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Abstract. Traditionally, facial expression recognition (FER) issues have been
studied mostly based on modalities of 2D images, 2D videos, and 3D static mod-
els. In this paper, we propose a spatio-temporal expression analysis approach
based on a new modality, 3D dynamic geometric facial model sequences, to tackle
the FER problems. Our approach integrates a 3D facial surface descriptor and
Hidden Markov Models (HMM) to recognize facial expressions. To study the dy-
namics of 3D dynamic models for FER, we investigated three types of HMMs:
temporal 1D-HMM, pseudo 2D-HMM (a combination of a spatial HMM and a
temporal HMM), and real 2D-HMM. We also created a new dynamic 3D facial
expression database for the research community. The results show that our ap-
proach achieves a 90.44% person-independent recognition rate for distinguishing
six prototypic facial expressions. The advantage of our method is demonstrated as
compared to methods based on 2D texture images, 2D/3D Motion Units, and 3D
static range models. Further experimental evaluations also verify the benefits of
our approach with respect to partial facial surface occlusion, expression intensity
changes, and 3D model resolution variations.

1 Introduction

Research on FER has been based primarily on findings from Psychology and particu-
larly on the Facial Action Coding System [1I]. Many successful approaches have uti-
lized Action Units (AU) recognition or Motion Units (MU) detection
[OUTOITT]). Other well-developed approaches concentrate on facial region features, such
as manifold features [12] and facial texture features [13/14]. Ultimately, however, all of
above methods focus on most commonly used modality: 2D static images or 2D videos.

Recently, the use of 3D facial data for FER has attracted attention as the 3D data pro-
vides fine geometric information invariant to pose and illumination changes. There is
some existing work for FER using 3D models created from 2D images or from 3D
stereo range imaging systems [16/17]. However, the 3D models that have been used are
all static. The most recent technological advances in 3D imaging allow for real-time
3D facial shape acquisition and analysis [20]. Such 3D sequential data cap-
tures the dynamics of time-varying facial surfaces, thus allowing us to use 3D dynamic
surface features or 3D motion units (rather than 2D motion units) to scrutinize facial
behaviors at a detailed level. Wang et al [18]] have successfully developed a hierarchi-
cal framework for tracking high-density 3D facial sequences. The recent work in
utilized dynamic 3D models of six subjects for facial analysis and editing based on the
generalized facial manifold of a standard model.
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Motivated by the recent work of 3D facial expression recognition reported by Yin
et al [16] based on a static 3D facial expression database [21]], we extend the facial
expression analysis to a dynamic 3D space. In this paper, we propose a spatio-temporal
3D facial expression analysis approach for FER using our newly-created 3D dynamic
facial expression database. This database contains 606 3D facial video sequences with
101 subjects: each subject has six 3D sequences corresponding to six prototypic facial
expressions. Our approach uses 3D labeled surface type to represent the human facial
surface and transforms the feature to an optimal compact space using linear discrimi-
native analysis. Such a 3D surface feature representation is relatively robust to changes
of pose and expression intensities. To explore the dynamics of 3D facial surfaces, we
investigated a 1D temporal HMM structure and extended it to a pseudo-2D HMM and
a real 2D HMM. There have been existing HMM-based approaches for FER using 2D
videos [Z19122]], by which either a 1D HMM or multi-stage 1D-HMM was developed.
However, no true 2D-HMM structure was applied to address the FER problem. Our
comparison study shows that the proposed real 2D-HMM structure is better than the
1D-HMM and pseudo 2D-HMM in describing the 3D spatio-temporal facial properties.

In this paper, we conducted comparative experiments using our spatio-temporal 3D
model-based approach with approaches based on 2D/3D motion units, 2D textures, and
3D static models. The experimental results show that our approach achieves a 90.44%
person-independent recognition rate in distinguishing the six prototypic expressions,
which outperforms the other compared approaches. Finally, the performance of our
proposed approach was evaluated on its robustness dealing with 1) partial facial surface
occlusion, 2) expression intensity changes, and 3) 3D model resolution variations. The
paper is organized as follows: we first introduce our new 3D dynamic facial expression
database in Section 2. We then describe our 3D facial surface descriptor in Section 3 and
the HMM classifiers in Section 4. The experimental results and analysis are reported in
Section 5, followed by the conclusion in Section 6.

2 Dynamic 3D Face Database

There are some existing public 3D static face databases, such as FRGC 2.0 [23]], BU-
3DFE [21]], etc. However, to the best of our knowledge, there is no 3D dynamic facial
expression database publicly available. To investigate the usability and performance of
the 3D dynamic facial models for FER, we created a dynamic 3D facial expression data-
base [24]] using the Dimensional Imaging’s 3D dynamic capturing system [19]]. The sys-
tem captures a sequence of stereo images and produces the range models using a passive
stereo-photogrammetry approach. At the same time, 2D texture videos of the dynamic
3D models are also recorded. Figure[Ilshows the dynamic 3D face capture system with
three cameras. Each subject was requested to perform the six prototypic expressions
(i.e., anger, disgust, fear, smile, sad, and surprise) separately. Each 3D video sequence
captured one expression at a rate of 25 frames per second and each 3D video clip lasts
approximately 4 seconds with about 35,000 vertices per model. Our database currently
consists of 101 subjects including 606 3D model sequences with 6 prototypic expres-
sions and a variety of ethnic/racial ancestries. An example of a 3D facial sequence is
shown in Figure[Il More details can be found in [24].
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Fig. 1. Left:Dynamic 3D face capturing system setup. Right: sample videos of a subject with
smile expression(from top to bottom: shaded models, textured models, and wire-frame models
with 83 tracked control points).

3 3D Dynamic Facial Surface Descriptor

The dynamic 3D face data provides both facial surface and motion information. Con-
sidering the representation of facial surface and the dynamic property of facial expres-
sions, we propose to integrate a facial surface descriptor and Hidden Markov Models
to analyze the spatio-temporal facial dynamics. It is worth noting that we aim at ver-
ifying the usefulness and merits of such 3D dynamic data for FER in contrast to the
2D static/dynamic data or 3D static data. Therefore, we do not focus on developing a
fully automatic system for FER in this paper. Our system is outlined in Figure[2l which
consists of model pre-processing, HMM-based training, and recognition.
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Fig. 2. Left: Framework of the FER system. Right: sub-regions defined on an adapted model (a)
and a labeled model (b).

In the first stage, we adapt a generic model (i.e., tracking model) to each range model
of a 3D model sequence. The adaptation is controlled by a set of 83 pre-defined key
points (colored points on the generic model in Figure 2. After adaptation, the corre-
spondence of the points across the 3D range model sequence is established. We apply a
surface labeling approach [23] to assign each vertex one of eight primitive shape types.
Thus, each range model in the sequence is represented by a “label map”, G, as shown
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in the 3D shape feature space of Figure Pl where different colors represent different
labeled shape types. We use Linear Discriminative Analysis (LDA) to transform the
label map to an optimal compact space to better separate different expressions. Given
the optimized features, the second stage is to learn one HMM for each expression. In
recognition, the temporal/spatial dynamics of a test video is analyzed by the trained
HMMs. As a result, the probability scores of the test video to each HMM are evaluated
by the Bayesian decision rule to determine the expression type of the test video.

3.1 Facial Model Tracking and Adaptation

As the high-resolution range models vary in the number of vertices across 3D video
frames, we must establish the vertices’ correspondences and construct a common fea-
ture vector. To do so, we applied a generic model adaptation approach to “sample” the
range models. This process consists of two steps: control points tracking and generic
model adaptation. A set of 83 pre-defined key points is tracked using an active appear-
ance model based approach on 2D video sequences [26/19], where the key points in
the initial frame are manually picked. To reduce the tracking error, a post-processing
procedure was applied by manually correcting some inaccurately tracked points. Since
the 2D texture and the 3D range model of each frame are matched accurately from
the system, the key points tracked in the 2D video can be exactly mapped to the 3D
range surface. This semi-automatic approach allows us to obtain accurate control points
on the sequential models. Figure [T (bottom row) shows an example of a tracked se-
quence. The adaptation procedure is as follows: Given the N (=83) control points U; =
(U o, Ujy, uiyz)T € R? on the generic model and the corresponding tracked points
V; € R? on each range model, we use the radial basis function (RBF) to adapt the
generic model on the range face model. The interpolation function is formulated as:

N
f(p) = e1+[e2csca] x P+ Y i (Ip — Usi) e

=1

where p; is a non-control vertex on the generic model and ¢; is the RBF for U; . All
coefficients cx(k=1,..,4) are determined by solving the equation: f (U;) = V;,i = 1...N,
where Zfil A = 0 and Zf\il U;\; = (0,0, O)T. Then, the non-control vertex p; is
mapped to f (p;). The result of adaptation provides sufficient geometric information
for subsequent labeling. Figure Pfa) shows an example of an adapted model.

3.2 Geometric Surface Labeling

3D facial range models can be characterized by eight primitive surface features: convex
peak, concave pit, convex cylinder, convex saddle, concave saddle, minimal surface,
concave cylinder, and planar [23]. After the tracking model is adapted to the range
model, each vertex of the adapted model is labeled as one of the eight primitive fea-
tures. This surface labeling algorithm is similar to the approach described in [16]]. The
difference is that eight primitive features rather than twelve features are used for our
expression representation because we apply a local coordinate system for feature cal-
culation. Let p = (x,y, z) be a point on a surface S, IV, be the unit normal to S at
point p, and X, be a local parameterization of surface S at p. A polynomial patch
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z(x,y) = ) Az® + Bay+ [ Cy? + Dz® 4+ Ex’y + Fay® + Gy®is used to approximate the
local surface around p by using X, , X, and N, as a local orthogonal system. We then
obtain the principal curvatures by computing the eigenvalues of the Weingarten ma-
trix: W = (A4, B; B, C'). After obtaining the curvature values of each vertex, we apply
the classification method described in to label each vertex of the adapted model.
Thus, each range model is represented by a label map G = [¢1, g2, .., gn|, composed
of all vertices’ labels on the facial region. Here, g; is label types and n is the number of
vertices in the facial region of the adapted model.

3.3 Optimal Feature Space Transformation

We now represent each face model by its label map G. We use LDA to project G to
an optimal feature space O¢ that is relatively insensitive to different subjects while
preserving the discriminative expression information. LDA defines the within-class
matrix S,, and the between-class matrix Sj. It transforms a n-dimensional feature to
an optimized d-dimensional feature Og by O¢ = Do” - G, where d < n, Do =
arg (mazp| (D"S,D) / (D" SwD)) and D, projection matrix. For our experiments, the
discriminative classes are 6 expressions, thus the reduced dimension d is 5.

4 HMM Based Classifiers

Facial expression is a spatio-temporal behavior. To better characterize this property,
we used Hidden Markov Models to learn the temporal dynamics and the spatial rela-
tionships of facial regions. In this section, we describe the Temporal-HMM (T-HMM),
Pseudo Spatio-Temporal HMM (P2D-HMM), and real 2D HMM (R2D-HMM), pro-
gressively. P2D-HMM is extended from T-HMM, and in turn, R2D HMM is extended
from P2D-HMM. As we will discuss, R2D-HMM is the most appropriate method for
learning dynamic 3D face models to recognize expressions.

4.1 Temporal HMM

Each prototypic expression is modeled as an HMM. Let A = [A, B, 7] denote an HMM
to be trained and N be the number of hidden states in the model, we denote the states
as S = {51,5, ..., Sy} and the state at ¢ is g; (see top row of Figure[3). A = {a;; }is
the state transition probability distribution, where a;; = P [gi11 = Sj|lgs = Si], 1 <
i,j < N. B = {bj (k)}is the observation probability distribution in state j, k is an
observation . We use Gaussian distributions to estimate each B = {b; (k)} , where
bj (k) = Plklg: =5;] ~ N(pj,2;),1 < j < N.Letw = {m;} be the initial
state distribution, where m; = P[qo = S;],1 < ¢ < N. Then, given an observation
sequence, O = O105...07, where O; denote an observation at time 4, the training
procedure is: Step I: Take the optimized feature representation O¢ of each observed
3D range face model as an observation. Step 2: Initialize the HMM model \. Each
observed model of a sequence corresponds to one state and is used to estimate the
parameters in the observation matrix B . Set the initial values of A and 7 based on
observations. Step 3: Use the forward-backward algorithm to derive an estimation
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of the model parameter A = [A, B, 7| when P (O|\) is maximized. Finally, we derived
6 HMMs; each represents one of the six prototypic expressions.

Given a query model sequence, we follow the Step 1 of the training procedure to
represent it as ) = QQ1Qs...Q, where the optimized representation of each frame is
one observation, denoted as O¢ = (Og,1, Og,2, Oc,3, Oc .4, Oc,5). Using the forward-
backward method, we compute the probability of the observation sequence given a
trained HM M ; as P (Q|);) . We use the Bayesian decision rule to classify the query

sequence ¢* = argmaz [P (\|Q)],i € C, where P (\;|Q) = ZCP(?DI(/\Q?/\ () izA_) and
J

C' is the number of the trained HMM models. Since this method trace the temporal
dynamics of facial sequences, we denote it as a Temporal HMM(T-HMM). The top row
of Figure 3] shows the structure of a 6-state T-HMM. The decision to classify a query
sequence to an expression using the T-HMM is denoted as Decision”.

HMM Models A ={4,B,7}

[ant (a22\ &/ /ag aM fass\ ( 268\
Face ’ { Likelihood
— s2 { 83 S SS o
Observations a12 as\ Jo™ / Probalnhty

IF Decision” == Decision®
Decision”*” = Decision®
ELSE
Tex;?‘ IF Con fidence® is less than a threshold
Decision”” = Decision”
ELSE
Decision”?P = Decision®
END

Spatial HMMs

Fig.3. Top:T-HMM; Bottom-left and middle:P2D-HMM and its decision rule; Bottom-
right: R2D-HMM

4.2 Pseudo 2D Spatio-temporal HMM

Facial characteristics are not only represented by temporal dynamics (inter-frame) but
also by spatial relationships (intra-frame). To model these properties of 3D faces, we
investigated the structure of HMMs in the spatial domain combined with the temporal
domain, a structure called P2D-HMM.

Spatial HMM (S-HMM): Based on the feature points tracked on the facial surface
(e.g., contours of eyebrows, eyes, nose, mouth, and chin), we subdivide each 3D frame
model of a sequence into six regions, as shown in Figure 2Ib) (R1, Ra, ..., Rg). We then
build a 6-state 1D HMM, corresponding the six regions, as shown in each column of
P2D-HMM in Figure[3l Similar to the case of entire face regions in the previous section,
we transform the labeled map of each sub-region of a frame to an optimized feature
space using LDA, denoted as Og; = (Ogi1,0ci2, Ogi,3,Ogia, Ocis), (i = 1..6),
where i is the region index of a frame model. We trained one HMM for each expression.
Given a query face sequence with a length N, we compute the likelihood score of
each frame and use the Bayesian decision rule to decide the frame’s expression type.
We make a final decision Decision® using majority voting. Thus, the query model
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sequence is recognized as an expression if this expression is the majority result among
N frames. As this method tracks spatial dynamics of a facial surface, we call it a spatial
HMM (S-HMM).

Combination of Spatial and Temporal HMMs: To model both spatial and temporal
information of 3D face sequences, we combine the S-HMM and the T-HMM to con-
struct a pseudo 2D HMM (P2D-HMM) (see Figure[3). The final decision Decision”?P
is based on both Decision® and Decision”. The decision rule of the P2D-HMM is
also described Figure Bl Here, we define Con f idence’ as the ratio of the number of
majority votes versus the total number of frames in the query model sequence. In our ex-
periment, we took 6 frames as a sequence, and chose the threshold for this ratio as 0.67.
As a consequence, if at least 4 frames of a query sequence are recognized as expres-
sion A by the S-HMM, we determine the query sequence is A. Otherwise, the result
comes from the Decision” . Essentially, P2D-HMM uses the learned facial temporal
characteristics to compensate for the learned facial spatial characteristics.

4.3 Real 2D Spatio-temporal HMM

The aforementioned HMM-based approaches are essentially 1-D or pseudo-2D ap-
proaches. However, the dynamic 3D facial models are four dimensional (i.e., 3D plus
time). Considering the complexity of high-dimensional HMMs and motivated by the
work of Othman et al [28]] for 2D face recognition, we developed a real 2D HMM
(R2D-HMM) architecture to learn the 3D facial dynamics over time. As shown in Fig-
ure [3] (bottom-right), this architecture allows for both spatial (vertical) and temporal
(horizontal) transition to each state simultaneously. The number of states along spa-
tial (vertical) or temporal (horizontal) axes are all six. Simply put, each 3D sequence
contains 6 temporal states, and each frame contains 6 spatial states from top to bot-
tom. The transition from region R; of the previous frames to another region I2; of the
current frame can be learned from the R2D-HMM. In Figure 3 Hyo.43 and V33,43
are the horizontal and vertical transition probabilities from the state S4 2 and the state
Ss3 3 to the current state Sy 3 respectively, and a4 3.4 3 is the self-transition probabil-
ity of the state S, 3. Let O, be the observation vector of the r”* region of the s'"
frame in a 3D video sequence, the corresponding set of feature vectors is defined as
Otmmy = {Ors : 1 <7 <m,1 < s < n}. The feature vector set of the past observa-
tion blocks O, ,,>is derived by excluding the current observation block O,,, ,,, where
O<mn> = Ogm,ny — Om,n. Note that the joint probability of the current state and the
observations up to the current observation P (¢, n = Sa b, Om n}) can be predicted
based on past observation blocks in a recursive form:

P (Qm,n = Pa,by O{m,n}) = P(Om,n|Qm,n - Sa,b)
M,N

. | Z P (Qm,n - Sa,b“]m—l,n = Si,j) P (Qm—l,n - Si,j7 O{mfl,n})
ij=1,1 (2)

M,N
: Z P(qm,n = Sa,b“]m,nfl - Sk:,l) P (Qm,nfl = Sk,lva{m,n—l}) ‘1/2
k—1,1
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Similar to the standard 1-D HMM, approach, the state matrix is denoted as 6, (a,b)
= maXg,  .gmn1 £ [@mn = Sap, O1,1,...Omn|A]. The observation probability
distribution By (O ) is given by

1 (om,n—;Layb)z;}j(Omm,—u,a,b)T
Ba,b (Om,n) = v/2 - e 2 (3)
2n]"/2 $1/2

Using the Viterbi algorithm, we estimate the model parameter A as P (O, Q*|)) is
maximized, where P (O, Q*|\) = maxq,p [6a,n (a,b)], and Q* is the optimal state
sequence. This structure assumes the state transitions to be left-to-right horizontally and
top-to-bottom structure vertically. We set the transition matrix in the diagonal direction
to be zeros using the same calculation as described in [28]. The expected complexity of
the R2D-HMM method is only two times that of the 1D T-HMM structure with the same
number of states. In our experiment, given a six-frame sequence, the observation vector
is defined by a 6 x 6 matrix O, in which each cell is an observation block denoted as
Ors = (0r.51,0r,52,0p53,0r 54,0 55) (r,s = 1...6), where s is the frame index,
r is the region index of the frame s, and O, (7, s = 1...6) is the optimized feature after
the label map of the region r of the frame s is transformed using LDA.

5 Experiments and Analysis

We conducted person-independent experiments on 60 subjects selected from our data-
base. To construct the training set and the testing set, we generated a set of 6-frame
subsequences from each expression sequence. To do so, for each expression sequence
of a subject, we chose the first six frames as the first subsequence. Then, we chose
6-consecutive frames starting from the second frame as the second subsequence. The
process is repeated by shifting the starting index of the sequence every one frame till
the end of the sequence. The rationale for this shifting is that a subject could come
to the recognition system at any time, thus the recognition process could start from
any frame. As a result, 30780 (= 95 x 6 x 54) subsequences of 54 subjects were
derived for training, and 3420 (= 95 x 6 x 6) subsequences of the other 6 subjects
were derived for testing. Following a ten-fold cross-validation, we report the average
recognition rates of the ten trials as the final result. Our database contains not only the
3D dynamic model sequences but also the associated 2D texture videos. This allows us
to compare the results using both 3D data and 2D data of same subjects simultaneously.
In the following section, we report the results of our proposed approaches using the 3D
dynamic data and their comparative results of the existing approaches using 2D data and
3D static data. All the experiments were conducted in a person-independent fashion.

5.1 Comparison Experiments

Dynamic 3D region-based approaches: We conducted experiments using the Tempo-
ral 1D-HMM (T-HMM), Pseudo-2D HMM (P2D-HMM), and Real 2D HMM (R2D-
HMM) based on the 3D dynamic surface descriptor. As previously discussed, our facial
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feature descriptor is constructed from vertices’ labels of either entire face region or lo-
cal facial regions, and we dubbed these methods as “3D region-based” approaches. The
experimental results are reported in the bottom three rows of the right of Table [Il

Static 2D/3D region-based approaches: (/) 2D static texture baseline: We used the
Gabor-wavelet based approach as a 2D static baseline method. We used 40 Gabor
kernels including 5 scales and 8 orientations and applied them to the 83 key points on
the 2D texture frames of all video sequences. (2) 3D static models baseline: The LLE
based [29], PCA-based, and LDA-based approaches were implemented as the 3D
static baseline methods for comparison. The input vector for these three approaches is
feature G as explained in section 3.2. For the LLE-based method, we first transform
the label map G of each range model to the LLE space and select key frames using
k-means clustering. Then, all selected key frame models are used as the gallery models
for classification. We use majority voting to classify each 3D query model in the test
set. The PCA-based approach and LDA-based approach take the labeled feature G as
input vector and apply the PCA and LDA for the recognition. (3) 3D static models
using surface histograms: We implemented the algorithm reported in [16] as the 3D
static baseline method for comparison. We treat each frame of the 3D model sequences
as a 3D static model. Based on [16]], a so-called primitive surface feature distribution
(PSFD) face descriptor is implemented and applied for six-expression classification
using LDA. As seen from Table [Il our dynamic 3D model-based HMM approaches
outperforms the above static 2D/3D-based approaches. The performance of the PSFD
approach is relatively low when it is tested on our 3D dynamic database because its
feature representation is based on the static model’s surface feature distribution (i.e.,
histogram). Such a representation may not detect local surface changes in the presence
of low-intensity expressions.

Dynamic 2D/3D MU-based approaches: To verify the usefulness of 3D motion units
(MU) derived from our dynamic 3D facial models, and to compare it with the 2D MU-
based approaches and our dynamic 3D region-based approaches, we implemented the
approach reported by Cohen et al [9] as the MU-2D baseline method.

(1) MU-2D based: According to [9], 12 motion units (MUs) are defined (as the 12
motion vectors) in areas of eyebrows, eye lids, lips, mouth corner and cheeks (see the
left three images of Figure ). Since we have tracked 83 key points on both 2D videos
and 3D models as described in Section 3.1, the 12 MU points can be obtained from
the tracking result. Note that although more MU points can be used from the tracking
(as studied by Pantic et al in [8]), to be a fair comparison to the baseline approach,
we only used the same 12 MU points as the ones defined in [9]. To compensate for
the global rigid motion, we align current frame with the first frame using the estimated
head orientation and movement from our adapted 3D tracking model. As such, the dis-
placement vector of a MU point in frame i is obtained by Disp (i) = F; — F,., where
F,. is the position of the MU point in the first frame (with a neutral expression) and
F; is the position of the MU point in the frame i. Figure @ (left three images) is an
example of the 2D MUs derived from a video sequence. In our experiment, we used
the 12 MUs, derived from the 2D videos, as the input to the baseline HMM [9] to clas-
sify the six prototypic expressions. (2) MU-3D based: This is an extension of MU-2D
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Fig.4. An example of MUs. Left three: 2D-MUs on the initial frame, motion vectors of MUs
from the initial frame to the current frame, and MUs on the current frame of a 2D sequence.
Right four: 3D-MUs on the initial frame, 3D motion vectors of MUs with two different views,
and MUs on the current frame of a 3D sequence.

method. It derives 3D displacement vectors of the 12 MUs from the dynamic 3D facial
videos. Similarly, the 3D model of the current frame is also aligned to the 3D model
of the first frame. The compensated 3D motion vectors are then used for HMM clas-
sification. Note that although the motion vectors of 2D and 3D models look alike in
frontal view, they are actually different since 3D MUs also have motions perpendic-
ular to the frontal view plane, as illustrated in the 2"¢ image from right of Figure [
From Table [Il the MU-2D approach achieves a comparable result to that reported in
[9] in the case of person-independent recognition. The MU-3D approach outperforms
the MU-2D approach because 3D models provides more motion information for FER.
Nevertheless, it is not superior to our 3D label-based spatio-temporal approaches be-
cause the MU-based approaches do not take advantage of entire facial surface features
and rely on very few feature points for classification, and thus are relatively sensitive
to the influence of the inaccurate feature detection. The experiment also shows that
our 3D label-based R2D-HMM method achieves the best recognition result (90.44%).
However, the confusion matrix (Table 2) shows that sad, disgust, and fear expressions
are likely to be mis-classified as anger. Our R2D-HMM based approach does not rely
on a few features. On the contrary, it takes advantage of entire 3D facial features as well
as their 3D dynamics, and thus is more closely matched to the 3D dynamic data and
more tolerant to individual feature errors than other compared approaches are.

Table 1. Facial expression recognition results summary

Model property Method Recognition rate Model property Method Recognition rate
static 2D Gabor-wavelet based 63.72% dynamic 2D MU-2D 66.95%
static 3D LLE-based method 61.11% dynamic 3D  MU-3D 70.31%
static 3D PCA-based method  70.79% dynamic 3D T-HMM based 80.04%
static 3D LDA-based method  77.04% dynamic 3D P2D-HMM based 82.19%
static 3D PSFD method 53.24% dynamic 3D R2D-HMM based 90.44%

Table 2. Confusion matrix using R2D-HMM method

Infout  Anger Disgust Fear ~ Smile Sad Surprise
Anger 92.44% 3.68% 1.94% 1.32% 0.00% 1.42%
Disgust 8.28% 87.58% 1.27% 1.27% 0.96% 0.64%
Fear 7.45% 3.42% 85.40% 0.62% 0.00% 3.11%
Smile  0.44% 0.22% 0.66% 97.81% 0.00% 0.87%
Sad 13.12% 1.56% 0.63% 4.06% 80.32% 0.31%
Surprise 0.33% 0.00% 0.00% 0.33% 0.00% 99.34%



68 Y. Sun and L. Yin

5.2 Performance Evaluation Using R2D-HMM

To further evaluate our spatio-temporal based approaches for 3D dynamic facial expres-
sion recognition, we conducted experiments to test the robustness of our R2D-HMM
method with respect to three aspects: partial facial surface occlusion, expression inten-
sity variation, and 3D model resolution variations.

Partial facial surface occlusion: Limited by views used in our current face imaging
system, the facial surface may be partially missing due to the pose variation. To test the
robustness of our proposed 3D facial descriptor and the dynamic HMM based classifier,
we simulated the situation by changing the yaw and pitch angles of the facial models
and generating a set of partially visible surfaces under different views. Ideally, we shall
use the ground-true data collected systematically from a variety of views. However,
it is hard (as well as expensive) to have such collection due to the difficulty to con-
trol the exact degree of pose during the subjects’ motion. As such, in this paper we
adopt the simulation approach for this study. Such a simulation allows us to study the
performance of our proposed expression descriptor in the condition of partial surface
invisible with a controllable degree of rotation. For the set of visible surfaces at dif-
ferent orientations, we report the recognition rate separately. Figure 3] shows the facial
expression recognition rates with different yaw and pitch angles. The recognition results
are based on our proposed dynamic-3D R2D-HMM based approach and the static-3D
LDA-based approach. Generally, it shows that our dynamic approach outperforms the
static approach in any situation since the motion information compensates for the loss
of spatial information.

As shown in the the bottom row of Figure [l our approach achieves a relatively high
recognition rate (over 80%) even when the yaw and pitch angles change to 60 degrees,
which demonstrates its robustness to the data loss due to the partial data invisible. The
first row of Figure 3] shows the FER rate when the pose changes in only one dimension
(yaw/pitch). Out of the useful range (i.e., either pitch or yaw angle changes exceed
150 degrees from the frontal view), the FER rate degrades to zero dramatically because
of the paucity of useful information for recognition. The recognition curve of yaw’s
rotation within the useful range (Top-Left of Figure B) is approximately symmetric
with respect to the zero yaw angle. The recognition rate does not decrease too much
even when the yaw angle is close to 90-degree (corresponds to half face visible). This
is because either the left part or the right part of a face compensates for the other in
the 3D space due to the approximate symmetric appearance of the face along the nose
profile. However, the recognition curve of tilts rotation within the useful range is a
little asymmetric as shown in the Top-Right of Figure Bl When the face is tilted up, the
recognition rate is degraded not as much as when the face is tilted down in the same
degree. This asymmetric property implies that the lower part of the face may provide
more useful information than the upper part for expression recognition.

Variation of expression intensity: Our approach can also deal with variations of ex-
pression intensity since it not only includes different levels of intensities but also con-
siders their dynamic changes. Based on our observation, we simply separated each 3D
video sequence into two parts: a low intensity sequence (e.g., subsequences close to
the starting or ending frames showing near-neutral expressions) and a high intensity
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Fig. 5. FER results with simulated partial data missing scenario. Top: FER rate curves with respect
to yaw rotation only and pitch rotation only; Bottom: FER rates surface with both yaw and pitch
rotations. The facial pictures in the bottom illustrate the visible parts of a face when the yaw and
pitch angles change to +/- 60 degrees. The recognition rates are also denoted besides the pictures.

sequence (subsequences excluding the low-intensity sequences). We performed the test
on the low-intensity and high-intensity expressions individually using the R2D-HMM
approach and the static PSFD approach [16]]. Our training set includes both levels of in-
tensities. The results show that the R2D-HMM method can detect both weak and strong
expressions well. It achieves a 88.26% recognition rate of low intensity expressions and
91.58% recognition rate of high intensity expressions. However, the PSFD method has
71.72% recognition rate of high intensity expressions. It has less than 50% recognition
rate for low intensity expressions. The main reason is that the static surface histogram
descriptor may not be able to capture small variations of facial features as our 3D sur-
face label descriptor does. In addition, the high performance of our approach is also
attributed to the applied R2D-HMM classifier, which learns temporal transitions of dy-
namic facial surfaces effectively for both low-intensity and high-intensity expressions.

Variation of facial model resolutions: We down-sampled the test models to a low-
resolution version with around 18,000 vertices, which is almost half the resolution of
the original facial models (35,000 vertices) used for training. We then conducted the
experiment to see whether the proposed approach works well for facial models with
different resolutions. Based our R2D-HMM approach, the recognition rate for the low
resolution models is 89.78%, which is comparable to the result of high resolution mod-
els (90.44%). This demonstrates that our approach has certain robustness to different
resolutions, despite the fact that different resolutions could blur or sharpen the shape
of facial surface. This result is supported by the psychological finding: blurring the
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shape information has little effect on the recognition performance as long as the motion
channel is presented [31]].

6 Discussions and Conclusions

In this paper, we proposed a spatio-temporal approach to study the viability of using
dynamic 3D facial range models for facial expression recognition. Integrating the 3D
facial surface descriptor and the HMMs (R2D-HMM, or P2D-HMM, or T-HMM), our
system is able to learn the dynamic 3D facial surface information and achieves 90.44%
person-independent recognition rate with both low and high intensities. In general, the
HMM has been widely used for 2D facial expression recognition and face recognition.
However, the way that we applied the real 2D-HMM to address 3D dynamic facial ex-
pression recognition is novel. We have extended the work of FER from static 3D range
data to 3D videos. Many previous studies showed that sequential images are better than
static images for FER [Ol7]. We have verified that this statement holds true for 3D
geometric models. The advantage of our 3D dynamic model based approach has been
demonstrated as compared to several existing 2D static/video based and 3D static model
based approaches using our new 3D dynamic facial expression database. This database
will be made public to the research community. Ultimately, however, our focus was
to study the usefulness of the new dynamic 3D facial range models for facial expres-
sion recognition rather than develop a fully automatic FER system. Our current work
requires a semi-automatic process to select feature points at the initial stage. A fully
automatic system with a robust 3D feature tracking will be our next stage of the devel-
opment. To investigate the recognition performance in terms of large pose variations,
we will design a new approach to measure the exact pose degree during the capture of
ground-true spontaneous expressions. In addition, we will also investigate an approach
to detect 3D action units and integrate the motion vector information with our surface
label descriptor in order to improve the current FER performance.
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