
Code-based cryptography

Raphael Overbeck1 and Nicolas Sendrier2

1 EPFL, I&C, LASEC.
2 INRIA Rocquencourt, projet SECRET.

1 Introduction

In this chapter, we consider the theory and the practice of code-based cryp-
tographic systems. By this term, we mean the cryptosystems in which the
algorithmic primitive (the underlying one-way function) uses an error cor-
recting code C. This primitive may consist in adding an error to a word of C
or in computing a syndrome relatively to a parity check matrix of C.

The first of those systems is a public key encryption scheme and it was
proposed by Robert J. McEliece in 1978 [48]. The private key is a random bi-
nary irreducible Goppa code and the public key is a random generator matrix
of a randomly permuted version of that code. The ciphertext is a codeword to
which some errors have been added, and only the owner of the private key (the
Goppa code) can remove those errors. Three decades later, some parameter
adjustment have been required, but no attack is known to represent a serious
threat on the system, even on a quantum computer.

Similar ideas have been used to design other cryptosystems. Among oth-
ers, let us mention some public key systems, like the Niederreiter encryp-
tion scheme [52] or the CFS signature scheme [14], and also identification
schemes [73, 76], random number generators [19, 30] or a cryptographic hash
function [3]. Some of the most important of those proposals are reviewed in
§2.

As for any class of cryptosystems, the practice of code-based cryptography
is a trade-off between security and efficiency. Those issues are well understood,
at least for McEliece’s scheme. Even though, no practical application of code-
based cryptography is known to us. This might partly be due to the large size
of the public key (100 kilobytes to several megabytes), but maybe also to a lack
of publicity in a context were alternative solution were not urgently needed.
Anyway, apart from the key size that we already mentioned, the McEliece
encryption scheme has many strong features. First, the security reductions are
tight (see [38] for instance). Also, the system is very fast, as both encryption
and decryption procedures have a low complexity.

96 Raphael Overbeck and Nicolas Sendrier

We will discuss in details the two aspects of security in §3 and §4. The first
security assumption is the hardness of decoding in a random linear code [6].
This is an old problem of coding theory for which only exponential time
solutions are known [4]. The second security assumption, needed only for
public key systems, is the indistinguishability of Goppa codes [66]. Though
it is not as old, in this form, as the first one, it relates to old problems of
algebraic coding theory and is believed to be valid.

We will conclude this chapter with some practical aspects, first on the
implementation, then on the key size issue, and we finish with a key point for
the practicality of McEliece and related systems: how to efficiently construct
a semantically secure (IND-CCA2) variant.

2 Cryptosystems

The first cryptosystem based on coding theory was a public key encryption
scheme, presented in 1978 by McEliece [48]. Nearly all subsequently proposed
asymmetric cryptographic schemes based on coding theory have a common
disadvantage: the large memory requirements. Several other schemes followed,
as the identification scheme by Stern [73], hash functions [3], random number
generators [19] and efforts to build a signature scheme. The latter however all
failed (compare [79], [32], [1] and [74]), until finally in 2001 Courtois, Finiasz
and Sendrier made a promising proposal [14]. However, even if the latter is
not broken, it is not suited for standard applications since besides the public
key sizes the signing costs are large for secure parameter sets.

In 1986, Niederreiter proposed a knapsack-type PKC based on error cor-
recting codes. This proposal was later shown to have a security equivalent to
McEliece’s proposal [42]. Among others, Niederreiter estimated GRS codes
as suitable codes for his cryptosystem which were assumed to allow smaller
key sizes than Goppa codes. Unfortunately, in 1992 Sidelnikov and Shestakov
were able to show that Niederreiter’s proposal to use GRS codes is insecure.
In the following a couple of proposals were made to modify McEliece’s original
scheme (see e.g. [27], [26], [28], [70] and [35]) in order to reduce the public key
size. However, most of them turned out to be insecure or inefficient compared
to McEliece’s original proposal (see e.g. [54] or [38]). The most important
modifications for McEliece’s scheme are the conversions by Kobara and Imai
in 2001. These are CCA2-secure, provably as secure as the original scheme [37]
and have almost the same transmission rate as the original system.

The variety of possible cryptographic applications provides sufficient mo-
tivation to have a closer look at cryptosystems based on coding theory as an
serious alternative to established PKCs like the ones based on number the-
ory. In this section we will concentrate on the most important cryptographic
schemes based on coding theory.

Code-based cryptography 97

2.1 McEliece PKC

The McEliece cryptosystem we are going to present in this section remains
unbroken in its original version, even if about 15 years after it’s proposal secu-
rity parameters had to be adapted. Although the secret key of the McEliece
PKC is a Goppa code (see §6.2) in the original description, the secret key
could be drawn from any subclass of the class of alternant codes. However,
such a choice might not reach the desired security as we will see in the follow-
ing sections. The trapdoor for the McEliece cryptosystem is the knowledge
of an efficient error correcting algorithm for the chosen code class (which is
available for each Goppa code) together with a permutation. The McEliece
PKC is summarized in Algorithm 2.1.

Algorithm 2.1 The McEliece PKC
• System Parameters: n, t ∈ N, where t � n.
• Key Generation: Given the parameters n, t generate the following matrices:

G : k×n generator matrix of a code G over F of dimension k and minimum
distance d ≥ 2t + 1. (A binary irreducible Goppa code in the original
proposal.)

S : k × k random binary non-singular matrix
P : n × n random permutation matrix

Then, compute the k × n matrix Gpub = SGP.
• Public Key:

(
Gpub, t

)
• Private Key: (S,DG , P), where DG is an efficient decoding algorithm for G.
• Encryption (E(Gpub,t)): To encrypt a plaintext m ∈ F

k choose a vector z ∈ F
n

of weight t randomly and compute the ciphertext c as follows:

c = mGpub ⊕ z .

• Decryption (D(S,DG ,P)): To decrypt a ciphertext c calculate

cP−1 = (mS) G ⊕ zP−1

first, and apply the decoding algorithm DGpub for G to it. Since cP−1 has a
hamming distance of t to G we obtain the codeword

mSG = DG
(
cP−1) .

Let J ⊆ {1, · · · , n} be a set, such that Gpub
·J is invertible, then we can compute

the plaintext m = (mSG)J (G·J)−1 S−1

The choice of security parameters for the McEliece PKC has to be taken
in respect to the known attacks. The optimal choice of parameters for a given
security level (in terms of the public key size) unfortunately can not be given
as a closed formula. We are going to discuss the latter later on. The problem

98 Raphael Overbeck and Nicolas Sendrier

to attack the McEliece PKC differs from the general decoding problem, which
we will examine in §3:

Problem 1. (McEliece Problem) Let F = {0, 1} and G be a binary irre-
ducible Goppa code in Algorithm 2.1.

• Given a McEliece public key
(
Gpub, t

)
where Gpub ∈ {0, 1}k×n and a ci-

phertext c ∈ {0, 1}n,
• Find the (unique) message m ∈ {0, 1}k s.t. wt

(
mGpub − c

)
= t.

It is easy to see that someone who is able to solve the Syndrome Decod-
ing Problem (compare §3) is able to solve the McEliece problem. The reverse
is presumably not true, as the code G =

〈
Gpub

〉
is not a random one, but

permutation equivalent to a code of a known class (a Goppa code in our def-
inition). We can not assume that the McEliece-Problem is NP-hard. Solving
the McEliece-Problem would only solve the General Decoding Problem in a
certain class of codes and not for all codes.

In the case of McEliece’s original proposal, Canteaut and Chabaud state
the following: “The row scrambler S has no cryptographic function; it only as-
sures for McEliece’s system that the public matrix is not systematic otherwise
most of the bits of the plain-text would be revealed” [11]. However, for some
variants of McEliece’s PKC, this statement is not true, as e.g. in the case of
CCA2-secure variants (see §5.1 and §5.3) or in the case, where the messages
are seeds for PRNGs. The matrix P is indispensable because for most codes
the code positions are closely related to the algebraic structure of the code.
We will come back to this in §4.3.

The Niederreiter variant

The dual variant of the McEliece PKC is a knapsack-type cryptosystem and
is called the Niederreiter PKC. In difference to the McEliece cryptosystem,
instead of representing the message as a codeword, Niederreiter proposed to
encode it into the error vector by a function φn,t:

φn,t : {0, 1}� →Wn,t, (1)

where Wn,t = {e ∈ F
n
2 | wt(e) = t} and � = �log2 |Wn,t|	. Such a mapping is

presented, e.g., in [19] and is summarized in Algorithm 2.2. This algorithm is
quite inefficient and has complexity O(n2 · log2 n). Its inverse is easy to define:
φ−1

n,t(e) =
∑n

i=1 ei ·
(

i∑ i
j=0 ej

)
. We discuss efficient alternatives in §5.1. Repre-

senting the message by the error vector, we get the dual variant of McEliece’s
cryptosystem, given in Algorithm 2.3. The security of the Niederreiter PKC
and the McEliece PKC are equivalent. An attacker who can break one is able
to break the other and vice versa [42]. In the following, by “Niederreiter PKC”
we refer to the dual variant of the McEliece PKC and to the proposal by
Niederreiter to use GRS codes by “GRS Niederreiter PKC”.

Code-based cryptography 99

Algorithm 2.2 φn,t : Mapping bit strings to constant weight codewords
Input: x ∈ {0, 1}�

Output: a word e = (e1, e2, · · · , en) of weight w and length n.

c ←
(

n
w

)
, c′ ← 0, j ← n.

i ← Index of x in the lexicographic order (an integer).
while j > 0 do

c′ ← c · j−w
j

if i ≤ c′ then
ej ← 0, c ← c′

else
ej ← 1, i ← i − c′, c ← c · w

n

j ← j − 1

Algorithm 2.3 Niederreiter’s PKC
• System Parameters: n, t ∈ N, where t � n.
• Key Generation: Given the parameters n, t generate the following matrices:

H: (n − k) × n check matrix of a code G which can correct up to t errors.
P: n × n random permutation matrix

Then, compute the systematic n× (n − k) matrix Hpub = MHP, whose columns
span the column space of HP, i.e. Hpub

{1,··· ,n−k}· = Id(n−k).
• Public Key:

(
Hpub, t

)
• Private Key: (P,DG , M), where DG is an efficient syndrome decoding algo-

rithm1 for G.
• Encryption: A message m is represented as a vector e ∈ {0, 1}n of weight t,

called plaintext. To encrypt it, we compute the syndrome

s = Hpube� .

• Decryption: To decrypt a ciphertext s calculate

M−1s = HPe�

first, and apply the syndrome decoding algorithm DG for G to it in order to
recover Pe�. Now, we can obtain the plaintext e� = P−1Pe�

1 A syndrome decoding algorithm takes as input a syndrome – not a codeword. Each
syndrome decoding algorithm leads immediately to an decoding algorithm and vice
versa.

The advantage of this dual variant is the smaller public key size since it is
sufficient to store the redundant part of the matrix Hpub. The disadvantage is
the fact, that the mapping φn,t slows down en- and decryption. In a setting,
where we want to send random strings, only, this disadvantage disappears as
we can take h(e) as random string, where h is a secure hash function.

100 Raphael Overbeck and Nicolas Sendrier

Modifications for the trapdoor of McEliece’s PKC

From McEliece’s scheme one can easily derive a scheme with a different trap-
door by simply replacing the irreducible binary Goppa codes by another code
class. However, such attempts often proved to be vulnerable against structural
attacks. In §4.3 we will sketch a few of those attacks. To prevent structural
attacks not only McEliece’s proposal, but others exist as well. In Table 1 we
give an overview of the principal modifications. McEliece’s proposal can thus

1. Row Scrambler [48]: Multiply G with a random invertible matrix S ∈ F
k×k

from the right. As 〈G〉 = 〈SG〉, one can use the known error correction algorithm.
Publishing a systematic generator matrix provides the same security against
structural attacks as a random S.

2. Column Scrambler / Isometry [48]: Multiply G with a random invertible
matrix T ∈ F

n×n from the left, where T preserves the norm, see §4.1. Obviously
one can correct errors of norm up to t in 〈GT〉, if G and T are known.

3. Subcode [52]: Let 0 < l < k. Multiply G with a random matrix S ∈ F
l×k of

full rank from the right. As 〈SG〉 ⊆ 〈G〉, the known error correction algorithm
may be used.

4. Subfield Subcode [48]: Take the FSUB-subfield subcode of the secret code for
a subfield FSUB of F. As before, one can correct errors by the error correcting
algorithm for the secret code. However, sometimes one can correct errors of
larger norm in the subfield subcode than in the original code, compare Definition
9 and following.

5. Matrix Concatenation [70]: Take the code
〈[

G SG
]〉

for an invertible matrix
S ∈ F

k×k. In Hamming norm, the secret key holder can correct 2t + 1 errors in
this code, as he can correct errors in the first or the second n columns.2

6. Random Redundancy [22]: Add a number l of random columns at the left
side of the matrix G. Errors can be corrected in the last n columns.

7. Artificial Errors [27]: One can choose to modify the matrix G at a small
number of positions. These positions will be treated as erasures on decryption
and thus change the norm t of the errors that can be decoded.

8. Reducible Codes [26]: Choose some matrices Y ∈ F
k×n and S ∈ F

l×k with
l ≤ k. Then take the code generated by

[
SG 0

Y G

]
.

Error correction by the algorithm for the secret code is possible if one corrects
errors in sections, beginning from the right.2 However, for correcting errors in
Hamming metric, this approach does not seem to be suitable [56].

Table 1. Strategies for hiding the structure of a code

2 One might generalize this approach by replacing one of the matrices G by a second
secret code.

Code-based cryptography 101

be seen as a combination of the strategies 1,2 and 4. Nevertheless, we have to
remark, that all strategies have to be used with care, as they can but do not
necessarily lead to a secure cryptosystem (compare e.g. [54,78] and §4.3).

2.2 CFS signature

The only unbroken signature scheme based on the McEliece, or rather on the
Niederreiter PKC was presented by Courtois, Finiasz and Sendrier in [14]. The
security of the CFS scheme (against universal forgery) can be reduced to the
hardness of Problem 1. The knowledge of the private key allows the decoder
to solve this problem for a certain fraction of random words c. The idea of the
CFS algorithm is to repeatedly hash the document, randomized by a counter
of bit-length r, until the output is a decryptable ciphertext. The signer uses
his secret key to determine the corresponding error-vector. Together with the
current value of the counter, this error vector will then serve as signature. The
signature scheme is summarized in Algorithm 2.4.

The average number of attempts needed to reach a decodable syndrome
can be estimated by comparing the total number of syndromes to the number
of efficiently correctable syndromes:

∑t
i=0

(
n
t

)
2n−k

=
∑t

i=0

(
n
t

)
2mt

≈ nt/t!
nt

=
1
t!

Thus each syndrome has a probability of 1
t! to be decodable, which can be

tested in about t2m3 binary operations, see §6.1. The CFS scheme needs
about t2m3t! operations to generate a signature [14] and produces signatures
of length log2(r

(
n
t

)
) ≈ log2(nt). Thus, r has to be be larger than log2(t!). The

signature length (n+r) can be reduced considerably, by employing a mapping
like φn,t.

With the parameters suggested by Courtois, Finiasz and Sendrier (m =
16, t = 9) the number of possible error-vectors is approximately given by(
n
t

)
=
(
216

9

)
≈ 2125.5 so that a 126-bit counter suffices to address each of

them. However, these parameters are too low to prevent a generalized colli-
sion attack, see §3.4. As the CFS scheme does not scale well with growing
parameters, secure instances of the CFS scheme require huge public keys.

2.3 Stern’s identification scheme

Stern’s identification scheme presented in 1994 is closely related to the Nieder-
reiter cryptosystem. There exists a variant of this scheme by Pascal Véron [76].
However, we will explain the original scheme: Let Hpub be a (n−k)×n matrix
common to all users. If Hpub is chosen randomly, it will provide a parity check
matrix for a code with asymptotically good minimum distance given by the
Gilbert-Varshamov (GV) bound, see Definition 1. The private key for a user

102 Raphael Overbeck and Nicolas Sendrier

Algorithm 2.4 CFS digital signature
• System parameters: m, t ∈ N.
• Key Generation: Generate a Niederreiter PKC key pair with a code drawn

from the class of [n = 2m, k = n − mt, 2t + 1] binary irreducible Goppa codes.
• Signing:

Input: h a public hash function, φn,t, D(S,DG ,P), r ∈ N+ and the document
d to be signed
Output: A CFS-signature s.

z = h(d)
choose a r-bit Vector i at random
s = h(z||i)
while s is not decodable do

choose a r-bit Vector i at random
s = h(z||i)

e = D(S,DG ,P)(s)

s = (φ−1
n,t(e)||i)

• Verification:
Input: A signature s = (φ−1

n,t(e)||i), the document d and Hpub

Output: accept or reject

e = φn,t(φ
−1
n,t(e))

s1 = Hpub(e�)
s2 = h(h(d)||i)
if s1 = s2 then

accept s
else

reject s

will thus be a word e of low weight w (e.g. w ≈ GV bound), which sums up to
the syndrome eH = s, the public key. By Stern’s 3-pass zero-knowledge proto-
col (Algorithm 2.5), the secret key holder can prove his knowledge of e using
two blending factors: a permutation and a random vector. However, a dishon-
est prover not knowing e can cheat the verifier in the protocol with probability
2/3. Thus, the protocol has to be run several times to detect cheating provers.

The security of the scheme relies on the difficulty of the general decoding
problem, that is on the difficulty of determining the preimage e of s = Hpube�.
Without the secret key, an adversary has three alternatives to deceive the
verifier:

1. To be able to answer the challenges b ∈ {1, 2}, the attacker commits to
c1 = (Π,Hpuby� + s) and selects a random vector ê of the same weight as
e. Now, he computes c2 = (y + ê)Π and c3 = Π(y).

2. He can work with a random ê of weight w instead of the secret key while
computing c1, c2, c3. He will succeed if he is asked b ∈ {0, 2} but in case

Code-based cryptography 103

Algorithm 2.5 Stern’s identification scheme
• System parameters : n, k, q, w ∈ N+ and Hpub ∈ F

(n−k)×n
q .

• Public key : Hpube� = s ∈ F
n−k
q

• Private key : e ∈ F
n
q of weight w.

Prover Verifier
Choose random n-bit vector y and ran-
dom permutation Π, to compute
c1 = (Π, Hpuby�), c2 = yΠ,
c3 = (y + e)Π.
Send commitments for (c1, c2, c3)

Send random request b ∈ {0, 1, 2}
If b = 0 ⇒ reveal c2, Π
If b = 1 ⇒ reveal c3, Π
If b = 2 ⇒ reveal c2, c3

If b = 0 ⇒ check c1, c2

If b = 1 ⇒ check c1, c3 with
Hpuby� = Hpub(y + e)� + s

If b = 2 ⇒ check c2, c3 and the weight of
eΠ.

b = 1 he will not be able to produce the correct c1, c3 since Hpubê� �=
Hpube� = s.

3. He can choose ŷ of arbitrary weight from the set of all possible preimages
of s and replaces e by ŷ while computing c1, c2, c3. This time he will fail
to answer the request b = 2 since wt(ŷ) �= w.

The communication cost per round is about n(log2(q) + log2(n)) plus three
times the size of the employed commitments (e.g. a hash function).

The standard method to convert the identification procedure into a proce-
dure for signing, is to replace verifier-queries by values suitably derived from
the commitments and the message to be signed. This leads to a blow-up of
each (hashed) plaintext bit to more than (n[log2(q) + log2(n)])/ log2(3) sig-
nature bits and is therefore of theoretical interest as a signature. However,
the security of the resulting signature scheme can be reduced to the average-
case hardness of the NP-hard general decoding problem in the random oracle
model.

2.4 Cryptosystems based on the syndrome one-way function

Besides the classical code based PKCs there exist other cryptographic prim-
itives with security reductions to coding theoretic problems. For symmetric
cryptosystems we do not need a trapdoor and can take the computation of
a syndrome of a random code as a one-way function. In this section we want
to give a way of obtaining cryptographic strong hashing and generation of
pseudorandom sequences using coding theoretic primitives.

104 Raphael Overbeck and Nicolas Sendrier

Code based hashing

If in Stern’s identification scheme parameters are chosen properly, one has the
following inequality: (

n

w

)
(q − 1)w−1 · qk−n ≥ 1.

Thus, there are more vectors of weight w and length n than syndromes of
an [n, k] code. If it is still hard to recover vectors of weight w in the set of
vectors with a certain syndrome, then, computing syndromes can serve as a
compression function. Based on this compression function, a hash function can
be constructed [3]. The compression function is realized by x �→ φn,w(x)H,
with φn,w given in Algorithm 2.2. In Figure 1 we give an intuition of the way
the hash function works.

φn,t(x) · H

x

Fig. 1. Merkle-Damgård scheme of hash functions

The performance of such a hash function depends on the time needed
to compute the one-to-one mapping φn,w. In order to speed-up such hash
function, one can for example limit the setWn,t to the set of w′-regular words

W ′
n,t =

{
(e1, e2, · · · , ew/w′) ∈ F

n
q | ei ∈ F

n·w′/w
q ,wt(e) = w′

}

if w′|w and (w′/w)|n. The modified mapping φw′

n,w is easy to compute, if w′ =
1. The resulting compression function is x �→ φw′

n,w(x)H. Nevertheless, using
regular words changes the problem of inverting the compression function.
Even if it was proved, that inverting φw′

n,t(x)H is NP-hard in general, there

Code-based cryptography 105

is no evidence if it is weak or hard in the average case [3]. Further, it was
only proved, that finding preimages for φw′

n,t(x)H is NP-hard in the cases
w′ ∈ {1, 2}, but not the problem to find collisions.

For the chaining step of a hash function one possibility is obviously to
concatenate the syndrome obtained with the input of the next round and
to apply φn,w afterwards. In the case of w′-regular words with blocklengths
n · w′/w, there exists a second possibility: One can simply concatenate two
such words of length < n to obtain a new w′-regular word of length n and
weight w.

One possible choice is to use q = 2, w′ = 1 with parameters n = 214,
n − k = 160 and w = 64 for a moderately (262.2) secure hash function and
n = 3 · 213, n − k = 224 and w = 96 for a (282.3) secure version. For more
parameter proposals and comparison with other hash functions we refer to [3].
An attack against the collision resistance of the hash function is presented in
§3.4.

Cryptographically strong random numbers

If in Stern’s identification scheme parameters are chosen such that
(

n

w

)
(q − 1)w−1 · qk−n ≤ 1,

there are less vectors of weight w and length n than syndromes of an [n, k]
code. If it is still hard to recover vectors of weight w in the set of vectors with
a certain syndrome, then, computing syndromes can serve as a expansion
function and thus to generate pseudorandom sequences [19]. Figure 2 gives
an intuition of the way the pseudo random number generator (PRNG) works.
For security reasons, we propose to use the same parameters as in Stern’s

φn,t(xi−1) = ei

ei · H

ri

xi

x0

Fig. 2. Scheme of code based PRNG

106 Raphael Overbeck and Nicolas Sendrier

identification scheme, see §2.3. Here again, w′-regular words can be used to
speed-up the PRNG.

3 The security of computing syndromes as one-way
function

In this section we consider the message security (opposed to key security) of
code-based cryptosystems. We assume the attacker has no information on the
algebraic structure of the underlying error correcting code, either because the
trapdoor is sufficiently well hidden (public key systems) or because there is
no trapdoor (code-based one way functions). This means correcting errors in
a linear code for which one knows only a generator (or a parity check) matrix.

Unless specified otherwise, the codes we consider in this section have a
binary alphabet. It is sufficient for most cryptosystems of interest. Moreover,
most statements can be generalized to a larger alphabet.

3.1 Preliminaries

We consider a binary linear code C of length n and dimension k. We denote
r = n− k the codimension of C and H a parity check matrix of C. We define
a syndrome mapping relatively to H

SH : {0, 1}n −→ {0, 1}r
y �−→ yH�

For any s ∈ {0, 1}r, we denote the set of words of {0, 1}n with syndrome s by

S−1
H (s) =

{
y ∈ {0, 1}n | yH� = s

}
.

By definition, we have S−1
H (0) = C for any parity check matrix H of C. The

sets y + C, for all y in {0, 1}n, are called the cosets of C. There are exactly 2r

different cosets which form a partition of {0, 1}n (i.e. pairwise disjoint). For
any parity check matrix H of C, there is a one to one correspondence between
cosets and syndromes relatively to H.

Proposition 1. For any syndrome s ∈ {0, 1}r we have

S−1
H (s) = y + C = {y + x | x ∈ C},

where y is any word of {0, 1}n of syndrome s. Moreover, finding such a word
y from s (and H) can be achieved in polynomial time.

For any y and z in S−1
H (s), we have yH� = zH�, thus (y + z)H� = 0 and

y + z ∈ C. It follows that S−1
H (s) = y + C.

To compute one particular element of S−1
H (s), given s, we will consider a

systematic form H0 of the parity check matrix H. That is a r×n binary matrix

Code-based cryptography 107

H0 of the form [Id | X] (where Id is the r × r identity matrix and X is some
r × k matrix) such that H0 = UH, with U a r × r non-singular matrix. One
can obtain such a matrix U in time O(r3) by inverting the first r columns3 of
H. Let y = [sU� | 0] ∈ {0, 1}n, since (U�)−1 = (U−1)�, we have

yH� = y(U−1H0)� = yH�
0 (U−1)� = (sU� | 0)

[
Id

X�

]
(U�)−1 = s.

The word y is in S−1
H (s) and is obtained in polynomial time.

3.2 Decoding problems

Let C be a binary linear code of parity check matrix H. We are given a word
y ∈ {0, 1}n and its syndrome s = yH� ∈ {0, 1}r. Decoding consists of solving
one of the following equivalent problems:

(i) Find a codeword x ∈ C closest to y for the Hamming distance.
(ii) Find an error e ∈ y + C of minimal Hamming weight.
(iii) Find an error e ∈ S−1

H (s) of minimal Hamming weight.

In practice, given an instance of a decoding problem, it is difficult to check
if the error e is really of minimal weight in the coset (or if the codeword x
is really the closest to y). Because of that, the decoding problem as stated
above is not in NP. Instead, we will consider a slightly different abstraction
of the problem, called syndrome decoding :

Problem 2 (Computational Syndrome Decoding). Given a binary
r × n matrix H, a word s in {0, 1}r and an integer w > 0, find a word e in
S−1

H (s) of Hamming weight ≤ w.

The value of the additional parameter w will significantly affect the difficulty
(see §3.3) of the resolution. In the theory of error correcting codes the problem
is meaningful only if w is such that the problem has a single solution with
high probability (i.e. w is not greater than the Gilbert-Varshamov bound
(Definition 1)). For cryptographic applications, any value of w such that the
problem is hard may produce a one-way function.

Decades of practice indicate that syndrome decoding in an arbitrary linear
code is difficult (see [4] for instance). In addition, the associated decision
problem was proved NP-complete in [6].

We will denote CSD(H, w, s) a specific instance of the computational syn-
drome decoding problem. Note that there is no “gap” (as for problems related
to Diffie-Hellman) between the decisional and the computational problems. In
fact an attacker can solve any instance of CSD with a linear number of access
to a decisional syndrome decoding oracle (this is the basis for the reaction
attack, see §5.3).

3 w.l.o.g. we can assume that the first r columns of H are full rank

108 Raphael Overbeck and Nicolas Sendrier

The problem of finding non-zero words of small Hamming weight (say ≤ w)
in a given linear code is very similar, but not identical, to decoding. We can
state it as follows

Problem 3 (Codeword Finding). Given a binary r × n matrix H and an
integer w > 0, find a non-zero word of Hamming weight ≤ w in S−1

H (0).

Though it looks similar, this is not a particular instance of CSD, because of
the non-zero condition. In fact, if C is the linear code of parity check matrix
H, then any solution of CSD(H, w,yH�) is also a solution to CF(H′, w), where
H′ is a parity check matrix of the code C′ = 〈y + C〉 spanned by y and C. The
converse is true only if w < dmin(C), the minimum distance of C.

The minimum distance is usually unknown. However most binary linear
codes of length n and codimension r have a minimum distance very close to
the Gilbert-Varshamov distance d0(n, r).

Definition 1. [4] The Gilbert-Varshamov distance d0(n, r) (or simply d0

when there is no ambiguity) is defined as the largest integer such that

d0−1∑
i=0

(
n

i

)
≤ 2r.

Let H, y and H′ be defined as above. Let e be a solution to CF(H′, w), inde-
pendently of w we have

• if wt(e) < d0, then e is very likely a solution to CSD(H, w,y),
• if wt(e) ≥ d0, then e is a solution to CSD(H, w,y) with probability ≈ 1/2.

Those informal statements hold “in average” and come from the fact that
C′ the code spanned by y and C is equal to C ∪ (y + C). If the weight of
e ∈ C′ = C ∪ (y + C) is smaller than the minimum distance of C (which is
likely to be close to d0), then it belongs to the coset y+C. On the other hand if
the weight of e is higher than d0, then, if it is a random solution to CF(H′, w),
it is equally likely4 to be in C and in y + C. In practice, most general purpose
decoders, and in particular those used in cryptanalysis, are in fact searching
for small weight codewords.

In the problems we have stated so far, the target weight w is an input.
In many cases of interest, the target weight will instead depend of the code
parameters (length and dimension). This will happen in particular in two
cases that we detail below: Complete Decoding and Bounded Decoding.

As we have seen earlier, decoding will consist in finding a word of minimal
weight that produces a given syndrome. If the syndrome is random, then
the solution is very likely to have a weight equal to the Gilbert-Varshamov
distance. Decoding is thus likely to be as hard as the following problem.

4 Metric properties of a random code are in practice indistinguishable from those
of a random set with the same cardinality

Code-based cryptography 109

Problem 4 (Complete Decoding). Given a binary r × n matrix H and a
word s in {0, 1}r, find a word of Hamming weight ≤ d0(n, r) in S−1

H (s).

This is in fact the most general and the most difficult computational problem
for given parameters n and r.

In a public key encryption scheme, like McEliece or Niederreiter, the target
weight is much smaller as it will be equal to the error correcting capability
of the underlying code. A Goppa code of length n = 2m and correcting t
errors has codimension r = tm. A message attack on the McEliece encryption
scheme will thus correspond to the following computational problem

Problem 5 (Goppa Bounded Decoding). Given a binary r×n matrix H
and a word s in {0, 1}r, find a word of Hamming weight ≤ r/ log2 n in S−1

H (s).

The associated decision problem is NP-complete [18]. This demonstrates that
the above computational problem is NP-hard, that is difficult in the worst
case. Even though this doesn’t say anything on the average case complexity,
at least this proves that if we reduce the target weight to the error correcting
capability of a Goppa code, we do not fall into an easy case.

3.3 Decoding algorithms

Information set5 decoding is undoubtedly the technique that has attracted
most of the cryptographer’s attention. The best known decoding attacks on
McEliece and Niederreiter are all derived from it. There have been other
attempts but with a mitigated success (iterative decoding [20] or statistical
decoding [34,55]).

Algorithm 3.1 presents a generalized version of information set decod-
ing. Lee and Brickell [39] were the first to use it to analyze the security of

Algorithm 3.1 Information set decoding (for parameter p)
• Input: a k × n matrix G, an integer w
• Output: a non-zero codeword of weight ≤ w
• Repeat

– Pick a n × n permutation matrix P.
– Compute G′ = UGP = (Id | R) (w.l.o.g. we assume the first k positions form

an information set).
– Compute all the sum of p rows or less of G′, if one of those sums has weight

≤ w then stop and return it.

McEliece’s PKC. In another context, computing the minimum distance of a
5 An information set for a given code of dimension k, is a set of k positions such

that the restriction of the code to those positions contains all the k-tuples exactly
once. In particular, it means that the corresponding columns in any generator
matrix are independent.

110 Raphael Overbeck and Nicolas Sendrier

code, Leon [40] proposed an improvement by looking for codewords containing
zeroes in a windows of size � in the redundancy (right) part of the codeword.
It was further optimized by Stern [72] by dividing the information set in two
parts, allowing to speed-up the search for codewords with zeroes in the window
by a birthday attack technique.

Stern p p 0 w − 2p

�� 	 �� n − k − 	

Leon p 0 w − p

Lee-Brickell p w − p

k �� n − k ��

Fig. 3. Weight profile of the codewords sought by the various algorithms (the num-
ber inside the boxes is the Hamming weight of the corresponding tuples)

In Figure 3 we present the different weight profiles corresponding to a
success, the probability of success of a given iteration is respectively

PLB =

(
k
p

)(
n−k
w−p

)
(

n
w

) , PL =

(
k
p

)(
n−k−�
w−p

)
(

n
w

) , PS =

(
k/2
p

)2(n−k−�
w−2p

)
(

n
w

) .

The total cost of the algorithm is usually expressed as a binary work factor. It
is equal to the cost (in binary operation) of an iteration divided by the above
probability (i.e. multiplied by the expected number of iterations).

The Canteaut-Chabaud decoding algorithm

The best known variant was proposed by Canteaut and Chabaud [12] and is
the Stern algorithm with another improvement due to van Tilburg [75] con-
sisting in changing only one element of the information set at each iteration.
The overall binary work factor is smaller, but it is much more difficult to eval-
uate as for every value of the parameters p and �, the probability of success is
obtained by computing the stationary distribution of a Markov process. It is
nevertheless possible to exhibit a rather tight lower bound on its complexity.
The probability of success of an iteration is upper bounded by the success
probability PS of Stern’s algorithm and for any p the best value for � is close
to log2

(
k/2
p

)
. Finally, we get the following lower bound on the binary work

factor for Canteaut-Chabaud algorithm:

WF (n, k, w) ≥ min
p

(
K�

2�

(
n
w

)
(
n−k−�
w−2p

)
)

where � = log2

(
k/2
p

)
. (2)

Code-based cryptography 111

In the above formula, K is a small constant (see the remark below) which also
appears in the cost of Canteaut-Chabaud’s algorithm. The space complexity
in bits is lower bounded by �2�. The lower bound defined by (2) is close
in practice (a factor 10 at most, see Figures 5 and 6) to the estimation given
in [12] which requires the computation of the fundamental matrix of a Markov
chain (inversion of a real matrix of size t + p + 1) for every value of p and �.

Remark 1. The binary work factor gives a measure of the cost of the algorithm.
It is in fact a lower bound on the average number of binary operations needed
to solve a problem of given size. Dividing by 32 or 64 (minus 5 or 6 on the
exponent) will give a lower bound on the number of CPU operations.

The actual computation time will depend on the relative cost of the various
operations involved (sorting, storing, fetching, xoring, popcounting, . . .) for
a particular implementation and a particular platform. In formula (2), all of
this is hidden in the constant K (for practical purposes we took K = 3).

Let us consider now how the work factor evolves with the error weight
w. For fixed values of the code length n and dimension k, the maximal cost
is obtained when w is equal to the Gilbert-Varshamov distance. When w ≤
d0(n, n− k), the decoding cost is 2w(c+o(1)), where the constant c depends of
the ratio k/n. Typical behavior for fixed n and k when t grows is given in
Figure 4.

d0 w

log2(WF)

Fig. 4. Information set decoding running time (log scale) for fixed length and di-
mension when the error weight w varies

When w gets larger, the number of solutions grows very quickly. Formula
(2) gives the cost for finding one specific codeword of weight w, the decoding
cost is obtained by dividing this value by the expected number of solutions. For
those values of w, information set decoding is not always the best technique,
and other algorithms, like the generalized birthday attack [10, 77], may be
more efficient (see §3.4).

112 Raphael Overbeck and Nicolas Sendrier

Decoding attacks against McEliece

We consider binary Goppa codes. The length is n = 2m and the dimension is
related with the error weight t, as k = n− tm.

In practice, the best value for parameter p in formula (2) is small. For
length 2048 it is always equal to 2, and for length 4096, the best value of p
varies between 2 and 5. Figures 5 and 6 (see also Table 2) give an estimate of
the practical security of the McEliece cryptosystem when binary Goppa codes
of length 2048 and 4096 are used. Note finally that the decoding (message)
attacks are always more efficient than the structural (key) attacks (see §4.3).

3.4 Collision attacks against FSB and CFS

The fastest attacks on the CFS scheme and the FSB hash function are based
on Wagner’s solution for the generalized Birthday paradox. Wagner’s main
theorem can be seen as a generalization of the search part of Stern’s algorithm
for low weight code words or the algorithm of Patarin and Camion [10] and
can be summarized as follows:

Theorem 1. (Generalized Birthday Problem) Let r, a ∈ N with (a+1)|r
and L1,L2, · · · ,L2a ⊆ F2r be sets of cardinality 2

r
a+1 , then, a solution of the

equation
2a∑
i=1

xi = 0 where xi ∈ Li, (3)

can be found in O(2a2
r

a+1) Operations (over F2r).

The algorithm proposed by Wagner is iterative: First, one searches for
partial collisions of the sets Li and Li+2a−1 , i = 1, · · · , 2a−1, that is, such
pairs (xi, xi+2a−1) that LSB r

a+1
(xi + xi+2a−1) = 0. This way, one obtains

2a−1 Lists with approximately 2
r

a+1 pairs, where the last r
a+1 entries are zero

and can be omitted in the next step. A recursive application of this step leads
to a solution of Equation (3).

As shown by J.-S. Coron and A. Joux, Wagner’s solution for the generalized
Birthday Paradox can be used to find collisions for the FSB hash. This is
due to the fact, that the compression function of the FSB hash is inherently
different to the one used by other hash functions: If we consider φ′

n,t(x) ·H (or
φn,t(x) ·H), we can see, that one collision (φ′

n,t(x1) ·H = φ′
n,t(x2) ·H) leads to

up to
(

w
w/2

)
further collisions. As the mapping φn,t can be easily inverted and

the second part of the compression function is linear, we can apply Wagner’s
theorem employing a “divide and conquer”-strategy.

Applied to the FSB hash function we obtain the following attack against
the collision resistance in the case of φ′

n,t as compression function: Each list
L1, · · · ,L2a is designed to contain the syndromes of 2-quasiregular words e =
(e1, e2, · · · , ew), such that for all i �= j and γ:

Code-based cryptography 113

n = 2048

logarithmic scale

0

20

40

60

80

100

120

0 50 100 150 t

log2(WF) as in [12]

log2(WF) as in (2)

Fig. 5. Binary workfactor (log2) for finding words of weight t in a binary code of
length 2048 and dimension 2048 − 11t (Goppa codes parameters)

n = 4096

logarithmic scale

0

40

80

120

160

200

0 100 200 300 t

log2(WF) as in [12]

log2(WF) as in (2)

Fig. 6. Binary workfactor (log2) for finding words of weight t in a binary code of
length 4096 and dimension 4096 − 12t (Goppa codes parameters)

114 Raphael Overbeck and Nicolas Sendrier

(∃φ′
n,t(e)H∈Li

: eγ �= 0)⇒ (∀φ′
n,t(e)H∈Lj

: eγ = 0).

If the lists are not of the desired cardinality 2
r

a+1 (r = n − k is the hash
width), we can modify the attack accordingly, (compare [3]). We omit details
and conclude that the size of the lists implies the following restriction to the
attacker:

2a

a + 1
≤ w

r
log2

(n

w

)
.

Therefore, the authors of [3] conclude that the work factor for an attacker
grows exponentially with n − k if we choose two constants α, β ∈ R and
then compute (n,w) = (α(n− k), β(n− k)) as then a is upper bounded by a
constant.

Likewise, Wagner’s algorithm can be used to generate a valid signature in
the CFS scheme (existential forgery): The attacker generates four lists: One
with possible hash values, and the remaining three as syndromes of weight
t/3 vectors. The dominating term for the cost of the attack is 2mt/3. For
the m = 16, t = 9 CFS parameter set, this leads to an attack that can be
performed in about 259 operations.6

3.5 The impact of quantum computers

To our knowledge there is no connection between coding theory and the “Hid-
den Subgroup Problem” as in the case of number theoretic cryptosystems.
However, there is still the possibility to employ Grover’s algorithm to speed
up searching the secret key or the space of possible plaintexts. In this chapter
we give an intuition, why Grover’s algorithm is not able give a significant
speed-up for the existing attacks on code based cryptosystem.

In the following we make the simplifying assumption that by Grover’s
algorithm we are able to search a set of size N in O(

√
N) operations on a

quantum computer with at least log2(N) QuBits. However, a consecutive call
of Grover’s algorithm is not possible, i.e. if the set to be searched is defined by
the output of Grover’s algorithm, we can not search this space with Grover’s
algorithm before writing it in complete to the (classic) memory, see Section 5
of Chapter 1 “Quantum computing”.

Solving the generalized birthday problem

The iterative step of Wagner’s algorithm can be realized by sorting algorithms,
which can not be sped-up with quantum computers so far: Instead of searching
Li×Li+2a−1 for all pairs (xi, xi+2a−1) that LSB r

a+1
(xi +xi+2a−1) = 0 we can

sort the lists Li after LSB r
a+1

(xi) and Li+2a−1 after LSB r
a+1

(xi+2a−1) = 0.
The merged list of pairs can now be directly read from the sorted lists (the

6 Although we do not have a reference, we attribute this attack to Bleichenbacher

Code-based cryptography 115

halves of the pairs are sorted into the same positions/boxes). If both lists have
the same size

√
N , this means that the merging can be done in

√
N operations

instead of N , which is the same speed-up that can be achieved by Grover’s
algorithm. Thus, even with a quantum computer we can not expect to get
attacks for FSB or CFS more efficient than the existing ones.

Algorithms for searching low weight codewords

The crucial point of algorithms for finding low weight codewords is to guess
part of the structure at the beginning and then search for the vector in the re-
maining space. This can be seen as a “divide-and-conquer” strategy. However,
this particular strategy of the attacks prevents an effective use of Grover’s
algorithm - or to be more precise - achieves the same speed-up as Grover’s
algorithm would achieve: The search step in the algorithms for finding low
weight codewords is realized in the same way as in Wagner’s algorithm for
the generalized birthday paradox. Thus there is no possibility to significantly
speed-up the search step by Grover’s algorithm.

One might argue, that the guessing phase can be seen as a search phase,
too. However, as mentioned before, this would either require an iterative ap-
plication of Grover’s algorithm (which is not possible) or a memory of size of
the whole search space, as the search function in the second step depends on
the first step. This would clearly ruin the “divide-and-conquer” strategy and
is thus not possible either.

Table 2 gives an overview for the advantage of quantum computers over
classical computers in attacking the McEliece PKC. One can see, that the

McEliece Workload Cryptanalysis Minimal Quantum-
parameters (in binary operations) number computer
m, t classic quantum of bit

computer Qubits security7

11, 32 291 286 25 80

11, 40 298 294 50 88

12, 22 293 287 29 80

12, 45 2140 2133 28 128

7 Compare remark 1
Table 2. Attacking the McEliece PKC

expected advantage does not lead to significantly different security estimations
for the McEliece PKC.

116 Raphael Overbeck and Nicolas Sendrier

4 Codes and structures

In this section we will consider structural attacks, i.e. attacks on the private
key of code based PKCs. All codes with an efficient error correction algo-
rithm have either an algebraic structure or are specially designed. For most
codes, the knowledge of the canonical generator matrix allows efficient er-
ror correction. This is true for all codes one could consider for cryptographic
applications (i.e. the ones of large dimension):

• Goppa/alternant codes [48]
• GRS codes [52]
• Gabidulin codes [27]
• Reed-Muller codes [70]
• Algebraic geometric codes [35]
• BCH codes [28]
• Graph based codes (LDPC-, expander-, LT- or turbo-codes)

While graph based codes almost immediately reveal their structure because
of their sparse check matrix, this is not obvious for the algebraic codes. In
this chapter we thus view how algebraic structures or permutations of a code
can be recovered by an attacker.

4.1 Code equivalence

In code-based public key cryptography, one may try to hide a secret code C
by applying an isometry f to it and publish a basis of the code C′ = f(C).
If the isometry f is known, a decoder for C′ can be obtained. Hopefully, the
isometry will scramble the code structure, making the decoding intractable.
In the binary case (the most common) the isometry is “just” a permutation
of the support.

An isometry of a metric space is a mapping which preserves the distance.
Thus, codes that are images of one another by an isometry share all their
metric properties and will be functionally equivalent. When the metric space
is a vector space, we define the semi-linear isometries as those which pre-
serve vector subspaces (i.e. the image of any vector subspace is another vector
subspace). The semi-linear isometries of the Hamming space F

n
q are of the

form
ΨV,π,σ : F

n
q → F

n
q

(xi)i∈I �→ (viπ(xσ−1(i)))i∈I
(4)

where V = (vi)i∈I is a sequence of non zero elements of Fq, π is a field auto-
morphism of Fq and σ a permutation of the code support I (unless otherwise
specified, we will now consider codes of length n and support I).

Note that if C and C′ are linear codes over Fq with C′ = f(C) for some
isometry f of the Hamming space F

n
q , then there exists a semi-linear isometry

g such that C′ = g(C) (except in the degenerate case where C is decomposable,

Code-based cryptography 117

that is the direct sum of two codes with disjoint support, see [51]). So as long
as we only consider linear codes there is no loss of generality if we restrict
ourselves to semi-linear isometries.

In the binary case (q = 2) semi-linear isometries are reduced to the support
permutations (the vi are all equal to 1 and the only field automorphism is the
identity).

Definition 2. Two linear codes C and C′ are equivalent if one is the image
of the other by a semi-linear isometry.

Definition 3. Two linear codes C and C′ are permutation-equivalent if there
exists a permutation σ such that

C′ = σ(C) = {(xσ−1(i))i∈I | (xi)i∈I ∈ C}.

The two definitions coincide in the binary case. Note also that the use of σ−1

in the index is consistent as we have π(σ(C)) = π ◦ σ(C).
Code equivalence relates with the ability of a code to correct errors. Two

equivalent codes will have the same correcting capability.
Let C be a code equipped with a t-error correcting decoder DC . For any

isometry f , the mapping f ◦DC ◦ f−1 is a t-error correcting decoder for C′ =
f(C).

4.2 The support splitting algorithm

The support splitting algorithm aims at solving the Code Equivalence prob-
lem:

Problem 6 (Code Equivalence).

Instance: Two matrices G1 and G2 defined over a finite field.
Question: Are the linear codes C1 and C2 spanned respectively by the rows of

G1 and G2 permutation-equivalent?

This problem was introduced by Petrank and Roth [59], who proved that it
was harder than the graph isomorphism problem but not NP-complete unless
P = NP.

Invariants and signatures

Let Ln denote the set of all linear codes of length n, and let L =
⋃

n>0 Ln be
the set of all linear codes.

Definition 4. An invariant over a set E is defined to be a mapping L → E
such that any two permutation-equivalent codes take the same value.

118 Raphael Overbeck and Nicolas Sendrier

For instance the length, the cardinality or the minimum Hamming weight are
invariants over the integers. The weight enumerator polynomial is an invariant
over the polynomials with integer coefficients.

Applying an invariant, for instance the weight enumerator, may help us
to decide whether two codes are equivalent or not. Two codes with different
weight enumerators cannot be equivalent. Unfortunately we may have inequiv-
alent codes with the same weight enumerator, though this only occurs with a
small probability.

Any invariant is a global property of a code. We need to define a local
property, that is a property of a code and of one of its positions.

Definition 5. A signature S over a set E maps a code C of length n and an
element i ∈ I into an element of E and is such that for all permutations σ
on I, S(C, i) = S(σ(C), σ(i)).

A signature can be obtained, for instance, by applying an invariant on punc-
tured codes. To an invariant V , we associate the signature SV : (C, i) �→
V (C·I\{i}) (C·J denotes the code restricted to J ⊂ I).

Now, if we have a signature S, and wish to answer the question: “Are C and
C′ permutation-equivalent?”, we can compute the sets S(C, I) = {S(C, i), i ∈
I} and S(C′, I) = {S(C′, i), i ∈ I}. If C and C′ are permutation-equivalent,
then those sets must be equal (and for every signature value obtained more
than once, the multiplicity must be the same). Moreover, for each distinct
value in the sets S(C, I) and S(C′, I), some information on the permutation
between C and C′ is revealed. The number of distinct values taken by a given
signature for a given code C is thus of crucial importance to measure its
efficiency.

Definition 6. Let C be a code of length n.

• A signature S is said to be discriminant for C if there exist i and j in I
such that S(C, i) �= S(C, j).

• A signature S is said to be fully discriminant for C if for all i and j distinct
in I, S(C, i) �= S(C, j).

If C′ = σ(C) and if S is fully discriminant for C, then, for all i in I, there exists
a unique element j in I such that S(C, i) = S(C′, j), and we have σ(i) = j
and we thus obtain the permutation σ.

Description of the algorithm

If we assume the existence of a procedure find_fd_signature which re-
turns for any generator matrix G a signature which is fully discriminant
for C = 〈G〉, then Algorithm 4.1 will recover the permutation between
permutation-equivalent codes. In fact it is easy to produce a procedure
find_fd_signature, but the signature it returns has an exponential com-
plexity.

Code-based cryptography 119

Algorithm 4.1 The support splitting algorithm
Input: G1 and G2 two k × n matrices
Output: a permutation
S ← find_fd_signature(T [] = ø)
for i ∈ I do

T [S(G1, i)] ← i
for i ∈ I do

σ[i] ← T [S(G2, i)]

The difficulty is to obtain, for as many codes as possible, a fully discrimi-
nant signature which can be computed in polynomial time. The hull [2] of a
linear code C is defined as its intersection with its dual H(C) = C ∩ C⊥. It has
some very interesting features:

(i) It commutes with permutations: H(σ(C)) = σ(H(C))
(ii) The hull of a random code is almost always of small dimension [69].
(iii) For all i ∈ I, exactly one of the three sets H(C·I\{i}), H(C⊥·I\{i}) and

H(C)·I\{i} is strictly greater than the other two, which are equal [68].

We consider the following signature

S(C, i) =
(
W (H(C·I\{i})),W (H(C⊥·I\{i}))

)

where W (C) denotes the weight enumerator polynomial of C. Because of (i),
the mapping S() is a signature, because of (ii) it is almost always computable
in polynomial time, and because of (iii), it is discriminant (but not always
fully discriminant).

We apply S() to all positions of a code and group those with the same
value. We obtain a partition of the support. Using that partition we can
refine the signature and eventually obtain a fully discriminant signature in a
(conjectured) logarithmic number of refinements. When used on two codes of
length n, the heuristic complexity for the whole procedure is

O
(
n3 + 2hn2 log n

)

where h is the dimension of the hull.
The first term is the cost of the Gaussian elimination needed to compute

the hull. The second term is the (heuristic) number of refinements, log n,
multiplied by the cost of one refinement (n weight enumerator of codes of
dimension h and length n). In practice, for random codes, the hull has a
small dimension with overwhelming probability [69] and the dominant cost for
the average case is O(n3). The worst case happen when the hull’s dimension
is maximal: weakly-self dual codes (C ⊂ C⊥) are equal to their hulls. The
algorithm becomes intractable with a complexity equal to O(2kn2 log n). This
is the case in particular of the Reed-Muller codes used in Sidelnikov’s system
[70]. For more details on the support splitting algorithm, see [68].

120 Raphael Overbeck and Nicolas Sendrier

4.3 Recognizing code structures

Only for alternant and algebraic geometric codes it is sufficient to publish a
systematic generator matrix of a code permutation equivalent to the secret
one in order to hide the private key from an attacker. In this section we want
to give the reader an intuition, in which cases and how the structure of an
algebraic code can be recognized or not.

GRS Codes

In 1992 V.M. Sidelnikov and S.O. Shestakov proposed an attack on the GRS
Niederreiter PKC (compare §2.1) which reveals an alternative private key in
polynomial time [71]. We consider this attack to be worth mentionable, as
Goppa codes are subfield subcodes of GRS codes. Even though, the results
from [71] do not affect the security of the original McEliece PKC.

In their attack, Sidelnikov and Shestakov take advantage of the fact, that
the check matrix of GRS code is of the form (see §6.2)

H̄ =

⎛
⎜⎜⎜⎝

z1a
0
1 z1a

1
1 · · · z1a

s
1

z2a
0
2 z2a

1
2 · · · z2a

s
2

...
. . .

...
zna0

n zna1
n · · · znas

n

⎞
⎟⎟⎟⎠

�

∈ F
n×(s+1)
q . (5)

A public key is of the form H′ = MH̄P, where M is a non-singular matrix
and P a permutation matrix. The permutation matrix P does not change the
structure of H̄, so we don’t have to worry about P. Sidelnikov and Shestakov
use the fact, that each entry of the row H′

i· can be expressed by a polynomial
f of degree ≤ s in ai. From this observation one can derive a system of
polynomial equations whose solution yields the private key.

To perform the attack, it is necessary to see, that we can assume that
a1, a2, a3 are distinguished elements, so we extend Fq by ∞: F := Fq ∪ ∞
with 1/∞ = 0 with 1/0 = ∞ and f (∞) = fs for every polynomial f (x) =∑s

j=0 fjx
j of degree ≤ s over Fq. Sidelnikov and Shestakov show that for

every birational transformation, i.e. F-automorphism

φ (x) =
{

a
c c �= 0, x =∞
ax+b
cx+d otherwise with a, b, c, d ∈ Fq, ad− bc �= 0

there exist z′1, · · · , z′1 and a matrix M′ such that

H′ = M (M′)−1 ·

⎛
⎜⎜⎜⎝

z′1φ (a1)
0

z′1φ (a1)
1 · · · z′1φ (a1)

s

z′2φ (a2)
0

z′2φ (a2)
1 · · · z′2φ (a2)

s

...
. . .

...
z′nφ (an)0 z′nφ (an)1 · · · z′nφ (an)s

⎞
⎟⎟⎟⎠

�

.

Code-based cryptography 121

Thus, without loss of generality, we can assume that H′ defines the (dual)
code with codewords

(z′1f(1), z′2f(0), z′3f(∞), z′4f(a4), z′5f(a5), · · · , z′nf(an)),

where f varies over the polynomials of degree ≤ s over F2m . This means, H′

defines an extended GRS code (see Definition 9) with a1 = 1, a2 = 0 and
a3 =∞. Note that because a3 =∞ we have ai �=∞ for all i �= 3.

The general idea of the attack is the following: If we take two codewords
with s − 1 common zeroes, then the corresponding polynomials π1, π2 have
s − 1 common factors, while each polynomial is of degree ≤ s. As we have
noted above, we can assume that π1(0) = 1 = π2(1) and π1(1) = 0 = π2(0),
which leads to

π1 (xj)
π2 (xj)

=
π1 (∞)
π2 (∞)

· xj − 1
xj

=
π1 (a3)
π2 (a3)

· xj − 1
xj

,

and thus reveals aj on all positions where neither π1 nor π2 are zero. We
can repeat this procedure with other pairs of polynomials to obtain the
whole vector (a1, a2, · · · , an). Taking a birational transform φ, such that
(φ(a1), φ(a2), · · · , φ(an)) does not contain the ∞ element, we can recover
(z1, · · · , zn) by setting z1 = 1 and employing Gauss’s algorithm afterwards.
As pairs of codewords with s− 1 common zeroes can be found by computing
a systematic check matrix, the algorithm has a running time of O

(
s4 + sn

)
.

Remark 2. There were two proposals to modify the GRS Niederreiter cryp-
tosystem: The first one is by E. Gabidulin and consists in adding artificial
errors to the generator matrix [24] whereas the second by P. Loidreau uses
a subcode of a GRS code (compare Table 1). While the first proposal did
not receive much attention so far, the second one was cryptanalyzed by C.
Wieschebrink [78], who showed how to attack that modification for small pa-
rameter sets by finding pairs of code words with s − 1 − i common zeroes
and guessing i elements from (x4, · · · , xn). This attack can be applied to the
Niederreiter PKC variant proposed in [24] in certain cases, e.g., by puncturing
the public code. Even if these attacks have exponential runtime, we are not
sure if secure parameter sets have a better performance than McEliece’s PKC
with Goppa codes.

Remark 3. The attack on the GRS Niederreiter PKC can not be applied to
McEliece/Niederreiter cryptosystems using Goppa codes. Even though for ev-
ery Goppa code there is a check matrix H which has the same structure as
the check matrix H̄ for GRS codes in equation (5) (see [47]), there is no
analogous interpretation of H′ for the Niederreiter cryptosystem using Goppa
codes. We are able to view H as a matrix over F2 if we are using Goppa codes,
whereas this doesn’t work for GRS codes. Thus we have different matrices M:
M ∈ F

(s+1)×(s+1)
2m for the GRS case and M ∈ F

m(s+1)×m(s+1)
2 for Goppa codes.

Thus, in the latter case, H′ has no obvious structure, as long as M is unknown.

122 Raphael Overbeck and Nicolas Sendrier

Rank metric codes

So called Gabidulin codes are a subclass of Srivastava codes, which are MDS
codes (i.e., they have a check matrix in form of Equation (5) and their mini-
mum distance is d = n−k+1) [47], for which an efficient decoding algorithm
exists [27]. These codes were introduced into cryptography together with the
notion of rank metric (see Definition 11). The class of Gabidulin codes is the
only class of codes for which an algorithm is known, which can correct errors
in Hamming and rank metric. For now, however, we omit the interesting no-
tion of rank metric, but give a general intuition, why one can recognize the
structure of a Gabidulin code even better then the one of a GRS code and
why the modifications proposed in Table 1 do not serve to hide their structure
sufficiently for cryptographic purposes.

We will define Gabidulin codes by their generator matrix. For ease of
notation we introduce the operator λf , which maps a matrix M = (mij) to a
blockmatrix:

λf : F
m×n
qm → F

m(f+1)×n
qm

M �→

⎡
⎢⎢⎢⎣

M
M[q]

...
M[qf]

⎤
⎥⎥⎥⎦ ,

(6)

where M[x] := (mx
ij).

Definition 7. Let g ∈ F
n
qm be a vector s.t. the components gi, i = 1, · · · , n are

linearly independent over Fq. This implies that n ≤ m. The [n, k] Gabidulin
code G is the rank distance code with generator matrix

G = λk−1 (g) . (7)

The vector g is said to be a generator vector of the Gabidulin code G (It
is not unique, as all vectors ag with 0 �= a ∈ Fqm are generator vectors of G).
Further, if T ∈ F

n×n
q is an invertible matrix, then G ·T is the generator matrix

of the Gabidulin code with generator vector gT. An error correction algorithm
based on the “right Euclidian division algorithm” runs in O

(
d3 + dn

)
opera-

tions over Fqm for [n, k, d] Gabidulin codes [27]. The property, that a matrix
G generates a Gabidulin code is invariant under the operator Λf (M):

Lemma 1. If G is a generator matrix of an [n, k] Gabidulin code G with k < n,
then Λf (Gpub) is a generator matrix of the Gabidulin code with the same
generator vector as G and dimension min {n, k + f}.

Another nice property of Gabidulin codes is, that the dual code of an [n, k]
Gabidulin code is an [n, n− k] Gabidulin code (see [27]):

Code-based cryptography 123

Lemma 2. Let G be an [n, k] Gabidulin code over Fqm with generator vector
g. Then G has a check matrix of the form

H = λn−k−1

(
h[1/qn−k−1]

)
∈ F

n−k×n
qm .

Further, the vector h is uniquely determined by g (independent from k) up to
a scalar factor γ ∈ Fqm \ {0}. We will call h a check vector of G.

The major disadvantage of Gabidulin codes, is the fact, that one can easily
distinguish a random k × n matrix M from an arbitrary generator matrix G
of an [n, k] Gabidulin code by a quite simple operation: The matrix λ1(G)
defines an [n, k +1] code, while the matrix λ1(M) will have rank > k +1 with
overwhelming probability [45].

Remark 4. Unlike for GRS codes, it is not sufficient to take the generator
matrix GSUB of an [n, k − l] subcode of an secret [n, k] Gabidulin code G =
〈G〉 to hide the structure as it was proposed in [5]. It is easy to verify, that
λ1(GSUB) defines a subcode of 〈λ1(G)〉 and thus any full rank vector in the
dual of λn−k−2(GSUB) gives a Gabidulin check vector which allows to decode
in GSUB.

There were plenty of other proposals on how to use Gabidulin codes for
cryptography, most with the notation of rank metric, see §6.3. However, as
mentioned before, all these variants proved to be insecure [53,57].

Reed-Muller Codes

Reed-Muller codes were considered for cryptographic use by Sidelnikov [70].
His basic proposal is to replace the Goppa code in McEliece’s scheme by a
Reed-Muller code, which can be defined as follows:

The Reed-Muller code in m variables of degree r consists of all codewords
which can be obtained by evaluating some polynomial in F2 [x1, · · · , xm] of
degree at most r at all possible variable assignments, see [47]. Lexicographic
ordering of the 2m possible assignments leads to the following recursive de-
scription of the canonical generator matrix R(r,m), which is reducible:

R (r,m) =
[

R (r,m− 1) R (r,m− 1)
0 R (r − 1,m− 1)

]
, (8)

where R (r,m) = R (m,m) for r > m and R(0,m) is the codeword of length 2m

which is one at all positions. The code 〈R(r,m)〉 is a [2m,
∑r

i=0

(
m
i

)
, d] code

with d = 2m−r and is a subcode of 〈R (r + 1,m)〉 [47].
From the construction of a Reed-Muller code it is easy to see, that each low

weight codeword in R(r,m) can be represented as a product of m− r pairwise
different linear factors. Due to this large number of low weight codewords

124 Raphael Overbeck and Nicolas Sendrier

(there exist about 2mr−r(r−1) of them), Stern’s algorithm [72] and its variants
allow to find low weight codewords in Reed-Muller codes efficiently, compare
§3.3.

Now, let P ∈ F
n×n
2 be a permutation matrix. The main observation, which

allows to recover P from some generator matrix Gpub of 〈R (r,m) P〉 is that
each low weight codeword of

〈
Gpub

〉
can be “factored”. Indeed, each low weight

codeword v in
〈
Gpub

〉
can be written as the “product” of a low weight codeword

v̄ in R(r − 1,m)P and a low weight codeword v̂ in R(1,m)P:

v := v̄ � v̂ := (v̄1 · v̂1, v̄2 · v̂2, · · · , v̄n · v̂n)

The goal is to find the factor v̄ of v. If a sufficiently large number of low
weight codewords of

〈
Gpub

〉
have been factored, the code R(r − 1,m)P can

be reconstructed. Iteratively reducing the problem it remains to solve the
problem to recover P from R(1,m)P, which is trivial [50].

Remark 5. The application of N. Sendrier’s “Support Splitting Algorithm”
(SSA, see §4.2) for finding the permutation between permutation equivalent
codes is not efficient for Reed-Muller codes. The runtime of SSA is exponential
in the dimension of the hull of a code C, i.e. the dimension of C ∪ C⊥, which
is large, if C is a Reed-Muller code. Thus, Sidelnikov’s proposal can not be
attacked via the SSA.

In [50] L. Minder gives an algorithm to deduce the factor v̄ of v efficiently.
We will assume that P = Id in the following, since the algorithm does not
depend on P. Assume, that v is a low weight codeword in 〈R(r,m)〉, then
we may well assume, that the corresponding polynomial can be written as
v = v1 · v2 · · · vr (after a change of basis). Now, the code C consisting of all
codewords with support disjoint from v can be represented as a polynomial

f = f(v1, v2, · · · , vm) =
∑

I⊆{1,2,··· ,r}
fI ·

∏
i∈I

vi

with fI ∈ F2[vr+1, vr+2, · · · , vm]. Further, since f and v have disjoint support,
we have f(1, 1, · · · , 1︸ ︷︷ ︸

r times

, vr+1, vr+2, · · · , vm) = 0 and thus

∑
I⊆{1,2,··· ,r}

fI = 0.

We can see, that restricting the codewords of disjoint support to the ones with
a fixed value for (v1, · · · , vr) �= (1, 1, · · · , 1) we obtain an permuted version of
R(r − 1,m − r − 1) (after puncturing). This shows, that the codewords with
disjoint support from v form a code which is a permuted concatenated code
build of 2r − 1 blocks, each a Reed-Muller code of degree r − 1 in m− r − 1
variables, i.e. there is a permutation Π such that

Code-based cryptography 125

CΠ ⊆ (0, 0, · · · , 0)︸ ︷︷ ︸
2m−r times

⊗
(

2r−1⊗
i=1

〈R(r − 1,m− r − 1)〉
)

.

Thus, each of this inner blocks together with the support of v gives a low
weight codeword in 〈R(r − 1,m)P〉.

Even if the identification of the inner blocks of a concatenated code has
been studied in [64], Minder proposes to identify the different blocks by sta-
tistical analysis: For a low weight codeword y, he states, that the probability,
that yi = 1 and yj = 1 is independent if and only if i and j do not belong to
the same inner block.

Remark 6. The code 〈R(r,m)P〉 is a permutation of a concatenated code
⊆
⊗2r

i=1 〈R(r − 1,m− r − 1)〉, too. Thus, one might think of applying the
statistical analysis directly to R(r,m)P in order to partition the code. How-
ever, Minder states that the support of the low weight code words of R(r,m)
is too large (i.e. twice the length of each block) to allow sampling from the
desired space.

Minder’s runtime analysis shows, that the crucial point is to find the low
weight codewords in C, which however, due to the large number of low weight
codewords is practical for reasonable parameter sets, turning Sidelnikov’s
cryptosystem inefficient. For r = 3 and m = 11 for example, his algorithm
allows to recover the permutation P in less than one hour on a desktop PC.

Structural attacks on the McEliece cryptosystem

Binary Goppa codes were proposed by McEliece in the original version of
his system. So far, all known structural attacks on Goppa codes have an
exponential cost.

We assume t-error correcting binary irreducible Goppa codes of length
n = 2m over F2m are used for the key generation. The secret key is the code
Γ (L, g) which consists of

• a generator, a monic irreducible polynomial g(z) of degree t over F2m

• a support, a vector L ∈ F
n
2m with distinct coordinates (in fact, with n = 2m,

this defines a permutation).

If either the support or the generator is known, the other part of secret can
be recovered in polynomial time from the public key Gpub.

1. If the support L is known, then a multiple of g(z) can be obtained from
any codeword by using equation (12) page 139. Codewords can easily be
obtained from Gpub, and after a few gcds (usually one is enough) the
generator polynomial is obtained.

2. If the generator polynomial g(z) is known, we construct a generator matrix
G of the Goppa code of generator g(z) and support L0 (where L0 is fixed

126 Raphael Overbeck and Nicolas Sendrier

and chosen arbitrarily), and we obtain the secret vector L by applying
the support splitting algorithm to G and Gpub (the permutation between
G and Gpub will also be the permutation between L0 and L).

In both cases, we obtain an exhaustive search attack, either by enumerating
the permutations (proposed by Gibson in [31]) or by enumerating the irre-
ducible polynomials [46]. There are ≈ 2tm/t = nt/t irreducible polynomials
compared to n! = O(

√
n(n/e)n) permutations. The second attack is always

more efficient. To evaluate the cost of this attack we consider

• the number of monic irreducible polynomials of degree t over F2m [43,
p. 93], equal to ≈ 2tm/t = nt/t.

• the cost of the support splitting algorithm, equal to O(n3), because Goppa
codes behave like random codes and have a small hull.

• the number of distinct pairs support/generator that produce the same
Goppa code, which is almost always equal to m2m = n log2 n [31].

We multiply the first two numbers and divide by the third and we get
O(nt+2/t log n). In fact, it is possible to do slightly better by considering
extended codes (an overall parity check bit is appended). The number of dis-
tinct pairs support/generator that produce the same extended Goppa code is
almost always equal to m2m(22m− 1) (see [47, p. 347]). The support splitting
algorithm can be applied on extended code and the complexity of the attack
is reduced to

O
(

nt

t log n

)
= O

(
2tm

tm

)
.

This is currently the best known structural attack on McEliece encryption
scheme using Goppa codes. As the best decoding attack is upper bounded
by O(2(n−k)/2) = O(2tm/2) (see [4] for instance), structural attacks are never
better than decoding attacks.

Choosing the secret codes: general pitfalls

Beyond the existence of an efficient structural attack today, what kind of
assumptions do we want to (or have to) make for arguing of McEliece’s scheme
security? First, obviously, the family of codes used to produce the keys is
critical. Binary Goppa codes are safe (or seem to be), but not Reed-Solomon
codes [71], concatenated codes [64], elliptic codes [49], Reed-Muller codes [50]
(to some extend), and many other unpublished attempts.

Indistinguishability is the strongest security assumption related with struc-
tural attacks. Informally, it says that it is not computationally feasible to tell
apart a generator matrix of a random code from a generator matrix of a par-
ticular family. When it holds, the security of the corresponding public-key
system can be reduced to the hardness of decoding, for which very strong
arguments exist.

Code-based cryptography 127

Indistinguishability is conjectured for binary Goppa codes, and in prac-
tice, no property is known that can be computed from a generator matrix in
polynomial time and which behaves differently for binary Goppa codes and
for binary linear codes. To our knowledge, this is the only such family of codes
with an efficient decoding algorithm.

Using other families of codes in public key cryptography should be con-
sidered with great care. There are at least two possible pitfalls

• Families with high performance decoding, like concatenated codes, turbo-
codes or LDPC codes, have many low weight codewords in their duals.
Those low weight codewords may be easy to find and are likely to leak
some of the code structure.

• As we have seen previously in this section (§4.3 and §4.3), families with
optimal or sub-optimal combinatorial properties are dangerous too. For
instance, (generalized) Reed-Solomon codes are MDS (the highest possible
minimum distance), elliptic codes are almost MDS (minimum distance is
just one less), in both case minimum weight codewords are not hard to find
and reveal a lot of information on the code structure. Reed-Muller codes
are highly structured, and though they have an optimal resistance to the
support splitting algorithm (they are weakly self-dual), Lorenz Minder
has exhibited a structural attack which is more efficient than the decoding
attack.

Finally, let us mention algebraic geometry codes, proposed for cryptography
by Janwa and Moreno [35]. They are probably insecure for small genus (Min-
der’s work) but otherwise, their security status is unknown.

5 Practical aspects

The practice of McEliece’s PKC or more generally of a code-based PKC raises
many questions. We address here a few of them in this section. The main
advantage of McEliece’s scheme is a low algorithmic complexity for encryption
and decryption and its main drawback is a large public key size. We will
stress the first point and examine what can be done for the second. Also, for
practical purposes, the system suffers from many weaknesses, most of them
related to malleability. We will examine the generic and ad-hoc semantically
secure conversions that solve those issues.

5.1 Fast en- and decryption for the McEliece PKC

We describe here the implementation of the McEliece encryption scheme. The
error correcting code will be a binary irreducible t error-correcting Goppa code
G of length n = 2m and dimension k = n− tm. We denote DG : {0, 1}n → G
a t-error correcting procedure for G (see §6.1). The private key is the decoder
DG and the public key is a generator matrix G of G.

128 Raphael Overbeck and Nicolas Sendrier

We assume the existence of an injective mapping φn,t : {0, 1}� →Wn,t easy
to compute and to invert (see §5.1). The key features of the implementation
we describe are presented in Algorithm 5.1. The two main differences from
the original proposal are:

1. The public key is chosen in systematic form Gsyst = (Id | R).
2. The mapping φn,t will be used to encrypt � additional information bits.

Those modifications do not alter the security of the system as long as a se-
mantically secure conversion is used (such a conversion is needed anyway).
Moreover, those conversions (see §5.3) require the use of φn,t, so, for practical
purpose, that part of the computation has to be done anyway.

Algorithm 5.1 Modified McEliece encryption scheme
• Public key: a k × (n − k) binary matrix R
• Private key: a decoder DG for the code G spanned by (Id | R)
• Encryption: the plaintext is (m1,m2) ∈ {0, 1}k × {0, 1}�

the ciphertext is y = (m1,m1R) + φn,t(m2) ∈ {0, 1}n

• Decryption: the ciphertext is y ∈ {0, 1}n

compute the codeword x = DG(y), with x = (x1,x1R)
the plaintext is (m1,m2) = (x1, φ

−1
n,t(y − x))

The algorithmic complexity of the encryption and decryption procedures
are relatively easy to analyse.

• The encryption complexity is dominated by the vector/matrix multiplica-
tion (k times k× (n− k)) and the call to φn,t. In practice those two costs
are comparable.

• The decryption complexity is dominated by the decoding DG(y) and the
call to φ−1

n,t. In practice the decoding is much more expensive.

McEliece with a systematic public key

Let G be the public key of an instance of McEliece cryptosystem with param-
eters (n, k, t). Let Gsyst = (Id | R) = UG be a systematic generator matrix of
the same code (w.l.o.g. the first k column of G are non-singular and U is a
k × k matrix which can be computed from G in polynomial time).

For any G, we denote ΨG(m, e) = mG + e. Using ΨGsyst instead of ΨG for
the encryption has many advantages:

• the public key is smaller, as it has a size of k(n− k) bits instead of kn,
• the encryption is faster, as we multiply the plaintext by a smaller matrix,
• the decryption is faster, as the plaintext is a prefix of the ciphertext cleared

of the errors.

Code-based cryptography 129

The drawback is a “decrease” of the semantic security. The following example
is taken from [65, p. 34], and is the beginning of a ciphertext for an instance
of McEliece using a systematic public key:

Le{ cryptosystèmas0basés suv les code{‘corveãteurs soît-ils sýòs?

Obviously, there is a leak of information. However, since we have ΨG(m, e) =
ΨGsyst(mU−1, e), any inversion oracle for ΨGsyst can be transformed in an in-
version oracle for ΨG. Thus, if the plaintext m is uniformly distributed, both
versions are equally secure. In practice, this means that a semantically secure
conversion (see §5.3) will enable us to use Gsyst without loss of security.

Encoding constant weight words

The problem here is to exhibit, for given n and t, an efficient injective mapping
into the set of binary words of length n and weight t, φn,t : {0, 1}� → Wn,t.
This mapping is needed for implementing Niederreiter scheme and is also used
in most semantically secure conversions. In practice we want � to be close to
�log2

(
n
t

)
	. Else, we risk a loss of security.

Enumerative method.

This method is optimal in terms of information rate and can be traced back
to [15,62]. It is based on the following bijective mapping

θ : Wn,t −→
[
0,
(
n
t

)[

(i1, . . . , it) �−→
(
i1
1

)
+
(
i2
2

)
+ · · ·+

(
it

t

)

where the element ofWn,t is represented by its non-zero positions in increasing
order 0 ≤ i1 < i2 < . . . < it < n. Computing θ requires the computation of
t binomial coefficients. When t is not too large, computing the inverse θ−1 is
not significantly more expensive thanks to the following inversion formula

x =
(

i

t

)
⇔ i = X +

t− 1
2

+
t2 − 1

24
1
X

+O
(

1
X3

)
,X = (t!x)1/t. (9)

We can define φn,t as the restriction of θ−1 to the interval
[
0, 2�

[
where

� = �log2

(
n
t

)
	. Both φn,t and φ−1

n,t can be obtained by computing t binomial
coefficients and have a cost of O(t�2) = O(t3m2) binary operations.

The decoding procedure is described in Algorithm 5.2. It uses formula (9)
for inverting the binomial coefficients. In fact, this inversion does not require
a great precision as the result we seek is an integer, not a floating point
number. In practice invert_binomial has a negligible cost compared with
the computation of the binomial coefficients.

130 Raphael Overbeck and Nicolas Sendrier

Algorithm 5.2 Enumerative decoding
Input: x ∈

[
0,
(

n
t

)[
Output: t integers 0 ≤ i1 < i2 < . . . < it < n
j ← t
while j > 0 do

ij ← invert_binomial(x, j)
x ← x −

(
ij
j

)
j ← j − 1

where invert_binomial(x, t) returns the integer i such that
(

i
t

)
≤ x <

(
i+1

t

)

Recursive source coding methods.

Those methods consist, as for the enumerative method, in finding a binary
encoder for the sourceWn,t equipped with the uniform probability (i.e. a com-
pression algorithm). The idea is to consider a simpler approximative source
model which allows a faster encoding and decoding. Linear time methods were
proposed in [63,67]. It consists in a (variable length) encoder Wn,t → {0, 1}∗,
with the additional requirement that any (long enough) binary sequence can
be decoded into a sequence of words of Wn,t. For instance in [67], an element
of Wn,t is first represented by a t-tuple (δ1, . . . , δt) of integers where δi is
the number of ‘0’s between the (i− 1)-th and the i-th ‘1’ (the 0-th ‘1’ is the
beginning of the word). The encoding is recursively defined as:

Ψn,t(δ1, δ2, . . . , δt) = (fn,t(δ1), Ψn−δ1−1,t−1(δ2, . . . , δt))

where fn,t is a source encoder for the set of integers {0, 1, . . . , n− t} equipped
with the probability distribution

Pn,t(i) =

(
n−i−1

t−1

)
(
n
t

) , i = 0, . . . , n− t.

The model is then simplified. We choose d an integer such that

∑
i<d

Pn,t(i) = 1−
(
n−d

t

)
(
n
t

) ≈ 1
2
⇔ d ≈ 21/t − 1

21/t

(
n− t− 1

2

)

and we define fn,t as

fn,t(i) =
{

0, B2(i) if 0 ≤ i < d
1, fn−d,t(i− d) if i ≥ d

where B2() encodes the set {0, . . . , d − 1} equipped with the uniform distri-
bution (easily derived from the integers binary expansion). The best value of
d depends of n and t (it is thus different for every recursive call). Choosing a
different value of d is possible but suboptimal in terms of compression rate.

Code-based cryptography 131

There is a good trade-off when one uses only powers of 2 for d, there is a small
loss in average, but a significant advantage in speed.

The recursive method is significantly faster than the enumerative method:
the computation time is linear in � instead of quadratic. However the encoder
Ψn,t :Wn,t → {0, 1}∗ produces a variable length output.

Comments and implementation.

The enumerative method allows constant length encoding with a minimal
loss (� = �

(
n
t

)
). On the other hand, it is relatively slow, even when the

binomial coefficients are precomputed. The recursive method can be much
faster, however the encoderWn,t → {0, 1}∗ has an important length variation.
This is unpractical and not recommendable, as it raises some security issues
that need to be studied further. For instance if an adversary knows how many
bits were used to produce the error, he might be able to use this information.
The Table 3 gives the average running time for a φn,t (and for its inverse φ−1

n,t)
build from both methods.

(n, t) (2048,32) (2048,40) (4096,22) (4096,45)
φn,t φ−1

n,t φn,t φ−1
n,t φn,t φ−1

n,t φn,t φ−1
n,t

enumerative 1980 1550 2530 2090 1440 1080 3160 2750
enumerative(1) 560 200 580 210 490 200 620 290
recursive 240 250 250 250 240 230 230 240
recursive(2) 150 150 150 150 135 130 140 140

(1) enumerative method with precomputation of the binomial coefficients
(2) recursive method optimized for speed (vs. average length)

Table 3. Performance (cycles/byte, Intel Core 2) for various encoding methods

Remark 7. There is another proposal [61] which uses arithmetic coding. It is
essentially the same as the enumerative method. It is not clear whether or not
this algorithm allows a faster implementation.

Remark 8. A new approach has been considered very recently8 which allows
linear time encoding (around 300 cycles/byte on a processor Intel Core 2)
with an optimal constant length. At the time of writing, this work was at a
too early stage to be detailed here.

8 see http://www-rocq.inria.fr/secret/MCE

132 Raphael Overbeck and Nicolas Sendrier

Niederreiter’s encryption scheme

Using a systematic public key for Niederreiter’s scheme was already known
to be harmless [13]. The decoder D′

G : {0, 1}k → Wn,t is slightly different,
it takes as argument a syndrome (for H = (R� | Id)) and returns an error
pattern. The implementation is presented in Algorithm 5.3.

Algorithm 5.3 Modified Niederreiter encryption scheme
• Public key: a k × (n − k) binary matrix R
• Private key: a decoder D′

G for the code G spanned by (Id | R)
• Encryption: the plaintext is m ∈ {0, 1}�

compute the error e = φn,t(m) = (e1, e2) ∈ {0, 1}k × {0, 1}n−k

the ciphertext is s = e
(
R�∣∣ Id)� = e1R + e2 ∈ {0, 1}n−k

• Decryption: the ciphertext is s ∈ {0, 1}n−k

the plaintext is m = φ−1
n,t(D

′
G(s))

Timings and sizes

In Table 4, numbers for McEliece and Niederreiter encryption schemes are
given. They come from http://www-rocq.inria.fr/secret/MCE. Implemen-
tation uses a systematic public key and information is encoded in the error.

5.2 Reducing storage requirements

Reducing the key size for the McEliece PKC has a long history. Besides the
approaches to use different codes than Goppa codes, there were two different
attempts: The first uses the automorphism group of Goppa codes [44] and the
second the quasi-cyclicity of codes [28]. While the first method was broken [38],
the second reduces the number of possible secret keys. However, the quasi-
cyclic approach has an interesting application in Stern’s ID scheme, reducing
the RAM requirements of the scheme. However, the proposal is too recent and
further research is probably needed to establish secure parameter sets.

Definition 8. An [n, k, d] code G over F is called s-quasi cyclic if for all c ∈ G
the vector σs(c) is in G, where

σs : F
n → F

n

(c1, · · · , cn) �→ (cn−s+1, · · · , cn, c1, · · · , cn−s)

denotes a cyclic shift by s positions. If s = 1 or s × n the code is cyclic. A
set of vectors G is called generating set if the vectors

{
σi

s(c) | c ∈ G, i ∈ N+

}
span G, where σi

s(c) = σs(σi−1
s (c)).

Code-based cryptography 133

(n, t) (2048,32) (2048,40) (4096,22) (4096,45)
plaintext size(1) 1928 1888 4024 3904

McEliece ciphertext size(1) 2048 2048 4096 4096
scheme encryption rate(2) 176 222 145 192

decryption rate(2) 1780 2260 600 1650
plaintext size(1) 232 280 192 352

Niederreiter ciphertext size(1) 352 440 264 540
scheme encryption rate(2) 360 370 320 340

decryption rate(2) 13600 16700 9800 16900
public key size(3) 73 KB 86 KB 123 KB 234 KB
key generation(3) 6.70 107 9.55 107 7.93 107 23.1 107

security bits(3)(4) 91 98 93 140

(1) plaintext and ciphertext sizes in bits
(2) in cycles per plaintext bytes, Intel Core 2
(3) common to both schemes (number of cycles on a processor Intel Core 2)
(4) log2 of the non-quantum binary workfactor

Table 4. McEliece and Niederreiter encryption scheme

Every cyclic code is s-quasi cyclic for all s ∈ N+ and the dual of a s-quasi
cyclic code is s-quasi cyclic, too. Each cyclic code has a s-cyclic subcode that
is not s′-cyclic for all s′ < s if s|n.

If one chooses to use a secret s-quasi cyclic [n, k] code with s|n for
McEliece’s scheme and restricts the possible choice of permutation matrices
P to the ones which are of the form

P =

⎡
⎢⎢⎢⎣

π 0 · · · 0
0 π 0
...

. . .
...

0 0 · · · π

⎤
⎥⎥⎥⎦ ,

where π is a s × s matrix. Then, a systematic generator matrix of G can be
reconstructed from Gpub = G · P. Thus, the public key size can reduced by a
certain factor.

However, this technique holds some risks, as the number of possible per-
mutations is reduced and part of the structure is revealed (a first approach
to attack such a system was reported by A. Otmani, J.P. Tillich and L. Dal-
lot [16]). Second, general decoding algorithms could take advantage of the
structure of the code, as it is e.g. the case for iterative or statistical decod-
ing [20, 55]. Third, let e be an error vector of weight t, H be the generating
set of the dual of G and s = eH. Then a cyclic shift of s by one corresponds
to the vector σs(e).

134 Raphael Overbeck and Nicolas Sendrier

For Stern’s ID scheme, one could chose to use 2-quasi cyclic codes with a
single generating vector as proposed in [29]. This reduces drastically the size of
memory needed to execute the scheme (from kn to n). However, as for Stern’s
scheme only a random code is required, one could build the generating matrix
G from a random string as well, if a cryptographic strong random number
generator is used. This has the same effect of reducing the size of memory
needed but does not come with the disadvantage of a quasi cyclic code.

5.3 Semantic security for the McEliece scheme

The McEliece PKC and the Niederreiter scheme are subject to several attacks
if not completely random bit-strings are sent. Thus, the schemes as they are
only serve for key-agreement protocols and not for encrypting messages. In
this section we will point out the weaknesses of the McEliece scheme (and
thus the Niederreiter version) against attacks on the semantic security and
how to get a semantically secure cryptosystem.

A cryptosystem is called secure against adaptive chosen ciphertext attacks
(CCA2 secure) if an attacker with access to a decryption oracle (which does
not decrypt the ciphertext c) has no advantage in deciphering a given cipher-
text c. A PKC is indistinguishable in the CCA2-model if the attacker has no
advantage in determining for a given ciphertext and two plaintexts which of
them was encrypted.

Weaknesses of the McEliece PKC

The main weakness of the McEliece PKC results from the malleability of
its ciphertexts. Adding codewords, i.e. rows of Gpub to a ciphertext yields
another valid ciphertext. Therefore, the original McEliece cryptosystem does
not satisfy non-malleability. A CCA2 attack can be derived immediately as
the adversary can add a second message m′ to c by computing c′ = c ⊕
m′Gpub, which will be decrypted by the oracle. Note that malleability is not
such a problem in the Niederreiter case, as we can not create new decodable
syndromes from old ones with probability significantly larger than t/n.

As a consequence from the malleability, an adversary for the McEliece
scheme may use the relation between two encrypted messages to determine
error bits [8]. This attack can not be adapted to the Niederreiter cryptosystem.
Let m1,m2 be two messages with a known relation Λ, e.g. Λ(m1,m2) =
m1⊕m2 and c1, c2 the corresponding ciphertexts. Then c1⊕c2⊕Λ(m1,m2)
will be of weight ≤ 2t ≤ n − k and at least k error-free positions of m1 ⊕
m2 are revealed. This enables an adversary to efficiently guess error bits. A
special case of related messages occurs in the message-resend attack, where
the attacker can recover z1 ⊕ z2 = c1 ⊕ c2.

A reaction attack is a weaker version of an adaptively chosen ciphertext
attack, in that the attacker does not have access to a full decryption oracle, but

Code-based cryptography 135

can only observe the receiver’s reaction on potential ciphertexts. An adversary
may intercept ciphertexts, change a few bits, and watch the reaction of the
designated receiver on these modified ciphertexts. Sending modifications of
an authentic ciphertext amounts to adding further error bits. If the receiver
cannot decode (reaction: repeat request), the corresponding bits were not in
error originally. This enables the attacker to recover an error-free information
set in at most k iterations. Observe, that such an attack is well possible for
the Niederreiter PKC as it does not require the malleable property.

CCA2-secure versions of the McEliece scheme

In [37] Kobara and Imai review possible conversions to turn the McEliece
PKC CCA2-secure. Not all generic conversions can be applied to the McEliece
PKC, since the McEliece PKC encryption function is not a OWTP (one-way-
trapdoor permutation) and it is vulnerable against message-resend attacks.

However, there are two generic conversions, which are applicable to the
McEliece PKC: One presented by Pointcheval [60] and the other by Fujisaki
and Okamoto [21]. These conversions are valid for all encryption schemes,
which are partially trapdoor one-way (PTOWF), i.e., the encryption is a func-
tion f : X × Y → Z, (x, y) �→ z where it is impossible to recover x or y from
their image z alone, but the knowledge of secret enables a partial inversion,
i.e. finding x from z. Pointcheval [60] demonstrated how any PTOWF can
be converted to a public-key cryptosystem that is indistinguishable against
CCA2, while the conversion of Fujisaki and Okamoto is applicable to those
schemes which are one-way encryptions (OWE), which includes PTOWF and
OWTP.

We omit giving details on generic conversions, since they add a large
amount of redundancy to the cipher texts. Instead we focus on the McEliece-
specific conversions presented by Kobara and Imai, whose main concern is to
decrease data overhead. As an example we present the “γ-conversion” based on
Algorithm 2.1. For the ease of presentation we introduce the notations given
in Table 5. The γ-conversion is summarized in Algorithm 5.4. It is assumed
that length(m) ≥ log2�

(
n
t

)
	+ k − length(const)− length(r).

For large messages Kobara and Imai achieve a reduction in data redun-
dancy even below the values for the original McEliece PKC for large param-
eters. For example, for m = 11, t = 70 the message size is expanded by 655
bits instead of 770 in the original McEliece scheme. The security of the γ-
conversion can be reduced to the one of the original scheme [37]:

Theorem 2. Breaking indistinguishability in the CCA2 model using any of
the conversions presented above, is as hard as breaking the original McEliece
public key system.

136 Raphael Overbeck and Nicolas Sendrier

Symbol Function
	

⌊
log2

(
n
t

)⌋
.

H Cryptographic secure hashing to a 	-bit string
R Cryptographically secure pseudo random number generator from fixed

length seeds
E(Gpub,t) McEliece encryption function, taking as first argument the message to

be encrypted and as second one the error vector: E(Gpub,t)(m, z) = c

D(S,DG ,P) McEliece decryption function: D(S,DG ,P)(c) = (m, z)
MSBn(m) The n rightmost bits of m.
LSBn(m) The n leftmost bits of m.

Table 5. Notation for Algorithm 5.4.

Algorithm 5.4 Kobara-Imai’s γ Conversion
• Additional System Parameters: length(r), the length of the random seed

and a constant const.
• Encryption Eγ

(Gpub,t)
:

Generate a random seed r of length length(r).
Set
c1 = PRG(r) ⊕ (m, const), c2 = r ⊕ H(c1),
c3 = LSB�+k(c2, c1), c4 = LSBk(c3),
c5 = MSB�(c3), z = φn,t(c5)
if length(c2, c1) − 	 − k > 0 then

c6 = MSBlength(c2,c1)−�−k(c2, c1)
c = (c6,E(Gpub,t)(c4, z))

else
c = E(Gpub,t)(c4, z)

• Decryption Dγ
(S,DG ,P):

Set
c6 = MSBLen(c)−n(c), (c4, z) = D(S,DG ,P)(LSBn(c)),
c5 = φ−1

n,t(z), c2 = MSBlength(r)(c6, c5, c4),
c1 = LSBlength(c)−length(r)(c6, c5, c4),
(m, const′) = (c1) ⊕ PRG(c2 ⊕ H(c1))

if const′ = const then
return m

else
reject c

Furthermore, all adaptive attacks become impossible, since relations among
plaintexts do no longer result in relations among ciphertexts. Already the sim-
ple hashing of messages before encryption prevents this.

Code-based cryptography 137

6 Annex

6.1 Algebraic coding theory

Hamming distance and linear codes.

Let Fq be a finite field. The Hamming distance between two words x and y
in F

n
q is defined to be the number of coordinates in which x and y differ.

The Hamming weight wt(x) of x is the number of non-zero coordinates of
x. A code is a non-empty subset of the Hamming space F

n
q . A k-dimensional

subspace of F
n
q is called a [n, k] linear code over Fq.

Generator and parity check matrices.

Let C denote an [n, k] linear code over Fq.

• A generator matrix G for C is a matrix over Fq such that C = 〈G〉, where
〈G〉 denotes the vector space spanned by the rows of G. Usually, the rows
of G are independent and the matrix is k×n. A generator matrix G is said
to be in systematic form, if its first k columns form the identity matrix.

• The dual code C⊥ of C is the orthogonal of C for the usual scalar product
over Fq. It is a [n, n− k] linear code over Fq.

• A parity check matrix H of C is a generator matrix of C⊥.

Minimum distance and weight.

Let C denote an [n, k] linear code over Fq. The minimum distance d = dmin(C)
of C is the smallest Hamming distance between distinct codewords. For a
linear code, it is equal to the minimum weight, the smallest non-zero weight
of a codeword. We will speak of an [n, k, d] code.

Decoder.

A decoder for C is a mapping DC : F
n
q → C. It is t-error correcting if for all

e ∈ F
n
q and all x ∈ C

wt(e) ≤ t⇒ DC(x + e) = x

For any [n, k, d] linear code, there exist a t-error correcting decoder if and only
if t < d/2.

Weight enumerator polynomial.

For a linear code C, it is defined as

W (C)(X) =
∑
c∈C

Xwt(c) =
n∑

i=0

AiX
i

where Ai is the number of codewords of Hamming weight i.

138 Raphael Overbeck and Nicolas Sendrier

Support.

The support I of a code of length n is an ordered set of cardinality n used to
index the coordinates. Typically I = {1, . . . , n}, but it is sometimes conve-
nient to index the coordinates with another ordered set (in Goppa codes for
instance). The support of a codeword is the subset of I containing its non-zero
coordinates.

Puncturing.

Let C be an [n, k] linear code of support I, let G be a generator matrix of C,
and let J be a subset of I.
• Punctured matrix: we denote by G·J the k × |J | matrix obtained from G

by keeping the columns indexed by J .
• Punctured code: We denote by C·J the code obtained by retaining in all

codeword of C the coordinates indexed by J .

Note that C·J = 〈G·J 〉 (i.e. the punctured matrix spans the corresponding
punctured code).

Subcodes.

Any linear subspace of C is said to be a subcode of C. If C is a code over F

and FSUB is a subfield of F, then the FSUB-(subfield) subcode of C is the code
consisting of all words of C, which have only entries in FSUB. A FSUB-subfield
subcode is a FSUB-linear code. As codes are treated as vector spaces, we will
often define them by the matrices related to the code.

6.2 GRS and Goppa codes

An important class of codes are the GRS codes, which are strongly related to
the class of Goppa codes used by McEliece to define his cryptosystem. Thus,
we briefly introduce them:

Definition 9. A GRS code over Fqm of length n with designed minimum
Hamming distance t + 1 is defined by two vectors a, z ∈ F

n
qm , where ai �= aj

for i �= j and all zi �= 0. The canonical check matrix of the GRS code is of the
form

H� =

⎛
⎜⎜⎜⎝

z1a
0
1 z1a

1
1 · · · z1a

t−1
1

z2a
0
2 z2a

1
2 · · · z2a

t−1
2

...
. . .

...
zna0

n zna1
n · · · znat−1

n

⎞
⎟⎟⎟⎠ ∈ F

n×t
qm . (10)

Code-based cryptography 139

The code with check matrix
[

H�

0 · · · 0 1

]�

is called an extended GRS code.
The Fq-subfield subcode of a GRS code is called an alternant code and has

dimension k ≥ n−mt. If for a GRS code, there exists a polynomial g ∈ Fqm [X]
of degree t, for which g(ai) = 1/zi, the polynomial is called Goppa polynomial
and the Fq-subfield subcode is called Goppa code (see e.g. [47] or [17]). An
equivalent definition is the following:

Definition 10. A binary Goppa code G over F2m is defined by a vector a ∈
F

n
2m , where ai �= aj and the Goppa polynomial g(X) =

∑t
i=0 giX

i ∈ F2m [X].
G is the set of all c = (c0, . . . , cn−1) ∈ F

n
2 such that the identity

Sc(X) = −
n−1∑
i=0

ci

g(ai)
g(X)− g(ai)

X − ai
mod g(X) = 0 (11)

holds in the polynomial ring F2m [X] or equivalently if

Sc(X) ≡
n−1∑
i=0

ci

X − ai
≡ 0 mod g(X). (12)

Oftentimes, the vector a is called γ or L and since G is defined in function of
L and the Goppa polynomial we write: G = Γ (L, g).

If the Goppa polynomial is irreducible, then the Goppa code has minimum
distance 2 · t + 1 and is called an irreducible Goppa code.

The coefficients of the syndrome polynomial Sc(X) =
∑t−1

i=0 siX
i of a

vector c in a Goppa code may be computed via equation (13), where H is
given in equation (10) with zi = 1/g(ai).

(
s0 s1 · · · st−1

)
= cH�

⎛
⎜⎜⎜⎜⎝

gt 0 · · · 0

gt−1 gt
. . . 0

...
. . .

...
g1 g2 · · · gt

⎞
⎟⎟⎟⎟⎠

(13)

For GRS codes, as well as for Goppa codes, there exist algorithms for
correcting errors of Hamming weight up to half of the minimum distance.
Such algorithms take O(n2) respectively O(n · t ·m2) binary operations, see
e.g. [7, 58]. Here we present Patterson’s algorithm for correcting errors in
irreducible binary Goppa codes, where we follow the presentation in [17]: Let
m be a codeword, e ∈ F

n
2 with wt(e) ≤ t an error vector, and c = m ⊕ e.

Since Sm(X) ≡ 0 mod g(X), we have

140 Raphael Overbeck and Nicolas Sendrier

0 �= Sc(X) ≡ Se(X) mod g(X).

We introduce the error locator polynomial σe(X) of e as

σe(X) :=
∏

j∈Te

(X − γj) ∈ F2m [X],

where Te is the support of e. From (12), it follows that

σe(X)Se(X) ≡ σ′
e(X) mod g(X). (14)

We split σe(X) in squares and non-squares:

σe(X) = α2(X) + Xβ2(X).

Since the characteristic of the field is 2, we have σ′
e(X) = β2(X). Setting

T (X) = S−1
e (X) and multiply equation (14) by T (X) we obtain

β2(X)(X + T (X)) ≡ α2(X) mod g(X) (15)

Each element of F2mt has a unique square root. Let τ(X) ∈ F2m [X] be the
square root of T (X) + X, then

β(X)τ(X) ≡ α(X) mod g(X).

The equation above can be solved: We have to determine α(X) and β(X)
of least degree, i.e. with deg(α(X)) ≤ �t/2	 and deg(β(X)) ≤ �(t − 1)/2	.
Computing the inverse of τ(X) modulo g(X) via the extended Euclidean
algorithm and stopping it in mid-time gives the (unique) solution [33,43,47].
Finally, the zeroes of σe(X) = α2(X) + Xβ2(X) can be determined, which
reveals e.

The runtime of the presented error correction algorithm may be estimated
as follows. To compute the syndrome Sc(X) employing the check matrix H,
we need at most (n−k)n binary operations. To compute T (X), we employ the
extended Euclidean algorithm. This takes O

(
t2m2

)
binary operations, as the

computations are modulo g(X), a polynomial of degree t and coefficients of
size m. Computing the square root of T (X)+X takesO

(
t2m2

)
operation since

it is a linear mapping on F2m [X] /g(X). The subsequently employed variant
of the extended Euclidean algorithm takes O

(
t2m2

)
binary operations, too.

These steps are fast in comparison to the last step to find all roots of the
error locator polynomial. The latter can be performed in n(tm2 + tm) binary
operations. Since mt ≥ (n− k), the error correction algorithm needs

O
(
n · t ·m2

)

binary operations. However, verifying, that an unique error locator polynomial
exists requires only

O
(
m3t2

)

if the syndrome is already known.

Code-based cryptography 141

6.3 Rank Distance

Not all codes are used with the Hamming metric. Here, we introduce a metric,
which allows to correct “crisscross” errors in memory chip arrays or in magnetic
tape recording, see [9, 41]:

Definition 11. Let x = (x1, · · · , xn) ∈ F
n
qm and b1, · · · , bm a basis of Fqm

over Fq. We can write xi =
∑m

j=1 xijbj for each i = 1, · · · , n with xij ∈ Fq.
The rank norm ‖ · ‖q is defined as follows:

‖x‖q := rank
(
(xij)1≤i≤n, 1≤j≤m

)
.

There are more isometries preserving rank distance than Hamming distance
since all invertible matrices over the base field are isometries for the rank met-
ric. The Syndrome Decoding Problem seems to be much harder in rank metric
than in Hamming metric. In [36] Ourivski and Johansson presented two al-
gorithms which solve the general decoding problem in O

(
(k + d−1

2)3(d−1
2)3×

q(d−3)(m−(d−1)/2)/2
)
, respectively O

(
(md−1

2)3q(d−3)(k+1)/2
)

operations over
Fq for [n, k, d] rank distance codes over Fqm .

Even if rank distance codes can not be used to build a PKC (compare
§4.3), the introduction of the rank metric into cryptography is interesting and
might be useful, as it could, e.g., allow to reduce the key sizes for Stern’s
identification scheme or strengthen the FSB hash. The interested reader may
find more information on the aspects of rank metric in [23,25,36,45].

References

1. Alabbadi, M. and Wicker, S.: A digital signature scheme based on linear error-
correcting block codes. In ASIACRYPT ’94, volume LNCS 917, pages 238–248
(Springer 1995).

2. Assmus, Jr, E.F. and Key, J.D.: Affine and projective planes. Discrete Mathe-
matics, 83:161–187 (1990).

3. Augot, D., Finiasz, M., and N.Sendrier: A family of fast syndrome based crypto-
graphic hash functions. In Proc. of Mycrypt 2005, volume 3715 of LNCS, pages
64–83 (2005).

4. Barg, A.: Complexity issues in coding theory. In V.S. Pless and W.C. Huffman,
editors, Handbook of Coding theory, volume I, chapter 7, pages 649–754. North-
Holland (1998).

5. Berger, T. and Loidreau, P.: Security of the Niederreiter form of the GPT public-
key cryptosystem. In IEEE International Symposium on Information Theory,
Lausanne, Suisse. IEEE (July 2002).

6. Berlekamp, E., McEliece, R., and van Tilborg, H.: On the inherent intractabil-
ity of certain coding problems. IEEE Transactions on Information Theory,
24(3):384–386 (1978).

7. Berlekamp, E.: Algebraic coding theory. McGraw-Hill, New York (1968).

142 Raphael Overbeck and Nicolas Sendrier

8. Berson, T.: Failure of the McEliece public-key cryptosystem under message-
resend and related-message attack. In Proceedings of CRYPTO, volume 1294 of
Lecture Notes in Computer Science, pages 213–220. Springer Verlag (1997).

9. Blaum, M. and McEliece, R.J.: Coding protection for magnetic tapes: A gener-
alization of the Patel - Hong code. IEEE Transactions on Information Theory,
31(5):690– (1985).

10. Camion, P. and Patarin, J.: The knapsack hash function proposed at Crypto’89
can be broken. In D.W. Davies, editor, Advances in Cryptology - EURO-
CRYPT’91, number 547 in LNCS, pages 39–53. Springer-Verlag (1991).

11. Canteaut, A. and Chabaud, F.: Improvements of the attacks on cryptosystems
based on error-correcting codes. Rapport interne du Departement Mathema-
tiques et Informatique, LIENS-95-21 (1995).

12. Canteaut, A. and Chabaud, F.: A new algorithm for finding minimum-weight
words in a linear code: Application to McEliece’s cryptosystem and to narrow-
sense BCH codes of length 511. IEEETIT: IEEE Transactions on Information
Theory, 44 (1998).

13. Canteaut, A. and Sendrier, N.: Cryptanalysis of the original McEliece cryptosys-
tem. In Advances in Cryptology - ASIACRYPT ’98 Proceedings, pages 187–199.
Springer-Verlag (1998).

14. Courtois, N., Finiasz, M., and N.Sendrier: How to achieve a McEliece-based dig-
ital signature scheme. In Advances in Cryptology - ASIACRYPT 2001, volume
2248, pages 157–174. Springer-Verlag (2001).

15. Cover, T.: Enumerative source encoding. IEEE Transactions on Information
Theory, 19(1):73–77 (1973).

16. Dallot, L., Tillich, J., Otmani, A.: Cryptanalysis of two McEliece cryptosys-
tems based on quasi-cyclic codes (2008). CoRR, abs/0804.0409, available at
http://arxiv.org/abs/0804.0409 (2008).

17. Engelbert, D., Overbeck, R., and Schmidt, A.: A summary of McEliece-type
cryptosystems and their security. Journal of Mathematical Cryptology, 1(2):151–
199 (2007).

18. Finiasz, M.: Nouvelles constructions utilisant des codes correcteurs d’erreurs en
cryptographie à clef publique. Thèse de doctorat, École Polytechnique (2004).

19. Fischer, J.B. and Stern, J.: An eficient pseudo-random generator provably as
secure as syndrome decoding. In U.M. Maurer, editor, Advances in Cryptology
- EUROCRYPT ’96, volume 1070 of LNCS, pages 245–255. Springer-Verlag
(1996).

20. Fossorier, M., Imai, H., and Kobara, K.: Modeling bit flipping decoding based
on non orthogonal check sums and application to iterative decoding attack of
McEliece cryptosystem. In Proc. of 2004 International Symposium on Informa-
tion Theory and its Applications, Parma, Italy (ISITA’04) (October 2004).

21. Fujisaki, E. and Okamoto, T.: Secure integration of asymmetric and symmetric
encryption schemes. In Proc. of CRYPTO, volume 547 of LNCS, pages 535–554.
Springer Verlag (1999).

22. Gabidulin, E.M. and Ourivski, A.V.: Column scrambler for the GPT cryptosys-
tem. Discrete Applied Mathematics, 128(1):207–221 (2003).

23. Gabidulin, E.: Theory of codes with maximum rank distance. Problems of In-
formation Transmission, 21, No. 1 (1985).

24. Gabidulin, E.: On public-key cryptosystems based on linear codes. In Proc.
of 4th IMA Conference on Cryptography and Coding 1993, Codes and Ciphers.
IMA Press (1995).

Code-based cryptography 143

25. Gabidulin, E. and Loidreau, P.: Subfield subcodes of maximum-rank distance
codes. In Seventh International Workshop on Algebraic and Combinatorial Cod-
ing Theory, volume 7 of ACCT, pages 151–156 (2000).

26. Gabidulin, E., Ourivski, A., Honary, B., and Ammar, B.: Reducible rank codes
and their applications to cryptography. IEEE Transactions on Information
Theory, 49(12):3289–3293 (2003).

27. Gabidulin, E., Paramonov, A., and Tretjakov, O.: Ideals over a non-commutative
ring and their applications to cryptography. In Proc. Eurocrypt ’91, volume 547
of LNCS. Springer Verlag (1991).

28. Gaborit, P.: Shorter keys for code based cryptography. In Proc. of WCC 2005,
pages 81–90 (2005).

29. Gaborit, P. and Girault, M.: Lightweight code-based authentication and signa-
ture. In Proc. of ISIT 2007 (2007).

30. Gaborit, P., Laudaroux, C., and Sendrier, N.: Synd: a very fast code-based
cipher stream with a security reduction. In IEEE Conference, ISIT’07, pages
186–190. Nice, France (2007).

31. Gibson, K.: Equivalent Goppa codes and trapdoors to McEliece’s public key
cryptosystem. In D.W. Davies, editor, Advances in Cryptology - Eurocrypt’91,
volume 547 of LNCS, pages 517–521. Springer Verlag (1991).

32. Harn, L. and Wang, D.C.: Cryptanalysis and modification of digital signa-
ture scheme based on error-correcting codes. Electronics Letters, 28(2):157–159
(1992).

33. Heise and Quattrocchi: Informations- und Codierungstheorie. Springer Berlin
Heidelberg, 3 edition (1995).

34. Jabri, A.K.A.: A statistical decoding algorithm for general linear block codes.
In Cryptography and Coding 2001, volume 2260 of LNCS, pages 1–8. Springer
Verlag (2001).

35. Janwa, H. and Moreno, O.: McEliece public key cryptosystems using algebraic-
geometric codes. Designes, Codes and Cryptography, 8:293–307 (1996).

36. Johansson, T. and Ourivski, A.: New technique for decoding codes in the rank
metric and its cryptography applications. Problems of Information Transmis-
sion, 38, No. 3:237–246 (2002).

37. Kobara, K. and Imai, H.: Semantically secure McEliece public-key cryptosys-
tems - conversions for McEliece PKC. In Practice and Theory in Public Key
Cryptography - PKC ’01 Proceedings. Springer Verlag (2001).

38. Kobara, K. and Imai, H.: On the one-wayness against chosen-plaintext attacks
of the Loidreau’s modified McEliece PKC. IEEE Transactions on Information
Theory, 49, No. 12:3160–3168 (2003).

39. Lee, P. and Brickell, E.: An observation on the security of McEliece’s public
key cryptosystem. In Advances in Cryptology-EUROCRYPT’88, volume 330 of
LNCS, pages 275–280. Springer Verlag (1989).

40. Leon, J.: A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Transactions on Information Theory, 34(5):1354–
1359 (1988).

41. Levine, L. and Myers, W.: Semiconductor memory reliability with error detect-
ing and correcting codes. COMPUTER, 9(10):43–50 (1976). ISSN 0018-9162.

42. Li, Y., Deng, R., and Wang, X.: the equivalence of McEliece’s and Niederreiter’s
public-key cryptosystems. IEEE Transactions on Information Theory, Vol. 40,
pp. 271-273 (1994).

144 Raphael Overbeck and Nicolas Sendrier

43. Lidl, R. and Niederreiter, H.: Introduction to finite fields and their applications.
Cambridge University Press, 2 edition (1986).

44. Loidreau, P.: Strengthening McEliece cryptosystem. In Advances in Cryptology
- ASIACRYPT ’00 Proceedings, pages 585–598. Springer Verlag (2000).

45. Loidreau, P. and Overbeck, R.: Decoding rank errors beyond the error-correction
capability. In Proc. of ACCT-10, Zvenigorod, pages 168–190 (2006).

46. Loidreau, P. and Sendrier, N.: Weak keys in the McEliece public-key cryptosys-
tem. IEEE Transactions on Information Theory, 47, No. 3:1207 –1211 (March
2001).

47. MacWilliams, F. and Sloane, N.: The Theory of Error-Correctiong Codes. North-
Holland Amsterdam, 7 edition (1992).

48. McEliece, R.: A public key cryptosystem based on algebraic coding theory. DSN
progress report, 42-44:114–116 (1978).

49. Minder, L.: Cryptography based on error correcting codes. Phd thesis, EPFL
(2007).

50. Minder, L. and Shokrollahi, A.: Cryptanalysis of the Sidelnikov cryptosystem.
In M. Naor, editor, Advances in Cryptology - EUROCRYPT 2007, number 4515
in LNCS, pages 347–360. Springer (2007).

51. Montpetit, A.: Note sur la notion d’équivalence entre deux codes linéaires. Dis-
crete Mathematics, 65:177–185 (1987).

52. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory.
Probl. Control and Inform. Theory, 15:19–34 (1986).

53. Overbeck, R.: Public key cryptography based on coding theory. Ph.D. Thesis,
Available at http://elib.tu-darmstadt.de/diss/000823/.

54. Overbeck, R.: A new structural attack for GPT and variants. In Proc. of Mycrypt
2005, volume 3715 of LNCS, pages 50–63. Springer Verlag (2005).

55. Overbeck, R.: Statistical decoding revisited. In Proc. of ACISP 2006, volume
4058 of LNCS, pages 283–294. Springer Verlag (2006).

56. Overbeck, R.: Recognizing the structure of permuted reducible codes. In Proc.
of WCC 2007, pages 269–276 (2007).

57. Overbeck, R.: Structural attacks for public key cryptosystems based on
Gabidulin codes. Journal of Cryptology, 21(2):280–301 (2008).

58. Patterson, N.: Algebraic decoding of Goppa codes. IEEE Trans. Info.Theory,
21:203–207 (1975).

59. Petrank, E. and Roth, R.M.: Is code equivalence easy to decide? IEEE Trans.
on IT, 43(5):1602–1604 (1997).

60. Pointcheval, D.: Chosen-ciphertext security for any one-way cryptosystem. In
Proc. of PKC, volume 1751 of LNCS, pages 129–146. Springer Verlag (2000).

61. Ramabadran, T.V.: A coding scheme for m-out-of-n codes. IEEE Transactions
on Communications, 38(8):1156–1163 (1990).

62. Schalkwijk, J.P.M.: An algorithm for source coding. IEEE Transactions on
Information Theory, 18(3):395–399 (1972).

63. Sendrier, N.: Efficient generation of binary words of given weight. In C. Boyd,
editor, Cryptography and Coding ; proceedings of the 5th IMA conference, num-
ber 1025 in LNCS, pages 184–187. Springer-Verlag (1995).

64. Sendrier, N.: On the concatenated structure of a linear code. AAECC, 9(3):221–
242 (1998).

65. Sendrier, N.: Cryptosystèmes à clé publique basés sur les codes correcteurs
d’erreurs. Mémoire d’habilitation à diriger des recherches, Université Paris 6
(2002).

Code-based cryptography 145

66. Sendrier, N.: On the security of the McEliece public-key cryptosystem. In
M. Blaum, P. Farrell, and H. van Tilborg, editors, Proceedings of Workshop hon-
oring Prof. Bob McEliece on his 60th birthday, pages 141–163. Kluwer (2002).

67. Sendrier, N.: Encoding information into constant weight words. In IEEE Con-
ference, ISIT’2005, pages 435–438. Adelaide, Australia (2005).

68. Sendrier, N.: Finding the permutation between equivalent linear codes: the sup-
port splitting algorithm. IEEE Transactions on Information Theory, 46:1193–
1203 (Jul 2000).

69. Sendrier, N.: On the dimension of the hull. SIAM Journal on Discrete Mathe-
matics, 10(2):282–293 (May 1997).

70. Sidelnikov, V.: A public-key cryptosystem based on binary Reed-Muller codes.
Discrete Mathematics and Applications, 4 No. 3 (1994).

71. Sidelnikov, V. and Shestakov, S.: On insecurity of cryptosystems based on gen-
eralized Reed-Solomon codes. Discrete Mathematics and Applications, 2, No.
4:439–444 (1992).

72. Stern, J.: A method for finding codewords of small weight. Coding Theory and
Applications, 388:106–133 (1989).

73. Stern, J.: A new identification scheme based on syndrome decoding. In Advances
in Cryptology - CRYPTO’93, volume 773 of LNCS. Springer Verlag (1994).

74. Stern, J.: Can one design a signature scheme based on error-correcting codes.
In ASIACRYPT ’94, volume 917 of LNCS, pages 424–426 (1995).

75. van Tilburg, J.: On the McEliece cryptosystem. In S. Goldwasser, editor, Ad-
vances in Cryptology - CRYPTO’88, number 403 in LNCS, pages 119–131.
Springer-Verlag (1990).

76. Véron, P.: Improved identification schemes based on error-correcting codes.
Appl. Algebra Eng. Commun. Comput., 8(1):57–69 (1996).

77. Wagner, D.: A generalized birthday problem. In M. Yung, editor, CRYPTO,
volume 2442 of Lecture Notes in Computer Science, pages 288–303. Springer
(2002). ISBN 3-540-44050-X.

78. Wieschebrink, C.: An attack on a modified Niederreiter encryption scheme. In
Public Key Cryptography, volume 3958 of LNCS, pages 14–26 (2006).

79. Xinmei, W.: Digital signature scheme based on error-correcting codes. Electron-
ics Letters, 26(13):898–899 (1990).

