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Abstract. Recently, impressive results have been reported for the de-
tection of objects in challenging real-world scenes. Interestingly however,
the underlying models vary greatly even between the most successful ap-
proaches. Methods using a global feature descriptor (e.g. [1]) paired with
discriminative classifiers such as SVMs enable high levels of performance,
but require large amounts of training data and typically degrade in the
presence of partial occlusions. Local feature-based approaches (e.g. [2–4])
are more robust in the presence of partial occlusions but often produce
a significant number of false positives. This paper proposes a novel ap-
proach called hierarchical support vector random field that allows 1) to
combine the power of global feature-based approaches with the flexibility
of local feature-based methods in one consistent multi-layer framework
and 2) to automatically learn the tradeoff and the optimal interplay
between local, semi-local and global feature contributions. Experiments
show that both the combination of local and global features as well as the
joint training result in improved detection performance on challenging
datasets.

1 Introduction

The first goal of this paper is to propose a novel hierarchical framework that ef-
fectively combines the power of global feature-based models with the flexibility of
local feature-based representations. The second goal is to derive an efficient and
effective procedure to jointly train all model parameters in order to automatically
learn the tradeoff and the interdependence of the different layers of the novel hi-
erarchical model as well as between the local and global feature contributions. To
achieve this, this paper leverages the ability of CRFs [5] to model neighborhood
dependencies not only between local image features, but also between object
sub-parts and parts using a multi-layer CRF. On the top-layer we incorporate a
global object detector while on the layers below we employ smaller apertures in
terms of object-parts and local features or sub-parts. The layers are connected
via intra-layer potentials to benefit from simultaneous bottom-up and top-down
propagation schemes. This allows to set up a joint and hierarchical model of
local and global discriminative methods that augments CRFs to a multi-layer
model with powerful unary classifiers.
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Fig. 1. Illustration of the model architecture. Two layers are connected via the ternary
cliques T . The alternation between binary cliques E and ternary cliques T is key to the
computationally feasability while a high degree of of interconnectedness is introduced.

The contributions of this paper are the following. First, we extend classical
one-layer CRFs to multi-layer CRFs while maintaining computational tractabil-
ity. Second, this work shows how to integrate local, semi-local and global infor-
mation in a powerful model. Third, we extend CRFs to a consistent framework,
which allows to jointly train the parameters of nonlinear classifiers and the CRF
parameters. Fourth, we experimentally show the contributions of the various
components of the model on challenging datasets. The paper is structured as
follows. First, we refer to related work. In section 2 we introduce our multi-layer
model, the respective potential functions and the parameters to be optimized.
In section 3 we explain how we apply the model to object detection and ver-
ification. Finally, in section 4 we evaluate various aspects of our work on two
different datasets.
Related Work. Related work [4, 6–9] addressing the combination of global and
local features showed promising results and specifically improved performance
compared to making use of only one type of features - either local or global.
Especially the idea of [8] of integrating localized features of growing apertures
in one model is relevant to our goals since meaningful object parts can be de-
termined while ensuring global consistency. In our work we exploit a similar
approach in terms of evidence aggregation, but additionally we are able to learn
local neighborhood dependencies and address bi-directional interactions between
entire objects and object parts. In contrast to [4, 7, 9] where global and local fea-
tures are matched independently from each other, we combine bottom-up and
top-down cues simultaneously showing improved performance.

Concerning CRF literature, [6, 10] proposed multi-layer CRFs to account for
global consistency and due to that showed improved performance. In [6] a global
scene potential is introduced to assert consistency of local regions. Thereby,
the authors were able to benefit from integrating the context of a given scene.
However, their model works with global priors set in advance and only uses
learned local classifiers. Rather than to rely on priors alone, in our work, all
parameters of the layers are trained jointly. In [10] a tree-structured CRF is
proposed based on previously inferred segmentations of images. Thereby, the
authors neglect direct local neighborhood dependencies, which our model learns
jointly with long range dependencies.
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[11–13] introduced two-layer CRFs, where the top layer deploys one node,
which superimposes objects. That idea is especially interesting for object de-
tection since the superimposed node manages local deformations of objects and
therefore asserts consistency of object instances. Our work goes beyond those
approaches by introducing multiple layers of evidence aggregation, which not
only guarantees consistency of object instances, but also deploys different levels
of information (from local to global) to our model.

CRF-based approaches like [11, 13–15] showed that incorporating powerful
unary classifiers in CRFs is key to the overall performance, but those unary
classifiers were trained independently from local neighborhood potentials. In con-
trast, we investigate the joint optimization of all aspects of our model and show
that this joint optimization leads to improved performance compared to inde-
pendent training. Taskar et al. [16] transformed the original problem introduced
by Lafferty et al. [5] into its equivalent exponentially sized dual formulation but
the latter lacks the intuitive nature of the primal problem and they only evalu-
ated it on an OCR task. Due to the modularity of our approach we reduce the
problem size while keeping the intuitive nature of the original formulation.

2 Hierarchical Support Vector Random Fields (hSVRF)

While global detectors have been shown to achieve impressive results in object
detection for unoccluded object instances, part-based approaches tend to be
more successful in dealing with partial occlusion. Since adjacent regions in images
are not independent from each other, CRFs model these dependencies directly
by introducing binary clique potentials. However, standard CRFs work on a very
local level and long range dependencies are not addressed explicitly in simple one-
layer models. Therefore, our approach incorporates SVMs and multiple layers of
CRFs in one consistent framework in order to combine local neighborhood and
long range dependencies. In the following we will describe how we set up the
multi-layer model step by step starting from the simple one-layer case.

2.1 One-Layer CRF Model

We overlay the image X with a grid of nodes where each node is linked to the
evidence in the image via unary ψ and binary φ potential functions. We denote
the set of grid nodes by yi ∈ Y in which each yi is associated to a certain region
xi in the image X . eij = (yi, yj) ∈ E refers to the binary cliques connecting
two adjacent nodes yi and yj . Each node yi ∈ Y will be assigned a label from
{0, . . . , p} which indicates the parts of an object {1, . . . , p} or background {0}.
We denote the set of all labels by Y. Therefore, the factorization of the condi-
tional probability distribution of the nodes Y given the image can be written
as

p(Y |X) =
1
Z

∏

yi∈Y

ψ(yi, xi)
∏

eij∈E

φ(yi, yj , xi, xj) . (1)

Here, Z refers to a normalization factor called the partition function.
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2.2 Multilayer CRF Model

As motivated before, one-layer CRFs act at a very local level and represent a
single view on the data typically represented with unary and binary potentials.
In order to overcome those local restrictions, we introduce multiple layers l ∈
{1, . . . , NL} with associated unary potentials ψl and binary potentials φl, to
enhance the model by evidence aggregation on a local (l = 1) to a global level
(l = NL). Different numbers of parts are deployed to different layers {0, . . . , pl}.
We propose a connectivity between the layers as displayed in Figure 1, which
provides a high degree of interconnectedness and yet results in a computationally
tractable model, which is highly desirable for both inference and training. The
key to this is the alternation between binary cliques eij ∈ El and ternary cliques
tijk ∈ T l that omit the introduction of higher (higher than third) order cliques.
The conditional distribution for this multi-layer model resolves into:

p(Y |X) = 1
Z

∏L
l=1

[∏
yi∈Y l ψl(yi, xi)

∏
eij∈El φl(yi, yj , xi, xj)

]
(intra-layer)

∏L−1
l=1

∏
tijk∈T l θl(yi, yj, yk, xi, xj , xk) (inter-layer)

(2)
where additional to the one-layer notation θl(·, ·, ·, ·, ·, ·) denotes the ternary
clique potentials that connect layer l to layer l + 1 using third-order cliques.
T l describes the set of all ternary cliques between layer l and layer l + 1 (see
Figure 1 for illustration).

This model combines different views on the data by layer-specific potentials
and the hierarchical structure accounts for longer range dependencies.

2.3 Potentials

As described in Eq. 1 and 2 the conditional probabilities factor into unary po-
tentials ψl, binary potentials φl and additional ternary potentials θl required for
the multi-layer model. Due to the flexibility of CRFs, the layer-specific feature
functions f l(X), gl(X) and hl(X) for the unary, binary and ternary potentials
respectively can be chosen freely. Those deployed in the experiments are detailed
in section 3.1.
Unary Potentials. The discriminative power in the unary potentials is key to
the overall performance of the CRF. In some cases, a CRF using less powerful
classifiers such as the commonly used logistic regression can even be outper-
formed by an SVM employing no connectivity at all [14].

Therefore, we build our unary potentials on SVMs to leverage previous results
on robust large margin classification. We adapt the one-against-all strategy which
results in training one SVM for each class. f l(·) refers to the feature function
for the node features and ρl

c denotes the offset. Then, the potential of node yi

being of class c is defined as

ψl(yi = c, xi; βl
c, ζ

l
c, ρ

l
c) = exp

⎛

⎝
∑

j∈ζl
c

(
βl

c

)
j
K(f l

j(X), f l
i (X)) + ρl

c

⎞

⎠ . (3)
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where ζl
c indexes the set of support vectors for class c and layer l and

(
βl

c

)
refers

to model parameters to be optimized. We used RBF kernels to define the ker-
nel function K(f l

j(X), f l
i (X)) = exp

(
−γ

∥∥f l
j(X) − f l

i (X)
∥∥2

)
with bandwidth

parameter γ. Note, that this approach employs multiclass one-against-all SVMs.
Binary and Ternary Potentials. We define the binary and ternary poten-
tials using a linear classification model, which is a popular choice in the CRF
literature. For the binary potentials we set

φl(yi = c1, yj = c2, xi, xj ; ul) = exp
((

ul
c1c2

)T
gl

ij(X)
)

. (4)

where yi and yj are two adjacent nodes and c1 and c2 refer to any label from
{0, . . . , pl}. gl(·) denotes the feature function for the binary potentials of layer l.
ul

c1c2
refers to the parameters to be trained. The ternary potentials are defined

as

θl(yi = c1, yj = c2, yk = c3, xi, xj , xk; vl) = exp
((

vl
c1c2c3

)T
hl

ijk(X)
)

. (5)

where yi, yj, yk belong to one three-wise connected clique tijk and c1, c2 ∈
{0, . . . , pl} and c3 ∈ {0, . . . , pl+1} . hl(·) denotes the feature function for the
ternary potentials at layer l. vl

c1c2c3
refers to the parameters to be optimized.

2.4 Parameter Learning and Inference

In contrast to CRF literature like [11, 13–15], we jointly optimize all model pa-
rameters. Given M training images Xm, m = {1, . . . , M} we optimize the condi-
tional log-likelihood L(β, u, v) =

∑M
m=1 log P (Y m|Xm; β, u, v) via gradient de-

scent for binary and ternary clique potentials. The unary potentials are trained
with Newton optimization.

This joint training is facilitated by the primal SVM training proposed by
Chapelle [17] that showed competitive results compared to common quadratic
programming in the dual formalism. We make use of that idea and incorporate
primal SVM training in the CRF framework.
Primal SVM Training. As described in [17] the constraints of the original pri-
mal optimization problem can be integrated with a loss function in the objective
function, yielding an unconstrained optimization problem. As long as this loss
function is differentiable with respect to the model parameters, the optimization
can be solved by Newton optimization. Originally, the non-differentiable hinge
loss is used for SVM training in the dual, but [17] showed competitive results
using the differentiable quadratic loss or the Huber loss (a differentiable approx-
imation of the hinge loss). The primal optimization problem for kernel SVMs is
denoted by:

min
βl

c

F = min
βl

c

⎛

⎝
∑

i,j∈ζl
c

(
βl

c

)
i

(
βl

c

)
j
K(fi(X), fj(X)) + C

n∑

i=1

L
(
yi, S

l
c

(
f l

i (X)
))

⎞

⎠ .

(6)
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where L denotes a suitable loss function and C the penalty term. The target
function Sl

c(·) is of the form (representer theorem [18]):

Sl
c

(
f l

i (X)
)

=
∑

j∈ζl
c

(
βl

c

)
j
K(f l

j(X), f l
i (X)) + ρl

c . (7)

where f l
i (x) denotes a feature vector to be classified. K(·, ·) denotes the kernel

function and
(
βl

c

)
refers to the parameters to be optimized (note that these are

not Lagrange multipliers). We consider the differentiable quadratic loss:

L(yi, S
l
c(fi(X))) =

(
max

{
0; 1 − (δ(yi, c))

(
Sl

c

(
f l

i (X)
))})2

. (8)

where δ(yi, c) ∈ {−1, 1} refers to whether yi belongs to class c (=1) or not (=-1).
[17] proposed to optimize the parameters

(
βl

c

)
with Newton optimization:

βl
c ← βl

c − η
(
H l

)−1 ∂F

∂βl
c

. (9)

where η denotes the learning rate and the Hessian H l equals 2
( 1

C K + KI0K
)

with kernel matrix K. I0 is a diagonal matrix, where the entries are 1 for βl
c > 0

and 0 otherwise. The number of non-zero entries equals the number of support
vectors. In order to update the offset ρl

c the Hessian can be augmented by an
additional row and column and the offset term can be concatenated with the
parameters βl

c (see [17] for details).

Joint Training of hSVRF. In order to account for joint training of the hSVRF
parameters, we adapt the loss function L(·, ·) to consider unary SVM classifica-
tions as well as joint CRF classifications , which respects the entire multi-layer
model. In that sense, object evidence, local neighborhood dependencies as well
as longer range dependencies are taken into account to optimize the unary pa-
rameters. We achieve this by adapting the loss function to consider the belief of
node yi belonging to class c inferred with Loopy Belief Propagation [19].

L(yi, bc(yi), Sl
c(fi(X))) =

�
max

�
0; (1 − δ(yi, c)bc(yi))

�
1 − δ(yi, c)Sl

c

�
f l

i (X)
����2

(10)

where the belief bc(yi) of node yi belonging to class c ranges between -1 and
1. Whenever the CRF votes for the wrong class ((1 − δ(yi, c)bc(yi)) > 1) the
original primal SVM loss function is amplified for calculating the Newton step.
Otherwise ((1 − δ(yi, c)bc(yi)) < 1) the impact of the original primal loss func-
tion on the Newton step is reduced. Note, the Hessian is not affected by our
changes in the loss function and ∂F

∂βl
c

can be computed similar to [17].
The parameters of the binary and ternary clique potentials can be optimized

via gradient descent. Similar to [12], the gradient with respect to the binary
parameters {ul

c1c2
} of layer l can be expressed as

∂L
∂ul

c1c2

=
∑

eij∈E

(δ(yi, c1)δ(yj , c2) − bc1c2(yi, yj)) gl
ij(x) . (11)
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(a) (b)

Fig. 2. (a) Three-layer instantiation of our model. The evidence aggregation is
sketched: Starting from local information like fragments of a wheel over whole wheels
to entire objects at the top layer. (b) Example of the part assignment of training data
(left: training image; middle: part assignment of middle layer; right: part assignment
of bottom layer). Colors encode assignments of parts; dark blue indicates background.

where δ(·, ·) refers to the Kronecker-delta and bc1c2(·, ·) denotes the pairwise
belief of two adjacent nodes belonging to class c1 and c2.

Analogously, the gradient with respect to the ternary clique parameters vl
c1c2c3

of layer l can be written as

∂L
∂vl

c1c2c3

=
∑

tijk∈T

(δ(yi, c1)δ(yj , c2)δ(yk, c3) − bc1c2c3(yi, yj , yk))hl
ijk(x) . (12)

where bc1c2c3(·, ·, ·) denotes the ternary beliefs of three connected nodes.
This concept for updating the parameters of our model alternates between

the max margin notation of SVM training and the max likelihood formalism
of CRFs. Although we show performance improvements with our scheme, this
might be a restriction, since one unique optimization scheme is desirable. In
future work we will investigate algorithms to overcome this restriction.

We use quadratic programming (the common SVM training) decoupled from
the CRF to initialize the parameters βl. The dual support vector coefficients
αl

c and parameters βl
c are connected via

(
βl

c

)
j

= yj

(
αl

c

)
j

as described in [17].
Given the starting solution for βl we start the joint optimization by Newton
optimization for unary classifiers and gradient descent for binary and ternary
clique parameters.
Inference. Given the parameters (βl), (ul) and (vl) we seek to infer probabilities
of the nodes belonging to the different classes. Loopy Belief Propagation (LBP)
[19] infers beliefs, that one node y belongs to class c while respecting the pairwise
and three-wise dependencies of adjacent nodes.

3 Application to Computer Vision Tasks

To support our claims about the benefits of the local to global CRF model and
the presented joint optimization, we evaluate the approach on two challenging
computer vision tasks: object detection and hypothesis verification. But first we
describe in detail how the method is adapted to the specific settings and show
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how to obtain part annotations for the training phase. We consider a 3-layer
instantiation of the presented model as visualized in Figure 2(a) and detailed
below.

3.1 Feature Functions

Until now, we have not defined the feature functions f l(·), gl(·), hl(·), that
are specific to each layer in the CRF we propose. They link the potentials to
the actual image evidence and account for local neighborhood and long range
dependencies. We build on the concept of computing histograms of oriented
gradients, that has been shown to be very successful on a local level, describing
interest points [20], as well as on a global level [1], describing full objects in a
holistic manner. However, due to the generality of our work, any suitable feature
function can be deployed to our model.
Unary Potential Feature Functions. We calculate histograms of oriented
gradients for a grid of non-overlapping 8 × 8 pixel regions and concatenate
4 neighboring histograms of gradients to one block descriptor as described in
[1]. This results in a 36 dimensional feature for each node, that we define to
be the unary feature function on the first level f1(·). For the higher levels
f2(·), . . . , fL(·) we successively double the number of considered blocks in hori-
zontal and vertical directions until on the highest level, we encode the full object
as in [1]. As illustrated in Figure 2(a), the motivation behind this scheme is to
aggregate evidence for an object class from different spatial localities ranging
from fragments (e.g. fragment of a wheel), parts (e.g. whole wheel) to a holistic
view on the object (e.g. whole motorbike).
Binary Potential Feature Functions. Intuitively, binary potentials are re-
sponsible for modeling local dependencies by supporting or inhibiting label
propagation to the neighboring nodes. In computer vision, simple pixel-based
gradient-based measures are often used to inhibit propagation across potential
object borders [15]. Our approach goes beyond that by taking into account the
change in the gradient orientation histograms between the neighboring nodes.

gl
ij(X) =

( ∣∣f l
i (X) − f l

j(X)
∣∣ , 1

)T
. (13)

Here, we extended each difference by an offset for being capable eliminating
small isolated regions.
Ternary Potential Feature Functions. Similar to the binary potentials,
ternary potentials encode local dependencies, too. But furthermore, they act
as a link between layers, facilitating propagation of information across locality
and position in our model. Due to the computational tractability of the hierar-
chy we can propagate object evidence across layers and thereby manage efficient
bottom-up and top-down reasoning during inference.

To allow the ternary potential to assess the compatibility of a particular la-
beling of a three-wise connected clique, we define the ternary potential feature
function to be the stacked pairwise difference of the feature vector associated to
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the 3 relevant nodes. Since higher level nodes involve more HOG blocks and are
higher dimensional than lower level ones, we calculate the average over connected
blocks (denoted by operation avg(·)) in order to fit the dimension of lower level
nodes.

hl
ijk(x) =

�
| f l

i (x) − f l
j(x) | , | f l

i (x) − avg(f l+1
k (x)) | , | f l

j(x) − avg(f l+1
k (x)) | , 1

�T
.

(14)
where nodes i and j are on layer l and node k is on layer l + 1.

3.2 Part Assignment

For optimizing the conditional log-likelihood during training, ground truth part
labels are required for each training instance in order to be able to train the
multiclass potentials of our model. While the labeling for the top (object) layer
is given by a bounding box annotation or segmentation of the objects, the part
annotation on the lower layers is not obvious. Inspired by [21] we obtain part
labels in a data driven way by applying k-means clustering across images to infer
part annotations. Instead of mere spatial clustering, we append to the image
coordinates the features described in 3.1. In this fashion the importance is on
the cluster appearance and the 2 coordinate dimensions act as regularization for
the clustering to maintain a rough spatial layout. Despite the simple data-driven
approach, we obtain a sensible partitioning of our training instances, that exposes
appearance-based though well localized assignment of parts as exemplified in
Fig. 2(b).

3.3 Object Detection and Verification

In this paragraph we show how we infer object locations of one object class.
As described in section 2.4, LBP yields a label assignment across layers taking
into account beliefs that nodes are associated with parts (bottom and middle
layer), object (top layer) or background (all layers). Given a test image we could
initialize our model at every pixel location for being able to infer all possible
object hypotheses. However, to reduce computational effort we first deploy the
bottom and middle layer of our model. This step produces a part map of the
whole image while respecting the dependencies of the bottom and middle layer.
From the training set we know possible part constellations and we search for
those constellations in the part map of test images to infer hypotheses of object
locations. This approach resembles the ISM voting of [4] despite that the evidence
of parts of our model are inferred simultaneously and therefore the parts interact
with each other. Thus, the evidence of one sub-part conditions the constellation
of direct neighbors via links in the bottom layer and via the middle layer it
also affects the evidence of further image regions. This step generates initial
hypotheses that still need to be validated by the complete model. Since the part-
based approach of the lower layers showed to yield a high recall, this approach
makes sense as we first search for possible locations and then infer the complete
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(a) (b)

Fig. 3. (a) Examples on the UIUC dataset. The columns show results at EER of HOG
detector, one-layer separate training, one-layer joint training and multi-layer model.
(b) UIUC detection performance of the different aspects.

model for the hypothized bounding boxes. The approach of coupling generative
models with a discriminative verification stage has been shown to be fruitful
[22]. In this spirit, we address a hypothesis verification task by only infering our
model at hypothesized bounding boxes. LBP simultaneously infers beliefs of all
nodes of our model. Since at the top layer we only deploy one node, we can
directly use the belief of that node belonging to the object class as a score. For
the layers underneath we compute object probabilities similar to the ISM [4]
part voting scheme as described above and multiply them to the global belief.
Thereby we distinguish between left and right facing objects and consider the
maximum of the deduced scores.

4 Experiments

In all experiments we used SVMlight [23] for initial SVM training. Training the
model took approximately 12 hours while we were able to infer 15 hypotheses
per second.
Object Detection. For the detection task we evaluated our model on the UIUC
single scale car dataset. We trained the whole model on 250 bounding boxes
containing cars and 200 negative crops. This experiment contains performance
measurements of i) only the global object detector, ii) the one-layer model of
our approach while training the SVM and CRF parameters separately, iii) the
one-layer model while training the parameters jointly and iv) the complete multi-
layer model. For the part labeling during training we deployed k-means clustering
with 8 means for the bottom layer and 4 means for the middle layer. For the
one-layer model we used 8 means in the clustering step. The detection perfor-
mance was evaluated on the 170 UIUC test images. Figure 3(b) compares the
different aspects described in the previous sections. Both the joint training and
the multi-layer approach consistently improved the performance. Especially note
the large performance gap between the complete model (97,5% in equal error
rate) and the HOG detector (87,0% in EER). Figure 3(a) shows some example
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Table 1. Results of the detection task on the UIUC car dataset

Method EER

Multi-layer 97,5
One-layer part-based joint training 96,0
One-layer part-based without joint training 93,0
Global object detector [1] 87,0
Mutch & Lowe [24] 99,9
Leibe et al. [4] 97,5
Hoiem & Winn [11] approx. 93,5
Winn & Shotton [13] approx. 92,9

images where the HOG detector can not detect all cars due to partial occlusion
and the one-layer models infer false positives, while the multi-layer model de-
tects all cars correctly. These results expose the benefits of joint training and
integration of local to global information. Our model successfully learns the
tradeoff between global vs. local object detection and improves the performance
of both ideas by combining powerful global descriptors and flexible local feature
approaches. Further note the performance improvement between training the
SVM independently from the other CRF parameters (93,0%) and training them
jointly (96,0%) for the one-layer model. This evaluation highlights the advantage
of training all model parameters jointly as proposed in section 2. In Tab. 1 we
compare our model to the state-of-the-art in object detection on this dataset. As
it can be seen, we achieve competitive results compared to other well performing
models. Only Mutch and Lowe [24] outperform our model while we obtained the
same performance as [4]. Further, we outperform the CRF-based approaches of
Hoiem and Winn [11] and Winn and Shotton [13].
Verification of HOG Detector Hypothesis. For the hypothesis verification
task we evaluated our model on the PASCAL 2006 motorbikes dataset [25] con-
taining challenging multiscale, partially occluded and multiview instances. Since
we want to explore the combination of an initial detector with our model acting as
a verification stage, we trained a HOG detector on the provided training set and
generated initial hypotheses on the test set. We set the parameters to allow for high
recall at the drawback of more false positives. We also trained our joint multi-layer
model on the training set and calculated the score of our approach on the hypothe-
ses of the HOG detector (see Figure 4(a)). Thereby, our multi-layermodel achieved
43,7% in average precision (the common performance measure of [25]) improving
the state-of-the-art by 4,7%. Note in particular that we outperformed the global
HOG detector, that reported an average precision of 39%, which emphasizes the
benefit of combining global and local features. The next best performance for the
motorbikes is 37,1% achieved by the approach of [26] whichwe outperform by6,6%.
Furthermore, our model shows a high performance improvement (more than 10%
in average precision) compared to the remaining approaches.Particularly, the high
precision for high scores of bounding boxes is promising; with no false positives 16%
of all motorbikes are extracted while none of the other state-of-the-art approaches
obtained such high recall at perfect precision.

Fig. 5(a) shows precision-recall-curves from which the contributions of different
aspects of our model to the overall performance gain can be deduced. Consistent
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Method AP AP trained
on sidev.

Multi-layer 43,7 36,0
Multi-layer not jointly trained 42,0 33,5
Decoupled multiple layers - 32,2
One-layer model - 27,7
One-layer not jointly trained - 24,2
One-layer unary classifier - 19,0
Dalal & Triggs [1] 39,0 30,0
Chum & Zisserman [26] 37,1 -
Laptev [27] 31,8 -
Viitaniemi & Laaksonen [28] 26,5 -
Shotton et al. [15] 17,8 -
Leibe et al. [4] 15,3 -

(a)
(b)

Fig. 4. (a) Results for the motorbike PASCAL06 challenge (AP = average precision).
(b) Example images for detecting sideviews of motorbikes: (Left) one-layer part-based
model; (middle) HOG sideviews; (right) joint multi-layer model.

(a) (b)

Fig. 5. (a) PASCAL06 detection performance of our model. (b) State of the art ap-
proaches on the PASCAL06 motorbikes.

with the results obtained on the UIUC database, the jointly trained multi-layer
model improves the performance to 43,7% while the non-jointly trained model
with fixed SVM coefficients obtained 42% in average precision.
Verification of Generative ISM Object Detector Hypothesis. For further
testing the different aspects of our model, we decided to test our discriminative
model on hypotheses obtained by the ISM-model. Since the latter model was
shown to yield promising results for the subset of left or right facing instances,
we trained our model on sideviews of motorbikes, but evaluated the aspects
on the complete multiview dataset. Overall the ISM model extracted 4238 hy-
potheses and achieved an average precision of 15,3%. We trained our model on
100 rightfacing and respective mirrored left views and 200 randomly cropped
background images. As it can be seen in Fig. 4(a) our multi-layer model could
improve the performance compared to other settings of our approach.
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Concerning the average precision performance measure the jointly trained
multi-layer model (36,0%) significantly improved the results of the non-jointly
trained model with fixed SVM parameters (33,5%), completely decoupled layers
(32,3%), the HOG detector trained on sideviews (30%) and the one-layer settings
of our model: jointly trained SVM and CRF parameters (27,7%), fixed SVM
parameters (24,2%) and the unary classifier (SVM) (19,0%).

Fig. 4(b) shows some example detections for training on sideviews. Partially
occluded objects can not be detected by the global detector, while the part
based approach and our multi-layer model infer them correctly. Furthermore,
false detections of the part based approach can be removed by the global detector
for correct detections of our multi-layer model. However, the rear view of the
motorbike (third row) can not be detected correctly due to the focus on sideviews.
The measured improvements for joint training and the multi-layer approach are
consistent with respect to both tested databases.

5 Conclusion

We present a novel multi-layer CRF which combines the power of global object
detectors and flexible local feature approaches. Our model successfully learns
the tradeoff between local and global feature contributions for improved per-
formance. Furthermore, we show how SVM classifiers can be incorporated into
this multi-layer CRF framework and how training can be performed jointly. Ex-
periments show that performance improves consistently. Finally, we outperform
the state-of-the-art on the challenging PASCAL06 motorbike detection task. In
future, we will investigate to use more layers in our model and deploy different
tractable hierarchies to it, which can be easily done due to the generality of our
work. We will also explore different features for evidence aggregation.
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