral management profiles already developed.

1 Introduction

The availability of new virtualization specific hardware capabilities for the x86 hard-
ware platform (AMD-V™ [1], Intel® VT [2]) triggered the development of new
system virtualization solutions in the recent past [3, 4]. Furthermore a number of well
established system virtualization solutions already existed for years on various hard-
ware platforms (e.g. [5, 6, 7, 8]).

The diversity of management interfaces for all these system virtualization solutions
generated the demand for a unified set of basic system management functions, like for
example for creating or destroying virtual systems, for starting or stopping virtual sys-
tems, or for adding / removing virtual resources to / from virtual systems. System vir-
tualization platforms should be enabled to expose basic management functions to a
variety of management client applications without requiring client specific manage-
ment agents for every platform. Management clients should be enabled to perform
basic management functions for a variety of system virtualization platforms without
being required to know about solution specific management interfaces.

The Distributed Management Task Force (DMTF) has a rich history in developing
industry standard system management interfaces for a variety of management do-
mains. Starting in 2005, the DMTF System Virtualization, Partitioning and Clustering
(SVPC) working group set out for developing management standards for system vir-
tualization. Following a set of essential design goals and applying well established
CIM concepts like the CIM schema and management profiles, the group delivered an
initial set of management profiles defining standardized management functionality for
central system virtualization elements.

2 Model Considerations

This chapter provides information about structure and evolution of the set of man-
agement profiles created by the SVPC working group. The information is based on

126 M. Johanssen

information presented by the CIM System Virtualization Model White Paper [10] and
respective DMTF management profiles referenced in the text.

2.1 Design Goals

A number of central design goals were established as a guideline; these goals are de-
tailed below.

Generality aims at supporting all types of system virtualization. For example, the
management interface inherently should enable the management of specialized types
of virtual systems like virtual switches or virtual storage subsystems.

Exposure of capabilities aims at enabling a client to adapt to a wide range of
potential platform capabilities. For example, clients should be able to detect whether a
platform supports the modification of virtual resources.

Definition of reasonable defaults aims at enabling less sophisticated clients to
exploit complex functionality. For example, clients should be able to create virtual
systems without being required to specify all virtual system components at a high
level of detail.

Built-in extensibility aims at enabling incremental growth of the model suite. For
example, implementations providing functionality beyond that exposed through the
standardized set of interfaces should be enabled to expose management functionality
for that additional functionality in a homogeneous and consistent way.

Leverage existing work from other DMTF working groups aims at simplifying and
unifying systems management as a whole. For example, clients capable of managing
real systems through interfaces specified by the Server Management Architecture for
Server Hardware (SMASH) suite of management profiles [11] should be enabled to
manage respective aspects of virtual systems using the same set of interfaces.

2.2 CIM Concepts

Generally the Common Information Model (CIM) allows the definition of manage-
ment interfaces for managed environments. The basic elements provided for the defi-
nition of these management interfaces are the CIM Schema and DMTF management
profiles.

CIM schema. The CIM schema [12] builds the foundation of CIM based
management models. It is a hierarchically organized set of classes that are defined
conformant to the CIM meta schema.

The CIM schema is maintained by DMTF using a formal change process that en-
sures a steady evolution of the schema. During the development of the system virtual-
ization model several new classes were added to the CIM schema, and existing
classes were amended.

CIM classes are defined as a collection of instances that all support a common type. A
CIM class defines the type through a set of properties and methods.

CIM associations are a special type of class where properties may be defined as refer-
ences, enabling the definition of relationships between classes. Associations may have

 Update on System Virtualization Management 127

additional non-reference properties, allowing to define different flavors of relation-
ships.

CIM indications are another special type of class that are defined to report the occur-
rence of events. Lifecycle indications report the creation, deletion or modification of
CIM instances, process indications reports events that originate outside of the CIM
model.

CIM instances are defined as a unit of data that is a set of property values and can be
uniquely identified by a key. Each instance provides values for the properties as
defined by its defining class.

CIM instances represent real world objects. While it is conceptually intriguing to
think of CIM instances as persistent objects similar to data records in a database, it is
important to realize that CIM instances in fact are only temporarily created as they are
requested by a client. When a client requires access to a particular CIM instance, the
responsible class implementation accesses the managed environment that exposes the
real world object represented by the CIM instance and dynamically obtains all the in-
formation required to present the CIM instance to the client. In other words, CIM
models provide clients with a database like view of reality, but lastly implementations
of CIM classes are required to dynamically construct CIM instances whenever clients
require access.

Generally CIM classes alone do not provide sufficient context for their use in par-
ticular management contexts; that context is provided by management profiles.

CIM Client

Real world objects

Profile implementation

CIM instances
that represent
real world objects

Instance of management domain

CIM Service

Schema
Profile definition

CIM classes
from a schema,
adapted by the profile

Classes
not adapted
by the
profile

modeled
real world
object types

other
real world
object types

Real world object types
Management domain

Real world

Client visible behavior

Fig. 1. Profile and management domain

128 M. Johanssen

2.3 Management Profiles

Management profiles define client visible behavior for the management of a particular
set of components in the real world. These components are typically organized in
management domains. This is illustrated in Fig. 1. below.

Client visible behavior is defined by adapting a number of classes from the CIM
schema for a particular purpose. For each class adaptation the profile establishes a
real world context. The class adaptation describes the use of the class in that particular
context. For example, the System Virtualization Profile [16] defines a class adaptation
of the CIM_System class for the representation of system virtualization platforms.

Requirement Level. Definitions in management profiles may be qualified with a
requirement level that is one of “required”, “conditional” or “optional”. Conformant
implementations must implement all mandatory elements, must implement
conditional elements if a specified condition is true, and may implement optional
elements. If implemented, optional elements must implemented as specified.
Requirement levels enable the definition of optional and conditional features within
profiles. Profiles describe discovery mechanisms enabling clients to detect the
presence of such features within implementations.

Profile definition. DMTF management profile specifications are created by DMTF
working groups that consist of interested participants from various DMTF member
companies. Form and structure of profiles is formally described by a meta document
named the Profile Usage Guide (PUG) [13]. Profile development follows a rigid
process that involves frequent reviews and ballots on the profile content [14]. Once a
stable stage is reached during profile development, the profile is reviewed by the
appropriate platform subcommittee and finally by the DMTF technical committee.
After approval from the DMTF technical committee profiles are published as
preliminary standards and available for download from the DMTF website; for
example see the System Virtualization profile [16].

Profile implementation. Management profiles are implemented for one or more
instances of the management domain addressed by the profile. For example, the
System Virtualization profile might be separately implemented for the Microsoft
Windows Server® 2008 product exploiting the Hyper-V™ technology [4], and
members of the VMware® Server product suite [6]. Frequently such implementations
are provided by the vendor of the managed product itself, but product independent
implementations are possible as well. For example, an open source implementation
using functions of the libvirt systems management library [9] might be provided for
the management of installations of the Xen™ hypervisor [5] and other Linux® based
virtualizers like the Kernel Virtual Machine (KVM) [3].

Profile discovery. Profile implementations may be discovered using generalized
discovery mechanisms like the service location protocol (SLP) [15]. For that reason
every profile is required to define a central class. Profile implementations are required
to expose an instance of the CIM_RegisteredProfile class in the CIM interop
namespace, and provide an association path from that instance to instances of the
central class. These requirement ensures that profile conformant central class
instances can be discovered.

 Update on System Virtualization Management 129

For example, a management client exploiting the System Virtualization profile [16]
may discover implementations of that profile using SLP. As a result the client re-
ceives a set of HTTP addresses where each element identifies one implementation of
the profile. The client may then continue using normal CIM browsing techniques like
traversing associations to inspect the hierarchically organized set of CIM instances
exposed by each of these implementations.

3 System Virtualization Management

The management interface defined by the SVPC working group for the management
of system virtualization is expressed in form of a comprehensive set of DMTF man-
agement profiles.

3.1 Virtual System Profile

The Virtual System profile [17] defines a management interface for the management
of single virtual systems. A central paradigm applied when modeling the interface
was that general aspects of virtual systems should be manageable by management ap-
plications that are not virtualization aware. For that reason the Virtual System profile
is derived from the SMASH Computer System profile [18], inheriting the set of man-
agement functions defined by the Computer System profile for real systems.

The central concepts introduced by the Virtual System profile are virtual system,
virtual resource, virtual system representation and virtual system configuration. As
the Virtual System profile is based on the Computer System profile, the set of compo-
nent profiles defined in context of the Computer System profile for the representation
of resources apply to the Virtual System profile as well. Prominent examples are the
CPU profile [19] or the System Memory profile [20].

Virtual systems are thought as logically equivalent virtual counterparts of real
systems. Each virtual computer system is represented by an instance of the
CIM_ComputerSystem class.

Virtual resources. As with real systems, virtual systems are thought to be comprised
of a number of (virtual) resources, like for example virtual memory or virtual
processors. Virtual resources are represented by instances of the CIM_LogicalDevice
class or a class derived from CIM_LogicalDevice.

Virtual system representations are the composition of the instance of the
CIM_ComputerSystem class representing a virtual system and the set of instances of
the CIM_LogicalDevice class representing its virtual devices, by means of the
CIM_SystemDevice association.

Virtual system representations do not generally convey virtualization specific in-
formation; instead, the aspect of virtualization is added to a virtual system representa-
tion in form of an associated State virtual system configuration.

Virtual system configurations. A virtual system configuration is composed of one
instance of the CIM_VirtualSystemSettingData class and a set of associated instances
of the CIM_ResourceAllocationSettingData class.

130 M. Johanssen

Fig. 2. Virtual System Representation and Configuration

The left side of Fig. 2. shows the class model for a virtual system representation.
Note that the format of the virtual system representation is the same as that used for
the representation of real systems, effectively making virtual systems inspectable and
manageable through interfaces originally defined for real systems.

Virtualization specific aspects are kept in virtual system configurations as shown
on the right side of Fig. 2. Two kinds of virtual system configurations are modeled:
Defined virtual system configurations and State virtual system configurations. Ele-
ments in these two configurations are connected by the CIM_ElementSettingData as-
sociation.

Defined virtual system configurations are CIM representations of virtual system defi-
nitions. A virtual system definition is a kind of configuration recipe for a virtual sys-
tem and its resources. Most virtualization platforms use virtual system definitions as
the basis for instantiating virtual systems, that is creating the virtual equivalent of a
real system. Instantiation typically occurs when a virtual system is activated, and vir-
tual system instances are destroyed when a virtual system is deactivated. It is impor-
tant to realize that most virtual resources are not allocated while a virtual system is
not instantiated. For example this is typically the case for virtual system memory or
for processor shares. Furthermore a virtual system instance may deviate from the vir-
tual system definition for various reasons. For example some resources might have
been unavailable at virtual system instantiation time, or dynamic changes were ap-
plied after the instantiation. On the other hand there are types of virtual resources that
are required to be persistently allocated like for example virtual storage extents that
contain persistent data.

In many implementations a virtual system definition is an implementation specific
formalized description. For example, some implementations define XML schemes
and APIs that provide access to respective XML formatted virtual system configura-
tion files, enabling clients to inspect and modify virtual system definitions in an im-
plementation specific way.

 Update on System Virtualization Management 131

Defined virtual system configurations provide CIM based and implementation
independent access to virtual system definitions. In a Defined virtual system configu-
ration an instance of the CIM_VirtualSystemSettingData class represents general as-
pects of the virtual system definition, like for example the virtual system type. In-
stances of the CIM_ResourceAllocationSettingData class represent resource
allocation requests for the virtual resources of the virtual system. The resource alloca-
tion requests drive the provisioning of virtual resources when the virtual system is
activated.

State virtual system configurations are formal representations of the virtual aspects of
a virtual system instance. A virtual system instance is the virtual equivalent of a real
system. It is composed of virtual resources like for example virtual processors, virtual
memory, virtual network ports or virtual disk. Virtual aspects describe how these re-
sources are allocated by the virtualization platform.

State virtual system configurations provide CIM based and implementation inde-
pendent access to the virtual aspects of virtual system instances. In a State virtual sys-
tem configuration again an instance of the CIM_VirtualSystemSettingData instance
represents general aspects of the virtual system, like for example the virtual system
type. Instances of the CIM_ResourceAllocationSettingData class represent existing
resource allocations that model virtual aspects of allocated virtual resources. Fig. 2
further depicts how elements in the State virtual system configuration are associated
to their counterparts in the virtual system representation through instances of the
CIM_SettingsDefineState association.

State inspection and state management. Like real systems, virtual systems can be
arbitrarily activated and deactivated. The activation of a virtual system implies its
instantiation, that is, the allocation of virtual resources as defined in the Defined
virtual system configuration; typically, virtual resources are allocated during virtual
system activation. The instantiated virtual system is represented by a virtual system
representation representing all allocated resources, with an associated State virtual
system configuration representing the virtual and allocation aspects.

Virtual system state changes can be inflicted by activities that are not visible
through a CIM interface, or may be requested through explicit CIM state manage-
ment. CIM state management is an optional feature modeled by the RequestState-
Change() method of the CIM_ComputerSystem class. When invoked on an instance
of the CIM_ComputerSystem class representing a virtual system, a state change for
that virtual system is requested.

Regardless of the mechanism used for its initiation, a state change becomes visible
by monitoring the value of the EnabledState property in that instance.

3.2 System Virtualization Profile

The System Virtualization profile [16] models a management interface for the man-
agement of virtualization platforms, addressing the following functional areas:

• The representation of a virtualization platform, the representation of its capabilities
and the representation of the relationship between a virtualization platform and its
hosted virtual systems.

132 M. Johanssen

• The definition of functions for the creation, destruction and modification of virtual
systems that are hosted by the virtualization platform. These functions are param-
eterized such that instances of the CIM_ResourceAllocationSettingData class may
be specified as input, effectively enabling a client to provide virtualization specific
requirements for the creation or modification of virtual resources.

• The representation and management of virtual system snapshots. Snapshots pre-
serve the state of a virtual system and its resources at the time the snapshot is
taken; the virtual system can be restored to the state captured in a snapshot at a
later point in time.

Resource type specific details are not specified by the System Virtualization profile
itself. Instead the System Virtualization profile provides the scope for a set of re-
source virtualization profiles. Each resource virtualization profile separately defines
virtualization aspects for a particular virtual resource type. Uniformity of resource vir-
tualization profiles is achieved by requiring that each resource virtualization profile is
based on the Resource Allocation profile and the Allocation Capabilities profile.

3.3 Resource Allocation Profile

In order to ensure consistent modeling of management interfaces for the management
of virtual resource allocation, the SVPC working group initially defined a generic ab-
stract DMTF management profile that serves as the basis for resource type specific re-
source allocation profiles.

The Resource Allocation Profile [21] defines the resource pool as the conceptual
focal point for the allocation of resources, that is, the link between host resources and
virtual resources. A resource pool aggregates host resources that support virtual re-
sources through resource allocation.

The aggregated host resources are not required to be of the same resource type as
the virtual resource resulting from allocations out of the pool. For example, a resource
pool may aggregate host files, but serve for the allocation of virtual disks. Note that
the host resources are not required to be shown as elements of the resource pool; in-
stead, the resource pool acts as the conceptual integration point that represents host
resources available for or in use by allocations.

The Resource Allocation profile defines a class adaptation of the CIM_Resource-
AllocationSettingData class for the representation of resource allocation requests and
resource allocations. The CIM_ResourceAllocationSettingData class generically de-
fines various properties that describe allocations, like for example the resource type,
the virtual quantity, the amount of reserved host resource and its upper limit or the
relative weight of one allocation in relations to others.

3.4 Allocation Capabilities Profile

The Allocation Capabilities profile [22] specifies the foundation for the representation
of allocation capabilities of host systems and host resource pools, and for the mutabil-
ity of virtual resource allocations.

The Allocation Capabilities profile defines a class adaptation of the CIM_Resour-
ceAllocationSettingData class for the representation of settings that define capabili-
ties. The CIM_SettingsDefineCapabilities association qualifies these settings as

 Update on System Virtualization Management 133

minimum, maximum, default or incremental settings. This enables the modeling of
ranges and increments of admissible values of properties of the CIM_ResourceAllo-
cationSettingData class. For example, a platforms capability to support the allocation
of memory may be specified as ranging from a minimum of 256 MB to a maximum
of 4 GB in increments of 64 MB, with a default of 1 GB.

4 Conclusions

The set of DMTF management profiles already released by the SVPC working group
provides the foundation for the management of system virtualization platforms. The
group continues to extend that set, focusing on still missing resource types like stor-
age and network components. In addition, new functional areas will be addressed in
the near future, like for example the definition of management interfaces for the life
migration of virtual systems between system virtualization platforms.

Bibliography

[1] AMD® Virtualization Technology, http://www.amd.com/virtualization
[2] Intel® Virtualization Technology,

http://www.intel.com/technology/virtualization/index.htm
[3] Kernel Based Virtual Machine, http://kvm.qumranet.com/kvmwiki
[4] Microsoft® Windows ServerTM 2008 HyperVTM FAQ,

http://www.microsoft.com/windowsserver2008/en/us/hypervfaq.
aspx#HyperVGeneral

[5] Xen.org (Description of the Xen® hypervisor), http://www.xen.org/xen/
[6] VMware® (Description of VMware system virtualization solutions),

http://www.vmware.com/
[7] IBM® z/VM® (Description of the z/VM hypervisor), http://www.vm.ibm.com/
[8] IBM® PowerVM® (Description of IBM PowerVM based system virtualization),

http://www-03.ibm.com/systems/power/software/virtualization/
[9] libvirt - The virtualization API, http://libvirt.org/

[10] DMTF DSP2014 System Virtualization Model White Paper,
http://www.dmtf.org/standards/published_documents/DSP2014_1.
0.0.pdf

[11] System Management Architecture for Server Hardware Whitepaper,
http://www.dmtf.org/standards/published_documents/DSP2001_1.
0.1.pdf

[12] DMTF CIM Schema, http://www.dmtf.org/standards/cim/
[13] DMTF DSP1001 Profile Usage Guide,

http://www.dmtf.org/standards/published_documents/DSP1001.
pdf

[14] DMTF DSP4005 Profile Development Process
http://www.dmtf.org/standards/published_documents/DSP4005.pdf

[15] IETF RFC2608 Service Location Protocol Version 2,
http://www.ietf.org/rfc/rfc2608.txt?number=2608

[16] DMTF DSP1042 System Virtualization profile,
http://www.dmtf.org/standards/published_documents/DSP1042.pdf

134 M. Johanssen

[17] DMTF DSP1057 Virtual System profile,
http://www.dmtf.org/standards/published_documents/DSP1057.pdf

[18] DMTF DSP1052 Computer System profile,
http://www.dmtf.org/standards/published_documents/DSP1052.pdf

[19] DMTF DSP1022 CPU profile,
http://www.dmtf.org/standards/published_documents/DSP1022.pdf

[20] DMTF DSP1026 System Memory profile,
http://www.dmtf.org/standards/published_documents/DSP1026_1.
0.0.pdf

[21] DMTF DSP1041 Resource Allocation profile,
http://www.dmtf.org/standards/published_documents/DSP1041_1.
1.0.pdf

[22] DMTF DSP1043 Allocation Capabilities profile,
http://www.dmtf.org/standards/published_documents/DSP1043.pdf

[23] SNIA Storage Management Initiative Specification (SMI-S) Version 1.3,
http://www.snia.org/tech_activities/standards/curr_standard/
smi/SMI-S_Technical_Position_v1.3.0r5.zip

IBM®, z/VM®, PowerVM® are trademarks of IBM Corporation in US and/or in other coun-
tries. Microsoft®, Windows Server®, HyperV™® are trademarks of Microsoft Corporation in
US and/or in other countries. AMD-V™ is a trademark of AMD Corporation in US and/or in
other countries. Intel® VT is a trademark of Intel Corporation in US and/or in other countries.
Linux® is a trademark of Linus Torvalds in US and/or in other countries. VMware® is a
trademark of VMware Corporation in US and/or in other countries. Xen® is a trademark of Ci-
trix Corporation in US and/or in other countries.

The information and materials are provided on an "as is" basis and are subject to change.

Author Index

Aderholdt, Ferrol 72

Barrere, Francois 84
Battré, Dominic 1
Benzekri, AbdelMalek 84
Bland, Wesley 72

Dej, Tomas 119
Desprats, Thierry 13, 102

Elloumi, Imene 102
Engelmann, Christian 72
Esfandiari, Babak 119

Fernández, David 49
Ferrer, Miguel 49

Gagnon, François 119
Galán, Fermı́n 49

Hovestadt, Matthias 1
Hu, Liting 25

Ionescu, Dan 61
Ishikawa, Takayuki 37

Jelliti, Manel 102
Jin, Hai 25
Johanssen, Michael 125

Kao, Odej 1
Kawato, Masahiro 37
Keller, Axel 1
Kowalski, Vincent 96

Laborde, Romain 13, 84
Li, Minglu 113
Liao, Xiaofei 25
Litoiu, Marin 61

Machida, Fumio 37
Mart́ın, Francisco J. 49
Mihaescu, Mircea 61
Morita, Yoichiro 37

Nakae, Masayuki 37
Naughton, Thomas 72

Ong, Hong 72

Ravelomanana, Sahobimaholy 102

Scott, Stephen L. 72
Sibilla, Michelle 102
Solomon, Bogdan 61

Tadano, Kumiko 37
Tikotekar, Anand 72

Vallée, Geoffroy 72
Voss, Kerstin 1

Wang, Yu 113
Wang, Zhigang 113
Wazan, Ahmad Samer 84
Weng, Chuliang 113

Xiong, Xianjie 25

	Title Page
	Preface
	Organization
	Table of Contents
	Systems and Virtualization Management: Standards and New Technologies
	Virtual Execution Environments and the Negotiation of Service Level Agreements in Grid Systems
	Introduction
	SLA-Aware Resource Management
	Migration and Compatibility Profile

	Virtual Execution Environments
	SLA Negotiation Aspects
	Original WS-Agreement Protocol
	Protocol Extension
	Negotiation on Virtual Execution Environments

	Related Work
	Conclusion
	References

	An Extension of XACML to Improve the Performance of Decision Making Processes When Dealing with Stable Conditions
	Introduction
	XACML Standard Overview
	The XACML Policy Language
	The XACML Management Architecture

	Notion of Stable Condition
	Example of a Scenario
	Definitions

	XACML Extensions
	Proposed Architecture
	Description of the Implementations
	Experimental Tests
	Analysis

	Related Works
	Conclusion
	References

	LVD: A Lightweight Virtual Desktop Management Architecture
	Introduction
	Related Works
	LVD Design
	Overview
	Template-Based VM Repository (TVR)
	Data Center (DC)
	Application Cluster (APPC)
	VM Central Manager (VCM)
	Client Terminal

	Performance Evaluation
	Latency Benchmark Results
	Web Page Load Benchmark Results
	Flash Benchmark Results
	Power Reduction Results

	Conclusions
	References

	CIM-Based Resource Information Management for Integrated Access Control Manager
	Introduction
	Integrated Access Control
	Requirements
	Related Work
	Proposed Architecture
	Interactions

	Information Model for File Access Control
	Scenario
	File and Directory
	Reference Monitor
	File Access Capabilities

	Implementation
	Overview
	Agents
	Resource Information Manager
	Policy Manager

	Experimental Evaluation
	Policy Manipulation on GUI
	Query Performance

	Conclusion
	References

	Scenario-Based Distributed Virtualization Management Architecture for Multi-host Environments
	Introduction
	Architectural Design
	Deployment Hosts
	Deployment Controller
	Switches

	Detailed Operation Sequences
	Implementation
	Results
	EDIV Alignment with DMTF Standards
	Conclusions and Future Work
	References

	Web Service Distributed Management Framework for Autonomic Server Virtualization
	Introduction
	Autonomic Server Virtualization
	Challenges
	Autonomic System Solution

	An Architecture for Server Virtualization Using a Web Service Based Autonomic Computing System
	Architecture Implementation
	Web Service Distributed Management Framework

	Experiments
	Conclusions
	Future Work
	References

	Virtual System Environments
	Introduction
	Virtual System Environment Definition
	Package Sets Definition
	Package Sets Usage

	Virtual System Environment Deployment
	Machine Sets
	Image Deployment

	System Management
	Protection
	Related Work
	Conclusion
	References

	Authentication in Virtual Organizations: A Reputation Based PKI Interconnection Model
	Introduction
	Trust Models
	Hierarchy Model
	Certificate Trust List Model
	Cross-Certification Model
	Bridge CA Model

	Trust, Reputation
	Definitions of Trust and Reputation
	Computational Models of Trust and Reputation

	The Proposed Architectural Model
	Relying Party (RP)
	Audit Agency (CPS Quality)
	The Friend CAs (Recommendations)
	Certificate Authority (CA) of RP (Calculating Reputation)

	Reputation in the Context of X.509 PKI
	Calculation of Reputation
	Controlling the Influence of Old Experiences
	Example

	Conclusion and Future Works
	References

	Business Service Management in a Service Oriented, Virtualized World
	Business Service Management
	Service Oriented Architecture (SOA)
	Conceptual Framework
	SOA in the Enterprise
	SOA in BSM Solutions

	Virtualization
	Summary and Conclusion
	Reference

	A Control of a Mono and Multi Scale Measurement of a Grid
	Introduction
	Related Work
	Shortcomings of the Existing Monitoring Tools
	Advanced Monitoring Needs

	A Standard Model-Based Monitoring
	Integration Issue
	A Multi-dimensional Monitoring Pattern
	Issues

	Dynamic Specification of a Multi-dimensional Monitoring
	Expressing Influence and Control
	Control of a Mono Scale Measurement
	Control of a Multi-scale Measurement
	Quantification

	Application Example in a Local Grid
	Conclusion
	Future Work
	References

	A Resource Management Mechanism and Its Implementation for Virtual Machines
	Introduction
	Architecture
	Implementation Details
	Agent and RPC
	GUI Frontend
	Middleware
	System Management
	Live Migration and Load Balancing
	Security

	Current Progress
	Conclusions and Future Work
	References

	VNEC - A Virtual Network Experiment Controller
	Introduction
	Related Work
	Virtual Network Experiment Controller
	Network Specification
	Task Workflow Specification
	Experiment Execution

	Conclusion and Future Work
	References

	Update on System Virtualization Management
	Introduction
	Model Considerations
	Design Goals
	CIM Concepts
	Management Profiles

	System Virtualization Management
	Virtual System Profile
	System Virtualization Profile
	Resource Allocation Profile
	Allocation Capabilities Profile

	Conclusions
	Bibliography

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

