
Stereo Matching: An Outlier Confidence Approach

Li Xu and Jiaya Jia

Department of Computer Science and Engineering
The Chinese University of Hong Kong

{xuli,leojia}@cse.cuhk.edu.hk

Abstract. One of the major challenges in stereo matching is to handle partial
occlusions. In this paper, we introduce the Outlier Confidence (OC) which dy-
namically measures how likely one pixel is occluded. Then the occlusion infor-
mation is softly incorporated into our model. A global optimization is applied to
robustly estimating the disparities for both the occluded and non-occluded pix-
els. Compared to color segmentation with plane fitting which globally partitions
the image, our OC model locally infers the possible disparity values for the out-
lier pixels using a reliable color sample refinement scheme. Experiments on the
Middlebury dataset show that the proposed two-frame stereo matching method
performs satisfactorily on the stereo images.

1 Introduction

One useful technique to reduce the matching ambiguity for stereo images is to incor-
porate the color segmentation into optimization [1,2,3,4,5,6]. Global segmentations im-
prove the disparity estimation in textureless regions; but most of them do not necessarily
preserve accurate boundaries. We have experimented that, when taking the ground
truth occlusion information into optimization, very accurate disparity estimation can
be achieved. This shows that partial occlusion is one major source of matching errors.
The main challenge of solving the stereo problems now is the appropriate outlier detec-
tion and handling.

In this paper, we propose a new stereo matching algorithm aiming to improve the
disparity estimation. Our algorithm does not assign each pixel a binary visibility value
indicating whether this pixel is partially occluded or not [7,4,8], but rather introduces
soft Outlier Confidence (OC) values to reflect how confident we regard one pixel as an
outlier. The OC values, in our method, are used as weights balancing two ways to infer
the disparities. The final energy function is globally optimized using Belief Propagation
(BP). Without directly labeling each pixel as “occlusion” or “non-occlusion”, our model
has considerable tolerance of errors produced in the occlusion detection process.

Another main contribution of our algorithm is the local disparity inference for out-
lier pixels, complementary to the global segmentation. Our method defines the disparity
similarity according to the color distance between pixels and naturally transforms color
sample selection to a general foreground or background color inference problem using
image matting. It effectively reduces errors caused by inaccurate global color segmen-
tation and gives rise to a reliable inference of the unknown disparity of the occluded
pixels.
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We also enforce the inter-frame disparity consistency and use BP to simultaneously
estimate the disparities of two views. Experimental results on the Middlebury dataset [9]
show that our OC model effectively reduces the erroneous disparity estimate due to
outliers.

2 Related Work

A comprehensive survey of the dense two-frame stereo matching algorithms was given
in [10]. Evaluations of almost all stereo matching algorithms can be found in [9]. Here
we review previous work dealing with outliers because, essentially, the difficulty of
stereo matching is to handle the ambiguities.

Efforts of dealing with outliers are usually put in three stages in stereo matching –
that is, the cost aggregation, the disparity optimization, and the disparity refinement.
Most approaches use outlier truncation or other robust functions for cost computation
in order to reduce the influence of outliers [2,11].

Window-based methods aggregate matching cost by summing the color differences
over a support region. These methods [12,13] prevent depth estimation from aggre-
gating information across different depth layers using the color information. Yoon and
Kweon [14] adjusted the support-weight of a pixel in a given window based on the
CIELab color similarity and its spatial distance to the center of the support window.
Zitnick et al. [12] partitioned the input image and grouped the matching cost in each
color segment. Lei et al. [15] used segmentation to form small regions in a region-tree
for further optimization.

In disparity optimization, outliers are handled in two ways in general. One is to
explicitly detect occlusions and model visibility [7,4,8]. Sun et al. [4] introduced the
visibility constraint by penalizing the occlusions and breaking the smoothness between
the occluded and non-occluded regions. In [8], Strecha et al. modeled the occlusion as
a random outlier process and iteratively estimated the depth and visibility in an EM
framework in multi-view stereo. Another kind of methods suppresses outliers using
extra information, such as pixel colors, in optimization. In [16,6], a color weighted
smoothness term was used to control the message passing in BP. Hirschmuller [17] took
color difference as the weight to penalize large disparity differences and optimized the
disparities using a semi-global approach.

Post-process was also introduced to handle the remaining outliers after the global or
local optimization. Occluded pixels can be detected using a consistency check, which
validates the disparity correspondences in two views [10,4,17,6]. Disparity interpola-
tion [18] infers the disparities for the occluded pixels from the non-occluded ones by
setting the disparities of the mis-matched pixels to that of the background. In [1,3,4,5,6],
color segmentation was employed to partition images into segments, each of which is
refined by fitting a 3D disparity plane. Optimization such as BP can be further applied
after plane fitting [4,5,6] to reduce the possible errors.

Several disparity refinement schemes have been proposed for novel-view synthe-
sis. Sub-pixel refinement [19] enhances details for synthesizing a new view. In [12]
and [20], boundary matting for producing seamless view interpolation was introduced.
These methods only aim to synthesize natural and seamless novel-views, and cannot be
directly used in stereo matching to detect or suppress outliers.
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3 Our Model

Denoting the input stereo images as Il and Ir, and the corresponding disparity maps as
Dl and Dr respectively, we define the matching energy as

E(Dl,Dr; Il, Ir) = Ed(Dl; Il, Ir) + Ed(Dr; Il, Ir) + Es(Dl,Dr), (1)

where Ed(Dl; Il, Ir) + Ed(Dr; Il, Ir) is the data term and Es(Dl,Dr) defines the
smoothness term that is constructed on the disparity maps. In our algorithm, we not
only consider the spatial smoothness within one disparity map, but also model the con-
sistency of disparities between frames.

As the occluded pixels influence the disparity estimation, they should not be used in
stereo matching. In our algorithm, we do not distinguish between occlusion and image
noise, but rather treat all problematic pixels as outliers. Outlier Confidences (OCs) are
computed on these pixels, indicating how confident we regard one pixel as an outlier.
The outlier confidence maps Ul and Ur are constructed on the input image pair. The
confidence Ul(x) or Ur(x) on pixel x is a continuous variable with value between 0 and
1. Larger value indicates higher confidence that one pixel is an outlier, and vice versa.

Our model combines an initial disparity map and an OC map for two views. In the
following, we first introduce our data and smoothness terms. The construction of the
OC map will be described in Section 4.2.

3.1 Data Term

In the stereo configuration, pixel x in Il corresponds to pixel x − dl in Ir by disparity
dl. Similarly, x in Ir corresponds to x + dr in Il. All possible disparity values for dl

and dr are uniformly denoted as set Ψ , containing integers between 0 and N , where N
is the maximum positive disparity value. The color of pixel x in Il (or Ir) is denoted as
Il(x) (or Ir(x)). We define the data term Ed(Dl; Il, Ir) on the left image as

Ed(Dl; Il, Ir) =
∑

x

[(1 − Ul(x))(
f0(x, dl; Il, Ir)

α
) + Ul(x)(

f1(x, dl; Il)
β

)], (2)

where α and β are weights. f0(x, d; Il, Ir) denotes the color dissimilarity cost between
two views. f1(x, d; Il) is the term defined as the local color and disparity discontinuity
cost in one view. Ed(Dr; Il, Ir) on the right image can be defined in a similar way.

The above two terms, balanced by the outlier confidence Ul(x), model respectively
two types of processes in disparity computation. Compared to setting Ul(x) as a bi-
nary value and assigning pixels to either outliers or inliers, our cost terms are softly
combined, tolerating possible errors in pixel classification.

For result comparison, we give two definitions of f0(x, dl; Il, Ir) respectively cor-
responding to whether the segmentation is incorporated or not. The first is to use the
color and distance weighted local window [14,6,19] to aggregate color difference be-
tween conjugate pixels:

f
(1)
0 (x, dl; Il, Ir) = min(g(‖Il(x) − Ir(x − dl)‖1), ϕ), (3)
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where g(·) is the aggregate function defined similarly to Equation (2) in [6]. We use the
default parameter values (local window size 33 × 33, βcw = 10 for normalizing color
differences, γcw = 21 for normalizing spatial distances). ϕ determines the maximum
cost for each pixel, whose value is set as the average intensity of pixels in the correlation
volume.

The second definition is given by incorporating the segmentation information.
Specifically, we use the Mean-shift color segmentation [21] with default parameters
(spatial bandwidth 7, color bandwidth 6.5, minimum region size 20) to generate color
segments. A plane fitting algorithm using RANSAC (similar to that in [6]) is then ap-
plied to producing the regularized disparity map dpf . We define

f
(2)
0 (x, dl; Il, Ir) = (1 − κ)f (1)

0 (x, dl) + κα|d − dpf |, (4)

where κ is a weight balancing two terms.
f1(x, dl; Il) is defined as the cost of assigning local disparity when one pixel has

chance to be an outlier.

f1(x, dl; Il) =
∑

i∈Ψ

ωi(x; Il)δ(dl − i), (5)

where δ(·) is the Dirac function, Ψ denotes the set of all disparity values between 0 and
N and ωi(x; Il) is a weight function for measuring how disparity dl is likely to be i.
We omit subscript l in the following discussion of ωi(x; Il) since both the left and right
views can use the similar definitions.

For ease of explanation, we first give a general definition of weight ω′
i(x; I), which,

in the following descriptions, will be slightly modified to handle two extreme situations
with values 0 and 1. We define

ω′
i(x; I) = 1 − L(I(x), Ii(Wx))

L(I(x), Ii(Wx)) + L(I(x), I�=i(Wx))
, (6)

where I(x) denotes the color of pixel x and Wx is a window centered at x. Suppose
after initialization, we have collected a set of pixels x′ detected as inliers within each
Wx (i.e., U(x′) = 0), and have computed disparities for these inliers. We denote by Ii

the set of inliers whose disparity values are computed as i. Similarly, I�=i are the inliers
with the corresponding disparity values not equal to i. L is a metric measuring the color
difference between I(x) and its neighboring pixels Ii(Wx) and I�=i(Wx). One example
is shown in Figure 1(a) where a window Wx is centered at an outlier pixel x. Within
Wx, inlier pixels are clustered into I1 and I�=1. ω′

1(x; I) is computed according to the
color similarity between x and other pixels in the two clusters.

(6) is a function to assign an outlier pixel x a disparity value, constrained by the color
similarity between x and the clustered neighboring pixels. By and large, if the color
distance between x and its inlier neighbors with disparity i is small enough compared
to the color distance to other inliers, ω′

i(x; I) should have a large value, indicating high
chance to let dl = i in (5).

Now the problem is on how to compute a metric L that appropriately measures
the color distance between pixels. In our method, we abstract color sets Ii(Wx) and
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Fig. 1. Computing disparity weight ω′. (a) Within a neighborhood window Wx, inlier pixels are
clustered into I1 and I�=1. (b)-(d) illustrate the color projection. (b) The projection of I(x) on
vector Ii(∗)− I �=i(∗) is between two ends. (c-d) The projections of I(x) are out of range, thereby
are considered as extreme situations.

I�=i(Wx) by two representatives Ii(∗) and I �=i(∗) respectively. Then L is simplified
to a color metric between pixels. We adopt the color projection distance along vector
Ii(∗) − I �=i(∗) and define

L(I(x), c) = ‖〈I(x) − c, Ii(∗) − I �=i(∗)〉‖, (7)

where 〈·, ·〉 denotes the inner product of two color vectors and c can be either Ii(∗) or
I �=i(∗). We regard Ii(∗) − I �=i(∗) as a projection vector because it measures the absolute
difference between two representative colors, or, equivalently, the distance between sets
Ii(Wx) and I�=i(Wx).

Projecting I(x) to vector Ii(∗) − I �=i(∗) also makes the assignment of two extreme
values 0 and 1 to ωi(x; I) easy. Taking Figure 1 as an example, if the projection of I(x)
on vector Ii(∗) − I �=i(∗) is between two ends, its value is obviously between 0 and 1, as
shown in Figure 1 (b). If the projection of I(x) is out of one end point, its value should
be 0 if it is close to Ii(∗) or 1 otherwise (Figure 1 (c) and (d)). To handle the extreme
cases, we define the final ωi(x; I) as

ωi(x; I) =

⎧
⎨

⎩

0 if 〈I − I �=i(∗), Ii(∗) − I �=i(∗)〉 < 0
1 if 〈Ii(∗) − I, Ii(∗) − I �=i(∗)〉 < 0
ω′

i(x; I) Otherwise

which is further expressed as

ωi = T
(

(I − I �=i(∗))T (Ii(∗) − I �=i(∗))
‖Ii(∗) − I �=i(∗)‖2

2

)
, (8)
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where

T (x) =

⎧
⎨

⎩

0 x < 0
1 x > 1
x otherwise

(9)

Note that term (I−I �=i(∗))T (Ii(∗)−I �=i(∗))
‖Ii(∗)−I �=i(∗)‖2

2
defined in (8) is quite similar to an alpha matte

model used in image matting [22,23] where the representative colors Ii(∗) and I �=i(∗)

are analogous to the unknown foreground and background colors. The image matting
problem is solved by color sample collection and optimization. In our problem, the
color samples are those clustered neighboring pixels Ii(Wx) and I�=i(Wx).

With the above analysis, computing the weight ωi is naturally transformed to an
image matting problem where the representative color selection is handled by applying
an optimization algorithm. In our method, we employ the robust matting with optimal
color sample selection approach [23]. In principle, Ii(∗) and I �=i(∗) are respectively
selected from Ii(Wx) and I�=i(Wx) based on a sample confidence measure combining
two criteria. First, either Ii(∗) or I �=i(∗) should be similar to the color of the outlier pixel
I , which makes weight ωi approach either 0 or 1 and the weight distribution hardly
uniform. Second, I is also expected to be a linear combination of Ii(∗) and I �=i(∗).
This is useful for modeling color blending since outlier pixels have chance to be the
interpolation of color samples, especially for those on the region boundary.

Using the sample confidence definition, we get two weights and a neighborhood
term, similar to those in [23]. Then we apply the Random Walk method [24] to com-
pute weight ωi. This process is repeated for all ωi’s, where i = 0, · · · , N . The main
benefit that we employ this matting method is that it provides an optimal way to select
representative colors while maintaining spatial smoothness.

3.2 Smoothness Term

Term Es(Dl,Dr) contains two parts, representing intra-frame disparity smoothness and
inter-frame disparity consistency:

Es(Dl,Dr) =
∑

x

[
∑

x′∈N1(x)

(
f3(x, x′, dl, dr)

λ
) +

∑

x′∈N2(x)

(
f2(x, x′, dl)

γ
) +

∑

x′∈N1(x)

(
f3(x, x′, dr, dl)

λ
) +

∑

x′∈N2(x)

(
f2(x, x′, dr)

γ
)], (10)

where N1(x) represents the N possible corresponding pixels of x in the other view and
N2(x) denotes the 4-neighborhood of x in the image space. f2 is defined as

f2(x, x′, di) = min(|di(x) − di(x′))|, τ), i ∈ {l, r}, (11)

where τ is a threshold set as 2. To define (11), we have also experimented with using
color weighted smoothness and observed that the results are not improved.

We define f3(·) as the disparity correlations between two views:

f3(x, x′, dl, dr) = min(|dl(x) − dr(x′)|, ζ) and

f3(x, x′, dr, dl) = min(|dr(x) − dl(x′)|, ζ) , (12)
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where ζ is a truncation threshold with value 1. We do not define a unique x′ correspond-
ing to x because x′ is unknown in the beginning. The other reason is that both f2 and
f3 are the costs for disparity smoothness. In f2, all neighboring pixels are encoded in
N2 though di(x) is not necessarily similar to all di(x′). So we introduce f3 with the
similar thought for reducing the disparity noise in global optimization considering the
inter-frame consistency.

4 Implementation

The overview of our framework is given in Algorithm 1, which consists of an initial-
ization step and a global optimization step. In the first step, we initialize the disparity
maps by minimizing an energy with the simplified data and smoothness terms. Then we
compute the Outlier Confidence (OC) maps. In the second step, we globally refine the
disparities by incorporating the OC maps.

Algorithm 1. Overview of our approach
1. Initialization:

1.1 Initialize disparity map D by setting U = 0 for all pixels.
1.2 Estimate Outlier Confidence map U .

2. Global Optimization:
2.1 Compute data terms using the estimated outlier confidence maps.
2.2 Global optimization using BP.

4.1 Disparity Initialization

To initialize disparities, we simply set all values in Ul and Ur to zeros and optimize the
objective function combining (2) and (10):

(
∑

x

f0(x, dl) + f0(x, dr)
α

) + Es(Dl,Dr). (13)

Because of introducing the inter-frame disparity consistency in (12), our Markov Ran-
dom Field (MRF) based on the defined energy is slightly different from the regular-grid
MRFs proposed in other stereo approaches [2,25]. In our two-frame configuration, the
MRF is built on two images with (4 + N) neighboring sites for each node. N is the
total number of the disparity levels. One illustration is given in Figure 2 where a pixel
x in Il not only connects to its 4 neighbors in the image space, but also connects to all
possible corresponding pixels in Ir.

We minimize the energy defined in (13) using Belief Propagation. The inter-frame
consistency constraint makes the estimated disparity maps contain less noise in two
frames. We show in Figure 3(a) the initialized disparity result using the standard 4-
connected MRF without defining f3 in (10). (b) shows the result using our (4 + N)-
connected MRF. The background disparity noise is reduced.
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Il Ir

Fig. 2. In our dual view configuration, x (marked with the cross) is not only connected to 4
neighbors in one image, but also related to N possible corresponding pixels in the other image.
The total number of neighbors of x is 4 + N .

Depending on using f
(1)
0 in (3) or f

(2)
0 in (4) in the data term definition, we obtain

two sets of initializations using and without using global color segmentation. We shall
compare in the results how applying our OC models in the following global optimiza-
tion improves both of the disparity maps.

4.2 Outlier Confidence Estimation

We estimate the outlier confidence map U on the initial disparity maps. Our following
discussion focuses on estimating Ul on the left view. The right view can be handled in
a similar way. The outlier confidences, in our algorithm, are defined as

Ul(x) =

⎧
⎨

⎩

1 |dl(x) − dr(x − dl(x))| ≥ 1
T ( bx(d∗)−bmin

‖bo−bmin‖ ) bx(d∗) > t ∧ |dl(x) − dr(x − dl(x))| = 0
0 Otherwise

(14)

considering 2 cases.
Case 1: Our MRF enforces the disparity consistency between two views. After dis-

parity initialization, the remaining pixels with inconsistent disparities are likely to be
occlusions. So we first set the outlier confidence Ul(x) = 1 for pixel x if the inter-frame
consistency is violated, i.e., |dl(x) − dr(x − dl(x))| ≥ 1.

Case 2: Besides the disparity inconsistency, pixel matching with large matching cost
is also unreliable. In our method, since we use BP to initialize the disparity maps, the
matching cost is embedded in the output disparity belief bx(d) for each pixel x. Here,
we introduce some simple operations to manipulate it. First, we extract bx(d∗), i.e.,
the smallest belief, for each pixel x. If bx(d∗) < t, where t is a threshold, the pixel
should be regarded as an inlier given the small matching cost. Second, a variable bo is
computed as the average of the minimal beliefs regarding all occluded pixels detected
in Case 1, i.e., bo =

∑
Ul(x)=1 bx(d∗)/K where K is the total number of the occluded

pixels. Finally, we compute bmin as the average of top n% minimal beliefs among all
pixels. n is set to 10 in our experiments.

Using the computed bx(d∗), bo, and bmin, we estimate Ul(x̃) for pixels neither de-
tected as occlusions nor treated as inliers by setting

Ul(x̃) = T
(

bx̃(d∗) − bmin

‖bo − bmin‖

)
, (15)
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(a) (b) (c) (d)

Fig. 3. Intermediate results for the “Tsukuba” example. (a) and (b) show our initial disparity maps
by the 4-connected and (4 + N)-connected MRFs respectively without using segmentation. The
disparity noise in (b) is reduced for the background. (c) Our estimated OC map. (d) A disparity
map constructed by combining the inlier and outlier information. The disparities for the outlier
pixels are set as the maximum weight ωi. The inlier pixels are with initially computed disparity
values.

where T is the function defined in (9), making the confidence value in range [0, 1]. (15)
indicates if the smallest belief bx(d∗) of pixel x is equal to or larger than the average
smallest belief of the occluded pixels detected in Case 1, the outlier confidence of x
will be high, and vice versa.

Figure 3(c) shows the estimated outlier coefficient map for the “tsukuba” example.
The pure black pixels represent inliers where Ul(x) = 0. Generally, the region consist-
ing of pixels with Ul(x) > 0 is wider than the ground truth occluded region. This is
allowed in our algorithm because Ul(x) is only a weight balancing pixel matching and
color smoothness. Even if pixel x is mistakenly labeled as an outlier, the disparity esti-
mation in our algorithm will not be largely influenced because large Ul(x) only makes
the disparity estimation of x rely more on neighboring pixel information, by which d(x)
still has a large chance to be correctly inferred.

To illustrate the efficacy of our OC scheme, we show in Figure 3(d) a disparity map
directly constructed with the following setting. Each inlier pixel is with initially com-
puted disparity value and each outlier pixel is with the disparity i corresponding to the
maximum weight ωi among all ωj’s, where j = 0, · · · , N . It can be observed that
even without any further global optimization, this simple maximum-weight disparity
calculation already makes the object boundary smooth and natural.

4.3 Global Optimization

With the estimated OC maps, we are ready to use global optimization to compute the
final disparity maps combining costs (2) and (10) in (1). Two forms of f0(·) ((3) and
(4)) are independently applied in our experiments for result comparison.

The computation of f1(x, d; I) in (5) is based on the estimated OC maps and the
initial disparities for the inlier pixels, which are obtained in the aforementioned steps.
To compute ωi for outlier pixel x with Ul(x) > 0, robust matting [23] is performed
as described in Section 3.1 for each disparity level. The involved color sampling is
performed in each local window with size 60 × 60. Finally, the smoothness terms are
embedded in the message passing of BP. An acceleration using distance transform [25]
is adopted to construct the messages.
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5 Experiments

In experiments, we compare the results using and without using the Outlier Confidence
maps. The performance is evaluated using the Middlebury dataset [10]. All parameters
used in implementation are listed in Table 1 where α, β and κ are the weights defined
in the data term. γ and λ are for intra-frame smoothness and inter-frame consistency
respectively. ϕ, τ , and ζ are the truncation thresholds for different energy terms. t is
the threshold for selecting possible outliers. As we normalize the messages after each
message passing iteration by subtracting the mean of the messages, the belief bmin is
negative, making t = 0.9bmin > bmin.

A comparison of the state-of-the-art stereo matching algorithms is shown in
Table 2 extracted from the Middlebury website [9]. In the following, we give detailed
explanations.

Table 1. The parameter values used in our experiments. N is the number of the disparity levels.
c is the average of the correlation volume. bmin is introduced in (15).

Parameters α β κ γ λ ϕ τ ζ t

value ϕ 0.8 0.3 5.0 5N c 2.0 1.0 0.9bmin

Table 2. Algorithm evaluation on the Midellbury data set. Our method achieves overall rank 2 at
the time of data submission.

Avg. Tsukuba Venus Teddy Cones
Algorithm Rank nonocc all disc nonocc all disc nonocc all disc nonocc all disc

Adap.BP [5] 2.3 1.11 1.37 5.79 0.10 0.21 1.44 4.22 7.06 11.8 2.48 7.92 7.32
Our method 3.6 0.88 1.43 4.74 0.18 0.26 2.40 5.01 9.12 12.8 2.78 8.57 6.99
DoubleBP [6] 3.7 0.88 1.29 4.76 0.14 0.60 2.00 3.55 8.71 9.70 2.90 9.24 7.80

SPDou.BP [19] 4.6 1.24 1.76 5.98 0.12 0.46 1.74 3.45 8.38 10.0 2.93 8.73 7.91
SymBP+occ [4] 8.8 0.97 1.75 5.09 0.16 0.33 2.19 6.47 10.7 17.0 4.79 10.7 10.9

Table 3. Result comparison on the Middlebury dataset using (1st and 3rd rows) and without using
(2nd and 4th rows) OC Maps. The segmentation information has been incorporated for the last
two rows.

Overall Tsukuba Venus Teddy Cones
Algorithm Rank nonocc all disc nonocc all disc nonocc all disc nonocc all disc
COLOR 16 1.12 3.29 5.92 0.49 1.48 6.78 10.5 16.9 21.1 3.42 12.1 8.26

COLOR+OC 5 0.83 1.41 4.45 0.25 0.31 3.22 10.1 14.6 19.9 3.22 9.82 7.40
SEG 4 0.97 1.75 5.23 0.30 0.70 3.98 5.56 9.99 13.6 3.04 8.90 7.60

SEG+OC 2 0.88 1.43 4.74 0.18 0.26 2.40 5.01 9.12 12.8 2.78 8.57 6.99

5.1 Results without Using Segmentation

In the first part of our experiments, we do not use the segmentation information. So data
term f

(1)
0 defined in (3) is used in our depth estimation.
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(a)

(b)

Fig. 4. Disparity result comparison. (a) Disparity results of “SEG” (b) Our final disparity results
using the Outlier Confidence model (“SEG+OC”).

We show in the first row of Table 3 (denoted as “COLOR”) the statistics of the
initial disparities. The algorithm is detailed in Section 4.1. We set U(x) = 0 for all x’s
and minimize the energy defined in (13). Then we estimate the OC maps based on the
initial disparities and minimize the energy defined in (1). We denote the final results as
“COLOR+OC” in the second row of Table 3.

Comparing the two sets of results, one can observe that incorporating the outlier in-
formation significantly improves the quality of the estimated disparity maps. The over-
all rank jumps from initial No. 16 to No. 5, which is the highest position for all results
produced by the stereo matching algorithms without incorporating segmentation.

In analysis, for the “Teddy” example, however, our final disparity estimate does not
gain large improvement over the initial one. It is because that the remaining errors are
mostly caused by matching large textureless regions, which can be addressed by color
segmentation.

5.2 Results Using Segmentation

In this part of the experiments, we incorporate the segmentation information by using
the data term f

(2)
0 defined in (4). Our initial disparities are denoted as “SEG”. Our final

results obtained by applying the global optimization incorporating the Outlier Confi-
dences are denoted as “SEG+OC”. We show in the third and forth rows of Table 3 the
error statistics of the initial disparity maps and our refined results. The average rank
rises from 6.9 to 3.6 and the overall rank jumps from No. 4 to No. 2. The improve-
ment validates the effectiveness of our approach in handling outliers and its nature of
complementarity to color segmentation.

The computed disparity maps are shown in Figure 4, where (a) and (b) respectively
show the results of “SEG” and “SEG+OC”. A comparison of disparity errors is demon-
strated in Figure 5 using the “Cones” example. The magnified patches extracted from
the error maps are shown in (b). The comparison shows that our approach can primarily
improve the disparity estimation for outlier pixels.
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(a)

(b)

Fig. 5. Error comparison on the “Cones” example. (a) shows the disparity error maps for “SEG”
and “SEG+OC” respectively. (b) Comparison of three magnified patches extracted from (a). The
“SEG+OC” results are shown on the right of each patch pair.

Finally, the framework of our algorithm is general. Many other existing stereo match-
ing methods can be incorporated into the outlier confidence scheme by changing f0 to
other energy functions.

6 Conclusion

In this paper, we have proposed an Outlier-Confidence-based stereo matching algo-
rithm. In this algorithm, the Outlier Confidence is introduced to measure how likely
that one pixel is an outlier. A model using the local color information is proposed for
inferring the disparities of possible outliers and is softly combined with other data terms
to dynamically adjust the disparity estimate. Complementary to global color segmenta-
tion, our algorithm locally gathers color samples and optimizes them using the matting
techniques in order to reliably measure how one outlier pixel can be assigned a disparity
value. Experimental results on the Middlebury data set show that our proposed method
is rather effective in disparity estimation.
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