

Post-Quantum Cryptography

Daniel J. Bernstein · Johannes Buchmann
Erik Dahmen
Editors

Post-Quantum Cryptography

ABC

Editors
Daniel J. Bernstein
Department of Computer Science
University of Illinois, Chicago
851 S. Morgan St.
Chicago IL 60607-7053
USA
djb@cr.yp.to

Johannes Buchmann
Erik Dahmen
Technische Universität Darmstadt
Department of Computer Science
Hochschulstr. 10
64289 Darmstadt
Germany
buchmann@cdc.informatik.tu-darmstadt.de
dahmen@cdc.informatik.tu-darmstadt.de

ISBN: 978-3-540-88701-0 e-ISBN: 978-3-540-88702-7

Library of Congress Control Number: 2008937466

Mathematics Subject Classification Numbers (2000): 94A60

c© 2009 Springer-Verlag Berlin Heidelberg
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Cover design: WMX Design GmbH, Heidelberg

Printed on acid-free paper

springer.com

Preface

The first International Workshop on Post-Quantum Cryptography took place
at the Katholieke Universiteit Leuven in 2006. Scientists from all over the
world gave talks on the state of the art of quantum computers and on cryp-
tographic schemes that may be able to resist attacks by quantum computers.
The speakers and the audience agreed that post-quantum cryptography is a
fascinating research challenge and that, if large quantum computers are built,
post-quantum cryptography will be critical for the future of the Internet. So,
during one of the coffee breaks, we decided to edit a book on this subject.
Springer-Verlag promptly agreed to publish such a volume. We approached
leading scientists in the respective fields and received favorable answers from
all of them. We are now very happy to present this book. We hope that it
serves as an introduction to the field, as an overview of the state of the art,
and as an encouragement for many more scientists to join us in investigating
post-quantum cryptography.

We would like to thank the contributors to this volume for their smooth
collaboration. We would also like to thank Springer-Verlag, and in particular
Ruth Allewelt and Martin Peters, for their support. The first editor would like
to additionally thank Tanja Lange for many illuminating discussions regarding
post-quantum cryptography and for initiating the Post-Quantum Cryptogra-
phy workshop series in the first place.

Chicago and Darmstadt, Daniel J. Bernstein
December 2008 Johannes A. Buchmann

Erik Dahmen

Contents

Introduction to post-quantum cryptography
Daniel J. Bernstein . 1
1 Is cryptography dead? . 1
2 A taste of post-quantum cryptography . 6
3 Challenges in post-quantum cryptography . 11
4 Comparison to quantum cryptography . 13

Quantum computing
Sean Hallgren, Ulrich Vollmer . 15
1 Classical cryptography and quantum computing 15
2 The computational model . 19
3 The quantum Fourier transform . 22
4 The hidden subgroup problem . 25
5 Search algorithms . 29
6 Outlook . 31
References . 32

Hash-based Digital Signature Schemes
Johannes Buchmann, Erik Dahmen, Michael Szydlo 35
1 Hash based one-time signature schemes . 36
2 Merkle’s tree authentication scheme . 40
3 One-time key-pair generation using an PRNG . 44
4 Authentication path computation . 46
5 Tree chaining . 69
6 Distributed signature generation . 73
7 Security of the Merkle Signature Scheme . 81
References . 91

Code-based cryptography
Raphael Overbeck, Nicolas Sendrier . 95
1 Introduction . 95
2 Cryptosystems . 96

VIII Contents

3 The security of computing syndromes as one-way function 106
4 Codes and structures . 116
5 Practical aspects . 127
6 Annex . 137
References . 141

Lattice-based Cryptography
Daniele Micciancio, Oded Regev . 147
1 Introduction . 147
2 Preliminaries . 152
3 Finding Short Vectors in Random q-ary Lattices 154
4 Hash Functions . 157
5 Public Key Encryption Schemes . 165
6 Digital Signature Schemes . 180
7 Other Cryptographic Primitives . 185
8 Open Questions . 186
References . 187

Multivariate Public Key Cryptography
Jintai Ding, Bo-Yin Yang . 193
1 Introduction . 193
2 The Basics of Multivariate PKCs . 194
3 Examples of Multivariate PKCs . 198
4 Basic Constructions and Variations . 202
5 Standard Attacks . 215
6 The Future . 229
References . 234

Index . 243

List of Contributors

Daniel J. Bernstein
University of Illinois at Chicago
djb@cr.yp.to

Johannes Buchmann
Technische Universität Darmstadt
buchmann@cdc.informatik.
tu-darmstadt.de

Erik Dahmen
Technische Universität Darmstadt
dahmen@cdc.informatik.
tu-darmstadt.de

Jintai Ding
University of Cincinnati
ding@math.uc.edu

Sean Hallgren
The Pennsylvania State University

Daniele Micciancio
University of California, San Diego
daniele@cs.ucsd.edu

Raphael Overbeck
EPFL, I&C, LASEC
raphael.overbeck@epfl.ch

Oded Regev
Tel-Aviv University

Nicolas Sendrier
INRIA Rocquencourt
nicolas.sendrier@inria.fr

Michael Szydlo
Akamai Technologies
mike@szydlo.com

Ulrich Vollmer
Berlin, Germany
ac@u.vollmer.name

Bo-Yin Yang
Academia Sinica
by@moscito.org

Introduction to post-quantum cryptography

Daniel J. Bernstein

Department of Computer Science, University of Illinois at Chicago.

1 Is cryptography dead?

Imagine that it’s fifteen years from now and someone announces the successful
construction of a large quantum computer. The New York Times runs a front-
page article reporting that all of the public-key algorithms used to protect
the Internet have been broken. Users panic. What exactly will happen to
cryptography?

Perhaps, after seeing quantum computers destroy RSA and DSA and
ECDSA, Internet users will leap to the conclusion that cryptography is dead;
that there is no hope of scrambling information to make it incomprehensible
to, and unforgeable by, attackers; that securely storing and communicating
information means using expensive physical shields to prevent attackers from
seeing the information—for example, hiding USB sticks inside a locked brief-
case chained to a trusted courier’s wrist.

A closer look reveals, however, that there is no justification for the leap
from “quantum computers destroy RSA and DSA and ECDSA” to “quantum
computers destroy cryptography.” There are many important classes of cryp-
tographic systems beyond RSA and DSA and ECDSA:

• Hash-based cryptography. The classic example is Merkle’s hash-tree
public-key signature system (1979), building upon a one-message-signature
idea of Lamport and Diffie.

• Code-based cryptography. The classic example is McEliece’s hidden-
Goppa-code public-key encryption system (1978).

• Lattice-based cryptography. The example that has perhaps attracted
the most interest, not the first example historically, is the Hoffstein–
Pipher–Silverman “NTRU” public-key-encryption system (1998).

• Multivariate-quadratic-equations cryptography. One of many inter-
esting examples is Patarin’s “HFEv−” public-key-signature system (1996),
generalizing a proposal by Matsumoto and Imai.

2 Daniel J. Bernstein

• Secret-key cryptography. The leading example is the Daemen–Rijmen
“Rijndael” cipher (1998), subsequently renamed “AES,” the Advanced En-
cryption Standard.

All of these systems are believed to resist classical computers and quantum
computers. Nobody has figured out a way to apply “Shor’s algorithm”—the
quantum-computer discrete-logarithm algorithm that breaks RSA and DSA
and ECDSA—to any of these systems. Another quantum algorithm, “Grover’s
algorithm,” does have some applications to these systems; but Grover’s algo-
rithm is not as shockingly fast as Shor’s algorithm, and cryptographers can
easily compensate for it by choosing somewhat larger key sizes.

Is there a better attack on these systems? Perhaps. This is a familiar risk
in cryptography. This is why the community invests huge amounts of time and
energy in cryptanalysis. Sometimes cryptanalysts find a devastating attack,
demonstrating that a system is useless for cryptography; for example, every
usable choice of parameters for the Merkle–Hellman knapsack public-key en-
cryption system is easily breakable. Sometimes cryptanalysts find attacks that
are not so devastating but that force larger key sizes. Sometimes cryptana-
lysts study systems for years without finding any improved attacks, and the
cryptographic community begins to build confidence that the best possible
attack has been found—or at least that real-world attackers will not be able
to come up with anything better.

Consider, for example, the following three factorization attacks against
RSA:

• 1978: The original paper by Rivest, Shamir, and Adleman mentioned a new
algorithm, Schroeppel’s “linear sieve,” that factors any RSA modulus n—
and thus breaks RSA—using 2(1+o(1))(lg n)1/2(lg lg n)1/2

simple operations.
Here lg = log2. Forcing the linear sieve to use at least 2b operations means
choosing n to have at least (0.5 + o(1))b2/lg b bits.

Warning: 0.5 + o(1) means something that converges to 0.5 as b → ∞. It
does not say anything about, e.g., b = 128. Figuring out the proper size of
n for b = 128 requires looking more closely at the speed of the linear sieve.

• 1988: Pollard introduced a new factorization algorithm, the “number-field
sieve.” This algorithm, as subsequently generalized by Buhler, Lenstra, and
Pomerance, factors any RSA modulus n using 2(1.9...+o(1))(lg n)1/3(lg lg n)2/3

simple operations. Forcing the number-field sieve to use at least 2b opera-
tions means choosing n to have at least (0.016 . . . + o(1))b3/(lg b)2 bits.

Today, twenty years later, the fastest known factorization algorithms
for classical computers still use 2(constant+o(1))(lg n)1/3(lg lg n)2/3

operations.
There have been some improvements in the constant and in the details of
the o(1), but one might guess that 1/3 is optimal, and that choosing n to
have roughly b3 bits resists all possible attacks by classical computers.

Introduction to post-quantum cryptography 3

• 1994: Shor introduced an algorithm that factors any RSA modulus n using
(lg n)2+o(1) simple operations on a quantum computer of size (lg n)1+o(1).
Forcing this algorithm to use at least 2b operations means choosing n to
have at least 2(0.5+o(1))b bits—an intolerable cost for any interesting value
of b. See the “Quantum computing” chapter of this book for much more
information on quantum algorithms.

Consider, for comparison, attacks on another thirty-year-old public-key
cryptosystem, namely McEliece’s hidden-Goppa-code encryption system. The
original McEliece paper presented an attack that breaks codes of “length n”
and “dimension n/2” using 2(0.5+o(1))n/lg n operations. Forcing this attack to
use 2b operations means choosing n at least (2+o(1))b lg b. Several subsequent
papers have reduced the number of attack operations by an impressively large
factor, roughly nlg n = 2(lg n)2 , but (lg n)2 is much smaller than 0.5n/lg n if
n is large; the improved attacks still use 2(0.5+o(1))n/lg n operations. One can
reasonably guess that 2(0.5+o(1))n/lg n is best possible. Quantum computers
don’t seem to make much difference, except for reducing the constant 0.5.

If McEliece’s cryptosystem is holding up so well against attacks, why are
we not already using it instead of RSA? The answer, in a nutshell, is efficiency,
specifically key size. McEliece’s public key uses roughly n2/4 ≈ b2(lg b)2 bits,
whereas an RSA public key—assuming the number-field sieve is optimal and
ignoring the threat of quantum computers—uses roughly (0.016 . . .)b3/(lg b)2

bits. If b were extremely large then the b2+o(1) bits for McEliece would be
smaller than the b3+o(1) bits for RSA; but real-world security levels such as
b = 128 allow RSA key sizes of a few thousand bits, while McEliece key sizes
are closer to a million bits.

Figure 1 summarizes the process of designing, analyzing, and optimizing
cryptographic systems before the advent of quantum computers; Figure 2
summarizes the same process after the advent of quantum computers. Both
pictures have the same structure:

• cryptographers design systems to scramble and unscramble data;
• cryptanalysts break some of those systems;
• algorithm designers and implementors find the fastest unbroken systems.

Cryptanalysts in Figure 1 use the number-field sieve for factorization, the
Lenstra–Lenstra–Lovasz algorithm for lattice-basis reduction, the Faugère al-
gorithms for Gröbner-basis computation, and many other interesting attack
algorithms. Cryptanalysts in Figure 2 have all of the same tools in their arsenal
plus quantum algorithms, notably Shor’s algorithm and Grover’s algorithm.
All of the most efficient unbroken public-key systems in Figure 1, perhaps not
coincidentally, take advantage of group structures that can also be exploited
by Shor’s algorithm, so those systems disappear from Figure 2, and the users
end up with different cryptographic systems.

4 Daniel J. Bernstein

Cryptographers:
How can we encrypt,

decrypt, sign, verify, etc.?

Functioning cryptographic systems:
DES, Triple DES, AES,
RSA, McEliece encryption,
Merkle hash-tree signatures,
Merkle–Hellman knapsack encryption,
Buchmann–Williams class-group encryption,
ECDSA, HFEv−, NTRU, etc.

��
Cryptanalysts:

What can an attacker do using < 2b

operations on a classical computer?

Unbroken cryptographic systems:
Triple DES (for b ≤ 112), AES (for b ≤ 256),
RSA with b3+o(1)-bit modulus,
McEliece with code length b1+o(1),
Merkle signatures with “strong” b1+o(1)-bit hash,
BW with “strong” b2+o(1)-bit discriminant,
ECDSA with “strong” b1+o(1)-bit curve,
HFEv− with b1+o(1) polynomials,
NTRU with b1+o(1) bits, etc.

��
Algorithm designers and implementors:

Exactly how small and fast
are the unbroken cryptosystems?

Most efficient unbroken cryptosystems:
e.g., can verify signature in time b2+o(1)

using ECDSA with “strong” b1+o(1)-bit curve

��
Users

Fig. 1. Pre-quantum cryptography. Warning: Sizes and times are simplified to
b1+o(1), b2+o(1), etc. Optimization of any specific b requires a more detailed analysis;
e.g., low-exponent RSA verification is faster than ECDSA verification for small b.

Introduction to post-quantum cryptography 5

Cryptographers:
How can we encrypt,

decrypt, sign, verify, etc.?

Functioning cryptographic systems:
DES, Triple DES, AES,
RSA, McEliece encryption,
Merkle hash-tree signatures,
Merkle–Hellman knapsack encryption,
Buchmann–Williams class-group encryption,
ECDSA, HFEv−, NTRU, etc.

��
Cryptanalysts:

What can an attacker do using < 2b

operations on a quantum computer?

Unbroken cryptographic systems:
AES (for b ≤ 128),
McEliece with code length b1+o(1),
Merkle signatures with “strong” b1+o(1)-bit hash,
HFEv− with b1+o(1) polynomials,
NTRU with b1+o(1) bits, etc.

��
Algorithm designers and implementors:

Exactly how small and fast
are the unbroken cryptosystems?

Most efficient unbroken cryptosystems:
e.g., can verify signature in time b3+o(1)

using HFEv− with b1+o(1) polynomials

��
Users

Fig. 2. Post-quantum cryptography. Warning: Sizes and times are simplified to
b1+o(1), b2+o(1), etc. Optimization of any specific b requires a more detailed analysis.

6 Daniel J. Bernstein

2 A taste of post-quantum cryptography

Here are three specific examples of cryptographic systems that appear to
be extremely difficult to break—even for a cryptanalyst armed with a large
quantum computer.

Two of the examples are public-key signature systems; one of the examples
is a public-key encryption system. All three examples are parametrized by b,
the user’s desired security level. Many more parameters and variants appear
later in this book, often allowing faster encryption, decryption, signing, and
verification with smaller keys, smaller signatures, etc.

I chose to focus on public-key examples—a focus shared by most of this
book—because quantum computers seem to have very little effect on secret-
key cryptography, hash functions, etc. Grover’s algorithm forces somewhat
larger key sizes for secret-key ciphers, but this effect is essentially uniform
across ciphers; today’s fastest pre-quantum 256-bit ciphers are also the fastest
candidates for post-quantum ciphers at a reasonable security level. (There are
a few specially structured secret-key ciphers that can be broken by Shor’s
algorithm, but those ciphers are certainly not today’s fastest ciphers.) For
an introduction to state-of-the-art secret-key ciphers I recommend the follow-
ing book: Matthew Robshaw and Olivier Billet (editors), New stream cipher
designs: the eSTREAM finalists, Lecture Notes in Computer Science 4986,
Springer, 2008, ISBN 978–3–540–68350–6.

2.1 A hash-based public-key signature system

This signature system requires a standard cryptographic hash function H
that produces 2b bits of output. For b = 128 one could choose H as the SHA-
256 hash function. Over the last few years many concerns have been raised
regarding the security of popular hash functions, and over the next few years
NIST will run a competition for a SHA-256 replacement, but all known attacks
against SHA-256 are extremely expensive.

The signer’s public key in this system has 8b2 bits: e.g., 16 kilobytes for
b = 128. The key consists of 4b strings y1[0], y1[1], y2[0], y2[1], . . . , y2b[0], y2b[1],
each string having 2b bits.

A signature of a message m has 2b(2b + 1) bits: e.g., 8 kilobytes for b =
128. The signature consists of 2b-bit strings r, x1, . . . , x2b such that the bits
(h1, . . . , h2b) of H(r,m) satisfy y1[h1] = H(x1), y2[h2] = H(x2), and so on
through y2b[h2b] = H(x2b).

How does the signer find x with H(x) = y? Answer: The signer starts
by generating a secret x and then computes y = H(x). Specifically, the
signer’s secret key has 8b2 bits, namely 4b independent uniform random
strings x1[0], x1[1], x2[0], x2[1], . . . , x2b[0], x2b[1], each string having 2b bits.
The signer computes the public key y1[0], y1[1], y2[0], y2[1], . . . , y2b[0], y2b[1] as
H(x1[0]),H(x1[1]),H(x2[0]),H(x2[1]), . . . ,H(x2b[0]),H(x2b[1]).

Introduction to post-quantum cryptography 7

To sign a message m, the signer generates a uniform random string r,
computes the bits (h1, . . . , h2b) of H(r,m), and reveals (r, x1[h1], . . . , x2b[h2b])
as a signature of m. The signer then discards the remaining x values and
refuses to sign any more messages.

What I’ve described so far is the “Lamport–Diffie one-time signature sys-
tem.” What do we do if the signer wants to sign more than one message?

An easy answer is “chaining.” The signer includes, in the signed message,
a newly generated public key that will be used to sign the next message. The
verifier checks the first signed message, including the new public key, and can
then check the signature of the next message; the signature of the nth message
includes all n− 1 previous signed messages. More advanced systems, such as
Merkle’s hash-tree signature system, scale logarithmically with the number of
messages signed.

To me hash-based cryptography is a convincing argument for the exis-
tence of secure post-quantum public-key signature systems. Grover’s algo-
rithm is the fastest quantum algorithm to invert generic functions, and is
widely believed to be the fastest quantum algorithm to invert the vast ma-
jority of specific efficiently computable functions (although obviously there
are also many exceptions, i.e., functions that are easier to invert). Hash-based
cryptography can convert any hard-to-invert function into a secure public-key
signature system.

See the “Hash-based digital signature schemes” chapter of this book for a
much more detailed discussion of hash-based cryptography. Note that most
hash-based systems impose an extra requirement of collision resistance upon
the hash function, allowing simpler signatures without randomization.

2.2 A code-based public-key encryption system

Assume that b is a power of 2. Write n = 4b lg b; d = �lg n�; and t = �0.5n/d	.
For example, if b = 128, then n = 3584; d = 12; and t = 149.

The receiver’s public key in this system is a dt× n matrix K with coeffi-
cients in F2. Messages suitable for encryption are n-bit strings of “weight t,”
i.e., n-bit strings having exactly t bits set to 1. To encrypt a message m, the
sender simply multiplies K by m, producing a dt-bit ciphertext Km.

The basic problem for the attacker is to “syndrome-decode K,” i.e., to undo
the multiplication by K, knowing that the input had weight t. It is easy, by
linear algebra, to work backwards from Km to some n-bit vector v such that
Kv = Km; however, there are a huge number of choices for v, and finding
a weight-t choice seems to be extremely difficult. The best known attacks on
this problem take time exponential in b for most matrices K.

How, then, can the receiver solve the same problem? The answer is that
the receiver generates the public key K with a secret structure, specifically
a “hidden Goppa code” structure, that allows the receiver to decode in a
reasonable amount of time. It is conceivable that the attacker can detect the
“hidden Goppa code” structure in the public key, but no such attack is known.

8 Daniel J. Bernstein

Specifically, the receiver starts with distinct elements α1, α2, . . . , αn of the
field F2d and a secret monic degree-t irreducible polynomial g ∈ F2d [x]. The
main work for the receiver is to syndrome-decode the dt× n matrix

H =

⎛
⎜⎜⎜⎝

1/g(α1) · · · 1/g(αn)
α1/g(α1) · · · αn/g(αn)

...
. . .

...
αt−1

1 /g(α1) · · · αt−1
n /g(αn)

⎞
⎟⎟⎟⎠ ,

where each element of F2d is viewed as a column of d elements of F2 in a
standard basis of F2d . This matrix H is a “parity-check matrix for an irre-
ducible binary Goppa code,” and can be syndrome-decoded by “Patterson’s
algorithm” or by faster algorithms.

The receiver’s public key K is a scrambled version of H. Specifically, the
receiver’s secret key also includes an invertible dt × dt matrix S and an n ×
n permutation matrix P . The public key K is the product SHP . Given a
ciphertext Km = SHPm, the receiver multiplies by S−1 to obtain HPm,
decodes H to obtain Pm, and multiplies by P−1 to obtain m.

What I’ve described here is a variant, due to Niederreiter (1986), of
McEliece’s original code-based public-key encryption system. Both systems
are extremely efficient at key generation, encryption, and decryption, but—as
I mentioned earlier—have been held back by their long public keys.

See the “Code-based cryptography” and “Lattice-based cryptography”
chapters of this book for much more information about code-based cryptogra-
phy and (similar but more complicated) lattice-based cryptography, including
several systems that use shorter public keys.

2.3 A multivariate-quadratic public-key signature system

The public key in this system is a sequence P1, P2, . . . , P2b ∈ F2[w1, . . . , w4b]:
a sequence of 2b polynomials in the 4b variables w1, . . . , w4b, with coefficients
in F2 = {0, 1}. Each polynomial is required to have degree at most 2, with no
squared terms, and is represented as a sequence of 1 + 4b + 4b(4b− 1)/2 bits,
namely the coefficients of 1, w1, . . . , w4b, w1w2, w1w3, . . . , w4b−1w4b. Overall
the public key has 16b3 + 4b2 + 2b bits; e.g., 4 megabytes for b = 128.

A signature of a message m has just 6b bits: namely, 4b values w1, . . . , w4b ∈
F2 and a 2b-bit string r satisfying

H(r,m) = (P1(w1, . . . , w4b), . . . , P2b(w1, . . . , w4b)).

Here H is a standard hash function. Verifying a signature uses one evaluation
of H and roughly b3 bit operations to evaluate P1, . . . , P2b.

The critical advantage of this signature system over hash-based signature
systems is that each signature is short. Other multivariate-quadratic systems
have even shorter signatures and, in many cases, much shorter public keys.

Introduction to post-quantum cryptography 9

The basic problem faced by an attacker is to find a sequence of 4b bits
w1, . . . , w4b producing 2b specified output bits

(P1(w1, . . . , w4b), . . . , P2b(w1, . . . , w4b)).

Guessing a sequence of 4b bits is fast but has, on average, chance only 2−2b of
success. More advanced equation-solving attacks, such as “XL,” can succeed
in considerably fewer than 22b operations, but no known attacks have a rea-
sonable chance of succeeding in 2b operations for most quadratic polynomials
P1, . . . , P2b in 4b variables. The difficulty of this problem is not surprising,
given how general the problem is: every inversion problem can be rephrased
as a problem of solving multivariate quadratic equations.

How, then, can the signer solve the same problem? The answer, as in
Section 2.2, is that the signer generates the public key P1, . . . , P2b with a
secret structure, specifically an “HFEv−” structure, that allows the signer to
solve the equations in a reasonable amount of time. It is conceivable that the
attacker can detect the HFEv− structure in the public key, or in the public key
together with a series of legitimate signatures; but no such attack is known.

Fix a standard irreducible polynomial ϕ ∈ F2[t] of degree 3b. Define L as
the field F2[t]/ϕ of size 23b. The critical step in signing is finding roots of a
secret low-degree univariate polynomial over L: specifically, a polynomial in
L[x] of degree at most 2b. There are several standard algorithms that do this
in time bO(1).

The secret polynomial is chosen to have all nonzero exponents of the form
2i + 2j or 2i. If an element x ∈ L is expressed in the form x0 + x1t + · · · +
x3b−1t

3b−1, with each xi ∈ F2, then x2 = x0+x1t
2+ · · ·+x3b−1t

6b−2 and x4 =
x0+x1t

4+· · ·+x3b−1t
12b−4 and so on, so x2i+2j

is a quadratic polynomial in the
variables x0, . . . , x3b−1. Some easy extra transformations hide the structure of
this polynomial, producing the signer’s public key.

Specifically, the signer’s secret key has three components:

• An invertible 4b× 4b matrix S with coefficients in F2.
• A polynomial Q ∈ L[x, v1, v2, . . . , vb] where each term has one of the fol-

lowing six forms: �x2i+2j

with � ∈ L, 2i < 2j , 2i + 2j ≤ 2b; �x2i

vj with
� ∈ L, 2i ≤ 2b; �vivj ; �x2i

; �vj ; �. If b = 128 then there are 9446 possible
terms, each having a 384-bit coefficient �, for a total of 443 kilobytes.

• A 2b× 3b matrix T of rank 2b with coefficients in F2.

The signer computes the public key as follows. Compute a column vector
(x0, x1, . . . , x3b−1, v1, v2, . . . , vb) as S times the column vector (w1, . . . , w4b).
Inside the quotient ring L[w1, . . . , w4b]/(w2

1 − w1, . . . , w
2
4b − w4b), compute

x =
∑

xit
i and y = Q(x, v1, v2, . . . , vb). Write y as y0 + y1t + · · ·+ y3b−1t

3b−1

with each yi in F2[w1, . . . , w4b], and compute (P1, P2, . . . , P2b) as T times the
column vector (y0, y1, . . . , y3b−1).

Signing works backwards through the same construction:

10 Daniel J. Bernstein

• Starting from the desired values of P1, P2, . . . , P2b, solve the secret lin-
ear equations T (y0, y1, . . . , y3b−1) = (P1, P2, . . . , P2b) to obtain values of
(y0, y1, . . . , y3b−1). There are 2b possibilities for (y0, y1, . . . , y3b−1); choose
one of those possibilities randomly.

• Choose values v1, v2, . . . , vb ∈ F2 randomly, and substitute these val-
ues into the secret polynomial Q(x, v1, v2, . . . , vb), obtaining a polynomial
Q(x) ∈ L[x].

• Compute y = y0+y1t+· · ·+y3b−1t
3b−1 ∈ L, and solve Q(x) = y, obtaining

x ∈ L. If there are several roots x of Q(x) = y, choose one of them
randomly. If there are no roots, restart the signing process.

• Write x as x0 + x1t + · · ·+ x3b−1t
3b−1 with x0, . . . , x3b−1 ∈ F2. Solve the

secret linear equations S(w1, . . . , w4b) = (x0, . . . , x3b−1, v1, . . . , vb), obtain-
ing a signature (w1, . . . , w4b).

This is an example of a class of HFEv− constructions introduced by Patarin
in 1996. “HFE” refers to the “Hidden Field Equation” Q(x) = y. The “−” refers
to the omission of some bits: Q(x) = y is equivalent to 3b equations on bits,
but only 2b equations are published. The “v” refers to the “vinegar” variables
v1, v2, . . . , vb. Pure HFE, with no omitted bits and no vinegar variables, is
breakable in time roughly 2(lg b)2 by Gröbner-basis attacks, but HFEv− has
solidly resisted attack for more than ten years.

There are many other ways to build multivariate-quadratic public-key sys-
tems, and many interesting ideas for saving time and space, producing a huge
number of candidates for post-quantum cryptography; see the “Multivariate
public key cryptography” chapter of this book. It is hardly a surprise that
some of the fastest candidates have been broken. A recent paper by Dubois,
Fouque, Shamir, and Stern, after breaking an extremely simplified system
with no vinegar variables and with only one nonzero term in Q, leaps to the
conclusion that all multivariate-quadratic systems are dangerous:

Multivariate cryptographic schemes are very efficient but have a lot
of exploitable mathematical structure. Their security is not fully un-
derstood, and new attacks against them are found on a regular basis.
It would thus be prudent not to use them in any security-critical ap-
plications.

Presumably the same authors would recommend already avoiding 4096-bit
RSA in a pre-quantum world since 512-bit RSA has been broken, would rec-
ommend avoiding all elliptic curves since a few special elliptic curves have
been broken (clearly elliptic curves have “a lot of exploitable mathematical
structure”), and would recommend avoiding 256-bit AES since DES has been
broken (“new attacks against ciphers are found on a regular basis”).

My own recommendation is that the community continue to systematically
study the security and efficiency of cryptographic systems, so that we can
identify the highest-security systems that fit the speed and space requirements
imposed by cryptographic users.

Introduction to post-quantum cryptography 11

3 Challenges in post-quantum cryptography

Let me review the picture so far. Some cryptographic systems, such as RSA
with a four-thousand-bit key, are believed to resist attacks by large classical
computers but do not resist attacks by large quantum computers. Some alter-
natives, such as McEliece encryption with a four-million-bit key, are believed
to resist attacks by large classical computers and attacks by large quantum
computers.

So why do we need to worry now about the threat of quantum computers?
Why not continue to focus on RSA and ECDSA? If someone announces the
successful construction of a large quantum computer fifteen years from now,
why not simply switch to McEliece etc. fifteen years from now?

This section gives three answers—three important reasons that parts of
the cryptographic community are already starting to focus attention on post-
quantum cryptography:

• We need time to improve the efficiency of post-quantum cryptography.
• We need time to build confidence in post-quantum cryptography.
• We need time to improve the usability of post-quantum cryptography.

In short, we are not yet prepared for the world to switch to post-quantum
cryptography.

Maybe this preparation is unnecessary. Maybe we won’t actually need
post-quantum cryptography. Maybe nobody will ever announce the successful
construction of a large quantum computer. However, if we don’t do anything,
and if it suddenly turns out years from now that users do need post-quantum
cryptography, years of critical research time will have been lost.

3.1 Efficiency

Elliptic-curve signature systems with O(b)-bit signatures and O(b)-bit keys
appear to provide b bits of security against classical computers. State-of-the-
art signing algorithms and verification algorithms take time b2+o(1).

Can post-quantum public-key signature systems achieve similar levels of
performance? My two examples of signature systems certainly don’t qualify:
one example has signatures of length b2+o(1), and the other example has keys
of length b3+o(1). There are many other proposals for post-quantum signature
systems, but I have never seen a proposal combining O(b)-bit signatures, O(b)-
bit keys, polynomial-time signing, and polynomial-time verification.

Inefficient cryptography is an option for some users but is not an option for
a busy Internet server handling tens of thousands of clients each second. If you
make a secure web connection today to https://www.google.com, Google
redirects your browser to http://www.google.com, deliberately turning off
cryptographic protection. Google does have some cryptographically protected
web pages but apparently cannot afford to protect its most heavily used web
pages. If Google already has trouble with the slowness of today’s cryptographic

12 Daniel J. Bernstein

software, surely it will not have less trouble with the slowness of post-quantum
cryptographic software.

Constraints on space and time have always posed critical research chal-
lenges to cryptographers and will continue to pose critical research challenges
to post-quantum cryptographers. On the bright side, research in cryptogra-
phy has produced many impressive speedups, and one can reasonably hope
that increased research efforts in post-quantum cryptography will continue
to produce impressive speedups. There has already been progress in several
directions; for details, read the rest of this book!

3.2 Confidence

Merkle’s hash-tree public-key signature system and McEliece’s hidden-Goppa-
code public-key encryption system were both proposed thirty years ago and
remain essentially unscathed despite extensive cryptanalytic efforts.

Many other candidates for hash-based cryptography and code-based cryp-
tography are much newer; multivariate-quadratic cryptography and lattice-
based cryptography provide an even wider variety of new candidates for post-
quantum cryptography. Some specific proposals have been broken. Perhaps a
new system will be broken as soon as a cryptanalyst takes the time to look at
the system.

One could insist on using classic systems that have survived many years
of review. But often the user cannot afford the classic systems and is forced
to consider newer, smaller, faster systems that take advantage of more recent
research into cryptographic efficiency.

To build confidence in these systems the community needs to make sure
that cryptanalysts have taken time to search for attacks on the systems. Those
cryptanalysts, in turn, need to gain familiarity with post-quantum cryptogra-
phy and experience with post-quantum cryptanalysis.

3.3 Usability

The RSA public-key cryptosystem started as nothing more than a trapdoor
one-way function, “cube modulo n.” (Tangential historical note: The original
paper by Rivest, Shamir, and Adleman actually used large random exponents.
Rabin pointed out that small exponents such as 3 are hundreds of times faster.)

Unfortunately, one cannot simply use a trapdoor one-way function as if it
were a secure encryption function. Modern RSA encryption does not simply
cube a message modulo n; it has to first randomize and pad the message. Fur-
thermore, to handle long messages, it encrypts a short random string instead
of the message, and uses that random string as a key for a symmetric cipher
to encrypt and authenticate the original message. This infrastructure around
RSA took many years to develop, with many disasters along the way, such as
the “PKCS#1 v1.5” padding standard broken by Bleichenbacher in 1998.

Introduction to post-quantum cryptography 13

Furthermore, even if a secure encryption function has been defined and
standardized, it needs software implementations—and perhaps also hardware
implementations—suitable for integration into a wide variety of applications.
Implementors need to be careful not only to achieve correctness and speed but
also to avoid timing leaks and other side-channel leaks. A few years ago several
implementations of RSA and AES were broken by cache-timing attacks; Intel
has, as a partial solution, added AES instructions to its future CPUs.

This book describes randomization and padding techniques for some post-
quantum systems, but much more work remains to be done. Post-quantum
cryptography, like the rest of cryptography, needs complete hybrid systems
and detailed standards and high-speed leak-resistant implementations.

4 Comparison to quantum cryptography

“Quantum cryptography,” also called “quantum key distribution,” expands a
short shared key into an effectively infinite shared stream. The prerequisite
for quantum cryptography is that the users, say Alice and Bob, both know
(e.g.) 256 unpredictable secret key bits. The result of quantum cryptogra-
phy is that Alice and Bob both know a stream of (e.g.) 1012 unpredictable
secret bits that can be used to encrypt messages. The length of the output
stream increases linearly with the amount of time that Alice and Bob spend
on quantum cryptography.

This description of quantum cryptography might make “quantum cryp-
tography” sound like a synonym for “stream cipher.” The prerequisite for a
stream cipher—for example, counter-mode AES—is that Alice and Bob both
know (e.g.) 256 unpredictable secret key bits. The result of a stream cipher
is that Alice and Bob both know a stream of (e.g.) 1012 unpredictable secret
bits that can be used to encrypt messages. The length of the output stream
increases linearly with the amount of time that Alice and Bob spend on the
stream cipher.

However, the details of quantum cryptography are quite different from the
details of a stream cipher:

• A stream cipher generates the output stream as a mathematical function
of the input key. Quantum cryptography uses physical techniques for Alice
to continuously generate random secret bits and to encode those bits for
transmission to Bob.

• A stream cipher can be used to protect information sent through any num-
ber of untrusted hops on any existing network; eavesdropping fails because
the encrypted information is incomprehensible. Quantum cryptography
requires a direct fiber-optic connection between Alice’s trusted quantum-
cryptography hardware and Bob’s trusted quantum-cryptography hard-
ware; eavesdropping fails because it interrupts the communication.

• Even if a stream cipher is implemented perfectly, its security is merely
conjectural—“nobody has figured out an attack so we conjecture that no

14 Daniel J. Bernstein

attack exists.” If quantum cryptography is implemented perfectly then its
security follows from generally accepted laws of quantum mechanics.

• A modern stream cipher can run on any commonly available CPU, and
generates gigabytes of stream per second on a $200 CPU. Quantum cryp-
tography generates kilobytes of stream per second on special hardware
costing $50000.

One can reasonably argue that quantum cryptography, “locked-briefcase
cryptography,” “meet-privately-in-a-sealed-vaultcryptography,” andotherphys-
ical shields for information are part of post-quantum cryptography: they will
not be destroyed by quantum computers! But post-quantum cryptography is,
in general, a quite different topic from quantum cryptography:

• Post-quantum cryptography, like the rest of cryptography, covers a wide
range of secure-communication tasks, ranging from secret-key operations,
public-key signatures, and public-key encryption to high-level operations
such as secure electronic voting. Quantum cryptography handles only one
task, namely expanding a short shared secret into a long shared secret.

• Post-quantum cryptography, like the rest of cryptography, includes some
systems proven to be secure, but also includes many lower-cost systems
that are conjectured to be secure. Quantum cryptography rejects conjec-
tural systems—begging the question of how Alice and Bob can securely
share a secret in the first place.

• Post-quantum cryptography includes many systems that can be used for
a noticeable fraction of today’s Internet communication—Alice and Bob
need to perform some computation and send some data but do not need
any new hardware. Quantum cryptography requires new network hardware
that is, at least for the moment, impossibly expensive for the vast majority
of Internet users.

My own interests are in cryptographic techniques that can be widely deployed
across the Internet; I see tremendous potential in post-quantum cryptography
and very little hope for quantum cryptography.

To be fair I should report the views of the proponents of quantum cryp-
tography. Magiq, a company that sells quantum-cryptography hardware, has
the following statement on its web site:

Once the enormous energy boost that quantum computers are ex-
pected to provide hits the street, most encryption security standards—
and any other standard based on computational difficulty—will fall,
experts believe.

Evidently these unnamed “experts” believe—and Magiq would like you to
believe—that quantum computers will break AES, and dozens of other well-
known secret-key ciphers, and Merkle’s hash-tree signature system, and
McEliece’s hidden-Goppa-code encryption system, and Patarin’s HFEv− sig-
nature system, and NTRU, and all of the other cryptographic systems dis-
cussed in this book. Time will tell whether this belief was justified!

Quantum computing

Sean Hallgren1 and Ulrich Vollmer2

1 The Pennsylvania State University.
2 Berlin, Germany.

In this chapter we will explain how quantum algorithms work and how they
can be used to attack crypto systems. We will outline the current state of the
art of quantum algorithmic techniques that are, or might become relevant for
cryptanalysis. And give an outlook onto possible future developments.

1 Classical cryptography and quantum computing

Quantum computation challenges the dividing line for tractable versus in-
tractable problems for computation. The most significant examples for this are
efficient quantum algorithms for breaking cryptosystems which are believed
to be secure for classical computers. In 1994 Shor found quantum algorithms
for factoring and discrete log, and these can be used to break the widely used
RSA cryptosystem and Diffie-Hellman key-exchange using a quantum com-
puter. The most obvious question this raises is what cryptosystems to use
after quantum computers are built. Once a good replacement system is found
there will still issues with the logistics of changing every cryptosystem in use,
and it will take time to do so. Furthermore, the most sensitive of today’s
encrypted information should stay secure even after quantum computers are
built. This data must therefore already be encrypted with quantum resistant
cryptosystems.

Classical cryptography [12, 13] consists of problems and tools including
encryption, key distribution, digital signatures, pseudo-random number gen-
eration, zero-knowledge proofs, and one-way functions. There are many ap-
plications such as signing contracts, electronic voting, and secure encryption.
It turns out that these systems can only exist if there is some kind of com-
putational difficulty which can be used to build these systems. For example,
RSA is secure only if factoring is computationally hard for classical comput-
ers to solve. However, complexity theory does not provide the tools to prove
that an efficient algorithm does not exist for a problem. Instead, decisions
about which problems are difficult to solve are based entirely on empirical

16 Sean Hallgren and Ulrich Vollmer

evidence. Namely, if researchers have tried over a long period of time and
the problem still seems difficult, then at least it appears difficult to find an
algorithm. In order to understand which problems are difficult for quantum
computers, we must conduct a long-term extensive study of the problems by
many researchers.

Designing cryptographic schemes is a difficult task. The goal is to have
schemes which meet security requirements no matter which way an adversary
may use the system. Modern cryptography has focused on building a sound
foundation to achieve this goal. In particular, the only assumption made about
an adversary is its computational ability. Typically one assumes the adversary
has a classical computer, and is restricted to randomized polynomial time. But
if one now assumes that the adversary has a quantum computer, then which
classical cryptosystems are secure, and which are not? Quantum computation
uses rules which are new and unintuitive. Some subroutines, such as comput-
ing the quantum Fourier transform, can be performed exponentially faster
than by classical computers. However, this is not for free. The methods to
input and output the data from the Fourier transform are very restricted.
Hence, finding quantum algorithms relies on walking a fine line between using
extra power while being limited in some important ways. How do we design
new classical cryptosystems that will remain secure even in the presence of
quantum computers? Such systems would be of great importance since they
could be implemented now, but will remain secure when quantum computers
are built. Table 1 shows the current status of several cryptosystems.

Cryptosystem Broken by Quantum Algorithms?
RSA public key encryption Broken
Diffie-Hellman key-exchange Broken
Elliptic curve cryptography Broken

Buchmann-Williams key-exchange Broken
Algebraically Homomorphic Broken

McEliece public key encryption Not broken yet
NTRU public key encryption Not broken yet

Lattice-based public key encryption Not broken yet

Table 1. Current status of security of classical cryptosystems in relation to quantum
computers.

Given that the cryptosystems currently in use can be broken by quantum
computers, what would it take for people to switch to new cryptosystems
safe in a quantum world, and why hasn’t it happened yet? First of all, the
replacement systems must be efficient. There are alternative cryptosystems
such as lattice-based systems or the McEliece system, but they are currently

Quantum computing 17

too inefficient to use in practice. The second requirement is that there should
be good evidence that a new system cannot be broken by a quantum computer,
even after another decade or two of research has been done. Systems will only
satisfy this after extensive research is done on them. To complicate matters,
some of these systems are still being developed. In order to make them more
competitive with the efficiency of RSA, special cases or new variants of the
systems are being proposed. However, the special properties these systems
have that make them more efficient may also make them more vulnerable to
classical or quantum attacks.

In the remainder of this section we will give some more background on
systems which have been broken. In Section 4 the basic framework behind the
quantum algorithms that break them will be given.

1.1 Cryptosystems vulnerable to quantum computers

Public key cryptography, a central concept in cryptography, is used to protect
web transactions, and its security relies on the hardness of certain number
theoretic problems. As it turns out, number theoretic problems are also the
main place where quantum computers have been shown to have exponential
speedups. Examples of such problems include factoring and discrete log [38],
Pell’s equation [18], and computing the unit group and class group of a num-
ber field [17, 37]. The existence of these algorithms implies that a quantum
computer could break RSA, Diffie-Hellman and elliptic curve cryptography,
which are currently used, as well as potentially more secure systems such
as the Buchmann-Williams key-exchange protocol [6]. Understanding which
cryptosystems are secure against quantum computers is one of the fundamen-
tal questions in the field.

As an example, factoring is a long-studied problem and several exponen-
tial time algorithms for it are known including Lehman’s method, Pollard’s
ρ method, and Shanks’s class group method [7]. It became practically im-
portant with the invention of the RSA public-key cryptosystem in the late
1970s, and it started receiving much more attention. The security of RSA de-
pends on the assumption that factoring does not have an efficient algorithm.
Subexponential-time algorithms for it were later found [31, 34] using a con-
tinued fraction algorithm, a quadratic sieve, and elliptic curves. The number
field sieve [26, 27], found in 1989, is the best known classical algorithm for
factoring and runs in time exp(c(log n)1/3(log log n)2/3) for some constant c.
In 1994, Shor found an efficient quantum algorithm for factoring.

Finding exponential speedups via quantum algorithms has been a surpris-
ingly difficult task. The next problem solved after Shor’s algorithms was eight
years later, when a quantum algorithm for Pell’s equation [18] was found.
Given a positive non-square integer d, Pell’s equation is x2 − dy2 = 1, and
the goal is to compute a pair of integers (x, y) satisfying the equation. The
first (classical) algorithm for Pell’s equation dates back to 1000 a.d. – only Eu-
clid’s algorithm is older. Solving Pell’s equation is at least as hard as factoring,

18 Sean Hallgren and Ulrich Vollmer

and the best known classical algorithm for it is exponentially slower than the
best known factoring algorithm. In an effort to make this computational diffi-
culty useful Buchmann and Williams devised a key-exchange protocol whose
hardness is based on Pell’s equation [6]. Their goal was to create a system
that is secure even if factoring turns out to be polynomial-time solvable. The
quantum algorithm breaks the Buchmann-Williams system using a quantum
computer. Also broken are certain zero-knowledge protocols because they rely
on the computational hardness of solving Pell’s equation [5].

Most research in quantum algorithms has revolved around the hidden sub-
group problem (HSP), which will be defined in Section 4. The HSP is a prob-
lem defined on a group, and many problems reduce to it. Factoring and discrete
log reduce to the HSP when the underlying group is finite or countable. Pell’s
equation reduces to the HSP when the group is uncountable. For these cases
there are efficient quantum algorithms to solve the HSP, and hence the un-
derlying problem, because the group is abelian. Graph isomorphism reduces
to the HSP for the symmetric group, and the unique shortest lattice vector
problem is related to the HSP when the group is dihedral. These two groups
are nonabelian, and much research over the last decade has focused on try-
ing to generalize the success of the abelian HSP to the nonabelian HSP case.
There are reasons to hope that the techniques which use Fourier analysis, may
work. Some progress has been made on some cases [3, 10,23]. However, much
of what has been learned so far has been about the limitations of quantum
computers for the HSP over nonabelian groups [20].

There have been exponential speedups for a few oracle problems which
are not instances of the HSP. One example is the shifted Legendre symbol
problem [40], where the quantum algorithm is able to pick out the amount
that a function is cyclically rotated. This algorithm is able to break certain
algebraically homomorphic encryption systems. There are also speedups for
some problems from topology [1].

Finding exponential speedups remains a fundamental, important, and dif-
ficult problem. NP-Complete problems are not believed to have efficient quan-
tum algorithms [4]. The problem of finding hard problems on which to base
cryptosystems is similar: it is not believed possible to base cryptosystems on
NP-Complete problems. In this sense, finding exponential speedups and break-
ing classical cryptosystems seem related. Furthermore, understanding which
classical cryptosystems are secure against quantum attacks is a relevant and
important question. The most sensitive data which is encrypted today should
remain protected even if quantum computers are built in ten years, and believ-
ing that a cryptosystem is secure happens only after a very long and extensive
study.

1.2 Other cryptographic primitives

Pseudo-random number generation is one of the basic tools of cryptography.
A short string is stretched into a long string, and the next bit in the sequence

Quantum computing 19

must be unpredictable by any polynomial-time machine. If this is the case
then the sequence is as good as uniform, since the machine cannot detect a
difference. Since this definition is based on the computational power of the
machine, primitives must be reexamined for quantum computation.

Another central concept in cryptography is the zero-knowledge protocol.
These protocols allow a prover to convince a verifier that it knows a secret
without the verifier learning any information about the secret. In practice
this is used to allow one party to prove its identity to another by proving it
has a particular secret. For a protocol to be zero-knowledge, no information
can be revealed no matter what strategy a so-called cheating verifier follows
when interacting with the prover. Therefore, an important question is: what
happens to these classical protocols when the cheating verifier is a quantum
computer?

Watrous [41] showed that two well-known classical protocols are zero-
knowledge against quantum computers. This was difficult due to the nature
of quantum states and the technical definition of zero-knowledge. Watrous
showed that the Goldreich-Micali-Wigderson [11] graph isomorphism proto-
col is secure, and also that the graph 3-coloring protocol in [11] is secure if one
can find classical commitment schemes that are concealing against quantum
computers.

These results were recently extended to SZK, extending Watrous’s result
to protocols with honest-verifier proofs [19]. The class SZK has received much
attention in recent years [8, 15, 16, 32, 36, 39, 41]. From a complexity-theoretic
perspective SZK is very interesting. It contains many important problems
such as quadratic residuosity and non-residuosity, graph isomorphism and
non-isomorphism, as well as problems related to discrete logarithm and the
shortest and closest vector problems in lattices. These problems have the
unique property that they are not believed to be NP-hard, and yet no efficient
algorithm for them is known. These problems are also the natural candidates
for constructing public-key cryptosystems, and incidentally, they are also the
problems where one hopes to find an exponential speedup by a quantum
algorithm.

2 The computational model

Classical computing devices are at any given point in time in a state that can
be described by a single string of bits. This bit string represents the “data”
the machine operates on and the “program”, a sequence of directives for the
processing of the data by the device. The distinction between the two while
seemingly clear for the computer on our desktop is indeed somewhat artificial.

In a quantum machine the distinction is succinct. The program is again a
sequence of “gates” from a well defined finite set which is independent from
the input to the algorithm or derived from it by a classical algorithm. It is
the data where quantum parallelism sets in: At each given time, the quantum

20 Sean Hallgren and Ulrich Vollmer

device is in a “superposition” of states each of which can be represented by a
string of bits. The quantum part of the algorithm transforms all these states
at once.

The most simple model describing the physical state of a quantum machine
is finite dimensional Hilbert space. Abstracting from circumstantial aspects
of the machine, what we are interested in is its heart, the “registers” storing
the data. Quantum memory storing one quantum bit, or qubit as we will call
it in all that follows, will have to allow for a superposition of the two states
0 and 1. Hence it is two-dimensional and can be modeled by the canonical
two-dimensional Hilbert space

H = H1 = C⊕ C .

We will use the set consisting of (1, 0) and (0, 1) as the standard (computa-
tional) basis for H, and denote these vectors by |0〉, and |1〉, respectively.

Wider, n-bit registers need to be 2n-dimensional and are, consequentially,
modeled by

Hn = H⊗ · · · ⊗ H .

We use the computational basis for H to construct one for Hn. Define for bits
i1, . . . , in the vector

|i1 · · · in〉 = |i1〉 ⊗ · · · ⊗ |in〉.
These vectors with i1, . . . , in running through the set In of all n-tuples of bits
form a basis for Hn.

Once the quantum device has performed its computations we need a way
to transform its complex state back into a series of bits which will represent
the classical output of the algorithm employed. This process is called “mea-
surement” and is non-deterministic in nature.

Given the final state of the quantum machine is

v =
∑
I∈In

αI |I〉 ,

measurement yields bit strings according to a probability distribution Pv

which depends on v: For all I ∈ In the probability that I is obtained in
the measurement is

Pv(I) = |αI |2/
∑

J∈In

|αJ |2 .

This implies that our quantum algorithms should yield final quantum states
whose “amplitude” αI at a desired output I is large in absolute value relative
to the amplitudes at the other base vectors. Unless we succeed in reducing the
amplitudes at non-desired base vectors to 0, we will need to be able to check
the result of a quantum algorithm or live with some limited uncertainty about
its correctness. Cryptanalytically, this is not a problem since we can regularly
tell when an attack that uses the output of our computation was successful
or not.

Quantum computing 21

Back from data space to programs for quantum machines: Quantum sys-
tems evolve reversibly by unitary transitions. Thus the gates our quantum
machines will put the data through need to be given as unitary operators
on the state space Hn. Depending on its physical realization, a quantum ma-
chine will be able to perform a small set of such unitary transformations. More
complex transformations will need to be built out of this finite set.

The basic building blocks of our quantum algorithms will be operators
on H1 and H2 which will be extended to Hn by tensoring with the trivial
operator Id. Given an operator H on H2, we may extend it to Hn by defining

H̃ : Hn → Hn : v1 ⊗ v2 ⊗ v3 ⊗ · · · ⊗ vn �−→ H(v1 ⊗ v2)⊗ v3 ⊗ · · · ⊗ vn .

Of course, H may operate on any two consecutive positions (qubits), not just
positions 1 and 2.

Thus a program for a quantum machine is a sequence of gates from a fixed
finite set G. This sequence is computed by a (uniform) classical algorithm
starting from the input. It is also called a quantum circuit.

The set G depends on the physical features of the quantum machine we
model: each gate in the set G describes a manipulation of the quantum ma-
chine state we are able to perform. This correspondence is approximative,
and requires fault-tolerant techniques to contain the slight errors introduced
at each step.

For our purposes it is enough to know that G is chosen in such a way that
any unitary operator can be approximated by a sequence of operators in G.
These approximations may be difficult to compute, however. Furthermore, we
require that G contain with every operator also its inverse.

An example of such a gate set contains

U =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ , W =

1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, T =

(
1 0
0 eπi/4

)

(or rather all their extensions to H⊗n obtained through tensoring suitably
with Id), and their inverses.1

We measure the distance between two unitary operators—and thus also
the distance between an operator and a quantum circuit which approximates
it—by the operator norm: Two operators H1 and H2 have distance ε if H1−H2

maps the unit ball into a ball of radius ε. For this we write ‖H1 −H2‖ < ε.
The quality of approximation is additive under concatenation. For any unitary
operators H1 and H2 we have

‖H̃i −Hi‖ < εi for i = 1, 2 ⇒ ‖H̃1H̃2 −H1H2‖ < ε1 + ε2 .

1 It seems strange to include S in G when S = T 2. The reason for this is the need
to implement T fault-tolerantly which we only know how to do with the aid of S.

22 Sean Hallgren and Ulrich Vollmer

Approximation of operators which work only on one qubit is easy and
efficient. Suppose some operator H affects only one qubit. that means that
there exists a unitary operator H ′ and some k with 1 ≤ k ≤ n such that

H(|i1 · · · ik−1〉 ⊗ |ik〉 ⊗ |ik+1 · · · in〉) = |i1 · · · ik−1〉 ⊗H ′|ik〉 ⊗ |ik+1 · · · in〉

for all base vectors |I〉 = |i1 · · · in〉 with I ∈ In. Then we can efficiently
compute a sequence of gates in G which approximates H. The length of this
sequence grows quadratically with log(1/ε) where ε is the desired closeness of
approximation. Thus, it is justified to treat G as if it contains all one qubit
gates.

In order to execute classical algorithms operating on n bit memory on a
quantum machine, it is necessary to embed them reversibly in a state space
of dimension n + k with some small k > 0. It is possible to do this for the
universal classical gate NAND by using the Toffoli gate which is a doubly
controlled negation, and one auxiliary bit, cf. Figure 1.

|a

|b

|1

|a

|b

|¬(a ∧ b)

Fig. 1. Construction of the NAND gate from a doubly controlled negation—a so-
called Toffoli gate—and one auxiliary bit

The Toffoli gate itself can be constructed as a word of length 16 in gates
from the set G defined above. Moreover, we can emulate the drawing of random
bits by using the state W |0〉 which yields when measured 0 or 1 each with the
same probability.

In conclusion, we obtain for any classical algorithm which computes the
boolean function f a quantum circuit Uf which maps |I〉|0〉 onto |I〉|f(I)〉 for
all I ∈ I. The length of Uf will be proportional to the length of the classical
circuit computing f .

3 The quantum Fourier transform

The quantum Fourier transform (QFT) uses quantum parallelism for the fast
computation of the discrete Fourier transform of functions on (boxes in) Z

n. If
we succeed in encoding some desired information into the period lattice of an
efficiently computable function, then we may use QFT to extract this period
lattice.

Quantum computing 23

The typical application of the QFT is the solution of the hidden subgroup
problem (HSP). In its simplest form, this problem asks given a periodic func-
tion on Z to find its period, i.e. to find the hidden subgroup lZ of Z of smallest
index for which f is constant on the cosets a + lZ.

This can be generalized to arbitrary groups as follows. Given a group G,
a set generating it, say G = {g1, . . . , gn}, and a function f on Z

n for which
there is a normal subgroup H of G and an injective function g on G/H such
that

f(x1, . . . , xk) = g(
k∏

i=1

gxi
i mod H) .

The HSP then asks us to present a generating set of the largest such H and
the relations between its elements.

If G is Abelian, it is possible to employ QFT to compute a generating set
L for the period lattice

L =

{
(x1, . . . , xn) |

n∏
i=1

gxi
i ∈ H

}
.

Given L, all that is left to do is to compute the Smith normal form of the
matrix whose columns are the elements of L. There is a classical algorithm
for this computation which runs in time O(n3l log‖L‖2) where l = cardL and
‖L‖ denotes the maximum of all coordinates occurring in elements of L.

In order to explain how QFT is used in the solution of the HSP, we will
first define the QFT operator, and then show how to employ it in a larger
algorithm.

We begin by defining QFT on an interval of length N = 2k. For this
purpose we identify the integer i with the base vector |i〉 in Hk according to
the binary representation of i. The QFT operator is then defined by

QFTk : Hk → Hk : |x〉 �−→ 2−N/2
N−1∑
y=0

e2πixy/N |y〉 .

Proposition 1. The operator QFTk can be computed exactly in time O(k2).
It can be approximated with a priori fixed given precision in time O(k).

A proof can be found in [33].
The QFT on Z

n is obtained a n-fold tensor product of one-dimensional
QFTk with itself.

For the solution of the HSP we prepare the following state using the circuit
Uf derived from a circuit for the computation of the given function f .

24 Sean Hallgren and Ulrich Vollmer

|0〉|0〉 W⊗n

−−−→ 1
2N/2

N−1∑
x=0

|x〉|0〉 Uf−−→

1
2N/2

N−1∑
x=0

|x〉|f(x)〉 =
1

2N/2

∑
z∈f

(∑
x|f(x)=z

|x〉|z〉
)

. (1)

The amplitudes of each of the summands on the right-hand side are given by
the characteristic function of the period lattice of f (shifted by a constant
vector).

The state we obtain after applying the QFT to (1) has amplitudes of large
absolute value in those vectors |y〉 for which y seen as a point in space lies
close to a point on the lattice which is dual to a scaled version of the period
lattice of f . More precisely, y will lie close to a point on

L∗ =
{

w ∈ Z
k | Nw · x ∈ Z for all x ∈ L

}

where L is the period lattice of f .
If we return to the one-dimensional case, this means that y is close to

a integral multiple of N/l where l, we recall, is the generator of the sought
lattice lZ. Given several such multiples (in all likelihood two will suffice) we
can extract the sought l.

There are some technical considerations to take into account in this pro-
cess, one of which is the choice of a suitable N . (It should be large in compar-
ison to a bound ρ(L) on the length of all vectors in a short basis of L.) The
qualitative picture, however, is as follows.

Proposition 2. There is a probabilistic quantum algorithm with the following
properties. Let n ∈ N and L ⊆ Z

n. Suppose we are given a periodic function
f for which Uf can be efficiently computed.

Then the algorithm computes a basis of L with some constant success prob-
ability dependent only on n. It runs in time O(T (f,N) + log3

2 N) where N is
a power of 2 in O(ρ(L)(det L)3) and T (f,N) is the time required for the com-
putation of f on arguments with coordinates in 0, . . . , N − 1.

For a proof see [37].

Remark 1. The constants hidden in the O notation of the proposition seem
to depend heavily (i.e. exponentially) on the dimension k. The same is true
for the success probability. In all cryptanalytical applications, however, k is
really small, say 2.

Remark 2. Moreover, you should note that the proposition gives an upper
bound on the run-time. It is possible that the algorithm also succeeds if N
is chosen substantially smaller than the bounds given in the proposition with
corresponding effects on the run-time.

Quantum computing 25

4 The hidden subgroup problem

The problems that can be solved efficiently on a quantum computer are best
understood with reference to the framework of the hidden subgroup problem
(HSP), which is a generalization of Shor’s factoring and discrete log algo-
rithms. The HSP is defined as: given a group and a function that is constant
and distinct on cosets of some unknown subgroup, find a set of generators
for the subgroup. The main tool used in algorithms is Fourier sampling, i.e.
computing the Fourier transform and measuring, and its nice group theoretic
properties lead to the solution of the HSP when the underlying group is finite
and abelian. However, problems do not always fit directly into this group the-
oretic picture, and different methods are used to prove that the problem at
hand still can be solved. For example, the extension to Pell’s equation requires
a solution to the HSP over groups that are not finitely generated. Another
example is when a nonabelian case is reduced to the abelian case. Table 4
shows the current status of the abelian HSP.

Abelian Group G Associated Problem Quantum Algorithm?
Z

n
2 Yes

The integers Z Factoring Yes
Finite groups Discrete Log Yes
The reals R Pell’s equation Yes

The reals R
c, c a constant Unit group of number field Yes

The reals R
n, n arbitrary Unit group, general case Open

One of the main open questions in the area is to find an efficient quantum
algorithm for the HSP when the underlying group is nonabelian. The main
task in the nonabelian HSP is understanding the relationship between the
nonabelian HSP and the representation theory of the underlying group. Unlike
the abelian HSP, it is unknown how to solve this problem efficiently on a
quantum computer. It was well known for many years that a solution of when
G is the symmetric group would solve graph isomorphism, a long standing
open problem in computer science, with many applications. For this reason,
the nonabelian HSP has received much attention from researchers. However,
even though Fourier sampling was well known to be sufficient to solve the
abelian HSP, the same basic question of whether it was also sufficient to solve
the nonabelian HSP has been more difficult to understand.

A positive and a negative answer to this question were given in [21]. There
it was shown that the nonabelian HSP could be solved when the hidden sub-
group is normal, if the Fourier transform over G is efficient, and if it is possible
to compute the intersection of a set of representations. This is a direct gen-
eralization of the abelian HSP, since every subgroup of an abelian group is
normal. It was also shown that restricted Fourier sampling is not enough to

26 Sean Hallgren and Ulrich Vollmer

Nonabelian Group G Associated Problem Quantum Algorithm?
Heisenberg group Yes

Z
r
p � Zp, r constant Yes

Z
n
p � Z2, p a fixed prime Yes
Extraspecial groups Yes

↓ ?

Dihedral group Dn = Zn � Z2 Unique shortest lattice
vector

Subexponential-time

Symmetric group Sn Graph isomorphism Evidence of hardness

solve graph isomorphism, when attempting to use the well-known reduction
of graph isomorphism to the nonabelian HSP.

It was shown in [28] that Fourier sampling a polynomial number of times
cannot be used to solve graph isomorphism, and more generally, it does not
suffice to use polynomially many quantum measurements. However, a simple
information theoretic argument shows that if the algorithm instead uses quan-
tum entanglement by performing one measurement across the polynomially
many copies, then graph isomorphism can be solved. The problem is that it
is unknown how to implement such large measurements efficiently. This left
open the possibility that measurements across a small number of copies may
suffice. But it was then shown that a joint measurement across all polynomi-
ally many copies is necessary, providing good evidence that this is indeed a
hard problem [20]. The hardness of this problem was recently used in [30] to
construct a classical one-way function which is believed to be secure against
quantum computers. This is an example of a quantum inspired proposal for
quantum resistant problems, and it provides a new promising candidate for
one-way functions.

Another target for exponential speedups by quantum computation is the
unique shortest lattice vector problem. Building cryptosystems based on them
is the subject of Chapter 5 of this book. Given a set of n linearly independent
vectors in R

n, a lattice is defined as the set of integer linear combinations of
these vectors. These vectors are called a basis of the lattice, and each lattice
has an infinite number of different bases (when the dimension is greater than
one).

The LLL algorithm can efficiently find vectors in a lattice whose lengths are
within an exponential factor of the shortest vector [25], and this can be used to
factor polynomials with rational coefficients. One open question is whether the
problem of finding the shortest vector has an efficient solution when the lattice
has the extra property that the shortest vector is much shorter than the rest
of the non-parallel vectors. This problem is in NP∩CoNP for the right param-
eter ranges, making it a good target for quantum algorithms. Cryptosystems
proposed by Ajtai and Dwork [2], and also by Goldreich, Goldwasser, and
Halevi [14], have been based on the hardness of this problem. Therefore the

Quantum computing 27

problem is interesting from a complexity point of view, from a cryptographic
point of view, and it is a long standing open question in theoretical computer
science.

One of the main approaches to solving the shortest lattice vector prob-
lem is to use its connection to the HSP over the dihedral group as shown
by Regev [35]. In this approach, so called coset states are created using the
function. In the abelian case, Fourier sampling, i.e., computing the Fourier
transform and measuring the result, is enough to solve the problem. The di-
hedral group is a nonabelian group which looks close to abelian by some mea-
sures and shares the property that one coset state has information about the
subgroup, however it is unknown how to extract it efficiently. The best known
quantum algorithm is a subexponential time sieve in [24]. Unfortunately, this
algorithm provides no speedup over the best classical lattice algorithms.

4.1 The abelian HSP

Given an instance of the HSP on a finite group, the goal is to compute a set of
generators for the hidden subgroup H in a number of steps that is polynomial
in log |G|. The standard method is the following sequence of steps, based on
Simon’s algorithm and Shor’s algorithms:

Algorithm 4.1 The Standard Method for the HSP
Input: An HSP instance f : G → S.
Output: Subgroup H ⊆ G.

1: Repeat the following polynomially many times:

a. Evaluate f in superposition:

1√
|G|

∑
x∈G

|x, f(x)〉

b. Measure the second register:

1√
|H|

∑
h∈H

|k + h, f(k)〉

c. Compute the Fourier transform and measure.

2: Classically compute H from the measurement results in the first step.

Steps a–b create a random coset state, which is a uniform superposition
over a random coset of H. If not for the coset representative k, it would be
sufficient to measure, and get a random element of H. Instead, measurements
must be used that will work despite the random coset representative produced
in each iteration. Note the second register can be dropped from the notation
since it is fixed, to give the state |k + H〉.

28 Sean Hallgren and Ulrich Vollmer

When the group is abelian the quantum Fourier transform takes a coset
state to a state which is the Fourier transform of the subgroup state |H〉,
with some coset dependent phases. These phases have norm one and do not
change the resulting probability distribution. Therefore, the problem reduces
to understanding the Fourier transform of a subgroup, and this is just a sub-
group Ĥ of the group of characters Ĝ of G. Polynomially many samples gives
a set of generators for Ĥ, and from these it is possible to efficiently classically
compute a generating set for H.

Algorithms become more complicated when the underlying group is not
finite or abelian. For factoring, the underlying group is the integers Z (or from
another point of view, a finite group whose size is unknown). For Pell’s equa-
tion the group is the reals R. In these cases the standard method is used, but
finite approximations must be used for the group G and for where the function
is evaluated. For example, it is not possible to create a superposition over the
original group elements. Using a finite group and a Fourier transform over a
finite group, it must then be shown that the resulting distribution has enough
information about the subgroup and that it can be computed efficiently. For
arbitrary dimension n, the noise from using discrete approximations becomes
very bad and this is one of the reasons the problem is still open.

4.2 The nonabelian HSP

For the nonabelian case, the underlying group determines whether the stan-
dard method provides enough information to be solved. Even when it does,
the subgroup may still be difficult to compute from the samples.

It has been known for some time that polynomially many coset states have
enough information to compute the subgroup [9], or to restrict to a simpler
problem, just to determine if the subgroup is trivial or order two. That is,
using Steps a–b on k registers, create the state

|g1H〉|g2H〉 ⊗ · · · ⊗ |gkH〉,

where k is around log the group size. Then there is a joint quantum mea-
surement across all k registers (instead of acting on each one independently)
that determines whether the subgroup is trivial. Detecting trivial versus order
two subgroups follows from a simple counting argument about the number of
cosets and subgroups in the space for order two subgroups, versus the |G|k
possible cosets of the trivial subgroup. The cosets of order two subgroups span
an exponentially small fraction of the space as k grows, whereas the cosets
of the trivial subgroup always span the whole space. This holds for any finite
group.

As mentioned above, the main two cases with applications are the dihedral
group and the symmetric group. For the dihedral group computing the Fourier
transform of each register and measuring (i.e. using the standard approach)
results in enough information to compute the subgroup, but the best known

Quantum computing 29

algorithm for reconstructing H takes exponential time. For the symmetric
group, it has been shown that no measurement on less than the full n log n
set of registers will have sufficient information to compute the subgroup.

One area of research is determining what types of measurements on sets
of coset states can be used to compute the subgroup. For the dihedral case, a
sieve algorithm has been shown to take subexponential time to compute the
subgroup. It works by starting with an exponential number of coset states
and combining them two at a time to get a new one, and then repeating
this process. The result is one coset state of a special form that allows the
subgroup to be computed [24]. For the symmetric group much less is known.
A sieve algorithm has been shown not to work [29].

Some progress has been made in some cases by reducing the nonabelian
case to abelian case using classical and quantum techniques [22]. Semidirect
products have also been a good source of groups to attack. In [10] it was
shown how to solve the HSP over Z

n
p � Z2 for constant prime p, and also over

groups with smoothly solvable commutator subgroups. They use coset states
but divert from the standard method. In [3] a different approach on coset
states was used to understand the optimal measurement to extract information
about the subgroup. There the HSP is solved for Z

r
p � Zp for a fixed r. One

feature of this approach is that they show how to use entangled measurements
across r coset states to compute the subgroup. Extraspecial groups have also
been solved [23].

The nonabelian HSP remains an active research area. It represents both
generalizations of most of the successes in quantum algorithms, and may also
point to good quantum resistant problems if they are not solved.

5 Search algorithms

Given the value s of some boolean function f whose structure we cannot
access, a search algorithm finds at least one pre-image. Classically this is
only possible if we evaluate f a number of times which is proportional to the
quotient between the cardinalities N and M of domain, and f−1(s), corre-
spondingly. The ingenious quantum algorithm by Grover succeeds in lowering
the classical complexity by a factor of

√
N/M .

The algorithm in its simplest form requires a priori knowledge of M . A
slight modification allows for the determination of M in conjunction with the
search.

The algorithm can also be employed to determine whether a given value
lies in the image of f . This can be used to search for collisions of one or two
functions, i.e. to search for differing values x and y for which f(x) = f(y), or,
respectively, f(x) = g(y) if two functions f and g are given.

We now give the basic version of Grover’s algorithm.
The crucial effect of Grover’s operator G (cf. Algorithm 5.1) is to rotate

the state away from the equilibrium N−1/2
∑
|x〉 where x runs through the

30 Sean Hallgren and Ulrich Vollmer

Algorithm 5.1 Grover’s search algorithm
Input: Boolean function f : F

n
2 → F2 given by the associated operator Uf : F

n
2 ×

F2 → F
n
2 × F

s
2 : |x〉|y〉 �−→ |x〉|y ⊕ f(x)〉, and M = cardf−1(1).

Output: Some y ∈ F
n
2 with f(y) = 1.

1: If M > 3/4 · 2n, then choose y randomly and uniformly from F
n
2 and return y.

2: Compute θ satisfying sin2 θ = M/2n, and set r ←
π/(4θ)�.
3: Transform

|0〉|1〉 H⊗(n+1)

−−−−−−→ 1√
2n+1

∑
x∈F

n
2

|x〉(|0〉 − |1〉) Gr

−−→ 1√
2n+1

∑
x∈F

n
2

αx|x〉(|0〉 − |1〉),

where G = Uf · (H⊗n(2 |0〉 〈0| − 1)H⊗n) ⊗ Id.
4: Measure and output the first n bits of the result.

whole domain of f towards ω = M−1/2
∑
|y〉 where the sum is only over those

y which are mapped to 1 by f . The angle of the rotation is computed in step
2 of the algorithm. The number r of iterations in step 3 minimizes the angle
between the final state before measurement, and ω.

Run-time and success probability of the algorithm are given by the follow-
ing proposition.

Proposition 3. Suppose we are given a classical circuit consisting of no more
than K gates which computes the boolean function f : F

n
2 → F2. Let M =

cardf−1(1), and N = 2n. Then Grover’s algorithm runs in time O(K ·
√

N/M)
and succeeds in finding a pre-image of 1 with probability greater 1/4.

Proofs of this and the following propositions can be found e.g. in [33]

Remark 3. If Grover’s operator G is applied only r/l times, for some l > 1,
instead of r times as specified, then the success probability of the algorithm
drops to O(1/l2).

This remark shows that it seems crucial to know the number M of elements
in f−1(1) to find one element in it. One approach to circumvent this problem
is to guess in a binary search manner a sufficiently good approximation for M .
It is, however, also possible to apply Grover’s technique to find M directly.

Quantum counting. Successive applications of the Grover operator first
increase the amplitude of the elements in the pre-image of 1, then decrease
it when the state vector is rotated beyond ω, then increase it again when
approaching −ω, and so forth. We can employ QFT to measure the period of
this evolution. The equations in step 2 of the algorithms allow the extraction
of the cardinality of the pre-image from the obtained period.

Proposition 4. There is a quantum algorithm which computes for a boolean
function f on F

n
2 with values in F2 the cardinality M of f−1(1) in time

O((1/ε)
√

2n/(M + 1)) with error probability smaller than ε.

Quantum computing 31

Now it is clear that we can first apply the counting algorithm to a boolean
function for which cardf−1(1) is not known, and then Grover’s original algo-
rithm to actually find a pre-image of 1. Indeed, it is possible to combine these
two steps.

Quantum collision search. A special, cryptanalytically highly relevant
type of search is that of collisions of a function, i.e. the search of two arguments
yielding the same function value. Like in the classical situation, there is a time
memory trade-off which allows us to speed up such a search in comparison to
simple searches for the pre-image of a random function value.

For this purpose one selects a subsetM of the domain of the given function
f . Let M denote its cardinality. The setM is then put into memory (read-only
access suffices), and the Grover algorithm is applied to the function

g : F
n
2 → F2 : x �−→

{
1 if there is a y ∈M with x �= y and f(x) = f(y),
0 else .

Proposition 5. For all k,M ∈ N there is a quantum algorithm with the fol-
lowing properties. Suppose f is a function on F

n
2 which can be computed in

time K for which we have cardf−1(x) = M for all x. Then the algorithm
finds (with success probability larger than 1/4) two distinct x1 and x2 with
f(x1) = f(x2) in time O(K(k +

√
N/(kM))).

Remark 4. For collision search we have the same run-time success probability
trade-off we had for general quantum searches: If the run-time is shortened
by a factor c < 1, then the success probability is lowered by a factor c2.

6 Outlook

Quantum computation forces us to reexamine the cryptosystems we use. Some
systems have been broken, and other systems need to be examined for secu-
rity. Some new systems may be special cases of existing systems that are
more efficient, or they may be quantum inspired from the particular quantum
problems. In any case, it will be some time before we can feel confident that
quantum computers cannot break any given system. Given that this chapter
has been about breaking systems, we have perhaps taken a more cautious ap-
proach to what is secure. However, the rest of this book provides alternatives
which may very well be immune to quantum attacks.

Lattice based systems provide a good alternative since they are based
on a long-standing open problem for classical computation. Efforts to make
it more secure may make it a reasonable alternative. Or, it may make the
system vulnerable to classical or quantum attacks.

Another option is security assumptions coming from the hidden subgroup
problem. This has probably been the most widely studied problem for more
than a decade. It represents a generalization of most existing exponential

32 Sean Hallgren and Ulrich Vollmer

speedups by quantum computing, and a solution for the nonabelian case would
result in an efficient quantum algorithm for graph isomorphism. Based on
this hardness, it was recently suggested for use as a cryptographic primitive.
However, it is not known how to embed a trap-door yet, so this is still a open
area also. The code based systems may be related to the nonabelian HSP.

References

1. Dorit Aharonov, Vaughan Jones, and Zeph Landau. A polynomial quantum
algorithm for approximating the jones polynomial. In STOC ’06: Proceedings of
the thirty-eighth annual ACM symposium on Theory of computing, pages 427–
436, New York, NY, USA, 2006. ACM Press.

2. Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-
case/average-case equivalence. In Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing, pages 284–293, El Paso, Texas, 4–6 May
1997.

3. Dave Bacon, Andrew M. Childs, and Wim van Dam. From optimal measurement
to efficient quantum algorithms for the hidden subgroup problem over semidirect
product groups. In 46th Annual IEEE Symposium on Foundations of Computer
Science, pages 469–478, 2005.

4. Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani.
Strengths and weaknesses of quantum computing. SIAM Journal on Computing,
26(5):1510–1523, October 1997.

5. Johannes Buchmann, Markus Maurer, and Bodo Möller. Cryptography based
on number fields with large regulator. Journal de Théorie des Nombres de
Bordeaux, 12:293–307, 2000.

6. Johannes A. Buchmann and Hugh C. Williams. A key exchange system based
on real quadratic fields (extended abstract). In G. Brassard, editor, Advances in
Cryptology—CRYPTO ’89, volume 435 of Lecture Notes in Computer Science,
pages 335–343. Springer-Verlag, 1990, 20–24 August 1989.

7. Henri Cohen. A course in computational algebraic number theory. Springer-
Verlag New York, Inc., New York, NY, USA, 1993.

8. Ivan Damgård, Oded Goldreich, and Avi Wigderson. Hashing functions can sim-
plify zero-knowledge protocol design (too). Technical Report RS-94-39, BRICS,
1994.

9. Mark Ettinger, Peter Høyer, and Emanuel Knill. The quantum query complexity
of the hidden subgroup problem is polynomial. Information Processing Letters,
91(2):43–48, 2004.

10. Katalin Friedl, Gabor Ivanyos, Frederic Magniez, Miklos Santha, and Pranab
Sen. Hidden translation and orbit coset in quantum computing. In Proceedings of
the Thirty-Fifth Annual ACM Symposium on Theory of Computing, San Diego,
CA, 9–11June 2003.

11. O. Goldreich, S. Micali, and A. Widgerson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. Journal of
the ACM, 38(1):691–729, 1991.

12. Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge Univer-
sity Press, New York, NY, USA, 2001.

Quantum computing 33

13. Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, New York, NY, USA, 2004.

14. Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems
from lattice reduction problems. In Burton S. Kaliski, editor, Advances in Cryp-
tology – CRYPTO ’97, volume 1294 of LNCS, pages 112–131. SV, 1997.

15. Oded Goldreich, Amit Sahai, and Salil Vadhan. Honest-verifier statistical zero-
knowledge equals general statistical zero-knowledge. In Proceedings of the 30th
Annual ACM Symposium on Theory of Computing, pages 399–408, 1998.

16. Oded Goldreich and Salil Vadhan. Comparing entropies in statistical zero knowl-
edge with applications to the structure of SZK. In Proceedings of 14th Annual
IEEE Conference on Computational Complexity, 1999.

17. Sean Hallgren. Fast quantum algorithms for computing the unit group and class
group of a number field. In Proceedings of the 37th Annual ACM Symposium
on Theory of Computing, pages 468–474, 2005.

18. Sean Hallgren. Polynomial-time quantum algorithms for Pell’s equation and the
principal ideal problem. Journal of the ACM, 54(1):1–19, 2007.

19. Sean Hallgren, Alexandra Kolla, Pranab Sen, and Shengyu Zhang. Making clas-
sical honest verifier zero knowledge protocols secure against quantum attacks.
Automata, Languages and Programming, pages 592–603, 2008.

20. Sean Hallgren, Cristopher Moore, Martin Rötteler, Alexander Russell, and
Pranab Sen. Limitations of quantum coset states for graph isomorphism. In
STOC ’06: Proceedings of the 38th Annual ACM Symposium on Theory of Com-
puting, pages 604–617, New York, NY, USA, 2006. ACM Press.

21. Sean Hallgren, Alexander Russell, and Amnon Ta-Shma. Normal subgroup
reconstruction and quantum computation using group representations. SIAM
Journal on Computing, 32(4):916–934, 2003.

22. Gábor Ivanyos, Frédéric Magniez, and Miklos Santha. Efficient quantum al-
gorithms for some instances of the non-abelian hidden subgroup problem. In
Proceedings of the Thirteenth Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 263–270, Heraklion, Crete Island, Greece, 4-6July 2001.

23. Gábor Ivanyos, Luc Sanselme, and Miklos Santha. An efficient quantum algo-
rithm for the hidden subgroup problem in extraspecial groups, 2007.

24. Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. SIAM Journal on Computing, 35(1):170–188, 2005.

25. A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with
rational coefficients. Mathematische Annalen, 261(4):515–534, 1982.

26. A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard. The number
field sieve. In Proceedings of the Twenty Second Annual ACM Symposium on
Theory of Computing, pages 564–572, Baltimore, Maryland, 14–16 May 1990.

27. A.K. Lenstra and H.W. Lenstra, editors. The Development of the Number Field
Sieve, volume 1544 of Lecture Notes in Mathematics. Springer–Verlag, 1993.

28. Cristopher Moore, Alexander Russell, and Leonard Schulman. The symmetric
group defies strong Fourier sampling. In Proceedings of the Symposium on the
Foundations of Computer Science (FOCS’05), pages 479–488, 2005.

29. Cristopher Moore, Alexander Russell, and Piotr Sniady. On the impossibility of
a quantum sieve algorithm for graph isomorphism. In STOC ’07: Proceedings
of the thirty-ninth annual ACM symposium on Theory of computing, pages 536–
545, New York, NY, USA, 2007. ACM Press.

30. Cristopher Moore, Alexander Russell, and Umesh Vazirani. A classical one-way
function to confound quantum adversaries. quant-ph/0701115, 2007.

34 Sean Hallgren and Ulrich Vollmer

31. M.A. Morrison and J. Brillhart. A method of factoring and the factorization of
F7. Mathematics of Computation, 29:183–205, 1975.

32. Minh-Huyen Nguyen, Shien Jin Ong, and Salil Vadhan. Statistical zero-
knowledge arguments for NP from any one-way function. In Proceedings of
the 47th Annual IEEE Symposium on Foundations of Computer Science, pages
3–14, 2006.

33. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambirdge University Press, 2000.

34. C. Pomerance. Factoring. In C. Pomerance, editor, Cryptology and Computa-
tional Number Theory, volume 42 of Proceedings of Symposia in Applied Math-
ematics, pages 27–47. American Mathematical Society, 1990.

35. Oded Regev. Quantum computation and lattice problems. In Proceedings of
the 43rd Symposium on Foundations of Computer Science, pages 520–529, Los
Alamitos, 2002.

36. Amit Sahai and Salil Vadhan. A complete promise problem for statistical zero
knowledge. Journal of the ACM, 50(2):196–249, 2003.

37. Arthur Schmidt and Ulrich Vollmer. Polynomial time quantum algorithm for
the computation of the unit group of a number field. In Proceedings of the 37th
Annual ACM Symposium on Theory of Computing, pages 475–480, 2005.

38. Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–
1509, 1997.

39. Salil Pravin Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD thesis,
Massachusetts Institute of Technology, 1999.

40. Wim van Dam, Sean Hallgren, and Lawrence Ip. Quantum algorithms for some
hidden shift problems. SIAM Journal on Computing, 36(3):763–778, 2006.

41. John Watrous. Zero-knowledge against quantum attacks. In Proceedings of the
38th Annual ACM Symposium on Theory of Computing, pages 296–305, 2006.

Hash-based Digital Signature Schemes

Johannes Buchmann1, Erik Dahmen1, and Michael Szydlo2

1 Department of Computer Science, Technische Universität Darmstadt.
2 Akamai Technologies, Cambridge.

Digital signatures have become a key technology for making the Internet and
other IT-infrastructures secure. Digital signatures provide authenticity, in-
tegrity, and non-repudiation of data. Digital signatures are widely used in
identification and authentication protocols. Therefore, the existence of secure
digital signature algorithms is crucial for maintaining IT-security.

The digital signature algorithms that are used in practice today are RSA
[31], DSA [11], and ECDSA [15]. They are not quantum immune since their
security relies on the difficulty of factoring large composite integers and com-
puting discrete logarithms.

Hash-based digital signature schemes which are presented in this chapter
offer a very interesting alternative. Like any other digital signature scheme,
hash-based digital signature schemes use a cryptographic hash function. Their
security relies on the collision resistance of that hash function. In fact, we will
present hash-based digital signature schemes that are secure if and only if the
underlying hash function is collision resistant. The existence of collision resis-
tant hash functions can be viewed as a minimum requirement for the existence
of a digital signature scheme that can sign many documents with one private
key. That signature scheme maps documents (arbitrarily long bit strings) to
digital signatures (bit strings of fixed length). This shows that digital signature
algorithms are in fact hash functions. Those hash functions must be collision
resistant: if it were possible to construct two documents with the same digital
signature, the signature scheme could no longer be considered secure. This
argument shows that there exist hash-based digital signature schemes as long
as there exists any digital signature scheme that can sign multiple documents
using one private key. As a consequence, hash-based signature schemes are
the most important post-quantum signature candidates. Although there is no
proof of their quantum computer resistance, their security requirements are
minimal. Also, each new cryptographic hash function yields a new hash-based
signature scheme. So the construction of secure signature schemes is indepen-
dent of hard algorithmic problems in number theory or algebra. Constructions
from symmetric cryptography suffice. This leads to another big advantage of

36 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

hash-based signature schemes. The underlying hash function can by chosen
in view of the hardware and software resources available. For example, if the
signature scheme is to be implemented on a chip that already implements
AES, an AES based hash function can be used, thereby reducing the code
size of the signature scheme and optimizing its running time.

Hash-based signature schemes were invented by Ralph Merkle [23]. Merkle
started from one-time signature schemes, in particular that of Lamport and
Diffie [18]. One-time signatures are even more fundamental. The construc-
tion of a secure one-time signature scheme only requires a one-way function.
As shown by Rompel [28], one-way functions are necessary and sufficient for
secure digital signatures. So one-time signature schemes are really the most
fundamental type of digital signature schemes. However, they have a severe
disadvantage. One key-pair consisting of a secret signature key and a public
verification key can only be used to sign and verify a single document. This
is inadequate for most applications. It was the idea of Merkle to use a hash
tree that reduces the validity of many one-time verification keys (the leaves
of the hash tree) to the validity of one public key (the root of the hash tree).
The initial construction of Merkle was not sufficiently efficient, in particu-
lar in comparison to the RSA signature scheme. However in the meantime,
many improvements have been found. Now hash-based signatures are the most
promising alternative to RSA and elliptic curve signature schemes.

1 Hash based one-time signature schemes

This chapter explains signature schemes whose security is only based on the
collision resistance of a cryptographic hash function. Those schemes are par-
ticularly good candidates for the post quantum era.

1.1 Lamport–Diffie one-time signature scheme

The Lamport–Diffie one-time signature scheme (LD-OTS) was proposed in
[18]. Let n be a positive integer, the security parameter of LD-OTS. LD-OTS
uses a one-way function

f : {0, 1}n → {0, 1}n,

and a cryptographic hash function

g : {0, 1}∗ → {0, 1}n.

LD-OTS key pair generation. The signature key X of LD-OTS consists of 2n
bit strings of length n chosen uniformly at random,

X =
(
xn−1[0], xn−1[1], . . . , x1[0], x1[1], x0[0], x0[1]

)
∈R {0, 1}(n,2n). (1)

Hash-based Digital Signature Schemes 37

The LD-OTS verification key Y is

Y =
(
yn−1[0], yn−1[1], . . . , y1[0], y1[1], y0[0], y0[1]

)
∈ {0, 1}(n,2n), (2)

where
yi[j] = f

(
xi[j]

)
, 0 ≤ i ≤ n− 1, j = 0, 1. (3)

So LD-OTS key generation requires 2n evaluations of f . The signature and
verification keys are 2n bit strings of length n.

LD-OTS signature generation. A document M ∈ {0, 1}∗ is signed using
LD-OTS with a signature key X as in Equation (1). Let g(M) = d =
(dn−1, . . . , d0) be the message digest of M . Then the LD-OTS signature is

σ =
(
xn−1[dn−1], . . . , x1[d1], x0[d0]

)
∈ {0, 1}(n,n). (4)

This signature is a sequence of n bit strings, each of length n. They are chosen
as a function of the message digest d. The ith bit string in this signature is
xi[0] if the ith bit in d is 0 and xi[1], otherwise. Signing requires no evaluations
of f . The length of the signature is n2.

LD-OTS Verification. To verify a signature σ = (σn−1, . . . , σ0) of M as in
(4), the verifier calculates the message digest d = (dn−1, . . . , d0). Then she
checks whether

(
f(σn−1), . . . , f(σ0)

)
=
(
yn−1[dn−1], . . . , y0[d0]

)
. (5)

Signature verification requires n evaluations of f .

Example 1. Let n = 3, f : {0, 1}3 → {0, 1}3, x �→ x + 1 mod 8, and let d =
(1, 0, 1) be the hash value of a message M . We choose the signature key

X =
(
x2[0], x2[1], x1[0], x1[1], x0[0], x0[1]

)
=

⎛
⎝

1 0 0 1 1 0
1 0 1 1 0 1
1 0 1 0 1 0

⎞
⎠ ∈ {0, 1}(3,6)

and compute the corresponding verification key

Y =
(
y2[0], y2[1], y1[0], y1[1], y0[0], y0[1]

)
=

⎛
⎝

0 0 1 1 1 0
0 0 0 1 1 1
0 1 0 1 0 1

⎞
⎠ ∈ {0, 1}(3,6).

The signature of d = (1, 0, 1) is

σ = (σ2, σ1, σ0) = (x2[1], x1[0], x0[1]) =

⎛
⎝

0 0 0
0 1 1
0 1 0

⎞
⎠ ∈ {0, 1}(3,3)

38 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

Example 2. We give an example to illustrate why the signature keys of LD-
OTS must be used only once. Let n = 4. Suppose the signer signs two mes-
sages with digests d1 = (1, 0, 1, 1) and d2 = (1, 1, 1, 0) using the same signa-
ture key. The signatures of these digests are σ1 = (x3[1], x2[0], x1[1], x0[1])
and σ2 = (x3[1], x2[1], x1[1], x0[0]), respectively. Then an attacker knows
x3[1], x2[0], x2[1], x1[1], x0[0], x0[1] from the signature key. She can use this
information to generate valid signatures for messages with digests d3 =
(1, 0, 1, 0) and d4 = (1, 1, 1, 1). This example can be generalized to arbitrary
security parameters n. Also, the attacker is only able to generate valid sig-
natures for certain digests. As long as the hash function used to compute
the message digest is cryptographically secure, she cannot find appropriate
messages.

1.2 Winternitz one-time signature scheme

While the key and signature generation of LD-OTS is very efficient, the size of
the signature is quite large. The Winternitz OTS (W-OTS), which is explained
in this section, produces significantly shorter signatures. The idea is to use one
string in the one-time signature key to simultaneously sign several bits in the
message digest. In literature this proposal appears first in Merkle’s thesis [23].
Merkle writes that the method was suggested to him by Winternitz in 1979
as a generalization of the Merkle OTS also described in [23]. However, to the
best of the authors knowledge, the Winternitz OTS was for the first time
described in full detail in [10]. Like LD-OTS, W-OTS uses a one-way function

f : {0, 1}n → {0, 1}n

and a cryptographic hash function

g : {0, 1}∗ → {0, 1}n.

W-OTS key pair generation. A Winternitz parameter w ≥ 2 is selected which
is the number of bits to be signed simultaneously. Then

t1 =
⌈ n

w

⌉
, t2 =

⌈
�log2 t1	+ 1 + w

w

⌉
, t = t1 + t2. (6)

are determined. The signature key X is

X =
(
xt−1, . . . , x1, x0

)
∈R {0, 1}(n,t). (7)

where the bit strings xi are chosen uniformly at random.
The verification key Y is computed by applying f to each bit string in the

signature key 2w − 1 times. So we have

Y =
(
yt−1, . . . , y1, y0

)
∈ {0, 1}(n,t), (8)

where
yi = f2w−1

(
xi

)
, 0 ≤ i ≤ t− 1. (9)

Key generation requires t(2w − 1) evaluations of f and the lengths of the
signature and verification key are t · n bits, respectively.

Hash-based Digital Signature Schemes 39

W-OTS signature generation. A message M with message digest g(M) = d =
(dn−1, . . . , d0) is signed. First, a minimum number of zeros is prepended to d
such that the length of d is divisible by w. The extended string d is split into
t1 bit strings bt−1, . . . , bt−t1 of length w. Then

d = bt−1‖ . . . ‖bt−t1 , (10)

where ‖ denotes concatenation. Next, the bit strings bi are identified with
integers in {0, 1, . . . , 2w − 1} and the checksum

c =
t−1∑

i=t−t1

(2w − bi) (11)

is calculated. Since c ≤ t12w, the length of the binary representation of c is
less than

�log2 t12w	+ 1 = �log2 t1	+ w + 1. (12)

A minimum number of zeros is prepended to this binary representation such
that the length of the extended string is divisible by w. That extended string
is split into t2 blocks bt2−1, . . . , b0 of length w. Then

c = bt2−1|| . . . ||b0.

Finally the signature of M is computed as

σ =
(
f bt−1(xt−1), . . . , f b1(x1), f b0(x0)

)
. (13)

In the worst case, signature generation requires t(2w − 1) evaluations of f .
The W-OTS signature size is t · n.

W-OTS verification. For the verification of the signature σ = (σt−1, . . . , σ0)
the bit strings bt−1, . . . , b0 are calculated as explained in the previous section.
Then we check if

(
f2w−1−bt−1(σn−1), . . . , f2w−1−b0(σ0)

)
=
(
yn−1, . . . , y0

)
. (14)

If the signature is valid, then σi = f bi(xi) and therefore

f2w−1−bi(σi) = f2w−1(xi) = yi (15)

holds for i = t − 1, . . . , 0. In the worst case, signature verification requires
t(2w − 1) evaluations of f .

Example 3. Let n = 3, w = 2, f : {0, 1}3 → {0, 1}3, x �→ x + 1 mod 8 and
d = (1, 0, 0). We get t1 = 2, t2 = 2, and t = 4. We choose the signature key as

X =
(
x3, x2, x1, x0

)
=

⎛
⎝

1 0 0 1
1 0 1 1
1 0 1 0

⎞
⎠ ∈ {0, 1}(3,4)

40 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

and compute the verification key by applying f three times to the bit strings
in X:

Y =
(
y3, y2, y1, y0

)
=

⎛
⎝

0 0 1 0
1 1 1 0
0 1 0 1

⎞
⎠ ∈ {0, 1}(3,4).

Prepending one zero to d and splitting the extended string into blocks of length
2 yields d = 01||00. The checksum c is c = (4− 1) + (4− 0) = 7. Prepending
one zero to the binary representation of c and splitting the extended string
into blocks of length 2 yields c = 01||11. The signature is

σ = (σ3, σ2, σ1, σ0) =
(
f(x3), x2, f(x1), f3(x0)

)
=

⎛
⎝

0 0 1 1
0 0 0 1
0 0 0 1

⎞
⎠ ∈ {0, 1}(3,4).

The signature is verified by computing

(
f2(σ3), f3(σ2), f2(σ1), σ0

)
=

⎛
⎝

0 0 1 0
1 1 1 0
0 1 0 1

⎞
⎠ ∈ {0, 1}(3,4)

and comparing it with the verification key Y .

Example 4. We give an example to illustrate why the signature keys of the W-
OTS must be used only once. Let w = 2. Suppose the signer signs two messages
with digests d1 = (1, 0, 0) and d2 = (1, 1, 1) using the same signature key.
The signatures of these digests are σ1 =

(
f(x3), x2, f(x1), f3(x0)

)
and σ2 =(

f(x3), f3(x2), f(x1), x0

)
, respectively. The attacker can use this information

to compute the signatures for messages with digest d3 = (1, 1, 0) given as
σ3 =

(
f(x3), f2(x2), f(x1), f(x0)

)
Again this example can be generalized to

arbitrary security parameters n. Also, the attacker can only produce valid
signatures for certain digests. As long as the hash function used to compute
the message digest is cryptographically secure, he cannot find appropriate
messages.

2 Merkle’s tree authentication scheme

The one-time signature schemes introduced in the last section are inadequate
for most practical situations since each key pair can only be used for one
signature. In 1979 Ralph Merkle proposed a solution to this problem [23].
His idea is to use a complete binary hash tree to reduce the validity of an
arbitrary but fixed number of one time verification keys to the validity of one
single public key, the root of the hash tree.

The Merkle signature scheme (MSS) works with any cryptographic hash
function and any one-time signature scheme. For the explanation we let g :
{0, 1}∗ → {0, 1}n be a cryptographic hash function. We also assume that a
one-time signature scheme has been selected.

Hash-based Digital Signature Schemes 41

MSS key pair generation

The signer selects H ∈ N, H ≥ 2. Then the key pair to be generated will be
able to sign/verify 2H documents. Note that this is an important difference
to signature schemes such as RSA and ECDSA, where potentially arbitrarily
many documents can be signed/verified with one key pair. However, in practice
this number is also limited by the devices on which the signature is generated
or by some policy. The signer generates 2H one-time key pairs (Xj , Yj), 0 ≤
j < 2H . Here Xj is the signature key and Yj is the verification key. They
are both bit strings. The leaves of the Merkle tree are the digests g(Yj),
0 ≤ j < 2H . The inner nodes of the Merkle tree are computed according
to the following construction rule: a parent node is the hash value of the
concatenation of its left and right children. The MSS public key is the root
of the Merkle tree. The MSS private key is the sequence of the 2H one-time
signature keys. To be more precise, denote the nodes in the Merkle tree by
νh[j], 0 ≤ j < 2H−h, where h ∈ {0, . . . , H} is the height of the node. Then

νh[j] = g(νh−1[2j]‖νh−1[2j + 1]), 1 ≤ h ≤ H, 0 ≤ j < 2H−h. (16)

Figure 1 shows an example for H = 3.

ν0[0] ν0[1] ν0[2] ν0[3] ν0[4] ν0[5] ν0[6] ν0[7]

ν1[0] ν1[1] ν1[2] ν1[3]

ν2 [0] ν2[1]

ν3[0]

X0 X1 X2 X3 X4 X5 X6 X7

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

Fig. 1. A Merkle tree of height H = 3

MSS key pair generation requires the computation of 2H one-time key
pairs and 2H+1 − 1 evaluations of the hash function.

Efficient root computation

In order to compute the root of the Merkle tree it is not necessary to store the
full hash tree. Instead, the treehash algorithm 2.1 is applied. The basic idea
of this algorithm is to successively compute leaves and, whenever possible,

42 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

compute their parents. To store nodes, the treehash algorithm uses a stack
Stack equipped with the usual push and pop operations. Input of the tree
hash algorithm is the height H of the Merkle tree. Output is the root of
the Merkle tree, i.e. the MSS public key. Algorithm 2.1 uses the subroutine
Leafcalc(j) to compute the jth leaf. The Leafcalc(j) routine computes
the jth one-time key pair and computes the jth leaf from the jth one-time
verification key as described above.

Algorithm 2.1 Treehash
Input: Height H ≥ 2
Output: Root of the Merkle tree

1. for j = 0, . . . , 2H − 1 do
a) Compute the jth leaf: Node1 ← Leafcalc(j)
b) While Node1 has the same height as the top node on Stack do

i. Pop the top node from the stack: Node2 ← Stack.pop()
ii. Compute their parent node: Node1 ← g(Node2‖Node1)

c) Push the parent node on the stack: Stack.push(Node1)
2. Let R be the single node stored on the stack: R ← Stack.pop()
3. Return R

Figure 2 shows the order in which the nodes of a Merkle tree are computed
by the treehash algorithm. In this example, the maximum number of nodes
that are stored on the stack is 3. This happens after node 11 is generated
and pushed on the stack. In general, the treehash algorithm needs to store at
most H so-called tail nodes on the stack. To compute the root of a Merkle
tree of height H, the treehash algorithm requires 2H calls of the Leafcalc

subroutine, and 2H − 1 evaluations of the hash function.

1 2 4 5 8 9 11 12

3 6 10 13

7 14

15

Fig. 2. The treehash algorithm

MSS signature generation

MSS uses the one-time signature keys successively for the signature genera-
tion. To sign a message M , the signer first computes the n-bit digest d = g(M).
Then he generates the one-time signature σOTS of the digest using the sth

Hash-based Digital Signature Schemes 43

one-time signature key Xs, s ∈ {0, . . . , 2H − 1}. The Merkle signature will
contain this one-time signature and the corresponding one-time verification
key Ys. To prove the authenticity of Ys to the verifier, the signer also includes
the index s as well as an authentication path for the verification key Ys which
is a sequence As = (a0, . . . , aH−1) of nodes in the Merkle tree. This index and
the authentication path allow the verifier to construct a path from the leaf
g(Ys) to the root of the Merkle tree. Node h in the authentication path is the
sibling of the height h node on the path from leaf g(Ys) to the Merkle tree
root:

ah =
{

νh[s/2h − 1] , if �s/2h	 ≡ 1 mod 2
νh[s/2h + 1] , if �s/2h	 ≡ 0 mod 2 (17)

for h = 0, . . . H − 1. Figure 3 shows an example for s = 3. So the sth Merkle
signature is

σs =
(
s, σOTS, Ys, (a0, . . . , aH−1)

)
(18)

a0 g(Y3)

a1

a2

X3

Y3 d

OTS σOTS

Fig. 3. Merkle signature generation for s = 3. Dashed nodes denote the authenti-
cation path for leaf g(Y3). Arrows indicate the path from leaf g(Y3) to the root.

MSS signature verification

Verification of the Merkle signature from the previous section consists of two
steps. In the first step, the verifier uses the one-time verification key Ys to
verify the one-time signature σOTS of the digest d by means of the verification
algorithm of the respective one-time signature scheme. In the second step
the verifier validates the authenticity of the one-time verification key Ys by
constructing the path (p0, . . . , pH) from the sth leaf g(Ys) to the root of the
Merkle tree. He uses the index s and the authentication path (a0, . . . , aH−1)
and applies the following construction.

44 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

ph =
{

g(ah−1||ph−1) , if �s/2h−1	 ≡ 1 mod 2
g(ph−1||ah−1) , if �s/2h−1	 ≡ 0 mod 2 (19)

for h = 1, . . . H and p0 = g(Ys). The index s is used for deciding in which
order the authentication path nodes and the nodes on the path from leaf
g(Ys) to the Merkle tree root are to be concatenated. The authentication of
the one-time verification key Ys is successful if and only if pH equals the public
key.

3 One-time key-pair generation using an PRNG

According to the description of MSS from Section 2, the MSS private key
consists of 2H one-time signature keys. Storing such a huge amount of data
is not feasible for most practical applications. As suggested in [3], space can
be saved by using a deterministic pseudo random number generator (PRNG)
and storing only the seed of that PRNG. Then each one-time signature key
must be generated twice, once for the MSS public key generation and once
during the signing phase.

In the following, let PRNG be a cryptographically secure pseudo random
number generator that on input an n-bit seed Seedin outputs a random num-
ber Rand and an updated seed Seedout, both of bit length n.

PRNG : {0, 1}n → {0, 1}n × {0, 1}n

Seedin �→ (Rand,Seedout)
(20)

MSS key pair generation using an PRNG

We explain how MSS key-pair generation using a PRNG works. The first step
is to choose an n-bit seed Seed0 uniformly at random. For the generation of
the one-time signature keys we use a sequence of seeds SeedOtsj , 0 ≤ j < 2H .
They are computed iteratively using

(SeedOtsj ,Seedj+1) = PRNG(Seedj), 0 ≤ j < 2H . (21)

Here SeedOtsj is used to calculate the jth one-time signature key.
For example, in the case of W-OTS (see Section 1.2) the jth signature key

is Xj = (xt−1, . . . , x0). The t bit strings of length n in this signature key are
generated using SeedOtsj .

(xi,SeedOtsj) = PRNG(SeedOtsj), i = t− 1, . . . , 0 (22)

The seed SeedOtsj is updated during each call to the PRNG. This shows
that in order to calculate the signature key Xj only knowledge of Seedj

is necessary. When SeedOtsj is computed, the new seed Seedj+1 for the

Hash-based Digital Signature Schemes 45

generation of the signature key Xj+1 is also determined. Figure 4 visualizes
the one-time signature key generation using an PRNG.

If this method is used, the MSS private key is initially Seed0. Its length
is n. It is replaced by the seeds Seedj+1 determined during the generation of
signature key Xj .

PRNG

PRNGPRNG

PRNGPRNGPRNG

PRNGPRNG

PRNG

x0

xt−1

x0

xt−1

x0

xt−1

SEEDOTS2H−1SEEDOTS1

SEEDOTS1

SEEDOTS1
SEEDOTS0

SEEDOTS0

SEEDOTS0

SEED2H−1SEED1

SEED0

SEEDOTS2H−1

SEEDOTS2H−1

Fig. 4. One-time signature key generation using an PRNG

MSS signature generation using an PRNG

In contrast to the original MSS signature generation, the one-time signature
key must be computed before the signature is generated. When the signature
key is computed the seed is updated for the next signature.

Forward security

In addition to reducing the private key size, using a PRNG for the one-time
signature key generation has another benefit. It makes MSS forward secure as
long as PRNG is forward secure which means that calculating previous seeds
from the actual seed is infeasible. Forward security of the signature scheme
means that all signatures issued before a revocation remain valid. MSS is
forward secure, since the actual MSS private key can only be used to generate
one-time signature keys for upcoming signatures but not to forge previous.

46 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

4 Authentication path computation

In this chapter we will present a variety of techniques for traversal of Merkle
trees of height H. The use of the techniques is transparent to a verifier, who
will not need to know how a set of outputs were generated, but only that they
are correct. Therefore, the technique can be employed in any construction
for which the generation and output of authentication paths for consecutive
leaves is required.

The first traversal algorithm is structurally very simple and allows for
various tradeoffs between storage and computation. For one choice of param-
eters, the total space required is bounded by 1.5H2/ log H hash values, and
the worst-case computational effort is 2H/ log H tree node computations per
output.

The next Merkle tree-traversal algorithm has a better space and time
complexity than the previously known algorithms. Specifically, the algorithm
requires computation of at most 2H tree nodes per round and requires storage
of less than 3H node values. We also prove that this complexity is optimal in
the sense that there can be no Merkle Tree traversal algorithm which requires
both less than O(H) time and less than O(H) space.

In the analysis of the first two algorithms, the computation of a leaf and
an inner node are each counted as a single elementary operation1.

The third Merkle tree-traversal algorithm has the same space and time
complexity as the second. However it has a significant constant factor im-
provement and was designed for practical implementation. It distinguishes
between leaf computations and the computation of inner nodes. To traverse a
tree of height H it roughly requires the computation of H/2 leaves and 3H/2
inner nodes.

4.1 The Classic Traversal

The challenge of Merkle tree traversal is to ensure that all node values are
ready when needed, but are computed in a manner which conserves space
and time. To motivate the new algorithms, we first discuss what the average
per-round computation is expected to be, and review the classic Merkle tree
traversal.

Average Costs. Each node in the tree is eventually part of an authentication
path, so one useful measure is the total cost of computing each node value
exactly once. There are 2H−h right (respectively, left) nodes at height h, and
if computed independently, each costs 2h+1− 1 operations. Rounding up, this
is 2H+1 = 2N operations, or two per round. Adding together the costs for
each height h (0 ≤ h < H), we expect, on average, 2H = 2 log(N) operations
per round to be required.
1 This differs from the measurement of total computational cost, which includes,

e.g., the scheduling algorithm itself.

Hash-based Digital Signature Schemes 47

Three Components. As with a digital signature scheme, the tree-traversal al-
gorithms consists of three components: key generation, output, and verifica-
tion. During key generation, the first authentication path and some upcoming
authentication node values are computed.

The output phase consists of N rounds, one for each leaf s ∈ {0, . . . , N−1}.
During round s, the authentication path for the sth leaf, Authi, i = 0, . . . , H−
1 is output. Additionally, the algorithm’s state is modified in order to prepare
for future outputs.

The verification phase is identical to the traditional verification phase for
Merkle trees described in Section 2.

Notation. In addition to denoting the current authentication nodes Authh,
we need some notation to describe the stacks used to compute upcoming
needed nodes. Define Stackh to be an object which contains a stack of node
values as in the description of the treehash algorithm in Section 2, Algorithm
2.1. Stackh.initialize and Stackh.update will be methods to setup and incre-
mentally execute treehash.

Algorithm presentation

Key Generation and Setup. The main task of key generation is to compute and
publish the root value. This is a direct application of the treehash algorithm
described in Section 2. In the process of this computation, every node value
is computed, and, it is important to record the initial values Authi, as well
as the upcoming values for each of the Authi.

If we denote the jth node at height h by νh[j], we have Authh = νh[1]
(these are right nodes). The “upcoming” authentication node at height h is
νh[0] (these are left nodes). These node values are used to initialize Stackh

to be in the state of the treehash algorithm having completed.

Algorithm 4.1 Key-Gen and Setup
1. Initial Authentication Nodes For each h ∈ {0, 1, . . . H − 1}:

Calculate Authh = νh[1].
2. Initial Next Nodes For each h ∈ {0, 1, . . . H − 1}:

Setup Stackh with the single node value Authh = νh[0].
3. Public Key Calculate and publish tree root, νH [0].

Output and Update. Merkle’s tree traversal algorithm runs one instance of
the treehash algorithm for each height h to compute the next authentication
node value for that level. Every 2h rounds, the authentication path will shift
to the right at level h, thus requiring a new node (its sibling) as the height h
authentication node.

48 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

At each round the state of the treehash algorithm is updated with two
units of computation. After 2h rounds this node value computation will be
completed, and a new instance of treehash begins for the next authentication
node at that level.

To specify how to refresh the Auth nodes, we observe how to easily de-
termine which heights need updating: height h needs updating if and only if
2h divides s + 1 evenly, where s ∈ {0, . . . , N − 1} denotes the current round.
Furthermore, we note that at round s + 1 + 2h, the authentication path will
pass though the (s + 1 + 2h)/2hth node at height h. Thus, its sibling’s value,
(the new required upcoming Authh) is determined from the 2h leaf values
starting from leaf number (s + 1 + 2h)⊕ 2h, where ⊕ denotes bitwise XOR.

In this language, we summarize Merkle’s classic traversal algorithm in
Algorithm 4.2.

Algorithm 4.2 Classic Merkle Tree Traversal
1. Set s = 0.
2. Output:
• For each h ∈ [0, H − 1] output Authh.
3. Refresh Auth Nodes:

For all h such that 2h divides s + 1:
• Set Authh be the sole node value in Stackh.
• Set startnode = (s + 1 + 2h) ⊕ 2h.
• Stackh.initialize(startnode, h).
4. Build Stacks:

For all h ∈ [0, H − 1]:
• Stackh.update(2). (Each stack receives two updates)
5. Loop:
• Set s = s + 1.
• If s < 2H go to Step 2.

4.2 Fractal Merkle Tree Traversal

The term “fractal” was chosen due to the focus on many smaller binary trees
within the larger structure of the Merkle tree.

The crux of this algorithm is the selection of which node values to compute
and retain at each step of the output algorithm. We describe this selection by
using a collection of subtrees of fixed height h. We begin with some notation
and then provide the intuition for the algorithm.

Notation. Starting with a Merkle tree Tree of height H, we introduce further
notation to deal with subtrees. First we choose a subtree height h < H. We
let the altitude of a node ν in Tree be the length of the path from ν to a leaf
of Tree (therefore, the altitude of a leaf of Tree is zero). Consider a node ν

Hash-based Digital Signature Schemes 49

with altitude at least h. We define the h-subtree at ν to be the unique subtree
in Tree which has ν as its root and which has height h. For simplicity in
the suite, we assume h is a divisor of H, and let the ratio, L = H/h, be the
number of levels of subtrees. We say that an h-subtree at ν is “at level i” when
it has altitude ih for some i ∈ {1, 2, . . . H}. For each i, there are 2H−ih such
h-subtrees at level i.

We say that a series of h-subtrees Treei (i = 1 . . . L) is a stacked series
of h-subtrees, if for all i < L the root of Treei is a leaf of Treei+1. We
illustrate the subtree notation and provide a visualization of a stacked series
of h-subtrees in Figure 5.

Fig. 5. (Left) The height of the Merkle tree is H, and thus, the number of leaves
is N = 2H . The height of each subtree is h. The altitude A(t1) and A(t2) of the
subtrees t1 and t2 is marked. (Right) Instead of storing all tree nodes, we store a
smaller set - those within the stacked subtrees. The leaf whose pre-image will be
output next is contained in the lowest-most subtree; the entire authentication path
is contained in the stacked set of subtrees.

Existing and Desired Subtrees

Static view. As previously mentioned, we store some portion of the node val-
ues, and update what values are stored over time. Specifically, during any
point of the output phase, there will exist a series of stacked existing sub-
trees, as in Figure 2. We say that we place a pebble on a node ν of the tree
Tree when we store this node. There are always L such subtrees Existi for
each i ∈ {1, . . . L}, with pebbles on each of their nodes (except their roots).
By design, for any leaf in Exist1, the corresponding authentication path is
completely contained in the stacked set of existing subtrees.

Dynamic view. Apart from the above set of existing subtrees, which contain
the next required authentication path, we will have a set of desired subtrees.
If the root of the tree Existi has index a, according to the ordering of the
height-ih nodes, then Desirei is defined to be the h-subtree with index a + 1

50 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

(provided that a < 2H−i·h − 1). In case a = 2H−i·h − 1, then Existi is the
last subtree at this level, and there is no corresponding desired subtree. In
particular, there is never a desired subtree at level L. The left part of Figure 6
depicts the adjacent existing and desired subtrees.

As the name suggests, we need to compute the pebbles in the desired sub-
trees. This is accomplished by adapting an application of the treehash algo-
rithm (Section 2, Algorithm 2.1) to the root of Desirei. For these purposes,
the treehash algorithm is altered to save the pebbles needed for Desirei,
rather than discarding them, and secondly to terminate one round early, never
actually computing the root. Using this variant of treehash, we see that each
desired subtree being computed has a tail of saved intermediate pebbles. We
depict this dynamic computation in the right part of Figure 6, which shows
partially completed subtrees and their associated tails.

Fig. 6. (Left) The grey subtrees correspond to the existing subtrees (as in figure 5)
while the white subtrees correspond to the desired subtrees. As the existing sub-
trees are used up, the desired subtrees are gradually constructed. (Right) The figure
shows the set of desired subtrees from the previous figure, but with grey portions
corresponding to nodes that have been computed and dotted lines corresponding to
pebbles in the tail.

Algorithm Intuition

We now can present intuition for the main algorithm, and explain why the
existing subtrees Existi will always be available.

Overview. The goal of the traversal is to sequentially output authentication
paths. By design, the existing subtrees should always contain the next au-
thentication path to be output, while the desired subtrees contain more and
more completed pebbles with each round, until the existing subtree expires.

Hash-based Digital Signature Schemes 51

When Existi is used in an output for the last time, we say that it dies. At
that time, the adjacent subtree, Desirei will need to have been completed,
i.e., have values assigned to all its nodes but its root (since the latter node
is already part of the parent tree.) The tree Existi is then reincarnated as
Desirei. First all the old pebbles of Existi are discarded; then the pebbles of
Desirei (and their associated values) taken by Existi. (Once this occurs, the
computation of the new and adjacent subtree Desirei will be initiated.) This
way, if one can ensure that the pebbles on trees Desirei are always computed
on time, one can see that there will always be completed existing subtrees
Existi.
Modifying the treehash algorithm. As mentioned above, our tool used to com-
pute the desired tree is a modified version of the classic treehash algorithm
applied to the root of Desirei. This version differs in that (1) it stops the
algorithm one round earlier (thereby skipping the root calculation), and (2)
every pebble of height greater than ih is saved into the tree Desirei. For pur-
poses of counting, we won’t consider such saved pebbles as part of the proper
tail.
Amortizing the computations. For a particular level i, we recall that the com-
putational cost for tree Desirei is 2 · 2ih − 2, as we omit the calculation of
the root. At the same time, we know that Existi will serve for 2ih output
rounds. We amortize the computation of Desirei over this period, by simply
computing two iterations of treehash each round. In fact, Desirei will be
ready before it is needed, exactly 1 round in advance!

Thus, for each level, allocating 2 computational units ensures that the
desired trees are completed on time. The total computation per round is thus
2(L− 1).

Solution and Algorithm Presentation

Three phases. We now describe more precisely the main algorithm. There are
three phases, the key generation phase; the output phase; and the verification
phase. During the key generation phase (which may be performed offline by
a relatively powerful computer), the root of the tree is computed and output,
taking the role of a public key. Additionally, the iterative output phase needs
some setup, namely the computation of pebbles on the initial existing subtrees.
These are stored on the computer performing the output phase.

The output phase consists of a number of rounds. During round s, the
authentication path of the sth leaf is output. In addition, some number of
pebbles are discarded and some number of pebbles are computed, in order to
prepare for future outputs.

The verification phase is identical to the traditional verification phase for
Merkle trees and has been described above. We remark again that the outputs
the algorithm generates will be indistinguishable from the outputs generated
by a traditional algorithm. Therefore, we do not detail the verification phase,
but merely the key generation phase and output phase.

52 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

Key Generation. First, the pebbles of the left-most set of stacked existing
subtrees are computed and stored. Each associated pebble has a value, a
position, and a height. In addition, a list of desired subtrees is created, one for
each level i < L, each initialized with an empty stack for use in the modified
treehash algorithm.

Recalling the indexing of the leaves, indexed by s ∈ {0, 1, . . . N − 1}, we
initialize a counter Desirei.position to be 2ih, indicating which Merkle tree
leaf is to be computed next.

Algorithm 4.3 Key-Gen and Setup
1. Initial Subtrees For each i ∈ {1, 2, . . . L}:
• Calculate all (non-root) pebbles in existing subtree at level i.
• Create new empty desired subtree at each level i (except for i = L),

with leaf position initialized to 2ih.
2. Public Key Calculate and publish tree root.

Output and Update Phase. Each round of the execution phase consists of the
following portions: generating an output, death and reincarnation of existing
subtrees, and growing desired subtrees.

At round s, the output consists of the authentication path associated to
the sth leaf. The pebbles for this authentication path will be contained in the
existing subtrees.

When the last authentication path requiring pebbles from a given existing
subtree has been output, then the subtree is no longer useful, and we say that
it “dies.” By then, the corresponding desired subtree has been completed, and
the recently died existing subtree “reincarnates” as this completed desired
subtree. Notice that a new subtree at level i is needed once every 2ih rounds,
and so once per 2ih rounds the pebbles in the existing tree are discarded. More
technically, at round s, s = 0 (mod 2ih) the pebbles in the old tree Existi

are discarded; the completed tree Desirei becomes the new tree Existi; and
a new, empty desired subtree is created.

In the last step we grow each desired subtree that is not yet completed a
little bit. More specifically, we apply two computational units to the new or
already started invocations of the treehash algorithm. We concisely present
this algorithm as follows:

Time and Space Analysis

Time. As presented above, the algorithm allocates 2 computational units to
each desired subtree. Here, a computational unit is defined to be either a call
to Leafcalc, or the computation of a hash value. Since there are at most
L− 1 desired subtrees, the total computational cost per round is

Tmax = 2(L− 1) < 2H/h. (23)

Hash-based Digital Signature Schemes 53

Algorithm 4.4 Stratified Merkle Tree Traversal
1. Set s = 0.
2. Output Authentication Path for leaf number s.
3. Next Subtree For each i ∈ {1, 2, . . . L} for which Existi is no longer needed,

i.e, s = 0 (mod 2hi):
• Remove Pebbles in Existi.
• Rename tree Desirei as tree Existi.
• Create new, empty tree Desirei (if s + 2hi < 2H).
4. Grow Subtrees For each i ∈ {1, 2, . . . h}: Grow tree Desirei by applying 2

units to the modified treehash algorithm (unless Desirei is completed).
5. Increment s and loop back to step 2 (while s < 2H).

Space. The total amount of space required by the algorithm, or equivalently,
the number of available pebbles required, may be bounded by simply counting
the contributions from (1) the existing subtrees, (2) the desired subtrees, and
(3) the tails.

First, there are L existing subtrees and up to L− 1 desired subtrees, and
each of these contains up to 2h+1 − 2 pebbles, since we do not store the
roots. Additionally, the tail associated to a desired subtree at level i > 1
contains at most h · i + 1 pebbles. If we count only the pebbles in the tail
which do not belong to the desired subtree, then this “proper” tail contains
at most h(i− 1) + 1 pebbles. Adding these contributions, we obtain the sum
(2L− 1)(2h+1 − 2) + h

∑L−2
i=1 i + 1 , and thus the bound:

Spacemax ≤ (2L− 1)(2h+1 − 2) + L− 2 + h(L− 2)(L− 1)/2. (24)

A marginally worse bound is simpler to write:

Spacemax < 2L 2h+1 + H L/2. (25)

Trade-offs. The solution just analyzed presents us with a trade-off between
time and space. In general, the larger the subtrees are, the faster the algorithm
will run, but the larger the space requirement will be. The parameter affecting
the space and time in this trade-off is h; in terms of h the computational cost
is below 2H/h, the space required is bounded above by 2L 2h+1 + H L/2.
Alternatively, and in terms of h, the space is bounded above by 2H 2h+1/h+
H2/2h.

Low Space Solution. If one is interested in parameters requiring little space,
there is an optimal h, due to the fact that for very small h, the number
of tail pebbles increases significantly (when H2/2h becomes large). An ap-
proximation of this value is h = log H. One could find the exact value by
differentiating the expression for the space: 2H 2h+1/h + H2/2h. For this
choice of h = log H = log log N , we obtain

Tmax =
2H

log H
. (26)

54 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

Spacemax ≤
5
2
· H2

log H
. (27)

These results are interesting because they asymptotically improve Merkle’s
result from Section 4.1 with respect to both space and time. Merkle’s approach
required Tmax = 2H and Spacemax ≈ H2/2.

Additional Savings

We now return to the main algorithm, and explain how a small technical mod-
ification will improve the constants in the space bound, ultimately yielding
the claimed result.

Although this modification does not affect the complexity class of either
the space or time costs, it is of practical interest as it nearly halves the space
bound in certain cases. It is presented after the main exposition in order
to retain the original simplicity, as this analysis is slightly more technical.
The modification is based on two observations: (1) There may be pebbles in
existing subtrees which are no longer useful, and (2) The desired subtrees are
always in a state of partial completion. In fact, we have found that pebbles
in an existing subtree may be discarded nearly as fast as pebbles are entered
into the corresponding desired subtree. The modifications are as follows:

1. Discard pebbles in the trees Existi as soon as they will never again be
required.

2. Omit the first application of 2 units to the modified treehash algorithm.

We note that with the second modification, the desired subtrees still complete,
just in time. With these small changes, for all levels i < L, the number of peb-
bles contained in both Existi, and Desirei can be bounded by the following
expression.

Space
Existi

+ Space
Desirei

≤ 2ih+1 − 2 + (h− 2). (28)

This is nearly half of the previous bound of 2 · (2ih+1 − 2). We remark here
that the quantity h− 2 measures the maximum number of pebbles contained
in Desirei exceeding the number of pebbles contained in Existi which have
been discarded. Using the estimate (28), we revise the space bound computed
in the previous section to be

Spacemax ≤ (L)(2h+1− 2)+ (L− 1)(h− 2)+L− 2+h(L− 2)(L− 1)/2. (29)

We again round this up to obtain a simpler bound.

Spacemax < L 2h+1H L/2. (30)

Specializing to the choice h = log H, we improve the above result to

Spacemax ≤
3
2
· H2

log H
. (31)

by reducing the constant from 5/2 to 3/2.

Hash-based Digital Signature Schemes 55

Proof of Space Bound. Here we prove the assertion of Equation (28) which
states for any level i the number of pebbles in the Existi plus the number of
pebbles in the Desirei is less than 2 ·2hi−2+(h−2). This basic observation
reflects the fact that the desired subtree can grow only slightly faster than the
existing subtree shrinks. Without loss of generality, in order to simplify the
exposition, we do not specify the subtree indices, and restrict our attention
to the first existing-desired subtree pair at a given level i.

The first modification ensures that pebbles are returned more continuously
than previously, so we quantify this. Subtree Existi, has 2h leaves, and as
each leaf is no longer required, neither may be some interior nodes above it.
These leaves are finished at rounds 2(i−1)ha − 1 for a ∈ {1, . . . 2h}. We may
determine the number of pebbles returned at these times by observing that a
leaf is returned every single round, a pebble at height i h+1 every two rounds,
one at height i h + 2 every four rounds, etc. We are interested in the number
returned at all times up to the time 2(i−1)ha−1; this is the sum of the greatest
integer functions:

A + [A/2] + [A/4] + [A/8] + . . . + [A/2h]

Writing a in binary notation a = a0 + 21a1 + 22a2 + . . . + 2hah, this sum is
also

a0(21 − 1) + a1 · (22 − 1) + a2 · (23 − 1) + . . . + ah(2h+1 − 1).

The cost to calculate the corresponding pebbles in Desirei may also be
calculated with a similar expression. Using the fact that a height h0 node
needs 2h0+1 − 1 units to compute, we see that the desired subtree requires

a0(2(i−1)h+1 − 1) + a1(2 · 2(i−1)h+2 − 1) + . . . + ah(2 · 2ih+1 − 1)

computational units to place those same pebbles. This cost is equal to 2 ·
2(i−1)h · a − z, where z denotes the number of nonzero digits in the binary
expansion of a.

At time 2(i−1) ha − 1, a total of 2 · 2(i−1) ha − 2 units of computation
has been applied to Desirei, (factoring in our 1 round delay). Noting that
2(i−1) h − 1 more rounds may pass before Existi loses any more pebbles, we
see that the maximal number of pebbles during this interval must be realized
at the very end of this interval. At this point in time, the desired subtree
has computed exactly the pebbles that have been removed from the existing
tree, plus whatever additional pebbles it can compute with its remaining 2 ·
2ih− 2 + z− 2 computational units. The next pebble, (a leaf) costs 2 · 2ih− 1
which leaves z−3 computational units. Even if all of these units result in new
pebbles, the total extra is still less than or equal to 1 + z − 3. Since z ≤ h,
this number of extra pebbles is bounded by h− 2, as claimed, and Equation
(28) is proved.

56 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

4.3 Merkle Tree Traversal in Log Space and Time

Let us make some observations about the classic traversal algorithm from
Section 4.1. We see that with the classic algorithm above, up to H instances
of the treehash algorithm may be concurrently active, one for each height less
than H. One can conceptualize them as H processes running in parallel, each
requiring also a certain amount of space for the “tail nodes” of the treehash
algorithm, and receiving a budget of two hash value computations per round,
clearly enough to complete the 2h+1− 1 hash computations required over the
2h available rounds.

Because the stack employed by treehash may contain up to h + 1 node
values, we are only guaranteed a space bound of 1+2+· · ·+H. The possibility
of so many tail nodes is the source of the Ω(H2/2) space complexity in the
classic algorithm.

Considering that for the larger h, the treehash calculations have many
rounds to complete, it appears that it might be wasteful to save so many
intermediate nodes at once. Our idea is to schedule the concurrent treehash
calculations differently, so that at any given round s ∈ {0, . . . , 2H − 1}, the
associated stacks are mostly empty. We chose a schedule which generally fa-
vors computation of upcoming authentication nodes Authh for lower h, (be-
cause they are required sooner), but delays beginning of a new instance of
the treehash algorithm slightly, waiting until all stacks Stacki are partially
completed, containing no tail nodes of height less than h.

This delay, was motivated by the observation that in general, if the com-
putation of two nodes at the same height in different treehash stacks are
computed serially, rather than in parallel, less space will be used. Informally,
we call the delay in starting new stack computations “zipping up the tails”.
We will need to prove the fact, which is no longer obvious, that the upcoming
needed nodes will always be ready in time.

The New Traversal Algorithm

In this section we describe the new scheduling algorithm. Comparing to the
classic traversal algorithm, the only difference will be in how the budget of
2H hash function evaluations will be allocated among the potentially H con-
current treehash processes.

Define Stackh.low to be the height of the lowest node in Stackh, except
in two cases: if the stack is empty Stackh.low is defined to be h, and if the
treehash algorithm has completed Stackh.low is defined to be ∞.

Using the idea of zipping up the tails, there is more than one way to invent
a scheduling algorithm which will take advantage of this savings. The one we
present here is not optimal, but it is simple to describe. Additional practical
improvements are discussed in Section 4.5.

This version can be concisely described as follows. The upcoming needed
authentication nodes are computed as in the classic traversal, but the various

Hash-based Digital Signature Schemes 57

Algorithm 4.5 Logarithmic Merkle Tree Traversal
1. Set s = 0.
2. Output:
• For each h ∈ [0, H − 1] output Authh.
3. Refresh Auth Nodes:

For all h such that 2h divides s + 1:
• Set Authh be the sole node value in Stackh.
• Set startnode = (s + 1 + 2h) ⊕ 2h.
• Stackh.initialize(startnode, h).
4. Build Stacks:

Repeat the following 2H − 1 times:
• Let lmin be the minimum of Stackh.low.
• Let focus be the least h so Stackh.low = lmin.
• Stackfocus.update.
5. Loop:
• Set s = s + 1.
• If s < 2H go to Step 2.

stacks do not all receive equal attention. Each treehash instance can be char-
acterized as being either not started, partially completed, or completed.

Our schedule prefers to complete Stackh for the lowest h values first,
unless another stack has a lower tail node. We express this preference by
defining lmin be the minimum of the h values Stackh.low, then choosing to
focus our attention on the smallest level h attaining this minimum. (setting
Stackh.low =∞ for completed stacks effectively skips them over).

In other words, all stacks must be completed to a stage where there are
no tail nodes at height h or less before we start a new Stackh treehash
computation. The final algorithm is summarized in Algorithm 4.5.

Correctness and Analysis

In this section we show that our computational budget of 2H − 1 is indeed
sufficient to complete every Stackh computation before it is required as an
authentication node. We also show that the space required for hash values is
less than 3H.

Nodes are Computed on Time. As presented above, the algorithm allocates
exactly a budget of 2H − 1 computational units per round to spend updating
the h stacks. Here, a computational unit is defined to be either a call to
Leafcalc, or the computation of a hash value. We do not model any extra
expense due to complex leaf calculations.

To prove this, we focus on a given height h, and consider the period starting
from the time Stackh is created and ending at the time when the upcoming
authentication node (denoted Needh here) is required to be completed. This
is not immediately clear, due to the complicated scheduling algorithm. Our

58 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

approach to prove that Needh is completed on time is to showing that the
total budget over this period exceeds the cost of all nodes computed within
this period which can be computed before Needh.

The node Needh itself costs only 2h+1−1 units, a tractable amount given
that there are 2h rounds between the time Stackh is created, and the time
by which Needh must be completed. However, a non trivial calculation is
required, since in addition to the resources required by Needh, many other
nodes compete for the total budget of 2H2h computational units available
in this period. These nodes include all the future needed nodes Needi, (i <
h), for lower levels. Finally there may be a partial contribution to a node
Needi, i > h, so that its stack contains no low nodes by the time Needh is
computed.

It is easy to count the number of such needed nodes in the interval, and
we know the cost of each one. As for the contributions to higher stacks, we at
least know that the cost to raise any low node to height h must be less than
2h+1 − 1 (the total cost of a height h node). We summarize these quantities
and costs in the following figure.

Table 1. Nodes built during 2h rounds for Needh.

Node Type Quantity Cost each

Needh 1 2h+1 − 1

Needh−1 2 2h − 1
...

...
...

Needk 2h−k 2k+1 − 1
...

...
...

Need0 2h 1

Tail 1 ≤ 2h+1 − 2

We proceed to tally up the total cost incurred during the interval. Notice
that the row beginning Need0 requires a total of 2h+1 computational units.
For every other row in the node chart, the number of nodes of a given type
multiplied by the cost per node is less than 2h+1. There are h + 1 such rows,
so the total cost of all nodes represented in the chart is

TotalCosth < (h + 2)2h. (32)

For heights h ≤ H − 2, it is clear that this total cost is less than 2H2H . It is
also true for the remaining case of h = H − 1, because there are no tail nodes
in this case.

We conclude that, as claimed, the budget of 2H − 1 units per round is
indeed always sufficient to prepare Needh on time, for any 0 ≤ h < H.

Hash-based Digital Signature Schemes 59

Space is Bounded by 3H. Our motivation leading to this relatively complex
scheduling is to use as little space as possible. To prove this, we simply add
up the quantities of each kind of node. We know there are always H nodes
Authh. Let C < H be the number of completed nodes Needh.

#Authi + #Needi = H + C. (33)

We must finally consider the number of tail nodes in the Stackh. As for
these, we observe that since a Stackh never becomes active until all nodes in
“higher” stacks are of height at least h, there can never be two distinct stacks,
each containing a node of the same height. Furthermore, recalling algorithm
treehash, we know there is at most one height for which a stack has two node
values. In all, there is at most one tail node at each height (0 ≤ h ≤ H − 3),
plus up to one additional tail node per non-completed stack. Thus

#Tail ≤ H − 2 + (H − C). (34)

Adding all types of nodes we obtain:

#Authi + #Needi + #Tail ≤ 3H − 2. (35)

This proves the assertion. There are at most 3H − 2 stored nodes.

4.4 Asymptotic Optimality Result

An interesting optimality result states that a traversal algorithm can never
beat both time O(log(N)) and space O(log(N)). It is clear that at least H−2
nodes are required for the treehash algorithm, so our task is essentially to
show that if space is limited by any constant multiple of log(N), then the
computational complexity must be Ω(log(N)). Let us be clear that this theo-
rem does not quantify the constants. Clearly, with greater space, computation
time can be reduced.

Theorem 1. Suppose that there is a Merkle tree traversal algorithm for which
the space is bounded by α log(N). Then there exists some constant β so that
the time required is at least β log(N).

The theorem simply states that it is not possible to reduce space complexity
below logarithmic without increasing the time complexity beyond logarithmic!

The proof of this technical statement is found in the upcoming subsection,
but we will briefly describe the approach here. We consider only right nodes
for the proof. We divide all right nodes into two groups: those which must be
computed (at a cost of 2h+1−1), and those which have been saved from some
earlier calculation. The proof assumes a sub-logarithmic time complexity and
derives a contradiction.

The more nodes in the second category, the faster the traversal can go.
However, such a large quantity of nodes would be required to be saved in order

60 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

to reduce the time complexity to sub-logarithmic, that the average number of
saved node values would have to exceed a linear amount! The rather technical
proof presented next uses a certain sequence of subtrees to formulate the
contradiction.

We now begin the technical proof of Theorem 1. This will be a proof by
contradiction. We assume that the time complexity is sub logarithmic, and
show that this is incompatible with the assumption that the space complexity
is O(log(N)). Our strategy to produce a contradiction is to find a bound on
some linear combination of the average time and the average amount of space
consumed.

Notation. The theorem is an asymptotic statement, so we will be considering
trees of height H = log(N), for large H. We need to consider L levels of
subtrees of height k, where kL = H. Within the main tree, the roots of these
subtrees will be at heights k, 2 · k, 3 · k . . . H. We say that the subtree is at
level i if its root is at height (i + 1)k. This subtree notation is similar to that
used in Section 4.2.

Note that we will only need to consider right nodes to complete our ar-
gument. Recall that during a complete tree traversal every single right node
is eventually output as part of the authentication data. This prompts us to
categorize the right nodes in three classes.

1. Those already present after the key generation: free nodes.
2. Those explicitly calculated (e.g. with treehash): computed nodes.
3. Those retained from another node’s calculation (e.g from another node’s

treehash): saved nodes.

Notice how type 2 nodes require computational effort, whereas type 1 and
type 3 nodes require some period of storage. We need further notation to
conveniently reason about these nodes. Let ai denote the number of level i
subtrees which contain at least 1 non-root computed (right) node. Similarly,
let bi denote the number of level i subtrees which contain zero computed nodes.
Just by counting the total number of level i subtrees we have the relation.

ai + bi = N/2(i+1)k. (36)

Computational costs. Let us tally the cost of some of the computed nodes.
There are ai subtrees containing a node of type 2, which must be of height at
least ik. Each such node will cost at least 2ik+1 − 1 operations to compute.
Rounding down, we find a simple lower bound for the cost of the nodes at
level i.

Cost >
L−1∑
i=0

(ai2ik). (37)

Storage costs. Let us tally the lifespans of some of the retained nodes. Mea-
suring units of Space × Rounds is natural when considering average space
consumed. In general, a saved node, S, results from a calculation of some

Hash-based Digital Signature Schemes 61

computed node C, say, located at height h. We know that S has been pro-
duced before C is even needed, and S will never become an authentication
node before C is discarded. We conclude that such a node S must therefore
be stored in memory for at least 2h rounds.

Even (most of) the free nodes at height h remain in memory for at least
2h+1 rounds. In fact, there can be at most one exception: the first right node
at level h.

Now consider one of the bi subtrees at level i containing only free or stored
nodes. Except for the leftmost subtree at each level, which may contain a free
node waiting in memory less than 2(i+1)k rounds, every other node in this
subtree takes up space for at least 2(i+1)k rounds. There are 2k − 1 nodes in
a subtree and thus we find a simple lower bound on the Space× Rounds.

Space× Rounds ≥
L−1∑
i=0

(bi − 1)(2k − 1)2(i+1)k. (38)

Note that the (bi − 1) term reflects the possible omission of the leftmost
level i subtree.

Mixed Bounds. We can now use simple algebra with Equations (36), (37), and
(38) to yield combined bounds. First the cost is related to the bi, which is then
related to a space bound.

2kCost >

L−1∑
i=0

ai2(i+1)k =
L−1∑
i=0

N − 2(i+1)kbi. (39)

As series of similar algebraic manipulations finally yield (somewhat weaker)
very useful bounds.

2kCost +
L−1∑
i=0

2(i+1)kbi > NL. (40)

2kCost +
L−1∑
i=0

2(i+1)k

2k−1
+

Space× Rounds
2k−1

> NL (41)

2kCost + 2N +
Space× Rounds

2k−1
> NL (42)

2kAverageCost +
AverageSpace

2k−1
> (L− 2) ≥ L

2
(43)

k2k+1AverageCost +
k

2k−2
AverageSpace >

L

2
· 2k = H. (44)

This last bound on the sum of average cost and space requirements will allow
us to find a contradiction.

62 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

Proof by Contradiction. Let us assume the opposite of the statement of Theo-
rem 1. Then there is some α such that the space is bounded above by α log(N).
Secondly, the time complexity is supposed to be sub-logarithmic, so for every
small β the time required is less than β log(N) for sufficiently large N .

With these assumptions we are now able to choose a useful value of k. We
pick k to be large enough so that α > 1/k2k+3. We also choose β to be less
than 1/k2k+2. With these choices we obtain two relations.

k2k+1AverageCost <
H

2
(45)

k/2k−2AverageSpace <
H

2
(46)

By adding these two last equations, we contradict Equation (44).
QED.

4.5 Improvement of the Log Traversal Algorithm

In this section we describe improvements of the algorithm described in Sec-
tion 4.3 which are very useful for practical implementations. The main dif-
ferences are the following. Since left authentication nodes can be computed
much cheaper than right nodes, the computation of left and right authenti-
cation nodes is done differently. In many cases the number of expensive leaf
computations is reduced. Instead of using a separate stack for each instance
of the treehash algorithm one shared stack is used. Input for the algorithm is
an index s ∈ {0, 1, . . . , 2H − 2}. The algorithm determines the authentication
path Auth = (Auth0, . . . ,AuthH−1) for leaf s + 1.

As before, we denote the nodes in the Merkle tree by νh[j], where h =
H, . . . , 0 denotes the height of the node in the tree of height H. Leaves have
height 0 and the root has height H. MSS uses a cryptographic hash function
g : {0, 1}∗ → {0, 1}n.

The algorithm determines τ = max{h : 2h|(s + 1)} which is the height of
the first ancestor of the sth leaf which is a left child. If leaf s is a left child
itself, then τ = 0. Figure 7 shows an example.

s = 3

Right node

Left node

τ = 2

Fig. 7. The height of the first ancestor of leaf s that is a left child is τ = 2. The
dashed nodes denote the authentication path for leaf s. The arrows indicate the path
from leaf s to the root.

Hash-based Digital Signature Schemes 63

The value τ is used to determine on which heights the authentication path
for leaf s+1 requires new nodes. The authentication path for leaf s+1 requires
new right authentication nodes on heights h = 0, . . . , τ − 1 and one new left
authentication node on height τ .

Computing left and right authentication nodes

Computing left nodes. As explained above, we require the left node Authτ for
the next authentication path. If τ = 0, then we set Auth0 to Leafcalc(s).
Let τ > 0. Then leaf s is a right child. Also, Authτ−1 is the left child of
Authτ . We assume that the right child of Authτ is stored in Keepτ−1. Then
the new node Authτ is computed as

Authτ = g
(
Authτ−1‖Keepτ−1

)
. (47)

This requires only one hash evaluation. We also explain how Keep is updated.
If �s/2τ+1	 = 0 (mod 2), i.e. if the ancestor on height τ + 1 is a left child,
then Authτ is a right node and we store it in Keepτ .

Computing right nodes. Unlike authentication nodes that are left children,
right authentication nodes are computed from scratch, i.e. starting from the
leaves. This is because none of their child nodes were used in previous authen-
tication paths. As before we use the treehash algorithm (Section 2, Algorithm
2.1) for this task.

We use two different methods for computing right nodes. To distinguish
those cases we select a positive integer K ≥ 2 such that H−K is even. Suppose
that we wish to compute a right node on height h. If H −K ≤ h ≤ H − 2,
then the right node on height h is calculated by Retainh.pop() which pops
the top element from a stack Retainh. That stack has been filled with the
right nodes νh[3], . . . , νh[2H−h − 1] during MSS key generation. This is very
useful since the nodes close to the root are expensive to compute.

For the computation of a right node on height h with h < H − K we
use an instance Treehashh of the treehash algorithm. It is allowed to store
one node. Initially, during MSS key generation, the second right node νh[3]
is stored in Treehashh. The treehash instances all share one stack. When it
comes to determining a right authentication node on height h this is simply
done by Treehashh.pop() for h = 0, . . . ,min{H − K − 1, τ − 1}. Then all
treehash instances for heights h = 0, . . . ,min{H−K−1, τ −1} are initialized
for the computation of the next right node. The index of the leaf they have
to begin with is s + 1 + 3 · 2h and the initialization is done using the method
Treehashh.initialize(s+1+3 ·2h). Then the algorithm updates the treehash
instances using the Treehashh.update() method. One update corresponds
to one round of Algorithm 2.1, i.e. to computing one leaf and computing this
leaf’s parent nodes using tail nodes stored on the stack.

We allow a budget of (H − K)/2 updates in each round. We use the
strategy from Section 4.3 to decide which of the H − K treehash instances

64 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

receives an update. For this, we need the method Treehashh.height() which
returns the height of the lowest tail node stored by this treehash instance,
either on the stack or in the treehash instance itself. If Treehashh does
not store any tail nodes Treehashh.height() returns h and if Treehashh

is finished or not initialized Treehashh.height() returns ∞ to skip these
instances. The treehash instance that receives an update is the instance where
Treehashh.height() returns the smallest value. If there is more than one such
instance, we choose the one with the lowest index.

The algorithm

Initialization. The initialization of our algorithm is done during the MSS key
pair generation. We store the authentication path for the first leaf (s = 0):
Authh = νh[1], h = 0, . . . , H − 1. Depending on the parameter K, we store
the next right authentication node for each height h = 0, . . . , H − K − 1
in the treehash instances: Treehashh.push(νh[3]). Finally we store the
right authentication nodes close to the root using the stacks Retainh:
Retainh.push(νh[2j+3]) for h = H−K, . . . ,H−2 and j = 2H−h−1−2, . . . , 0.

Update and output phase. Algorithm 4.6 contains the precise description. In-
put is the index of the current leaf s ∈ {0, . . . , 2H − 2}, the parameters H,K
and the algorithm state Auth,Keep,Retain,Treehash prepared in previ-
ous rounds or the initialization. Output is the authentication path for the next
leaf s + 1.

Correctness and analysis

In this section we show the correctness of Algorithm 4.6 and estimate its time
and space requirements. First we show that the budget of (H−K)/2 updates
per round is sufficient for the treehash instances to compute the nodes on
time. Then we show that it is possible for all treehash instances to share a
single stack. Next, we consider the time and space requirements of Algorithm
4.6. In detail we show that

i) The number of tail nodes stored on the stack is bounded by H −K − 2.
ii) The number of hashes per round is bounded by 3(H −K − 1)/2.
iii) The number of nodes stored in Keep is bounded by �H/2	+ 1.

To estimate the space complexity, we have to add the H nodes stored in Auth,
the H −K nodes stored in Treehash and the 2K −K − 1 nodes stored in
Retain. To estimate the time complexity, we have to add the (H −K)/2 leaf
computations required to determine right nodes and one leaf and one hash to
compute left nodes (Lines 3, 4a in Algorithm 4.6). Summing up the total time
and space requirements results in the following theorem.

Hash-based Digital Signature Schemes 65

Algorithm 4.6 Authentication path computation
Input: s ∈ {0, . . . , 2H − 2}, H, K and the algorithm state.
Output: Authentication path for leaf s + 1

1. Let τ = 0 if leaf s is a left node or let τ be the height of the first parent of leaf
s which is a left node:
τ ← max{h : 2h|(s + 1)}

2. If the parent of leaf s on height τ + 1 is a left node, store the current authenti-
cation node on height τ in Keepτ :
if
s/2τ+1� is even and τ < H − 1 then Keepτ ← Authτ

3. If leaf s is a left node, it is required for the authentication path of leaf s + 1:
if τ = 0 then Auth0 ← Leafcalc(s)

4. Otherwise, if leaf s is a right node, the authentication path for leaf s+1 changes
on heights 0, . . . , τ :
if τ > 0 then
a) The authentication path for leaf s + 1 requires a new left node on height τ .

It is computed using the current authentication node on height τ − 1 and
the node on height τ − 1 previously stored in Keepτ−1. The node stored in
Keepτ−1 can then be removed:
Authτ ← g(Authτ−1||Keepτ−1), remove Keepτ−1

b) The authentication path for leaf s + 1 requires new right nodes on heights
h = 0, . . . , τ − 1. For h < H −K these nodes are stored in Treehashh and
for h ≥ H − K in Retainh:
for h = 0 to τ − 1 do

if h < H − K then Authh ← Treehashh.pop()
if h ≥ H − K then Authh ← Retainh.pop()

c) For heights 0, . . . , min{τ − 1, H − K − 1} the treehash instances must be
initialized anew. The treehash instance on height h is initialized with the
start index s + 1 + 3 · 2h < 2H :
for h = 0 to min{τ − 1, H −K − 1} do Treehashh.initialize(s+1+3 · 2h)

5. Next we spend the budget of (H − K)/2 updates on the treehash instances to
prepare upcoming authentication nodes:
repeat (H − K)/2 times
a) We consider only stacks which are initialized and not finished. Let k be the

index of the treehash instance whose lowest tail node has the lowest height.
In case there is more than one such instance we choose the instance with
the lowest index:
k ← min

{
h : Treehashh.height() = min

j=0,...,H−K−1
{Treehashj .height()}

}

b) The treehash instance with index k receives one update:
Treehashk.update()

6. The last step is to output the authentication path for leaf s + 1:
return Auth0, . . . ,AuthH−1.

66 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

Theorem 2. Let H ≥ 2 and K ≥ 2 such that H −K is even. Algorithm 4.6
stores at most 3H + �H/2	 − 3K − 2 + 2K nodes, where each node requires n
bits of memory. Further, the algorithm requires at most (H − K)/2 + 1 leaf
computations and 3(H −K − 1)/2 + 1 hash function evaluations per round to
successively compute authentication paths.

Nodes are computed on time. If Treehashh is initialized in round s, the
authentication node on height h computed by this instance is required in
round s + 2h+1. In these 2h+1 rounds there are (H −K)2h updates available.
Treehashh requires 2h updates. During the 2h+1 rounds, 2h+1/2i+1 treehash
instances are initialized on heights i = 0, . . . , h− 1, each requiring 2i updates.
In addition, active treehash instances on heights i = h + 1, . . . , H − K − 1
might receive updates until their lowest tail node has height h, thus requiring
at most 2h updates.

Summing up the number of updates required by all treehash instances
yields

h−1∑
i=0

2h+1

2i+1
· 2i + 2h +

H−K−1∑
i=h+1

2h = (H −K)2h (48)

as an upper bound for the number of updates required to finish Treehashh

on time. For h = H −K − 1 this bound is tight.

Sharing a single stack works. To show that it is possible for all treehash in-
stances to share a single stack, we have to show that if Treehashh receives
an update and has tail nodes stored on the stack, all these tail nodes are on
top of the stack.

When Treehashh receives its first update, the height of the lowest tail
node of Treehashi, i ∈ {h + 1, . . . , H − K − 1} is at least h. This means
that Treehashh is completed before Treehashi receives another update and
thus tail nodes of higher treehash instances do not interfere with tail nodes of
Treehashh.

While Treehashh is active and stores tail nodes on the stack, it is possible
that treehash instances on lower heights i ∈ {0, . . . , h−1} receive updates and
store nodes on the stack. If Treehashi receives an update, the height of the
lowest tail node of Treehashh has height ≥ i. This implies that Treehashi

is completed before Treehashh receives another update and therefore doesn’t
store any tail nodes on the stack.

Space required by the stack. We will show that the stack stores at most one
tail node on each height h = 0, . . . , H − K − 3 at a time. Treehashh, h ∈
{0, . . . , H −K − 1} stores up to h tail nodes on different heights to compute
the authentication node on height h. The tail node on height h−1 is stored by
the treehash instance and the remaining tail nodes on heights 0, . . . , h− 2 are
stored on the stack. When Treehashh receives its first update, the following
two conditions hold: (1) all treehash instances on heights < h are either empty
or completed and store no tail nodes on the stack. (2) All treehash instances

Hash-based Digital Signature Schemes 67

on heights > h are either empty or completed or have tail nodes of height at
least h. If a treehash instance on height i ∈ {h+1, . . . , H−K−1} stores a tail
node on the stack, then all treehash instances on heights i + 1, . . . , H −K − 1
have tail nodes of height at least i, otherwise the treehash instance on height
i wouldn’t have received any updates in the first place. This shows that there
is at most one tail node on each height h = 0, . . . , H −K − 3 which bounds
the number of nodes stored on the stack by H −K − 2. This bound is tight
for round s = 2H−K+1 − 2, before the update that completes the treehash
instance on height H −K − 1.

Number of hashes required per round. For now we assume that the maxi-
mum number of hash function evaluations is required in the following case:
TreehashH−K−1 receives all u = (H − K)/2 updates and is completed in
this round. On input an index s, the number of hashes required by the tree-
hash algorithm is equal to the height of the first parent of leaf s which is a
left node. On height h, a left node occurs every 2h leaves, which means that
every 2h updates at least h hashes are required by treehash. During the u
available updates, there are �u/2h� updates that require at least h hashes for
h = 1, . . . , �log2 u�. The last update requires H −K − 1 = 2u − 1 hashes to
complete the treehash instance on height H −K − 1. So far only �log2 u� of
these hashes were counted, so we have to add another 2u−1−�log2 u� hashes.
In total, we get the following upper bound for the number of hashes required
per round.

B =
�log2 u�∑

h=1

⌈ u

2h

⌉
+ 2u− 1− �log2 u� (49)

In round s = 2H−K+1−2 this bound is tight. This is the last round before the
treehash instance on height H −K − 1 must be completed and as explained
above, all available updates are required in this case. The desired upper bound
is estimated as follows:

B ≤
�log2 u�∑

h=1

(u

2h
+ 1
)

+ 2u− 1− �log2 u�

= u

�log2 u�∑
h=1

1
2h

+ 2u− 1 = u

(
1− 1

2�log2 u�

)
+ 2u− 1

≤ u

(
1− 1

2u

)
+ 2u− 1 = 3u− 3

2
=

3
2
(H −K − 1)

The next step is to show that the above mentioned case is indeed the worst
case. If a treehash instance on height < H −K − 1 receives all updates and is
completed in this round, less than B hashes are required. The same holds if
the treehash instance receives all updates but is not completed in this round.
The last case to consider is the one where the u available updates are spend on
treehash instances on different heights. If the active treehash instance has a tail

68 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

node on height j, it will receive updates until it has a tail node on height j+1,
which requires 2j updates and 2j hashes. Additional t ∈ {1, . . . , H−K−j−2}
hashes are required to compute the parent of this node on height j + t + 1,
if the active treehash instance stores tail nodes on heights j + 1, . . . , j + t on
the stack and in the treehash instance itself. The next treehash instance that
receives updates has a tail node of height ≥ j. Since the stack stores at most
one tail node for each height, this instance can receive additional hashes only
if there are enough updates to compute a tail node on height ≥ j + t, the
height of the next tail node possibly stored on the stack. But this is the same
scenario that appears in the above mentioned worst case, i.e. if a node on
height j + 1 is computed, the tail nodes on the stack are used to compute its
parent on height j + t + 1 and the same instance receives the next update.

Space required to compute left nodes. First we show that whenever an au-
thentication node is stored in Keeph, h = 1, . . . , H − 2, the node stored in
Keeph−1 is removed in the same round. This immediately follows from Steps
2 and 4a in Algorithm 4.6. Second we show that if a node gets stored in
Keeph, h = 0, . . . , H − 3, then Keeph+1 is empty. To see this we have to
consider in which rounds a node is stored in Keeph+1. This is true for rounds
s ∈ Aa = {2h+1 − 1 + a · 2h+3, . . . , 2h+2 − 1 + a · 2h+3}, a ∈ N0. In rounds
s′ = 2h − 1 + b · 2h+2, b ∈ N0, a node gets stored in Keeph. It is straight
forward to compute that s′ ∈ Aa implies that 2a + 1/4 ≤ b ≤ 2a + 3/4 which
is a contradiction to b ∈ N0.

As a result, at most �H/2	 nodes are stored in Keep at a time and two
consecutive nodes can share one entry. One additional entry is required to
temporarily store the authentication node on height h (Step 2) until node on
height h− 1 is removed (Step 4a).

Computing leaves using an PRNG

In Section 3, we showed how a PRNG can be used during MSS key pair and
signature generation to reduce the private key size. We will now show how
to use this concept in Algorithm 4.6 to compute the required leaves using an
PRNG. Let Seeds denote the seed required to compute the one-time key pair
corresponding to the sth leaf.

During the authentication path computation, leaves which are up to 3 ·
2H−K−1 steps away from the current leaf must be computed by the treehash
instances. Calling the PRNG that many times to obtain the seed required to
compute this leaf is too inefficient. Instead we use the following scheduling
strategy that requires H − K calls to the PRNG in each round to compute
the seeds. We have to store two seeds for each height h = 0, . . . , H −K − 1.
The first (SeedActive) is used to successively compute the leaves for the
authentication node currently constructed by Treehashh and the second
(SeedNext) is used for upcoming right nodes on this height. SeedNext

is updated using the PRNG in each round. During the initialization, we set

Hash-based Digital Signature Schemes 69

SeedNexth = Seed3·2h for h = 0, . . . , H −K − 1. In each round, at first all
seeds SeedNexth are updated using the PRNG. If in round s a new treehash
instance is initialized on height h, we copy SeedNexth to SeedActiveh. In
that case SeedNexth = Seedϕ+1+3·2h holds and thus is the correct seed to
begin computing the next authentication node on height h.

The time and space requirements of Algorithm 4.6 change as follows. We
have to store additional 2(H−K) seeds and each seed requires n bit of memory.
We also require additional H −K calls to the PRNG in each round.

Theorem 3. Let H ≥ 2 and K ≥ 2 such that H −K is even. The memory
requirements of Algorithm 4.6 in combination with a PRNG are

(
5H +

⌊
H

2

⌋
− 5K − 2 + 2K

)
· n bit. (50)

Further, it requires at most (H − K)/2 + 1 leaf computations, 3(H − K −
1)/2 + 1 hash function evaluations, and H −K calls to the PRNG per round
to successively compute authentication paths.

5 Tree chaining

In Section 2 we saw that MSS public key generation requires the computation
of the full Merkle hash tree. This means that 2H leaves and 2H − 1 inner
nodes have to be determined, which is very time consuming when H is large.
The tree chaining method [4] solves this problem. The basic idea is similar
to the Fractal Merkle Tree Traversal described in Section 4.2. However, in
contrast to the Fractal Tree Traversal Method, tree chaining does not split
the Merkle tree into smaller subtrees, but instead uses smaller Merkle trees
that are independent of each other. The Merkle signature scheme that uses
tree chaining is referred to as CMSS.

5.1 The idea

We explain the tree chaining idea. CMSS uses T ≥ 2 layers of Merkle trees.
Each Merkle tree on each layer is constructed using the Method from Sec-
tions 2 and 3. The hashes of a sequence of one-time verification keys are the
leafs. We call the corresponding one-time signature keys the signature keys of
the Merkle tree. Those signature keys are calculated using a pseudo random
number generator. We call the respective seed the seed of the Merke tree.

The root of the single tree on the top layer 1 is the public CMSS key. The
signature keys of the Merkle trees on the bottom layer T are used to sign
documents. The signature keys of the Merkle trees on the intermediate layers
i, 1 ≤ i < T sign the roots of the Merkle trees on layer i + 1.

This is what a tree chaining signature looks like:

70 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

σ =
(
s, SigT , YT ,AuthT

SigT−1, YT−1,AuthT−1

...
Sig1, Y1,Auth1

)
.

(51)

SigT is the one-time signature of the document to be signed. It is gen-
erated using a signature key of a Merkle tree on the bottom layer T . The
corresponding verification key is YT . Also, AuthT is the authentication path
that allows a verifier to construct the path from the verification key YT to the
root of the corresponding Merkle tree on the bottom layer. Now that root is
not known to the verifier. Therefore, the one-time signature SigT−1 of that
root is also included in the signature σ. It is constructed using a signature key
of a Merkle tree on level T − 1. The corresponding verification key YT−1 and
authentication path AuthT−1 are also included in the signature σ. The root
of the tree on layer T − 1 is also not known to the verifier, unless T = 2 in
which case T − 1 = 1 and that root is the public key. So further one-time sig-
natures of roots Sigi, one-time verification keys Yi, and authentication paths
Authi, i = T − 1, . . . , 1 are included in the signature σ.

The signature σ is verified as follows. The verifier checks, that SigT can
be verified using YT . Next, he uses YT and AuthT to construct the root of a
Merkle tree on layer T . He verifies the signature SigT−1 of that root using the
verification key YT−1 and constructs the root of the corresponding Merkle tree
on layer T − 1 from YT−1 and AuthT−1. The verifier iterates this procedure
until the root of the single tree on layer 1 is constructed. The signature is
verified by comparing this root to the public key. If any of those comparisons
fails then the signature σ is rejected. Otherwise, it is accepted.

We discuss the advantage of the tree chaining method. For this purpose, we
first compute the number of signatures that can be verified using one public
key when the tree chaining method is applied. All Merkle trees on layer i have
the same height Hi, 1 ≤ i ≤ T . As mentioned already, there is a single Merkle
tree on the top layer 1. Since the Merkle trees on layer i are used to sign the
roots of the Merkle trees on layer i+1, 1 ≤ i < T , the number of Merkle trees
on layer i + 1 is 2H1+H2+...+Hi . So the total number of documents that can
be signed/verified is 2H where H = H1 + H2 + . . . + HT .

The advantage of the tree chaining construction is the following. The gen-
eration of a public MSS key that can verify 2H documents requires the con-
struction of a tree of height H, which in turn requires the computation of
2H one-time key pairs and 2H+1 − 1 evaluations of the hash fuction. When
tree chaining is used, the construction of a public CMSS key that can verify
2H documents only requires the construction of the single Merkle tree on the
top layer which is of height H1. Also, in the tree chaining method, signa-
ture generation requires knowledge of the one-time signature of the root of
one Merkle tree on each layer. Those roots and one-time signatures can be
successively computed as they are used, whereas the root of the first tree on
each layer is generated during the key generation. Hence, the CMSS key pair

Hash-based Digital Signature Schemes 71

generation requires the computation of 2H1 + . . .+2HT one-time key pairs and
2H1+1 + . . . + 2HT +1 − T evaluations of the hash function. This is a drastic
improvement compared to the original MSS key pair generation as illustrated
in the following example.

Example 5. Assume that the heights of all Merkle trees are equal, so H1 =
. . . = HT = H. The number of signatures that can be generated with this key
pair is 2TH . The CMSS key pair generation requires T2H one-time key pairs
and T2H+1 − T evaluations of the hash function. The original MSS key pair
generation requires 2TH one-time key pairs and 2TH+1 − 1 evaluations of the
hash function.

sT

s2

s1

ROOT2

ROOTT

TREET

ROOT1

TREE1

TREE2

SIG1

SIG2

Fig. 8. The tree chaining method. Treei denotes the active tree on layer i, Rooti

its root, and Sigi−1 this root’s one-time signature generated with the si−1th signa-
ture key of the tree on layer i − 1.

CMSS key pair generation

For the CMSS key pair generation, the number of layers T and the respective
heights Hi, 1 ≤ i ≤ T of the trees on layer i are selected. With H = H1+H2+

72 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

. . . + HT the number of signatures that can be generated/verified using the
key pair to be constructed is 2H . For each layer, one initial Merkle tree Treei

is constructed as described in Sections 2 and 3. The CMSS public key is the
root of Tree1. The CMSS secret key is the sequence of the random seeds used
to construct the T trees. The signer also stores the one-time signatures of the
roots of all those trees generated with the first signature key of the tree on
the next layer.

CMSS key pair generation requires the computation of 2H1 +. . .+2HT one-
time key pairs and 2H1+1 + . . . + 2HT +1 − T evaluations of the hash function.

CMSS signature generation

We use the notation of the previous sections. When a signature is issued, the
signer knows one active Merkle tree Treei for each layer and the seed Seedi

from which its signature keys can be generated, i = 1, 2, . . . , T . The signer
also knows the signature Sigi of the root of Treei+1, and the verification key
Yi for that signature, 1 ≤ i ≤ T − 1. Further, the signer knows the index si,
1 ≤ i ≤ T − 1, of the signature key used to generate the signature Sigi of
the root of the tree Treei+1 and the index sT of the signature key used to
issue the next document signature. The signer constructs the corresponding
signature key from the seed SeedT , he generates the one-time signature SigT

of the document to be signed and he generates the signature as in Equation
(51). The index s in this signature can be recursively computed. Set t1 = s1

and
ti+1 = ti2Hi+1 + si+1, 1 ≤ i < T,

then s = tT .
After signing, the signer prepares for the next signature by partially con-

structing the next tree on certain layers using the treehash algorithm of Sec-
tion 2. He first computes the sT th leaf of the next tree on layer T and exe-
cutes the treehash algorithm with this leaf as input. Then he increments sT .
If sT = 2HT , then the construction of the next Merkle tree on layer T is com-
pleted and its root is available. The signer computes the one-time signature
of this root using a signature key of the tree on layer T − 1 and sets the index
sT to zero. In the same way, the signer constructs the next tree on layer T −1
and increments the index sT−1. More generally, the signer partially constructs
the next tree on layer i and increments si whenever the construction of the
next tree on layer i + 1 is complete, 1 < i < T . On layer 1, no new tree
is required and the signer only increments the index s1 if the construction
of a tree on layer 2 is completed. When s1 = 2H1 , CMSS cannot sign new
documents anymore.

Since a CMSS signature consists of T MSS signatures, the signature size
increases by a factor T compared to MSS. Also, the computation of the roots
of the following trees and their signatures increases the signature generation
time.

Hash-based Digital Signature Schemes 73

CMSS verification

The basics of the CMSS signature verification are straight forward and were
already explained above.

We now explain how the verifier uses s to determine a positive integer si

for each layer i, such that Yi is the sith verification key of the active tree on
that layer. The verifier uses si to construct the path from Yi to the root of
the corresponding tree on layer i (see Section 2). The following formulas show
how this can be accomplished.

jT = �s/2HT 	, ji = �ji+1/2Hi	, i = T − 1, . . . , 1

sT = s mod 2HT , si = ji+1 mod 2Hi , i = T − 1, . . . , 1
(52)

6 Distributed signature generation

In this section, we describe distributed signature generation [4]. This method
counteracts the new problems that arise when using the tree chaining method,
namely the increased signature size and signature generation time. It is based
on the observation that the one-time signatures of the roots and the authenti-
cation paths in upper layers change only infrequently. The idea is to distribute
the operations required for the generation of these one-time signatures and
authentication paths evenly across each step. This significantly improves the
worst case signature generation time. Recall Section 1.2, where we showed that
the Winternitz one-time signature scheme uses the parameter w to provide a
trade-off between the signature generation time and the signature size. Using
the method of distributed signature generation it is possible to choose large
values of w for upper layers, which in turn results in smaller signatures. The
combination of the tree chaining method, the distributed signature generation,
and the original MSS is called GMSS.

The idea

Fix a layer i ≥ 2. Denote the active tree on layer i by Treei. It is currently
used to sign roots or documents. The preceding tree on that layer is denoted
by TreePrevi. The next tree on layer i is TreeNexti. The idea of the
distributed signature generation is the following. When Treei is used, the
root of TreeNexti is known. The root of TreeNexti is signed while the
signature keys of Treei are used. The root of TreeNexti was calculated
while TreePrevi was used to sign documents or roots.

Distributed root signing

We use the notation from above. We explain how the root of TreeNexti is
signed while Treei is used to sign. By construction, the necessary signature
key from layer i− 1 is known.

74 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

We distribute the computation of the signature of the root of TreeNexti

across the leaves of Treei. When the first leaf of Treei is used we initialize
the Winternitz one-time signature generation by calculating the parameters
and executing the padding. Then we calculate the number of hash function
evaluations and calls to the PRNG required to compute the one-time signature
key and the one-time signature. We divide those numbers by 2Hi where Hi is
the height of Treei to estimate the number of operations required per step.
When a leaf of Treei is used, the appropriate amount of computation for the
signature of the root of TreeNexti is performed. The distributed generation
of the one-time signatures is visualized in Figure 9.

TREEi−1

SIGNEXTi−1

ROOTNEXTi

TREENEXTi

TREEi

Fig. 9. Distributed generation of SigNexti−1, the one-time signature of the root
of TreeNexti.

We estimate the running time of the distributed root signing. The one-
time signature of a root of a tree on layer i is generated using the Winternitz
parameter wi−1 of layer i − 1. According to Section 1.2 the generation of
this signature requires (2wi−1 −1)twi−1 hash function evaluations in the worst
case. As shown in Section 3 the generation of the one-time signature requires
twi−1 + 1 calls to the PRNG. Since each tree on layer i has 2Hi leaves, the
computation of its root signature is distributed across 2Hi steps. Therefore,
the total number of extra operations for each leaf of Treei to compute the
root signature of TreeNexti is at most

csig(i) =
⌈

(2wi−1 − 1)twi−1

2Hi

⌉
cHash +

⌈
twi−1 + 1

2Hi

⌉
cPrng. (53)

Distributed root computation

We explain, how the root of TreeNexti is computed while TreePrevi is
active. This is quite simple. Both TreePrevi and TreeNexti have the same
number of leaves. When a leaf of TreePrevi is used, the leaf with the same

Hash-based Digital Signature Schemes 75

index in TreeNexti is calculated and passed to the treehash algorithm from
Section 2.

If i < T , i.e. TreeNexti is not on the lowest level, the computation
of each leaf of TreeNexti can also be distributed. This is explained next.
Suppose that we want to construct the jth leaf of TreeNexti while we are
using the jth leaf of TreePrevi. This computation is distributed across the
leaves of the tree TreeLower on layer i+1 whose root is signed using the jth
leaf of TreePrevi. When the first leaf of TreeLower is used, we determine
the number of hash function evaluations and calls to the PRNG required
to compute the jth leaf of TreeNexti. Recall that the calculation of this
leaf requires the computation of a Winternitz one-time key pair. We divide
those numbers by 2Hi+1 to obtain the number of operations we will execute
in each leaf of TreeLower. Whenever a leaf of TreeLower is used, the
computation of the jth leaf of TreeNext is advanced by executing those
operations.

Once the jth leaf of TreeNexti is generated, it is passed to the treehash
algorithm. This contributes to the construction of the root of TreeNexti.
This construction is complete, once we switch from TreePrevi to Treei.
So in fact, when Treei is used, the root of TreeNexti is known. The dis-
tributed computation of the roots is visualized in Figure 10. While construct-
ing TreeNexti, we also perform the initialization steps of the authentication
path algorithm of Section 4.5. That is, we store the authentication path of
leaf 0 and prepare the algorithm state.

TREEPREVi

TREELOWER

ROOTNEXTi

TREENEXTi

j

Fig. 10. Distributed computation of RootNexti. Leaf j of tree TreeNexti is
precomputed while using tree TreeLower. It is then used to partially compute
RootNexti.

We estimate the extra time required by the distributed root computation.
Recall that for the generation of a leaf of TreeNexti we first determine
the corresponding Winternitz one-time key pair. This key pair is constructed
using the Winternitz parameter wi of layer i. The generation of the one-time

76 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

signature key requires twi
+ 1 calls to the PRNG. The generation of the one-

time verification key requires (2wi − 1)twi
hash function evaluations and the

computation of a leaf of TreeNexti requires one additional evaluation of the
hash function. This has been shown in Sections 1.2 and 3. Since TreeLower

has 2Hi+1 leaves, the computation of a leaf of TreeNexti can be distributed
over 2Hi+1 steps. Therefore, the total number of extra operations for each leaf
of TreeLower to compute a leaf of TreeNexti is

c1
leaf(i) =

⌈
(2wi − 1)twi

+ 1
2Hi+1

⌉
cHash +

⌈
twi

+ 1
2Hi+1

⌉
cPrng. (54)

Once a leaf of TreeNexti is found, it is passed to the treehash algorithm.
By the results of Section 2 this costs at most

c2
leaf(i) = Hi · cHash (55)

additional evaluations of the hash function.

Distributed authentication path computation

Next, we describe the computation of the authentication path of the next leaf
of tree Treei. We use the algorithm described in Section 4.5. This algorithm
requires the computation of (Hi − Ki)/2 + 1 leaves per round to generate
upcoming authentication paths on layer i = 1, . . . , T . As described above, the
computation of these leaves is distributed over the 2Hi+1 leaves (or steps) of
tree TreeLower, the current tree on the next lower layer i + 1. Again, this
is possible only for leaves in layers i = 1, . . . , T − 1. The computation of the
leaves in layer T cannot be distributed.

When we use TreeLower for the first time we calculate the number of
hash function evaluations and calls to the PRNG required to compute the
(Hi−Ki)/2+1 leaves. Recall that we have to compute a Winternitz one-time
key pair to obtain this leaf. Then we divide these costs by 2Hi+1 to estimate
the number of operations we have to spend for each leaf of tree TreeLower.
At the beginning we don’t know which leaves must be computed, we only know
how may. Therefore, we have to interact with Algorithm 4.6. We perform the
necessary steps to decide which leaf must be computed first. After computing
this leaf we pass it to the authentication path algorithm which updates the
treehash instance and determines the which leaf must be computed next. This
procedure is iterated until all required leaves are computed. The distributed
authentication path computation is visualized in Figure 11.

We estimate the cost of the distributed authentication path computation.
The algorithm of Section 4.5 requires the computation of (Hi−Ki)/2+1 leaves
for each authentication path. The leaves are computed using the Winternitz
parameter wi of layer i. The generation of one leaf requires twi

+ 1 calls to
the PRNG and (2wi − 1)twi

+ 1 hash function evaluations, see Sections 1.2
and 3. The computation of the those (Hi − Ki)/2 + 1 leaves is distributed

Hash-based Digital Signature Schemes 77

TREEi

TREELOWER
required leaves

Fig. 11. Distributed computation of the next authentication path. The (Hi−Ki)/2
required leaves are computed while using tree TreeLower.

over the 2Hi+1 steps in the tree on layer i + 1. Therefore, the total number
of operations for each leaf of TreeLower to compute the (Hi −Ki)/2 + 1
leaves is

c1
auth(i) =

Hi −Ki + 2
2

· c1
leaf(i). (56)

The completed leaves are passed to the treehash algorithm that computes their
parent nodes. The algorithm of Section 4.5 requires at most 3(Hi−Ki−1)/2+1
evaluations of the hash function for the computation of parents. Another
Hi − Ki calls to the PRNG are required to prepare upcoming seeds. These
operations are not distributed but performed at once. Hence, the total number
of operations for each leaf of Treei is at most

c2
auth(i) =

3(Hi −Ki)− 1
2

· cHash + (Hi −Ki) · cPrng. (57)

Example 6. This example illustrates how the distributed signature generation
improves the signature generation time. Let H1 = . . . = HT = H. Further,
all layers use the same Winternitz parameter w and the same value for K.
Let csig denote the worst case cost for generating a one-time signature with
Winternitz parameter w, let cauth denote the worst case cost for generating
an authentication path in a tree of height H using K, and let ctree denote the
cost for partially computing the next tree. The worst case cost for the GMSS
signature generation then is

csig + cauth + ctree +
(T − 1)csig + (T − 1)cauth + (T − 2)ctree

2H
.

When the signature generation is not distributed, as in the case of CMSS, the
worst case cost is

Tcsig + Tcauth + (T − 1)ctree.

78 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

GMSS key pair generation

We explain GMSS key pair generation, establish the size of the keys, and the
cost for computing them. The following parameters are selected. The number
T of layers, the heights H1, . . . , HT of the Merkle trees on each layer, the Win-
ternitz parameters w1, . . . , wT for each layer, and the parameters K1, . . . ,KT

for the authentication path algorithm of Section 4.5.
We use the approach introduced in Section 3 and use an PRNG for the

one-time signature generation. Therefore we must choose initial seeds Seedi,
for each layer i = 1, . . . , T . The GMSS public key is the root Root1 of the
single tree in layer i = 1. The GMSS private key consists of the following
entries:

Seedi , i = 1, . . . , T , SeedNexti , i = 2, . . . , T
Sigi , i = 1, . . . , T − 1 , RootNexti , i = 2, . . . , T

Authi , i = 1, . . . , T , AuthNexti , i = 2, . . . , T
Statei , i = 1, . . . , T , StateNexti , i = 2, . . . , T

(58)

The seeds Seedi are required for the generation of the one-time signature
keys used to sign the data and the roots. The seeds SeedNexti are required
for the distributed generation of subsequent roots. These seeds are available
after the generation of the roots RootNexti. The one-time signatures Sigi

of the roots are required for the GMSS signatures. The signatures Sigi do not
have to be computed explicitly. They are an intermediate value during the
computation of the 0th leaf of tree Treei−1. The roots RootNexti of the
next tree in each layer are required for the distributed generation of the one-
time signatures SigNexti−1. Also, the authentication path for the first leaf
of the first and second tree in each layer is stored. Statei and StateNexti

denote the state of the authentication path algorithm of section 4.5 required to
compute authentication paths in trees Treei and TreeNexti, respectively.
This state contains the seeds and the treehash instance and is initialized during
the generation of the root.

The construction of a tree on layer i requires the computation of 2Hi leaves
and 2Hi − 1 evaluations of the hash function to compute inner nodes. Each
leaf computation requires (2wi − 1) · twi

+ 1 hash function evaluations and
twi

+ 1 calls to the PRNG. The total cost for one tree on layer i is given as

ctree(i) =
(
2Hi (twi

(2wi − 1) + 2)− 1
)
cHash + 2Hi (twi

+ 1) cPrng. (59)

Since we construct two trees on layers i = 2, . . . , T and one on layer i = 1,
the total cost for the key pair generation is

ckeygen =
T∑

i=1

ctree(i) +
T∑

i=2

ctree(i). (60)

The memory requirements of the keys depend on the output size of the used
hash function n. A root is a single hash value and requires n bits. A seed

Hash-based Digital Signature Schemes 79

also requires n bits. A one-time signature Sigi requires twi−1 · n bits. An
authentication path together with the algorithm state requires

mauth(i) =
(

3Hi +
⌊

Hi

2

⌋
− 3Ki − 2 + 2Ki

)
· n bits. (61)

For each layer i = 2, . . . , T , we store two seeds, two authentication paths and
algorithm states, one root and the one-time signature of one root. For layer
i = 1, we store one seed and one authentication path and algorithm state.
The total sizes of the public and the private key are

mpubkey = n bits, (62)

mprivkey =

(
T∑

i=1

(mauth(i) + 1) +
T∑

i=2

(mauth(i) + twi−1 + 2)

)
n bits. (63)

GMSS signature generation

The GMSS signature generation is split in two parts, an online part and
an offline part. The online part is equivalent to the CMSS online part. The
signer constructs the corresponding signature key from the seed SeedT and
generates the one-time signature SigT of the document to be signed. Then he
prepares the signature as in Equation (64). The offline part takes care of the
distributed computation of upcoming roots, one-time signatures of roots and
authentication paths as described above.

σs =
(
s, SigT , YT ,AuthT ,

SigT−1, YT−1,AuthT−1

...
Sig1, Y1,Auth1

)
.

(64)

The online part requires the generation of a single one-time signature. This
signature is generated using the Winternitz parameter of the lowest layer T .
According to Section 1.2, this requires

conline = (2wT − 1)twT
· cHash + (twT

+ 1)cPrng. (65)

operations in the worst case. The size of an GMSS signature is computed
with the same formula we used for as the CMSS signatures. It consists of T
authentication paths (Hi ·n bits) and T one-time signatures (twi

·n bits), one
for each layer i = 1, . . . , T . Adding up yields

msignature =
T∑

i=1

(Hi + twi
) · n bits. (66)

To estimate the computational effort required for the offline part we
assume the worst case where we have to advance one leaf on all layers

80 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

i = 1, . . . , T . The computation of the one-time signature SigNexti can be
distributed for each layers i = 1, . . . , T − 1. The computation of the leaves
required to construct the root RootNexti can be distributed for all layers
i = 2, . . . , T − 1. For layer i = T , the respective leaf of tree TreeNextT

must be computed at once. Together with the hash function evaluations for
the treehash algorithm, this requires at most

c3
leaf = ((2wT − 1)twT

+ HT + 1)cHash + (twT
+ 1)cPrng (67)

operations. The leaves required for the computation of upcoming authentica-
tion paths can be distributed for all layers i = 1, . . . , T − 1. For layer i = T ,
the (HT − KT)/2 + 1 leaves must be computed at once. Together with the
hash function evaluations for the treehash algorithm, this requires at most

c3
auth =

HT −KT + 2
2

· c3
leaf +

3(HT −KT)− 1
2

· cHash

+ (HT −KT) · cPrng

(68)

operations. In summary, the number of operations required by the offline part
in the worst case are

coffline =
T∑

i=2

csig(i) +
T−1∑
i=2

(
c1
leaf(i) + c2

leaf(i)
)

+ c3
leaf

+
T−1∑
i=1

(
c1
auth(i) + c2

auth(i)
)

+ c3
auth.

(69)

The last step is to estimate the space required by the offline part. We
have to store the partially constructed one-time signature SigNexti for lay-
ers i = 1, . . . , T − 1 which requires at most twi−1 · n bits. We also have to
store the treehash stack for the generation of the root RootNexti for layers
i = 2, . . . , T which requires Hi · n bits. We further require memory to store
partially constructed leaves. One leaf requires at most twi

· n bits. For the
generation of RootNexti we have to store at most one leaf for each layer
i = 2, . . . , T − 1. For the authentication path, we have to store at most one
leaf for each layer i = 1, . . . , T − 1. Note that since we compute the leaves
required for the authentication path successively, we have to store only one
partially constructed leaf at a time. Finally, we need to store the partial state
StateNexti of the authentication path algorithm for layers i = 2, . . . , T
which requires at most mauth(i) bits (see Equation (61)). In summary, the
memory required by the offline part in the worst case is

moffline =

(
T∑

i=2

(
twi−1 + Hi + mauth(i)

)
+

T−1∑
i=2

twi
+

T−1∑
i=1

twi

)
· n bits. (70)

Hash-based Digital Signature Schemes 81

GMSS signature verification

Since the main idea of GMSS is to distribute the signature generation, the
signature verification doesn’t change compared to CMSS. The verifier succes-
sively verifies a one-time signature and uses the corresponding authentication
path and Equation (52) to compute the root. This is done until the root of
the tree in the top layer is computed. If this root matches the signers public
key, the signature is valid.

The verifier must verify T one-time signatures which in the worst case
requires (2wi−1)twi

evaluations of the hash function, for i = 1, . . . , T . Another
Hi evaluations of the hash function are required to reconstruct the path to
the root using the authentication path. In total, the number of hash function
evaluations required in the worst case is

cverify =
T∑

i=1

((2wi − 1)twi
+ Hi) cHash. (71)

7 Security of the Merkle Signature Scheme

This section deals with the security of the Merkle signature scheme. We will
show that the Lamport–Diffie one-time signature scheme is existentially un-
forgeable under an adaptive chosen message attack (CMA-secure) as long
as the used one-way function is preimage resistant. Then we show that the
Merkle signature scheme is CMA-secure as long as the used hash function
is collision resistant and the underlying one-time signature scheme is CMA-
secure. Finally, we estimate the security level of the Merkle signature scheme
for a given output length n of the hash function.

7.1 Notations and definitions

We start with some security notions and definitions.

Security notions for hash functions

We present three security notions for hash functions: preimage resistance,
second preimage resistance, and collision resistance. The definitions are taken
from [30]. We write x

$←− S for the experiment of choosing a random element
from the finite set S with the uniform distribution. Let G be a family of hash
functions, that is, a parameterized set

G =
{
gk : {0, 1}∗ → {0, 1}n|k ∈ K

}
(72)

where n ∈ N and K is a finite set. The elements of K are called keys. An
adversary Adv is a probabilistic algorithm that takes any number of inputs.

82 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

We define preimage resistance. In fact, our notion of preimage resistance
is a special case of the preimage resistance defined in [30] which is useful in
our context. Consider an adversary that attempts to find preimages of the
hash functions in G. The adversary takes as input a key k ∈ K and the image
y = gk(x) of a string x ∈ {0, 1}n. Both k and x are chosen randomly with the
uniform distribution. The adversary outputs a preimage x′ of y or failure.
The success probability of this adversary is denoted by

Pr[k $←− K,x
$←− {0, 1}n, y ←− gk(x), x′ $←− Adv(k, y) : gk(x′) = y]. (73)

Let t, ε be positive real numbers. The family G is called (t, ε) preimage
resistant, if the success probability (73) of any adversary Adv that runs in
time t is at most ε.

Next, we define second preimage resistance. Consider an adversary that
attempts to find second preimages of the hash functions in G. The adversary
takes as input a key k ∈ K and a string x ∈ {0, 1}n, both chosen randomly
with the uniform distribution. He outputs a second preimage x′ under gk of
gk(x) which is different from x or failure. The success probability of this
adversary is denoted by

Pr[k $←− K,x
$←− {0, 1}n, x′ $←− Adv(k, x) : x �= x′ ∧ gk(x) = gk(x′)]. (74)

Let t, ε be positive real numbers. The family G is called (t, ε) second-preimage
resistant, if the success probability (74) of any adversary Adv that runs in
time t is at most ε.

Finally, we define collision resistance. Consider an adversary that attemps
to find collisions of the hash functions in G. The adversary takes as input
a key k ∈ K, chosen randomly with the uniform distribution. He outputs a
collision of gk, that is, a pair x, x′ ∈ {0, 1}∗ with x �= x′ and g(x) = g(x′) or
failure. The success probability of this adversary is denoted by

Pr[k $←− K, (x, x′) $←− Adv(k) : x �= x′ ∧ gk(x) = gk(x′)]. (75)

Let t, ε be positive real numbers. The family G is called (t, ε) collision resistant,
if the success probability (75) of any adversary Adv that runs in time t is at
most ε.

Signature schemes

Let Sign be a signature scheme. So Sign is a triple (Gen, Sig, Ver). Gen

is the key pair generation algorithm. It takes as input 1n, the string of n
successive 1s where n ∈ N is a security parameter. It outputs a pair (sk, pk)
consisting of a private key sk and a public key pk. Sig is the signature genera-
tion algorithm. It takes as input a message M and a private key sk. It outputs
a signature σ for the message M . Finally, Ver is the verification algorithm.
Its input is a message M , a signature σ and a public key pk. It checks whether
σ is a valid signature for M using the public key pk. It outputs true if the
signature is valid and false otherwise.

Hash-based Digital Signature Schemes 83

Existential unforgeability

Let Sign = (Gen,Sig,Ver) be a signature scheme and let (sk, pk) be a key
pair generated by Gen. We define existential unforgeability under an adaptive
chosen message attack of Sign. This security model assumes a very powerful
forger. The forger has access to the public key and a signing oracle O(sk, ·)
that, in turn, has access to the private key. On input of a message the oracle
returns the signature of that message. It is the goal of the forger to win the
following game. The forger chooses at most q messages and lets the signing or-
acle find the signatures of those messages. The maximum number q of queries
is also an input of the forger. The oracle queries may be adaptive, that is, a
message may depend on the oracles answers to previously queried messages.
The forger outputs a pair (M ′, σ′). The forger wins if M is different from all
the messages in the oracle queries and if Ver(M ′, σ′, pk) = true. We denote
such a forger by For

O(sk,·)(pk).
Let t and ε be positive real numbers and let q be a positive integer. The

signature scheme Sign is (t, ε, q) existentially unforgeable under an adaptive
chosen message attack if for any forger that runs in time t, the success prob-
ability for winning the above game (which depends on q) is at most ε. If Sign

has the above property it is also called a (t, ε, q) signature scheme.
For one-time signatures we must have q = 1 since the signature key of a

one-time signature scheme must be used only once. For the Merkle signature
scheme we must have q ≤ 2H .

7.2 Security of the Lamport–Diffie one-time signature scheme

In this section we discuss the security of LD–OTS from Section 1.1. We slightly
modify this scheme. Select a security parameter n ∈ N. Let K = K(n) be a
finite set of parameters. Let

F =
{
fk : {0, 1}n → {0, 1}n|k ∈ K

}

be a family of one-way functions. The key generation of the modified LD–OTS
works as follows. On input of 1n for a security parameter n a key k ∈ K(n)
is selected randomly with the uniform distribution. Then LD–OTS is used
with the one-way function fk. The secret and public keys are generated as
described in Section 1.1. The key k is included in the public key. We show
that the existential unforgeability under adaptive chosen message attacks of
this LD-OTS variant can be reduced to the preimage resistance of the family
F .

Suppose that there exists a forger For
O(X,·)(Y) of LD-OTS. Then an

adversary AdvPre that determines preimages of functions in F can be con-
structed as follows. Fix a security parameter n. Input for AdvPre are a
key k and the image y = fk(x) of a string x ∈ {0, 1}n. Both k and x
are selected randomly with the uniform distribution. A LD–OTS key pair

84 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

(X,Y) is generated using the one-way function fk. The public key Y is of
the form Y = (yn−1[0], yn−1[1], . . . , y0[0], y0[1]). The adversary selects indices
a ∈ {0, . . . , n − 1} and b ∈ {0, 1} randomly with the uniform distribution.
He replaces the string ya[b] with the target string y. Next, AdvPre runs the
forger For

O(X,·)(Y) with the modified public key. If the forger asks its or-
acle to sign a message M = (mn−1, . . . ,m0) and if ma = 1 − b, then the
adversary, playing the role of the oracle, signs the message and returns the
signature. The adversary can sign this message since he knows the original
key pair and because of ma = 1 − b, the modified string in the public key
is not used. However, if ma = b then the adversary cannot sign M . So his
answer to the oracle query is failure which also causes the forger to abort.
If the forger’s oracle query was successful or if the forger does not ask the
oracle at all the forger may produce a message M ′ = (m′

n−1, . . . ,m
′
0) and the

signature (σ′
n−1, . . . , σ

′
0) of that message. If m′

a = b, then σ′
a is the preimage

of y which the adversary returns. Otherwise, the adversary returns failure.
More formally, the adversary is presented in Algorithm 7.1.

Algorithm 7.1 AdvPre

Input: k
$←− K and y = fk(x), where x

$←− {0, 1}n

Output: x′ such that y = fk(x) or failure

1. Generate an LD–OTS key pair (X, Y).
2. Choose a

$←− {0, . . . , n − 1} and b
$←− {0, 1}.

3. Replace ya[b] by y in the LD–OTS verification key Y .
4. Run For

O(X,·)(Y).
5. When For

O(X,·)(Y) asks its only oracle query with M = (mn−1, . . . , m0):
a) if ma = (1− b) then sign M and respond to the forger For

O(X,·)(Y) with
the signature σ.

b) else return failure.
6. When For

O(X,·)(Y) outputs a valid signature σ′ = (σ′
n−1, . . . , σ

′
0) for message

M ′ = (m′
0, . . . , m

′
n−1):

a) if m′
a = b then return σ′

a as preimage of y.
b) else return failure.

We now compute the success probability of the adversary AdvPre. We
denote by ε the forger’s success probability for producing an existential forgery
of the LD–OTS and by t its running time. By tGen and tSig we denote the
times the LD–OTS requires for key and signature generation, respectively.

The adversary AdvPre is successful in finding a preimage of y if and only
if For

O(X,·)(Y) queries the oracle with a message M = (mn−1, . . . ,m0) with
ma = (1 − b) (Line 5a) or if he queries the oracle not at all and if the forger
returns a valid signature for message M ′ = (m′

0, . . . ,m
′
n−1) with m′

a = b (Line
6a). Since b is selected randomly with the uniform distribution, the probability
for ma = (1− b) is 1/2. Since M ′ must be different from the queried message

Hash-based Digital Signature Schemes 85

M , there exists at least one index c such that m′
c = 1−mc. AdvPre is successful

if c = a, which happens with probability at least 1/2n. Hence, the adversary’s
success probability for finding a preimage in time tow = t + tSig + tGen, is at
least ε/4n. We have proved the following theorem.

Theorem 4. Let n ∈ N, let K be a finite parameter set, let tow, εow be pos-
itive real numbers, and F =

{
fk : {0, 1}n → {0, 1}n|k ∈ K

}
be a family

of (tow, εow) one-way functions. Then the LD–OTS variant that uses F is
(tots, εots, 1) existentially unforgeable under an adaptive chosen message at-
tack with εots ≤ 4n · εow and tots = tow − tSig − tGen where tGen and tSig are
the key generation and signing times of LD–OTS, respectively.

7.3 Security of the Merkle signature scheme

This section discusses the security of the Merkle signature scheme. We modify
the Merkle scheme slightly. Select a security parameter n ∈ N . Let K = K(n)
be a finite set of parameters. Let

G =
{
gk : {0, 1}∗ → {0, 1}n|k ∈ K

}

be a family of hash functions. The key generation of the modified MSS works
as follows. On input of 1n for a security parameter n a key k ∈ K(n) is selected
randomly with the uniform distribution. Then the Merkle signature scheme
is used with the hash function gk and some one-time signature scheme. The
secret and public keys are generated as described in Section 2. The parameter
k is included in the public key. We show that the existential unforgeability
of this MSS variant under an adaptive chosen message attack can be reduced
to the collision resistance of the family G and the existential unforgeability of
the underlying one-time signature scheme.

We explain how an existential forger for the Merkle signature scheme can
be used to construct an adversary that is either an existential forger for the
underlying one-time signature scheme or a collision finder for a hash function
in G. The input of the adversary is a one-time signature scheme, a key k ∈ K
chosen randomly with the uniform distribution, and the Merkle tree height
H. Input is also a verification key YOTS and a signing oracle OOTS(XOTS, ·),
where (XOTS, YOTS) is a key pair of the one-time signature scheme.

The adversary is allowed to query the oracle OOTS(XOTS, ·) once. He aims
to output a collision for the hash function gk or an existential forgery (M ′, σ′)
for the one-time signature scheme that can be verified using the verification
key YOTS. He has access to an adaptive chosen message forger For

O(sk,·)(pk)
for the MSS with hash function gk and tree height H. The forger is allowed
to ask 2H queries to its signature oracle. The adversary is supposed to imper-
sonate that oracle.

The adversary selects randomly with the uniform distribution an index c
in the set {0, . . . , 2H−1}. He generates a Merkle key pair in the usual manner
with the only exception that as the cth one-time verification key the one-time

86 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

verification key YOTS from the input is used. Then the adversary invokes the
adaptive chosen message forger for the Merkle scheme with the hash function
gk and the public Merkle key which he generated before. Without loss of
generality, we assume that the forger queries the oracle 2H times. The oracle
answers are given by the adversary. When the forger asks for the ith signature,
i �= c, then the adversary produces this signatures using the signature keys
which he generated before. However, when the forger asks for the cth signature,
the adversary queries the oracle OOTS(XOTS, ·). Suppose that the forger is
successful and outputs an existential forgery (M ′, (s, σ′, Y ′, A′)) where s is
the index of the one-time key pair used for this signature, σ′ is the one-
time signature, Y ′ is the verification key and A′ is the authentication path.
The adversary examines the Merkle signature (s, σ, Y,A) of M he returned in
response to the forgers sth oracle query.

If s = c and (Y,A) = (Y ′, A′), then the adversary returns (M ′, σ′). We
show that this is an existential forgery of the one-time signature scheme with
verification key YOTS. Since s = c we have Y = Y ′ = YOTS. So the verification
key in the message returned by the forger is the same as the verification key
returned by the oracle when it is queried for the cth time. The same is true for
the authentication path. This implies that the message M in the cth oracle
query is different from M ′. So (M ′, σ′) is an existential forgery.

If (Y,A) �= (Y ′, A′), then the adversary can construct a collision for the
hash function gk as follows. Consider the path B = (B0 = gk(Y), B1, . . . , BH)
from Y in the Merkle tree to its root constructed using the hash function gk

and the authentication path A = (A0, . . . , AH−1). Compare it to the path
B′ = (B′

0 = gk(Y ′), B′
1, . . . , B

′
H) from Y ′ in the Merkle tree to its root

constructed using the authentication path A′ = (A′
0, . . . , A

′
H−1). First as-

sume that B and B′ are different. For example, this is true when Y �= Y ′.
Since BH = B′

H is the MSS public key, there is an index 0 ≤ i < H with
Bi+1 = B′

i+1 and Bi �= B′
i. Since Bi+1 is the hash value of the concatenation

of Bi and Ai (in the appropriate order), and since B′
i+1 is the hash value of the

concatenation of B′
i and A′

i (in the appropriate order), a collision of gk is found.
Next, assume that B and B′ are equal. Therefore gk(Y) = B0 = B′

0 = gk(Y ′)
holds. If Y �= Y ′ a collision is found. If Y = Y ′ then A and A′ are different.
Assume that Ai �= A′

i for some index i < H. Since Bi+1 is the hash value
of the concatenation of Bi and Ai (in the appropriate order), and since B′

i+1

is the hash value of the concatenation of B′
i and A′

i (in the appropriate or-
der) again a collision is found. That collision is returned by the adversary. In
all other cases the adversary returns failure. Algorithm 7.2 summarizes our
description.

We now estimate the success probability of the adversary AdvCR,OTS. In
the following, ε denotes the success probability and t the running time of
the forger. Also, tGen, tSig, and tVer denote the times MSS requires for key
generation, signature generation, and verification, respectively.

If (Y ′, A′) �= (Y,A), then the adversary returns a collision. His (conditional)
probability εcr for returning a collision in time tcr = t+2H · tSig + tVer + tGen

Hash-based Digital Signature Schemes 87

Algorithm 7.2 AdvCR,OTS

Input: Key for the hash function k
$←− K, height of the tree H ≥ 2, one instance

of the underlying OTS consisting of a verification key YOTS and the corresponding
signing oracle OOTS(XOTS, ·).
Output: A collision of gk, an existential forgery for the supplied instance of the
OTS, or failure

1. Set c
$←− {0, . . . , 2H − 1}.

2. Generate OTS key pairs (Xj , Yj), j = 0, . . . , 2H − 1, j �= c and set Yc ← YOTS.
3. Complete the Merkle key pair generation and obtain (sk, pk).
4. Run For

O(sk,·)(pk).
5. When For

O(sk,·)(pk) asks its qth oracle query (0≤q≤2H−1):
a) if q = c then query the signing oracle OOTS(XOTS, ·).
b) else compute the one-time signature σ using the qth signature key Xq.
c) Return the corresponding Merkle signature to the forger.

6. If the forger outputs an existential forgery (M ′, (s, σ′, Y ′, A′)), examine the
Merkle signature (s, σ, Y, A) returned in response to the forgers sth oracle query.
a) if (Y ′, A′) �= (Y, A) then return a collision of gk.
b) else

i. if s = c then return (M ′, σ′) as forgery for the supplied instance of
the one-time signature scheme.

ii. else return failure.

is at least ε. If (Y ′, A′) = (Y,A) the adversary returns an existential forgery
if s = c. His (conditional) probability εots for finding an existential forgery in
time tots = t + 2H · tSig + tVer + tGen is at least ε · 1/2H . Since both cases
are mutually exclusive, one of them occurs with probability at least 1/2. So
we have proved the following theorem.

Theorem 5. Let K be a finite set, let H ∈ N, tcr, tots, εcr, εots ∈ R>0, εcr ≤
1/2, εots ≤ 1/2H+1, and let G =

{
gk : {0, 1}∗ → {0, 1}n|k ∈ K

}
be a

family of (tcr, εcr) collision resistant hash functions. Consider MSS using a
(tots, εots, 1) signature scheme. Then MSS is a (t, ε, 2H) signature scheme with

ε ≤ 2 ·max
{
εcr, 2H · εots

}
(76)

t = min
{
tcr, tots

}
− 2H · tSig − tVer − tGen. (77)

This theorem tell us that if there is no adversary that breaks the collision
resistance of the family G in time at most tcr with probability greater than εcr
and there is no adversary that is able to produce an existential forgery for the
one-time signature scheme used in MSS in time at most tots with probability
greater than εots, then there exists no forger for MSS running in time at most
min

{
tcr, tots

}
− 2H · tSig − tVer − tGen and success probability greater then

2 ·max
{
εcr, 2H · εots

}
.

88 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

7.4 The security level of MSS

The goal of this section is to estimate the security level of the Merkle signature
scheme when used with the Lamport–Diffie one-time signature scheme for a
given output length n of the hash function. Let b ∈ N. We say that MSS has
security level 2b if the expected number of hash function evaluations required
for the generation of an existential forgery is at least 2b. This security level
can be computed as t/ε where t is the running time of an existential forger and
ε is its success probability. We also say that the signature scheme has b bits of
security or that the bit security is b. In this section let εcr, tcr, εow, tow ∈ R>0,
let K be a finite set, and let

G =
{
gk : {0, 1}∗ → {0, 1}n|k ∈ K

}
(78)

be a family of (tcr, εcr) collision resistant and (tow, εow) preimage resistant
hash functions.

Since we consider MSS using LD-OTS, we first combine Theorems 4 and 5.
This is achieved by substituting the values for εots and tots from Theorem 4
in Equations (76) and (77) from Theorem 5. This yields

ε ≤ 2 ·max
{
εcr, 2H · 4n · εow

}
(79)

t = min
{
tcr, tow

}
− 2H · tSig − tVer − tGen. (80)

Note that we can replace tots by tow rather than tow − tSig − tGen, since the
time LD-OTS requires for signature and key generation is already included
in the signature and key generation time of the MSS in Theorem 5. We also
require εcr ≤ 1/2 and εow ≤ 1/(2H+1 · 4n) to ensure ε ≤ 1.

To estimate the security level, we need explicit values for the key pair
generation, signature generation and verification times of MSS using LD-OTS.
We will use the following upper bounds.

tGen ≤ 2H · 6n, tSig ≤ 4n(H + 1), tVer ≤ n + H

We also make assumptions for the values of (tcr, εcr) and (tow, εow). We dis-
tinguish between attacks that use classic computers only and attacks with
quantum computers.

Using classical computers

In our security analysis of MSS we assume that the hash functions under
consideration have output length n and only admit generic attacks against
their preimage and collision resistance. Those generic attacks are exhaustive
search and the birthday attack. When classical computers are used, then a
birthday attack that inspects 2n/2 hash values has a success probability of
approximately 1/2. Also, an exhaustive search of 2n/2 random strings yields

Hash-based Digital Signature Schemes 89

a preimage of a given hash value with probability 1/2n/2. Therefore, we as-
sume that the hash function family G is (2n/2, 1/2) collision resistant and
(2n/2, 1/2n/2) preimage resistant. In this situation, we prove the following
theorem.

Theorem 6 (Classic case). The security level of the Merkle signature
scheme combined with the Lamport-Diffie one-time signature scheme is at
least

b = n/2− 1 (81)

if the height of the Merkle tree is at most H ≤ n/3 and the output length of
the hash function is at least n ≥ 87.

To prove Theorem 6 we use our assumption and Equations (79) and (80)
and obtain the following estimate for the security level.

t

ε
≥ 2n/2 − 2H · tSig − tVer − tGen

2 ·max{1/2, 2H · 4n · 1/2n/2} . (82)

Using H ≤ n/3, the maximum in the denominator is 1/2 as long as

n/3 ≤ n/2− log2 4n− 1 (83)

which holds for n ≥ 53. Using the upper bounds for tSig, tVer, and tGen

estimated above, Equation (82) implies

t

ε
≥ 2n/2 − 2H · 4n(H + 1)− (n + H)− 2H · 6n. (84)

Using H ≤ n/3, the desired lower bound for the security level of 2n/2−1 holds
as long as

2n/3(4/3 · n2 + 4n) + 4/3 · n + 2n/3 · 6n ≤ 2n/2−1 (85)

which is true for n ≥ 87.

Using quantum computers

Again, we assume that our hash functions only admit generic attacks against
their collision and preimage resistance. However, when quantum computers
are available, the Grover algorithm [13] can be used in those generic attacks.
Grovers algorithm requires 2n/3 evaluations of the hash function to find a
collision with probability at most 1/2. So we assume that our hash functions
are (2n/3, 1/2) collision resistant. Also as explained in Remark 3 of Section 5
in Chapter 2 “Quantum computing”, we may by virtue of Grover’s algorithm
assume that our hash functions are (2n/3, 1/2n/3) preimage resistant. In this
situation, we prove the following theorem.

90 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

Theorem 7 (Quantum case). The security level of the Merkle signature
scheme combined with the Lamport-Diffie one-time signature scheme is at
least

b = n/3− 1 (86)

if the height of the Merkle tree is at most H ≤ n/4 and the output length of
the hash function is at least n ≥ 196.

To prove Theorem 7 we use the same approach as for the proof of Theorem
6. We use our assumption on the hash function and Equations (79) and (80)
and obtain the following estimate for the security level.

t

ε
≥ 2n/3 − 2H · tSig − tVer − tGen

2 ·max{1/2, 2H · 4n · 1/2n/3} . (87)

Using H ≤ n/4, the maximum in the denominator is 1/2 as long as

n/4 ≤ n/3− log2 4n− 1 (88)

which holds for n ≥ 119. Using the upper bounds for tSig, tVer, and tGen

estimated above, Equation (87) implies

t

ε
≥ 2n/3 − 2H · 4n(H + 1)− (n + H)− 2H · 6n. (89)

Using H ≤ n/4, the desired lower bound for the security level of 2n/3−1 holds
as long as

2n/4(n2 + 4n) + 5/4 · n + 2n/4 · 6n ≤ 2n/3−1 (90)

which is true for n ≥ 196.

Comparison of the bit security

Table 2 shows the security level for some output lenghts n of the hash function.
This table also shows the maximum value for H such that the security level
holds.

Table 2. Security level of the Merkle signature scheme combined with the Lamport–
Diffie one-time signature scheme in bits.

Output length n 128 160 224 256 384 512

Classic case
bit security b 63 79 111 127 191 255
Maximum value for H 42 53 74 85 128 170

Quantum case
bit security b − − 73 84 127 169
Maximum value for H − − 56 64 96 128

Hash-based Digital Signature Schemes 91

This table shows, that state-of-the-art hash functions can be used to ensure
a high security level of the Merkle signature scheme, even against attacks by
quantum computers. For all practical applications the maximum height of the
Merkle tree and the resulting number of messages that can be signed with one
key pair is sufficiently large.

References

1. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In Advances in
Cryptology - EUROCRYPT’94, LNCS 950, pages 92–111. Springer, 1995.

2. Berman, P., Karpinski, M., Nekrich, Y.: Optimal Trade-Off for Merkle Tree
Traversal. Theoretical Computer Science, volume 372, issue 1, pages 26–36,
2007.

3. Buchmann, J., Coronado, C., Dahmen, E., Döring, M., Klintsevich, E.: CMSS
– an improved Merkle signature scheme. In Progress in Cryptology - IN-
DOCRYPT 2006, LNCS 4329, pages 349–363. Springer-Verlag, 2006.

4. Buchmann, J., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.: Merkle
signatures with virtually unlimited signature capacity. In Applied Cryptography
and Network Security - ACNS 2007, LNCS 4521, pages 31–45. Springer, 2007.

5. Buchmann, J., Dahmen, E., Schneider, M.: Merkle tree traversal revisited. 2nd
International Workshop on Post-Quantum Cryptography - PQCrypto 2008,
LNCS 5299, pages 63–77. Springer, 2008.

6. Boneh, D., Mironov, I., Shoup, V.: A secure signature scheme from bilinear
maps. In Topics in Cryptology - CT-RSA 2003, LNCS 2612, pages 98–110.
Springer, 2003.

7. Coppersmith, D., Jakobsson, M.: Almost Optimal Hash Sequence Traversal.
Financial Crypto ’02. Available at www.markus-jakobsson.com.

8. Coronado, C.: On the security and the efficiency of the Merkle signature
scheme. Cryptology ePrint Archive, Report 2005/192, 2005. http://eprint.
iacr.org/.

9. Dahmen, E., Okeya, K., Takagi, T., Vuillaume, C.: Digital Signatures out of
Second-Preimage Resistant Hash Functions. 2nd International Workshop on
Post-Quantum Cryptography - PQCrypto 2008, LNCS 5299, pages 109–123.
Springer, 2008.

10. Dods, C., Smart, N., Stam, M.: Hash based digital signature schemes. In Cryp-
tography and Coding, LNCS 3796, pages 96–115. Springer, 2005.

11. ElGamal, T.: A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms. Advances in Cryptology – CRYPTO ’84, LNCS 196,
pages 10–18. Springer, 1985.

12. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure
against adaptive chosen-message attacks. In SIAM Journal on Computing,
17(2), pages 281–308, 1988.

13. Grover, L. K.: A fast quantum mechanical algorithm for database search. Pro-
ceedings of the Twenty-Eighth Annual Symposium on the Theory of Comput-
ing, pages 212–219, New York, 1996. ACM Press.

14. Jakobsson, M.: Fractal Hash Sequence Representation and Traversal. ISIT ’02,
p. 437. Available at www.markus-jakobsson.com.

92 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

15. Johnson, D. and Menezes, A.: The Elliptic Curve Digital Signature Algorithm
(ECDSA). Technical Report CORR 99-34, University of Waterloo, 1999. Avail-
able at http://www.cacr.math.uwaterloo.ca.

16. Jakobsson, M., Leighton, T., Micali, S., Szydlo, M.: Fractal Merkle Tree Rep-
resentation and Traversal. In RSA Cryptographers Track, RSA Security Con-
ference 2003.

17. Jutla, C., Yung, M.: PayTree: Amortized-Signature for Flexible Micropay-
ments. 2nd USENIX Workshop on Electronic Commerce, pp. 213–221, 1996.

18. Lamport, L.: Constructing digital signatures from a one way function. Techni-
cal Report SRI-CSL-98, SRI International Computer Science Laboratory, 1979.

19. Lipmaa, H.: On Optimal Hash Tree Traversal for Interval Time-Stamping. In
Proceedings of Information Security Conference 2002, LNCS 2433, pp. 357–371,
Springer, 2002. Available at www.tcs.hut.fi/ ˜ helger/papers/lip02a/.

20. Malkin, T., Micciancio, D., Miner, S.: Efficient Generic Forward-Secure Signa-
tures With An Unbounded Number Of Time Periods. Proceedings of Eurocrypt
’02, pages 400–417.

21. Merkle, R.C.: Secrecy, Authentication, and Public Key Systems. UMI Research
Press, 1982. Also appears as a Stanford Ph.D. thesis in 1979.

22. Merkle, R.C.: A Digital Signature Based on a Conventional Encryption Func-
tion. Proceedings of Crypto ’87, pp. 369–378.

23. Merkle, R.C.: A certified digital signature. Advances in Cryptology -
CRYPTO ’89 Proceedings, LNCS 435, pages 218–238, Springer, 1989.

24. Micali, S.: Efficient Certificate Revocation. In RSA Cryptographers Track, RSA
Security Conference 1997, and U.S. Patent No. 5,666,416.

25. Naor, D., Shenhav, A., Wool, A.: One-time signatures revisited: Have
they become practical. Cryptology ePrint Archive, Report 2005/442, 2005.
http://eprint.iacr.org/.

26. Naor, D., Shenhav, A., Wool, A.: One-time signatures revisited: Practical fast
signatures using fractal merkle tree traversal. IEEE – 24th Convention of Elec-
trical and Electronics Engineers in Israel, pages 255–259, 2006.

27. Perrig, A., Canetti, R., Tygar, D., Song, D.: The TESLA Broad-
cast Authentication Protocol. Cryptobytes, Volume 5, No. 2
(RSA Laboratories, Summer/Fall 2002), pages 2–13. Available at
www.rsasecurity.com/rsalabs/cryptobytes/.

28. Rompel, J.: One-way Functions are Necessary and Sufficient for Secure Signa-
tures. Proceedings of ACM STOC’90, pages 387–394, 1990.

29. Rivest, R., Shamir, A.: PayWord and MicroMint–Two Simple Micropayment
Schemes. CryptoBytes, Volume 2, No. 1 (RSA Laboratories, Spring 1996), pp.
7–11. Available at www.rsasecurity.com/rsalabs/cryptobytes/.

30. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions,
implications, and separations for preimage resistance, second-preimage resis-
tance, and collision resistance. In Fast Software Encryption - FSE 2004, LNCS
3017, pages 371–388. Springer, 2004.

31. Rivest, R. L., Shamir, A., and Adleman, L.: A Method for Obtaining Digi-
tal Signatures and Public-Key Cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

32. FIPS PUB 180-1, Secure Hash Standard, SHA-1. Available at
www.itl.nist.gov/fipspubs/fip180-1.htm.

33. Szydlo, M.: Merkle Tree Traversal in Log Space and Time. Advances in Cryp-
tology - EUROCRYPT 2004, LNCS 3027, pages 541–554, Springer, 2004

Hash-based Digital Signature Schemes 93

34. Szydlo, M.: Merkle Tree Traversal in Log Space and Time. Preprint, available
at www.szydlo.com, 2003.

Code-based cryptography

Raphael Overbeck1 and Nicolas Sendrier2

1 EPFL, I&C, LASEC.
2 INRIA Rocquencourt, projet SECRET.

1 Introduction

In this chapter, we consider the theory and the practice of code-based cryp-
tographic systems. By this term, we mean the cryptosystems in which the
algorithmic primitive (the underlying one-way function) uses an error cor-
recting code C. This primitive may consist in adding an error to a word of C
or in computing a syndrome relatively to a parity check matrix of C.

The first of those systems is a public key encryption scheme and it was
proposed by Robert J. McEliece in 1978 [48]. The private key is a random bi-
nary irreducible Goppa code and the public key is a random generator matrix
of a randomly permuted version of that code. The ciphertext is a codeword to
which some errors have been added, and only the owner of the private key (the
Goppa code) can remove those errors. Three decades later, some parameter
adjustment have been required, but no attack is known to represent a serious
threat on the system, even on a quantum computer.

Similar ideas have been used to design other cryptosystems. Among oth-
ers, let us mention some public key systems, like the Niederreiter encryp-
tion scheme [52] or the CFS signature scheme [14], and also identification
schemes [73, 76], random number generators [19, 30] or a cryptographic hash
function [3]. Some of the most important of those proposals are reviewed in
§2.

As for any class of cryptosystems, the practice of code-based cryptography
is a trade-off between security and efficiency. Those issues are well understood,
at least for McEliece’s scheme. Even though, no practical application of code-
based cryptography is known to us. This might partly be due to the large size
of the public key (100 kilobytes to several megabytes), but maybe also to a lack
of publicity in a context were alternative solution were not urgently needed.
Anyway, apart from the key size that we already mentioned, the McEliece
encryption scheme has many strong features. First, the security reductions are
tight (see [38] for instance). Also, the system is very fast, as both encryption
and decryption procedures have a low complexity.

96 Raphael Overbeck and Nicolas Sendrier

We will discuss in details the two aspects of security in §3 and §4. The first
security assumption is the hardness of decoding in a random linear code [6].
This is an old problem of coding theory for which only exponential time
solutions are known [4]. The second security assumption, needed only for
public key systems, is the indistinguishability of Goppa codes [66]. Though
it is not as old, in this form, as the first one, it relates to old problems of
algebraic coding theory and is believed to be valid.

We will conclude this chapter with some practical aspects, first on the
implementation, then on the key size issue, and we finish with a key point for
the practicality of McEliece and related systems: how to efficiently construct
a semantically secure (IND-CCA2) variant.

2 Cryptosystems

The first cryptosystem based on coding theory was a public key encryption
scheme, presented in 1978 by McEliece [48]. Nearly all subsequently proposed
asymmetric cryptographic schemes based on coding theory have a common
disadvantage: the large memory requirements. Several other schemes followed,
as the identification scheme by Stern [73], hash functions [3], random number
generators [19] and efforts to build a signature scheme. The latter however all
failed (compare [79], [32], [1] and [74]), until finally in 2001 Courtois, Finiasz
and Sendrier made a promising proposal [14]. However, even if the latter is
not broken, it is not suited for standard applications since besides the public
key sizes the signing costs are large for secure parameter sets.

In 1986, Niederreiter proposed a knapsack-type PKC based on error cor-
recting codes. This proposal was later shown to have a security equivalent to
McEliece’s proposal [42]. Among others, Niederreiter estimated GRS codes
as suitable codes for his cryptosystem which were assumed to allow smaller
key sizes than Goppa codes. Unfortunately, in 1992 Sidelnikov and Shestakov
were able to show that Niederreiter’s proposal to use GRS codes is insecure.
In the following a couple of proposals were made to modify McEliece’s original
scheme (see e.g. [27], [26], [28], [70] and [35]) in order to reduce the public key
size. However, most of them turned out to be insecure or inefficient compared
to McEliece’s original proposal (see e.g. [54] or [38]). The most important
modifications for McEliece’s scheme are the conversions by Kobara and Imai
in 2001. These are CCA2-secure, provably as secure as the original scheme [37]
and have almost the same transmission rate as the original system.

The variety of possible cryptographic applications provides sufficient mo-
tivation to have a closer look at cryptosystems based on coding theory as an
serious alternative to established PKCs like the ones based on number the-
ory. In this section we will concentrate on the most important cryptographic
schemes based on coding theory.

Code-based cryptography 97

2.1 McEliece PKC

The McEliece cryptosystem we are going to present in this section remains
unbroken in its original version, even if about 15 years after it’s proposal secu-
rity parameters had to be adapted. Although the secret key of the McEliece
PKC is a Goppa code (see §6.2) in the original description, the secret key
could be drawn from any subclass of the class of alternant codes. However,
such a choice might not reach the desired security as we will see in the follow-
ing sections. The trapdoor for the McEliece cryptosystem is the knowledge
of an efficient error correcting algorithm for the chosen code class (which is
available for each Goppa code) together with a permutation. The McEliece
PKC is summarized in Algorithm 2.1.

Algorithm 2.1 The McEliece PKC
• System Parameters: n, t ∈ N, where t � n.
• Key Generation: Given the parameters n, t generate the following matrices:

G : k×n generator matrix of a code G over F of dimension k and minimum
distance d ≥ 2t + 1. (A binary irreducible Goppa code in the original
proposal.)

S : k × k random binary non-singular matrix
P : n × n random permutation matrix

Then, compute the k × n matrix Gpub = SGP.
• Public Key:

(
Gpub, t

)
• Private Key: (S,DG , P), where DG is an efficient decoding algorithm for G.
• Encryption (E(Gpub,t)): To encrypt a plaintext m ∈ F

k choose a vector z ∈ F
n

of weight t randomly and compute the ciphertext c as follows:

c = mGpub ⊕ z .

• Decryption (D(S,DG ,P)): To decrypt a ciphertext c calculate

cP−1 = (mS) G ⊕ zP−1

first, and apply the decoding algorithm DGpub for G to it. Since cP−1 has a
hamming distance of t to G we obtain the codeword

mSG = DG
(
cP−1) .

Let J ⊆ {1, · · · , n} be a set, such that Gpub
·J is invertible, then we can compute

the plaintext m = (mSG)J (G·J)−1 S−1

The choice of security parameters for the McEliece PKC has to be taken
in respect to the known attacks. The optimal choice of parameters for a given
security level (in terms of the public key size) unfortunately can not be given
as a closed formula. We are going to discuss the latter later on. The problem

98 Raphael Overbeck and Nicolas Sendrier

to attack the McEliece PKC differs from the general decoding problem, which
we will examine in §3:

Problem 1. (McEliece Problem) Let F = {0, 1} and G be a binary irre-
ducible Goppa code in Algorithm 2.1.

• Given a McEliece public key
(
Gpub, t

)
where Gpub ∈ {0, 1}k×n and a ci-

phertext c ∈ {0, 1}n,
• Find the (unique) message m ∈ {0, 1}k s.t. wt

(
mGpub − c

)
= t.

It is easy to see that someone who is able to solve the Syndrome Decod-
ing Problem (compare §3) is able to solve the McEliece problem. The reverse
is presumably not true, as the code G =

〈
Gpub

〉
is not a random one, but

permutation equivalent to a code of a known class (a Goppa code in our def-
inition). We can not assume that the McEliece-Problem is NP-hard. Solving
the McEliece-Problem would only solve the General Decoding Problem in a
certain class of codes and not for all codes.

In the case of McEliece’s original proposal, Canteaut and Chabaud state
the following: “The row scrambler S has no cryptographic function; it only as-
sures for McEliece’s system that the public matrix is not systematic otherwise
most of the bits of the plain-text would be revealed” [11]. However, for some
variants of McEliece’s PKC, this statement is not true, as e.g. in the case of
CCA2-secure variants (see §5.1 and §5.3) or in the case, where the messages
are seeds for PRNGs. The matrix P is indispensable because for most codes
the code positions are closely related to the algebraic structure of the code.
We will come back to this in §4.3.

The Niederreiter variant

The dual variant of the McEliece PKC is a knapsack-type cryptosystem and
is called the Niederreiter PKC. In difference to the McEliece cryptosystem,
instead of representing the message as a codeword, Niederreiter proposed to
encode it into the error vector by a function φn,t:

φn,t : {0, 1}� →Wn,t, (1)

where Wn,t = {e ∈ F
n
2 | wt(e) = t} and � = �log2 |Wn,t|	. Such a mapping is

presented, e.g., in [19] and is summarized in Algorithm 2.2. This algorithm is
quite inefficient and has complexity O(n2 · log2 n). Its inverse is easy to define:
φ−1

n,t(e) =
∑n

i=1 ei ·
(

i∑ i
j=0 ej

)
. We discuss efficient alternatives in §5.1. Repre-

senting the message by the error vector, we get the dual variant of McEliece’s
cryptosystem, given in Algorithm 2.3. The security of the Niederreiter PKC
and the McEliece PKC are equivalent. An attacker who can break one is able
to break the other and vice versa [42]. In the following, by “Niederreiter PKC”
we refer to the dual variant of the McEliece PKC and to the proposal by
Niederreiter to use GRS codes by “GRS Niederreiter PKC”.

Code-based cryptography 99

Algorithm 2.2 φn,t : Mapping bit strings to constant weight codewords
Input: x ∈ {0, 1}�

Output: a word e = (e1, e2, · · · , en) of weight w and length n.

c ←
(

n
w

)
, c′ ← 0, j ← n.

i ← Index of x in the lexicographic order (an integer).
while j > 0 do

c′ ← c · j−w
j

if i ≤ c′ then
ej ← 0, c ← c′

else
ej ← 1, i ← i − c′, c ← c · w

n

j ← j − 1

Algorithm 2.3 Niederreiter’s PKC
• System Parameters: n, t ∈ N, where t � n.
• Key Generation: Given the parameters n, t generate the following matrices:

H: (n − k) × n check matrix of a code G which can correct up to t errors.
P: n × n random permutation matrix

Then, compute the systematic n× (n − k) matrix Hpub = MHP, whose columns
span the column space of HP, i.e. Hpub

{1,··· ,n−k}· = Id(n−k).
• Public Key:

(
Hpub, t

)
• Private Key: (P,DG , M), where DG is an efficient syndrome decoding algo-

rithm1 for G.
• Encryption: A message m is represented as a vector e ∈ {0, 1}n of weight t,

called plaintext. To encrypt it, we compute the syndrome

s = Hpube� .

• Decryption: To decrypt a ciphertext s calculate

M−1s = HPe�

first, and apply the syndrome decoding algorithm DG for G to it in order to
recover Pe�. Now, we can obtain the plaintext e� = P−1Pe�

1 A syndrome decoding algorithm takes as input a syndrome – not a codeword. Each
syndrome decoding algorithm leads immediately to an decoding algorithm and vice
versa.

The advantage of this dual variant is the smaller public key size since it is
sufficient to store the redundant part of the matrix Hpub. The disadvantage is
the fact, that the mapping φn,t slows down en- and decryption. In a setting,
where we want to send random strings, only, this disadvantage disappears as
we can take h(e) as random string, where h is a secure hash function.

100 Raphael Overbeck and Nicolas Sendrier

Modifications for the trapdoor of McEliece’s PKC

From McEliece’s scheme one can easily derive a scheme with a different trap-
door by simply replacing the irreducible binary Goppa codes by another code
class. However, such attempts often proved to be vulnerable against structural
attacks. In §4.3 we will sketch a few of those attacks. To prevent structural
attacks not only McEliece’s proposal, but others exist as well. In Table 1 we
give an overview of the principal modifications. McEliece’s proposal can thus

1. Row Scrambler [48]: Multiply G with a random invertible matrix S ∈ F
k×k

from the right. As 〈G〉 = 〈SG〉, one can use the known error correction algorithm.
Publishing a systematic generator matrix provides the same security against
structural attacks as a random S.

2. Column Scrambler / Isometry [48]: Multiply G with a random invertible
matrix T ∈ F

n×n from the left, where T preserves the norm, see §4.1. Obviously
one can correct errors of norm up to t in 〈GT〉, if G and T are known.

3. Subcode [52]: Let 0 < l < k. Multiply G with a random matrix S ∈ F
l×k of

full rank from the right. As 〈SG〉 ⊆ 〈G〉, the known error correction algorithm
may be used.

4. Subfield Subcode [48]: Take the FSUB-subfield subcode of the secret code for
a subfield FSUB of F. As before, one can correct errors by the error correcting
algorithm for the secret code. However, sometimes one can correct errors of
larger norm in the subfield subcode than in the original code, compare Definition
9 and following.

5. Matrix Concatenation [70]: Take the code
〈[

G SG
]〉

for an invertible matrix
S ∈ F

k×k. In Hamming norm, the secret key holder can correct 2t + 1 errors in
this code, as he can correct errors in the first or the second n columns.2

6. Random Redundancy [22]: Add a number l of random columns at the left
side of the matrix G. Errors can be corrected in the last n columns.

7. Artificial Errors [27]: One can choose to modify the matrix G at a small
number of positions. These positions will be treated as erasures on decryption
and thus change the norm t of the errors that can be decoded.

8. Reducible Codes [26]: Choose some matrices Y ∈ F
k×n and S ∈ F

l×k with
l ≤ k. Then take the code generated by

[
SG 0

Y G

]
.

Error correction by the algorithm for the secret code is possible if one corrects
errors in sections, beginning from the right.2 However, for correcting errors in
Hamming metric, this approach does not seem to be suitable [56].

Table 1. Strategies for hiding the structure of a code

2 One might generalize this approach by replacing one of the matrices G by a second
secret code.

Code-based cryptography 101

be seen as a combination of the strategies 1,2 and 4. Nevertheless, we have to
remark, that all strategies have to be used with care, as they can but do not
necessarily lead to a secure cryptosystem (compare e.g. [54,78] and §4.3).

2.2 CFS signature

The only unbroken signature scheme based on the McEliece, or rather on the
Niederreiter PKC was presented by Courtois, Finiasz and Sendrier in [14]. The
security of the CFS scheme (against universal forgery) can be reduced to the
hardness of Problem 1. The knowledge of the private key allows the decoder
to solve this problem for a certain fraction of random words c. The idea of the
CFS algorithm is to repeatedly hash the document, randomized by a counter
of bit-length r, until the output is a decryptable ciphertext. The signer uses
his secret key to determine the corresponding error-vector. Together with the
current value of the counter, this error vector will then serve as signature. The
signature scheme is summarized in Algorithm 2.4.

The average number of attempts needed to reach a decodable syndrome
can be estimated by comparing the total number of syndromes to the number
of efficiently correctable syndromes:

∑t
i=0

(
n
t

)
2n−k

=
∑t

i=0

(
n
t

)
2mt

≈ nt/t!
nt

=
1
t!

Thus each syndrome has a probability of 1
t! to be decodable, which can be

tested in about t2m3 binary operations, see §6.1. The CFS scheme needs
about t2m3t! operations to generate a signature [14] and produces signatures
of length log2(r

(
n
t

)
) ≈ log2(nt). Thus, r has to be be larger than log2(t!). The

signature length (n+r) can be reduced considerably, by employing a mapping
like φn,t.

With the parameters suggested by Courtois, Finiasz and Sendrier (m =
16, t = 9) the number of possible error-vectors is approximately given by(
n
t

)
=
(
216

9

)
≈ 2125.5 so that a 126-bit counter suffices to address each of

them. However, these parameters are too low to prevent a generalized colli-
sion attack, see §3.4. As the CFS scheme does not scale well with growing
parameters, secure instances of the CFS scheme require huge public keys.

2.3 Stern’s identification scheme

Stern’s identification scheme presented in 1994 is closely related to the Nieder-
reiter cryptosystem. There exists a variant of this scheme by Pascal Véron [76].
However, we will explain the original scheme: Let Hpub be a (n−k)×n matrix
common to all users. If Hpub is chosen randomly, it will provide a parity check
matrix for a code with asymptotically good minimum distance given by the
Gilbert-Varshamov (GV) bound, see Definition 1. The private key for a user

102 Raphael Overbeck and Nicolas Sendrier

Algorithm 2.4 CFS digital signature
• System parameters: m, t ∈ N.
• Key Generation: Generate a Niederreiter PKC key pair with a code drawn

from the class of [n = 2m, k = n − mt, 2t + 1] binary irreducible Goppa codes.
• Signing:

Input: h a public hash function, φn,t, D(S,DG ,P), r ∈ N+ and the document
d to be signed
Output: A CFS-signature s.

z = h(d)
choose a r-bit Vector i at random
s = h(z||i)
while s is not decodable do

choose a r-bit Vector i at random
s = h(z||i)

e = D(S,DG ,P)(s)

s = (φ−1
n,t(e)||i)

• Verification:
Input: A signature s = (φ−1

n,t(e)||i), the document d and Hpub

Output: accept or reject

e = φn,t(φ
−1
n,t(e))

s1 = Hpub(e�)
s2 = h(h(d)||i)
if s1 = s2 then

accept s
else

reject s

will thus be a word e of low weight w (e.g. w ≈ GV bound), which sums up to
the syndrome eH = s, the public key. By Stern’s 3-pass zero-knowledge proto-
col (Algorithm 2.5), the secret key holder can prove his knowledge of e using
two blending factors: a permutation and a random vector. However, a dishon-
est prover not knowing e can cheat the verifier in the protocol with probability
2/3. Thus, the protocol has to be run several times to detect cheating provers.

The security of the scheme relies on the difficulty of the general decoding
problem, that is on the difficulty of determining the preimage e of s = Hpube�.
Without the secret key, an adversary has three alternatives to deceive the
verifier:

1. To be able to answer the challenges b ∈ {1, 2}, the attacker commits to
c1 = (Π,Hpuby� + s) and selects a random vector ê of the same weight as
e. Now, he computes c2 = (y + ê)Π and c3 = Π(y).

2. He can work with a random ê of weight w instead of the secret key while
computing c1, c2, c3. He will succeed if he is asked b ∈ {0, 2} but in case

Code-based cryptography 103

Algorithm 2.5 Stern’s identification scheme
• System parameters : n, k, q, w ∈ N+ and Hpub ∈ F

(n−k)×n
q .

• Public key : Hpube� = s ∈ F
n−k
q

• Private key : e ∈ F
n
q of weight w.

Prover Verifier
Choose random n-bit vector y and ran-
dom permutation Π, to compute
c1 = (Π, Hpuby�), c2 = yΠ,
c3 = (y + e)Π.
Send commitments for (c1, c2, c3)

Send random request b ∈ {0, 1, 2}
If b = 0 ⇒ reveal c2, Π
If b = 1 ⇒ reveal c3, Π
If b = 2 ⇒ reveal c2, c3

If b = 0 ⇒ check c1, c2

If b = 1 ⇒ check c1, c3 with
Hpuby� = Hpub(y + e)� + s

If b = 2 ⇒ check c2, c3 and the weight of
eΠ.

b = 1 he will not be able to produce the correct c1, c3 since Hpubê� �=
Hpube� = s.

3. He can choose ŷ of arbitrary weight from the set of all possible preimages
of s and replaces e by ŷ while computing c1, c2, c3. This time he will fail
to answer the request b = 2 since wt(ŷ) �= w.

The communication cost per round is about n(log2(q) + log2(n)) plus three
times the size of the employed commitments (e.g. a hash function).

The standard method to convert the identification procedure into a proce-
dure for signing, is to replace verifier-queries by values suitably derived from
the commitments and the message to be signed. This leads to a blow-up of
each (hashed) plaintext bit to more than (n[log2(q) + log2(n)])/ log2(3) sig-
nature bits and is therefore of theoretical interest as a signature. However,
the security of the resulting signature scheme can be reduced to the average-
case hardness of the NP-hard general decoding problem in the random oracle
model.

2.4 Cryptosystems based on the syndrome one-way function

Besides the classical code based PKCs there exist other cryptographic prim-
itives with security reductions to coding theoretic problems. For symmetric
cryptosystems we do not need a trapdoor and can take the computation of
a syndrome of a random code as a one-way function. In this section we want
to give a way of obtaining cryptographic strong hashing and generation of
pseudorandom sequences using coding theoretic primitives.

104 Raphael Overbeck and Nicolas Sendrier

Code based hashing

If in Stern’s identification scheme parameters are chosen properly, one has the
following inequality: (

n

w

)
(q − 1)w−1 · qk−n ≥ 1.

Thus, there are more vectors of weight w and length n than syndromes of
an [n, k] code. If it is still hard to recover vectors of weight w in the set of
vectors with a certain syndrome, then, computing syndromes can serve as a
compression function. Based on this compression function, a hash function can
be constructed [3]. The compression function is realized by x �→ φn,w(x)H,
with φn,w given in Algorithm 2.2. In Figure 1 we give an intuition of the way
the hash function works.

φn,t(x) · H

x

Fig. 1. Merkle-Damgård scheme of hash functions

The performance of such a hash function depends on the time needed
to compute the one-to-one mapping φn,w. In order to speed-up such hash
function, one can for example limit the setWn,t to the set of w′-regular words

W ′
n,t =

{
(e1, e2, · · · , ew/w′) ∈ F

n
q | ei ∈ F

n·w′/w
q ,wt(e) = w′

}

if w′|w and (w′/w)|n. The modified mapping φw′

n,w is easy to compute, if w′ =
1. The resulting compression function is x �→ φw′

n,w(x)H. Nevertheless, using
regular words changes the problem of inverting the compression function.
Even if it was proved, that inverting φw′

n,t(x)H is NP-hard in general, there

Code-based cryptography 105

is no evidence if it is weak or hard in the average case [3]. Further, it was
only proved, that finding preimages for φw′

n,t(x)H is NP-hard in the cases
w′ ∈ {1, 2}, but not the problem to find collisions.

For the chaining step of a hash function one possibility is obviously to
concatenate the syndrome obtained with the input of the next round and
to apply φn,w afterwards. In the case of w′-regular words with blocklengths
n · w′/w, there exists a second possibility: One can simply concatenate two
such words of length < n to obtain a new w′-regular word of length n and
weight w.

One possible choice is to use q = 2, w′ = 1 with parameters n = 214,
n − k = 160 and w = 64 for a moderately (262.2) secure hash function and
n = 3 · 213, n − k = 224 and w = 96 for a (282.3) secure version. For more
parameter proposals and comparison with other hash functions we refer to [3].
An attack against the collision resistance of the hash function is presented in
§3.4.

Cryptographically strong random numbers

If in Stern’s identification scheme parameters are chosen such that
(

n

w

)
(q − 1)w−1 · qk−n ≤ 1,

there are less vectors of weight w and length n than syndromes of an [n, k]
code. If it is still hard to recover vectors of weight w in the set of vectors with
a certain syndrome, then, computing syndromes can serve as a expansion
function and thus to generate pseudorandom sequences [19]. Figure 2 gives
an intuition of the way the pseudo random number generator (PRNG) works.
For security reasons, we propose to use the same parameters as in Stern’s

φn,t(xi−1) = ei

ei · H

ri

xi

x0

Fig. 2. Scheme of code based PRNG

106 Raphael Overbeck and Nicolas Sendrier

identification scheme, see §2.3. Here again, w′-regular words can be used to
speed-up the PRNG.

3 The security of computing syndromes as one-way
function

In this section we consider the message security (opposed to key security) of
code-based cryptosystems. We assume the attacker has no information on the
algebraic structure of the underlying error correcting code, either because the
trapdoor is sufficiently well hidden (public key systems) or because there is
no trapdoor (code-based one way functions). This means correcting errors in
a linear code for which one knows only a generator (or a parity check) matrix.

Unless specified otherwise, the codes we consider in this section have a
binary alphabet. It is sufficient for most cryptosystems of interest. Moreover,
most statements can be generalized to a larger alphabet.

3.1 Preliminaries

We consider a binary linear code C of length n and dimension k. We denote
r = n− k the codimension of C and H a parity check matrix of C. We define
a syndrome mapping relatively to H

SH : {0, 1}n −→ {0, 1}r
y �−→ yH�

For any s ∈ {0, 1}r, we denote the set of words of {0, 1}n with syndrome s by

S−1
H (s) =

{
y ∈ {0, 1}n | yH� = s

}
.

By definition, we have S−1
H (0) = C for any parity check matrix H of C. The

sets y + C, for all y in {0, 1}n, are called the cosets of C. There are exactly 2r

different cosets which form a partition of {0, 1}n (i.e. pairwise disjoint). For
any parity check matrix H of C, there is a one to one correspondence between
cosets and syndromes relatively to H.

Proposition 1. For any syndrome s ∈ {0, 1}r we have

S−1
H (s) = y + C = {y + x | x ∈ C},

where y is any word of {0, 1}n of syndrome s. Moreover, finding such a word
y from s (and H) can be achieved in polynomial time.

For any y and z in S−1
H (s), we have yH� = zH�, thus (y + z)H� = 0 and

y + z ∈ C. It follows that S−1
H (s) = y + C.

To compute one particular element of S−1
H (s), given s, we will consider a

systematic form H0 of the parity check matrix H. That is a r×n binary matrix

Code-based cryptography 107

H0 of the form [Id | X] (where Id is the r × r identity matrix and X is some
r × k matrix) such that H0 = UH, with U a r × r non-singular matrix. One
can obtain such a matrix U in time O(r3) by inverting the first r columns3 of
H. Let y = [sU� | 0] ∈ {0, 1}n, since (U�)−1 = (U−1)�, we have

yH� = y(U−1H0)� = yH�
0 (U−1)� = (sU� | 0)

[
Id

X�

]
(U�)−1 = s.

The word y is in S−1
H (s) and is obtained in polynomial time.

3.2 Decoding problems

Let C be a binary linear code of parity check matrix H. We are given a word
y ∈ {0, 1}n and its syndrome s = yH� ∈ {0, 1}r. Decoding consists of solving
one of the following equivalent problems:

(i) Find a codeword x ∈ C closest to y for the Hamming distance.
(ii) Find an error e ∈ y + C of minimal Hamming weight.
(iii) Find an error e ∈ S−1

H (s) of minimal Hamming weight.

In practice, given an instance of a decoding problem, it is difficult to check
if the error e is really of minimal weight in the coset (or if the codeword x
is really the closest to y). Because of that, the decoding problem as stated
above is not in NP. Instead, we will consider a slightly different abstraction
of the problem, called syndrome decoding :

Problem 2 (Computational Syndrome Decoding). Given a binary
r × n matrix H, a word s in {0, 1}r and an integer w > 0, find a word e in
S−1

H (s) of Hamming weight ≤ w.

The value of the additional parameter w will significantly affect the difficulty
(see §3.3) of the resolution. In the theory of error correcting codes the problem
is meaningful only if w is such that the problem has a single solution with
high probability (i.e. w is not greater than the Gilbert-Varshamov bound
(Definition 1)). For cryptographic applications, any value of w such that the
problem is hard may produce a one-way function.

Decades of practice indicate that syndrome decoding in an arbitrary linear
code is difficult (see [4] for instance). In addition, the associated decision
problem was proved NP-complete in [6].

We will denote CSD(H, w, s) a specific instance of the computational syn-
drome decoding problem. Note that there is no “gap” (as for problems related
to Diffie-Hellman) between the decisional and the computational problems. In
fact an attacker can solve any instance of CSD with a linear number of access
to a decisional syndrome decoding oracle (this is the basis for the reaction
attack, see §5.3).

3 w.l.o.g. we can assume that the first r columns of H are full rank

108 Raphael Overbeck and Nicolas Sendrier

The problem of finding non-zero words of small Hamming weight (say ≤ w)
in a given linear code is very similar, but not identical, to decoding. We can
state it as follows

Problem 3 (Codeword Finding). Given a binary r × n matrix H and an
integer w > 0, find a non-zero word of Hamming weight ≤ w in S−1

H (0).

Though it looks similar, this is not a particular instance of CSD, because of
the non-zero condition. In fact, if C is the linear code of parity check matrix
H, then any solution of CSD(H, w,yH�) is also a solution to CF(H′, w), where
H′ is a parity check matrix of the code C′ = 〈y + C〉 spanned by y and C. The
converse is true only if w < dmin(C), the minimum distance of C.

The minimum distance is usually unknown. However most binary linear
codes of length n and codimension r have a minimum distance very close to
the Gilbert-Varshamov distance d0(n, r).

Definition 1. [4] The Gilbert-Varshamov distance d0(n, r) (or simply d0

when there is no ambiguity) is defined as the largest integer such that

d0−1∑
i=0

(
n

i

)
≤ 2r.

Let H, y and H′ be defined as above. Let e be a solution to CF(H′, w), inde-
pendently of w we have

• if wt(e) < d0, then e is very likely a solution to CSD(H, w,y),
• if wt(e) ≥ d0, then e is a solution to CSD(H, w,y) with probability ≈ 1/2.

Those informal statements hold “in average” and come from the fact that
C′ the code spanned by y and C is equal to C ∪ (y + C). If the weight of
e ∈ C′ = C ∪ (y + C) is smaller than the minimum distance of C (which is
likely to be close to d0), then it belongs to the coset y+C. On the other hand if
the weight of e is higher than d0, then, if it is a random solution to CF(H′, w),
it is equally likely4 to be in C and in y + C. In practice, most general purpose
decoders, and in particular those used in cryptanalysis, are in fact searching
for small weight codewords.

In the problems we have stated so far, the target weight w is an input.
In many cases of interest, the target weight will instead depend of the code
parameters (length and dimension). This will happen in particular in two
cases that we detail below: Complete Decoding and Bounded Decoding.

As we have seen earlier, decoding will consist in finding a word of minimal
weight that produces a given syndrome. If the syndrome is random, then
the solution is very likely to have a weight equal to the Gilbert-Varshamov
distance. Decoding is thus likely to be as hard as the following problem.

4 Metric properties of a random code are in practice indistinguishable from those
of a random set with the same cardinality

Code-based cryptography 109

Problem 4 (Complete Decoding). Given a binary r × n matrix H and a
word s in {0, 1}r, find a word of Hamming weight ≤ d0(n, r) in S−1

H (s).

This is in fact the most general and the most difficult computational problem
for given parameters n and r.

In a public key encryption scheme, like McEliece or Niederreiter, the target
weight is much smaller as it will be equal to the error correcting capability
of the underlying code. A Goppa code of length n = 2m and correcting t
errors has codimension r = tm. A message attack on the McEliece encryption
scheme will thus correspond to the following computational problem

Problem 5 (Goppa Bounded Decoding). Given a binary r×n matrix H
and a word s in {0, 1}r, find a word of Hamming weight ≤ r/ log2 n in S−1

H (s).

The associated decision problem is NP-complete [18]. This demonstrates that
the above computational problem is NP-hard, that is difficult in the worst
case. Even though this doesn’t say anything on the average case complexity,
at least this proves that if we reduce the target weight to the error correcting
capability of a Goppa code, we do not fall into an easy case.

3.3 Decoding algorithms

Information set5 decoding is undoubtedly the technique that has attracted
most of the cryptographer’s attention. The best known decoding attacks on
McEliece and Niederreiter are all derived from it. There have been other
attempts but with a mitigated success (iterative decoding [20] or statistical
decoding [34,55]).

Algorithm 3.1 presents a generalized version of information set decod-
ing. Lee and Brickell [39] were the first to use it to analyze the security of

Algorithm 3.1 Information set decoding (for parameter p)
• Input: a k × n matrix G, an integer w
• Output: a non-zero codeword of weight ≤ w
• Repeat

– Pick a n × n permutation matrix P.
– Compute G′ = UGP = (Id | R) (w.l.o.g. we assume the first k positions form

an information set).
– Compute all the sum of p rows or less of G′, if one of those sums has weight

≤ w then stop and return it.

McEliece’s PKC. In another context, computing the minimum distance of a
5 An information set for a given code of dimension k, is a set of k positions such

that the restriction of the code to those positions contains all the k-tuples exactly
once. In particular, it means that the corresponding columns in any generator
matrix are independent.

110 Raphael Overbeck and Nicolas Sendrier

code, Leon [40] proposed an improvement by looking for codewords containing
zeroes in a windows of size � in the redundancy (right) part of the codeword.
It was further optimized by Stern [72] by dividing the information set in two
parts, allowing to speed-up the search for codewords with zeroes in the window
by a birthday attack technique.

Stern p p 0 w − 2p

�� 	 �� n − k − 	

Leon p 0 w − p

Lee-Brickell p w − p

k �� n − k ��

Fig. 3. Weight profile of the codewords sought by the various algorithms (the num-
ber inside the boxes is the Hamming weight of the corresponding tuples)

In Figure 3 we present the different weight profiles corresponding to a
success, the probability of success of a given iteration is respectively

PLB =

(
k
p

)(
n−k
w−p

)
(

n
w

) , PL =

(
k
p

)(
n−k−�
w−p

)
(

n
w

) , PS =

(
k/2
p

)2(n−k−�
w−2p

)
(

n
w

) .

The total cost of the algorithm is usually expressed as a binary work factor. It
is equal to the cost (in binary operation) of an iteration divided by the above
probability (i.e. multiplied by the expected number of iterations).

The Canteaut-Chabaud decoding algorithm

The best known variant was proposed by Canteaut and Chabaud [12] and is
the Stern algorithm with another improvement due to van Tilburg [75] con-
sisting in changing only one element of the information set at each iteration.
The overall binary work factor is smaller, but it is much more difficult to eval-
uate as for every value of the parameters p and �, the probability of success is
obtained by computing the stationary distribution of a Markov process. It is
nevertheless possible to exhibit a rather tight lower bound on its complexity.
The probability of success of an iteration is upper bounded by the success
probability PS of Stern’s algorithm and for any p the best value for � is close
to log2

(
k/2
p

)
. Finally, we get the following lower bound on the binary work

factor for Canteaut-Chabaud algorithm:

WF (n, k, w) ≥ min
p

(
K�

2�

(
n
w

)
(
n−k−�
w−2p

)
)

where � = log2

(
k/2
p

)
. (2)

Code-based cryptography 111

In the above formula, K is a small constant (see the remark below) which also
appears in the cost of Canteaut-Chabaud’s algorithm. The space complexity
in bits is lower bounded by �2�. The lower bound defined by (2) is close
in practice (a factor 10 at most, see Figures 5 and 6) to the estimation given
in [12] which requires the computation of the fundamental matrix of a Markov
chain (inversion of a real matrix of size t + p + 1) for every value of p and �.

Remark 1. The binary work factor gives a measure of the cost of the algorithm.
It is in fact a lower bound on the average number of binary operations needed
to solve a problem of given size. Dividing by 32 or 64 (minus 5 or 6 on the
exponent) will give a lower bound on the number of CPU operations.

The actual computation time will depend on the relative cost of the various
operations involved (sorting, storing, fetching, xoring, popcounting, . . .) for
a particular implementation and a particular platform. In formula (2), all of
this is hidden in the constant K (for practical purposes we took K = 3).

Let us consider now how the work factor evolves with the error weight
w. For fixed values of the code length n and dimension k, the maximal cost
is obtained when w is equal to the Gilbert-Varshamov distance. When w ≤
d0(n, n− k), the decoding cost is 2w(c+o(1)), where the constant c depends of
the ratio k/n. Typical behavior for fixed n and k when t grows is given in
Figure 4.

d0 w

log2(WF)

Fig. 4. Information set decoding running time (log scale) for fixed length and di-
mension when the error weight w varies

When w gets larger, the number of solutions grows very quickly. Formula
(2) gives the cost for finding one specific codeword of weight w, the decoding
cost is obtained by dividing this value by the expected number of solutions. For
those values of w, information set decoding is not always the best technique,
and other algorithms, like the generalized birthday attack [10, 77], may be
more efficient (see §3.4).

112 Raphael Overbeck and Nicolas Sendrier

Decoding attacks against McEliece

We consider binary Goppa codes. The length is n = 2m and the dimension is
related with the error weight t, as k = n− tm.

In practice, the best value for parameter p in formula (2) is small. For
length 2048 it is always equal to 2, and for length 4096, the best value of p
varies between 2 and 5. Figures 5 and 6 (see also Table 2) give an estimate of
the practical security of the McEliece cryptosystem when binary Goppa codes
of length 2048 and 4096 are used. Note finally that the decoding (message)
attacks are always more efficient than the structural (key) attacks (see §4.3).

3.4 Collision attacks against FSB and CFS

The fastest attacks on the CFS scheme and the FSB hash function are based
on Wagner’s solution for the generalized Birthday paradox. Wagner’s main
theorem can be seen as a generalization of the search part of Stern’s algorithm
for low weight code words or the algorithm of Patarin and Camion [10] and
can be summarized as follows:

Theorem 1. (Generalized Birthday Problem) Let r, a ∈ N with (a+1)|r
and L1,L2, · · · ,L2a ⊆ F2r be sets of cardinality 2

r
a+1 , then, a solution of the

equation
2a∑
i=1

xi = 0 where xi ∈ Li, (3)

can be found in O(2a2
r

a+1) Operations (over F2r).

The algorithm proposed by Wagner is iterative: First, one searches for
partial collisions of the sets Li and Li+2a−1 , i = 1, · · · , 2a−1, that is, such
pairs (xi, xi+2a−1) that LSB r

a+1
(xi + xi+2a−1) = 0. This way, one obtains

2a−1 Lists with approximately 2
r

a+1 pairs, where the last r
a+1 entries are zero

and can be omitted in the next step. A recursive application of this step leads
to a solution of Equation (3).

As shown by J.-S. Coron and A. Joux, Wagner’s solution for the generalized
Birthday Paradox can be used to find collisions for the FSB hash. This is
due to the fact, that the compression function of the FSB hash is inherently
different to the one used by other hash functions: If we consider φ′

n,t(x) ·H (or
φn,t(x) ·H), we can see, that one collision (φ′

n,t(x1) ·H = φ′
n,t(x2) ·H) leads to

up to
(

w
w/2

)
further collisions. As the mapping φn,t can be easily inverted and

the second part of the compression function is linear, we can apply Wagner’s
theorem employing a “divide and conquer”-strategy.

Applied to the FSB hash function we obtain the following attack against
the collision resistance in the case of φ′

n,t as compression function: Each list
L1, · · · ,L2a is designed to contain the syndromes of 2-quasiregular words e =
(e1, e2, · · · , ew), such that for all i �= j and γ:

Code-based cryptography 113

n = 2048

logarithmic scale

0

20

40

60

80

100

120

0 50 100 150 t

log2(WF) as in [12]

log2(WF) as in (2)

Fig. 5. Binary workfactor (log2) for finding words of weight t in a binary code of
length 2048 and dimension 2048 − 11t (Goppa codes parameters)

n = 4096

logarithmic scale

0

40

80

120

160

200

0 100 200 300 t

log2(WF) as in [12]

log2(WF) as in (2)

Fig. 6. Binary workfactor (log2) for finding words of weight t in a binary code of
length 4096 and dimension 4096 − 12t (Goppa codes parameters)

114 Raphael Overbeck and Nicolas Sendrier

(∃φ′
n,t(e)H∈Li

: eγ �= 0)⇒ (∀φ′
n,t(e)H∈Lj

: eγ = 0).

If the lists are not of the desired cardinality 2
r

a+1 (r = n − k is the hash
width), we can modify the attack accordingly, (compare [3]). We omit details
and conclude that the size of the lists implies the following restriction to the
attacker:

2a

a + 1
≤ w

r
log2

(n

w

)
.

Therefore, the authors of [3] conclude that the work factor for an attacker
grows exponentially with n − k if we choose two constants α, β ∈ R and
then compute (n,w) = (α(n− k), β(n− k)) as then a is upper bounded by a
constant.

Likewise, Wagner’s algorithm can be used to generate a valid signature in
the CFS scheme (existential forgery): The attacker generates four lists: One
with possible hash values, and the remaining three as syndromes of weight
t/3 vectors. The dominating term for the cost of the attack is 2mt/3. For
the m = 16, t = 9 CFS parameter set, this leads to an attack that can be
performed in about 259 operations.6

3.5 The impact of quantum computers

To our knowledge there is no connection between coding theory and the “Hid-
den Subgroup Problem” as in the case of number theoretic cryptosystems.
However, there is still the possibility to employ Grover’s algorithm to speed
up searching the secret key or the space of possible plaintexts. In this chapter
we give an intuition, why Grover’s algorithm is not able give a significant
speed-up for the existing attacks on code based cryptosystem.

In the following we make the simplifying assumption that by Grover’s
algorithm we are able to search a set of size N in O(

√
N) operations on a

quantum computer with at least log2(N) QuBits. However, a consecutive call
of Grover’s algorithm is not possible, i.e. if the set to be searched is defined by
the output of Grover’s algorithm, we can not search this space with Grover’s
algorithm before writing it in complete to the (classic) memory, see Section 5
of Chapter 1 “Quantum computing”.

Solving the generalized birthday problem

The iterative step of Wagner’s algorithm can be realized by sorting algorithms,
which can not be sped-up with quantum computers so far: Instead of searching
Li×Li+2a−1 for all pairs (xi, xi+2a−1) that LSB r

a+1
(xi +xi+2a−1) = 0 we can

sort the lists Li after LSB r
a+1

(xi) and Li+2a−1 after LSB r
a+1

(xi+2a−1) = 0.
The merged list of pairs can now be directly read from the sorted lists (the

6 Although we do not have a reference, we attribute this attack to Bleichenbacher

Code-based cryptography 115

halves of the pairs are sorted into the same positions/boxes). If both lists have
the same size

√
N , this means that the merging can be done in

√
N operations

instead of N , which is the same speed-up that can be achieved by Grover’s
algorithm. Thus, even with a quantum computer we can not expect to get
attacks for FSB or CFS more efficient than the existing ones.

Algorithms for searching low weight codewords

The crucial point of algorithms for finding low weight codewords is to guess
part of the structure at the beginning and then search for the vector in the re-
maining space. This can be seen as a “divide-and-conquer” strategy. However,
this particular strategy of the attacks prevents an effective use of Grover’s
algorithm - or to be more precise - achieves the same speed-up as Grover’s
algorithm would achieve: The search step in the algorithms for finding low
weight codewords is realized in the same way as in Wagner’s algorithm for
the generalized birthday paradox. Thus there is no possibility to significantly
speed-up the search step by Grover’s algorithm.

One might argue, that the guessing phase can be seen as a search phase,
too. However, as mentioned before, this would either require an iterative ap-
plication of Grover’s algorithm (which is not possible) or a memory of size of
the whole search space, as the search function in the second step depends on
the first step. This would clearly ruin the “divide-and-conquer” strategy and
is thus not possible either.

Table 2 gives an overview for the advantage of quantum computers over
classical computers in attacking the McEliece PKC. One can see, that the

McEliece Workload Cryptanalysis Minimal Quantum-
parameters (in binary operations) number computer
m, t classic quantum of bit

computer Qubits security7

11, 32 291 286 25 80

11, 40 298 294 50 88

12, 22 293 287 29 80

12, 45 2140 2133 28 128

7 Compare remark 1
Table 2. Attacking the McEliece PKC

expected advantage does not lead to significantly different security estimations
for the McEliece PKC.

116 Raphael Overbeck and Nicolas Sendrier

4 Codes and structures

In this section we will consider structural attacks, i.e. attacks on the private
key of code based PKCs. All codes with an efficient error correction algo-
rithm have either an algebraic structure or are specially designed. For most
codes, the knowledge of the canonical generator matrix allows efficient er-
ror correction. This is true for all codes one could consider for cryptographic
applications (i.e. the ones of large dimension):

• Goppa/alternant codes [48]
• GRS codes [52]
• Gabidulin codes [27]
• Reed-Muller codes [70]
• Algebraic geometric codes [35]
• BCH codes [28]
• Graph based codes (LDPC-, expander-, LT- or turbo-codes)

While graph based codes almost immediately reveal their structure because
of their sparse check matrix, this is not obvious for the algebraic codes. In
this chapter we thus view how algebraic structures or permutations of a code
can be recovered by an attacker.

4.1 Code equivalence

In code-based public key cryptography, one may try to hide a secret code C
by applying an isometry f to it and publish a basis of the code C′ = f(C).
If the isometry f is known, a decoder for C′ can be obtained. Hopefully, the
isometry will scramble the code structure, making the decoding intractable.
In the binary case (the most common) the isometry is “just” a permutation
of the support.

An isometry of a metric space is a mapping which preserves the distance.
Thus, codes that are images of one another by an isometry share all their
metric properties and will be functionally equivalent. When the metric space
is a vector space, we define the semi-linear isometries as those which pre-
serve vector subspaces (i.e. the image of any vector subspace is another vector
subspace). The semi-linear isometries of the Hamming space F

n
q are of the

form
ΨV,π,σ : F

n
q → F

n
q

(xi)i∈I �→ (viπ(xσ−1(i)))i∈I
(4)

where V = (vi)i∈I is a sequence of non zero elements of Fq, π is a field auto-
morphism of Fq and σ a permutation of the code support I (unless otherwise
specified, we will now consider codes of length n and support I).

Note that if C and C′ are linear codes over Fq with C′ = f(C) for some
isometry f of the Hamming space F

n
q , then there exists a semi-linear isometry

g such that C′ = g(C) (except in the degenerate case where C is decomposable,

Code-based cryptography 117

that is the direct sum of two codes with disjoint support, see [51]). So as long
as we only consider linear codes there is no loss of generality if we restrict
ourselves to semi-linear isometries.

In the binary case (q = 2) semi-linear isometries are reduced to the support
permutations (the vi are all equal to 1 and the only field automorphism is the
identity).

Definition 2. Two linear codes C and C′ are equivalent if one is the image
of the other by a semi-linear isometry.

Definition 3. Two linear codes C and C′ are permutation-equivalent if there
exists a permutation σ such that

C′ = σ(C) = {(xσ−1(i))i∈I | (xi)i∈I ∈ C}.

The two definitions coincide in the binary case. Note also that the use of σ−1

in the index is consistent as we have π(σ(C)) = π ◦ σ(C).
Code equivalence relates with the ability of a code to correct errors. Two

equivalent codes will have the same correcting capability.
Let C be a code equipped with a t-error correcting decoder DC . For any

isometry f , the mapping f ◦DC ◦ f−1 is a t-error correcting decoder for C′ =
f(C).

4.2 The support splitting algorithm

The support splitting algorithm aims at solving the Code Equivalence prob-
lem:

Problem 6 (Code Equivalence).

Instance: Two matrices G1 and G2 defined over a finite field.
Question: Are the linear codes C1 and C2 spanned respectively by the rows of

G1 and G2 permutation-equivalent?

This problem was introduced by Petrank and Roth [59], who proved that it
was harder than the graph isomorphism problem but not NP-complete unless
P = NP.

Invariants and signatures

Let Ln denote the set of all linear codes of length n, and let L =
⋃

n>0 Ln be
the set of all linear codes.

Definition 4. An invariant over a set E is defined to be a mapping L → E
such that any two permutation-equivalent codes take the same value.

118 Raphael Overbeck and Nicolas Sendrier

For instance the length, the cardinality or the minimum Hamming weight are
invariants over the integers. The weight enumerator polynomial is an invariant
over the polynomials with integer coefficients.

Applying an invariant, for instance the weight enumerator, may help us
to decide whether two codes are equivalent or not. Two codes with different
weight enumerators cannot be equivalent. Unfortunately we may have inequiv-
alent codes with the same weight enumerator, though this only occurs with a
small probability.

Any invariant is a global property of a code. We need to define a local
property, that is a property of a code and of one of its positions.

Definition 5. A signature S over a set E maps a code C of length n and an
element i ∈ I into an element of E and is such that for all permutations σ
on I, S(C, i) = S(σ(C), σ(i)).

A signature can be obtained, for instance, by applying an invariant on punc-
tured codes. To an invariant V , we associate the signature SV : (C, i) �→
V (C·I\{i}) (C·J denotes the code restricted to J ⊂ I).

Now, if we have a signature S, and wish to answer the question: “Are C and
C′ permutation-equivalent?”, we can compute the sets S(C, I) = {S(C, i), i ∈
I} and S(C′, I) = {S(C′, i), i ∈ I}. If C and C′ are permutation-equivalent,
then those sets must be equal (and for every signature value obtained more
than once, the multiplicity must be the same). Moreover, for each distinct
value in the sets S(C, I) and S(C′, I), some information on the permutation
between C and C′ is revealed. The number of distinct values taken by a given
signature for a given code C is thus of crucial importance to measure its
efficiency.

Definition 6. Let C be a code of length n.

• A signature S is said to be discriminant for C if there exist i and j in I
such that S(C, i) �= S(C, j).

• A signature S is said to be fully discriminant for C if for all i and j distinct
in I, S(C, i) �= S(C, j).

If C′ = σ(C) and if S is fully discriminant for C, then, for all i in I, there exists
a unique element j in I such that S(C, i) = S(C′, j), and we have σ(i) = j
and we thus obtain the permutation σ.

Description of the algorithm

If we assume the existence of a procedure find_fd_signature which re-
turns for any generator matrix G a signature which is fully discriminant
for C = 〈G〉, then Algorithm 4.1 will recover the permutation between
permutation-equivalent codes. In fact it is easy to produce a procedure
find_fd_signature, but the signature it returns has an exponential com-
plexity.

Code-based cryptography 119

Algorithm 4.1 The support splitting algorithm
Input: G1 and G2 two k × n matrices
Output: a permutation
S ← find_fd_signature(T [] = ø)
for i ∈ I do

T [S(G1, i)] ← i
for i ∈ I do

σ[i] ← T [S(G2, i)]

The difficulty is to obtain, for as many codes as possible, a fully discrimi-
nant signature which can be computed in polynomial time. The hull [2] of a
linear code C is defined as its intersection with its dual H(C) = C ∩ C⊥. It has
some very interesting features:

(i) It commutes with permutations: H(σ(C)) = σ(H(C))
(ii) The hull of a random code is almost always of small dimension [69].
(iii) For all i ∈ I, exactly one of the three sets H(C·I\{i}), H(C⊥·I\{i}) and

H(C)·I\{i} is strictly greater than the other two, which are equal [68].

We consider the following signature

S(C, i) =
(
W (H(C·I\{i})),W (H(C⊥·I\{i}))

)

where W (C) denotes the weight enumerator polynomial of C. Because of (i),
the mapping S() is a signature, because of (ii) it is almost always computable
in polynomial time, and because of (iii), it is discriminant (but not always
fully discriminant).

We apply S() to all positions of a code and group those with the same
value. We obtain a partition of the support. Using that partition we can
refine the signature and eventually obtain a fully discriminant signature in a
(conjectured) logarithmic number of refinements. When used on two codes of
length n, the heuristic complexity for the whole procedure is

O
(
n3 + 2hn2 log n

)

where h is the dimension of the hull.
The first term is the cost of the Gaussian elimination needed to compute

the hull. The second term is the (heuristic) number of refinements, log n,
multiplied by the cost of one refinement (n weight enumerator of codes of
dimension h and length n). In practice, for random codes, the hull has a
small dimension with overwhelming probability [69] and the dominant cost for
the average case is O(n3). The worst case happen when the hull’s dimension
is maximal: weakly-self dual codes (C ⊂ C⊥) are equal to their hulls. The
algorithm becomes intractable with a complexity equal to O(2kn2 log n). This
is the case in particular of the Reed-Muller codes used in Sidelnikov’s system
[70]. For more details on the support splitting algorithm, see [68].

120 Raphael Overbeck and Nicolas Sendrier

4.3 Recognizing code structures

Only for alternant and algebraic geometric codes it is sufficient to publish a
systematic generator matrix of a code permutation equivalent to the secret
one in order to hide the private key from an attacker. In this section we want
to give the reader an intuition, in which cases and how the structure of an
algebraic code can be recognized or not.

GRS Codes

In 1992 V.M. Sidelnikov and S.O. Shestakov proposed an attack on the GRS
Niederreiter PKC (compare §2.1) which reveals an alternative private key in
polynomial time [71]. We consider this attack to be worth mentionable, as
Goppa codes are subfield subcodes of GRS codes. Even though, the results
from [71] do not affect the security of the original McEliece PKC.

In their attack, Sidelnikov and Shestakov take advantage of the fact, that
the check matrix of GRS code is of the form (see §6.2)

H̄ =

⎛
⎜⎜⎜⎝

z1a
0
1 z1a

1
1 · · · z1a

s
1

z2a
0
2 z2a

1
2 · · · z2a

s
2

...
. . .

...
zna0

n zna1
n · · · znas

n

⎞
⎟⎟⎟⎠

�

∈ F
n×(s+1)
q . (5)

A public key is of the form H′ = MH̄P, where M is a non-singular matrix
and P a permutation matrix. The permutation matrix P does not change the
structure of H̄, so we don’t have to worry about P. Sidelnikov and Shestakov
use the fact, that each entry of the row H′

i· can be expressed by a polynomial
f of degree ≤ s in ai. From this observation one can derive a system of
polynomial equations whose solution yields the private key.

To perform the attack, it is necessary to see, that we can assume that
a1, a2, a3 are distinguished elements, so we extend Fq by ∞: F := Fq ∪ ∞
with 1/∞ = 0 with 1/0 = ∞ and f (∞) = fs for every polynomial f (x) =∑s

j=0 fjx
j of degree ≤ s over Fq. Sidelnikov and Shestakov show that for

every birational transformation, i.e. F-automorphism

φ (x) =
{

a
c c �= 0, x =∞
ax+b
cx+d otherwise with a, b, c, d ∈ Fq, ad− bc �= 0

there exist z′1, · · · , z′1 and a matrix M′ such that

H′ = M (M′)−1 ·

⎛
⎜⎜⎜⎝

z′1φ (a1)
0

z′1φ (a1)
1 · · · z′1φ (a1)

s

z′2φ (a2)
0

z′2φ (a2)
1 · · · z′2φ (a2)

s

...
. . .

...
z′nφ (an)0 z′nφ (an)1 · · · z′nφ (an)s

⎞
⎟⎟⎟⎠

�

.

Code-based cryptography 121

Thus, without loss of generality, we can assume that H′ defines the (dual)
code with codewords

(z′1f(1), z′2f(0), z′3f(∞), z′4f(a4), z′5f(a5), · · · , z′nf(an)),

where f varies over the polynomials of degree ≤ s over F2m . This means, H′

defines an extended GRS code (see Definition 9) with a1 = 1, a2 = 0 and
a3 =∞. Note that because a3 =∞ we have ai �=∞ for all i �= 3.

The general idea of the attack is the following: If we take two codewords
with s − 1 common zeroes, then the corresponding polynomials π1, π2 have
s − 1 common factors, while each polynomial is of degree ≤ s. As we have
noted above, we can assume that π1(0) = 1 = π2(1) and π1(1) = 0 = π2(0),
which leads to

π1 (xj)
π2 (xj)

=
π1 (∞)
π2 (∞)

· xj − 1
xj

=
π1 (a3)
π2 (a3)

· xj − 1
xj

,

and thus reveals aj on all positions where neither π1 nor π2 are zero. We
can repeat this procedure with other pairs of polynomials to obtain the
whole vector (a1, a2, · · · , an). Taking a birational transform φ, such that
(φ(a1), φ(a2), · · · , φ(an)) does not contain the ∞ element, we can recover
(z1, · · · , zn) by setting z1 = 1 and employing Gauss’s algorithm afterwards.
As pairs of codewords with s− 1 common zeroes can be found by computing
a systematic check matrix, the algorithm has a running time of O

(
s4 + sn

)
.

Remark 2. There were two proposals to modify the GRS Niederreiter cryp-
tosystem: The first one is by E. Gabidulin and consists in adding artificial
errors to the generator matrix [24] whereas the second by P. Loidreau uses
a subcode of a GRS code (compare Table 1). While the first proposal did
not receive much attention so far, the second one was cryptanalyzed by C.
Wieschebrink [78], who showed how to attack that modification for small pa-
rameter sets by finding pairs of code words with s − 1 − i common zeroes
and guessing i elements from (x4, · · · , xn). This attack can be applied to the
Niederreiter PKC variant proposed in [24] in certain cases, e.g., by puncturing
the public code. Even if these attacks have exponential runtime, we are not
sure if secure parameter sets have a better performance than McEliece’s PKC
with Goppa codes.

Remark 3. The attack on the GRS Niederreiter PKC can not be applied to
McEliece/Niederreiter cryptosystems using Goppa codes. Even though for ev-
ery Goppa code there is a check matrix H which has the same structure as
the check matrix H̄ for GRS codes in equation (5) (see [47]), there is no
analogous interpretation of H′ for the Niederreiter cryptosystem using Goppa
codes. We are able to view H as a matrix over F2 if we are using Goppa codes,
whereas this doesn’t work for GRS codes. Thus we have different matrices M:
M ∈ F

(s+1)×(s+1)
2m for the GRS case and M ∈ F

m(s+1)×m(s+1)
2 for Goppa codes.

Thus, in the latter case, H′ has no obvious structure, as long as M is unknown.

122 Raphael Overbeck and Nicolas Sendrier

Rank metric codes

So called Gabidulin codes are a subclass of Srivastava codes, which are MDS
codes (i.e., they have a check matrix in form of Equation (5) and their mini-
mum distance is d = n−k+1) [47], for which an efficient decoding algorithm
exists [27]. These codes were introduced into cryptography together with the
notion of rank metric (see Definition 11). The class of Gabidulin codes is the
only class of codes for which an algorithm is known, which can correct errors
in Hamming and rank metric. For now, however, we omit the interesting no-
tion of rank metric, but give a general intuition, why one can recognize the
structure of a Gabidulin code even better then the one of a GRS code and
why the modifications proposed in Table 1 do not serve to hide their structure
sufficiently for cryptographic purposes.

We will define Gabidulin codes by their generator matrix. For ease of
notation we introduce the operator λf , which maps a matrix M = (mij) to a
blockmatrix:

λf : F
m×n
qm → F

m(f+1)×n
qm

M �→

⎡
⎢⎢⎢⎣

M
M[q]

...
M[qf]

⎤
⎥⎥⎥⎦ ,

(6)

where M[x] := (mx
ij).

Definition 7. Let g ∈ F
n
qm be a vector s.t. the components gi, i = 1, · · · , n are

linearly independent over Fq. This implies that n ≤ m. The [n, k] Gabidulin
code G is the rank distance code with generator matrix

G = λk−1 (g) . (7)

The vector g is said to be a generator vector of the Gabidulin code G (It
is not unique, as all vectors ag with 0 �= a ∈ Fqm are generator vectors of G).
Further, if T ∈ F

n×n
q is an invertible matrix, then G ·T is the generator matrix

of the Gabidulin code with generator vector gT. An error correction algorithm
based on the “right Euclidian division algorithm” runs in O

(
d3 + dn

)
opera-

tions over Fqm for [n, k, d] Gabidulin codes [27]. The property, that a matrix
G generates a Gabidulin code is invariant under the operator Λf (M):

Lemma 1. If G is a generator matrix of an [n, k] Gabidulin code G with k < n,
then Λf (Gpub) is a generator matrix of the Gabidulin code with the same
generator vector as G and dimension min {n, k + f}.

Another nice property of Gabidulin codes is, that the dual code of an [n, k]
Gabidulin code is an [n, n− k] Gabidulin code (see [27]):

Code-based cryptography 123

Lemma 2. Let G be an [n, k] Gabidulin code over Fqm with generator vector
g. Then G has a check matrix of the form

H = λn−k−1

(
h[1/qn−k−1]

)
∈ F

n−k×n
qm .

Further, the vector h is uniquely determined by g (independent from k) up to
a scalar factor γ ∈ Fqm \ {0}. We will call h a check vector of G.

The major disadvantage of Gabidulin codes, is the fact, that one can easily
distinguish a random k × n matrix M from an arbitrary generator matrix G
of an [n, k] Gabidulin code by a quite simple operation: The matrix λ1(G)
defines an [n, k +1] code, while the matrix λ1(M) will have rank > k +1 with
overwhelming probability [45].

Remark 4. Unlike for GRS codes, it is not sufficient to take the generator
matrix GSUB of an [n, k − l] subcode of an secret [n, k] Gabidulin code G =
〈G〉 to hide the structure as it was proposed in [5]. It is easy to verify, that
λ1(GSUB) defines a subcode of 〈λ1(G)〉 and thus any full rank vector in the
dual of λn−k−2(GSUB) gives a Gabidulin check vector which allows to decode
in GSUB.

There were plenty of other proposals on how to use Gabidulin codes for
cryptography, most with the notation of rank metric, see §6.3. However, as
mentioned before, all these variants proved to be insecure [53,57].

Reed-Muller Codes

Reed-Muller codes were considered for cryptographic use by Sidelnikov [70].
His basic proposal is to replace the Goppa code in McEliece’s scheme by a
Reed-Muller code, which can be defined as follows:

The Reed-Muller code in m variables of degree r consists of all codewords
which can be obtained by evaluating some polynomial in F2 [x1, · · · , xm] of
degree at most r at all possible variable assignments, see [47]. Lexicographic
ordering of the 2m possible assignments leads to the following recursive de-
scription of the canonical generator matrix R(r,m), which is reducible:

R (r,m) =
[

R (r,m− 1) R (r,m− 1)
0 R (r − 1,m− 1)

]
, (8)

where R (r,m) = R (m,m) for r > m and R(0,m) is the codeword of length 2m

which is one at all positions. The code 〈R(r,m)〉 is a [2m,
∑r

i=0

(
m
i

)
, d] code

with d = 2m−r and is a subcode of 〈R (r + 1,m)〉 [47].
From the construction of a Reed-Muller code it is easy to see, that each low

weight codeword in R(r,m) can be represented as a product of m− r pairwise
different linear factors. Due to this large number of low weight codewords

124 Raphael Overbeck and Nicolas Sendrier

(there exist about 2mr−r(r−1) of them), Stern’s algorithm [72] and its variants
allow to find low weight codewords in Reed-Muller codes efficiently, compare
§3.3.

Now, let P ∈ F
n×n
2 be a permutation matrix. The main observation, which

allows to recover P from some generator matrix Gpub of 〈R (r,m) P〉 is that
each low weight codeword of

〈
Gpub

〉
can be “factored”. Indeed, each low weight

codeword v in
〈
Gpub

〉
can be written as the “product” of a low weight codeword

v̄ in R(r − 1,m)P and a low weight codeword v̂ in R(1,m)P:

v := v̄ � v̂ := (v̄1 · v̂1, v̄2 · v̂2, · · · , v̄n · v̂n)

The goal is to find the factor v̄ of v. If a sufficiently large number of low
weight codewords of

〈
Gpub

〉
have been factored, the code R(r − 1,m)P can

be reconstructed. Iteratively reducing the problem it remains to solve the
problem to recover P from R(1,m)P, which is trivial [50].

Remark 5. The application of N. Sendrier’s “Support Splitting Algorithm”
(SSA, see §4.2) for finding the permutation between permutation equivalent
codes is not efficient for Reed-Muller codes. The runtime of SSA is exponential
in the dimension of the hull of a code C, i.e. the dimension of C ∪ C⊥, which
is large, if C is a Reed-Muller code. Thus, Sidelnikov’s proposal can not be
attacked via the SSA.

In [50] L. Minder gives an algorithm to deduce the factor v̄ of v efficiently.
We will assume that P = Id in the following, since the algorithm does not
depend on P. Assume, that v is a low weight codeword in 〈R(r,m)〉, then
we may well assume, that the corresponding polynomial can be written as
v = v1 · v2 · · · vr (after a change of basis). Now, the code C consisting of all
codewords with support disjoint from v can be represented as a polynomial

f = f(v1, v2, · · · , vm) =
∑

I⊆{1,2,··· ,r}
fI ·

∏
i∈I

vi

with fI ∈ F2[vr+1, vr+2, · · · , vm]. Further, since f and v have disjoint support,
we have f(1, 1, · · · , 1︸ ︷︷ ︸

r times

, vr+1, vr+2, · · · , vm) = 0 and thus

∑
I⊆{1,2,··· ,r}

fI = 0.

We can see, that restricting the codewords of disjoint support to the ones with
a fixed value for (v1, · · · , vr) �= (1, 1, · · · , 1) we obtain an permuted version of
R(r − 1,m − r − 1) (after puncturing). This shows, that the codewords with
disjoint support from v form a code which is a permuted concatenated code
build of 2r − 1 blocks, each a Reed-Muller code of degree r − 1 in m− r − 1
variables, i.e. there is a permutation Π such that

Code-based cryptography 125

CΠ ⊆ (0, 0, · · · , 0)︸ ︷︷ ︸
2m−r times

⊗
(

2r−1⊗
i=1

〈R(r − 1,m− r − 1)〉
)

.

Thus, each of this inner blocks together with the support of v gives a low
weight codeword in 〈R(r − 1,m)P〉.

Even if the identification of the inner blocks of a concatenated code has
been studied in [64], Minder proposes to identify the different blocks by sta-
tistical analysis: For a low weight codeword y, he states, that the probability,
that yi = 1 and yj = 1 is independent if and only if i and j do not belong to
the same inner block.

Remark 6. The code 〈R(r,m)P〉 is a permutation of a concatenated code
⊆
⊗2r

i=1 〈R(r − 1,m− r − 1)〉, too. Thus, one might think of applying the
statistical analysis directly to R(r,m)P in order to partition the code. How-
ever, Minder states that the support of the low weight code words of R(r,m)
is too large (i.e. twice the length of each block) to allow sampling from the
desired space.

Minder’s runtime analysis shows, that the crucial point is to find the low
weight codewords in C, which however, due to the large number of low weight
codewords is practical for reasonable parameter sets, turning Sidelnikov’s
cryptosystem inefficient. For r = 3 and m = 11 for example, his algorithm
allows to recover the permutation P in less than one hour on a desktop PC.

Structural attacks on the McEliece cryptosystem

Binary Goppa codes were proposed by McEliece in the original version of
his system. So far, all known structural attacks on Goppa codes have an
exponential cost.

We assume t-error correcting binary irreducible Goppa codes of length
n = 2m over F2m are used for the key generation. The secret key is the code
Γ (L, g) which consists of

• a generator, a monic irreducible polynomial g(z) of degree t over F2m

• a support, a vector L ∈ F
n
2m with distinct coordinates (in fact, with n = 2m,

this defines a permutation).

If either the support or the generator is known, the other part of secret can
be recovered in polynomial time from the public key Gpub.

1. If the support L is known, then a multiple of g(z) can be obtained from
any codeword by using equation (12) page 139. Codewords can easily be
obtained from Gpub, and after a few gcds (usually one is enough) the
generator polynomial is obtained.

2. If the generator polynomial g(z) is known, we construct a generator matrix
G of the Goppa code of generator g(z) and support L0 (where L0 is fixed

126 Raphael Overbeck and Nicolas Sendrier

and chosen arbitrarily), and we obtain the secret vector L by applying
the support splitting algorithm to G and Gpub (the permutation between
G and Gpub will also be the permutation between L0 and L).

In both cases, we obtain an exhaustive search attack, either by enumerating
the permutations (proposed by Gibson in [31]) or by enumerating the irre-
ducible polynomials [46]. There are ≈ 2tm/t = nt/t irreducible polynomials
compared to n! = O(

√
n(n/e)n) permutations. The second attack is always

more efficient. To evaluate the cost of this attack we consider

• the number of monic irreducible polynomials of degree t over F2m [43,
p. 93], equal to ≈ 2tm/t = nt/t.

• the cost of the support splitting algorithm, equal to O(n3), because Goppa
codes behave like random codes and have a small hull.

• the number of distinct pairs support/generator that produce the same
Goppa code, which is almost always equal to m2m = n log2 n [31].

We multiply the first two numbers and divide by the third and we get
O(nt+2/t log n). In fact, it is possible to do slightly better by considering
extended codes (an overall parity check bit is appended). The number of dis-
tinct pairs support/generator that produce the same extended Goppa code is
almost always equal to m2m(22m− 1) (see [47, p. 347]). The support splitting
algorithm can be applied on extended code and the complexity of the attack
is reduced to

O
(

nt

t log n

)
= O

(
2tm

tm

)
.

This is currently the best known structural attack on McEliece encryption
scheme using Goppa codes. As the best decoding attack is upper bounded
by O(2(n−k)/2) = O(2tm/2) (see [4] for instance), structural attacks are never
better than decoding attacks.

Choosing the secret codes: general pitfalls

Beyond the existence of an efficient structural attack today, what kind of
assumptions do we want to (or have to) make for arguing of McEliece’s scheme
security? First, obviously, the family of codes used to produce the keys is
critical. Binary Goppa codes are safe (or seem to be), but not Reed-Solomon
codes [71], concatenated codes [64], elliptic codes [49], Reed-Muller codes [50]
(to some extend), and many other unpublished attempts.

Indistinguishability is the strongest security assumption related with struc-
tural attacks. Informally, it says that it is not computationally feasible to tell
apart a generator matrix of a random code from a generator matrix of a par-
ticular family. When it holds, the security of the corresponding public-key
system can be reduced to the hardness of decoding, for which very strong
arguments exist.

Code-based cryptography 127

Indistinguishability is conjectured for binary Goppa codes, and in prac-
tice, no property is known that can be computed from a generator matrix in
polynomial time and which behaves differently for binary Goppa codes and
for binary linear codes. To our knowledge, this is the only such family of codes
with an efficient decoding algorithm.

Using other families of codes in public key cryptography should be con-
sidered with great care. There are at least two possible pitfalls

• Families with high performance decoding, like concatenated codes, turbo-
codes or LDPC codes, have many low weight codewords in their duals.
Those low weight codewords may be easy to find and are likely to leak
some of the code structure.

• As we have seen previously in this section (§4.3 and §4.3), families with
optimal or sub-optimal combinatorial properties are dangerous too. For
instance, (generalized) Reed-Solomon codes are MDS (the highest possible
minimum distance), elliptic codes are almost MDS (minimum distance is
just one less), in both case minimum weight codewords are not hard to find
and reveal a lot of information on the code structure. Reed-Muller codes
are highly structured, and though they have an optimal resistance to the
support splitting algorithm (they are weakly self-dual), Lorenz Minder
has exhibited a structural attack which is more efficient than the decoding
attack.

Finally, let us mention algebraic geometry codes, proposed for cryptography
by Janwa and Moreno [35]. They are probably insecure for small genus (Min-
der’s work) but otherwise, their security status is unknown.

5 Practical aspects

The practice of McEliece’s PKC or more generally of a code-based PKC raises
many questions. We address here a few of them in this section. The main
advantage of McEliece’s scheme is a low algorithmic complexity for encryption
and decryption and its main drawback is a large public key size. We will
stress the first point and examine what can be done for the second. Also, for
practical purposes, the system suffers from many weaknesses, most of them
related to malleability. We will examine the generic and ad-hoc semantically
secure conversions that solve those issues.

5.1 Fast en- and decryption for the McEliece PKC

We describe here the implementation of the McEliece encryption scheme. The
error correcting code will be a binary irreducible t error-correcting Goppa code
G of length n = 2m and dimension k = n− tm. We denote DG : {0, 1}n → G
a t-error correcting procedure for G (see §6.1). The private key is the decoder
DG and the public key is a generator matrix G of G.

128 Raphael Overbeck and Nicolas Sendrier

We assume the existence of an injective mapping φn,t : {0, 1}� →Wn,t easy
to compute and to invert (see §5.1). The key features of the implementation
we describe are presented in Algorithm 5.1. The two main differences from
the original proposal are:

1. The public key is chosen in systematic form Gsyst = (Id | R).
2. The mapping φn,t will be used to encrypt � additional information bits.

Those modifications do not alter the security of the system as long as a se-
mantically secure conversion is used (such a conversion is needed anyway).
Moreover, those conversions (see §5.3) require the use of φn,t, so, for practical
purpose, that part of the computation has to be done anyway.

Algorithm 5.1 Modified McEliece encryption scheme
• Public key: a k × (n − k) binary matrix R
• Private key: a decoder DG for the code G spanned by (Id | R)
• Encryption: the plaintext is (m1,m2) ∈ {0, 1}k × {0, 1}�

the ciphertext is y = (m1,m1R) + φn,t(m2) ∈ {0, 1}n

• Decryption: the ciphertext is y ∈ {0, 1}n

compute the codeword x = DG(y), with x = (x1,x1R)
the plaintext is (m1,m2) = (x1, φ

−1
n,t(y − x))

The algorithmic complexity of the encryption and decryption procedures
are relatively easy to analyse.

• The encryption complexity is dominated by the vector/matrix multiplica-
tion (k times k× (n− k)) and the call to φn,t. In practice those two costs
are comparable.

• The decryption complexity is dominated by the decoding DG(y) and the
call to φ−1

n,t. In practice the decoding is much more expensive.

McEliece with a systematic public key

Let G be the public key of an instance of McEliece cryptosystem with param-
eters (n, k, t). Let Gsyst = (Id | R) = UG be a systematic generator matrix of
the same code (w.l.o.g. the first k column of G are non-singular and U is a
k × k matrix which can be computed from G in polynomial time).

For any G, we denote ΨG(m, e) = mG + e. Using ΨGsyst instead of ΨG for
the encryption has many advantages:

• the public key is smaller, as it has a size of k(n− k) bits instead of kn,
• the encryption is faster, as we multiply the plaintext by a smaller matrix,
• the decryption is faster, as the plaintext is a prefix of the ciphertext cleared

of the errors.

Code-based cryptography 129

The drawback is a “decrease” of the semantic security. The following example
is taken from [65, p. 34], and is the beginning of a ciphertext for an instance
of McEliece using a systematic public key:

Le{ cryptosystèmas0basés suv les code{‘corveãteurs soît-ils sýòs?

Obviously, there is a leak of information. However, since we have ΨG(m, e) =
ΨGsyst(mU−1, e), any inversion oracle for ΨGsyst can be transformed in an in-
version oracle for ΨG. Thus, if the plaintext m is uniformly distributed, both
versions are equally secure. In practice, this means that a semantically secure
conversion (see §5.3) will enable us to use Gsyst without loss of security.

Encoding constant weight words

The problem here is to exhibit, for given n and t, an efficient injective mapping
into the set of binary words of length n and weight t, φn,t : {0, 1}� → Wn,t.
This mapping is needed for implementing Niederreiter scheme and is also used
in most semantically secure conversions. In practice we want � to be close to
�log2

(
n
t

)
	. Else, we risk a loss of security.

Enumerative method.

This method is optimal in terms of information rate and can be traced back
to [15,62]. It is based on the following bijective mapping

θ : Wn,t −→
[
0,
(
n
t

)[

(i1, . . . , it) �−→
(
i1
1

)
+
(
i2
2

)
+ · · ·+

(
it

t

)

where the element ofWn,t is represented by its non-zero positions in increasing
order 0 ≤ i1 < i2 < . . . < it < n. Computing θ requires the computation of
t binomial coefficients. When t is not too large, computing the inverse θ−1 is
not significantly more expensive thanks to the following inversion formula

x =
(

i

t

)
⇔ i = X +

t− 1
2

+
t2 − 1

24
1
X

+O
(

1
X3

)
,X = (t!x)1/t. (9)

We can define φn,t as the restriction of θ−1 to the interval
[
0, 2�

[
where

� = �log2

(
n
t

)
	. Both φn,t and φ−1

n,t can be obtained by computing t binomial
coefficients and have a cost of O(t�2) = O(t3m2) binary operations.

The decoding procedure is described in Algorithm 5.2. It uses formula (9)
for inverting the binomial coefficients. In fact, this inversion does not require
a great precision as the result we seek is an integer, not a floating point
number. In practice invert_binomial has a negligible cost compared with
the computation of the binomial coefficients.

130 Raphael Overbeck and Nicolas Sendrier

Algorithm 5.2 Enumerative decoding
Input: x ∈

[
0,
(

n
t

)[
Output: t integers 0 ≤ i1 < i2 < . . . < it < n
j ← t
while j > 0 do

ij ← invert_binomial(x, j)
x ← x −

(
ij
j

)
j ← j − 1

where invert_binomial(x, t) returns the integer i such that
(

i
t

)
≤ x <

(
i+1

t

)

Recursive source coding methods.

Those methods consist, as for the enumerative method, in finding a binary
encoder for the sourceWn,t equipped with the uniform probability (i.e. a com-
pression algorithm). The idea is to consider a simpler approximative source
model which allows a faster encoding and decoding. Linear time methods were
proposed in [63,67]. It consists in a (variable length) encoder Wn,t → {0, 1}∗,
with the additional requirement that any (long enough) binary sequence can
be decoded into a sequence of words of Wn,t. For instance in [67], an element
of Wn,t is first represented by a t-tuple (δ1, . . . , δt) of integers where δi is
the number of ‘0’s between the (i− 1)-th and the i-th ‘1’ (the 0-th ‘1’ is the
beginning of the word). The encoding is recursively defined as:

Ψn,t(δ1, δ2, . . . , δt) = (fn,t(δ1), Ψn−δ1−1,t−1(δ2, . . . , δt))

where fn,t is a source encoder for the set of integers {0, 1, . . . , n− t} equipped
with the probability distribution

Pn,t(i) =

(
n−i−1

t−1

)
(
n
t

) , i = 0, . . . , n− t.

The model is then simplified. We choose d an integer such that

∑
i<d

Pn,t(i) = 1−
(
n−d

t

)
(
n
t

) ≈ 1
2
⇔ d ≈ 21/t − 1

21/t

(
n− t− 1

2

)

and we define fn,t as

fn,t(i) =
{

0, B2(i) if 0 ≤ i < d
1, fn−d,t(i− d) if i ≥ d

where B2() encodes the set {0, . . . , d − 1} equipped with the uniform distri-
bution (easily derived from the integers binary expansion). The best value of
d depends of n and t (it is thus different for every recursive call). Choosing a
different value of d is possible but suboptimal in terms of compression rate.

Code-based cryptography 131

There is a good trade-off when one uses only powers of 2 for d, there is a small
loss in average, but a significant advantage in speed.

The recursive method is significantly faster than the enumerative method:
the computation time is linear in � instead of quadratic. However the encoder
Ψn,t :Wn,t → {0, 1}∗ produces a variable length output.

Comments and implementation.

The enumerative method allows constant length encoding with a minimal
loss (� = �

(
n
t

)
). On the other hand, it is relatively slow, even when the

binomial coefficients are precomputed. The recursive method can be much
faster, however the encoderWn,t → {0, 1}∗ has an important length variation.
This is unpractical and not recommendable, as it raises some security issues
that need to be studied further. For instance if an adversary knows how many
bits were used to produce the error, he might be able to use this information.
The Table 3 gives the average running time for a φn,t (and for its inverse φ−1

n,t)
build from both methods.

(n, t) (2048,32) (2048,40) (4096,22) (4096,45)
φn,t φ−1

n,t φn,t φ−1
n,t φn,t φ−1

n,t φn,t φ−1
n,t

enumerative 1980 1550 2530 2090 1440 1080 3160 2750
enumerative(1) 560 200 580 210 490 200 620 290
recursive 240 250 250 250 240 230 230 240
recursive(2) 150 150 150 150 135 130 140 140

(1) enumerative method with precomputation of the binomial coefficients
(2) recursive method optimized for speed (vs. average length)

Table 3. Performance (cycles/byte, Intel Core 2) for various encoding methods

Remark 7. There is another proposal [61] which uses arithmetic coding. It is
essentially the same as the enumerative method. It is not clear whether or not
this algorithm allows a faster implementation.

Remark 8. A new approach has been considered very recently8 which allows
linear time encoding (around 300 cycles/byte on a processor Intel Core 2)
with an optimal constant length. At the time of writing, this work was at a
too early stage to be detailed here.

8 see http://www-rocq.inria.fr/secret/MCE

132 Raphael Overbeck and Nicolas Sendrier

Niederreiter’s encryption scheme

Using a systematic public key for Niederreiter’s scheme was already known
to be harmless [13]. The decoder D′

G : {0, 1}k → Wn,t is slightly different,
it takes as argument a syndrome (for H = (R� | Id)) and returns an error
pattern. The implementation is presented in Algorithm 5.3.

Algorithm 5.3 Modified Niederreiter encryption scheme
• Public key: a k × (n − k) binary matrix R
• Private key: a decoder D′

G for the code G spanned by (Id | R)
• Encryption: the plaintext is m ∈ {0, 1}�

compute the error e = φn,t(m) = (e1, e2) ∈ {0, 1}k × {0, 1}n−k

the ciphertext is s = e
(
R�∣∣ Id)� = e1R + e2 ∈ {0, 1}n−k

• Decryption: the ciphertext is s ∈ {0, 1}n−k

the plaintext is m = φ−1
n,t(D

′
G(s))

Timings and sizes

In Table 4, numbers for McEliece and Niederreiter encryption schemes are
given. They come from http://www-rocq.inria.fr/secret/MCE. Implemen-
tation uses a systematic public key and information is encoded in the error.

5.2 Reducing storage requirements

Reducing the key size for the McEliece PKC has a long history. Besides the
approaches to use different codes than Goppa codes, there were two different
attempts: The first uses the automorphism group of Goppa codes [44] and the
second the quasi-cyclicity of codes [28]. While the first method was broken [38],
the second reduces the number of possible secret keys. However, the quasi-
cyclic approach has an interesting application in Stern’s ID scheme, reducing
the RAM requirements of the scheme. However, the proposal is too recent and
further research is probably needed to establish secure parameter sets.

Definition 8. An [n, k, d] code G over F is called s-quasi cyclic if for all c ∈ G
the vector σs(c) is in G, where

σs : F
n → F

n

(c1, · · · , cn) �→ (cn−s+1, · · · , cn, c1, · · · , cn−s)

denotes a cyclic shift by s positions. If s = 1 or s × n the code is cyclic. A
set of vectors G is called generating set if the vectors

{
σi

s(c) | c ∈ G, i ∈ N+

}
span G, where σi

s(c) = σs(σi−1
s (c)).

Code-based cryptography 133

(n, t) (2048,32) (2048,40) (4096,22) (4096,45)
plaintext size(1) 1928 1888 4024 3904

McEliece ciphertext size(1) 2048 2048 4096 4096
scheme encryption rate(2) 176 222 145 192

decryption rate(2) 1780 2260 600 1650
plaintext size(1) 232 280 192 352

Niederreiter ciphertext size(1) 352 440 264 540
scheme encryption rate(2) 360 370 320 340

decryption rate(2) 13600 16700 9800 16900
public key size(3) 73 KB 86 KB 123 KB 234 KB
key generation(3) 6.70 107 9.55 107 7.93 107 23.1 107

security bits(3)(4) 91 98 93 140

(1) plaintext and ciphertext sizes in bits
(2) in cycles per plaintext bytes, Intel Core 2
(3) common to both schemes (number of cycles on a processor Intel Core 2)
(4) log2 of the non-quantum binary workfactor

Table 4. McEliece and Niederreiter encryption scheme

Every cyclic code is s-quasi cyclic for all s ∈ N+ and the dual of a s-quasi
cyclic code is s-quasi cyclic, too. Each cyclic code has a s-cyclic subcode that
is not s′-cyclic for all s′ < s if s|n.

If one chooses to use a secret s-quasi cyclic [n, k] code with s|n for
McEliece’s scheme and restricts the possible choice of permutation matrices
P to the ones which are of the form

P =

⎡
⎢⎢⎢⎣

π 0 · · · 0
0 π 0
...

. . .
...

0 0 · · · π

⎤
⎥⎥⎥⎦ ,

where π is a s × s matrix. Then, a systematic generator matrix of G can be
reconstructed from Gpub = G · P. Thus, the public key size can reduced by a
certain factor.

However, this technique holds some risks, as the number of possible per-
mutations is reduced and part of the structure is revealed (a first approach
to attack such a system was reported by A. Otmani, J.P. Tillich and L. Dal-
lot [16]). Second, general decoding algorithms could take advantage of the
structure of the code, as it is e.g. the case for iterative or statistical decod-
ing [20, 55]. Third, let e be an error vector of weight t, H be the generating
set of the dual of G and s = eH. Then a cyclic shift of s by one corresponds
to the vector σs(e).

134 Raphael Overbeck and Nicolas Sendrier

For Stern’s ID scheme, one could chose to use 2-quasi cyclic codes with a
single generating vector as proposed in [29]. This reduces drastically the size of
memory needed to execute the scheme (from kn to n). However, as for Stern’s
scheme only a random code is required, one could build the generating matrix
G from a random string as well, if a cryptographic strong random number
generator is used. This has the same effect of reducing the size of memory
needed but does not come with the disadvantage of a quasi cyclic code.

5.3 Semantic security for the McEliece scheme

The McEliece PKC and the Niederreiter scheme are subject to several attacks
if not completely random bit-strings are sent. Thus, the schemes as they are
only serve for key-agreement protocols and not for encrypting messages. In
this section we will point out the weaknesses of the McEliece scheme (and
thus the Niederreiter version) against attacks on the semantic security and
how to get a semantically secure cryptosystem.

A cryptosystem is called secure against adaptive chosen ciphertext attacks
(CCA2 secure) if an attacker with access to a decryption oracle (which does
not decrypt the ciphertext c) has no advantage in deciphering a given cipher-
text c. A PKC is indistinguishable in the CCA2-model if the attacker has no
advantage in determining for a given ciphertext and two plaintexts which of
them was encrypted.

Weaknesses of the McEliece PKC

The main weakness of the McEliece PKC results from the malleability of
its ciphertexts. Adding codewords, i.e. rows of Gpub to a ciphertext yields
another valid ciphertext. Therefore, the original McEliece cryptosystem does
not satisfy non-malleability. A CCA2 attack can be derived immediately as
the adversary can add a second message m′ to c by computing c′ = c ⊕
m′Gpub, which will be decrypted by the oracle. Note that malleability is not
such a problem in the Niederreiter case, as we can not create new decodable
syndromes from old ones with probability significantly larger than t/n.

As a consequence from the malleability, an adversary for the McEliece
scheme may use the relation between two encrypted messages to determine
error bits [8]. This attack can not be adapted to the Niederreiter cryptosystem.
Let m1,m2 be two messages with a known relation Λ, e.g. Λ(m1,m2) =
m1⊕m2 and c1, c2 the corresponding ciphertexts. Then c1⊕c2⊕Λ(m1,m2)
will be of weight ≤ 2t ≤ n − k and at least k error-free positions of m1 ⊕
m2 are revealed. This enables an adversary to efficiently guess error bits. A
special case of related messages occurs in the message-resend attack, where
the attacker can recover z1 ⊕ z2 = c1 ⊕ c2.

A reaction attack is a weaker version of an adaptively chosen ciphertext
attack, in that the attacker does not have access to a full decryption oracle, but

Code-based cryptography 135

can only observe the receiver’s reaction on potential ciphertexts. An adversary
may intercept ciphertexts, change a few bits, and watch the reaction of the
designated receiver on these modified ciphertexts. Sending modifications of
an authentic ciphertext amounts to adding further error bits. If the receiver
cannot decode (reaction: repeat request), the corresponding bits were not in
error originally. This enables the attacker to recover an error-free information
set in at most k iterations. Observe, that such an attack is well possible for
the Niederreiter PKC as it does not require the malleable property.

CCA2-secure versions of the McEliece scheme

In [37] Kobara and Imai review possible conversions to turn the McEliece
PKC CCA2-secure. Not all generic conversions can be applied to the McEliece
PKC, since the McEliece PKC encryption function is not a OWTP (one-way-
trapdoor permutation) and it is vulnerable against message-resend attacks.

However, there are two generic conversions, which are applicable to the
McEliece PKC: One presented by Pointcheval [60] and the other by Fujisaki
and Okamoto [21]. These conversions are valid for all encryption schemes,
which are partially trapdoor one-way (PTOWF), i.e., the encryption is a func-
tion f : X × Y → Z, (x, y) �→ z where it is impossible to recover x or y from
their image z alone, but the knowledge of secret enables a partial inversion,
i.e. finding x from z. Pointcheval [60] demonstrated how any PTOWF can
be converted to a public-key cryptosystem that is indistinguishable against
CCA2, while the conversion of Fujisaki and Okamoto is applicable to those
schemes which are one-way encryptions (OWE), which includes PTOWF and
OWTP.

We omit giving details on generic conversions, since they add a large
amount of redundancy to the cipher texts. Instead we focus on the McEliece-
specific conversions presented by Kobara and Imai, whose main concern is to
decrease data overhead. As an example we present the “γ-conversion” based on
Algorithm 2.1. For the ease of presentation we introduce the notations given
in Table 5. The γ-conversion is summarized in Algorithm 5.4. It is assumed
that length(m) ≥ log2�

(
n
t

)
	+ k − length(const)− length(r).

For large messages Kobara and Imai achieve a reduction in data redun-
dancy even below the values for the original McEliece PKC for large param-
eters. For example, for m = 11, t = 70 the message size is expanded by 655
bits instead of 770 in the original McEliece scheme. The security of the γ-
conversion can be reduced to the one of the original scheme [37]:

Theorem 2. Breaking indistinguishability in the CCA2 model using any of
the conversions presented above, is as hard as breaking the original McEliece
public key system.

136 Raphael Overbeck and Nicolas Sendrier

Symbol Function
	

⌊
log2

(
n
t

)⌋
.

H Cryptographic secure hashing to a 	-bit string
R Cryptographically secure pseudo random number generator from fixed

length seeds
E(Gpub,t) McEliece encryption function, taking as first argument the message to

be encrypted and as second one the error vector: E(Gpub,t)(m, z) = c

D(S,DG ,P) McEliece decryption function: D(S,DG ,P)(c) = (m, z)
MSBn(m) The n rightmost bits of m.
LSBn(m) The n leftmost bits of m.

Table 5. Notation for Algorithm 5.4.

Algorithm 5.4 Kobara-Imai’s γ Conversion
• Additional System Parameters: length(r), the length of the random seed

and a constant const.
• Encryption Eγ

(Gpub,t)
:

Generate a random seed r of length length(r).
Set
c1 = PRG(r) ⊕ (m, const), c2 = r ⊕ H(c1),
c3 = LSB�+k(c2, c1), c4 = LSBk(c3),
c5 = MSB�(c3), z = φn,t(c5)
if length(c2, c1) − 	 − k > 0 then

c6 = MSBlength(c2,c1)−�−k(c2, c1)
c = (c6,E(Gpub,t)(c4, z))

else
c = E(Gpub,t)(c4, z)

• Decryption Dγ
(S,DG ,P):

Set
c6 = MSBLen(c)−n(c), (c4, z) = D(S,DG ,P)(LSBn(c)),
c5 = φ−1

n,t(z), c2 = MSBlength(r)(c6, c5, c4),
c1 = LSBlength(c)−length(r)(c6, c5, c4),
(m, const′) = (c1) ⊕ PRG(c2 ⊕ H(c1))

if const′ = const then
return m

else
reject c

Furthermore, all adaptive attacks become impossible, since relations among
plaintexts do no longer result in relations among ciphertexts. Already the sim-
ple hashing of messages before encryption prevents this.

Code-based cryptography 137

6 Annex

6.1 Algebraic coding theory

Hamming distance and linear codes.

Let Fq be a finite field. The Hamming distance between two words x and y
in F

n
q is defined to be the number of coordinates in which x and y differ.

The Hamming weight wt(x) of x is the number of non-zero coordinates of
x. A code is a non-empty subset of the Hamming space F

n
q . A k-dimensional

subspace of F
n
q is called a [n, k] linear code over Fq.

Generator and parity check matrices.

Let C denote an [n, k] linear code over Fq.

• A generator matrix G for C is a matrix over Fq such that C = 〈G〉, where
〈G〉 denotes the vector space spanned by the rows of G. Usually, the rows
of G are independent and the matrix is k×n. A generator matrix G is said
to be in systematic form, if its first k columns form the identity matrix.

• The dual code C⊥ of C is the orthogonal of C for the usual scalar product
over Fq. It is a [n, n− k] linear code over Fq.

• A parity check matrix H of C is a generator matrix of C⊥.

Minimum distance and weight.

Let C denote an [n, k] linear code over Fq. The minimum distance d = dmin(C)
of C is the smallest Hamming distance between distinct codewords. For a
linear code, it is equal to the minimum weight, the smallest non-zero weight
of a codeword. We will speak of an [n, k, d] code.

Decoder.

A decoder for C is a mapping DC : F
n
q → C. It is t-error correcting if for all

e ∈ F
n
q and all x ∈ C

wt(e) ≤ t⇒ DC(x + e) = x

For any [n, k, d] linear code, there exist a t-error correcting decoder if and only
if t < d/2.

Weight enumerator polynomial.

For a linear code C, it is defined as

W (C)(X) =
∑
c∈C

Xwt(c) =
n∑

i=0

AiX
i

where Ai is the number of codewords of Hamming weight i.

138 Raphael Overbeck and Nicolas Sendrier

Support.

The support I of a code of length n is an ordered set of cardinality n used to
index the coordinates. Typically I = {1, . . . , n}, but it is sometimes conve-
nient to index the coordinates with another ordered set (in Goppa codes for
instance). The support of a codeword is the subset of I containing its non-zero
coordinates.

Puncturing.

Let C be an [n, k] linear code of support I, let G be a generator matrix of C,
and let J be a subset of I.
• Punctured matrix: we denote by G·J the k × |J | matrix obtained from G

by keeping the columns indexed by J .
• Punctured code: We denote by C·J the code obtained by retaining in all

codeword of C the coordinates indexed by J .

Note that C·J = 〈G·J 〉 (i.e. the punctured matrix spans the corresponding
punctured code).

Subcodes.

Any linear subspace of C is said to be a subcode of C. If C is a code over F

and FSUB is a subfield of F, then the FSUB-(subfield) subcode of C is the code
consisting of all words of C, which have only entries in FSUB. A FSUB-subfield
subcode is a FSUB-linear code. As codes are treated as vector spaces, we will
often define them by the matrices related to the code.

6.2 GRS and Goppa codes

An important class of codes are the GRS codes, which are strongly related to
the class of Goppa codes used by McEliece to define his cryptosystem. Thus,
we briefly introduce them:

Definition 9. A GRS code over Fqm of length n with designed minimum
Hamming distance t + 1 is defined by two vectors a, z ∈ F

n
qm , where ai �= aj

for i �= j and all zi �= 0. The canonical check matrix of the GRS code is of the
form

H� =

⎛
⎜⎜⎜⎝

z1a
0
1 z1a

1
1 · · · z1a

t−1
1

z2a
0
2 z2a

1
2 · · · z2a

t−1
2

...
. . .

...
zna0

n zna1
n · · · znat−1

n

⎞
⎟⎟⎟⎠ ∈ F

n×t
qm . (10)

Code-based cryptography 139

The code with check matrix
[

H�

0 · · · 0 1

]�

is called an extended GRS code.
The Fq-subfield subcode of a GRS code is called an alternant code and has

dimension k ≥ n−mt. If for a GRS code, there exists a polynomial g ∈ Fqm [X]
of degree t, for which g(ai) = 1/zi, the polynomial is called Goppa polynomial
and the Fq-subfield subcode is called Goppa code (see e.g. [47] or [17]). An
equivalent definition is the following:

Definition 10. A binary Goppa code G over F2m is defined by a vector a ∈
F

n
2m , where ai �= aj and the Goppa polynomial g(X) =

∑t
i=0 giX

i ∈ F2m [X].
G is the set of all c = (c0, . . . , cn−1) ∈ F

n
2 such that the identity

Sc(X) = −
n−1∑
i=0

ci

g(ai)
g(X)− g(ai)

X − ai
mod g(X) = 0 (11)

holds in the polynomial ring F2m [X] or equivalently if

Sc(X) ≡
n−1∑
i=0

ci

X − ai
≡ 0 mod g(X). (12)

Oftentimes, the vector a is called γ or L and since G is defined in function of
L and the Goppa polynomial we write: G = Γ (L, g).

If the Goppa polynomial is irreducible, then the Goppa code has minimum
distance 2 · t + 1 and is called an irreducible Goppa code.

The coefficients of the syndrome polynomial Sc(X) =
∑t−1

i=0 siX
i of a

vector c in a Goppa code may be computed via equation (13), where H is
given in equation (10) with zi = 1/g(ai).

(
s0 s1 · · · st−1

)
= cH�

⎛
⎜⎜⎜⎜⎝

gt 0 · · · 0

gt−1 gt
. . . 0

...
. . .

...
g1 g2 · · · gt

⎞
⎟⎟⎟⎟⎠

(13)

For GRS codes, as well as for Goppa codes, there exist algorithms for
correcting errors of Hamming weight up to half of the minimum distance.
Such algorithms take O(n2) respectively O(n · t ·m2) binary operations, see
e.g. [7, 58]. Here we present Patterson’s algorithm for correcting errors in
irreducible binary Goppa codes, where we follow the presentation in [17]: Let
m be a codeword, e ∈ F

n
2 with wt(e) ≤ t an error vector, and c = m ⊕ e.

Since Sm(X) ≡ 0 mod g(X), we have

140 Raphael Overbeck and Nicolas Sendrier

0 �= Sc(X) ≡ Se(X) mod g(X).

We introduce the error locator polynomial σe(X) of e as

σe(X) :=
∏

j∈Te

(X − γj) ∈ F2m [X],

where Te is the support of e. From (12), it follows that

σe(X)Se(X) ≡ σ′
e(X) mod g(X). (14)

We split σe(X) in squares and non-squares:

σe(X) = α2(X) + Xβ2(X).

Since the characteristic of the field is 2, we have σ′
e(X) = β2(X). Setting

T (X) = S−1
e (X) and multiply equation (14) by T (X) we obtain

β2(X)(X + T (X)) ≡ α2(X) mod g(X) (15)

Each element of F2mt has a unique square root. Let τ(X) ∈ F2m [X] be the
square root of T (X) + X, then

β(X)τ(X) ≡ α(X) mod g(X).

The equation above can be solved: We have to determine α(X) and β(X)
of least degree, i.e. with deg(α(X)) ≤ �t/2	 and deg(β(X)) ≤ �(t − 1)/2	.
Computing the inverse of τ(X) modulo g(X) via the extended Euclidean
algorithm and stopping it in mid-time gives the (unique) solution [33,43,47].
Finally, the zeroes of σe(X) = α2(X) + Xβ2(X) can be determined, which
reveals e.

The runtime of the presented error correction algorithm may be estimated
as follows. To compute the syndrome Sc(X) employing the check matrix H,
we need at most (n−k)n binary operations. To compute T (X), we employ the
extended Euclidean algorithm. This takes O

(
t2m2

)
binary operations, as the

computations are modulo g(X), a polynomial of degree t and coefficients of
size m. Computing the square root of T (X)+X takesO

(
t2m2

)
operation since

it is a linear mapping on F2m [X] /g(X). The subsequently employed variant
of the extended Euclidean algorithm takes O

(
t2m2

)
binary operations, too.

These steps are fast in comparison to the last step to find all roots of the
error locator polynomial. The latter can be performed in n(tm2 + tm) binary
operations. Since mt ≥ (n− k), the error correction algorithm needs

O
(
n · t ·m2

)

binary operations. However, verifying, that an unique error locator polynomial
exists requires only

O
(
m3t2

)

if the syndrome is already known.

Code-based cryptography 141

6.3 Rank Distance

Not all codes are used with the Hamming metric. Here, we introduce a metric,
which allows to correct “crisscross” errors in memory chip arrays or in magnetic
tape recording, see [9, 41]:

Definition 11. Let x = (x1, · · · , xn) ∈ F
n
qm and b1, · · · , bm a basis of Fqm

over Fq. We can write xi =
∑m

j=1 xijbj for each i = 1, · · · , n with xij ∈ Fq.
The rank norm ‖ · ‖q is defined as follows:

‖x‖q := rank
(
(xij)1≤i≤n, 1≤j≤m

)
.

There are more isometries preserving rank distance than Hamming distance
since all invertible matrices over the base field are isometries for the rank met-
ric. The Syndrome Decoding Problem seems to be much harder in rank metric
than in Hamming metric. In [36] Ourivski and Johansson presented two al-
gorithms which solve the general decoding problem in O

(
(k + d−1

2)3(d−1
2)3×

q(d−3)(m−(d−1)/2)/2
)
, respectively O

(
(md−1

2)3q(d−3)(k+1)/2
)

operations over
Fq for [n, k, d] rank distance codes over Fqm .

Even if rank distance codes can not be used to build a PKC (compare
§4.3), the introduction of the rank metric into cryptography is interesting and
might be useful, as it could, e.g., allow to reduce the key sizes for Stern’s
identification scheme or strengthen the FSB hash. The interested reader may
find more information on the aspects of rank metric in [23,25,36,45].

References

1. Alabbadi, M. and Wicker, S.: A digital signature scheme based on linear error-
correcting block codes. In ASIACRYPT ’94, volume LNCS 917, pages 238–248
(Springer 1995).

2. Assmus, Jr, E.F. and Key, J.D.: Affine and projective planes. Discrete Mathe-
matics, 83:161–187 (1990).

3. Augot, D., Finiasz, M., and N.Sendrier: A family of fast syndrome based crypto-
graphic hash functions. In Proc. of Mycrypt 2005, volume 3715 of LNCS, pages
64–83 (2005).

4. Barg, A.: Complexity issues in coding theory. In V.S. Pless and W.C. Huffman,
editors, Handbook of Coding theory, volume I, chapter 7, pages 649–754. North-
Holland (1998).

5. Berger, T. and Loidreau, P.: Security of the Niederreiter form of the GPT public-
key cryptosystem. In IEEE International Symposium on Information Theory,
Lausanne, Suisse. IEEE (July 2002).

6. Berlekamp, E., McEliece, R., and van Tilborg, H.: On the inherent intractabil-
ity of certain coding problems. IEEE Transactions on Information Theory,
24(3):384–386 (1978).

7. Berlekamp, E.: Algebraic coding theory. McGraw-Hill, New York (1968).

142 Raphael Overbeck and Nicolas Sendrier

8. Berson, T.: Failure of the McEliece public-key cryptosystem under message-
resend and related-message attack. In Proceedings of CRYPTO, volume 1294 of
Lecture Notes in Computer Science, pages 213–220. Springer Verlag (1997).

9. Blaum, M. and McEliece, R.J.: Coding protection for magnetic tapes: A gener-
alization of the Patel - Hong code. IEEE Transactions on Information Theory,
31(5):690– (1985).

10. Camion, P. and Patarin, J.: The knapsack hash function proposed at Crypto’89
can be broken. In D.W. Davies, editor, Advances in Cryptology - EURO-
CRYPT’91, number 547 in LNCS, pages 39–53. Springer-Verlag (1991).

11. Canteaut, A. and Chabaud, F.: Improvements of the attacks on cryptosystems
based on error-correcting codes. Rapport interne du Departement Mathema-
tiques et Informatique, LIENS-95-21 (1995).

12. Canteaut, A. and Chabaud, F.: A new algorithm for finding minimum-weight
words in a linear code: Application to McEliece’s cryptosystem and to narrow-
sense BCH codes of length 511. IEEETIT: IEEE Transactions on Information
Theory, 44 (1998).

13. Canteaut, A. and Sendrier, N.: Cryptanalysis of the original McEliece cryptosys-
tem. In Advances in Cryptology - ASIACRYPT ’98 Proceedings, pages 187–199.
Springer-Verlag (1998).

14. Courtois, N., Finiasz, M., and N.Sendrier: How to achieve a McEliece-based dig-
ital signature scheme. In Advances in Cryptology - ASIACRYPT 2001, volume
2248, pages 157–174. Springer-Verlag (2001).

15. Cover, T.: Enumerative source encoding. IEEE Transactions on Information
Theory, 19(1):73–77 (1973).

16. Dallot, L., Tillich, J., Otmani, A.: Cryptanalysis of two McEliece cryptosys-
tems based on quasi-cyclic codes (2008). CoRR, abs/0804.0409, available at
http://arxiv.org/abs/0804.0409 (2008).

17. Engelbert, D., Overbeck, R., and Schmidt, A.: A summary of McEliece-type
cryptosystems and their security. Journal of Mathematical Cryptology, 1(2):151–
199 (2007).

18. Finiasz, M.: Nouvelles constructions utilisant des codes correcteurs d’erreurs en
cryptographie à clef publique. Thèse de doctorat, École Polytechnique (2004).

19. Fischer, J.B. and Stern, J.: An eficient pseudo-random generator provably as
secure as syndrome decoding. In U.M. Maurer, editor, Advances in Cryptology
- EUROCRYPT ’96, volume 1070 of LNCS, pages 245–255. Springer-Verlag
(1996).

20. Fossorier, M., Imai, H., and Kobara, K.: Modeling bit flipping decoding based
on non orthogonal check sums and application to iterative decoding attack of
McEliece cryptosystem. In Proc. of 2004 International Symposium on Informa-
tion Theory and its Applications, Parma, Italy (ISITA’04) (October 2004).

21. Fujisaki, E. and Okamoto, T.: Secure integration of asymmetric and symmetric
encryption schemes. In Proc. of CRYPTO, volume 547 of LNCS, pages 535–554.
Springer Verlag (1999).

22. Gabidulin, E.M. and Ourivski, A.V.: Column scrambler for the GPT cryptosys-
tem. Discrete Applied Mathematics, 128(1):207–221 (2003).

23. Gabidulin, E.: Theory of codes with maximum rank distance. Problems of In-
formation Transmission, 21, No. 1 (1985).

24. Gabidulin, E.: On public-key cryptosystems based on linear codes. In Proc.
of 4th IMA Conference on Cryptography and Coding 1993, Codes and Ciphers.
IMA Press (1995).

Code-based cryptography 143

25. Gabidulin, E. and Loidreau, P.: Subfield subcodes of maximum-rank distance
codes. In Seventh International Workshop on Algebraic and Combinatorial Cod-
ing Theory, volume 7 of ACCT, pages 151–156 (2000).

26. Gabidulin, E., Ourivski, A., Honary, B., and Ammar, B.: Reducible rank codes
and their applications to cryptography. IEEE Transactions on Information
Theory, 49(12):3289–3293 (2003).

27. Gabidulin, E., Paramonov, A., and Tretjakov, O.: Ideals over a non-commutative
ring and their applications to cryptography. In Proc. Eurocrypt ’91, volume 547
of LNCS. Springer Verlag (1991).

28. Gaborit, P.: Shorter keys for code based cryptography. In Proc. of WCC 2005,
pages 81–90 (2005).

29. Gaborit, P. and Girault, M.: Lightweight code-based authentication and signa-
ture. In Proc. of ISIT 2007 (2007).

30. Gaborit, P., Laudaroux, C., and Sendrier, N.: Synd: a very fast code-based
cipher stream with a security reduction. In IEEE Conference, ISIT’07, pages
186–190. Nice, France (2007).

31. Gibson, K.: Equivalent Goppa codes and trapdoors to McEliece’s public key
cryptosystem. In D.W. Davies, editor, Advances in Cryptology - Eurocrypt’91,
volume 547 of LNCS, pages 517–521. Springer Verlag (1991).

32. Harn, L. and Wang, D.C.: Cryptanalysis and modification of digital signa-
ture scheme based on error-correcting codes. Electronics Letters, 28(2):157–159
(1992).

33. Heise and Quattrocchi: Informations- und Codierungstheorie. Springer Berlin
Heidelberg, 3 edition (1995).

34. Jabri, A.K.A.: A statistical decoding algorithm for general linear block codes.
In Cryptography and Coding 2001, volume 2260 of LNCS, pages 1–8. Springer
Verlag (2001).

35. Janwa, H. and Moreno, O.: McEliece public key cryptosystems using algebraic-
geometric codes. Designes, Codes and Cryptography, 8:293–307 (1996).

36. Johansson, T. and Ourivski, A.: New technique for decoding codes in the rank
metric and its cryptography applications. Problems of Information Transmis-
sion, 38, No. 3:237–246 (2002).

37. Kobara, K. and Imai, H.: Semantically secure McEliece public-key cryptosys-
tems - conversions for McEliece PKC. In Practice and Theory in Public Key
Cryptography - PKC ’01 Proceedings. Springer Verlag (2001).

38. Kobara, K. and Imai, H.: On the one-wayness against chosen-plaintext attacks
of the Loidreau’s modified McEliece PKC. IEEE Transactions on Information
Theory, 49, No. 12:3160–3168 (2003).

39. Lee, P. and Brickell, E.: An observation on the security of McEliece’s public
key cryptosystem. In Advances in Cryptology-EUROCRYPT’88, volume 330 of
LNCS, pages 275–280. Springer Verlag (1989).

40. Leon, J.: A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Transactions on Information Theory, 34(5):1354–
1359 (1988).

41. Levine, L. and Myers, W.: Semiconductor memory reliability with error detect-
ing and correcting codes. COMPUTER, 9(10):43–50 (1976). ISSN 0018-9162.

42. Li, Y., Deng, R., and Wang, X.: the equivalence of McEliece’s and Niederreiter’s
public-key cryptosystems. IEEE Transactions on Information Theory, Vol. 40,
pp. 271-273 (1994).

144 Raphael Overbeck and Nicolas Sendrier

43. Lidl, R. and Niederreiter, H.: Introduction to finite fields and their applications.
Cambridge University Press, 2 edition (1986).

44. Loidreau, P.: Strengthening McEliece cryptosystem. In Advances in Cryptology
- ASIACRYPT ’00 Proceedings, pages 585–598. Springer Verlag (2000).

45. Loidreau, P. and Overbeck, R.: Decoding rank errors beyond the error-correction
capability. In Proc. of ACCT-10, Zvenigorod, pages 168–190 (2006).

46. Loidreau, P. and Sendrier, N.: Weak keys in the McEliece public-key cryptosys-
tem. IEEE Transactions on Information Theory, 47, No. 3:1207 –1211 (March
2001).

47. MacWilliams, F. and Sloane, N.: The Theory of Error-Correctiong Codes. North-
Holland Amsterdam, 7 edition (1992).

48. McEliece, R.: A public key cryptosystem based on algebraic coding theory. DSN
progress report, 42-44:114–116 (1978).

49. Minder, L.: Cryptography based on error correcting codes. Phd thesis, EPFL
(2007).

50. Minder, L. and Shokrollahi, A.: Cryptanalysis of the Sidelnikov cryptosystem.
In M. Naor, editor, Advances in Cryptology - EUROCRYPT 2007, number 4515
in LNCS, pages 347–360. Springer (2007).

51. Montpetit, A.: Note sur la notion d’équivalence entre deux codes linéaires. Dis-
crete Mathematics, 65:177–185 (1987).

52. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory.
Probl. Control and Inform. Theory, 15:19–34 (1986).

53. Overbeck, R.: Public key cryptography based on coding theory. Ph.D. Thesis,
Available at http://elib.tu-darmstadt.de/diss/000823/.

54. Overbeck, R.: A new structural attack for GPT and variants. In Proc. of Mycrypt
2005, volume 3715 of LNCS, pages 50–63. Springer Verlag (2005).

55. Overbeck, R.: Statistical decoding revisited. In Proc. of ACISP 2006, volume
4058 of LNCS, pages 283–294. Springer Verlag (2006).

56. Overbeck, R.: Recognizing the structure of permuted reducible codes. In Proc.
of WCC 2007, pages 269–276 (2007).

57. Overbeck, R.: Structural attacks for public key cryptosystems based on
Gabidulin codes. Journal of Cryptology, 21(2):280–301 (2008).

58. Patterson, N.: Algebraic decoding of Goppa codes. IEEE Trans. Info.Theory,
21:203–207 (1975).

59. Petrank, E. and Roth, R.M.: Is code equivalence easy to decide? IEEE Trans.
on IT, 43(5):1602–1604 (1997).

60. Pointcheval, D.: Chosen-ciphertext security for any one-way cryptosystem. In
Proc. of PKC, volume 1751 of LNCS, pages 129–146. Springer Verlag (2000).

61. Ramabadran, T.V.: A coding scheme for m-out-of-n codes. IEEE Transactions
on Communications, 38(8):1156–1163 (1990).

62. Schalkwijk, J.P.M.: An algorithm for source coding. IEEE Transactions on
Information Theory, 18(3):395–399 (1972).

63. Sendrier, N.: Efficient generation of binary words of given weight. In C. Boyd,
editor, Cryptography and Coding ; proceedings of the 5th IMA conference, num-
ber 1025 in LNCS, pages 184–187. Springer-Verlag (1995).

64. Sendrier, N.: On the concatenated structure of a linear code. AAECC, 9(3):221–
242 (1998).

65. Sendrier, N.: Cryptosystèmes à clé publique basés sur les codes correcteurs
d’erreurs. Mémoire d’habilitation à diriger des recherches, Université Paris 6
(2002).

Code-based cryptography 145

66. Sendrier, N.: On the security of the McEliece public-key cryptosystem. In
M. Blaum, P. Farrell, and H. van Tilborg, editors, Proceedings of Workshop hon-
oring Prof. Bob McEliece on his 60th birthday, pages 141–163. Kluwer (2002).

67. Sendrier, N.: Encoding information into constant weight words. In IEEE Con-
ference, ISIT’2005, pages 435–438. Adelaide, Australia (2005).

68. Sendrier, N.: Finding the permutation between equivalent linear codes: the sup-
port splitting algorithm. IEEE Transactions on Information Theory, 46:1193–
1203 (Jul 2000).

69. Sendrier, N.: On the dimension of the hull. SIAM Journal on Discrete Mathe-
matics, 10(2):282–293 (May 1997).

70. Sidelnikov, V.: A public-key cryptosystem based on binary Reed-Muller codes.
Discrete Mathematics and Applications, 4 No. 3 (1994).

71. Sidelnikov, V. and Shestakov, S.: On insecurity of cryptosystems based on gen-
eralized Reed-Solomon codes. Discrete Mathematics and Applications, 2, No.
4:439–444 (1992).

72. Stern, J.: A method for finding codewords of small weight. Coding Theory and
Applications, 388:106–133 (1989).

73. Stern, J.: A new identification scheme based on syndrome decoding. In Advances
in Cryptology - CRYPTO’93, volume 773 of LNCS. Springer Verlag (1994).

74. Stern, J.: Can one design a signature scheme based on error-correcting codes.
In ASIACRYPT ’94, volume 917 of LNCS, pages 424–426 (1995).

75. van Tilburg, J.: On the McEliece cryptosystem. In S. Goldwasser, editor, Ad-
vances in Cryptology - CRYPTO’88, number 403 in LNCS, pages 119–131.
Springer-Verlag (1990).

76. Véron, P.: Improved identification schemes based on error-correcting codes.
Appl. Algebra Eng. Commun. Comput., 8(1):57–69 (1996).

77. Wagner, D.: A generalized birthday problem. In M. Yung, editor, CRYPTO,
volume 2442 of Lecture Notes in Computer Science, pages 288–303. Springer
(2002). ISBN 3-540-44050-X.

78. Wieschebrink, C.: An attack on a modified Niederreiter encryption scheme. In
Public Key Cryptography, volume 3958 of LNCS, pages 14–26 (2006).

79. Xinmei, W.: Digital signature scheme based on error-correcting codes. Electron-
ics Letters, 26(13):898–899 (1990).

Lattice-based Cryptography

Daniele Micciancio1∗ and Oded Regev2†

1 CSE Department, University of California, San Diego.
2 School of Computer Science, Tel-Aviv University.

1 Introduction

In this chapter we describe some of the recent progress in lattice-based cryp-
tography. Lattice-based cryptographic constructions hold a great promise for
post-quantum cryptography, as they enjoy very strong security proofs based
on worst-case hardness, relatively efficient implementations, as well as great
simplicity. In addition, lattice-based cryptography is believed to be secure
against quantum computers. Our focus here will be mainly on the practical
aspects of lattice-based cryptography and less on the methods used to estab-
lish their security. For other surveys on the topic of lattice-based cryptography,
see, e.g., [36, 52, 60, 71] and the lecture notes [51, 67]. The survey by Nguyen
and Stern [60] also describes some applications of lattices in cryptanalysis,
an important topic that we do not discuss here. Another useful resource is
the book by Micciancio and Goldwasser [49], which also contains a wealth of
information on the computational complexity aspects of lattice problems.

So what is a lattice? A lattice is a set of points in n-dimensional space with
a periodic structure, such as the one illustrated in Figure 1. More formally,
given n-linearly independent vectors b1, . . . ,bn ∈ R

n, the lattice generated
by them is the set of vectors

L(b1, . . . ,bn) =

{
n∑

i=1

xibi : xi ∈ Z

}
.

The vectors b1, . . . ,bn are known as a basis of the lattice.
The way lattices can be used in cryptography is by no means obvious, and

was discovered in a breakthrough paper by Ajtai [7]. His result has by now
∗ Supported in part by NSF Grant CCF 0634909.
† Supported by the Binational Science Foundation, by the Israel Science Founda-

tion, by the European Commission under the Integrated Project QAP funded by
the IST directorate as Contract Number 015848, and by a European Research
Council (ERC) Starting Grant.

148 Daniele Micciancio and Oded Regev

Fig. 1. A two-dimensional lattice and two possible bases.

developed into a whole area of research whose main focus is on expanding the
scope of lattice-based cryptography and on creating more practical lattice-
based cryptosystems. Before discussing this area of research in more detail,
let us first describe the computational problems involving lattices, whose pre-
sumed hardness lies at the heart of lattice-based cryptography.

1.1 Lattice problems and algorithms

Lattice-based cryptographic constructions are based on the presumed hard-
ness of lattice problems, the most basic of which is the shortest vector problem
(SVP). Here, we are given as input a lattice represented by an arbitrary basis,
and our goal is to output the shortest nonzero vector in it. In fact, one typi-
cally considers the approximation variant of SVP where the goal is to output
a lattice vector whose length is at most some approximation factor γ(n) times
the length of the shortest nonzero vector, where n is the dimension of the
lattice. A more precise definition of SVP and several other lattice problems
appears in Section 2.

The most well known and widely studied algorithm for lattice problems is
the LLL algorithm, developed in 1982 by Lenstra, Lenstra, and Lovász [39].
This is a polynomial time algorithm for SVP (and for most other basic lat-
tice problems) that achieves an approximation factor of 2O(n) where n is the
dimension of the lattice. As bad as this might seem, the LLL algorithm is
surprisingly useful, with applications ranging from factoring polynomials over
the rational numbers [39], to integer programming [31], as well as many ap-
plications in cryptanalysis (such as attacks on knapsack-based cryptosystems
and special cases of RSA).

In 1987, Schnorr presented an extension of the LLL algorithm leading to
somewhat better approximation factors [73]. The main idea in Schnorr’s algo-
rithm is to replace the core of the LLL algorithm, which involves 2×2 blocks,
with blocks of larger size. Increasing the block size improves the approxima-
tion factor (i.e., leads to shorter vectors) at the price of an increased running
time. Schnorr’s algorithm (e.g., as implemented in Shoup’s NTL package [75])

Lattice-based Cryptography 149

is often used by experimenters. Several variants of Schnorr’s algorithm ex-
ist, such as the recent one by Gama and Nguyen [15] which is quite natural
and elegant. Unfortunately, all these variants achieve more or less the same
exponential approximation guarantee.

If one insists on an exact solution to SVP, or even just an approximation
to within poly(n) factors, the best known algorithm has a running time of
2O(n) [6]. The space requirement of this algorithm is unfortunately also ex-
ponential which makes it essentially impractical (but see [57] for a recent im-
plementation that can handle dimensions up to 50). Other algorithms require
only polynomial space, but run in 2O(n log n) time (see [31] and the references
in [57]).

The above discussion leads us to the following conjecture.

Conjecture 1. There is no polynomial time algorithm that approximates lattice
problems to within polynomial factors.

Less formally, it is conjectured that approximating lattice problems to within
polynomial factors is a hard problem (see also [72]). As we shall see later, the
security of many lattice-based cryptographic constructions is based on this
conjecture. As a further evidence for this conjecture, we note that progress in
lattice algorithms has been stubbornly difficult, with no significant improve-
ment in performance since the 1980s. This is in contrast to number theoretic
problems such as factoring for which we have some remarkable subexponential
time algorithms like the number field sieve [38]. We should note, though, that
approximating lattice problems to within factors above

√
n/ log n is not NP-

hard unless the polynomial time hierarchy collapses [2, 20, 37]; NP-hardness
results for lattice problems are known only for much smaller approximation
factors such as nO(1/ log log n) (see [3, 12,14,25,33,47,77] and the survey [34]).

When applied to “real-life” lattices or lattices chosen randomly from some
natural distribution, lattice reduction algorithms tend to perform somewhat
better than their worst-case performance. This phenomenon is still not fully
explained, but has been observed in many experiments. In one such recent
investigation [16], Gama and Nguyen performed extensive experiments with
several lattice reduction algorithms and several distributions on lattices. One
of their conclusions is that known lattice reduction algorithms provide an
approximation ratio of roughly δn where n is the dimension of the lattice
and δ is a constant that depends on the algorithm. The best δ achievable
with algorithms running in reasonable time is very close to 1.012. Moreover,
it seems that approximation ratios of (1.01)n are outside the reach of known
lattice reduction algorithm. See Section 3 for a further discussion of the Gama-
Nguyen experiments.

1.2 Lattice-based cryptography

As mentioned in the beginning of this chapter, lattice-based cryptographic
constructions hold a great promise for post-quantum cryptography. Many of

150 Daniele Micciancio and Oded Regev

them are quite efficient, and some even compete with the best known alter-
natives; they are typically quite simple to implement; and of course, they are
all believed to be secure against quantum computers (a topic which we will
discuss in more detail in the next subsection).

In terms of security, lattice-based cryptographic constructions can be di-
vided into two types. The first includes practical proposals, which are typically
very efficient, but often lack a supporting proof of security. The second type
admit strong provable security guarantees based on the worst-case hardness
of lattice problems, but only a few of them are sufficiently efficient to be used
in practice. We will consider both types in this chapter, with more emphasis
on the latter type.

In the rest of this subsection, we elaborate on the strong security guar-
antees given by constructions of the latter type, namely that of worst-case
hardness. What this means is that breaking the cryptographic construction
(even with some small non-negligible probability) is provably at least as hard
as solving several lattice problems (approximately, within polynomial factors)
in the worst case. In other words, breaking the cryptographic construction im-
plies an efficient algorithm for solving any instance of some underlying lattice
problem. In most cases, the underlying problem is that of approximating lat-
tice problems such as SVP to within polynomial factors, which as mentioned
above, is conjectured to be a hard problem.

Such a strong security guarantee is one of the distinguishing features of
lattice-based cryptography. Virtually all other cryptographic constructions are
based on average-case hardness. For instance, breaking a cryptosystem based
on factoring might imply the ability to factor some numbers chosen according
to a certain distribution, but not the ability to factor all numbers.

The importance of the worst-case security guarantee is twofold. First, it
assures us that attacks on the cryptographic construction are likely to be
effective only for small choices of parameters and not asymptotically. In other
words, it assures us that there are no fundamental flaws in the design of our
cryptographic construction. In fact, in some cases, the worst-case security
guarantee can even guide us in making design decisions. Second, in principle
the worst-case security guarantee can help us in choosing concrete parameters
for the cryptosystem, although in practice this leads to what seems like overly
conservative estimates, and as we shall see later, one often sets the parameters
based on the best known attacks.

1.3 Quantum and lattices

As we have seen above, lattice problems are typically quite hard. The best
known algorithms either run in exponential time, or provide quite bad approx-
imation ratios. The field of lattice-based cryptography has been developed
based on the assumption that lattice problems are hard. But is lattice-based
cryptography suitable for a post-quantum world? Are lattice problems hard
even for quantum computers?

Lattice-based Cryptography 151

The short answer to this is “probably yes”: There are currently no known
quantum algorithms for solving lattice problems that perform significantly bet-
ter than the best known classical (i.e., non-quantum) algorithms (but see [41]).
This is despite the fact that lattice problems seem like a natural candidate
to attempt to solve using quantum algorithms: because they are believed not
to be NP-hard for typical approximation factors, because of their periodic
structure, and because the Fourier transform, which is used so successfully in
quantum algorithms, is tightly related to the notion of lattice duality.

Attempts to solve lattice problems by quantum algorithms have been made
since Shor’s discovery of the quantum factoring algorithm in the mid-1990s,
but have so far met with little success if any at all. The main difficulty is that
the periodicity finding technique, which is used in Shor’s factoring algorithm
and related quantum algorithms, does not seem to be applicable to lattice
problems. It is therefore natural to consider the following conjecture, which
justifies the use of lattice-based cryptography for post-quantum cryptography:

Conjecture 2. There is no polynomial time quantum algorithm that approxi-
mates lattice problems to within polynomial factors.

The above discussion, however, should not be interpreted as saying that
the advent of quantum algorithms had no influence on our understanding of
lattice problems. Although actual quantum algorithms for lattice problems
are not known, there are a few very intriguing connections between quantum
algorithms and lattice problems. The first such connection was demonstrated
in [69] where it was shown that a certain extension of the period finding prob-
lem to non-Abelian groups can be used to give quantum algorithms for lattice
problems. This approach, unfortunately, has so far not led to any interesting
quantum algorithms for lattice problems.

A possibly more interesting connection is the use of a quantum hardness
assumption in the lattice-based cryptosystem of [70]. A detailed discussion
of this cryptosystem and its applications will appear in Subsection 5.4. For
now, we briefly discuss the way quantum algorithms are used there. The main
observation made there is that quantum algorithms can be useful in solving
lattice problems, albeit somewhat unnatural ones. Consider the following sce-
nario. We are given an oracle that is able to answer queries of the following
type: on input a lattice L and a point x that is somewhat close to L, it outputs
the closest lattice point to x. If x is not close enough to L, the output of the
oracle is undefined. In some sense, such an oracle seems quite powerful: the
best known algorithms for performing such a task require exponential time.
Nevertheless, there seems to be absolutely no way to do anything “useful” with
this oracle classically! Indeed, it seems that the only way to generate inputs
to the oracle is the following: somehow choose a lattice point y ∈ L and let
x = y + z for some small perturbation vector z. We can now feed x to the
oracle since it is close to the lattice. But the result we get, y, is totally useless
since we already know it!

152 Daniele Micciancio and Oded Regev

It turns out that in the quantum setting, such an oracle is quite useful.
Indeed, being able to compute y from x allows to uncompute y. More precisely,
it allows to transform the quantum state |x,y〉 to the state |x, 0〉 in a reversible
(i.e., unitary) way. This ability to erase the content of a memory cell in a
reversible way seems useful only in the quantum setting. By using this together
with the Fourier transform, it is shown in [70] how to use such an oracle in
order to find short lattice vectors in the dual lattice.

1.4 Organization

The rest of this chapter is organized as follows. In Section 2 we provide some
preliminaries on lattices. In Section 3 we consider a certain lattice problem
that lies at the heart of many lattice-based cryptographic constructions, and
discuss the best known algorithms for solving it. This will be used when we
suggest concrete parameters for lattice-based constructions. The next three
sections discuss three main cryptographic primitives: hash functions (Sec-
tion 4), public key cryptosystems (Section 5), and digital signature schemes
(Section 6). Some recent constructions of other cryptographic primitives are
mentioned in Section 7. Finally, in Section 8 we list some of the main open
questions in the area.

2 Preliminaries

All logarithms are base 2 unless otherwise indicated. We use column notation
for vectors and use (x1, . . . , xn) to denote the column vector with entries
x1, . . . , xn. We use square brackets to enclose matrices and row vectors.

Lattices:

A lattice is defined as the set of all integer combinations

L(b1, . . . ,bn) =

{
n∑

i=1

xibi : xi ∈ Z for 1 ≤ i ≤ n

}

of n linearly independent vectors b1, . . . ,bn in R
n (see Figure 1). The set of

vectors b1, . . . ,bn is called a basis for the lattice. A basis can be represented
by the matrix B = [b1, . . . ,bn] ∈ R

n×n having the basis vectors as columns.
Using matrix notation, the lattice generated by a matrix B ∈ R

n×n can
be defined as L(B) = {Bx : x ∈ Z

n}, where Bx is the usual matrix-vector
multiplication.

It is not difficult to see that if U is a unimodular matrix (i.e., an integer
square matrix with determinant ±1), the bases B and BU generate the same
lattice. (In fact, L(B) = L(B′) if and only if there exists a unimodular matrix

Lattice-based Cryptography 153

U such that B′ = BU.) In particular, any lattice admits multiple bases, and
this fact is at the core of many cryptographic applications.

The determinant of a lattice is the absolute value of the determinant of the
basis matrix det(L(B)) = |det(B)|. The value of the determinant is indepen-
dent of the choice of the basis, and geometrically corresponds to the inverse of
the density of the lattice points in R

n. The dual of a lattice L in R
n, denoted

L∗, is the lattice given by the set of all vectors y ∈ R
n satisfying 〈x,y〉 ∈ Z for

all vectors x ∈ L. It can be seen that for any B ∈ R
n×n, L(B)∗ = L((B−1)T).

From this it follows that det(L∗) = 1/det(L).

q-ary lattices:

Of particular importance in lattice-based cryptography are q-ary lattices.
These are lattices L satisfying qZ

n ⊆ L ⊆ Z
n for some (possibly prime)

integer q. In other words, the membership of a vector x in L is determined
by x mod q. Such lattices are in one-to-one correspondence with linear codes
in Z

n
q . Most lattice-based cryptographic constructions use q-ary lattices as

their hard-on-average problem. We remark that any integer lattice L ⊆ Z
n

is a q-ary lattice for some q, e.g., whenever q is an integer multiple of the
determinant det(L). However, we will be mostly concerned with q-ary lattices
with q much smaller than det(L).

Given a matrix A ∈ Z
n×m
q for some integers q,m, n, we can define two

m-dimensional q-ary lattices,

Λq(A) = {y ∈ Z
m : y = AT s mod q for some s ∈ Z

n}
Λ⊥

q (A) = {y ∈ Z
m : Ay = 0 mod q}.

The first q-ary lattice is generated by the rows of A; the second contains
all vectors that are orthogonal modulo q to the rows of A. In other words,
the first q-ary lattice corresponds to the code generated by the rows of A
whereas the second corresponds to the code whose parity check matrix is A.
It follows from the definition that these lattices are dual to each other, up to
normalization; namely, Λ⊥

q (A) = q · Λq(A)∗ and Λq(A) = q · Λ⊥
q (A)∗.

Lattice problems:

The most well known computational problems on lattices are the following.

• Shortest Vector Problem (SVP): Given a lattice basis B, find the shortest
nonzero vector in L(B).

• Closest Vector Problem (CVP): Given a lattice basis B and a target vector
t (not necessarily in the lattice), find the lattice point v ∈ L(B) closest to
t.

• Shortest Independent Vectors Problem (SIVP): Given a lattice basis B ∈
Z

n×n, find n linearly independent lattice vectors S = [s1, . . . , sn] (where
si ∈ L(B) for all i) minimizing the quantity ‖S‖ = maxi ‖si‖.

154 Daniele Micciancio and Oded Regev

In lattice-based cryptography, one typically considers the approximation vari-
ant of these problems, which are denoted by an additional subscript γ indi-
cating the approximation factor. For instance, in SVPγ the goal is to find a
vector whose norm is at most γ times that of the shortest nonzero vector.
Finally, let us mention that all problems can be defined with respect to any
norm, but the Euclidean norm ‖x‖ =

√∑
i x2 is the most common (see [66]).

3 Finding Short Vectors in Random q-ary Lattices

Consider the following problem. We are given a random matrix A ∈ Z
n×m
q for

some q, n and m ≥ n and we are asked to find a short vector in Λ⊥
q (A). What

is the shortest vector that we can hope to find in a reasonable amount of time?
Notice that this is equivalent to asking for a short solution to a set of n random
equations modulo q in m variables. There are two main methods to find such
solutions, which we review in the next paragraphs. Before addressing the
algorithmic question, let us try to estimate the length of the shortest nonzero
vector. For this, assume q is prime. Then with high probability (assuming
m is not too close to n), the rows of A are linearly independent over Zq. In
such a case, the number of elements of Z

m
q that belong to Λ⊥

q (A) is exactly
qm−n from which it follows that det(Λ⊥

q (A)) = qn. We can now heuristically
estimate λ1(Λ⊥

q (A)) as the smallest radius of a ball whose volume is qn, i.e.,

λ1(Λ⊥
q (A)) ≈ qn/m · ((m/2)!)1/m

/
√

π ≈ qn/m ·
√

m

2πe

where we used the formula for the volume of a ball in m dimensions. For rea-
sonable values of m (that are not too close to n nor too large) this estimate
seems to be very good, as indicated by some of our experiments in low di-
mensions. The above estimate applies if we are interested in vectors that have
small Euclidean length. Similar arguments apply to other norms. For exam-
ple, we can expect the lattice to contain nonzero vectors with coordinates all
bounded in absolute value by

λ∞
1 (Λ⊥

q (A)) ≈ qn/m − 1
2

.

Lattice reduction methods.

We now get back to our original algorithmic question: what is the shortest
vector that we can hope to find in a reasonable amount of time? In order
to answer this question, we rely on the extensive experiments made by Gama
and Nguyen in [16]. Although their experiments were performed on a different
distribution on lattices, their results seem to apply very well also to the case
of random q-ary lattices. Indeed, in all our experiments we observed the same
behavior reported in their paper, with the exception that a “trivial” vector of

Lattice-based Cryptography 155

length q can always be found; namely, the length of the vector obtained by
running the best known algorithms on a random m-dimensional q-ary lattice
Λ⊥

q (A) is close to

min{q, (det(Λ⊥
q (A)))1/m · δm} = min{q, qn/mδm} (1)

where the equality holds with high probability. The parameter δ depends
on the algorithm used. Faster algorithms (which are unavoidable when the
dimension is several hundreds) provide δ ≈ 1.013 whereas slower and more
precise algorithms provide δ ≈ 1.012 or even δ ≈ 1.011. Lower values of δ
seem to be impossible to obtain with our current understanding of lattice
reduction. Gama and Nguyen in fact estimate that a factor of 1.005 is totally
out of reach in dimension 500.

We now try to understand the effect that m has on the hardness of the
question. A simple yet important observation to make is that the problem
cannot become harder by increasing m. Indeed, we can always fix some of
the variables (or coordinates) to 0 thereby effectively reducing to a problem
with smaller m. In lattice terminology, this says that Λ⊥

q (A) contains as a
“sublattice” Λ⊥

q (A′) where A′ is obtained from A by removing some of its
columns. (More precisely, since the two lattices are of different dimensions,
we need to append zero coordinates to the latter in order for it to be a true
sublattice of the former.)

In Figure 2 we plot qn/mδm as a function of m. It is easy to see that
the minimum of the function is 22

√
n log q log δ and is obtained for m =√

n log q/ log δ. This means that when applying lattice reduction algorithms
to Λ⊥

q (A), the shortest vectors are produced when m =
√

n log q/ log δ. For
smaller m, the lattice is too sparse and does not contain short enough vectors.
For larger m, the high dimension prevents lattice reduction algorithms from
finding short vectors. In such a case, one is better off removing some of the
columns of A in order to arrive at a lower dimensional problem. We note that
this phenomenon has showed up clearly in our experiments.

200 300 400 500 600 700 800
0

5000

10000

15000

20000

25000

Fig. 2. Estimated length of vector found with δ = 1.01, q = 4416857, and n = 100
as a function of m.

156 Daniele Micciancio and Oded Regev

To summarize, based on the experiments made by Gama and Nguyen, we
can conclude that the shortest vector one can find in Λ⊥

q (A) for a random
A ∈ Z

n×m
q using state of the art lattice reduction algorithms is of length at

least

min{q, 22
√

n log q log δ}, (2)

where δ is not less than 1.01. Notice that the above expression is independent
of m. This indicates that the difficulty of the problem depends mainly on n
and q and not so much on m. Interestingly, the parameter m plays a minor
role also in Ajtai’s worst-case connection, giving further evidence that n and
q alone determine the difficulty of the problem.

Combinatorial methods.

It is interesting to consider also combinatorial methods to find short vectors
in a q-ary lattice, as for certain choices of parameters these methods perform
better than lattice reduction. The best combinatorial methods to find short
vectors in q-ary lattices are variants of the algorithms presented [9, 78], e.g.,
as described in [45] in the context of attacking lattice-based hash functions.

The method works as follows. Given a matrix A ∈ Z
n×m
q , say we want to

find a lattice point in Λ⊥
q (A) with coordinates all bounded in absolute value

by b. We proceed as follows:

• Divide the columns of A into 2k groups (for some k to be determined),
each containing m/2k columns.

• For each group, build a list containing all linear combinations of the
columns with coefficients in {−b, . . . , b}.

• At this point we have 2k lists, each containing L = (2b + 1)m/2k

vectors
in Z

n
q . Combine the lists in pairs. When two lists are combined, take all

the sums x + y where x is an element of the first list, y is an element of
the second list, and their sum x + y is zero in the first logq L coordinates.
Since these coordinates can take qlogq L = L values, we can expect the list
resulting from the combination process to have size approximately equal
to L · L/L = L.

• At this point we have 2k−1 lists of size L containing vectors that are zero
in their first logq L coordinates. Keep combining the lists in pairs, until
after k iterations we are left with only one list of size L containing vectors
that are 0 in their first k · logq L coordinates. The parameter k is chosen
in such a way that n ≈ (k + 1) logq L, or equivalently,

2k

k + 1
≈ m log(2b + 1)

n log q
. (3)

For such a value of k, the vectors in the last list are zero in all but their
last n−k logq L ≈ logq L coordinates. So, we can expect the list to contain
the all zero vector.

Lattice-based Cryptography 157

The all zero vector found in the last list is given by a combination of the
columns of A with coefficients bounded by b, so we have found the desired
short lattice vector. Differently from lattice reduction, we can always expect
this attack to succeed when A is random. The question is: what is the cost of
running the attack? It is easy to see that the cost of the attack is dominated
by the size of the lists L, which equals (2b + 1)m/2k

, where k is the largest
integer satisfying (3). In certain settings (e.g., the construction of lattice-based
hash functions presented in Section 4) lattice-based attacks stop finding short
enough vectors well before the combinatorial attack becomes infeasible. So,
the combinatorial attack can be used to determine the value of the parameters
necessary to achieve a certain level of security.

Another difference between the combinatorial attack and those based on
lattice reduction is that the combinatorial attack does take advantage of the
large value of m. Larger values of m allow to use larger values for k, yielding
shorter lists and more efficient attacks.

4 Hash Functions

A collision resistant hash function is a function h : D → R mapping a domain
D to a much smaller set R, |R| ! |D| such that it is computationally hard
to find collisions, i.e., input pairs x1, x2 ∈ D such that x1 �= x2 and still
h(x1) = h(x2). Technically, hash functions are often defined as keyed function
families, where a collection of functions {hk : D → R} is specified, and the
security property is that given a randomly chosen k, no attacker can efficiently
find a collision in hk, even though such collisions certainly exist because D is
larger than R. Collision resistant hash functions are very useful cryptographic
primitives because they allow to compress a long message x ∈ D to a short
digest h(x) ∈ R, and still the digest is (computationally) bound to a unique
x because of the collision resistance property.

For efficiency reasons, hash functions currently used in practice are based
on ad-hoc design principles, similar to those used in the construction of block
ciphers. Such functions, however, have been subject to attacks, raising interest
in more theoretical constructions that can be proved secure based on some
underlying mathematical problem. Collision resistant hash functions can be
built starting from standard number theoretic problems (like the hardness
of factoring integers, or the RSA problem), similar to those used in public
key cryptography, but such constructions are unsatisfactory for two reasons:
they are much slower than block ciphers, and they can be broken by quantum
computers.

In this section we present various constructions of collision resistant hash
functions based on lattices, starting from Ajtai’s original work, and ending
with SWIFFT, a highly efficient recent proposal based on a special class of
lattices. These have several benefits over competing constructions: they admit
supporting proofs of security (based on worst-case complexity assumptions),

158 Daniele Micciancio and Oded Regev

they appear to be resistant to quantum attacks, and the most efficient of them
approaches efficiency levels comparable to those of traditional block cipher
design. Finally, many techniques used in other lattice-based cryptographic
constructions have been first developed in the context of collision resistant
hashing. So, hash functions offer an excellent starting point to discuss the
methods of lattice-based cryptography at large.

4.1 Ajtai’s construction and further improvements

The first lattice-based cryptographic construction with worst-case security
guarantees was presented in the seminal work of Ajtai [7]. Ajtai presented a
family of one-way functions whose security is based on the worst-case hardness
of nc-approximate SVP for some constant c > 0. In other words, he showed
that being able to invert a function chosen from this family with non-negligible
probability implies the ability to solve any instance of nc-approximate SVP.

Followup work concentrated on improving Ajtai’s security proof. Goldreich
et al. [21] showed that Ajtai’s function is collision resistant, a stronger (and
much more useful) security property than one-wayness. Most of the subsequent
work focused on reducing the value of the constant c [11, 48, 54], thereby
improving the security assumption. In the most recent work, the constant is
essentially c = 1 [54]. We remark that all these constructions are based on the
worst-case hardness of a problem not believed to be NP-hard (since c ≥ 1

2).
The main statement in all the above results is that for an appropriate

choice of q, n,m, finding short vectors in Λ⊥
q (A) when A is chosen uniformly

at random from Z
n×m
q is as hard as solving certain lattice problems (such as

approximate SIVP and approximate SVP) in the worst case. This holds even
if the algorithm is successful in finding short vectors only with an inverse
polynomially small probability (over the choice of matrix A and its internal
randomness).

Once such a reduction is established, constructing a family of collision
resistant hash functions is easy (see Algorithm 4.1). The hash function is
parameterized by integers n,m, q, d. A possible choice is d = 2, q = n2, and
m > n log q/ log d. The choice of n then determines the security of the hash
function. The key to the hash function is given by a matrix A chosen uniformly
from Z

n×m
q . The hash function fA : {0, . . . , d−1}m → Z

n
q is given by fA(y) =

Ay mod q. In terms of bits, the function maps m log d bits into n log q bits,
hence we should choose m > n log q/ log d in order to obtain a hash function
that compresses the input, or more typically m ≈ 2n log q/ log d to achieve
compression by a factor 2.

Notice that a collision fA(y) = fA(y′) for some y �= y′ immediately yields
a short non-zero vector y − y′ ∈ Λ⊥

q (A). Using a worst-case to average-case
reduction as above, we obtain that finding collisions for function fA (even with
an inverse polynomially small probability), is as hard as solving approximate
SIVP and approximate SVP in the worst case.

Lattice-based Cryptography 159

Algorithm 4.1 A hash function following Ajtai’s construction.
• Parameters: Integers n, m, q, d ≥ 1.
• Key: A matrix A chosen uniformly from Z

n×m
q .

• Hash function: fA : {0, . . . , d − 1}m → Z
n
q given by fA(y) = Ay mod q.

It is worth noting that this hash function is extremely simple to implement
as it involves nothing but addition and multiplication modulo q, and q is a
O(log n) bit number which comfortably fits into a single memory word or
processor register. So, all arithmetic can be performed very efficiently without
the need of the arbitrary precision integers commonly used in number theoretic
cryptographic functions. As we shall see later, this is typical of lattice-based
cryptography. Further optimizations can be obtained by choosing q to be a
power of 2, and d = 2 which allows to represent the input as a sequence of
m bits as well as to avoid the need for multiplications. Nevertheless, these
hash functions are not particularly efficient because the key size grows at
least quadratically in n. Consider for example setting d = 2, q = n2, and
m = 2n log q = 4n log n. The corresponding function has a key containing
mn = 4n2 log n elements of Zq, and its evaluation requires roughly as many
arithmetic operations. Collisions are given by vectors in Λ⊥

q (A) with entries
in {1, 0,−1}. The combinatorial method described in Section 3 with bound
b = 1 and parameter k = 4, yields an attack with complexity L = 3m/16 ≈
2m/10. So, in order to get 100 bits of security (L ≈ 2100), one needs to set
m = 4n log n ≈ 1000, and n ≥ 46. This yields a hash function with a key size
of mn log q ≈ 500,000 bits, and computation time of the order of mn ≈ 50,000
arithmetic operations. Although still reasonable for a public key encryption
function, this is considered unacceptable in practice for simpler cryptographic
primitives like symmetric block ciphers or collision resistant hash functions.

4.2 Efficient hash functions based on cyclic and ideal lattices

The efficiency of lattice-based cryptographic functions can be substantially
improved replacing general matrices by matrices with special structure. For
example, in Algorithm 4.1, the random matrix A ∈ Z

n×m
q can be replaced by

a block-matrix
A = [A(1) | . . . | A(m/n)] (4)

where each block A(i) ∈ Z
n×n
q is a circulant matrix

A(i) =

⎡
⎢⎢⎢⎢⎢⎢⎣

a
(i)
1 a

(i)
n · · · a

(i)
3 a

(i)
2

a
(i)
2 a

(i)
1 · · · a

(i)
4 a

(i)
3

...
...

. . .
...

...
a
(i)
n−1 a

(i)
n−2 · · · a

(i)
1 a

(i)
n

a
(i)
n a

(i)
n−1 · · · a

(i)
2 a

(i)
1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

160 Daniele Micciancio and Oded Regev

i.e., a matrix whose columns are all cyclic rotations of the first column a(i) =
(a(i)

1 , . . . , a
(i)
n). Using matrix notation, A(i) = [a(i),Ta(i), . . . ,Tn−1a(i)] where

T =

⎡
⎢⎢⎢⎢⎣

0T 1
. . .

I
. . .

0

⎤
⎥⎥⎥⎥⎦

, (5)

is the permutation matrix that rotates the coordinates of a(i) cyclically. The
circulant structure of the blocks has two immediate consequences:

• It reduces the key storage requirement from nm elements of Zq to just
m elements, because each block A(i) is fully specified by its first column
a(i) = (a(i)

1 , . . . , a
(i)
n).

• It also reduces (at least asymptotically) the running time required to com-
pute the matrix-vector product Ay mod q, from O(mn) arithmetic op-
erations (over Zq), to just Õ(m) operations, because multiplication by a
circulant matrix can be implemented in Õ(n) time using the Fast Fourier
Transform.

Of course, imposing any structure on matrix A, immediately invalidates
the proofs of security [7,11,48,54] showing that finding collisions on the aver-
age is at least as hard as approximating lattice problems in the worst case. A
fundamental question that needs to be addressed whenever a theoretical con-
struction is modified for the sake of efficiency, is if the modification introduces
security weaknesses.

The use of circulant matrices in lattice-based cryptography can be traced
back to the NTRU cryptosystem [29], which is described in Section 5. How-
ever, till recently no theoretical results were known supporting the use of
structured matrices in lattice-based cryptography. Several years after Ajtai’s
worst-case connection for general lattices [7] and the proposal of the NTRU
cryptosystem [29], Micciancio [53] discovered that the efficient one-way func-
tion obtained by imposing a circulant structure on the blocks of (4) can still
be proved to be hard to invert on the average based on the worst-case hard-
ness of approximating SVP, albeit only over a restricted class of lattices which
are invariant under cyclic rotation of the coordinates. Interestingly, no better
algorithms (than those for general lattices) are known to solve lattice prob-
lems for such cyclic lattices. So, it is reasonable to assume that solving lattice
problems on these lattices is as hard as the general case.

Micciancio’s adaptation [53] of Ajtai’s worst-case connection to cyclic lat-
tices is non-trivial. In particular, Micciancio could only prove that the result-
ing function is one-way (i.e., hard to invert), as opposed to collision resistant.
In fact, collisions can be efficiently found: in [42, 61] it was observed that if
each block A(i) is multiplied by a constant vector ci ·1 = (ci, . . . , ci), then the
output of fA is going to be a constant vector c · 1 too. Since c can take only

Lattice-based Cryptography 161

q different values, a collision can be found in time q (or even O(
√

q), prob-
abilistically), which is typically polynomial in n. Similar methods were later
used in [45] to find collisions in the compression function of LASH, a practical
hash function proposal modeled after the NTRU cryptosystem. The existence
of collisions for these functions demonstrates the importance of theoretical
security proofs whenever a cryptographic construction is modified.

While one-way functions are not strong enough security primitives to be
directly useful in applications, the results of [53] stimulated theoretical interest
in the construction of efficient cryptographic functions based on structured
lattices, leading to the use of cyclic (and other similarly structured) lattices
in the design of many other more useful primitives [42–44, 61], as well as
further investigation of lattices with algebraic structure [62]. In the rest of
this section, we describe the collision resistant hash functions of [42, 61], and
their most recent practical instantiation [45]. Other cryptographic primitives
based on structured lattices are described in Sections 5, 6, and 7.

Collision resistance from ideal lattices

The problem of turning the efficient one-way function of [53] into a collision
resistant function was independently solved by Peikert and Rosen [61], and
Lyubashevsky and Micciancio [42] using different (but related) methods. Here
we follow the approach used in the latter work, which also generalizes the con-
struction of [53,61] based on circulant matrices, to a wider range of structured
matrices, some of which admit very efficient implementations [45]. The general
construction, shown in Algorithm 4.2, is parametrized by integers n,m, q, d
and a vector f ∈ Z

n, and it can be regarded as a special case of Algorithm 4.1
with structured keys A. In Algorithm 4.2, instead of choosing A at random
from the set of all matrices, one sets A to a block-matrix as in Eq. (4) with
structured blocks A(i) = F∗a(i) defined as

F∗a(i) = [a(i),Fa(i), . . . ,Fn−1a(i)] where F =

⎡
⎢⎢⎢⎢⎣

0T

. . .
I

. . .

−f

⎤
⎥⎥⎥⎥⎦

.

The circulant matrices discussed earlier are obtained as a special case by
setting f = (−1, 0, . . . , 0), for which F = T is just a cyclic rotation of the
coordinates. The complexity assumption underlying the function is that lat-
tice problems are hard to approximate in the worst case over the class of
lattices that are invariant under transformation F (over the integers). When
f = (−1, 0, . . . , 0), this is exactly the class of cyclic lattices, i.e., lattices that
are invariant under cyclic rotation of the coordinates. For general f , the cor-
responding lattices have been named ideal lattices in [42], because they can
be equivalently characterized as ideals of the ring of modular polynomials

162 Daniele Micciancio and Oded Regev

Z[x]/〈f(x)〉 where f(x) = xn + fnxn−1 + · · · + f1 ∈ Z[x]. As for the class
of cyclic lattices, no algorithm is known that solves lattice problems on ideal
lattices any better than on general lattices. So, it is reasonable to assume that
solving lattice problems on ideal lattices is as hard as the general case.

Algorithm 4.2 Hash function based on ideal lattices.
• Parameters: Integers q, n, m, d with n|m, and vector f ∈ Z

n.
• Key: m/n vectors a1, . . . , am/n chosen independently and uniformly at random

in Z
n
q .

• Hash function: fA : {0, . . . , d − 1}m → Z
n
q given by

fA(y) = [F∗a1 | . . . | F∗am/n]y mod q.

Even for arbitrary f , the construction described in Algorithm 4.2 still
enjoys the efficiency properties of the one-way function of [53]: keys are
represented by just m elements of Zq, and the function can be evaluated
with Õ(m) arithmetic operations using the Fast Fourier Transform (over
the complex numbers). As usual, collisions are short vectors in the lattice
Λ⊥

q ([F∗a1 | . . . | F∗am/n]). But, are short vectors in these lattices hard to
find? We have already seen that in general the answer to this question is no:
when f = (−1, 0, . . . , 0) short vectors (and collisions in the hash function)
can be easily found in time O(q). Interestingly, [42] proves that finding short
vectors in Λ⊥

q ([F∗a1 | . . . | F∗am/n]) on the average (even with just inverse
polynomial probability) is as hard as solving various lattice problems (such
as approximate SVP and SIVP) in the worst case over ideal lattices, provided
the vector f satisfies the following two properties:

• For any two unit vectors u,v, the vector [F∗u]v has small (say, polynomial
in n, typically O(

√
n)) norm.

• The polynomial f(x) = xn + fnxn−1 + · · · + f1 ∈ Z[x] is irreducible over
the integers, i.e., it does not factor into the product of integer polynomials
of smaller degree.

Notice that the first property is satisfied by the vector f = (−1, 0, . . . , 0)
corresponding to circulant matrices, because all the coordinates of [F∗u]v are
bounded by 1, and hence ‖[F∗u]v‖ ≤ √n. However, the polynomial xn − 1
corresponding to f = (−1, 0, . . . , 0) is not irreducible because it factors into
(x− 1)(xn−1 +xn−2 + · · ·+x+1), and this is why collisions can be efficiently
found. So, f = (−1, 0, . . . , 0) is not a good choice to get collision resistant hash
functions, but many other choices are possible. For example, some choices of f
considered in [42] for which both properties are satisfied (and therefore, result
in collision resistant hash functions with worst-case security guarantees) are

• f = (1, . . . , 1) ∈ Z
n where n + 1 is prime, and

• f = (1, 0, . . . , 0) ∈ Z
n for n equal to a power of 2.

Lattice-based Cryptography 163

The latter choice turns out to be very convenient from an implementation
point of view, as described in the next subsection. Notice how ideal lattices
associated to vector (1, 0, . . . , 0) are very similar to cyclic lattices: the trans-
formation F is just a cyclic rotation of the coordinates, with the sign of the
coordinate wrapping around changed, and the blocks of A are just circulant
matrices, but with the elements above the diagonal negated. This small change
in the structure of matrix A has dramatic effects on the collision resistance
properties of the resulting hash function: If the signs of the elements above
the diagonals of the blocks is not changed, then collisions in the hash function
can be easily found. Changing the sign results in hash functions for which
finding collisions is provably as hard as the worst-case complexity of lattice
approximation problems over ideal lattices.

The SWIFFT hash function

The hash function described in the previous section is quite efficient and can be
computed asymptotically in Õ(m) time using the Fast Fourier Transform over
the complex numbers. However, in practice, this carries a substantial overhead.
In this subsection we describe the SWIFFT family of hash functions proposed
in [45]. This is essentially a highly optimized variant of the hash function
described in the previous section, and is highly efficient in practice, mainly
due to the use of the FFT in Zq.

We now proceed to describe the SWIFFT hash function. As already sug-
gested earlier, the vector f is set to (1, 0, . . . , 0) ∈ Z

n for n equal to a power
of 2, so that the corresponding polynomial xn + 1 is irreducible. The novelty
in [45] is a clever choice of the modulus q and a pre/post-processing operation
applied to the key and the output of the hash function. More specifically, let q
be a prime number such that 2n divides q−1, and let W ∈ Z

n×n
q be an invert-

ible matrix over Zq to be chosen later. The SWIFFT hash function maps a key
ã(1), . . . , ã(m/n) consisting of m/n vectors chosen uniformly from Z

n
q and an in-

put y ∈ {0, . . . , d−1}m to W ·fA(y) mod q where A = [F∗a(1), . . . ,F∗a(m/n)]
is as before and a(i) = W−1 ã(i) mod q. As we shall see later, SWIFFT can be
computed very efficiently (even though at this point its definition looks more
complicated than that of fA).

Notice that multiplication by the invertible matrix W−1 maps a uniformly
chosen ã ∈ Z

n
q to a uniformly chosen a ∈ Z

n
q . Moreover, W·fA(y) = W·fA(y′)

(mod q) if and only if fA(y) = fA(y′) (mod q). Together, these two facts
establish that finding collisions in SWIFFT is equivalent to finding collisions
in the underlying ideal lattice function fA, and the claimed collision resistance
property of SWIFFT is supported by the connection [42] to worst case lattice
problems on ideal lattices.

We now explain the efficient implementation of SWIFFT given in Algo-
rithm 4.3. By our choice of q, the multiplicative group Z

∗
q of the integers

modulo q has an element ω of order 2n. Let

164 Daniele Micciancio and Oded Regev

Algorithm 4.3 The SWIFFT hash function.
• Parameters: Integers n, m, q, d such that n is a power of 2, q is prime, 2n|(q−1)

and n|m.
• Key: m/n vectors ã1, . . . , ãm/n chosen independently and uniformly at random

in Z
n
q .

• Input: m/n vectors y(1), . . . ,y(m/n) ∈ {0, . . . , d − 1}n.
• Output: the vector

∑m/n
i=1 ã(i) � (Wy(i)) ∈ Z

n
q , where � is the component-wise

vector product.

W = [ω(2i−1)(j−1)]n,n
i=1,j=1

be the Vandermonde matrix of ω, ω3, ω5, . . . , ω2n−1. Since ω has order 2n,
the elements ω, ω3, ω5, . . . , ω2n−1 are distinct, and hence the matrix W is
invertible over Zq as required. Moreover, it is not difficult to see that for any
vectors a,b ∈ Z

n
q , the identity

W([F∗a]b) = (Wa)� (Wb) mod q

holds true, where � is the component-wise vector product. This implies that
Algorithm 4.3 correctly computes

W · fA(y) =
m/n∑
i=1

W[F∗a(i)]y(i) =
m/n∑
i=1

ã(i) � (Wy(i)).

The most expensive part of the algorithm is the computation of the matrix-
vector products Wy(i). These can be efficiently computed using the FFT
over Zq as follows. Remember that the FFT algorithm over a field Zq with
an nth root of unity ζ (where n is a power of 2) allows to evaluate any
polynomial p(x) = c0 + c1x + · · · + cn−1x

n−1 ∈ Zq[x] at all nth roots of
unity ζi (for i = 0, . . . , n − 1) with just O(n log n) arithmetic operations in
Zq. Using matrix notation and ζ = ω2, the FFT algorithm computes the
product Vc where V = [ω2(i−1)(j−1)]i,j is the Vandermonde matrix of the
roots ω0, ω2, . . . , ω2(n−1), and c = (c0, . . . , cn−1). Going back to the SWIFFT
algorithm, the matrix W can be factored as the product W = VD of V by the
diagonal matrix D with entries dj,j = ωj−1. So, the product Wy(i) = VDy(i)

can be efficiently evaluated by first computing Dy(i) (i.e., multiplying the
elements of y(i) component-wise by the diagonal of D), and then applying the
FFT algorithm over Zq to Dy(i) to obtain Wy(i).

Several other implementation-level optimizations are possible, including
the use of look-up tables and SIMD (single instruction multiple data) oper-
ations in the FFT computation. An optimized implementation of SWIFFT
for the choice of parameters given in Table 1 is given in [45], which achieves
throughput comparable to the SHA-2 family of hash functions.

Choice of parameters and security.

The authors of [45] propose the set of parameters shown in Table 1. It is easy

Lattice-based Cryptography 165

n m q d ω key size (bits) input size (bits) output size (bits)
64 1024 257 2 42 8192 1024 513

Table 1. Concrete parameters for the SWIFFT hash function achieving 100 bits of
security.

to verify that q = 257 is a prime, 2n = 128 divides q−1 = 256, n = 64 divides
m = 1024, ω = 42 has order 2n = 128 in Z

n
q , and the resulting hash function

fA : {0, 1}m → Z
n
q has compression ratio approximately equal to 2, mapping

m = 1024 input bits to one of qn = (28 + 1)64 < 2513 possible outputs. An
issue to be addressed is how to represent the vector in Z

n
q output by SWIFFT

as a sequence of bits. The easiest solution is to represent each element of Zq

as a sequence of 9 bits, so that the resulting output has 9 · 64 = 576 bits.
It is also easy to reduce the output size closer to 513 bits at very little cost.
(See [45] for details.)

We now analyze the security of SWIFFT with respect to combinatorial
and lattice-based attacks. The combinatorial method described in Section 3
with bound b = 1 and parameter k = 4 set to the largest integer satisfying
(3), yields an attack with complexity L = 3m/16 ≥ 2100.

Let us check that lattice-based attacks are also not likely to be effective
in finding collisions. Collisions in SWIFFT are vectors in the m-dimensional
lattice Λ⊥

q ([F∗a1 | . . . | F∗am/n]) with coordinates in {1, 0,−1}. Such vectors
have Euclidean length at most

√
m = 32. However, according to estimate (2)

for δ = 1.01, state of the art lattice reduction algorithms will not be able to
find nontrivial lattice vectors of Euclidean length bounded by

22
√

n log q log δ ≈ 42.

So, lattice reduction algorithms are unlikely to find collisions. In order to find
lattice vectors with Euclidean length bounded by 32, one would need lattice
reduction algorithms achieving δ < 1.0085, which seems out of reach with
current techniques, and even such algorithms would find vectors with short
Euclidean length, but coordinates not necessarily in {1, 0,−1}.

5 Public Key Encryption Schemes

Several methods have been proposed to build public key encryption schemes
based on the hardness of lattice problems. Some are mostly of theoretical
interest, as they are still too inefficient to be used in practice, but admit
strong provable security guarantees similar to those discussed in Section 4
for hash functions: breaking the encryption scheme (on the average, when
the key is chosen at random) can be shown to be at least as hard as solving
several lattice problems (approximately, within polynomial factors) in the

166 Daniele Micciancio and Oded Regev

worst case. Other schemes are practical proposals, much more efficient than
the theoretical constructions, but often lacking a supporting proof of security.

In this section we describe the main lattice-based public key encryption
schemes that have been proposed so far. We start from the GGH cryptosys-
tem, which is perhaps the most intuitive encryption scheme based on lattices.
We remark that the GGH cryptosystem has been subject to cryptanalytic
attacks [58] even for moderately large values of the security parameter, and
should be considered insecure from a practical point of view. Still, many of
the elements of GGH and its HNF variant [50], can be found in other lattice-
based encryption schemes. So, due to its simplicity, the GGH/HNF cryp-
tosystem still offers a good starting point for the discussion of lattice-based
public key encryption. Next, we describe the NTRU cryptosystem, which is
the most practical lattice-based encryption scheme known to date. Unfortu-
nately, neither GGH nor NTRU is supported by a proof of security showing
that breaking the cryptosystem is at least as hard as solving some underly-
ing lattice problem; they are primarily practical proposals aimed at offering
a concrete alternative to RSA or other number theoretic cryptosystems.

The rest of this section is dedicated to theoretical constructions of cryp-
tosystems that can be proved to be as hard to break as solving certain lattice
problems in the worst case. We briefly review the Ajtai-Dwork cryptosystem
(which was the first of its kind admitting a proof of security based on worst-
case hardness assumptions on lattice problems) and followup work, and then
give a detailed account of a cryptosystem of Regev based on a certain learning
problem (called “learning with errors”, LWE) that can be related to worst-case
lattice assumptions via a quantum reduction. This last cryptosystem is cur-
rently the most efficient construction admitting a known theoretical proof of
security. While still not as efficient as NTRU, it is the first theoretical con-
struction approaching performance levels that are reasonable enough to be
used in practice. Moreover, due to its algebraic features, the LWE cryptosys-
tem has been recently used as the starting point for the construction of various
other cryptographic primitives, as discussed in Section 7.

We remark that all cryptosystems described in this section are aimed at
achieving the basic security notion called semantic security or indistinguisha-
bility under chosen plaintext attack [23]. This is a strong security notion, but
only against passive adversaries that can intercept and observe (but not al-
ter) ciphertexts being transmitted. Informally, semantic security means that
an adversary that observes the ciphertexts being sent, cannot extract any
(even partial) information about the underlying plaintexts (not even deter-
mining whether two given ciphertexts encrypt the same message) under any
message distribution. Encryption schemes with stronger security guarantees
(against active adversaries) are discussed in Section 7.

Lattice-based Cryptography 167

5.1 The GGH/HNF public key cryptosystem

The GGH cryptosystem, proposed by Goldreich, Goldwasser, and Halevi
in [19], is essentially a lattice analogue of the McEliece cryptosystem [46]
proposed 20 years earlier based on the hardness of decoding linear codes over
finite fields. The basic idea is very simple and appealing. At a high level, the
GGH cryptosystem works as follows:

• The private key is a “good” lattice basis B. Typically, a good basis is a basis
consisting of short, almost orthogonal vectors. Algorithmically, good bases
allow to efficiently solve certain instances of the closest vector problem in
L(B), e.g., instances where the target is very close to the lattice.

• The public key H is a “bad” basis for the same lattice L(H) = L(B). In [50],
Micciancio proposed to use, as the public basis, the Hermite Normal Form
(HNF) of B. This normal form gives a lower1 triangular basis for L(B)
which is essentially unique, and can be efficiently computed from any basis
of L(B) using an integer variant of the Gaussian elimination algorithm.2
Notice that any attack on the HNF public key can be easily adapted to
work with any other basis B′ of L(B) by first computing H from B′. So,
in a sense, H is the worst possible basis for L(B) (from a cryptanalyst’s
point of view), and makes a good choice as a public basis.

• The encryption process consists of adding a short noise vector r (somehow
encoding the message to be encrypted) to a properly chosen lattice point v.
In [50] it is proposed to select the vector v such that all the coordinates of
(r + v) are reduced modulo the corresponding element along the diagonal
of the HNF public basis H. The vector (r+v) resulting from such a process
is denoted r mod H, and it provably makes cryptanalysis hardest because
r mod H can be efficiently computed from any vector of the form (r + v)
with v ∈ L(B). So, any attack on r mod H can be easily adapted to work
on any vector of the form r + v by first computing (r + v) mod H =
r mod H. Notice that r mod H can be computed directly from r and H
(without explicitly computing v) by iteratively subtracting multiples of
the columns of H from r. Column hi is used to reduce the ith element of
r modulo hi,i.

• The decryption problem corresponds to finding the lattice point v closest
to the target ciphertext c = (r mod H) = v + r, and the associated error
vector r = c− v.

The correctness of the GGH/HNF cryptosystem rests on the fact that the
error vector r is short enough so that the lattice point v can be recovered
from the ciphertext v + r using the private basis B, e.g., by using Babai’s
rounding procedure [8], which gives
1 The HNF can be equivalently defined using upper triangular matrices. The choice

between the lower or upper triangular formulation is pretty much arbitrary.
2 Some care is required to prevent the matrix entries from becoming too big during

intermediate steps of the computation.

168 Daniele Micciancio and Oded Regev

v = B�B−1(v + r)�.
On the other hand, the security relies on the assumption that without knowl-
edge of a special basis (that is, given only the worst possible basis H), solving
these instances of the closest vector problem in L(B) = L(H) is computa-
tionally hard. We note that the system described above is not semantically
secure because the encryption process is deterministic (and thus one can eas-
ily distinguish between ciphertexts corresponding to two fixed messages). In
practice, one can randomly pad the message in order to resolve this issue (as
is often done with the RSA function), although this is not rigorously justified.

Clearly, both the correctness and security depend critically on the choice of
the private basis B and error vector r. Since GGH has been subject to practical
attacks, we do not review the specifics of how B and r were selected in the
GGH cryptosystem, and move on to the description of other cryptosystems.

We remark that no asymptotically good attack to GGH is known: known
attacks break the cryptosystem in practice for moderately large values of
the security parameter, and can be avoided by making the security parameter
even bigger. This, however, makes the cryptosystem impractical. The source of
impracticality is similar to that affecting Ajtai’s hash function discussed in the
previous section, and can be addressed by similar means: general lattice bases
require Ω(n2) storage, and consequently the encryption/decryption running
times also grow quadratically in the security parameter. As we will see shortly,
much more efficient cryptosystems can be obtained using lattices with special
structure, which admit compact representation.

5.2 The NTRU public key cryptosystem

NTRU is a ring-based cryptosystem proposed by Hoffstein, Pipher and Sil-
verman in [29], which can be equivalently described using lattices with special
structure. Below we present NTRU as an instance of the general GGH/HNF
framework [19,50] described in the previous subsection. We remark that this is
quite different from (but still equivalent to) the original description of NTRU,
which, in fact, was proposed concurrently to, and independently from [19].

Using the notation from Section 4, we let T be the linear transformation in
Eq. (5) that rotates the coordinates of the input vector cyclically, and define
T∗v = [v,Tv, . . . ,Tn−1v] to be the circulant matrix of vector v ∈ Z

n. The
lattices used by NTRU, named convolutional modular lattices in [29], are lat-
tices in even dimension 2n satisfying the following two properties. First, they
are closed under the linear transformation that maps the vector (x,y) (where
x and y are n-dimensional vectors) to (Tx,Ty), i.e., the vector obtained by
rotating the coordinates of x and y cyclically in parallel. Second, they are
q-ary lattices, in the sense that they always contain qZ

2n as a sublattice, and
hence membership of (x,y) in the lattice only depends on (x,y) mod q. The
system parameters are a prime dimension n, an integer modulus q, a small
integer p, and an integer weight bound df . For concreteness, we follow the lat-
est NTRU parameter set recommendations [28], and assume q is a power of 2

Lattice-based Cryptography 169

(e.g., q = 28) and p = 3. More general parameter choices are possible, some of
which are mentioned in [28], and we refer the reader to that publication and
the NTRU Cryptosystems web site for details. The NTRU cryptosystem
(described by Algorithm 5.1) works as follows:

• Private Key. The private key in NTRU is a short vector (f ,g) ∈ Z
2n.

The lattice associated to a private key (f ,g) (and system parameter q) is
Λq((T∗f ,T∗g)T), which can be easily seen to be the smallest convolutional
modular lattice containing (f ,g). The secret vectors f ,g are subject to the
following technical restrictions:
– the matrix [T∗f] should be invertible modulo q,
– f ∈ e1 + {p, 0,−p}n and g ∈ {p, 0,−p}n are randomly chosen polyno-

mials such that f − e1 and g have exactly df + 1 positive entries and
df negative ones. (The remaining N − 2df − 1 entries will be zero.)

The bounds on the number of nonzero entries in f − e1 and g are mostly
motivated by efficiency reasons. More important are the requirements on
the invertibility of [T∗f] modulo q, and the restriction of f−e1 and g to the
set {p, 0,−p}n, which are used in the public key computation, encryption
and decryption operations. Notice that under these restrictions [T∗f] ≡ I
(mod p) and [T∗g] ≡ O (mod p) (where O denotes the all zero matrix).

• Public Key. Following the general GGH/HNF framework, the NTRU

public key corresponds to the HNF basis of the convolutional modular
lattice Λq((T∗f ,T∗g)T) defined by the private key. Due to the structural
properties of convolutional modular lattices, and the restrictions on the
choice of f , the HNF public basis has an especially nice form

H =
[

I O
T∗h q · I

]
where h = [T∗f]−1g (mod q), (6)

and can be compactly represented just by the vector h ∈ Z
n
q .

• Encryption. An input message is encoded as a vector m ∈ {1, 0,−1}n
with exactly df + 1 positive entries and df negative ones. The vector m
is concatenated with a randomly chosen vector r ∈ {1, 0,−1}n also with
exactly df + 1 positive entries and df negative ones, to obtain a short
error vector (−r,m) ∈ {1, 0,−1}2n. (The multiplication of r by −1 is
clearly unnecessary, and it is performed here just to keep our notation
closer to the original description of NTRU. The restriction on the number
of nonzero entries is used to bound the probability of decryption errors.)
Reducing the error vector (−r,m) modulo the public basis H yields

[
−r
m

]
mod

[
I O

T∗h q · I

]
=
[

0
(m + [T∗h]r) mod q

]
.

Since the first n coordinates of this vector are always 0, they can be omit-
ted, leaving only the n-dimensional vector c = m + [T∗h]r mod q as the
ciphertext.

170 Daniele Micciancio and Oded Regev

• Decryption. The ciphertext c is decrypted by multiplying it by the secret
matrix [T∗f] modulo q, yielding

[T∗f]c mod q = [T∗f]m + [T∗f][T∗h]r mod q = [T∗f]m + [T∗g]r mod q,

where we have used the identity [T∗f][T∗h] = [T∗([T∗f]h)] valid for any
vectors f and h. The decryption procedure relies on the fact that the
coordinates of the vector

[T∗f]m + [T∗g]r (7)

are all bounded by q/2 in absolute value, so the decrypter can recover the
exact value of (7) over the integers (i.e., without reduction modulo q.) The
bound on the coordinates of (7) holds provided df < (q/2−1)/(4p)−(1/2),
or, with high probability, even for larger values of df . The decryption
process is completed by reducing (7) modulo p, to obtain

[T∗f]m + [T∗g]r mod p = I ·m + O · r = m.

Algorithm 5.1 The NTRU public key cryptosystem.
• Parameters: Prime n, modulus q, and integer bound df . Small integer param-

eter p = 3 is set to a fixed value for simplicity, but other choices are possible.
• Private key: Vectors f ∈ e1 + {p, 0,−p}n and g ∈ {p, 0,−p}n, such that each

of f − e1 and g contains exactly df + 1 positive entries and df negative ones,
and the matrix [T∗f] is invertible modulo q.

• Public key: The vector h = [T∗f]−1g mod q ∈ Z
n
q .

• Encryption: The message is encoded as a vector m ∈ {1, 0,−1}n, and uses
as randomness a vector r ∈ {1, 0,−1}n, each containing exactly df + 1 posi-
tive entries and df negative ones. The encryption function outputs c = m +
[T∗h]r mod q.

• Decryption: On input ciphertext c ∈ Z
n
q , output (([T∗f]c) mod q) mod

p, where reduction modulo q and p produces vectors with coordinates in
[−q/2, +q/2] and [−p/2, p/2] respectively.

This completes the description of the NTRU cryptosystem, at least for
the main set of parameters proposed in [28]. Like GGH, no proof of security
supporting NTRU is known, and confidence in the security of the scheme
is gained primarily from the best currently known attacks. The strongest
attack to NTRU known to date was discovered by Howgrave-Graham [30],
who combined previous lattice-based attacks of Coppersmith and Shamir [13],
with a combinatorial attack due to Odlyzko (reported in [28–30]). Based on
Howgrave-Graham’s hybrid attack, NTRU Cryptosystems issued a collec-
tion of recommended parameter sets [28], some of which are reported in Ta-
ble 2.

Lattice-based Cryptography 171

Estimated Security (bits) n q df key size (bits)
80 257 210 77 2570
80 449 28 24 3592
256 797 210 84 7970
256 14303 28 26 114424

Table 2. Some recommended parameter sets for NTRU public key cryptosystem.
Security is expressed in “bits”, where k-bits of security roughly means that the best
known attack to NTRU requires at least an effort comparable to about 2k

NTRU

encryption operations. The parameter df is chosen in such a way to ensure the
probability of decryption errors (by honest users) is at most 2−k. See [28] for
details, and a wider range of parameter choices.

5.3 The Ajtai-Dwork cryptosystem and followup work

Following Ajtai’s discovery of lattice-based hash functions, Ajtai and Dwork
[5] constructed a public-key cryptosystem whose security is based on the worst-
case hardness of a lattice problem. Several improvements were given in subse-
quent works [22,68], mostly in terms of the security proof and simplifications
to the cryptosystem. In particular, the cryptosystem in [68] is quite simple
as it only involves modular operations on integers, though much longer ones
than those typically used in lattice-based cryptography.

Unlike the case of hash functions, the security of these cryptosystems is
based on the worst-case hardness of a special case of SVP known as unique-
SVP. Here, we are given a lattice whose shortest nonzero vector is shorter
by some factor γ than all other nonparallel lattice vectors, and our goal is
to find a shortest nonzero lattice vector. The hardness of this problem is not
understood as well as that of SVP, and it is a very interesting open question
whether one can base public-key cryptosystems on the (worst-case) hardness
of SVP.

The aforementioned lattice-based cryptosystems are unfortunately quite
inefficient. It turns out that when we base the security on lattices of dimension
n, the size of the public key is Õ(n4) and each encrypted bit gets blown up
to Õ(n2) bits. So if, for instance, we choose n to be several hundreds, the
public key size is on the order of several gigabytes, which clearly makes the
cryptosystem impractical.

Ajtai [4] also presented a more efficient cryptosystem whose public key
scales like Õ(n2) and in which each encrypted bit gets blown up to Õ(n)
bits. The size of the public key can be further reduced to Õ(n) if one can set
up a pre-agreed trusted random string of length Õ(n2). Unfortunately, the
security of this cryptosystem is not known to be as strong as that of other
lattice-based cryptosystems: it is based on a problem by Dirichlet, which is
not directly related to any standard lattice problem. Moreover, this system
has no worst-case hardness as the ones previously mentioned. Nevertheless,
the system does have the flavor of a lattice-based cryptosystem.

172 Daniele Micciancio and Oded Regev

5.4 The LWE-based cryptosystem

In this section we describe what is perhaps the most efficient lattice-based
cryptosystem to date supported by a theoretical proof of security. The first
version of the cryptosystem together with a security proof were presented by
Regev [70]. Some improvements in efficiency were suggested by Kawachi et
al. [32]. Then, some very significant improvements in efficiency were given
by Peikert et al. [64]. The cryptosystem we describe here is identical to the
one in [64] except for one additional optimization that we introduce (namely,
the parameter r). Another new optimization based on the use of the Hermite
Normal Form [50] is described separately at the end of the subsection. When
based on the hardness of lattice problems in dimension n, the cryptosystem
has a public key of size Õ(n2), requires Õ(n) bit operations per encrypted bit,
and expands each encrypted bit to O(1) bits. This is considerably better than
those proposals following the Ajtai-Dwork construction, but is still not ideal,
especially in terms of the public key size. We will discuss these issues in more
detail later, as well as the possibility of reducing the public key size by using
restricted classes of lattices such as cyclic lattices.

The cryptosystem was shown to be secure (under chosen plaintext attacks)
based on the conjectured hardness of the learning with errors problem (LWE),
which we define next. This problem is parameterized by integers n,m, q and
a probability distribution χ on Zq, typically taken to be a “rounded” normal
distribution. The input is a pair (A,v) where A ∈ Z

m×n
q is chosen uniformly,

and v is either chosen uniformly from Z
m
q or chosen to be As+e for a uniformly

chosen s ∈ Z
n
q and a vector e ∈ Z

m
q chosen according to χm. The goal is

to distinguish with some non-negligible probability between these two cases.
This problem can be equivalently described as a bounded distance decoding
problem in q-ary lattices: given a uniform A ∈ Z

m×n
q and a vector v ∈ Z

m
q

we need to distinguish between the case that v is chosen uniformly from Z
m
q

and the case in which v is chosen by perturbing each coordinate of a random
point in Λq(AT) using χ.

The LWE problem is believed to be very hard (for reasonable choices of
parameters), with the best known algorithms running in exponential time in
n (see [70]). Several other facts lend credence to the conjectured hardness of
LWE. First, the LWE problem can be seen as an extension of a well-known
problem in learning theory, known as the learning parity with noise problem,
which in itself is believed to be very hard. Second, LWE is closely related
to decoding problems in coding theory which are also believed to be very
hard. Finally, the LWE was shown to have a worst-case connection, as will
be discussed below. In Section 7 we will present several other cryptographic
constructions based on the LWE problem.

The worst-case connection:

A reduction from worst-case lattice problems such as approximate-SVP and
approximate-SIVP to LWE was established in [70], giving a strong indication

Lattice-based Cryptography 173

that the LWE problem is hard. This reduction, however, is a quantum reduc-
tion, i.e., the algorithm performing the reduction is a quantum algorithm.
What this means is that hardness of LWE (and hence the security of the
cryptosystem) is established based on the worst-case quantum hardness of
approximate-SVP. In other words, breaking the cryptosystem (or finding an
efficient algorithm for LWE) implies an efficient quantum algorithm for approx-
imating SVP, which, as discussed in Subsection 1.3, would be very surprising.
This security guarantee is incomparable to the one by Ajtai and Dwork: On
one hand, it is stronger as it is based on the general SVP and not the spe-
cial case of unique-SVP. On the other hand, it is weaker as it only implies a
quantum algorithm for lattice problems.

The reduction is described in detail in the following theorem, whose proof
forms the main bulk of [70]. For a real α > 0 we let Ψ̄α denote the distribution
on Zq obtained by sampling a normal variable with mean 0 and standard
deviation αq/

√
2π, rounding the result to the nearest integer and reducing it

modulo q.

Theorem 1 ([70]). Assume we have access to an oracle that solves the LWE
problem with parameters n,m, q, Ψ̄α where αq >

√
n, q ≤ poly(n) is prime,

and m ≤ poly(n). Then there exists a quantum algorithm running in time
poly(n) for solving the (worst-case) lattice problems SIVPÕ(n/α) and (the de-
cision variant of) SVPÕ(n/α) in any lattice of dimension n.

Notice that m plays almost no role in this reduction and can be taken
to be as large as one wishes (it is not difficult to see that the problem can
only become easier for larger m). It is possible that this reduction to LWE
will one day be “dequantized” (i.e., made non-quantum), leading to a stronger
security guarantee for LWE-based cryptosystems. Finally, let us emphasize
that quantum arguments show up only in the reduction to LWE — the LWE
problem itself, as well as all cryptosystems based on it are entirely classical.

The cryptosystem:

The cryptosystem is given in Algorithm 5.2, and is partly illustrated in Fig-
ure 3. It is parameterized by integers n,m, �, t, r, q, and a real α > 0. The
parameter n is in some sense the main security parameter, and it corresponds
to the dimension of the lattices that show up in the worst-case connection.
We will later discuss how to choose all other parameters in order to guarantee
security and efficiency. The message space is Z

�
t. We let f be the function

that maps the message space Z
�
t to Z

�
q by multiplying each coordinate by

q/t and rounding to the nearest integer. We also define an “inverse” mapping
f−1 which takes an element of Z

�
q and outputs the element of Z

�
t obtained by

dividing each coordinate by q/t and rounding to the nearest integer.

174 Daniele Micciancio and Oded Regev

Algorithm 5.2 The LWE-based public key cryptosystem.
• Parameters: Integers n, m, 	, t, r, q, and a real α > 0.
• Private key: Choose S ∈ Z

n×�
q uniformly at random. The private key is S.

• Public key: Choose A ∈ Z
m×n
q uniformly at random and E ∈ Z

m×�
q by choosing

each entry according to Ψ̄α. The public key is (A,P = AS+E) ∈ Z
m×n
q ×Z

m×�
q .

• Encryption: Given an element of the message space v ∈ Z
�
t, and a public key

(A,P), choose a vector a ∈ {−r,−r + 1, . . . , r}m uniformly at random, and
output the ciphertext (u = AT a, c = PT a + f(v)) ∈ Z

n
q × Z

�
q.

• Decryption: Given a ciphertext (u, c) ∈ Z
n
q × Z

�
q and a private key S ∈ Z

n×�
q ,

output f−1(c − ST u).

A PS

cu

amn

Fig. 3. Ingredients in the LWE-based cryptosystem.

Choosing the parameters

The choice of parameters is meant to guarantee efficiency, a low probability
of decryption errors, and security. We now discuss these issues in detail.

Efficiency:

The cryptosystem is clearly very easy to implement, as it involves nothing but
additions and multiplications modulo q. Some improvement in running time
can be obtained by setting t to be a power of two (which simplifies the task
of converting an input message into an element of the message space), and
by postponing the modular reduction operations (assuming, of course, that
registers are large enough so that no overflow occurs). Moreover, high levels
of parallelization are easy to obtain.

In the following we list some properties of the cryptosystem, all of which
are easy to observe. All sizes are in bits, logarithms are base 2, and the Õ(·)
notation hides logarithmic factors.

• Private key size: n� log q
• Public key size: m(n + �) log q
• Message size: � log t
• Ciphertext size: (n + �) log q

Lattice-based Cryptography 175

• Encryption blowup factor: (1 + n
�) log q/ log t

• Operations for encryption per bit: Õ(m(1 + n
�))

• Operations for decryption per bit: Õ(n)

Decryption errors:

The cryptosystem has some positive probability of decryption errors. This
probability can be made very small with an appropriate setting of parameters.
Moreover, if an error correcting code is used to encode the messages before
encryption, this error probability can be reduced to undetectable levels.

We now estimate the probability of a decryption error in one letter, i.e.,
an element of Zt (recall that each message consists of � letters). Assume we
choose a private key S, public key (A,P), encrypt some message v and then
decrypt it. The result is given by

f−1(c− ST u) = f−1(PT a + f(v)− ST AT a)

= f−1((AS + E)T a + f(v)− ST AT a)

= f−1(ET a + f(v)).

Hence, in order for a letter decryption error to occur, say in the first letter,
the first coordinate of ET a must be greater than q/(2t) in absolute value.
Fixing the vector a and ignoring the rounding, the distribution of the first co-
ordinate of ET a is a normal distribution with mean 0 and standard deviation
αq‖a‖/

√
2π since the sum of independent normal variables is still a normal

variable with the variance begin the sum of variances. Now the norm of a can
be seen to be with very high probability close to

‖a‖ ≈
√

r(r + 1)m/3.

To see this, recall that each coordinate of a is distributed uniformly on
{−r, . . . , r}. Hence, the expectation squared of each coordinate is

1
2r + 1

r∑
k=−r

k2 =
r(r + 1)

3

from which it follows that ‖a‖2 is tightly concentrated around r(r + 1)m/3.
The error probability per letter can now be estimated by the probability that

a normal variable with mean 0 and standard deviation αq
√

r(r + 1)m/(6π) is
greater in absolute value than q/(2t), or equivalently,

error probability per letter ≈ 2

(
1− Φ

(
1

2tα
·
√

6π

r(r + 1)m

))
(8)

where Φ here is the cumulative distribution function of the standard normal
distribution. For most reasonable choices of parameters, this estimate is in
fact very close to the true error probability.

176 Daniele Micciancio and Oded Regev

Security:

The proof of security, as given in [70] and [64], consists of two main parts.
In the first part, one shows that distinguishing between public keys (A,P) as
generated by the cryptosystem and pairs (A,P) chosen uniformly at random
from Z

m×n
q × Z

m×�
q implies a solution to the LWE problem with parameters

n,m, q, Ψ̄α. Hence if we set n,m, q, α to values for which we believe LWE
is hard, we obtain that the public keys generated by the cryptosystem are
indistinguishable from pairs chosen uniformly at random. The second part
consists of showing that if one tries to encrypt with a public key (A,P) chosen
at random, then with very high probability, the result carries essentially no
statistical information about the encrypted message (this is what [64] refer
to as “messy keys”). Together, these two parts establish the security of the
cryptosystem (under chosen plaintext attacks). The argument is roughly the
following: due to the second part, being able to break the system, even with
some small non-negligible probability, implies the ability to distinguish valid
public keys from uniform pairs, but this task is hard due to the first part.

In order to guarantee security, our choice of parameters has to be such
that the two properties above are satisfied. Let us start with the second one.
Our goal is to guarantee that when (A,P) is chosen uniformly, the encryptions
carry no information about the message. For this, it would suffice to guarantee
that (AT a,PT a) ∈ Z

n
q × Z

�
q is essentially uniformly distributed (since in this

case the shift by f(v) is essentially unnoticeable). By following an argument
similar to the one in [64,70], one can show that a sufficient condition for this
is that the number of possibilities for a is much larger than the number of
elements in our range, i.e.,

(2r + 1)m " qn+�. (9)

More precisely, the statistical distance from the uniform distribution is upper
bounded by the square root of the ratio between the two quantities, and hence
the latter should be negligible, say 2−100.

We now turn to the first property. Our goal is to choose n,m, q, α so that
the LWE problem is hard. One guiding principle we can use is the worst-case
connection, as described in Theorem 1. This suggest that the choice of m
is inconsequential, that q should be prime, that αq should be bigger than√

n, and that α should be as big as possible (as it leads to harder worst-case
problems). Unfortunately, the worst-case connection does not seem to provide
hints on actual security for any concrete choice of parameters. For this, one
has to take into account experiments on the hardness of LWE, as we discuss
next.

In order to estimate the hardness of LWE for a concrete set of parameters,
recall that the LWE can be seen as a certain bounded distance decoding prob-
lem on q-ary lattices. Namely, we are given a point v that is either close to
Λq(AT) (with the perturbation in each coordinate chosen according to Ψ̄α) or

Lattice-based Cryptography 177

uniform. One natural approach to try to distinguish between these two cases
is to find a short vector w in the dual lattice Λq(AT)∗ and check the inner
product 〈v,w〉: if v is close to the lattice, this inner product will tend to be
close to an integer. This method is effective as long as the perturbation in the
direction of w is not much bigger than 1/‖w‖. Since our perturbation is (es-
sentially) Gaussian, its standard deviation in any direction (and in particular
in the direction of w) is αq/

√
2π. Therefore, in order to guarantee security,

we need to ensure that
αq/
√

2π " 1/‖w‖.
A factor of 1.5 between the two sides of the inequality is sufficient to guarantee
that the observed distribution of 〈v,w〉 mod 1 is within negligible statistical
distance of uniform.

Using the results of Section 3, we can predict that the shortest vector
found by the best known lattice reduction algorithms when applied to the
lattice Λq(AT)∗ = 1

q Λ⊥
q (AT) is of length

‖w‖ ≈ 1
q
·min{q, 22

√
n log q log δ}

and that in order to arrive at such a vector (assuming the minimum is achieved
by the second term) one needs to apply lattice reduction to lattices of dimen-
sion

√
n log q/ log δ. (10)

We therefore obtain the requirement

α ≥ 1.5
√

2π max
{1

q
, 2−2

√
n log q log δ

}
. (11)

The parameter m again seems to play only a minor role in the practical
security of the system.

Choice of parameters:

By taking the above discussion into account, we can now finally give some
concrete choices of parameters that seem to guarantee both security and ef-
ficiency. To recall, the system has seven parameters, n, �, q, r, t,m and α. In
order to guarantee security, we need to satisfy Eqs. (9) and (11). To obtain
the former, we set

m = ((n + �) log q + 200)/ log(2r + 1).

Next, following Eq. (11), we set

α = 4 ·max
{1

q
, 2−2
√

n log q log(1.01)
}

.

178 Daniele Micciancio and Oded Regev

Our choice of δ = 1.01 seems reasonable for the lattice dimensions with which
we are dealing here; one can also consider more conservative choices like δ =
1.005.

We are thus left with five parameters, n, �, q, r, and t. We will choose them
in an attempt to optimize the following measures.

• Public key size: m(n + �) log q
• Encryption blowup factor: (1 + n

�) log q/ log t
• Error probability per letter:

2

(
1− Φ

(
1

2tα
·
√

6π

r(r + 1)m

))

• Lattice dimension involved in best known attack:
√

n log q/ log(1.01)

As a next step, notice that � should not be much smaller than n as this makes
the encryption blowup factor very large. For concreteness we choose � = n,
which gives a fair balance between the encryption blowup factor and the public
key size. Denoting N = n log q, we are thus left with the following measures.

• Public key size: 2N(2N + 200)/ log(2r + 1)
• Encryption blowup factor: 2 log q/ log t
• Error probability per letter:

2

(
1− Φ

(
1
8t

min{q, 22
√

N log(1.01)} ·
√

6π

r(r + 1)(2N + 200)/ log(2r + 1)

))

• Lattice dimension involved in best known attack:
√

N/ log(1.01)

Finally, once we fix N = n log q, we should choose q as small as possible and
r and t as large as possible while still keeping the error probability within the
desired range.

Some examples are given in Table 3. In all examples we took � = n, and
tried to minimize either the public key size or the encryption blowup factor
while keeping the error probability below 1%. To recall, this error probability
can be made negligible by using an error correcting code. The public key size
can be decreased by up to a factor of 2 by choosing a smaller � (at the expense
of higher encryption blowup).

Further optimizations:

If all users of the system have access to a trusted source of random bits,
they can use it to agree on a random matrix A ∈ Z

m×n
q . This allows us to

include only P in the public key, thereby reducing its size to m� log q, which is

Lattice-based Cryptography 179

n 136 166 192 214 233 233
	 136 166 192 214 233 233
m 2008 1319 1500 1333 1042 4536
q 2003 4093 8191 16381 32749 32749
r 1 4 5 12 59 1
t 2 2 4 4 2 40
α 0.0065 0.0024 0.0009959 0.00045 0.000217 0.000217

PKS 6 × 106 5.25 × 106 7.5 × 106 8 × 106 7.3 × 106 31.7 × 106

EBF 21.9 24 13 14 30 5.6

EPL 0.9% 0.56% 1% 0.8% 0.9% 0.9%

LDA 322 372 417 457 493 493

Table 3. Some possible choices of parameters using δ = 1.01. PKS is the public key
size, EBF is the encryption blowup factor, EPL is the error probability per letter,
and LDA is the lattice dimension involved in best known attack.

Õ(n) if � is chosen to be constant and m = Õ(n). This observation, originally
due to Ajtai [4], crucially relies on the source of random bits being trusted,
since otherwise it might contain a trapdoor (see [18]). Moreover, as already
observed, choosing small � results in large ciphertext blowup factors. If � is set
to O(n) in order to achieve constant encryption blowup, then the public key
will have size at least Õ(n2) even if a common random matrix is used for A.

Another possible optimization results from the HNF technique of [50] al-
ready discussed in the context of the GGH cryptosystem. The improvement
it gives is quantitatively modest: it allows to shrink the public key size and
encryption times by a factor of (1 − n/m). Still, the improvement comes at
absolutely no cost, so it seems well worth adopting in any implementation of
the system. Recall that the public key consists of a public lattice Λq(AT) rep-
resented by a matrix A ∈ Z

m×n
q , and a collection AS+E mod q of perturbed

lattice vectors Asi ∈ Λq(AT). As in the HNF modification of the GGH cryp-
tosystem, cryptanalysis only gets harder if we describe the public lattice by
its lower triangular HNF basis, and the perturbed lattice vectors are replaced
by the result of reducing the error vectors (i.e., the columns of E) by such a
basis.

In more detail, let A ∈ Z
m×n
q be chosen uniformly as before. For simplicity,

assume A has full rank (which happens with probability exponentially close
to 1), and that its first n rows are linearly independent over Zq (which can
be obtained by permuting its rows). Under these conditions, the q-ary lattice
Λq(AT) has a very simple HNF basis of the form

H =
[

I O
A′ qI

]

where A′ ∈ Z
(m−n)×n
q . Let E be an error matrix chosen as before, and write

it as E = (E′′,E′) where E′′ ∈ Z
n×�
q and E′ ∈ Z

(m−n)×�
q . Reducing the

columns of E modulo the HNF public basis H yields vectors (O,P′) where

180 Daniele Micciancio and Oded Regev

P′ = E′ − A′E′′ ∈ Z
(m−n)×�
q . The public key consists of (I,A′) ∈ Z

m×n
q

and (O,P′) ∈ Z
m×�
q . Since I and O are fixed matrices, only A′ and P′ need

to be stored as part of the public key, reducing the public key bit-size to
(m − n)(n + �) log q. Encryption proceeds as before, i.e., the ciphertext is
given by

(u, c) = (a′′ + (A′)T a′, (P′)T a′ + f(v))

where a = (a′′,a′). Notice that the secret matrix S used by the original LWE
cryptosystem has disappeared. The matrix E′′ ∈ Z

n×�
q is used instead for

decryption. Given ciphertext (u, c), the decrypter outputs f−1(c + (E′′)T u).
Notice that the vector c+(E′′)T u still equals (ET a)+f(v), so decryption will
succeed with exactly the same probability as the original LWE cryptosystem.
The security of the system can be established by a reduction from the security
of the original cryptosystem. To conclude, this modification allows us to shrink
the public key size and encryption time by a factor of (1− n/m) at no cost.

6 Digital Signature Schemes

Digital signature schemes are among the most important cryptographic prim-
itives. From a theoretical point of view, signature schemes can be constructed
from one-way functions in a black-box way without any further assump-
tions [56]. Therefore, by using the one-way functions described in Section 4
we can obtain signature schemes based on the worst-case hardness of lat-
tice problems. These black-box constructions, however, incur a large overhead
and are impractical. In this section we survey some proposals for signature
schemes that are directly based on lattice problems, and are typically much
more efficient.

The earliest proposal for a lattice-based signature scheme was given by Gol-
dreich et al. [19], and is based on ideas similar to those in their cryptosystem
described in Subsection 5.1. In 2003, the company NTRU Cryptosystems

proposed an efficient signature scheme called NTRUSign [26]. This signature
scheme can be seen as an optimized instantiation of the GGH scheme, based
on the NTRU lattices. Unfortunately, both schemes (in their basic version)
can be broken in a strong asymptotic sense. We remark that neither scheme
came with a security proof, which explains the serious security flaws which we
will describe later.

The first construction of efficient signature schemes with a supporting
proof of security (in the random oracle model) was suggested by Micciancio
and Vadhan [55], who gave statistical zero knowledge proof systems for vari-
ous lattice problems, and observed that such proof systems can be converted
in a relatively efficient way first into secure identification schemes, and then
(via the Fiat-Shamir heuristic) into a signature scheme in the random oracle
model. More efficient schemes were recently proposed by Lyubashevsky and
Micciancio [43], and by Gentry, Peikert and Vaikuntanathan [18]. Interest-
ingly, the latter scheme can be seen as a theoretically justified variant of the

Lattice-based Cryptography 181

GGH and NTRUSign signature schemes, with worst-case security guarantees
based on general lattices in the random oracle model. The scheme of Lyuba-
shevsky and Micciancio [43] has worst-case security guarantees based on ideal
lattices similar to those considered in the construction of hash functions (see
Section 4), and it is the most (asymptotically) efficient construction known
to date, yielding signature generation and verification algorithms that run in
almost linear time. Moreover, the security of [43] does not rely on the random
oracle model.

In the rest of this section we describe the GGH and NTRUSign signature
schemes, and the security flaw in their design, the theoretically justified variant
of their scheme proposed by Gentry et al., and finally the signature scheme of
Lyubashevsky and Micciancio, which is currently the most efficient (lattice-
based) signature scheme with a supporting proof of security, at least in an
asymptotic sense.

Lattice-based digital signature schemes have not yet reached the same level
of maturity as the collision resistant hash functions and public key encryption
schemes presented in the previous sections. So, in this section we present the
schemes only informally, and refer the reader to the original papers (and any
relevant literature appearing after the time of this writing) for details.

6.1 The GGH and NTRUSign signature schemes

We now briefly describe the GGH signature scheme; for a description of
NTRUSign, see [26]. The private and public keys are chosen as in the GGH
encryption scheme. That is, the private key is a lattice basis B consisting of
short and fairly orthogonal vectors. The public key H is a “bad” basis for the
same lattice L(B), i.e., a basis consisting of fairly long and far from orthogo-
nal vectors. As before, it is best to choose H to be the Hermite normal form
of B.

To sign a given message, we first map it to a point m ∈ R
n using some hash

function. We assume that the hash function behaves like a random oracle, so
that m is distributed uniformly (in some large volume of space). Next, we
round m to a nearby lattice point s ∈ L(B) by using the secret basis. This is
typically done using Babai’s round-off procedure [8], which gives

s = B�B−1m�.

Notice that by definition, this implies that

s−m ∈ P1/2(B) = {Bx : x ∈ [−1/2, 1/2]n}.

In order to verify a given message-signature pair (m, s), one checks that
s ∈ L(H) = L(B) (which can be done efficiently using the public key H)
and that the distance ‖s −m‖ is small (which should be the case since this
difference is contained in P1/2(B)).

182 Daniele Micciancio and Oded Regev

Attacks:

Some early indications that the GGH and NTRUSign signature schemes
might be insecure were given by Gentry and Szydlo [17,76] who observed that
each signature leaks some information on the secret key. This information
leakage does not necessarily prove that such schemes are insecure, since it
might be computationally difficult to use this information. However, as was
demonstrated by Nguyen and Regev a few years later [59], this information
leakage does lead to an attack on the scheme. More precisely, they have shown
that given enough message-signature pairs, it is possible to recover the private
key. Moreover, their attack is quite efficient, and was implemented and applied
in [59] to most reasonable choices of parameters in GGH and NTRUSign,
thereby establishing that these signature schemes are not secure in practice
(but see below for the use of “perturbations” in NTRUSign).

The idea behind the information leakage and the attack is in fact quite
simple. The basic observation is that the difference m − s obtained from a
message-signature pair (m, s) is distributed essentially uniformly in P1/2(B).
Hence, given enough such pairs, we end up with the following algorithmic
problem, called the hidden parallelepiped problem (see Fig. 4): given many
random points uniformly distributed over an unknown n-dimensional paral-
lelepiped, recover the parallelepiped or an approximation thereof. An efficient
solution to this problem implies the attack mentioned above.

In the two-dimensional case shown in Fig. 4, one immediately sees the
parallelepiped enveloping the points, and it is not difficult to come up with an
algorithm that implements this. But what about the high-dimensional case?
High dimensional problems are often very hard. Here, however, the problem
turns out to be easy. The algorithm used in [59] applies a gradient decent
method to solve a multivariate optimization problem based on the fourth-
moment of the one-dimensional projections. See [59] for further details (as well
as for an interesting historical account of the hidden parallelepiped problem).

Countermeasures:

The most efficient countermeasures known against the above attack are per-
turbation techniques [26, 27]. These modify the signature generation process
in such a way that the hidden parallelepiped is replaced by a considerably
more complicated body, and this seems to prevent attacks of the type de-
scribed above. The main drawback of perturbations is that they slow down
signature generation and increase the size of the secret key. Nevertheless, the
NTRUSign signature scheme with perturbation is still relatively efficient.
Finally, notice that even with perturbations, NTRUSign does not have any
security proof.

6.2 Schemes based on preimage sampleable trapdoor functions

In a recent paper, Gentry, Peikert, and Vaikuntanathan [18] defined an ab-
straction called “preimage sampleable trapdoor functions”, and showed how

Lattice-based Cryptography 183

Fig. 4. The hidden parallelepiped problem in two dimensions.

to instantiate it based on the worst-case hardness of lattice problems. They
then showed that this abstraction is quite powerful: it can be used instead of
trapdoor permutations in several known constructions of signature schemes in
the random oracle model. This leads to relatively efficient signature schemes
that are provably secure (in the random oracle model) based on the worst-case
hardness of lattice problems.

One particularly interesting feature of their construction is that it can be
seen as a provably secure variant of the (insecure) GGH scheme. Compared
to the GGH scheme, their construction differs in two main aspects. First, it
is based on lattices chosen from a distribution that enjoys a worst-case con-
nection (the lattices in GGH and NTRU are believed to be hard, but not
known to have a worst-case connection). A second and crucial difference is
that their signing algorithm is designed so that it does not reveal any infor-
mation about the secret basis. This is achieved by replacing Babai’s round-off
procedure with a “Gaussian sampling procedure”, originally due to Klein [35],
whose distinctive feature is that its output distribution, for the range of pa-
rameters considered in [18], is essentially independent of the secret basis used.
The effect of this on the attack outlined above is that instead of observing
points chosen uniformly from the parallelepiped generated by the secret basis,
the attack observes points chosen from a spherically symmetric Gaussian dis-
tribution, and therefore learns nothing about the secret basis. The Gaussian
sampling procedure is quite useful, and has already led to the development of
several other lattice-based constructions, as will be mentioned in Section 7.

As most schemes based on general lattices, the signatures of [18] have
quadratic complexity both in terms of key size and signing and verification
times. It should be remarked that although most of the techniques from [18]
apply to any lattice, it is not clear how to obtain substantially more efficient
instantiations of their signatures using structured lattices (e.g., NTRU lat-
tices, or the cyclic/ideal lattices used in the construction of hash functions).

184 Daniele Micciancio and Oded Regev

For example, even when instantiated with NTRU lattices, the running time
of the signing algorithm seems to remain quadratic in the security parameter
because of the expensive sampling procedure.

6.3 Schemes based on collision resistant hash functions

Finally, in [43], Lyubashevsky and Micciancio gave a signature scheme which
is seemingly optimal on all fronts, at least asymptotically: it admits a proof
of security based on worst-case complexity assumptions, the proof of security
holds in the standard computational model (no need for random oracles), and
the scheme is asymptotically efficient, with key size and signing/verification
times all almost linear in the dimension of the underlying lattice. The lattice
assumption underlying this scheme is that no algorithm can approximate SVP
to within polynomial factors in all ideal lattices, i.e., lattices that are closed
under some linear transformation F of the kind considered in Section 4.

The scheme makes use of a new hash-based one-time signature scheme,
i.e., a signature scheme that allows to securely sign a single message. Such
schemes can be transformed into full-fledged signature schemes using stan-
dard tree constructions (dating back to [24,56]), with only a logarithmic loss
in efficiency. The one-time signature scheme, in turn, is based on a collision re-
sistant hash function based on ideal lattices, of the kind discussed in Section 4.
The hash function h can be selected during the key generation process, or be a
fixed global parameter. The assumption is that finding collisions in h is com-
putationally hard. The input to h can be interpreted as a sequence of vectors
y1, . . . ,ym/n ∈ Z

n
q with small coordinates. The secret key to the hash function

is a pair of randomly chosen inputs x1, . . . ,xm/n ∈ Z
n
q and y1, . . . ,ym/n ∈ Z

n
q ,

each chosen according to an appropriate distribution that generates short vec-
tors with high probability.3 The public key is given by the images of these two
inputs under the hash function X = h(x1, . . . ,xm/n), Y = h(y1, . . . ,ym/n).
Messages to be signed are represented by short vectors m ∈ Z

n
q . The signature

of a message m is simply computed as

σ = (σ1, . . . , σm/n) = ([F∗m]x1 + y1, . . . , [F∗m]xm/n + ym/n) mod q.

The signature is verified by checking that σ is a sequence of short vectors that
hashes to [F∗m]X + Y mod q.

The security of the scheme relies on the fact that even after seeing a
signature, the exact value of the secret key is still information theoretically
concealed from the adversary. Therefore, if the adversary manages to come
up with a forged signature, it is likely to be different from the one that the
legitimate signer can compute using the secret key. Since the forged signature
and legitimate signature hash to the same value, they provide a collision in
the hash function.
3 For technical reasons, the input vectors cannot be chosen simply uniformly at

random from a set of short vectors without invalidating the proof.

Lattice-based Cryptography 185

7 Other Cryptographic Primitives

In this section we briefly survey lattice-based constructions of other cryp-
tographic primitives. Previous constructions of these primitives were based
on (sometimes non-standard) number theoretic assumptions. Since all these
constructions are very recent, we will not provide too many details.

CCA-secure cryptosystems:

All the cryptosystems mentioned in Section 5 are secure only under chosen
plaintext attacks (CPA), and not under chosen ciphertext attacks (CCA).
Indeed, it is not difficult to see that given access to the decryption oracle, one
can recover the private key. For certain applications, security against CCA
attacks is necessary.

CCA-secure cryptosystems are typically constructed based on specific
number theoretic assumptions (or in the random oracle model) and no gen-
eral constructions in the standard model were known till very recently. In a
recent breakthrough, Peikert and Waters [65] showed for the first time how to
construct CCA-secure cryptosystems based on a general primitive which they
call lossy trapdoor functions. They also showed how to construct this primitive
based either on traditional number theoretic assumptions or on the LWE prob-
lem. The latter result is particularly important as it gives for the first time
a CCA-secure cryptosystem based on the worst-case (quantum) hardness of
lattice problems.

IBE:

Gentry et al. [18] have recently constructed identity based encryption (IBE)
schemes based on LWE. Generally speaking, IBE schemes are difficult to con-
struct and only a few other proposals are known; the fact that IBE schemes
can be based on the LWE problem (and hence on the worst-case quantum
hardness of lattice problems) is therefore quite remarkable.

OT protocols:

In another recent work, Peikert, Vaikuntanathan, and Waters [64] provide a
construction of an oblivious transfer (OT) protocol that is both universally
composable and relatively efficient. Their construction can be based on a
variety of cryptographic assumptions, and in particular on the LWE problem
(and hence on the worst-case quantum hardness of lattice problems). Such
protocols are often used in secure multiparty computation.

Zero-Knowledge proofs and ID schemes:

Various zero-knowledge proof systems and identification schemes were recently
discovered. Interactive statistical zero-knowledge proof systems for various lat-
tice problems (including approximate SVP) were already given by Micciancio

186 Daniele Micciancio and Oded Regev

and Vadhan in [55]. In [63], Peikert and Vaikuntanathan gave non-interactive
statistical zero-knowledge proof systems for approximate SIVP and other lat-
tice problems. Zero-knowledge proof systems are potentially useful building
blocks both in the context of key registration in a public-key infrastructure
(PKI), and in the construction of identification (ID) protocols. Finally, more
efficient identification protocols (than those obtainable from zero-knowledge)
were recently discovered by Lyubashevsky [44]. Remarkably, the proof systems
of [44] are not zero-knowledge, and still they achieve secure identification un-
der active attacks using an interesting aborting technique.

8 Open Questions

• Cryptanalysis: The experiments of [16] are very useful to gain some
insight into the concrete hardness of lattice problems for specific values
of the lattice dimension, as needed by lattice-based cryptography. But
more work is still needed to increase our confidence and understanding,
and in order to support widespread use of lattice-based cryptography. An
interesting recent effort in this direction is the “Lattice Challenge” web
page created by Lindner and Rückert [10, 40], containing a collection of
randomly chosen lattices in increasing dimension for which finding short
vectors is apparently hard.

• Improved cryptosystems: The LWE-based cryptosystem described in
Section 5.4 is reasonably efficient and has a security proof based on a
worst-case connection. Still, one might hope to considerably improve the
efficiency, and in particular the public key size, by using structured lattices
such as cyclic lattices. Another desirable improvement is to obtain a classi-
cal (i.e., non-quantum) worst-case connection. Finally, obtaining practical
CCA-secure cryptosystems in the standard model is another important
open question.

• Comparison with number theoretic cryptography: Can one fac-
tor integers or compute discrete logarithms using an oracle that solves,
say,

√
n-approximate SVP? Such a result would prove that the security

of lattice-based cryptosystems is superior to that of traditional number-
theoretic-based cryptosystems (see [1, 74] for related work).

Acknowledgements

We thank Phong Nguyen and Markus Rückert for helpful discussions on the
practical security of lattice-based cryptography. We also thank Richard Lind-
ner, Vadim Lyubashevsky, and Chris Peikert for comments on an earlier ver-
sion.

Lattice-based Cryptography 187

References

1. Adleman, L.M.: Factoring and lattice reduction (1995). Unpublished
manuscript.

2. Aharonov, D. and Regev, O.: Lattice problems in NP intersect coNP. Journal
of the ACM, 52(5):749–765 (2005). Preliminary version in FOCS 2004.

3. Ajtai, M.: The shortest vector problem in l2 is NP-hard for randomized re-
ductions (extended abstract) 10-19. In Proc. 30th ACM Symp. on Theory of
Computing (STOC), pages 10–19. ACM (1998).

4. Ajtai, M.: Representing hard lattices with O(n log n) bits. In Proc. 37th Annual
ACM Symp. on Theory of Computing (STOC) (2005).

5. Ajtai, M. and Dwork, C.: A public-key cryptosystem with worst-case/average-
case equivalence. In Proc. 29th Annual ACM Symp. on Theory of Computing
(STOC), pages 284–293 (1997).

6. Ajtai, M., Kumar, R., and Sivakumar, D.: A sieve algorithm for the shortest
lattice vector problem. In Proc. 33rd ACM Symp. on Theory of Computing,
pages 601–610 (2001).

7. Ajtai, M.: Generating hard instances of lattice problems. In Complexity of
computations and proofs, volume 13 of Quad. Mat., pages 1–32. Dept. Math.,
Seconda Univ. Napoli, Caserta (2004). Preliminary version in STOC 1996.

8. Babai, L.: On Lovász lattice reduction and the nearest lattice point problem.
Combinatorica, 6:1–13 (1986).

9. Blum, A., Kalai, A., and Wasserman, H.: Noise-tolerant learning, the parity
problem, and the statistical query model. Journal of the ACM, 50(4):506–519
(2003). Preliminary version in STOC’00.

10. Buchmann, J., Lindner, R., and Rückert, M.: Creating a lattice challenge (2008).
Manuscript.

11. Cai, J.Y. and Nerurkar, A.: An improved worst-case to average-case connection
for lattice problems. In Proc. 38th IEEE Symp. on Found. of Comp. Science,
pages 468–477 (1997).

12. Cai, J.Y. and Nerurkar, A.: Approximating the SVP to within a factor (1 +
1/ dimε) is NP-hard under randomized reductions. J. Comput. System Sci.,
59(2):221–239 (1999). ISSN 0022-0000.

13. Coppersmith, D. and Shamir, A.: Lattice attacks on NTRU. In Proc. of Euro-
crypt ’97, volume 1233 of LNCS. IACR, Springer (1997).

14. Dinur, I., Kindler, G., Raz, R., and Safra, S.: Approximating CVP to within
almost-polynomial factors is NP-hard. Combinatorica, 23(2):205–243 (2003).

15. Gama, N. and Nguyen, P.Q.: Finding short lattice vectors within Mordell’s
inequality. In Proc. 40th ACM Symp. on Theory of Computing (STOC), pages
207–216 (2008).

16. Gama, N. and Nguyen, P.Q.: Predicting lattice reduction. In Advances in
Cryptology – Proc. Eurocrypt ’08, Lecture Notes in Computer Science. Springer
(2008).

17. Gentry, C. and Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme.
In Proc. of Eurocrypt ’02, volume 2332 of LNCS. Springer-Verlag (2002).

18. Gentry, C., Peikert, C., and Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In Proc. 40th ACM Symp. on Theory of
Computing (STOC), pages 197–206 (2008).

188 Daniele Micciancio and Oded Regev

19. Goldreich, O., Goldwasser, S., and Halevi, S.: Public-key cryptosystems from
lattice reduction problems. In Advances in cryptology, volume 1294 of Lecture
Notes in Comput. Sci., pages 112–131. Springer (1997).

20. Goldreich, O. and Goldwasser, S.: On the limits of nonapproximability of lattice
problems. Journal of Computer and System Sciences, 60(3):540–563 (2000).
Preliminary version in STOC 1998.

21. Goldreich, O., Goldwasser, S., and Halevi, S.: Collision-free hashing from lattice
problems. Technical Report TR96-056, Electronic Colloquium on Computa-
tional Complexity (ECCC) (1996).

22. Goldreich, O., Goldwasser, S., and Halevi, S.: Eliminating decryption errors
in the Ajtai-Dwork cryptosystem. In Advances in cryptology, volume 1294 of
Lecture Notes in Comput. Sci., pages 105–111. Springer (1997).

23. Goldwasser, S. and Micali, S.: Probabilistic encryption. Journal of Computer
and System Sience, 28(2):270–299 (1984). Preliminary version in Proc. of STOC
1982.

24. Goldwasser, S., Micali, S., and Rivest, R.L.: A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. on Computing, 17(2):281–308
(1987).

25. Haviv, I. and Regev, O.: Tensor-based hardness of the shortest vector problem
to within almost polynomial factors. In Proc. 39th ACM Symp. on Theory of
Computing (STOC), pages 469–477 (2007).

26. Hoffstein, J., Graham, N.A.H., Pipher, J., Silverman, J.H., and Whyte, W.:
NTRUSIGN: Digital signatures using the NTRU lattice. In Proc. of CT-RSA,
volume 2612 of Lecture Notes in Comput. Sci., pages 122–140. Springer-Verlag
(2003).

27. Hoffstein, J., Graham, N.A.H., Pipher, J., Silverman, J.H., and Whyte, W.:
Performances improvements and a baseline parameter generation algorithm for
NTRUsign. In Proc. of Workshop on Mathematical Problems and Techniques in
Cryptology, pages 99–126. CRM (2005).

28. Hoffstein, J., Howgrave-Graham, N., Pipher, J., and Silverman, J.H.: Hybrid lat-
tice reduction and meet in the middle resistant parameter selection for NTRU-
Encrypt. Submission/contribution to ieee p1363.1, NTRU Cryptosystems, Inc.,
URL http://grouper.ieee.org/groups/1363/lattPK/submissions.html#2007-02
(2007).

29. Hoffstein, J., Pipher, J., and Silverman, J.H.: NTRU: a ring based public key
cryptosystem. In Proceedings of ANTS-III, volume 1423 of LNCS, pages 267–
288. Springer (1998).

30. Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle at-
tack against NTRU. In Advances in cryptology (CRYPTO), pages 150–169
(2007).

31. Kannan, R.: Improved algorithms for integer programming and related lattice
problems. In Proc. 15th ACM Symp. on Theory of Computing (STOC), pages
193–206. ACM (1983).

32. Kawachi, A., Tanaka, K., and Xagawa, K.: Multi-bit cryptosystems based on
lattice problems. In Public Key Cryptography – PKC 2007, volume 4450 of
Lecture Notes in Comput. Sci., pages 315–329. Springer, Berlin (2007).

33. Khot, S.: Hardness of approximating the shortest vector problem in lattices. In
Proc. 45th Annual IEEE Symp. on Foundations of Computer Science (FOCS),
pages 126–135 (2004).

Lattice-based Cryptography 189

34. Khot, S.: Inapproximability results for computational problems on lattices
(2007). Survey paper prepared for the LLL+25 conference. To appear.

35. Klein, P.: Finding the closest lattice vector when it’s unusually close. In Proc.
11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 937–941
(2000).

36. Kumar, R. and Sivakumar, D.: Complexity of SVP – a reader’s digest. SIGACT
News, 32(3):40–52 (2001). doi:http://doi.acm.org/10.1145/582475.582484.

37. Lagarias, J.C., Lenstra, Jr., H.W., and Schnorr, C.P.: Korkin-Zolotarev bases
and successive minima of a lattice and its reciprocal lattice. Combinatorica,
10(4):333–348 (1990).

38. Lenstra, A.K. and Lenstra, Jr., H.W., editors: The development of the number
field sieve, volume 1554 of Lecture Notes in Mathematics. Springer-Verlag, Berlin
(1993). ISBN 3-540-57013-6.

39. Lenstra, A.K., Lenstra, Jr., H.W., and Lovász, L.: Factoring polynomials with
rational coefficients. Math. Ann., 261(4):515–534 (1982).

40. Lindner, R. and Rückert, M.: The lattice challence (2008). Available at
http://www.latticechallenge.org/.

41. Ludwig, C.: A faster lattice reduction method using quantum search. In ISAAC,
pages 199–208 (2003).

42. Lyubashevsky, V. and Micciancio, D.: Generalized compact knapsacks are col-
lision resistant. In 33rd International Colloquium on Automata, Languages and
Programming (ICALP) (2006).

43. Lyubashevsky, V. and Micciancio, D.: Asymptotically efficient lattice-based dig-
ital signatures. In Fifth Theory of Cryptography Conference (TCC), volume 4948
of Lecture Notes in Computer Science. Springer (2008).

44. Lyubashevsky, V.: Lattice-based identification schemes secure under active at-
tacks. In PKC’08, number 4939 in LNCS, pages 162–179 (2008).

45. Lyubashevsky, V., Micciancio, D., Peikert, C., and Rosen, A.: SWIFFT: a mod-
est proposal for FFT hashing. In FSE 2008 (2008).

46. McEliece, R.: A public-key cryptosystem based on algebraic number theory.
Technical report, Jet Propulsion Laboratory (1978). DSN Progress Report 42-
44.

47. Micciancio, D.: The shortest vector problem is NP-hard to approximate to
within some constant. SIAM J. on Computing, 30(6):2008–2035 (2001). Pre-
liminary version in FOCS 1998.

48. Micciancio, D.: Improved cryptographic hash functions with worst-case/average-
case connection. In Proc. 34th ACM Symp. on Theory of Computing (STOC),
pages 609–618 (2002).

49. Micciancio, D. and Goldwasser, S.: Complexity of Lattice Problems: A Crypto-
graphic Perspective, volume 671 of The Kluwer International Series in Engineer-
ing and Computer Science. Kluwer Academic Publishers, Boston, Massachusetts
(2002).

50. Micciancio, D.: Improving lattice based cryptosystems using the hermite nor-
mal form. In J. Silverman, editor, Cryptography and Lattices Conference —
CaLC 2001, volume 2146 of Lecture Notes in Computer Science, pages 126–145.
Springer-Verlag, Providence, Rhode Island (2001).

51. Micciancio, D.: Lattices in cryptography and cryptanalysis (2002). Lecture notes
of a course given in UC San Diego.

52. Micciancio, D.: Cryptographic functions from worst-case complexity assump-
tions (2007). Survey paper prepared for the LLL+25 conference. To appear.

190 Daniele Micciancio and Oded Regev

53. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions from worst-case complexity assumptions. Computational Com-
plexity, 16(4):365–411 (2007). Preliminary versions in FOCS 2002 and ECCC
TR04-095.

54. Micciancio, D. and Regev, O.: Worst-case to average-case reductions based on
Gaussian measures. In Proc. 45th Annual IEEE Symp. on Foundations of Com-
puter Science (FOCS), pages 372–381 (2004).

55. Micciancio, D. and Vadhan, S.: Statistical zero-knowledge proofs with efficient
provers: lattice problems and more. In Advances in cryptology (CRYPTO),
volume 2729 of Lecture Notes in Computer Science, pages 282–298. Springer-
Verlag (2003).

56. Naor, M. and Yung, M.: Universal one-way hash functions and their cryp-
tographic applications. In Proc. 21st ACM Symp. on Theory of Computing
(STOC), pages 33–43 (1989).

57. Nguyen, P.Q. and Vidick, T.: Sieve algorithms for the shortest vector problem
are practical. J. of Mathematical Cryptology (2008). To appear.

58. Nguyen, P. and Stern, J.: Cryptanalysis of the Ajtai-Dwork cryptosystem. In
Advances in cryptology (CRYPTO), volume 1462 of Lecture Notes in Comput.
Sci., pages 223–242. Springer (1998).

59. Nguyen, P.Q. and Regev, O.: Learning a parallelepiped: Cryptanalysis of GGH
and NTRU signatures. In The 25th International Cryptology Conference (Eu-
rocrypt), pages 271–288 (2006).

60. Nguyen, P.Q. and Stern, J.: The two faces of lattices in cryptology. In J.H. Silver-
man, editor, Cryptography and Lattices, International Conference (CaLC 2001),
number 2146 in Lecture Notes in Computer Science, pages 146–180 (2001).

61. Peikert, C. and Rosen, A.: Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. In 3rd Theory of Cryptography Conference
(TCC), pages 145–166 (2006).

62. Peikert, C. and Rosen, A.: Lattices that admit logarithmic worst-case to average-
case connection factors. In Proc. 39th ACM Symp. on Theory of Computing
(STOC), pages 478–487 (2007).

63. Peikert, C. and Vaikuntanathan, V.: Noninteractive statistical zero-knowledge
proofs for lattice problems. In Advances in Cryptology (CRYPTO), LNCS.
Springer (2008).

64. Peikert, C., Vaikuntanathan, V., and Waters, B.: A framework for efficient and
composable oblivious transfer. In Advances in Cryptology (CRYPTO), LNCS.
Springer (2008).

65. Peikert, C. and Waters, B.: Lossy trapdoor functions and their applications.
In Proc. 40th ACM Symp. on Theory of Computing (STOC), pages 187–196
(2008).

66. Peikert, C.J.: Limits on the hardness of lattice problems in 	p norms. Compu-
tational Complexity (2008). To appear. Preliminary version in Proc. of CCC
2007.

67. Regev, O.: Lattices in computer science (2004). Lecture notes of a course given
in Tel Aviv University.

68. Regev, O.: New lattice-based cryptographic constructions. Journal of the ACM,
51(6):899–942 (2004). Preliminary version in STOC’03.

69. Regev, O.: Quantum computation and lattice problems. SIAM J. on Computing,
33(3):738–760 (2004). Preliminary version in FOCS’02.

Lattice-based Cryptography 191

70. Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In Proc. 37th ACM Symp. on Theory of Computing (STOC), pages
84–93 (2005).

71. Regev, O.: Lattice-based cryptography. In Advances in cryptology (CRYPTO),
pages 131–141 (2006).

72. Regev, O.: On the complexity of lattice problems with polynomial approxi-
mation factors (2007). Survey paper prepared for the LLL+25 conference. To
appear.

73. Schnorr, C.P.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theoretical Computer Science, 53(2-3):201–224 (1987).

74. Schnorr, C.P.: Factoring integers and computing discrete logarithms via Dio-
phantine approximation. In J.Y. Cai, editor, Advances in computational com-
plexity, volume 13 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 171–182. AMS (1993). Preliminary version in Euro-
crypt ’91.

75. Shoup, V.: NTL: A library for doing number theory. Available at
http://www.shoup.net/ntl/.

76. Szydlo, M.: Hypercubic lattice reduction and analysis of GGH and NTRU signa-
tures. In Proc. of Eurocrypt ’03, volume 2656 of LNCS. Springer-Verlag (2003).

77. van Emde Boas, P.: Another NP-complete problem and the complexity of com-
puting short vectors in a lattice. Technical report, University of Amsterdam,
Department of Mathematics, Netherlands (1981). Technical Report 8104.

78. Wagner, D.: A generalized birthday problem. In Advances in cryptology
(CRYPTO), volume 2442 of LNCS, pages 288–303. Springer (2002).

Multivariate Public Key Cryptography

Jintai Ding1 and Bo-Yin Yang2

1 University of Cincinnati and Technische Universität Darmstadt.
2 Academia Sinica and Taiwan InfoSecurity Center, Taipei, Taiwan.

Summary. A multivariate public key cryptosystem (MPKCs for short) have a set of
(usually) quadratic polynomials over a finite field as its public map. Its main security
assumption is backed by the NP-hardness of the problem to solve nonlinear equations
over a finite field. This family is considered as one of the major families of PKCs that
could resist potentially even the powerful quantum computers of the future. There
has been fast and intensive development in Multivariate Public Key Cryptography
in the last two decades. Some constructions are not as secure as was claimed initially,
but others are still viable. The paper gives an overview of multivariate public key
cryptography and discusses the current status of the research in this area.

Keywords: Gröbner basis, multivariate public key cryptosystem, linear alge-
bra, differential attack

1 Introduction

As envisioned by Diffie and Hellman, a public key cryptosystem (hereafter
PKC for short) depends on the existence of class of “trapdoor one-way func-
tions”. This class and the mathematical structure behind it will determine all
the essential characteristics of the PKC. So for example behind elliptic cryp-
tography is the elliptic curve group, and behind NTRU stands the structure
of an integral lattice.

Multivariate (Public-Key) Cryptography is the study of PKCs where the
trapdoor one-way function takes the form of a multivariate quadratic polyno-
mial map over a finite field. Namely the public key is in general given by a
set of quadratic polynomials:

P = (p1(w1, . . . , wn), . . . , pm(w1, . . . , wn)),

where each pi is a (usu. quadratic) nonlinear polynomial in w = (w1, . . . , wn):

zk = pk(w) :=
∑

i

Pikwi +
∑

i

Qikw2
i +

∑
i>j

Rijkwiwj (1)

194 Jintai Ding and Bo-Yin Yang

with all coefficients and variables in K = Fq, the field with q elements. The
evaluation of these polynomials at any given value corresponds to either the
encryption procedure or the verification procedure. Such PKCs are called
multivariate public key cryptosystems (hereafter MPKCs). Inverting a mul-
tivariate quadratic map is equivalent to solving a set of quadratic equations
over a finite field, or the following problem:

Problem MQ: Solve the system p1(x) = p2(x) = · · · = pm(x) = 0, where
each pi is a quadratic in x = (x1, . . . , xn). All coefficients and variables
are in K = Fq, the field with q elements.

MQ is in general an NP-hard problem. Such problems are believed to be
hard unless the class P is equal to NP . Of course, a random set of quadratic
equations would not have a trapdoor and hence not be usable in an MPKC.
The corresponding mathematical structure to a system of polynomial equa-
tions, not necessarily generic, is the ideal generated by those polynomials.
So, philosophically speaking, multivariate cryptography relate to mathemat-
ics that handles polynomial ideals, namely algebraic geometry.

In contrast, the security of RSA-type cryptosystems relies on the complex-
ity of integer factorization and is based on results in number theory developed
in the 17th and 18th centuries. Elliptic curve cryptosystems employ the use
of mathematics from the 19th century. This quote is actually from Whitfield
Diffie at the RSA Europe conference in Paris in 2002. At least Algebraic Ge-
ometry, the mathematics that MPKCs use, is developed in the 20th century.

Since we are no longer dealing with “random” or “generic” systems, but
systems where specific trapdoors exist, the security of MPKCs is then not
guaranteed by the NP-hardness ofMQ, and effective attacks may exist for any
chosen trapdoor. The history of MPKCs therefore evolves as we understand
more and more about how to design secure multivariate trapdoors.

Sec. 2 is a sketch of how MPKCs work in general. Sec. 3 gives examples of
current MPKCs. Sec. 4 describes the known trapdoor constructions in some-
what more detail. Sec. 5 describes the most important mode of attacks. The
last section will be a short discussion about future development.

2 The Basics of Multivariate PKCs

After Diffie-Hellman [28], cryptographers proposed many trapdoor functions.
Most of these were forgotten and RSA became dominant. The earliest pub-
lished proposals of MPKCs scheme by Shigeo Tsujii and Hideki Imai, seemed
to have arisen around this time. They are independently known to have worked
on this topic in the early 1980s. Certainly lectures are given on this topic no
later than 1983. However, for several years, their work were not published in
anything other than Japanese, and remained largely unknown outside Japan.

As far as we know, the first article written in English describing a PKC
with more than one independent variable may be the one from Ong et al

Multivariate Public Key Cryptography 195

[78], and the first use of more than one equation is by Fell and Diffie [52].
The earliest attempt bearing some resemblance to today’s MPKCs (with 4
variables) seems to be [71]. In 1988, the first MPKC in the modern form
appears [70]. It seems as if basic construction described below (cf. Sec. 2.1)
has not changed for 20 years.

2.1 The Standard (Bipolar) Construction and Notations

Even if we restrict ourselves to cryptosystems for which the public key is a
set of polynomials P = (p1, . . . , pm) in variables w = (w1, . . . , wn) where all
variables and coefficients are in K = Fq, the way to hide the trapdoor is not
unique.

However, extant MPKCs almost always hide the private map Q via com-
position with two affine maps S, T . So, P = T ◦ Q ◦ S : K

n → K
m, or

P : w = (w1, . . . , wn) S�→ x = MSw+cS
Q�→ y T�→ z = MT y+cT = (z1, . . . , zm)

(2)
In any given scheme, the central map Q belongs to a certain class of

quadratic maps whose inverse can be computed relatively easily. The maps
S, T are affine (sometimes linear) and full-rank. The xj are called the central
variables. The polynomials giving yi in x are called the central polynomials;
when necessary to distinguish between the variable and the value, we will
write yi = qi(x). The key of a MPKC is the design of the central map.

The public key consists of the polynomials in P. In practice, this is always
the collection of the coefficients of the pi’s, compiled in some order conducive
to easy computation. Since we are doing public-key cryptography, P(0) is
always taken to be zero, hence public polynomials do not have constant terms.

The secret key consists of the informations in S, T , and Q. That is, we
collect (M−1

S , cS), (M−1
T , cT) and whatever parameters there exist in Q. In

theory one of cS and cT is extraneous but we keep it anyway.
To verify a signature or to encrypt a block, one simply computes z = P(w).

To sign or to decrypt a block, one computes y = T−1(z), x = Q−1(y) and
w = S−1(x) in turn. Notice that these may be only one of the many pre-
images, not necessarily an inverse function in the strict sense of the word.

We summarize the notations used in Table 1 and will henceforth use it
consistently to make our exposition easier to understand. And we summarize
operating details below so that the reader will have some basic sense of about
how these schemes can be applied practically.

Cipher block or Message digest Size: m elements of Fq

Plaintext block or Signature Size: n elements of Fq

Public Key Size: mn(n + 3)/2 Fq-elements, often stored in log-form
Secret Key Size: Usually

(
n2 + m2 + [# parameters in Q]

)
Fq-elements, of-

ten stored in log-form

196 Jintai Ding and Bo-Yin Yang

α the power in a C∗ construction
a,b, c constant vectors
cS , cT constant parts of linear maps S, T

C∗ = (c∗1, c∗2, . . . , c∗n) the Matsumoto-Imai map C∗
q,n,α : x �→ y = xqα+1 in

Fqn

DF (symmetric) differential of the function/map F
D, Dreg, and DXL degree in system-solving degree, operating degree of

F4/F5 and XL
Fq finite (Galois) field of q elements, any representation

of
g sometimes, a generator of K = Fq

Hi symmetric matrices for quadratic part of pi (or zi) in
wi

h, i, j, k, l index variables, k often := [L : K], dimension of L over
K

K denoting a kernel
kerv f kernel of the symmetric matrix denoting quadratic

part of f as function of v.
K the base field, usually = Fq

L Fqk , a field that is larger than K

Mi symmetric matrices for the quadratic part of yi in xj

MS , MT matrices of linear maps S, T .
m number of equations
m a multiplication, as a unit of time
n number of variables

O(), o(), Ω() standard big-O, small-o, Omega notations
o number of oil variables

Pik Matsumoto-Imai notation for coefficient of wi in zk

P = (p1, . . . , pm) public map
Qik Matsumoto-Imai notation for coefficient of w2

i in zk

Q = (q1, . . . , qm) central map
q the size of the base field

Rijk Matsumoto-Imai notation for coefficient of wiwj in zk

R |R|, the number of relations (equations) in XL or F4

R(D) or R Set of equations in XL or F4

r usu. the minimum rank or # of removed (minus) equa-
tions

S the initial linear map, S(w) = x = MSw + cS

T the final linear map, T (y) = z = MT y+cT , or #terms
in XL (|T | below)

T (D) or T set of terms (monomials) in XL or F4

u often the high rank parameter or # of Rainbow stages
v number of vinegar variables

v1 < v2 < · · · < vu+1 = n structure of Rainbow (v1, o1, . . . , ou), oi := vi+1 − vi

w = (w1, . . . , wn) signature or plaintext block
Xi, Yj elements in intermediate fields

x = (x1, . . . , xn) central variables, input to central map Q
y = (y1, . . . , ym) output of central map Q, central polynomials
z = (z1, . . . , zm) digest or ciphertext block

Table 1. Notations and Terminology

Multivariate Public Key Cryptography 197

Secret Map Time Complexity: (n2 + m2) Fq-multiplications, plus whatever
time it is needed to invert Q

Public Map Time Complexity: About mn2/2 Fq-multiplications
Key Generation Time Complexity: n2 times the invocation cost of P; be-

tween O(n4) and O(n5)

We immediately see the major disadvantage with MPKCs: Their keys are
very large compared to traditional systems like RSA or ECC. For example, the
public key size of RSA-2048 is not much more than 2048 bits, but a current
version of the Rainbow signature scheme has n = 42, m = 24, q = 256, i.e.,
the size of the public key is 22680 bytes, above the 16kB of flash memory that
some small smartcards have. Private keys are smaller, but still formidable for
small embedded devices which has memory constraints. However operating
on units hundreds of bits long (for Elliptic Curve groups and especially RSA)
is prohibitively expensive for embedded devices without a co-processor. So
MPKCs have some compensating advantages and still has potential on those
devices.

2.2 Other Constructions

It should be noted that MPKCs are also sometimes called trapdoor MQ
schemes for a reason, all the construction currently used do quadratic public
keys for speed reasons – with higher order terms, the explosion in number of
coefficients offset any possible gain in efficiency. Furthermore, in the bipolar
form, higher-order terms may in fact hurt the security.

Here we cover two alternatives in which multivariate polynomials can be
used for PKCs. These are called the Implicit Form and Isomorphisms of Poly-
nomials.

Implicit Form MPKCs

The public key is a system of l equations

P(w, z) = P(w1, . . . , wn, z1, . . . , zm) = (p1(w, z), . . . , pl(w, z)) = (0, . . . , 0),
(3)

where each pi is a polynomial in w = (w1, . . . , wn) and z = (z1, . . . , zm). This
P is built from the secret Q

Q(x,y) = q(x1, . . . , xn, y1, . . . , ym) = (q1(x,y), . . . , ql(x,y)) = (0, . . . , 0),

where qi(x,y) is polynomial in x = (x1, . . . , xn), y = (y1, . . . , ym) such that

• For any given specific element x′, we can easily solve the equation

Q(x′, y) = (0, . . . , 0); (4)

198 Jintai Ding and Bo-Yin Yang

• for any given specific element y′, we can easily solve the equation

Q(x, y′) = (0, . . . , 0), (5)

• (usu.) Eq. 4 is linear and Eq. 5 is nonlinear but specialized to be solvable.

Now, we can build

P = L ◦ h(S(w), T−1(z)) = (0, . . . , 0),

where S, T are invertible affine maps and L is linear. To verify a signature
w with the digest z, one checks that P(w, z) = 0. If we want to use P to
encrypt the plaintext w, we would solve P(w, z) = (0, . . . , 0), and find the
ciphertext z. To invert (i.e., to decrypt or more likely to sign) z, one first
calculates y′ = T−1(z), then plugs y′ into the equation (5) and solve for x.
The result plaintext or signature is given by w = S−1(x).

To recap, in an implicit-form MPKC, the public key consists of the
l polynomial components of P and the field structure of k. The secret
key mainly consists of L, S and T . Depending on the case the equation
Q(X,Y) = (0, . . . , 0) is either known or has parameters that is a part of
the secret key. Again the basic idea is that S, T , L serve the purpose to “hide”
the equation Q(x,y) = 0, which otherwise could be easily solved for any y.
Mixed schemes are relatively rare, one example being Patarin’s Dragon [82].

Isomorphism of Polynomials

The IP problem originated by trying to attack MPKCs by finding the secret
keys. Let F̄1, F̄2 with

F̄i(x1, . . . , xn) = (f̄i1, . . . , f̄im), (6)

be two polynomial maps from Kn to Km. The IP problem is to look for two
invertible affine linear transformations S on Kn and T over Km (if they exist)
such that

F̄1(x1, . . . , xn) = T ◦ F̄2 ◦ S(x1, . . . , xn). (7)
It is clear that this problem is closely related to the attack of finding private
keys for a MPKC, for example the Matsumoto-Imai cryptosystems, and was
first proposed by Patarin [83], where the verification process is performed
through showing the equivalence (or isomorphism) of two different maps. A
simplified version is called the isomorphism of polynomials with one secret
(IP1s) problem, where we only need to find the map S (if it exists), while
the map T is known to be the identity map. More later in this direction
are [51,57,68,86,87].

3 Examples of Multivariate PKCs

In this section, we bring to you three current MPKCs; each with special prop-
erties, advantages and disadvantages. We don’t try to discuss their security
in this section — that will be left until the next section.

Multivariate Public Key Cryptography 199

Scheme result SecrKey PublKey KeyGen SecrMap PublMap
RSA-1024 1024b 128 B 320 B 2.7 sec 84 ms 2.0 ms

ECDSA-F2163 320b 48 B 24 B 1.6 ms 1.9 ms 5.1 ms
PMI+(136, 6, 18, 8) 144b 5.5 kB 165 kB 1.1 sec 1.23 ms 0.18 ms

Rainbow (28, 18, 12, 12) 336b 24.8 kB 22.5 kB 0.3 sec 0.43 ms 0.40 ms
Rainbow (24, 24, 20, 20) 256b 91.5 kB 83 kB 1.6 sec 0.93 ms 0.74 ms

QUARTZ 128b 71.0 kB 3.9 kB 3.1 sec 11 sec 0.24 ms

Table 2. Current Multivariate PKCs Compared on a Pentium III 500

3.1 The Rainbow (28, 18, 12, 12) Signature Scheme

We characterize a Rainbow [39] type PKC with u stages:

• The segment structure is given by a sequence 0 < v1 < v2 < · · · < vu+1 =
n.

• For l = 1, . . . , u + 1, set Sl := {1, 2, . . . , vl} so that |Sl| = vl and S0 ⊂
S1 ⊂ · · · ⊂ Su+1 = S. Denote by ol := vl+1 − vl and Ol := Sl+1 \ Sl for
l = 1 · · ·u.

• The central map Q has component polynomials yv1+1 = qv1+1(x), yv1+2 =
qv1+2(x), . . . , yn = qn(x) — notice unusual indexing — of the following
form

yk = qk(x) =
vl∑

i=1

n∑
j=i

α
(k)
ij xixj +

∑
i<vl+1

β
(k)
i xi, if k ∈ Ol := {vl +1 · · · vl+1}.

In every qk, where k ∈ Ol, there is no cross-term xixj where both i and j
are in Ol at all. So given all the yi with vl < i ≤ vl+1, and all the xj with
j ≤ vl, we can compute xvl+1, . . . , xvl+1 .

• To expedite computations, some coefficients (α(k)
ij) may be fixed (e.g., set

to zero), chosen at random (and included in the private key), or be inter-
related in a predetermined manner.

• To invert Q, determine (usu. at random) x1, . . . xv1 , i.e., all xk, k ∈
S1. From the components of y that corresponds to the polynomials
p′v1+1, . . . p

′
v2

, we obtain a set of o1 equations in the variables xk, (k ∈ O1).
We may repeat the process to find all remaining variables.

For historical reasons, a Rainbow type signature scheme is said to be a
TTS [107] scheme if the coefficients of Q are sparse. We suggest a reference
Rainbow design with the following concrete parameters: q = 256, n = 42,
m = 24, structure sequence (18, 12, 12) with no omitted central terms, expected
security 280 multiplications in F28 . The size of the public key is 22680 bytes,
the private key is 17748 bytes. It’s called Rainbow (28, 18, 12, 12) for obvious
reasons. A smaller version with F24 as the base field is also given in the table.

200 Jintai Ding and Bo-Yin Yang

3.2 PMI+(136, 6, 18, 8), a Perturbed Matsumoto-Imai Plus

We may always represent the field Fqn as an n-dimensional vector space over
Fq via Fqn ∼= Fq[X]/P (X), where P is any irreducible polynomial of degree
n. Once we select P , we will then hereafter identify Fqn with (Fq)n. The map
induced by x ∈ Fqn �→ xq is then a linear transformation. We thus know that
a map g : x �→ y = xqα+1 is homogeneously quadratic in x. Furthermore, if
and only if gcd(qα + 1, qn− 1) = 1, then this map is invertible. In fact we can
find an h such that g−1(y) = (y)h. This g will be termed C∗

q,n,α, where the
parameters may be omitted if context permits. We also write its components
as C∗ = (c∗1, c∗2, . . . , c∗n). That is the central map of C∗ or Matsumoto-Imai
itself.

For Perturbed Matsumoto-Imai Plus we both perturb and add polyno-
mials. That is, we set q = 2 (to make guessing easier later) and choose
v = (v1, . . . , vr), a collection of r linear forms in x, and f = (f1, . . . , fn), a
random n-tuple of quadratic functions in v. Further take g = (g1, . . . , ga) be
an a-tuple of random quadratic functions of x. We define Q := (C∗ + f(v)) ‖g.
That is, Q is a map from F2n to F2n+a whose components are given by

qi(x) :=
{

c∗i (x) + fi (v(x)) , i = 1 · · ·n;
gi−n(x), i = n + 1 · · ·n + a.

How do invert Q? That is, if y = Q(x), how would we then find x? First, we
toss out the last a components, and randomly guess at the perturbation term
v(x). That is, let h is the exponent that can be used to invert C∗. If y′ is the
first n components of y, for all possible b ∈ F2r we compute x = (y′ − b)h

and check to see whether v(x) = b. Since inverting C∗ is relatively slow, we
can say that the perturbation made it 2r times slower to decrypt than the
corresponding C∗. The last a components can also ensure the correctness of
the ciphertext.

It remains to give the system some concrete parameters. At the moment,
our choices are as in [32]: (n, r, a, α) = (136, 6, 18, 8). The public key size
is n(n + 1)(n + a)/2 bits or 167688 bytes; the secret key is (n + a)2 + n2 +
nr(r + 3)/2 + an(n + 1)/2 bits or 26324 bytes. Design security is 283.

3.3 The Quartz or HFEv-(2, 129, 103, 3, 4) Signature Scheme

An immediate extension of the C∗ concept is Hidden Field Equations, intro-
duced by Patarin [83]. In place of the C∗ polynomial, we would substitute this
:

Q : x ∈ (Fq)n �−→ y =
∑

0≤i,j<n

aijxqi+qj

+
∑

0≤i<n

bixqi

+ c,

Where the coefficients are chosen more or less at random. It is also quadratic
in the components of x. Computing P−1(y) by the Berlekamp Algorithm has
time complexity O(nd2 log d + d3) where d is the maximum degree (= 129

Multivariate Public Key Cryptography 201

in Quartz). Quartz uses the vinegar modification suggested by Kipnis and
Patarin [64], with an auxiliary variable x̄ which occupies a subspace of small
rank in F

n
q as follows:

Q(x, x̄) :=
∑
i,j

aijxqi+qj

+
∑
i,j

bijxqi

x̄qj

+
∑
i,j

αijx̄qi+qj

+
∑

i

bixqi

+
∑

i

β′
ix̄

qi

+c.

(8)
The public key of the Quartz signature scheme uses q = 2, n = 103,

dimension 4 for the x̄ subspace, and furthermore uses the minus variant by
removing three polynomials from the public key. So there are 107 variables
and 100 equations. The actual verification procedure in Quartz is even more
complex [21], involving using the public map four times to avoid birthday
attacks, since the design goal is a short signature (here 128 bits) and not
speed. Despite this detail, the ability to solve such system still enables one to
forge a signature.

The secret key of Quartz is 3kB, the public key size is (100× 107× 108/2)
bits = 71kB. Design security is 280.

3.4 Some Computational Aspects of MPKCs

Many computations of MPKCs will be conducted in K = Fq. Often q is a small
power of 2 so that each element in K can be stored in a byte and addition rep-
resented by bitwise exclusive-or. To multiply, normally one choose a generator
g in K such that all non-zero x can be written as x = gi (this i is also denoted
logg x). We build logarithm and exponential tables and evaluate multiplica-
tions between non-zero x and y as g(logg x+logg y). Doing each multiplication
from scratch via this method takes three table lookups and two conditional
jumps and is comparatively time-consuming. This is why time-complexities
are often counted in K-multiplications. To save time, elements of F27 or F28

that will only be used for multiplication are always stored as logarithms, for
example coefficients.

For today’s highly pipelined CPUs, accessing memory is particularly ex-
pensive, and buffer memory for the most often used data (known as L1 cache
memory) is limited to between 32kB and 256kB. Therefore complete multi-
plication tables of size q2 are almost never used (except maybe when q = 16).

Things change when working with small microcontrollers. For example,
the table exponentials is usually 2q K-elements long. But for 8-bit micro-
controllers, one can’t have indices larger than a byte and hence evaluate
(logg x + logg y)mod 255 using a single extra ADC (add with carry) instruc-
tion instead.

SIMD (single instruction, multiple data) is an important factor. It is very
important to pack data so that one can make use of the 64- and 128-bit-wide
XOR instructions, especially if q = 2 or 4 (it’s called “bit-slicing”, cf. [7]).

Operations in an extension L = F
n
q as vectors over K = Fq is frequent

(e.g., in big-field MPKCs). A product in L is like multiplying two degree < n

202 Jintai Ding and Bo-Yin Yang

polynomials over Fq. Using schoolbook multiplication and then reducing the
terms with degree ≥ n takes at most 2n2 multiplications. A more advanced
method like Karatsuba takes less time. A division is a little slower than a
multiplication.

It is also not a trivial issue to build keys for an MPKC. The classical way
to compute the keys is interpolation [70]. In general, one select MS , cS , MT

plus whatever parameters in Q, if any. We can set

cT := MTQ(cS),

which makes all the constant terms zero. Now we can evaluate P(w) = T ◦
Q ◦ S(w) for any w. Write the Matsumoto-Imai form public key (Eq. 1) as:

zk =
∑

i

wi

⎡
⎣Pik + Qikwi +

∑
j<i

Rijkwj

⎤
⎦ . (9)

In F2, x2 = x for any x, so there is no Qik term. One also note that to evaluate
the public key one need to do one Fq multiplication per element of the public
key. Let bi ∈ F

n
q be the unit vector in the i-th axis, and for q > 2, we choose

any a �= 0, 1 and get

Qik := (a(a− 1))−1 (pk(abi)− apk(bi))
Pik := pk(bi)−Qik (10)

Rijk := pk(bi + bj)−Qik −Qjk − Pik − Pjk

For F2, it becomes

Pik := pk(bi)
Rijk := pk(bi + bj)− Pik − Pjk

So key generation means invoke n2 times the combination T ◦ Q ◦ S. We can
see that both S and T takes about n2 time. If we write Q coefficientwise, it
would take n3/2 multiplications. So we see that worst case key generations
takes about n5/2 multiplications in K = Fq. In certain situations, it is closer
to O(n4).

Let’s demonstrate this for a C∗ based scheme where the rate-determining
mechanism is the evaluation of C∗ : x ∈ L = Fqn �→ y = xqα+1. There is a
linear map L in (Fq)n that maps x �→ xqα

. This we precompute. Evaluating
Lx takes n2 multiplications in Fq. Then the product in L is 2n2 multiplications
max.

Other big-field variants based on �IC and HFE have a similar property. For
single-field MPKCs where key generations takes close to O(n4), see Sec. 4.4.

4 Basic Constructions and Variations

MPKCs are built in many ways. We aim to give you the major types of
constructions, maybe accent some important associated algebraic characteristics

Multivariate Public Key Cryptography 203

(like this), and common variations thereof. A summary of variants is given in
Table 3.

4.1 Historical Constructions

The first attempt to construct a multivariate signature [78, 79] is based on a
quadratic equation

y = x2
1 + αx2

2 (mod n), (11)

where n = pq is an RSA modulus, the product of two large primes. To sign
a message y, we need to find one of the many (about n) solutions (x1, x2)
to Eq. 11, which is easy if we know the factorization of n. The public key
is essentially the integer n and Eq. 11. Since the security relies on the fac-
torization of n, this system is really a derivative of RSA, though it indeed
initiated the idea of multivariate cryptosystems. This system was broken by
Pollard and Schnorr in [89], where they found a probabilistic algorithm to
solve Eq. 11 for any y without knowing the factors of n. Assuming the gen-
eralized Riemann hypothesis, a solution can be found with a time complexity
of O((log n)2 log log |k|) in O(log n)-bit integer operations.

The idea of Diffie and Fell [52] was to build a cryptosystems using the
composition of invertible linear maps and simple tame maps of the form
T (x1, x2) = (x1 + g(x2), x2), where g is a polynomial.

Tame maps are easily invertible and hard to unscramble when composed
with each other, however [52] used only two variables and equations; not
surprisingly, the authors concluded that it appeared very difficult to build
such a cryptosystem with practical value that is both secure and has a public
key of practical size.

An attempt to build a true multivariate (with four variables) public key
cryptosystem were also made by Matsumoto, Imai, Harashima and Miyagawa
[71], where the public keys are given by quadratic polynomials. However it
was soon defeated [77]. People soon realized that more than 4 variables are
needed.

4.2 Triangular Constructions

Of course, the tame maps used in [52] are a special case of the “triangular”
or de Jonquières maps from algebraic geometry, which are more generally
defined by:

J(x1, . . . , xn) = (x1 + g1(x2, . . . , xn), . . . , xn−1 + gn−1(xn), xn), (12)

where the gi are arbitrary polynomial functions. We note that J can be easily
inverted assuming that the gi are known. The invertible affine linear maps over
kn together with the de Jonquières maps belong to the family of so-called tame
transformations from algebraic geometry, including all transformations that
arise as a composition of elements of these two types of transformations. Tame

204 Jintai Ding and Bo-Yin Yang

transformations are elements of the group of automorphisms of the polynomial
ring k[x1, . . . , xn]. Elements in this automorphism group that are not tame
are call wild. Given a polynomial map, it is in general very difficult to decide
whether or not the map is tame, or even if there is indeed any wild map [75], a
question closely related to the Jacobian conjecture. This problem was possibly
solved in 2003 when [93] claims to prove that the Nagata map is wild.

The first attempt in the English literature with a clear triangular form is
the Birational Permutations construction by Shamir [92]. However, triangular
constructions were earlier pursued unsuccessfully in Japan under the name “
sequential solution type systems” [61, 95, 97]. Their construction is actually
even more general in the sense that they use rational functions instead of just
polynomial. These works are not so well-known, partially because they were
in Japanese.

Triangular maps are lightning fast to evaluate and to invert. However, they do
have another definitive characteristic, an algebraic one, that must be accounted
for. On the small end of a triangular system, so to speak, a variable is mapped to
some simple function of itself. On the bigger end, one variable appears in a single
equation only. The other equations involve successively more variables.

In other words, let us write the quadratic portion of the central polynomials
yi = qi(x) as bilinear forms, or take the symmetric matrix denoting the symmetric
differential of the central polynomials as in

qi(x + b)− qi(x)− qi(b) + qi(0) := bT Mix, (13)

then rank Mi increases monotonically as i increases. In fact, if q = 2k, the
equation dealing with x1 always has rank zero. Furthermore, ker M1 ⊂ ker M2 · · · .
This is the chain of kernels as pointed out by Coppersmith et al [18].

This rank and chain relation is invariant under invertible map S. That is,
consider yi as a function of w, the corresponding differential is bT

(
MT

SMiMS

)
x.

For the most part, MS is full-rank, hence rank
(
MT

SMiMS

)
= rankMi.

This leads to what is known as rank attacks based on linear algebra [18,58].
Therefore triangular/tame constructions can’t be used alone. Some ways to
design around this problem are lock polynomials (Sec. 4.6), solvable segments
(Sec. 4.4) and plus-minus (Sec. 4.5).

4.3 Big-Field Families: Matsumoto-Imai (C∗) and HFE

Triangular (and Oil-and-Vinegar, and variants thereof) systems are sometimes
called “single-field” or “small-field” approaches to MPKC design, in contrast
to the approach taken by Matsumoto and Imai in 1988 [70]. In such “big-
field” variants, the central map is really a map in a larger field L, a degree n
extension of a finite field K. To be quite precise, we have a map Q : L → L

that we can invert, and pick a K-linear bijection φ : L → K
n. Then we have

the following multivariate polynomial map, which is presumably quadratic
(for efficiency):

Multivariate Public Key Cryptography 205

Q = φ ◦ Q ◦ φ−1. (14)

then, one “hide” this map Q by composing from both sides by two invertible
affine linear maps S and T in K

n, as in Eq. 2.
Now we briefly recap how C∗ is defined earlier (cf. Sec. 3.2). Matsumoto

and Imai suggest that we pick a K of characteristic 2 and this map Q

Q : x �−→ y = x1+qα

, (15)

where x is an element in L, and such that gcd(1 + qα, qn − 1) = 1. The last
condition ensures that the map Q has an inverse, which is given by

Q−1
(x) = xh, (16)

where h(1 + qα) = 1 mod (qn − 1). This ensures that we can decrypt any
secret message easily by this inverse. For the rest of this chapter, we will
simply identify a vector space K

k with larger field L, and Q with Q, totally
omitting the isomorphism φ from formulas. When necessary to distinguish the
inner product in a vector space over K and the larger field L, the former will be
denoted by a dot (·) and the latter an asterisk (∗). One more important thing
is that the map Q is always quadratic due to the linearity of the Frobenius
map x→ xqα

.
A significant algebraic implication of C∗ and Eq. 15 is yqα−1 = xq2α−1 or

xyqα

= xq2α

y. (17)

This enabled Jacques Patarin [81] to cryptanalyze the original C∗ with
his bilinear relations (see Sec. 5.1). Though the original idea of C∗ failed,
it has inspired many new designs, mostly from Patarin and his collaborators
(cf. Secs. 4.5 and 4.8).

The most significant of the C∗ derivatives is likely HFE (Hidden Field
Equations). As mentioned in Sec. 3.3, instead of using for Q the monomial
used by C∗, we would substitute the extended Dembowski-Ostrom polynomial
map:

Q : x ∈ L = F
n
q �−→ y =

∑
0≤i≤j<r

aijxqi+qj

+
∑

0≤i<r

bixqi

+ c, (18)

This map is in general not one-to-one; some kind of checksum is required
to identify the inverse from one of a number of possible candidates. Inverting
Q is equivalent to solving a univariate equation of high degree in L. It is
fairly well-studied and straightforward to implement but not very fast, using
some version of the Berlekamp (or say Cantor-Zassenhaus) algorithm [8,14,56].
Typically, the cost of this solution is O(nd2 log d+d3), where d is the maximum
degree of Q.

One might conclude, then, that we should have as low d as possible, or
since usually d = 2qr or qr +1, as low r as possible. It turns out not to be like

206 Jintai Ding and Bo-Yin Yang

this. Just as Eq. 15 intrinsically meant that the C∗ map has a rank of 2 and
leads to Eq. 17 and all the known cryptanalysis of C∗ related systems, Eq. 18
fundamentally is responsible for all the algebraic properties of HFE.

A key fact is that the intrinsic rank of the map is bounded by r, and usually
achieves that value for randomly chosen parameters. This rank is very closely re-
lated to the complexity of current attacks [23,50]. For example, the HFE Challenge
1 solved by Faugère and Joux [50] has an intrinsic rank of 4.

HFE with a high d is unbroken, although it can be really slow to de-
crypt/invert. Quartz probably set a record for the slowest cryptographical
algorithm when submitted to NESSIE — on a Pentium III 500MHz, it took
half a minute to do a signature [since improved to 10s with better program-
ming].

Finally, C∗ and HFE each can be modified by techniques mentioned else-
where (Plus-Minus, vinegar variables, and internal perturbation). Also related
are the �IC system (Sec. 4.7) and probabilistic big-field based MPKCs [59].
One can safely say that all in all, C∗ really spawned a lot of useful research.

4.4 Unbalanced Oil and Vinegar and Derivatives

The Oil and Vinegar and later derived unbalance Oil and Vinegar schemes
[64, 80] are suitable for signatures. This construction is inspired by the idea
of linearization equations (cf. Sec. 4.3). Suppose v < n is an integer and
m = o = n − v. The variables x1, . . . , xv are termed vinegar variables and
xv+1, . . . , xn oil variables.

Take a map Q : K
n → K

m with form y = Q(x) = (q1(x), . . . , qo(x)),
where

ql(x) =
v∑

i=1

n∑
j=i

α
(l)
ij xixj , l = 1 · · · o

and all coefficients are randomly chosen from the base field K. Here we notice
that there are no quadratic terms of oil variables, which means the oil variables
and vinegar variables are not fully mixed (like oil and vinegar in a salad
dressing) and this explains the name of this scheme.

The public map P is constructed as P = Q ◦ S, where S is an invertible
linear map. Here the change of basis is a process to “mix” fully oil and vinegar,
so one can not see what is oil and what is vinegar. Note that with the pure
OV and UOV constructions, we need not use a T , and it is in fact usually
omitted.

The original Oil and Vinegar signature scheme has m = o = v = n/2.
When o < v, it becomes the unbalance Oil and Vinegar signature scheme.
The public key are P = (p1, . . . , po), the polynomial components of P. The
secret key consists of the linear map S and the map Q.

Given a message y = (y1, . . . , yo), in order to sign it, one needs to try to
find a vector w = (w1, . . . , wn) such that P(w) = y. With the secret key it can
be done easily. First, one guesses values for each vinegar variable x1, . . . , xv,

Multivariate Public Key Cryptography 207

and obtains a set of o linear equations with the o oil variables xv+1, . . . , xn.
With high probability it has a solution. If it does not have a solution, one
guesses at the vinegar variables again until one finds a pre-image of a given
element in K

o. Then one applies S−1. To check if w is indeed a legitimate
signature for y, one only needs to get the public map P and check if indeed
P(w) = y.

What algebraic property is most significant in an unbalanced Oil-and-Vinegar
system? No doubt the lack of pure oil cross-terms. Equivalently, if we have an
UOV structure, then the quadratic part of each component qi in the central map
from x to y, when expressed as a symmetric matrix (cf. Eq. 13), looks like

Mi :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
(i)
11 · · · α

(i)
1v α

(i)
1,v+1, · · · α

(i)
1n

...
. . .

...
...

. . .
...

α
(i)
v1 · · · α

(i)
vv α

(i)
v,v+1, · · · α

(i)
vn

α
(i)
v+1,1, · · · α

(i)
v+1,v, 0 · · · 0

...
. . .

...
...

. . .
...

α
(i)
n1 · · · α

(i)
nv 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(
or for short,

[
∗ ∗
∗ 0

])
. (19)

We should mention the fact that there are many equivalent keys [103].
Computing the essential part of secret keys is part of the attack of Sec. 5.5.

UOV as a Booster Stage

At some point one would be bound to ask: Suppose we have an MPKC with
m equations in n variables, which is a size too small for our needs. How could
we reasonably make it m + v equations in n + v variables? Or even m + v′

equations in n + v variables, where v′ > v? How can we build these “booster
stages”? The answer today is: What you can do seems limited to:

• Do not add extra variables, that is “Plus” (Sec. 4.5), with limited use.
• Solve linear equations for extra variables. That is a UOV stage, like rain-

bow.
• Solve higher-degree equations. The cost is prohibitive.
• Use brute-force guessing. Proposed [62,63] and promptly broken [102].

By stacking several layers of Unbalanced Oil-Vinegar together for an easily
invertible central map, we arrive at the Rainbow-type constructions [39]. To
recap (Sec. 4.4), for a u-stage Rainbow 0 < v1 < v2 < · · · < vu+1 = n and

yk = qk(x) =
vl∑

i=1

n∑
j=i

α
(k)
ij xixj +

∑
i<vl+1

β
(k)
i xi, if vl < k ≤ vl+1. (20)

Starting from a random choice of initial vinegar variables x1, . . . , xv1 , one
solve for more xi’s in sets of equations until we have all the xi’s. Note that

208 Jintai Ding and Bo-Yin Yang

the components of y in a Rainbow-type construction is typically written to
have indices v1 + 1, . . . , n. In the pure Rainbow scheme, S and T and the
coefficients α and β are totally randomly chosen. The essential structure of
the Rainbow instance is determined by 0 < v1 < v2 < · · · < vu+1 = n
or more often the “Rainbow Structure Sequence” (v1, o1, o2, . . . , ou), where
oi := vi+1 − vi.

What is the main algebraic property of an UOV stage? First and foremost is
that it is of course, a special case of UOV; however, the form of

ou equations of form
[
∗ ∗
∗ 0

]
following m− ou equations of form

[
∗ 0
0 0

]

leads to a different attack of which the reader will be appraised later in Sec. 5.5.
Aside from attacks peculiar to UOV and Rainbow, the Rainbow-type con-

structions also share enough characteristics of triangular schemes, that there
is the need to account for rank-based attacks (Sec. 5.4), such as the two im-
proved attacks in [9,44]. At the moment, none of these attacks are considered
essential.

Sparsity and Speed: TTS

We want the central map and its inverse be fast. However, if a booster stage
can only solve linear systems for xvi+1, . . . , xvi+1 with coefficients determined
by x1, . . . , xvi

, i.e., be like UOV (with oi = vi+1 − vi) in essence, then our
hands are tied. What can we do to speed this up?

1. Setting up the system to be solved takes oivivi+1 K-multiplications. If we
make the central map sparse, one can make this a small multiple of o2

i .
2. Solving an oi×oi system in K takes ∼ o3

i /3 K-multiplications via Gaussian
elimination. For small oi, this does not get much faster. It might be faster
as an inversion in an extension field of K. A side effect is also to make a
segment sparse (with any reasonable representation of Fqoi ≡ K

oi).

TTS (Tame Transformation Signatures) are categorically Rainbow schemes
with a sparse central map, even though the term TTS came first [107].

TTS instances differ widely. The earlier ones known by that name, such
as [16] are close to Triangular-minus. Later they became [107,108] much more
like Rainbow with few terms. The TRMS [100] of Wang et al are of course also
a TTS instance, although they use the larger field structure as above. Having
sparse terms helps a lot: We have less to store in the private key, the private
map becomes a lot quicker to execute, and even key generation is faster, since
when the central map is K

n → K
m with sparse terms, then we can do [107]:

Multivariate Public Key Cryptography 209

Pik =
m−1∑
h=0

⎡
⎣(MT)kh

⎛
⎝(MS)hi +

∑
p xαxβ in qh

p ((MS)αi(cS)β + (cS)α(MS)βi)

⎞
⎠
⎤
⎦

Qik =
m−1∑
h=0

⎡
⎣(MT)kh

⎛
⎝ ∑

p xαxβ in qh

p (MS)αi(MS)βi

⎞
⎠
⎤
⎦

Rijk =
m−1∑
h=0

⎡
⎣(MT)kh

⎛
⎝ ∑

p xαxβ in qh

p ((MS)αi(MS)βj + (MS)αj(MS)βi)

⎞
⎠
⎤
⎦

What are the drawbacks of TTS? Since TTS (TRMS) can also be viewed as
Rainbow type of signature schemes, they have all the vulnerabilities of Rainbow
structures. Due to their sparsity, there also exist certain extra possibilities of
linear algebra and related vulnerabilities, principally UOV-type vulnerabilities such
as [41].

4.5 Plus-Minus Variations

Minus and Plus are simple but useful ideas, earliest mentioned by Matsumoto,
Patarin and Shamir (probably found independently [85,92]).

Minus for Big-Field Schemes: SFLASH et al

Initially [85], several (r) equations are removed from the public keys in big-
field multivariates. When inverting the public map, the legitimate users take
random values for the missing variables. Minus is very suitable for signature
schemes without even a performance loss, because a document need not have a
unique signature.

However, for encryption this is a significant slowdown, since the missing
coordinates must be guessed. To clarify a little, in theory the public map of an
encryption method should injective or nearly so. If we have to guess r variables
in Fq, we effectively have qn+r results, only qn of which should represent valid
ciphertexts, hence the expected number of guesses taken per decryption is qn.
Hence, decryption is slowed by that same factor of qn.

Minus or removing some public equations makes a C∗-based system much
harder to solve. SFLASH [1,22,84], a C∗− instance with (q, n, r) = (27, 37, 11),
was accepted as an European security standard for low-cost smart cards by
the New European Schemes for Signatures, Integrity and Encryption [76].

However, in 2007, a method was discovered to defeat the SFLASH family
of cryptosystems [46,47]. The key of the attack is to look at the symmetry and
the invariants of the differential of the public map P (Sec. 5.3). If C∗-based
signature schemes, it will probably need the new variant called Projection
(Sec. 4.8).

210 Jintai Ding and Bo-Yin Yang

Plus-Minus for Single-Field Schemes

In the case of Minus as applied to triangular constructions, one need to remove
instead central equations — here, the lowest-ranked ones. Actually, removing
central equations in C∗ works too.

Just as Minus can remove the equations with smallest ranks from view
and remove the problem at one end of the triangle, Plus is the the obverse:
add random central equations to the original Q; this masks from view the
high-end of the triangle. For encryption methods, this again does not affect
performance much [except for a slightly larger key]; for digital signatures there
is a slowdown as the extra variables again needs to be guessed. Regardless,
Plus-Minus variations defend against attacks that are predicated on the rank
of equations.

As one might well guess, Plus-Minus alone does not make triangular con-
structions safe. Indeed, [58] discuss this in detail and concludes exactly the
opposite: Triangle-Plus-Minus constructions can be broken by very straight-
forward attacks using simple linear algebra. Some more elaborate possibili-
ties [9, 44,107] are discussed in the following sections.

4.6 TTM and Related Schemes: “Lock” or Repeated Triangular

PKC’s based on just triangular constructions were not pursued again until
a much more complex defense against rank attacks was proposed, with the
tame transformation method (TTM) of Tsong-Tsieng Moh [72].

One can see that de Jonquières maps can be upper triangular as well as
lower triangular. In fact, you can arrange the indices any which way you want.
Moh [72] suggested a construction where the central map Q is given by

Q = Ju ◦ Jl ◦ I(x1, . . . , xn). (21)

Here Ju is a K
m upper triangular de Jonquières map and Jl is a K

m lower
triangular de Jonquières map and the linear map I is the embedding of kn into
km: I(x1, . . . , xn) = (x1, . . . , xn, 0, 0, . . . , 0). The main achievement of such a
construction is that any non-trivial linear combinations of the components of
Q is quadratic. Moh’s real trick is actually in using map I. One can see that

Jl ◦ I(x1, . . . , xn) = (x1, x2 + g1(x1), . . . , xn + gn−1(x1, . . . , xn−1),
gn(x1, . . . , xn), . . . , gm−1(x1, . . . , xn)),

which gives us the freedom to choose any gi, i = n, . . . , m− 1. When decrypt-
ing, one evaluates the de Jonquières maps backwards.

The multiplitude of central polynomials of low rank present in published TTM
instances [15,72,74] is the main source of known attacks. [74, Appendix II] gives
you an idea of the polynomials of a TTM instance can look like.

A few examples of such constructions were given and a family of challenges
with monetary award was set up by the US Data Security, Inc. (www.usdsi.

Multivariate Public Key Cryptography 211

com). Shortly afterwards Courtois and Goubin [58] used the MinRank method
(cf. Sec. 5.4) to attack this system. MinRank is to look for non-zero matries
with minimum rank in a space of matrices; it is NP-hard in general but can
be easy for special cases. Despite the inventor’s claim that TTM systems
are very secure from all standard attacks, Goubin-Courtois did decrypt a
www.usdsi.com TTM challenge. To maintain fairness in reporting, the author
claimed this to be non-conformant to his conditions of contest. He posted a
new implementation of his scheme [15] soon thereafter. As mentioned above,
other TTM instances had been published [73, 74] since, more complex but
mostly resembling the earlier ones.

The idea of sequentially solvable equations (or stages) can also be used in
conjunction with other ideas. Some of the more notable attempts are from L.-
C. Wang, who had written about a series of schemes called “Tractable Rational
Map Cryptosystems” (TRMC) versions 1–4. Names not withstanding, the
versions of TRMC are actually quite distinct. We believe that TRMC v1
is essentially no different from early TTM [15] except for some “gratuitous
incompatibility” in the bijection x �→ x2. The central map of TRMCv2 [98] has
a small random overdetermined block on one end (something like 7 variables
and 11 equations) and the rest of the variables are determined in the triangular
(tame) style. Versions 3 and 4 [99,101] use a similar trick as 3IC (cf. Sec. 4.7).

Although the TTM construction is original and very intriguing, so far
existing constructions of the TTM cryptosystem and related schemes do not
work for public-key encryption. In fact, most of the schemes proposed are not
presented in any systematic way, and no explanation is given why and how
they work. We can tell you a little about why some of these fail, however, in
Secs. 5.1 and 5.4.

More sophistication is needed and we suspect that to create a successful
TTM-like scheme may require deep insight from algebraic geometry.

4.7 Intermediate Fields: MFE and �IC

In C∗ and HFE, we use a big field L = K
n, or at least the number of com-

ponents in the big field is close to the number of variables. In Rainbow/TTS
or similar schemes, each component is as small as the base field. It stands to
reason that we can use something in between, as seen below in MFE (Medium
Field Encryption) and �IC (�-Invertible Cycles) we describe below. Both these
schemes also happen to share a characteristic: the use a standard Cremona
transform in algebraic geometry, where L

∗ := L\{0} for some field L:

(X1, X2, X3) ∈ (L∗)3 �−→ (Y1, Y2, Y3) := (X1X2, X1X3, X2X3) ∈ (L∗)3

(22)
This is a bijection for any field L, and inverts via X1 :=

√
Y1Y2/Y3, etc.

Medium Field Encryption

Let L = K
k and define Q : L

12 → L
15 as follows:

212 Jintai Ding and Bo-Yin Yang
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y1 = X1 + X5X8 + X6X7 + Q1;
Y2 = X2 + X9X12 + X10X11 + Q2;
Y3 = X3 + X1X4 + X2X3 + Q3;
Y4 = X1X5 + X2X7; Y5 = X1X6 + X2X8;
Y6 = X3X5 + X4X7; Y7 = X3X6 + X4X8;
Y8 = X1X9 + X2X11; Y9 = X1X10 + X2X12;
Y10 = X3X9 + X4X11; Y11 = X3X10 + X4X12;
Y12 = X5X7 + X2X11; Y13 = X5X10 + X7X12;
Y14 = X6X9 + X8X11; Y15 = X6X10 + X8X12.

(23)

Here each Xi and Yi is in L = K
k. Usu. K = F256. Split X1,X2,X3, Q1, Q2, Q3

into components in K
k, such that q′1 = 0, q′2 = (x1)2 and for i = 3 · · · 3k, q′i is

a more or less a random quadratic in variables (x1, . . . , xi−1).

X1 =

⎡
⎢⎢⎢⎣

x1

x2

...
xk

⎤
⎥⎥⎥⎦ , X2 =

⎡
⎢⎢⎢⎣

xk+1

xk+2

...
x2k

⎤
⎥⎥⎥⎦ , X3 =

⎡
⎢⎢⎢⎣

x2k+1

x2k+2

...
x3k

⎤
⎥⎥⎥⎦ ;

Q1 =

⎡
⎢⎢⎢⎣

q′1
q′2
...
q′k

⎤
⎥⎥⎥⎦ , Q2 =

⎡
⎢⎢⎢⎣

q′k+1

q′k+2
...

q′2k

⎤
⎥⎥⎥⎦ , Q3 =

⎡
⎢⎢⎢⎣

q′2k+1

q′2k+2
...

q′3k

⎤
⎥⎥⎥⎦ .

Decrypting MFE: Arrange X1,..., 12 and Y4,..., 15, into L
2×2 matrices:

A1 =
[

X1 X2

X3 X4

]
, A2 =

[
X5 X6

X7 X8

]
, A3 =

[
X9 X10

X11 X12

]
;

A1A2 =
[

Y4 Y5

Y6 Y7

]
, A1A3 =

[
Y8 Y9

Y10 Y11

]
, AT

2 A3 =
[

Y12 Y13

Y14 Y15

]
.

(24)

The first step to inverting Q comes from Eq. 24 via simple linear algebra:

Y4Y7 − Y5Y6 = det(A1A2) = det A1 det A2;

and similarly,

Y8Y11 − Y9Y10 = det A1 detA3; Y12Y15 − Y13Y14 = det A2 det A3.

Thus, knowing Y4, . . . , Y15, we can find det A1, det A2, and det A3, provided
that none of them is zero (we will need to take square roots in L). Furthermore,

Y1 = X1 + det A2 + Q1, Y2 = X2 + det A1 + Q2, Y3 = X3 + det A3 + Q3.

Therefore, having found det A1,det A2,det A3, we reduce the components of
Y1, Y2, Y3 to a triangular form in the xi:

Multivariate Public Key Cryptography 213

X1 + Q1 = Y1 +
√

(Y4Y7 + Y5Y6)(Y8Y11 + Y9Y10)(Y12Y15 + Y13Y14)−1

X2 + Q2 = Y2 +
√

(Y4Y7 + Y5Y6)(Y8Y11 + Y9Y10)−1(Y12Y15 + Y13Y14)

X3 + Q3 = Y3 +
√

(Y4Y7 + Y5Y6)−1(Y8Y11 + Y9Y10)(Y12Y15 + Y13Y14)

then we apply a second triangular step to compute X1, X2, and X3 component
by component. If X1 �= 0, from det A1 we can also find X4 and complete the
inversion. [101] has details on how to handle X1 = 0. Of course, cases where
one of the det Ai is 0 result in a decryption failure.

The main algebraic property of MFE is the central round of three matrix
products. Today, everyone knows to defend against linearization relations, and
MFE did in fact achieve this when they put AT

2 A3 instead of A2A3 in the center.
But it does not avoid all the problems, as you can see in Sec. 5.1.

The �-invertible cycle

The �-invertible cycle also uses an intermediate field L = K
k and extends C∗

by using the following central map from (L∗)� to itself:

Q : (X1, . . . , X�) �→ (Y1, . . . , Y�) (25)

:= (X1X2, X2X3, . . . , X�−1X�, X�X
qα

1).

For “standard 3IC”, � = 3, α = 0. Invertion in (L∗)3 is then easy.

Q−1 : (Y1, Y2, Y3) ∈ (L∗)3 �→ (
√

Y1Y3/Y2,
√

Y1Y2/Y3,
√

Y2Y3/Y1,). (26)

This is 10× faster computationally than the inverse of C∗. Aside from that,
analysis of the properties of the 3IC map can be found in [42] — the 3IC and
C∗ maps has so much in common that the former can almost be viewed as a
turbocharged version of the latter especially when looking at signature schemes.

For encryption schemes, “2IC” or � = 2, q = 2, α = 1 is suggested.

Q : (X1,X2) �→ (X1X2,X1X
2
2), Q−1 : (Y1, Y2) �→ (Y1/Y 2

2 , Y2/Y1). (27)

Again, these has so much in common with C∗ that we need the same vari-
ations. In other words, we need to do 3IC−p (with minus and projection)
and 2IC+i (with internal perturbation and plus), paralleling C∗−p and C∗+i
(a.k.a. PMI+).

4.8 More on Variations and a Summary

Internally Perturbed

Matsumoto-Imai can produce this variation [29]: Take v = (v1, . . . , vr) to be
an r-tuple of random affine forms in the variables x. Let f = (f1, . . . , fn) be
a random r-tuple of quadratic functions in v. Let our new Q be defined by

214 Jintai Ding and Bo-Yin Yang

Var. Meaning Slows
Plus + extra polynomials in the central map Slows Signatures

Minus - remove central or public polynomials Slows Encryption
Perturb i internal perturbation Slows All
Project p Fix a central variable to be 0 Slows Signatures
Vinegar v extra variables that can be set arbitrarily Slows Encryption
Sparse s make single-field central map sparse General Speedup

Table 3. A Summary of Major Modifications in MPKCs, cf. [104]

x �→ y = (x)qα+1 + f(v(x))

where the power operation assumes the vector space to represent a field. The
number of Patarin relations decrease quickly down to 0 as r increases. For
every y, we may find Q−1(y) by guessing at v(x) = b, finding a candidate
x = (y + b)h and checking the initial assumption that v(x) = b. Since we
repeat the high going-to-the-h-th-power procedure qr times, we are almost
forced to let q = 2 and make r as low as possible.

We observe that there are extraneous solutions just as in HFE. There-
fore, we must manufacture some redundancy in the form of a hash segment
or checksum. PMI (or MIAi as classified by [104]) looked very promising, es-
pecially since there are no unbrokenMQ-encryption-schemes with any speed
at that time. However, this was broken [54] via a surprising differential crypt-
analysis (cf. Sec. 5.3). Thus, internal perturbation is usually coupled with the
plus variation (Sec. 3.2).

Vinegar and Projection

The idea of Vinegar variables had been introduced earlier with UOV, and used
as a defense in Quartz. The idea is to use an auxilliary variable that occupies
only a small subspace of the input space (cf. Sec. 3.3). It was pointed out [38]
that Internal Perturbation is almost exactly equal to both Vinegar variables
and Projection, or fixing the input to an affine subspace. We basically set one,
two or more variables of the public key to be zero to create the new public
key. However, in the case of signature schemes, each projected dimension will
slow down the signing process by a factor of q.

We need to tell the reader why is Projection useful for us. Since (Sec. 5.3)
a structural attack is always by looking for an invariant or a symmetry, we
should break both. Restricting to a subspace of the original w-space breaks
a symmetry. Something like the Minus variant destroys an invariant. Hence
the use of projection by itself prevents some attacks, such as [46, 47, 55]. The
differential attack against C∗ (and �IC) derivatives uses the structure of the
big field L. Hence projection is expected to prevent such an attack [45].

Multivariate Public Key Cryptography 215

5 Standard Attacks

Solving an MPKC directly as an MQ problem instance is usually futile; the
cryptanalyst usually try to attack it as an extended IP problem, or to exploit
the algebraic structures to find extra relations to make the solution easier. We
hope to present enough on every approach but avoid too much detail.

5.1 Linearization Equations

A Linearization Equation is a relation between the components w and z that
always holds for a given set of public keys, such that when substituted with
the actual values of z we get an affine (linear) relation between the wi’s. Each
one effectively eliminates one variable from the system.

The prime example is the direct attack against C∗ found by Jacques
Patarin. As mentioned in Sec. 4.3, a principal algebraic property of the C∗

central map (cf. Eq. 15) is Eq. 17. Given Eq. 17. and that we know

1. L : x �→ xq2α

and L′ : y �→ yqα

are linear maps in K
n, and

2. x∗y in L = K
n is bilinear, i.e., there are n matrices M̄1, . . . , M̄n satisfying

x ∗L y =
(
xT · M̄1 · y, xT · M̄2 · y, . . . ,xT · M̄n · y

)
.

We find the following bilinear relations

xT ·M′
i · y := xT ·

(
LT M̄i − M̄iL

′) · y = 0, ∀i = 1 · · ·n. (28)

After we substitute w = M−1
S (x − cS) and z = MT y + cT we get (as found

by Patarin [81]) for this family of cryptosystem, due to the properties of the
map Q, the cipher satisfies n equations of the following form:

∑
aijziwj +

∑
bizi +

∑
cjwj + d = 0, (29)

which are called Patarin relations or bilinear relations. For any C∗ public key,
we can compute z from w, and substitute enough (w, z) pairs and solve for
aij , bi, cj , and d. A basis for the solution space gives us all the linearization
relations. If we given the ciphertext, i.e., the values of zi, these n bilinear
relations will produce linear equations satisfied by components of the the
plaintext w.

In similar systems like 3IC (Sec. 4.8), for example, Linearization Equations are
also present in large numbers as in X1Y2 = X2Y3 = X3Y1.

In most cases including 3IC and C∗, either there are not enough lineariza-
tion relations or some relations will become redundant after the substitution
of the zj , linearizations equations does not actually find all the wi, but it
narrows down the search space by enough that we are able to find wi easily.

216 Jintai Ding and Bo-Yin Yang

Unlocking via Bilinear Relations and Others

Normally, the number of linearization equations has to be high enough such
that the remaining variables can be guessed by brute force. It is shown in
[36, 37] that even when the number of linearization equations is not so large,
their existence can lead to defeat.

Ding and Schmidt noted that the low-rank central polynomials — often
rank 2 — in currently existing implementation schemes for the TTM cryp-
tosystem makes it possible to extend the linearization method by Patarin [81]
to attack all current TTM implementation schemes (cf. Sec. 5.1). For the
Ding-Schmidt attack, the number of linearization equations is not that high,
but the “lock polynomial” that defends a TTM instance against a simple rank
attack is eliminated.

HOLEs (Higher-Order Linearization Equations)

The discerning reader can figure out immediately that the linearization re-
lation does not actually need to be linear in z, only in w. A Higher-Order
Linearization Equation (HOLE) is a linearization relation that is higher de-
gree in the components of z. In particular, a SOLE (second order linearization
equation) would look like
∑
i<j

aijk zizjwk +
∑
i≤j

bij zizj +
∑

cij ziwj +
∑

di zi +
∑

ej wj + f = 0

It is natural for the reader to think that this shouldn’t happen very often, and
it doesn’t. However, the possibility that we can use such relations restricts our
options when designing systems, as witness the trap that befell MFE.

Let the associated matrix of a square matrix M (replace each entry
with the cofactor of that position) be M∗. Hence (det M)M−1 = M∗,
MM∗ = (det M)1x, where 1x is the identity matrix. With the same nota-
tions as Sec. 4.7, we set

B1 = A1A2 :=
[

Y4 Y5

Y6 Y7

]
, B2 = A1A3 :=

[
Y8 Y9

Y10 Y11

]
.

Hence (det B2B
∗
2) B1 = A−1

3 A2, or A3B
∗
2B1 = (detB2)A2, or (cf. [35])

(
X9 X10

X11 X12

)(
Y11 −Y9

−Y10 Y8

)(
Y4 Y5

Y6 Y7

)
= (Y8Y11 − Y9Y10)

(
X5 X6

X7 X8

)
. (30)

There are many ways to write down other equations that are homogeneous of
degree two in the Yi’s and linear in the Xi’s, but [101] showed some will lead
to redundant equations. A set sure to lead to independent linear relations is

(
X5 X6

X7 X8

)(
Y15 −Y14

−Y13 Y12

)(
Y8 Y10

Y9 Y11

)
= (Y12Y15 − Y13Y14)

(
X1 X2

X3 X4

)
(31)

Multivariate Public Key Cryptography 217

That’s at least 8k linear dependencies out of 12k variables. A cryptana-
lyst’s task has gotten much easier. [101] used another trick – the fact that
squaring is linear in a char-2 field – to get it down to 2k remaining variables
at most and concluded that solving for the remainder is easy. The existence
of linearization relations at a higher degree when the designers certainly were
trying their best to avoid such shows multivariate encryption schemes design
in the triangular style to be full of potholes and very difficult without a higher
algebraic breakthrough.

5.2 Lazard-Faugère System Solvers

To mount a direct attack, we try to solve the m equations P(w) = z in the
n variables w1, . . . wn. If m ≥ n, we are (over-)determined, which is good. If
m < n, we are underdetermined. For most cases we can’t do much more than
to guess at m− n variables randomly and continue with m = n [20].

Today, the difficulty of solving “generic” or randomly chosen systems of
nonlinear equations is generally conceded. However, it is hard to quantify
exactly how non-generic a system is. Furthermore, many techniques of alge-
braic cryptanalysis requires system-solving methods at the end for more or
less generic systems. So we must handle many instances of theMQ problem,
where we want to solve the system p1 = p2 = · · · = pm = 0, where each pi is
a quadratic polynomial in x = (x1, . . . , xn). Coefficients and variables are in
the field K = Fq.

At the moment, the best known methods to solve equations are the descen-
dants of Buchberger’s algorithm [12] to compute a Gröbner basis, first investi-
gated by Daniel Lazard’s group [67]. Macaulay generalized Sylvester’s matrix
to multivariate polynomials [69]. The idea is to construct a matrix whose lines
contain the multiples of the polynomials in the original system, the columns
representing a basis of monomials up to a given degree. It was observed by
D. Lazard [67] that for a large enough degree, ordering the columns according
to a monomial ordering and performing row reduction without column piv-
oting on the matrix is equivalent to Buchberger’s algorithm. Reductions to 0
correspond to lines that are linearly dependent upon the previous ones and
the leading term of a polynomial is given by the leftmost nonzero entry in the
corresponding line.

Lazard’s idea was rediscovered in 1999 by Courtois, Klimov, Patarin, and
Shamir [24] as XL. Courtois et al proposed several adjuncts [19,25,26] to XL.
One tweak called XL2 merits a mention as an easy to understand precursor
to F4. Another of these proved to be a real improvement for F4/F5 as well
as XL. This is FXL, where F means “fixing” (guessing at) variables.

Some time prior to this, J. -C. Faugère had proposed a much improved
Gröbner bases algorithm called F4 [48]. A later version, F5 [49], made head-
lines [50] when it was used to solve HFE Challenge 1 in 2002. Commercially,
F4 is only implemented in the computer algebra system MAGMA [17].

218 Jintai Ding and Bo-Yin Yang

How to solve likely non-generic systems better is an important topic that
we come back to in the last section. For the rest of this paper, we will denote
the monomial xb1

1 xb2
2 · · ·xbn

n by xb, and its total degree |b| = b1 + · · ·+bn. The
set of degree-D-or-lower monomials is denoted T = T (D) = {xb : |b| ≤ D}.
|T | is the number of degree ≤ D monomials and denoted T (D) = T .

XL

Multiply each equation pi, i = 1 · · ·m by all monomials xb ∈ T (D−2). Reduce
as a linear system of the equations R(D) = {xbpj(x) = 0 : 1 ≤ j ≤ m, |b| ≤
D−2}, with the monomials xb ∈ T (D) as independent variables. Repeat with
higher D until we have a solution, a contradiction, or reduce the system to a
univariate equation in some variable. The number of equations and indepen-
dent equations are denoted R(D) = R = |R| and I(D) = I = dim(spanR).

If we accept solutions in arbitrary extensions of K = Fq, then T =
(
n+D

D

)
regardless of q. However, most crypto applications require solutions in Fq only.
The above expression for T then only holds for large q, since we may identify
xq

i with xi and cut substantially the number of monomials we need to manage.
This “Reduced XL” (cf. C. Diem [27]) can lead to extreme savings compared
to “Original XL,” e.g., if q = 2, then T =

∑D
j=0

(
n
j

)
.

Proposition 1 ([5,106]). The number of monomials is T = [tD]
(1− tq)n

(1− t)n+1

which reduces to
(
n+D

D

)
when q is large. We can then find R = R(D) =

mT (D−2).

We note that the XL of [24, 25] terminates more or less reliably when
T − I ≤ min(D, q − 1), but sparse matrix computation is only possible when
T − I ≤ 1 [105]. Further, Lazard-Faugère methods work for equations of any
degree [6, 106]. If deg(pi) = d, we will only multiply the equation pi with
monomials up to degree D − d in generating R(D). The principal result is:

Proposition 2 ([106, Theorem 7]). If the equations pi, with deg pi := di,
and (*) relations R(D) has no dependencies except the obvious ones gener-
ated by pipj = pjpi and pq

i = pi, then

T − I = [tD] G(t) = [tD]
(1− tq)n

(1− t)n+1

m∏
j=1

(
1− tdj

1− tq dj

)
. (32)

There is always a certain degree DXL above which Eq. 32 and hence the
underlined condition (*) above cannot continue to hold if the system has
a solution, because the right hand side of Eq. 32 goes nonpositive. This is
DXL := min{D : [tD] G(t) ≤ 0}, called the degree of regularity for XL. If (*)
holds for as long as possible (which means for degrees up to DXL), we say
that the system is K-semi-regular or q-semi-regular (cf. [5, 106]).

Multivariate Public Key Cryptography 219

Diem proves [27] for char 0 fields, and conjectures for all K that (i) a
generic system (no algebraic relationship betweem the coefficients) is K-semi-
regular and (ii) if (pi)i=1···m are not K-semi-regular, I can only decrease from
the Eq. 32 prediction. Most experts seem to believe the conjecture [27] that
a random system behaves like a generic system with probability close to 1.

Corollary 1. T−I = [tD]
(
(1− t)−n−1

∏m
j=1

(
1− tdi

))
for generic equations

if D ≤ min(q,D∞
XL), where D∞

XL is the degree of the lowest term with a non-
positive coefficient in G(t) =

(
(1− t)−n−1

∏m
j=1

(
1− tdi

))
.

We would note that (F)XL can only be a solver and not a true Gröbner
basis method as are F4/F5. However, the analysis much parallels that of
F4/F5 by Dr. Faugère et al, hence our categorical name “Lazard-Faugère”
solvers.

Proposition 3 (XL with Wiedemann). With a sparse matrix solver like
the Wiedemann algorithm to solve the final matrix equation, XL has running
time

CXL � 3 t T 2 multiplications, (33)

where t is the average number of terms in an equation.

Gröbner Bases and F4/F5

XL2 [25] is a tweak of XL as follows: Tag each equation with its maximal
degree. Run an elimination on the system with monomials in degree-lex. In
the remaining (row echelon form) system, multiply by each variable x1, x2 · · ·
all remaining equations with the maximum tagged degree and eliminate again.
When we cannot eliminate all remaining monomials of the maximum degree,
increment the operating degree and reallocate more memory.

XL+XL2 can be considered a primitive or inferior matrix form of F4 or
F5 [3]. F4 inserts elimination between expansion stages, which compresses
the number of rows that needs to be handled. F5 is a further refinement of
F4. The set of equations is actually generated one by one (or the matrix row
by row). In the process, an algebraic criterion is used to determine, ahead
of an elimination process, whether a row will be reduced to zero or not and
only the meaningful rows are retained. A complication resulting from the
tagging is that the elimination must be done in a strictly ordered way. This
corresponds in the matrix form to no row exchanges in a Gaussian. There are
two separate degrees in F4/F5, an apparent “operating degree” DF4 and a
higher intrinsic degree equal to that of the equivalent XL system. For the full
power of F4 or F5, auxillary algorithms such as FGLM are needed. See [48,49]
for complete details.

Proposition 4 ([5]). If the eqs. pi are q-semi-regular, at the operating degree

220 Jintai Ding and Bo-Yin Yang

Dreg := min

{
D : [tD]

(1− tq)n

(1− t)n

m∏
i=1

(
1− tdi

1− tqdi

)
< 0

}

both F4-F5 will terminate. Note that by specializing to a large field, we find

D∞
reg := min

{
D : [tD] (1− t)−n

m∏
i=1

(
1− tdi

)
< 0

}
. (34)

If we compare this formula with Cor. 1, we see that the only difference is
a substitution of n for n + 1. In other words, we are effectively running with
one fewer variable in the large field case. This explains why F4-F5 can be
much faster than XL. However, the savings is smaller over small fields like
F2, and even for large fields, removing one variable may not be enough of
a savings, because the systems that we aim to solve will spawn millions of
monomials (variables). Eliminating in the usual way means that we will run
out of memory before time.

Proposition 5. F4/F5 runs in (ω := the “order of matrix multiplications”)

CXL ∝ cω Tω multiplications. (35)

According to the description we received from the MAGMA project and
Dr. Faugère, even though memory management is very critical, elimination is
still relatively straightforward in current implementations of F4-F5, and in the
process we see reasonably dense matrices, not extremely sparse ones. All said,
F4-F5 are still the most sophisticated general system-solving algorithms today.
The famous complete solution of HFE challenge 1 is a run of F5, specialized
and optimized for F2, which took 4 days on a 4-CPU Alpha workstation. While
the HFE challenge 1 was an instance with a particularly low rank (4), it was
usually argued that it should always break HFE for practical r [60]. Recently,
it is disputed [40] for odd char K. We await more developments.

5.3 Differential Attacks

Structural attack on MPKC are of two related types:

Invariants: invariants (mostly, subspaces) that can be guessed.
Symmetries: transformations that leave certain quantities unchanged and

hence can be computed by a system of equations.

Of course, these two are related, given that invariants are defined according
to symmetry. Previous designers sometimes neglected the importance of sym-
metry. In this section we present the symmetry or invariants used in the new
differential attacks on the C∗ family of cryptosystems as exemplified by the
Differential Attacks, from the school of Stern at the École Normale Supérieure.

Multivariate Public Key Cryptography 221

Attacking Internal Perturbations

The cryptanalysis of PMI was a novelty for a technique usually associated
with symmetric key cryptography, since PMI was a PKC. We use the idea
that for a randomly chosen b, the probability is q−r that it lies in the kernel
K of the linear part of v. When that happens, v(x + b) = v(x) for any x.
Since q−r is not too small, if we can distinguish between a vector b ∈ T−1K
(back-mapped into x-space) and b �∈ T−1K, we can bypass the protection of
the perturbation, find our bilinear relations and accomplish the cryptanalysis.

In [54], Fouque, Granboulan and Stern built a one-sided distinguisher using
a test on the kernel of the polar form or symmetric difference DP(w,b) =
P(b + w) − P(b) − P(w). We say that t(b) = 1 if dim kerw DP(b,w) =
2gcd(n,α)−1, and t(b) = 0 otherwise. If b ∈ K, then t(b) = 1 with probability
one, otherwise it is less than one. In fact if gcd(n, α) > 1, it is is an almost
perfect distinguisher. If not, we can employ two other tricks. In the more
important of the two, we observe K is a vector space, so Pr(t(b + b′) =
0|t(b′) = 0) will be relatively high if b ∈ K and relatively low otherwise. We
omit the gory details and refer the reader to [54] for the complete differential
cryptanalysis.

This brilliantly executes a powerful attack. But there is apparently a sur-
prisingly simple defense dating back to [85] (which introduced SFLASH). By
using the “plus” (+) variant, i.e., appending a random quadratics to P, enough
false positives are generated to overwhelm the distinguishing test of [54]. The
extra equations also serve as a distinguisher when there are extraneous solu-
tions.

Again, we do not include all the details. Basically, the more “plus” equa-
tions, the less discriminating power of the abovementioned test. Based on
empirical results of Ding and Gower [32], when r = 6, a = 12 should be suffi-
cient, and a = 14 would be a rather conservative estimate for the amount of
“plus” needed to mask the PMI structure.

The Skew Symmetric Transformation

The symmetry found by Stern etc. can be explained by considering the case of
C∗ cryptosystem. We recollect that the symmetric differential of any function
G, defined formally just like in Eq. 36:

DG(a,x) := G(x + a)−G(x)−G(a) + G(0).

is bilinear and symmetric in its variables a and x. In the first version of this
attack [47], we look at the the differential of the public map P, and look for
so-called skew-symmetric maps with respect to this bilinear function, namely,
the linear maps M such that

DP(c,M(w)) + DP(M(c),w) = 0

222 Jintai Ding and Bo-Yin Yang

The reason that this works is that the central map Q and the public key,
which encapsulates the vital information in the central map, unfortunately has
very strong symmetry in the sense that all the differentials from these maps
share some common nontrivial skew-symmetric map M . Since Q(x) = x1+qα

,
its differential is

DQ(a,x) = aqα

x + axqα

.

As pointed out in [47], the maps M skew-symmetric with respect to this
DQ(a,x) are precisely those induced from the multiplication by some element
ζ satisfying the condition

ζqα

+ ζ = 0.

Clearly this skew-symmetry will hold if we translate it into w-space. Fur-
ther it can be seen that the skew-symmetry continues to hold even when we
discard some components of P. In terms of the public key, this means that if
we write

DP(c,w) := (cT H1w, cT H2w, . . . , cT Hmw)

and try to solve MT Hi + HiM = 0 for all i = 1 · · ·m simultaneously, we
should find just k-multiples of the identity if n and α are coprime, and a
d-dimensional subspace in the space of linear maps if d = gcd(n, α) > 1.

For a randomly chosen map G, it should be expected that only trivial
solutions M = u1n, where u ∈ K, will satisfy this condition. This means that
there is a very strong condition on C∗− cryptosystems. This symmetry can
be utilized to break C∗− systems for which d = gcd(n, α) > 1.

The Multiplicative Symmetry

We call the second symmetry the multiplicative symmetry, which again comes
from the differential DP(c,w). Let ζ be an element in the big field L. Then
we have

DQ(ζ · a, x) + DQ(a, ζ · x) = (ζqα

+ ζ)DQ(a, x).

This is also a very strong symmetry, namely it implies that if

Mζ = M−1
S ◦ (X �→ ζX) ◦MS

is the linear map in K
n corresponding to multiplication by ζ, then

span{MT
ζ Hi + HiMζ : i = 1 · · ·n} = span{Hi : i = 1 · · ·n}.

I.e., the space spanned by the quadratic polynomials from the central map is
invariant under the skew-symmetric action as defined above.

Clearly the public key of C∗− inherits some of that symmetry. Now not
every skew-symmetric action by a matrix Mζ that corresponds to an L-
multiplication that result in MT

ζ Hi+HiMζ being in the span of the public-key
differential matrices, because S := span{Hi : i = 1 · · ·n − r} as compared to

Multivariate Public Key Cryptography 223

span{Hi : i = 1 · · ·n} is missing r of the basis matrices. However, as the au-
thors of [46] argued heuristically and backed up with empirical evidence, if we
just pick the first three MT

ζ Hi + HiMζ matrices, or any three random linear
combinations of the form

∑n−r
i=1 bi(MT

ζ Hi + HiMζ) and demand that they fall
in S, then

1. there is a good chance to find a nontrivial Mζ satisfying that requirement;
2. this matrix really correspond to a multiplication by ζ in L;
3. applying the skew-symmetric action of this Mζ to the public-key matrices

leads to other matrices in span{Hi : i = 1 · · ·n} that is not in S.

Why three? There are n(n − 1)/2 degrees of freedom in the Hi, so to
form a span of n− r matrices takes n(n− 3)/2 + r linear relations among its
components (n− r and not n because if we are attacking C∗−, we are missing
r components of the public key). There are n2 degrees of freedom in an n×n
matrix U . So, if we take a random public key, it is always possible to find a
U such that

UT H1 + H1U, UT H2 + H2U ∈ S = span{Hi : i = 1 · · ·n− r},

provided that 3n > 2r. However, if we ask that

UT H1 + H1U, UT H2 + H2U, UT H3 + H3U ∈ S,

there are many more conditions than degrees of freedom, hence it is unlikely to
find a nontrivial solution for truly random Hi. Conversely, for a set of public
keys from C∗, tests [46] shows that it almost surely eventually recovers the
missing r equations and break the scheme. The only known attempted defense
is [45].

5.4 Rank Attacks

We can consider Rank attacks to cover the UOV attacks (next section). But
here we only cover attacks that specifically targets high or low rank. Let Hi be
the symmetric matrix corresponding to the quadratic part of zi(w). Without
loss of generality, we may let the fewest number of appearances of all variables
in the cross-terms of the central equations be the last variable xn appearing
s times.

High Rank Attacks

Since rank attack often meant attacking low rank, some also call the High
Rank attack the Dual Rank Attack. The High Rank Attack first appeared
with [18] where Coppersmith et al defeated a Triangular construction.

Algorithm 1 High Rank Attack of Goubin-Courtois and Yang-Chen [58,
107]:

224 Jintai Ding and Bo-Yin Yang

1. Compute the differential P(w + c)−P(w)−P(c) and take its j-th com-
ponent (which is bilinear in w and c) as cT Hjw. Hk is representing the
quadratic crossterms in the k-th polynomial of the public key. Note that
the Hi are symmetric, so if char K = 2, xT Hix = 0. This was not made
clear in [58].

2. Form an arbitrary linear combination H =
∑

i αiHi. Find V = ker H.
3. When dim V ≥ 1, set (

∑
j λjHj)V = {0} and check if the solution set V̂

of the (λi) form a subspace dimension m − s. Note: a matrix in Kn×n

have at most n different eigenvalues, so at least 1 − (n/q) of the time it
does.

4. With probability q−s we have found a small subspace representing xn.
For an UOV construction, we have found V corresponding to constant
x1 · · ·xvu

.

As each trial run consists of running an elimination and some testing, we
can realistically do this with ∼

(
sn2 + n3

6

)
qs field multiplications, by taking

linear combinations from only (s + 1) of the matrices Hi and hope not to get
too unlucky. An upper bound is

[
mn2 + n3

6 + n
q (m3/3 + mn2)

]
qs.

The above formulation of the high rank attack works for “plus”-modified Trian-
gular systems; it is also easier to understand than the [18] formulation. Against
UOV, we might possibly do even better on this attack with differentials [44].

MinRank Attack

We first describe the Goubin-Courtois version.

Algorithm 2 [58] Let r be the smallest rank in linear combinations of central
equations, which without loss of generality we take to be the first central equa-
tion itself. Goubin and Courtois outline how to find the smallest ranked combi-
nation (and hence break Triangle-Plus-Minus) in expected time O(q�

m
n �rm3):

1. Take P =
∑m

i=1 λiHi, an undetermined linear combination of the sym-
metric matrices representing the homogeneous quadratic portions of the
public keys.
A quadratic Cabxaxb + Ccdxcxd + · · · with all indices distinct will have
a corresponding symmetric matrix with kernel {x : 0 = xa = xb =
xc = xd = · · · }. We will call this the kernel of the quadratic and use the
shorthand ker yi (or kerx yi to specify what space). With p cross-terms with
distinct indices, the rank of the matrix is 2p. For example, in the scheme
TTS/2′, the first equation is y8 = x8 +a8x0x7 +b8x1x6 +c8x2x5 +d8x3x4.
Hence kerx y8 = {x : x0 = · · · = x7 = 0} for TTS/2′.

2. Guess at a random k-tuple (w1, . . . , wk) of vectors in K
n, where k = �m

n �.
Set Pw1 = · · · = Pwk = 0 and solve for λi via Gaussian elimination.
If uniquely solvable P is likely the quadratic part of y1, the first central
equation.

Multivariate Public Key Cryptography 225

3. Assume the matrix corresponding to y1 has the minrank of r, then its
kernel (the inverse image H−1

1 (0)) has dimension n − r, hence when we
guess at (w1, . . . , wk) randomly, they have a probability of at least q−kr to
be all in H−1

1 (0). This P is the quadratic portion of y1 and the coefficients
λi the row of M−1

T (up to a factor).

Yang and Chen have extended the effectiveness of this attack [107]. Such that
if c mostly distinct kernels have the same r, we can accomplish our task in 1/c
the time. In an exaggerated example, against UOV [9, 44], we can substitute
r with v1 + 1 if the latter is smaller.

MinRank Attacks on Big-Field Schemes

The break of HFE challenge 1 by Faugère and Joux [50], a direct solution of
the 80 equations in 80 variables, is not the first serious attempt on HFE.

That honor belongs rather to a rank-based attack. Kipnis and Shamir
suggested [66] the idea first. The attack proceeds by moving the problem back
to the extension field, where all the underlying structure can be seen. This is
a very natural approach if we intend to exploit the design structure of HFE
in the attack. To put it simply: the minimum rank of linear combinations of
the Hi should be exactly r (as in Sec. 4.3). This is the MinRank problem [13]
and is in general exponential, but can be easier if r is small.

Kipnis and Shamir later suggested to take an linear combination of the
Hi and take all (r + 1)× (r + 1) submatrices to have determinant zero. This
clearly leads to a huge assortment of equations. To solve this system, they
introduce an idea which they call relinearization, which led to the well-known
XL paper [24]. It has been argued that using a Lazard-Faugère solver on this
system of equations is effective [23] and equally effective as the direct attack.
Sec. 5.2 has more on equation-solving.

5.5 Distilling Oil from Vinegar and Other Attacks on UOV

To a forge a signature for a UOV scheme as in Sec. 4.4, one needs to solve the
equation P(w) = y. When o = v as with the original Oil-and-Vinegar, this
turned out to be fairly easy due to the attack by Kipnis and Shamir [65].

The basic idea here is that one treats each component yi = pi(w) of the
public key P as a bilinear form. Equivalently, take their associated symmetric
matrices via the symmetric differential as follows:

Dpi(w, c) := pi(w + c)− pi(w)− pi(c) + pi(0) := cT Hiw, (36)

A basic fact of OV: each matrix Mi (cf. Eq. 13) is in the rough form form of[
∗ ∗
∗ 0

]
but not the matrices Hi. This reduces a cryptanalysis to the algebraic

problem of finding a basis change for a set of bilinear forms into a common
form.

226 Jintai Ding and Bo-Yin Yang

The problem is interesting enough that we will sketch you one solution.
Recall that v = o = n/2 = m. We will call the vectors x that have all vinegar
coordinates x1, . . . , xv equal to zero, to be the Oil Space O, i.e. the collection

of x-vectors looking like
[

0
∗

]
, and similarly a x-vector in the Vinegar Space V

has all oil coordinates xv+1, . . . , xn equal to zero and looks like
[
∗
0

]
. Clearly,

if each Mi is nonsingular, we have
[
∗ ∗
∗ 0

] [
0
∗

]
=
[
∗
0

]
, or MiO = V ∀i.

Hence, we have
(
M−1

j Mi

)
O = O. It then follows that
(
H−1

j Hi

)
(S−1O) = (S−1O),

which in English states that any H−1
j Hi has the common invariant subspace

(finding which is a known problem) of S−1O, or the oil subspace expressed
in w coordinate form. Knowing S−1O is sufficient to find an equivalent form
for S. Later it was shown by Kipnis et al [64] that the same argument works
if v < o; even if v > o it can be done in time directly proportional to qv−o,
and hence v− o cannot be too small. When there are two or three times more
vinegar variables than oil variables the method appears to be secure, despite
the claims of [11].

Reconciliation

There is more than the Kipnis-Shamir attack to transform the public maps of
an UOV scheme to the Eq. 13 Common form. We could instead [44] attempts
to find a sequence of change of basis that let us invert the public map, as in
an improved brute force attack.

First, no matter what MT is, it won’t change the basic shape, so we let T
be the identity map for the moment. What can S be like? Suppose we pick
MS as totally random, most often (see below) it decompose to

MS :=
[
∗v×v ∗v×o

∗o×v ∗o×o

]
=
[
1v×v ∗v×o

0o×v 1o×o

] [
∗v×v 0v×o

∗o×v ∗o×o

]
(37)

where 1 means identity matrix, 0 means just zeros and ∗ means random or
anything. In fact, this decomposition always hold unless the lower-right o× o

submatrix is singular. It should be clear that the
[
∗v×v 0v×o

∗o×v ∗o×o

]
portion of MS ,

as a coordinate change leaves the Mi’s with the same shape. I.e., if we can

find the correct
[
1v×v ∗v×o

0o×v 1o×o

]
portion and perform the basis change in reverse,

we will again make the resulting public map into the same form (all zeroes

Multivariate Public Key Cryptography 227

on the lower right) and be easily inverted. Hence, no more security at all.
More about this phenomenon (“equivalent keys”) in MPKCs can be found in,
say, [103].

Let this essential part of MS to be recreated be P . I.e., the linear transfor-
mation w �→ x = Pw create all zeroes on the lower right. We can decompose
this P into a product of P := Pv+1Pv+2 · · ·Pn, where each matrix look like

Pn = 1n +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 a1

0 · · · 0 a2

...
. . .

...
...

0 · · · 0 av

0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; Pn−1 = 1n +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 a′
1 0

0 · · · 0 a′
2 0

...
. . .

...
...

...
0 · · · 0 a′

v 0
0 · · · 0 0 0
...

. . .
...

...
...

0 · · · 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; · · ·

Indeed, the multiplication is actually commutative among the various Pi’s. Let
us then start with the differential matrices Hi and simultaneously transform
them to make their lower-right corner a square of 0’s using exactly such Pi’s.

Algorithm 3 (UOV Reconciliation Attack) The following is an attack
on a UOV scheme with o oil and v = n − o vinegar variables (which has the
smaller indices):

1. Perform basis change wi := w′
i − λiw

′
n for i = 1 · · · v, wi = w′

i for i =
v + 1 · · ·n. Evaluate z in w′.

2. Let all coefficients of (w′
n)2 be zero and solve for the λi. We may use any

method such as F4/F5 or FXL. There will be m equations in v unknowns.
3. Repeat the process to find Pn−1. Now we set w′

i := w′′
i − λiw

′′
n−1 for

i = 1 · · · v, and set every (w′′
n−1)

2 and w′′
nw′′

n−1 term to zero (i.e., more
equations in the system) after making the substitution. This time it should
be faster since we solve 2m equations in v unknowns.

4. Continue in this fashion for Pn−2, . . . , Pv+1 (easier, even more equations).

In the state-of-the-art system-solving today, we can expect the complexity
to be determined in solving the initial system. Hence, if v < m, solving m
equations in v variables will be easier than m equations in n equations.

Proposition 6. The Reconciliation Attack fails with probability ≈ 1
q−1 .

Proof (Sketch). Provided that lower-right o × o submatrix of MS is non-
singular, we can see that the construction of Pn will eliminate the quadratic
term in the last variable. Pn−1 will eliminate all quadratic terms in the last
two variables, and so on, and each sequential construction will not disturb
the structure built by the prior transformations. The number of nonsingular
k× k matrices over Fq is (qk − 1)(qk − q)(qk − q2) · · · (qk − qk−1), because the
first row has 1 possibility to be zero, the second row q possibilities to be a

228 Jintai Ding and Bo-Yin Yang

multiple of the first, the third row q2 possibilities to be dependent on the first
two, etc., so the chance that the above attack works is roughly
(

1− 1
q

)(
1− 1

q2

)
· · ·
(

1− 1
qk

)
> 1−

(
1
q

+
1
q2

+ · · ·+ 1
qk

)
> 1− 1

q − 1
.

Attacking Rainbow and TTS

Alg. 3 is just a unbalanced oil and vinegar attack. Rainbow systems have
multiple layers (cf. 4.4). So the symmetric matrix Mi for the quadratic part
of a Rainbow central polynomial qi looks more like

Mi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
(i)
11 · · · α

(i)
1v 0 · · · 0

...
. . .

...
...

. . .
...

α
(i)
v1 · · · α

(i)
vv 0 · · · 0

0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

if i ≤ m− o; (38)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
(i)
11 · · · α

(i)
1v α

(i)
1,v+1, · · · α

(i)
1n

...
. . .

...
...

. . .
...

α
(i)
v1 · · · α

(i)
vv α

(i)
v,v+1, · · · α

(i)
vn

α
(i)
v+1,1, · · · α

(i)
v+1,v, 0 · · · 0

...
. . .

...
...

. . .
...

α
(i)
n1 · · · α

(i)
nv 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

if i > m− o.

I.e., the last o equations looks like Eq. 19, but the initial m−o equations only
have non-zero entries in the upperleft submatrix. The attack below exploits
this. Actually it applies to all final schemes with a final UOV booster stage,
since we do not use in the attack the property that the first m− o usually are
UOV matrices themselves, i.e., has a block of zeros on the lower right.

At this point, we should no longer consider T as the identity. Let us think
about what the matrix MT does in Rainbow. At the moment that we distill
the Pn portion out, m − o of the new Mi’s should show a zero last column.
However we don’t; MT mixes the Mi’s together so that they in fact don’t – we
will see most of the time only the lower right entry as zero. But if we take any
o + 1 of those last columns, there will be a non-trivial linear dependency. We
can verify that by setting one of those columns as the linear combination as
the other o, the resulting equations are still quadratic!

[This idea was first mentioned by Y.-H. Hu in a private discussion.]

Algorithm 4 (Rainbow Band Separation) The Reconciliation attack
may be extended for a Rainbow scheme where the final stage has o oil and
v = n− o vinegar variables (which has the smaller indices):

Multivariate Public Key Cryptography 229

1. Perform basis change wi := w′
i − λiw

′
n for i = 1 · · · v, wi = w′

i for i =
v + 1 · · ·n. Evaluate z in w′.

2. Find m equations by setting all coefficients of (w′
n)2 to be zero; there are

v variables in the λi’s.
3. Set all cross-terms involving w′

n in z1−σ
(1)
1 zv+1−σ

(1)
2 zv+2−· · ·−σ

(1)
o zm to

be zero and find n−1 more equations. Note that (w′
n)2 terms are assumed

gone already, so we can no longer get a useful equation.
4. Solve m + n− 1 quadratic equations in o + v = n unknowns. We may use

any method (e.g., F4 or XL).
5. Repeat the process to find Pn−1. Now set w′

i := w′′
i − λiw

′′
n−1 for i =

1 · · · v, and set every (w′′
n−1)

2 and w′′
nw′′

n−1 term to zero after making the
substitution. Also set z2 − σ

(2)
1 zv+1 − σ

(2)
2 zv+2 − · · · − σ

(2)
o zm to have a

zero second-to-last column. This time there are 2m + n− 2 equations in n
unknowns.

6. Continue similarly to find Pn−2, . . . , Pv+1 (now easier with more equa-
tions).

To repeat, the Alg. 4 attack works for all constructions with a
UOV final stage, including all Rainbow and TTS constructions. That
explains why the current proposed parameters of Rainbow [44] looks like those
in Sec. 3.1.

6 The Future

In the last ten years, MPKCs have seen very active and fast developments,
producing many interesting new ideas, tools and constructions in both theory
and its applications. Due to the consideration of quantum computer threat and
the potential of its applications in ubiquitous computing devices, we foresee
that the research in MPKCs will move on to the next level in the next decade.
Here, we would like present some of our thoughts on the future of the research
in multivariate public key cryptography.

6.1 Construction of MPKCs

The real breakthrough of MPKCs should be attributed to the work by Mat-
sumoto and Imai in 1988 [70], a fundamental catalyst. The new idea of Mat-
sumoto and Imai should be called the “Big Field” construction, where we build
first a map in a degree n extension field (Big Field) L over a small finite field
K, then move it down to a vector space over the small finite field with the
identification map φ : L −→ K

n, the standard K-linear isomorphism between
L and K

n.
Great efforts are still being devoted to developing MPKCs using this idea

[101], [42], [35] and [55]. This is also the idea behind the new Zhuang-Zi
algorithm [33], where we lift the problem of solving a set of multivariate

230 Jintai Ding and Bo-Yin Yang

L
Q−−−−−−−→ L

⏐⏐⏐⏐C

D⏐⏐⏐⏐
φ φ−1

⏐⏐⏐⏐C

D⏐⏐⏐⏐
φ φ−1

K
n Q−−−−−−−→ K

n

Fig. 1. Identifying maps on a K-vector space with those on extension fields L/K.

polynomial equations over a small finite field to solving a set of single variable
equations over an extension field. Recently, a new idea of reviving HFE using
field of odd characteristics was proposed [40].

What we have seen is that what really drives the development of the
designs in MPKCs are indeed new mathematical ideas that bring new mathe-
matical structures and insights in the construction of MPKCs. We believe the
mathematical idea we have used are just some of the very basic ideas devel-
oped in mathematics and there is great potential in pushing this idea further
using some of the more sophisticated mathematical constructions in algebraic
geometry. Therefore, there is great potential to study and search for further
mathematical ideas and structures that could be used to construct MPKCs.
One particularly interesting problem would be to make the TTM cryptosys-
tems work where a systematic approach should be established. This definitely
demands some deep insights and the usage of some intrinsic combinatorial
structures from algebraic geometry.

From the point of view of practical applications, there are two critical
problems that deserve more attention in designing new MPKCs. The first
one is the problem of the public key size. For a MPKC with m polynomials
and n variables, the public key size normally has m(n + 2)(n + 1)/2 terms,
where m is at least 25 and n is at least 30. Compared with all other public key
cryptosystems, for example RSA, one disadvantage is that in general a MPKC
has a relatively large public key (tens of Kbytes). This is not a problem from
the point view of modern computers, such as the PCs we use, but it could be a
problem if we want to use it for small devices with limited memory resources.
This would also be a problem if a device with limited communication abilities
needs to send the public key for each transaction, for example in the case of
authentication.

One idea is to do something like in [96], where a cryptosystem is built
with a very small number of variables (5) but with a higher degree (4) over
a much bigger base field (32 bits). In other words, we can try high degree
constructions with fewer variables but over a much bigger field. In general,
any new idea for how to reduce the public key size or in how to manage it in
practical applications would be really appreciated.

A second idea is that of using sparse polynomials constructions. The first
explicit usage of such constructions should be attributed to the works of Yang

Multivariate Public Key Cryptography 231

and Chen [16]. But some of the early such constructions were broken exactly
because of the usage of sparse polynomials [41], which brought unexpected
weakness to the system. However, we believe that the idea of using sparse
polynomials is an excellent idea, especially from the point view of practical
applications. From the theoretical point of view, one critical question that
needs to be addressed carefully is that of whether or not the use of specific
sparse polynomials has any substantial impact on the security of the given
cryptosystem. The answer to this problem will help us to establish the prin-
ciples for how we should choose sparse polynomials that do not affect the
security of the given cryptosystem. An unexpected consequence of answering
this problem is that it might also shed some light on the problem mentioned
above about reducing the size of the public key.

6.2 Attack on MPKCs and Provable Security

Several major methods have been developed to attack the MPKCs. They can
be roughly grouped into the following two categories.

• Structure-based – These attacks rely solely on the specific structures of
the corresponding MPKC. Here, we may use several methods, for example,
the rank attack, the invariant subspace attack, the differential attack, the
extension field structure attack, the low degree inverse, and others.

• General Attack – This attack uses the general method of solving a set
of multivariate polynomial equations, for example using the Gröbner basis
method, including the Buchberger algorithm, its improvements (such as
F4 and F5), the XL algorithm, and the new Zhuang-Zi algorithm.

Of course, we may also combine both methods to attack a specific MPKC.
It is clear that for a given multivariate cryptosystem, we should first try the

general attack and then we may then look for methods that use the weaknesses
of the underlying structure.

Though a lot of work has been done in analyzing the efficiency of different
attacks, we still do not fully understand the full potential or the limitations
of some of the attack algorithms, such as the MinRank algorithm, Gröbner
basis algorithms, the XL algorithm, and the new Zhuang-Zi algorithm. For
example, we still know very little about how these general attacks will work
on the internal perturbation type systems such as PMI+ [32, 34], though we
do have some experimental data to give us some ideas about how things work.
Another interesting question is to find out exactly why and how the improved
Gröbner basis algorithms like F4 and F5 work on HFE and its simple variants
with low parameter D [49, 50]. The question is why the hidden structure of
HFE can be discovered by these algorithms.

Much work is still needed to understand both the theory and practice of
how efficiently general attack algorithms work and how to implement them
efficiently. From the theoretical point of view, to answer these problems, the

232 Jintai Ding and Bo-Yin Yang

foundation again lies in modern algebraic geometry as in [27]. One critical
step would be to prove the maximum rank conjecture pointed out in [27],
which is currently the theoretical basis used to estimate the complexity of the
XL algorithm and the F4 and F5 algorithms for example. Another interesting
problem is to mathematically prove some of the commonly used complexity
estimate formulas in [105].

One more important problem we would like to emphasize is the efficient
implementation of general algorithms. Even for the same algorithm, the effi-
ciency of various implementations can be substantially different. For example,
one critical problem in implementing F4 or F5, or the XL type algorithms, is
that the programs tend to use a large amount of memory for any nontrivial
problem. Often the computation fails not because of time constraints but be-
cause the program runs out of memory. Therefore, efficient implementations
of these algorithms with good memory management should be studied and
tested carefully.

Chen, Yang, and Chen [109] developed a new XL implementation with
a Wiedemann solver that is probably as close to optimal as might be pos-
sible. They showed that in a few cases the simple FXL algorithm can even
outperform the more sophisticated F4 and F5 algorithms. More new ideas of
improving the algorithms, such as using the concept of mutant [30, 31], are
also being developed. In general, any new idea or technique in implementing
these algorithms efficiently could have very serious practical implications.

In order to convince industry to actually use MPKCs in practical appli-
cations, the first and the most important problem is the concern of security.
Industry must be convinced that MPKCs are indeed secure. A good answer
to this problem is to prove that a given MPKC is indeed secure with some
reasonable theoretical assumptions; that is, we need to solve the problem of
provable security of MPKCs. From this point of view, the different approaches
taken in attacking MPKCs present a very serious problem in terms of prov-
able security. Many people have spent a considerable amount of time thinking
about this problem, but there are still no substantial results in this area. One
possible approach should be from the point view of algebraic geometry; that
is, we need to study further all the different attacks and somehow put them
into one theoretical framework using some (maybe new) abstract notion. This
would allow us to formulate some reasonable theoretical assumptions, which
is the foundation of any type of provable security. This is likely a very hard
problem.

6.3 Practical Applications

Currently, a very popular notion in the computing world is the phrase “ubiq-
uitous computing.” This phrase describes a world where computing in some
form is virtually everywhere, usually in the form of some small computing
device such as RFID, wireless sensors, PDA, and others. Some of these de-
vices often have very limited computing power, batteries, memory capacity,

Multivariate Public Key Cryptography 233

and communication capacity. Still, because of its ever growing importance in
our daily lives, the security of such a system will become an increasingly im-
portant concern. It is clear that public key cryptosystems like RSA cannot be
used in these settings due to the complexity of the computations.

In some way, MPKCs may provide an alternative in this area. In particular,
there are many alternative multivariate signature schemes such as Rainbow,
TTS and TRMC. Recently [4, 110] it is shown that systems like TTS and
Rainbow have great potential for application in small computing devices. Due
to its high efficiency, a very important direction in application of MPKCs is to
seek new applications where the classical public key cryptosystems like RSA
cannot work satisfactorily. This will also likely be the area where MPKCs will
find a real impact in practical applications.

6.4 Broad Connections

As MPKCs develops, it starts to interact more and more with other topics,
one example is the algebraic attacks. Algebraic attacks are a very popular
research topic in attacking symmetric block ciphers like AES [26] and stream
ciphers [2] and analyzing hash functions [94]. We would like to point out that
the origin of such an idea is actually from MPKCs, and in particular Patarin’s
linearization equation attack method. From recent developments we see that
there is a trend that the research of MPKCs will interact very closely with that
in symmetric ciphers and stream ciphers. We believe some of the new ideas
we have seen in MPKCs will have much more broad applications in the area
of algebraic attacks. The idea of multivariate construction was also applied
to the symmetric constructions. Recently, new methods had been proposed
to build secure hash functions using random quadratic maps [43] [10]. These
constructions are very simple and therefore easy to study. They may also
have very good property in terms of provable security. Similar ideas may
have further applications in designing stream ciphers and block ciphers. We
foresee that the theory of functions on a space over a finite field (multivariate
functions) will play an increasingly important role in the unification of the
research in all these related areas.

It is evident that the research in MPKCs has already presented new math-
ematical challenges that demand new mathematical tools and ideas. In the
future, we expect to see a mutually beneficial interaction between MPKCs
and algebraic geometry to grow rapidly. We further believe that MPKCs will
provide excellent motivation and critical problems in the development of the
theory of functions over finite fields. There is no doubt that the area of MPKC
will welcome the new mathematical tools and insights that will be critical for
its future development.

234 Jintai Ding and Bo-Yin Yang

References

1. Akkar, M.L., Courtois, N., Duteuil, R., and Goubin, L.: A fast and secure
implementation of Sflash. In Y. Desmedt, editor, Public Key Cryptography -
PKC 2003: 6th International Workshop on Practice and Theory in Public Key
Cryptography, Miami, FL, USA, January 6-8, 2003, volume 2567 of LNCS,
pages 267–278. Springer (2003).

2. Armknecht, F. and Krause, M.: Algrebraic attacks on combiners with memory.
In Crypto 2003, August 17-21, Santa Barbara, CA, USA, volume 2729 of LNCS,
pages 162–176. Springer (2003).

3. Ars, G., Faugère, J.C., Imai, H., Kawazoe, M., and Sugita, M.: Comparison
between XL and Gröbner Basis algorithms. In AsiaCrypt [88], pages 338–353.

4. Balasubramanian, S., Bogdanov, A., Rupp, A., Ding, J., and Carter, H.W.:
Fast multivariate signature generation in hardware: The case of rainbow. Poster
Session, FCCM 2008.

5. Bardet, M., Faugère, J.C., and Salvy, B.: On the complexity of Gröbner ba-
sis computation of semi-regular overdetermined algebraic equations. In Pro-
ceedings of the International Conference on Polynomial System Solving, pages
71–74 (2004). Previously INRIA report RR-5049.

6. Bardet, M., Faugère, J.C., Salvy, B., and Yang, B.Y.: Asymptotic expansion
of the degree of regularity for semi-regular systems of equations. In P. Gianni,
editor, MEGA 2005 Sardinia (Italy) (2005).

7. Berbain, C., Billet, O., and Gilbert, H.: Efficient implementations of multivari-
ate quadratic systems. In Proc. SAC 2006. Springer (in press, dated 2006-09-
15).

8. Berlekamp, E.R.: Factoring polynomials over finite fields. Bell Systems Tech-
nical Journal, 46:1853–1859 (1967). Republished in: Elwyn R. Berlekamp.
"Algebraic Coding Theory". McGraw Hill, 1968.

9. Billet, O. and Gilbert, H.: Cryptanalysis of rainbow. In Security and Cryptog-
raphy for Networks, volume 4116 of LNCS, pages 336–347. Springer (2006).

10. Billet, O., Robshaw, M.J.B., and Peyrin, T.: On building hash functions from
multivariate quadratic equations. In J. Pieprzyk, H. Ghodosi, and E. Dawson,
editors, ACISP, volume 4586 of Lecture Notes in Computer Science, pages
82–95. Springer (2007). ISBN 978-3-540-73457-4.

11. Braeken, A., Wolf, C., and Preneel, B.: A study of the security of Unbalanced
Oil and Vinegar signature schemes. In The Cryptographer’s Track at RSA
Conference 2005, volume 3376 of Lecture Notes in Computer Science, pages
29–43. Alfred J. Menezes, ed., Springer (2005). Also at http://eprint.iacr.
org/2004/222/.

12. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. Ph.D. thesis, Inns-
bruck (1965).

13. Buss, J.F., Frandsen, G.S., and Shallit, J.O.: The computational complexity of
some problems of linear algebra. Research Series RS-96-33, BRICS, Depart-
ment of Computer Science, University of Aarhus (1996). http://www.brics.
dk/RS/96/33/, 39 pages.

14. Cantor, D.G. and Zassenhaus, H.: A new algorithm for factoring polynomials
over finite fields. Mathematics of Computation, 36(587–592) (1981).

15. Chen, J.M. and Moh, T.T.: On the Goubin-Courtois attack on TTM. Cryp-
tology ePrint Archive (2001). Http://eprint.iacr.org/2001/072.

Multivariate Public Key Cryptography 235

16. Chen, J.M. and Yang, B.Y.: A more secure and efficacious TTS signature
scheme. In J.I. Lim and D.H. Lee, editors, ICISC, volume 2971 of LNCS,
pages 320–338. Springer (2003). ISBN 3-540-21376-7.

17. Computational Algebra Group, University of Sydney: The MAGMA Compu-
tational Algebra System for Algebra, Number Theory and Geometry. http:
//magma.maths.usyd.edu.au/magma/.

18. Coppersmith, D., Stern, J., and Vaudenay, S.: The security of the birational
permutation signature schemes. Journal of Cryptology, 10:207–221 (1997).

19. Courtois, N.: Algebraic attacks over GF (2k), application to HFE challenge 2
and Sflash-v2. In PKC [53], pages 201–217. ISBN 3-540-21018-0.

20. Courtois, N., Goubin, L., Meier, W., and Tacier, J.D.: Solving underdefined
systems of multivariate quadratic equations. In Public Key Cryptography —
PKC 2002, volume 2274 of Lecture Notes in Computer Science, pages 211–227.
David Naccache and Pascal Paillier, editors, Springer (2002).

21. Courtois, N., Goubin, L., and Patarin, J.: Quartz: Primitive specification (sec-
ond revised version) (2001). https://www.cosic.esat.kuleuven.be/nessie
Submissions, Quartz, 18 pages.

22. Courtois, N., Goubin, L., and Patarin, J.: Sflash: Primitive specification (sec-
ond revised version) (2002). https://www.cosic.esat.kuleuven.be/nessie,
Submissions, Sflash, 11 pages.

23. Courtois, N.T., Daum, M., and Felke, P.: On the security of HFE, HFEv- and
Quartz. In Public Key Cryptography — PKC 2003, volume 2567 of Lecture
Notes in Computer Science, pages 337–350. Y. Desmedt, ed., Springer (2002).
http://eprint.iacr.org/2002/138.

24. Courtois, N.T., Klimov, A., Patarin, J., and Shamir, A.: Efficient algorithms for
solving overdefined systems of multivariate polynomial equations. In Advances
in Cryptology — EUROCRYPT 2000, volume 1807 of Lecture Notes in Com-
puter Science, pages 392–407. Bart Preneel, ed., Springer (2000). Extended
Version: http://www.minrank.org/xlfull.pdf.

25. Courtois, N.T. and Patarin, J.: About the XL algorithm over gf(2). In The
Cryptographer’s Track at RSA Conference 2003, volume 2612 of Lecture Notes
in Computer Science, pages 141–157. Springer (2003).

26. Courtois, N.T. and Pieprzyk, J.: Cryptanalysis of block ciphers with overde-
fined systems of equations. In Advances in Cryptology — ASIACRYPT 2002,
volume 2501 of Lecture Notes in Computer Science, pages 267–287. Yuliang
Zheng, ed., Springer (2002).

27. Diem, C.: The XL-algorithm and a conjecture from commutative algebra. In
AsiaCrypt [88], pages 323–337. ISBN 3-540-23975-8.

28. Diffie, W. and Hellman, M.E.: New directions in cryptography. IEEE Trans-
actions on Information Theory, IT-22(6):644–654 (1976). ISSN 0018-9448.

29. Ding, J.: A new variant of the Matsumoto-Imai cryptosystem through pertur-
bation. In PKC [53], pages 305–318.

30. Ding, J., Buchmann, J., Mohamed, M.S.E., Mohamed, W.S.A.E., and Wein-
mann, R.P.: Mutant xl. accepted for the First International Conference on
Symbolic Computation and Cryptography, SCC 2008.

31. Ding, J., Carbarcas, D., Schmidt, D., Buchmann, J., and Tohaneanu, S.: Mu-
tant groebner basis algorithms. accepted for the First International Conference
on Symbolic Computation and Cryptography, SCC 2008.

236 Jintai Ding and Bo-Yin Yang

32. Ding, J. and Gower, J.: Inoculating multivariate schemes against differential
attacks. In PKC, volume 3958 of LNCS. Springer (2006). Also available at
http://eprint.iacr.org/2005/255.

33. Ding, J., Gower, J., and Schmidt, D.: Zhuang-Zi: A new algorithm for solv-
ing multivariate polynomial equations over a finite field. Cryptology ePrint
Archive, Report 2006/038 (2006). http://eprint.iacr.org/, 6 pages.

34. Ding, J., Gower, J.E., Schmidt, D., Wolf, C., and Yin, Z.: Complexity estimates
for the F4 attack on the perturbed Matsumoto-Imai cryptosystem. In CCC,
volume 3796 of LNCS, pages 262–277. Springer (2005).

35. Ding, J., Hu, L., Nie, X., Li, J., and Wagner, J.: High order linearization
equation (hole) attack on multivariate public key cryptosystems. In PKC,
volume 4450 of LNCS, pages 230–247. Springer (2007).

36. Ding, J. and Schmidt, D.: A common defect of the TTM cryptosystem. In
Proceedings of the technical track of the ACNS’03, ICISA Press, pages 68–78
(2003). Http://eprint.iacr.org/2003/085.

37. Ding, J. and Schmidt, D.: The new TTM implementation is not secure. In
K. Feng, H. Niederreiter, and C. Xing, editors, Workshop on Coding Cryptog-
raphy and Combinatorics, CCC2003 Huangshan (China), volume 23 of Progress
in Computer Science and Applied Logic, pages 113–128. Birkhauser Verlag
(2004).

38. Ding, J. and Schmidt, D.: Cryptanalysis of HFEv and internal perturbation of
HFE. In PKC [91], pages 288–301.

39. Ding, J. and Schmidt, D.: Rainbow, a new multivariable polynomial signa-
ture scheme. In Conference on Applied Cryptography and Network Security
— ACNS 2005, volume 3531 of Lecture Notes in Computer Science, pages
164–175. Springer (2005).

40. Ding, J., Schmidt, D., and Werner, F.: Algebraic attack on hfe revisited. In
Accepted for ISC 2008, Lecture Notes in Computer Science. Springer. Presented
at Western European Workshop on Research in Cryptology 2007.

41. Ding, J., Schmidt, D., and Yin, Z.: Cryptanalysis of the new tts scheme in ches
2004. Int. J. Inf. Sec., 5(4):231–240 (2006).

42. Ding, J., Wolf, C., and Yang, B.Y.: 	-invertible cycles for multivariate quadratic
public key cryptography. In PKC, volume 4450 of LNCS, pages 266–281.
Springer (2007).

43. Ding, J. and Yang, B.Y.: Multivariate polynomials for hashing. In Inscrypt,
Lecture Notes in Computer Science. Springer (2007). To appear, cf. http:
//eprint.iacr.org/2007/137.

44. Ding, J., Yang, B.Y., Chen, C.H.O., Chen, M.S., and Cheng, C.M.: New
differential-algebraic attacks and reparametrization of rainbow. In Applied
Cryptography and Network Security, Lecture Notes in Computer Science.
Springer (2008). To appear, cf. http://eprint.iacr.org/2008/108.

45. Ding, J., Yang, B.Y., Dubois, V., Cheng, C.M., and Chen, O.C.H.:
Breaking the symmetry: a way to resist the new differential attack.
http://eprint.iacr.org/2007/366.

46. Dubois, V., Fouque, P.A., Shamir, A., and Stern, J.: Practical cryptanalysis of
sflash. In Advances in Cryptology — CRYPTO 2007, volume 4622 of Lecture
Notes in Computer Science, pages 1–12. Alfred Menezes, ed., Springer (2007).
ISBN 978-3-540-74142-8.

Multivariate Public Key Cryptography 237

47. Dubois, V., Fouque, P.A., and Stern, J.: Cryptanalysis of sflash with slightly
modified parameters. In M. Naor, editor, EUROCRYPT, volume 4515 of Lec-
ture Notes in Computer Science, pages 264–275. Springer (2007). ISBN 3-540-
72539-3.

48. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4).
Journal of Pure and Applied Algebra, 139:61–88 (1999).

49. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In International Symposium on Symbolic and Algebraic
Computation — ISSAC 2002, pages 75–83. ACM Press (2002).

50. Faugère, J.C. and Joux, A.: Algebraic cryptanalysis of Hidden Field Equations
(HFE) using Gröbner bases. In Advances in Cryptology — CRYPTO 2003,
volume 2729 of Lecture Notes in Computer Science, pages 44–60. Dan Boneh,
ed., Springer (2003).

51. Faugère, J.C. and Perret, L.: Polynomial equivalence problems: Algorithmic
and theoretical aspects. In S. Vaudenay, editor, EUROCRYPT, volume 4004
of Lecture Notes in Computer Science, pages 30–47. Springer (2006). ISBN
3-540-34546-9.

52. Fell, H. and Diffie, W.: Analysis of public key approach based on polynomial
substitution. In Advances in Cryptology — CRYPTO 1985, volume 218 of
Lecture Notes in Computer Science, pages 340–349. Hugh C. Williams, ed.,
Springer (1985).

53. Feng Bao, Robert H. Deng, and Jianying Zhou (editors): Public Key Cryptog-
raphy — PKC 2004, (2004). ISBN 3-540-21018-0.

54. Fouque, P.A., Granboulan, L., and Stern, J.: Differential cryptanalysis for mul-
tivariate schemes. In Eurocrypt [90]. 341–353.

55. Fouque, P.A., Macario-Rat, G., Perret, L., and Stern, J.: Total break of the
	IC- signature scheme. In Public Key Cryptography, pages 1–17 (2008).

56. Geddes, K.O., Czapor, S.R., and Labahn, G.: Algorithms for Computer Alge-
bra. Amsterdam, Netherlands: Kluwer (1992).

57. Geiselmann, W., Meier, W., and Steinwandt, R.: An attack on the Isomor-
phisms of Polynomials problem with one secret. Cryptology ePrint Archive,
Report 2002/143 (2002). http://eprint.iacr.org/2002/143, version from
2002-09-20, 12 pages.

58. Goubin, L. and Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In
Advances in Cryptology — ASIACRYPT 2000, volume 1976 of Lecture Notes
in Computer Science, pages 44–57. Tatsuaki Okamoto, ed., Springer (2000).

59. Gouget, A. and Patarin, J.: Probabilistic multivariate cryptography. In P.Q.
Nguyen, editor, VIETCRYPT, volume 4341 of Lecture Notes in Computer Sci-
ence, pages 1–18. Springer (2006). ISBN 3-540-68799-8.

60. Granboulan, L., Joux, A., and Stern, J.: Inverting hfe is quasipolynomial.
In C. Dwork, editor, CRYPTO, volume 4117 of Lecture Notes in Computer
Science, pages 345–356. Springer, 2006.

61. Hasegawa, S. and Kaneko, T.: An attacking method for a public key cryp-
tosystem based on the difficulty of solving a system of non-linear equations.
In Proc. 10th Symposium on Information Theory and Its applications, pages
JA5–3 (1987).

62. Kasahara, M. and Sakai, R.: A construction of public-key cryptosystem based
on singular simultaneous equations. In Symposium on Cryptography and Infor-
mation Security — SCIS 2004. The Institute of Electronics, Information and
Communication Engineers (2004). 6 pages.

238 Jintai Ding and Bo-Yin Yang

63. Kasahara, M. and Sakai, R.: A construction of public key cryptosystem for
realizing ciphtertext of size 100 bit and digital signature scheme. IEICE Trans.
Fundamentals, E87-A(1):102–109 (2004). Electronic version: http://search.
ieice.org/2004/files/e000a01.htm\#e87-a,1,102.

64. Kipnis, A., Patarin, J., and Goubin, L.: Unbalanced Oil and Vinegar signature
schemes. In Advances in Cryptology — EUROCRYPT 1999, volume 1592 of
Lecture Notes in Computer Science, pages 206–222. Jacques Stern, ed., Springer
(1999).

65. Kipnis, A. and Shamir, A.: Cryptanalysis of the oil and vinegar signature
scheme. In Advances in Cryptology — CRYPTO 1998, volume 1462 of Lec-
ture Notes in Computer Science, pages 257–266. Hugo Krawczyk, ed., Springer
(1998).

66. Kipnis, A. and Shamir, A.: Cryptanalysis of the HFE public key cryptosys-
tem. In Advances in Cryptology — CRYPTO 1999, volume 1666 of Lec-
ture Notes in Computer Science, pages 19–30. Michael Wiener, ed., Springer
(1999). http://www.minrank.org/hfesubreg.ps or http://citeseer.nj.
nec.com/kipnis99cryptanalysis.html.

67. Lazard, D.: Gröbner-bases, Gaussian elimination and resolution of systems
of algebraic equations. In EUROCAL 83, volume 162 of Lecture Notes in
Computer Science, pages 146–156. Springer (1983).

68. Levy-dit-Vehel, F. and Perret, L.: Polynomial equivalence problems and ap-
plications to multivariate cryptosystems. In Progress in Cryptology — IN-
DOCRYPT 2003, volume 2904 of Lecture Notes in Computer Science, pages
235–251. Thomas Johansson and Subhamoy Maitra, editors, Springer (2003).

69. Macaulay, F.S.: The algebraic theory of modular systems, volume xxxi of Cam-
bridge Mathematical Library. Cambridge University Press (1916).

70. Matsumoto, T. and Imai, H.: Public quadratic polynomial-tuples for efficient
signature verification and message-encryption. In Advances in Cryptology —
EUROCRYPT 1988, volume 330 of Lecture Notes in Computer Science, pages
419–545. Christoph G. Günther, ed., Springer (1988).

71. Matsumoto, T., Imai, H., Harashima, H., and Miyagawa, H.: High speed signa-
ture scheme using compact public key (1985). National Conference of system
and information of the Electronic Communication Association of year Sowa 60,
S9-5.

72. Moh, T.: A public key system with signature and master key function. Com-
munications in Algebra, 27(5):2207–2222 (1999). Electronic version: http:
//citeseer/moh99public.html.

73. Moh, T.T.: The recent attack of Nie et al on TTM is faulty.
Http://eprint.iacr.org/2006/417.

74. Moh, T.T.: Two new examples of TTM. Http://eprint.iacr.org/2007/144.
75. Nagata, M.: On Automorphism Group of K [x, y], volume 5 of Lectures on

Mathematics. Kyoto University, Kinokuniya, Tokyo (1972).
76. NESSIE: New European Schemes for Signatures, Integrity, and Encryption. In-

formation Society Technologies programme of the European commission (IST-
1999-12324). http://www.cryptonessie.org/.

77. Okamoto, E. and Nakamura, K.: Evaluation of public key cryptosystems pro-
posed recently. In Proc 1986’s Symposium of cryptography and information
security, volume D1 (1986).

Multivariate Public Key Cryptography 239

78. Ong, H., Schnorr, C., and Shamir, A.: Signatures through approximate repre-
sentations by quadratic forms. In Advances in cryptology, Crypto ’83, pages
117–131. Plenum Publ. (1984).

79. Ong, H., Schnorr, C., and Shamir, A.: Efficient signature schemes based on
polynomial equations. In G.R. Blakley and D. Chaum, editors, Advances in
cryptology, Crypto ’84, volume 196 of LNCS, pages 37–46. Springer (1985).

80. Patarin, J.: The oil and vinegar signature scheme. Dagstuhl Workshop on
Cryptography, September, 1997.

81. Patarin, J.: Cryptanalysis of the Matsumoto and Imai public key scheme of
Eurocrypt’88. In Advances in Cryptology — CRYPTO 1995, volume 963 of
Lecture Notes in Computer Science, pages 248–261. Don Coppersmith, ed.,
Springer (1995).

82. Patarin, J.: Asymmetric cryptography with a hidden monomial. In Advances
in Cryptology — CRYPTO 1996, volume 1109 of Lecture Notes in Computer
Science, pages 45–60. Neal Koblitz, ed., Springer (1996).

83. Patarin, J.: Hidden Field Equations (HFE) and Isomorphisms of Polynomials
(IP): two new families of asymmetric algorithms. In Advances in Cryptology
— EUROCRYPT 1996, volume 1070 of Lecture Notes in Computer Science,
pages 33–48. Ueli Maurer, ed., Springer (1996). Extended Version: http://
www.minrank.org/hfe.pdf.

84. Patarin, J., Courtois, N., and Goubin, L.: Flash, a fast multivariate signature
algorithm. In C. Naccache, editor, Progress in cryptology, CT-RSA, volume
2020 of LNCS, pages 298–307. Springer (2001).

85. Patarin, J., Goubin, L., and Courtois, N.: C∗
−+ and HM : Variations around

two schemes of T. Matsumoto and H. Imai. In Advances in Cryptology —
ASIACRYPT 1998, volume 1514 of Lecture Notes in Computer Science, pages
35–49. Kazuo Ohta and Dingyi Pei, editors, Springer (1998). Extended Version:
http://citeseer.nj.nec.com/patarin98plusmn.html.

86. Patarin, J., Goubin, L., and Courtois, N.: Improved algorithms for Isomor-
phisms of Polynomials. In Advances in Cryptology — EUROCRYPT 1998,
volume 1403 of Lecture Notes in Computer Science, pages 184–200. Kaisa
Nyberg, ed., Springer (1998). Extended Version: http://www.minrank.org/
ip6long.ps.

87. Perret, L.: A fast cryptanalysis of the isomorphism of polynomials with one
secret problem. In Eurocrypt [90]. 17 pages.

88. Pil Joong Lee, ed.: Advances in Cryptology — ASIACRYPT 2004, (2004).
ISBN 3-540-23975-8.

89. Pollard, J.M. and Schnorr, C.P.: An efficient solution of the congruence x2 +
ky2 = m (mod n). IEEE Trans. Inform. Theory, 33(5):702–709 (1987).

90. Ronald Cramer, ed.: Advances in Cryptology — EUROCRYPT 2005, (2005).
ISBN 3-540-25910-4.

91. Serge Vaudenay, ed.: Public Key Cryptography — PKC 2005, (2005). ISBN
3-540-24454-9.

92. Shamir, A.: Efficient signature schemes based on birational permutations. In
Advances in Cryptology — CRYPTO 1993, volume 773 of Lecture Notes in
Computer Science, pages 1–12. Douglas R. Stinson, ed., Springer (1993).

93. Shestakov, I.P. and Umirbaev, U.U.: The Nagata automorphism is wild. Proc.
Natl. Acad. Sci. USA, 100:12561–12563 (2003).

240 Jintai Ding and Bo-Yin Yang

94. Sugita, M., Kawazoe, M., and Imai, H.: Gröbner basis based cryptanalysis of
sha-1. Cryptology ePrint Archive, Report 2006/098 (2006). http://eprint.
iacr.org/.

95. Tsujii, S., Kurosawa, K., Itoh, T., Fujioka, A., and Matsumoto, T.: A public key
cryptosystem based on the difficulty of solving a system of nonlinear equations.
ICICE Transactions (D) J69-D, 12:1963–1970 (1986).

96. Tsujii, S., Fujioka, A., and Hirayama, Y.: Generalization of the public key
cryptosystem based on the difficulty of solving a system of non-linear equations.
In ICICE Transactions (A) J72-A, volume 2, pages 390–397 (1989). English
version is appended at http://eprint.iacr.org/2004/336.

97. Tsujii, S., Fujioka, A., and Itoh, T.: Generalization of the public key cryp-
tosystem based on the difficulty of solving a system of non-linear equations.
In Proc. 10th Symposium on Information Theory and Its applications, pages
JA5–3 (1987).

98. Wang, L.C. and Chang, F.H.: Tractable rational map cryptosystem (version
2). http://eprint.iacr.org/2004/046, ver. 20040221:212731.

99. Wang, L.C. and Chang, F.H.: Tractable rational map cryptosystem (version
4). http://eprint.iacr.org/2004/046, ver. 20060203:065450.

100. Wang, L.C., Hu, Y.H., Lai, F., Chou, C.Y., and Yang, B.Y.: Tractable rational
map signature. In PKC [91], pages 244–257. ISBN 3-540-24454-9.

101. Wang, L.C., Yang, B.Y., Hu, Y.H., and Lai, F.: A “medium-field” multivariate
public-key encryption scheme. In CT-RSA 2006, volume 3860 of LNCS, pages
132–149. David Pointcheval, ed., Springer (2006). ISBN 3-540-31033-9.

102. Wolf, C., Braeken, A., and Preneel, B.: Efficient cryptanalysis of RSE(2)PKC
and RSSE(2)PKC. In Conference on Security in Communication Networks —
SCN 2004, volume 3352 of Lecture Notes in Computer Science, pages 294–309.
Springer (2004). Extended version: http://eprint.iacr.org/2004/237.

103. Wolf, C. and Preneel, B.: Superfluous keys in Multivariate Quadratic asym-
metric systems. In PKC [91], pages 275–287. Extended version http:
//eprint.iacr.org/2004/361/.

104. Wolf, C. and Preneel, B.: Taxonomy of public key schemes based on the prob-
lem of multivariate quadratic equations. Cryptology ePrint Archive, Report
2005/077 (2005). http://eprint.iacr.org/2005/077/, 64 pages.

105. Yang, B.Y. and Chen, J.M.: All in the XL family: Theory and practice. In
ICISC 2004, volume 3506 of Lecture Notes in Computer Science, pages 67–86.
Springer (2004).

106. Yang, B.Y. and Chen, J.M.: Theoretical analysis of XL over small fields. In
ACISP 2004, volume 3108 of Lecture Notes in Computer Science, pages 277–
288. Springer (2004).

107. Yang, B.Y. and Chen, J.M.: Building secure tame-like multivariate public-key
cryptosystems: The new TTS. In ACISP 2005, volume 3574 of Lecture Notes
in Computer Science, pages 518–531. Springer (2005).

108. Yang, B.Y., Chen, J.M., and Chen, Y.H.: TTS: High-speed signatures on a low-
cost smart card. In CHES 2004, volume 3156 of Lecture Notes in Computer
Science, pages 371–385. Springer (2004).

109. Yang, B.Y., Chen, O.C.H., and Chen, J.M.: The limit of XL implemented
with sparse matrices. Workshop record, PQCrypto workshop, Leuven 2006.
Http://postquantum.cr.yp.to/pqcrypto2006record.pdf.

Multivariate Public Key Cryptography 241

110. Yang, B.Y., Cheng, D.C.M., Chen, B.R., and Chen, J.M.: Implementing min-
imized multivariate public-key cryptosystems on low-resource embedded sys-
tems. In SPC 2006, volume 3934 of Lecture Notes in Computer Science, pages
73–88. Springer (2006).

Index

γ-conversion, 135

adversary, 81
Ajtai’s construction, 158
Ajtai-Dwork cryptosystem, 171
attacks

combinatorial, 156
lattice-based, 154
on NTRUSign, 182

authentication path, 43
authentication path computation, 46

classic, 46
fractal, 48
logarithmic, 56, 62

Babai’s rounding procedure, 167
basis, 152
Berlekamp algorithm, 200, 205
Big Field, 229
big-field, 204
birational, 204
bit security, 88

CCA2-security, 135
CFS signature, 101
chosen ciphertext attacks, 185
chosen plaintext attacks, 172
CMSS, 69
code

equivalence, 116
hull, 119
invariant, 117
signature, 118

codes

Gabidulin, 122
Goppa, 138
GRS, 138
quasi-cyclic, 132
Reed-Muller, 123

collision attacks, 112
collision resistance, 82, 158
CRHF, 158
cryptanalysis, 147, 148, 186
cryptosystem

Ajtai-Dwork, 171
LWE, 172
NTRU, 168

CVP, 153

de Jonquières map, 203
decoding algorithms, 109

Canteaut-Chabaud, 110
decoding problems, 107

codeword filtering, 108
complete decoding, 109
Goppa bounded decoding, 109
syndrome decoding, 107

determinant, 153
distance

Gilbert-Varshamov, 108
Hamming, 137
minimum, 137
rank, 141

distributed
authentication path computation, 76
root computation, 75
root signing, 73

244 Index

dual, 153

existential unforgeability, 83
experiments

Gama-Nguyen, 154

F4 algorithm, 231
F5 algorithm, 231
factoring, 149–151, 157, 186
fast Fourier transform, 163
FFT, 163
FSB hash, 104

Gaussian sampling procedure, 183
generator matrix, 137
GGH

cryptosystem, 167
GMSS, 73
Grover’s algorithm, 29

hash functions, 81
families, 81

Hermite normal form, 167, 179
HFE, 200, 205, 231
hidden parallelepiped problem, 182
hidden subgroup problem, 23, 25

abelian, 27
nonabelian, 28

HOLE, 216
HSP, 23

identification schemes, 185
identity based encryption, 185
Implicit Form, 198
intrinsic rank, 206
IP, 198
irreducible, 162

knapsack-based cryptosystems, 148
Kobara-Imai conversion, 135

LASH, 161
lattice, 147, 152

basis, 152
cyclic, 159
determinant, 153
dual, 153
ideal, 159
q-ary, 153

LD-OTS, 36

linearization equation
high order, 229

LLL algorithm, 148
lossy trapdoor functions, 185
LWE, 166, 172

cryptosystem, 172

McEliece cryptosystem, 97
memory, 232
Merkle signature scheme, 40
Merkle tree traversal, 46

classic, 46
fractal, 48
logarithmic, 56, 62

minus, 209
MSS, 40

Niederreiter PKC, 98
norm, 154
NP-hard, 149
NTRU

cryptosystem, 168
signature scheme, 180

NTRUSign, 180
perturbations, 182

number field sieve, 149

oblivious transfer, 185
one-time signature schemes

Lamport–Diffie, 36
Winternitz, 38

one-way function, 158

parity check matrix, 137
patarin equations, 215
plus, 209
polynomial

sparse, 230
preimage resistance, 82
preimage sampleable trapdoor

functions, 182
PRNG

code based, 105
provable security, 232
public key encryption, 165

QFT, 22
quantum, 150
quantum algorithms

Index 245

discrete logarithms, 25
factoring, 25
search algorithms, 29

quantum cryptography, 13
quantum Fourier transform, 22
quantum key distribution, 13
qubits, 21

Rainbow, 199
rainbow structure sequence, 208
rank, 204
rational, 204
RSA, 148

problem, 157

second preimage resistance, 82
security level, 88
SHA-2, 164
Shor’s algorithm, 25, 151
signature schemes, 82, 180
SIVP, 153
small-field, 204

Stern’s identification scheme, 101
SVP, 148, 153
SWIFFT, 163
symmetric, 233
symmetric differential, 225

tail nodes, 42
Tame Transformation Method, 230
tree authentication, 40
tree chaining, 69
treehash algorithm, 42
triangular map, 203
TTM, 230
TTS, 199

W-OTS, 38
weight enumerator polynomial, 137
worst-case hardness, 150

zero-knowledge proofs, 185
Zhuang-Zi, 229

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.001 841.997]
>> setpagedevice

